]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
5620fd90178734f30a2e60a978c529e6240d283a
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <sys/prctl.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9
10 #include "sd-id128.h"
11 #include "sd-messages.h"
12
13 #include "all-units.h"
14 #include "alloc-util.h"
15 #include "bus-common-errors.h"
16 #include "bus-util.h"
17 #include "cgroup-util.h"
18 #include "dbus-unit.h"
19 #include "dbus.h"
20 #include "dropin.h"
21 #include "escape.h"
22 #include "execute.h"
23 #include "fd-util.h"
24 #include "fileio-label.h"
25 #include "fileio.h"
26 #include "format-util.h"
27 #include "fs-util.h"
28 #include "id128-util.h"
29 #include "io-util.h"
30 #include "load-dropin.h"
31 #include "load-fragment.h"
32 #include "log.h"
33 #include "macro.h"
34 #include "missing.h"
35 #include "mkdir.h"
36 #include "parse-util.h"
37 #include "path-util.h"
38 #include "process-util.h"
39 #include "serialize.h"
40 #include "set.h"
41 #include "signal-util.h"
42 #include "sparse-endian.h"
43 #include "special.h"
44 #include "specifier.h"
45 #include "stat-util.h"
46 #include "stdio-util.h"
47 #include "string-table.h"
48 #include "string-util.h"
49 #include "strv.h"
50 #include "terminal-util.h"
51 #include "tmpfile-util.h"
52 #include "umask-util.h"
53 #include "unit-name.h"
54 #include "unit.h"
55 #include "user-util.h"
56 #include "virt.h"
57
58 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
59 [UNIT_SERVICE] = &service_vtable,
60 [UNIT_SOCKET] = &socket_vtable,
61 [UNIT_TARGET] = &target_vtable,
62 [UNIT_DEVICE] = &device_vtable,
63 [UNIT_MOUNT] = &mount_vtable,
64 [UNIT_AUTOMOUNT] = &automount_vtable,
65 [UNIT_SWAP] = &swap_vtable,
66 [UNIT_TIMER] = &timer_vtable,
67 [UNIT_PATH] = &path_vtable,
68 [UNIT_SLICE] = &slice_vtable,
69 [UNIT_SCOPE] = &scope_vtable,
70 };
71
72 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
73
74 Unit *unit_new(Manager *m, size_t size) {
75 Unit *u;
76
77 assert(m);
78 assert(size >= sizeof(Unit));
79
80 u = malloc0(size);
81 if (!u)
82 return NULL;
83
84 u->names = set_new(&string_hash_ops);
85 if (!u->names)
86 return mfree(u);
87
88 u->manager = m;
89 u->type = _UNIT_TYPE_INVALID;
90 u->default_dependencies = true;
91 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
92 u->unit_file_preset = -1;
93 u->on_failure_job_mode = JOB_REPLACE;
94 u->cgroup_inotify_wd = -1;
95 u->job_timeout = USEC_INFINITY;
96 u->job_running_timeout = USEC_INFINITY;
97 u->ref_uid = UID_INVALID;
98 u->ref_gid = GID_INVALID;
99 u->cpu_usage_last = NSEC_INFINITY;
100 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
101 u->failure_action_exit_status = u->success_action_exit_status = -1;
102
103 u->ip_accounting_ingress_map_fd = -1;
104 u->ip_accounting_egress_map_fd = -1;
105 u->ipv4_allow_map_fd = -1;
106 u->ipv6_allow_map_fd = -1;
107 u->ipv4_deny_map_fd = -1;
108 u->ipv6_deny_map_fd = -1;
109
110 u->last_section_private = -1;
111
112 RATELIMIT_INIT(u->start_limit, m->default_start_limit_interval, m->default_start_limit_burst);
113 RATELIMIT_INIT(u->auto_stop_ratelimit, 10 * USEC_PER_SEC, 16);
114
115 return u;
116 }
117
118 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
119 _cleanup_(unit_freep) Unit *u = NULL;
120 int r;
121
122 u = unit_new(m, size);
123 if (!u)
124 return -ENOMEM;
125
126 r = unit_add_name(u, name);
127 if (r < 0)
128 return r;
129
130 *ret = TAKE_PTR(u);
131
132 return r;
133 }
134
135 bool unit_has_name(const Unit *u, const char *name) {
136 assert(u);
137 assert(name);
138
139 return set_contains(u->names, (char*) name);
140 }
141
142 static void unit_init(Unit *u) {
143 CGroupContext *cc;
144 ExecContext *ec;
145 KillContext *kc;
146
147 assert(u);
148 assert(u->manager);
149 assert(u->type >= 0);
150
151 cc = unit_get_cgroup_context(u);
152 if (cc) {
153 cgroup_context_init(cc);
154
155 /* Copy in the manager defaults into the cgroup
156 * context, _before_ the rest of the settings have
157 * been initialized */
158
159 cc->cpu_accounting = u->manager->default_cpu_accounting;
160 cc->io_accounting = u->manager->default_io_accounting;
161 cc->ip_accounting = u->manager->default_ip_accounting;
162 cc->blockio_accounting = u->manager->default_blockio_accounting;
163 cc->memory_accounting = u->manager->default_memory_accounting;
164 cc->tasks_accounting = u->manager->default_tasks_accounting;
165 cc->ip_accounting = u->manager->default_ip_accounting;
166
167 if (u->type != UNIT_SLICE)
168 cc->tasks_max = u->manager->default_tasks_max;
169 }
170
171 ec = unit_get_exec_context(u);
172 if (ec) {
173 exec_context_init(ec);
174
175 ec->keyring_mode = MANAGER_IS_SYSTEM(u->manager) ?
176 EXEC_KEYRING_SHARED : EXEC_KEYRING_INHERIT;
177 }
178
179 kc = unit_get_kill_context(u);
180 if (kc)
181 kill_context_init(kc);
182
183 if (UNIT_VTABLE(u)->init)
184 UNIT_VTABLE(u)->init(u);
185 }
186
187 int unit_add_name(Unit *u, const char *text) {
188 _cleanup_free_ char *s = NULL, *i = NULL;
189 UnitType t;
190 int r;
191
192 assert(u);
193 assert(text);
194
195 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
196
197 if (!u->instance)
198 return -EINVAL;
199
200 r = unit_name_replace_instance(text, u->instance, &s);
201 if (r < 0)
202 return r;
203 } else {
204 s = strdup(text);
205 if (!s)
206 return -ENOMEM;
207 }
208
209 if (set_contains(u->names, s))
210 return 0;
211 if (hashmap_contains(u->manager->units, s))
212 return -EEXIST;
213
214 if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
215 return -EINVAL;
216
217 t = unit_name_to_type(s);
218 if (t < 0)
219 return -EINVAL;
220
221 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
222 return -EINVAL;
223
224 r = unit_name_to_instance(s, &i);
225 if (r < 0)
226 return r;
227
228 if (i && !unit_type_may_template(t))
229 return -EINVAL;
230
231 /* Ensure that this unit is either instanced or not instanced,
232 * but not both. Note that we do allow names with different
233 * instance names however! */
234 if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i)
235 return -EINVAL;
236
237 if (!unit_type_may_alias(t) && !set_isempty(u->names))
238 return -EEXIST;
239
240 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
241 return -E2BIG;
242
243 r = set_put(u->names, s);
244 if (r < 0)
245 return r;
246 assert(r > 0);
247
248 r = hashmap_put(u->manager->units, s, u);
249 if (r < 0) {
250 (void) set_remove(u->names, s);
251 return r;
252 }
253
254 if (u->type == _UNIT_TYPE_INVALID) {
255 u->type = t;
256 u->id = s;
257 u->instance = TAKE_PTR(i);
258
259 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
260
261 unit_init(u);
262 }
263
264 s = NULL;
265
266 unit_add_to_dbus_queue(u);
267 return 0;
268 }
269
270 int unit_choose_id(Unit *u, const char *name) {
271 _cleanup_free_ char *t = NULL;
272 char *s, *i;
273 int r;
274
275 assert(u);
276 assert(name);
277
278 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
279
280 if (!u->instance)
281 return -EINVAL;
282
283 r = unit_name_replace_instance(name, u->instance, &t);
284 if (r < 0)
285 return r;
286
287 name = t;
288 }
289
290 /* Selects one of the names of this unit as the id */
291 s = set_get(u->names, (char*) name);
292 if (!s)
293 return -ENOENT;
294
295 /* Determine the new instance from the new id */
296 r = unit_name_to_instance(s, &i);
297 if (r < 0)
298 return r;
299
300 u->id = s;
301
302 free(u->instance);
303 u->instance = i;
304
305 unit_add_to_dbus_queue(u);
306
307 return 0;
308 }
309
310 int unit_set_description(Unit *u, const char *description) {
311 int r;
312
313 assert(u);
314
315 r = free_and_strdup(&u->description, empty_to_null(description));
316 if (r < 0)
317 return r;
318 if (r > 0)
319 unit_add_to_dbus_queue(u);
320
321 return 0;
322 }
323
324 bool unit_may_gc(Unit *u) {
325 UnitActiveState state;
326 int r;
327
328 assert(u);
329
330 /* Checks whether the unit is ready to be unloaded for garbage collection.
331 * Returns true when the unit may be collected, and false if there's some
332 * reason to keep it loaded.
333 *
334 * References from other units are *not* checked here. Instead, this is done
335 * in unit_gc_sweep(), but using markers to properly collect dependency loops.
336 */
337
338 if (u->job)
339 return false;
340
341 if (u->nop_job)
342 return false;
343
344 state = unit_active_state(u);
345
346 /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */
347 if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
348 UNIT_VTABLE(u)->release_resources)
349 UNIT_VTABLE(u)->release_resources(u);
350
351 if (u->perpetual)
352 return false;
353
354 if (sd_bus_track_count(u->bus_track) > 0)
355 return false;
356
357 /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */
358 switch (u->collect_mode) {
359
360 case COLLECT_INACTIVE:
361 if (state != UNIT_INACTIVE)
362 return false;
363
364 break;
365
366 case COLLECT_INACTIVE_OR_FAILED:
367 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
368 return false;
369
370 break;
371
372 default:
373 assert_not_reached("Unknown garbage collection mode");
374 }
375
376 if (u->cgroup_path) {
377 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
378 * around. Units with active processes should never be collected. */
379
380 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
381 if (r < 0)
382 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
383 if (r <= 0)
384 return false;
385 }
386
387 if (UNIT_VTABLE(u)->may_gc && !UNIT_VTABLE(u)->may_gc(u))
388 return false;
389
390 return true;
391 }
392
393 void unit_add_to_load_queue(Unit *u) {
394 assert(u);
395 assert(u->type != _UNIT_TYPE_INVALID);
396
397 if (u->load_state != UNIT_STUB || u->in_load_queue)
398 return;
399
400 LIST_PREPEND(load_queue, u->manager->load_queue, u);
401 u->in_load_queue = true;
402 }
403
404 void unit_add_to_cleanup_queue(Unit *u) {
405 assert(u);
406
407 if (u->in_cleanup_queue)
408 return;
409
410 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
411 u->in_cleanup_queue = true;
412 }
413
414 void unit_add_to_gc_queue(Unit *u) {
415 assert(u);
416
417 if (u->in_gc_queue || u->in_cleanup_queue)
418 return;
419
420 if (!unit_may_gc(u))
421 return;
422
423 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
424 u->in_gc_queue = true;
425 }
426
427 void unit_add_to_dbus_queue(Unit *u) {
428 assert(u);
429 assert(u->type != _UNIT_TYPE_INVALID);
430
431 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
432 return;
433
434 /* Shortcut things if nobody cares */
435 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
436 sd_bus_track_count(u->bus_track) <= 0 &&
437 set_isempty(u->manager->private_buses)) {
438 u->sent_dbus_new_signal = true;
439 return;
440 }
441
442 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
443 u->in_dbus_queue = true;
444 }
445
446 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
447 assert(u);
448
449 if (u->in_stop_when_unneeded_queue)
450 return;
451
452 if (!u->stop_when_unneeded)
453 return;
454
455 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
456 return;
457
458 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
459 u->in_stop_when_unneeded_queue = true;
460 }
461
462 static void bidi_set_free(Unit *u, Hashmap *h) {
463 Unit *other;
464 Iterator i;
465 void *v;
466
467 assert(u);
468
469 /* Frees the hashmap and makes sure we are dropped from the inverse pointers */
470
471 HASHMAP_FOREACH_KEY(v, other, h, i) {
472 UnitDependency d;
473
474 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
475 hashmap_remove(other->dependencies[d], u);
476
477 unit_add_to_gc_queue(other);
478 }
479
480 hashmap_free(h);
481 }
482
483 static void unit_remove_transient(Unit *u) {
484 char **i;
485
486 assert(u);
487
488 if (!u->transient)
489 return;
490
491 if (u->fragment_path)
492 (void) unlink(u->fragment_path);
493
494 STRV_FOREACH(i, u->dropin_paths) {
495 _cleanup_free_ char *p = NULL, *pp = NULL;
496
497 p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */
498 if (!p)
499 continue;
500
501 pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */
502 if (!pp)
503 continue;
504
505 /* Only drop transient drop-ins */
506 if (!path_equal(u->manager->lookup_paths.transient, pp))
507 continue;
508
509 (void) unlink(*i);
510 (void) rmdir(p);
511 }
512 }
513
514 static void unit_free_requires_mounts_for(Unit *u) {
515 assert(u);
516
517 for (;;) {
518 _cleanup_free_ char *path;
519
520 path = hashmap_steal_first_key(u->requires_mounts_for);
521 if (!path)
522 break;
523 else {
524 char s[strlen(path) + 1];
525
526 PATH_FOREACH_PREFIX_MORE(s, path) {
527 char *y;
528 Set *x;
529
530 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
531 if (!x)
532 continue;
533
534 (void) set_remove(x, u);
535
536 if (set_isempty(x)) {
537 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
538 free(y);
539 set_free(x);
540 }
541 }
542 }
543 }
544
545 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
546 }
547
548 static void unit_done(Unit *u) {
549 ExecContext *ec;
550 CGroupContext *cc;
551
552 assert(u);
553
554 if (u->type < 0)
555 return;
556
557 if (UNIT_VTABLE(u)->done)
558 UNIT_VTABLE(u)->done(u);
559
560 ec = unit_get_exec_context(u);
561 if (ec)
562 exec_context_done(ec);
563
564 cc = unit_get_cgroup_context(u);
565 if (cc)
566 cgroup_context_done(cc);
567 }
568
569 void unit_free(Unit *u) {
570 UnitDependency d;
571 Iterator i;
572 char *t;
573
574 if (!u)
575 return;
576
577 if (UNIT_ISSET(u->slice)) {
578 /* A unit is being dropped from the tree, make sure our parent slice recalculates the member mask */
579 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
580
581 /* And make sure the parent is realized again, updating cgroup memberships */
582 unit_add_to_cgroup_realize_queue(UNIT_DEREF(u->slice));
583 }
584
585 u->transient_file = safe_fclose(u->transient_file);
586
587 if (!MANAGER_IS_RELOADING(u->manager))
588 unit_remove_transient(u);
589
590 bus_unit_send_removed_signal(u);
591
592 unit_done(u);
593
594 unit_dequeue_rewatch_pids(u);
595
596 sd_bus_slot_unref(u->match_bus_slot);
597 sd_bus_track_unref(u->bus_track);
598 u->deserialized_refs = strv_free(u->deserialized_refs);
599
600 unit_free_requires_mounts_for(u);
601
602 SET_FOREACH(t, u->names, i)
603 hashmap_remove_value(u->manager->units, t, u);
604
605 if (!sd_id128_is_null(u->invocation_id))
606 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
607
608 if (u->job) {
609 Job *j = u->job;
610 job_uninstall(j);
611 job_free(j);
612 }
613
614 if (u->nop_job) {
615 Job *j = u->nop_job;
616 job_uninstall(j);
617 job_free(j);
618 }
619
620 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
621 bidi_set_free(u, u->dependencies[d]);
622
623 if (u->on_console)
624 manager_unref_console(u->manager);
625
626 unit_release_cgroup(u);
627
628 if (!MANAGER_IS_RELOADING(u->manager))
629 unit_unlink_state_files(u);
630
631 unit_unref_uid_gid(u, false);
632
633 (void) manager_update_failed_units(u->manager, u, false);
634 set_remove(u->manager->startup_units, u);
635
636 unit_unwatch_all_pids(u);
637
638 unit_ref_unset(&u->slice);
639 while (u->refs_by_target)
640 unit_ref_unset(u->refs_by_target);
641
642 if (u->type != _UNIT_TYPE_INVALID)
643 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
644
645 if (u->in_load_queue)
646 LIST_REMOVE(load_queue, u->manager->load_queue, u);
647
648 if (u->in_dbus_queue)
649 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
650
651 if (u->in_gc_queue)
652 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
653
654 if (u->in_cgroup_realize_queue)
655 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
656
657 if (u->in_cgroup_empty_queue)
658 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
659
660 if (u->in_cleanup_queue)
661 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
662
663 if (u->in_target_deps_queue)
664 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
665
666 if (u->in_stop_when_unneeded_queue)
667 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
668
669 safe_close(u->ip_accounting_ingress_map_fd);
670 safe_close(u->ip_accounting_egress_map_fd);
671
672 safe_close(u->ipv4_allow_map_fd);
673 safe_close(u->ipv6_allow_map_fd);
674 safe_close(u->ipv4_deny_map_fd);
675 safe_close(u->ipv6_deny_map_fd);
676
677 bpf_program_unref(u->ip_bpf_ingress);
678 bpf_program_unref(u->ip_bpf_ingress_installed);
679 bpf_program_unref(u->ip_bpf_egress);
680 bpf_program_unref(u->ip_bpf_egress_installed);
681
682 bpf_program_unref(u->bpf_device_control_installed);
683
684 condition_free_list(u->conditions);
685 condition_free_list(u->asserts);
686
687 free(u->description);
688 strv_free(u->documentation);
689 free(u->fragment_path);
690 free(u->source_path);
691 strv_free(u->dropin_paths);
692 free(u->instance);
693
694 free(u->job_timeout_reboot_arg);
695
696 set_free_free(u->names);
697
698 free(u->reboot_arg);
699
700 free(u);
701 }
702
703 UnitActiveState unit_active_state(Unit *u) {
704 assert(u);
705
706 if (u->load_state == UNIT_MERGED)
707 return unit_active_state(unit_follow_merge(u));
708
709 /* After a reload it might happen that a unit is not correctly
710 * loaded but still has a process around. That's why we won't
711 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
712
713 return UNIT_VTABLE(u)->active_state(u);
714 }
715
716 const char* unit_sub_state_to_string(Unit *u) {
717 assert(u);
718
719 return UNIT_VTABLE(u)->sub_state_to_string(u);
720 }
721
722 static int set_complete_move(Set **s, Set **other) {
723 assert(s);
724 assert(other);
725
726 if (!other)
727 return 0;
728
729 if (*s)
730 return set_move(*s, *other);
731 else
732 *s = TAKE_PTR(*other);
733
734 return 0;
735 }
736
737 static int hashmap_complete_move(Hashmap **s, Hashmap **other) {
738 assert(s);
739 assert(other);
740
741 if (!*other)
742 return 0;
743
744 if (*s)
745 return hashmap_move(*s, *other);
746 else
747 *s = TAKE_PTR(*other);
748
749 return 0;
750 }
751
752 static int merge_names(Unit *u, Unit *other) {
753 char *t;
754 Iterator i;
755 int r;
756
757 assert(u);
758 assert(other);
759
760 r = set_complete_move(&u->names, &other->names);
761 if (r < 0)
762 return r;
763
764 set_free_free(other->names);
765 other->names = NULL;
766 other->id = NULL;
767
768 SET_FOREACH(t, u->names, i)
769 assert_se(hashmap_replace(u->manager->units, t, u) == 0);
770
771 return 0;
772 }
773
774 static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
775 unsigned n_reserve;
776
777 assert(u);
778 assert(other);
779 assert(d < _UNIT_DEPENDENCY_MAX);
780
781 /*
782 * If u does not have this dependency set allocated, there is no need
783 * to reserve anything. In that case other's set will be transferred
784 * as a whole to u by complete_move().
