]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/mtd/nand/raw/atmel/nand-controller.c
fa962ba591c631741b390dc2c5363484558f6cbf
[thirdparty/u-boot.git] / drivers / mtd / nand / raw / atmel / nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2022 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 * Copyright 2003 Rick Bronson
12 *
13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 * Derived from drivers/mtd/spia.c (removed in v3.8)
17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 * Derived from Das U-Boot source code
24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 * Add Programmable Multibit ECC support for various AT91 SoC
28 * Copyright 2012 ATMEL, Hong Xu
29 *
30 * Add Nand Flash Controller support for SAMA5 SoC
31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 * Port from Linux
34 * Balamanikandan Gunasundar(balamanikandan.gunasundar@microchip.com)
35 * Copyright (C) 2022 Microchip Technology Inc.
36 *
37 * A few words about the naming convention in this file. This convention
38 * applies to structure and function names.
39 *
40 * Prefixes:
41 *
42 * - atmel_nand_: all generic structures/functions
43 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
44 * (at91sam9 and avr32 SoCs)
45 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
46 * (sama5 SoCs and later)
47 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
48 * that is available in the HSMC block
49 * - <soc>_nand_: all SoC specific structures/functions
50 */
51
52 #include <asm-generic/gpio.h>
53 #include <clk.h>
54 #include <dm/device_compat.h>
55 #include <dm/devres.h>
56 #include <dm/of_addr.h>
57 #include <dm/of_access.h>
58 #include <dm/uclass.h>
59 #include <linux/completion.h>
60 #include <linux/io.h>
61 #include <linux/iopoll.h>
62 #include <linux/ioport.h>
63 #include <linux/mfd/syscon/atmel-matrix.h>
64 #include <linux/mfd/syscon/atmel-smc.h>
65 #include <linux/mtd/rawnand.h>
66 #include <linux/mtd/mtd.h>
67 #include <mach/at91_sfr.h>
68 #include <nand.h>
69 #include <regmap.h>
70 #include <syscon.h>
71
72 #include "pmecc.h"
73
74 #define NSEC_PER_SEC 1000000000L
75
76 #define ATMEL_HSMC_NFC_CFG 0x0
77 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
78 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
79 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
80 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
81 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
82 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
83 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
84 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
85 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
86 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
87
88 #define ATMEL_HSMC_NFC_CTRL 0x4
89 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
90 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
91
92 #define ATMEL_HSMC_NFC_SR 0x8
93 #define ATMEL_HSMC_NFC_IER 0xc
94 #define ATMEL_HSMC_NFC_IDR 0x10
95 #define ATMEL_HSMC_NFC_IMR 0x14
96 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
97 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
98 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
99 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
100 #define ATMEL_HSMC_NFC_SR_WR BIT(11)
101 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
102 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
103 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
104 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
105 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
106 #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
107 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
108 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
109 ATMEL_HSMC_NFC_SR_UNDEF | \
110 ATMEL_HSMC_NFC_SR_AWB | \
111 ATMEL_HSMC_NFC_SR_NFCASE)
112 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
113
114 #define ATMEL_HSMC_NFC_ADDR 0x18
115 #define ATMEL_HSMC_NFC_BANK 0x1c
116
117 #define ATMEL_NFC_MAX_RB_ID 7
118
119 #define ATMEL_NFC_SRAM_SIZE 0x2400
120
121 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
122 #define ATMEL_NFC_VCMD2 BIT(18)
123 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
124 #define ATMEL_NFC_CSID(cs) ((cs) << 22)
125 #define ATMEL_NFC_DATAEN BIT(25)
126 #define ATMEL_NFC_NFCWR BIT(26)
127
128 #define ATMEL_NFC_MAX_ADDR_CYCLES 5
129
130 #define ATMEL_NAND_ALE_OFFSET BIT(21)
131 #define ATMEL_NAND_CLE_OFFSET BIT(22)
132
133 #define DEFAULT_TIMEOUT_MS 1000
134 #define MIN_DMA_LEN 128
135
136 static struct nand_ecclayout atmel_pmecc_oobinfo;
137
138 struct nand_controller_ops {
139 int (*attach_chip)(struct nand_chip *chip);
140 int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
141 const struct nand_data_interface *conf);
142 };
143
144 struct nand_controller {
145 const struct nand_controller_ops *ops;
146 };
147
148 enum atmel_nand_rb_type {
149 ATMEL_NAND_NO_RB,
150 ATMEL_NAND_NATIVE_RB,
151 ATMEL_NAND_GPIO_RB,
152 };
153
154 struct atmel_nand_rb {
155 enum atmel_nand_rb_type type;
156 union {
157 struct gpio_desc gpio;
158 int id;
159 };
160 };
161
162 struct atmel_nand_cs {
163 int id;
164 struct atmel_nand_rb rb;
165 struct gpio_desc csgpio;
166 struct {
167 void __iomem *virt;
168 dma_addr_t dma;
169 } io;
170
171 struct atmel_smc_cs_conf smcconf;
172 };
173
174 struct atmel_nand {
175 struct list_head node;
176 struct udevice *dev;
177 struct nand_chip base;
178 struct atmel_nand_cs *activecs;
179 struct atmel_pmecc_user *pmecc;
180 struct gpio_desc cdgpio;
181 int numcs;
182 struct nand_controller *controller;
183 struct atmel_nand_cs cs[];
184 };
185
186 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
187 {
188 return container_of(chip, struct atmel_nand, base);
189 }
190
191 enum atmel_nfc_data_xfer {
192 ATMEL_NFC_NO_DATA,
193 ATMEL_NFC_READ_DATA,
194 ATMEL_NFC_WRITE_DATA,
195 };
196
197 struct atmel_nfc_op {
198 u8 cs;
199 u8 ncmds;
200 u8 cmds[2];
201 u8 naddrs;
202 u8 addrs[5];
203 enum atmel_nfc_data_xfer data;
204 u32 wait;
205 u32 errors;
206 };
207
208 struct atmel_nand_controller;
209 struct atmel_nand_controller_caps;
210
211 struct atmel_nand_controller_ops {
212 int (*probe)(struct udevice *udev,
213 const struct atmel_nand_controller_caps *caps);
214 int (*remove)(struct atmel_nand_controller *nc);
215 void (*nand_init)(struct atmel_nand_controller *nc,
216 struct atmel_nand *nand);
217 int (*ecc_init)(struct nand_chip *chip);
218 int (*setup_data_interface)(struct atmel_nand *nand, int csline,
219 const struct nand_data_interface *conf);
220 };
221
222 struct atmel_nand_controller_caps {
223 bool has_dma;
224 bool legacy_of_bindings;
225 u32 ale_offs;
226 u32 cle_offs;
227 const char *ebi_csa_regmap_name;
228 const struct atmel_nand_controller_ops *ops;
229 };
230
231 struct atmel_nand_controller {
232 struct nand_controller base;
233 const struct atmel_nand_controller_caps *caps;
234 struct udevice *dev;
235 struct regmap *smc;
236 struct dma_chan *dmac;
237 struct atmel_pmecc *pmecc;
238 struct list_head chips;
239 struct clk *mck;
240 };
241
242 static inline struct atmel_nand_controller *
243 to_nand_controller(struct nand_controller *ctl)
244 {
245 return container_of(ctl, struct atmel_nand_controller, base);
246 }
247
248 struct atmel_smc_nand_ebi_csa_cfg {
249 u32 offs;
250 u32 nfd0_on_d16;
251 };
252
253 struct atmel_smc_nand_controller {
254 struct atmel_nand_controller base;
255 struct regmap *ebi_csa_regmap;
256 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
257 };
258
259 static inline struct atmel_smc_nand_controller *
260 to_smc_nand_controller(struct nand_controller *ctl)
261 {
262 return container_of(to_nand_controller(ctl),
263 struct atmel_smc_nand_controller, base);
264 }
265
266 struct atmel_hsmc_nand_controller {
267 struct atmel_nand_controller base;
268 struct {
269 struct gen_pool *pool;
270 void __iomem *virt;
271 dma_addr_t dma;
272 } sram;
273 const struct atmel_hsmc_reg_layout *hsmc_layout;
274 struct regmap *io;
275 struct atmel_nfc_op op;
276 struct completion complete;
277 int irq;
278
279 /* Only used when instantiating from legacy DT bindings. */
280 struct clk *clk;
281 };
282
283 static inline struct atmel_hsmc_nand_controller *
284 to_hsmc_nand_controller(struct nand_controller *ctl)
285 {
286 return container_of(to_nand_controller(ctl),
287 struct atmel_hsmc_nand_controller, base);
288 }
289
290 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
291 int oobsize, int ecc_len)
292 {
293 int i;
294
295 layout->eccbytes = ecc_len;
296
297 /* ECC will occupy the last ecc_len bytes continuously */
298 for (i = 0; i < ecc_len; i++)
299 layout->eccpos[i] = oobsize - ecc_len + i;
300
301 layout->oobfree[0].offset = 2;
302 layout->oobfree[0].length =
303 oobsize - ecc_len - layout->oobfree[0].offset;
304 }
305
306 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
307 {
308 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
309 op->wait ^= status & op->wait;
310
311 return !op->wait || op->errors;
312 }
313
