]> git.ipfire.org Git - thirdparty/u-boot.git/blob - net/net.c
mmc: sdhci: Correct ADMA_DESC_LEN to 12
[thirdparty/u-boot.git] / net / net.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copied from Linux Monitor (LiMon) - Networking.
4 *
5 * Copyright 1994 - 2000 Neil Russell.
6 * (See License)
7 * Copyright 2000 Roland Borde
8 * Copyright 2000 Paolo Scaffardi
9 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de
10 */
11
12 /*
13 * General Desription:
14 *
15 * The user interface supports commands for BOOTP, RARP, and TFTP.
16 * Also, we support ARP internally. Depending on available data,
17 * these interact as follows:
18 *
19 * BOOTP:
20 *
21 * Prerequisites: - own ethernet address
22 * We want: - own IP address
23 * - TFTP server IP address
24 * - name of bootfile
25 * Next step: ARP
26 *
27 * LINK_LOCAL:
28 *
29 * Prerequisites: - own ethernet address
30 * We want: - own IP address
31 * Next step: ARP
32 *
33 * RARP:
34 *
35 * Prerequisites: - own ethernet address
36 * We want: - own IP address
37 * - TFTP server IP address
38 * Next step: ARP
39 *
40 * ARP:
41 *
42 * Prerequisites: - own ethernet address
43 * - own IP address
44 * - TFTP server IP address
45 * We want: - TFTP server ethernet address
46 * Next step: TFTP
47 *
48 * DHCP:
49 *
50 * Prerequisites: - own ethernet address
51 * We want: - IP, Netmask, ServerIP, Gateway IP
52 * - bootfilename, lease time
53 * Next step: - TFTP
54 *
55 * TFTP:
56 *
57 * Prerequisites: - own ethernet address
58 * - own IP address
59 * - TFTP server IP address
60 * - TFTP server ethernet address
61 * - name of bootfile (if unknown, we use a default name
62 * derived from our own IP address)
63 * We want: - load the boot file
64 * Next step: none
65 *
66 * NFS:
67 *
68 * Prerequisites: - own ethernet address
69 * - own IP address
70 * - name of bootfile (if unknown, we use a default name
71 * derived from our own IP address)
72 * We want: - load the boot file
73 * Next step: none
74 *
75 * SNTP:
76 *
77 * Prerequisites: - own ethernet address
78 * - own IP address
79 * We want: - network time
80 * Next step: none
81 *
82 * WOL:
83 *
84 * Prerequisites: - own ethernet address
85 * We want: - magic packet or timeout
86 * Next step: none
87 */
88
89
90 #include <common.h>
91 #include <command.h>
92 #include <console.h>
93 #include <environment.h>
94 #include <errno.h>
95 #include <net.h>
96 #include <net/fastboot.h>
97 #include <net/tftp.h>
98 #if defined(CONFIG_LED_STATUS)
99 #include <miiphy.h>
100 #include <status_led.h>
101 #endif
102 #include <watchdog.h>
103 #include <linux/compiler.h>
104 #include "arp.h"
105 #include "bootp.h"
106 #include "cdp.h"
107 #if defined(CONFIG_CMD_DNS)
108 #include "dns.h"
109 #endif
110 #include "link_local.h"
111 #include "nfs.h"
112 #include "ping.h"
113 #include "rarp.h"
114 #if defined(CONFIG_CMD_SNTP)
115 #include "sntp.h"
116 #endif
117 #if defined(CONFIG_CMD_WOL)
118 #include "wol.h"
119 #endif
120
121 /** BOOTP EXTENTIONS **/
122
123 /* Our subnet mask (0=unknown) */
124 struct in_addr net_netmask;
125 /* Our gateways IP address */
126 struct in_addr net_gateway;
127 /* Our DNS IP address */
128 struct in_addr net_dns_server;
129 #if defined(CONFIG_BOOTP_DNS2)
130 /* Our 2nd DNS IP address */
131 struct in_addr net_dns_server2;
132 #endif
133
134 /** END OF BOOTP EXTENTIONS **/
135
136 /* Our ethernet address */
137 u8 net_ethaddr[6];
138 /* Boot server enet address */
139 u8 net_server_ethaddr[6];
140 /* Our IP addr (0 = unknown) */
141 struct in_addr net_ip;
142 /* Server IP addr (0 = unknown) */
143 struct in_addr net_server_ip;
144 /* Current receive packet */
145 uchar *net_rx_packet;
146 /* Current rx packet length */
147 int net_rx_packet_len;
148 /* IP packet ID */
149 static unsigned net_ip_id;
150 /* Ethernet bcast address */
151 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
152 const u8 net_null_ethaddr[6];
153 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
154 void (*push_packet)(void *, int len) = 0;
155 #endif
156 /* Network loop state */
157 enum net_loop_state net_state;
158 /* Tried all network devices */
159 int net_restart_wrap;
160 /* Network loop restarted */
161 static int net_restarted;
162 /* At least one device configured */
163 static int net_dev_exists;
164
165 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
166 /* default is without VLAN */
167 ushort net_our_vlan = 0xFFFF;
168 /* ditto */
169 ushort net_native_vlan = 0xFFFF;
170
171 /* Boot File name */
172 char net_boot_file_name[1024];
173 /* Indicates whether the file name was specified on the command line */
174 bool net_boot_file_name_explicit;
175 /* The actual transferred size of the bootfile (in bytes) */
176 u32 net_boot_file_size;
177 /* Boot file size in blocks as reported by the DHCP server */
178 u32 net_boot_file_expected_size_in_blocks;
179
180 #if defined(CONFIG_CMD_SNTP)
181 /* NTP server IP address */
182 struct in_addr net_ntp_server;
183 /* offset time from UTC */
184 int net_ntp_time_offset;
185 #endif
186
187 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
188 /* Receive packets */
189 uchar *net_rx_packets[PKTBUFSRX];
190 /* Current UDP RX packet handler */
191 static rxhand_f *udp_packet_handler;
192 /* Current ARP RX packet handler */
193 static rxhand_f *arp_packet_handler;
194 #ifdef CONFIG_CMD_TFTPPUT
195 /* Current ICMP rx handler */
196 static rxhand_icmp_f *packet_icmp_handler;
197 #endif
198 /* Current timeout handler */
199 static thand_f *time_handler;
