]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
e8c05ed0daf985f07ad799f2f631cf0f95773ca9
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /***
2 This file is part of systemd.
3
4 Copyright 2014 Lennart Poettering
5
6 systemd is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by
8 the Free Software Foundation; either version 2.1 of the License, or
9 (at your option) any later version.
10
11 systemd is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with systemd; If not, see <http://www.gnu.org/licenses/>.
18 ***/
19
20 #include <math.h>
21
22 #include "alloc-util.h"
23 #include "dns-domain.h"
24 #include "dns-type.h"
25 #include "escape.h"
26 #include "hexdecoct.h"
27 #include "resolved-dns-dnssec.h"
28 #include "resolved-dns-packet.h"
29 #include "resolved-dns-rr.h"
30 #include "string-table.h"
31 #include "string-util.h"
32 #include "strv.h"
33 #include "terminal-util.h"
34
35 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
36 DnsResourceKey *k;
37 size_t l;
38
39 assert(name);
40
41 l = strlen(name);
42 k = malloc0(sizeof(DnsResourceKey) + l + 1);
43 if (!k)
44 return NULL;
45
46 k->n_ref = 1;
47 k->class = class;
48 k->type = type;
49
50 strcpy((char*) k + sizeof(DnsResourceKey), name);
51
52 return k;
53 }
54
55 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
56 int r;
57
58 assert(key);
59 assert(cname);
60
61 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
62
63 if (cname->key->type == DNS_TYPE_CNAME)
64 return dns_resource_key_new(key->class, key->type, cname->cname.name);
65 else {
66 DnsResourceKey *k;
67 char *destination = NULL;
68
69 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
70 if (r < 0)
71 return NULL;
72 if (r == 0)
73 return dns_resource_key_ref((DnsResourceKey*) key);
74
75 k = dns_resource_key_new_consume(key->class, key->type, destination);
76 if (!k)
77 return mfree(destination);
78
79 return k;
80 }
81 }
82
83 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
84 DnsResourceKey *new_key;
85 char *joined;
86 int r;
87
88 assert(ret);
89 assert(key);
90 assert(name);
91
92 if (dns_name_is_root(name)) {
93 *ret = dns_resource_key_ref(key);
94 return 0;
95 }
96
97 r = dns_name_concat(dns_resource_key_name(key), name, &joined);
98 if (r < 0)
99 return r;
100
101 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
102 if (!new_key) {
103 free(joined);
104 return -ENOMEM;
105 }
106
107 *ret = new_key;
108 return 0;
109 }
110
111 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
112 DnsResourceKey *k;
113
114 assert(name);
115
116 k = new0(DnsResourceKey, 1);
117 if (!k)
118 return NULL;
119
120 k->n_ref = 1;
121 k->class = class;
122 k->type = type;
123 k->_name = name;
124
125 return k;
126 }
127
128 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
129
130 if (!k)
131 return NULL;
132
133 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
134 * set this to -1, they should not be reffed/unreffed */
135 assert(k->n_ref != (unsigned) -1);
136
137 assert(k->n_ref > 0);
138 k->n_ref++;
139
140 return k;
141 }
142
143 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
144 if (!k)
145 return NULL;
146
147 assert(k->n_ref != (unsigned) -1);
148 assert(k->n_ref > 0);
149
150 if (k->n_ref == 1) {
151 free(k->_name);
152 free(k);
153 } else
154 k->n_ref--;
155
156 return NULL;
157 }
158
159 const char* dns_resource_key_name(const DnsResourceKey *key) {
160 const char *name;
161
162 if (!key)
163 return NULL;
164
165 if (key->_name)
166 name = key->_name;
167 else
168 name = (char*) key + sizeof(DnsResourceKey);
169
170 if (dns_name_is_root(name))
171 return ".";
172 else
173 return name;
174 }
175
176 bool dns_resource_key_is_address(const DnsResourceKey *key) {
177 assert(key);
178
179 /* Check if this is an A or AAAA resource key */
180
181 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
182 }
183
184 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
185 int r;
186
187 if (a == b)
188 return 1;
189
190 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
191 if (r <= 0)
192 return r;
193
194 if (a->class != b->class)
195 return 0;
196
197 if (a->type != b->type)
198 return 0;
199
200 return 1;
201 }
202
203 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
204 int r;
205
206 assert(key);
207 assert(rr);
208
209 if (key == rr->key)
210 return 1;
211
212 /* Checks if an rr matches the specified key. If a search
213 * domain is specified, it will also be checked if the key
214 * with the search domain suffixed might match the RR. */
215
216 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
217 return 0;
218
219 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
220 return 0;
221
222 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
223 if (r != 0)
224 return r;
225
226 if (search_domain) {
227 _cleanup_free_ char *joined = NULL;
228
229 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
230 if (r < 0)
231 return r;
232
233 return dns_name_equal(dns_resource_key_name(rr->key), joined);
234 }
235
236 return 0;
237 }
238
239 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
240 int r;
241
242 assert(key);
243 assert(cname);
244
245 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
246 return 0;
247
248 if (cname->type == DNS_TYPE_CNAME)
249 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
250 else if (cname->type == DNS_TYPE_DNAME)
251 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
252 else
253 return 0;
254
255 if (r != 0)
256 return r;
257
258 if (search_domain) {
259 _cleanup_free_ char *joined = NULL;
260
261 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
262 if (r < 0)
263 return r;
264
265 if (cname->type == DNS_TYPE_CNAME)
