]> git.ipfire.org Git - thirdparty/xfsprogs-dev.git/blob - libxfs/xfs_ialloc.c
2dbba5f6e3e038bdca1f139adf9dbfea33997a9d
[thirdparty/xfsprogs-dev.git] / libxfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "libxfs_priv.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_errortag.h"
34 #include "xfs_bmap.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_trace.h"
38 #include "xfs_rmap.h"
39
40
41 /*
42 * Allocation group level functions.
43 */
44 int
45 xfs_ialloc_cluster_alignment(
46 struct xfs_mount *mp)
47 {
48 if (xfs_sb_version_hasalign(&mp->m_sb) &&
49 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
50 return mp->m_sb.sb_inoalignmt;
51 return 1;
52 }
53
54 /*
55 * Lookup a record by ino in the btree given by cur.
56 */
57 int /* error */
58 xfs_inobt_lookup(
59 struct xfs_btree_cur *cur, /* btree cursor */
60 xfs_agino_t ino, /* starting inode of chunk */
61 xfs_lookup_t dir, /* <=, >=, == */
62 int *stat) /* success/failure */
63 {
64 cur->bc_rec.i.ir_startino = ino;
65 cur->bc_rec.i.ir_holemask = 0;
66 cur->bc_rec.i.ir_count = 0;
67 cur->bc_rec.i.ir_freecount = 0;
68 cur->bc_rec.i.ir_free = 0;
69 return xfs_btree_lookup(cur, dir, stat);
70 }
71
72 /*
73 * Update the record referred to by cur to the value given.
74 * This either works (return 0) or gets an EFSCORRUPTED error.
75 */
76 STATIC int /* error */
77 xfs_inobt_update(
78 struct xfs_btree_cur *cur, /* btree cursor */
79 xfs_inobt_rec_incore_t *irec) /* btree record */
80 {
81 union xfs_btree_rec rec;
82
83 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
84 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
85 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
86 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
87 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
88 } else {
89 /* ir_holemask/ir_count not supported on-disk */
90 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
91 }
92 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
93 return xfs_btree_update(cur, &rec);
94 }
95
96 /* Convert on-disk btree record to incore inobt record. */
97 void
98 xfs_inobt_btrec_to_irec(
99 struct xfs_mount *mp,
100 union xfs_btree_rec *rec,
101 struct xfs_inobt_rec_incore *irec)
102 {
103 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
104 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
105 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
106 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
107 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
108 } else {
109 /*
110 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
111 * values for full inode chunks.
112 */
113 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
114 irec->ir_count = XFS_INODES_PER_CHUNK;
115 irec->ir_freecount =
116 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
117 }
118 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
119 }
120
121 /*
122 * Get the data from the pointed-to record.
123 */
124 int
125 xfs_inobt_get_rec(
126 struct xfs_btree_cur *cur,
127 struct xfs_inobt_rec_incore *irec,
128 int *stat)
129 {
130 union xfs_btree_rec *rec;
131 int error;
132
133 error = xfs_btree_get_rec(cur, &rec, stat);
134 if (error || *stat == 0)
135 return error;
136
137 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
138
139 return 0;
140 }
141
142 /*
143 * Insert a single inobt record. Cursor must already point to desired location.
144 */
145 STATIC int
146 xfs_inobt_insert_rec(
147 struct xfs_btree_cur *cur,
148 uint16_t holemask,
149 uint8_t count,
150 int32_t freecount,
151 xfs_inofree_t free,
152 int *stat)
153 {
154 cur->bc_rec.i.ir_holemask = holemask;
155 cur->bc_rec.i.ir_count = count;
156 cur->bc_rec.i.ir_freecount = freecount;
157 cur->bc_rec.i.ir_free = free;
158 return xfs_btree_insert(cur, stat);
159 }
160
161 /*
162 * Insert records describing a newly allocated inode chunk into the inobt.
163 */
164 STATIC int
165 xfs_inobt_insert(
166 struct xfs_mount *mp,
167 struct xfs_trans *tp,
168 struct xfs_buf *agbp,
169 xfs_agino_t newino,
170 xfs_agino_t newlen,
171 xfs_btnum_t btnum)
172 {
173 struct xfs_btree_cur *cur;
174 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
175 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
176 xfs_agino_t thisino;
177 int i;
178 int error;
179
180 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
181
182 for (thisino = newino;
183 thisino < newino + newlen;
184 thisino += XFS_INODES_PER_CHUNK) {
185 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
186 if (error) {
187 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
188 return error;
189 }
190 ASSERT(i == 0);
191
192 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
193 XFS_INODES_PER_CHUNK,
194 XFS_INODES_PER_CHUNK,
195 XFS_INOBT_ALL_FREE, &i);
196 if (error) {
197 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
198 return error;
199 }
200 ASSERT(i == 1);
201 }
202
203 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
204
205 return 0;
206 }
207
208 /*
209 * Verify that the number of free inodes in the AGI is correct.
210 */
211 #ifdef DEBUG
212 STATIC int
213 xfs_check_agi_freecount(
214 struct xfs_btree_cur *cur,
215 struct xfs_agi *agi)
216 {
217 if (cur->bc_nlevels == 1) {
218 xfs_inobt_rec_incore_t rec;
219 int freecount = 0;
220 int error;
221 int i;
222
223 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
224 if (error)
225 return error;
226
227 do {
228 error = xfs_inobt_get_rec(cur, &rec, &i);
229 if (error)
230 return error;
231
232 if (i) {
233 freecount += rec.ir_freecount;
234 error = xfs_btree_increment(cur, 0, &i);
235 if (error)
236 return error;
237 }
238 } while (i == 1);
239
240 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
241 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
242 }
243 return 0;
244 }
245 #else
246 #define xfs_check_agi_freecount(cur, agi) 0
247 #endif
248
249 /*
250 * Initialise a new set of inodes. When called without a transaction context
251 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
252 * than logging them (which in a transaction context puts them into the AIL
253 * for writeback rather than the xfsbufd queue).
254 */
255 int
256 xfs_ialloc_inode_init(
257 struct xfs_mount *mp,
258 struct xfs_trans *tp,
259 struct list_head *buffer_list,
260 int icount,
261 xfs_agnumber_t agno,
262 xfs_agblock_t agbno,
263 xfs_agblock_t length,
264 unsigned int gen)
265 {
266 struct xfs_buf *fbuf;
267 struct xfs_dinode *free;
268 int nbufs, blks_per_cluster, inodes_per_cluster;
269 int version;
270 int i, j;
271 xfs_daddr_t d;
272 xfs_ino_t ino = 0;
273
274 /*
275 * Loop over the new block(s), filling in the inodes. For small block
276 * sizes, manipulate the inodes in buffers which are multiples of the
277 * blocks size.
278 */
279 blks_per_cluster = xfs_icluster_size_fsb(mp);
280 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
281 nbufs = length / blks_per_cluster;
282
283 /*
284 * Figure out what version number to use in the inodes we create. If
285 * the superblock version has caught up to the one that supports the new
286 * inode format, then use the new inode version. Otherwise use the old
287 * version so that old kernels will continue to be able to use the file
288 * system.
289 *
290 * For v3 inodes, we also need to write the inode number into the inode,
291 * so calculate the first inode number of the chunk here as
292 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
293 * across multiple filesystem blocks (such as a cluster) and so cannot
294 * be used in the cluster buffer loop below.
295 *
296 * Further, because we are writing the inode directly into the buffer
297 * and calculating a CRC on the entire inode, we have ot log the entire
298 * inode so that the entire range the CRC covers is present in the log.
299 * That means for v3 inode we log the entire buffer rather than just the
300 * inode cores.
301 */
302 if (xfs_sb_version_hascrc(&mp->m_sb)) {
303 version = 3;
304 ino = XFS_AGINO_TO_INO(mp, agno,
305 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
306
307 /*
308 * log the initialisation that is about to take place as an
309 * logical operation. This means the transaction does not
310 * need to log the physical changes to the inode buffers as log
311 * recovery will know what initialisation is actually needed.
312 * Hence we only need to log the buffers as "ordered" buffers so
313 * they track in the AIL as if they were physically logged.
314 */
315 if (tp)
316 xfs_icreate_log(tp, agno, agbno, icount,
317 mp->m_sb.sb_inodesize, length, gen);
318 } else
319 version = 2;
320
321 for (j = 0; j < nbufs; j++) {
322 /*
323 * Get the block.
324 */
325 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
326 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
327 mp->m_bsize * blks_per_cluster,
328 XBF_UNMAPPED);
329 if (!fbuf)
330 return -ENOMEM;
331
332 /* Initialize the inode buffers and log them appropriately. */
333 fbuf->b_ops = &xfs_inode_buf_ops;
334 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
335 for (i = 0; i < inodes_per_cluster; i++) {
336 int ioffset = i << mp->m_sb.sb_inodelog;
337 uint isize = xfs_dinode_size(version);
338
339 free = xfs_make_iptr(mp, fbuf, i);
340 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
341 free->di_version = version;
342 free->di_gen = cpu_to_be32(gen);
343 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
344
345 if (version == 3) {
346 free->di_ino = cpu_to_be64(ino);
347 ino++;
348 uuid_copy(&free->di_uuid,
349 &mp->m_sb.sb_meta_uuid);
350 xfs_dinode_calc_crc(mp, free);
351 } else if (tp) {
352 /* just log the inode core */
353 xfs_trans_log_buf(tp, fbuf, ioffset,
354 ioffset + isize - 1);
355 }
356 }
357
358 if (tp) {
359 /*
360 * Mark the buffer as an inode allocation buffer so it
361 * sticks in AIL at the point of this allocation
362 * transaction. This ensures the they are on disk before
363 * the tail of the log can be moved past this
364 * transaction (i.e. by preventing relogging from moving
365 * it forward in the log).
366 */
367 xfs_trans_inode_alloc_buf(tp, fbuf);
368 if (version == 3) {
369 /*
370 * Mark the buffer as ordered so that they are
371 * not physically logged in the transaction but
372 * still tracked in the AIL as part of the
373 * transaction and pin the log appropriately.
374 */
375 xfs_trans_ordered_buf(tp, fbuf);
376 }
377 } else {
378 fbuf->b_flags |= XBF_DONE;
379 xfs_buf_delwri_queue(fbuf, buffer_list);
380 xfs_buf_relse(fbuf);
381 }
382 }
383 return 0;
384 }
385
386 /*
387 * Align startino and allocmask for a recently allocated sparse chunk such that
388 * they are fit for insertion (or merge) into the on-disk inode btrees.