314 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
315 unsigned int timeout_ms)
316 {
317 int ret;
318 u32 status;
319
320 if (!timeout_ms)
321 timeout_ms = DEFAULT_TIMEOUT_MS;
322
323 if (poll)
324 ret = regmap_read_poll_timeout(nc->base.smc,
325 ATMEL_HSMC_NFC_SR, status,
326 atmel_nfc_op_done(&nc->op,
327 status),
328 0, timeout_ms);
329 else
330 return -EOPNOTSUPP;
331
332 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
333 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
334 ret = -ETIMEDOUT;
335 }
336
337 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
338 dev_err(nc->base.dev, "Access to an undefined area\n");
339 ret = -EIO;
340 }
341
342 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
343 dev_err(nc->base.dev, "Access while busy\n");
344 ret = -EIO;
345 }
346
347 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
348 dev_err(nc->base.dev, "Wrong access size\n");
349 ret = -EIO;
350 }
351
352 return ret;
353 }
354
355 static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
356 {
357 int i;
358
359 for (i = 0; i < len; i++)
360 writeb(buf[i], addr);
361 }
362
363 static void ioread8_rep(void *addr, uint8_t *buf, int len)
364 {
365 int i;
366
367 for (i = 0; i < len; i++)
368 buf[i] = readb(addr);
369 }
370
371 static void ioread16_rep(void *addr, void *buf, int len)
372 {
373 int i;
374 u16 *p = (u16 *)buf;
375
376 for (i = 0; i < len; i++)
377 p[i] = readw(addr);
378 }
379
380 static void iowrite16_rep(void *addr, const void *buf, int len)
381 {
382 int i;
383 u16 *p = (u16 *)buf;
384
385 for (i = 0; i < len; i++)
386 writew(p[i], addr);
387 }
388
389 static u8 atmel_nand_read_byte(struct mtd_info *mtd)
390 {
391 struct nand_chip *chip = mtd_to_nand(mtd);
392 struct atmel_nand *nand = to_atmel_nand(chip);
393
394 return ioread8(nand->activecs->io.virt);
395 }
396
397 static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
398 {
399 struct nand_chip *chip = mtd_to_nand(mtd);
400 struct atmel_nand *nand = to_atmel_nand(chip);
401
402 if (chip->options & NAND_BUSWIDTH_16)
403 iowrite16(byte | (byte << 8), nand->activecs->io.virt);
404 else
405 iowrite8(byte, nand->activecs->io.virt);
406 }
407
408 static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
409 {
410 struct nand_chip *chip = mtd_to_nand(mtd);
411 struct atmel_nand *nand = to_atmel_nand(chip);
412
413 if (chip->options & NAND_BUSWIDTH_16)
414 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
415 else
416 ioread8_rep(nand->activecs->io.virt, buf, len);
417 }
418
419 static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
420 {
421 struct nand_chip *chip = mtd_to_nand(mtd);
422 struct atmel_nand *nand = to_atmel_nand(chip);
423
424 if (chip->options & NAND_BUSWIDTH_16)
425 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
426 else
427 iowrite8_rep(nand->activecs->io.virt, buf, len);
428 }
429
430 static int atmel_nand_dev_ready(struct mtd_info *mtd)
431 {
432 struct nand_chip *chip = mtd_to_nand(mtd);
433 struct atmel_nand *nand = to_atmel_nand(chip);
434
435 return dm_gpio_get_value(&nand->activecs->rb.gpio);
436 }
437
438 static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
439 {
440 struct nand_chip *chip = mtd_to_nand(mtd);
441 struct atmel_nand *nand = to_atmel_nand(chip);
442
443 if (cs < 0 || cs >= nand->numcs) {
444 nand->activecs = NULL;
445 chip->dev_ready = NULL;
446 return;
447 }
448
449 nand->activecs = &nand->cs[cs];
450
451 if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
452 chip->dev_ready = atmel_nand_dev_ready;
453 }
454
455 static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
456 {
457 struct nand_chip *chip = mtd_to_nand(mtd);
458 struct atmel_nand *nand = to_atmel_nand(chip);
459 struct atmel_hsmc_nand_controller *nc;
460 u32 status;
461
462 nc = to_hsmc_nand_controller(nand->controller);
463
464 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
465
466 return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
467 }
468
469 static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
470 {
471 struct nand_chip *chip = mtd_to_nand(mtd);
472 struct atmel_nand *nand = to_atmel_nand(chip);
473 struct atmel_hsmc_nand_controller *nc;
474
475 nc = to_hsmc_nand_controller(nand->controller);
476
477 atmel_nand_select_chip(mtd, cs);
478
479 if (!nand->activecs) {
480 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
481 ATMEL_HSMC_NFC_CTRL_DIS);
482 return;
483 }
484
485 if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
486 chip->dev_ready = atmel_hsmc_nand_dev_ready;
487
488 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
489 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
490 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
491 ATMEL_HSMC_NFC_CFG_RSPARE |
492 ATMEL_HSMC_NFC_CFG_WSPARE,
493 ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
494 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
495 ATMEL_HSMC_NFC_CFG_RSPARE);
496 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
497 ATMEL_HSMC_NFC_CTRL_EN);
498 }
499
500 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
501 {
502 u8 *addrs = nc->op.addrs;
503 unsigned int op = 0;
504 u32 addr, val;
505 int i, ret;
506
507 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
508
509 for (i = 0; i < nc->op.ncmds; i++)
510 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
511
512 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
513 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
514
515 op |= ATMEL_NFC_CSID(nc->op.cs) |
516 ATMEL_NFC_ACYCLE(nc->op.naddrs);
517
518 if (nc->op.ncmds > 1)
519 op |= ATMEL_NFC_VCMD2;
520
521 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
522 (addrs[3] << 24);
523
524 if (nc->op.data != ATMEL_NFC_NO_DATA) {
525 op |= ATMEL_NFC_DATAEN;
526 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
527
528 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
529 op |= ATMEL_NFC_NFCWR;
530 }
531
532 /* Clear all flags. */
533 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
534
535 /* Send the command. */
536 regmap_write(nc->io, op, addr);
537
538 ret = atmel_nfc_wait(nc, poll, 0);
539 if (ret)
540 dev_err(nc->base.dev,
541 "Failed to send NAND command (err = %d)!",
542 ret);
543
544 /* Reset the op state. */
545 memset(&nc->op, 0, sizeof(nc->op));
546
547 return ret;
548 }
549
550 static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
551 unsigned int ctrl)
552 {
553 struct nand_chip *chip = mtd_to_nand(mtd);
554 struct atmel_nand *nand = to_atmel_nand(chip);
555 struct atmel_hsmc_nand_controller *nc;
556
557 nc = to_hsmc_nand_controller(nand->controller);
558
559 if (ctrl & NAND_ALE) {
560 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
561 return;
562
563 nc->op.addrs[nc->op.naddrs++] = dat;
564 } else if (ctrl & NAND_CLE) {
565 if (nc->op.ncmds > 1)
566 return;
567
568 nc->op.cmds[nc->op.ncmds++] = dat;
569 }
570
571 if (dat == NAND_CMD_NONE) {
572 nc->op.cs = nand->activecs->id;
573 atmel_nfc_exec_op(nc, true);
574 }
575 }
576
577 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
578 unsigned int ctrl)
579 {
580 struct nand_chip *chip = mtd_to_nand(mtd);
581 struct atmel_nand *nand = to_atmel_nand(chip);
582 struct atmel_nand_controller *nc;
583
584 nc = to_nand_controller(nand->controller);
585
586 if ((ctrl & NAND_CTRL_CHANGE) &&
587 dm_gpio_is_valid(&nand->activecs->csgpio)) {
588 if (ctrl & NAND_NCE)
589 dm_gpio_set_value(&nand->activecs->csgpio, 0);
590 else
591 dm_gpio_set_value(&nand->activecs->csgpio, 1);
592 }
593
594 if (ctrl & NAND_ALE)
595 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
596 else if (ctrl & NAND_CLE)
597 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
598 }
599
600 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
601 bool oob_required)
602 {
603 struct mtd_info *mtd = nand_to_mtd(chip);
604 struct atmel_nand *nand = to_atmel_nand(chip);
605 struct atmel_hsmc_nand_controller *nc;
606 int ret = -EIO;
607
608 nc = to_hsmc_nand_controller(nand->controller);
609
610 if (ret)
611 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
612
613 if (oob_required)
614 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
615 mtd->oobsize);
616 }
617
618 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
619 bool oob_required)
620 {
621 struct mtd_info *mtd = nand_to_mtd(chip);
622 struct atmel_nand *nand = to_atmel_nand(chip);
623 struct atmel_hsmc_nand_controller *nc;
624 int ret = -EIO;
625
626 nc = to_hsmc_nand_controller(nand->controller);
627
628 if (ret)
629 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
630
631 if (oob_required)
632 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
633 mtd->oobsize);
634 }
635
636 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
637 {
638 struct mtd_info *mtd = nand_to_mtd(chip);
639 struct atmel_nand *nand = to_atmel_nand(chip);
640 struct atmel_hsmc_nand_controller *nc;
641
642 nc = to_hsmc_nand_controller(nand->controller);
643
644 if (column >= 0) {
645 nc->op.addrs[nc->op.naddrs++] = column;
646
647 /*
648 * 2 address cycles for the column offset on large page NANDs.