266 return dns_name_equal(joined, dns_resource_key_name(cname));
267 else if (cname->type == DNS_TYPE_DNAME)
268 return dns_name_endswith(joined, dns_resource_key_name(cname));
269 }
270
271 return 0;
272 }
273
274 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
275 assert(soa);
276 assert(key);
277
278 /* Checks whether 'soa' is a SOA record for the specified key. */
279
280 if (soa->class != key->class)
281 return 0;
282
283 if (soa->type != DNS_TYPE_SOA)
284 return 0;
285
286 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
287 }
288
289 static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
290 const DnsResourceKey *k = i;
291
292 assert(k);
293
294 dns_name_hash_func(dns_resource_key_name(k), state);
295 siphash24_compress(&k->class, sizeof(k->class), state);
296 siphash24_compress(&k->type, sizeof(k->type), state);
297 }
298
299 static int dns_resource_key_compare_func(const void *a, const void *b) {
300 const DnsResourceKey *x = a, *y = b;
301 int ret;
302
303 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
304 if (ret != 0)
305 return ret;
306
307 if (x->type < y->type)
308 return -1;
309 if (x->type > y->type)
310 return 1;
311
312 if (x->class < y->class)
313 return -1;
314 if (x->class > y->class)
315 return 1;
316
317 return 0;
318 }
319
320 const struct hash_ops dns_resource_key_hash_ops = {
321 .hash = dns_resource_key_hash_func,
322 .compare = dns_resource_key_compare_func
323 };
324
325 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
326 const char *c, *t;
327 char *ans = buf;
328
329 /* If we cannot convert the CLASS/TYPE into a known string,
330 use the format recommended by RFC 3597, Section 5. */
331
332 c = dns_class_to_string(key->class);
333 t = dns_type_to_string(key->type);
334
335 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
336 dns_resource_key_name(key),
337 c ?: "", c ? "" : "CLASS", c ? 0 : key->class,
338 t ?: "", t ? "" : "TYPE", t ? 0 : key->class);
339
340 return ans;
341 }
342
343 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
344 assert(a);
345 assert(b);
346
347 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
348 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
349 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
350 * superficial data. */
351
352 if (!*a)
353 return false;
354 if (!*b)
355 return false;
356
357 /* We refuse merging const keys */
358 if ((*a)->n_ref == (unsigned) -1)
359 return false;
360 if ((*b)->n_ref == (unsigned) -1)
361 return false;
362
363 /* Already the same? */
364 if (*a == *b)
365 return true;
366
367 /* Are they really identical? */
368 if (dns_resource_key_equal(*a, *b) <= 0)
369 return false;
370
371 /* Keep the one which already has more references. */
372 if ((*a)->n_ref > (*b)->n_ref) {
373 dns_resource_key_unref(*b);
374 *b = dns_resource_key_ref(*a);
375 } else {
376 dns_resource_key_unref(*a);
377 *a = dns_resource_key_ref(*b);
378 }
379
380 return true;
381 }
382
383 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
384 DnsResourceRecord *rr;
385
386 rr = new0(DnsResourceRecord, 1);
387 if (!rr)
388 return NULL;
389
390 rr->n_ref = 1;
391 rr->key = dns_resource_key_ref(key);
392 rr->expiry = USEC_INFINITY;
393 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
394
395 return rr;
396 }
397
398 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
399 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
400
401 key = dns_resource_key_new(class, type, name);
402 if (!key)
403 return NULL;
404
405 return dns_resource_record_new(key);
406 }
407
408 DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) {
409 if (!rr)
410 return NULL;
411
412 assert(rr->n_ref > 0);
413 rr->n_ref++;
414
415 return rr;
416 }
417
418 DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) {
419 if (!rr)
420 return NULL;
421
422 assert(rr->n_ref > 0);
423
424 if (rr->n_ref > 1) {
425 rr->n_ref--;
426 return NULL;
427 }
428
429 if (rr->key) {
430 switch(rr->key->type) {
431
432 case DNS_TYPE_SRV:
433 free(rr->srv.name);
434 break;
435
436 case DNS_TYPE_PTR:
437 case DNS_TYPE_NS:
438 case DNS_TYPE_CNAME:
439 case DNS_TYPE_DNAME:
440 free(rr->ptr.name);
441 break;
442
443 case DNS_TYPE_HINFO:
444 free(rr->hinfo.cpu);
445 free(rr->hinfo.os);
446 break;
447
448 case DNS_TYPE_TXT:
449 case DNS_TYPE_SPF:
450 dns_txt_item_free_all(rr->txt.items);
451 break;
452
453 case DNS_TYPE_SOA:
454 free(rr->soa.mname);
455 free(rr->soa.rname);
456 break;
457
458 case DNS_TYPE_MX:
459 free(rr->mx.exchange);
460 break;
461
462 case DNS_TYPE_DS:
463 free(rr->ds.digest);
464 break;
465
466 case DNS_TYPE_SSHFP:
467 free(rr->sshfp.fingerprint);
468 break;
469
470 case DNS_TYPE_DNSKEY:
471 free(rr->dnskey.key);
472 break;
473
474 case DNS_TYPE_RRSIG:
475 free(rr->rrsig.signer);
476 free(rr->rrsig.signature);
477 break;
478
479 case DNS_TYPE_NSEC:
480 free(rr->nsec.next_domain_name);
481 bitmap_free(rr->nsec.types);
482 break;
483
484 case DNS_TYPE_NSEC3:
485 free(rr->nsec3.next_hashed_name);
486 free(rr->nsec3.salt);
487 bitmap_free(rr->nsec3.types);
488 break;
489
490 case DNS_TYPE_LOC:
491 case DNS_TYPE_A:
492 case DNS_TYPE_AAAA:
493 break;
494
495 case DNS_TYPE_TLSA:
496 free(rr->tlsa.data);
497 break;
498
499 case DNS_TYPE_CAA:
500 free(rr->caa.tag);
501 free(rr->caa.value);
502 break;
503
504 case DNS_TYPE_OPENPGPKEY:
505 default:
506 free(rr->generic.data);
507 }
508
509 free(rr->wire_format);
510 dns_resource_key_unref(rr->key);
511 }
512
513 free(rr->to_string);
514 return mfree(rr);
515 }
516
517 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
518 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
