]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb: remove TYPE_TARGET_TYPE
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
4a94e368 3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d322d6d6 23#include "gdbsupport/gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
bf31fd38 38#include "gdbsupport/gdb_obstack.h"
4de283e4
TT
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
0f8e2034 52#include "cli/cli-decode.h"
4de283e4 53
40bc484c 54#include "value.h"
4de283e4
TT
55#include "mi/mi-common.h"
56#include "arch-utils.h"
57#include "cli/cli-utils.h"
268a13a5
TT
58#include "gdbsupport/function-view.h"
59#include "gdbsupport/byte-vector.h"
4de283e4 60#include <algorithm>
03070ee9 61#include "ada-exp.h"
315e4ebb 62#include "charset.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 101
40bc484c 102static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 103
d1183b06 104static void ada_add_block_symbols (std::vector<struct block_symbol> &,
b5ec771e
PA
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
14f9c5c9 108
d1183b06
TT
109static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
b5ec771e
PA
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
22cee43f 113
d1183b06 114static int is_nonfunction (const std::vector<struct block_symbol> &);
14f9c5c9 115
d1183b06
TT
116static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
dda83cd7 118 const struct block *);
14f9c5c9 119
d2e4a39e 120static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 121
4c4b4cd2 122static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 123
d2e4a39e 124static int numeric_type_p (struct type *);
14f9c5c9 125
d2e4a39e 126static int integer_type_p (struct type *);
14f9c5c9 127
d2e4a39e 128static int scalar_type_p (struct type *);
14f9c5c9 129
d2e4a39e 130static int discrete_type_p (struct type *);
14f9c5c9 131
a121b7c1 132static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 133 int, int);
4c4b4cd2 134
b4ba55a1 135static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 136 const char *);
b4ba55a1 137
d2e4a39e 138static int is_dynamic_field (struct type *, int);
14f9c5c9 139
10a2c479 140static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 141 const gdb_byte *,
dda83cd7 142 CORE_ADDR, struct value *);
4c4b4cd2
PH
143
144static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 145
28c85d6c 146static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 147
d2e4a39e 148static struct type *to_static_fixed_type (struct type *);
f192137b 149static struct type *static_unwrap_type (struct type *type);
14f9c5c9 150
d2e4a39e 151static struct value *unwrap_value (struct value *);
14f9c5c9 152
ad82864c 153static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 154
ad82864c 155static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 156
ad82864c
JB
157static long decode_packed_array_bitsize (struct type *);
158
159static struct value *decode_constrained_packed_array (struct value *);
160
ad82864c 161static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 162
d2e4a39e 163static struct value *value_subscript_packed (struct value *, int,
dda83cd7 164 struct value **);
14f9c5c9 165
4c4b4cd2 166static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 167 struct type *);
14f9c5c9 168
d2e4a39e 169static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 170
d2e4a39e 171static int equiv_types (struct type *, struct type *);
14f9c5c9 172
d2e4a39e 173static int is_name_suffix (const char *);
14f9c5c9 174
59c8a30b 175static int advance_wild_match (const char **, const char *, char);
73589123 176
b5ec771e 177static bool wild_match (const char *name, const char *patn);
14f9c5c9 178
d2e4a39e 179static struct value *ada_coerce_ref (struct value *);
14f9c5c9 180
4c4b4cd2
PH
181static LONGEST pos_atr (struct value *);
182
53a47a3e
TT
183static struct value *val_atr (struct type *, LONGEST);
184
4c4b4cd2 185static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 186 domain_enum);
14f9c5c9 187
108d56a4 188static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 189 struct type *);
4c4b4cd2 190
0d5cff50 191static int find_struct_field (const char *, struct type *, int,
dda83cd7 192 struct type **, int *, int *, int *, int *);
4c4b4cd2 193
d1183b06 194static int ada_resolve_function (std::vector<struct block_symbol> &,
dda83cd7 195 struct value **, int, const char *,
7056f312 196 struct type *, bool);
4c4b4cd2 197
4c4b4cd2
PH
198static int ada_is_direct_array_type (struct type *);
199
52ce6436
PH
200static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
cf608cc4 203static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
204
205
852dff6c 206static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
207
208static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
4c4b4cd2
PH
211\f
212
315e4ebb
TT
213/* The character set used for source files. */
214static const char *ada_source_charset;
215
216/* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218static const char ada_utf8[] = "UTF-8";
219
220/* Each entry in the UTF-32 case-folding table is of this form. */
221struct utf8_entry
222{
223 /* The start and end, inclusive, of this range of codepoints. */
224 uint32_t start, end;
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
227 int upper_delta;
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
230 int lower_delta;
231
232 bool operator< (uint32_t val) const
233 {
234 return end < val;
235 }
236};
237
238static const utf8_entry ada_case_fold[] =
239{
240#include "ada-casefold.h"
241};
242
243\f
244
ee01b665
JB
245/* The result of a symbol lookup to be stored in our symbol cache. */
246
247struct cache_entry
248{
249 /* The name used to perform the lookup. */
250 const char *name;
251 /* The namespace used during the lookup. */
fe978cb0 252 domain_enum domain;
ee01b665
JB
253 /* The symbol returned by the lookup, or NULL if no matching symbol
254 was found. */
255 struct symbol *sym;
256 /* The block where the symbol was found, or NULL if no matching
257 symbol was found. */
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
261};
262
263/* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
265
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
271
272#define HASH_SIZE 1009
273
274struct ada_symbol_cache
275{
276 /* An obstack used to store the entries in our cache. */
bdcccc56 277 struct auto_obstack cache_space;
ee01b665
JB
278
279 /* The root of the hash table used to implement our symbol cache. */
bdcccc56 280 struct cache_entry *root[HASH_SIZE] {};
ee01b665
JB
281};
282
67cb5b2d 283static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
27087b7f 301static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
27087b7f 305static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
c6044dd1
JB
309/* Maintenance-related settings for this module. */
310
311static struct cmd_list_element *maint_set_ada_cmdlist;
312static struct cmd_list_element *maint_show_ada_cmdlist;
313
c6044dd1
JB
314/* The "maintenance ada set/show ignore-descriptive-type" value. */
315
491144b5 316static bool ada_ignore_descriptive_types_p = false;
c6044dd1 317
e802dbe0
JB
318 /* Inferior-specific data. */
319
320/* Per-inferior data for this module. */
321
322struct ada_inferior_data
323{
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
f37b313d 328 struct type *tsd_type = nullptr;
3eecfa55
JB
329
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
332 inferior. */
f37b313d 333 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
334};
335
336/* Our key to this module's inferior data. */
08b8a139 337static const registry<inferior>::key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
338
339/* Return our inferior data for the given inferior (INF).
340
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
346
347static struct ada_inferior_data *
348get_ada_inferior_data (struct inferior *inf)
349{
350 struct ada_inferior_data *data;
351
f37b313d 352 data = ada_inferior_data.get (inf);
e802dbe0 353 if (data == NULL)
f37b313d 354 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
355
356 return data;
357}
358
359/* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362static void
363ada_inferior_exit (struct inferior *inf)
364{
f37b313d 365 ada_inferior_data.clear (inf);
e802dbe0
JB
366}
367
ee01b665
JB
368
369 /* program-space-specific data. */
370
371/* This module's per-program-space data. */
372struct ada_pspace_data
373{
374 /* The Ada symbol cache. */
bdcccc56 375 std::unique_ptr<ada_symbol_cache> sym_cache;
ee01b665
JB
376};
377
378/* Key to our per-program-space data. */
08b8a139
TT
379static const registry<program_space>::key<ada_pspace_data>
380 ada_pspace_data_handle;
ee01b665
JB
381
382/* Return this module's data for the given program space (PSPACE).
383 If not is found, add a zero'ed one now.
384
385 This function always returns a valid object. */
386
387static struct ada_pspace_data *
388get_ada_pspace_data (struct program_space *pspace)
389{
390 struct ada_pspace_data *data;
391
f37b313d 392 data = ada_pspace_data_handle.get (pspace);
ee01b665 393 if (data == NULL)
f37b313d 394 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
395
396 return data;
397}
398
dda83cd7 399 /* Utilities */
4c4b4cd2 400
720d1a40 401/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 402 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
403
404 Normally, we really expect a typedef type to only have 1 typedef layer.
405 In other words, we really expect the target type of a typedef type to be
406 a non-typedef type. This is particularly true for Ada units, because
407 the language does not have a typedef vs not-typedef distinction.
408 In that respect, the Ada compiler has been trying to eliminate as many
409 typedef definitions in the debugging information, since they generally
410 do not bring any extra information (we still use typedef under certain
411 circumstances related mostly to the GNAT encoding).
412
413 Unfortunately, we have seen situations where the debugging information
414 generated by the compiler leads to such multiple typedef layers. For
415 instance, consider the following example with stabs:
416
417 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
418 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
419
420 This is an error in the debugging information which causes type
421 pck__float_array___XUP to be defined twice, and the second time,
422 it is defined as a typedef of a typedef.
423
424 This is on the fringe of legality as far as debugging information is
425 concerned, and certainly unexpected. But it is easy to handle these
426 situations correctly, so we can afford to be lenient in this case. */
427
428static struct type *
429ada_typedef_target_type (struct type *type)
430{
78134374 431 while (type->code () == TYPE_CODE_TYPEDEF)
27710edb 432 type = type->target_type ();
720d1a40
JB
433 return type;
434}
435
41d27058
JB
436/* Given DECODED_NAME a string holding a symbol name in its
437 decoded form (ie using the Ada dotted notation), returns
438 its unqualified name. */
439
440static const char *
441ada_unqualified_name (const char *decoded_name)
442{
2b0f535a
JB
443 const char *result;
444
445 /* If the decoded name starts with '<', it means that the encoded
446 name does not follow standard naming conventions, and thus that
447 it is not your typical Ada symbol name. Trying to unqualify it
448 is therefore pointless and possibly erroneous. */
449 if (decoded_name[0] == '<')
450 return decoded_name;
451
452 result = strrchr (decoded_name, '.');
41d27058
JB
453 if (result != NULL)
454 result++; /* Skip the dot... */
455 else
456 result = decoded_name;
457
458 return result;
459}
460
39e7af3e 461/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 462
39e7af3e 463static std::string
41d27058
JB
464add_angle_brackets (const char *str)
465{
39e7af3e 466 return string_printf ("<%s>", str);
41d27058 467}
96d887e8 468
14f9c5c9 469/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 470 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
471
472static int
ebf56fd3 473field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
474{
475 int len = strlen (target);
5b4ee69b 476
d2e4a39e 477 return
4c4b4cd2
PH
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
dda83cd7
SM
480 || (startswith (field_name + len, "___")
481 && strcmp (field_name + strlen (field_name) - 6,
482 "___XVN") != 0)));
14f9c5c9
AS
483}
484
485
872c8b51
JB
486/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
493
494int
495ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 496 int maybe_missing)
4c4b4cd2
PH
497{
498 int fieldno;
872c8b51
JB
499 struct type *struct_type = check_typedef ((struct type *) type);
500
1f704f76 501 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
33d16dd9 502 if (field_name_match (struct_type->field (fieldno).name (), field_name))
4c4b4cd2
PH
503 return fieldno;
504
505 if (!maybe_missing)
323e0a4a 506 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 507 field_name, struct_type->name ());
4c4b4cd2
PH
508
509 return -1;
510}
511
512/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
513
514int
d2e4a39e 515ada_name_prefix_len (const char *name)
14f9c5c9
AS
516{
517 if (name == NULL)
518 return 0;
d2e4a39e 519 else
14f9c5c9 520 {
d2e4a39e 521 const char *p = strstr (name, "___");
5b4ee69b 522
14f9c5c9 523 if (p == NULL)
dda83cd7 524 return strlen (name);
14f9c5c9 525 else
dda83cd7 526 return p - name;
14f9c5c9
AS
527 }
528}
529
4c4b4cd2
PH
530/* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
532
14f9c5c9 533static int
d2e4a39e 534is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
535{
536 int len1, len2;
5b4ee69b 537
14f9c5c9
AS
538 if (str == NULL)
539 return 0;
540 len1 = strlen (str);
541 len2 = strlen (suffix);
4c4b4cd2 542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
543}
544
4c4b4cd2
PH
545/* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
14f9c5c9 547
d2e4a39e 548static struct value *
4c4b4cd2 549coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 550{
61ee279c 551 type = ada_check_typedef (type);
df407dfe 552 if (value_type (val) == type)
4c4b4cd2 553 return val;
d2e4a39e 554 else
14f9c5c9 555 {
4c4b4cd2
PH
556 struct value *result;
557
f73e424f
TT
558 if (value_optimized_out (val))
559 result = allocate_optimized_out_value (type);
560 else if (value_lazy (val)
561 /* Be careful not to make a lazy not_lval value. */
562 || (VALUE_LVAL (val) != not_lval
563 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
41e8491f
JK
564 result = allocate_value_lazy (type);
565 else
566 {
567 result = allocate_value (type);
f73e424f 568 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 569 }
74bcbdf3 570 set_value_component_location (result, val);
9bbda503
AC
571 set_value_bitsize (result, value_bitsize (val));
572 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
573 if (VALUE_LVAL (result) == lval_memory)
574 set_value_address (result, value_address (val));
14f9c5c9
AS
575 return result;
576 }
577}
578
fc1a4b47
AC
579static const gdb_byte *
580cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
581{
582 if (valaddr == NULL)
583 return NULL;
584 else
585 return valaddr + offset;
586}
587
588static CORE_ADDR
ebf56fd3 589cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
590{
591 if (address == 0)
592 return 0;
d2e4a39e 593 else
14f9c5c9
AS
594 return address + offset;
595}
596
4c4b4cd2
PH
597/* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
600 expression. */
a2249542 601
77109804
AC
602/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
a0b31db1 604static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 605
14f9c5c9 606static void
a2249542 607lim_warning (const char *format, ...)
14f9c5c9 608{
a2249542 609 va_list args;
a2249542 610
5b4ee69b 611 va_start (args, format);
4c4b4cd2
PH
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
a2249542
MK
614 vwarning (format, args);
615
616 va_end (args);
4c4b4cd2
PH
617}
618
0963b4bd 619/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 620static LONGEST
c3e5cd34 621max_of_size (int size)
4c4b4cd2 622{
76a01679 623 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 624
76a01679 625 return top_bit | (top_bit - 1);
4c4b4cd2
PH
626}
627
0963b4bd 628/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 629static LONGEST
c3e5cd34 630min_of_size (int size)
4c4b4cd2 631{
c3e5cd34 632 return -max_of_size (size) - 1;
4c4b4cd2
PH
633}
634
0963b4bd 635/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 636static ULONGEST
c3e5cd34 637umax_of_size (int size)
4c4b4cd2 638{
76a01679 639 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 640
76a01679 641 return top_bit | (top_bit - 1);
4c4b4cd2
PH
642}
643
0963b4bd 644/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
645static LONGEST
646max_of_type (struct type *t)
4c4b4cd2 647{
c6d940a9 648 if (t->is_unsigned ())
c3e5cd34
PH
649 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
650 else
651 return max_of_size (TYPE_LENGTH (t));
652}
653
0963b4bd 654/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
655static LONGEST
656min_of_type (struct type *t)
657{
c6d940a9 658 if (t->is_unsigned ())
c3e5cd34
PH
659 return 0;
660 else
661 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
662}
663
664/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
665LONGEST
666ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 667{
b249d2c2 668 type = resolve_dynamic_type (type, {}, 0);
78134374 669 switch (type->code ())
4c4b4cd2
PH
670 {
671 case TYPE_CODE_RANGE:
d1fd641e
SM
672 {
673 const dynamic_prop &high = type->bounds ()->high;
674
675 if (high.kind () == PROP_CONST)
676 return high.const_val ();
677 else
678 {
679 gdb_assert (high.kind () == PROP_UNDEFINED);
680
681 /* This happens when trying to evaluate a type's dynamic bound
682 without a live target. There is nothing relevant for us to
683 return here, so return 0. */
684 return 0;
685 }
686 }
4c4b4cd2 687 case TYPE_CODE_ENUM:
970db518 688 return type->field (type->num_fields () - 1).loc_enumval ();
690cc4eb
PH
689 case TYPE_CODE_BOOL:
690 return 1;
691 case TYPE_CODE_CHAR:
76a01679 692 case TYPE_CODE_INT:
690cc4eb 693 return max_of_type (type);
4c4b4cd2 694 default:
43bbcdc2 695 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
696 }
697}
698
14e75d8e 699/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
700LONGEST
701ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 702{
b249d2c2 703 type = resolve_dynamic_type (type, {}, 0);
78134374 704 switch (type->code ())
4c4b4cd2
PH
705 {
706 case TYPE_CODE_RANGE:
d1fd641e
SM
707 {
708 const dynamic_prop &low = type->bounds ()->low;
709
710 if (low.kind () == PROP_CONST)
711 return low.const_val ();
712 else
713 {
714 gdb_assert (low.kind () == PROP_UNDEFINED);
715
716 /* This happens when trying to evaluate a type's dynamic bound
717 without a live target. There is nothing relevant for us to
718 return here, so return 0. */
719 return 0;
720 }
721 }
4c4b4cd2 722 case TYPE_CODE_ENUM:
970db518 723 return type->field (0).loc_enumval ();
690cc4eb
PH
724 case TYPE_CODE_BOOL:
725 return 0;
726 case TYPE_CODE_CHAR:
76a01679 727 case TYPE_CODE_INT:
690cc4eb 728 return min_of_type (type);
4c4b4cd2 729 default:
43bbcdc2 730 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
731 }
732}
733
734/* The identity on non-range types. For range types, the underlying
76a01679 735 non-range scalar type. */
4c4b4cd2
PH
736
737static struct type *
18af8284 738get_base_type (struct type *type)
4c4b4cd2 739{
78134374 740 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 741 {
27710edb 742 if (type == type->target_type () || type->target_type () == NULL)
dda83cd7 743 return type;
27710edb 744 type = type->target_type ();
4c4b4cd2
PH
745 }
746 return type;
14f9c5c9 747}
41246937
JB
748
749/* Return a decoded version of the given VALUE. This means returning
750 a value whose type is obtained by applying all the GNAT-specific
85102364 751 encodings, making the resulting type a static but standard description
41246937
JB
752 of the initial type. */
753
754struct value *
755ada_get_decoded_value (struct value *value)
756{
757 struct type *type = ada_check_typedef (value_type (value));
758
759 if (ada_is_array_descriptor_type (type)
760 || (ada_is_constrained_packed_array_type (type)
dda83cd7 761 && type->code () != TYPE_CODE_PTR))
41246937 762 {
78134374 763 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 764 value = ada_coerce_to_simple_array_ptr (value);
41246937 765 else
dda83cd7 766 value = ada_coerce_to_simple_array (value);
41246937
JB
767 }
768 else
769 value = ada_to_fixed_value (value);
770
771 return value;
772}
773
774/* Same as ada_get_decoded_value, but with the given TYPE.
775 Because there is no associated actual value for this type,
776 the resulting type might be a best-effort approximation in
777 the case of dynamic types. */
778
779struct type *
780ada_get_decoded_type (struct type *type)
781{
782 type = to_static_fixed_type (type);
783 if (ada_is_constrained_packed_array_type (type))
784 type = ada_coerce_to_simple_array_type (type);
785 return type;
786}
787
4c4b4cd2 788\f
76a01679 789
dda83cd7 790 /* Language Selection */
14f9c5c9
AS
791
792/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 793 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 794
de93309a 795static enum language
ccefe4c4 796ada_update_initial_language (enum language lang)
14f9c5c9 797{
cafb3438 798 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 799 return language_ada;
14f9c5c9
AS
800
801 return lang;
802}
96d887e8
PH
803
804/* If the main procedure is written in Ada, then return its name.
805 The result is good until the next call. Return NULL if the main
806 procedure doesn't appear to be in Ada. */
807
808char *
809ada_main_name (void)
810{
3b7344d5 811 struct bound_minimal_symbol msym;
e83e4e24 812 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 813
96d887e8
PH
814 /* For Ada, the name of the main procedure is stored in a specific
815 string constant, generated by the binder. Look for that symbol,
816 extract its address, and then read that string. If we didn't find
817 that string, then most probably the main procedure is not written
818 in Ada. */
819 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
820
3b7344d5 821 if (msym.minsym != NULL)
96d887e8 822 {
4aeddc50 823 CORE_ADDR main_program_name_addr = msym.value_address ();
96d887e8 824 if (main_program_name_addr == 0)
dda83cd7 825 error (_("Invalid address for Ada main program name."));
96d887e8 826
66920317 827 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 828 return main_program_name.get ();
96d887e8
PH
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
dda83cd7 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
965bc1df
TT
865/* If STR is a decoded version of a compiler-provided suffix (like the
866 "[cold]" in "symbol[cold]"), return true. Otherwise, return
867 false. */
868
869static bool
870is_compiler_suffix (const char *str)
871{
872 gdb_assert (*str == '[');
873 ++str;
874 while (*str != '\0' && isalpha (*str))
875 ++str;
876 /* We accept a missing "]" in order to support completion. */
877 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
878}
879
315e4ebb
TT
880/* Append a non-ASCII character to RESULT. */
881static void
882append_hex_encoded (std::string &result, uint32_t one_char)
883{
884 if (one_char <= 0xff)
885 {
886 result.append ("U");
887 result.append (phex (one_char, 1));
888 }
889 else if (one_char <= 0xffff)
890 {
891 result.append ("W");
892 result.append (phex (one_char, 2));
893 }
894 else
895 {
896 result.append ("WW");
897 result.append (phex (one_char, 4));
898 }
899}
900
901/* Return a string that is a copy of the data in STORAGE, with
902 non-ASCII characters replaced by the appropriate hex encoding. A
903 template is used because, for UTF-8, we actually want to work with
904 UTF-32 codepoints. */
905template<typename T>
906std::string
907copy_and_hex_encode (struct obstack *storage)
908{
909 const T *chars = (T *) obstack_base (storage);
910 int num_chars = obstack_object_size (storage) / sizeof (T);
911 std::string result;
912 for (int i = 0; i < num_chars; ++i)
913 {
914 if (chars[i] <= 0x7f)
915 {
916 /* The host character set has to be a superset of ASCII, as
917 are all the other character sets we can use. */
918 result.push_back (chars[i]);
919 }
920 else
921 append_hex_encoded (result, chars[i]);
922 }
923 return result;
924}
925
5c4258f4 926/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 927 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 928 Otherwise, return the empty string in that case. */
4c4b4cd2 929
5c4258f4 930static std::string
b5ec771e 931ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 932{
4c4b4cd2 933 if (decoded == NULL)
5c4258f4 934 return {};
14f9c5c9 935
5c4258f4 936 std::string encoding_buffer;
315e4ebb 937 bool saw_non_ascii = false;
5c4258f4 938 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 939 {
315e4ebb
TT
940 if ((*p & 0x80) != 0)
941 saw_non_ascii = true;
942
cdc7bb92 943 if (*p == '.')