200 /* Time base value */
201 static ulong time_start;
202 /* Current timeout value */
203 static ulong time_delta;
204 /* THE transmit packet */
205 uchar *net_tx_packet;
206
207 static int net_check_prereq(enum proto_t protocol);
208
209 static int net_try_count;
210
211 int __maybe_unused net_busy_flag;
212
213 /**********************************************************************/
214
215 static int on_ipaddr(const char *name, const char *value, enum env_op op,
216 int flags)
217 {
218 if (flags & H_PROGRAMMATIC)
219 return 0;
220
221 net_ip = string_to_ip(value);
222
223 return 0;
224 }
225 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
226
227 static int on_gatewayip(const char *name, const char *value, enum env_op op,
228 int flags)
229 {
230 if (flags & H_PROGRAMMATIC)
231 return 0;
232
233 net_gateway = string_to_ip(value);
234
235 return 0;
236 }
237 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
238
239 static int on_netmask(const char *name, const char *value, enum env_op op,
240 int flags)
241 {
242 if (flags & H_PROGRAMMATIC)
243 return 0;
244
245 net_netmask = string_to_ip(value);
246
247 return 0;
248 }
249 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
250
251 static int on_serverip(const char *name, const char *value, enum env_op op,
252 int flags)
253 {
254 if (flags & H_PROGRAMMATIC)
255 return 0;
256
257 net_server_ip = string_to_ip(value);
258
259 return 0;
260 }
261 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
262
263 static int on_nvlan(const char *name, const char *value, enum env_op op,
264 int flags)
265 {
266 if (flags & H_PROGRAMMATIC)
267 return 0;
268
269 net_native_vlan = string_to_vlan(value);
270
271 return 0;
272 }
273 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
274
275 static int on_vlan(const char *name, const char *value, enum env_op op,
276 int flags)
277 {
278 if (flags & H_PROGRAMMATIC)
279 return 0;
280
281 net_our_vlan = string_to_vlan(value);
282
283 return 0;
284 }
285 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
286
287 #if defined(CONFIG_CMD_DNS)
288 static int on_dnsip(const char *name, const char *value, enum env_op op,
289 int flags)
290 {
291 if (flags & H_PROGRAMMATIC)
292 return 0;
293
294 net_dns_server = string_to_ip(value);
295
296 return 0;
297 }
298 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
299 #endif
300
301 /*
302 * Check if autoload is enabled. If so, use either NFS or TFTP to download
303 * the boot file.
304 */
305 void net_auto_load(void)
306 {
307 #if defined(CONFIG_CMD_NFS)
308 const char *s = env_get("autoload");
309
310 if (s != NULL && strcmp(s, "NFS") == 0) {
311 if (net_check_prereq(NFS)) {
312 /* We aren't expecting to get a serverip, so just accept the assigned IP */
313 #ifdef CONFIG_BOOTP_SERVERIP
314 net_set_state(NETLOOP_SUCCESS);
315 #else
316 printf("Cannot autoload with NFS\n");
317 net_set_state(NETLOOP_FAIL);
318 #endif
319 return;
320 }
321 /*
322 * Use NFS to load the bootfile.
323 */
324 nfs_start();
325 return;
326 }
327 #endif
328 if (env_get_yesno("autoload") == 0) {
329 /*
330 * Just use BOOTP/RARP to configure system;
331 * Do not use TFTP to load the bootfile.
332 */
333 net_set_state(NETLOOP_SUCCESS);
334 return;
335 }
336 if (net_check_prereq(TFTPGET)) {
337 /* We aren't expecting to get a serverip, so just accept the assigned IP */
338 #ifdef CONFIG_BOOTP_SERVERIP
339 net_set_state(NETLOOP_SUCCESS);
340 #else
341 printf("Cannot autoload with TFTPGET\n");
342 net_set_state(NETLOOP_FAIL);
343 #endif
344 return;
345 }
346 tftp_start(TFTPGET);
347 }
348
349 static void net_init_loop(void)
350 {
351 if (eth_get_dev())
352 memcpy(net_ethaddr, eth_get_ethaddr(), 6);
353
354 return;
355 }
356
357 static void net_clear_handlers(void)
358 {
359 net_set_udp_handler(NULL);
360 net_set_arp_handler(NULL);
361 net_set_timeout_handler(0, NULL);
362 }
363
364 static void net_cleanup_loop(void)
365 {
366 net_clear_handlers();
367 }
368
369 void net_init(void)
370 {
371 static int first_call = 1;
372
373 if (first_call) {
374 /*
375 * Setup packet buffers, aligned correctly.
376 */
377 int i;
378
379 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
380 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
381 for (i = 0; i < PKTBUFSRX; i++) {
382 net_rx_packets[i] = net_tx_packet +
383 (i + 1) * PKTSIZE_ALIGN;
384 }
385 arp_init();
386 net_clear_handlers();
387
388 /* Only need to setup buffer pointers once. */
389 first_call = 0;
390 }
391
392 net_init_loop();
393 }
394
395 /**********************************************************************/
396 /*
397 * Main network processing loop.
398 */
399
400 int net_loop(enum proto_t protocol)
401 {
402 int ret = -EINVAL;
403 enum net_loop_state prev_net_state = net_state;
404
405 net_restarted = 0;
406 net_dev_exists = 0;
407 net_try_count = 1;
408 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
409
410 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
411 net_init();
412 if (eth_is_on_demand_init() || protocol != NETCONS) {
413 eth_halt();
414 eth_set_current();
415 ret = eth_init();
416 if (ret < 0) {
417 eth_halt();
418 return ret;
419 }
420 } else {
421 eth_init_state_only();
422 }
423 restart:
424 #ifdef CONFIG_USB_KEYBOARD
425 net_busy_flag = 0;
426 #endif
427 net_set_state(NETLOOP_CONTINUE);
428
429 /*
430 * Start the ball rolling with the given start function. From
431 * here on, this code is a state machine driven by received
432 * packets and timer events.