785 */
786 if (!u->dependencies[d])
787 return 0;
788
789 /* merge_dependencies() will skip a u-on-u dependency */
790 n_reserve = hashmap_size(other->dependencies[d]) - !!hashmap_get(other->dependencies[d], u);
791
792 return hashmap_reserve(u->dependencies[d], n_reserve);
793 }
794
795 static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
796 Iterator i;
797 Unit *back;
798 void *v;
799 int r;
800
801 /* Merges all dependencies of type 'd' of the unit 'other' into the deps of the unit 'u' */
802
803 assert(u);
804 assert(other);
805 assert(d < _UNIT_DEPENDENCY_MAX);
806
807 /* Fix backwards pointers. Let's iterate through all dependendent units of the other unit. */
808 HASHMAP_FOREACH_KEY(v, back, other->dependencies[d], i) {
809 UnitDependency k;
810
811 /* Let's now iterate through the dependencies of that dependencies of the other units, looking for
812 * pointers back, and let's fix them up, to instead point to 'u'. */
813
814 for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) {
815 if (back == u) {
816 /* Do not add dependencies between u and itself. */
817 if (hashmap_remove(back->dependencies[k], other))
818 maybe_warn_about_dependency(u, other_id, k);
819 } else {
820 UnitDependencyInfo di_u, di_other, di_merged;
821
822 /* Let's drop this dependency between "back" and "other", and let's create it between
823 * "back" and "u" instead. Let's merge the bit masks of the dependency we are moving,
824 * and any such dependency which might already exist */
825
826 di_other.data = hashmap_get(back->dependencies[k], other);
827 if (!di_other.data)
828 continue; /* dependency isn't set, let's try the next one */
829
830 di_u.data = hashmap_get(back->dependencies[k], u);
831
832 di_merged = (UnitDependencyInfo) {
833 .origin_mask = di_u.origin_mask | di_other.origin_mask,
834 .destination_mask = di_u.destination_mask | di_other.destination_mask,
835 };
836
837 r = hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data);
838 if (r < 0)
839 log_warning_errno(r, "Failed to remove/replace: back=%s other=%s u=%s: %m", back->id, other_id, u->id);
840 assert(r >= 0);
841
842 /* assert_se(hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data) >= 0); */
843 }
844 }
845
846 }
847
848 /* Also do not move dependencies on u to itself */
849 back = hashmap_remove(other->dependencies[d], u);
850 if (back)
851 maybe_warn_about_dependency(u, other_id, d);
852
853 /* The move cannot fail. The caller must have performed a reservation. */
854 assert_se(hashmap_complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
855
856 other->dependencies[d] = hashmap_free(other->dependencies[d]);
857 }
858
859 int unit_merge(Unit *u, Unit *other) {
860 UnitDependency d;
861 const char *other_id = NULL;
862 int r;
863
864 assert(u);
865 assert(other);
866 assert(u->manager == other->manager);
867 assert(u->type != _UNIT_TYPE_INVALID);
868
869 other = unit_follow_merge(other);
870
871 if (other == u)
872 return 0;
873
874 if (u->type != other->type)
875 return -EINVAL;
876
877 if (!u->instance != !other->instance)
878 return -EINVAL;
879
880 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
881 return -EEXIST;
882
883 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
884 return -EEXIST;
885
886 if (other->job)
887 return -EEXIST;
888
889 if (other->nop_job)
890 return -EEXIST;
891
892 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
893 return -EEXIST;
894
895 if (other->id)
896 other_id = strdupa(other->id);
897
898 /* Make reservations to ensure merge_dependencies() won't fail */
899 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
900 r = reserve_dependencies(u, other, d);
901 /*
902 * We don't rollback reservations if we fail. We don't have
903 * a way to undo reservations. A reservation is not a leak.
904 */
905 if (r < 0)
906 return r;
907 }
908
909 /* Merge names */
910 r = merge_names(u, other);
911 if (r < 0)
912 return r;
913
914 /* Redirect all references */
915 while (other->refs_by_target)
916 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
917
918 /* Merge dependencies */
919 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
920 merge_dependencies(u, other, other_id, d);
921
922 other->load_state = UNIT_MERGED;
923 other->merged_into = u;
924
925 /* If there is still some data attached to the other node, we
926 * don't need it anymore, and can free it. */
927 if (other->load_state != UNIT_STUB)
928 if (UNIT_VTABLE(other)->done)
929 UNIT_VTABLE(other)->done(other);
930
931 unit_add_to_dbus_queue(u);
932 unit_add_to_cleanup_queue(other);
933
934 return 0;
935 }
936
937 int unit_merge_by_name(Unit *u, const char *name) {
938 _cleanup_free_ char *s = NULL;
939 Unit *other;
940 int r;
941
942 assert(u);
943 assert(name);
944
945 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
946 if (!u->instance)
947 return -EINVAL;
948
949 r = unit_name_replace_instance(name, u->instance, &s);
950 if (r < 0)
951 return r;
952
953 name = s;
954 }
955
956 other = manager_get_unit(u->manager, name);
957 if (other)
958 return unit_merge(u, other);
959
960 return unit_add_name(u, name);
961 }
962
963 Unit* unit_follow_merge(Unit *u) {
964 assert(u);
965
966 while (u->load_state == UNIT_MERGED)
967 assert_se(u = u->merged_into);
968
969 return u;
970 }
971
972 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
973 ExecDirectoryType dt;
974 char **dp;
975 int r;
976
977 assert(u);
978 assert(c);
979
980 if (c->working_directory && !c->working_directory_missing_ok) {
981 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
982 if (r < 0)
983 return r;
984 }
985
986 if (c->root_directory) {
987 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
988 if (r < 0)
989 return r;
990 }
991
992 if (c->root_image) {
993 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
994 if (r < 0)
995 return r;
996 }
997
998 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
999 if (!u->manager->prefix[dt])
1000 continue;
1001
1002 STRV_FOREACH(dp, c->directories[dt].paths) {
1003 _cleanup_free_ char *p;
1004
1005 p = strjoin(u->manager->prefix[dt], "/", *dp);
1006 if (!p)
1007 return -ENOMEM;
1008
1009 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1010 if (r < 0)
1011 return r;
1012 }
1013 }
1014
1015 if (!MANAGER_IS_SYSTEM(u->manager))
1016 return 0;
1017
1018 if (c->private_tmp) {
1019 const char *p;
1020
1021 FOREACH_STRING(p, "/tmp", "/var/tmp") {
1022 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1023 if (r < 0)
1024 return r;
1025 }
1026
1027 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1028 if (r < 0)
1029 return r;
1030 }
1031
1032 if (!IN_SET(c->std_output,
1033 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1034 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1035 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE) &&
1036 !IN_SET(c->std_error,
1037 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1038 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1039 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE))
1040 return 0;
1041
1042 /* If syslog or kernel logging is requested, make sure our own
1043 * logging daemon is run first. */
1044
1045 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1046 if (r < 0)
1047 return r;
1048
1049 return 0;
1050 }
1051
1052 const char *unit_description(Unit *u) {
1053 assert(u);
1054
1055 if (u->description)
1056 return u->description;
1057
1058 return strna(u->id);
1059 }
1060
1061 static void print_unit_dependency_mask(FILE *f, const char *kind, UnitDependencyMask mask, bool *space) {
1062 const struct {
1063 UnitDependencyMask mask;
1064 const char *name;
1065 } table[] = {
1066 { UNIT_DEPENDENCY_FILE, "file" },
1067 { UNIT_DEPENDENCY_IMPLICIT, "implicit" },
1068 { UNIT_DEPENDENCY_DEFAULT, "default" },
1069 { UNIT_DEPENDENCY_UDEV, "udev" },
1070 { UNIT_DEPENDENCY_PATH, "path" },
1071 { UNIT_DEPENDENCY_MOUNTINFO_IMPLICIT, "mountinfo-implicit" },
1072 { UNIT_DEPENDENCY_MOUNTINFO_DEFAULT, "mountinfo-default" },
1073 { UNIT_DEPENDENCY_PROC_SWAP, "proc-swap" },
1074 };
1075 size_t i;
1076
1077 assert(f);
1078 assert(kind);
1079 assert(space);
1080
1081 for (i = 0; i < ELEMENTSOF(table); i++) {
1082
1083 if (mask == 0)
1084 break;
1085
1086 if (FLAGS_SET(mask, table[i].mask)) {
1087 if (*space)
1088 fputc(' ', f);
1089 else
1090 *space = true;
1091
1092 fputs(kind, f);
1093 fputs("-", f);
1094 fputs(table[i].name, f);
1095
1096 mask &= ~table[i].mask;
1097 }
1098 }
1099
1100 assert(mask == 0);
1101 }
1102
1103 void unit_dump(Unit *u, FILE *f, const char *prefix) {
1104 char *t, **j;
1105 UnitDependency d;
1106 Iterator i;
1107 const char *prefix2;
1108 char
1109 timestamp0[FORMAT_TIMESTAMP_MAX],
1110 timestamp1[FORMAT_TIMESTAMP_MAX],
1111 timestamp2[FORMAT_TIMESTAMP_MAX],
1112 timestamp3[FORMAT_TIMESTAMP_MAX],
1113 timestamp4[FORMAT_TIMESTAMP_MAX],
1114 timespan[FORMAT_TIMESPAN_MAX];
1115 Unit *following;
1116 _cleanup_set_free_ Set *following_set = NULL;
1117 const char *n;
1118 CGroupMask m;
1119 int r;
1120
1121 assert(u);
1122 assert(u->type >= 0);
1123
1124 prefix = strempty(prefix);
1125 prefix2 = strjoina(prefix, "\t");
1126
1127 fprintf(f,
1128 "%s-> Unit %s:\n"
1129 "%s\tDescription: %s\n"
1130 "%s\tInstance: %s\n"
1131 "%s\tUnit Load State: %s\n"
1132 "%s\tUnit Active State: %s\n"
1133 "%s\tState Change Timestamp: %s\n"
1134 "%s\tInactive Exit Timestamp: %s\n"
1135 "%s\tActive Enter Timestamp: %s\n"
1136 "%s\tActive Exit Timestamp: %s\n"
1137 "%s\tInactive Enter Timestamp: %s\n"
1138 "%s\tMay GC: %s\n"
1139 "%s\tNeed Daemon Reload: %s\n"
1140 "%s\tTransient: %s\n"
1141 "%s\tPerpetual: %s\n"
1142 "%s\tGarbage Collection Mode: %s\n"
1143 "%s\tSlice: %s\n"
1144 "%s\tCGroup: %s\n"
1145 "%s\tCGroup realized: %s\n",
1146 prefix, u->id,
1147 prefix, unit_description(u),
1148 prefix, strna(u->instance),
1149 prefix, unit_load_state_to_string(u->load_state),
1150 prefix, unit_active_state_to_string(unit_active_state(u)),
1151 prefix, strna(format_timestamp(timestamp0, sizeof(timestamp0), u->state_change_timestamp.realtime)),
1152 prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->inactive_exit_timestamp.realtime)),
1153 prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->active_enter_timestamp.realtime)),
1154 prefix, strna(format_timestamp(timestamp3, sizeof(timestamp3), u->active_exit_timestamp.realtime)),
1155 prefix, strna(format_timestamp(timestamp4, sizeof(timestamp4), u->inactive_enter_timestamp.realtime)),
1156 prefix, yes_no(unit_may_gc(u)),
1157 prefix, yes_no(unit_need_daemon_reload(u)),
1158 prefix, yes_no(u->transient),
1159 prefix, yes_no(u->perpetual),
1160 prefix, collect_mode_to_string(u->collect_mode),
1161 prefix, strna(unit_slice_name(u)),
1162 prefix, strna(u->cgroup_path),
1163 prefix, yes_no(u->cgroup_realized));
1164
1165 if (u->cgroup_realized_mask != 0) {
1166 _cleanup_free_ char *s = NULL;
1167 (void) cg_mask_to_string(u->cgroup_realized_mask, &s);
1168 fprintf(f, "%s\tCGroup realized mask: %s\n", prefix, strnull(s));
1169 }
1170
1171 if (u->cgroup_enabled_mask != 0) {
1172 _cleanup_free_ char *s = NULL;
1173 (void) cg_mask_to_string(u->cgroup_enabled_mask, &s);
1174 fprintf(f, "%s\tCGroup enabled mask: %s\n", prefix, strnull(s));
1175 }
1176
1177 m = unit_get_own_mask(u);
1178 if (m != 0) {
1179 _cleanup_free_ char *s = NULL;
1180 (void) cg_mask_to_string(m, &s);
1181 fprintf(f, "%s\tCGroup own mask: %s\n", prefix, strnull(s));
1182 }
1183
1184 m = unit_get_members_mask(u);
1185 if (m != 0) {
1186 _cleanup_free_ char *s = NULL;
1187 (void) cg_mask_to_string(m, &s);
1188 fprintf(f, "%s\tCGroup members mask: %s\n", prefix, strnull(s));
1189 }
1190
1191 m = unit_get_delegate_mask(u);
1192 if (m != 0) {
1193 _cleanup_free_ char *s = NULL;
1194 (void) cg_mask_to_string(m, &s);
1195 fprintf(f, "%s\tCGroup delegate mask: %s\n", prefix, strnull(s));
1196 }
1197
1198 SET_FOREACH(t, u->names, i)
1199 fprintf(f, "%s\tName: %s\n", prefix, t);
1200
1201 if (!sd_id128_is_null(u->invocation_id))
1202 fprintf(f, "%s\tInvocation ID: " SD_ID128_FORMAT_STR "\n",
1203 prefix, SD_ID128_FORMAT_VAL(u->invocation_id));
1204
1205 STRV_FOREACH(j, u->documentation)
1206 fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
1207
1208 following = unit_following(u);
1209 if (following)
1210 fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
1211
1212 r = unit_following_set(u, &following_set);
1213 if (r >= 0) {
1214 Unit *other;
1215
1216 SET_FOREACH(other, following_set, i)
1217 fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
1218 }
1219
1220 if (u->fragment_path)
1221 fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
1222
1223 if (u->source_path)
1224 fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
1225
1226 STRV_FOREACH(j, u->dropin_paths)
1227 fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
1228
1229 if (u->failure_action != EMERGENCY_ACTION_NONE)
1230 fprintf(f, "%s\tFailure Action: %s\n", prefix, emergency_action_to_string(u->failure_action));
1231 if (u->failure_action_exit_status >= 0)
1232 fprintf(f, "%s\tFailure Action Exit Status: %i\n", prefix, u->failure_action_exit_status);
1233 if (u->success_action != EMERGENCY_ACTION_NONE)
1234 fprintf(f, "%s\tSuccess Action: %s\n", prefix, emergency_action_to_string(u->success_action));
1235 if (u->success_action_exit_status >= 0)
1236 fprintf(f, "%s\tSuccess Action Exit Status: %i\n", prefix, u->success_action_exit_status);
1237
1238 if (u->job_timeout != USEC_INFINITY)
1239 fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
1240
1241 if (u->job_timeout_action != EMERGENCY_ACTION_NONE)
1242 fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, emergency_action_to_string(u->job_timeout_action));
1243
1244 if (u->job_timeout_reboot_arg)
1245 fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
1246
1247 condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
1248 condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
1249
1250 if (dual_timestamp_is_set(&u->condition_timestamp))
1251 fprintf(f,
1252 "%s\tCondition Timestamp: %s\n"
1253 "%s\tCondition Result: %s\n",
1254 prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->condition_timestamp.realtime)),
1255 prefix, yes_no(u->condition_result));
1256
1257 if (dual_timestamp_is_set(&u->assert_timestamp))
1258 fprintf(f,
1259 "%s\tAssert Timestamp: %s\n"
1260 "%s\tAssert Result: %s\n",
1261 prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->assert_timestamp.realtime)),
1262 prefix, yes_no(u->assert_result));
1263
1264 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
1265 UnitDependencyInfo di;
1266 Unit *other;
1267
1268 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
1269 bool space = false;
1270
1271 fprintf(f, "%s\t%s: %s (", prefix, unit_dependency_to_string(d), other->id);
1272
1273 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1274 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1275
1276 fputs(")\n", f);
1277 }
1278 }
1279
1280 if (!hashmap_isempty(u->requires_mounts_for)) {
1281 UnitDependencyInfo di;
1282 const char *path;
1283
1284 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1285 bool space = false;
1286
1287 fprintf(f, "%s\tRequiresMountsFor: %s (", prefix, path);
1288
1289 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1290 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1291
1292 fputs(")\n", f);
1293 }
1294 }
1295
1296 if (u->load_state == UNIT_LOADED) {
1297
1298 fprintf(f,
1299 "%s\tStopWhenUnneeded: %s\n"
1300 "%s\tRefuseManualStart: %s\n"
1301 "%s\tRefuseManualStop: %s\n"
1302 "%s\tDefaultDependencies: %s\n"
1303 "%s\tOnFailureJobMode: %s\n"
1304 "%s\tIgnoreOnIsolate: %s\n",
1305 prefix, yes_no(u->stop_when_unneeded),
1306 prefix, yes_no(u->refuse_manual_start),
1307 prefix, yes_no(u->refuse_manual_stop),
1308 prefix, yes_no(u->default_dependencies),
1309 prefix, job_mode_to_string(u->on_failure_job_mode),
1310 prefix, yes_no(u->ignore_on_isolate));
1311
1312 if (UNIT_VTABLE(u)->dump)
1313 UNIT_VTABLE(u)->dump(u, f, prefix2);
1314
1315 } else if (u->load_state == UNIT_MERGED)
1316 fprintf(f,
1317 "%s\tMerged into: %s\n",
1318 prefix, u->merged_into->id);
1319 else if (u->load_state == UNIT_ERROR)
1320 fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror(-u->load_error));
1321
1322 for (n = sd_bus_track_first(u->bus_track); n; n = sd_bus_track_next(u->bus_track))
1323 fprintf(f, "%s\tBus Ref: %s\n", prefix, n);
1324
1325 if (u->job)
1326 job_dump(u->job, f, prefix2);
1327
1328 if (u->nop_job)
1329 job_dump(u->nop_job, f, prefix2);
