]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/journal/fsprg.c
Move initialize_libgcrypt to separate file
[thirdparty/systemd.git] / src / journal / fsprg.c
1 /*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
2
3 /*
4 * fsprg v0.1 - (seekable) forward-secure pseudorandom generator
5 * Copyright (C) 2012 B. Poettering
6 * Contact: fsprg@point-at-infinity.org
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301 USA
22 */
23
24 /*
25 * See "Practical Secure Logging: Seekable Sequential Key Generators"
26 * by G. A. Marson, B. Poettering for details:
27 *
28 * http://eprint.iacr.org/2013/397
29 */
30
31 #include <gcrypt.h>
32 #include <string.h>
33
34 #include "fsprg.h"
35 #include "gcrypt-util.h"
36
37 #define ISVALID_SECPAR(secpar) (((secpar) % 16 == 0) && ((secpar) >= 16) && ((secpar) <= 16384))
38 #define VALIDATE_SECPAR(secpar) assert(ISVALID_SECPAR(secpar));
39
40 #define RND_HASH GCRY_MD_SHA256
41 #define RND_GEN_P 0x01
42 #define RND_GEN_Q 0x02
43 #define RND_GEN_X 0x03
44
45 /******************************************************************************/
46
47 static void mpi_export(void *buf, size_t buflen, const gcry_mpi_t x) {
48 unsigned len;
49 size_t nwritten;
50
51 assert(gcry_mpi_cmp_ui(x, 0) >= 0);
52 len = (gcry_mpi_get_nbits(x) + 7) / 8;
53 assert(len <= buflen);
54 memzero(buf, buflen);
55 gcry_mpi_print(GCRYMPI_FMT_USG, buf + (buflen - len), len, &nwritten, x);
56 assert(nwritten == len);
57 }
58
59 static gcry_mpi_t mpi_import(const void *buf, size_t buflen) {
60 gcry_mpi_t h;
61 unsigned len;
62
63 gcry_mpi_scan(&h, GCRYMPI_FMT_USG, buf, buflen, NULL);
64 len = (gcry_mpi_get_nbits(h) + 7) / 8;
65 assert(len <= buflen);
66 assert(gcry_mpi_cmp_ui(h, 0) >= 0);
67
68 return h;
69 }
70
71 static void uint64_export(void *buf, size_t buflen, uint64_t x) {
72 assert(buflen == 8);
73 ((uint8_t*) buf)[0] = (x >> 56) & 0xff;
74 ((uint8_t*) buf)[1] = (x >> 48) & 0xff;
75 ((uint8_t*) buf)[2] = (x >> 40) & 0xff;
76 ((uint8_t*) buf)[3] = (x >> 32) & 0xff;
77 ((uint8_t*) buf)[4] = (x >> 24) & 0xff;
78 ((uint8_t*) buf)[5] = (x >> 16) & 0xff;
79 ((uint8_t*) buf)[6] = (x >> 8) & 0xff;
80 ((uint8_t*) buf)[7] = (x >> 0) & 0xff;
81 }
82
83 _pure_ static uint64_t uint64_import(const void *buf, size_t buflen) {
84 assert(buflen == 8);
85 return
86 (uint64_t)(((uint8_t*) buf)[0]) << 56 |
87 (uint64_t)(((uint8_t*) buf)[1]) << 48 |
88 (uint64_t)(((uint8_t*) buf)[2]) << 40 |
89 (uint64_t)(((uint8_t*) buf)[3]) << 32 |
90 (uint64_t)(((uint8_t*) buf)[4]) << 24 |
91 (uint64_t)(((uint8_t*) buf)[5]) << 16 |
92 (uint64_t)(((uint8_t*) buf)[6]) << 8 |
93 (uint64_t)(((uint8_t*) buf)[7]) << 0;
94 }
95
96 /* deterministically generate from seed/idx a string of buflen pseudorandom bytes */
97 static void det_randomize(void *buf, size_t buflen, const void *seed, size_t seedlen, uint32_t idx) {
98 gcry_md_hd_t hd, hd2;