519 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
520 _cleanup_free_ char *ptr = NULL;
521 int r;
522
523 assert(ret);
524 assert(address);
525 assert(hostname);
526
527 r = dns_name_reverse(family, address, &ptr);
528 if (r < 0)
529 return r;
530
531 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
532 if (!key)
533 return -ENOMEM;
534
535 ptr = NULL;
536
537 rr = dns_resource_record_new(key);
538 if (!rr)
539 return -ENOMEM;
540
541 rr->ptr.name = strdup(hostname);
542 if (!rr->ptr.name)
543 return -ENOMEM;
544
545 *ret = rr;
546 rr = NULL;
547
548 return 0;
549 }
550
551 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
552 DnsResourceRecord *rr;
553
554 assert(ret);
555 assert(address);
556 assert(family);
557
558 if (family == AF_INET) {
559
560 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
561 if (!rr)
562 return -ENOMEM;
563
564 rr->a.in_addr = address->in;
565
566 } else if (family == AF_INET6) {
567
568 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
569 if (!rr)
570 return -ENOMEM;
571
572 rr->aaaa.in6_addr = address->in6;
573 } else
574 return -EAFNOSUPPORT;
575
576 *ret = rr;
577
578 return 0;
579 }
580
581 #define FIELD_EQUAL(a, b, field) \
582 ((a).field ## _size == (b).field ## _size && \
583 memcmp((a).field, (b).field, (a).field ## _size) == 0)
584
585 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
586 int r;
587
588 assert(a);
589 assert(b);
590
591 if (a == b)
592 return 1;
593
594 r = dns_resource_key_equal(a->key, b->key);
595 if (r <= 0)
596 return r;
597
598 if (a->unparseable != b->unparseable)
599 return 0;
600
601 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
602
603 case DNS_TYPE_SRV:
604 r = dns_name_equal(a->srv.name, b->srv.name);
605 if (r <= 0)
606 return r;
607
608 return a->srv.priority == b->srv.priority &&
609 a->srv.weight == b->srv.weight &&
610 a->srv.port == b->srv.port;
611
612 case DNS_TYPE_PTR:
613 case DNS_TYPE_NS:
614 case DNS_TYPE_CNAME:
615 case DNS_TYPE_DNAME:
616 return dns_name_equal(a->ptr.name, b->ptr.name);
617
618 case DNS_TYPE_HINFO:
619 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
620 strcaseeq(a->hinfo.os, b->hinfo.os);
621
622 case DNS_TYPE_SPF: /* exactly the same as TXT */
623 case DNS_TYPE_TXT:
624 return dns_txt_item_equal(a->txt.items, b->txt.items);
625
626 case DNS_TYPE_A:
627 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
628
629 case DNS_TYPE_AAAA:
630 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
631
632 case DNS_TYPE_SOA:
633 r = dns_name_equal(a->soa.mname, b->soa.mname);
634 if (r <= 0)
635 return r;
636 r = dns_name_equal(a->soa.rname, b->soa.rname);
637 if (r <= 0)
638 return r;
639
640 return a->soa.serial == b->soa.serial &&
641 a->soa.refresh == b->soa.refresh &&
642 a->soa.retry == b->soa.retry &&
643 a->soa.expire == b->soa.expire &&
644 a->soa.minimum == b->soa.minimum;
645
646 case DNS_TYPE_MX:
647 if (a->mx.priority != b->mx.priority)
648 return 0;
649
650 return dns_name_equal(a->mx.exchange, b->mx.exchange);
651
652 case DNS_TYPE_LOC:
653 assert(a->loc.version == b->loc.version);
654
655 return a->loc.size == b->loc.size &&
656 a->loc.horiz_pre == b->loc.horiz_pre &&
657 a->loc.vert_pre == b->loc.vert_pre &&
658 a->loc.latitude == b->loc.latitude &&
659 a->loc.longitude == b->loc.longitude &&
660 a->loc.altitude == b->loc.altitude;
661
662 case DNS_TYPE_DS:
663 return a->ds.key_tag == b->ds.key_tag &&
664 a->ds.algorithm == b->ds.algorithm &&
665 a->ds.digest_type == b->ds.digest_type &&
666 FIELD_EQUAL(a->ds, b->ds, digest);
667
668 case DNS_TYPE_SSHFP:
669 return a->sshfp.algorithm == b->sshfp.algorithm &&
670 a->sshfp.fptype == b->sshfp.fptype &&
671 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
672
673 case DNS_TYPE_DNSKEY:
674 return a->dnskey.flags == b->dnskey.flags &&
675 a->dnskey.protocol == b->dnskey.protocol &&
676 a->dnskey.algorithm == b->dnskey.algorithm &&
677 FIELD_EQUAL(a->dnskey, b->dnskey, key);
678
679 case DNS_TYPE_RRSIG:
680 /* do the fast comparisons first */
681 return a->rrsig.type_covered == b->rrsig.type_covered &&
682 a->rrsig.algorithm == b->rrsig.algorithm &&
683 a->rrsig.labels == b->rrsig.labels &&
684 a->rrsig.original_ttl == b->rrsig.original_ttl &&
685 a->rrsig.expiration == b->rrsig.expiration &&
686 a->rrsig.inception == b->rrsig.inception &&
687 a->rrsig.key_tag == b->rrsig.key_tag &&
688 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
689 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
690
691 case DNS_TYPE_NSEC:
692 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
693 bitmap_equal(a->nsec.types, b->nsec.types);
694
695 case DNS_TYPE_NSEC3:
696 return a->nsec3.algorithm == b->nsec3.algorithm &&
697 a->nsec3.flags == b->nsec3.flags &&
698 a->nsec3.iterations == b->nsec3.iterations &&
699 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
700 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
701 bitmap_equal(a->nsec3.types, b->nsec3.types);
702
703 case DNS_TYPE_TLSA:
704 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
705 a->tlsa.selector == b->tlsa.selector &&
706 a->tlsa.matching_type == b->tlsa.matching_type &&
707 FIELD_EQUAL(a->tlsa, b->tlsa, data);
708
709 case DNS_TYPE_CAA:
710 return a->caa.flags == b->caa.flags &&
711 streq(a->caa.tag, b->caa.tag) &&
712 FIELD_EQUAL(a->caa, b->caa, value);
713
714 case DNS_TYPE_OPENPGPKEY:
715 default:
716 return FIELD_EQUAL(a->generic, b->generic, data);
717 }
718 }
719
720 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
721 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
722 char *s;
723 char NS = latitude >= 1U<<31 ? 'N' : 'S';
724 char EW = longitude >= 1U<<31 ? 'E' : 'W';