389 *
390 * Background:
391 *
392 * When enabled, sparse inode support increases the inode alignment from cluster
393 * size to inode chunk size. This means that the minimum range between two
394 * non-adjacent inode records in the inobt is large enough for a full inode
395 * record. This allows for cluster sized, cluster aligned block allocation
396 * without need to worry about whether the resulting inode record overlaps with
397 * another record in the tree. Without this basic rule, we would have to deal
398 * with the consequences of overlap by potentially undoing recent allocations in
399 * the inode allocation codepath.
400 *
401 * Because of this alignment rule (which is enforced on mount), there are two
402 * inobt possibilities for newly allocated sparse chunks. One is that the
403 * aligned inode record for the chunk covers a range of inodes not already
404 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
405 * other is that a record already exists at the aligned startino that considers
406 * the newly allocated range as sparse. In the latter case, record content is
407 * merged in hope that sparse inode chunks fill to full chunks over time.
408 */
409 STATIC void
410 xfs_align_sparse_ino(
411 struct xfs_mount *mp,
412 xfs_agino_t *startino,
413 uint16_t *allocmask)
414 {
415 xfs_agblock_t agbno;
416 xfs_agblock_t mod;
417 int offset;
418
419 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
420 mod = agbno % mp->m_sb.sb_inoalignmt;
421 if (!mod)
422 return;
423
424 /* calculate the inode offset and align startino */
425 offset = mod << mp->m_sb.sb_inopblog;
426 *startino -= offset;
427
428 /*
429 * Since startino has been aligned down, left shift allocmask such that
430 * it continues to represent the same physical inodes relative to the
431 * new startino.
432 */
433 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
434 }
435
436 /*
437 * Determine whether the source inode record can merge into the target. Both
438 * records must be sparse, the inode ranges must match and there must be no
439 * allocation overlap between the records.
440 */
441 STATIC bool
442 __xfs_inobt_can_merge(
443 struct xfs_inobt_rec_incore *trec, /* tgt record */
444 struct xfs_inobt_rec_incore *srec) /* src record */
445 {
446 uint64_t talloc;
447 uint64_t salloc;
448
449 /* records must cover the same inode range */
450 if (trec->ir_startino != srec->ir_startino)
451 return false;
452
453 /* both records must be sparse */
454 if (!xfs_inobt_issparse(trec->ir_holemask) ||
455 !xfs_inobt_issparse(srec->ir_holemask))
456 return false;
457
458 /* both records must track some inodes */
459 if (!trec->ir_count || !srec->ir_count)
460 return false;
461
462 /* can't exceed capacity of a full record */
463 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
464 return false;
465
466 /* verify there is no allocation overlap */
467 talloc = xfs_inobt_irec_to_allocmask(trec);
468 salloc = xfs_inobt_irec_to_allocmask(srec);
469 if (talloc & salloc)
470 return false;
471
472 return true;
473 }
474
475 /*
476 * Merge the source inode record into the target. The caller must call
477 * __xfs_inobt_can_merge() to ensure the merge is valid.
478 */
479 STATIC void
480 __xfs_inobt_rec_merge(
481 struct xfs_inobt_rec_incore *trec, /* target */
482 struct xfs_inobt_rec_incore *srec) /* src */
483 {
484 ASSERT(trec->ir_startino == srec->ir_startino);
485
486 /* combine the counts */
487 trec->ir_count += srec->ir_count;
488 trec->ir_freecount += srec->ir_freecount;
489
490 /*
491 * Merge the holemask and free mask. For both fields, 0 bits refer to
492 * allocated inodes. We combine the allocated ranges with bitwise AND.
493 */
494 trec->ir_holemask &= srec->ir_holemask;
495 trec->ir_free &= srec->ir_free;
496 }
497
498 /*
499 * Insert a new sparse inode chunk into the associated inode btree. The inode
500 * record for the sparse chunk is pre-aligned to a startino that should match
501 * any pre-existing sparse inode record in the tree. This allows sparse chunks
502 * to fill over time.
503 *
504 * This function supports two modes of handling preexisting records depending on
505 * the merge flag. If merge is true, the provided record is merged with the
506 * existing record and updated in place. The merged record is returned in nrec.
507 * If merge is false, an existing record is replaced with the provided record.
508 * If no preexisting record exists, the provided record is always inserted.
509 *
510 * It is considered corruption if a merge is requested and not possible. Given
511 * the sparse inode alignment constraints, this should never happen.
512 */
513 STATIC int
514 xfs_inobt_insert_sprec(
515 struct xfs_mount *mp,
516 struct xfs_trans *tp,
517 struct xfs_buf *agbp,
518 int btnum,
519 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
520 bool merge) /* merge or replace */
521 {
522 struct xfs_btree_cur *cur;
523 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
524 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
525 int error;
526 int i;
527 struct xfs_inobt_rec_incore rec;
528
529 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
530
531 /* the new record is pre-aligned so we know where to look */
532 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
533 if (error)
534 goto error;
535 /* if nothing there, insert a new record and return */
536 if (i == 0) {
537 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
538 nrec->ir_count, nrec->ir_freecount,
539 nrec->ir_free, &i);
540 if (error)
541 goto error;
542 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
543
544 goto out;
545 }
546
547 /*
548 * A record exists at this startino. Merge or replace the record
549 * depending on what we've been asked to do.
550 */
551 if (merge) {
552 error = xfs_inobt_get_rec(cur, &rec, &i);
553 if (error)
554 goto error;
555 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
556 XFS_WANT_CORRUPTED_GOTO(mp,
557 rec.ir_startino == nrec->ir_startino,
558 error);
559
560 /*
561 * This should never fail. If we have coexisting records that
562 * cannot merge, something is seriously wrong.
563 */
564 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
565 error);
566
567 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
568 rec.ir_holemask, nrec->ir_startino,
569 nrec->ir_holemask);
570
571 /* merge to nrec to output the updated record */
572 __xfs_inobt_rec_merge(nrec, &rec);
573
574 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
575 nrec->ir_holemask);
576
577 error = xfs_inobt_rec_check_count(mp, nrec);
578 if (error)
579 goto error;
580 }
581
582 error = xfs_inobt_update(cur, nrec);
583 if (error)
584 goto error;
585
586 out:
587 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
588 return 0;
589 error:
590 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
591 return error;
592 }
593
594 /*
595 * Allocate new inodes in the allocation group specified by agbp.
596 * Return 0 for success, else error code.
597 */
598 STATIC int /* error code or 0 */
599 xfs_ialloc_ag_alloc(
600 xfs_trans_t *tp, /* transaction pointer */
601 xfs_buf_t *agbp, /* alloc group buffer */
602 int *alloc)
603 {
604 xfs_agi_t *agi; /* allocation group header */
605 xfs_alloc_arg_t args; /* allocation argument structure */
606 xfs_agnumber_t agno;
607 int error;
608 xfs_agino_t newino; /* new first inode's number */
609 xfs_agino_t newlen; /* new number of inodes */
610 int isaligned = 0; /* inode allocation at stripe unit */
611 /* boundary */
612 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
613 struct xfs_inobt_rec_incore rec;
614 struct xfs_perag *pag;
615 int do_sparse = 0;
616
617 memset(&args, 0, sizeof(args));
618 args.tp = tp;
619 args.mp = tp->t_mountp;
620 args.fsbno = NULLFSBLOCK;
621 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
622
623 #ifdef DEBUG
624 /* randomly do sparse inode allocations */
625 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
626 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
627 do_sparse = prandom_u32() & 1;
628 #endif
629
630 /*
631 * Locking will ensure that we don't have two callers in here
632 * at one time.
633 */
634 newlen = args.mp->m_ialloc_inos;
635 if (args.mp->m_maxicount &&
636 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
637 args.mp->m_maxicount)
638 return -ENOSPC;
639 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
640 /*
641 * First try to allocate inodes contiguous with the last-allocated
642 * chunk of inodes. If the filesystem is striped, this will fill
643 * an entire stripe unit with inodes.
644 */
645 agi = XFS_BUF_TO_AGI(agbp);
646 newino = be32_to_cpu(agi->agi_newino);
647 agno = be32_to_cpu(agi->agi_seqno);
648 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
649 args.mp->m_ialloc_blks;
650 if (do_sparse)
651 goto sparse_alloc;
652 if (likely(newino != NULLAGINO &&
653 (args.agbno < be32_to_cpu(agi->agi_length)))) {
654 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
655 args.type = XFS_ALLOCTYPE_THIS_BNO;
656 args.prod = 1;
657
658 /*
659 * We need to take into account alignment here to ensure that
660 * we don't modify the free list if we fail to have an exact
661 * block. If we don't have an exact match, and every oher
662 * attempt allocation attempt fails, we'll end up cancelling
663 * a dirty transaction and shutting down.
664 *
665 * For an exact allocation, alignment must be 1,
666 * however we need to take cluster alignment into account when
667 * fixing up the freelist. Use the minalignslop field to
668 * indicate that extra blocks might be required for alignment,
669 * but not to use them in the actual exact allocation.
670 */
671 args.alignment = 1;
672 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
673
674 /* Allow space for the inode btree to split. */
675 args.minleft = args.mp->m_in_maxlevels - 1;
676 if ((error = xfs_alloc_vextent(&args)))
677 return error;
678
679 /*
680 * This request might have dirtied the transaction if the AG can
681 * satisfy the request, but the exact block was not available.
682 * If the allocation did fail, subsequent requests will relax
683 * the exact agbno requirement and increase the alignment
684 * instead. It is critical that the total size of the request
685 * (len + alignment + slop) does not increase from this point
686 * on, so reset minalignslop to ensure it is not included in
687 * subsequent requests.
688 */
689 args.minalignslop = 0;
690 }
691
692 if (unlikely(args.fsbno == NULLFSBLOCK)) {
693 /*
694 * Set the alignment for the allocation.
695 * If stripe alignment is turned on then align at stripe unit
696 * boundary.
697 * If the cluster size is smaller than a filesystem block
698 * then we're doing I/O for inodes in filesystem block size
699 * pieces, so don't need alignment anyway.