649 */
650 if (mtd->writesize > 512)
651 nc->op.addrs[nc->op.naddrs++] = column >> 8;
652 }
653
654 if (page >= 0) {
655 nc->op.addrs[nc->op.naddrs++] = page;
656 nc->op.addrs[nc->op.naddrs++] = page >> 8;
657
658 if (chip->options & NAND_ROW_ADDR_3)
659 nc->op.addrs[nc->op.naddrs++] = page >> 16;
660 }
661 }
662
663 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
664 {
665 struct atmel_nand *nand = to_atmel_nand(chip);
666 struct atmel_nand_controller *nc;
667 int ret;
668
669 nc = to_nand_controller(nand->controller);
670
671 if (raw)
672 return 0;
673
674 ret = atmel_pmecc_enable(nand->pmecc, op);
675 if (ret)
676 dev_err(nc->dev,
677 "Failed to enable ECC engine (err = %d)\n", ret);
678
679 return ret;
680 }
681
682 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
683 {
684 struct atmel_nand *nand = to_atmel_nand(chip);
685
686 if (!raw)
687 atmel_pmecc_disable(nand->pmecc);
688 }
689
690 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
691 {
692 struct atmel_nand *nand = to_atmel_nand(chip);
693 struct mtd_info *mtd = nand_to_mtd(chip);
694 struct atmel_nand_controller *nc;
695 struct mtd_oob_region oobregion;
696 void *eccbuf;
697 int ret, i;
698
699 nc = to_nand_controller(nand->controller);
700
701 if (raw)
702 return 0;
703
704 ret = atmel_pmecc_wait_rdy(nand->pmecc);
705 if (ret) {
706 dev_err(nc->dev,
707 "Failed to transfer NAND page data (err = %d)\n",
708 ret);
709 return ret;
710 }
711
712 mtd_ooblayout_ecc(mtd, 0, &oobregion);
713 eccbuf = chip->oob_poi + oobregion.offset;
714
715 for (i = 0; i < chip->ecc.steps; i++) {
716 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
717 eccbuf);
718 eccbuf += chip->ecc.bytes;
719 }
720
721 return 0;
722 }
723
724 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
725 bool raw)
726 {
727 struct atmel_nand *nand = to_atmel_nand(chip);
728 struct mtd_info *mtd = nand_to_mtd(chip);
729 struct atmel_nand_controller *nc;
730 struct mtd_oob_region oobregion;
731 int ret, i, max_bitflips = 0;
732 void *databuf, *eccbuf;
733
734 nc = to_nand_controller(nand->controller);
735
736 if (raw)
737 return 0;
738
739 ret = atmel_pmecc_wait_rdy(nand->pmecc);
740 if (ret) {
741 dev_err(nc->dev,
742 "Failed to read NAND page data (err = %d)\n", ret);
743 return ret;
744 }
745
746 mtd_ooblayout_ecc(mtd, 0, &oobregion);
747 eccbuf = chip->oob_poi + oobregion.offset;
748 databuf = buf;
749
750 for (i = 0; i < chip->ecc.steps; i++) {
751 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
752 eccbuf);
753 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
754 ret = nand_check_erased_ecc_chunk(databuf,
755 chip->ecc.size,
756 eccbuf,
757 chip->ecc.bytes,
758 NULL, 0,
759 chip->ecc.strength);
760
761 if (ret >= 0)
762 max_bitflips = max(ret, max_bitflips);
763 else
764 mtd->ecc_stats.failed++;
765
766 databuf += chip->ecc.size;
767 eccbuf += chip->ecc.bytes;
768 }
769
770 return max_bitflips;
771 }
772
773 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
774 bool oob_required, int page, bool raw)
775 {
776 struct mtd_info *mtd = nand_to_mtd(chip);
777 struct atmel_nand *nand = to_atmel_nand(chip);
778 int ret;
779
780 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
781
782 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
783 if (ret)
784 return ret;
785
786 atmel_nand_write_buf(mtd, buf, mtd->writesize);
787
788 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
789 if (ret) {
790 atmel_pmecc_disable(nand->pmecc);
791 return ret;
792 }
793
794 atmel_nand_pmecc_disable(chip, raw);
795
796 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
797
798 return nand_prog_page_end_op(chip);
799 }
800
801 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
802 struct nand_chip *chip, const u8 *buf,
803 int oob_required, int page)
804 {
805 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
806 }
807
808 static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
809 struct nand_chip *chip,
810 const u8 *buf, int oob_required,
811 int page)
812 {
813 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
814 }
815
816 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
817 bool oob_required, int page, bool raw)
818 {
819 struct mtd_info *mtd = nand_to_mtd(chip);
820 int ret;
821
822 nand_read_page_op(chip, page, 0, NULL, 0);
823
824 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
825 if (ret)
826 return ret;
827
828 atmel_nand_read_buf(mtd, buf, mtd->writesize);
829 atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
830
831 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
832
833 atmel_nand_pmecc_disable(chip, raw);
834
835 return ret;
836 }
837
838 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
839 struct nand_chip *chip, u8 *buf,
840 int oob_required, int page)
841 {
842 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
843 }
844
845 static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
846 struct nand_chip *chip, u8 *buf,
847 int oob_required, int page)
848 {
849 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
850 }
851
852 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
853 const u8 *buf, bool oob_required,
854 int page, bool raw)
855 {
856 struct mtd_info *mtd = nand_to_mtd(chip);
857 struct atmel_nand *nand = to_atmel_nand(chip);
858 struct atmel_hsmc_nand_controller *nc;
859 int ret, status;
860
861 nc = to_hsmc_nand_controller(nand->controller);
862
863 atmel_nfc_copy_to_sram(chip, buf, false);
864
865 nc->op.cmds[0] = NAND_CMD_SEQIN;
866 nc->op.ncmds = 1;
867 atmel_nfc_set_op_addr(chip, page, 0x0);
868 nc->op.cs = nand->activecs->id;
869 nc->op.data = ATMEL_NFC_WRITE_DATA;
870
871 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
872 if (ret)
873 return ret;
874
875 ret = atmel_nfc_exec_op(nc, true);
876 if (ret) {
877 atmel_nand_pmecc_disable(chip, raw);
878 dev_err(nc->base.dev,
879 "Failed to transfer NAND page data (err = %d)\n",
880 ret);
881 return ret;
882 }
883
884 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
885
886 atmel_nand_pmecc_disable(chip, raw);
887
888 if (ret)
889 return ret;
890
891 atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
892
893 nc->op.cmds[0] = NAND_CMD_PAGEPROG;
894 nc->op.ncmds = 1;
895 nc->op.cs = nand->activecs->id;
896 ret = atmel_nfc_exec_op(nc, true);
897 if (ret)
898 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
899 ret);
900
901 status = chip->waitfunc(mtd, chip);
902 if (status & NAND_STATUS_FAIL)
903 return -EIO;
904
905 return ret;
906 }
907
908 static int
909 atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
910 const u8 *buf, int oob_required,
911 int page)
912 {
913 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
914 false);
915 }
916
917 static int
918 atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
919 const u8 *buf,
920 int oob_required, int page)
921 {
922 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
923 true);
924 }
925
926 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
927 bool oob_required, int page,
928 bool raw)
929 {
930 struct mtd_info *mtd = nand_to_mtd(chip);
931 struct atmel_nand *nand = to_atmel_nand(chip);
932 struct atmel_hsmc_nand_controller *nc;
933 int ret;
934
935 nc = to_hsmc_nand_controller(nand->controller);
936
937 /*
938 * Optimized read page accessors only work when the NAND R/B pin is
939 * connected to a native SoC R/B pin. If that's not the case, fallback
940 * to the non-optimized one.
