]> git.ipfire.org Git - thirdparty/u-boot.git/blob - common/dlmalloc.c
Merge branch '2021-02-02-drop-asm_global_data-when-unused'
[thirdparty/u-boot.git] / common / dlmalloc.c
1 #include <common.h>
2 #include <log.h>
3 #include <asm/global_data.h>
4
5 #if CONFIG_IS_ENABLED(UNIT_TEST)
6 #define DEBUG
7 #endif
8
9 #include <malloc.h>
10 #include <asm/io.h>
11
12 #ifdef DEBUG
13 #if __STD_C
14 static void malloc_update_mallinfo (void);
15 void malloc_stats (void);
16 #else
17 static void malloc_update_mallinfo ();
18 void malloc_stats();
19 #endif
20 #endif /* DEBUG */
21
22 DECLARE_GLOBAL_DATA_PTR;
23
24 /*
25 Emulation of sbrk for WIN32
26 All code within the ifdef WIN32 is untested by me.
27
28 Thanks to Martin Fong and others for supplying this.
29 */
30
31
32 #ifdef WIN32
33
34 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
35 ~(malloc_getpagesize-1))
36 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
37
38 /* resrve 64MB to insure large contiguous space */
39 #define RESERVED_SIZE (1024*1024*64)
40 #define NEXT_SIZE (2048*1024)
41 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
42
43 struct GmListElement;
44 typedef struct GmListElement GmListElement;
45
46 struct GmListElement
47 {
48 GmListElement* next;
49 void* base;
50 };
51
52 static GmListElement* head = 0;
53 static unsigned int gNextAddress = 0;
54 static unsigned int gAddressBase = 0;
55 static unsigned int gAllocatedSize = 0;
56
57 static
58 GmListElement* makeGmListElement (void* bas)
59 {
60 GmListElement* this;
61 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
62 assert (this);
63 if (this)
64 {
65 this->base = bas;
66 this->next = head;
67 head = this;
68 }
69 return this;
70 }
71
72 void gcleanup ()
73 {
74 BOOL rval;
75 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
76 if (gAddressBase && (gNextAddress - gAddressBase))
77 {
78 rval = VirtualFree ((void*)gAddressBase,
79 gNextAddress - gAddressBase,
80 MEM_DECOMMIT);
81 assert (rval);
82 }
83 while (head)
84 {
85 GmListElement* next = head->next;
86 rval = VirtualFree (head->base, 0, MEM_RELEASE);
87 assert (rval);
88 LocalFree (head);
89 head = next;
90 }
91 }
92
93 static
94 void* findRegion (void* start_address, unsigned long size)
95 {
96 MEMORY_BASIC_INFORMATION info;
97 if (size >= TOP_MEMORY) return NULL;
98
99 while ((unsigned long)start_address + size < TOP_MEMORY)
100 {
101 VirtualQuery (start_address, &info, sizeof (info));
102 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
103 return start_address;
104 else
105 {
106 /* Requested region is not available so see if the */
107 /* next region is available. Set 'start_address' */
108 /* to the next region and call 'VirtualQuery()' */
109 /* again. */
110
111 start_address = (char*)info.BaseAddress + info.RegionSize;
112
113 /* Make sure we start looking for the next region */
114 /* on the *next* 64K boundary. Otherwise, even if */
115 /* the new region is free according to */
116 /* 'VirtualQuery()', the subsequent call to */
117 /* 'VirtualAlloc()' (which follows the call to */
118 /* this routine in 'wsbrk()') will round *down* */
119 /* the requested address to a 64K boundary which */
120 /* we already know is an address in the */
121 /* unavailable region. Thus, the subsequent call */
122 /* to 'VirtualAlloc()' will fail and bring us back */
123 /* here, causing us to go into an infinite loop. */
124
125 start_address =
126 (void *) AlignPage64K((unsigned long) start_address);
127 }
128 }
129 return NULL;
130
131 }
132
133
134 void* wsbrk (long size)
135 {
136 void* tmp;
137 if (size > 0)
138 {
139 if (gAddressBase == 0)
140 {
141 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
142 gNextAddress = gAddressBase =
143 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
144 MEM_RESERVE, PAGE_NOACCESS);
145 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
146 gAllocatedSize))
147 {
148 long new_size = max (NEXT_SIZE, AlignPage (size));
149 void* new_address = (void*)(gAddressBase+gAllocatedSize);
150 do
151 {
152 new_address = findRegion (new_address, new_size);
153
154 if (!new_address)
155 return (void*)-1;
156
157 gAddressBase = gNextAddress =
158 (unsigned int)VirtualAlloc (new_address, new_size,
159 MEM_RESERVE, PAGE_NOACCESS);
160 /* repeat in case of race condition */
161 /* The region that we found has been snagged */
162 /* by another thread */
163 }
164 while (gAddressBase == 0);
165
166 assert (new_address == (void*)gAddressBase);
167
168 gAllocatedSize = new_size;
169
170 if (!makeGmListElement ((void*)gAddressBase))
171 return (void*)-1;
172 }
173 if ((size + gNextAddress) > AlignPage (gNextAddress))
174 {
175 void* res;
176 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
177 (size + gNextAddress -
178 AlignPage (gNextAddress)),
179 MEM_COMMIT, PAGE_READWRITE);
180 if (!res)
181 return (void*)-1;
182 }
183 tmp = (void*)gNextAddress;
184 gNextAddress = (unsigned int)tmp + size;
185 return tmp;
186 }
187 else if (size < 0)
188 {
189 unsigned int alignedGoal = AlignPage (gNextAddress + size);
190 /* Trim by releasing the virtual memory */
191 if (alignedGoal >= gAddressBase)
192 {
193 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
194 MEM_DECOMMIT);
195 gNextAddress = gNextAddress + size;
196 return (void*)gNextAddress;
197 }
198 else
199 {
200 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
201 MEM_DECOMMIT);
202 gNextAddress = gAddressBase;
203 return (void*)-1;
204 }
205 }
206 else
207 {
208 return (void*)gNextAddress;
209 }
210 }
211
212 #endif
213
214
215
216 /*
217 Type declarations
218 */
219
220
221 struct malloc_chunk
222 {
223 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
224 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
225 struct malloc_chunk* fd; /* double links -- used only if free. */
226 struct malloc_chunk* bk;
227 } __attribute__((__may_alias__)) ;
228
229 typedef struct malloc_chunk* mchunkptr;
230
231 /*
232
233 malloc_chunk details:
234
235 (The following includes lightly edited explanations by Colin Plumb.)
236
237 Chunks of memory are maintained using a `boundary tag' method as
238 described in e.g., Knuth or Standish. (See the paper by Paul
239 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
240 survey of such techniques.) Sizes of free chunks are stored both
241 in the front of each chunk and at the end. This makes
242 consolidating fragmented chunks into bigger chunks very fast. The
243 size fields also hold bits representing whether chunks are free or
244 in use.
245
246 An allocated chunk looks like this:
247
248
249 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
250 | Size of previous chunk, if allocated | |
251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
252 | Size of chunk, in bytes |P|
253 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
254 | User data starts here... .
255 . .
256 . (malloc_usable_space() bytes) .
257 . |
258 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
259 | Size of chunk |
260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
261
262
263 Where "chunk" is the front of the chunk for the purpose of most of
264 the malloc code, but "mem" is the pointer that is returned to the
265 user. "Nextchunk" is the beginning of the next contiguous chunk.
266
267 Chunks always begin on even word boundries, so the mem portion
268 (which is returned to the user) is also on an even word boundary, and
269 thus double-word aligned.
270
271 Free chunks are stored in circular doubly-linked lists, and look like this:
272
273 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
274 | Size of previous chunk |
275 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
276 `head:' | Size of chunk, in bytes |P|
277 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
278 | Forward pointer to next chunk in list |
279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
280 | Back pointer to previous chunk in list |
281 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
282 | Unused space (may be 0 bytes long) .
283 . .
284 . |
285
286 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
287 `foot:' | Size of chunk, in bytes |
288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
289
290 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
291 chunk size (which is always a multiple of two words), is an in-use
292 bit for the *previous* chunk. If that bit is *clear*, then the
293 word before the current chunk size contains the previous chunk
294 size, and can be used to find the front of the previous chunk.
295 (The very first chunk allocated always has this bit set,
296 preventing access to non-existent (or non-owned) memory.)
297
298 Note that the `foot' of the current chunk is actually represented
299 as the prev_size of the NEXT chunk. (This makes it easier to
300 deal with alignments etc).
301
302 The two exceptions to all this are
303
304 1. The special chunk `top', which doesn't bother using the
305 trailing size field since there is no
306 next contiguous chunk that would have to index off it. (After
307 initialization, `top' is forced to always exist. If it would
308 become less than MINSIZE bytes long, it is replenished via
309 malloc_extend_top.)
310
311 2. Chunks allocated via mmap, which have the second-lowest-order
312 bit (IS_MMAPPED) set in their size fields. Because they are
313 never merged or traversed from any other chunk, they have no
314 foot size or inuse information.