433 */
434 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
435 net_init_loop();
436
437 switch (net_check_prereq(protocol)) {
438 case 1:
439 /* network not configured */
440 eth_halt();
441 net_set_state(prev_net_state);
442 return -ENODEV;
443
444 case 2:
445 /* network device not configured */
446 break;
447
448 case 0:
449 net_dev_exists = 1;
450 net_boot_file_size = 0;
451 switch (protocol) {
452 case TFTPGET:
453 #ifdef CONFIG_CMD_TFTPPUT
454 case TFTPPUT:
455 #endif
456 /* always use ARP to get server ethernet address */
457 tftp_start(protocol);
458 break;
459 #ifdef CONFIG_CMD_TFTPSRV
460 case TFTPSRV:
461 tftp_start_server();
462 break;
463 #endif
464 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
465 case FASTBOOT:
466 fastboot_start_server();
467 break;
468 #endif
469 #if defined(CONFIG_CMD_DHCP)
470 case DHCP:
471 bootp_reset();
472 net_ip.s_addr = 0;
473 dhcp_request(); /* Basically same as BOOTP */
474 break;
475 #endif
476
477 case BOOTP:
478 bootp_reset();
479 net_ip.s_addr = 0;
480 bootp_request();
481 break;
482
483 #if defined(CONFIG_CMD_RARP)
484 case RARP:
485 rarp_try = 0;
486 net_ip.s_addr = 0;
487 rarp_request();
488 break;
489 #endif
490 #if defined(CONFIG_CMD_PING)
491 case PING:
492 ping_start();
493 break;
494 #endif
495 #if defined(CONFIG_CMD_NFS)
496 case NFS:
497 nfs_start();
498 break;
499 #endif
500 #if defined(CONFIG_CMD_CDP)
501 case CDP:
502 cdp_start();
503 break;
504 #endif
505 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
506 case NETCONS:
507 nc_start();
508 break;
509 #endif
510 #if defined(CONFIG_CMD_SNTP)
511 case SNTP:
512 sntp_start();
513 break;
514 #endif
515 #if defined(CONFIG_CMD_DNS)
516 case DNS:
517 dns_start();
518 break;
519 #endif
520 #if defined(CONFIG_CMD_LINK_LOCAL)
521 case LINKLOCAL:
522 link_local_start();
523 break;
524 #endif
525 #if defined(CONFIG_CMD_WOL)
526 case WOL:
527 wol_start();
528 break;
529 #endif
530 default:
531 break;
532 }
533
534 break;
535 }
536
537 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
538 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
539 defined(CONFIG_LED_STATUS) && \
540 defined(CONFIG_LED_STATUS_RED)
541 /*
542 * Echo the inverted link state to the fault LED.
543 */
544 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
545 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
546 else
547 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
548 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
549 #endif /* CONFIG_MII, ... */
550 #ifdef CONFIG_USB_KEYBOARD
551 net_busy_flag = 1;
552 #endif
553
554 /*
555 * Main packet reception loop. Loop receiving packets until
556 * someone sets `net_state' to a state that terminates.
557 */
558 for (;;) {
559 WATCHDOG_RESET();
560 #ifdef CONFIG_SHOW_ACTIVITY
561 show_activity(1);
562 #endif
563 if (arp_timeout_check() > 0)
564 time_start = get_timer(0);
565
566 /*
567 * Check the ethernet for a new packet. The ethernet
568 * receive routine will process it.
569 * Most drivers return the most recent packet size, but not
570 * errors that may have happened.
571 */
572 eth_rx();
573
574 /*
575 * Abort if ctrl-c was pressed.
576 */
577 if (ctrlc()) {
578 /* cancel any ARP that may not have completed */
579 net_arp_wait_packet_ip.s_addr = 0;
580
581 net_cleanup_loop();
582 eth_halt();
583 /* Invalidate the last protocol */
584 eth_set_last_protocol(BOOTP);
585
586 puts("\nAbort\n");
587 /* include a debug print as well incase the debug
588 messages are directed to stderr */
589 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
590 ret = -EINTR;
591 goto done;
592 }
593
594 /*
595 * Check for a timeout, and run the timeout handler
596 * if we have one.
597 */
598 if (time_handler &&
599 ((get_timer(0) - time_start) > time_delta)) {
600 thand_f *x;
601
602 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
603 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
604 defined(CONFIG_LED_STATUS) && \
605 defined(CONFIG_LED_STATUS_RED)
606 /*
607 * Echo the inverted link state to the fault LED.