99 size_t olen, cpylen;
100 uint32_t ctr;
101
102 olen = gcry_md_get_algo_dlen(RND_HASH);
103 gcry_md_open(&hd, RND_HASH, 0);
104 gcry_md_write(hd, seed, seedlen);
105 gcry_md_putc(hd, (idx >> 24) & 0xff);
106 gcry_md_putc(hd, (idx >> 16) & 0xff);
107 gcry_md_putc(hd, (idx >> 8) & 0xff);
108 gcry_md_putc(hd, (idx >> 0) & 0xff);
109
110 for (ctr = 0; buflen; ctr++) {
111 gcry_md_copy(&hd2, hd);
112 gcry_md_putc(hd2, (ctr >> 24) & 0xff);
113 gcry_md_putc(hd2, (ctr >> 16) & 0xff);
114 gcry_md_putc(hd2, (ctr >> 8) & 0xff);
115 gcry_md_putc(hd2, (ctr >> 0) & 0xff);
116 gcry_md_final(hd2);
117 cpylen = (buflen < olen) ? buflen : olen;
118 memcpy(buf, gcry_md_read(hd2, RND_HASH), cpylen);
119 gcry_md_close(hd2);
120 buf += cpylen;
121 buflen -= cpylen;
122 }
123 gcry_md_close(hd);
124 }
125
126 /* deterministically generate from seed/idx a prime of length `bits' that is 3 (mod 4) */
127 static gcry_mpi_t genprime3mod4(int bits, const void *seed, size_t seedlen, uint32_t idx) {
128 size_t buflen = bits / 8;
129 uint8_t buf[buflen];
130 gcry_mpi_t p;
131
132 assert(bits % 8 == 0);
133 assert(buflen > 0);
134
135 det_randomize(buf, buflen, seed, seedlen, idx);
136 buf[0] |= 0xc0; /* set upper two bits, so that n=pq has maximum size */
137 buf[buflen - 1] |= 0x03; /* set lower two bits, to have result 3 (mod 4) */
138
139 p = mpi_import(buf, buflen);
140 while (gcry_prime_check(p, 0))
141 gcry_mpi_add_ui(p, p, 4);
142
143 return p;
144 }
145
146 /* deterministically generate from seed/idx a quadratic residue (mod n) */
147 static gcry_mpi_t gensquare(const gcry_mpi_t n, const void *seed, size_t seedlen, uint32_t idx, unsigned secpar) {
148 size_t buflen = secpar / 8;
149 uint8_t buf[buflen];
150 gcry_mpi_t x;
151
152 det_randomize(buf, buflen, seed, seedlen, idx);
153 buf[0] &= 0x7f; /* clear upper bit, so that we have x < n */
154 x = mpi_import(buf, buflen);
155 assert(gcry_mpi_cmp(x, n) < 0);
156 gcry_mpi_mulm(x, x, x, n);
157 return x;
158 }
159
160 /* compute 2^m (mod phi(p)), for a prime p */
161 static gcry_mpi_t twopowmodphi(uint64_t m, const gcry_mpi_t p) {
162 gcry_mpi_t phi, r;
163 int n;
164
165 phi = gcry_mpi_new(0);
166 gcry_mpi_sub_ui(phi, p, 1);
167
168 /* count number of used bits in m */
169 for (n = 0; (1ULL << n) <= m; n++)
170 ;
171
172 r = gcry_mpi_new(0);
173 gcry_mpi_set_ui(r, 1);
174 while (n) { /* square and multiply algorithm for fast exponentiation */
175 n--;
176 gcry_mpi_mulm(r, r, r, phi);
177 if (m & ((uint64_t)1 << n)) {
178 gcry_mpi_add(r, r, r);
179 if (gcry_mpi_cmp(r, phi) >= 0)
180 gcry_mpi_sub(r, r, phi);
181 }
182 }
183
184 gcry_mpi_release(phi);
185 return r;
186 }
187
188 /* Decompose $x \in Z_n$ into $(xp,xq) \in Z_p \times Z_q$ using Chinese Remainder Theorem */
189 static void CRT_decompose(gcry_mpi_t *xp, gcry_mpi_t *xq, const gcry_mpi_t x, const gcry_mpi_t p, const gcry_mpi_t q) {