5c4258f4 944 encoding_buffer.append ("__");
965bc1df
TT
945 else if (*p == '[' && is_compiler_suffix (p))
946 {
947 encoding_buffer = encoding_buffer + "." + (p + 1);
948 if (encoding_buffer.back () == ']')
949 encoding_buffer.pop_back ();
950 break;
951 }
14f9c5c9 952 else if (*p == '"')
dda83cd7
SM
953 {
954 const struct ada_opname_map *mapping;
955
956 for (mapping = ada_opname_table;
957 mapping->encoded != NULL
958 && !startswith (p, mapping->decoded); mapping += 1)
959 ;
960 if (mapping->encoded == NULL)
b5ec771e
PA
961 {
962 if (throw_errors)
963 error (_("invalid Ada operator name: %s"), p);
964 else
5c4258f4 965 return {};
b5ec771e 966 }
5c4258f4 967 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
968 break;
969 }
d2e4a39e 970 else
5c4258f4 971 encoding_buffer.push_back (*p);
14f9c5c9
AS
972 }
973
315e4ebb
TT
974 /* If a non-ASCII character is seen, we must convert it to the
975 appropriate hex form. As this is more expensive, we keep track
976 of whether it is even necessary. */
977 if (saw_non_ascii)
978 {
979 auto_obstack storage;
980 bool is_utf8 = ada_source_charset == ada_utf8;
981 try
982 {
983 convert_between_encodings
984 (host_charset (),
985 is_utf8 ? HOST_UTF32 : ada_source_charset,
986 (const gdb_byte *) encoding_buffer.c_str (),
987 encoding_buffer.length (), 1,
988 &storage, translit_none);
989 }
990 catch (const gdb_exception &)
991 {
992 static bool warned = false;
993
994 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
995 might like to know why. */
996 if (!warned)
997 {
998 warned = true;
999 warning (_("charset conversion failure for '%s'.\n"
1000 "You may have the wrong value for 'set ada source-charset'."),
1001 encoding_buffer.c_str ());
1002 }
1003
1004 /* We don't try to recover from errors. */
1005 return encoding_buffer;
1006 }
1007
1008 if (is_utf8)
1009 return copy_and_hex_encode<uint32_t> (&storage);
1010 return copy_and_hex_encode<gdb_byte> (&storage);
1011 }
1012
4c4b4cd2 1013 return encoding_buffer;
14f9c5c9
AS
1014}
1015
315e4ebb
TT
1016/* Find the entry for C in the case-folding table. Return nullptr if
1017 the entry does not cover C. */
1018static const utf8_entry *
1019find_case_fold_entry (uint32_t c)
b5ec771e 1020{
315e4ebb
TT
1021 auto iter = std::lower_bound (std::begin (ada_case_fold),
1022 std::end (ada_case_fold),
1023 c);
1024 if (iter == std::end (ada_case_fold)
1025 || c < iter->start
1026 || c > iter->end)
1027 return nullptr;
1028 return &*iter;
b5ec771e
PA
1029}
1030
14f9c5c9 1031/* Return NAME folded to lower case, or, if surrounded by single
315e4ebb
TT
1032 quotes, unfolded, but with the quotes stripped away. If
1033 THROW_ON_ERROR is true, encoding failures will throw an exception
1034 rather than emitting a warning. Result good to next call. */
4c4b4cd2 1035
5f9febe0 1036static const char *
315e4ebb 1037ada_fold_name (gdb::string_view name, bool throw_on_error = false)
14f9c5c9 1038{
5f9febe0 1039 static std::string fold_storage;
14f9c5c9 1040
6a780b67 1041 if (!name.empty () && name[0] == '\'')
01573d73 1042 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
14f9c5c9
AS
1043 else
1044 {
315e4ebb
TT
1045 /* Why convert to UTF-32 and implement our own case-folding,
1046 rather than convert to wchar_t and use the platform's
1047 functions? I'm glad you asked.
1048
1049 The main problem is that GNAT implements an unusual rule for
1050 case folding. For ASCII letters, letters in single-byte
1051 encodings (such as ISO-8859-*), and Unicode letters that fit
1052 in a single byte (i.e., code point is <= 0xff), the letter is
1053 folded to lower case. Other Unicode letters are folded to
1054 upper case.
1055
1056 This rule means that the code must be able to examine the
1057 value of the character. And, some hosts do not use Unicode
1058 for wchar_t, so examining the value of such characters is
1059 forbidden. */
1060 auto_obstack storage;
1061 try
1062 {
1063 convert_between_encodings
1064 (host_charset (), HOST_UTF32,
1065 (const gdb_byte *) name.data (),
1066 name.length (), 1,
1067 &storage, translit_none);
1068 }
1069 catch (const gdb_exception &)
1070 {
1071 if (throw_on_error)
1072 throw;
1073
1074 static bool warned = false;
1075
1076 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1077 might like to know why. */
1078 if (!warned)
1079 {
1080 warned = true;
1081 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1082 "This normally should not happen, please file a bug report."),
1083 gdb::to_string (name).c_str (), host_charset ());
1084 }
1085
1086 /* We don't try to recover from errors; just return the
1087 original string. */
1088 fold_storage = gdb::to_string (name);
1089 return fold_storage.c_str ();
1090 }
1091
1092 bool is_utf8 = ada_source_charset == ada_utf8;
1093 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1094 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1095 for (int i = 0; i < num_chars; ++i)
1096 {
1097 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1098 if (entry != nullptr)
1099 {
1100 uint32_t low = chars[i] + entry->lower_delta;
1101 if (!is_utf8 || low <= 0xff)
1102 chars[i] = low;
1103 else
1104 chars[i] = chars[i] + entry->upper_delta;
1105 }
1106 }
1107
1108 /* Now convert back to ordinary characters. */
1109 auto_obstack reconverted;
1110 try
1111 {
1112 convert_between_encodings (HOST_UTF32,
1113 host_charset (),
1114 (const gdb_byte *) chars,
1115 num_chars * sizeof (uint32_t),
1116 sizeof (uint32_t),
1117 &reconverted,
1118 translit_none);
1119 obstack_1grow (&reconverted, '\0');
1120 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1121 }
1122 catch (const gdb_exception &)
1123 {
1124 if (throw_on_error)
1125 throw;
1126
1127 static bool warned = false;
1128
1129 /* Converting back from UTF-32 shouldn't normally fail, but
1130 there are some host encodings without upper/lower
1131 equivalence. */
1132 if (!warned)
1133 {
1134 warned = true;
1135 warning (_("could not convert the lower-cased variant of '%s'\n"
1136 "from UTF-32 to the host encoding (%s)."),
1137 gdb::to_string (name).c_str (), host_charset ());
1138 }
1139
1140 /* We don't try to recover from errors; just return the
1141 original string. */
1142 fold_storage = gdb::to_string (name);
1143 }
14f9c5c9
AS
1144 }
1145
5f9febe0 1146 return fold_storage.c_str ();
14f9c5c9
AS
1147}
1148
315e4ebb
TT
1149/* The "encoded" form of DECODED, according to GNAT conventions. */
1150
1151std::string
1152ada_encode (const char *decoded)
1153{
1154 if (decoded[0] != '<')
1155 decoded = ada_fold_name (decoded);
1156 return ada_encode_1 (decoded, true);
1157}
1158
529cad9c
PH
1159/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1160
1161static int
1162is_lower_alphanum (const char c)
1163{
1164 return (isdigit (c) || (isalpha (c) && islower (c)));
1165}
1166
c90092fe
JB
1167/* ENCODED is the linkage name of a symbol and LEN contains its length.
1168 This function saves in LEN the length of that same symbol name but
1169 without either of these suffixes:
29480c32
JB
1170 . .{DIGIT}+
1171 . ${DIGIT}+
1172 . ___{DIGIT}+
1173 . __{DIGIT}+.
c90092fe 1174
29480c32
JB
1175 These are suffixes introduced by the compiler for entities such as
1176 nested subprogram for instance, in order to avoid name clashes.
1177 They do not serve any purpose for the debugger. */
1178
1179static void
1180ada_remove_trailing_digits (const char *encoded, int *len)
1181{
1182 if (*len > 1 && isdigit (encoded[*len - 1]))
1183 {
1184 int i = *len - 2;
5b4ee69b 1185
29480c32 1186 while (i > 0 && isdigit (encoded[i]))
dda83cd7 1187 i--;
29480c32 1188 if (i >= 0 && encoded[i] == '.')
dda83cd7 1189 *len = i;
29480c32 1190 else if (i >= 0 && encoded[i] == '$')
dda83cd7 1191 *len = i;
61012eef 1192 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 1193 *len = i - 2;
61012eef 1194 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 1195 *len = i - 1;
29480c32
JB
1196 }
1197}
1198
1199/* Remove the suffix introduced by the compiler for protected object
1200 subprograms. */
1201
1202static void
1203ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1204{
1205 /* Remove trailing N. */
1206
1207 /* Protected entry subprograms are broken into two
1208 separate subprograms: The first one is unprotected, and has
1209 a 'N' suffix; the second is the protected version, and has
0963b4bd 1210 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1211 the protection. Since the P subprograms are internally generated,
1212 we leave these names undecoded, giving the user a clue that this
1213 entity is internal. */
1214
1215 if (*len > 1
1216 && encoded[*len - 1] == 'N'
1217 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1218 *len = *len - 1;
1219}
1220
965bc1df
TT
1221/* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1222 then update *LEN to remove the suffix and return the offset of the
1223 character just past the ".". Otherwise, return -1. */
1224
1225static int
1226remove_compiler_suffix (const char *encoded, int *len)
1227{
1228 int offset = *len - 1;
1229 while (offset > 0 && isalpha (encoded[offset]))
1230 --offset;
1231 if (offset > 0 && encoded[offset] == '.')
1232 {
1233 *len = offset;
1234 return offset + 1;
1235 }
1236 return -1;
1237}
1238
315e4ebb
TT
1239/* Convert an ASCII hex string to a number. Reads exactly N
1240 characters from STR. Returns true on success, false if one of the
1241 digits was not a hex digit. */
1242static bool
1243convert_hex (const char *str, int n, uint32_t *out)
1244{
1245 uint32_t result = 0;
1246
1247 for (int i = 0; i < n; ++i)
1248 {
1249 if (!isxdigit (str[i]))
1250 return false;
1251 result <<= 4;
1252 result |= fromhex (str[i]);
1253 }
1254
1255 *out = result;
1256 return true;
1257}
1258
1259/* Convert a wide character from its ASCII hex representation in STR
1260 (consisting of exactly N characters) to the host encoding,
1261 appending the resulting bytes to OUT. If N==2 and the Ada source
1262 charset is not UTF-8, then hex refers to an encoding in the
1263 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1264 Return false and do not modify OUT on conversion failure. */
1265static bool
1266convert_from_hex_encoded (std::string &out, const char *str, int n)
1267{
1268 uint32_t value;
1269
1270 if (!convert_hex (str, n, &value))
1271 return false;
1272 try
1273 {
1274 auto_obstack bytes;
1275 /* In the 'U' case, the hex digits encode the character in the
1276 Ada source charset. However, if the source charset is UTF-8,
1277 this really means it is a single-byte UTF-32 character. */
1278 if (n == 2 && ada_source_charset != ada_utf8)
1279 {
1280 gdb_byte one_char = (gdb_byte) value;
1281
1282 convert_between_encodings (ada_source_charset, host_charset (),
1283 &one_char,
1284 sizeof (one_char), sizeof (one_char),
1285 &bytes, translit_none);
1286 }
1287 else
1288 convert_between_encodings (HOST_UTF32, host_charset (),
1289 (const gdb_byte *) &value,
1290 sizeof (value), sizeof (value),
1291 &bytes, translit_none);
1292 obstack_1grow (&bytes, '\0');
1293 out.append ((const char *) obstack_base (&bytes));
1294 }
1295 catch (const gdb_exception &)
1296 {
1297 /* On failure, the caller will just let the encoded form
1298 through, which seems basically reasonable. */
1299 return false;
1300 }
1301
1302 return true;
1303}
1304
8a3df5ac 1305/* See ada-lang.h. */
14f9c5c9 1306
f945dedf 1307std::string
5c94f938 1308ada_decode (const char *encoded, bool wrap, bool operators)
14f9c5c9 1309{
36f5ca53 1310 int i;
14f9c5c9 1311 int len0;
d2e4a39e 1312 const char *p;
14f9c5c9 1313 int at_start_name;
f945dedf 1314 std::string decoded;
965bc1df 1315 int suffix = -1;
d2e4a39e 1316
0d81f350
JG
1317 /* With function descriptors on PPC64, the value of a symbol named
1318 ".FN", if it exists, is the entry point of the function "FN". */
1319 if (encoded[0] == '.')
1320 encoded += 1;
1321
29480c32
JB
1322 /* The name of the Ada main procedure starts with "_ada_".
1323 This prefix is not part of the decoded name, so skip this part
1324 if we see this prefix. */
61012eef 1325 if (startswith (encoded, "_ada_"))
4c4b4cd2 1326 encoded += 5;
81eaa506
TT
1327 /* The "___ghost_" prefix is used for ghost entities. Normally
1328 these aren't preserved but when they are, it's useful to see
1329 them. */
1330 if (startswith (encoded, "___ghost_"))
1331 encoded += 9;
14f9c5c9 1332
29480c32
JB
1333 /* If the name starts with '_', then it is not a properly encoded
1334 name, so do not attempt to decode it. Similarly, if the name
1335 starts with '<', the name should not be decoded. */
4c4b4cd2 1336 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1337 goto Suppress;
1338
4c4b4cd2 1339 len0 = strlen (encoded);
4c4b4cd2 1340
965bc1df
TT
1341 suffix = remove_compiler_suffix (encoded, &len0);
1342
29480c32
JB
1343 ada_remove_trailing_digits (encoded, &len0);
1344 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1345
4c4b4cd2
PH
1346 /* Remove the ___X.* suffix if present. Do not forget to verify that
1347 the suffix is located before the current "end" of ENCODED. We want
1348 to avoid re-matching parts of ENCODED that have previously been
1349 marked as discarded (by decrementing LEN0). */
1350 p = strstr (encoded, "___");
1351 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1352 {
1353 if (p[3] == 'X')
dda83cd7 1354 len0 = p - encoded;
14f9c5c9 1355 else
dda83cd7 1356 goto Suppress;
14f9c5c9 1357 }
4c4b4cd2 1358
29480c32
JB
1359 /* Remove any trailing TKB suffix. It tells us that this symbol
1360 is for the body of a task, but that information does not actually
1361 appear in the decoded name. */
1362
61012eef 1363 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1364 len0 -= 3;
76a01679 1365
a10967fa
JB
1366 /* Remove any trailing TB suffix. The TB suffix is slightly different
1367 from the TKB suffix because it is used for non-anonymous task
1368 bodies. */
1369
61012eef 1370 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1371 len0 -= 2;
1372
29480c32
JB
1373 /* Remove trailing "B" suffixes. */
1374 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1375
61012eef 1376 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1377 len0 -= 1;
1378
29480c32
JB
1379 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1380
4c4b4cd2 1381 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1382 {
4c4b4cd2
PH
1383 i = len0 - 2;
1384 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1385 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1386 i -= 1;
4c4b4cd2 1387 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1388 len0 = i - 1;
4c4b4cd2 1389 else if (encoded[i] == '$')
dda83cd7 1390 len0 = i;
d2e4a39e 1391 }
14f9c5c9 1392
29480c32
JB
1393 /* The first few characters that are not alphabetic are not part
1394 of any encoding we use, so we can copy them over verbatim. */
1395
36f5ca53
TT
1396 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1397 decoded.push_back (encoded[i]);
14f9c5c9
AS
1398
1399 at_start_name = 1;
1400 while (i < len0)
1401 {
29480c32 1402 /* Is this a symbol function? */
5c94f938 1403 if (operators && at_start_name && encoded[i] == 'O')
dda83cd7
SM
1404 {
1405 int k;
1406
1407 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1408 {
1409 int op_len = strlen (ada_opname_table[k].encoded);
1410 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1411 op_len - 1) == 0)
1412 && !isalnum (encoded[i + op_len]))
1413 {
36f5ca53 1414 decoded.append (ada_opname_table[k].decoded);
dda83cd7
SM
1415 at_start_name = 0;
1416 i += op_len;
dda83cd7
SM
1417 break;
1418 }
1419 }
1420 if (ada_opname_table[k].encoded != NULL)
1421 continue;
1422 }
14f9c5c9
AS
1423 at_start_name = 0;
1424
529cad9c 1425 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1426 into "." (just below). */
529cad9c 1427
61012eef 1428 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1429 i += 2;
529cad9c 1430
29480c32 1431 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1432 be translated into "." (just below). These are internal names
1433 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1434
1435 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1436 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1437 && isdigit (encoded [i+4]))
1438 {
1439 int k = i + 5;
1440
1441 while (k < len0 && isdigit (encoded[k]))
1442 k++; /* Skip any extra digit. */
1443
1444 /* Double-check that the "__B_{DIGITS}+" sequence we found
1445 is indeed followed by "__". */
1446 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1447 i = k;
1448 }
29480c32 1449
529cad9c
PH
1450 /* Remove _E{DIGITS}+[sb] */
1451
1452 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1453 of subprograms created by the compiler for each entry. The first
1454 one implements the actual entry code, and has a suffix following
1455 the convention above; the second one implements the barrier and
1456 uses the same convention as above, except that the 'E' is replaced
1457 by a 'B'.
529cad9c 1458
dda83cd7
SM
1459 Just as above, we do not decode the name of barrier functions
1460 to give the user a clue that the code he is debugging has been
1461 internally generated. */
529cad9c
PH
1462
1463 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1464 && isdigit (encoded[i+2]))
1465 {
1466 int k = i + 3;
1467
1468 while (k < len0 && isdigit (encoded[k]))
1469 k++;
1470
1471 if (k < len0
1472 && (encoded[k] == 'b' || encoded[k] == 's'))
1473 {
1474 k++;
1475 /* Just as an extra precaution, make sure that if this
1476 suffix is followed by anything else, it is a '_'.
1477 Otherwise, we matched this sequence by accident. */
1478 if (k == len0
1479 || (k < len0 && encoded[k] == '_'))
1480 i = k;
1481 }
1482 }
529cad9c
PH
1483
1484 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1485 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1486
1487 if (i < len0 + 3
dda83cd7
SM
1488 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1489 {
1490 /* Backtrack a bit up until we reach either the begining of
1491 the encoded name, or "__". Make sure that we only find
1492 digits or lowercase characters. */
1493 const char *ptr = encoded + i - 1;
1494
1495 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1496 ptr--;
1497 if (ptr < encoded
1498 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1499 i++;
1500 }
529cad9c 1501
315e4ebb
TT
1502 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1503 {
1504 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1505 {
1506 i += 3;
1507 continue;
1508 }
1509 }
1510 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1511 {
1512 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1513 {
1514 i += 5;
1515 continue;
1516 }
1517 }
1518 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1519 && isxdigit (encoded[i + 2]))
1520 {
1521 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1522 {
1523 i += 10;
1524 continue;
1525 }
1526 }
1527
4c4b4cd2 1528 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1529 {
1530 /* This is a X[bn]* sequence not separated from the previous
1531 part of the name with a non-alpha-numeric character (in other
1532 words, immediately following an alpha-numeric character), then
1533 verify that it is placed at the end of the encoded name. If
1534 not, then the encoding is not valid and we should abort the
1535 decoding. Otherwise, just skip it, it is used in body-nested
1536 package names. */
1537 do
1538 i += 1;
1539 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1540 if (i < len0)
1541 goto Suppress;
1542 }
cdc7bb92 1543 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1544 {
1545 /* Replace '__' by '.'. */
36f5ca53 1546 decoded.push_back ('.');
dda83cd7
SM
1547 at_start_name = 1;
1548 i += 2;
dda83cd7 1549 }
14f9c5c9 1550 else
dda83cd7
SM
1551 {
1552 /* It's a character part of the decoded name, so just copy it
1553 over. */
36f5ca53 1554 decoded.push_back (encoded[i]);
dda83cd7 1555 i += 1;
dda83cd7 1556 }
14f9c5c9 1557 }
14f9c5c9 1558
29480c32
JB
1559 /* Decoded names should never contain any uppercase character.
1560 Double-check this, and abort the decoding if we find one. */
1561
5c94f938
TT
1562 if (operators)
1563 {
1564 for (i = 0; i < decoded.length(); ++i)
1565 if (isupper (decoded[i]) || decoded[i] == ' ')
1566 goto Suppress;
1567 }
14f9c5c9 1568
965bc1df
TT
1569 /* If the compiler added a suffix, append it now. */
1570 if (suffix >= 0)
1571 decoded = decoded + "[" + &encoded[suffix] + "]";
1572
f945dedf 1573 return decoded;
14f9c5c9
AS
1574
1575Suppress:
8a3df5ac
TT
1576 if (!wrap)
1577 return {};
1578
4c4b4cd2 1579 if (encoded[0] == '<')
f945dedf 1580 decoded = encoded;
14f9c5c9 1581 else
f945dedf 1582 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2 1583 return decoded;
4c4b4cd2
PH
1584}
1585
1586/* Table for keeping permanent unique copies of decoded names. Once
1587 allocated, names in this table are never released. While this is a
1588 storage leak, it should not be significant unless there are massive
1589 changes in the set of decoded names in successive versions of a
1590 symbol table loaded during a single session. */
1591static struct htab *decoded_names_store;
1592
1593/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1594 in the language-specific part of GSYMBOL, if it has not been
1595 previously computed. Tries to save the decoded name in the same
1596 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1597 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1598 GSYMBOL).