608 */
609 if (miiphy_link(eth_get_dev()->name,
610 CONFIG_SYS_FAULT_MII_ADDR))
611 status_led_set(CONFIG_LED_STATUS_RED,
612 CONFIG_LED_STATUS_OFF);
613 else
614 status_led_set(CONFIG_LED_STATUS_RED,
615 CONFIG_LED_STATUS_ON);
616 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
617 #endif /* CONFIG_MII, ... */
618 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
619 x = time_handler;
620 time_handler = (thand_f *)0;
621 (*x)();
622 }
623
624 if (net_state == NETLOOP_FAIL)
625 ret = net_start_again();
626
627 switch (net_state) {
628 case NETLOOP_RESTART:
629 net_restarted = 1;
630 goto restart;
631
632 case NETLOOP_SUCCESS:
633 net_cleanup_loop();
634 if (net_boot_file_size > 0) {
635 printf("Bytes transferred = %d (%x hex)\n",
636 net_boot_file_size, net_boot_file_size);
637 env_set_hex("filesize", net_boot_file_size);
638 env_set_hex("fileaddr", load_addr);
639 }
640 if (protocol != NETCONS)
641 eth_halt();
642 else
643 eth_halt_state_only();
644
645 eth_set_last_protocol(protocol);
646
647 ret = net_boot_file_size;
648 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
649 goto done;
650
651 case NETLOOP_FAIL:
652 net_cleanup_loop();
653 /* Invalidate the last protocol */
654 eth_set_last_protocol(BOOTP);
655 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
656 ret = -ENONET;
657 goto done;
658
659 case NETLOOP_CONTINUE:
660 continue;
661 }
662 }
663
664 done:
665 #ifdef CONFIG_USB_KEYBOARD
666 net_busy_flag = 0;
667 #endif
668 #ifdef CONFIG_CMD_TFTPPUT
669 /* Clear out the handlers */
670 net_set_udp_handler(NULL);
671 net_set_icmp_handler(NULL);
672 #endif
673 net_set_state(prev_net_state);
674 return ret;
675 }
676
677 /**********************************************************************/
678
679 static void start_again_timeout_handler(void)
680 {
681 net_set_state(NETLOOP_RESTART);
682 }
683
684 int net_start_again(void)
685 {
686 char *nretry;
687 int retry_forever = 0;
688 unsigned long retrycnt = 0;
689 int ret;
690
691 nretry = env_get("netretry");
692 if (nretry) {
693 if (!strcmp(nretry, "yes"))
694 retry_forever = 1;
695 else if (!strcmp(nretry, "no"))
696 retrycnt = 0;
697 else if (!strcmp(nretry, "once"))
698 retrycnt = 1;
699 else
700 retrycnt = simple_strtoul(nretry, NULL, 0);
701 } else {
702 retrycnt = 0;
703 retry_forever = 0;
704 }
705
706 if ((!retry_forever) && (net_try_count > retrycnt)) {
707 eth_halt();
708 net_set_state(NETLOOP_FAIL);
709 /*
710 * We don't provide a way for the protocol to return an error,
711 * but this is almost always the reason.
712 */
713 return -ETIMEDOUT;
714 }
715
716 net_try_count++;
717
718 eth_halt();
719 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
720 eth_try_another(!net_restarted);
721 #endif
722 ret = eth_init();
723 if (net_restart_wrap) {
724 net_restart_wrap = 0;
725 if (net_dev_exists) {
726 net_set_timeout_handler(10000UL,
727 start_again_timeout_handler);
728 net_set_udp_handler(NULL);
729 } else {
730 net_set_state(NETLOOP_FAIL);
731 }
732 } else {
733 net_set_state(NETLOOP_RESTART);
734 }
735 return ret;
736 }
737
738 /**********************************************************************/
739 /*
740 * Miscelaneous bits.
741 */
742
743 static void dummy_handler(uchar *pkt, unsigned dport,
744 struct in_addr sip, unsigned sport,
745 unsigned len)
746 {
747 }
748
749 rxhand_f *net_get_udp_handler(void)
750 {
751 return udp_packet_handler;
752 }
753
754 void net_set_udp_handler(rxhand_f *f)
755 {
756 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
757 if (f == NULL)
758 udp_packet_handler = dummy_handler;
759 else
760 udp_packet_handler = f;
761 }
762
763 rxhand_f *net_get_arp_handler(void)
764 {
765 return arp_packet_handler;
766 }
767
768 void net_set_arp_handler(rxhand_f *f)
769 {
770 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
771 if (f == NULL)
772 arp_packet_handler = dummy_handler;
773 else
774 arp_packet_handler = f;
775 }
776
777 #ifdef CONFIG_CMD_TFTPPUT
778 void net_set_icmp_handler(rxhand_icmp_f *f)
779 {
780 packet_icmp_handler = f;
781 }
782 #endif
783
784 void net_set_timeout_handler(ulong iv, thand_f *f)
785 {
786 if (iv == 0) {
787 debug_cond(DEBUG_INT_STATE,
788 "--- net_loop timeout handler cancelled\n");
789 time_handler = (thand_f *)0;
790 } else {
791 debug_cond(DEBUG_INT_STATE,
792 "--- net_loop timeout handler set (%p)\n", f);
793 time_handler = f;
794 time_start = get_timer(0);
795 time_delta = iv * CONFIG_SYS_HZ / 1000;
796 }
797 }
798
799 uchar *net_get_async_tx_pkt_buf(void)
800 {
801 if (arp_is_waiting())
802 return arp_tx_packet; /* If we are waiting, we already sent */
803 else
804 return net_tx_packet;
805 }
806
807 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
808 int payload_len)
809 {
810 return net_send_ip_packet(ether, dest, dport, sport, payload_len,
811 IPPROTO_UDP, 0, 0, 0);
812 }
813
814 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport,
815 int payload_len, int proto, u8 action, u32 tcp_seq_num,
816 u32 tcp_ack_num)
817 {
818 uchar *pkt;
819 int eth_hdr_size;
820 int pkt_hdr_size;
821
822 /* make sure the net_tx_packet is initialized (net_init() was called) */
823 assert(net_tx_packet != NULL);
824 if (net_tx_packet == NULL)
825 return -1;
826
827 /* convert to new style broadcast */
828 if (dest.s_addr == 0)
829 dest.s_addr = 0xFFFFFFFF;
830
831 /* if broadcast, make the ether address a broadcast and don't do ARP */
832 if (dest.s_addr == 0xFFFFFFFF)
833 ether = (uchar *)net_bcast_ethaddr;
834
835 pkt = (uchar *)net_tx_packet;
836
837 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
838
839 switch (proto) {
840 case IPPROTO_UDP:
841 net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport,
842 payload_len);
843 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
844 break;
845 default:
846 return -EINVAL;
847 }
848
849 /* if MAC address was not discovered yet, do an ARP request */
850 if (memcmp(ether, net_null_ethaddr, 6) == 0) {
851 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
852
853 /* save the ip and eth addr for the packet to send after arp */
854 net_arp_wait_packet_ip = dest;
855 arp_wait_packet_ethaddr = ether;
856
857 /* size of the waiting packet */
858 arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
859
860 /* and do the ARP request */
861 arp_wait_try = 1;
862 arp_wait_timer_start = get_timer(0);
863 arp_request();
864 return 1; /* waiting */
865 } else {
866 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
867 &dest, ether);
868 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
869 return 0; /* transmitted */
870 }
871 }
872
873 #ifdef CONFIG_IP_DEFRAG
874 /*
875 * This function collects fragments in a single packet, according
876 * to the algorithm in RFC815. It returns NULL or the pointer to
877 * a complete packet, in static storage
878 */
879 #ifndef CONFIG_NET_MAXDEFRAG
880 #define CONFIG_NET_MAXDEFRAG 16384
881 #endif
882 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
883
884 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
885
886 /*
887 * this is the packet being assembled, either data or frag control.