700 */
701 isaligned = 0;
702 if (args.mp->m_sinoalign) {
703 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
704 args.alignment = args.mp->m_dalign;
705 isaligned = 1;
706 } else
707 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
708 /*
709 * Need to figure out where to allocate the inode blocks.
710 * Ideally they should be spaced out through the a.g.
711 * For now, just allocate blocks up front.
712 */
713 args.agbno = be32_to_cpu(agi->agi_root);
714 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
715 /*
716 * Allocate a fixed-size extent of inodes.
717 */
718 args.type = XFS_ALLOCTYPE_NEAR_BNO;
719 args.prod = 1;
720 /*
721 * Allow space for the inode btree to split.
722 */
723 args.minleft = args.mp->m_in_maxlevels - 1;
724 if ((error = xfs_alloc_vextent(&args)))
725 return error;
726 }
727
728 /*
729 * If stripe alignment is turned on, then try again with cluster
730 * alignment.
731 */
732 if (isaligned && args.fsbno == NULLFSBLOCK) {
733 args.type = XFS_ALLOCTYPE_NEAR_BNO;
734 args.agbno = be32_to_cpu(agi->agi_root);
735 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
736 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
737 if ((error = xfs_alloc_vextent(&args)))
738 return error;
739 }
740
741 /*
742 * Finally, try a sparse allocation if the filesystem supports it and
743 * the sparse allocation length is smaller than a full chunk.
744 */
745 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
746 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
747 args.fsbno == NULLFSBLOCK) {
748 sparse_alloc:
749 args.type = XFS_ALLOCTYPE_NEAR_BNO;
750 args.agbno = be32_to_cpu(agi->agi_root);
751 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
752 args.alignment = args.mp->m_sb.sb_spino_align;
753 args.prod = 1;
754
755 args.minlen = args.mp->m_ialloc_min_blks;
756 args.maxlen = args.minlen;
757
758 /*
759 * The inode record will be aligned to full chunk size. We must
760 * prevent sparse allocation from AG boundaries that result in
761 * invalid inode records, such as records that start at agbno 0
762 * or extend beyond the AG.
763 *
764 * Set min agbno to the first aligned, non-zero agbno and max to
765 * the last aligned agbno that is at least one full chunk from
766 * the end of the AG.
767 */
768 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
769 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
770 args.mp->m_sb.sb_inoalignmt) -
771 args.mp->m_ialloc_blks;
772
773 error = xfs_alloc_vextent(&args);
774 if (error)
775 return error;
776
777 newlen = args.len << args.mp->m_sb.sb_inopblog;
778 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
779 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
780 }
781
782 if (args.fsbno == NULLFSBLOCK) {
783 *alloc = 0;
784 return 0;
785 }
786 ASSERT(args.len == args.minlen);
787
788 /*
789 * Stamp and write the inode buffers.
790 *
791 * Seed the new inode cluster with a random generation number. This
792 * prevents short-term reuse of generation numbers if a chunk is
793 * freed and then immediately reallocated. We use random numbers
794 * rather than a linear progression to prevent the next generation
795 * number from being easily guessable.
796 */
797 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
798 args.agbno, args.len, prandom_u32());
799
800 if (error)
801 return error;
802 /*
803 * Convert the results.
804 */
805 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
806
807 if (xfs_inobt_issparse(~allocmask)) {
808 /*
809 * We've allocated a sparse chunk. Align the startino and mask.
810 */
811 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
812
813 rec.ir_startino = newino;
814 rec.ir_holemask = ~allocmask;
815 rec.ir_count = newlen;
816 rec.ir_freecount = newlen;
817 rec.ir_free = XFS_INOBT_ALL_FREE;
818
819 /*
820 * Insert the sparse record into the inobt and allow for a merge
821 * if necessary. If a merge does occur, rec is updated to the
822 * merged record.
823 */
824 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
825 &rec, true);
826 if (error == -EFSCORRUPTED) {
827 xfs_alert(args.mp,
828 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
829 XFS_AGINO_TO_INO(args.mp, agno,
830 rec.ir_startino),
831 rec.ir_holemask, rec.ir_count);
832 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
833 }
834 if (error)
835 return error;
836
837 /*
838 * We can't merge the part we've just allocated as for the inobt
839 * due to finobt semantics. The original record may or may not
840 * exist independent of whether physical inodes exist in this
841 * sparse chunk.
842 *
843 * We must update the finobt record based on the inobt record.
844 * rec contains the fully merged and up to date inobt record
845 * from the previous call. Set merge false to replace any
846 * existing record with this one.
847 */
848 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
849 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
850 XFS_BTNUM_FINO, &rec,
851 false);
852 if (error)
853 return error;
854 }
855 } else {
856 /* full chunk - insert new records to both btrees */
857 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
858 XFS_BTNUM_INO);
859 if (error)
860 return error;
861
862 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
864 newlen, XFS_BTNUM_FINO);
865 if (error)
866 return error;
867 }
868 }
869
870 /*
871 * Update AGI counts and newino.
872 */
873 be32_add_cpu(&agi->agi_count, newlen);
874 be32_add_cpu(&agi->agi_freecount, newlen);
875 pag = xfs_perag_get(args.mp, agno);
876 pag->pagi_freecount += newlen;
877 xfs_perag_put(pag);
878 agi->agi_newino = cpu_to_be32(newino);
879
880 /*
881 * Log allocation group header fields
882 */
883 xfs_ialloc_log_agi(tp, agbp,
884 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
885 /*
886 * Modify/log superblock values for inode count and inode free count.
887 */
888 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
889 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
890 *alloc = 1;
891 return 0;
892 }
893
894 STATIC xfs_agnumber_t
895 xfs_ialloc_next_ag(
896 xfs_mount_t *mp)
897 {
898 xfs_agnumber_t agno;
899
900 spin_lock(&mp->m_agirotor_lock);
901 agno = mp->m_agirotor;
902 if (++mp->m_agirotor >= mp->m_maxagi)
903 mp->m_agirotor = 0;
904 spin_unlock(&mp->m_agirotor_lock);
905
906 return agno;
907 }
908
909 /*
910 * Select an allocation group to look for a free inode in, based on the parent
911 * inode and the mode. Return the allocation group buffer.
912 */
913 STATIC xfs_agnumber_t
914 xfs_ialloc_ag_select(
915 xfs_trans_t *tp, /* transaction pointer */
916 xfs_ino_t parent, /* parent directory inode number */
917 umode_t mode) /* bits set to indicate file type */
918 {
919 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
920 xfs_agnumber_t agno; /* current ag number */
921 int flags; /* alloc buffer locking flags */
922 xfs_extlen_t ineed; /* blocks needed for inode allocation */
923 xfs_extlen_t longest = 0; /* longest extent available */
924 xfs_mount_t *mp; /* mount point structure */
925 int needspace; /* file mode implies space allocated */
926 xfs_perag_t *pag; /* per allocation group data */
927 xfs_agnumber_t pagno; /* parent (starting) ag number */
928 int error;
929
930 /*
931 * Files of these types need at least one block if length > 0
932 * (and they won't fit in the inode, but that's hard to figure out).
933 */
934 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
935 mp = tp->t_mountp;
936 agcount = mp->m_maxagi;
937 if (S_ISDIR(mode))
938 pagno = xfs_ialloc_next_ag(mp);
939 else {
940 pagno = XFS_INO_TO_AGNO(mp, parent);
941 if (pagno >= agcount)
942 pagno = 0;
943 }
944
945 ASSERT(pagno < agcount);
946
947 /*
948 * Loop through allocation groups, looking for one with a little
949 * free space in it. Note we don't look for free inodes, exactly.
950 * Instead, we include whether there is a need to allocate inodes
951 * to mean that blocks must be allocated for them,
952 * if none are currently free.
953 */
954 agno = pagno;
955 flags = XFS_ALLOC_FLAG_TRYLOCK;
956 for (;;) {
957 pag = xfs_perag_get(mp, agno);
958 if (!pag->pagi_inodeok) {
959 xfs_ialloc_next_ag(mp);
960 goto nextag;
961 }
962
963 if (!pag->pagi_init) {
964 error = xfs_ialloc_pagi_init(mp, tp, agno);
965 if (error)
966 goto nextag;
967 }
968
969 if (pag->pagi_freecount) {
970 xfs_perag_put(pag);
971 return agno;
972 }
973
974 if (!pag->pagf_init) {
975 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
976 if (error)
977 goto nextag;
978 }
979
980 /*
981 * Check that there is enough free space for the file plus a
982 * chunk of inodes if we need to allocate some. If this is the
983 * first pass across the AGs, take into account the potential
984 * space needed for alignment of inode chunks when checking the
985 * longest contiguous free space in the AG - this prevents us
986 * from getting ENOSPC because we have free space larger than
987 * m_ialloc_blks but alignment constraints prevent us from using
988 * it.
989 *
990 * If we can't find an AG with space for full alignment slack to
991 * be taken into account, we must be near ENOSPC in all AGs.
992 * Hence we don't include alignment for the second pass and so
993 * if we fail allocation due to alignment issues then it is most
994 * likely a real ENOSPC condition.
995 */
996 ineed = mp->m_ialloc_min_blks;
997 if (flags && ineed > 1)
998 ineed += xfs_ialloc_cluster_alignment(mp);
999 longest = pag->pagf_longest;
1000 if (!longest)
1001 longest = pag->pagf_flcount > 0;
1002
1003 if (pag->pagf_freeblks >= needspace + ineed &&
1004 longest >= ineed) {
1005 xfs_perag_put(pag);
1006 return agno;
1007 }
1008 nextag:
1009 xfs_perag_put(pag);
1010 /*
1011 * No point in iterating over the rest, if we're shutting
1012 * down.
1013 */
1014 if (XFS_FORCED_SHUTDOWN(mp))
1015 return NULLAGNUMBER;
1016 agno++;
1017 if (agno >= agcount)
1018 agno = 0;
1019 if (agno == pagno) {
1020 if (flags == 0)
1021 return NULLAGNUMBER;
1022 flags = 0;
1023 }
1024 }
1025 }
1026
1027 /*
1028 * Try to retrieve the next record to the left/right from the current one.