1330 }
1331
1332 /* Common implementation for multiple backends */
1333 int unit_load_fragment_and_dropin(Unit *u) {
1334 int r;
1335
1336 assert(u);
1337
1338 /* Load a .{service,socket,...} file */
1339 r = unit_load_fragment(u);
1340 if (r < 0)
1341 return r;
1342
1343 if (u->load_state == UNIT_STUB)
1344 return -ENOENT;
1345
1346 /* Load drop-in directory data. If u is an alias, we might be reloading the
1347 * target unit needlessly. But we cannot be sure which drops-ins have already
1348 * been loaded and which not, at least without doing complicated book-keeping,
1349 * so let's always reread all drop-ins. */
1350 return unit_load_dropin(unit_follow_merge(u));
1351 }
1352
1353 /* Common implementation for multiple backends */
1354 int unit_load_fragment_and_dropin_optional(Unit *u) {
1355 int r;
1356
1357 assert(u);
1358
1359 /* Same as unit_load_fragment_and_dropin(), but whether
1360 * something can be loaded or not doesn't matter. */
1361
1362 /* Load a .service/.socket/.slice/… file */
1363 r = unit_load_fragment(u);
1364 if (r < 0)
1365 return r;
1366
1367 if (u->load_state == UNIT_STUB)
1368 u->load_state = UNIT_LOADED;
1369
1370 /* Load drop-in directory data */
1371 return unit_load_dropin(unit_follow_merge(u));
1372 }
1373
1374 void unit_add_to_target_deps_queue(Unit *u) {
1375 Manager *m = u->manager;
1376
1377 assert(u);
1378
1379 if (u->in_target_deps_queue)
1380 return;
1381
1382 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1383 u->in_target_deps_queue = true;
1384 }
1385
1386 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1387 assert(u);
1388 assert(target);
1389
1390 if (target->type != UNIT_TARGET)
1391 return 0;
1392
1393 /* Only add the dependency if both units are loaded, so that
1394 * that loop check below is reliable */
1395 if (u->load_state != UNIT_LOADED ||
1396 target->load_state != UNIT_LOADED)
1397 return 0;
1398
1399 /* If either side wants no automatic dependencies, then let's
1400 * skip this */
1401 if (!u->default_dependencies ||
1402 !target->default_dependencies)
1403 return 0;
1404
1405 /* Don't create loops */
1406 if (hashmap_get(target->dependencies[UNIT_BEFORE], u))
1407 return 0;
1408
1409 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1410 }
1411
1412 static int unit_add_slice_dependencies(Unit *u) {
1413 UnitDependencyMask mask;
1414 assert(u);
1415
1416 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1417 return 0;
1418
1419 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1420 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1421 relationship). */
1422 mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1423
1424 if (UNIT_ISSET(u->slice))
1425 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true, mask);
1426
1427 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1428 return 0;
1429
1430 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1431 }
1432
1433 static int unit_add_mount_dependencies(Unit *u) {
1434 UnitDependencyInfo di;
1435 const char *path;
1436 Iterator i;
1437 int r;
1438
1439 assert(u);
1440
1441 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1442 char prefix[strlen(path) + 1];
1443
1444 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1445 _cleanup_free_ char *p = NULL;
1446 Unit *m;
1447
1448 r = unit_name_from_path(prefix, ".mount", &p);
1449 if (r < 0)
1450 return r;
1451
1452 m = manager_get_unit(u->manager, p);
1453 if (!m) {
1454 /* Make sure to load the mount unit if
1455 * it exists. If so the dependencies
1456 * on this unit will be added later
1457 * during the loading of the mount
1458 * unit. */
1459 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1460 continue;
1461 }
1462 if (m == u)
1463 continue;
1464
1465 if (m->load_state != UNIT_LOADED)
1466 continue;
1467
1468 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1469 if (r < 0)
1470 return r;
1471
1472 if (m->fragment_path) {
1473 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1474 if (r < 0)
1475 return r;
1476 }
1477 }
1478 }
1479
1480 return 0;
1481 }
1482
1483 static int unit_add_startup_units(Unit *u) {
1484 CGroupContext *c;
1485 int r;
1486
1487 c = unit_get_cgroup_context(u);
1488 if (!c)
1489 return 0;
1490
1491 if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID &&
1492 c->startup_io_weight == CGROUP_WEIGHT_INVALID &&
1493 c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID)
1494 return 0;
1495
1496 r = set_ensure_allocated(&u->manager->startup_units, NULL);
1497 if (r < 0)
1498 return r;
1499
1500 return set_put(u->manager->startup_units, u);
1501 }
1502
1503 int unit_load(Unit *u) {
1504 int r;
1505
1506 assert(u);
1507
1508 if (u->in_load_queue) {
1509 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1510 u->in_load_queue = false;
1511 }
1512
1513 if (u->type == _UNIT_TYPE_INVALID)
1514 return -EINVAL;
1515
1516 if (u->load_state != UNIT_STUB)
1517 return 0;
1518
1519 if (u->transient_file) {
1520 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1521 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1522
1523 r = fflush_and_check(u->transient_file);
1524 if (r < 0)
1525 goto fail;
1526
1527 u->transient_file = safe_fclose(u->transient_file);
1528 u->fragment_mtime = now(CLOCK_REALTIME);
1529 }
1530
1531 if (UNIT_VTABLE(u)->load) {
1532 r = UNIT_VTABLE(u)->load(u);
1533 if (r < 0)
1534 goto fail;
1535 }
1536
1537 if (u->load_state == UNIT_STUB) {
1538 r = -ENOENT;
1539 goto fail;
1540 }
1541
1542 if (u->load_state == UNIT_LOADED) {
1543 unit_add_to_target_deps_queue(u);
1544
1545 r = unit_add_slice_dependencies(u);
1546 if (r < 0)
1547 goto fail;
1548
1549 r = unit_add_mount_dependencies(u);
1550 if (r < 0)
1551 goto fail;
1552
1553 r = unit_add_startup_units(u);
1554 if (r < 0)
1555 goto fail;
1556
1557 if (u->on_failure_job_mode == JOB_ISOLATE && hashmap_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
1558 log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
1559 r = -ENOEXEC;
1560 goto fail;
1561 }
1562
1563 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1564 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1565
1566 /* We finished loading, let's ensure our parents recalculate the members mask */
1567 unit_invalidate_cgroup_members_masks(u);
1568 }
1569
1570 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1571
1572 unit_add_to_dbus_queue(unit_follow_merge(u));
1573 unit_add_to_gc_queue(u);
1574
1575 return 0;
1576
1577 fail:
1578 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code should hence
1579 * return ENOEXEC to ensure units are placed in this state after loading */
1580
1581 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1582 r == -ENOEXEC ? UNIT_BAD_SETTING :
1583 UNIT_ERROR;
1584 u->load_error = r;
1585
1586 unit_add_to_dbus_queue(u);
1587 unit_add_to_gc_queue(u);
1588
1589 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1590 }
1591
1592 static bool unit_condition_test_list(Unit *u, Condition *first, const char *(*to_string)(ConditionType t)) {
1593 Condition *c;
1594 int triggered = -1;
1595
1596 assert(u);
1597 assert(to_string);
1598
1599 /* If the condition list is empty, then it is true */
1600 if (!first)
1601 return true;
1602
1603 /* Otherwise, if all of the non-trigger conditions apply and
1604 * if any of the trigger conditions apply (unless there are
1605 * none) we return true */
1606 LIST_FOREACH(conditions, c, first) {
1607 int r;
1608
1609 r = condition_test(c);
1610 if (r < 0)
1611 log_unit_warning(u,
1612 "Couldn't determine result for %s=%s%s%s, assuming failed: %m",
1613 to_string(c->type),
1614 c->trigger ? "|" : "",
1615 c->negate ? "!" : "",
1616 c->parameter);
1617 else
1618 log_unit_debug(u,
1619 "%s=%s%s%s %s.",
1620 to_string(c->type),
1621 c->trigger ? "|" : "",
1622 c->negate ? "!" : "",
1623 c->parameter,
1624 condition_result_to_string(c->result));
1625
1626 if (!c->trigger && r <= 0)
1627 return false;
1628
1629 if (c->trigger && triggered <= 0)
1630 triggered = r > 0;
1631 }
1632
1633 return triggered != 0;
1634 }
1635
1636 static bool unit_test_condition(Unit *u) {
1637 assert(u);
1638
1639 dual_timestamp_get(&u->condition_timestamp);
1640 u->condition_result = unit_condition_test_list(u, u->conditions, condition_type_to_string);
1641
1642 unit_add_to_dbus_queue(u);
1643
1644 return u->condition_result;
1645 }
1646
1647 static bool unit_test_assert(Unit *u) {
1648 assert(u);
1649
1650 dual_timestamp_get(&u->assert_timestamp);
1651 u->assert_result = unit_condition_test_list(u, u->asserts, assert_type_to_string);
1652
1653 unit_add_to_dbus_queue(u);
1654
1655 return u->assert_result;
1656 }
1657
1658 void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) {
1659 const char *d;
1660
1661 d = unit_description(u);
1662 if (log_get_show_color())
1663 d = strjoina(ANSI_HIGHLIGHT, d, ANSI_NORMAL);
1664
1665 DISABLE_WARNING_FORMAT_NONLITERAL;
1666 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, status, unit_status_msg_format, d);
1667 REENABLE_WARNING;
1668 }
1669
1670 int unit_test_start_limit(Unit *u) {
1671 const char *reason;
1672
1673 assert(u);
1674
1675 if (ratelimit_below(&u->start_limit)) {
1676 u->start_limit_hit = false;
1677 return 0;
1678 }
1679
1680 log_unit_warning(u, "Start request repeated too quickly.");
1681 u->start_limit_hit = true;
1682
1683 reason = strjoina("unit ", u->id, " failed");
1684
1685 emergency_action(u->manager, u->start_limit_action,
1686 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1687 u->reboot_arg, -1, reason);
1688
1689 return -ECANCELED;
1690 }
1691
1692 bool unit_shall_confirm_spawn(Unit *u) {
1693 assert(u);
1694
1695 if (manager_is_confirm_spawn_disabled(u->manager))
1696 return false;
1697
1698 /* For some reasons units remaining in the same process group
1699 * as PID 1 fail to acquire the console even if it's not used
1700 * by any process. So skip the confirmation question for them. */
1701 return !unit_get_exec_context(u)->same_pgrp;
1702 }
1703
1704 static bool unit_verify_deps(Unit *u) {
1705 Unit *other;
1706 Iterator j;
1707 void *v;
1708
1709 assert(u);
1710
1711 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined with
1712 * After=. We do not check Requires= or Requisite= here as they only should have an effect on the job
1713 * processing, but do not have any effect afterwards. We don't check BindsTo= dependencies that are not used in
1714 * conjunction with After= as for them any such check would make things entirely racy. */
1715
1716 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], j) {
1717
1718 if (!hashmap_contains(u->dependencies[UNIT_AFTER], other))
1719 continue;
1720
1721 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1722 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1723 return false;
1724 }
1725 }
1726
1727 return true;
1728 }
1729
1730 /* Errors that aren't really errors:
1731 * -EALREADY: Unit is already started.
1732 * -ECOMM: Condition failed
1733 * -EAGAIN: An operation is already in progress. Retry later.
1734 *
1735 * Errors that are real errors:
1736 * -EBADR: This unit type does not support starting.
1737 * -ECANCELED: Start limit hit, too many requests for now
1738 * -EPROTO: Assert failed
1739 * -EINVAL: Unit not loaded
1740 * -EOPNOTSUPP: Unit type not supported
1741 * -ENOLINK: The necessary dependencies are not fulfilled.
1742 * -ESTALE: This unit has been started before and can't be started a second time
1743 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1744 */
1745 int unit_start(Unit *u) {
1746 UnitActiveState state;
1747 Unit *following;
1748 int r;
1749
1750 assert(u);
1751
1752 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1753 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1754 * waiting is finished. */
1755 state = unit_active_state(u);
1756 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1757 return -EALREADY;
1758
1759 /* Units that aren't loaded cannot be started */
1760 if (u->load_state != UNIT_LOADED)
1761 return -EINVAL;
1762
1763 /* Refuse starting scope units more than once */
1764 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1765 return -ESTALE;
1766
1767 /* If the conditions failed, don't do anything at all. If we already are activating this call might
1768 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1769 * recheck the condition in that case. */
1770 if (state != UNIT_ACTIVATING &&
1771 !unit_test_condition(u)) {
1772
1773 /* Let's also check the start limit here. Normally, the start limit is only checked by the
1774 * .start() method of the unit type after it did some additional checks verifying everything
1775 * is in order (so that those other checks can propagate errors properly). However, if a
1776 * condition check doesn't hold we don't get that far but we should still ensure we are not
1777 * called in a tight loop without a rate limit check enforced, hence do the check here. Note
1778 * that ECOMM is generally not a reason for a job to fail, unlike most other errors here,
1779 * hence the chance is big that any triggering unit for us will trigger us again. Note this
1780 * condition check is a bit different from the condition check inside the per-unit .start()
1781 * function, as this one will not change the unit's state in any way (and we shouldn't here,
1782 * after all the condition failed). */
1783
1784 r = unit_test_start_limit(u);
1785 if (r < 0)
1786 return r;
1787
1788 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition failed. Not starting unit.");
1789 }
1790
1791 /* If the asserts failed, fail the entire job */
1792 if (state != UNIT_ACTIVATING &&
1793 !unit_test_assert(u))
1794 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1795
1796 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1797 * condition checks, so that we rather return condition check errors (which are usually not
1798 * considered a true failure) than "not supported" errors (which are considered a failure).
1799 */
1800 if (!unit_supported(u))
1801 return -EOPNOTSUPP;
1802
1803 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1804 * should have taken care of this already, but let's check this here again. After all, our
1805 * dependencies might not be in effect anymore, due to a reload or due to a failed condition. */
1806 if (!unit_verify_deps(u))
1807 return -ENOLINK;
1808
1809 /* Forward to the main object, if we aren't it. */
1810 following = unit_following(u);
1811 if (following) {
1812 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1813 return unit_start(following);
1814 }
1815
1816 /* If it is stopped, but we cannot start it, then fail */
1817 if (!UNIT_VTABLE(u)->start)
1818 return -EBADR;
1819
1820 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1821 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1822 * waits for a holdoff timer to elapse before it will start again. */
1823
1824 unit_add_to_dbus_queue(u);
1825
1826 return UNIT_VTABLE(u)->start(u);
1827 }
1828
1829 bool unit_can_start(Unit *u) {
1830 assert(u);
1831
1832 if (u->load_state != UNIT_LOADED)
1833 return false;
1834
1835 if (!unit_supported(u))
1836 return false;
1837
1838 /* Scope units may be started only once */
1839 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
1840 return false;
1841
1842 return !!UNIT_VTABLE(u)->start;
1843 }
1844
1845 bool unit_can_isolate(Unit *u) {
1846 assert(u);
1847
1848 return unit_can_start(u) &&
1849 u->allow_isolate;
1850 }
1851
1852 /* Errors:
1853 * -EBADR: This unit type does not support stopping.
1854 * -EALREADY: Unit is already stopped.
1855 * -EAGAIN: An operation is already in progress. Retry later.
1856 */
1857 int unit_stop(Unit *u) {
1858 UnitActiveState state;
1859 Unit *following;
1860
1861 assert(u);
1862
1863 state = unit_active_state(u);
1864 if (UNIT_IS_INACTIVE_OR_FAILED(state))
1865 return -EALREADY;
1866
1867 following = unit_following(u);
1868 if (following) {
1869 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
1870 return unit_stop(following);
1871 }
1872
1873 if (!UNIT_VTABLE(u)->stop)
1874 return -EBADR;
1875
1876 unit_add_to_dbus_queue(u);
1877
1878 return UNIT_VTABLE(u)->stop(u);
1879 }
1880
1881 bool unit_can_stop(Unit *u) {
1882 assert(u);
1883
1884 if (!unit_supported(u))
1885 return false;
1886
1887 if (u->perpetual)
1888 return false;
1889
1890 return !!UNIT_VTABLE(u)->stop;
1891 }
1892
1893 /* Errors:
1894 * -EBADR: This unit type does not support reloading.
1895 * -ENOEXEC: Unit is not started.
1896 * -EAGAIN: An operation is already in progress. Retry later.