888 * Fragments go by 8 bytes, so this union must be 8 bytes long
889 */
890 struct hole {
891 /* first_byte is address of this structure */
892 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
893 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
894 u16 prev_hole; /* index of prev, 0 == none */
895 u16 unused;
896 };
897
898 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
899 {
900 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
901 static u16 first_hole, total_len;
902 struct hole *payload, *thisfrag, *h, *newh;
903 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
904 uchar *indata = (uchar *)ip;
905 int offset8, start, len, done = 0;
906 u16 ip_off = ntohs(ip->ip_off);
907
908 /* payload starts after IP header, this fragment is in there */
909 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
910 offset8 = (ip_off & IP_OFFS);
911 thisfrag = payload + offset8;
912 start = offset8 * 8;
913 len = ntohs(ip->ip_len) - IP_HDR_SIZE;
914
915 if (start + len > IP_MAXUDP) /* fragment extends too far */
916 return NULL;
917
918 if (!total_len || localip->ip_id != ip->ip_id) {
919 /* new (or different) packet, reset structs */
920 total_len = 0xffff;
921 payload[0].last_byte = ~0;
922 payload[0].next_hole = 0;
923 payload[0].prev_hole = 0;
924 first_hole = 0;
925 /* any IP header will work, copy the first we received */
926 memcpy(localip, ip, IP_HDR_SIZE);
927 }
928
929 /*
930 * What follows is the reassembly algorithm. We use the payload
931 * array as a linked list of hole descriptors, as each hole starts
932 * at a multiple of 8 bytes. However, last byte can be whatever value,
933 * so it is represented as byte count, not as 8-byte blocks.
934 */
935
936 h = payload + first_hole;
937 while (h->last_byte < start) {
938 if (!h->next_hole) {
939 /* no hole that far away */
940 return NULL;
941 }
942 h = payload + h->next_hole;
943 }
944
945 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
946 if (offset8 + ((len + 7) / 8) <= h - payload) {
947 /* no overlap with holes (dup fragment?) */
948 return NULL;
949 }
950
951 if (!(ip_off & IP_FLAGS_MFRAG)) {
952 /* no more fragmentss: truncate this (last) hole */
953 total_len = start + len;
954 h->last_byte = start + len;
955 }
956
957 /*
958 * There is some overlap: fix the hole list. This code doesn't
959 * deal with a fragment that overlaps with two different holes
960 * (thus being a superset of a previously-received fragment).
961 */
962
963 if ((h >= thisfrag) && (h->last_byte <= start + len)) {
964 /* complete overlap with hole: remove hole */
965 if (!h->prev_hole && !h->next_hole) {
966 /* last remaining hole */
967 done = 1;
968 } else if (!h->prev_hole) {
969 /* first hole */
970 first_hole = h->next_hole;
971 payload[h->next_hole].prev_hole = 0;
972 } else if (!h->next_hole) {
973 /* last hole */
974 payload[h->prev_hole].next_hole = 0;
975 } else {
976 /* in the middle of the list */
977 payload[h->next_hole].prev_hole = h->prev_hole;
978 payload[h->prev_hole].next_hole = h->next_hole;
979 }
980
981 } else if (h->last_byte <= start + len) {
982 /* overlaps with final part of the hole: shorten this hole */
983 h->last_byte = start;
984
985 } else if (h >= thisfrag) {
986 /* overlaps with initial part of the hole: move this hole */
987 newh = thisfrag + (len / 8);
988 *newh = *h;
989 h = newh;
990 if (h->next_hole)
991 payload[h->next_hole].prev_hole = (h - payload);
992 if (h->prev_hole)
993 payload[h->prev_hole].next_hole = (h - payload);
994 else
995 first_hole = (h - payload);
996
997 } else {
998 /* fragment sits in the middle: split the hole */
999 newh = thisfrag + (len / 8);
1000 *newh = *h;
1001 h->last_byte = start;
1002 h->next_hole = (newh - payload);
1003 newh->prev_hole = (h - payload);
1004 if (newh->next_hole)
1005 payload[newh->next_hole].prev_hole = (newh - payload);
1006 }
1007
1008 /* finally copy this fragment and possibly return whole packet */
1009 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
1010 if (!done)
1011 return NULL;
1012
1013 localip->ip_len = htons(total_len);
1014 *lenp = total_len + IP_HDR_SIZE;
1015 return localip;
1016 }
1017
1018 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1019 int *lenp)
1020 {
1021 u16 ip_off = ntohs(ip->ip_off);
1022 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1023 return ip; /* not a fragment */
1024 return __net_defragment(ip, lenp);
1025 }
1026
1027 #else /* !CONFIG_IP_DEFRAG */
1028
1029 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1030 int *lenp)
1031 {
1032 u16 ip_off = ntohs(ip->ip_off);
1033 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1034 return ip; /* not a fragment */
1035 return NULL;
1036 }
1037 #endif
1038
1039 /**
1040 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1041 * drop others.