725
726 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
727 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
728 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
729 double siz = (size >> 4) * exp10((double) (size & 0xF));
730 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
731 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
732
733 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
734 (lat / 60000 / 60),
735 (lat / 60000) % 60,
736 (lat % 60000) / 1000.,
737 NS,
738 (lon / 60000 / 60),
739 (lon / 60000) % 60,
740 (lon % 60000) / 1000.,
741 EW,
742 alt / 100.,
743 siz / 100.,
744 hor / 100.,
745 ver / 100.) < 0)
746 return NULL;
747
748 return s;
749 }
750
751 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
752 struct tm tm;
753
754 assert(buf);
755 assert(l > strlen("YYYYMMDDHHmmSS"));
756
757 if (!gmtime_r(&sec, &tm))
758 return -EINVAL;
759
760 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
761 return -EINVAL;
762
763 return 0;
764 }
765
766 static char *format_types(Bitmap *types) {
767 _cleanup_strv_free_ char **strv = NULL;
768 _cleanup_free_ char *str = NULL;
769 Iterator i;
770 unsigned type;
771 int r;
772
773 BITMAP_FOREACH(type, types, i) {
774 if (dns_type_to_string(type)) {
775 r = strv_extend(&strv, dns_type_to_string(type));
776 if (r < 0)
777 return NULL;
778 } else {
779 char *t;
780
781 r = asprintf(&t, "TYPE%u", type);
782 if (r < 0)
783 return NULL;
784
785 r = strv_consume(&strv, t);
786 if (r < 0)
787 return NULL;
788 }
789 }
790
791 str = strv_join(strv, " ");
792 if (!str)
793 return NULL;
794
795 return strjoin("( ", str, " )");
796 }
797
798 static char *format_txt(DnsTxtItem *first) {
799 DnsTxtItem *i;
800 size_t c = 1;
801 char *p, *s;
802
803 LIST_FOREACH(items, i, first)
804 c += i->length * 4 + 3;
805
806 p = s = new(char, c);
807 if (!s)
808 return NULL;
809
810 LIST_FOREACH(items, i, first) {
811 size_t j;
812
813 if (i != first)
814 *(p++) = ' ';
815
816 *(p++) = '"';
817
818 for (j = 0; j < i->length; j++) {
819 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
820 *(p++) = '\\';
821 *(p++) = '0' + (i->data[j] / 100);
822 *(p++) = '0' + ((i->data[j] / 10) % 10);
823 *(p++) = '0' + (i->data[j] % 10);
824 } else
825 *(p++) = i->data[j];
826 }
827
828 *(p++) = '"';
829 }
830
831 *p = 0;
832 return s;
833 }
834
835 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
836 _cleanup_free_ char *t = NULL;
837 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
838 int r;
839
840 assert(rr);
841
842 if (rr->to_string)
843 return rr->to_string;
844
845 dns_resource_key_to_string(rr->key, k, sizeof(k));
846
847 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
848
849 case DNS_TYPE_SRV:
850 r = asprintf(&s, "%s %u %u %u %s",
851 k,
852 rr->srv.priority,
853 rr->srv.weight,
854 rr->srv.port,
855 strna(rr->srv.name));
856 if (r < 0)
857 return NULL;
858 break;
859
860 case DNS_TYPE_PTR:
861 case DNS_TYPE_NS:
862 case DNS_TYPE_CNAME:
863 case DNS_TYPE_DNAME:
864 s = strjoin(k, " ", rr->ptr.name);
865 if (!s)
866 return NULL;
867
868 break;
869
870 case DNS_TYPE_HINFO:
871 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
872 if (!s)
873 return NULL;
874 break;
875
876 case DNS_TYPE_SPF: /* exactly the same as TXT */
877 case DNS_TYPE_TXT:
878 t = format_txt(rr->txt.items);
879 if (!t)
880 return NULL;
881
882 s = strjoin(k, " ", t);
883 if (!s)
884 return NULL;
885 break;
886
887 case DNS_TYPE_A: {
888 _cleanup_free_ char *x = NULL;
889
890 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
891 if (r < 0)
892 return NULL;
893
894 s = strjoin(k, " ", x);
895 if (!s)
896 return NULL;
897 break;
898 }
899
900 case DNS_TYPE_AAAA:
901 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
902 if (r < 0)
903 return NULL;
904
905 s = strjoin(k, " ", t);
906 if (!s)
907 return NULL;
908 break;
909
910 case DNS_TYPE_SOA:
911 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
912 k,
913 strna(rr->soa.mname),
914 strna(rr->soa.rname),
915 rr->soa.serial,
916 rr->soa.refresh,
917 rr->soa.retry,
918 rr->soa.expire,
919 rr->soa.minimum);
920 if (r < 0)
921 return NULL;
922 break;
923
924 case DNS_TYPE_MX:
925 r = asprintf(&s, "%s %u %s",
926 k,
927 rr->mx.priority,
928 rr->mx.exchange);
929 if (r < 0)
930 return NULL;
931 break;
932
933 case DNS_TYPE_LOC:
934 assert(rr->loc.version == 0);
935
936 t = format_location(rr->loc.latitude,
937 rr->loc.longitude,
938 rr->loc.altitude,
939 rr->loc.size,
940 rr->loc.horiz_pre,
941 rr->loc.vert_pre);
942 if (!t)
943 return NULL;
944
945 s = strjoin(k, " ", t);
946 if (!s)
947 return NULL;
948 break;
949
950 case DNS_TYPE_DS:
951 t = hexmem(rr->ds.digest, rr->ds.digest_size);
952 if (!t)
953 return NULL;
954
955 r = asprintf(&s, "%s %u %u %u %s",
956 k,
957 rr->ds.key_tag,
958 rr->ds.algorithm,
959 rr->ds.digest_type,
960 t);
961 if (r < 0)
962 return NULL;
963 break;
964
965 case DNS_TYPE_SSHFP:
966 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
967 if (!t)
968 return NULL;
969
970 r = asprintf(&s, "%s %u %u %s",
971 k,
972 rr->sshfp.algorithm,
973 rr->sshfp.fptype,
974 t);
975 if (r < 0)
976 return NULL;
977 break;
978
979 case DNS_TYPE_DNSKEY: {
980 _cleanup_free_ char *alg = NULL;
981 char *ss;
982 int n;
983 uint16_t key_tag;
984
985 key_tag = dnssec_keytag(rr, true);
986
987 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
988 if (r < 0)
989 return NULL;
990
991 r = asprintf(&s, "%s %u %u %s %n",
992 k,
993 rr->dnskey.flags,
994 rr->dnskey.protocol,
995 alg,
996 &n);
997 if (r < 0)
998 return NULL;
999
1000 r = base64_append(&s, n,
1001 rr->dnskey.key, rr->dnskey.key_size,
1002 8, columns());
1003 if (r < 0)