4c4b4cd2
PH
1599 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1600 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1601 when a decoded name is cached in it. */
4c4b4cd2 1602
45e6c716 1603const char *
f85f34ed 1604ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1605{
f85f34ed
TT
1606 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1607 const char **resultp =
615b3f62 1608 &gsymbol->language_specific.demangled_name;
5b4ee69b 1609
f85f34ed 1610 if (!gsymbol->ada_mangled)
4c4b4cd2 1611 {
4d4eaa30 1612 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1613 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1614
f85f34ed 1615 gsymbol->ada_mangled = 1;
5b4ee69b 1616
f85f34ed 1617 if (obstack != NULL)
f945dedf 1618 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1619 else
dda83cd7 1620 {
f85f34ed
TT
1621 /* Sometimes, we can't find a corresponding objfile, in
1622 which case, we put the result on the heap. Since we only
1623 decode when needed, we hope this usually does not cause a
1624 significant memory leak (FIXME). */
1625
dda83cd7
SM
1626 char **slot = (char **) htab_find_slot (decoded_names_store,
1627 decoded.c_str (), INSERT);
5b4ee69b 1628
dda83cd7
SM
1629 if (*slot == NULL)
1630 *slot = xstrdup (decoded.c_str ());
1631 *resultp = *slot;
1632 }
4c4b4cd2 1633 }
14f9c5c9 1634
4c4b4cd2
PH
1635 return *resultp;
1636}
76a01679 1637
14f9c5c9 1638\f
d2e4a39e 1639
dda83cd7 1640 /* Arrays */
14f9c5c9 1641
28c85d6c
JB
1642/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1643 generated by the GNAT compiler to describe the index type used
1644 for each dimension of an array, check whether it follows the latest
1645 known encoding. If not, fix it up to conform to the latest encoding.
1646 Otherwise, do nothing. This function also does nothing if
1647 INDEX_DESC_TYPE is NULL.
1648
85102364 1649 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1650 Initially, the information would be provided through the name of each
1651 field of the structure type only, while the type of these fields was
1652 described as unspecified and irrelevant. The debugger was then expected
1653 to perform a global type lookup using the name of that field in order
1654 to get access to the full index type description. Because these global
1655 lookups can be very expensive, the encoding was later enhanced to make
1656 the global lookup unnecessary by defining the field type as being
1657 the full index type description.
1658
1659 The purpose of this routine is to allow us to support older versions
1660 of the compiler by detecting the use of the older encoding, and by
1661 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1662 we essentially replace each field's meaningless type by the associated
1663 index subtype). */
1664
1665void
1666ada_fixup_array_indexes_type (struct type *index_desc_type)
1667{
1668 int i;
1669
1670 if (index_desc_type == NULL)
1671 return;
1f704f76 1672 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1673
1674 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1675 to check one field only, no need to check them all). If not, return
1676 now.
1677
1678 If our INDEX_DESC_TYPE was generated using the older encoding,
1679 the field type should be a meaningless integer type whose name
1680 is not equal to the field name. */
940da03e
SM
1681 if (index_desc_type->field (0).type ()->name () != NULL
1682 && strcmp (index_desc_type->field (0).type ()->name (),
33d16dd9 1683 index_desc_type->field (0).name ()) == 0)
28c85d6c
JB
1684 return;
1685
1686 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1687 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1688 {
33d16dd9 1689 const char *name = index_desc_type->field (i).name ();
28c85d6c
JB
1690 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1691
1692 if (raw_type)
5d14b6e5 1693 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1694 }
1695}
1696
4c4b4cd2
PH
1697/* The desc_* routines return primitive portions of array descriptors
1698 (fat pointers). */
14f9c5c9
AS
1699
1700/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1701 level of indirection, if needed. */
1702
d2e4a39e
AS
1703static struct type *
1704desc_base_type (struct type *type)
14f9c5c9
AS
1705{
1706 if (type == NULL)
1707 return NULL;
61ee279c 1708 type = ada_check_typedef (type);
78134374 1709 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1710 type = ada_typedef_target_type (type);
1711
1265e4aa 1712 if (type != NULL
78134374 1713 && (type->code () == TYPE_CODE_PTR
dda83cd7 1714 || type->code () == TYPE_CODE_REF))
27710edb 1715 return ada_check_typedef (type->target_type ());
14f9c5c9
AS
1716 else
1717 return type;
1718}
1719
4c4b4cd2
PH
1720/* True iff TYPE indicates a "thin" array pointer type. */
1721
14f9c5c9 1722static int
d2e4a39e 1723is_thin_pntr (struct type *type)
14f9c5c9 1724{
d2e4a39e 1725 return
14f9c5c9
AS
1726 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1727 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1728}
1729
4c4b4cd2
PH
1730/* The descriptor type for thin pointer type TYPE. */
1731
d2e4a39e
AS
1732static struct type *
1733thin_descriptor_type (struct type *type)
14f9c5c9 1734{
d2e4a39e 1735 struct type *base_type = desc_base_type (type);
5b4ee69b 1736
14f9c5c9
AS
1737 if (base_type == NULL)
1738 return NULL;
1739 if (is_suffix (ada_type_name (base_type), "___XVE"))
1740 return base_type;
d2e4a39e 1741 else
14f9c5c9 1742 {
d2e4a39e 1743 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1744
14f9c5c9 1745 if (alt_type == NULL)
dda83cd7 1746 return base_type;
14f9c5c9 1747 else
dda83cd7 1748 return alt_type;
14f9c5c9
AS
1749 }
1750}
1751
4c4b4cd2
PH
1752/* A pointer to the array data for thin-pointer value VAL. */
1753
d2e4a39e
AS
1754static struct value *
1755thin_data_pntr (struct value *val)
14f9c5c9 1756{
828292f2 1757 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1758 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1759
556bdfd4
UW
1760 data_type = lookup_pointer_type (data_type);
1761
78134374 1762 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1763 return value_cast (data_type, value_copy (val));
d2e4a39e 1764 else
42ae5230 1765 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1766}
1767
4c4b4cd2
PH
1768/* True iff TYPE indicates a "thick" array pointer type. */
1769
14f9c5c9 1770static int
d2e4a39e 1771is_thick_pntr (struct type *type)
14f9c5c9
AS
1772{
1773 type = desc_base_type (type);
78134374 1774 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1775 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1776}
1777
4c4b4cd2
PH
1778/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1779 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1780
d2e4a39e
AS
1781static struct type *
1782desc_bounds_type (struct type *type)
14f9c5c9 1783{
d2e4a39e 1784 struct type *r;
14f9c5c9
AS
1785
1786 type = desc_base_type (type);
1787
1788 if (type == NULL)
1789 return NULL;
1790 else if (is_thin_pntr (type))
1791 {
1792 type = thin_descriptor_type (type);
1793 if (type == NULL)
dda83cd7 1794 return NULL;
14f9c5c9
AS
1795 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1796 if (r != NULL)
dda83cd7 1797 return ada_check_typedef (r);
14f9c5c9 1798 }
78134374 1799 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1800 {
1801 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1802 if (r != NULL)
27710edb 1803 return ada_check_typedef (ada_check_typedef (r)->target_type ());
14f9c5c9
AS
1804 }
1805 return NULL;
1806}
1807
1808/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1809 one, a pointer to its bounds data. Otherwise NULL. */
1810
d2e4a39e
AS
1811static struct value *
1812desc_bounds (struct value *arr)
14f9c5c9 1813{
df407dfe 1814 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1815
d2e4a39e 1816 if (is_thin_pntr (type))
14f9c5c9 1817 {
d2e4a39e 1818 struct type *bounds_type =
dda83cd7 1819 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1820 LONGEST addr;
1821
4cdfadb1 1822 if (bounds_type == NULL)
dda83cd7 1823 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1824
1825 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1826 since desc_type is an XVE-encoded type (and shouldn't be),
1827 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1828 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1829 addr = value_as_long (arr);
d2e4a39e 1830 else
dda83cd7 1831 addr = value_address (arr);
14f9c5c9 1832
d2e4a39e 1833 return
dda83cd7
SM
1834 value_from_longest (lookup_pointer_type (bounds_type),
1835 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1836 }
1837
1838 else if (is_thick_pntr (type))
05e522ef 1839 {
158cc4fe 1840 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
05e522ef
JB
1841 _("Bad GNAT array descriptor"));
1842 struct type *p_bounds_type = value_type (p_bounds);
1843
1844 if (p_bounds_type
78134374 1845 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef 1846 {
27710edb 1847 struct type *target_type = p_bounds_type->target_type ();
05e522ef 1848
e46d3488 1849 if (target_type->is_stub ())
05e522ef
JB
1850 p_bounds = value_cast (lookup_pointer_type
1851 (ada_check_typedef (target_type)),
1852 p_bounds);
1853 }
1854 else
1855 error (_("Bad GNAT array descriptor"));
1856
1857 return p_bounds;
1858 }
14f9c5c9
AS
1859 else
1860 return NULL;
1861}
1862
4c4b4cd2
PH
1863/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1864 position of the field containing the address of the bounds data. */
1865
14f9c5c9 1866static int
d2e4a39e 1867fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9 1868{
b610c045 1869 return desc_base_type (type)->field (1).loc_bitpos ();
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1873 size of the field containing the address of the bounds data. */
1874
14f9c5c9 1875static int
d2e4a39e 1876fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
d2e4a39e 1880 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1881 return TYPE_FIELD_BITSIZE (type, 1);
1882 else
940da03e 1883 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1884}
1885
4c4b4cd2 1886/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1887 pointer to one, the type of its array data (a array-with-no-bounds type);
1888 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1889 data. */
4c4b4cd2 1890
d2e4a39e 1891static struct type *
556bdfd4 1892desc_data_target_type (struct type *type)
14f9c5c9
AS
1893{
1894 type = desc_base_type (type);
1895
4c4b4cd2 1896 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1897 if (is_thin_pntr (type))
940da03e 1898 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1899 else if (is_thick_pntr (type))
556bdfd4
UW
1900 {
1901 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1902
1903 if (data_type
78134374 1904 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
27710edb 1905 return ada_check_typedef (data_type->target_type ());
556bdfd4
UW
1906 }
1907
1908 return NULL;
14f9c5c9
AS
1909}
1910
1911/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1912 its array data. */
4c4b4cd2 1913
d2e4a39e
AS
1914static struct value *
1915desc_data (struct value *arr)
14f9c5c9 1916{
df407dfe 1917 struct type *type = value_type (arr);
5b4ee69b 1918
14f9c5c9
AS
1919 if (is_thin_pntr (type))
1920 return thin_data_pntr (arr);
1921 else if (is_thick_pntr (type))
158cc4fe 1922 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
dda83cd7 1923 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1924 else
1925 return NULL;
1926}
1927
1928
1929/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1930 position of the field containing the address of the data. */
1931
14f9c5c9 1932static int
d2e4a39e 1933fat_pntr_data_bitpos (struct type *type)
14f9c5c9 1934{
b610c045 1935 return desc_base_type (type)->field (0).loc_bitpos ();
14f9c5c9
AS
1936}
1937
1938/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1939 size of the field containing the address of the data. */
1940
14f9c5c9 1941static int
d2e4a39e 1942fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1943{
1944 type = desc_base_type (type);
1945
1946 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1947 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1948 else
940da03e 1949 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1950}
1951
4c4b4cd2 1952/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1953 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1954 bound, if WHICH is 1. The first bound is I=1. */
1955
d2e4a39e
AS
1956static struct value *
1957desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1958{
250106a7
TT
1959 char bound_name[20];
1960 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1961 which ? 'U' : 'L', i - 1);
158cc4fe 1962 return value_struct_elt (&bounds, {}, bound_name, NULL,
dda83cd7 1963 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1964}
1965
1966/* If BOUNDS is an array-bounds structure type, return the bit position
1967 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1968 bound, if WHICH is 1. The first bound is I=1. */
1969
14f9c5c9 1970static int
d2e4a39e 1971desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1972{
b610c045 1973 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
14f9c5c9
AS
1974}
1975
1976/* If BOUNDS is an array-bounds structure type, return the bit field size
1977 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1978 bound, if WHICH is 1. The first bound is I=1. */
1979
76a01679 1980static int
d2e4a39e 1981desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1982{
1983 type = desc_base_type (type);
1984
d2e4a39e
AS
1985 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1986 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1987 else
940da03e 1988 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1989}
1990
1991/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1992 Ith bound (numbering from 1). Otherwise, NULL. */
1993
d2e4a39e
AS
1994static struct type *
1995desc_index_type (struct type *type, int i)
14f9c5c9
AS
1996{
1997 type = desc_base_type (type);
1998
78134374 1999 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
2000 {
2001 char bound_name[20];
2002 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
2003 return lookup_struct_elt_type (type, bound_name, 1);
2004 }
d2e4a39e 2005 else
14f9c5c9
AS
2006 return NULL;
2007}
2008
4c4b4cd2
PH
2009/* The number of index positions in the array-bounds type TYPE.
2010 Return 0 if TYPE is NULL. */
2011
14f9c5c9 2012static int
d2e4a39e 2013desc_arity (struct type *type)
14f9c5c9
AS
2014{
2015 type = desc_base_type (type);
2016
2017 if (type != NULL)
1f704f76 2018 return type->num_fields () / 2;
14f9c5c9
AS
2019 return 0;
2020}
2021
4c4b4cd2
PH
2022/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2023 an array descriptor type (representing an unconstrained array
2024 type). */
2025
76a01679
JB
2026static int
2027ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
2028{
2029 if (type == NULL)
2030 return 0;
61ee279c 2031 type = ada_check_typedef (type);
78134374 2032 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 2033 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
2034}
2035
52ce6436 2036/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 2037 * to one. */
52ce6436 2038
2c0b251b 2039static int
52ce6436
PH
2040ada_is_array_type (struct type *type)
2041{
78134374
SM
2042 while (type != NULL
2043 && (type->code () == TYPE_CODE_PTR
2044 || type->code () == TYPE_CODE_REF))
27710edb 2045 type = type->target_type ();
52ce6436
PH
2046 return ada_is_direct_array_type (type);
2047}
2048
4c4b4cd2 2049/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 2050
14f9c5c9 2051int
4c4b4cd2 2052ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
2053{
2054 if (type == NULL)
2055 return 0;
61ee279c 2056 type = ada_check_typedef (type);
78134374
SM
2057 return (type->code () == TYPE_CODE_ARRAY
2058 || (type->code () == TYPE_CODE_PTR
27710edb 2059 && (ada_check_typedef (type->target_type ())->code ()
78134374 2060 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
2061}
2062
4c4b4cd2
PH
2063/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2064
14f9c5c9 2065int
4c4b4cd2 2066ada_is_array_descriptor_type (struct type *type)
14f9c5c9 2067{
556bdfd4 2068 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
2069
2070 if (type == NULL)
2071 return 0;
61ee279c 2072 type = ada_check_typedef (type);
556bdfd4 2073 return (data_type != NULL
78134374 2074 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 2075 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
2076}
2077
2078/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 2079 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 2080 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
2081 is still needed. */
2082
14f9c5c9 2083int
ebf56fd3 2084ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 2085{
d2e4a39e 2086 return
14f9c5c9 2087 type != NULL
78134374 2088 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 2089 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 2090 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 2091 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
2092}
2093
2094
4c4b4cd2 2095/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 2096 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 2097 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 2098 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
2099 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2100 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 2101 a descriptor. */
de93309a
SM
2102
2103static struct type *
d2e4a39e 2104ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 2105{
ad82864c
JB
2106 if (ada_is_constrained_packed_array_type (value_type (arr)))
2107 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 2108
df407dfe
AC
2109 if (!ada_is_array_descriptor_type (value_type (arr)))
2110 return value_type (arr);
d2e4a39e
AS
2111
2112 if (!bounds)
ad82864c
JB
2113 {
2114 struct type *array_type =
2115 ada_check_typedef (desc_data_target_type (value_type (arr)));
2116
2117 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2118 TYPE_FIELD_BITSIZE (array_type, 0) =
2119 decode_packed_array_bitsize (value_type (arr));
2120
2121 return array_type;
2122 }
14f9c5c9
AS
2123 else
2124 {
d2e4a39e 2125 struct type *elt_type;
14f9c5c9 2126 int arity;
d2e4a39e 2127 struct value *descriptor;
14f9c5c9 2128
df407dfe
AC
2129 elt_type = ada_array_element_type (value_type (arr), -1);
2130 arity = ada_array_arity (value_type (arr));
14f9c5c9 2131
d2e4a39e 2132 if (elt_type == NULL || arity == 0)
dda83cd7 2133 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2134
2135 descriptor = desc_bounds (arr);
d2e4a39e 2136 if (value_as_long (descriptor) == 0)
dda83cd7 2137 return NULL;
d2e4a39e 2138 while (arity > 0)
dda83cd7
SM
2139 {
2140 struct type *range_type = alloc_type_copy (value_type (arr));
2141 struct type *array_type = alloc_type_copy (value_type (arr));
2142 struct value *low = desc_one_bound (descriptor, arity, 0);
2143 struct value *high = desc_one_bound (descriptor, arity, 1);
2144
2145 arity -= 1;
2146 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
2147 longest_to_int (value_as_long (low)),
2148 longest_to_int (value_as_long (high)));
dda83cd7 2149 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2150
2151 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2152 {
2153 /* We need to store the element packed bitsize, as well as
dda83cd7 2154 recompute the array size, because it was previously
e67ad678
JB
2155 computed based on the unpacked element size. */
2156 LONGEST lo = value_as_long (low);
2157 LONGEST hi = value_as_long (high);
2158
2159 TYPE_FIELD_BITSIZE (elt_type, 0) =
2160 decode_packed_array_bitsize (value_type (arr));
2161 /* If the array has no element, then the size is already
dda83cd7 2162 zero, and does not need to be recomputed. */
e67ad678
JB
2163 if (lo < hi)
2164 {
2165 int array_bitsize =
dda83cd7 2166 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
2167
2168 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2169 }
2170 }
dda83cd7 2171 }
14f9c5c9
AS
2172
2173 return lookup_pointer_type (elt_type);
2174 }
2175}
2176
2177/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2178 Otherwise, returns either a standard GDB array with bounds set
2179 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2180 GDB array. Returns NULL if ARR is a null fat pointer. */
2181
d2e4a39e
AS
2182struct value *
2183ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2184{
df407dfe 2185 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2186 {
d2e4a39e 2187 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2188
14f9c5c9 2189 if (arrType == NULL)
dda83cd7 2190 return NULL;
14f9c5c9
AS
2191 return value_cast (arrType, value_copy (desc_data (arr)));
2192 }
ad82864c
JB
2193 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2194 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2195 else
2196 return arr;
2197}
2198
2199/* If ARR does not represent an array, returns ARR unchanged.
2200 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2201 be ARR itself if it already is in the proper form). */
2202
720d1a40 2203struct value *
d2e4a39e 2204ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2205{
df407dfe 2206 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2207 {
d2e4a39e 2208 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2209
14f9c5c9 2210 if (arrVal == NULL)
dda83cd7 2211 error (_("Bounds unavailable for null array pointer."));
14f9c5c9
AS
2212 return value_ind (arrVal);
2213 }
ad82864c
JB
2214 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2215 return decode_constrained_packed_array (arr);
d2e4a39e 2216 else
14f9c5c9
AS
2217 return arr;
2218}
2219
2220/* If TYPE represents a GNAT array type, return it translated to an
2221 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2222 packing). For other types, is the identity. */
2223
d2e4a39e
AS
2224struct type *
2225ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2226{
ad82864c
JB
2227 if (ada_is_constrained_packed_array_type (type))
2228 return decode_constrained_packed_array_type (type);
17280b9f
UW
2229
2230 if (ada_is_array_descriptor_type (type))
556bdfd4 2231 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2232
2233 return type;
14f9c5c9
AS
2234}
2235
4c4b4cd2
PH
2236/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2237
ad82864c 2238static int
57567375 2239ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
2240{
2241 if (type == NULL)
2242 return 0;
4c4b4cd2 2243 type = desc_base_type (type);
61ee279c 2244 type = ada_check_typedef (type);
d2e4a39e 2245 return
14f9c5c9
AS
2246 ada_type_name (type) != NULL
2247 && strstr (ada_type_name (type), "___XP") != NULL;
2248}
2249
ad82864c
JB
2250/* Non-zero iff TYPE represents a standard GNAT constrained
2251 packed-array type. */
2252
2253int
2254ada_is_constrained_packed_array_type (struct type *type)
2255{
57567375 2256 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
2257 && !ada_is_array_descriptor_type (type);
2258}
2259
2260/* Non-zero iff TYPE represents an array descriptor for a
2261 unconstrained packed-array type. */
2262
2263static int
2264ada_is_unconstrained_packed_array_type (struct type *type)
2265{
57567375
TT
2266 if (!ada_is_array_descriptor_type (type))
2267 return 0;
2268
2269 if (ada_is_gnat_encoded_packed_array_type (type))
2270 return 1;
2271
2272 /* If we saw GNAT encodings, then the above code is sufficient.
2273 However, with minimal encodings, we will just have a thick
2274 pointer instead. */
2275 if (is_thick_pntr (type))
2276 {
2277 type = desc_base_type (type);
2278 /* The structure's first field is a pointer to an array, so this
2279 fetches the array type. */
27710edb 2280 type = type->field (0).type ()->target_type ();
af5300fe
TV
2281 if (type->code () == TYPE_CODE_TYPEDEF)
2282 type = ada_typedef_target_type (type);
57567375
TT
2283 /* Now we can see if the array elements are packed. */
2284 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2285 }
2286
2287 return 0;
ad82864c
JB
2288}
2289
c9a28cbe
TT
2290/* Return true if TYPE is a (Gnat-encoded) constrained packed array
2291 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2292
2293static bool
2294ada_is_any_packed_array_type (struct type *type)
2295{
2296 return (ada_is_constrained_packed_array_type (type)
2297 || (type->code () == TYPE_CODE_ARRAY
2298 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2299}
2300
ad82864c
JB
2301/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2302 return the size of its elements in bits. */
2303
2304static long
2305decode_packed_array_bitsize (struct type *type)
2306{
0d5cff50
DE
2307 const char *raw_name;
2308 const char *tail;
ad82864c
JB
2309 long bits;
2310
720d1a40
JB
2311 /* Access to arrays implemented as fat pointers are encoded as a typedef
2312 of the fat pointer type. We need the name of the fat pointer type
2313 to do the decoding, so strip the typedef layer. */
78134374 2314 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2315 type = ada_typedef_target_type (type);
2316
2317 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2318 if (!raw_name)
2319 raw_name = ada_type_name (desc_base_type (type));
2320
2321 if (!raw_name)
2322 return 0;
2323
2324 tail = strstr (raw_name, "___XP");
57567375
TT
2325 if (tail == nullptr)
2326 {
2327 gdb_assert (is_thick_pntr (type));
2328 /* The structure's first field is a pointer to an array, so this
2329 fetches the array type. */
27710edb 2330 type = type->field (0).type ()->target_type ();
57567375
TT
2331 /* Now we can see if the array elements are packed. */
2332 return TYPE_FIELD_BITSIZE (type, 0);
2333 }
ad82864c
JB
2334
2335 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2336 {
2337 lim_warning
2338 (_("could not understand bit size information on packed array"));
2339 return 0;
2340 }
2341
2342 return bits;
2343}
2344
14f9c5c9
AS
2345/* Given that TYPE is a standard GDB array type with all bounds filled
2346 in, and that the element size of its ultimate scalar constituents
2347 (that is, either its elements, or, if it is an array of arrays, its
2348 elements' elements, etc.) is *ELT_BITS, return an identical type,
2349 but with the bit sizes of its elements (and those of any
2350 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2351 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2352 in bits.