1029 */
1030 STATIC int
1031 xfs_ialloc_next_rec(
1032 struct xfs_btree_cur *cur,
1033 xfs_inobt_rec_incore_t *rec,
1034 int *done,
1035 int left)
1036 {
1037 int error;
1038 int i;
1039
1040 if (left)
1041 error = xfs_btree_decrement(cur, 0, &i);
1042 else
1043 error = xfs_btree_increment(cur, 0, &i);
1044
1045 if (error)
1046 return error;
1047 *done = !i;
1048 if (i) {
1049 error = xfs_inobt_get_rec(cur, rec, &i);
1050 if (error)
1051 return error;
1052 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1053 }
1054
1055 return 0;
1056 }
1057
1058 STATIC int
1059 xfs_ialloc_get_rec(
1060 struct xfs_btree_cur *cur,
1061 xfs_agino_t agino,
1062 xfs_inobt_rec_incore_t *rec,
1063 int *done)
1064 {
1065 int error;
1066 int i;
1067
1068 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1069 if (error)
1070 return error;
1071 *done = !i;
1072 if (i) {
1073 error = xfs_inobt_get_rec(cur, rec, &i);
1074 if (error)
1075 return error;
1076 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1077 }
1078
1079 return 0;
1080 }
1081
1082 /*
1083 * Return the offset of the first free inode in the record. If the inode chunk
1084 * is sparsely allocated, we convert the record holemask to inode granularity
1085 * and mask off the unallocated regions from the inode free mask.
1086 */
1087 STATIC int
1088 xfs_inobt_first_free_inode(
1089 struct xfs_inobt_rec_incore *rec)
1090 {
1091 xfs_inofree_t realfree;
1092
1093 /* if there are no holes, return the first available offset */
1094 if (!xfs_inobt_issparse(rec->ir_holemask))
1095 return xfs_lowbit64(rec->ir_free);
1096
1097 realfree = xfs_inobt_irec_to_allocmask(rec);
1098 realfree &= rec->ir_free;
1099
1100 return xfs_lowbit64(realfree);
1101 }
1102
1103 /*
1104 * Allocate an inode using the inobt-only algorithm.
1105 */
1106 STATIC int
1107 xfs_dialloc_ag_inobt(
1108 struct xfs_trans *tp,
1109 struct xfs_buf *agbp,
1110 xfs_ino_t parent,
1111 xfs_ino_t *inop)
1112 {
1113 struct xfs_mount *mp = tp->t_mountp;
1114 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1115 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1116 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1117 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1118 struct xfs_perag *pag;
1119 struct xfs_btree_cur *cur, *tcur;
1120 struct xfs_inobt_rec_incore rec, trec;
1121 xfs_ino_t ino;
1122 int error;
1123 int offset;
1124 int i, j;
1125 int searchdistance = 10;
1126
1127 pag = xfs_perag_get(mp, agno);
1128
1129 ASSERT(pag->pagi_init);
1130 ASSERT(pag->pagi_inodeok);
1131 ASSERT(pag->pagi_freecount > 0);
1132
1133 restart_pagno:
1134 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1135 /*
1136 * If pagino is 0 (this is the root inode allocation) use newino.
1137 * This must work because we've just allocated some.
1138 */
1139 if (!pagino)
1140 pagino = be32_to_cpu(agi->agi_newino);
1141
1142 error = xfs_check_agi_freecount(cur, agi);
1143 if (error)
1144 goto error0;
1145
1146 /*
1147 * If in the same AG as the parent, try to get near the parent.
1148 */
1149 if (pagno == agno) {
1150 int doneleft; /* done, to the left */
1151 int doneright; /* done, to the right */
1152
1153 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1154 if (error)
1155 goto error0;
1156 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1157
1158 error = xfs_inobt_get_rec(cur, &rec, &j);
1159 if (error)
1160 goto error0;
1161 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1162
1163 if (rec.ir_freecount > 0) {
1164 /*
1165 * Found a free inode in the same chunk
1166 * as the parent, done.
1167 */
1168 goto alloc_inode;
1169 }
1170
1171
1172 /*
1173 * In the same AG as parent, but parent's chunk is full.
1174 */
1175
1176 /* duplicate the cursor, search left & right simultaneously */
1177 error = xfs_btree_dup_cursor(cur, &tcur);
1178 if (error)
1179 goto error0;
1180
1181 /*
1182 * Skip to last blocks looked up if same parent inode.
1183 */
1184 if (pagino != NULLAGINO &&
1185 pag->pagl_pagino == pagino &&
1186 pag->pagl_leftrec != NULLAGINO &&
1187 pag->pagl_rightrec != NULLAGINO) {
1188 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1189 &trec, &doneleft);
1190 if (error)
1191 goto error1;
1192
1193 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1194 &rec, &doneright);
1195 if (error)
1196 goto error1;
1197 } else {
1198 /* search left with tcur, back up 1 record */
1199 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1200 if (error)
1201 goto error1;
1202
1203 /* search right with cur, go forward 1 record. */
1204 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1205 if (error)
1206 goto error1;
1207 }
1208
1209 /*
1210 * Loop until we find an inode chunk with a free inode.
1211 */
1212 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1213 int useleft; /* using left inode chunk this time */
1214
1215 /* figure out the closer block if both are valid. */
1216 if (!doneleft && !doneright) {
1217 useleft = pagino -
1218 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1219 rec.ir_startino - pagino;
1220 } else {
1221 useleft = !doneleft;
1222 }
1223
1224 /* free inodes to the left? */
1225 if (useleft && trec.ir_freecount) {
1226 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1227 cur = tcur;
1228
1229 pag->pagl_leftrec = trec.ir_startino;
1230 pag->pagl_rightrec = rec.ir_startino;
1231 pag->pagl_pagino = pagino;
1232 rec = trec;
1233 goto alloc_inode;
1234 }
1235
1236 /* free inodes to the right? */
1237 if (!useleft && rec.ir_freecount) {
1238 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1239
1240 pag->pagl_leftrec = trec.ir_startino;
1241 pag->pagl_rightrec = rec.ir_startino;
1242 pag->pagl_pagino = pagino;
1243 goto alloc_inode;
1244 }
1245
1246 /* get next record to check */
1247 if (useleft) {
1248 error = xfs_ialloc_next_rec(tcur, &trec,
1249 &doneleft, 1);
1250 } else {
1251 error = xfs_ialloc_next_rec(cur, &rec,
1252 &doneright, 0);
1253 }
1254 if (error)
1255 goto error1;
1256 }
1257
1258 if (searchdistance <= 0) {
1259 /*
1260 * Not in range - save last search
1261 * location and allocate a new inode
1262 */
1263 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1264 pag->pagl_leftrec = trec.ir_startino;
1265 pag->pagl_rightrec = rec.ir_startino;
1266 pag->pagl_pagino = pagino;
1267
1268 } else {
1269 /*
1270 * We've reached the end of the btree. because
1271 * we are only searching a small chunk of the
1272 * btree each search, there is obviously free
1273 * inodes closer to the parent inode than we
1274 * are now. restart the search again.
1275 */
1276 pag->pagl_pagino = NULLAGINO;
1277 pag->pagl_leftrec = NULLAGINO;
1278 pag->pagl_rightrec = NULLAGINO;
1279 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1280 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1281 goto restart_pagno;
1282 }
1283 }
1284
1285 /*
1286 * In a different AG from the parent.
1287 * See if the most recently allocated block has any free.
1288 */
1289 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1290 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1291 XFS_LOOKUP_EQ, &i);
1292 if (error)
1293 goto error0;
1294
1295 if (i == 1) {
1296 error = xfs_inobt_get_rec(cur, &rec, &j);
1297 if (error)
1298 goto error0;
1299
1300 if (j == 1 && rec.ir_freecount > 0) {
1301 /*
1302 * The last chunk allocated in the group
1303 * still has a free inode.
1304 */
1305 goto alloc_inode;
1306 }
1307 }
1308 }
1309
1310 /*
1311 * None left in the last group, search the whole AG
1312 */
1313 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1314 if (error)
1315 goto error0;
1316 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1317
1318 for (;;) {
1319 error = xfs_inobt_get_rec(cur, &rec, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323 if (rec.ir_freecount > 0)
1324 break;
1325 error = xfs_btree_increment(cur, 0, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 }
1330
1331 alloc_inode:
1332 offset = xfs_inobt_first_free_inode(&rec);
1333 ASSERT(offset >= 0);
1334 ASSERT(offset < XFS_INODES_PER_CHUNK);
1335 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1336 XFS_INODES_PER_CHUNK) == 0);
1337 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1338 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1339 rec.ir_freecount--;
1340 error = xfs_inobt_update(cur, &rec);
1341 if (error)
1342 goto error0;
1343 be32_add_cpu(&agi->agi_freecount, -1);
1344 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1345 pag->pagi_freecount--;
1346
1347 error = xfs_check_agi_freecount(cur, agi);
1348 if (error)
1349 goto error0;
1350
1351 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1352 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1353 xfs_perag_put(pag);
1354 *inop = ino;
1355 return 0;
1356 error1:
1357 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1358 error0:
1359 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1360 xfs_perag_put(pag);
1361 return error;
1362 }
1363
1364 /*
1365 * Use the free inode btree to allocate an inode based on distance from the
1366 * parent. Note that the provided cursor may be deleted and replaced.
1367 */
1368 STATIC int
1369 xfs_dialloc_ag_finobt_near(
1370 xfs_agino_t pagino,
1371 struct xfs_btree_cur **ocur,
1372 struct xfs_inobt_rec_incore *rec)
1373 {
1374 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1375 struct xfs_btree_cur *rcur; /* right search cursor */
1376 struct xfs_inobt_rec_incore rrec;
1377 int error;
1378 int i, j;
1379
1380 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1381 if (error)
1382 return error;
1383
1384 if (i == 1) {
1385 error = xfs_inobt_get_rec(lcur, rec, &i);
1386 if (error)
1387 return error;
1388 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1389
1390 /*
1391 * See if we've landed in the parent inode record. The finobt
1392 * only tracks chunks with at least one free inode, so record
1393 * existence is enough.
1394 */
1395 if (pagino >= rec->ir_startino &&
1396 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1397 return 0;
1398 }
1399
1400 error = xfs_btree_dup_cursor(lcur, &rcur);
1401 if (error)
1402 return error;
1403
1404 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1405 if (error)
1406 goto error_rcur;
1407 if (j == 1) {
1408 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1409 if (error)
1410 goto error_rcur;
1411 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1412 }
1413
1414 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1415 if (i == 1 && j == 1) {
1416 /*
1417 * Both the left and right records are valid. Choose the closer
1418 * inode chunk to the target.