1042 *
1043 * @parma ip IP packet containing the ICMP
1044 */
1045 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1046 struct in_addr src_ip, struct ethernet_hdr *et)
1047 {
1048 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1049
1050 switch (icmph->type) {
1051 case ICMP_REDIRECT:
1052 if (icmph->code != ICMP_REDIR_HOST)
1053 return;
1054 printf(" ICMP Host Redirect to %pI4 ",
1055 &icmph->un.gateway);
1056 break;
1057 default:
1058 #if defined(CONFIG_CMD_PING)
1059 ping_receive(et, ip, len);
1060 #endif
1061 #ifdef CONFIG_CMD_TFTPPUT
1062 if (packet_icmp_handler)
1063 packet_icmp_handler(icmph->type, icmph->code,
1064 ntohs(ip->udp_dst), src_ip,
1065 ntohs(ip->udp_src), icmph->un.data,
1066 ntohs(ip->udp_len));
1067 #endif
1068 break;
1069 }
1070 }
1071
1072 void net_process_received_packet(uchar *in_packet, int len)
1073 {
1074 struct ethernet_hdr *et;
1075 struct ip_udp_hdr *ip;
1076 struct in_addr dst_ip;
1077 struct in_addr src_ip;
1078 int eth_proto;
1079 #if defined(CONFIG_CMD_CDP)
1080 int iscdp;
1081 #endif
1082 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1083
1084 debug_cond(DEBUG_NET_PKT, "packet received\n");
1085
1086 net_rx_packet = in_packet;
1087 net_rx_packet_len = len;
1088 et = (struct ethernet_hdr *)in_packet;
1089
1090 /* too small packet? */
1091 if (len < ETHER_HDR_SIZE)
1092 return;
1093
1094 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1095 if (push_packet) {
1096 (*push_packet)(in_packet, len);
1097 return;
1098 }
1099 #endif
1100
1101 #if defined(CONFIG_CMD_CDP)
1102 /* keep track if packet is CDP */
1103 iscdp = is_cdp_packet(et->et_dest);
1104 #endif
1105
1106 myvlanid = ntohs(net_our_vlan);
1107 if (myvlanid == (ushort)-1)
1108 myvlanid = VLAN_NONE;
1109 mynvlanid = ntohs(net_native_vlan);
1110 if (mynvlanid == (ushort)-1)
1111 mynvlanid = VLAN_NONE;
1112
1113 eth_proto = ntohs(et->et_protlen);
1114
1115 if (eth_proto < 1514) {
1116 struct e802_hdr *et802 = (struct e802_hdr *)et;
1117 /*
1118 * Got a 802.2 packet. Check the other protocol field.
1119 * XXX VLAN over 802.2+SNAP not implemented!
1120 */
1121 eth_proto = ntohs(et802->et_prot);
1122
1123 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1124 len -= E802_HDR_SIZE;
1125
1126 } else if (eth_proto != PROT_VLAN) { /* normal packet */
1127 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1128 len -= ETHER_HDR_SIZE;
1129
1130 } else { /* VLAN packet */
1131 struct vlan_ethernet_hdr *vet =
1132 (struct vlan_ethernet_hdr *)et;
1133
1134 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1135
1136 /* too small packet? */
1137 if (len < VLAN_ETHER_HDR_SIZE)
1138 return;
1139
1140 /* if no VLAN active */
1141 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1142 #if defined(CONFIG_CMD_CDP)
1143 && iscdp == 0
1144 #endif
1145 )
1146 return;
1147
1148 cti = ntohs(vet->vet_tag);
1149 vlanid = cti & VLAN_IDMASK;
1150 eth_proto = ntohs(vet->vet_type);
1151
1152 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1153 len -= VLAN_ETHER_HDR_SIZE;
1154 }
1155
1156 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1157
1158 #if defined(CONFIG_CMD_CDP)
1159 if (iscdp) {
1160 cdp_receive((uchar *)ip, len);
1161 return;
1162 }
1163 #endif
1164
1165 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1166 if (vlanid == VLAN_NONE)
1167 vlanid = (mynvlanid & VLAN_IDMASK);
1168 /* not matched? */
1169 if (vlanid != (myvlanid & VLAN_IDMASK))
1170 return;
1171 }
1172
1173 switch (eth_proto) {
1174 case PROT_ARP:
1175 arp_receive(et, ip, len);
1176 break;
1177
1178 #ifdef CONFIG_CMD_RARP
1179 case PROT_RARP:
1180 rarp_receive(ip, len);
1181 break;
1182 #endif
1183 case PROT_IP:
1184 debug_cond(DEBUG_NET_PKT, "Got IP\n");
1185 /* Before we start poking the header, make sure it is there */
1186 if (len < IP_UDP_HDR_SIZE) {
1187 debug("len bad %d < %lu\n", len,
1188 (ulong)IP_UDP_HDR_SIZE);
1189 return;
1190 }
1191 /* Check the packet length */
1192 if (len < ntohs(ip->ip_len)) {
1193 debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1194 return;
1195 }
1196 len = ntohs(ip->ip_len);
1197 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1198 len, ip->ip_hl_v & 0xff);
1199
1200 /* Can't deal with anything except IPv4 */
1201 if ((ip->ip_hl_v & 0xf0) != 0x40)
1202 return;
1203 /* Can't deal with IP options (headers != 20 bytes) */
1204 if ((ip->ip_hl_v & 0x0f) > 0x05)
1205 return;
1206 /* Check the Checksum of the header */
1207 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1208 debug("checksum bad\n");
1209 return;
1210 }
1211 /* If it is not for us, ignore it */
1212 dst_ip = net_read_ip(&ip->ip_dst);
1213 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1214 dst_ip.s_addr != 0xFFFFFFFF) {
1215 return;
1216 }
1217 /* Read source IP address for later use */
1218 src_ip = net_read_ip(&ip->ip_src);
1219 /*
1220 * The function returns the unchanged packet if it's not
1221 * a fragment, and either the complete packet or NULL if
1222 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1223 */
1224 ip = net_defragment(ip, &len);
1225 if (!ip)
1226 return;
1227 /*
1228 * watch for ICMP host redirects
1229 *
1230 * There is no real handler code (yet). We just watch
1231 * for ICMP host redirect messages. In case anybody
1232 * sees these messages: please contact me
1233 * (wd@denx.de), or - even better - send me the
1234 * necessary fixes :-)
1235 *
1236 * Note: in all cases where I have seen this so far
1237 * it was a problem with the router configuration,
1238 * for instance when a router was configured in the
1239 * BOOTP reply, but the TFTP server was on the same
1240 * subnet. So this is probably a warning that your
1241 * configuration might be wrong. But I'm not really
1242 * sure if there aren't any other situations.