2353
2354 Note that, for arrays whose index type has an XA encoding where
2355 a bound references a record discriminant, getting that discriminant,
2356 and therefore the actual value of that bound, is not possible
2357 because none of the given parameters gives us access to the record.
2358 This function assumes that it is OK in the context where it is being
2359 used to return an array whose bounds are still dynamic and where
2360 the length is arbitrary. */
4c4b4cd2 2361
d2e4a39e 2362static struct type *
ad82864c 2363constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2364{
d2e4a39e
AS
2365 struct type *new_elt_type;
2366 struct type *new_type;
99b1c762
JB
2367 struct type *index_type_desc;
2368 struct type *index_type;
14f9c5c9
AS
2369 LONGEST low_bound, high_bound;
2370
61ee279c 2371 type = ada_check_typedef (type);
78134374 2372 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2373 return type;
2374
99b1c762
JB
2375 index_type_desc = ada_find_parallel_type (type, "___XA");
2376 if (index_type_desc)
940da03e 2377 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2378 NULL);
2379 else
3d967001 2380 index_type = type->index_type ();
99b1c762 2381
e9bb382b 2382 new_type = alloc_type_copy (type);
ad82864c 2383 new_elt_type =
27710edb 2384 constrained_packed_array_type (ada_check_typedef (type->target_type ()),
ad82864c 2385 elt_bits);
99b1c762 2386 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2387 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2388 new_type->set_name (ada_type_name (type));
14f9c5c9 2389
78134374 2390 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2391 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2392 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2393 low_bound = high_bound = 0;
2394 if (high_bound < low_bound)
2395 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2396 else
14f9c5c9
AS
2397 {
2398 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2399 TYPE_LENGTH (new_type) =
dda83cd7 2400 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2401 }
2402
9cdd0d12 2403 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2404 return new_type;
2405}
2406
ad82864c
JB
2407/* The array type encoded by TYPE, where
2408 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2409
d2e4a39e 2410static struct type *
ad82864c 2411decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2412{
0d5cff50 2413 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2414 char *name;
0d5cff50 2415 const char *tail;
d2e4a39e 2416 struct type *shadow_type;
14f9c5c9 2417 long bits;
14f9c5c9 2418
727e3d2e
JB
2419 if (!raw_name)
2420 raw_name = ada_type_name (desc_base_type (type));
2421
2422 if (!raw_name)
2423 return NULL;
2424
2425 name = (char *) alloca (strlen (raw_name) + 1);
2426 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2427 type = desc_base_type (type);
2428
14f9c5c9
AS
2429 memcpy (name, raw_name, tail - raw_name);
2430 name[tail - raw_name] = '\000';
2431
b4ba55a1
JB
2432 shadow_type = ada_find_parallel_type_with_name (type, name);
2433
2434 if (shadow_type == NULL)
14f9c5c9 2435 {
323e0a4a 2436 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2437 return NULL;
2438 }
f168693b 2439 shadow_type = check_typedef (shadow_type);
14f9c5c9 2440
78134374 2441 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2442 {
0963b4bd
MS
2443 lim_warning (_("could not understand bounds "
2444 "information on packed array"));
14f9c5c9
AS
2445 return NULL;
2446 }
d2e4a39e 2447
ad82864c
JB
2448 bits = decode_packed_array_bitsize (type);
2449 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2450}
2451
a7400e44
TT
2452/* Helper function for decode_constrained_packed_array. Set the field
2453 bitsize on a series of packed arrays. Returns the number of
2454 elements in TYPE. */
2455
2456static LONGEST
2457recursively_update_array_bitsize (struct type *type)
2458{
2459 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2460
2461 LONGEST low, high;
1f8d2881 2462 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2463 || low > high)
2464 return 0;
2465 LONGEST our_len = high - low + 1;
2466
27710edb 2467 struct type *elt_type = type->target_type ();
a7400e44
TT
2468 if (elt_type->code () == TYPE_CODE_ARRAY)
2469 {
2470 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2471 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2472 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2473
2474 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2475 / HOST_CHAR_BIT);
2476 }
2477
2478 return our_len;
2479}
2480
ad82864c
JB
2481/* Given that ARR is a struct value *indicating a GNAT constrained packed
2482 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2483 standard GDB array type except that the BITSIZEs of the array
2484 target types are set to the number of bits in each element, and the
4c4b4cd2 2485 type length is set appropriately. */
14f9c5c9 2486
d2e4a39e 2487static struct value *
ad82864c 2488decode_constrained_packed_array (struct value *arr)
14f9c5c9 2489{
4c4b4cd2 2490 struct type *type;
14f9c5c9 2491
11aa919a
PMR
2492 /* If our value is a pointer, then dereference it. Likewise if
2493 the value is a reference. Make sure that this operation does not
2494 cause the target type to be fixed, as this would indirectly cause
2495 this array to be decoded. The rest of the routine assumes that
2496 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2497 and "value_ind" routines to perform the dereferencing, as opposed
2498 to using "ada_coerce_ref" or "ada_value_ind". */
2499 arr = coerce_ref (arr);
78134374 2500 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2501 arr = value_ind (arr);
4c4b4cd2 2502
ad82864c 2503 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2504 if (type == NULL)
2505 {
323e0a4a 2506 error (_("can't unpack array"));
14f9c5c9
AS
2507 return NULL;
2508 }
61ee279c 2509
a7400e44
TT
2510 /* Decoding the packed array type could not correctly set the field
2511 bitsizes for any dimension except the innermost, because the
2512 bounds may be variable and were not passed to that function. So,
2513 we further resolve the array bounds here and then update the
2514 sizes. */
50888e42 2515 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
a7400e44
TT
2516 CORE_ADDR address = value_address (arr);
2517 gdb::array_view<const gdb_byte> view
2518 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2519 type = resolve_dynamic_type (type, view, address);
2520 recursively_update_array_bitsize (type);
2521
d5a22e77 2522 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2523 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2524 {
2525 /* This is a (right-justified) modular type representing a packed
24b21115
SM
2526 array with no wrapper. In order to interpret the value through
2527 the (left-justified) packed array type we just built, we must
2528 first left-justify it. */
61ee279c
PH
2529 int bit_size, bit_pos;
2530 ULONGEST mod;
2531
df407dfe 2532 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2533 bit_size = 0;
2534 while (mod > 0)
2535 {
2536 bit_size += 1;
2537 mod >>= 1;
2538 }
df407dfe 2539 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2540 arr = ada_value_primitive_packed_val (arr, NULL,
2541 bit_pos / HOST_CHAR_BIT,
2542 bit_pos % HOST_CHAR_BIT,
2543 bit_size,
2544 type);
2545 }
2546
4c4b4cd2 2547 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2548}
2549
2550
2551/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2552 given in IND. ARR must be a simple array. */
14f9c5c9 2553
d2e4a39e
AS
2554static struct value *
2555value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2556{
2557 int i;
2558 int bits, elt_off, bit_off;
2559 long elt_total_bit_offset;
d2e4a39e
AS
2560 struct type *elt_type;
2561 struct value *v;
14f9c5c9
AS
2562
2563 bits = 0;
2564 elt_total_bit_offset = 0;
df407dfe 2565 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2566 for (i = 0; i < arity; i += 1)
14f9c5c9 2567 {
78134374 2568 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2569 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2570 error
2571 (_("attempt to do packed indexing of "
0963b4bd 2572 "something other than a packed array"));
14f9c5c9 2573 else
dda83cd7
SM
2574 {
2575 struct type *range_type = elt_type->index_type ();
2576 LONGEST lowerbound, upperbound;
2577 LONGEST idx;
2578
1f8d2881 2579 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2580 {
2581 lim_warning (_("don't know bounds of array"));
2582 lowerbound = upperbound = 0;
2583 }
2584
2585 idx = pos_atr (ind[i]);
2586 if (idx < lowerbound || idx > upperbound)
2587 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2588 (long) idx);
dda83cd7
SM
2589 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2590 elt_total_bit_offset += (idx - lowerbound) * bits;
27710edb 2591 elt_type = ada_check_typedef (elt_type->target_type ());
dda83cd7 2592 }
14f9c5c9
AS
2593 }
2594 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2595 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2596
2597 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2598 bits, elt_type);
14f9c5c9
AS
2599 return v;
2600}
2601
4c4b4cd2 2602/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2603
2604static int
d2e4a39e 2605has_negatives (struct type *type)
14f9c5c9 2606{
78134374 2607 switch (type->code ())
d2e4a39e
AS
2608 {
2609 default:
2610 return 0;
2611 case TYPE_CODE_INT:
c6d940a9 2612 return !type->is_unsigned ();
d2e4a39e 2613 case TYPE_CODE_RANGE:
5537ddd0 2614 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2615 }
14f9c5c9 2616}
d2e4a39e 2617
f93fca70 2618/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2619 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2620 the unpacked buffer.
14f9c5c9 2621
5b639dea
JB
2622 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2623 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2624
f93fca70
JB
2625 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2626 zero otherwise.
14f9c5c9 2627
f93fca70 2628 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2629
f93fca70
JB
2630 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2631
2632static void
2633ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2634 gdb_byte *unpacked, int unpacked_len,
2635 int is_big_endian, int is_signed_type,
2636 int is_scalar)
2637{
a1c95e6b
JB
2638 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2639 int src_idx; /* Index into the source area */
2640 int src_bytes_left; /* Number of source bytes left to process. */
2641 int srcBitsLeft; /* Number of source bits left to move */
2642 int unusedLS; /* Number of bits in next significant
dda83cd7 2643 byte of source that are unused */
a1c95e6b 2644
a1c95e6b
JB
2645 int unpacked_idx; /* Index into the unpacked buffer */
2646 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2647
4c4b4cd2 2648 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2649 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2650 unsigned char sign;
a1c95e6b 2651
4c4b4cd2
PH
2652 /* Transmit bytes from least to most significant; delta is the direction
2653 the indices move. */
f93fca70 2654 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2655
5b639dea
JB
2656 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2657 bits from SRC. .*/
2658 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2659 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2660 bit_size, unpacked_len);
2661
14f9c5c9 2662 srcBitsLeft = bit_size;
086ca51f 2663 src_bytes_left = src_len;
f93fca70 2664 unpacked_bytes_left = unpacked_len;
14f9c5c9 2665 sign = 0;
f93fca70
JB
2666
2667 if (is_big_endian)
14f9c5c9 2668 {
086ca51f 2669 src_idx = src_len - 1;
f93fca70
JB
2670 if (is_signed_type
2671 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2672 sign = ~0;
d2e4a39e
AS
2673
2674 unusedLS =
dda83cd7
SM
2675 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2676 % HOST_CHAR_BIT;
14f9c5c9 2677
f93fca70
JB
2678 if (is_scalar)
2679 {
dda83cd7
SM
2680 accumSize = 0;
2681 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2682 }
2683 else
2684 {
dda83cd7
SM
2685 /* Non-scalar values must be aligned at a byte boundary... */
2686 accumSize =
2687 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2688 /* ... And are placed at the beginning (most-significant) bytes
2689 of the target. */
2690 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2691 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2692 }
14f9c5c9 2693 }
d2e4a39e 2694 else
14f9c5c9
AS
2695 {
2696 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2697
086ca51f 2698 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2699 unusedLS = bit_offset;
2700 accumSize = 0;
2701
f93fca70 2702 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2703 sign = ~0;
14f9c5c9 2704 }
d2e4a39e 2705
14f9c5c9 2706 accum = 0;
086ca51f 2707 while (src_bytes_left > 0)
14f9c5c9
AS
2708 {
2709 /* Mask for removing bits of the next source byte that are not
dda83cd7 2710 part of the value. */
d2e4a39e 2711 unsigned int unusedMSMask =
dda83cd7
SM
2712 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2713 1;
4c4b4cd2 2714 /* Sign-extend bits for this byte. */
14f9c5c9 2715 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2716
d2e4a39e 2717 accum |=
dda83cd7 2718 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2719 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2720 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2721 {
2722 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2723 accumSize -= HOST_CHAR_BIT;
2724 accum >>= HOST_CHAR_BIT;
2725 unpacked_bytes_left -= 1;
2726 unpacked_idx += delta;
2727 }
14f9c5c9
AS
2728 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2729 unusedLS = 0;
086ca51f
JB
2730 src_bytes_left -= 1;
2731 src_idx += delta;
14f9c5c9 2732 }
086ca51f 2733 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2734 {
2735 accum |= sign << accumSize;
db297a65 2736 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2737 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2738 if (accumSize < 0)
2739 accumSize = 0;
14f9c5c9 2740 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2741 unpacked_bytes_left -= 1;
2742 unpacked_idx += delta;
14f9c5c9 2743 }
f93fca70
JB
2744}
2745
2746/* Create a new value of type TYPE from the contents of OBJ starting
2747 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2748 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2749 assigning through the result will set the field fetched from.
2750 VALADDR is ignored unless OBJ is NULL, in which case,
2751 VALADDR+OFFSET must address the start of storage containing the
2752 packed value. The value returned in this case is never an lval.
2753 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2754
2755struct value *
2756ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2757 long offset, int bit_offset, int bit_size,
dda83cd7 2758 struct type *type)
f93fca70
JB
2759{
2760 struct value *v;
bfb1c796 2761 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2762 gdb_byte *unpacked;
220475ed 2763 const int is_scalar = is_scalar_type (type);
d5a22e77 2764 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2765 gdb::byte_vector staging;
f93fca70
JB
2766
2767 type = ada_check_typedef (type);
2768
d0a9e810 2769 if (obj == NULL)
bfb1c796 2770 src = valaddr + offset;
d0a9e810 2771 else
50888e42 2772 src = value_contents (obj).data () + offset;
d0a9e810
JB
2773
2774 if (is_dynamic_type (type))
2775 {
2776 /* The length of TYPE might by dynamic, so we need to resolve
2777 TYPE in order to know its actual size, which we then use
2778 to create the contents buffer of the value we return.
2779 The difficulty is that the data containing our object is
2780 packed, and therefore maybe not at a byte boundary. So, what
2781 we do, is unpack the data into a byte-aligned buffer, and then
2782 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2783 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2784 staging.resize (staging_len);
d0a9e810
JB
2785
2786 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2787 staging.data (), staging.size (),
d0a9e810
JB
2788 is_big_endian, has_negatives (type),
2789 is_scalar);
b249d2c2 2790 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2791 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2792 {
2793 /* This happens when the length of the object is dynamic,
2794 and is actually smaller than the space reserved for it.
2795 For instance, in an array of variant records, the bit_size
2796 we're given is the array stride, which is constant and
2797 normally equal to the maximum size of its element.
2798 But, in reality, each element only actually spans a portion
2799 of that stride. */
2800 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2801 }
d0a9e810
JB
2802 }
2803
f93fca70
JB
2804 if (obj == NULL)
2805 {
2806 v = allocate_value (type);
bfb1c796 2807 src = valaddr + offset;
f93fca70
JB
2808 }
2809 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2810 {
0cafa88c 2811 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2812 gdb_byte *buf;
0cafa88c 2813
f93fca70 2814 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2815 buf = (gdb_byte *) alloca (src_len);
2816 read_memory (value_address (v), buf, src_len);
2817 src = buf;
f93fca70
JB
2818 }
2819 else
2820 {
2821 v = allocate_value (type);
50888e42 2822 src = value_contents (obj).data () + offset;
f93fca70
JB
2823 }
2824
2825 if (obj != NULL)
2826 {
2827 long new_offset = offset;
2828
2829 set_value_component_location (v, obj);
2830 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2831 set_value_bitsize (v, bit_size);
2832 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2833 {
f93fca70 2834 ++new_offset;
dda83cd7
SM
2835 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2836 }
f93fca70
JB
2837 set_value_offset (v, new_offset);
2838
2839 /* Also set the parent value. This is needed when trying to
2840 assign a new value (in inferior memory). */
2841 set_value_parent (v, obj);
2842 }
2843 else
2844 set_value_bitsize (v, bit_size);
50888e42 2845 unpacked = value_contents_writeable (v).data ();
f93fca70
JB
2846
2847 if (bit_size == 0)
2848 {
2849 memset (unpacked, 0, TYPE_LENGTH (type));
2850 return v;
2851 }
2852
d5722aa2 2853 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2854 {
d0a9e810
JB
2855 /* Small short-cut: If we've unpacked the data into a buffer
2856 of the same size as TYPE's length, then we can reuse that,
2857 instead of doing the unpacking again. */
d5722aa2 2858 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2859 }
d0a9e810
JB
2860 else
2861 ada_unpack_from_contents (src, bit_offset, bit_size,
2862 unpacked, TYPE_LENGTH (type),
2863 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2864
14f9c5c9
AS
2865 return v;
2866}
d2e4a39e 2867
14f9c5c9
AS
2868/* Store the contents of FROMVAL into the location of TOVAL.
2869 Return a new value with the location of TOVAL and contents of
2870 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2871 floating-point or non-scalar types. */
14f9c5c9 2872
d2e4a39e
AS
2873static struct value *
2874ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2875{
df407dfe
AC
2876 struct type *type = value_type (toval);
2877 int bits = value_bitsize (toval);
14f9c5c9 2878
52ce6436
PH
2879 toval = ada_coerce_ref (toval);
2880 fromval = ada_coerce_ref (fromval);
2881
2882 if (ada_is_direct_array_type (value_type (toval)))
2883 toval = ada_coerce_to_simple_array (toval);
2884 if (ada_is_direct_array_type (value_type (fromval)))
2885 fromval = ada_coerce_to_simple_array (fromval);
2886
88e3b34b 2887 if (!deprecated_value_modifiable (toval))
323e0a4a 2888 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2889
d2e4a39e 2890 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2891 && bits > 0
78134374 2892 && (type->code () == TYPE_CODE_FLT
dda83cd7 2893 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2894 {
df407dfe
AC
2895 int len = (value_bitpos (toval)
2896 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2897 int from_size;
224c3ddb 2898 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2899 struct value *val;
42ae5230 2900 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2901
78134374 2902 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2903 fromval = value_cast (type, fromval);
14f9c5c9 2904
52ce6436 2905 read_memory (to_addr, buffer, len);
aced2898
PH
2906 from_size = value_bitsize (fromval);
2907 if (from_size == 0)
2908 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2909
d5a22e77 2910 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2911 ULONGEST from_offset = 0;
2912 if (is_big_endian && is_scalar_type (value_type (fromval)))
2913 from_offset = from_size - bits;
2914 copy_bitwise (buffer, value_bitpos (toval),
50888e42 2915 value_contents (fromval).data (), from_offset,
d48e62f4 2916 bits, is_big_endian);
972daa01 2917 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2918
14f9c5c9 2919 val = value_copy (toval);
fb2a515f
SM
2920 memcpy (value_contents_raw (val).data (),
2921 value_contents (fromval).data (),
2922 TYPE_LENGTH (type));
04624583 2923 deprecated_set_value_type (val, type);
d2e4a39e 2924
14f9c5c9
AS
2925 return val;
2926 }
2927
2928 return value_assign (toval, fromval);
2929}
2930
2931
7c512744
JB
2932/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2933 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2934 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2935 COMPONENT, and not the inferior's memory. The current contents
2936 of COMPONENT are ignored.
2937
2938 Although not part of the initial design, this function also works
2939 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2940 had a null address, and COMPONENT had an address which is equal to
2941 its offset inside CONTAINER. */
2942
52ce6436
PH
2943static void
2944value_assign_to_component (struct value *container, struct value *component,
2945 struct value *val)
2946{
2947 LONGEST offset_in_container =
42ae5230 2948 (LONGEST) (value_address (component) - value_address (container));
7c512744 2949 int bit_offset_in_container =
52ce6436
PH
2950 value_bitpos (component) - value_bitpos (container);
2951 int bits;
7c512744 2952
52ce6436
PH
2953 val = value_cast (value_type (component), val);
2954
2955 if (value_bitsize (component) == 0)
2956 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2957 else
2958 bits = value_bitsize (component);
2959
d5a22e77 2960 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2961 {
2962 int src_offset;
2963
2964 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2965 src_offset
2a62dfa9
JB
2966 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2967 else
2968 src_offset = 0;
50888e42
SM
2969 copy_bitwise ((value_contents_writeable (container).data ()
2970 + offset_in_container),
a99bc3d2 2971 value_bitpos (container) + bit_offset_in_container,
50888e42 2972 value_contents (val).data (), src_offset, bits, 1);
2a62dfa9 2973 }
52ce6436 2974 else
50888e42
SM
2975 copy_bitwise ((value_contents_writeable (container).data ()
2976 + offset_in_container),
a99bc3d2 2977 value_bitpos (container) + bit_offset_in_container,
50888e42 2978 value_contents (val).data (), 0, bits, 0);
7c512744
JB
2979}
2980
736ade86
XR
2981/* Determine if TYPE is an access to an unconstrained array. */
2982
d91e9ea8 2983bool
736ade86
XR
2984ada_is_access_to_unconstrained_array (struct type *type)
2985{
78134374 2986 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2987 && is_thick_pntr (ada_typedef_target_type (type)));
2988}
2989
4c4b4cd2
PH
2990/* The value of the element of array ARR at the ARITY indices given in IND.