315
316 Available chunks are kept in any of several places (all declared below):
317
318 * `av': An array of chunks serving as bin headers for consolidated
319 chunks. Each bin is doubly linked. The bins are approximately
320 proportionally (log) spaced. There are a lot of these bins
321 (128). This may look excessive, but works very well in
322 practice. All procedures maintain the invariant that no
323 consolidated chunk physically borders another one. Chunks in
324 bins are kept in size order, with ties going to the
325 approximately least recently used chunk.
326
327 The chunks in each bin are maintained in decreasing sorted order by
328 size. This is irrelevant for the small bins, which all contain
329 the same-sized chunks, but facilitates best-fit allocation for
330 larger chunks. (These lists are just sequential. Keeping them in
331 order almost never requires enough traversal to warrant using
332 fancier ordered data structures.) Chunks of the same size are
333 linked with the most recently freed at the front, and allocations
334 are taken from the back. This results in LRU or FIFO allocation
335 order, which tends to give each chunk an equal opportunity to be
336 consolidated with adjacent freed chunks, resulting in larger free
337 chunks and less fragmentation.
338
339 * `top': The top-most available chunk (i.e., the one bordering the
340 end of available memory) is treated specially. It is never
341 included in any bin, is used only if no other chunk is
342 available, and is released back to the system if it is very
343 large (see M_TRIM_THRESHOLD).
344
345 * `last_remainder': A bin holding only the remainder of the
346 most recently split (non-top) chunk. This bin is checked
347 before other non-fitting chunks, so as to provide better
348 locality for runs of sequentially allocated chunks.
349
350 * Implicitly, through the host system's memory mapping tables.
351 If supported, requests greater than a threshold are usually
352 serviced via calls to mmap, and then later released via munmap.
353
354 */
355
356 /* sizes, alignments */
357
358 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
359 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
360 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
361 #define MINSIZE (sizeof(struct malloc_chunk))
362
363 /* conversion from malloc headers to user pointers, and back */
364
365 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
366 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
367
368 /* pad request bytes into a usable size */
369
370 #define request2size(req) \
371 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
372 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
373 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
374
375 /* Check if m has acceptable alignment */
376
377 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
378
379
380
381
382 /*
383 Physical chunk operations
384 */
385
386
387 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
388
389 #define PREV_INUSE 0x1
390
391 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
392
393 #define IS_MMAPPED 0x2
394
395 /* Bits to mask off when extracting size */
396
397 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
398
399
400 /* Ptr to next physical malloc_chunk. */
401
402 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
403
404 /* Ptr to previous physical malloc_chunk */
405
406 #define prev_chunk(p)\
407 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
408
409
410 /* Treat space at ptr + offset as a chunk */
411
412 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
413
414
415
416
417 /*
418 Dealing with use bits
419 */
420
421 /* extract p's inuse bit */
422
423 #define inuse(p)\
424 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
425
426 /* extract inuse bit of previous chunk */
427
428 #define prev_inuse(p) ((p)->size & PREV_INUSE)
429
430 /* check for mmap()'ed chunk */
431
432 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
433
434 /* set/clear chunk as in use without otherwise disturbing */
435
436 #define set_inuse(p)\
437 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
438
439 #define clear_inuse(p)\
440 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
441
442 /* check/set/clear inuse bits in known places */
443
444 #define inuse_bit_at_offset(p, s)\
445 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
446
447 #define set_inuse_bit_at_offset(p, s)\
448 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
449
450 #define clear_inuse_bit_at_offset(p, s)\
451 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
452
453
454
455
456 /*
457 Dealing with size fields
458 */
459
460 /* Get size, ignoring use bits */
461
462 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
463
464 /* Set size at head, without disturbing its use bit */
465
466 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
467
468 /* Set size/use ignoring previous bits in header */
469
470 #define set_head(p, s) ((p)->size = (s))
471
472 /* Set size at footer (only when chunk is not in use) */
473
474 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
475
476
477
478
479
480 /*
481 Bins
482
483 The bins, `av_' are an array of pairs of pointers serving as the
484 heads of (initially empty) doubly-linked lists of chunks, laid out
485 in a way so that each pair can be treated as if it were in a
486 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
487 and chunks are the same).
488
489 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
490 8 bytes apart. Larger bins are approximately logarithmically
491 spaced. (See the table below.) The `av_' array is never mentioned
492 directly in the code, but instead via bin access macros.
493
494 Bin layout:
495
496 64 bins of size 8
497 32 bins of size 64
498 16 bins of size 512
499 8 bins of size 4096
500 4 bins of size 32768
501 2 bins of size 262144
502 1 bin of size what's left
503
504 There is actually a little bit of slop in the numbers in bin_index
505 for the sake of speed. This makes no difference elsewhere.
506
507 The special chunks `top' and `last_remainder' get their own bins,
508 (this is implemented via yet more trickery with the av_ array),
509 although `top' is never properly linked to its bin since it is
510 always handled specially.
511
512 */
513
514 #define NAV 128 /* number of bins */
515
516 typedef struct malloc_chunk* mbinptr;
517
518 /* access macros */
519
520 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
521 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
522 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
523
524 /*
525 The first 2 bins are never indexed. The corresponding av_ cells are instead
526 used for bookkeeping. This is not to save space, but to simplify
527 indexing, maintain locality, and avoid some initialization tests.
528 */
529
530 #define top (av_[2]) /* The topmost chunk */
531 #define last_remainder (bin_at(1)) /* remainder from last split */
532
533
534 /*
535 Because top initially points to its own bin with initial
536 zero size, thus forcing extension on the first malloc request,
537 we avoid having any special code in malloc to check whether
538 it even exists yet. But we still need to in malloc_extend_top.
539 */
540
541 #define initial_top ((mchunkptr)(bin_at(0)))
542
543 /* Helper macro to initialize bins */
544
545 #define IAV(i) bin_at(i), bin_at(i)
546
547 static mbinptr av_[NAV * 2 + 2] = {
548 NULL, NULL,
549 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
550 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
551 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
552 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
553 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
554 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
555 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
556 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
557 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
558 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
559 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
560 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
561 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
562 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
563 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
564 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
565 };
566
567 #ifdef CONFIG_NEEDS_MANUAL_RELOC
568 static void malloc_bin_reloc(void)
569 {
570 mbinptr *p = &av_[2];
571 size_t i;
572
573 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
574 *p = (mbinptr)((ulong)*p + gd->reloc_off);
575 }
576 #else
577 static inline void malloc_bin_reloc(void) {}
578 #endif
579
580 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
581 static void malloc_init(void);
582 #endif
583
584 ulong mem_malloc_start = 0;
585 ulong mem_malloc_end = 0;
586 ulong mem_malloc_brk = 0;
587
588 void *sbrk(ptrdiff_t increment)
589 {
590 ulong old = mem_malloc_brk;
591 ulong new = old + increment;
592
593 /*
594 * if we are giving memory back make sure we clear it out since
595 * we set MORECORE_CLEARS to 1
596 */
597 if (increment < 0)
598 memset((void *)new, 0, -increment);
599
600 if ((new < mem_malloc_start) || (new > mem_malloc_end))
601 return (void *)MORECORE_FAILURE;
602
603 mem_malloc_brk = new;
604
605 return (void *)old;
606 }
607
608 void mem_malloc_init(ulong start, ulong size)
609 {
610 mem_malloc_start = start;
611 mem_malloc_end = start + size;
612 mem_malloc_brk = start;
613
614 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
615 malloc_init();
616 #endif
617
618 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
619 mem_malloc_end);
620 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
621 memset((void *)mem_malloc_start, 0x0, size);
622 #endif
623 malloc_bin_reloc();
624 }
625
626 /* field-extraction macros */
627
628 #define first(b) ((b)->fd)
629 #define last(b) ((b)->bk)
630
631 /*
632 Indexing into bins
633 */
634
635 #define bin_index(sz) \
636 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
637 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
638 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
639 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
640 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
641 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
642 126)
643 /*
644 bins for chunks < 512 are all spaced 8 bytes apart, and hold
645 identically sized chunks. This is exploited in malloc.
646 */
647
648 #define MAX_SMALLBIN 63
649 #define MAX_SMALLBIN_SIZE 512
650 #define SMALLBIN_WIDTH 8
651
652 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
653
654 /*
655 Requests are `small' if both the corresponding and the next bin are small
656 */
657
658 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
659
660
661
662 /*
663 To help compensate for the large number of bins, a one-level index
664 structure is used for bin-by-bin searching. `binblocks' is a
665 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
666 have any (possibly) non-empty bins, so they can be skipped over
667 all at once during during traversals. The bits are NOT always
668 cleared as soon as all bins in a block are empty, but instead only
669 when all are noticed to be empty during traversal in malloc.