941 */
942 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
943 nand_read_page_op(chip, page, 0, NULL, 0);
944
945 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
946 raw);
947 }
948
949 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
950
951 if (mtd->writesize > 512)
952 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
953
954 atmel_nfc_set_op_addr(chip, page, 0x0);
955 nc->op.cs = nand->activecs->id;
956 nc->op.data = ATMEL_NFC_READ_DATA;
957
958 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
959 if (ret)
960 return ret;
961
962 ret = atmel_nfc_exec_op(nc, true);
963 if (ret) {
964 atmel_nand_pmecc_disable(chip, raw);
965 dev_err(nc->base.dev,
966 "Failed to load NAND page data (err = %d)\n",
967 ret);
968 return ret;
969 }
970
971 atmel_nfc_copy_from_sram(chip, buf, true);
972
973 ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
974
975 atmel_nand_pmecc_disable(chip, raw);
976
977 return ret;
978 }
979
980 static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
981 struct nand_chip *chip, u8 *buf,
982 int oob_required, int page)
983 {
984 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
985 false);
986 }
987
988 static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
989 struct nand_chip *chip,
990 u8 *buf, int oob_required,
991 int page)
992 {
993 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
994 true);
995 }
996
997 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
998 struct mtd_oob_region *oobregion)
999 {
1000 struct nand_chip *chip = mtd_to_nand(mtd);
1001 struct nand_ecc_ctrl *ecc = &chip->ecc;
1002
1003 if (section || !ecc->total)
1004 return -ERANGE;
1005
1006 oobregion->length = ecc->total;
1007 oobregion->offset = mtd->oobsize - oobregion->length;
1008
1009 return 0;
1010 }
1011
1012 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
1013 struct mtd_oob_region *oobregion)
1014 {
1015 struct nand_chip *chip = mtd_to_nand(mtd);
1016 struct nand_ecc_ctrl *ecc = &chip->ecc;
1017
1018 if (section)
1019 return -ERANGE;
1020
1021 oobregion->length = mtd->oobsize - ecc->total - 2;
1022 oobregion->offset = 2;
1023
1024 return 0;
1025 }
1026
1027 static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
1028 .ecc = nand_ooblayout_ecc_lp,
1029 .rfree = nand_ooblayout_free_lp,
1030 };
1031
1032 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
1033 {
1034 return &nand_ooblayout_lp_ops;
1035 }
1036
1037 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1038 {
1039 struct mtd_info *mtd = nand_to_mtd(chip);
1040 struct atmel_nand *nand = to_atmel_nand(chip);
1041 struct atmel_nand_controller *nc;
1042 struct atmel_pmecc_user_req req;
1043
1044 nc = to_nand_controller(nand->controller);
1045
1046 if (!nc->pmecc) {
1047 dev_err(nc->dev, "HW ECC not supported\n");
1048 return -EOPNOTSUPP;
1049 }
1050
1051 if (nc->caps->legacy_of_bindings) {
1052 u32 val;
1053
1054 if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-cap", &val))
1055 chip->ecc.strength = val;
1056
1057 if (!ofnode_read_u32(nc->dev->node_,
1058 "atmel,pmecc-sector-size",
1059 &val))
1060 chip->ecc.size = val;
1061 }
1062
1063 if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1064 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1065 else if (chip->ecc.strength)
1066 req.ecc.strength = chip->ecc.strength;
1067 else
1068 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1069
1070 if (chip->ecc.size)
1071 req.ecc.sectorsize = chip->ecc.size;
1072 else
1073 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1074
1075 req.pagesize = mtd->writesize;
1076 req.oobsize = mtd->oobsize;
1077
1078 if (mtd->writesize <= 512) {
1079 req.ecc.bytes = 4;
1080 req.ecc.ooboffset = 0;
1081 } else {
1082 req.ecc.bytes = mtd->oobsize - 2;
1083 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1084 }
1085
1086 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1087 if (IS_ERR(nand->pmecc))
1088 return PTR_ERR(nand->pmecc);
1089
1090 chip->ecc.algo = NAND_ECC_BCH;
1091 chip->ecc.size = req.ecc.sectorsize;
1092 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1093 chip->ecc.strength = req.ecc.strength;
1094
1095 chip->options |= NAND_NO_SUBPAGE_WRITE;
1096
1097 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1098 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1099 mtd->oobsize,
1100 chip->ecc.bytes);
1101 chip->ecc.layout = &atmel_pmecc_oobinfo;
1102
1103 return 0;
1104 }
1105
1106 static int atmel_nand_ecc_init(struct nand_chip *chip)
1107 {
1108 struct atmel_nand_controller *nc;
1109 struct atmel_nand *nand = to_atmel_nand(chip);
1110 int ret;
1111
1112 nc = to_nand_controller(nand->controller);
1113
1114 switch (chip->ecc.mode) {
1115 case NAND_ECC_NONE:
1116 case NAND_ECC_SOFT:
1117 /*
1118 * Nothing to do, the core will initialize everything for us.
1119 */
1120 break;
1121
1122 case NAND_ECC_HW:
1123 ret = atmel_nand_pmecc_init(chip);
1124 if (ret)
1125 return ret;
1126
1127 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1128 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1129 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1130 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1131 break;
1132
1133 default:
1134 /* Other modes are not supported. */
1135 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1136 chip->ecc.mode);
1137 return -EOPNOTSUPP;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1144 {
1145 int ret;
1146
1147 ret = atmel_nand_ecc_init(chip);
1148 if (ret)
1149 return ret;
1150
1151 if (chip->ecc.mode != NAND_ECC_HW)
1152 return 0;
1153
1154 /* Adjust the ECC operations for the HSMC IP. */
1155 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1156 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1157 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1158 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1159
1160 return 0;
1161 }
1162
1163 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1164 const struct nand_data_interface *conf,
1165 struct atmel_smc_cs_conf *smcconf)
1166 {
1167 u32 ncycles, totalcycles, timeps, mckperiodps;
1168 struct atmel_nand_controller *nc;
1169 int ret;
1170
1171 nc = to_nand_controller(nand->controller);
1172
1173 /* DDR interface not supported. */
1174 if (conf->type != NAND_SDR_IFACE)
1175 return -EOPNOTSUPP;
1176
1177 /*
1178 * tRC < 30ns implies EDO mode. This controller does not support this
1179 * mode.
1180 */
1181 if (conf->timings.sdr.tRC_min < 30000)
1182 return -EOPNOTSUPP;
1183
1184 atmel_smc_cs_conf_init(smcconf);
1185
1186 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1187 mckperiodps *= 1000;
1188
1189 /*
1190 * Set write pulse timing. This one is easy to extract:
1191 *
1192 * NWE_PULSE = tWP
1193 */
1194 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1195 totalcycles = ncycles;
1196 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1197 ncycles);
1198 if (ret)
1199 return ret;
1200
1201 /*
1202 * The write setup timing depends on the operation done on the NAND.
1203 * All operations goes through the same data bus, but the operation
1204 * type depends on the address we are writing to (ALE/CLE address
1205 * lines).