2991 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2992 thereto. */
2993
d2e4a39e
AS
2994struct value *
2995ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2996{
2997 int k;
d2e4a39e
AS
2998 struct value *elt;
2999 struct type *elt_type;
14f9c5c9
AS
3000
3001 elt = ada_coerce_to_simple_array (arr);
3002
df407dfe 3003 elt_type = ada_check_typedef (value_type (elt));
78134374 3004 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
3005 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
3006 return value_subscript_packed (elt, arity, ind);
3007
3008 for (k = 0; k < arity; k += 1)
3009 {
27710edb 3010 struct type *saved_elt_type = elt_type->target_type ();
b9c50e9a 3011
78134374 3012 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 3013 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 3014
2497b498 3015 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
3016
3017 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 3018 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
3019 {
3020 /* The element is a typedef to an unconstrained array,
3021 except that the value_subscript call stripped the
3022 typedef layer. The typedef layer is GNAT's way to
3023 specify that the element is, at the source level, an
3024 access to the unconstrained array, rather than the
3025 unconstrained array. So, we need to restore that
3026 typedef layer, which we can do by forcing the element's
3027 type back to its original type. Otherwise, the returned
3028 value is going to be printed as the array, rather
3029 than as an access. Another symptom of the same issue
3030 would be that an expression trying to dereference the
3031 element would also be improperly rejected. */
3032 deprecated_set_value_type (elt, saved_elt_type);
3033 }
3034
3035 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 3036 }
b9c50e9a 3037
14f9c5c9
AS
3038 return elt;
3039}
3040
deede10c
JB
3041/* Assuming ARR is a pointer to a GDB array, the value of the element
3042 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
3043 Does not read the entire array into memory.
3044
3045 Note: Unlike what one would expect, this function is used instead of
3046 ada_value_subscript for basically all non-packed array types. The reason
3047 for this is that a side effect of doing our own pointer arithmetics instead
3048 of relying on value_subscript is that there is no implicit typedef peeling.
3049 This is important for arrays of array accesses, where it allows us to
3050 preserve the fact that the array's element is an array access, where the
3051 access part os encoded in a typedef layer. */
14f9c5c9 3052
2c0b251b 3053static struct value *
deede10c 3054ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
3055{
3056 int k;
919e6dbe 3057 struct value *array_ind = ada_value_ind (arr);
deede10c 3058 struct type *type
919e6dbe
PMR
3059 = check_typedef (value_enclosing_type (array_ind));
3060
78134374 3061 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
3062 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3063 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
3064
3065 for (k = 0; k < arity; k += 1)
3066 {
3067 LONGEST lwb, upb;
14f9c5c9 3068
78134374 3069 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 3070 error (_("too many subscripts (%d expected)"), k);
27710edb 3071 arr = value_cast (lookup_pointer_type (type->target_type ()),
dda83cd7 3072 value_copy (arr));
3d967001 3073 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 3074 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
27710edb 3075 type = type->target_type ();
14f9c5c9
AS
3076 }
3077
3078 return value_ind (arr);
3079}
3080
0b5d8877 3081/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
3082 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3083 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3084 this array is LOW, as per Ada rules. */
0b5d8877 3085static struct value *
f5938064 3086ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 3087 int low, int high)
0b5d8877 3088{
b0dd7688 3089 struct type *type0 = ada_check_typedef (type);
27710edb 3090 struct type *base_index_type = type0->index_type ()->target_type ();
0c9c3474 3091 struct type *index_type
aa715135 3092 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab 3093 struct type *slice_type = create_array_type_with_stride
27710edb 3094 (NULL, type0->target_type (), index_type,
24e99c6c 3095 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 3096 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 3097 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 3098 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
3099 CORE_ADDR base;
3100
6244c119
SM
3101 low_pos = discrete_position (base_index_type, low);
3102 base_low_pos = discrete_position (base_index_type, base_low);
3103
3104 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
3105 {
3106 warning (_("unable to get positions in slice, use bounds instead"));
3107 low_pos = low;
3108 base_low_pos = base_low;
3109 }
5b4ee69b 3110
7ff5b937
TT
3111 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3112 if (stride == 0)
27710edb 3113 stride = TYPE_LENGTH (type0->target_type ());
7ff5b937 3114
6244c119 3115 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 3116 return value_at_lazy (slice_type, base);
0b5d8877
PH
3117}
3118
3119
3120static struct value *
3121ada_value_slice (struct value *array, int low, int high)
3122{
b0dd7688 3123 struct type *type = ada_check_typedef (value_type (array));
27710edb 3124 struct type *base_index_type = type->index_type ()->target_type ();
0c9c3474 3125 struct type *index_type
3d967001 3126 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab 3127 struct type *slice_type = create_array_type_with_stride
27710edb 3128 (NULL, type->target_type (), index_type,
24e99c6c 3129 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 3130 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
3131 gdb::optional<LONGEST> low_pos, high_pos;
3132
5b4ee69b 3133
6244c119
SM
3134 low_pos = discrete_position (base_index_type, low);
3135 high_pos = discrete_position (base_index_type, high);
3136
3137 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
3138 {
3139 warning (_("unable to get positions in slice, use bounds instead"));
3140 low_pos = low;
3141 high_pos = high;
3142 }
3143
3144 return value_cast (slice_type,
6244c119 3145 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
3146}
3147
14f9c5c9
AS
3148/* If type is a record type in the form of a standard GNAT array
3149 descriptor, returns the number of dimensions for type. If arr is a
3150 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 3151 type designation. Otherwise, returns 0. */
14f9c5c9
AS
3152
3153int
d2e4a39e 3154ada_array_arity (struct type *type)
14f9c5c9
AS
3155{
3156 int arity;
3157
3158 if (type == NULL)
3159 return 0;
3160
3161 type = desc_base_type (type);
3162
3163 arity = 0;
78134374 3164 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 3165 return desc_arity (desc_bounds_type (type));
d2e4a39e 3166 else
78134374 3167 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 3168 {
dda83cd7 3169 arity += 1;
27710edb 3170 type = ada_check_typedef (type->target_type ());
14f9c5c9 3171 }
d2e4a39e 3172
14f9c5c9
AS
3173 return arity;
3174}
3175
3176/* If TYPE is a record type in the form of a standard GNAT array
3177 descriptor or a simple array type, returns the element type for
3178 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3179 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3180
d2e4a39e
AS
3181struct type *
3182ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3183{
3184 type = desc_base_type (type);
3185
78134374 3186 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
3187 {
3188 int k;
d2e4a39e 3189 struct type *p_array_type;
14f9c5c9 3190
556bdfd4 3191 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3192
3193 k = ada_array_arity (type);
3194 if (k == 0)
dda83cd7 3195 return NULL;
d2e4a39e 3196
4c4b4cd2 3197 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3198 if (nindices >= 0 && k > nindices)
dda83cd7 3199 k = nindices;
d2e4a39e 3200 while (k > 0 && p_array_type != NULL)
dda83cd7 3201 {
27710edb 3202 p_array_type = ada_check_typedef (p_array_type->target_type ());
dda83cd7
SM
3203 k -= 1;
3204 }
14f9c5c9
AS
3205 return p_array_type;
3206 }
78134374 3207 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 3208 {
78134374 3209 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7 3210 {
27710edb 3211 type = type->target_type ();
6a40c6e4
TT
3212 /* A multi-dimensional array is represented using a sequence
3213 of array types. If one of these types has a name, then
3214 it is not another dimension of the outer array, but
3215 rather the element type of the outermost array. */
3216 if (type->name () != nullptr)
3217 break;
dda83cd7
SM
3218 nindices -= 1;
3219 }
14f9c5c9
AS
3220 return type;
3221 }
3222
3223 return NULL;
3224}
3225
08a057e6 3226/* See ada-lang.h. */
14f9c5c9 3227
08a057e6 3228struct type *
1eea4ebd 3229ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3230{
4c4b4cd2
PH
3231 struct type *result_type;
3232
14f9c5c9
AS
3233 type = desc_base_type (type);
3234
1eea4ebd
UW
3235 if (n < 0 || n > ada_array_arity (type))
3236 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3237
4c4b4cd2 3238 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3239 {
3240 int i;
3241
3242 for (i = 1; i < n; i += 1)
2869ac4b
TT
3243 {
3244 type = ada_check_typedef (type);
27710edb 3245 type = type->target_type ();
2869ac4b 3246 }
27710edb 3247 result_type = ada_check_typedef (type)->index_type ()->target_type ();
4c4b4cd2 3248 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
3249 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3250 perhaps stabsread.c would make more sense. */
78134374 3251 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 3252 result_type = NULL;
14f9c5c9 3253 }
d2e4a39e 3254 else
1eea4ebd
UW
3255 {
3256 result_type = desc_index_type (desc_bounds_type (type), n);
3257 if (result_type == NULL)
3258 error (_("attempt to take bound of something that is not an array"));
3259 }
3260
3261 return result_type;
14f9c5c9
AS
3262}
3263
3264/* Given that arr is an array type, returns the lower bound of the
3265 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3266 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3267 array-descriptor type. It works for other arrays with bounds supplied
3268 by run-time quantities other than discriminants. */
14f9c5c9 3269
abb68b3e 3270static LONGEST
fb5e3d5c 3271ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3272{
8a48ac95 3273 struct type *type, *index_type_desc, *index_type;
1ce677a4 3274 int i;
262452ec
JK
3275
3276 gdb_assert (which == 0 || which == 1);
14f9c5c9 3277
ad82864c
JB
3278 if (ada_is_constrained_packed_array_type (arr_type))
3279 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3280
4c4b4cd2 3281 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3282 return (LONGEST) - which;
14f9c5c9 3283
78134374 3284 if (arr_type->code () == TYPE_CODE_PTR)
27710edb 3285 type = arr_type->target_type ();
14f9c5c9
AS
3286 else
3287 type = arr_type;
3288
22c4c60c 3289 if (type->is_fixed_instance ())
bafffb51
JB
3290 {
3291 /* The array has already been fixed, so we do not need to
3292 check the parallel ___XA type again. That encoding has
3293 already been applied, so ignore it now. */
3294 index_type_desc = NULL;
3295 }
3296 else
3297 {
3298 index_type_desc = ada_find_parallel_type (type, "___XA");
3299 ada_fixup_array_indexes_type (index_type_desc);
3300 }
3301
262452ec 3302 if (index_type_desc != NULL)
940da03e 3303 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 3304 NULL);
262452ec 3305 else
8a48ac95
JB
3306 {
3307 struct type *elt_type = check_typedef (type);
3308
3309 for (i = 1; i < n; i++)
27710edb 3310 elt_type = check_typedef (elt_type->target_type ());
8a48ac95 3311
3d967001 3312 index_type = elt_type->index_type ();
8a48ac95 3313 }
262452ec 3314
43bbcdc2
PH
3315 return
3316 (LONGEST) (which == 0
dda83cd7
SM
3317 ? ada_discrete_type_low_bound (index_type)
3318 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3319}
3320
3321/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3322 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3323 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3324 supplied by run-time quantities other than discriminants. */
14f9c5c9 3325
1eea4ebd 3326static LONGEST
4dc81987 3327ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3328{
eb479039
JB
3329 struct type *arr_type;
3330
78134374 3331 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3332 arr = value_ind (arr);
3333 arr_type = value_enclosing_type (arr);
14f9c5c9 3334
ad82864c
JB
3335 if (ada_is_constrained_packed_array_type (arr_type))
3336 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3337 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3338 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3339 else
1eea4ebd 3340 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3341}
3342
3343/* Given that arr is an array value, returns the length of the
3344 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3345 supplied by run-time quantities other than discriminants.
3346 Does not work for arrays indexed by enumeration types with representation
3347 clauses at the moment. */
14f9c5c9 3348
1eea4ebd 3349static LONGEST
d2e4a39e 3350ada_array_length (struct value *arr, int n)
14f9c5c9 3351{
aa715135
JG
3352 struct type *arr_type, *index_type;
3353 int low, high;
eb479039 3354
78134374 3355 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3356 arr = value_ind (arr);
3357 arr_type = value_enclosing_type (arr);
14f9c5c9 3358
ad82864c
JB
3359 if (ada_is_constrained_packed_array_type (arr_type))
3360 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3361
4c4b4cd2 3362 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3363 {
3364 low = ada_array_bound_from_type (arr_type, n, 0);
3365 high = ada_array_bound_from_type (arr_type, n, 1);
3366 }
14f9c5c9 3367 else
aa715135
JG
3368 {
3369 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3370 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3371 }
3372
f168693b 3373 arr_type = check_typedef (arr_type);
7150d33c 3374 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3375 if (index_type != NULL)
3376 {
3377 struct type *base_type;
78134374 3378 if (index_type->code () == TYPE_CODE_RANGE)
27710edb 3379 base_type = index_type->target_type ();
aa715135
JG
3380 else
3381 base_type = index_type;
3382
3383 low = pos_atr (value_from_longest (base_type, low));
3384 high = pos_atr (value_from_longest (base_type, high));
3385 }
3386 return high - low + 1;
4c4b4cd2
PH
3387}
3388
bff8c71f
TT
3389/* An array whose type is that of ARR_TYPE (an array type), with
3390 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3391 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3392
3393static struct value *
bff8c71f 3394empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3395{
b0dd7688 3396 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3397 struct type *index_type
3398 = create_static_range_type
27710edb 3399 (NULL, arr_type0->index_type ()->target_type (), low,
bff8c71f 3400 high < low ? low - 1 : high);
b0dd7688 3401 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3402
0b5d8877 3403 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3404}
14f9c5c9 3405\f
d2e4a39e 3406
dda83cd7 3407 /* Name resolution */
14f9c5c9 3408
4c4b4cd2
PH
3409/* The "decoded" name for the user-definable Ada operator corresponding
3410 to OP. */
14f9c5c9 3411
d2e4a39e 3412static const char *
4c4b4cd2 3413ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3414{
3415 int i;
3416
4c4b4cd2 3417 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3418 {
3419 if (ada_opname_table[i].op == op)
dda83cd7 3420 return ada_opname_table[i].decoded;
14f9c5c9 3421 }
323e0a4a 3422 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3423}
3424
de93309a
SM
3425/* Returns true (non-zero) iff decoded name N0 should appear before N1
3426 in a listing of choices during disambiguation (see sort_choices, below).
3427 The idea is that overloadings of a subprogram name from the
3428 same package should sort in their source order. We settle for ordering
3429 such symbols by their trailing number (__N or $N). */
14f9c5c9 3430
de93309a
SM
3431static int
3432encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3433{
de93309a
SM
3434 if (N1 == NULL)
3435 return 0;
3436 else if (N0 == NULL)
3437 return 1;
3438 else
3439 {
3440 int k0, k1;
30b15541 3441
de93309a 3442 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3443 ;
de93309a 3444 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3445 ;
de93309a 3446 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3447 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3448 {
3449 int n0, n1;
3450
3451 n0 = k0;
3452 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3453 n0 -= 1;
3454 n1 = k1;
3455 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3456 n1 -= 1;
3457 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3458 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3459 }
de93309a
SM
3460 return (strcmp (N0, N1) < 0);
3461 }
14f9c5c9
AS
3462}
3463
de93309a
SM
3464/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3465 encoded names. */
14f9c5c9 3466
de93309a
SM
3467static void
3468sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3469{
14f9c5c9 3470 int i;
14f9c5c9 3471
de93309a 3472 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3473 {
de93309a
SM
3474 struct block_symbol sym = syms[i];
3475 int j;
3476
3477 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3478 {
3479 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3480 sym.symbol->linkage_name ()))
3481 break;
3482 syms[j + 1] = syms[j];
3483 }
de93309a
SM
3484 syms[j + 1] = sym;
3485 }
3486}
14f9c5c9 3487
de93309a
SM
3488/* Whether GDB should display formals and return types for functions in the
3489 overloads selection menu. */
3490static bool print_signatures = true;
4c4b4cd2 3491
de93309a
SM
3492/* Print the signature for SYM on STREAM according to the FLAGS options. For
3493 all but functions, the signature is just the name of the symbol. For
3494 functions, this is the name of the function, the list of types for formals
3495 and the return type (if any). */
4c4b4cd2 3496
de93309a
SM
3497static void
3498ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3499 const struct type_print_options *flags)
3500{
5f9c5a63 3501 struct type *type = sym->type ();
14f9c5c9 3502
6cb06a8c 3503 gdb_printf (stream, "%s", sym->print_name ());
de93309a
SM
3504 if (!print_signatures
3505 || type == NULL
78134374 3506 || type->code () != TYPE_CODE_FUNC)
de93309a 3507 return;
4c4b4cd2 3508
1f704f76 3509 if (type->num_fields () > 0)
de93309a
SM
3510 {
3511 int i;
14f9c5c9 3512
6cb06a8c 3513 gdb_printf (stream, " (");
1f704f76 3514 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3515 {
3516 if (i > 0)
6cb06a8c 3517 gdb_printf (stream, "; ");
940da03e 3518 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3519 flags);
3520 }
6cb06a8c 3521 gdb_printf (stream, ")");
de93309a 3522 }
27710edb
SM
3523 if (type->target_type () != NULL
3524 && type->target_type ()->code () != TYPE_CODE_VOID)
de93309a 3525 {
6cb06a8c 3526 gdb_printf (stream, " return ");
27710edb 3527 ada_print_type (type->target_type (), NULL, stream, -1, 0, flags);
de93309a
SM
3528 }
3529}
14f9c5c9 3530
de93309a
SM
3531/* Read and validate a set of numeric choices from the user in the
3532 range 0 .. N_CHOICES-1. Place the results in increasing
3533 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3534
de93309a
SM
3535 The user types choices as a sequence of numbers on one line
3536 separated by blanks, encoding them as follows:
14f9c5c9 3537
de93309a
SM
3538 + A choice of 0 means to cancel the selection, throwing an error.
3539 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3540 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3541
de93309a 3542 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3543
de93309a
SM
3544 ANNOTATION_SUFFIX, if present, is used to annotate the input
3545 prompts (for use with the -f switch). */
14f9c5c9 3546
de93309a
SM
3547static int
3548get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3549 int is_all_choice, const char *annotation_suffix)
de93309a 3550{
992a7040 3551 const char *args;
de93309a
SM
3552 const char *prompt;
3553 int n_chosen;
3554 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3555
de93309a
SM
3556 prompt = getenv ("PS2");
3557 if (prompt == NULL)
3558 prompt = "> ";
4c4b4cd2 3559
de93309a 3560 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3561
de93309a
SM
3562 if (args == NULL)
3563 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3564
de93309a 3565 n_chosen = 0;
4c4b4cd2 3566
de93309a
SM
3567 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3568 order, as given in args. Choices are validated. */
3569 while (1)
14f9c5c9 3570 {
de93309a
SM
3571 char *args2;
3572 int choice, j;
76a01679 3573
de93309a
SM
3574 args = skip_spaces (args);
3575 if (*args == '\0' && n_chosen == 0)
dda83cd7 3576 error_no_arg (_("one or more choice numbers"));
de93309a 3577 else if (*args == '\0')
dda83cd7 3578 break;
76a01679 3579
de93309a
SM
3580 choice = strtol (args, &args2, 10);
3581 if (args == args2 || choice < 0
dda83cd7
SM
3582 || choice > n_choices + first_choice - 1)
3583 error (_("Argument must be choice number"));
de93309a 3584 args = args2;
76a01679 3585
de93309a 3586 if (choice == 0)
dda83cd7 3587 error (_("cancelled"));
76a01679 3588
de93309a 3589 if (choice < first_choice)
dda83cd7
SM
3590 {
3591 n_chosen = n_choices;
3592 for (j = 0; j < n_choices; j += 1)
3593 choices[j] = j;
3594 break;
3595 }
de93309a 3596 choice -= first_choice;
76a01679 3597
de93309a 3598 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3599 {
3600 }
4c4b4cd2 3601
de93309a 3602 if (j < 0 || choice != choices[j])
dda83cd7
SM
3603 {
3604 int k;
4c4b4cd2 3605
dda83cd7
SM
3606 for (k = n_chosen - 1; k > j; k -= 1)
3607 choices[k + 1] = choices[k];
3608 choices[j + 1] = choice;
3609 n_chosen += 1;
3610 }
14f9c5c9
AS
3611 }
3612
de93309a
SM
3613 if (n_chosen > max_results)
3614 error (_("Select no more than %d of the above"), max_results);
3615
3616 return n_chosen;
14f9c5c9
AS
3617}
3618
de93309a
SM
3619/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3620 by asking the user (if necessary), returning the number selected,
3621 and setting the first elements of SYMS items. Error if no symbols
3622 selected. */
3623
3624/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3625 to be re-integrated one of these days. */
14f9c5c9
AS
3626
3627static int
de93309a 3628user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3629{
de93309a
SM
3630 int i;
3631 int *chosen = XALLOCAVEC (int , nsyms);
3632 int n_chosen;
3633 int first_choice = (max_results == 1) ? 1 : 2;
3634 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3635
de93309a
SM
3636 if (max_results < 1)
3637 error (_("Request to select 0 symbols!"));
3638 if (nsyms <= 1)
3639 return nsyms;
14f9c5c9 3640
de93309a
SM
3641 if (select_mode == multiple_symbols_cancel)
3642 error (_("\
3643canceled because the command is ambiguous\n\
3644See set/show multiple-symbol."));
14f9c5c9 3645
de93309a
SM
3646 /* If select_mode is "all", then return all possible symbols.