1897 */
1898 int unit_reload(Unit *u) {
1899 UnitActiveState state;
1900 Unit *following;
1901
1902 assert(u);
1903
1904 if (u->load_state != UNIT_LOADED)
1905 return -EINVAL;
1906
1907 if (!unit_can_reload(u))
1908 return -EBADR;
1909
1910 state = unit_active_state(u);
1911 if (state == UNIT_RELOADING)
1912 return -EAGAIN;
1913
1914 if (state != UNIT_ACTIVE) {
1915 log_unit_warning(u, "Unit cannot be reloaded because it is inactive.");
1916 return -ENOEXEC;
1917 }
1918
1919 following = unit_following(u);
1920 if (following) {
1921 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
1922 return unit_reload(following);
1923 }
1924
1925 unit_add_to_dbus_queue(u);
1926
1927 if (!UNIT_VTABLE(u)->reload) {
1928 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
1929 unit_notify(u, unit_active_state(u), unit_active_state(u), 0);
1930 return 0;
1931 }
1932
1933 return UNIT_VTABLE(u)->reload(u);
1934 }
1935
1936 bool unit_can_reload(Unit *u) {
1937 assert(u);
1938
1939 if (UNIT_VTABLE(u)->can_reload)
1940 return UNIT_VTABLE(u)->can_reload(u);
1941
1942 if (!hashmap_isempty(u->dependencies[UNIT_PROPAGATES_RELOAD_TO]))
1943 return true;
1944
1945 return UNIT_VTABLE(u)->reload;
1946 }
1947
1948 bool unit_is_unneeded(Unit *u) {
1949 static const UnitDependency deps[] = {
1950 UNIT_REQUIRED_BY,
1951 UNIT_REQUISITE_OF,
1952 UNIT_WANTED_BY,
1953 UNIT_BOUND_BY,
1954 };
1955 size_t j;
1956
1957 assert(u);
1958
1959 if (!u->stop_when_unneeded)
1960 return false;
1961
1962 /* Don't clean up while the unit is transitioning or is even inactive. */
1963 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
1964 return false;
1965 if (u->job)
1966 return false;
1967
1968 for (j = 0; j < ELEMENTSOF(deps); j++) {
1969 Unit *other;
1970 Iterator i;
1971 void *v;
1972
1973 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
1974 * restart, then don't clean this one up. */
1975
1976 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i) {
1977 if (other->job)
1978 return false;
1979
1980 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
1981 return false;
1982
1983 if (unit_will_restart(other))
1984 return false;
1985 }
1986 }
1987
1988 return true;
1989 }
1990
1991 static void check_unneeded_dependencies(Unit *u) {
1992
1993 static const UnitDependency deps[] = {
1994 UNIT_REQUIRES,
1995 UNIT_REQUISITE,
1996 UNIT_WANTS,
1997 UNIT_BINDS_TO,
1998 };
1999 size_t j;
2000
2001 assert(u);
2002
2003 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
2004
2005 for (j = 0; j < ELEMENTSOF(deps); j++) {
2006 Unit *other;
2007 Iterator i;
2008 void *v;
2009
2010 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i)
2011 unit_submit_to_stop_when_unneeded_queue(other);
2012 }
2013 }
2014
2015 static void unit_check_binds_to(Unit *u) {
2016 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2017 bool stop = false;
2018 Unit *other;
2019 Iterator i;
2020 void *v;
2021 int r;
2022
2023 assert(u);
2024
2025 if (u->job)
2026 return;
2027
2028 if (unit_active_state(u) != UNIT_ACTIVE)
2029 return;
2030
2031 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i) {
2032 if (other->job)
2033 continue;
2034
2035 if (!other->coldplugged)
2036 /* We might yet create a job for the other unit… */
2037 continue;
2038
2039 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2040 continue;
2041
2042 stop = true;
2043 break;
2044 }
2045
2046 if (!stop)
2047 return;
2048
2049 /* If stopping a unit fails continuously we might enter a stop
2050 * loop here, hence stop acting on the service being
2051 * unnecessary after a while. */
2052 if (!ratelimit_below(&u->auto_stop_ratelimit)) {
2053 log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id);
2054 return;
2055 }
2056
2057 assert(other);
2058 log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
2059
2060 /* A unit we need to run is gone. Sniff. Let's stop this. */
2061 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, &error, NULL);
2062 if (r < 0)
2063 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
2064 }
2065
2066 static void retroactively_start_dependencies(Unit *u) {
2067 Iterator i;
2068 Unit *other;
2069 void *v;
2070
2071 assert(u);
2072 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2073
2074 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES], i)
2075 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2076 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2077 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL);
2078
2079 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i)
2080 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2081 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2082 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL);
2083
2084 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS], i)
2085 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2086 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2087 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL);
2088
2089 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTS], i)
2090 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2091 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL);
2092
2093 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTED_BY], i)
2094 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2095 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL);
2096 }
2097
2098 static void retroactively_stop_dependencies(Unit *u) {
2099 Unit *other;
2100 Iterator i;
2101 void *v;
2102
2103 assert(u);
2104 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2105
2106 /* Pull down units which are bound to us recursively if enabled */
2107 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BOUND_BY], i)
2108 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2109 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL);
2110 }
2111
2112 void unit_start_on_failure(Unit *u) {
2113 Unit *other;
2114 Iterator i;
2115 void *v;
2116 int r;
2117
2118 assert(u);
2119
2120 if (hashmap_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
2121 return;
2122
2123 log_unit_info(u, "Triggering OnFailure= dependencies.");
2124
2125 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_ON_FAILURE], i) {
2126 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2127
2128 r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, &error, NULL);
2129 if (r < 0)
2130 log_unit_warning_errno(u, r, "Failed to enqueue OnFailure= job, ignoring: %s", bus_error_message(&error, r));
2131 }
2132 }
2133
2134 void unit_trigger_notify(Unit *u) {
2135 Unit *other;
2136 Iterator i;
2137 void *v;
2138
2139 assert(u);
2140
2141 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_TRIGGERED_BY], i)
2142 if (UNIT_VTABLE(other)->trigger_notify)
2143 UNIT_VTABLE(other)->trigger_notify(other, u);
2144 }
2145
2146 static int unit_log_resources(Unit *u) {
2147 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + 4];
2148 bool any_traffic = false, have_ip_accounting = false;
2149 _cleanup_free_ char *igress = NULL, *egress = NULL;
2150 size_t n_message_parts = 0, n_iovec = 0;
2151 char* message_parts[3 + 1], *t;
2152 nsec_t nsec = NSEC_INFINITY;
2153 CGroupIPAccountingMetric m;
2154 size_t i;
2155 int r;
2156 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2157 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2158 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2159 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2160 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2161 };
2162
2163 assert(u);
2164
2165 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2166 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2167 * information and the complete data in structured fields. */
2168
2169 (void) unit_get_cpu_usage(u, &nsec);
2170 if (nsec != NSEC_INFINITY) {
2171 char buf[FORMAT_TIMESPAN_MAX] = "";
2172
2173 /* Format the CPU time for inclusion in the structured log message */
2174 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2175 r = log_oom();
2176 goto finish;
2177 }
2178 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2179
2180 /* Format the CPU time for inclusion in the human language message string */
2181 format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC);
2182 t = strjoin("consumed ", buf, " CPU time");
2183 if (!t) {
2184 r = log_oom();
2185 goto finish;
2186 }
2187
2188 message_parts[n_message_parts++] = t;
2189 }
2190
2191 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2192 char buf[FORMAT_BYTES_MAX] = "";
2193 uint64_t value = UINT64_MAX;
2194
2195 assert(ip_fields[m]);
2196
2197 (void) unit_get_ip_accounting(u, m, &value);
2198 if (value == UINT64_MAX)
2199 continue;
2200
2201 have_ip_accounting = true;
2202 if (value > 0)
2203 any_traffic = true;
2204
2205 /* Format IP accounting data for inclusion in the structured log message */
2206 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2207 r = log_oom();
2208 goto finish;
2209 }
2210 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2211
2212 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2213 * bytes counters (and not for the packets counters) */
2214 if (m == CGROUP_IP_INGRESS_BYTES) {
2215 assert(!igress);
2216 igress = strjoin("received ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2217 if (!igress) {
2218 r = log_oom();
2219 goto finish;
2220 }
2221 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2222 assert(!egress);
2223 egress = strjoin("sent ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2224 if (!egress) {
2225 r = log_oom();
2226 goto finish;
2227 }
2228 }
2229 }
2230
2231 if (have_ip_accounting) {
2232 if (any_traffic) {
2233 if (igress)
2234 message_parts[n_message_parts++] = TAKE_PTR(igress);
2235 if (egress)
2236 message_parts[n_message_parts++] = TAKE_PTR(egress);
2237
2238 } else {
2239 char *k;
2240
2241 k = strdup("no IP traffic");
2242 if (!k) {
2243 r = log_oom();
2244 goto finish;
2245 }
2246
2247 message_parts[n_message_parts++] = k;
2248 }
2249 }
2250
2251 /* Is there any accounting data available at all? */
2252 if (n_iovec == 0) {
2253 r = 0;
2254 goto finish;
2255 }
2256
2257 if (n_message_parts == 0)
2258 t = strjoina("MESSAGE=", u->id, ": Completed.");
2259 else {
2260 _cleanup_free_ char *joined;
2261
2262 message_parts[n_message_parts] = NULL;
2263
2264 joined = strv_join(message_parts, ", ");
2265 if (!joined) {
2266 r = log_oom();
2267 goto finish;
2268 }
2269
2270 joined[0] = ascii_toupper(joined[0]);
2271 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2272 }
2273
2274 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2275 * and hence don't increase n_iovec for them */
2276 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2277 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2278
2279 t = strjoina(u->manager->unit_log_field, u->id);
2280 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2281
2282 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2283 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2284
2285 log_struct_iovec(LOG_INFO, iovec, n_iovec + 4);
2286 r = 0;
2287
2288 finish:
2289 for (i = 0; i < n_message_parts; i++)
2290 free(message_parts[i]);
2291
2292 for (i = 0; i < n_iovec; i++)
2293 free(iovec[i].iov_base);
2294
2295 return r;
2296
2297 }
2298
2299 static void unit_update_on_console(Unit *u) {
2300 bool b;
2301
2302 assert(u);
2303
2304 b = unit_needs_console(u);
2305 if (u->on_console == b)
2306 return;
2307
2308 u->on_console = b;
2309 if (b)
2310 manager_ref_console(u->manager);
2311 else
2312 manager_unref_console(u->manager);
2313 }
2314
2315 static void unit_emit_audit_start(Unit *u) {
2316 assert(u);
2317
2318 if (u->type != UNIT_SERVICE)
2319 return;
2320
2321 /* Write audit record if we have just finished starting up */
2322 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, true);
2323 u->in_audit = true;
2324 }
2325
2326 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2327 assert(u);
2328
2329 if (u->type != UNIT_SERVICE)
2330 return;
2331
2332 if (u->in_audit) {
2333 /* Write audit record if we have just finished shutting down */
2334 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, state == UNIT_INACTIVE);
2335 u->in_audit = false;
2336 } else {
2337 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2338 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, state == UNIT_INACTIVE);
2339
2340 if (state == UNIT_INACTIVE)
2341 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, true);
2342 }
2343 }
2344
2345 static bool unit_process_job(Job *j, UnitActiveState ns, UnitNotifyFlags flags) {
2346 bool unexpected = false;
2347
2348 assert(j);
2349
2350 if (j->state == JOB_WAITING)
2351
2352 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2353 * due to EAGAIN. */
2354 job_add_to_run_queue(j);
2355
2356 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2357 * hence needs to invalidate jobs. */
2358
2359 switch (j->type) {
2360
2361 case JOB_START:
2362 case JOB_VERIFY_ACTIVE:
2363
2364 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2365 job_finish_and_invalidate(j, JOB_DONE, true, false);
2366 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2367 unexpected = true;
2368
2369 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2370 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2371 }
2372
2373 break;
2374
2375 case JOB_RELOAD:
2376 case JOB_RELOAD_OR_START:
2377 case JOB_TRY_RELOAD:
2378
2379 if (j->state == JOB_RUNNING) {
2380 if (ns == UNIT_ACTIVE)
2381 job_finish_and_invalidate(j, (flags & UNIT_NOTIFY_RELOAD_FAILURE) ? JOB_FAILED : JOB_DONE, true, false);
2382 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2383 unexpected = true;
2384
2385 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2386 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2387 }
2388 }
2389
2390 break;
2391
2392 case JOB_STOP:
2393 case JOB_RESTART:
2394 case JOB_TRY_RESTART:
2395
2396 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2397 job_finish_and_invalidate(j, JOB_DONE, true, false);
2398 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2399 unexpected = true;
2400 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2401 }
2402
2403 break;
2404
2405 default:
2406 assert_not_reached("Job type unknown");
2407 }
2408
2409 return unexpected;
2410 }
2411
2412 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags) {
2413 const char *reason;
2414 Manager *m;
2415
2416 assert(u);
2417 assert(os < _UNIT_ACTIVE_STATE_MAX);
2418 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2419
2420 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2421 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2422 * remounted this function will be called too! */
2423
2424 m = u->manager;
2425
2426 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2427 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2428 unit_add_to_dbus_queue(u);
2429
2430 /* Update timestamps for state changes */
2431 if (!MANAGER_IS_RELOADING(m)) {
2432 dual_timestamp_get(&u->state_change_timestamp);
2433
2434 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2435 u->inactive_exit_timestamp = u->state_change_timestamp;
2436 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2437 u->inactive_enter_timestamp = u->state_change_timestamp;
2438
2439 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2440 u->active_enter_timestamp = u->state_change_timestamp;
2441 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2442 u->active_exit_timestamp = u->state_change_timestamp;
2443 }
2444
2445 /* Keep track of failed units */
2446 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2447
2448 /* Make sure the cgroup and state files are always removed when we become inactive */
2449 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2450 unit_prune_cgroup(u);
2451 unit_unlink_state_files(u);
2452 }
2453
2454 unit_update_on_console(u);
2455
2456 if (!MANAGER_IS_RELOADING(m)) {
2457 bool unexpected;
2458
2459 /* Let's propagate state changes to the job */
2460 if (u->job)
2461 unexpected = unit_process_job(u->job, ns, flags);
2462 else
2463 unexpected = true;
2464
2465 /* If this state change happened without being requested by a job, then let's retroactively start or
2466 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2467 * additional jobs just because something is already activated. */
2468
2469 if (unexpected) {
2470 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2471 retroactively_start_dependencies(u);
2472 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2473 retroactively_stop_dependencies(u);
2474 }
2475
2476 /* stop unneeded units regardless if going down was expected or not */
2477 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2478 check_unneeded_dependencies(u);
2479
2480 if (ns != os && ns == UNIT_FAILED) {
2481 log_unit_debug(u, "Unit entered failed state.");
2482
2483 if (!(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2484 unit_start_on_failure(u);
2485 }
2486
2487 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2488 /* This unit just finished starting up */
2489
2490 unit_emit_audit_start(u);
2491 manager_send_unit_plymouth(m, u);
2492 }
2493
2494 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2495 /* This unit just stopped/failed. */
2496
2497 unit_emit_audit_stop(u, ns);
2498 unit_log_resources(u);
2499 }
2500 }
2501
2502 manager_recheck_journal(m);
2503 manager_recheck_dbus(m);
2504
2505 unit_trigger_notify(u);
2506
2507 if (!MANAGER_IS_RELOADING(m)) {
2508 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2509 unit_submit_to_stop_when_unneeded_queue(u);
2510
2511 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens when
2512 * something BindsTo= to a Type=oneshot unit, as these units go directly from starting to inactive,
2513 * without ever entering started.) */
2514 unit_check_binds_to(u);
2515
2516 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2517 reason = strjoina("unit ", u->id, " failed");
2518 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2519 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2520 reason = strjoina("unit ", u->id, " succeeded");
2521 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2522 }
2523 }
2524
2525 unit_add_to_gc_queue(u);
2526 }
2527
2528 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2529 int r;
2530
2531 assert(u);
2532 assert(pid_is_valid(pid));
2533
2534 /* Watch a specific PID */
2535
2536 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2537 * opportunity to remove any stalled references to this PID as they can be created
2538 * easily (when watching a process which is not our direct child). */
2539 if (exclusive)
2540 manager_unwatch_pid(u->manager, pid);
2541
2542 r = set_ensure_allocated(&u->pids, NULL);
2543 if (r < 0)
2544 return r;
2545
2546 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2547 if (r < 0)
2548 return r;
2549
2550 /* First try, let's add the unit keyed by "pid". */
2551 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2552 if (r == -EEXIST) {
2553 Unit **array;
2554 bool found = false;
2555 size_t n = 0;
2556
2557 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2558 * to an array of Units rather than just a Unit), lists us already. */
2559
2560 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2561 if (array)
2562 for (; array[n]; n++)
2563 if (array[n] == u)
2564 found = true;
2565
2566 if (found) /* Found it already? if so, do nothing */
2567 r = 0;
2568 else {
2569 Unit **new_array;
2570
2571 /* Allocate a new array */
2572 new_array = new(Unit*, n + 2);
2573 if (!new_array)
2574 return -ENOMEM;
2575
2576 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2577 new_array[n] = u;
2578 new_array[n+1] = NULL;
2579
2580 /* Add or replace the old array */
2581 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2582 if (r < 0) {
2583 free(new_array);
2584 return r;
2585 }
2586
2587 free(array);
2588 }
2589 } else if (r < 0)
2590 return r;
2591
2592 r = set_put(u->pids, PID_TO_PTR(pid));
2593 if (r < 0)
2594 return r;
2595
2596 return 0;
2597 }
2598
2599 void unit_unwatch_pid(Unit *u, pid_t pid) {
2600 Unit **array;