1206 * Since we have no way to differentiate the different operations at
1207 * the SMC level, we must consider the worst case (the biggest setup
1208 * time among all operation types):
1209 *
1210 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1211 */
1212 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1213 conf->timings.sdr.tALS_min);
1214 timeps = max(timeps, conf->timings.sdr.tDS_min);
1215 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1216 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1217 totalcycles += ncycles;
1218 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1219 ncycles);
1220 if (ret)
1221 return ret;
1222
1223 /*
1224 * As for the write setup timing, the write hold timing depends on the
1225 * operation done on the NAND:
1226 *
1227 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1228 */
1229 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1230 conf->timings.sdr.tALH_min);
1231 timeps = max3(timeps, conf->timings.sdr.tDH_min,
1232 conf->timings.sdr.tWH_min);
1233 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1234 totalcycles += ncycles;
1235
1236 /*
1237 * The write cycle timing is directly matching tWC, but is also
1238 * dependent on the other timings on the setup and hold timings we
1239 * calculated earlier, which gives:
1240 *
1241 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1242 */
1243 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1244 ncycles = max(totalcycles, ncycles);
1245 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1246 ncycles);
1247 if (ret)
1248 return ret;
1249
1250 /*
1251 * We don't want the CS line to be toggled between each byte/word
1252 * transfer to the NAND. The only way to guarantee that is to have the
1253 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1254 *
1255 * NCS_WR_PULSE = NWE_CYCLE
1256 */
1257 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1258 ncycles);
1259 if (ret)
1260 return ret;
1261
1262 /*
1263 * As for the write setup timing, the read hold timing depends on the
1264 * operation done on the NAND:
1265 *
1266 * NRD_HOLD = max(tREH, tRHOH)
1267 */
1268 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1269 ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1270 totalcycles = ncycles;
1271
1272 /*
1273 * TDF = tRHZ - NRD_HOLD
1274 */
1275 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1276 ncycles -= totalcycles;
1277
1278 /*
1279 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1280 * we might end up with a config that does not fit in the TDF field.
1281 * Just take the max value in this case and hope that the NAND is more
1282 * tolerant than advertised.
1283 */
1284 if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1285 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1286 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1287 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1288
1289 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1290 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1291
1292 /*
1293 * Read pulse timing directly matches tRP:
1294 *
1295 * NRD_PULSE = tRP
1296 */
1297 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1298 totalcycles += ncycles;
1299 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1300 ncycles);
1301 if (ret)
1302 return ret;
1303
1304 /*
1305 * The write cycle timing is directly matching tWC, but is also
1306 * dependent on the setup and hold timings we calculated earlier,
1307 * which gives:
1308 *
1309 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1310 *
1311 * NRD_SETUP is always 0.
1312 */
1313 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1314 ncycles = max(totalcycles, ncycles);
1315 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1316 ncycles);
1317 if (ret)
1318 return ret;
1319
1320 /*
1321 * We don't want the CS line to be toggled between each byte/word
1322 * transfer from the NAND. The only way to guarantee that is to have
1323 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1324 *
1325 * NCS_RD_PULSE = NRD_CYCLE
1326 */
1327 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1328 ncycles);
1329 if (ret)
1330 return ret;
1331
1332 /* Txxx timings are directly matching tXXX ones. */
1333 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1334 ret = atmel_smc_cs_conf_set_timing(smcconf,
1335 ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1336 ncycles);
1337 if (ret)
1338 return ret;
1339
1340 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1341 ret = atmel_smc_cs_conf_set_timing(smcconf,
1342 ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1343 ncycles);
1344 /*
1345 * Version 4 of the ONFI spec mandates that tADL be at least 400
1346 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1347 * fit in the tADL field of the SMC reg. We need to relax the check and
1348 * accept the -ERANGE return code.
1349 *
1350 * Note that previous versions of the ONFI spec had a lower tADL_min
1351 * (100 or 200 ns). It's not clear why this timing constraint got
1352 * increased but it seems most NANDs are fine with values lower than
1353 * 400ns, so we should be safe.
1354 */
1355 if (ret && ret != -ERANGE)
1356 return ret;
1357
1358 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1359 ret = atmel_smc_cs_conf_set_timing(smcconf,
1360 ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1361 ncycles);
1362 if (ret)
1363 return ret;
1364
1365 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1366 ret = atmel_smc_cs_conf_set_timing(smcconf,
1367 ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1368 ncycles);
1369 if (ret)
1370 return ret;
1371
1372 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1373 ret = atmel_smc_cs_conf_set_timing(smcconf,
1374 ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1375 ncycles);
1376 if (ret)
1377 return ret;
1378
1379 /* Attach the CS line to the NFC logic. */
1380 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1381
1382 /* Set the appropriate data bus width. */
1383 if (nand->base.options & NAND_BUSWIDTH_16)
1384 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1385
1386 /* Operate in NRD/NWE READ/WRITEMODE. */
1387 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1388 ATMEL_SMC_MODE_WRITEMODE_NWE;
1389
1390 return 0;
1391 }
1392
1393 static int
1394 atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1395 int csline,
1396 const struct nand_data_interface *conf)
1397 {
1398 struct atmel_nand_controller *nc;
1399 struct atmel_smc_cs_conf smcconf;
1400 struct atmel_nand_cs *cs;
1401 int ret;
1402
1403 nc = to_nand_controller(nand->controller);
1404
1405 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1406 if (ret)
1407 return ret;
1408
1409 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1410 return 0;
1411
1412 cs = &nand->cs[csline];
1413 cs->smcconf = smcconf;
1414
1415 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1416
1417 return 0;
1418 }
1419
1420 static int
1421 atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1422 int csline,
1423 const struct nand_data_interface *conf)
1424 {
1425 struct atmel_hsmc_nand_controller *nc;
1426 struct atmel_smc_cs_conf smcconf;
1427 struct atmel_nand_cs *cs;
1428 int ret;
1429
1430 nc = to_hsmc_nand_controller(nand->controller);
1431
1432 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1433 if (ret)
1434 return ret;
1435
1436 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1437 return 0;
1438
1439 cs = &nand->cs[csline];
1440 cs->smcconf = smcconf;
1441
1442 if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1443 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1444
1445 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1446 &cs->smcconf);
1447
1448 return 0;
1449 }
1450
1451 static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1452 const struct nand_data_interface *conf)
1453 {
1454 struct nand_chip *chip = mtd_to_nand(mtd);
1455 struct atmel_nand *nand = to_atmel_nand(chip);
1456 struct atmel_nand_controller *nc;
1457
1458 nc = to_nand_controller(nand->controller);
1459
1460 if (csline >= nand->numcs ||
1461 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1462 return -EINVAL;
1463
1464 return nc->caps->ops->setup_data_interface(nand, csline, conf);
1465 }
1466
1467 #define NAND_KEEP_TIMINGS 0x00800000
1468
1469 static void atmel_nand_init(struct atmel_nand_controller *nc,
1470 struct atmel_nand *nand)
1471 {
1472 struct nand_chip *chip = &nand->base;
1473 struct mtd_info *mtd = nand_to_mtd(chip);
1474
1475 mtd->dev->parent = nc->dev;
1476 nand->controller = &nc->base;
1477
1478 chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1479 chip->read_byte = atmel_nand_read_byte;
1480 chip->write_byte = atmel_nand_write_byte;
1481 chip->read_buf = atmel_nand_read_buf;
1482 chip->write_buf = atmel_nand_write_buf;
1483 chip->select_chip = atmel_nand_select_chip;
1484 chip->setup_data_interface = atmel_nand_setup_data_interface;