670 */
671
672 #define BINBLOCKWIDTH 4 /* bins per block */
673
674 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
675 #define binblocks_w (av_[1])
676
677 /* bin<->block macros */
678
679 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
680 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
681 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
682
683
684
685
686
687 /* Other static bookkeeping data */
688
689 /* variables holding tunable values */
690
691 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
692 static unsigned long top_pad = DEFAULT_TOP_PAD;
693 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
694 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
695
696 /* The first value returned from sbrk */
697 static char* sbrk_base = (char*)(-1);
698
699 /* The maximum memory obtained from system via sbrk */
700 static unsigned long max_sbrked_mem = 0;
701
702 /* The maximum via either sbrk or mmap */
703 static unsigned long max_total_mem = 0;
704
705 /* internal working copy of mallinfo */
706 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
707
708 /* The total memory obtained from system via sbrk */
709 #define sbrked_mem (current_mallinfo.arena)
710
711 /* Tracking mmaps */
712
713 #ifdef DEBUG
714 static unsigned int n_mmaps = 0;
715 #endif /* DEBUG */
716 static unsigned long mmapped_mem = 0;
717 #if HAVE_MMAP
718 static unsigned int max_n_mmaps = 0;
719 static unsigned long max_mmapped_mem = 0;
720 #endif
721
722 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
723 static void malloc_init(void)
724 {
725 int i, j;
726
727 debug("bins (av_ array) are at %p\n", (void *)av_);
728
729 av_[0] = NULL; av_[1] = NULL;
730 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
731 av_[i] = bin_at(j - 2);
732 av_[i + 1] = bin_at(j - 2);
733
734 /* Just print the first few bins so that
735 * we can see there are alright.
736 */
737 if (i < 10)
738 debug("av_[%d]=%lx av_[%d]=%lx\n",
739 i, (ulong)av_[i],
740 i + 1, (ulong)av_[i + 1]);
741 }
742
743 /* Init the static bookkeeping as well */
744 sbrk_base = (char *)(-1);
745 max_sbrked_mem = 0;
746 max_total_mem = 0;
747 #ifdef DEBUG
748 memset((void *)&current_mallinfo, 0, sizeof(struct mallinfo));
749 #endif
750 }
751 #endif
752
753 /*
754 Debugging support
755 */
756
757 #ifdef DEBUG
758
759
760 /*
761 These routines make a number of assertions about the states
762 of data structures that should be true at all times. If any
763 are not true, it's very likely that a user program has somehow
764 trashed memory. (It's also possible that there is a coding error
765 in malloc. In which case, please report it!)
766 */
767
768 #if __STD_C
769 static void do_check_chunk(mchunkptr p)
770 #else
771 static void do_check_chunk(p) mchunkptr p;
772 #endif
773 {
774 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
775
776 /* No checkable chunk is mmapped */
777 assert(!chunk_is_mmapped(p));
778
779 /* Check for legal address ... */
780 assert((char*)p >= sbrk_base);
781 if (p != top)
782 assert((char*)p + sz <= (char*)top);
783 else
784 assert((char*)p + sz <= sbrk_base + sbrked_mem);
785
786 }
787
788
789 #if __STD_C
790 static void do_check_free_chunk(mchunkptr p)
791 #else
792 static void do_check_free_chunk(p) mchunkptr p;
793 #endif
794 {
795 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
796 mchunkptr next = chunk_at_offset(p, sz);
797
798 do_check_chunk(p);
799
800 /* Check whether it claims to be free ... */
801 assert(!inuse(p));
802
803 /* Unless a special marker, must have OK fields */
804 if ((long)sz >= (long)MINSIZE)
805 {
806 assert((sz & MALLOC_ALIGN_MASK) == 0);
807 assert(aligned_OK(chunk2mem(p)));
808 /* ... matching footer field */
809 assert(next->prev_size == sz);
810 /* ... and is fully consolidated */
811 assert(prev_inuse(p));
812 assert (next == top || inuse(next));
813
814 /* ... and has minimally sane links */
815 assert(p->fd->bk == p);
816 assert(p->bk->fd == p);
817 }
818 else /* markers are always of size SIZE_SZ */
819 assert(sz == SIZE_SZ);
820 }
821
822 #if __STD_C
823 static void do_check_inuse_chunk(mchunkptr p)
824 #else
825 static void do_check_inuse_chunk(p) mchunkptr p;
826 #endif
827 {
828 mchunkptr next = next_chunk(p);
829 do_check_chunk(p);
830
831 /* Check whether it claims to be in use ... */
832 assert(inuse(p));
833
834 /* ... and is surrounded by OK chunks.
835 Since more things can be checked with free chunks than inuse ones,
836 if an inuse chunk borders them and debug is on, it's worth doing them.
837 */
838 if (!prev_inuse(p))
839 {
840 mchunkptr prv = prev_chunk(p);
841 assert(next_chunk(prv) == p);
842 do_check_free_chunk(prv);
843 }
844 if (next == top)
845 {
846 assert(prev_inuse(next));
847 assert(chunksize(next) >= MINSIZE);
848 }
849 else if (!inuse(next))
850 do_check_free_chunk(next);
851
852 }
853
854 #if __STD_C
855 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
856 #else
857 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
858 #endif
859 {
860 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
861 long room = sz - s;
862
863 do_check_inuse_chunk(p);
864
865 /* Legal size ... */
866 assert((long)sz >= (long)MINSIZE);
867 assert((sz & MALLOC_ALIGN_MASK) == 0);
868 assert(room >= 0);
869 assert(room < (long)MINSIZE);
870
871 /* ... and alignment */
872 assert(aligned_OK(chunk2mem(p)));
873
874
875 /* ... and was allocated at front of an available chunk */
876 assert(prev_inuse(p));
877
878 }
879
880
881 #define check_free_chunk(P) do_check_free_chunk(P)
882 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
883 #define check_chunk(P) do_check_chunk(P)
884 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
885 #else
886 #define check_free_chunk(P)
887 #define check_inuse_chunk(P)
888 #define check_chunk(P)
889 #define check_malloced_chunk(P,N)
890 #endif
891
892
893
894 /*
895 Macro-based internal utilities
896 */
897
898
899 /*
900 Linking chunks in bin lists.
901 Call these only with variables, not arbitrary expressions, as arguments.
902 */
903
904 /*
905 Place chunk p of size s in its bin, in size order,
906 putting it ahead of others of same size.
907 */
908
909
910 #define frontlink(P, S, IDX, BK, FD) \
911 { \
912 if (S < MAX_SMALLBIN_SIZE) \
913 { \
914 IDX = smallbin_index(S); \
915 mark_binblock(IDX); \
916 BK = bin_at(IDX); \
917 FD = BK->fd; \
918 P->bk = BK; \
919 P->fd = FD; \
920 FD->bk = BK->fd = P; \
921 } \
922 else \
923 { \
924 IDX = bin_index(S); \
925 BK = bin_at(IDX); \
926 FD = BK->fd; \
927 if (FD == BK) mark_binblock(IDX); \
928 else \
929 { \
930 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
931 BK = FD->bk; \
932 } \
933 P->bk = BK; \
934 P->fd = FD; \
935 FD->bk = BK->fd = P; \
936 } \
937 }
938
939
940 /* take a chunk off a list */
941
942 #define unlink(P, BK, FD) \
943 { \
944 BK = P->bk; \
945 FD = P->fd; \
946 FD->bk = BK; \
947 BK->fd = FD; \
948 } \
949
950 /* Place p as the last remainder */
951
952 #define link_last_remainder(P) \
953 { \
954 last_remainder->fd = last_remainder->bk = P; \
955 P->fd = P->bk = last_remainder; \
956 }
957
958 /* Clear the last_remainder bin */
959
960 #define clear_last_remainder \
961 (last_remainder->fd = last_remainder->bk = last_remainder)
962
963
964
965
966
967 /* Routines dealing with mmap(). */
968
969 #if HAVE_MMAP
970
971 #if __STD_C
972 static mchunkptr mmap_chunk(size_t size)
973 #else
974 static mchunkptr mmap_chunk(size) size_t size;
975 #endif
976 {
977 size_t page_mask = malloc_getpagesize - 1;
978 mchunkptr p;
979
980 #ifndef MAP_ANONYMOUS
981 static int fd = -1;
982 #endif
983
984 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
985
986 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
987 * there is no following chunk whose prev_size field could be used.
988 */
989 size = (size + SIZE_SZ + page_mask) & ~page_mask;
990
991 #ifdef MAP_ANONYMOUS
992 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
993 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
994 #else /* !MAP_ANONYMOUS */
995 if (fd < 0)
996 {
997 fd = open("/dev/zero", O_RDWR);
998 if(fd < 0) return 0;
999 }
1000 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1001 #endif
1002
1003 if(p == (mchunkptr)-1) return 0;
1004
1005 n_mmaps++;
1006 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1007
1008 /* We demand that eight bytes into a page must be 8-byte aligned. */
1009 assert(aligned_OK(chunk2mem(p)));
1010
1011 /* The offset to the start of the mmapped region is stored
1012 * in the prev_size field of the chunk; normally it is zero,
1013 * but that can be changed in memalign().