190 *xp = gcry_mpi_new(0);
191 *xq = gcry_mpi_new(0);
192 gcry_mpi_mod(*xp, x, p);
193 gcry_mpi_mod(*xq, x, q);
194 }
195
196 /* Compose $(xp,xq) \in Z_p \times Z_q$ into $x \in Z_n$ using Chinese Remainder Theorem */
197 static void CRT_compose(gcry_mpi_t *x, const gcry_mpi_t xp, const gcry_mpi_t xq, const gcry_mpi_t p, const gcry_mpi_t q) {
198 gcry_mpi_t a, u;
199
200 a = gcry_mpi_new(0);
201 u = gcry_mpi_new(0);
202 *x = gcry_mpi_new(0);
203 gcry_mpi_subm(a, xq, xp, q);
204 gcry_mpi_invm(u, p, q);
205 gcry_mpi_mulm(a, a, u, q); /* a = (xq - xp) / p (mod q) */
206 gcry_mpi_mul(*x, p, a);
207 gcry_mpi_add(*x, *x, xp); /* x = p * ((xq - xp) / p mod q) + xp */
208 gcry_mpi_release(a);
209 gcry_mpi_release(u);
210 }
211
212 /******************************************************************************/
213
214 size_t FSPRG_mskinbytes(unsigned _secpar) {
215 VALIDATE_SECPAR(_secpar);
216 return 2 + 2 * (_secpar / 2) / 8; /* to store header,p,q */
217 }
218
219 size_t FSPRG_mpkinbytes(unsigned _secpar) {
220 VALIDATE_SECPAR(_secpar);
221 return 2 + _secpar / 8; /* to store header,n */
222 }
223
224 size_t FSPRG_stateinbytes(unsigned _secpar) {
225 VALIDATE_SECPAR(_secpar);
226 return 2 + 2 * _secpar / 8 + 8; /* to store header,n,x,epoch */
227 }
228
229 static void store_secpar(void *buf, uint16_t secpar) {
230 secpar = secpar / 16 - 1;
231 ((uint8_t*) buf)[0] = (secpar >> 8) & 0xff;
232 ((uint8_t*) buf)[1] = (secpar >> 0) & 0xff;
233 }
234
235 static uint16_t read_secpar(const void *buf) {
236 uint16_t secpar;
237 secpar =
238 (uint16_t)(((uint8_t*) buf)[0]) << 8 |
239 (uint16_t)(((uint8_t*) buf)[1]) << 0;
240 return 16 * (secpar + 1);
241 }
242
243 void FSPRG_GenMK(void *msk, void *mpk, const void *seed, size_t seedlen, unsigned _secpar) {
244 uint8_t iseed[FSPRG_RECOMMENDED_SEEDLEN];
245 gcry_mpi_t n, p, q;
246 uint16_t secpar;
247
248 VALIDATE_SECPAR(_secpar);
249 secpar = _secpar;
250
251 initialize_libgcrypt(false);
252
253 if (!seed) {
254 gcry_randomize(iseed, FSPRG_RECOMMENDED_SEEDLEN, GCRY_STRONG_RANDOM);
255 seed = iseed;
256 seedlen = FSPRG_RECOMMENDED_SEEDLEN;
257 }
258
259 p = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_P);
260 q = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_Q);
261
262 if (msk) {
263 store_secpar(msk + 0, secpar);
264 mpi_export(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8, p);
265 mpi_export(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8, q);
266 }
267
268 if (mpk) {
269 n = gcry_mpi_new(0);
270 gcry_mpi_mul(n, p, q);
271 assert(gcry_mpi_get_nbits(n) == secpar);
272
273 store_secpar(mpk + 0, secpar);
274 mpi_export(mpk + 2, secpar / 8, n);
275
276 gcry_mpi_release(n);
277 }
278
279 gcry_mpi_release(p);
280 gcry_mpi_release(q);
281 }
282
283 void FSPRG_GenState0(void *state, const void *mpk, const void *seed, size_t seedlen) {
284 gcry_mpi_t n, x;