1485
1486 if (!nc->mck || !nc->caps->ops->setup_data_interface)
1487 chip->options |= NAND_KEEP_TIMINGS;
1488
1489 /* Some NANDs require a longer delay than the default one (20us). */
1490 chip->chip_delay = 40;
1491
1492 /* Default to HW ECC if pmecc is available. */
1493 if (nc->pmecc)
1494 chip->ecc.mode = NAND_ECC_HW;
1495 }
1496
1497 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1498 struct atmel_nand *nand)
1499 {
1500 struct atmel_smc_nand_controller *smc_nc;
1501 int i;
1502
1503 atmel_nand_init(nc, nand);
1504
1505 smc_nc = to_smc_nand_controller(nand->controller);
1506 if (!smc_nc->ebi_csa_regmap)
1507 return;
1508
1509 /* Attach the CS to the NAND Flash logic. */
1510 for (i = 0; i < nand->numcs; i++)
1511 regmap_update_bits(smc_nc->ebi_csa_regmap,
1512 smc_nc->ebi_csa->offs,
1513 BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1514
1515 if (smc_nc->ebi_csa->nfd0_on_d16)
1516 regmap_update_bits(smc_nc->ebi_csa_regmap,
1517 smc_nc->ebi_csa->offs,
1518 smc_nc->ebi_csa->nfd0_on_d16,
1519 smc_nc->ebi_csa->nfd0_on_d16);
1520 }
1521
1522 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1523 struct atmel_nand *nand)
1524 {
1525 struct nand_chip *chip = &nand->base;
1526
1527 atmel_nand_init(nc, nand);
1528
1529 /* Overload some methods for the HSMC controller. */
1530 chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1531 chip->select_chip = atmel_hsmc_nand_select_chip;
1532 }
1533
1534 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1535 {
1536 list_del(&nand->node);
1537
1538 return 0;
1539 }
1540
1541 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1542 ofnode np,
1543 int reg_cells)
1544 {
1545 struct atmel_nand *nand;
1546 ofnode n;
1547 int numcs = 0;
1548 int ret, i;
1549 u32 val;
1550 fdt32_t faddr;
1551 phys_addr_t base;
1552
1553 /* Count num of nand nodes */
1554 ofnode_for_each_subnode(n, ofnode_get_parent(np))
1555 numcs++;
1556 if (numcs < 1) {
1557 dev_err(nc->dev, "Missing or invalid reg property\n");
1558 return ERR_PTR(-EINVAL);
1559 }
1560
1561 nand = devm_kzalloc(nc->dev,
1562 sizeof(struct atmel_nand) +
1563 (numcs * sizeof(struct atmel_nand_cs)),
1564 GFP_KERNEL);
1565 if (!nand) {
1566 dev_err(nc->dev, "Failed to allocate NAND object\n");
1567 return ERR_PTR(-ENOMEM);
1568 }
1569
1570 nand->numcs = numcs;
1571
1572 gpio_request_by_name_nodev(np, "det-gpios", 0, &nand->cdgpio,
1573 GPIOD_IS_IN);
1574
1575 for (i = 0; i < numcs; i++) {
1576 ret = ofnode_read_u32(np, "reg", &val);
1577 if (ret) {
1578 dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1579 ret);
1580 return ERR_PTR(ret);
1581 }
1582 nand->cs[i].id = val;
1583
1584 /* Read base address */
1585 struct resource res;
1586
1587 if (ofnode_read_resource(np, 0, &res)) {
1588 dev_err(nc->dev, "Unable to read resource\n");
1589 return ERR_PTR(-ENOMEM);
1590 }
1591
1592 faddr = cpu_to_fdt32(val);
1593 base = ofnode_translate_address(np, &faddr);
1594 nand->cs[i].io.virt = (void *)base;
1595
1596 if (!ofnode_read_u32(np, "atmel,rb", &val)) {
1597 if (val > ATMEL_NFC_MAX_RB_ID)
1598 return ERR_PTR(-EINVAL);
1599
1600 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1601 nand->cs[i].rb.id = val;
1602 } else {
1603 ret = gpio_request_by_name_nodev(np, "rb-gpios", 0,
1604 &nand->cs[i].rb.gpio,
1605 GPIOD_IS_IN);
1606 if (ret && ret != -ENOENT)
1607 dev_err(nc->dev, "Failed to get R/B gpio (err = %d)\n", ret);
1608 if (!ret)
1609 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1610 }
1611
1612 gpio_request_by_name_nodev(np, "cs-gpios", 0,
1613 &nand->cs[i].csgpio,
1614 GPIOD_IS_OUT);
1615 }
1616
1617 nand_set_flash_node(&nand->base, np);
1618
1619 return nand;
1620 }
1621
1622 static int nand_attach(struct nand_chip *chip)
1623 {
1624 struct atmel_nand *nand = to_atmel_nand(chip);
1625
1626 if (nand->controller->ops && nand->controller->ops->attach_chip)
1627 return nand->controller->ops->attach_chip(chip);
1628
1629 return 0;
1630 }
1631
1632 int atmel_nand_scan(struct mtd_info *mtd, int maxchips)
1633 {
1634 int ret;
1635
1636 ret = nand_scan_ident(mtd, maxchips, NULL);
1637 if (ret)
1638 return ret;
1639
1640 ret = nand_attach(mtd_to_nand(mtd));
1641 if (ret)
1642 return ret;
1643
1644 ret = nand_scan_tail(mtd);
1645 return ret;
1646 }
1647
1648 static int
1649 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1650 struct atmel_nand *nand)
1651 {
1652 struct nand_chip *chip = &nand->base;
1653 struct mtd_info *mtd = nand_to_mtd(chip);
1654 int ret;
1655
1656 /* No card inserted, skip this NAND. */
1657 if (dm_gpio_is_valid(&nand->cdgpio) &&
1658 dm_gpio_get_value(&nand->cdgpio)) {
1659 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1660 return 0;
1661 }
1662
1663 nc->caps->ops->nand_init(nc, nand);
1664
1665 ret = atmel_nand_scan(mtd, nand->numcs);
1666 if (ret) {
1667 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1668 return ret;
1669 }
1670
1671 ret = nand_register(0, mtd);
1672 if (ret) {
1673 dev_err(nc->dev, "nand register failed: %d\n", ret);
1674 return ret;
1675 }
1676
1677 list_add_tail(&nand->node, &nc->chips);
1678
1679 return 0;
1680 }
1681
1682 static int
1683 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1684 {
1685 struct atmel_nand *nand, *tmp;
1686 int ret;
1687
1688 list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1689 ret = atmel_nand_controller_remove_nand(nand);
1690 if (ret)
1691 return ret;
1692 }
1693
1694 return 0;
1695 }
1696
1697 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1698 {
1699 ofnode np;
1700 ofnode nand_np;
1701 int ret, reg_cells;
1702 u32 val;
1703
1704 /* TODO:
1705 * Add support for legacy nands
1706 */
1707
1708 np = nc->dev->node_;
1709
1710 ret = ofnode_read_u32(np, "#address-cells", &val);
1711 if (ret) {
1712 dev_err(nc->dev, "missing #address-cells property\n");
1713 return ret;
1714 }
1715
1716 reg_cells = val;
1717
1718 ret = ofnode_read_u32(np, "#size-cells", &val);
1719 if (ret) {
1720 dev_err(nc->dev, "missing #size-cells property\n");
1721 return ret;
1722 }
1723
1724 reg_cells += val;
1725
1726 ofnode_for_each_subnode(nand_np, np) {
1727 struct atmel_nand *nand;
1728
1729 nand = atmel_nand_create(nc, nand_np, reg_cells);
1730 if (IS_ERR(nand)) {
1731 ret = PTR_ERR(nand);
1732 goto err;
1733 }
1734
1735 ret = atmel_nand_controller_add_nand(nc, nand);
1736 if (ret)
1737 goto err;
1738 }
1739
1740 return 0;
1741
1742 err:
1743 atmel_nand_controller_remove_nands(nc);
1744
1745 return ret;
1746 }
1747
1748 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1749 .offs = AT91SAM9260_MATRIX_EBICSA,
1750 };
1751
1752 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1753 .offs = AT91SAM9261_MATRIX_EBICSA,
1754 };
1755
1756 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1757 .offs = AT91SAM9263_MATRIX_EBI0CSA,
1758 };
1759
1760 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1761 .offs = AT91SAM9RL_MATRIX_EBICSA,
1762 };
1763
1764 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1765 .offs = AT91SAM9G45_MATRIX_EBICSA,
1766 };
1767
1768 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1769 .offs = AT91SAM9N12_MATRIX_EBICSA,
1770 };
1771
1772 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1773 .offs = AT91SAM9X5_MATRIX_EBICSA,
1774 };
1775
1776 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1777 .offs = AT91_SFR_CCFG_EBICSA,
1778 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1779 };
1780
1781 static const struct udevice_id atmel_ebi_csa_regmap_of_ids[] = {
1782 {
1783 .compatible = "atmel,at91sam9260-matrix",
1784 .data = (ulong)&at91sam9260_ebi_csa,
1785 },
1786 {
1787 .compatible = "atmel,at91sam9261-matrix",
1788 .data = (ulong)&at91sam9261_ebi_csa,
1789 },
1790 {
1791 .compatible = "atmel,at91sam9263-matrix",
1792 .data = (ulong)&at91sam9263_ebi_csa,
1793 },
1794 {
1795 .compatible = "atmel,at91sam9rl-matrix",
1796 .data = (ulong)&at91sam9rl_ebi_csa,
1797 },
1798 {
1799 .compatible = "atmel,at91sam9g45-matrix",
1800 .data = (ulong)&at91sam9g45_ebi_csa,
1801 },
1802 {
1803 .compatible = "atmel,at91sam9n12-matrix",
1804 .data = (ulong)&at91sam9n12_ebi_csa,
1805 },
1806 {
1807 .compatible = "atmel,at91sam9x5-matrix",
1808 .data = (ulong)&at91sam9x5_ebi_csa,
1809 },
1810 {
1811 .compatible = "microchip,sam9x60-sfr",
1812 .data = (ulong)&sam9x60_ebi_csa,
1813 },
1814 { /* sentinel */ },
1815 };
1816
1817 static int atmel_nand_attach_chip(struct nand_chip *chip)
1818 {
1819 struct atmel_nand *nand = to_atmel_nand(chip);
1820 struct atmel_nand_controller *nc = to_nand_controller(nand->controller);
1821 struct mtd_info *mtd = nand_to_mtd(chip);
1822 int ret;
1823
1824 ret = nc->caps->ops->ecc_init(chip);
1825 if (ret)
1826 return ret;
1827
1828 if (nc->caps->legacy_of_bindings || !ofnode_valid(nc->dev->node_)) {
1829 /*
1830 * We keep the MTD name unchanged to avoid breaking platforms
1831 * where the MTD cmdline parser is used and the bootloader
1832 * has not been updated to use the new naming scheme.