1419 */
1420 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1421 (rrec.ir_startino - pagino)) {
1422 *rec = rrec;
1423 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1424 *ocur = rcur;
1425 } else {
1426 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1427 }
1428 } else if (j == 1) {
1429 /* only the right record is valid */
1430 *rec = rrec;
1431 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1432 *ocur = rcur;
1433 } else if (i == 1) {
1434 /* only the left record is valid */
1435 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1436 }
1437
1438 return 0;
1439
1440 error_rcur:
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1442 return error;
1443 }
1444
1445 /*
1446 * Use the free inode btree to find a free inode based on a newino hint. If
1447 * the hint is NULL, find the first free inode in the AG.
1448 */
1449 STATIC int
1450 xfs_dialloc_ag_finobt_newino(
1451 struct xfs_agi *agi,
1452 struct xfs_btree_cur *cur,
1453 struct xfs_inobt_rec_incore *rec)
1454 {
1455 int error;
1456 int i;
1457
1458 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1459 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1460 XFS_LOOKUP_EQ, &i);
1461 if (error)
1462 return error;
1463 if (i == 1) {
1464 error = xfs_inobt_get_rec(cur, rec, &i);
1465 if (error)
1466 return error;
1467 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1468 return 0;
1469 }
1470 }
1471
1472 /*
1473 * Find the first inode available in the AG.
1474 */
1475 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1476 if (error)
1477 return error;
1478 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1479
1480 error = xfs_inobt_get_rec(cur, rec, &i);
1481 if (error)
1482 return error;
1483 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1484
1485 return 0;
1486 }
1487
1488 /*
1489 * Update the inobt based on a modification made to the finobt. Also ensure that
1490 * the records from both trees are equivalent post-modification.
1491 */
1492 STATIC int
1493 xfs_dialloc_ag_update_inobt(
1494 struct xfs_btree_cur *cur, /* inobt cursor */
1495 struct xfs_inobt_rec_incore *frec, /* finobt record */
1496 int offset) /* inode offset */
1497 {
1498 struct xfs_inobt_rec_incore rec;
1499 int error;
1500 int i;
1501
1502 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1503 if (error)
1504 return error;
1505 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1506
1507 error = xfs_inobt_get_rec(cur, &rec, &i);
1508 if (error)
1509 return error;
1510 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1511 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1512 XFS_INODES_PER_CHUNK) == 0);
1513
1514 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1515 rec.ir_freecount--;
1516
1517 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1518 (rec.ir_freecount == frec->ir_freecount));
1519
1520 return xfs_inobt_update(cur, &rec);
1521 }
1522
1523 /*
1524 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1525 * back to the inobt search algorithm.
1526 *
1527 * The caller selected an AG for us, and made sure that free inodes are
1528 * available.
1529 */
1530 STATIC int
1531 xfs_dialloc_ag(
1532 struct xfs_trans *tp,
1533 struct xfs_buf *agbp,
1534 xfs_ino_t parent,
1535 xfs_ino_t *inop)
1536 {
1537 struct xfs_mount *mp = tp->t_mountp;
1538 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1539 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1540 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1541 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1542 struct xfs_perag *pag;
1543 struct xfs_btree_cur *cur; /* finobt cursor */
1544 struct xfs_btree_cur *icur; /* inobt cursor */
1545 struct xfs_inobt_rec_incore rec;
1546 xfs_ino_t ino;
1547 int error;
1548 int offset;
1549 int i;
1550
1551 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1552 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1553
1554 pag = xfs_perag_get(mp, agno);
1555
1556 /*
1557 * If pagino is 0 (this is the root inode allocation) use newino.
1558 * This must work because we've just allocated some.
1559 */
1560 if (!pagino)
1561 pagino = be32_to_cpu(agi->agi_newino);
1562
1563 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1564
1565 error = xfs_check_agi_freecount(cur, agi);
1566 if (error)
1567 goto error_cur;
1568
1569 /*
1570 * The search algorithm depends on whether we're in the same AG as the
1571 * parent. If so, find the closest available inode to the parent. If
1572 * not, consider the agi hint or find the first free inode in the AG.
1573 */
1574 if (agno == pagno)
1575 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1576 else
1577 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1578 if (error)
1579 goto error_cur;
1580
1581 offset = xfs_inobt_first_free_inode(&rec);
1582 ASSERT(offset >= 0);
1583 ASSERT(offset < XFS_INODES_PER_CHUNK);
1584 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1585 XFS_INODES_PER_CHUNK) == 0);
1586 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1587
1588 /*
1589 * Modify or remove the finobt record.
1590 */
1591 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1592 rec.ir_freecount--;
1593 if (rec.ir_freecount)
1594 error = xfs_inobt_update(cur, &rec);
1595 else
1596 error = xfs_btree_delete(cur, &i);
1597 if (error)
1598 goto error_cur;
1599
1600 /*
1601 * The finobt has now been updated appropriately. We haven't updated the
1602 * agi and superblock yet, so we can create an inobt cursor and validate
1603 * the original freecount. If all is well, make the equivalent update to
1604 * the inobt using the finobt record and offset information.
1605 */
1606 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1607
1608 error = xfs_check_agi_freecount(icur, agi);
1609 if (error)
1610 goto error_icur;
1611
1612 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1613 if (error)
1614 goto error_icur;
1615
1616 /*
1617 * Both trees have now been updated. We must update the perag and
1618 * superblock before we can check the freecount for each btree.
1619 */
1620 be32_add_cpu(&agi->agi_freecount, -1);
1621 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1622 pag->pagi_freecount--;
1623
1624 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1625
1626 error = xfs_check_agi_freecount(icur, agi);
1627 if (error)
1628 goto error_icur;
1629 error = xfs_check_agi_freecount(cur, agi);
1630 if (error)
1631 goto error_icur;
1632
1633 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1634 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1635 xfs_perag_put(pag);
1636 *inop = ino;
1637 return 0;
1638
1639 error_icur:
1640 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1641 error_cur:
1642 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1643 xfs_perag_put(pag);
1644 return error;
1645 }
1646
1647 /*
1648 * Allocate an inode on disk.
1649 *
1650 * Mode is used to tell whether the new inode will need space, and whether it
1651 * is a directory.
1652 *
1653 * This function is designed to be called twice if it has to do an allocation
1654 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1655 * If an inode is available without having to performn an allocation, an inode
1656 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1657 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1658 * The caller should then commit the current transaction, allocate a
1659 * new transaction, and call xfs_dialloc() again, passing in the previous value
1660 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1661 * buffer is locked across the two calls, the second call is guaranteed to have
1662 * a free inode available.
1663 *
1664 * Once we successfully pick an inode its number is returned and the on-disk
1665 * data structures are updated. The inode itself is not read in, since doing so
1666 * would break ordering constraints with xfs_reclaim.
1667 */
1668 int
1669 xfs_dialloc(
1670 struct xfs_trans *tp,
1671 xfs_ino_t parent,
1672 umode_t mode,
1673 struct xfs_buf **IO_agbp,
1674 xfs_ino_t *inop)
1675 {
1676 struct xfs_mount *mp = tp->t_mountp;
1677 struct xfs_buf *agbp;
1678 xfs_agnumber_t agno;
1679 int error;
1680 int ialloced;
1681 int noroom = 0;
1682 xfs_agnumber_t start_agno;
1683 struct xfs_perag *pag;
1684 int okalloc = 1;
1685
1686 if (*IO_agbp) {
1687 /*
1688 * If the caller passes in a pointer to the AGI buffer,
1689 * continue where we left off before. In this case, we
1690 * know that the allocation group has free inodes.
1691 */
1692 agbp = *IO_agbp;
1693 goto out_alloc;
1694 }
1695
1696 /*
1697 * We do not have an agbp, so select an initial allocation
1698 * group for inode allocation.
1699 */
1700 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1701 if (start_agno == NULLAGNUMBER) {
1702 *inop = NULLFSINO;
1703 return 0;
1704 }
1705
1706 /*
1707 * If we have already hit the ceiling of inode blocks then clear
1708 * okalloc so we scan all available agi structures for a free
1709 * inode.
1710 *
1711 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1712 * which will sacrifice the preciseness but improve the performance.
1713 */
1714 if (mp->m_maxicount &&
1715 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1716 > mp->m_maxicount) {
1717 noroom = 1;
1718 okalloc = 0;
1719 }
1720
1721 /*
1722 * Loop until we find an allocation group that either has free inodes
1723 * or in which we can allocate some inodes. Iterate through the
1724 * allocation groups upward, wrapping at the end.
1725 */
1726 agno = start_agno;
1727 for (;;) {
1728 pag = xfs_perag_get(mp, agno);
1729 if (!pag->pagi_inodeok) {
1730 xfs_ialloc_next_ag(mp);
1731 goto nextag;
1732 }
1733
1734 if (!pag->pagi_init) {
1735 error = xfs_ialloc_pagi_init(mp, tp, agno);
1736 if (error)
1737 goto out_error;
1738 }
1739
1740 /*
1741 * Do a first racy fast path check if this AG is usable.
1742 */
1743 if (!pag->pagi_freecount && !okalloc)
1744 goto nextag;
1745
1746 /*
1747 * Then read in the AGI buffer and recheck with the AGI buffer
1748 * lock held.
1749 */
1750 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1751 if (error)
1752 goto out_error;
1753
1754 if (pag->pagi_freecount) {
1755 xfs_perag_put(pag);
1756 goto out_alloc;
1757 }
1758
1759 if (!okalloc)
1760 goto nextag_relse_buffer;
1761
1762
1763 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1764 if (error) {
1765 xfs_trans_brelse(tp, agbp);
1766
1767 if (error != -ENOSPC)
1768 goto out_error;
1769
1770 xfs_perag_put(pag);
1771 *inop = NULLFSINO;
1772 return 0;
1773 }
1774
1775 if (ialloced) {
1776 /*
1777 * We successfully allocated some inodes, return
1778 * the current context to the caller so that it
1779 * can commit the current transaction and call
1780 * us again where we left off.