1014 */
1015 p->prev_size = 0;
1016 set_head(p, size|IS_MMAPPED);
1017
1018 mmapped_mem += size;
1019 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1020 max_mmapped_mem = mmapped_mem;
1021 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1022 max_total_mem = mmapped_mem + sbrked_mem;
1023 return p;
1024 }
1025
1026 #if __STD_C
1027 static void munmap_chunk(mchunkptr p)
1028 #else
1029 static void munmap_chunk(p) mchunkptr p;
1030 #endif
1031 {
1032 INTERNAL_SIZE_T size = chunksize(p);
1033 int ret;
1034
1035 assert (chunk_is_mmapped(p));
1036 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1037 assert((n_mmaps > 0));
1038 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1039
1040 n_mmaps--;
1041 mmapped_mem -= (size + p->prev_size);
1042
1043 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1044
1045 /* munmap returns non-zero on failure */
1046 assert(ret == 0);
1047 }
1048
1049 #if HAVE_MREMAP
1050
1051 #if __STD_C
1052 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1053 #else
1054 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1055 #endif
1056 {
1057 size_t page_mask = malloc_getpagesize - 1;
1058 INTERNAL_SIZE_T offset = p->prev_size;
1059 INTERNAL_SIZE_T size = chunksize(p);
1060 char *cp;
1061
1062 assert (chunk_is_mmapped(p));
1063 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1064 assert((n_mmaps > 0));
1065 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1066
1067 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1068 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1069
1070 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1071
1072 if (cp == (char *)-1) return 0;
1073
1074 p = (mchunkptr)(cp + offset);
1075
1076 assert(aligned_OK(chunk2mem(p)));
1077
1078 assert((p->prev_size == offset));
1079 set_head(p, (new_size - offset)|IS_MMAPPED);
1080
1081 mmapped_mem -= size + offset;
1082 mmapped_mem += new_size;
1083 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1084 max_mmapped_mem = mmapped_mem;
1085 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1086 max_total_mem = mmapped_mem + sbrked_mem;
1087 return p;
1088 }
1089
1090 #endif /* HAVE_MREMAP */
1091
1092 #endif /* HAVE_MMAP */
1093
1094 /*
1095 Extend the top-most chunk by obtaining memory from system.
1096 Main interface to sbrk (but see also malloc_trim).
1097 */
1098
1099 #if __STD_C
1100 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1101 #else
1102 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1103 #endif
1104 {
1105 char* brk; /* return value from sbrk */
1106 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1107 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1108 char* new_brk; /* return of 2nd sbrk call */
1109 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1110
1111 mchunkptr old_top = top; /* Record state of old top */
1112 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1113 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1114
1115 /* Pad request with top_pad plus minimal overhead */
1116
1117 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1118 unsigned long pagesz = malloc_getpagesize;
1119
1120 /* If not the first time through, round to preserve page boundary */
1121 /* Otherwise, we need to correct to a page size below anyway. */
1122 /* (We also correct below if an intervening foreign sbrk call.) */
1123
1124 if (sbrk_base != (char*)(-1))
1125 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1126
1127 brk = (char*)(MORECORE (sbrk_size));
1128
1129 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1130 if (brk == (char*)(MORECORE_FAILURE) ||
1131 (brk < old_end && old_top != initial_top))
1132 return;
1133
1134 sbrked_mem += sbrk_size;
1135
1136 if (brk == old_end) /* can just add bytes to current top */
1137 {
1138 top_size = sbrk_size + old_top_size;
1139 set_head(top, top_size | PREV_INUSE);
1140 }
1141 else
1142 {
1143 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1144 sbrk_base = brk;
1145 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1146 sbrked_mem += brk - (char*)old_end;
1147
1148 /* Guarantee alignment of first new chunk made from this space */
1149 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1150 if (front_misalign > 0)
1151 {
1152 correction = (MALLOC_ALIGNMENT) - front_misalign;
1153 brk += correction;
1154 }
1155 else
1156 correction = 0;
1157
1158 /* Guarantee the next brk will be at a page boundary */
1159
1160 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1161 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1162
1163 /* Allocate correction */
1164 new_brk = (char*)(MORECORE (correction));
1165 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1166
1167 sbrked_mem += correction;
1168
1169 top = (mchunkptr)brk;
1170 top_size = new_brk - brk + correction;
1171 set_head(top, top_size | PREV_INUSE);
1172
1173 if (old_top != initial_top)
1174 {
1175
1176 /* There must have been an intervening foreign sbrk call. */
1177 /* A double fencepost is necessary to prevent consolidation */
1178
1179 /* If not enough space to do this, then user did something very wrong */
1180 if (old_top_size < MINSIZE)
1181 {
1182 set_head(top, PREV_INUSE); /* will force null return from malloc */
1183 return;
1184 }
1185
1186 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1187 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1188 set_head_size(old_top, old_top_size);
1189 chunk_at_offset(old_top, old_top_size )->size =
1190 SIZE_SZ|PREV_INUSE;
1191 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1192 SIZE_SZ|PREV_INUSE;
1193 /* If possible, release the rest. */
1194 if (old_top_size >= MINSIZE)
1195 fREe(chunk2mem(old_top));
1196 }
1197 }
1198
1199 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1200 max_sbrked_mem = sbrked_mem;
1201 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1202 max_total_mem = mmapped_mem + sbrked_mem;
1203
1204 /* We always land on a page boundary */
1205 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1206 }
1207
1208
1209
1210
1211 /* Main public routines */
1212
1213
1214 /*
1215 Malloc Algorthim:
1216
1217 The requested size is first converted into a usable form, `nb'.
1218 This currently means to add 4 bytes overhead plus possibly more to
1219 obtain 8-byte alignment and/or to obtain a size of at least
1220 MINSIZE (currently 16 bytes), the smallest allocatable size.
1221 (All fits are considered `exact' if they are within MINSIZE bytes.)
1222
1223 From there, the first successful of the following steps is taken:
1224
1225 1. The bin corresponding to the request size is scanned, and if
1226 a chunk of exactly the right size is found, it is taken.
1227
1228 2. The most recently remaindered chunk is used if it is big
1229 enough. This is a form of (roving) first fit, used only in
1230 the absence of exact fits. Runs of consecutive requests use
1231 the remainder of the chunk used for the previous such request
1232 whenever possible. This limited use of a first-fit style
1233 allocation strategy tends to give contiguous chunks
1234 coextensive lifetimes, which improves locality and can reduce
1235 fragmentation in the long run.
1236
1237 3. Other bins are scanned in increasing size order, using a
1238 chunk big enough to fulfill the request, and splitting off
1239 any remainder. This search is strictly by best-fit; i.e.,
1240 the smallest (with ties going to approximately the least
1241 recently used) chunk that fits is selected.
1242
1243 4. If large enough, the chunk bordering the end of memory
1244 (`top') is split off. (This use of `top' is in accord with
1245 the best-fit search rule. In effect, `top' is treated as
1246 larger (and thus less well fitting) than any other available
1247 chunk since it can be extended to be as large as necessary
1248 (up to system limitations).
1249
1250 5. If the request size meets the mmap threshold and the
1251 system supports mmap, and there are few enough currently
1252 allocated mmapped regions, and a call to mmap succeeds,
1253 the request is allocated via direct memory mapping.
1254
1255 6. Otherwise, the top of memory is extended by
1256 obtaining more space from the system (normally using sbrk,
1257 but definable to anything else via the MORECORE macro).
1258 Memory is gathered from the system (in system page-sized
1259 units) in a way that allows chunks obtained across different
1260 sbrk calls to be consolidated, but does not require
1261 contiguous memory. Thus, it should be safe to intersperse
1262 mallocs with other sbrk calls.
1263
1264
1265 All allocations are made from the the `lowest' part of any found
1266 chunk. (The implementation invariant is that prev_inuse is
1267 always true of any allocated chunk; i.e., that each allocated
1268 chunk borders either a previously allocated and still in-use chunk,
1269 or the base of its memory arena.)