1243 *
1244 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1245 * we send a tftp packet to a dead connection, or when
1246 * there is no server at the other end.
1247 */
1248 if (ip->ip_p == IPPROTO_ICMP) {
1249 receive_icmp(ip, len, src_ip, et);
1250 return;
1251 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
1252 return;
1253 }
1254
1255 debug_cond(DEBUG_DEV_PKT,
1256 "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1257 &dst_ip, &src_ip, len);
1258
1259 #ifdef CONFIG_UDP_CHECKSUM
1260 if (ip->udp_xsum != 0) {
1261 ulong xsum;
1262 ushort *sumptr;
1263 ushort sumlen;
1264
1265 xsum = ip->ip_p;
1266 xsum += (ntohs(ip->udp_len));
1267 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1268 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
1269 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1270 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
1271
1272 sumlen = ntohs(ip->udp_len);
1273 sumptr = (ushort *)&(ip->udp_src);
1274
1275 while (sumlen > 1) {
1276 ushort sumdata;
1277
1278 sumdata = *sumptr++;
1279 xsum += ntohs(sumdata);
1280 sumlen -= 2;
1281 }
1282 if (sumlen > 0) {
1283 ushort sumdata;
1284
1285 sumdata = *(unsigned char *)sumptr;
1286 sumdata = (sumdata << 8) & 0xff00;
1287 xsum += sumdata;
1288 }
1289 while ((xsum >> 16) != 0) {
1290 xsum = (xsum & 0x0000ffff) +
1291 ((xsum >> 16) & 0x0000ffff);
1292 }
1293 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1294 printf(" UDP wrong checksum %08lx %08x\n",
1295 xsum, ntohs(ip->udp_xsum));
1296 return;
1297 }
1298 }
1299 #endif
1300
1301 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1302 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1303 src_ip,
1304 ntohs(ip->udp_dst),
1305 ntohs(ip->udp_src),
1306 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1307 #endif
1308 /*
1309 * IP header OK. Pass the packet to the current handler.
1310 */
1311 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1312 ntohs(ip->udp_dst),
1313 src_ip,
1314 ntohs(ip->udp_src),
1315 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1316 break;
1317 #ifdef CONFIG_CMD_WOL
1318 case PROT_WOL:
1319 wol_receive(ip, len);
1320 break;
1321 #endif
1322 }
1323 }
1324
1325 /**********************************************************************/
1326
1327 static int net_check_prereq(enum proto_t protocol)
1328 {
1329 switch (protocol) {
1330 /* Fall through */
1331 #if defined(CONFIG_CMD_PING)
1332 case PING:
1333 if (net_ping_ip.s_addr == 0) {
1334 puts("*** ERROR: ping address not given\n");
1335 return 1;
1336 }
1337 goto common;
1338 #endif
1339 #if defined(CONFIG_CMD_SNTP)
1340 case SNTP:
1341 if (net_ntp_server.s_addr == 0) {
1342 puts("*** ERROR: NTP server address not given\n");
1343 return 1;
1344 }
1345 goto common;
1346 #endif
1347 #if defined(CONFIG_CMD_DNS)
1348 case DNS:
1349 if (net_dns_server.s_addr == 0) {
1350 puts("*** ERROR: DNS server address not given\n");
1351 return 1;
1352 }
1353 goto common;
1354 #endif
1355 #if defined(CONFIG_CMD_NFS)
1356 case NFS:
1357 #endif
1358 /* Fall through */
1359 case TFTPGET:
1360 case TFTPPUT:
1361 if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) {
1362 puts("*** ERROR: `serverip' not set\n");
1363 return 1;
1364 }
1365 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1366 defined(CONFIG_CMD_DNS)
1367 common:
1368 #endif
1369 /* Fall through */
1370
1371 case NETCONS:
1372 case FASTBOOT:
1373 case TFTPSRV:
1374 if (net_ip.s_addr == 0) {
1375 puts("*** ERROR: `ipaddr' not set\n");
1376 return 1;
1377 }
1378 /* Fall through */
1379
1380 #ifdef CONFIG_CMD_RARP
1381 case RARP:
1382 #endif
1383 case BOOTP:
1384 case CDP:
1385 case DHCP:
1386 case LINKLOCAL:
1387 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1388 int num = eth_get_dev_index();
1389
1390 switch (num) {
1391 case -1:
1392 puts("*** ERROR: No ethernet found.\n");
1393 return 1;
1394 case 0:
1395 puts("*** ERROR: `ethaddr' not set\n");
1396 break;
1397 default:
1398 printf("*** ERROR: `eth%daddr' not set\n",
1399 num);
1400 break;
1401 }
1402
1403 net_start_again();
1404 return 2;
1405 }
1406 /* Fall through */
1407 default:
1408 return 0;
1409 }
1410 return 0; /* OK */
1411 }
1412 /**********************************************************************/
1413
1414 int
1415 net_eth_hdr_size(void)
1416 {
1417 ushort myvlanid;
1418
1419 myvlanid = ntohs(net_our_vlan);
1420 if (myvlanid == (ushort)-1)
1421 myvlanid = VLAN_NONE;
1422
1423 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1424 VLAN_ETHER_HDR_SIZE;
1425 }
1426
1427 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1428 {
1429 struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1430 ushort myvlanid;
1431
1432 myvlanid = ntohs(net_our_vlan);
1433 if (myvlanid == (ushort)-1)
1434 myvlanid = VLAN_NONE;
1435
1436 memcpy(et->et_dest, dest_ethaddr, 6);
1437 memcpy(et->et_src, net_ethaddr, 6);
1438 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1439 et->et_protlen = htons(prot);
1440 return ETHER_HDR_SIZE;
1441 } else {
1442 struct vlan_ethernet_hdr *vet =
1443 (struct vlan_ethernet_hdr *)xet;
1444
1445 vet->vet_vlan_type = htons(PROT_VLAN);
1446 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1447 vet->vet_type = htons(prot);
1448 return VLAN_ETHER_HDR_SIZE;
1449 }
1450 }
1451
1452 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1453 {
1454 ushort protlen;
1455
1456 memcpy(et->et_dest, addr, 6);
1457 memcpy(et->et_src, net_ethaddr, 6);
1458 protlen = ntohs(et->et_protlen);
1459 if (protlen == PROT_VLAN) {
1460 struct vlan_ethernet_hdr *vet =
1461 (struct vlan_ethernet_hdr *)et;
1462 vet->vet_type = htons(prot);
1463 return VLAN_ETHER_HDR_SIZE;
1464 } else if (protlen > 1514) {
1465 et->et_protlen = htons(prot);
1466 return ETHER_HDR_SIZE;
1467 } else {
1468 /* 802.2 + SNAP */
1469 struct e802_hdr *et802 = (struct e802_hdr *)et;
1470 et802->et_prot = htons(prot);
1471 return E802_HDR_SIZE;
1472 }
1473 }
1474
1475 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
1476 u16 pkt_len, u8 proto)
1477 {
1478 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1479
1480 /*
1481 * Construct an IP header.