3647 Only do that if more than one symbol can be selected, of course.
3648 Otherwise, display the menu as usual. */
3649 if (select_mode == multiple_symbols_all && max_results > 1)
3650 return nsyms;
14f9c5c9 3651
6cb06a8c 3652 gdb_printf (_("[0] cancel\n"));
de93309a 3653 if (max_results > 1)
6cb06a8c 3654 gdb_printf (_("[1] all\n"));
14f9c5c9 3655
de93309a 3656 sort_choices (syms, nsyms);
14f9c5c9 3657
de93309a
SM
3658 for (i = 0; i < nsyms; i += 1)
3659 {
3660 if (syms[i].symbol == NULL)
dda83cd7 3661 continue;
14f9c5c9 3662
66d7f48f 3663 if (syms[i].symbol->aclass () == LOC_BLOCK)
dda83cd7
SM
3664 {
3665 struct symtab_and_line sal =
3666 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3667
6cb06a8c 3668 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3669 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3670 &type_print_raw_options);
3671 if (sal.symtab == NULL)
6cb06a8c
TT
3672 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3673 metadata_style.style ().ptr (), nullptr, sal.line);
de93309a 3674 else
6cb06a8c 3675 gdb_printf
de93309a
SM
3676 (_(" at %ps:%d\n"),
3677 styled_string (file_name_style.style (),
3678 symtab_to_filename_for_display (sal.symtab)),
3679 sal.line);
dda83cd7
SM
3680 continue;
3681 }
76a01679 3682 else
dda83cd7
SM
3683 {
3684 int is_enumeral =
66d7f48f 3685 (syms[i].symbol->aclass () == LOC_CONST
5f9c5a63
SM
3686 && syms[i].symbol->type () != NULL
3687 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
de93309a 3688 struct symtab *symtab = NULL;
4c4b4cd2 3689
7b3ecc75 3690 if (syms[i].symbol->is_objfile_owned ())
4206d69e 3691 symtab = syms[i].symbol->symtab ();
de93309a 3692
5d0027b9 3693 if (syms[i].symbol->line () != 0 && symtab != NULL)
de93309a 3694 {
6cb06a8c 3695 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3696 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3697 &type_print_raw_options);
6cb06a8c
TT
3698 gdb_printf (_(" at %s:%d\n"),
3699 symtab_to_filename_for_display (symtab),
3700 syms[i].symbol->line ());
de93309a 3701 }
dda83cd7 3702 else if (is_enumeral
5f9c5a63 3703 && syms[i].symbol->type ()->name () != NULL)
dda83cd7 3704 {
6cb06a8c 3705 gdb_printf (("[%d] "), i + first_choice);
5f9c5a63 3706 ada_print_type (syms[i].symbol->type (), NULL,
dda83cd7 3707 gdb_stdout, -1, 0, &type_print_raw_options);
6cb06a8c
TT
3708 gdb_printf (_("'(%s) (enumeral)\n"),
3709 syms[i].symbol->print_name ());
dda83cd7 3710 }
de93309a
SM
3711 else
3712 {
6cb06a8c 3713 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3714 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3715 &type_print_raw_options);
3716
3717 if (symtab != NULL)
6cb06a8c
TT
3718 gdb_printf (is_enumeral
3719 ? _(" in %s (enumeral)\n")
3720 : _(" at %s:?\n"),
3721 symtab_to_filename_for_display (symtab));
de93309a 3722 else
6cb06a8c
TT
3723 gdb_printf (is_enumeral
3724 ? _(" (enumeral)\n")
3725 : _(" at ?\n"));
de93309a 3726 }
dda83cd7 3727 }
14f9c5c9 3728 }
14f9c5c9 3729
de93309a 3730 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3731 "overload-choice");
14f9c5c9 3732
de93309a
SM
3733 for (i = 0; i < n_chosen; i += 1)
3734 syms[i] = syms[chosen[i]];
14f9c5c9 3735
de93309a
SM
3736 return n_chosen;
3737}
14f9c5c9 3738
cd9a3148
TT
3739/* See ada-lang.h. */
3740
3741block_symbol
7056f312 3742ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
cd9a3148
TT
3743 int nargs, value *argvec[])
3744{
3745 if (possible_user_operator_p (op, argvec))
3746 {
3747 std::vector<struct block_symbol> candidates
3748 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3749 NULL, VAR_DOMAIN);
3750
3751 int i = ada_resolve_function (candidates, argvec,
3752 nargs, ada_decoded_op_name (op), NULL,
3753 parse_completion);
3754 if (i >= 0)
3755 return candidates[i];
3756 }
3757 return {};
3758}
3759
3760/* See ada-lang.h. */
3761
3762block_symbol
3763ada_resolve_funcall (struct symbol *sym, const struct block *block,
3764 struct type *context_type,
7056f312 3765 bool parse_completion,
cd9a3148
TT
3766 int nargs, value *argvec[],
3767 innermost_block_tracker *tracker)
3768{
3769 std::vector<struct block_symbol> candidates
3770 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3771
3772 int i;
3773 if (candidates.size () == 1)
3774 i = 0;
3775 else
3776 {
3777 i = ada_resolve_function
3778 (candidates,
3779 argvec, nargs,
3780 sym->linkage_name (),
3781 context_type, parse_completion);
3782 if (i < 0)
3783 error (_("Could not find a match for %s"), sym->print_name ());
3784 }
3785
3786 tracker->update (candidates[i]);
3787 return candidates[i];
3788}
3789
ba8694b6
TT
3790/* Resolve a mention of a name where the context type is an
3791 enumeration type. */
3792
3793static int
3794ada_resolve_enum (std::vector<struct block_symbol> &syms,
3795 const char *name, struct type *context_type,
3796 bool parse_completion)
3797{
3798 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3799 context_type = ada_check_typedef (context_type);
3800
3801 for (int i = 0; i < syms.size (); ++i)
3802 {
3803 /* We already know the name matches, so we're just looking for
3804 an element of the correct enum type. */
5f9c5a63 3805 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
ba8694b6
TT
3806 return i;
3807 }
3808
3809 error (_("No name '%s' in enumeration type '%s'"), name,
3810 ada_type_name (context_type));
3811}
3812
cd9a3148
TT
3813/* See ada-lang.h. */
3814
3815block_symbol
3816ada_resolve_variable (struct symbol *sym, const struct block *block,
3817 struct type *context_type,
7056f312 3818 bool parse_completion,
cd9a3148
TT
3819 int deprocedure_p,
3820 innermost_block_tracker *tracker)
3821{
3822 std::vector<struct block_symbol> candidates
3823 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3824
3825 if (std::any_of (candidates.begin (),
3826 candidates.end (),
3827 [] (block_symbol &bsym)
3828 {
66d7f48f 3829 switch (bsym.symbol->aclass ())
cd9a3148
TT
3830 {
3831 case LOC_REGISTER:
3832 case LOC_ARG:
3833 case LOC_REF_ARG:
3834 case LOC_REGPARM_ADDR:
3835 case LOC_LOCAL:
3836 case LOC_COMPUTED:
3837 return true;
3838 default:
3839 return false;
3840 }
3841 }))
3842 {
3843 /* Types tend to get re-introduced locally, so if there
3844 are any local symbols that are not types, first filter
3845 out all types. */
3846 candidates.erase
3847 (std::remove_if
3848 (candidates.begin (),
3849 candidates.end (),
3850 [] (block_symbol &bsym)
3851 {
66d7f48f 3852 return bsym.symbol->aclass () == LOC_TYPEDEF;
cd9a3148
TT
3853 }),
3854 candidates.end ());
3855 }
3856
2c71f639
TV
3857 /* Filter out artificial symbols. */
3858 candidates.erase
3859 (std::remove_if
3860 (candidates.begin (),
3861 candidates.end (),
3862 [] (block_symbol &bsym)
3863 {
496feb16 3864 return bsym.symbol->is_artificial ();
2c71f639
TV
3865 }),
3866 candidates.end ());
3867
cd9a3148
TT
3868 int i;
3869 if (candidates.empty ())
3870 error (_("No definition found for %s"), sym->print_name ());
3871 else if (candidates.size () == 1)
3872 i = 0;
ba8694b6
TT
3873 else if (context_type != nullptr
3874 && context_type->code () == TYPE_CODE_ENUM)
3875 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3876 parse_completion);
cd9a3148
TT
3877 else if (deprocedure_p && !is_nonfunction (candidates))
3878 {
3879 i = ada_resolve_function
3880 (candidates, NULL, 0,
3881 sym->linkage_name (),
3882 context_type, parse_completion);
3883 if (i < 0)
3884 error (_("Could not find a match for %s"), sym->print_name ());
3885 }
3886 else
3887 {
6cb06a8c 3888 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
cd9a3148
TT
3889 user_select_syms (candidates.data (), candidates.size (), 1);
3890 i = 0;
3891 }
3892
3893 tracker->update (candidates[i]);
3894 return candidates[i];
3895}
3896
db2534b7 3897/* Return non-zero if formal type FTYPE matches actual type ATYPE. */
de93309a
SM
3898/* The term "match" here is rather loose. The match is heuristic and
3899 liberal. */
14f9c5c9 3900
de93309a 3901static int
db2534b7 3902ada_type_match (struct type *ftype, struct type *atype)
14f9c5c9 3903{
de93309a
SM
3904 ftype = ada_check_typedef (ftype);
3905 atype = ada_check_typedef (atype);
14f9c5c9 3906
78134374 3907 if (ftype->code () == TYPE_CODE_REF)
27710edb 3908 ftype = ftype->target_type ();
78134374 3909 if (atype->code () == TYPE_CODE_REF)
27710edb 3910 atype = atype->target_type ();
14f9c5c9 3911
78134374 3912 switch (ftype->code ())
14f9c5c9 3913 {
de93309a 3914 default:
78134374 3915 return ftype->code () == atype->code ();
de93309a 3916 case TYPE_CODE_PTR:
db2534b7
TT
3917 if (atype->code () != TYPE_CODE_PTR)
3918 return 0;
27710edb 3919 atype = atype->target_type ();
db2534b7
TT
3920 /* This can only happen if the actual argument is 'null'. */
3921 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3922 return 1;
27710edb 3923 return ada_type_match (ftype->target_type (), atype);
de93309a
SM
3924 case TYPE_CODE_INT:
3925 case TYPE_CODE_ENUM:
3926 case TYPE_CODE_RANGE:
78134374 3927 switch (atype->code ())
dda83cd7
SM
3928 {
3929 case TYPE_CODE_INT:
3930 case TYPE_CODE_ENUM:
3931 case TYPE_CODE_RANGE:
3932 return 1;
3933 default:
3934 return 0;
3935 }
d2e4a39e 3936
de93309a 3937 case TYPE_CODE_ARRAY:
78134374 3938 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3939 || ada_is_array_descriptor_type (atype));
14f9c5c9 3940
de93309a
SM
3941 case TYPE_CODE_STRUCT:
3942 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3943 return (atype->code () == TYPE_CODE_ARRAY
3944 || ada_is_array_descriptor_type (atype));
de93309a 3945 else
dda83cd7
SM
3946 return (atype->code () == TYPE_CODE_STRUCT
3947 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3948
de93309a
SM
3949 case TYPE_CODE_UNION:
3950 case TYPE_CODE_FLT:
78134374 3951 return (atype->code () == ftype->code ());
de93309a 3952 }
14f9c5c9
AS
3953}
3954
de93309a
SM
3955/* Return non-zero if the formals of FUNC "sufficiently match" the
3956 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3957 may also be an enumeral, in which case it is treated as a 0-
3958 argument function. */
14f9c5c9 3959
de93309a
SM
3960static int
3961ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3962{
3963 int i;
5f9c5a63 3964 struct type *func_type = func->type ();
14f9c5c9 3965
66d7f48f 3966 if (func->aclass () == LOC_CONST
78134374 3967 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3968 return (n_actuals == 0);
78134374 3969 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3970 return 0;
14f9c5c9 3971
1f704f76 3972 if (func_type->num_fields () != n_actuals)
de93309a 3973 return 0;
14f9c5c9 3974
de93309a
SM
3975 for (i = 0; i < n_actuals; i += 1)
3976 {
3977 if (actuals[i] == NULL)
dda83cd7 3978 return 0;
de93309a 3979 else
dda83cd7
SM
3980 {
3981 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3982 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3983
db2534b7 3984 if (!ada_type_match (ftype, atype))
dda83cd7
SM
3985 return 0;
3986 }
de93309a
SM
3987 }
3988 return 1;
3989}
d2e4a39e 3990
de93309a
SM
3991/* False iff function type FUNC_TYPE definitely does not produce a value
3992 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3993 FUNC_TYPE is not a valid function type with a non-null return type
3994 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3995
de93309a
SM
3996static int
3997return_match (struct type *func_type, struct type *context_type)
3998{
3999 struct type *return_type;
d2e4a39e 4000
de93309a
SM
4001 if (func_type == NULL)
4002 return 1;
14f9c5c9 4003
78134374 4004 if (func_type->code () == TYPE_CODE_FUNC)
27710edb 4005 return_type = get_base_type (func_type->target_type ());
de93309a
SM
4006 else
4007 return_type = get_base_type (func_type);
4008 if (return_type == NULL)
4009 return 1;
76a01679 4010
de93309a 4011 context_type = get_base_type (context_type);
14f9c5c9 4012
78134374 4013 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
4014 return context_type == NULL || return_type == context_type;
4015 else if (context_type == NULL)
78134374 4016 return return_type->code () != TYPE_CODE_VOID;
de93309a 4017 else
78134374 4018 return return_type->code () == context_type->code ();
de93309a 4019}
14f9c5c9 4020
14f9c5c9 4021
1bfa81ac 4022/* Returns the index in SYMS that contains the symbol for the
de93309a
SM
4023 function (if any) that matches the types of the NARGS arguments in
4024 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4025 that returns that type, then eliminate matches that don't. If
4026 CONTEXT_TYPE is void and there is at least one match that does not
4027 return void, eliminate all matches that do.
14f9c5c9 4028
de93309a
SM
4029 Asks the user if there is more than one match remaining. Returns -1
4030 if there is no such symbol or none is selected. NAME is used
4031 solely for messages. May re-arrange and modify SYMS in
4032 the process; the index returned is for the modified vector. */
14f9c5c9 4033
de93309a 4034static int
d1183b06
TT
4035ada_resolve_function (std::vector<struct block_symbol> &syms,
4036 struct value **args, int nargs,
dda83cd7 4037 const char *name, struct type *context_type,
7056f312 4038 bool parse_completion)
de93309a
SM
4039{
4040 int fallback;
4041 int k;
4042 int m; /* Number of hits */
14f9c5c9 4043
de93309a
SM
4044 m = 0;
4045 /* In the first pass of the loop, we only accept functions matching
4046 context_type. If none are found, we add a second pass of the loop
4047 where every function is accepted. */
4048 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4049 {
d1183b06 4050 for (k = 0; k < syms.size (); k += 1)
dda83cd7 4051 {
5f9c5a63 4052 struct type *type = ada_check_typedef (syms[k].symbol->type ());
5b4ee69b 4053
dda83cd7
SM
4054 if (ada_args_match (syms[k].symbol, args, nargs)
4055 && (fallback || return_match (type, context_type)))
4056 {
4057 syms[m] = syms[k];
4058 m += 1;
4059 }
4060 }
14f9c5c9
AS
4061 }
4062
de93309a
SM
4063 /* If we got multiple matches, ask the user which one to use. Don't do this
4064 interactive thing during completion, though, as the purpose of the
4065 completion is providing a list of all possible matches. Prompting the
4066 user to filter it down would be completely unexpected in this case. */
4067 if (m == 0)
4068 return -1;
4069 else if (m > 1 && !parse_completion)
4070 {
6cb06a8c 4071 gdb_printf (_("Multiple matches for %s\n"), name);
d1183b06 4072 user_select_syms (syms.data (), m, 1);
de93309a
SM
4073 return 0;
4074 }
4075 return 0;
14f9c5c9
AS
4076}
4077
14f9c5c9
AS
4078/* Type-class predicates */
4079
4c4b4cd2
PH
4080/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4081 or FLOAT). */
14f9c5c9
AS
4082
4083static int
d2e4a39e 4084numeric_type_p (struct type *type)
14f9c5c9
AS
4085{
4086 if (type == NULL)
4087 return 0;
d2e4a39e
AS
4088 else
4089 {
78134374 4090 switch (type->code ())
dda83cd7
SM
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_FLT:
c04da66c 4094 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
4095 return 1;
4096 case TYPE_CODE_RANGE:
27710edb
SM
4097 return (type == type->target_type ()
4098 || numeric_type_p (type->target_type ()));
dda83cd7
SM
4099 default:
4100 return 0;
4101 }
d2e4a39e 4102 }
14f9c5c9
AS
4103}
4104
4c4b4cd2 4105/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4106
4107static int
d2e4a39e 4108integer_type_p (struct type *type)
14f9c5c9
AS
4109{
4110 if (type == NULL)
4111 return 0;
d2e4a39e
AS
4112 else
4113 {
78134374 4114 switch (type->code ())
dda83cd7
SM
4115 {
4116 case TYPE_CODE_INT:
4117 return 1;
4118 case TYPE_CODE_RANGE:
27710edb
SM
4119 return (type == type->target_type ()
4120 || integer_type_p (type->target_type ()));
dda83cd7
SM
4121 default:
4122 return 0;
4123 }
d2e4a39e 4124 }
14f9c5c9
AS
4125}
4126
4c4b4cd2 4127/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4128
4129static int
d2e4a39e 4130scalar_type_p (struct type *type)
14f9c5c9
AS
4131{
4132 if (type == NULL)
4133 return 0;
d2e4a39e
AS
4134 else
4135 {
78134374 4136 switch (type->code ())
dda83cd7
SM
4137 {
4138 case TYPE_CODE_INT:
4139 case TYPE_CODE_RANGE:
4140 case TYPE_CODE_ENUM:
4141 case TYPE_CODE_FLT:
c04da66c 4142 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
4143 return 1;
4144 default:
4145 return 0;
4146 }
d2e4a39e 4147 }
14f9c5c9
AS
4148}
4149
4c4b4cd2 4150/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4151
4152static int
d2e4a39e 4153discrete_type_p (struct type *type)
14f9c5c9
AS
4154{
4155 if (type == NULL)
4156 return 0;
d2e4a39e
AS
4157 else
4158 {
78134374 4159 switch (type->code ())
dda83cd7
SM
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_RANGE:
4163 case TYPE_CODE_ENUM:
4164 case TYPE_CODE_BOOL:
4165 return 1;
4166 default:
4167 return 0;
4168 }
d2e4a39e 4169 }
14f9c5c9
AS
4170}
4171
4c4b4cd2
PH
4172/* Returns non-zero if OP with operands in the vector ARGS could be
4173 a user-defined function. Errs on the side of pre-defined operators
4174 (i.e., result 0). */
14f9c5c9
AS
4175
4176static int
d2e4a39e 4177possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4178{
76a01679 4179 struct type *type0 =
df407dfe 4180 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4181 struct type *type1 =
df407dfe 4182 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4183
4c4b4cd2
PH
4184 if (type0 == NULL)
4185 return 0;
4186
14f9c5c9
AS
4187 switch (op)
4188 {
4189 default:
4190 return 0;
4191
4192 case BINOP_ADD:
4193 case BINOP_SUB:
4194 case BINOP_MUL:
4195 case BINOP_DIV:
d2e4a39e 4196 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4197
4198 case BINOP_REM:
4199 case BINOP_MOD:
4200 case BINOP_BITWISE_AND:
4201 case BINOP_BITWISE_IOR:
4202 case BINOP_BITWISE_XOR:
d2e4a39e 4203 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4204
4205 case BINOP_EQUAL:
4206 case BINOP_NOTEQUAL:
4207 case BINOP_LESS:
4208 case BINOP_GTR:
4209 case BINOP_LEQ:
4210 case BINOP_GEQ:
d2e4a39e 4211 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4212
4213 case BINOP_CONCAT:
ee90b9ab 4214 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4215
4216 case BINOP_EXP:
d2e4a39e 4217 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4218
4219 case UNOP_NEG:
4220 case UNOP_PLUS:
4221 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4222 case UNOP_ABS:
4223 return (!numeric_type_p (type0));
14f9c5c9
AS
4224
4225 }
4226}
4227\f
dda83cd7 4228 /* Renaming */
14f9c5c9 4229
aeb5907d
JB
4230/* NOTES:
4231
4232 1. In the following, we assume that a renaming type's name may
4233 have an ___XD suffix. It would be nice if this went away at some
4234 point.
4235 2. We handle both the (old) purely type-based representation of
4236 renamings and the (new) variable-based encoding. At some point,
4237 it is devoutly to be hoped that the former goes away
4238 (FIXME: hilfinger-2007-07-09).
4239 3. Subprogram renamings are not implemented, although the XRS
4240 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4241
4242/* If SYM encodes a renaming,
4243
4244 <renaming> renames <renamed entity>,
4245
4246 sets *LEN to the length of the renamed entity's name,
4247 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4248 the string describing the subcomponent selected from the renamed
0963b4bd 4249 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4250 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4251 are undefined). Otherwise, returns a value indicating the category
4252 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4253 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4254 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4255 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4256 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4257 may be NULL, in which case they are not assigned.
4258
4259 [Currently, however, GCC does not generate subprogram renamings.] */
4260
4261enum ada_renaming_category
4262ada_parse_renaming (struct symbol *sym,
4263 const char **renamed_entity, int *len,
4264 const char **renaming_expr)
4265{
4266 enum ada_renaming_category kind;
4267 const char *info;
4268 const char *suffix;
4269
4270 if (sym == NULL)
4271 return ADA_NOT_RENAMING;
66d7f48f 4272 switch (sym->aclass ())
14f9c5c9 4273 {
aeb5907d
JB
4274 default:
4275 return ADA_NOT_RENAMING;
aeb5907d
JB
4276 case LOC_LOCAL:
4277 case LOC_STATIC:
4278 case LOC_COMPUTED:
4279 case LOC_OPTIMIZED_OUT:
987012b8 4280 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4281 if (info == NULL)
4282 return ADA_NOT_RENAMING;
4283 switch (info[5])
4284 {
4285 case '_':
4286 kind = ADA_OBJECT_RENAMING;
4287 info += 6;
4288 break;
4289 case 'E':
4290 kind = ADA_EXCEPTION_RENAMING;
4291 info += 7;
4292 break;
4293 case 'P':
4294 kind = ADA_PACKAGE_RENAMING;
4295 info += 7;
4296 break;
4297 case 'S':
4298 kind = ADA_SUBPROGRAM_RENAMING;
4299 info += 7;
4300 break;
4301 default:
4302 return ADA_NOT_RENAMING;
4303 }
14f9c5c9 4304 }
4c4b4cd2 4305
de93309a
SM
4306 if (renamed_entity != NULL)
4307 *renamed_entity = info;
4308 suffix = strstr (info, "___XE");
4309 if (suffix == NULL || suffix == info)
4310 return ADA_NOT_RENAMING;
4311 if (len != NULL)
4312 *len = strlen (info) - strlen (suffix);
4313 suffix += 5;
4314 if (renaming_expr != NULL)
4315 *renaming_expr = suffix;
4316 return kind;
4317}
4318
4319/* Compute the value of the given RENAMING_SYM, which is expected to
4320 be a symbol encoding a renaming expression. BLOCK is the block
4321 used to evaluate the renaming. */
4322
4323static struct value *
4324ada_read_renaming_var_value (struct symbol *renaming_sym,
4325 const struct block *block)
4326{
4327 const char *sym_name;
4328
987012b8 4329 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4330 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4331 return evaluate_expression (expr.get ());
4332}
4333\f
4334
dda83cd7 4335 /* Evaluation: Function Calls */
de93309a
SM
4336
4337/* Return an lvalue containing the value VAL. This is the identity on
4338 lvalues, and otherwise has the side-effect of allocating memory
4339 in the inferior where a copy of the value contents is copied. */
4340
4341static struct value *
4342ensure_lval (struct value *val)
4343{
4344 if (VALUE_LVAL (val) == not_lval
4345 || VALUE_LVAL (val) == lval_internalvar)
4346 {
4347 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4348 const CORE_ADDR addr =
dda83cd7 4349 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4350
4351 VALUE_LVAL (val) = lval_memory;
4352 set_value_address (val, addr);
50888e42 4353 write_memory (addr, value_contents (val).data (), len);
de93309a
SM
4354 }
4355
4356 return val;
4357}
4358
4359/* Given ARG, a value of type (pointer or reference to a)*
4360 structure/union, extract the component named NAME from the ultimate
4361 target structure/union and return it as a value with its
4362 appropriate type.