1270
1271 */
1272
1273 #if __STD_C
1274 Void_t* mALLOc(size_t bytes)
1275 #else
1276 Void_t* mALLOc(bytes) size_t bytes;
1277 #endif
1278 {
1279 mchunkptr victim; /* inspected/selected chunk */
1280 INTERNAL_SIZE_T victim_size; /* its size */
1281 int idx; /* index for bin traversal */
1282 mbinptr bin; /* associated bin */
1283 mchunkptr remainder; /* remainder from a split */
1284 long remainder_size; /* its size */
1285 int remainder_index; /* its bin index */
1286 unsigned long block; /* block traverser bit */
1287 int startidx; /* first bin of a traversed block */
1288 mchunkptr fwd; /* misc temp for linking */
1289 mchunkptr bck; /* misc temp for linking */
1290 mbinptr q; /* misc temp */
1291
1292 INTERNAL_SIZE_T nb;
1293
1294 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1295 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1296 return malloc_simple(bytes);
1297 #endif
1298
1299 /* check if mem_malloc_init() was run */
1300 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1301 /* not initialized yet */
1302 return NULL;
1303 }
1304
1305 if ((long)bytes < 0) return NULL;
1306
1307 nb = request2size(bytes); /* padded request size; */
1308
1309 /* Check for exact match in a bin */
1310
1311 if (is_small_request(nb)) /* Faster version for small requests */
1312 {
1313 idx = smallbin_index(nb);
1314
1315 /* No traversal or size check necessary for small bins. */
1316
1317 q = bin_at(idx);
1318 victim = last(q);
1319
1320 /* Also scan the next one, since it would have a remainder < MINSIZE */
1321 if (victim == q)
1322 {
1323 q = next_bin(q);
1324 victim = last(q);
1325 }
1326 if (victim != q)
1327 {
1328 victim_size = chunksize(victim);
1329 unlink(victim, bck, fwd);
1330 set_inuse_bit_at_offset(victim, victim_size);
1331 check_malloced_chunk(victim, nb);
1332 return chunk2mem(victim);
1333 }
1334
1335 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1336
1337 }
1338 else
1339 {
1340 idx = bin_index(nb);
1341 bin = bin_at(idx);
1342
1343 for (victim = last(bin); victim != bin; victim = victim->bk)
1344 {
1345 victim_size = chunksize(victim);
1346 remainder_size = victim_size - nb;
1347
1348 if (remainder_size >= (long)MINSIZE) /* too big */
1349 {
1350 --idx; /* adjust to rescan below after checking last remainder */
1351 break;
1352 }
1353
1354 else if (remainder_size >= 0) /* exact fit */
1355 {
1356 unlink(victim, bck, fwd);
1357 set_inuse_bit_at_offset(victim, victim_size);
1358 check_malloced_chunk(victim, nb);
1359 return chunk2mem(victim);
1360 }
1361 }
1362
1363 ++idx;
1364
1365 }
1366
1367 /* Try to use the last split-off remainder */
1368
1369 if ( (victim = last_remainder->fd) != last_remainder)
1370 {
1371 victim_size = chunksize(victim);
1372 remainder_size = victim_size - nb;
1373
1374 if (remainder_size >= (long)MINSIZE) /* re-split */
1375 {
1376 remainder = chunk_at_offset(victim, nb);
1377 set_head(victim, nb | PREV_INUSE);
1378 link_last_remainder(remainder);
1379 set_head(remainder, remainder_size | PREV_INUSE);
1380 set_foot(remainder, remainder_size);
1381 check_malloced_chunk(victim, nb);
1382 return chunk2mem(victim);
1383 }
1384
1385 clear_last_remainder;
1386
1387 if (remainder_size >= 0) /* exhaust */
1388 {
1389 set_inuse_bit_at_offset(victim, victim_size);
1390 check_malloced_chunk(victim, nb);
1391 return chunk2mem(victim);
1392 }
1393
1394 /* Else place in bin */
1395
1396 frontlink(victim, victim_size, remainder_index, bck, fwd);
1397 }
1398
1399 /*
1400 If there are any possibly nonempty big-enough blocks,
1401 search for best fitting chunk by scanning bins in blockwidth units.
1402 */
1403
1404 if ( (block = idx2binblock(idx)) <= binblocks_r)
1405 {
1406
1407 /* Get to the first marked block */
1408
1409 if ( (block & binblocks_r) == 0)
1410 {
1411 /* force to an even block boundary */
1412 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1413 block <<= 1;
1414 while ((block & binblocks_r) == 0)
1415 {
1416 idx += BINBLOCKWIDTH;
1417 block <<= 1;
1418 }
1419 }
1420
1421 /* For each possibly nonempty block ... */
1422 for (;;)
1423 {
1424 startidx = idx; /* (track incomplete blocks) */
1425 q = bin = bin_at(idx);
1426
1427 /* For each bin in this block ... */
1428 do
1429 {
1430 /* Find and use first big enough chunk ... */
1431
1432 for (victim = last(bin); victim != bin; victim = victim->bk)
1433 {
1434 victim_size = chunksize(victim);
1435 remainder_size = victim_size - nb;
1436
1437 if (remainder_size >= (long)MINSIZE) /* split */
1438 {
1439 remainder = chunk_at_offset(victim, nb);
1440 set_head(victim, nb | PREV_INUSE);
1441 unlink(victim, bck, fwd);
1442 link_last_remainder(remainder);
1443 set_head(remainder, remainder_size | PREV_INUSE);
1444 set_foot(remainder, remainder_size);
1445 check_malloced_chunk(victim, nb);
1446 return chunk2mem(victim);
1447 }
1448
1449 else if (remainder_size >= 0) /* take */
1450 {
1451 set_inuse_bit_at_offset(victim, victim_size);
1452 unlink(victim, bck, fwd);
1453 check_malloced_chunk(victim, nb);
1454 return chunk2mem(victim);
1455 }
1456
1457 }
1458
1459 bin = next_bin(bin);
1460
1461 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1462
1463 /* Clear out the block bit. */
1464
1465 do /* Possibly backtrack to try to clear a partial block */
1466 {
1467 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1468 {
1469 av_[1] = (mbinptr)(binblocks_r & ~block);
1470 break;
1471 }
1472 --startidx;
1473 q = prev_bin(q);
1474 } while (first(q) == q);
1475
1476 /* Get to the next possibly nonempty block */
1477
1478 if ( (block <<= 1) <= binblocks_r && (block != 0) )
1479 {
1480 while ((block & binblocks_r) == 0)
1481 {
1482 idx += BINBLOCKWIDTH;
1483 block <<= 1;
1484 }
1485 }
1486 else
1487 break;
1488 }
1489 }
1490
1491
1492 /* Try to use top chunk */
1493
1494 /* Require that there be a remainder, ensuring top always exists */
1495 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1496 {
1497
1498 #if HAVE_MMAP
1499 /* If big and would otherwise need to extend, try to use mmap instead */
1500 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1501 (victim = mmap_chunk(nb)))
1502 return chunk2mem(victim);
1503 #endif
1504
1505 /* Try to extend */
1506 malloc_extend_top(nb);
1507 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1508 return NULL; /* propagate failure */
1509 }
1510
1511 victim = top;
1512 set_head(victim, nb | PREV_INUSE);
1513 top = chunk_at_offset(victim, nb);
1514 set_head(top, remainder_size | PREV_INUSE);
1515 check_malloced_chunk(victim, nb);
1516 return chunk2mem(victim);
1517
1518 }
1519
1520
1521
1522
1523 /*
1524
1525 free() algorithm :
1526
1527 cases:
1528
1529 1. free(0) has no effect.
1530
1531 2. If the chunk was allocated via mmap, it is release via munmap().
1532
1533 3. If a returned chunk borders the current high end of memory,
1534 it is consolidated into the top, and if the total unused
1535 topmost memory exceeds the trim threshold, malloc_trim is
1536 called.
1537
1538 4. Other chunks are consolidated as they arrive, and
1539 placed in corresponding bins. (This includes the case of
1540 consolidating with the current `last_remainder').
1541
1542 */
1543
1544
1545 #if __STD_C
1546 void fREe(Void_t* mem)
1547 #else
1548 void fREe(mem) Void_t* mem;
1549 #endif
1550 {
1551 mchunkptr p; /* chunk corresponding to mem */
1552 INTERNAL_SIZE_T hd; /* its head field */
1553 INTERNAL_SIZE_T sz; /* its size */
1554 int idx; /* its bin index */
1555 mchunkptr next; /* next contiguous chunk */
1556 INTERNAL_SIZE_T nextsz; /* its size */
1557 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1558 mchunkptr bck; /* misc temp for linking */
1559 mchunkptr fwd; /* misc temp for linking */
1560 int islr; /* track whether merging with last_remainder */
1561
1562 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1563 /* free() is a no-op - all the memory will be freed on relocation */
1564 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1565 return;
1566 #endif
1567
1568 if (mem == NULL) /* free(0) has no effect */
1569 return;
1570
1571 p = mem2chunk(mem);
1572 hd = p->size;
1573
1574 #if HAVE_MMAP
1575 if (hd & IS_MMAPPED) /* release mmapped memory. */
1576 {
1577 munmap_chunk(p);
1578 return;
1579 }
1580 #endif
1581
1582 check_inuse_chunk(p);
1583
1584 sz = hd & ~PREV_INUSE;
1585 next = chunk_at_offset(p, sz);
1586 nextsz = chunksize(next);
1587
1588 if (next == top) /* merge with top */
1589 {
1590 sz += nextsz;
1591
1592 if (!(hd & PREV_INUSE)) /* consolidate backward */
1593 {
1594 prevsz = p->prev_size;
1595 p = chunk_at_offset(p, -((long) prevsz));
1596 sz += prevsz;
1597 unlink(p, bck, fwd);
1598 }
1599
1600 set_head(p, sz | PREV_INUSE);
1601 top = p;
1602 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1603 malloc_trim(top_pad);
1604 return;
1605 }
1606
1607 set_head(next, nextsz); /* clear inuse bit */
1608
1609 islr = 0;
1610
1611 if (!(hd & PREV_INUSE)) /* consolidate backward */
1612 {
1613 prevsz = p->prev_size;
1614 p = chunk_at_offset(p, -((long) prevsz));
1615 sz += prevsz;
1616
1617 if (p->fd == last_remainder) /* keep as last_remainder */
1618 islr = 1;
1619 else
1620 unlink(p, bck, fwd);
1621 }
1622
1623 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1624 {
1625 sz += nextsz;
1626
1627 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1628 {
1629 islr = 1;
1630 link_last_remainder(p);
1631 }
1632 else
1633 unlink(next, bck, fwd);
1634 }
1635
1636
1637 set_head(p, sz | PREV_INUSE);
1638 set_foot(p, sz);
1639 if (!islr)
1640 frontlink(p, sz, idx, bck, fwd);
1641 }
1642
1643
1644
1645
1646
1647 /*
1648
1649 Realloc algorithm:
1650
1651 Chunks that were obtained via mmap cannot be extended or shrunk
1652 unless HAVE_MREMAP is defined, in which case mremap is used.