2601
2602 assert(u);
2603 assert(pid_is_valid(pid));
2604
2605 /* First let's drop the unit in case it's keyed as "pid". */
2606 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2607
2608 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2609 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2610 if (array) {
2611 size_t n, m = 0;
2612
2613 /* Let's iterate through the array, dropping our own entry */
2614 for (n = 0; array[n]; n++)
2615 if (array[n] != u)
2616 array[m++] = array[n];
2617 array[m] = NULL;
2618
2619 if (m == 0) {
2620 /* The array is now empty, remove the entire entry */
2621 assert(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2622 free(array);
2623 }
2624 }
2625
2626 (void) set_remove(u->pids, PID_TO_PTR(pid));
2627 }
2628
2629 void unit_unwatch_all_pids(Unit *u) {
2630 assert(u);
2631
2632 while (!set_isempty(u->pids))
2633 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2634
2635 u->pids = set_free(u->pids);
2636 }
2637
2638 static void unit_tidy_watch_pids(Unit *u) {
2639 pid_t except1, except2;
2640 Iterator i;
2641 void *e;
2642
2643 assert(u);
2644
2645 /* Cleans dead PIDs from our list */
2646
2647 except1 = unit_main_pid(u);
2648 except2 = unit_control_pid(u);
2649
2650 SET_FOREACH(e, u->pids, i) {
2651 pid_t pid = PTR_TO_PID(e);
2652
2653 if (pid == except1 || pid == except2)
2654 continue;
2655
2656 if (!pid_is_unwaited(pid))
2657 unit_unwatch_pid(u, pid);
2658 }
2659 }
2660
2661 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2662 Unit *u = userdata;
2663
2664 assert(s);
2665 assert(u);
2666
2667 unit_tidy_watch_pids(u);
2668 unit_watch_all_pids(u);
2669
2670 /* If the PID set is empty now, then let's finish this off. */
2671 unit_synthesize_cgroup_empty_event(u);
2672
2673 return 0;
2674 }
2675
2676 int unit_enqueue_rewatch_pids(Unit *u) {
2677 int r;
2678
2679 assert(u);
2680
2681 if (!u->cgroup_path)
2682 return -ENOENT;
2683
2684 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2685 if (r < 0)
2686 return r;
2687 if (r > 0) /* On unified we can use proper notifications */
2688 return 0;
2689
2690 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2691 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2692 * involves issuing kill(pid, 0) on all processes we watch. */
2693
2694 if (!u->rewatch_pids_event_source) {
2695 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2696
2697 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
2698 if (r < 0)
2699 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
2700
2701 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
2702 if (r < 0)
2703 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: m");
2704
2705 (void) sd_event_source_set_description(s, "tidy-watch-pids");
2706
2707 u->rewatch_pids_event_source = TAKE_PTR(s);
2708 }
2709
2710 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
2711 if (r < 0)
2712 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
2713
2714 return 0;
2715 }
2716
2717 void unit_dequeue_rewatch_pids(Unit *u) {
2718 int r;
2719 assert(u);
2720
2721 if (!u->rewatch_pids_event_source)
2722 return;
2723
2724 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
2725 if (r < 0)
2726 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
2727
2728 u->rewatch_pids_event_source = sd_event_source_unref(u->rewatch_pids_event_source);
2729 }
2730
2731 bool unit_job_is_applicable(Unit *u, JobType j) {
2732 assert(u);
2733 assert(j >= 0 && j < _JOB_TYPE_MAX);
2734
2735 switch (j) {
2736
2737 case JOB_VERIFY_ACTIVE:
2738 case JOB_START:
2739 case JOB_NOP:
2740 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
2741 * startable by us but may appear due to external events, and it thus makes sense to permit enqueing
2742 * jobs for it. */
2743 return true;
2744
2745 case JOB_STOP:
2746 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
2747 * external events), hence it makes no sense to permit enqueing such a request either. */
2748 return !u->perpetual;
2749
2750 case JOB_RESTART:
2751 case JOB_TRY_RESTART:
2752 return unit_can_stop(u) && unit_can_start(u);
2753
2754 case JOB_RELOAD:
2755 case JOB_TRY_RELOAD:
2756 return unit_can_reload(u);
2757
2758 case JOB_RELOAD_OR_START:
2759 return unit_can_reload(u) && unit_can_start(u);
2760
2761 default:
2762 assert_not_reached("Invalid job type");
2763 }
2764 }
2765
2766 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
2767 assert(u);
2768
2769 /* Only warn about some unit types */
2770 if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
2771 return;
2772
2773 if (streq_ptr(u->id, other))
2774 log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
2775 else
2776 log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
2777 }
2778
2779 static int unit_add_dependency_hashmap(
2780 Hashmap **h,
2781 Unit *other,
2782 UnitDependencyMask origin_mask,
2783 UnitDependencyMask destination_mask) {
2784
2785 UnitDependencyInfo info;
2786 int r;
2787
2788 assert(h);
2789 assert(other);
2790 assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL);
2791 assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL);
2792 assert(origin_mask > 0 || destination_mask > 0);
2793
2794 r = hashmap_ensure_allocated(h, NULL);
2795 if (r < 0)
2796 return r;
2797
2798 assert_cc(sizeof(void*) == sizeof(info));
2799
2800 info.data = hashmap_get(*h, other);
2801 if (info.data) {
2802 /* Entry already exists. Add in our mask. */
2803
2804 if (FLAGS_SET(origin_mask, info.origin_mask) &&
2805 FLAGS_SET(destination_mask, info.destination_mask))
2806 return 0; /* NOP */
2807
2808 info.origin_mask |= origin_mask;
2809 info.destination_mask |= destination_mask;
2810
2811 r = hashmap_update(*h, other, info.data);
2812 } else {
2813 info = (UnitDependencyInfo) {
2814 .origin_mask = origin_mask,
2815 .destination_mask = destination_mask,
2816 };
2817
2818 r = hashmap_put(*h, other, info.data);
2819 }
2820 if (r < 0)
2821 return r;
2822
2823 return 1;
2824 }
2825
2826 int unit_add_dependency(
2827 Unit *u,
2828 UnitDependency d,
2829 Unit *other,
2830 bool add_reference,
2831 UnitDependencyMask mask) {
2832
2833 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
2834 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
2835 [UNIT_WANTS] = UNIT_WANTED_BY,
2836 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
2837 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
2838 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
2839 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
2840 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
2841 [UNIT_WANTED_BY] = UNIT_WANTS,
2842 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
2843 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
2844 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
2845 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
2846 [UNIT_BEFORE] = UNIT_AFTER,
2847 [UNIT_AFTER] = UNIT_BEFORE,
2848 [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
2849 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
2850 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
2851 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
2852 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
2853 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
2854 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
2855 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
2856 };
2857 Unit *original_u = u, *original_other = other;
2858 int r;
2859
2860 assert(u);
2861 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
2862 assert(other);
2863
2864 u = unit_follow_merge(u);
2865 other = unit_follow_merge(other);
2866
2867 /* We won't allow dependencies on ourselves. We will not
2868 * consider them an error however. */
2869 if (u == other) {
2870 maybe_warn_about_dependency(original_u, original_other->id, d);
2871 return 0;
2872 }
2873
2874 if ((d == UNIT_BEFORE && other->type == UNIT_DEVICE) ||
2875 (d == UNIT_AFTER && u->type == UNIT_DEVICE)) {
2876 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
2877 return 0;
2878 }
2879
2880 r = unit_add_dependency_hashmap(u->dependencies + d, other, mask, 0);
2881 if (r < 0)
2882 return r;
2883
2884 if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
2885 r = unit_add_dependency_hashmap(other->dependencies + inverse_table[d], u, 0, mask);
2886 if (r < 0)
2887 return r;
2888 }
2889
2890 if (add_reference) {
2891 r = unit_add_dependency_hashmap(u->dependencies + UNIT_REFERENCES, other, mask, 0);
2892 if (r < 0)
2893 return r;
2894
2895 r = unit_add_dependency_hashmap(other->dependencies + UNIT_REFERENCED_BY, u, 0, mask);
2896 if (r < 0)
2897 return r;
2898 }
2899
2900 unit_add_to_dbus_queue(u);
2901 return 0;
2902 }
2903
2904 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
2905 int r;
2906
2907 assert(u);
2908
2909 r = unit_add_dependency(u, d, other, add_reference, mask);
2910 if (r < 0)
2911 return r;
2912
2913 return unit_add_dependency(u, e, other, add_reference, mask);
2914 }
2915
2916 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
2917 int r;
2918
2919 assert(u);
2920 assert(name);
2921 assert(buf);
2922 assert(ret);
2923
2924 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
2925 *buf = NULL;
2926 *ret = name;
2927 return 0;
2928 }
2929
2930 if (u->instance)
2931 r = unit_name_replace_instance(name, u->instance, buf);
2932 else {
2933 _cleanup_free_ char *i = NULL;
2934
2935 r = unit_name_to_prefix(u->id, &i);
2936 if (r < 0)
2937 return r;
2938
2939 r = unit_name_replace_instance(name, i, buf);
2940 }
2941 if (r < 0)
2942 return r;
2943
2944 *ret = *buf;
2945 return 0;
2946 }
2947
2948 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
2949 _cleanup_free_ char *buf = NULL;
2950 Unit *other;
2951 int r;
2952
2953 assert(u);
2954 assert(name);
2955
2956 r = resolve_template(u, name, &buf, &name);
2957 if (r < 0)
2958 return r;
2959
2960 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
2961 if (r < 0)
2962 return r;
2963
2964 return unit_add_dependency(u, d, other, add_reference, mask);
2965 }
2966
2967 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
2968 _cleanup_free_ char *buf = NULL;
2969 Unit *other;
2970 int r;
2971
2972 assert(u);
2973 assert(name);
2974
2975 r = resolve_template(u, name, &buf, &name);
2976 if (r < 0)
2977 return r;
2978
2979 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
2980 if (r < 0)
2981 return r;
2982
2983 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
2984 }
2985
2986 int set_unit_path(const char *p) {
2987 /* This is mostly for debug purposes */
2988 if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0)
2989 return -errno;
2990
2991 return 0;
2992 }
2993
2994 char *unit_dbus_path(Unit *u) {
2995 assert(u);
2996
2997 if (!u->id)
2998 return NULL;
2999
3000 return unit_dbus_path_from_name(u->id);
3001 }
3002
3003 char *unit_dbus_path_invocation_id(Unit *u) {
3004 assert(u);
3005
3006 if (sd_id128_is_null(u->invocation_id))
3007 return NULL;
3008
3009 return unit_dbus_path_from_name(u->invocation_id_string);
3010 }
3011
3012 int unit_set_slice(Unit *u, Unit *slice) {
3013 assert(u);
3014 assert(slice);
3015
3016 /* Sets the unit slice if it has not been set before. Is extra
3017 * careful, to only allow this for units that actually have a
3018 * cgroup context. Also, we don't allow to set this for slices
3019 * (since the parent slice is derived from the name). Make
3020 * sure the unit we set is actually a slice. */
3021
3022 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3023 return -EOPNOTSUPP;
3024
3025 if (u->type == UNIT_SLICE)
3026 return -EINVAL;
3027
3028 if (unit_active_state(u) != UNIT_INACTIVE)
3029 return -EBUSY;
3030
3031 if (slice->type != UNIT_SLICE)
3032 return -EINVAL;
3033
3034 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3035 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3036 return -EPERM;
3037
3038 if (UNIT_DEREF(u->slice) == slice)
3039 return 0;
3040
3041 /* Disallow slice changes if @u is already bound to cgroups */
3042 if (UNIT_ISSET(u->slice) && u->cgroup_realized)
3043 return -EBUSY;
3044
3045 unit_ref_set(&u->slice, u, slice);
3046 return 1;
3047 }
3048
3049 int unit_set_default_slice(Unit *u) {
3050 const char *slice_name;
3051 Unit *slice;
3052 int r;
3053
3054 assert(u);
3055
3056 if (UNIT_ISSET(u->slice))
3057 return 0;
3058
3059 if (u->instance) {
3060 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3061
3062 /* Implicitly place all instantiated units in their
3063 * own per-template slice */
3064
3065 r = unit_name_to_prefix(u->id, &prefix);
3066 if (r < 0)
3067 return r;
3068
3069 /* The prefix is already escaped, but it might include
3070 * "-" which has a special meaning for slice units,
3071 * hence escape it here extra. */
3072 escaped = unit_name_escape(prefix);
3073 if (!escaped)
3074 return -ENOMEM;
3075
3076 if (MANAGER_IS_SYSTEM(u->manager))
3077 slice_name = strjoina("system-", escaped, ".slice");
3078 else
3079 slice_name = strjoina(escaped, ".slice");
3080 } else
3081 slice_name =
3082 MANAGER_IS_SYSTEM(u->manager) && !unit_has_name(u, SPECIAL_INIT_SCOPE)
3083 ? SPECIAL_SYSTEM_SLICE
3084 : SPECIAL_ROOT_SLICE;
3085
3086 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3087 if (r < 0)
3088 return r;
3089
3090 return unit_set_slice(u, slice);
3091 }
3092
3093 const char *unit_slice_name(Unit *u) {
3094 assert(u);
3095
3096 if (!UNIT_ISSET(u->slice))
3097 return NULL;
3098
3099 return UNIT_DEREF(u->slice)->id;
3100 }
3101
3102 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3103 _cleanup_free_ char *t = NULL;
3104 int r;
3105
3106 assert(u);
3107 assert(type);
3108 assert(_found);
3109
3110 r = unit_name_change_suffix(u->id, type, &t);
3111 if (r < 0)
3112 return r;
3113 if (unit_has_name(u, t))
3114 return -EINVAL;
3115
3116 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3117 assert(r < 0 || *_found != u);
3118 return r;
3119 }
3120
3121 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3122 const char *name, *old_owner, *new_owner;
3123 Unit *u = userdata;
3124 int r;
3125
3126 assert(message);
3127 assert(u);
3128
3129 r = sd_bus_message_read(message, "sss", &name, &old_owner, &new_owner);
3130 if (r < 0) {
3131 bus_log_parse_error(r);
3132 return 0;
3133 }
3134
3135 old_owner = empty_to_null(old_owner);
3136 new_owner = empty_to_null(new_owner);
3137
3138 if (UNIT_VTABLE(u)->bus_name_owner_change)
3139 UNIT_VTABLE(u)->bus_name_owner_change(u, name, old_owner, new_owner);
3140
3141 return 0;
3142 }
3143
3144 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3145 const char *match;
3146
3147 assert(u);
3148 assert(bus);
3149 assert(name);
3150
3151 if (u->match_bus_slot)
3152 return -EBUSY;
3153
3154 match = strjoina("type='signal',"
3155 "sender='org.freedesktop.DBus',"
3156 "path='/org/freedesktop/DBus',"
3157 "interface='org.freedesktop.DBus',"
3158 "member='NameOwnerChanged',"
3159 "arg0='", name, "'");
3160
3161 return sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u);
3162 }
3163
3164 int unit_watch_bus_name(Unit *u, const char *name) {
3165 int r;
3166
3167 assert(u);
3168 assert(name);
3169
3170 /* Watch a specific name on the bus. We only support one unit
3171 * watching each name for now. */
3172
3173 if (u->manager->api_bus) {
3174 /* If the bus is already available, install the match directly.
3175 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3176 r = unit_install_bus_match(u, u->manager->api_bus, name);
3177 if (r < 0)
3178 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3179 }
3180
3181 r = hashmap_put(u->manager->watch_bus, name, u);
3182 if (r < 0) {
3183 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3184 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3185 }
3186
3187 return 0;
3188 }
3189
3190 void unit_unwatch_bus_name(Unit *u, const char *name) {
3191 assert(u);
3192 assert(name);
3193
3194 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3195 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3196 }
3197
3198 bool unit_can_serialize(Unit *u) {
3199 assert(u);
3200
3201 return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
3202 }
3203
3204 static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
3205 _cleanup_free_ char *s = NULL;
3206 int r;
3207
3208 assert(f);
3209 assert(key);
3210
3211 if (mask == 0)
3212 return 0;
3213
3214 r = cg_mask_to_string(mask, &s);
3215 if (r < 0)
3216 return log_error_errno(r, "Failed to format cgroup mask: %m");
3217
3218 return serialize_item(f, key, s);
3219 }
3220
3221 static const char *ip_accounting_metric_field[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
3222 [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
3223 [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
3224 [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
3225 [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
3226 };
3227
3228 int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
3229 CGroupIPAccountingMetric m;
3230 int r;
3231
3232 assert(u);
3233 assert(f);
3234 assert(fds);
3235
3236 if (unit_can_serialize(u)) {
3237 r = UNIT_VTABLE(u)->serialize(u, f, fds);
3238 if (r < 0)
3239 return r;
3240 }
3241
3242 (void) serialize_dual_timestamp(f, "state-change-timestamp", &u->state_change_timestamp);
3243
3244 (void) serialize_dual_timestamp(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
3245 (void) serialize_dual_timestamp(f, "active-enter-timestamp", &u->active_enter_timestamp);
3246 (void) serialize_dual_timestamp(f, "active-exit-timestamp", &u->active_exit_timestamp);
3247 (void) serialize_dual_timestamp(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
3248
3249 (void) serialize_dual_timestamp(f, "condition-timestamp", &u->condition_timestamp);
3250 (void) serialize_dual_timestamp(f, "assert-timestamp", &u->assert_timestamp);
3251
3252 if (dual_timestamp_is_set(&u->condition_timestamp))
3253 (void) serialize_bool(f, "condition-result", u->condition_result);
3254
3255 if (dual_timestamp_is_set(&u->assert_timestamp))
3256 (void) serialize_bool(f, "assert-result", u->assert_result);
3257
3258 (void) serialize_bool(f, "transient", u->transient);
3259 (void) serialize_bool(f, "in-audit", u->in_audit);
3260
3261 (void) serialize_bool(f, "exported-invocation-id", u->exported_invocation_id);
3262 (void) serialize_bool(f, "exported-log-level-max", u->exported_log_level_max);
3263 (void) serialize_bool(f, "exported-log-extra-fields", u->exported_log_extra_fields);
3264 (void) serialize_bool(f, "exported-log-rate-limit-interval", u->exported_log_rate_limit_interval);
3265 (void) serialize_bool(f, "exported-log-rate-limit-burst", u->exported_log_rate_limit_burst);
3266
3267 (void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, u->cpu_usage_base);
3268 if (u->cpu_usage_last != NSEC_INFINITY)
3269 (void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, u->cpu_usage_last);
3270
3271 if (u->cgroup_path)
3272 (void) serialize_item(f, "cgroup", u->cgroup_path);
3273
3274 (void) serialize_bool(f, "cgroup-realized", u->cgroup_realized);
3275 (void) serialize_cgroup_mask(f, "cgroup-realized-mask", u->cgroup_realized_mask);
3276 (void) serialize_cgroup_mask(f, "cgroup-enabled-mask", u->cgroup_enabled_mask);
3277 (void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", u->cgroup_invalidated_mask);
3278
3279 if (uid_is_valid(u->ref_uid))
3280 (void) serialize_item_format(f, "ref-uid", UID_FMT, u->ref_uid);
3281 if (gid_is_valid(u->ref_gid))
3282 (void) serialize_item_format(f, "ref-gid", GID_FMT, u->ref_gid);
3283
3284 if (!sd_id128_is_null(u->invocation_id))
3285 (void) serialize_item_format(f, "invocation-id", SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id));
3286
3287 bus_track_serialize(u->bus_track, f, "ref");
3288
3289 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
3290 uint64_t v;
3291
3292 r = unit_get_ip_accounting(u, m, &v);
3293 if (r >= 0)
3294 (void) serialize_item_format(f, ip_accounting_metric_field[m], "%" PRIu64, v);
3295 }
3296
3297 if (serialize_jobs) {
3298 if (u->job) {
3299 fputs("job\n", f);
3300 job_serialize(u->job, f);
3301 }
3302
3303 if (u->nop_job) {