1781 */
1782 ASSERT(pag->pagi_freecount > 0);
1783 xfs_perag_put(pag);
1784
1785 *IO_agbp = agbp;
1786 *inop = NULLFSINO;
1787 return 0;
1788 }
1789
1790 nextag_relse_buffer:
1791 xfs_trans_brelse(tp, agbp);
1792 nextag:
1793 xfs_perag_put(pag);
1794 if (++agno == mp->m_sb.sb_agcount)
1795 agno = 0;
1796 if (agno == start_agno) {
1797 *inop = NULLFSINO;
1798 return noroom ? -ENOSPC : 0;
1799 }
1800 }
1801
1802 out_alloc:
1803 *IO_agbp = NULL;
1804 return xfs_dialloc_ag(tp, agbp, parent, inop);
1805 out_error:
1806 xfs_perag_put(pag);
1807 return error;
1808 }
1809
1810 /*
1811 * Free the blocks of an inode chunk. We must consider that the inode chunk
1812 * might be sparse and only free the regions that are allocated as part of the
1813 * chunk.
1814 */
1815 STATIC void
1816 xfs_difree_inode_chunk(
1817 struct xfs_mount *mp,
1818 xfs_agnumber_t agno,
1819 struct xfs_inobt_rec_incore *rec,
1820 struct xfs_defer_ops *dfops)
1821 {
1822 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1823 int startidx, endidx;
1824 int nextbit;
1825 xfs_agblock_t agbno;
1826 int contigblk;
1827 struct xfs_owner_info oinfo;
1828 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1829 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1830
1831 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1832 /* not sparse, calculate extent info directly */
1833 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1834 mp->m_ialloc_blks, &oinfo);
1835 return;
1836 }
1837
1838 /* holemask is only 16-bits (fits in an unsigned long) */
1839 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1840 holemask[0] = rec->ir_holemask;
1841
1842 /*
1843 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1844 * holemask and convert the start/end index of each range to an extent.
1845 * We start with the start and end index both pointing at the first 0 in
1846 * the mask.
1847 */
1848 startidx = endidx = find_first_zero_bit(holemask,
1849 XFS_INOBT_HOLEMASK_BITS);
1850 nextbit = startidx + 1;
1851 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1852 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1853 nextbit);
1854 /*
1855 * If the next zero bit is contiguous, update the end index of
1856 * the current range and continue.
1857 */
1858 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1859 nextbit == endidx + 1) {
1860 endidx = nextbit;
1861 goto next;
1862 }
1863
1864 /*
1865 * nextbit is not contiguous with the current end index. Convert
1866 * the current start/end to an extent and add it to the free
1867 * list.
1868 */
1869 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1870 mp->m_sb.sb_inopblock;
1871 contigblk = ((endidx - startidx + 1) *
1872 XFS_INODES_PER_HOLEMASK_BIT) /
1873 mp->m_sb.sb_inopblock;
1874
1875 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1876 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1877 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1878 contigblk, &oinfo);
1879
1880 /* reset range to current bit and carry on... */
1881 startidx = endidx = nextbit;
1882
1883 next:
1884 nextbit++;
1885 }
1886 }
1887
1888 STATIC int
1889 xfs_difree_inobt(
1890 struct xfs_mount *mp,
1891 struct xfs_trans *tp,
1892 struct xfs_buf *agbp,
1893 xfs_agino_t agino,
1894 struct xfs_defer_ops *dfops,
1895 struct xfs_icluster *xic,
1896 struct xfs_inobt_rec_incore *orec)
1897 {
1898 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1899 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1900 struct xfs_perag *pag;
1901 struct xfs_btree_cur *cur;
1902 struct xfs_inobt_rec_incore rec;
1903 int ilen;
1904 int error;
1905 int i;
1906 int off;
1907
1908 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1909 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1910
1911 /*
1912 * Initialize the cursor.
1913 */
1914 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1915
1916 error = xfs_check_agi_freecount(cur, agi);
1917 if (error)
1918 goto error0;
1919
1920 /*
1921 * Look for the entry describing this inode.
1922 */
1923 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1924 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1925 __func__, error);
1926 goto error0;
1927 }
1928 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1929 error = xfs_inobt_get_rec(cur, &rec, &i);
1930 if (error) {
1931 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1932 __func__, error);
1933 goto error0;
1934 }
1935 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1936 /*
1937 * Get the offset in the inode chunk.
1938 */
1939 off = agino - rec.ir_startino;
1940 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1941 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1942 /*
1943 * Mark the inode free & increment the count.
1944 */
1945 rec.ir_free |= XFS_INOBT_MASK(off);
1946 rec.ir_freecount++;
1947
1948 /*
1949 * When an inode chunk is free, it becomes eligible for removal. Don't
1950 * remove the chunk if the block size is large enough for multiple inode
1951 * chunks (that might not be free).
1952 */
1953 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1954 rec.ir_free == XFS_INOBT_ALL_FREE &&
1955 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1956 xic->deleted = true;
1957 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1958 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1959
1960 /*
1961 * Remove the inode cluster from the AGI B+Tree, adjust the
1962 * AGI and Superblock inode counts, and mark the disk space
1963 * to be freed when the transaction is committed.
1964 */
1965 ilen = rec.ir_freecount;
1966 be32_add_cpu(&agi->agi_count, -ilen);
1967 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1968 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1969 pag = xfs_perag_get(mp, agno);
1970 pag->pagi_freecount -= ilen - 1;
1971 xfs_perag_put(pag);
1972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1973 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1974
1975 if ((error = xfs_btree_delete(cur, &i))) {
1976 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1977 __func__, error);
1978 goto error0;
1979 }
1980
1981 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1982 } else {
1983 xic->deleted = false;
1984
1985 error = xfs_inobt_update(cur, &rec);
1986 if (error) {
1987 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1988 __func__, error);
1989 goto error0;
1990 }
1991
1992 /*
1993 * Change the inode free counts and log the ag/sb changes.
1994 */
1995 be32_add_cpu(&agi->agi_freecount, 1);
1996 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1997 pag = xfs_perag_get(mp, agno);
1998 pag->pagi_freecount++;
1999 xfs_perag_put(pag);
2000 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2001 }
2002
2003 error = xfs_check_agi_freecount(cur, agi);
2004 if (error)
2005 goto error0;
2006
2007 *orec = rec;
2008 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2009 return 0;
2010
2011 error0:
2012 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2013 return error;
2014 }
2015
2016 /*
2017 * Free an inode in the free inode btree.
2018 */
2019 STATIC int
2020 xfs_difree_finobt(
2021 struct xfs_mount *mp,
2022 struct xfs_trans *tp,
2023 struct xfs_buf *agbp,
2024 xfs_agino_t agino,
2025 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2026 {
2027 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2028 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2029 struct xfs_btree_cur *cur;
2030 struct xfs_inobt_rec_incore rec;
2031 int offset = agino - ibtrec->ir_startino;
2032 int error;
2033 int i;
2034
2035 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2036
2037 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2038 if (error)
2039 goto error;
2040 if (i == 0) {
2041 /*
2042 * If the record does not exist in the finobt, we must have just
2043 * freed an inode in a previously fully allocated chunk. If not,
2044 * something is out of sync.
2045 */
2046 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2047
2048 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2049 ibtrec->ir_count,
2050 ibtrec->ir_freecount,
2051 ibtrec->ir_free, &i);
2052 if (error)
2053 goto error;
2054 ASSERT(i == 1);
2055
2056 goto out;
2057 }
2058
2059 /*
2060 * Read and update the existing record. We could just copy the ibtrec
2061 * across here, but that would defeat the purpose of having redundant
2062 * metadata. By making the modifications independently, we can catch
2063 * corruptions that we wouldn't see if we just copied from one record
2064 * to another.
2065 */
2066 error = xfs_inobt_get_rec(cur, &rec, &i);
2067 if (error)
2068 goto error;
2069 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2070
2071 rec.ir_free |= XFS_INOBT_MASK(offset);
2072 rec.ir_freecount++;
2073
2074 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2075 (rec.ir_freecount == ibtrec->ir_freecount),
2076 error);
2077
2078 /*
2079 * The content of inobt records should always match between the inobt
2080 * and finobt. The lifecycle of records in the finobt is different from
2081 * the inobt in that the finobt only tracks records with at least one
2082 * free inode. Hence, if all of the inodes are free and we aren't
2083 * keeping inode chunks permanently on disk, remove the record.
2084 * Otherwise, update the record with the new information.
2085 *
2086 * Note that we currently can't free chunks when the block size is large
2087 * enough for multiple chunks. Leave the finobt record to remain in sync
2088 * with the inobt.
2089 */
2090 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2091 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2092 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2093 error = xfs_btree_delete(cur, &i);
2094 if (error)
2095 goto error;
2096 ASSERT(i == 1);
2097 } else {
2098 error = xfs_inobt_update(cur, &rec);
2099 if (error)
2100 goto error;
2101 }
2102
2103 out:
2104 error = xfs_check_agi_freecount(cur, agi);
2105 if (error)
2106 goto error;
2107
2108 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2109 return 0;
2110
2111 error:
2112 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2113 return error;
2114 }
2115
2116 /*
2117 * Free disk inode. Carefully avoids touching the incore inode, all
2118 * manipulations incore are the caller's responsibility.
2119 * The on-disk inode is not changed by this operation, only the
2120 * btree (free inode mask) is changed.
2121 */
2122 int
2123 xfs_difree(
2124 struct xfs_trans *tp, /* transaction pointer */
2125 xfs_ino_t inode, /* inode to be freed */
2126 struct xfs_defer_ops *dfops, /* extents to free */
2127 struct xfs_icluster *xic) /* cluster info if deleted */
2128 {
2129 /* REFERENCED */
2130 xfs_agblock_t agbno; /* block number containing inode */
2131 struct xfs_buf *agbp; /* buffer for allocation group header */
2132 xfs_agino_t agino; /* allocation group inode number */
2133 xfs_agnumber_t agno; /* allocation group number */
2134 int error; /* error return value */
2135 struct xfs_mount *mp; /* mount structure for filesystem */
2136 struct xfs_inobt_rec_incore rec;/* btree record */
2137
2138 mp = tp->t_mountp;
2139
2140 /*
2141 * Break up inode number into its components.