1653 Otherwise, if their reallocation is for additional space, they are
1654 copied. If for less, they are just left alone.
1655
1656 Otherwise, if the reallocation is for additional space, and the
1657 chunk can be extended, it is, else a malloc-copy-free sequence is
1658 taken. There are several different ways that a chunk could be
1659 extended. All are tried:
1660
1661 * Extending forward into following adjacent free chunk.
1662 * Shifting backwards, joining preceding adjacent space
1663 * Both shifting backwards and extending forward.
1664 * Extending into newly sbrked space
1665
1666 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1667 size argument of zero (re)allocates a minimum-sized chunk.
1668
1669 If the reallocation is for less space, and the new request is for
1670 a `small' (<512 bytes) size, then the newly unused space is lopped
1671 off and freed.
1672
1673 The old unix realloc convention of allowing the last-free'd chunk
1674 to be used as an argument to realloc is no longer supported.
1675 I don't know of any programs still relying on this feature,
1676 and allowing it would also allow too many other incorrect
1677 usages of realloc to be sensible.
1678
1679
1680 */
1681
1682
1683 #if __STD_C
1684 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1685 #else
1686 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1687 #endif
1688 {
1689 INTERNAL_SIZE_T nb; /* padded request size */
1690
1691 mchunkptr oldp; /* chunk corresponding to oldmem */
1692 INTERNAL_SIZE_T oldsize; /* its size */
1693
1694 mchunkptr newp; /* chunk to return */
1695 INTERNAL_SIZE_T newsize; /* its size */
1696 Void_t* newmem; /* corresponding user mem */
1697
1698 mchunkptr next; /* next contiguous chunk after oldp */
1699 INTERNAL_SIZE_T nextsize; /* its size */
1700
1701 mchunkptr prev; /* previous contiguous chunk before oldp */
1702 INTERNAL_SIZE_T prevsize; /* its size */
1703
1704 mchunkptr remainder; /* holds split off extra space from newp */
1705 INTERNAL_SIZE_T remainder_size; /* its size */
1706
1707 mchunkptr bck; /* misc temp for linking */
1708 mchunkptr fwd; /* misc temp for linking */
1709
1710 #ifdef REALLOC_ZERO_BYTES_FREES
1711 if (!bytes) {
1712 fREe(oldmem);
1713 return NULL;
1714 }
1715 #endif
1716
1717 if ((long)bytes < 0) return NULL;
1718
1719 /* realloc of null is supposed to be same as malloc */
1720 if (oldmem == NULL) return mALLOc(bytes);
1721
1722 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1723 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1724 /* This is harder to support and should not be needed */
1725 panic("pre-reloc realloc() is not supported");
1726 }
1727 #endif
1728
1729 newp = oldp = mem2chunk(oldmem);
1730 newsize = oldsize = chunksize(oldp);
1731
1732
1733 nb = request2size(bytes);
1734
1735 #if HAVE_MMAP
1736 if (chunk_is_mmapped(oldp))
1737 {
1738 #if HAVE_MREMAP
1739 newp = mremap_chunk(oldp, nb);
1740 if(newp) return chunk2mem(newp);
1741 #endif
1742 /* Note the extra SIZE_SZ overhead. */
1743 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1744 /* Must alloc, copy, free. */
1745 newmem = mALLOc(bytes);
1746 if (!newmem)
1747 return NULL; /* propagate failure */
1748 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1749 munmap_chunk(oldp);
1750 return newmem;
1751 }
1752 #endif
1753
1754 check_inuse_chunk(oldp);
1755
1756 if ((long)(oldsize) < (long)(nb))
1757 {
1758
1759 /* Try expanding forward */
1760
1761 next = chunk_at_offset(oldp, oldsize);
1762 if (next == top || !inuse(next))
1763 {
1764 nextsize = chunksize(next);
1765
1766 /* Forward into top only if a remainder */
1767 if (next == top)
1768 {
1769 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1770 {
1771 newsize += nextsize;
1772 top = chunk_at_offset(oldp, nb);
1773 set_head(top, (newsize - nb) | PREV_INUSE);
1774 set_head_size(oldp, nb);
1775 return chunk2mem(oldp);
1776 }
1777 }
1778
1779 /* Forward into next chunk */
1780 else if (((long)(nextsize + newsize) >= (long)(nb)))
1781 {
1782 unlink(next, bck, fwd);
1783 newsize += nextsize;
1784 goto split;
1785 }
1786 }
1787 else
1788 {
1789 next = NULL;
1790 nextsize = 0;
1791 }
1792
1793 /* Try shifting backwards. */
1794
1795 if (!prev_inuse(oldp))
1796 {
1797 prev = prev_chunk(oldp);
1798 prevsize = chunksize(prev);
1799
1800 /* try forward + backward first to save a later consolidation */
1801
1802 if (next != NULL)
1803 {
1804 /* into top */
1805 if (next == top)
1806 {
1807 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1808 {
1809 unlink(prev, bck, fwd);
1810 newp = prev;
1811 newsize += prevsize + nextsize;
1812 newmem = chunk2mem(newp);
1813 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1814 top = chunk_at_offset(newp, nb);
1815 set_head(top, (newsize - nb) | PREV_INUSE);
1816 set_head_size(newp, nb);
1817 return newmem;
1818 }
1819 }
1820
1821 /* into next chunk */
1822 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1823 {
1824 unlink(next, bck, fwd);
1825 unlink(prev, bck, fwd);
1826 newp = prev;
1827 newsize += nextsize + prevsize;
1828 newmem = chunk2mem(newp);
1829 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1830 goto split;
1831 }
1832 }
1833
1834 /* backward only */
1835 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1836 {
1837 unlink(prev, bck, fwd);
1838 newp = prev;
1839 newsize += prevsize;
1840 newmem = chunk2mem(newp);
1841 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1842 goto split;
1843 }
1844 }
1845
1846 /* Must allocate */
1847
1848 newmem = mALLOc (bytes);
1849
1850 if (newmem == NULL) /* propagate failure */
1851 return NULL;
1852
1853 /* Avoid copy if newp is next chunk after oldp. */
1854 /* (This can only happen when new chunk is sbrk'ed.) */
1855
1856 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1857 {
1858 newsize += chunksize(newp);
1859 newp = oldp;
1860 goto split;
1861 }
1862
1863 /* Otherwise copy, free, and exit */
1864 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1865 fREe(oldmem);
1866 return newmem;
1867 }
1868
1869
1870 split: /* split off extra room in old or expanded chunk */
1871
1872 if (newsize - nb >= MINSIZE) /* split off remainder */
1873 {
1874 remainder = chunk_at_offset(newp, nb);
1875 remainder_size = newsize - nb;
1876 set_head_size(newp, nb);
1877 set_head(remainder, remainder_size | PREV_INUSE);
1878 set_inuse_bit_at_offset(remainder, remainder_size);
1879 fREe(chunk2mem(remainder)); /* let free() deal with it */
1880 }
1881 else
1882 {
1883 set_head_size(newp, newsize);
1884 set_inuse_bit_at_offset(newp, newsize);
1885 }
1886
1887 check_inuse_chunk(newp);
1888 return chunk2mem(newp);
1889 }
1890
1891
1892
1893
1894 /*
1895
1896 memalign algorithm:
1897
1898 memalign requests more than enough space from malloc, finds a spot
1899 within that chunk that meets the alignment request, and then
1900 possibly frees the leading and trailing space.
1901
1902 The alignment argument must be a power of two. This property is not
1903 checked by memalign, so misuse may result in random runtime errors.
1904
1905 8-byte alignment is guaranteed by normal malloc calls, so don't
1906 bother calling memalign with an argument of 8 or less.
1907
1908 Overreliance on memalign is a sure way to fragment space.
1909
1910 */
1911
1912
1913 #if __STD_C
1914 Void_t* mEMALIGn(size_t alignment, size_t bytes)
1915 #else
1916 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1917 #endif
1918 {
1919 INTERNAL_SIZE_T nb; /* padded request size */
1920 char* m; /* memory returned by malloc call */
1921 mchunkptr p; /* corresponding chunk */
1922 char* brk; /* alignment point within p */
1923 mchunkptr newp; /* chunk to return */
1924 INTERNAL_SIZE_T newsize; /* its size */
1925 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1926 mchunkptr remainder; /* spare room at end to split off */
1927 long remainder_size; /* its size */
1928
1929 if ((long)bytes < 0) return NULL;
1930
1931 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1932 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1933 return memalign_simple(alignment, bytes);
1934 }
1935 #endif
1936
1937 /* If need less alignment than we give anyway, just relay to malloc */
1938
1939 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1940
1941 /* Otherwise, ensure that it is at least a minimum chunk size */
1942
1943 if (alignment < MINSIZE) alignment = MINSIZE;
1944
1945 /* Call malloc with worst case padding to hit alignment. */
1946
1947 nb = request2size(bytes);
1948 m = (char*)(mALLOc(nb + alignment + MINSIZE));
1949
1950 /*
1951 * The attempt to over-allocate (with a size large enough to guarantee the
1952 * ability to find an aligned region within allocated memory) failed.