3304 fputs("job\n", f);
3305 job_serialize(u->nop_job, f);
3306 }
3307 }
3308
3309 /* End marker */
3310 fputc('\n', f);
3311 return 0;
3312 }
3313
3314 static int unit_deserialize_job(Unit *u, FILE *f) {
3315 _cleanup_(job_freep) Job *j = NULL;
3316 int r;
3317
3318 assert(u);
3319 assert(f);
3320
3321 j = job_new_raw(u);
3322 if (!j)
3323 return log_oom();
3324
3325 r = job_deserialize(j, f);
3326 if (r < 0)
3327 return r;
3328
3329 r = job_install_deserialized(j);
3330 if (r < 0)
3331 return r;
3332
3333 TAKE_PTR(j);
3334 return 0;
3335 }
3336
3337 int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
3338 int r;
3339
3340 assert(u);
3341 assert(f);
3342 assert(fds);
3343
3344 for (;;) {
3345 _cleanup_free_ char *line = NULL;
3346 CGroupIPAccountingMetric m;
3347 char *l, *v;
3348 size_t k;
3349
3350 r = read_line(f, LONG_LINE_MAX, &line);
3351 if (r < 0)
3352 return log_error_errno(r, "Failed to read serialization line: %m");
3353 if (r == 0) /* eof */
3354 break;
3355
3356 l = strstrip(line);
3357 if (isempty(l)) /* End marker */
3358 break;
3359
3360 k = strcspn(l, "=");
3361
3362 if (l[k] == '=') {
3363 l[k] = 0;
3364 v = l+k+1;
3365 } else
3366 v = l+k;
3367
3368 if (streq(l, "job")) {
3369 if (v[0] == '\0') {
3370 /* New-style serialized job */
3371 r = unit_deserialize_job(u, f);
3372 if (r < 0)
3373 return r;
3374 } else /* Legacy for pre-44 */
3375 log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v);
3376 continue;
3377 } else if (streq(l, "state-change-timestamp")) {
3378 (void) deserialize_dual_timestamp(v, &u->state_change_timestamp);
3379 continue;
3380 } else if (streq(l, "inactive-exit-timestamp")) {
3381 (void) deserialize_dual_timestamp(v, &u->inactive_exit_timestamp);
3382 continue;
3383 } else if (streq(l, "active-enter-timestamp")) {
3384 (void) deserialize_dual_timestamp(v, &u->active_enter_timestamp);
3385 continue;
3386 } else if (streq(l, "active-exit-timestamp")) {
3387 (void) deserialize_dual_timestamp(v, &u->active_exit_timestamp);
3388 continue;
3389 } else if (streq(l, "inactive-enter-timestamp")) {
3390 (void) deserialize_dual_timestamp(v, &u->inactive_enter_timestamp);
3391 continue;
3392 } else if (streq(l, "condition-timestamp")) {
3393 (void) deserialize_dual_timestamp(v, &u->condition_timestamp);
3394 continue;
3395 } else if (streq(l, "assert-timestamp")) {
3396 (void) deserialize_dual_timestamp(v, &u->assert_timestamp);
3397 continue;
3398 } else if (streq(l, "condition-result")) {
3399
3400 r = parse_boolean(v);
3401 if (r < 0)
3402 log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
3403 else
3404 u->condition_result = r;
3405
3406 continue;
3407
3408 } else if (streq(l, "assert-result")) {
3409
3410 r = parse_boolean(v);
3411 if (r < 0)
3412 log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
3413 else
3414 u->assert_result = r;
3415
3416 continue;
3417
3418 } else if (streq(l, "transient")) {
3419
3420 r = parse_boolean(v);
3421 if (r < 0)
3422 log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
3423 else
3424 u->transient = r;
3425
3426 continue;
3427
3428 } else if (streq(l, "in-audit")) {
3429
3430 r = parse_boolean(v);
3431 if (r < 0)
3432 log_unit_debug(u, "Failed to parse in-audit bool %s, ignoring.", v);
3433 else
3434 u->in_audit = r;
3435
3436 continue;
3437
3438 } else if (streq(l, "exported-invocation-id")) {
3439
3440 r = parse_boolean(v);
3441 if (r < 0)
3442 log_unit_debug(u, "Failed to parse exported invocation ID bool %s, ignoring.", v);
3443 else
3444 u->exported_invocation_id = r;
3445
3446 continue;
3447
3448 } else if (streq(l, "exported-log-level-max")) {
3449
3450 r = parse_boolean(v);
3451 if (r < 0)
3452 log_unit_debug(u, "Failed to parse exported log level max bool %s, ignoring.", v);
3453 else
3454 u->exported_log_level_max = r;
3455
3456 continue;
3457
3458 } else if (streq(l, "exported-log-extra-fields")) {
3459
3460 r = parse_boolean(v);
3461 if (r < 0)
3462 log_unit_debug(u, "Failed to parse exported log extra fields bool %s, ignoring.", v);
3463 else
3464 u->exported_log_extra_fields = r;
3465
3466 continue;
3467
3468 } else if (streq(l, "exported-log-rate-limit-interval")) {
3469
3470 r = parse_boolean(v);
3471 if (r < 0)
3472 log_unit_debug(u, "Failed to parse exported log rate limit interval %s, ignoring.", v);
3473 else
3474 u->exported_log_rate_limit_interval = r;
3475
3476 continue;
3477
3478 } else if (streq(l, "exported-log-rate-limit-burst")) {
3479
3480 r = parse_boolean(v);
3481 if (r < 0)
3482 log_unit_debug(u, "Failed to parse exported log rate limit burst %s, ignoring.", v);
3483 else
3484 u->exported_log_rate_limit_burst = r;
3485
3486 continue;
3487
3488 } else if (STR_IN_SET(l, "cpu-usage-base", "cpuacct-usage-base")) {
3489
3490 r = safe_atou64(v, &u->cpu_usage_base);
3491 if (r < 0)
3492 log_unit_debug(u, "Failed to parse CPU usage base %s, ignoring.", v);
3493
3494 continue;
3495
3496 } else if (streq(l, "cpu-usage-last")) {
3497
3498 r = safe_atou64(v, &u->cpu_usage_last);
3499 if (r < 0)
3500 log_unit_debug(u, "Failed to read CPU usage last %s, ignoring.", v);
3501
3502 continue;
3503
3504 } else if (streq(l, "cgroup")) {
3505
3506 r = unit_set_cgroup_path(u, v);
3507 if (r < 0)
3508 log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
3509
3510 (void) unit_watch_cgroup(u);
3511
3512 continue;
3513 } else if (streq(l, "cgroup-realized")) {
3514 int b;
3515
3516 b = parse_boolean(v);
3517 if (b < 0)
3518 log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v);
3519 else
3520 u->cgroup_realized = b;
3521
3522 continue;
3523
3524 } else if (streq(l, "cgroup-realized-mask")) {
3525
3526 r = cg_mask_from_string(v, &u->cgroup_realized_mask);
3527 if (r < 0)
3528 log_unit_debug(u, "Failed to parse cgroup-realized-mask %s, ignoring.", v);
3529 continue;
3530
3531 } else if (streq(l, "cgroup-enabled-mask")) {
3532
3533 r = cg_mask_from_string(v, &u->cgroup_enabled_mask);
3534 if (r < 0)
3535 log_unit_debug(u, "Failed to parse cgroup-enabled-mask %s, ignoring.", v);
3536 continue;
3537
3538 } else if (streq(l, "cgroup-invalidated-mask")) {
3539
3540 r = cg_mask_from_string(v, &u->cgroup_invalidated_mask);
3541 if (r < 0)
3542 log_unit_debug(u, "Failed to parse cgroup-invalidated-mask %s, ignoring.", v);
3543 continue;
3544
3545 } else if (streq(l, "ref-uid")) {
3546 uid_t uid;
3547
3548 r = parse_uid(v, &uid);
3549 if (r < 0)
3550 log_unit_debug(u, "Failed to parse referenced UID %s, ignoring.", v);
3551 else
3552 unit_ref_uid_gid(u, uid, GID_INVALID);
3553
3554 continue;
3555
3556 } else if (streq(l, "ref-gid")) {
3557 gid_t gid;
3558
3559 r = parse_gid(v, &gid);
3560 if (r < 0)
3561 log_unit_debug(u, "Failed to parse referenced GID %s, ignoring.", v);
3562 else
3563 unit_ref_uid_gid(u, UID_INVALID, gid);
3564
3565 continue;
3566
3567 } else if (streq(l, "ref")) {
3568
3569 r = strv_extend(&u->deserialized_refs, v);
3570 if (r < 0)
3571 return log_oom();
3572
3573 continue;
3574 } else if (streq(l, "invocation-id")) {
3575 sd_id128_t id;
3576
3577 r = sd_id128_from_string(v, &id);
3578 if (r < 0)
3579 log_unit_debug(u, "Failed to parse invocation id %s, ignoring.", v);
3580 else {
3581 r = unit_set_invocation_id(u, id);
3582 if (r < 0)
3583 log_unit_warning_errno(u, r, "Failed to set invocation ID for unit: %m");
3584 }
3585
3586 continue;
3587 }
3588
3589 /* Check if this is an IP accounting metric serialization field */
3590 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++)
3591 if (streq(l, ip_accounting_metric_field[m]))
3592 break;
3593 if (m < _CGROUP_IP_ACCOUNTING_METRIC_MAX) {
3594 uint64_t c;
3595
3596 r = safe_atou64(v, &c);
3597 if (r < 0)
3598 log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", v);
3599 else
3600 u->ip_accounting_extra[m] = c;
3601 continue;
3602 }
3603
3604 if (unit_can_serialize(u)) {
3605 r = exec_runtime_deserialize_compat(u, l, v, fds);
3606 if (r < 0) {
3607 log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
3608 continue;
3609 }
3610
3611 /* Returns positive if key was handled by the call */
3612 if (r > 0)
3613 continue;
3614
3615 r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
3616 if (r < 0)
3617 log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
3618 }
3619 }
3620
3621 /* Versions before 228 did not carry a state change timestamp. In this case, take the current time. This is
3622 * useful, so that timeouts based on this timestamp don't trigger too early, and is in-line with the logic from
3623 * before 228 where the base for timeouts was not persistent across reboots. */
3624
3625 if (!dual_timestamp_is_set(&u->state_change_timestamp))
3626 dual_timestamp_get(&u->state_change_timestamp);
3627
3628 /* Let's make sure that everything that is deserialized also gets any potential new cgroup settings applied
3629 * after we are done. For that we invalidate anything already realized, so that we can realize it again. */
3630 unit_invalidate_cgroup(u, _CGROUP_MASK_ALL);
3631 unit_invalidate_cgroup_bpf(u);
3632
3633 return 0;
3634 }
3635
3636 int unit_deserialize_skip(FILE *f) {
3637 int r;
3638 assert(f);
3639
3640 /* Skip serialized data for this unit. We don't know what it is. */
3641
3642 for (;;) {
3643 _cleanup_free_ char *line = NULL;
3644 char *l;
3645
3646 r = read_line(f, LONG_LINE_MAX, &line);
3647 if (r < 0)
3648 return log_error_errno(r, "Failed to read serialization line: %m");
3649 if (r == 0)
3650 return 0;
3651
3652 l = strstrip(line);
3653
3654 /* End marker */
3655 if (isempty(l))
3656 return 1;
3657 }
3658 }
3659
3660 int unit_add_node_dependency(Unit *u, const char *what, bool wants, UnitDependency dep, UnitDependencyMask mask) {
3661 Unit *device;
3662 _cleanup_free_ char *e = NULL;
3663 int r;
3664
3665 assert(u);
3666
3667 /* Adds in links to the device node that this unit is based on */
3668 if (isempty(what))
3669 return 0;
3670
3671 if (!is_device_path(what))
3672 return 0;
3673
3674 /* When device units aren't supported (such as in a
3675 * container), don't create dependencies on them. */
3676 if (!unit_type_supported(UNIT_DEVICE))
3677 return 0;
3678
3679 r = unit_name_from_path(what, ".device", &e);
3680 if (r < 0)
3681 return r;
3682
3683 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
3684 if (r < 0)
3685 return r;
3686
3687 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
3688 dep = UNIT_BINDS_TO;
3689
3690 r = unit_add_two_dependencies(u, UNIT_AFTER,
3691 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
3692 device, true, mask);
3693 if (r < 0)
3694 return r;
3695
3696 if (wants) {
3697 r = unit_add_dependency(device, UNIT_WANTS, u, false, mask);
3698 if (r < 0)
3699 return r;
3700 }
3701
3702 return 0;
3703 }
3704
3705 int unit_coldplug(Unit *u) {
3706 int r = 0, q;
3707 char **i;
3708
3709 assert(u);
3710
3711 /* Make sure we don't enter a loop, when coldplugging recursively. */
3712 if (u->coldplugged)
3713 return 0;
3714
3715 u->coldplugged = true;
3716
3717 STRV_FOREACH(i, u->deserialized_refs) {
3718 q = bus_unit_track_add_name(u, *i);
3719 if (q < 0 && r >= 0)
3720 r = q;
3721 }
3722 u->deserialized_refs = strv_free(u->deserialized_refs);
3723
3724 if (UNIT_VTABLE(u)->coldplug) {
3725 q = UNIT_VTABLE(u)->coldplug(u);
3726 if (q < 0 && r >= 0)
3727 r = q;
3728 }
3729
3730 if (u->job) {
3731 q = job_coldplug(u->job);
3732 if (q < 0 && r >= 0)
3733 r = q;
3734 }
3735
3736 return r;
3737 }
3738
3739 void unit_catchup(Unit *u) {
3740 assert(u);
3741
3742 if (UNIT_VTABLE(u)->catchup)
3743 UNIT_VTABLE(u)->catchup(u);
3744 }
3745
3746 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
3747 struct stat st;
3748
3749 if (!path)
3750 return false;
3751
3752 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
3753 * are never out-of-date. */
3754 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
3755 return false;
3756
3757 if (stat(path, &st) < 0)
3758 /* What, cannot access this anymore? */
3759 return true;
3760
3761 if (path_masked)
3762 /* For masked files check if they are still so */
3763 return !null_or_empty(&st);
3764 else
3765 /* For non-empty files check the mtime */
3766 return timespec_load(&st.st_mtim) > mtime;
3767
3768 return false;
3769 }
3770
3771 bool unit_need_daemon_reload(Unit *u) {
3772 _cleanup_strv_free_ char **t = NULL;
3773 char **path;
3774
3775 assert(u);
3776
3777 /* For unit files, we allow masking… */
3778 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
3779 u->load_state == UNIT_MASKED))
3780 return true;
3781
3782 /* Source paths should not be masked… */
3783 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
3784 return true;
3785
3786 if (u->load_state == UNIT_LOADED)
3787 (void) unit_find_dropin_paths(u, &t);
3788 if (!strv_equal(u->dropin_paths, t))
3789 return true;
3790
3791 /* … any drop-ins that are masked are simply omitted from the list. */
3792 STRV_FOREACH(path, u->dropin_paths)
3793 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
3794 return true;
3795
3796 return false;
3797 }
3798
3799 void unit_reset_failed(Unit *u) {
3800 assert(u);
3801
3802 if (UNIT_VTABLE(u)->reset_failed)
3803 UNIT_VTABLE(u)->reset_failed(u);
3804
3805 RATELIMIT_RESET(u->start_limit);
3806 u->start_limit_hit = false;
3807 }
3808
3809 Unit *unit_following(Unit *u) {
3810 assert(u);
3811
3812 if (UNIT_VTABLE(u)->following)
3813 return UNIT_VTABLE(u)->following(u);
3814
3815 return NULL;
3816 }
3817
3818 bool unit_stop_pending(Unit *u) {
3819 assert(u);
3820
3821 /* This call does check the current state of the unit. It's
3822 * hence useful to be called from state change calls of the
3823 * unit itself, where the state isn't updated yet. This is
3824 * different from unit_inactive_or_pending() which checks both
3825 * the current state and for a queued job. */
3826
3827 return u->job && u->job->type == JOB_STOP;
3828 }
3829
3830 bool unit_inactive_or_pending(Unit *u) {
3831 assert(u);
3832
3833 /* Returns true if the unit is inactive or going down */
3834
3835 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
3836 return true;
3837
3838 if (unit_stop_pending(u))
3839 return true;
3840
3841 return false;
3842 }
3843
3844 bool unit_active_or_pending(Unit *u) {
3845 assert(u);
3846
3847 /* Returns true if the unit is active or going up */
3848
3849 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
3850 return true;
3851
3852 if (u->job &&
3853 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
3854 return true;
3855
3856 return false;
3857 }
3858
3859 bool unit_will_restart(Unit *u) {
3860 assert(u);
3861
3862 if (!UNIT_VTABLE(u)->will_restart)
3863 return false;
3864
3865 return UNIT_VTABLE(u)->will_restart(u);
3866 }
3867
3868 int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
3869 assert(u);
3870 assert(w >= 0 && w < _KILL_WHO_MAX);
3871 assert(SIGNAL_VALID(signo));
3872
3873 if (!UNIT_VTABLE(u)->kill)
3874 return -EOPNOTSUPP;
3875
3876 return UNIT_VTABLE(u)->kill(u, w, signo, error);
3877 }
3878
3879 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
3880 _cleanup_set_free_ Set *pid_set = NULL;
3881 int r;
3882
3883 pid_set = set_new(NULL);
3884 if (!pid_set)
3885 return NULL;
3886
3887 /* Exclude the main/control pids from being killed via the cgroup */
3888 if (main_pid > 0) {
3889 r = set_put(pid_set, PID_TO_PTR(main_pid));
3890 if (r < 0)
3891 return NULL;
3892 }
3893
3894 if (control_pid > 0) {
3895 r = set_put(pid_set, PID_TO_PTR(control_pid));
3896 if (r < 0)
3897 return NULL;
3898 }
3899
3900 return TAKE_PTR(pid_set);
3901 }
3902
3903 int unit_kill_common(
3904 Unit *u,
3905 KillWho who,
3906 int signo,
3907 pid_t main_pid,
3908 pid_t control_pid,
3909 sd_bus_error *error) {
3910
3911 int r = 0;
3912 bool killed = false;
3913
3914 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
3915 if (main_pid < 0)
3916 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
3917 else if (main_pid == 0)
3918 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
3919 }
3920
3921 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
3922 if (control_pid < 0)
3923 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
3924 else if (control_pid == 0)
3925 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
3926 }
3927
3928 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL))
3929 if (control_pid > 0) {
3930 if (kill(control_pid, signo) < 0)
3931 r = -errno;
3932 else
3933 killed = true;
3934 }
3935
3936 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL))
3937 if (main_pid > 0) {
3938 if (kill(main_pid, signo) < 0)
3939 r = -errno;
3940 else
3941 killed = true;
3942 }
3943
3944 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) {
3945 _cleanup_set_free_ Set *pid_set = NULL;
3946 int q;
3947
3948 /* Exclude the main/control pids from being killed via the cgroup */
3949 pid_set = unit_pid_set(main_pid, control_pid);
3950 if (!pid_set)
3951 return -ENOMEM;
3952
3953 q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, NULL, NULL);
3954 if (q < 0 && !IN_SET(q, -EAGAIN, -ESRCH, -ENOENT))
3955 r = q;
3956 else
3957 killed = true;
3958 }
3959
3960 if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL))
3961 return -ESRCH;
3962
3963 return r;
3964 }
3965
3966 int unit_following_set(Unit *u, Set **s) {
3967 assert(u);
3968 assert(s);
3969
3970 if (UNIT_VTABLE(u)->following_set)
3971 return UNIT_VTABLE(u)->following_set(u, s);
3972
3973 *s = NULL;
3974 return 0;
3975 }
3976
3977 UnitFileState unit_get_unit_file_state(Unit *u) {
3978 int r;
3979
3980 assert(u);
3981
3982 if (u->unit_file_state < 0 && u->fragment_path) {
3983 r = unit_file_get_state(
3984 u->manager->unit_file_scope,
3985 NULL,
3986 u->id,
3987 &u->unit_file_state);
3988 if (r < 0)
3989 u->unit_file_state = UNIT_FILE_BAD;
3990 }
3991
3992 return u->unit_file_state;
3993 }
3994
3995 int unit_get_unit_file_preset(Unit *u) {
3996 assert(u);
3997
3998 if (u->unit_file_preset < 0 && u->fragment_path)
3999 u->unit_file_preset = unit_file_query_preset(
4000 u->manager->unit_file_scope,
4001 NULL,
4002 basename(u->fragment_path));
4003
4004 return u->unit_file_preset;
4005 }
4006
4007 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4008 assert(ref);
4009 assert(source);
4010 assert(target);
4011
4012 if (ref->target)
4013 unit_ref_unset(ref);
4014
4015 ref->source = source;
4016 ref->target = target;
4017 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4018 return target;
4019 }
4020
4021 void unit_ref_unset(UnitRef *ref) {
4022 assert(ref);
4023
4024 if (!ref->target)
4025 return;
4026
4027 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4028 * be unreferenced now. */
4029 unit_add_to_gc_queue(ref->target);
4030
4031 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4032 ref->source = ref->target = NULL;
4033 }
4034
4035 static int user_from_unit_name(Unit *u, char **ret) {
4036
4037 static const uint8_t hash_key[] = {
4038 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4039 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4040 };
4041
4042 _cleanup_free_ char *n = NULL;
4043 int r;
4044
4045 r = unit_name_to_prefix(u->id, &n);
4046 if (r < 0)
4047 return r;
4048
4049 if (valid_user_group_name(n)) {
4050 *ret = TAKE_PTR(n);
4051 return 0;
4052 }
4053
4054 /* If we can't use the unit name as a user name, then let's hash it and use that */
4055 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4056 return -ENOMEM;
4057
4058 return 0;
4059 }
4060
4061 int unit_patch_contexts(Unit *u) {
4062 CGroupContext *cc;
4063 ExecContext *ec;
4064 unsigned i;
4065 int r;
4066
4067 assert(u);
4068
4069 /* Patch in the manager defaults into the exec and cgroup
4070 * contexts, _after_ the rest of the settings have been
4071 * initialized */
4072
4073 ec = unit_get_exec_context(u);
4074 if (ec) {
4075 /* This only copies in the ones that need memory */
4076 for (i = 0; i < _RLIMIT_MAX; i++)
4077 if (u->manager->rlimit[i] && !ec->rlimit[i]) {
4078 ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
4079 if (!ec->rlimit[i])
4080 return -ENOMEM;
4081 }
4082
4083 if (MANAGER_IS_USER(u->manager) &&
4084 !ec->working_directory) {
4085
4086 r = get_home_dir(&ec->working_directory);