2142 */
2143 agno = XFS_INO_TO_AGNO(mp, inode);
2144 if (agno >= mp->m_sb.sb_agcount) {
2145 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2146 __func__, agno, mp->m_sb.sb_agcount);
2147 ASSERT(0);
2148 return -EINVAL;
2149 }
2150 agino = XFS_INO_TO_AGINO(mp, inode);
2151 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2152 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2153 __func__, (unsigned long long)inode,
2154 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2155 ASSERT(0);
2156 return -EINVAL;
2157 }
2158 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2159 if (agbno >= mp->m_sb.sb_agblocks) {
2160 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2161 __func__, agbno, mp->m_sb.sb_agblocks);
2162 ASSERT(0);
2163 return -EINVAL;
2164 }
2165 /*
2166 * Get the allocation group header.
2167 */
2168 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2169 if (error) {
2170 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2171 __func__, error);
2172 return error;
2173 }
2174
2175 /*
2176 * Fix up the inode allocation btree.
2177 */
2178 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2179 if (error)
2180 goto error0;
2181
2182 /*
2183 * Fix up the free inode btree.
2184 */
2185 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2186 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2187 if (error)
2188 goto error0;
2189 }
2190
2191 return 0;
2192
2193 error0:
2194 return error;
2195 }
2196
2197 STATIC int
2198 xfs_imap_lookup(
2199 struct xfs_mount *mp,
2200 struct xfs_trans *tp,
2201 xfs_agnumber_t agno,
2202 xfs_agino_t agino,
2203 xfs_agblock_t agbno,
2204 xfs_agblock_t *chunk_agbno,
2205 xfs_agblock_t *offset_agbno,
2206 int flags)
2207 {
2208 struct xfs_inobt_rec_incore rec;
2209 struct xfs_btree_cur *cur;
2210 struct xfs_buf *agbp;
2211 int error;
2212 int i;
2213
2214 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2215 if (error) {
2216 xfs_alert(mp,
2217 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2218 __func__, error, agno);
2219 return error;
2220 }
2221
2222 /*
2223 * Lookup the inode record for the given agino. If the record cannot be
2224 * found, then it's an invalid inode number and we should abort. Once
2225 * we have a record, we need to ensure it contains the inode number
2226 * we are looking up.
2227 */
2228 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2229 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2230 if (!error) {
2231 if (i)
2232 error = xfs_inobt_get_rec(cur, &rec, &i);
2233 if (!error && i == 0)
2234 error = -EINVAL;
2235 }
2236
2237 xfs_trans_brelse(tp, agbp);
2238 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2239 if (error)
2240 return error;
2241
2242 /* check that the returned record contains the required inode */
2243 if (rec.ir_startino > agino ||
2244 rec.ir_startino + mp->m_ialloc_inos <= agino)
2245 return -EINVAL;
2246
2247 /* for untrusted inodes check it is allocated first */
2248 if ((flags & XFS_IGET_UNTRUSTED) &&
2249 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2250 return -EINVAL;
2251
2252 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2253 *offset_agbno = agbno - *chunk_agbno;
2254 return 0;
2255 }
2256
2257 /*
2258 * Return the location of the inode in imap, for mapping it into a buffer.
2259 */
2260 int
2261 xfs_imap(
2262 xfs_mount_t *mp, /* file system mount structure */
2263 xfs_trans_t *tp, /* transaction pointer */
2264 xfs_ino_t ino, /* inode to locate */
2265 struct xfs_imap *imap, /* location map structure */
2266 uint flags) /* flags for inode btree lookup */
2267 {
2268 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2269 xfs_agino_t agino; /* inode number within alloc group */
2270 xfs_agnumber_t agno; /* allocation group number */
2271 int blks_per_cluster; /* num blocks per inode cluster */
2272 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2273 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2274 int error; /* error code */
2275 int offset; /* index of inode in its buffer */
2276 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2277
2278 ASSERT(ino != NULLFSINO);
2279
2280 /*
2281 * Split up the inode number into its parts.
2282 */
2283 agno = XFS_INO_TO_AGNO(mp, ino);
2284 agino = XFS_INO_TO_AGINO(mp, ino);
2285 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2286 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2287 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2288 #ifdef DEBUG
2289 /*
2290 * Don't output diagnostic information for untrusted inodes
2291 * as they can be invalid without implying corruption.
2292 */
2293 if (flags & XFS_IGET_UNTRUSTED)
2294 return -EINVAL;
2295 if (agno >= mp->m_sb.sb_agcount) {
2296 xfs_alert(mp,
2297 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2298 __func__, agno, mp->m_sb.sb_agcount);
2299 }
2300 if (agbno >= mp->m_sb.sb_agblocks) {
2301 xfs_alert(mp,
2302 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2303 __func__, (unsigned long long)agbno,
2304 (unsigned long)mp->m_sb.sb_agblocks);
2305 }
2306 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2307 xfs_alert(mp,
2308 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2309 __func__, ino,
2310 XFS_AGINO_TO_INO(mp, agno, agino));
2311 }
2312 xfs_stack_trace();
2313 #endif /* DEBUG */
2314 return -EINVAL;
2315 }
2316
2317 blks_per_cluster = xfs_icluster_size_fsb(mp);
2318
2319 /*
2320 * For bulkstat and handle lookups, we have an untrusted inode number
2321 * that we have to verify is valid. We cannot do this just by reading
2322 * the inode buffer as it may have been unlinked and removed leaving
2323 * inodes in stale state on disk. Hence we have to do a btree lookup
2324 * in all cases where an untrusted inode number is passed.
2325 */
2326 if (flags & XFS_IGET_UNTRUSTED) {
2327 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2328 &chunk_agbno, &offset_agbno, flags);
2329 if (error)
2330 return error;
2331 goto out_map;
2332 }
2333
2334 /*
2335 * If the inode cluster size is the same as the blocksize or
2336 * smaller we get to the buffer by simple arithmetics.
2337 */
2338 if (blks_per_cluster == 1) {
2339 offset = XFS_INO_TO_OFFSET(mp, ino);
2340 ASSERT(offset < mp->m_sb.sb_inopblock);
2341
2342 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2343 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2344 imap->im_boffset = (unsigned short)(offset <<
2345 mp->m_sb.sb_inodelog);
2346 return 0;
2347 }
2348
2349 /*
2350 * If the inode chunks are aligned then use simple maths to
2351 * find the location. Otherwise we have to do a btree
2352 * lookup to find the location.
2353 */
2354 if (mp->m_inoalign_mask) {
2355 offset_agbno = agbno & mp->m_inoalign_mask;
2356 chunk_agbno = agbno - offset_agbno;
2357 } else {
2358 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2359 &chunk_agbno, &offset_agbno, flags);
2360 if (error)
2361 return error;
2362 }
2363
2364 out_map:
2365 ASSERT(agbno >= chunk_agbno);
2366 cluster_agbno = chunk_agbno +
2367 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2368 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2369 XFS_INO_TO_OFFSET(mp, ino);
2370
2371 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2372 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2373 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2374
2375 /*
2376 * If the inode number maps to a block outside the bounds
2377 * of the file system then return NULL rather than calling
2378 * read_buf and panicing when we get an error from the
2379 * driver.
2380 */
2381 if ((imap->im_blkno + imap->im_len) >
2382 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2383 xfs_alert(mp,
2384 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2385 __func__, (unsigned long long) imap->im_blkno,
2386 (unsigned long long) imap->im_len,
2387 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2388 return -EINVAL;
2389 }
2390 return 0;
2391 }
2392
2393 /*
2394 * Compute and fill in value of m_in_maxlevels.
2395 */
2396 void
2397 xfs_ialloc_compute_maxlevels(
2398 xfs_mount_t *mp) /* file system mount structure */
2399 {
2400 uint inodes;
2401
2402 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2403 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2404 inodes);
2405 }
2406
2407 /*
2408 * Log specified fields for the ag hdr (inode section). The growth of the agi
2409 * structure over time requires that we interpret the buffer as two logical
2410 * regions delineated by the end of the unlinked list. This is due to the size
2411 * of the hash table and its location in the middle of the agi.
2412 *
2413 * For example, a request to log a field before agi_unlinked and a field after
2414 * agi_unlinked could cause us to log the entire hash table and use an excessive
2415 * amount of log space. To avoid this behavior, log the region up through
2416 * agi_unlinked in one call and the region after agi_unlinked through the end of
2417 * the structure in another.
2418 */
2419 void
2420 xfs_ialloc_log_agi(
2421 xfs_trans_t *tp, /* transaction pointer */
2422 xfs_buf_t *bp, /* allocation group header buffer */
2423 int fields) /* bitmask of fields to log */
2424 {
2425 int first; /* first byte number */
2426 int last; /* last byte number */
2427 static const short offsets[] = { /* field starting offsets */
2428 /* keep in sync with bit definitions */
2429 offsetof(xfs_agi_t, agi_magicnum),
2430 offsetof(xfs_agi_t, agi_versionnum),
2431 offsetof(xfs_agi_t, agi_seqno),
2432 offsetof(xfs_agi_t, agi_length),
2433 offsetof(xfs_agi_t, agi_count),
2434 offsetof(xfs_agi_t, agi_root),
2435 offsetof(xfs_agi_t, agi_level),
2436 offsetof(xfs_agi_t, agi_freecount),
2437 offsetof(xfs_agi_t, agi_newino),
2438 offsetof(xfs_agi_t, agi_dirino),
2439 offsetof(xfs_agi_t, agi_unlinked),
2440 offsetof(xfs_agi_t, agi_free_root),
2441 offsetof(xfs_agi_t, agi_free_level),
2442 sizeof(xfs_agi_t)
2443 };
2444 #ifdef DEBUG
2445 xfs_agi_t *agi; /* allocation group header */
2446
2447 agi = XFS_BUF_TO_AGI(bp);
2448 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2449 #endif
2450
2451 /*
2452 * Compute byte offsets for the first and last fields in the first
2453 * region and log the agi buffer. This only logs up through
2454 * agi_unlinked.
2455 */
2456 if (fields & XFS_AGI_ALL_BITS_R1) {
2457 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2458 &first, &last);
2459 xfs_trans_log_buf(tp, bp, first, last);
2460 }
2461
2462 /*
2463 * Mask off the bits in the first region and calculate the first and
2464 * last field offsets for any bits in the second region.