1004 return NULL;
1005
1006 r = asprintf(&ss, "%s\n"
1007 " -- Flags:%s%s%s\n"
1008 " -- Key tag: %u",
1009 s,
1010 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
1011 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
1012 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
1013 key_tag);
1014 if (r < 0)
1015 return NULL;
1016 free(s);
1017 s = ss;
1018
1019 break;
1020 }
1021
1022 case DNS_TYPE_RRSIG: {
1023 _cleanup_free_ char *alg = NULL;
1024 char expiration[strlen("YYYYMMDDHHmmSS") + 1], inception[strlen("YYYYMMDDHHmmSS") + 1];
1025 const char *type;
1026 int n;
1027
1028 type = dns_type_to_string(rr->rrsig.type_covered);
1029
1030 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1031 if (r < 0)
1032 return NULL;
1033
1034 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1035 if (r < 0)
1036 return NULL;
1037
1038 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1039 if (r < 0)
1040 return NULL;
1041
1042 /* TYPE?? follows
1043 * http://tools.ietf.org/html/rfc3597#section-5 */
1044
1045 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1046 k,
1047 type ?: "TYPE",
1048 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1049 alg,
1050 rr->rrsig.labels,
1051 rr->rrsig.original_ttl,
1052 expiration,
1053 inception,
1054 rr->rrsig.key_tag,
1055 rr->rrsig.signer,
1056 &n);
1057 if (r < 0)
1058 return NULL;
1059
1060 r = base64_append(&s, n,
1061 rr->rrsig.signature, rr->rrsig.signature_size,
1062 8, columns());
1063 if (r < 0)
1064 return NULL;
1065
1066 break;
1067 }
1068
1069 case DNS_TYPE_NSEC:
1070 t = format_types(rr->nsec.types);
1071 if (!t)
1072 return NULL;
1073
1074 r = asprintf(&s, "%s %s %s",
1075 k,
1076 rr->nsec.next_domain_name,
1077 t);
1078 if (r < 0)
1079 return NULL;
1080 break;
1081
1082 case DNS_TYPE_NSEC3: {
1083 _cleanup_free_ char *salt = NULL, *hash = NULL;
1084
1085 if (rr->nsec3.salt_size > 0) {
1086 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1087 if (!salt)
1088 return NULL;
1089 }
1090
1091 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1092 if (!hash)
1093 return NULL;
1094
1095 t = format_types(rr->nsec3.types);
1096 if (!t)
1097 return NULL;
1098
1099 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1100 k,
1101 rr->nsec3.algorithm,
1102 rr->nsec3.flags,
1103 rr->nsec3.iterations,
1104 rr->nsec3.salt_size > 0 ? salt : "-",
1105 hash,
1106 t);
1107 if (r < 0)
1108 return NULL;
1109
1110 break;
1111 }
1112
1113 case DNS_TYPE_TLSA: {
1114 const char *cert_usage, *selector, *matching_type;
1115
1116 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1117 selector = tlsa_selector_to_string(rr->tlsa.selector);
1118 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1119
1120 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1121 if (!t)
1122 return NULL;
1123
1124 r = asprintf(&s,
1125 "%s %u %u %u %s\n"
1126 " -- Cert. usage: %s\n"
1127 " -- Selector: %s\n"
1128 " -- Matching type: %s",
1129 k,
1130 rr->tlsa.cert_usage,
1131 rr->tlsa.selector,
1132 rr->tlsa.matching_type,
1133 t,
1134 cert_usage,
1135 selector,
1136 matching_type);
1137 if (r < 0)
1138 return NULL;
1139
1140 break;
1141 }
1142
1143 case DNS_TYPE_CAA: {
1144 _cleanup_free_ char *value;
1145
1146 value = octescape(rr->caa.value, rr->caa.value_size);
1147 if (!value)
1148 return NULL;
1149
1150 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1151 k,
1152 rr->caa.flags,
1153 rr->caa.tag,
1154 value,
1155 rr->caa.flags ? "\n -- Flags:" : "",
1156 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1157 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1158 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1159 if (r < 0)
1160 return NULL;
1161
1162 break;
1163 }
1164
1165 case DNS_TYPE_OPENPGPKEY: {
1166 int n;
1167
1168 r = asprintf(&s, "%s %n",
1169 k,
1170 &n);
1171 if (r < 0)
1172 return NULL;
1173
1174 r = base64_append(&s, n,
1175 rr->generic.data, rr->generic.data_size,
1176 8, columns());
1177 if (r < 0)
1178 return NULL;
1179 break;
1180 }
1181
1182 default:
1183 t = hexmem(rr->generic.data, rr->generic.data_size);
1184 if (!t)
1185 return NULL;
1186
1187 /* Format as documented in RFC 3597, Section 5 */
1188 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1189 if (r < 0)
1190 return NULL;
1191 break;
1192 }
1193
1194 rr->to_string = s;
1195 return s;
1196 }
1197
1198 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1199 assert(rr);
1200 assert(out);
1201
1202 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1203 case DNS_TYPE_SRV:
1204 case DNS_TYPE_PTR:
1205 case DNS_TYPE_NS:
1206 case DNS_TYPE_CNAME:
1207 case DNS_TYPE_DNAME:
1208 case DNS_TYPE_HINFO:
1209 case DNS_TYPE_SPF:
1210 case DNS_TYPE_TXT:
1211 case DNS_TYPE_A:
1212 case DNS_TYPE_AAAA:
1213 case DNS_TYPE_SOA:
1214 case DNS_TYPE_MX:
1215 case DNS_TYPE_LOC:
1216 case DNS_TYPE_DS:
1217 case DNS_TYPE_DNSKEY:
1218 case DNS_TYPE_RRSIG:
1219 case DNS_TYPE_NSEC:
1220 case DNS_TYPE_NSEC3:
1221 return -EINVAL;
1222
1223 case DNS_TYPE_SSHFP:
1224 *out = rr->sshfp.fingerprint;
1225 return rr->sshfp.fingerprint_size;
1226
1227 case DNS_TYPE_TLSA:
1228 *out = rr->tlsa.data;
1229 return rr->tlsa.data_size;
1230
1231
1232 case DNS_TYPE_OPENPGPKEY:
1233 default:
1234 *out = rr->generic.data;
1235 return rr->generic.data_size;
1236 }
1237 }
1238
1239 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1240
1241 DnsPacket packet = {
1242 .n_ref = 1,
1243 .protocol = DNS_PROTOCOL_DNS,
1244 .on_stack = true,
1245 .refuse_compression = true,
1246 .canonical_form = canonical,
1247 };
1248
1249 size_t start, rds;
1250 int r;
1251
1252 assert(rr);
1253
1254 /* Generates the RR in wire-format, optionally in the