4087 if (r < 0)
4088 return r;
4089
4090 /* Allow user services to run, even if the
4091 * home directory is missing */
4092 ec->working_directory_missing_ok = true;
4093 }
4094
4095 if (ec->private_devices)
4096 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4097
4098 if (ec->protect_kernel_modules)
4099 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4100
4101 if (ec->dynamic_user) {
4102 if (!ec->user) {
4103 r = user_from_unit_name(u, &ec->user);
4104 if (r < 0)
4105 return r;
4106 }
4107
4108 if (!ec->group) {
4109 ec->group = strdup(ec->user);
4110 if (!ec->group)
4111 return -ENOMEM;
4112 }
4113
4114 /* If the dynamic user option is on, let's make sure that the unit can't leave its UID/GID
4115 * around in the file system or on IPC objects. Hence enforce a strict sandbox. */
4116
4117 ec->private_tmp = true;
4118 ec->remove_ipc = true;
4119 ec->protect_system = PROTECT_SYSTEM_STRICT;
4120 if (ec->protect_home == PROTECT_HOME_NO)
4121 ec->protect_home = PROTECT_HOME_READ_ONLY;
4122 }
4123 }
4124
4125 cc = unit_get_cgroup_context(u);
4126 if (cc && ec) {
4127
4128 if (ec->private_devices &&
4129 cc->device_policy == CGROUP_AUTO)
4130 cc->device_policy = CGROUP_CLOSED;
4131
4132 if (ec->root_image &&
4133 (cc->device_policy != CGROUP_AUTO || cc->device_allow)) {
4134
4135 /* When RootImage= is specified, the following devices are touched. */
4136 r = cgroup_add_device_allow(cc, "/dev/loop-control", "rw");
4137 if (r < 0)
4138 return r;
4139
4140 r = cgroup_add_device_allow(cc, "block-loop", "rwm");
4141 if (r < 0)
4142 return r;
4143
4144 r = cgroup_add_device_allow(cc, "block-blkext", "rwm");
4145 if (r < 0)
4146 return r;
4147 }
4148 }
4149
4150 return 0;
4151 }
4152
4153 ExecContext *unit_get_exec_context(Unit *u) {
4154 size_t offset;
4155 assert(u);
4156
4157 if (u->type < 0)
4158 return NULL;
4159
4160 offset = UNIT_VTABLE(u)->exec_context_offset;
4161 if (offset <= 0)
4162 return NULL;
4163
4164 return (ExecContext*) ((uint8_t*) u + offset);
4165 }
4166
4167 KillContext *unit_get_kill_context(Unit *u) {
4168 size_t offset;
4169 assert(u);
4170
4171 if (u->type < 0)
4172 return NULL;
4173
4174 offset = UNIT_VTABLE(u)->kill_context_offset;
4175 if (offset <= 0)
4176 return NULL;
4177
4178 return (KillContext*) ((uint8_t*) u + offset);
4179 }
4180
4181 CGroupContext *unit_get_cgroup_context(Unit *u) {
4182 size_t offset;
4183
4184 if (u->type < 0)
4185 return NULL;
4186
4187 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4188 if (offset <= 0)
4189 return NULL;
4190
4191 return (CGroupContext*) ((uint8_t*) u + offset);
4192 }
4193
4194 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4195 size_t offset;
4196
4197 if (u->type < 0)
4198 return NULL;
4199
4200 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4201 if (offset <= 0)
4202 return NULL;
4203
4204 return *(ExecRuntime**) ((uint8_t*) u + offset);
4205 }
4206
4207 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4208 assert(u);
4209
4210 if (UNIT_WRITE_FLAGS_NOOP(flags))
4211 return NULL;
4212
4213 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4214 return u->manager->lookup_paths.transient;
4215
4216 if (flags & UNIT_PERSISTENT)
4217 return u->manager->lookup_paths.persistent_control;
4218
4219 if (flags & UNIT_RUNTIME)
4220 return u->manager->lookup_paths.runtime_control;
4221
4222 return NULL;
4223 }
4224
4225 char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4226 char *ret = NULL;
4227
4228 if (!s)
4229 return NULL;
4230
4231 /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated
4232 * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is
4233 * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly
4234 * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is
4235 * not specified, then the return value always needs to be freed. Callers can use this to optimize memory
4236 * allocations. */
4237
4238 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4239 ret = specifier_escape(s);
4240 if (!ret)
4241 return NULL;
4242
4243 s = ret;
4244 }
4245
4246 if (flags & UNIT_ESCAPE_C) {
4247 char *a;
4248
4249 a = cescape(s);
4250 free(ret);
4251 if (!a)
4252 return NULL;
4253
4254 ret = a;
4255 }
4256
4257 if (buf) {
4258 *buf = ret;
4259 return ret ?: (char*) s;
4260 }
4261
4262 return ret ?: strdup(s);
4263 }
4264
4265 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4266 _cleanup_free_ char *result = NULL;
4267 size_t n = 0, allocated = 0;
4268 char **i;
4269
4270 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a
4271 * way suitable for ExecStart= stanzas */
4272
4273 STRV_FOREACH(i, l) {
4274 _cleanup_free_ char *buf = NULL;
4275 const char *p;
4276 size_t a;
4277 char *q;
4278
4279 p = unit_escape_setting(*i, flags, &buf);
4280 if (!p)
4281 return NULL;
4282
4283 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4284 if (!GREEDY_REALLOC(result, allocated, n + a + 1))
4285 return NULL;
4286
4287 q = result + n;
4288 if (n > 0)
4289 *(q++) = ' ';
4290
4291 *(q++) = '"';
4292 q = stpcpy(q, p);
4293 *(q++) = '"';
4294
4295 n += a;
4296 }
4297
4298 if (!GREEDY_REALLOC(result, allocated, n + 1))
4299 return NULL;
4300
4301 result[n] = 0;
4302
4303 return TAKE_PTR(result);
4304 }
4305
4306 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4307 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4308 const char *dir, *wrapped;
4309 int r;
4310
4311 assert(u);
4312 assert(name);
4313 assert(data);
4314
4315 if (UNIT_WRITE_FLAGS_NOOP(flags))
4316 return 0;
4317
4318 data = unit_escape_setting(data, flags, &escaped);
4319 if (!data)
4320 return -ENOMEM;
4321
4322 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4323 * previous section header is the same */
4324
4325 if (flags & UNIT_PRIVATE) {
4326 if (!UNIT_VTABLE(u)->private_section)
4327 return -EINVAL;
4328
4329 if (!u->transient_file || u->last_section_private < 0)
4330 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4331 else if (u->last_section_private == 0)
4332 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4333 } else {
4334 if (!u->transient_file || u->last_section_private < 0)
4335 data = strjoina("[Unit]\n", data);
4336 else if (u->last_section_private > 0)
4337 data = strjoina("\n[Unit]\n", data);
4338 }
4339
4340 if (u->transient_file) {
4341 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4342 * write to the transient unit file. */
4343 fputs(data, u->transient_file);
4344
4345 if (!endswith(data, "\n"))
4346 fputc('\n', u->transient_file);
4347
4348 /* Remember which section we wrote this entry to */
4349 u->last_section_private = !!(flags & UNIT_PRIVATE);
4350 return 0;
4351 }
4352
4353 dir = unit_drop_in_dir(u, flags);
4354 if (!dir)
4355 return -EINVAL;
4356
4357 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4358 "# or an equivalent operation. Do not edit.\n",
4359 data,
4360 "\n");
4361
4362 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4363 if (r < 0)
4364 return r;
4365
4366 (void) mkdir_p_label(p, 0755);
4367 r = write_string_file_atomic_label(q, wrapped);
4368 if (r < 0)
4369 return r;
4370
4371 r = strv_push(&u->dropin_paths, q);
4372 if (r < 0)
4373 return r;
4374 q = NULL;
4375
4376 strv_uniq(u->dropin_paths);
4377
4378 u->dropin_mtime = now(CLOCK_REALTIME);
4379
4380 return 0;
4381 }
4382
4383 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4384 _cleanup_free_ char *p = NULL;
4385 va_list ap;
4386 int r;
4387
4388 assert(u);
4389 assert(name);
4390 assert(format);
4391
4392 if (UNIT_WRITE_FLAGS_NOOP(flags))
4393 return 0;
4394
4395 va_start(ap, format);
4396 r = vasprintf(&p, format, ap);
4397 va_end(ap);
4398
4399 if (r < 0)
4400 return -ENOMEM;
4401
4402 return unit_write_setting(u, flags, name, p);
4403 }
4404
4405 int unit_make_transient(Unit *u) {
4406 _cleanup_free_ char *path = NULL;
4407 FILE *f;
4408
4409 assert(u);
4410
4411 if (!UNIT_VTABLE(u)->can_transient)
4412 return -EOPNOTSUPP;
4413
4414 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4415
4416 path = strjoin(u->manager->lookup_paths.transient, "/", u->id);
4417 if (!path)
4418 return -ENOMEM;
4419
4420 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4421 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4422
4423 RUN_WITH_UMASK(0022) {
4424 f = fopen(path, "we");
4425 if (!f)
4426 return -errno;
4427 }
4428
4429 safe_fclose(u->transient_file);
4430 u->transient_file = f;
4431
4432 free_and_replace(u->fragment_path, path);
4433
4434 u->source_path = mfree(u->source_path);
4435 u->dropin_paths = strv_free(u->dropin_paths);
4436 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4437
4438 u->load_state = UNIT_STUB;
4439 u->load_error = 0;
4440 u->transient = true;
4441
4442 unit_add_to_dbus_queue(u);
4443 unit_add_to_gc_queue(u);
4444
4445 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4446 u->transient_file);
4447
4448 return 0;
4449 }
4450
4451 static int log_kill(pid_t pid, int sig, void *userdata) {
4452 _cleanup_free_ char *comm = NULL;
4453
4454 (void) get_process_comm(pid, &comm);
4455
4456 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4457 only, like for example systemd's own PAM stub process. */
4458 if (comm && comm[0] == '(')
4459 return 0;
4460
4461 log_unit_notice(userdata,
4462 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4463 pid,
4464 strna(comm),
4465 signal_to_string(sig));
4466
4467 return 1;
4468 }
4469
4470 static int operation_to_signal(KillContext *c, KillOperation k) {
4471 assert(c);
4472
4473 switch (k) {
4474
4475 case KILL_TERMINATE:
4476 case KILL_TERMINATE_AND_LOG:
4477 return c->kill_signal;
4478
4479 case KILL_KILL:
4480 return c->final_kill_signal;
4481
4482 case KILL_WATCHDOG:
4483 return c->watchdog_signal;
4484
4485 default:
4486 assert_not_reached("KillOperation unknown");
4487 }
4488 }
4489
4490 int unit_kill_context(
4491 Unit *u,
4492 KillContext *c,
4493 KillOperation k,
4494 pid_t main_pid,
4495 pid_t control_pid,
4496 bool main_pid_alien) {
4497
4498 bool wait_for_exit = false, send_sighup;
4499 cg_kill_log_func_t log_func = NULL;
4500 int sig, r;
4501
4502 assert(u);
4503 assert(c);
4504
4505 /* Kill the processes belonging to this unit, in preparation for shutting the unit down.
4506 * Returns > 0 if we killed something worth waiting for, 0 otherwise. */
4507
4508 if (c->kill_mode == KILL_NONE)
4509 return 0;
4510
4511 sig = operation_to_signal(c, k);
4512
4513 send_sighup =
4514 c->send_sighup &&
4515 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
4516 sig != SIGHUP;
4517
4518 if (k != KILL_TERMINATE || IN_SET(sig, SIGKILL, SIGABRT))
4519 log_func = log_kill;
4520
4521 if (main_pid > 0) {
4522 if (log_func)
4523 log_func(main_pid, sig, u);
4524
4525 r = kill_and_sigcont(main_pid, sig);
4526 if (r < 0 && r != -ESRCH) {
4527 _cleanup_free_ char *comm = NULL;
4528 (void) get_process_comm(main_pid, &comm);
4529
4530 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm));
4531 } else {
4532 if (!main_pid_alien)
4533 wait_for_exit = true;
4534
4535 if (r != -ESRCH && send_sighup)
4536 (void) kill(main_pid, SIGHUP);
4537 }
4538 }
4539
4540 if (control_pid > 0) {
4541 if (log_func)
4542 log_func(control_pid, sig, u);
4543
4544 r = kill_and_sigcont(control_pid, sig);
4545 if (r < 0 && r != -ESRCH) {
4546 _cleanup_free_ char *comm = NULL;
4547 (void) get_process_comm(control_pid, &comm);
4548
4549 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm));
4550 } else {
4551 wait_for_exit = true;
4552
4553 if (r != -ESRCH && send_sighup)
4554 (void) kill(control_pid, SIGHUP);
4555 }
4556 }
4557
4558 if (u->cgroup_path &&
4559 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
4560 _cleanup_set_free_ Set *pid_set = NULL;
4561
4562 /* Exclude the main/control pids from being killed via the cgroup */
4563 pid_set = unit_pid_set(main_pid, control_pid);
4564 if (!pid_set)
4565 return -ENOMEM;
4566
4567 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4568 sig,
4569 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
4570 pid_set,
4571 log_func, u);
4572 if (r < 0) {
4573 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
4574 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path);
4575
4576 } else if (r > 0) {
4577
4578 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
4579 * we are running in a container or if this is a delegation unit, simply because cgroup
4580 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
4581 * of containers it can be confused easily by left-over directories in the cgroup — which
4582 * however should not exist in non-delegated units. On the unified hierarchy that's different,
4583 * there we get proper events. Hence rely on them. */
4584
4585 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
4586 (detect_container() == 0 && !unit_cgroup_delegate(u)))
4587 wait_for_exit = true;
4588
4589 if (send_sighup) {
4590 set_free(pid_set);
4591
4592 pid_set = unit_pid_set(main_pid, control_pid);
4593 if (!pid_set)
4594 return -ENOMEM;
4595
4596 cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4597 SIGHUP,
4598 CGROUP_IGNORE_SELF,
4599 pid_set,
4600 NULL, NULL);
4601 }
4602 }
4603 }
4604
4605 return wait_for_exit;
4606 }
4607
4608 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
4609 _cleanup_free_ char *p = NULL;
4610 UnitDependencyInfo di;
4611 int r;
4612
4613 assert(u);
4614 assert(path);
4615
4616 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these paths in
4617 * the unit (from the path to the UnitDependencyInfo structure indicating how to the dependency came to
4618 * be). However, we build a prefix table for all possible prefixes so that new appearing mount units can easily
4619 * determine which units to make themselves a dependency of. */
4620
4621 if (!path_is_absolute(path))
4622 return -EINVAL;
4623
4624 r = hashmap_ensure_allocated(&u->requires_mounts_for, &path_hash_ops);
4625 if (r < 0)
4626 return r;
4627
4628 p = strdup(path);
4629 if (!p)
4630 return -ENOMEM;
4631
4632 path = path_simplify(p, true);
4633
4634 if (!path_is_normalized(path))
4635 return -EPERM;
4636
4637 if (hashmap_contains(u->requires_mounts_for, path))
4638 return 0;
4639
4640 di = (UnitDependencyInfo) {
4641 .origin_mask = mask
4642 };
4643
4644 r = hashmap_put(u->requires_mounts_for, path, di.data);
4645 if (r < 0)
4646 return r;
4647 p = NULL;
4648
4649 char prefix[strlen(path) + 1];
4650 PATH_FOREACH_PREFIX_MORE(prefix, path) {
4651 Set *x;
4652
4653 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
4654 if (!x) {
4655 _cleanup_free_ char *q = NULL;
4656
4657 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
4658 if (r < 0)
4659 return r;
4660
4661 q = strdup(prefix);
4662 if (!q)
4663 return -ENOMEM;
4664
4665 x = set_new(NULL);
4666 if (!x)
4667 return -ENOMEM;
4668
4669 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
4670 if (r < 0) {
4671 set_free(x);
4672 return r;
4673 }
4674 q = NULL;
4675 }
4676
4677 r = set_put(x, u);
4678 if (r < 0)
4679 return r;
4680 }
4681
4682 return 0;
4683 }
4684
4685 int unit_setup_exec_runtime(Unit *u) {
4686 ExecRuntime **rt;
4687 size_t offset;
4688 Unit *other;
4689 Iterator i;
4690 void *v;
4691 int r;
4692
4693 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4694 assert(offset > 0);
4695
4696 /* Check if there already is an ExecRuntime for this unit? */
4697 rt = (ExecRuntime**) ((uint8_t*) u + offset);
4698 if (*rt)
4699 return 0;
4700
4701 /* Try to get it from somebody else */
4702 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) {
4703 r = exec_runtime_acquire(u->manager, NULL, other->id, false, rt);
4704 if (r == 1)
4705 return 1;
4706 }
4707
4708 return exec_runtime_acquire(u->manager, unit_get_exec_context(u), u->id, true, rt);
4709 }
4710
4711 int unit_setup_dynamic_creds(Unit *u) {
4712 ExecContext *ec;
4713 DynamicCreds *dcreds;
4714 size_t offset;
4715
4716 assert(u);
4717
4718 offset = UNIT_VTABLE(u)->dynamic_creds_offset;
4719 assert(offset > 0);
4720 dcreds = (DynamicCreds*) ((uint8_t*) u + offset);
4721
4722 ec = unit_get_exec_context(u);
4723 assert(ec);
4724
4725 if (!ec->dynamic_user)
4726 return 0;
4727
4728 return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group);
4729 }
4730
4731 bool unit_type_supported(UnitType t) {
4732 if (_unlikely_(t < 0))
4733 return false;
4734 if (_unlikely_(t >= _UNIT_TYPE_MAX))
4735 return false;
4736
4737 if (!unit_vtable[t]->supported)
4738 return true;
4739
4740 return unit_vtable[t]->supported();
4741 }
4742
4743 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
4744 int r;
4745
4746 assert(u);
4747 assert(where);
4748
4749 r = dir_is_empty(where);
4750 if (r > 0 || r == -ENOTDIR)
4751 return;
4752 if (r < 0) {
4753 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
4754 return;
4755 }
4756
4757 log_struct(LOG_NOTICE,
4758 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4759 LOG_UNIT_ID(u),
4760 LOG_UNIT_INVOCATION_ID(u),
4761 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
4762 "WHERE=%s", where);
4763 }
4764
4765 int unit_fail_if_noncanonical(Unit *u, const char* where) {
4766 _cleanup_free_ char *canonical_where = NULL;
4767 int r;
4768
4769 assert(u);
4770 assert(where);
4771
4772 r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where);
4773 if (r < 0) {
4774 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
4775 return 0;
4776 }
4777
4778 /* We will happily ignore a trailing slash (or any redundant slashes) */
4779 if (path_equal(where, canonical_where))
4780 return 0;
4781
4782 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
4783 log_struct(LOG_ERR,
4784 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4785 LOG_UNIT_ID(u),
4786 LOG_UNIT_INVOCATION_ID(u),
4787 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
4788 "WHERE=%s", where);
4789
4790 return -ELOOP;
4791 }
4792
4793 bool unit_is_pristine(Unit *u) {
4794 assert(u);
4795
4796 /* Check if the unit already exists or is already around,
4797 * in a number of different ways. Note that to cater for unit
4798 * types such as slice, we are generally fine with units that
4799 * are marked UNIT_LOADED even though nothing was actually
4800 * loaded, as those unit types don't require a file on disk. */
4801
4802 return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) ||
4803 u->fragment_path ||
4804 u->source_path ||
4805 !strv_isempty(u->dropin_paths) ||
4806 u->job ||
4807 u->merged_into);
4808 }
4809
4810 pid_t unit_control_pid(Unit *u) {
4811 assert(u);
4812
4813 if (UNIT_VTABLE(u)->control_pid)
4814 return UNIT_VTABLE(u)->control_pid(u);
4815
4816 return 0;
4817 }
4818
4819 pid_t unit_main_pid(Unit *u) {
4820 assert(u);
4821
4822 if (UNIT_VTABLE(u)->main_pid)
4823 return UNIT_VTABLE(u)->main_pid(u);
4824
4825 return 0;
4826 }
4827
4828 static void unit_unref_uid_internal(
4829 Unit *u,
4830 uid_t *ref_uid,
4831 bool destroy_now,
4832 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
4833
4834 assert(u);
4835 assert(ref_uid);
4836 assert(_manager_unref_uid);
4837
4838 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
4839 * gid_t are actually the same time, with the same validity rules.
4840 *
4841 * Drops a reference to UID/GID from a unit. */
4842
4843 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4844 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4845
4846 if (!uid_is_valid(*ref_uid))
4847 return;
4848
4849 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
4850 *ref_uid = UID_INVALID;
4851 }
4852
4853 void unit_unref_uid(Unit *u, bool destroy_now) {
4854 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
4855 }
4856
4857 void unit_unref_gid(Unit *u, bool destroy_now) {
4858 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
4859 }
4860
4861 static int unit_ref_uid_internal(
4862 Unit *u,
4863 uid_t *ref_uid,
4864 uid_t uid,
4865 bool clean_ipc,
4866 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
4867
4868 int r;
4869
4870 assert(u);
4871 assert(ref_uid);
4872 assert(uid_is_valid(uid));
4873 assert(_manager_ref_uid);
4874
4875 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
4876 * are actually the same type, and have the same validity rules.