1953 *
1954 * Try again, this time only allocating exactly the size the user wants. If
1955 * the allocation now succeeds and just happens to be aligned, we can still
1956 * fulfill the user's request.
1957 */
1958 if (m == NULL) {
1959 size_t extra, extra2;
1960 /*
1961 * Use bytes not nb, since mALLOc internally calls request2size too, and
1962 * each call increases the size to allocate, to account for the header.
1963 */
1964 m = (char*)(mALLOc(bytes));
1965 /* Aligned -> return it */
1966 if ((((unsigned long)(m)) % alignment) == 0)
1967 return m;
1968 /*
1969 * Otherwise, try again, requesting enough extra space to be able to
1970 * acquire alignment.
1971 */
1972 fREe(m);
1973 /* Add in extra bytes to match misalignment of unexpanded allocation */
1974 extra = alignment - (((unsigned long)(m)) % alignment);
1975 m = (char*)(mALLOc(bytes + extra));
1976 /*
1977 * m might not be the same as before. Validate that the previous value of
1978 * extra still works for the current value of m.
1979 * If (!m), extra2=alignment so
1980 */
1981 if (m) {
1982 extra2 = alignment - (((unsigned long)(m)) % alignment);
1983 if (extra2 > extra) {
1984 fREe(m);
1985 m = NULL;
1986 }
1987 }
1988 /* Fall through to original NULL check and chunk splitting logic */
1989 }
1990
1991 if (m == NULL) return NULL; /* propagate failure */
1992
1993 p = mem2chunk(m);
1994
1995 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1996 {
1997 #if HAVE_MMAP
1998 if(chunk_is_mmapped(p))
1999 return chunk2mem(p); /* nothing more to do */
2000 #endif
2001 }
2002 else /* misaligned */
2003 {
2004 /*
2005 Find an aligned spot inside chunk.
2006 Since we need to give back leading space in a chunk of at
2007 least MINSIZE, if the first calculation places us at
2008 a spot with less than MINSIZE leader, we can move to the
2009 next aligned spot -- we've allocated enough total room so that
2010 this is always possible.
2011 */
2012
2013 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2014 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2015
2016 newp = (mchunkptr)brk;
2017 leadsize = brk - (char*)(p);
2018 newsize = chunksize(p) - leadsize;
2019
2020 #if HAVE_MMAP
2021 if(chunk_is_mmapped(p))
2022 {
2023 newp->prev_size = p->prev_size + leadsize;
2024 set_head(newp, newsize|IS_MMAPPED);
2025 return chunk2mem(newp);
2026 }
2027 #endif
2028
2029 /* give back leader, use the rest */
2030
2031 set_head(newp, newsize | PREV_INUSE);
2032 set_inuse_bit_at_offset(newp, newsize);
2033 set_head_size(p, leadsize);
2034 fREe(chunk2mem(p));
2035 p = newp;
2036
2037 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2038 }
2039
2040 /* Also give back spare room at the end */
2041
2042 remainder_size = chunksize(p) - nb;
2043
2044 if (remainder_size >= (long)MINSIZE)
2045 {
2046 remainder = chunk_at_offset(p, nb);
2047 set_head(remainder, remainder_size | PREV_INUSE);
2048 set_head_size(p, nb);
2049 fREe(chunk2mem(remainder));
2050 }
2051
2052 check_inuse_chunk(p);
2053 return chunk2mem(p);
2054
2055 }
2056
2057
2058
2059
2060 /*
2061 valloc just invokes memalign with alignment argument equal
2062 to the page size of the system (or as near to this as can
2063 be figured out from all the includes/defines above.)
2064 */
2065
2066 #if __STD_C
2067 Void_t* vALLOc(size_t bytes)
2068 #else
2069 Void_t* vALLOc(bytes) size_t bytes;
2070 #endif
2071 {
2072 return mEMALIGn (malloc_getpagesize, bytes);
2073 }
2074
2075 /*
2076 pvalloc just invokes valloc for the nearest pagesize
2077 that will accommodate request
2078 */
2079
2080
2081 #if __STD_C
2082 Void_t* pvALLOc(size_t bytes)
2083 #else
2084 Void_t* pvALLOc(bytes) size_t bytes;
2085 #endif
2086 {
2087 size_t pagesize = malloc_getpagesize;
2088 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2089 }
2090
2091 /*
2092
2093 calloc calls malloc, then zeroes out the allocated chunk.
2094
2095 */
2096
2097 #if __STD_C
2098 Void_t* cALLOc(size_t n, size_t elem_size)
2099 #else
2100 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2101 #endif
2102 {
2103 mchunkptr p;
2104 INTERNAL_SIZE_T csz;
2105
2106 INTERNAL_SIZE_T sz = n * elem_size;
2107
2108
2109 /* check if expand_top called, in which case don't need to clear */
2110 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2111 #if MORECORE_CLEARS
2112 mchunkptr oldtop = top;
2113 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2114 #endif
2115 #endif
2116 Void_t* mem = mALLOc (sz);
2117
2118 if ((long)n < 0) return NULL;
2119
2120 if (mem == NULL)
2121 return NULL;
2122 else
2123 {
2124 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2125 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2126 memset(mem, 0, sz);
2127 return mem;
2128 }
2129 #endif
2130 p = mem2chunk(mem);
2131
2132 /* Two optional cases in which clearing not necessary */
2133
2134
2135 #if HAVE_MMAP
2136 if (chunk_is_mmapped(p)) return mem;
2137 #endif
2138
2139 csz = chunksize(p);
2140
2141 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2142 #if MORECORE_CLEARS
2143 if (p == oldtop && csz > oldtopsize)
2144 {
2145 /* clear only the bytes from non-freshly-sbrked memory */
2146 csz = oldtopsize;
2147 }
2148 #endif
2149 #endif
2150
2151 MALLOC_ZERO(mem, csz - SIZE_SZ);
2152 return mem;
2153 }
2154 }
2155
2156 /*
2157
2158 cfree just calls free. It is needed/defined on some systems
2159 that pair it with calloc, presumably for odd historical reasons.
2160
2161 */
2162
2163 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2164 #if __STD_C
2165 void cfree(Void_t *mem)
2166 #else
2167 void cfree(mem) Void_t *mem;
2168 #endif
2169 {
2170 fREe(mem);
2171 }
2172 #endif
2173
2174
2175
2176 /*
2177
2178 Malloc_trim gives memory back to the system (via negative
2179 arguments to sbrk) if there is unused memory at the `high' end of
2180 the malloc pool. You can call this after freeing large blocks of
2181 memory to potentially reduce the system-level memory requirements
2182 of a program. However, it cannot guarantee to reduce memory. Under
2183 some allocation patterns, some large free blocks of memory will be
2184 locked between two used chunks, so they cannot be given back to
2185 the system.
2186
2187 The `pad' argument to malloc_trim represents the amount of free
2188 trailing space to leave untrimmed. If this argument is zero,
2189 only the minimum amount of memory to maintain internal data
2190 structures will be left (one page or less). Non-zero arguments
2191 can be supplied to maintain enough trailing space to service
2192 future expected allocations without having to re-obtain memory
2193 from the system.
2194
2195 Malloc_trim returns 1 if it actually released any memory, else 0.
2196
2197 */
2198
2199 #if __STD_C
2200 int malloc_trim(size_t pad)
2201 #else
2202 int malloc_trim(pad) size_t pad;
2203 #endif
2204 {
2205 long top_size; /* Amount of top-most memory */
2206 long extra; /* Amount to release */
2207 char* current_brk; /* address returned by pre-check sbrk call */
2208 char* new_brk; /* address returned by negative sbrk call */
2209
2210 unsigned long pagesz = malloc_getpagesize;
2211
2212 top_size = chunksize(top);
2213 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2214
2215 if (extra < (long)pagesz) /* Not enough memory to release */
2216 return 0;
2217
2218 else
2219 {
2220 /* Test to make sure no one else called sbrk */
2221 current_brk = (char*)(MORECORE (0));
2222 if (current_brk != (char*)(top) + top_size)
2223 return 0; /* Apparently we don't own memory; must fail */
2224
2225 else
2226 {
2227 new_brk = (char*)(MORECORE (-extra));
2228
2229 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2230 {
2231 /* Try to figure out what we have */
2232 current_brk = (char*)(MORECORE (0));
2233 top_size = current_brk - (char*)top;
2234 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2235 {
2236 sbrked_mem = current_brk - sbrk_base;
2237 set_head(top, top_size | PREV_INUSE);
2238 }
2239 check_chunk(top);
2240 return 0;
2241 }
2242
2243 else
2244 {
2245 /* Success. Adjust top accordingly. */
2246 set_head(top, (top_size - extra) | PREV_INUSE);
2247 sbrked_mem -= extra;
2248 check_chunk(top);
2249 return 1;
2250 }
2251 }
2252 }
2253 }
2254
2255
2256
2257 /*
2258 malloc_usable_size:
2259
2260 This routine tells you how many bytes you can actually use in an
2261 allocated chunk, which may be more than you requested (although
2262 often not). You can use this many bytes without worrying about
2263 overwriting other allocated objects. Not a particularly great
2264 programming practice, but still sometimes useful.