2465 */
2466 fields &= ~XFS_AGI_ALL_BITS_R1;
2467 if (fields) {
2468 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2469 &first, &last);
2470 xfs_trans_log_buf(tp, bp, first, last);
2471 }
2472 }
2473
2474 #ifdef DEBUG
2475 STATIC void
2476 xfs_check_agi_unlinked(
2477 struct xfs_agi *agi)
2478 {
2479 int i;
2480
2481 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2482 ASSERT(agi->agi_unlinked[i]);
2483 }
2484 #else
2485 #define xfs_check_agi_unlinked(agi)
2486 #endif
2487
2488 static xfs_failaddr_t
2489 xfs_agi_verify(
2490 struct xfs_buf *bp)
2491 {
2492 struct xfs_mount *mp = bp->b_target->bt_mount;
2493 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2494
2495 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2496 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2497 return __this_address;
2498 if (!xfs_log_check_lsn(mp,
2499 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2500 return __this_address;
2501 }
2502
2503 /*
2504 * Validate the magic number of the agi block.
2505 */
2506 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2507 return __this_address;
2508 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2509 return __this_address;
2510
2511 if (be32_to_cpu(agi->agi_level) < 1 ||
2512 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2513 return __this_address;
2514
2515 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2516 (be32_to_cpu(agi->agi_free_level) < 1 ||
2517 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2518 return __this_address;
2519
2520 /*
2521 * during growfs operations, the perag is not fully initialised,
2522 * so we can't use it for any useful checking. growfs ensures we can't
2523 * use it by using uncached buffers that don't have the perag attached
2524 * so we can detect and avoid this problem.
2525 */
2526 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2527 return __this_address;
2528
2529 xfs_check_agi_unlinked(agi);
2530 return NULL;
2531 }
2532
2533 static void
2534 xfs_agi_read_verify(
2535 struct xfs_buf *bp)
2536 {
2537 struct xfs_mount *mp = bp->b_target->bt_mount;
2538 xfs_failaddr_t fa;
2539
2540 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2541 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2542 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2543 else {
2544 fa = xfs_agi_verify(bp);
2545 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2546 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2547 }
2548 }
2549
2550 static void
2551 xfs_agi_write_verify(
2552 struct xfs_buf *bp)
2553 {
2554 struct xfs_mount *mp = bp->b_target->bt_mount;
2555 struct xfs_buf_log_item *bip = bp->b_log_item;
2556 xfs_failaddr_t fa;
2557
2558 fa = xfs_agi_verify(bp);
2559 if (fa) {
2560 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2561 return;
2562 }
2563
2564 if (!xfs_sb_version_hascrc(&mp->m_sb))
2565 return;
2566
2567 if (bip)
2568 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2569 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2570 }
2571
2572 const struct xfs_buf_ops xfs_agi_buf_ops = {
2573 .name = "xfs_agi",
2574 .verify_read = xfs_agi_read_verify,
2575 .verify_write = xfs_agi_write_verify,
2576 .verify_struct = xfs_agi_verify,
2577 };
2578
2579 /*
2580 * Read in the allocation group header (inode allocation section)
2581 */
2582 int
2583 xfs_read_agi(
2584 struct xfs_mount *mp, /* file system mount structure */
2585 struct xfs_trans *tp, /* transaction pointer */
2586 xfs_agnumber_t agno, /* allocation group number */
2587 struct xfs_buf **bpp) /* allocation group hdr buf */
2588 {
2589 int error;
2590
2591 trace_xfs_read_agi(mp, agno);
2592
2593 ASSERT(agno != NULLAGNUMBER);
2594 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2595 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2596 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2597 if (error)
2598 return error;
2599 if (tp)
2600 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2601
2602 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2603 return 0;
2604 }
2605
2606 int
2607 xfs_ialloc_read_agi(
2608 struct xfs_mount *mp, /* file system mount structure */
2609 struct xfs_trans *tp, /* transaction pointer */
2610 xfs_agnumber_t agno, /* allocation group number */
2611 struct xfs_buf **bpp) /* allocation group hdr buf */
2612 {
2613 struct xfs_agi *agi; /* allocation group header */
2614 struct xfs_perag *pag; /* per allocation group data */
2615 int error;
2616
2617 trace_xfs_ialloc_read_agi(mp, agno);
2618
2619 error = xfs_read_agi(mp, tp, agno, bpp);
2620 if (error)
2621 return error;
2622
2623 agi = XFS_BUF_TO_AGI(*bpp);
2624 pag = xfs_perag_get(mp, agno);
2625 if (!pag->pagi_init) {
2626 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2627 pag->pagi_count = be32_to_cpu(agi->agi_count);
2628 pag->pagi_init = 1;
2629 }
2630
2631 /*
2632 * It's possible for these to be out of sync if
2633 * we are in the middle of a forced shutdown.
2634 */
2635 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2636 XFS_FORCED_SHUTDOWN(mp));
2637 xfs_perag_put(pag);
2638 return 0;
2639 }
2640
2641 /*
2642 * Read in the agi to initialise the per-ag data in the mount structure
2643 */
2644 int
2645 xfs_ialloc_pagi_init(
2646 xfs_mount_t *mp, /* file system mount structure */
2647 xfs_trans_t *tp, /* transaction pointer */
2648 xfs_agnumber_t agno) /* allocation group number */
2649 {
2650 xfs_buf_t *bp = NULL;
2651 int error;
2652
2653 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2654 if (error)
2655 return error;
2656 if (bp)
2657 xfs_trans_brelse(tp, bp);
2658 return 0;
2659 }
2660
2661 /* Calculate the first and last possible inode number in an AG. */
2662 void
2663 xfs_ialloc_agino_range(
2664 struct xfs_mount *mp,
2665 xfs_agnumber_t agno,
2666 xfs_agino_t *first,
2667 xfs_agino_t *last)
2668 {
2669 xfs_agblock_t bno;
2670 xfs_agblock_t eoag;
2671
2672 eoag = xfs_ag_block_count(mp, agno);
2673
2674 /*
2675 * Calculate the first inode, which will be in the first
2676 * cluster-aligned block after the AGFL.
2677 */
2678 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2679 xfs_ialloc_cluster_alignment(mp));
2680 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2681
2682 /*
2683 * Calculate the last inode, which will be at the end of the
2684 * last (aligned) cluster that can be allocated in the AG.
2685 */
2686 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2687 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2688 }
2689
2690 /*
2691 * Verify that an AG inode number pointer neither points outside the AG
2692 * nor points at static metadata.
2693 */
2694 bool
2695 xfs_verify_agino(
2696 struct xfs_mount *mp,
2697 xfs_agnumber_t agno,
2698 xfs_agino_t agino)
2699 {
2700 xfs_agino_t first;
2701 xfs_agino_t last;
2702
2703 xfs_ialloc_agino_range(mp, agno, &first, &last);
2704 return agino >= first && agino <= last;
2705 }
2706
2707 /*
2708 * Verify that an FS inode number pointer neither points outside the
2709 * filesystem nor points at static AG metadata.
2710 */
2711 bool
2712 xfs_verify_ino(
2713 struct xfs_mount *mp,
2714 xfs_ino_t ino)
2715 {
2716 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2717 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2718
2719 if (agno >= mp->m_sb.sb_agcount)
2720 return false;
2721 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2722 return false;
2723 return xfs_verify_agino(mp, agno, agino);
2724 }
2725
2726 /* Is this an internal inode number? */
2727 bool
2728 xfs_internal_inum(
2729 struct xfs_mount *mp,
2730 xfs_ino_t ino)
2731 {
2732 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2733 (xfs_sb_version_hasquota(&mp->m_sb) &&
2734 xfs_is_quota_inode(&mp->m_sb, ino));
2735 }
2736
2737 /*
2738 * Verify that a directory entry's inode number doesn't point at an internal
2739 * inode, empty space, or static AG metadata.
2740 */
2741 bool
2742 xfs_verify_dir_ino(
2743 struct xfs_mount *mp,
2744 xfs_ino_t ino)
2745 {
2746 if (xfs_internal_inum(mp, ino))
2747 return false;
2748 return xfs_verify_ino(mp, ino);
2749 }
2750
2751 /* Is there an inode record covering a given range of inode numbers? */
2752 int
2753 xfs_ialloc_has_inode_record(
2754 struct xfs_btree_cur *cur,
2755 xfs_agino_t low,
2756 xfs_agino_t high,
2757 bool *exists)
2758 {
2759 struct xfs_inobt_rec_incore irec;
2760 xfs_agino_t agino;
2761 uint16_t holemask;
2762 int has_record;
2763 int i;
2764 int error;
2765
2766 *exists = false;
2767 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2768 while (error == 0 && has_record) {
2769 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2770 if (error || irec.ir_startino > high)
2771 break;
2772
2773 agino = irec.ir_startino;
2774 holemask = irec.ir_holemask;
2775 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2776 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2777 if (holemask & 1)
2778 continue;
2779 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2780 agino <= high) {
2781 *exists = true;
2782 return 0;
2783 }
2784 }
2785
2786 error = xfs_btree_increment(cur, 0, &has_record);
2787 }
2788 return error;
2789 }
2790
2791 /* Is there an inode record covering a given extent? */
2792 int
2793 xfs_ialloc_has_inodes_at_extent(
2794 struct xfs_btree_cur *cur,
2795 xfs_agblock_t bno,
2796 xfs_extlen_t len,
2797 bool *exists)
2798 {
2799 xfs_agino_t low;
2800 xfs_agino_t high;
2801
2802 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2803 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2804
2805 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2806 }
2807
2808 struct xfs_ialloc_count_inodes {
2809 xfs_agino_t count;
2810 xfs_agino_t freecount;
2811 };
2812
2813 /* Record inode counts across all inobt records. */
2814 STATIC int
2815 xfs_ialloc_count_inodes_rec(
2816 struct xfs_btree_cur *cur,
2817 union xfs_btree_rec *rec,
2818 void *priv)
2819 {
2820 struct xfs_inobt_rec_incore irec;
2821 struct xfs_ialloc_count_inodes *ci = priv;
2822
2823 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2824 ci->count += irec.ir_count;
2825 ci->freecount += irec.ir_freecount;
2826
2827 return 0;
2828 }
2829
2830 /* Count allocated and free inodes under an inobt. */
2831 int
2832 xfs_ialloc_count_inodes(
2833 struct xfs_btree_cur *cur,
2834 xfs_agino_t *count,
2835 xfs_agino_t *freecount)
2836 {
2837 struct xfs_ialloc_count_inodes ci = {0};
2838 int error;
2839
2840 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2841 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2842 if (error)
2843 return error;
2844
2845 *count = ci.count;
2846 *freecount = ci.freecount;
2847 return 0;
2848 }