1255 * canonical form as discussed in the DNSSEC RFC 4034, Section
1256 * 6.2. We allocate a throw-away DnsPacket object on the stack
1257 * here, because we need some book-keeping for memory
1258 * management, and can reuse the DnsPacket serializer, that
1259 * can generate the canonical form, too, but also knows label
1260 * compression and suchlike. */
1261
1262 if (rr->wire_format && rr->wire_format_canonical == canonical)
1263 return 0;
1264
1265 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1266 if (r < 0)
1267 return r;
1268
1269 assert(start == 0);
1270 assert(packet._data);
1271
1272 free(rr->wire_format);
1273 rr->wire_format = packet._data;
1274 rr->wire_format_size = packet.size;
1275 rr->wire_format_rdata_offset = rds;
1276 rr->wire_format_canonical = canonical;
1277
1278 packet._data = NULL;
1279 dns_packet_unref(&packet);
1280
1281 return 0;
1282 }
1283
1284 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1285 const char *n;
1286 int r;
1287
1288 assert(rr);
1289 assert(ret);
1290
1291 /* Returns the RRset's signer, if it is known. */
1292
1293 if (rr->n_skip_labels_signer == (unsigned) -1)
1294 return -ENODATA;
1295
1296 n = dns_resource_key_name(rr->key);
1297 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1298 if (r < 0)
1299 return r;
1300 if (r == 0)
1301 return -EINVAL;
1302
1303 *ret = n;
1304 return 0;
1305 }
1306
1307 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1308 const char *n;
1309 int r;
1310
1311 assert(rr);
1312 assert(ret);
1313
1314 /* Returns the RRset's synthesizing source, if it is known. */
1315
1316 if (rr->n_skip_labels_source == (unsigned) -1)
1317 return -ENODATA;
1318
1319 n = dns_resource_key_name(rr->key);
1320 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1321 if (r < 0)
1322 return r;
1323 if (r == 0)
1324 return -EINVAL;
1325
1326 *ret = n;
1327 return 0;
1328 }
1329
1330 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1331 const char *signer;
1332 int r;
1333
1334 assert(rr);
1335
1336 r = dns_resource_record_signer(rr, &signer);
1337 if (r < 0)
1338 return r;
1339
1340 return dns_name_equal(zone, signer);
1341 }
1342
1343 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1344 int r;
1345
1346 assert(rr);
1347
1348 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1349
1350 if (rr->n_skip_labels_source == (unsigned) -1)
1351 return -ENODATA;
1352
1353 if (rr->n_skip_labels_source == 0)
1354 return 0;
1355
1356 if (rr->n_skip_labels_source > 1)
1357 return 1;
1358
1359 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1360 if (r < 0)
1361 return r;
1362
1363 return !r;
1364 }
1365
1366 void dns_resource_record_hash_func(const void *i, struct siphash *state) {
1367 const DnsResourceRecord *rr = i;
1368
1369 assert(rr);
1370
1371 dns_resource_key_hash_func(rr->key, state);
1372
1373 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1374
1375 case DNS_TYPE_SRV:
1376 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1377 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1378 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1379 dns_name_hash_func(rr->srv.name, state);
1380 break;
1381
1382 case DNS_TYPE_PTR:
1383 case DNS_TYPE_NS:
1384 case DNS_TYPE_CNAME:
1385 case DNS_TYPE_DNAME:
1386 dns_name_hash_func(rr->ptr.name, state);
1387 break;
1388
1389 case DNS_TYPE_HINFO:
1390 string_hash_func(rr->hinfo.cpu, state);
1391 string_hash_func(rr->hinfo.os, state);
1392 break;
1393
1394 case DNS_TYPE_TXT:
1395 case DNS_TYPE_SPF: {
1396 DnsTxtItem *j;
1397
1398 LIST_FOREACH(items, j, rr->txt.items) {
1399 siphash24_compress(j->data, j->length, state);
1400
1401 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1402 * followed by "". */
1403 siphash24_compress_byte(0, state);
1404 }
1405 break;
1406 }
1407
1408 case DNS_TYPE_A:
1409 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1410 break;
1411
1412 case DNS_TYPE_AAAA:
1413 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1414 break;
1415
1416 case DNS_TYPE_SOA:
1417 dns_name_hash_func(rr->soa.mname, state);
1418 dns_name_hash_func(rr->soa.rname, state);
1419 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1420 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1421 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1422 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1423 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1424 break;
1425
1426 case DNS_TYPE_MX:
1427 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1428 dns_name_hash_func(rr->mx.exchange, state);
1429 break;
1430
1431 case DNS_TYPE_LOC:
1432 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1433 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1434 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1435 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1436 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1437 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1438 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1439 break;
1440
1441 case DNS_TYPE_SSHFP:
1442 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1443 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1444 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1445 break;
1446
1447 case DNS_TYPE_DNSKEY:
1448 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1449 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1450 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1451 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1452 break;
1453
1454 case DNS_TYPE_RRSIG:
1455 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1456 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1457 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1458 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1459 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1460 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1461 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1462 dns_name_hash_func(rr->rrsig.signer, state);
1463 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1464 break;
1465
1466 case DNS_TYPE_NSEC:
1467 dns_name_hash_func(rr->nsec.next_domain_name, state);
1468 /* FIXME: we leave out the type bitmap here. Hash
1469 * would be better if we'd take it into account
1470 * too. */
1471 break;
1472
1473 case DNS_TYPE_DS:
1474 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1475 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1476 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1477 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1478 break;
1479
1480 case DNS_TYPE_NSEC3:
1481 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1482 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1483 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1484 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1485 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1486 /* FIXME: We leave the bitmaps out */
1487 break;
1488
1489 case DNS_TYPE_TLSA:
1490 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1491 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1492 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1493 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1494 break;
1495
1496 case DNS_TYPE_CAA:
1497 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1498 string_hash_func(rr->caa.tag, state);
1499 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1500 break;
1501
1502 case DNS_TYPE_OPENPGPKEY:
1503 default:
1504 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1505 break;
1506 }
1507 }
1508
1509 static int dns_resource_record_compare_func(const void *a, const void *b) {
1510 const DnsResourceRecord *x = a, *y = b;
1511 int ret;
1512
1513 ret = dns_resource_key_compare_func(x->key, y->key);
1514 if (ret != 0)
1515 return ret;
1516
1517 if (dns_resource_record_equal(x, y))
1518 return 0;
1519
1520 /* This is a bit dirty, we don't implement proper ordering, but
1521 * the hashtable doesn't need ordering anyway, hence we don't
1522 * care. */
1523 return x < y ? -1 : 1;
1524 }
1525
1526 const struct hash_ops dns_resource_record_hash_ops = {
1527 .hash = dns_resource_record_hash_func,
1528 .compare = dns_resource_record_compare_func,
1529 };
1530
1531 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1532 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1533 DnsResourceRecord *t;
1534
1535 assert(rr);
1536
1537 copy = dns_resource_record_new(rr->key);
1538 if (!copy)
1539 return NULL;
1540
1541 copy->ttl = rr->ttl;
1542 copy->expiry = rr->expiry;
1543 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1544 copy->n_skip_labels_source = rr->n_skip_labels_source;
1545 copy->unparseable = rr->unparseable;
1546
1547 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1548
1549 case DNS_TYPE_SRV:
1550 copy->srv.priority = rr->srv.priority;
1551 copy->srv.weight = rr->srv.weight;
1552 copy->srv.port = rr->srv.port;
1553 copy->srv.name = strdup(rr->srv.name);
1554 if (!copy->srv.name)
1555 return NULL;
1556 break;
1557
1558 case DNS_TYPE_PTR:
1559 case DNS_TYPE_NS:
1560 case DNS_TYPE_CNAME:
1561 case DNS_TYPE_DNAME:
1562 copy->ptr.name = strdup(rr->ptr.name);
1563 if (!copy->ptr.name)
1564 return NULL;
1565 break;
1566
1567 case DNS_TYPE_HINFO:
1568 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1569 if (!copy->hinfo.cpu)
1570 return NULL;
1571
1572 copy->hinfo.os = strdup(rr->hinfo.os);
1573 if(!copy->hinfo.os)
1574 return NULL;
1575 break;
1576
1577 case DNS_TYPE_TXT:
1578 case DNS_TYPE_SPF:
1579 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1580 if (!copy->txt.items)
1581 return NULL;
1582 break;
1583
1584 case DNS_TYPE_A:
1585 copy->a = rr->a;
1586 break;
1587
1588 case DNS_TYPE_AAAA:
1589 copy->aaaa = rr->aaaa;
1590 break;
1591
1592 case DNS_TYPE_SOA:
1593 copy->soa.mname = strdup(rr->soa.mname);
1594 if (!copy->soa.mname)
1595 return NULL;
1596 copy->soa.rname = strdup(rr->soa.rname);
1597 if (!copy->soa.rname)
1598 return NULL;
1599 copy->soa.serial = rr->soa.serial;
1600 copy->soa.refresh = rr->soa.refresh;
1601 copy->soa.retry = rr->soa.retry;
1602 copy->soa.expire = rr->soa.expire;
1603 copy->soa.minimum = rr->soa.minimum;
1604 break;
1605
1606 case DNS_TYPE_MX:
1607 copy->mx.priority = rr->mx.priority;
1608 copy->mx.exchange = strdup(rr->mx.exchange);
1609 if (!copy->mx.exchange)
1610 return NULL;
1611 break;
1612
1613 case DNS_TYPE_LOC:
1614 copy->loc = rr->loc;
1615 break;
1616
1617 case DNS_TYPE_SSHFP:
1618 copy->sshfp.algorithm = rr->sshfp.algorithm;
1619 copy->sshfp.fptype = rr->sshfp.fptype;
1620 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1621 if (!copy->sshfp.fingerprint)
1622 return NULL;
1623 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1624 break;
1625
1626 case DNS_TYPE_DNSKEY:
1627 copy->dnskey.flags = rr->dnskey.flags;
1628 copy->dnskey.protocol = rr->dnskey.protocol;
1629 copy->dnskey.algorithm = rr->dnskey.algorithm;
1630 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1631 if (!copy->dnskey.key)
1632 return NULL;
1633 copy->dnskey.key_size = rr->dnskey.key_size;
1634 break;
1635
1636 case DNS_TYPE_RRSIG:
1637 copy->rrsig.type_covered = rr->rrsig.type_covered;
1638 copy->rrsig.algorithm = rr->rrsig.algorithm;
1639 copy->rrsig.labels = rr->rrsig.labels;
1640 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1641 copy->rrsig.expiration = rr->rrsig.expiration;