2265
2266 */
2267
2268 #if __STD_C
2269 size_t malloc_usable_size(Void_t* mem)
2270 #else
2271 size_t malloc_usable_size(mem) Void_t* mem;
2272 #endif
2273 {
2274 mchunkptr p;
2275 if (mem == NULL)
2276 return 0;
2277 else
2278 {
2279 p = mem2chunk(mem);
2280 if(!chunk_is_mmapped(p))
2281 {
2282 if (!inuse(p)) return 0;
2283 check_inuse_chunk(p);
2284 return chunksize(p) - SIZE_SZ;
2285 }
2286 return chunksize(p) - 2*SIZE_SZ;
2287 }
2288 }
2289
2290
2291
2292
2293 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2294
2295 #ifdef DEBUG
2296 static void malloc_update_mallinfo()
2297 {
2298 int i;
2299 mbinptr b;
2300 mchunkptr p;
2301 #ifdef DEBUG
2302 mchunkptr q;
2303 #endif
2304
2305 INTERNAL_SIZE_T avail = chunksize(top);
2306 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2307
2308 for (i = 1; i < NAV; ++i)
2309 {
2310 b = bin_at(i);
2311 for (p = last(b); p != b; p = p->bk)
2312 {
2313 #ifdef DEBUG
2314 check_free_chunk(p);
2315 for (q = next_chunk(p);
2316 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2317 q = next_chunk(q))
2318 check_inuse_chunk(q);
2319 #endif
2320 avail += chunksize(p);
2321 navail++;
2322 }
2323 }
2324
2325 current_mallinfo.ordblks = navail;
2326 current_mallinfo.uordblks = sbrked_mem - avail;
2327 current_mallinfo.fordblks = avail;
2328 current_mallinfo.hblks = n_mmaps;
2329 current_mallinfo.hblkhd = mmapped_mem;
2330 current_mallinfo.keepcost = chunksize(top);
2331
2332 }
2333 #endif /* DEBUG */
2334
2335
2336
2337 /*
2338
2339 malloc_stats:
2340
2341 Prints on the amount of space obtain from the system (both
2342 via sbrk and mmap), the maximum amount (which may be more than
2343 current if malloc_trim and/or munmap got called), the maximum
2344 number of simultaneous mmap regions used, and the current number
2345 of bytes allocated via malloc (or realloc, etc) but not yet
2346 freed. (Note that this is the number of bytes allocated, not the
2347 number requested. It will be larger than the number requested
2348 because of alignment and bookkeeping overhead.)
2349
2350 */
2351
2352 #ifdef DEBUG
2353 void malloc_stats()
2354 {
2355 malloc_update_mallinfo();
2356 printf("max system bytes = %10u\n",
2357 (unsigned int)(max_total_mem));
2358 printf("system bytes = %10u\n",
2359 (unsigned int)(sbrked_mem + mmapped_mem));
2360 printf("in use bytes = %10u\n",
2361 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2362 #if HAVE_MMAP
2363 printf("max mmap regions = %10u\n",
2364 (unsigned int)max_n_mmaps);
2365 #endif
2366 }
2367 #endif /* DEBUG */
2368
2369 /*
2370 mallinfo returns a copy of updated current mallinfo.
2371 */
2372
2373 #ifdef DEBUG
2374 struct mallinfo mALLINFo()
2375 {
2376 malloc_update_mallinfo();
2377 return current_mallinfo;
2378 }
2379 #endif /* DEBUG */
2380
2381
2382
2383
2384 /*
2385 mallopt:
2386
2387 mallopt is the general SVID/XPG interface to tunable parameters.
2388 The format is to provide a (parameter-number, parameter-value) pair.
2389 mallopt then sets the corresponding parameter to the argument
2390 value if it can (i.e., so long as the value is meaningful),
2391 and returns 1 if successful else 0.
2392
2393 See descriptions of tunable parameters above.
2394
2395 */
2396
2397 #if __STD_C
2398 int mALLOPt(int param_number, int value)
2399 #else
2400 int mALLOPt(param_number, value) int param_number; int value;
2401 #endif
2402 {
2403 switch(param_number)
2404 {
2405 case M_TRIM_THRESHOLD:
2406 trim_threshold = value; return 1;
2407 case M_TOP_PAD:
2408 top_pad = value; return 1;
2409 case M_MMAP_THRESHOLD:
2410 mmap_threshold = value; return 1;
2411 case M_MMAP_MAX:
2412 #if HAVE_MMAP
2413 n_mmaps_max = value; return 1;
2414 #else
2415 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2416 #endif
2417
2418 default:
2419 return 0;
2420 }
2421 }
2422
2423 int initf_malloc(void)
2424 {
2425 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2426 assert(gd->malloc_base); /* Set up by crt0.S */
2427 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2428 gd->malloc_ptr = 0;
2429 #endif
2430
2431 return 0;
2432 }
2433
2434 /*
2435
2436 History:
2437
2438 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2439 * return null for negative arguments
2440 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2441 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2442 (e.g. WIN32 platforms)
2443 * Cleanup up header file inclusion for WIN32 platforms
2444 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2445 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2446 memory allocation routines
2447 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2448 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2449 usage of 'assert' in non-WIN32 code
2450 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2451 avoid infinite loop
2452 * Always call 'fREe()' rather than 'free()'
2453
2454 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2455 * Fixed ordering problem with boundary-stamping
2456
2457 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2458 * Added pvalloc, as recommended by H.J. Liu
2459 * Added 64bit pointer support mainly from Wolfram Gloger
2460 * Added anonymously donated WIN32 sbrk emulation
2461 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2462 * malloc_extend_top: fix mask error that caused wastage after
2463 foreign sbrks
2464 * Add linux mremap support code from HJ Liu
2465
2466 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2467 * Integrated most documentation with the code.
2468 * Add support for mmap, with help from
2469 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2470 * Use last_remainder in more cases.
2471 * Pack bins using idea from colin@nyx10.cs.du.edu
2472 * Use ordered bins instead of best-fit threshhold
2473 * Eliminate block-local decls to simplify tracing and debugging.
2474 * Support another case of realloc via move into top
2475 * Fix error occuring when initial sbrk_base not word-aligned.
2476 * Rely on page size for units instead of SBRK_UNIT to
2477 avoid surprises about sbrk alignment conventions.
2478 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2479 (raymond@es.ele.tue.nl) for the suggestion.
2480 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2481 * More precautions for cases where other routines call sbrk,
2482 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2483 * Added macros etc., allowing use in linux libc from
2484 H.J. Lu (hjl@gnu.ai.mit.edu)
2485 * Inverted this history list
2486
2487 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2488 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2489 * Removed all preallocation code since under current scheme
2490 the work required to undo bad preallocations exceeds
2491 the work saved in good cases for most test programs.
2492 * No longer use return list or unconsolidated bins since
2493 no scheme using them consistently outperforms those that don't
2494 given above changes.
2495 * Use best fit for very large chunks to prevent some worst-cases.
2496 * Added some support for debugging
2497
2498 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2499 * Removed footers when chunks are in use. Thanks to
2500 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2501
2502 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2503 * Added malloc_trim, with help from Wolfram Gloger
2504 (wmglo@Dent.MED.Uni-Muenchen.DE).
2505
2506 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2507
2508 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2509 * realloc: try to expand in both directions
2510 * malloc: swap order of clean-bin strategy;
2511 * realloc: only conditionally expand backwards
2512 * Try not to scavenge used bins
2513 * Use bin counts as a guide to preallocation
2514 * Occasionally bin return list chunks in first scan
2515 * Add a few optimizations from colin@nyx10.cs.du.edu
2516
2517 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2518 * faster bin computation & slightly different binning
2519 * merged all consolidations to one part of malloc proper
2520 (eliminating old malloc_find_space & malloc_clean_bin)
2521 * Scan 2 returns chunks (not just 1)
2522 * Propagate failure in realloc if malloc returns 0
2523 * Add stuff to allow compilation on non-ANSI compilers
2524 from kpv@research.att.com
2525
2526 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2527 * removed potential for odd address access in prev_chunk
2528 * removed dependency on getpagesize.h
2529 * misc cosmetics and a bit more internal documentation
2530 * anticosmetics: mangled names in macros to evade debugger strangeness
2531 * tested on sparc, hp-700, dec-mips, rs6000
2532 with gcc & native cc (hp, dec only) allowing
2533 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2534
2535 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2536 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2537 structure of old version, but most details differ.)
2538
2539 */