1833 */
1834 mtd->name = "atmel_nand";
1835 } else if (!mtd->name) {
1836 /*
1837 * If the new bindings are used and the bootloader has not been
1838 * updated to pass a new mtdparts parameter on the cmdline, you
1839 * should define the following property in your nand node:
1840 *
1841 * label = "atmel_nand";
1842 *
1843 * This way, mtd->name will be set by the core when
1844 * nand_set_flash_node() is called.
1845 */
1846 sprintf(mtd->name, "%s:nand.%d", nc->dev->name, nand->cs[0].id);
1847 }
1848
1849 return 0;
1850 }
1851
1852 static const struct nand_controller_ops atmel_nand_controller_ops = {
1853 .attach_chip = atmel_nand_attach_chip,
1854 };
1855
1856 static int
1857 atmel_nand_controller_init(struct atmel_nand_controller *nc,
1858 struct udevice *dev,
1859 const struct atmel_nand_controller_caps *caps)
1860 {
1861 struct ofnode_phandle_args args;
1862 int ret;
1863
1864 nc->base.ops = &atmel_nand_controller_ops;
1865 INIT_LIST_HEAD(&nc->chips);
1866 nc->dev = dev;
1867 nc->caps = caps;
1868
1869 nc->pmecc = devm_atmel_pmecc_get(dev);
1870 if (IS_ERR(nc->pmecc)) {
1871 ret = PTR_ERR(nc->pmecc);
1872 if (ret != -EPROBE_DEFER)
1873 dev_err(dev, "Could not get PMECC object (err = %d)\n",
1874 ret);
1875 return ret;
1876 }
1877
1878 /* We do not retrieve the SMC syscon when parsing old DTs. */
1879 if (nc->caps->legacy_of_bindings)
1880 return 0;
1881
1882 nc->mck = devm_kzalloc(dev, sizeof(nc->mck), GFP_KERNEL);
1883 if (!nc->mck)
1884 return -ENOMEM;
1885
1886 clk_get_by_index(dev->parent, 0, nc->mck);
1887 if (IS_ERR(nc->mck)) {
1888 dev_err(dev, "Failed to retrieve MCK clk\n");
1889 return PTR_ERR(nc->mck);
1890 }
1891
1892 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1893 "atmel,smc", NULL, 0, 0, &args);
1894 if (ret) {
1895 dev_err(dev, "Missing or invalid atmel,smc property\n");
1896 return -EINVAL;
1897 }
1898
1899 nc->smc = syscon_node_to_regmap(args.node);
1900 if (IS_ERR(nc->smc)) {
1901 ret = PTR_ERR(nc->smc);
1902 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
1903 return 0;
1904 }
1905
1906 return 0;
1907 }
1908
1909 static int
1910 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
1911 {
1912 struct udevice *dev = nc->base.dev;
1913 struct ofnode_phandle_args args;
1914 const struct udevice_id *match = NULL;
1915 const char *name;
1916 int ret;
1917 int len;
1918 int i;
1919
1920 /* We do not retrieve the EBICSA regmap when parsing old DTs. */
1921 if (nc->base.caps->legacy_of_bindings)
1922 return 0;
1923
1924 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1925 nc->base.caps->ebi_csa_regmap_name,
1926 NULL, 0, 0, &args);
1927 if (ret) {
1928 dev_err(dev, "Unable to read ebi csa regmap\n");
1929 return -EINVAL;
1930 }
1931
1932 name = ofnode_get_property(args.node, "compatible", &len);
1933
1934 for (i = 0; i < ARRAY_SIZE(atmel_ebi_csa_regmap_of_ids); i++) {
1935 if (!strcmp(name, atmel_ebi_csa_regmap_of_ids[i].compatible)) {
1936 match = &atmel_ebi_csa_regmap_of_ids[i];
1937 break;
1938 }
1939 }
1940
1941 if (!match) {
1942 dev_err(dev, "Unable to find ebi csa conf");
1943 return -EINVAL;
1944 }
1945 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
1946
1947 nc->ebi_csa_regmap = syscon_node_to_regmap(args.node);
1948 if (IS_ERR(nc->ebi_csa_regmap)) {
1949 ret = PTR_ERR(nc->ebi_csa_regmap);
1950 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
1951 return ret;
1952 }
1953
1954 /* TODO:
1955 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
1956 * add 4 to ->ebi_csa->offs.
1957 */
1958
1959 return 0;
1960 }
1961
1962 static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
1963 {
1964 struct udevice *dev = nc->base.dev;
1965 struct ofnode_phandle_args args;
1966 struct clk smc_clk;
1967 int ret;
1968 u32 addr;
1969
1970 ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1971 "atmel,smc", NULL, 0, 0, &args);
1972 if (ret) {
1973 dev_err(dev, "Missing or invalid atmel,smc property\n");
1974 return -EINVAL;
1975 }
1976
1977 nc->hsmc_layout = atmel_hsmc_get_reg_layout(args.node);
1978 if (IS_ERR(nc->hsmc_layout)) {
1979 dev_err(dev, "Could not get hsmc layout\n");
1980 return -EINVAL;
1981 }
1982
1983 /* Enable smc clock */
1984 ret = clk_get_by_index_nodev(args.node, 0, &smc_clk);
1985 if (ret) {
1986 dev_err(dev, "Unable to get smc clock (err = %d)", ret);
1987 return ret;
1988 }
1989
1990 ret = clk_prepare_enable(&smc_clk);
1991 if (ret)
1992 return ret;
1993
1994 ret = ofnode_parse_phandle_with_args(dev->node_,
1995 "atmel,nfc-io", NULL, 0, 0, &args);
1996 if (ret) {
1997 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
1998 return -EINVAL;
1999 }
2000
2001 nc->io = syscon_node_to_regmap(args.node);
2002 if (IS_ERR(nc->io)) {
2003 ret = PTR_ERR(nc->io);
2004 dev_err(dev, "Could not get NFC IO regmap\n");
2005 return ret;
2006 }
2007
2008 ret = ofnode_parse_phandle_with_args(dev->node_,
2009 "atmel,nfc-sram", NULL, 0, 0, &args);
2010 if (ret) {
2011 dev_err(dev, "Missing or invalid atmel,nfc-sram property\n");
2012 return ret;
2013 }
2014
2015 ret = ofnode_read_u32(args.node, "reg", &addr);
2016 if (ret) {
2017 dev_err(dev, "Could not read reg addr of nfc sram");
2018 return ret;
2019 }
2020 nc->sram.virt = (void *)addr;
2021
2022 return 0;
2023 }
2024
2025 static int
2026 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2027 {
2028 struct atmel_hsmc_nand_controller *hsmc_nc;
2029 int ret;
2030
2031 ret = atmel_nand_controller_remove_nands(nc);
2032 if (ret)
2033 return ret;
2034
2035 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2036
2037 if (hsmc_nc->clk) {
2038 clk_disable_unprepare(hsmc_nc->clk);
2039 devm_clk_put(nc->dev, hsmc_nc->clk);
2040 }
2041
2042 return 0;
2043 }
2044
2045 static int
2046 atmel_hsmc_nand_controller_probe(struct udevice *dev,
2047 const struct atmel_nand_controller_caps *caps)
2048 {
2049 struct atmel_hsmc_nand_controller *nc;
2050 int ret;
2051
2052 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2053 if (!nc)
2054 return -ENOMEM;
2055
2056 ret = atmel_nand_controller_init(&nc->base, dev, caps);
2057 if (ret)
2058 return ret;
2059
2060 ret = atmel_hsmc_nand_controller_init(nc);
2061 if (ret)
2062 return ret;
2063
2064 /* Make sure all irqs are masked before registering our IRQ handler. */