1642 copy->rrsig.inception = rr->rrsig.inception;
1643 copy->rrsig.key_tag = rr->rrsig.key_tag;
1644 copy->rrsig.signer = strdup(rr->rrsig.signer);
1645 if (!copy->rrsig.signer)
1646 return NULL;
1647 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1648 if (!copy->rrsig.signature)
1649 return NULL;
1650 copy->rrsig.signature_size = rr->rrsig.signature_size;
1651 break;
1652
1653 case DNS_TYPE_NSEC:
1654 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1655 if (!copy->nsec.next_domain_name)
1656 return NULL;
1657 copy->nsec.types = bitmap_copy(rr->nsec.types);
1658 if (!copy->nsec.types)
1659 return NULL;
1660 break;
1661
1662 case DNS_TYPE_DS:
1663 copy->ds.key_tag = rr->ds.key_tag;
1664 copy->ds.algorithm = rr->ds.algorithm;
1665 copy->ds.digest_type = rr->ds.digest_type;
1666 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1667 if (!copy->ds.digest)
1668 return NULL;
1669 copy->ds.digest_size = rr->ds.digest_size;
1670 break;
1671
1672 case DNS_TYPE_NSEC3:
1673 copy->nsec3.algorithm = rr->nsec3.algorithm;
1674 copy->nsec3.flags = rr->nsec3.flags;
1675 copy->nsec3.iterations = rr->nsec3.iterations;
1676 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1677 if (!copy->nsec3.salt)
1678 return NULL;
1679 copy->nsec3.salt_size = rr->nsec3.salt_size;
1680 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1681 if (!copy->nsec3.next_hashed_name_size)
1682 return NULL;
1683 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1684 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1685 if (!copy->nsec3.types)
1686 return NULL;
1687 break;
1688
1689 case DNS_TYPE_TLSA:
1690 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1691 copy->tlsa.selector = rr->tlsa.selector;
1692 copy->tlsa.matching_type = rr->tlsa.matching_type;
1693 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1694 if (!copy->tlsa.data)
1695 return NULL;
1696 copy->tlsa.data_size = rr->tlsa.data_size;
1697 break;
1698
1699 case DNS_TYPE_CAA:
1700 copy->caa.flags = rr->caa.flags;
1701 copy->caa.tag = strdup(rr->caa.tag);
1702 if (!copy->caa.tag)
1703 return NULL;
1704 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1705 if (!copy->caa.value)
1706 return NULL;
1707 copy->caa.value_size = rr->caa.value_size;
1708 break;
1709
1710 case DNS_TYPE_OPT:
1711 default:
1712 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1713 if (!copy->generic.data)
1714 return NULL;
1715 copy->generic.data_size = rr->generic.data_size;
1716 break;
1717 }
1718
1719 t = copy;
1720 copy = NULL;
1721
1722 return t;
1723 }
1724
1725 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1726 DnsResourceRecord *old_rr, *new_rr;
1727 uint32_t new_ttl;
1728
1729 assert(rr);
1730 old_rr = *rr;
1731
1732 if (old_rr->key->type == DNS_TYPE_OPT)
1733 return -EINVAL;
1734
1735 new_ttl = MIN(old_rr->ttl, max_ttl);
1736 if (new_ttl == old_rr->ttl)
1737 return 0;
1738
1739 if (old_rr->n_ref == 1) {
1740 /* Patch in place */
1741 old_rr->ttl = new_ttl;
1742 return 1;
1743 }
1744
1745 new_rr = dns_resource_record_copy(old_rr);
1746 if (!new_rr)
1747 return -ENOMEM;
1748
1749 new_rr->ttl = new_ttl;
1750
1751 dns_resource_record_unref(*rr);
1752 *rr = new_rr;
1753
1754 return 1;
1755 }
1756
1757 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1758 DnsTxtItem *n;
1759
1760 if (!i)
1761 return NULL;
1762
1763 n = i->items_next;
1764
1765 free(i);
1766 return dns_txt_item_free_all(n);
1767 }
1768
1769 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1770
1771 if (a == b)
1772 return true;
1773
1774 if (!a != !b)
1775 return false;
1776
1777 if (!a)
1778 return true;
1779
1780 if (a->length != b->length)
1781 return false;
1782
1783 if (memcmp(a->data, b->data, a->length) != 0)
1784 return false;
1785
1786 return dns_txt_item_equal(a->items_next, b->items_next);
1787 }
1788
1789 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1790 DnsTxtItem *i, *copy = NULL, *end = NULL;
1791
1792 LIST_FOREACH(items, i, first) {
1793 DnsTxtItem *j;
1794
1795 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1796 if (!j) {
1797 dns_txt_item_free_all(copy);
1798 return NULL;
1799 }
1800
1801 LIST_INSERT_AFTER(items, copy, end, j);
1802 end = j;
1803 }
1804
1805 return copy;
1806 }
1807
1808 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1809 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1810 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1811 [DNSSEC_ALGORITHM_DH] = "DH",
1812 [DNSSEC_ALGORITHM_DSA] = "DSA",
1813 [DNSSEC_ALGORITHM_ECC] = "ECC",
1814 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1815 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1816 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1817 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1818 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1819 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1820 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1821 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1822 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1823 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1824 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1825 };
1826 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1827
1828 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1829 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1830 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1831 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1832 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1833 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1834 };
1835 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);