1482 */
1483 /* IP_HDR_SIZE / 4 (not including UDP) */
1484 ip->ip_hl_v = 0x45;
1485 ip->ip_tos = 0;
1486 ip->ip_len = htons(pkt_len);
1487 ip->ip_p = proto;
1488 ip->ip_id = htons(net_ip_id++);
1489 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
1490 ip->ip_ttl = 255;
1491 ip->ip_sum = 0;
1492 /* already in network byte order */
1493 net_copy_ip((void *)&ip->ip_src, &source);
1494 /* already in network byte order */
1495 net_copy_ip((void *)&ip->ip_dst, &dest);
1496
1497 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
1498 }
1499
1500 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1501 int len)
1502 {
1503 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1504
1505 /*
1506 * If the data is an odd number of bytes, zero the
1507 * byte after the last byte so that the checksum
1508 * will work.
1509 */
1510 if (len & 1)
1511 pkt[IP_UDP_HDR_SIZE + len] = 0;
1512
1513 net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len,
1514 IPPROTO_UDP);
1515
1516 ip->udp_src = htons(sport);
1517 ip->udp_dst = htons(dport);
1518 ip->udp_len = htons(UDP_HDR_SIZE + len);
1519 ip->udp_xsum = 0;
1520 }
1521
1522 void copy_filename(char *dst, const char *src, int size)
1523 {
1524 if (src && *src && (*src == '"')) {
1525 ++src;
1526 --size;
1527 }
1528
1529 while ((--size > 0) && src && *src && (*src != '"'))
1530 *dst++ = *src++;
1531 *dst = '\0';
1532 }
1533
1534 int is_serverip_in_cmd(void)
1535 {
1536 return !!strchr(net_boot_file_name, ':');
1537 }
1538
1539 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len)
1540 {
1541 char *colon;
1542
1543 if (net_boot_file_name[0] == '\0')
1544 return 0;
1545
1546 colon = strchr(net_boot_file_name, ':');
1547 if (colon) {
1548 if (ipaddr)
1549 *ipaddr = string_to_ip(net_boot_file_name);
1550 strncpy(filename, colon + 1, max_len);
1551 } else {
1552 strncpy(filename, net_boot_file_name, max_len);
1553 }
1554 filename[max_len - 1] = '\0';
1555
1556 return 1;
1557 }
1558
1559 #if defined(CONFIG_CMD_NFS) || \
1560 defined(CONFIG_CMD_SNTP) || \
1561 defined(CONFIG_CMD_DNS)
1562 /*
1563 * make port a little random (1024-17407)
1564 * This keeps the math somewhat trivial to compute, and seems to work with
1565 * all supported protocols/clients/servers
1566 */
1567 unsigned int random_port(void)
1568 {
1569 return 1024 + (get_timer(0) % 0x4000);
1570 }
1571 #endif
1572
1573 void ip_to_string(struct in_addr x, char *s)
1574 {
1575 x.s_addr = ntohl(x.s_addr);
1576 sprintf(s, "%d.%d.%d.%d",
1577 (int) ((x.s_addr >> 24) & 0xff),
1578 (int) ((x.s_addr >> 16) & 0xff),
1579 (int) ((x.s_addr >> 8) & 0xff),
1580 (int) ((x.s_addr >> 0) & 0xff)
1581 );
1582 }
1583
1584 void vlan_to_string(ushort x, char *s)
1585 {
1586 x = ntohs(x);
1587
1588 if (x == (ushort)-1)
1589 x = VLAN_NONE;
1590
1591 if (x == VLAN_NONE)
1592 strcpy(s, "none");
1593 else
1594 sprintf(s, "%d", x & VLAN_IDMASK);
1595 }
1596
1597 ushort string_to_vlan(const char *s)
1598 {
1599 ushort id;
1600
1601 if (s == NULL)
1602 return htons(VLAN_NONE);
1603
1604 if (*s < '0' || *s > '9')
1605 id = VLAN_NONE;
1606 else
1607 id = (ushort)simple_strtoul(s, NULL, 10);
1608
1609 return htons(id);
1610 }
1611
1612 ushort env_get_vlan(char *var)
1613 {
1614 return string_to_vlan(env_get(var));
1615 }