2065 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2066
2067 /* Initial NFC configuration. */
2068 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2069 ATMEL_HSMC_NFC_CFG_DTO_MAX);
2070
2071 ret = atmel_nand_controller_add_nands(&nc->base);
2072 if (ret)
2073 goto err;
2074
2075 return 0;
2076
2077 err:
2078 atmel_hsmc_nand_controller_remove(&nc->base);
2079
2080 return ret;
2081 }
2082
2083 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2084 .probe = atmel_hsmc_nand_controller_probe,
2085 .remove = atmel_hsmc_nand_controller_remove,
2086 .ecc_init = atmel_hsmc_nand_ecc_init,
2087 .nand_init = atmel_hsmc_nand_init,
2088 .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2089 };
2090
2091 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2092 .has_dma = true,
2093 .ale_offs = BIT(21),
2094 .cle_offs = BIT(22),
2095 .ops = &atmel_hsmc_nc_ops,
2096 };
2097
2098 static int
2099 atmel_smc_nand_controller_probe(struct udevice *dev,
2100 const struct atmel_nand_controller_caps *caps)
2101 {
2102 struct atmel_smc_nand_controller *nc;
2103 int ret;
2104
2105 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2106 if (!nc)
2107 return -ENOMEM;
2108
2109 ret = atmel_nand_controller_init(&nc->base, dev, caps);
2110 if (ret)
2111 return ret;
2112
2113 ret = atmel_smc_nand_controller_init(nc);
2114 if (ret)
2115 return ret;
2116
2117 return atmel_nand_controller_add_nands(&nc->base);
2118 }
2119
2120 static int
2121 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2122 {
2123 int ret;
2124
2125 ret = atmel_nand_controller_remove_nands(nc);
2126 if (ret)
2127 return ret;
2128
2129 return 0;
2130 }
2131
2132 /*
2133 * The SMC reg layout of at91rm9200 is completely different which prevents us
2134 * from re-using atmel_smc_nand_setup_data_interface() for the
2135 * ->setup_data_interface() hook.
2136 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2137 * ->setup_data_interface() unassigned.
2138 */
2139 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2140 .probe = atmel_smc_nand_controller_probe,
2141 .remove = atmel_smc_nand_controller_remove,
2142 .ecc_init = atmel_nand_ecc_init,
2143 .nand_init = atmel_smc_nand_init,
2144 };
2145
2146 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2147 .ale_offs = BIT(21),
2148 .cle_offs = BIT(22),
2149 .ebi_csa_regmap_name = "atmel,matrix",
2150 .ops = &at91rm9200_nc_ops,
2151 };
2152
2153 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2154 .probe = atmel_smc_nand_controller_probe,
2155 .remove = atmel_smc_nand_controller_remove,
2156 .ecc_init = atmel_nand_ecc_init,
2157 .nand_init = atmel_smc_nand_init,
2158 .setup_data_interface = atmel_smc_nand_setup_data_interface,
2159 };
2160
2161 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2162 .ale_offs = BIT(21),
2163 .cle_offs = BIT(22),
2164 .ebi_csa_regmap_name = "atmel,matrix",
2165 .ops = &atmel_smc_nc_ops,
2166 };
2167
2168 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2169 .ale_offs = BIT(22),
2170 .cle_offs = BIT(21),
2171 .ebi_csa_regmap_name = "atmel,matrix",
2172 .ops = &atmel_smc_nc_ops,
2173 };
2174
2175 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2176 .has_dma = true,
2177 .ale_offs = BIT(21),
2178 .cle_offs = BIT(22),
2179 .ebi_csa_regmap_name = "atmel,matrix",
2180 .ops = &atmel_smc_nc_ops,
2181 };
2182
2183 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2184 .has_dma = true,
2185 .ale_offs = BIT(21),
2186 .cle_offs = BIT(22),
2187 .ebi_csa_regmap_name = "microchip,sfr",
2188 .ops = &atmel_smc_nc_ops,
2189 };
2190
2191 /* Only used to parse old bindings. */
2192 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2193 .ale_offs = BIT(21),
2194 .cle_offs = BIT(22),
2195 .ops = &atmel_smc_nc_ops,
2196 .legacy_of_bindings = true,
2197 };
2198
2199 static const struct udevice_id atmel_nand_controller_of_ids[] = {
2200 {
2201 .compatible = "atmel,at91rm9200-nand-controller",
2202 .data = (ulong)&atmel_rm9200_nc_caps,
2203 },
2204 {
2205 .compatible = "atmel,at91sam9260-nand-controller",
2206 .data = (ulong)&atmel_sam9260_nc_caps,
2207 },
2208 {
2209 .compatible = "atmel,at91sam9261-nand-controller",
2210 .data = (ulong)&atmel_sam9261_nc_caps,
2211 },
2212 {
2213 .compatible = "atmel,at91sam9g45-nand-controller",
2214 .data = (ulong)&atmel_sam9g45_nc_caps,
2215 },
2216 {
2217 .compatible = "atmel,sama5d3-nand-controller",
2218 .data = (ulong)&atmel_sama5_nc_caps,
2219 },
2220 {
2221 .compatible = "microchip,sam9x60-nand-controller",
2222 .data = (ulong)&microchip_sam9x60_nc_caps,
2223 },
2224 /* Support for old/deprecated bindings: */
2225 {
2226 .compatible = "atmel,at91rm9200-nand",
2227 .data = (ulong)&atmel_rm9200_nand_caps,
2228 },
2229 {
2230 .compatible = "atmel,sama5d4-nand",
2231 .data = (ulong)&atmel_rm9200_nand_caps,
2232 },
2233 {
2234 .compatible = "atmel,sama5d2-nand",
2235 .data = (ulong)&atmel_rm9200_nand_caps,
2236 },
2237 { /* sentinel */ },
2238 };
2239
2240 static int atmel_nand_controller_probe(struct udevice *dev)
2241 {
2242 const struct atmel_nand_controller_caps *caps;
2243 struct udevice *pmecc_dev;
2244
2245 caps = (struct atmel_nand_controller_caps *)dev_get_driver_data(dev);
2246 if (!caps) {
2247 printf("Could not retrieve NFC caps\n");
2248 return -EINVAL;
2249 }
2250
2251 /* Probe pmecc driver */
2252 if (uclass_get_device(UCLASS_MTD, 1, &pmecc_dev)) {
2253 printf("%s: get device fail\n", __func__);
2254 return -EINVAL;
2255 }
2256
2257 return caps->ops->probe(dev, caps);
2258 }
2259
2260 static int atmel_nand_controller_remove(struct udevice *dev)
2261 {
2262 struct atmel_nand_controller *nc;
2263
2264 nc = (struct atmel_nand_controller *)dev_get_driver_data(dev);
2265
2266 return nc->caps->ops->remove(nc);
2267 }
2268
2269 U_BOOT_DRIVER(atmel_nand_controller) = {
2270 .name = "atmel-nand-controller",
2271 .id = UCLASS_MTD,
2272 .of_match = atmel_nand_controller_of_ids,
2273 .probe = atmel_nand_controller_probe,
2274 .remove = atmel_nand_controller_remove,
2275 };
2276
2277 void board_nand_init(void)
2278 {
2279 struct udevice *dev;
2280 int ret;
2281
2282 ret = uclass_get_device_by_driver(UCLASS_MTD,
2283 DM_DRIVER_GET(atmel_nand_controller),
2284 &dev);
2285 if (ret && ret != -ENODEV)
2286 printf("Failed to initialize NAND controller. (error %d)\n",
2287 ret);
2288 }