4363
4364 The routine searches for NAME among all members of the structure itself
4365 and (recursively) among all members of any wrapper members
4366 (e.g., '_parent').
4367
4368 If NO_ERR, then simply return NULL in case of error, rather than
4369 calling error. */
4370
4371static struct value *
4372ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4373{
4374 struct type *t, *t1;
4375 struct value *v;
4376 int check_tag;
4377
4378 v = NULL;
4379 t1 = t = ada_check_typedef (value_type (arg));
78134374 4380 if (t->code () == TYPE_CODE_REF)
de93309a 4381 {
27710edb 4382 t1 = t->target_type ();
de93309a
SM
4383 if (t1 == NULL)
4384 goto BadValue;
4385 t1 = ada_check_typedef (t1);
78134374 4386 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4387 {
4388 arg = coerce_ref (arg);
4389 t = t1;
4390 }
de93309a
SM
4391 }
4392
78134374 4393 while (t->code () == TYPE_CODE_PTR)
de93309a 4394 {
27710edb 4395 t1 = t->target_type ();
de93309a
SM
4396 if (t1 == NULL)
4397 goto BadValue;
4398 t1 = ada_check_typedef (t1);
78134374 4399 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4400 {
4401 arg = value_ind (arg);
4402 t = t1;
4403 }
de93309a 4404 else
dda83cd7 4405 break;
de93309a 4406 }
aeb5907d 4407
78134374 4408 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4409 goto BadValue;
52ce6436 4410
de93309a
SM
4411 if (t1 == t)
4412 v = ada_search_struct_field (name, arg, 0, t);
4413 else
4414 {
4415 int bit_offset, bit_size, byte_offset;
4416 struct type *field_type;
4417 CORE_ADDR address;
a5ee536b 4418
78134374 4419 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4420 address = value_address (ada_value_ind (arg));
4421 else
4422 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4423
de93309a 4424 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4425 the case where the type is a reference to a tagged type, but
4426 we have to be careful to exclude pointers to tagged types.
4427 The latter should be shown as usual (as a pointer), whereas
4428 a reference should mostly be transparent to the user. */
14f9c5c9 4429
de93309a 4430 if (ada_is_tagged_type (t1, 0)
dda83cd7 4431 || (t1->code () == TYPE_CODE_REF
27710edb 4432 && ada_is_tagged_type (t1->target_type (), 0)))
dda83cd7
SM
4433 {
4434 /* We first try to find the searched field in the current type.
de93309a 4435 If not found then let's look in the fixed type. */
14f9c5c9 4436
dda83cd7 4437 if (!find_struct_field (name, t1, 0,
4d1795ac
TT
4438 nullptr, nullptr, nullptr,
4439 nullptr, nullptr))
de93309a
SM
4440 check_tag = 1;
4441 else
4442 check_tag = 0;
dda83cd7 4443 }
de93309a
SM
4444 else
4445 check_tag = 0;
c3e5cd34 4446
de93309a
SM
4447 /* Convert to fixed type in all cases, so that we have proper
4448 offsets to each field in unconstrained record types. */
4449 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4450 address, NULL, check_tag);
4451
24aa1b02
TT
4452 /* Resolve the dynamic type as well. */
4453 arg = value_from_contents_and_address (t1, nullptr, address);
4454 t1 = value_type (arg);
4455
de93309a 4456 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4457 &field_type, &byte_offset, &bit_offset,
4458 &bit_size, NULL))
4459 {
4460 if (bit_size != 0)
4461 {
4462 if (t->code () == TYPE_CODE_REF)
4463 arg = ada_coerce_ref (arg);
4464 else
4465 arg = ada_value_ind (arg);
4466 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4467 bit_offset, bit_size,
4468 field_type);
4469 }
4470 else
4471 v = value_at_lazy (field_type, address + byte_offset);
4472 }
c3e5cd34 4473 }
14f9c5c9 4474
de93309a
SM
4475 if (v != NULL || no_err)
4476 return v;
4477 else
4478 error (_("There is no member named %s."), name);
4479
4480 BadValue:
4481 if (no_err)
4482 return NULL;
4483 else
4484 error (_("Attempt to extract a component of "
4485 "a value that is not a record."));
14f9c5c9
AS
4486}
4487
4488/* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4491 values not residing in memory, updating it as needed. */
14f9c5c9 4492
a93c0eb6 4493struct value *
40bc484c 4494ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4495{
df407dfe 4496 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4497 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4498 struct type *formal_target =
78134374 4499 formal_type->code () == TYPE_CODE_PTR
27710edb 4500 ? ada_check_typedef (formal_type->target_type ()) : formal_type;
d2e4a39e 4501 struct type *actual_target =
78134374 4502 actual_type->code () == TYPE_CODE_PTR
27710edb 4503 ? ada_check_typedef (actual_type->target_type ()) : actual_type;
14f9c5c9 4504
4c4b4cd2 4505 if (ada_is_array_descriptor_type (formal_target)
78134374 4506 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4507 return make_array_descriptor (formal_type, actual);
78134374
SM
4508 else if (formal_type->code () == TYPE_CODE_PTR
4509 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4510 {
a84a8a0d 4511 struct value *result;
5b4ee69b 4512
78134374 4513 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4514 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4515 result = desc_data (actual);
78134374 4516 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
4521
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4bce7cda 4524 copy (value_contents (actual), value_contents_raw (val));
dda83cd7
SM
4525 actual = ensure_lval (val);
4526 }
4527 result = value_addr (actual);
4528 }
a84a8a0d
JB
4529 else
4530 return actual;
b1af9e97 4531 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4532 }
78134374 4533 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4534 return ada_value_ind (actual);
8344af1e
JB
4535 else if (ada_is_aligner_type (formal_type))
4536 {
4537 /* We need to turn this parameter into an aligner type
4538 as well. */
4539 struct value *aligner = allocate_value (formal_type);
4540 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4541
4542 value_assign_to_component (aligner, component, actual);
4543 return aligner;
4544 }
14f9c5c9
AS
4545
4546 return actual;
4547}
4548
438c98a1
JB
4549/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4550 type TYPE. This is usually an inefficient no-op except on some targets
4551 (such as AVR) where the representation of a pointer and an address
4552 differs. */
4553
4554static CORE_ADDR
4555value_pointer (struct value *value, struct type *type)
4556{
438c98a1 4557 unsigned len = TYPE_LENGTH (type);
224c3ddb 4558 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4559 CORE_ADDR addr;
4560
4561 addr = value_address (value);
8ee511af 4562 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
34877895 4563 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4564 return addr;
4565}
4566
14f9c5c9 4567
4c4b4cd2
PH
4568/* Push a descriptor of type TYPE for array value ARR on the stack at
4569 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4570 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4571 to-descriptor type rather than a descriptor type), a struct value *
4572 representing a pointer to this descriptor. */
14f9c5c9 4573
d2e4a39e 4574static struct value *
40bc484c 4575make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4576{
d2e4a39e
AS
4577 struct type *bounds_type = desc_bounds_type (type);
4578 struct type *desc_type = desc_base_type (type);
4579 struct value *descriptor = allocate_value (desc_type);
4580 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4581 int i;
d2e4a39e 4582
0963b4bd
MS
4583 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4584 i > 0; i -= 1)
14f9c5c9 4585 {
50888e42
SM
4586 modify_field (value_type (bounds),
4587 value_contents_writeable (bounds).data (),
19f220c3
JK
4588 ada_array_bound (arr, i, 0),
4589 desc_bound_bitpos (bounds_type, i, 0),
4590 desc_bound_bitsize (bounds_type, i, 0));
50888e42
SM
4591 modify_field (value_type (bounds),
4592 value_contents_writeable (bounds).data (),
19f220c3
JK
4593 ada_array_bound (arr, i, 1),
4594 desc_bound_bitpos (bounds_type, i, 1),
4595 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4596 }
d2e4a39e 4597
40bc484c 4598 bounds = ensure_lval (bounds);
d2e4a39e 4599
19f220c3 4600 modify_field (value_type (descriptor),
50888e42 4601 value_contents_writeable (descriptor).data (),
19f220c3 4602 value_pointer (ensure_lval (arr),
940da03e 4603 desc_type->field (0).type ()),
19f220c3
JK
4604 fat_pntr_data_bitpos (desc_type),
4605 fat_pntr_data_bitsize (desc_type));
4606
4607 modify_field (value_type (descriptor),
50888e42 4608 value_contents_writeable (descriptor).data (),
19f220c3 4609 value_pointer (bounds,
940da03e 4610 desc_type->field (1).type ()),
19f220c3
JK
4611 fat_pntr_bounds_bitpos (desc_type),
4612 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4613
40bc484c 4614 descriptor = ensure_lval (descriptor);
14f9c5c9 4615
78134374 4616 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4617 return value_addr (descriptor);
4618 else
4619 return descriptor;
4620}
14f9c5c9 4621\f
dda83cd7 4622 /* Symbol Cache Module */
3d9434b5 4623
3d9434b5 4624/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4625 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4626 on the type of entity being printed, the cache can make it as much
4627 as an order of magnitude faster than without it.
4628
4629 The descriptive type DWARF extension has significantly reduced
4630 the need for this cache, at least when DWARF is being used. However,
4631 even in this case, some expensive name-based symbol searches are still
4632 sometimes necessary - to find an XVZ variable, mostly. */
4633
ee01b665
JB
4634/* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4636
ee01b665
JB
4637static struct ada_symbol_cache *
4638ada_get_symbol_cache (struct program_space *pspace)
4639{
4640 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4641
bdcccc56
TT
4642 if (pspace_data->sym_cache == nullptr)
4643 pspace_data->sym_cache.reset (new ada_symbol_cache);
ee01b665 4644
bdcccc56 4645 return pspace_data->sym_cache.get ();
ee01b665 4646}
3d9434b5
JB
4647
4648/* Clear all entries from the symbol cache. */
4649
4650static void
bdcccc56 4651ada_clear_symbol_cache ()
3d9434b5 4652{
bdcccc56
TT
4653 struct ada_pspace_data *pspace_data
4654 = get_ada_pspace_data (current_program_space);
ee01b665 4655
bdcccc56
TT
4656 if (pspace_data->sym_cache != nullptr)
4657 pspace_data->sym_cache.reset ();
3d9434b5
JB
4658}
4659
fe978cb0 4660/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4661 Return it if found, or NULL otherwise. */
4662
4663static struct cache_entry **
fe978cb0 4664find_entry (const char *name, domain_enum domain)
3d9434b5 4665{
ee01b665
JB
4666 struct ada_symbol_cache *sym_cache
4667 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4668 int h = msymbol_hash (name) % HASH_SIZE;
4669 struct cache_entry **e;
4670
ee01b665 4671 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4672 {
fe978cb0 4673 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4674 return e;
3d9434b5
JB
4675 }
4676 return NULL;
4677}
4678
fe978cb0 4679/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4680 Return 1 if found, 0 otherwise.
4681
4682 If an entry was found and SYM is not NULL, set *SYM to the entry's
4683 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4684
96d887e8 4685static int
fe978cb0 4686lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4687 struct symbol **sym, const struct block **block)
96d887e8 4688{
fe978cb0 4689 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4690
4691 if (e == NULL)
4692 return 0;
4693 if (sym != NULL)
4694 *sym = (*e)->sym;
4695 if (block != NULL)
4696 *block = (*e)->block;
4697 return 1;
96d887e8
PH
4698}
4699
3d9434b5 4700/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4701 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4702
96d887e8 4703static void
fe978cb0 4704cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4705 const struct block *block)
96d887e8 4706{
ee01b665
JB
4707 struct ada_symbol_cache *sym_cache
4708 = ada_get_symbol_cache (current_program_space);
3d9434b5 4709 int h;
3d9434b5
JB
4710 struct cache_entry *e;
4711
1994afbf
DE
4712 /* Symbols for builtin types don't have a block.
4713 For now don't cache such symbols. */
7b3ecc75 4714 if (sym != NULL && !sym->is_objfile_owned ())
1994afbf
DE
4715 return;
4716
3d9434b5
JB
4717 /* If the symbol is a local symbol, then do not cache it, as a search
4718 for that symbol depends on the context. To determine whether
4719 the symbol is local or not, we check the block where we found it
4720 against the global and static blocks of its associated symtab. */
63d609de
SM
4721 if (sym != nullptr)
4722 {
4723 const blockvector &bv = *sym->symtab ()->compunit ()->blockvector ();
4724
4725 if (bv.global_block () != block && bv.static_block () != block)
4726 return;
4727 }
3d9434b5
JB
4728
4729 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4730 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4731 e->next = sym_cache->root[h];
4732 sym_cache->root[h] = e;
2ef5453b 4733 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4734 e->sym = sym;
fe978cb0 4735 e->domain = domain;
3d9434b5 4736 e->block = block;
96d887e8 4737}
4c4b4cd2 4738\f
dda83cd7 4739 /* Symbol Lookup */
4c4b4cd2 4740
b5ec771e
PA
4741/* Return the symbol name match type that should be used used when
4742 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4743
4744 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4745 for Ada lookups. */
c0431670 4746
b5ec771e
PA
4747static symbol_name_match_type
4748name_match_type_from_name (const char *lookup_name)
c0431670 4749{
b5ec771e
PA
4750 return (strstr (lookup_name, "__") == NULL
4751 ? symbol_name_match_type::WILD
4752 : symbol_name_match_type::FULL);
c0431670
JB
4753}
4754
4c4b4cd2
PH
4755/* Return the result of a standard (literal, C-like) lookup of NAME in
4756 given DOMAIN, visible from lexical block BLOCK. */
4757
4758static struct symbol *
4759standard_lookup (const char *name, const struct block *block,
dda83cd7 4760 domain_enum domain)
4c4b4cd2 4761{
acbd605d 4762 /* Initialize it just to avoid a GCC false warning. */
6640a367 4763 struct block_symbol sym = {};
4c4b4cd2 4764
d12307c1
PMR
4765 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4766 return sym.symbol;
a2cd4f14 4767 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4768 cache_symbol (name, domain, sym.symbol, sym.block);
4769 return sym.symbol;
4c4b4cd2
PH
4770}
4771
4772
4773/* Non-zero iff there is at least one non-function/non-enumeral symbol
1bfa81ac 4774 in the symbol fields of SYMS. We treat enumerals as functions,
4c4b4cd2
PH
4775 since they contend in overloading in the same way. */
4776static int
d1183b06 4777is_nonfunction (const std::vector<struct block_symbol> &syms)
4c4b4cd2 4778{
d1183b06 4779 for (const block_symbol &sym : syms)
5f9c5a63
SM
4780 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4781 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
66d7f48f 4782 || sym.symbol->aclass () != LOC_CONST))
14f9c5c9
AS
4783 return 1;
4784
4785 return 0;
4786}
4787
4788/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4789 struct types. Otherwise, they may not. */
14f9c5c9
AS
4790
4791static int
d2e4a39e 4792equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4793{
d2e4a39e 4794 if (type0 == type1)
14f9c5c9 4795 return 1;
d2e4a39e 4796 if (type0 == NULL || type1 == NULL
78134374 4797 || type0->code () != type1->code ())
14f9c5c9 4798 return 0;
78134374
SM
4799 if ((type0->code () == TYPE_CODE_STRUCT
4800 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4801 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4802 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4803 return 1;
d2e4a39e 4804
14f9c5c9
AS
4805 return 0;
4806}
4807
4808/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4809 no more defined than that of SYM1. */
14f9c5c9
AS
4810
4811static int
d2e4a39e 4812lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4813{
4814 if (sym0 == sym1)
4815 return 1;
6c9c307c 4816 if (sym0->domain () != sym1->domain ()
66d7f48f 4817 || sym0->aclass () != sym1->aclass ())
14f9c5c9
AS
4818 return 0;
4819
66d7f48f 4820 switch (sym0->aclass ())
14f9c5c9
AS
4821 {
4822 case LOC_UNDEF:
4823 return 1;
4824 case LOC_TYPEDEF:
4825 {
5f9c5a63
SM
4826 struct type *type0 = sym0->type ();
4827 struct type *type1 = sym1->type ();
dda83cd7
SM
4828 const char *name0 = sym0->linkage_name ();
4829 const char *name1 = sym1->linkage_name ();
4830 int len0 = strlen (name0);
4831
4832 return
4833 type0->code () == type1->code ()
4834 && (equiv_types (type0, type1)
4835 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4836 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4837 }
4838 case LOC_CONST:
4aeddc50 4839 return sym0->value_longest () == sym1->value_longest ()
5f9c5a63 4840 && equiv_types (sym0->type (), sym1->type ());
4b610737
TT
4841
4842 case LOC_STATIC:
4843 {
dda83cd7
SM
4844 const char *name0 = sym0->linkage_name ();
4845 const char *name1 = sym1->linkage_name ();
4846 return (strcmp (name0, name1) == 0
4aeddc50 4847 && sym0->value_address () == sym1->value_address ());
4b610737
TT
4848 }
4849
d2e4a39e
AS
4850 default:
4851 return 0;
14f9c5c9
AS
4852 }
4853}
4854
d1183b06
TT
4855/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4856 records in RESULT. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4857
4858static void
d1183b06 4859add_defn_to_vec (std::vector<struct block_symbol> &result,
dda83cd7
SM
4860 struct symbol *sym,
4861 const struct block *block)
14f9c5c9 4862{
529cad9c
PH
4863 /* Do not try to complete stub types, as the debugger is probably
4864 already scanning all symbols matching a certain name at the
4865 time when this function is called. Trying to replace the stub
4866 type by its associated full type will cause us to restart a scan
4867 which may lead to an infinite recursion. Instead, the client
4868 collecting the matching symbols will end up collecting several
4869 matches, with at least one of them complete. It can then filter
4870 out the stub ones if needed. */
4871
d1183b06 4872 for (int i = result.size () - 1; i >= 0; i -= 1)
4c4b4cd2 4873 {
d1183b06 4874 if (lesseq_defined_than (sym, result[i].symbol))
dda83cd7 4875 return;
d1183b06 4876 else if (lesseq_defined_than (result[i].symbol, sym))
dda83cd7 4877 {
d1183b06
TT
4878 result[i].symbol = sym;
4879 result[i].block = block;
dda83cd7
SM
4880 return;
4881 }
4c4b4cd2
PH
4882 }
4883
d1183b06
TT
4884 struct block_symbol info;
4885 info.symbol = sym;
4886 info.block = block;
4887 result.push_back (info);
4c4b4cd2
PH
4888}
4889
7c7b6655
TT
4890/* Return a bound minimal symbol matching NAME according to Ada
4891 decoding rules. Returns an invalid symbol if there is no such
4892 minimal symbol. Names prefixed with "standard__" are handled
4893 specially: "standard__" is first stripped off, and only static and
4894 global symbols are searched. */
4c4b4cd2 4895
7c7b6655 4896struct bound_minimal_symbol
96d887e8 4897ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4898{
7c7b6655 4899 struct bound_minimal_symbol result;
4c4b4cd2 4900
b5ec771e
PA
4901 symbol_name_match_type match_type = name_match_type_from_name (name);
4902 lookup_name_info lookup_name (name, match_type);
4903
4904 symbol_name_matcher_ftype *match_name
4905 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4906
2030c079 4907 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4908 {
7932255d 4909 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4910 {
c9d95fa3 4911 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
60f62e2b 4912 && msymbol->type () != mst_solib_trampoline)
5325b9bf
TT
4913 {
4914 result.minsym = msymbol;
4915 result.objfile = objfile;
4916 break;
4917 }
4918 }
4919 }
4c4b4cd2 4920
7c7b6655 4921 return result;
96d887e8 4922}
4c4b4cd2 4923
96d887e8
PH
4924/* True if TYPE is definitely an artificial type supplied to a symbol
4925 for which no debugging information was given in the symbol file. */
14f9c5c9 4926
96d887e8
PH
4927static int
4928is_nondebugging_type (struct type *type)
4929{
0d5cff50 4930 const char *name = ada_type_name (type);
5b4ee69b 4931
96d887e8
PH
4932 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4933}
4c4b4cd2 4934
8f17729f
JB
4935/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4936 that are deemed "identical" for practical purposes.
4937
4938 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4939 types and that their number of enumerals is identical (in other
1f704f76 4940 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4941
4942static int
4943ada_identical_enum_types_p (struct type *type1, struct type *type2)
4944{
4945 int i;
4946
4947 /* The heuristic we use here is fairly conservative. We consider
4948 that 2 enumerate types are identical if they have the same
4949 number of enumerals and that all enumerals have the same
4950 underlying value and name. */
4951
4952 /* All enums in the type should have an identical underlying value. */
1f704f76 4953 for (i = 0; i < type1->num_fields (); i++)
970db518 4954 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
8f17729f
JB
4955 return 0;
4956
4957 /* All enumerals should also have the same name (modulo any numerical
4958 suffix). */
1f704f76 4959 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4960 {
33d16dd9
SM
4961 const char *name_1 = type1->field (i).name ();
4962 const char *name_2 = type2->field (i).name ();
8f17729f
JB
4963 int len_1 = strlen (name_1);
4964 int len_2 = strlen (name_2);
4965
33d16dd9
SM
4966 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4967 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
8f17729f 4968 if (len_1 != len_2
33d16dd9
SM
4969 || strncmp (type1->field (i).name (),
4970 type2->field (i).name (),
8f17729f
JB
4971 len_1) != 0)
4972 return 0;
4973 }
4974
4975 return 1;
4976}
4977
4978/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4979 that are deemed "identical" for practical purposes. Sometimes,
4980 enumerals are not strictly identical, but their types are so similar
4981 that they can be considered identical.
4982
4983 For instance, consider the following code:
4984
4985 type Color is (Black, Red, Green, Blue, White);
4986 type RGB_Color is new Color range Red .. Blue;
4987
4988 Type RGB_Color is a subrange of an implicit type which is a copy
4989 of type Color. If we call that implicit type RGB_ColorB ("B" is
4990 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4991 As a result, when an expression references any of the enumeral
4992 by name (Eg. "print green"), the expression is technically
4993 ambiguous and the user should be asked to disambiguate. But
4994 doing so would only hinder the user, since it wouldn't matter
4995 what choice he makes, the outcome would always be the same.
4996 So, for practical purposes, we consider them as the same. */
4997
4998static int
54d343a2 4999symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5000{
5001 int i;
5002
5003 /* Before performing a thorough comparison check of each type,
5004 we perform a series of inexpensive checks. We expect that these
5005 checks will quickly fail in the vast majority of cases, and thus
5006 help prevent the unnecessary use of a more expensive comparison.