4877 *
4878 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
4879 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
4880 * drops to zero. */
4881
4882 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4883 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4884
4885 if (*ref_uid == uid)
4886 return 0;
4887
4888 if (uid_is_valid(*ref_uid)) /* Already set? */
4889 return -EBUSY;
4890
4891 r = _manager_ref_uid(u->manager, uid, clean_ipc);
4892 if (r < 0)
4893 return r;
4894
4895 *ref_uid = uid;
4896 return 1;
4897 }
4898
4899 int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
4900 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
4901 }
4902
4903 int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
4904 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
4905 }
4906
4907 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
4908 int r = 0, q = 0;
4909
4910 assert(u);
4911
4912 /* Reference both a UID and a GID in one go. Either references both, or neither. */
4913
4914 if (uid_is_valid(uid)) {
4915 r = unit_ref_uid(u, uid, clean_ipc);
4916 if (r < 0)
4917 return r;
4918 }
4919
4920 if (gid_is_valid(gid)) {
4921 q = unit_ref_gid(u, gid, clean_ipc);
4922 if (q < 0) {
4923 if (r > 0)
4924 unit_unref_uid(u, false);
4925
4926 return q;
4927 }
4928 }
4929
4930 return r > 0 || q > 0;
4931 }
4932
4933 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
4934 ExecContext *c;
4935 int r;
4936
4937 assert(u);
4938
4939 c = unit_get_exec_context(u);
4940
4941 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
4942 if (r < 0)
4943 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
4944
4945 return r;
4946 }
4947
4948 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
4949 assert(u);
4950
4951 unit_unref_uid(u, destroy_now);
4952 unit_unref_gid(u, destroy_now);
4953 }
4954
4955 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
4956 int r;
4957
4958 assert(u);
4959
4960 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
4961 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
4962 * objects when no service references the UID/GID anymore. */
4963
4964 r = unit_ref_uid_gid(u, uid, gid);
4965 if (r > 0)
4966 unit_add_to_dbus_queue(u);
4967 }
4968
4969 int unit_set_invocation_id(Unit *u, sd_id128_t id) {
4970 int r;
4971
4972 assert(u);
4973
4974 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
4975
4976 if (sd_id128_equal(u->invocation_id, id))
4977 return 0;
4978
4979 if (!sd_id128_is_null(u->invocation_id))
4980 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
4981
4982 if (sd_id128_is_null(id)) {
4983 r = 0;
4984 goto reset;
4985 }
4986
4987 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
4988 if (r < 0)
4989 goto reset;
4990
4991 u->invocation_id = id;
4992 sd_id128_to_string(id, u->invocation_id_string);
4993
4994 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
4995 if (r < 0)
4996 goto reset;
4997
4998 return 0;
4999
5000 reset:
5001 u->invocation_id = SD_ID128_NULL;
5002 u->invocation_id_string[0] = 0;
5003 return r;
5004 }
5005
5006 int unit_acquire_invocation_id(Unit *u) {
5007 sd_id128_t id;
5008 int r;
5009
5010 assert(u);
5011
5012 r = sd_id128_randomize(&id);
5013 if (r < 0)
5014 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5015
5016 r = unit_set_invocation_id(u, id);
5017 if (r < 0)
5018 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5019
5020 unit_add_to_dbus_queue(u);
5021 return 0;
5022 }
5023
5024 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5025 int r;
5026
5027 assert(u);
5028 assert(p);
5029
5030 /* Copy parameters from manager */
5031 r = manager_get_effective_environment(u->manager, &p->environment);
5032 if (r < 0)
5033 return r;
5034
5035 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5036 p->cgroup_supported = u->manager->cgroup_supported;
5037 p->prefix = u->manager->prefix;
5038 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5039
5040 /* Copy paramaters from unit */
5041 p->cgroup_path = u->cgroup_path;
5042 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5043
5044 return 0;
5045 }
5046
5047 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
5048 int r;
5049
5050 assert(u);
5051 assert(ret);
5052
5053 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5054 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5055
5056 (void) unit_realize_cgroup(u);
5057
5058 r = safe_fork(name, FORK_REOPEN_LOG, ret);
5059 if (r != 0)
5060 return r;
5061
5062 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE, -1);
5063 (void) ignore_signals(SIGPIPE, -1);
5064
5065 (void) prctl(PR_SET_PDEATHSIG, SIGTERM);
5066
5067 if (u->cgroup_path) {
5068 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5069 if (r < 0) {
5070 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path);
5071 _exit(EXIT_CGROUP);
5072 }
5073 }
5074
5075 return 0;
5076 }
5077
5078 static void unit_update_dependency_mask(Unit *u, UnitDependency d, Unit *other, UnitDependencyInfo di) {
5079 assert(u);
5080 assert(d >= 0);
5081 assert(d < _UNIT_DEPENDENCY_MAX);
5082 assert(other);
5083
5084 if (di.origin_mask == 0 && di.destination_mask == 0) {
5085 /* No bit set anymore, let's drop the whole entry */
5086 assert_se(hashmap_remove(u->dependencies[d], other));
5087 log_unit_debug(u, "%s lost dependency %s=%s", u->id, unit_dependency_to_string(d), other->id);
5088 } else
5089 /* Mask was reduced, let's update the entry */
5090 assert_se(hashmap_update(u->dependencies[d], other, di.data) == 0);
5091 }
5092
5093 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5094 UnitDependency d;
5095
5096 assert(u);
5097
5098 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5099
5100 if (mask == 0)
5101 return;
5102
5103 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
5104 bool done;
5105
5106 do {
5107 UnitDependencyInfo di;
5108 Unit *other;
5109 Iterator i;
5110
5111 done = true;
5112
5113 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
5114 UnitDependency q;
5115
5116 if ((di.origin_mask & ~mask) == di.origin_mask)
5117 continue;
5118 di.origin_mask &= ~mask;
5119 unit_update_dependency_mask(u, d, other, di);
5120
5121 /* We updated the dependency from our unit to the other unit now. But most dependencies
5122 * imply a reverse dependency. Hence, let's delete that one too. For that we go through
5123 * all dependency types on the other unit and delete all those which point to us and
5124 * have the right mask set. */
5125
5126 for (q = 0; q < _UNIT_DEPENDENCY_MAX; q++) {
5127 UnitDependencyInfo dj;
5128
5129 dj.data = hashmap_get(other->dependencies[q], u);
5130 if ((dj.destination_mask & ~mask) == dj.destination_mask)
5131 continue;
5132 dj.destination_mask &= ~mask;
5133
5134 unit_update_dependency_mask(other, q, u, dj);
5135 }
5136
5137 unit_add_to_gc_queue(other);
5138
5139 done = false;
5140 break;
5141 }
5142
5143 } while (!done);
5144 }
5145 }
5146
5147 static int unit_export_invocation_id(Unit *u) {
5148 const char *p;
5149 int r;
5150
5151 assert(u);
5152
5153 if (u->exported_invocation_id)
5154 return 0;
5155
5156 if (sd_id128_is_null(u->invocation_id))
5157 return 0;
5158
5159 p = strjoina("/run/systemd/units/invocation:", u->id);
5160 r = symlink_atomic(u->invocation_id_string, p);
5161 if (r < 0)
5162 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5163
5164 u->exported_invocation_id = true;
5165 return 0;
5166 }
5167
5168 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5169 const char *p;
5170 char buf[2];
5171 int r;
5172
5173 assert(u);
5174 assert(c);
5175
5176 if (u->exported_log_level_max)
5177 return 0;
5178
5179 if (c->log_level_max < 0)
5180 return 0;
5181
5182 assert(c->log_level_max <= 7);
5183
5184 buf[0] = '0' + c->log_level_max;
5185 buf[1] = 0;
5186
5187 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5188 r = symlink_atomic(buf, p);
5189 if (r < 0)
5190 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5191
5192 u->exported_log_level_max = true;
5193 return 0;
5194 }
5195
5196 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5197 _cleanup_close_ int fd = -1;
5198 struct iovec *iovec;
5199 const char *p;
5200 char *pattern;
5201 le64_t *sizes;
5202 ssize_t n;
5203 size_t i;
5204 int r;
5205
5206 if (u->exported_log_extra_fields)
5207 return 0;
5208
5209 if (c->n_log_extra_fields <= 0)
5210 return 0;
5211
5212 sizes = newa(le64_t, c->n_log_extra_fields);
5213 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5214
5215 for (i = 0; i < c->n_log_extra_fields; i++) {
5216 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5217
5218 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5219 iovec[i*2+1] = c->log_extra_fields[i];
5220 }
5221
5222 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5223 pattern = strjoina(p, ".XXXXXX");
5224
5225 fd = mkostemp_safe(pattern);
5226 if (fd < 0)
5227 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5228
5229 n = writev(fd, iovec, c->n_log_extra_fields*2);
5230 if (n < 0) {
5231 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5232 goto fail;
5233 }
5234
5235 (void) fchmod(fd, 0644);
5236
5237 if (rename(pattern, p) < 0) {
5238 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5239 goto fail;
5240 }
5241
5242 u->exported_log_extra_fields = true;
5243 return 0;
5244
5245 fail:
5246 (void) unlink(pattern);
5247 return r;
5248 }
5249
5250 static int unit_export_log_rate_limit_interval(Unit *u, const ExecContext *c) {
5251 _cleanup_free_ char *buf = NULL;
5252 const char *p;
5253 int r;
5254
5255 assert(u);
5256 assert(c);
5257
5258 if (u->exported_log_rate_limit_interval)
5259 return 0;
5260
5261 if (c->log_rate_limit_interval_usec == 0)
5262 return 0;
5263
5264 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5265
5266 if (asprintf(&buf, "%" PRIu64, c->log_rate_limit_interval_usec) < 0)
5267 return log_oom();
5268
5269 r = symlink_atomic(buf, p);
5270 if (r < 0)
5271 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5272
5273 u->exported_log_rate_limit_interval = true;
5274 return 0;
5275 }
5276
5277 static int unit_export_log_rate_limit_burst(Unit *u, const ExecContext *c) {
5278 _cleanup_free_ char *buf = NULL;
5279 const char *p;
5280 int r;
5281
5282 assert(u);
5283 assert(c);
5284
5285 if (u->exported_log_rate_limit_burst)
5286 return 0;
5287
5288 if (c->log_rate_limit_burst == 0)
5289 return 0;
5290
5291 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5292
5293 if (asprintf(&buf, "%u", c->log_rate_limit_burst) < 0)
5294 return log_oom();
5295
5296 r = symlink_atomic(buf, p);
5297 if (r < 0)
5298 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5299
5300 u->exported_log_rate_limit_burst = true;
5301 return 0;
5302 }
5303
5304 void unit_export_state_files(Unit *u) {
5305 const ExecContext *c;
5306
5307 assert(u);
5308
5309 if (!u->id)
5310 return;
5311
5312 if (!MANAGER_IS_SYSTEM(u->manager))
5313 return;
5314
5315 if (MANAGER_IS_TEST_RUN(u->manager))
5316 return;
5317
5318 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5319 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5320 * the IPC system itself and PID 1 also log to the journal.
5321 *
5322 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5323 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5324 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5325 * namespace at least.
5326 *
5327 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5328 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5329 * them with one. */
5330
5331 (void) unit_export_invocation_id(u);
5332
5333 c = unit_get_exec_context(u);
5334 if (c) {
5335 (void) unit_export_log_level_max(u, c);
5336 (void) unit_export_log_extra_fields(u, c);
5337 (void) unit_export_log_rate_limit_interval(u, c);
5338 (void) unit_export_log_rate_limit_burst(u, c);
5339 }
5340 }
5341
5342 void unit_unlink_state_files(Unit *u) {
5343 const char *p;
5344
5345 assert(u);
5346
5347 if (!u->id)
5348 return;
5349
5350 if (!MANAGER_IS_SYSTEM(u->manager))
5351 return;
5352
5353 /* Undoes the effect of unit_export_state() */
5354
5355 if (u->exported_invocation_id) {
5356 p = strjoina("/run/systemd/units/invocation:", u->id);
5357 (void) unlink(p);
5358
5359 u->exported_invocation_id = false;
5360 }
5361
5362 if (u->exported_log_level_max) {
5363 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5364 (void) unlink(p);
5365
5366 u->exported_log_level_max = false;
5367 }
5368
5369 if (u->exported_log_extra_fields) {
5370 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5371 (void) unlink(p);
5372
5373 u->exported_log_extra_fields = false;
5374 }
5375
5376 if (u->exported_log_rate_limit_interval) {
5377 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5378 (void) unlink(p);
5379
5380 u->exported_log_rate_limit_interval = false;
5381 }
5382
5383 if (u->exported_log_rate_limit_burst) {
5384 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5385 (void) unlink(p);
5386
5387 u->exported_log_rate_limit_burst = false;
5388 }
5389 }
5390
5391 int unit_prepare_exec(Unit *u) {
5392 int r;
5393
5394 assert(u);
5395
5396 /* Prepares everything so that we can fork of a process for this unit */
5397
5398 (void) unit_realize_cgroup(u);
5399
5400 if (u->reset_accounting) {
5401 (void) unit_reset_cpu_accounting(u);
5402 (void) unit_reset_ip_accounting(u);
5403 u->reset_accounting = false;
5404 }
5405
5406 unit_export_state_files(u);
5407
5408 r = unit_setup_exec_runtime(u);
5409 if (r < 0)
5410 return r;
5411
5412 r = unit_setup_dynamic_creds(u);
5413 if (r < 0)
5414 return r;
5415
5416 return 0;
5417 }
5418
5419 static int log_leftover(pid_t pid, int sig, void *userdata) {
5420 _cleanup_free_ char *comm = NULL;
5421
5422 (void) get_process_comm(pid, &comm);
5423
5424 if (comm && comm[0] == '(') /* Most likely our own helper process (PAM?), ignore */
5425 return 0;
5426
5427 log_unit_warning(userdata,
5428 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5429 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5430 pid, strna(comm));
5431
5432 return 1;
5433 }
5434
5435 int unit_warn_leftover_processes(Unit *u) {
5436 assert(u);
5437
5438 (void) unit_pick_cgroup_path(u);
5439
5440 if (!u->cgroup_path)
5441 return 0;
5442
5443 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_leftover, u);
5444 }
5445
5446 bool unit_needs_console(Unit *u) {
5447 ExecContext *ec;
5448 UnitActiveState state;
5449
5450 assert(u);
5451
5452 state = unit_active_state(u);
5453
5454 if (UNIT_IS_INACTIVE_OR_FAILED(state))
5455 return false;
5456
5457 if (UNIT_VTABLE(u)->needs_console)
5458 return UNIT_VTABLE(u)->needs_console(u);
5459
5460 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
5461 ec = unit_get_exec_context(u);
5462 if (!ec)
5463 return false;
5464
5465 return exec_context_may_touch_console(ec);
5466 }
5467
5468 const char *unit_label_path(Unit *u) {
5469 const char *p;
5470
5471 /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off
5472 * when validating access checks. */
5473
5474 p = u->source_path ?: u->fragment_path;
5475 if (!p)
5476 return NULL;
5477
5478 /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */
5479 if (path_equal(p, "/dev/null"))
5480 return NULL;
5481
5482 return p;
5483 }
5484
5485 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
5486 int r;
5487
5488 assert(u);
5489
5490 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
5491 * and not a kernel thread either */
5492
5493 /* First, a simple range check */
5494 if (!pid_is_valid(pid))
5495 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
5496
5497 /* Some extra safety check */
5498 if (pid == 1 || pid == getpid_cached())
5499 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
5500
5501 /* Don't even begin to bother with kernel threads */
5502 r = is_kernel_thread(pid);
5503 if (r == -ESRCH)
5504 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
5505 if (r < 0)
5506 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
5507 if (r > 0)
5508 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
5509
5510 return 0;
5511 }
5512
5513 void unit_log_success(Unit *u) {
5514 assert(u);
5515
5516 log_struct(LOG_INFO,
5517 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
5518 LOG_UNIT_ID(u),
5519 LOG_UNIT_INVOCATION_ID(u),
5520 LOG_UNIT_MESSAGE(u, "Succeeded."));
5521 }
5522
5523 void unit_log_failure(Unit *u, const char *result) {
5524 assert(u);
5525 assert(result);
5526
5527 log_struct(LOG_WARNING,
5528 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
5529 LOG_UNIT_ID(u),
5530 LOG_UNIT_INVOCATION_ID(u),
5531 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
5532 "UNIT_RESULT=%s", result);
5533 }
5534
5535 void unit_log_process_exit(
5536 Unit *u,
5537 int level,
5538 const char *kind,
5539 const char *command,
5540 int code,
5541 int status) {
5542
5543 assert(u);
5544 assert(kind);
5545
5546 if (code != CLD_EXITED)
5547 level = LOG_WARNING;
5548
5549 log_struct(level,
5550 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
5551 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s",
5552 kind,
5553 sigchld_code_to_string(code), status,
5554 strna(code == CLD_EXITED
5555 ? exit_status_to_string(status, EXIT_STATUS_FULL)
5556 : signal_to_string(status))),
5557 "EXIT_CODE=%s", sigchld_code_to_string(code),
5558 "EXIT_STATUS=%i", status,
5559 "COMMAND=%s", strna(command),
5560 LOG_UNIT_ID(u),
5561 LOG_UNIT_INVOCATION_ID(u));
5562 }
5563
5564 int unit_exit_status(Unit *u) {
5565 assert(u);
5566
5567 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
5568 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
5569 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
5570 * service process has exited abnormally (signal/coredump). */
5571
5572 if (!UNIT_VTABLE(u)->exit_status)
5573 return -EOPNOTSUPP;
5574
5575 return UNIT_VTABLE(u)->exit_status(u);
5576 }
5577
5578 int unit_failure_action_exit_status(Unit *u) {
5579 int r;
5580
5581 assert(u);
5582
5583 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
5584
5585 if (u->failure_action_exit_status >= 0)
5586 return u->failure_action_exit_status;
5587
5588 r = unit_exit_status(u);
5589 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5590 return 255;
5591
5592 return r;
5593 }
5594
5595 int unit_success_action_exit_status(Unit *u) {
5596 int r;
5597
5598 assert(u);
5599
5600 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
5601
5602 if (u->success_action_exit_status >= 0)
5603 return u->success_action_exit_status;
5604
5605 r = unit_exit_status(u);
5606 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5607 return 255;
5608
5609 return r;
5610 }
5611
5612 int unit_test_trigger_loaded(Unit *u) {
5613 Unit *trigger;
5614
5615 /* Tests whether the unit to trigger is loaded */
5616
5617 trigger = UNIT_TRIGGER(u);
5618 if (!trigger)
5619 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT), "Refusing to start, unit to trigger not loaded.");
5620 if (trigger->load_state != UNIT_LOADED)
5621 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT), "Refusing to start, unit %s to trigger not loaded.", u->id);
5622
5623 return 0;
5624 }
5625
5626 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
5627 [COLLECT_INACTIVE] = "inactive",
5628 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
5629 };
5630
5631 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);