285 uint16_t secpar;
286
287 initialize_libgcrypt(false);
288
289 secpar = read_secpar(mpk + 0);
290 n = mpi_import(mpk + 2, secpar / 8);
291 x = gensquare(n, seed, seedlen, RND_GEN_X, secpar);
292
293 memcpy(state, mpk, 2 + secpar / 8);
294 mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x);
295 memzero(state + 2 + 2 * secpar / 8, 8);
296
297 gcry_mpi_release(n);
298 gcry_mpi_release(x);
299 }
300
301 void FSPRG_Evolve(void *state) {
302 gcry_mpi_t n, x;
303 uint16_t secpar;
304 uint64_t epoch;
305
306 initialize_libgcrypt(false);
307
308 secpar = read_secpar(state + 0);
309 n = mpi_import(state + 2 + 0 * secpar / 8, secpar / 8);
310 x = mpi_import(state + 2 + 1 * secpar / 8, secpar / 8);
311 epoch = uint64_import(state + 2 + 2 * secpar / 8, 8);
312
313 gcry_mpi_mulm(x, x, x, n);
314 epoch++;
315
316 mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x);
317 uint64_export(state + 2 + 2 * secpar / 8, 8, epoch);
318
319 gcry_mpi_release(n);
320 gcry_mpi_release(x);
321 }
322
323 uint64_t FSPRG_GetEpoch(const void *state) {
324 uint16_t secpar;
325 secpar = read_secpar(state + 0);
326 return uint64_import(state + 2 + 2 * secpar / 8, 8);
327 }
328
329 void FSPRG_Seek(void *state, uint64_t epoch, const void *msk, const void *seed, size_t seedlen) {
330 gcry_mpi_t p, q, n, x, xp, xq, kp, kq, xm;
331 uint16_t secpar;
332
333 initialize_libgcrypt(false);
334
335 secpar = read_secpar(msk + 0);
336 p = mpi_import(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8);
337 q = mpi_import(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8);
338
339 n = gcry_mpi_new(0);
340 gcry_mpi_mul(n, p, q);
341
342 x = gensquare(n, seed, seedlen, RND_GEN_X, secpar);
343 CRT_decompose(&xp, &xq, x, p, q); /* split (mod n) into (mod p) and (mod q) using CRT */
344
345 kp = twopowmodphi(epoch, p); /* compute 2^epoch (mod phi(p)) */
346 kq = twopowmodphi(epoch, q); /* compute 2^epoch (mod phi(q)) */
347
348 gcry_mpi_powm(xp, xp, kp, p); /* compute x^(2^epoch) (mod p) */
349 gcry_mpi_powm(xq, xq, kq, q); /* compute x^(2^epoch) (mod q) */
350
351 CRT_compose(&xm, xp, xq, p, q); /* combine (mod p) and (mod q) to (mod n) using CRT */
352
353 store_secpar(state + 0, secpar);
354 mpi_export(state + 2 + 0 * secpar / 8, secpar / 8, n);
355 mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, xm);
356 uint64_export(state + 2 + 2 * secpar / 8, 8, epoch);
357
358 gcry_mpi_release(p);
359 gcry_mpi_release(q);
360 gcry_mpi_release(n);
361 gcry_mpi_release(x);
362 gcry_mpi_release(xp);
363 gcry_mpi_release(xq);
364 gcry_mpi_release(kp);
365 gcry_mpi_release(kq);
366 gcry_mpi_release(xm);
367 }
368
369 void FSPRG_GetKey(const void *state, void *key, size_t keylen, uint32_t idx) {
370 uint16_t secpar;
371
372 initialize_libgcrypt(false);
373
374 secpar = read_secpar(state + 0);
375 det_randomize(key, keylen, state + 2, 2 * secpar / 8 + 8, idx);
376 }