5007 Said comparison also expects us to make some of these checks
5008 (see ada_identical_enum_types_p). */
5009
5010 /* Quick check: All symbols should have an enum type. */
54d343a2 5011 for (i = 0; i < syms.size (); i++)
5f9c5a63 5012 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
8f17729f
JB
5013 return 0;
5014
5015 /* Quick check: They should all have the same value. */
54d343a2 5016 for (i = 1; i < syms.size (); i++)
4aeddc50 5017 if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
8f17729f
JB
5018 return 0;
5019
5020 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5021 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
5022 if (syms[i].symbol->type ()->num_fields ()
5023 != syms[0].symbol->type ()->num_fields ())
8f17729f
JB
5024 return 0;
5025
5026 /* All the sanity checks passed, so we might have a set of
5027 identical enumeration types. Perform a more complete
5028 comparison of the type of each symbol. */
54d343a2 5029 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
5030 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5031 syms[0].symbol->type ()))
8f17729f
JB
5032 return 0;
5033
5034 return 1;
5035}
5036
54d343a2 5037/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5038 duplicate other symbols in the list (The only case I know of where
5039 this happens is when object files containing stabs-in-ecoff are
5040 linked with files containing ordinary ecoff debugging symbols (or no
1bfa81ac 5041 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4c4b4cd2 5042
d1183b06 5043static void
54d343a2 5044remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5045{
5046 int i, j;
4c4b4cd2 5047
8f17729f
JB
5048 /* We should never be called with less than 2 symbols, as there
5049 cannot be any extra symbol in that case. But it's easy to
5050 handle, since we have nothing to do in that case. */
54d343a2 5051 if (syms->size () < 2)
d1183b06 5052 return;
8f17729f 5053
96d887e8 5054 i = 0;
54d343a2 5055 while (i < syms->size ())
96d887e8 5056 {
a35ddb44 5057 int remove_p = 0;
339c13b6
JB
5058
5059 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 5060 the get rid of the stub. */
339c13b6 5061
5f9c5a63 5062 if ((*syms)[i].symbol->type ()->is_stub ()
dda83cd7
SM
5063 && (*syms)[i].symbol->linkage_name () != NULL)
5064 {
5065 for (j = 0; j < syms->size (); j++)
5066 {
5067 if (j != i
5f9c5a63 5068 && !(*syms)[j].symbol->type ()->is_stub ()
dda83cd7
SM
5069 && (*syms)[j].symbol->linkage_name () != NULL
5070 && strcmp ((*syms)[i].symbol->linkage_name (),
5071 (*syms)[j].symbol->linkage_name ()) == 0)
5072 remove_p = 1;
5073 }
5074 }
339c13b6
JB
5075
5076 /* Two symbols with the same name, same class and same address
dda83cd7 5077 should be identical. */
339c13b6 5078
987012b8 5079 else if ((*syms)[i].symbol->linkage_name () != NULL
66d7f48f 5080 && (*syms)[i].symbol->aclass () == LOC_STATIC
5f9c5a63 5081 && is_nondebugging_type ((*syms)[i].symbol->type ()))
dda83cd7
SM
5082 {
5083 for (j = 0; j < syms->size (); j += 1)
5084 {
5085 if (i != j
5086 && (*syms)[j].symbol->linkage_name () != NULL
5087 && strcmp ((*syms)[i].symbol->linkage_name (),
5088 (*syms)[j].symbol->linkage_name ()) == 0
66d7f48f
SM
5089 && ((*syms)[i].symbol->aclass ()
5090 == (*syms)[j].symbol->aclass ())
4aeddc50
SM
5091 && (*syms)[i].symbol->value_address ()
5092 == (*syms)[j].symbol->value_address ())
dda83cd7
SM
5093 remove_p = 1;
5094 }
5095 }
339c13b6 5096
a35ddb44 5097 if (remove_p)
54d343a2 5098 syms->erase (syms->begin () + i);
1b788fb6
TT
5099 else
5100 i += 1;
14f9c5c9 5101 }
8f17729f
JB
5102
5103 /* If all the remaining symbols are identical enumerals, then
5104 just keep the first one and discard the rest.
5105
5106 Unlike what we did previously, we do not discard any entry
5107 unless they are ALL identical. This is because the symbol
5108 comparison is not a strict comparison, but rather a practical
5109 comparison. If all symbols are considered identical, then
5110 we can just go ahead and use the first one and discard the rest.
5111 But if we cannot reduce the list to a single element, we have
5112 to ask the user to disambiguate anyways. And if we have to
5113 present a multiple-choice menu, it's less confusing if the list
5114 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5115 if (symbols_are_identical_enums (*syms))
5116 syms->resize (1);
14f9c5c9
AS
5117}
5118
96d887e8
PH
5119/* Given a type that corresponds to a renaming entity, use the type name
5120 to extract the scope (package name or function name, fully qualified,
5121 and following the GNAT encoding convention) where this renaming has been
49d83361 5122 defined. */
4c4b4cd2 5123
49d83361 5124static std::string
96d887e8 5125xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5126{
96d887e8 5127 /* The renaming types adhere to the following convention:
0963b4bd 5128 <scope>__<rename>___<XR extension>.
96d887e8
PH
5129 So, to extract the scope, we search for the "___XR" extension,
5130 and then backtrack until we find the first "__". */
76a01679 5131
7d93a1e0 5132 const char *name = renaming_type->name ();
108d56a4
SM
5133 const char *suffix = strstr (name, "___XR");
5134 const char *last;
14f9c5c9 5135
96d887e8
PH
5136 /* Now, backtrack a bit until we find the first "__". Start looking
5137 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5138
96d887e8
PH
5139 for (last = suffix - 3; last > name; last--)
5140 if (last[0] == '_' && last[1] == '_')
5141 break;
76a01679 5142
96d887e8 5143 /* Make a copy of scope and return it. */
49d83361 5144 return std::string (name, last);
4c4b4cd2
PH
5145}
5146
96d887e8 5147/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5148
96d887e8
PH
5149static int
5150is_package_name (const char *name)
4c4b4cd2 5151{
96d887e8
PH
5152 /* Here, We take advantage of the fact that no symbols are generated
5153 for packages, while symbols are generated for each function.
5154 So the condition for NAME represent a package becomes equivalent
5155 to NAME not existing in our list of symbols. There is only one
5156 small complication with library-level functions (see below). */
4c4b4cd2 5157
96d887e8
PH
5158 /* If it is a function that has not been defined at library level,
5159 then we should be able to look it up in the symbols. */
5160 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5161 return 0;
14f9c5c9 5162
96d887e8
PH
5163 /* Library-level function names start with "_ada_". See if function
5164 "_ada_" followed by NAME can be found. */
14f9c5c9 5165
96d887e8 5166 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5167 functions names cannot contain "__" in them. */
96d887e8
PH
5168 if (strstr (name, "__") != NULL)
5169 return 0;
4c4b4cd2 5170
528e1572 5171 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5172
528e1572 5173 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5174}
14f9c5c9 5175
96d887e8 5176/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5177 not visible from FUNCTION_NAME. */
14f9c5c9 5178
96d887e8 5179static int
0d5cff50 5180old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5181{
66d7f48f 5182 if (sym->aclass () != LOC_TYPEDEF)
aeb5907d
JB
5183 return 0;
5184
5f9c5a63 5185 std::string scope = xget_renaming_scope (sym->type ());
14f9c5c9 5186
96d887e8 5187 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5188 if (is_package_name (scope.c_str ()))
5189 return 0;
14f9c5c9 5190
96d887e8
PH
5191 /* Check that the rename is in the current function scope by checking
5192 that its name starts with SCOPE. */
76a01679 5193
96d887e8
PH
5194 /* If the function name starts with "_ada_", it means that it is
5195 a library-level function. Strip this prefix before doing the
5196 comparison, as the encoding for the renaming does not contain
5197 this prefix. */
61012eef 5198 if (startswith (function_name, "_ada_"))
96d887e8 5199 function_name += 5;
f26caa11 5200
49d83361 5201 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5202}
5203
aeb5907d
JB
5204/* Remove entries from SYMS that corresponds to a renaming entity that
5205 is not visible from the function associated with CURRENT_BLOCK or
5206 that is superfluous due to the presence of more specific renaming
5207 information. Places surviving symbols in the initial entries of
d1183b06
TT
5208 SYMS.
5209
96d887e8 5210 Rationale:
aeb5907d
JB
5211 First, in cases where an object renaming is implemented as a
5212 reference variable, GNAT may produce both the actual reference
5213 variable and the renaming encoding. In this case, we discard the
5214 latter.
5215
5216 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5217 entity. Unfortunately, STABS currently does not support the definition
5218 of types that are local to a given lexical block, so all renamings types
5219 are emitted at library level. As a consequence, if an application
5220 contains two renaming entities using the same name, and a user tries to
5221 print the value of one of these entities, the result of the ada symbol
5222 lookup will also contain the wrong renaming type.
f26caa11 5223
96d887e8
PH
5224 This function partially covers for this limitation by attempting to
5225 remove from the SYMS list renaming symbols that should be visible
5226 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5227 method with the current information available. The implementation
5228 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5229
5230 - When the user tries to print a rename in a function while there
dda83cd7
SM
5231 is another rename entity defined in a package: Normally, the
5232 rename in the function has precedence over the rename in the
5233 package, so the latter should be removed from the list. This is
5234 currently not the case.
5235
96d887e8 5236 - This function will incorrectly remove valid renames if
dda83cd7
SM
5237 the CURRENT_BLOCK corresponds to a function which symbol name
5238 has been changed by an "Export" pragma. As a consequence,
5239 the user will be unable to print such rename entities. */
4c4b4cd2 5240
d1183b06 5241static void
54d343a2
TT
5242remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5243 const struct block *current_block)
4c4b4cd2
PH
5244{
5245 struct symbol *current_function;
0d5cff50 5246 const char *current_function_name;
4c4b4cd2 5247 int i;
aeb5907d
JB
5248 int is_new_style_renaming;
5249
5250 /* If there is both a renaming foo___XR... encoded as a variable and
5251 a simple variable foo in the same block, discard the latter.
0963b4bd 5252 First, zero out such symbols, then compress. */
aeb5907d 5253 is_new_style_renaming = 0;
54d343a2 5254 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5255 {
54d343a2
TT
5256 struct symbol *sym = (*syms)[i].symbol;
5257 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5258 const char *name;
5259 const char *suffix;
5260
66d7f48f 5261 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
aeb5907d 5262 continue;
987012b8 5263 name = sym->linkage_name ();
aeb5907d
JB
5264 suffix = strstr (name, "___XR");
5265
5266 if (suffix != NULL)
5267 {
5268 int name_len = suffix - name;
5269 int j;
5b4ee69b 5270
aeb5907d 5271 is_new_style_renaming = 1;
54d343a2
TT
5272 for (j = 0; j < syms->size (); j += 1)
5273 if (i != j && (*syms)[j].symbol != NULL
987012b8 5274 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5275 name_len) == 0
54d343a2
TT
5276 && block == (*syms)[j].block)
5277 (*syms)[j].symbol = NULL;
aeb5907d
JB
5278 }
5279 }
5280 if (is_new_style_renaming)
5281 {
5282 int j, k;
5283
54d343a2
TT
5284 for (j = k = 0; j < syms->size (); j += 1)
5285 if ((*syms)[j].symbol != NULL)
aeb5907d 5286 {
54d343a2 5287 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5288 k += 1;
5289 }
d1183b06
TT
5290 syms->resize (k);
5291 return;
aeb5907d 5292 }
4c4b4cd2
PH
5293
5294 /* Extract the function name associated to CURRENT_BLOCK.
5295 Abort if unable to do so. */
76a01679 5296
4c4b4cd2 5297 if (current_block == NULL)
d1183b06 5298 return;
76a01679 5299
7f0df278 5300 current_function = block_linkage_function (current_block);
4c4b4cd2 5301 if (current_function == NULL)
d1183b06 5302 return;
4c4b4cd2 5303
987012b8 5304 current_function_name = current_function->linkage_name ();
4c4b4cd2 5305 if (current_function_name == NULL)
d1183b06 5306 return;
4c4b4cd2
PH
5307
5308 /* Check each of the symbols, and remove it from the list if it is
5309 a type corresponding to a renaming that is out of the scope of
5310 the current block. */
5311
5312 i = 0;
54d343a2 5313 while (i < syms->size ())
4c4b4cd2 5314 {
54d343a2 5315 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5316 == ADA_OBJECT_RENAMING
5317 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5318 current_function_name))
5319 syms->erase (syms->begin () + i);
4c4b4cd2 5320 else
dda83cd7 5321 i += 1;
4c4b4cd2 5322 }
4c4b4cd2
PH
5323}
5324
d1183b06 5325/* Add to RESULT all symbols from BLOCK (and its super-blocks)
cd458349 5326 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
339c13b6 5327
cd458349 5328 Note: This function assumes that RESULT is empty. */
339c13b6
JB
5329
5330static void
d1183b06 5331ada_add_local_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5332 const lookup_name_info &lookup_name,
5333 const struct block *block, domain_enum domain)
339c13b6 5334{
339c13b6
JB
5335 while (block != NULL)
5336 {
d1183b06 5337 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
339c13b6 5338
ba8694b6
TT
5339 /* If we found a non-function match, assume that's the one. We
5340 only check this when finding a function boundary, so that we
5341 can accumulate all results from intervening blocks first. */
6c00f721 5342 if (block->function () != nullptr && is_nonfunction (result))
dda83cd7 5343 return;
339c13b6 5344
f135fe72 5345 block = block->superblock ();
339c13b6 5346 }
339c13b6
JB
5347}
5348
2315bb2d 5349/* An object of this type is used as the callback argument when
40658b94 5350 calling the map_matching_symbols method. */
ccefe4c4 5351
40658b94 5352struct match_data
ccefe4c4 5353{
1bfa81ac
TT
5354 explicit match_data (std::vector<struct block_symbol> *rp)
5355 : resultp (rp)
5356 {
5357 }
5358 DISABLE_COPY_AND_ASSIGN (match_data);
5359
2315bb2d
TT
5360 bool operator() (struct block_symbol *bsym);
5361
1bfa81ac 5362 struct objfile *objfile = nullptr;
d1183b06 5363 std::vector<struct block_symbol> *resultp;
1bfa81ac 5364 struct symbol *arg_sym = nullptr;
1178743e 5365 bool found_sym = false;
ccefe4c4
TT
5366};
5367
2315bb2d
TT
5368/* A callback for add_nonlocal_symbols that adds symbol, found in
5369 BSYM, to a list of symbols. */
ccefe4c4 5370
2315bb2d
TT
5371bool
5372match_data::operator() (struct block_symbol *bsym)
ccefe4c4 5373{
199b4314
TT
5374 const struct block *block = bsym->block;
5375 struct symbol *sym = bsym->symbol;
5376
40658b94
PH
5377 if (sym == NULL)
5378 {
2315bb2d
TT
5379 if (!found_sym && arg_sym != NULL)
5380 add_defn_to_vec (*resultp,
5381 fixup_symbol_section (arg_sym, objfile),
40658b94 5382 block);
2315bb2d
TT
5383 found_sym = false;
5384 arg_sym = NULL;
40658b94
PH
5385 }
5386 else
5387 {
66d7f48f 5388 if (sym->aclass () == LOC_UNRESOLVED)
199b4314 5389 return true;
d9743061 5390 else if (sym->is_argument ())
2315bb2d 5391 arg_sym = sym;
40658b94
PH
5392 else
5393 {
2315bb2d
TT
5394 found_sym = true;
5395 add_defn_to_vec (*resultp,
5396 fixup_symbol_section (sym, objfile),
40658b94
PH
5397 block);
5398 }
5399 }
199b4314 5400 return true;
40658b94
PH
5401}
5402
b5ec771e
PA
5403/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5404 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
1bfa81ac 5405 symbols to RESULT. Return whether we found such symbols. */
22cee43f
PMR
5406
5407static int
d1183b06 5408ada_add_block_renamings (std::vector<struct block_symbol> &result,
22cee43f 5409 const struct block *block,
b5ec771e
PA
5410 const lookup_name_info &lookup_name,
5411 domain_enum domain)
22cee43f
PMR
5412{
5413 struct using_direct *renaming;
d1183b06 5414 int defns_mark = result.size ();
22cee43f 5415
b5ec771e
PA
5416 symbol_name_matcher_ftype *name_match
5417 = ada_get_symbol_name_matcher (lookup_name);
5418
22cee43f
PMR
5419 for (renaming = block_using (block);
5420 renaming != NULL;
5421 renaming = renaming->next)
5422 {
5423 const char *r_name;
22cee43f
PMR
5424
5425 /* Avoid infinite recursions: skip this renaming if we are actually
5426 already traversing it.
5427
5428 Currently, symbol lookup in Ada don't use the namespace machinery from
5429 C++/Fortran support: skip namespace imports that use them. */
5430 if (renaming->searched
5431 || (renaming->import_src != NULL
5432 && renaming->import_src[0] != '\0')
5433 || (renaming->import_dest != NULL
5434 && renaming->import_dest[0] != '\0'))
5435 continue;
5436 renaming->searched = 1;
5437
5438 /* TODO: here, we perform another name-based symbol lookup, which can
5439 pull its own multiple overloads. In theory, we should be able to do
5440 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5441 not a simple name. But in order to do this, we would need to enhance
5442 the DWARF reader to associate a symbol to this renaming, instead of a
5443 name. So, for now, we do something simpler: re-use the C++/Fortran
5444 namespace machinery. */
5445 r_name = (renaming->alias != NULL
5446 ? renaming->alias
5447 : renaming->declaration);
b5ec771e
PA
5448 if (name_match (r_name, lookup_name, NULL))
5449 {
5450 lookup_name_info decl_lookup_name (renaming->declaration,
5451 lookup_name.match_type ());
d1183b06 5452 ada_add_all_symbols (result, block, decl_lookup_name, domain,
b5ec771e
PA
5453 1, NULL);
5454 }
22cee43f
PMR
5455 renaming->searched = 0;
5456 }
d1183b06 5457 return result.size () != defns_mark;
22cee43f
PMR
5458}
5459
db230ce3
JB
5460/* Implements compare_names, but only applying the comparision using
5461 the given CASING. */
5b4ee69b 5462
40658b94 5463static int
db230ce3
JB
5464compare_names_with_case (const char *string1, const char *string2,
5465 enum case_sensitivity casing)
40658b94
PH
5466{
5467 while (*string1 != '\0' && *string2 != '\0')
5468 {
db230ce3
JB
5469 char c1, c2;
5470
40658b94
PH
5471 if (isspace (*string1) || isspace (*string2))
5472 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5473
5474 if (casing == case_sensitive_off)
5475 {
5476 c1 = tolower (*string1);
5477 c2 = tolower (*string2);
5478 }
5479 else
5480 {
5481 c1 = *string1;
5482 c2 = *string2;
5483 }
5484 if (c1 != c2)
40658b94 5485 break;
db230ce3 5486
40658b94
PH
5487 string1 += 1;
5488 string2 += 1;
5489 }
db230ce3 5490
40658b94
PH
5491 switch (*string1)
5492 {
5493 case '(':
5494 return strcmp_iw_ordered (string1, string2);
5495 case '_':
5496 if (*string2 == '\0')
5497 {
052874e8 5498 if (is_name_suffix (string1))
40658b94
PH
5499 return 0;
5500 else
1a1d5513 5501 return 1;
40658b94 5502 }
dbb8534f 5503 /* FALLTHROUGH */
40658b94
PH
5504 default:
5505 if (*string2 == '(')
5506 return strcmp_iw_ordered (string1, string2);
5507 else
db230ce3
JB
5508 {
5509 if (casing == case_sensitive_off)
5510 return tolower (*string1) - tolower (*string2);
5511 else
5512 return *string1 - *string2;
5513 }
40658b94 5514 }
ccefe4c4
TT
5515}
5516
db230ce3
JB
5517/* Compare STRING1 to STRING2, with results as for strcmp.
5518 Compatible with strcmp_iw_ordered in that...
5519
5520 strcmp_iw_ordered (STRING1, STRING2) <= 0
5521
5522 ... implies...
5523
5524 compare_names (STRING1, STRING2) <= 0
5525
5526 (they may differ as to what symbols compare equal). */
5527
5528static int
5529compare_names (const char *string1, const char *string2)
5530{
5531 int result;
5532
5533 /* Similar to what strcmp_iw_ordered does, we need to perform
5534 a case-insensitive comparison first, and only resort to
5535 a second, case-sensitive, comparison if the first one was
5536 not sufficient to differentiate the two strings. */
5537
5538 result = compare_names_with_case (string1, string2, case_sensitive_off);
5539 if (result == 0)
5540 result = compare_names_with_case (string1, string2, case_sensitive_on);
5541
5542 return result;
5543}
5544
b5ec771e
PA
5545/* Convenience function to get at the Ada encoded lookup name for
5546 LOOKUP_NAME, as a C string. */
5547
5548static const char *
5549ada_lookup_name (const lookup_name_info &lookup_name)
5550{
5551 return lookup_name.ada ().lookup_name ().c_str ();
5552}
5553
0b7b2c2a
TT
5554/* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5555 for OBJFILE, then walk the objfile's symtabs and update the
5556 results. */
5557
5558static void
5559map_matching_symbols (struct objfile *objfile,
5560 const lookup_name_info &lookup_name,
5561 bool is_wild_match,
5562 domain_enum domain,
5563 int global,
5564 match_data &data)
5565{
5566 data.objfile = objfile;
5567 objfile->expand_matching_symbols (lookup_name, domain, global,
5568 is_wild_match ? nullptr : compare_names);
5569
5570 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5571 for (compunit_symtab *symtab : objfile->compunits ())
5572 {
5573 const struct block *block
63d609de 5574 = symtab->blockvector ()->block (block_kind);
0b7b2c2a
TT
5575 if (!iterate_over_symbols_terminated (block, lookup_name,
5576 domain, data))
5577 break;
5578 }
5579}
5580
1bfa81ac 5581/* Add to RESULT all non-local symbols whose name and domain match
b5ec771e
PA
5582 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5583 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5584 symbols otherwise. */
339c13b6
JB
5585
5586static void
d1183b06 5587add_nonlocal_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5588 const lookup_name_info &lookup_name,
5589 domain_enum domain, int global)
339c13b6 5590{
1bfa81ac 5591 struct match_data data (&result);
339c13b6 5592
b5ec771e
PA
5593 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5594
2030c079 5595 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5596 {
0b7b2c2a
TT
5597 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5598 global, data);
22cee43f 5599
b669c953 5600 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5601 {
5602 const struct block *global_block
63d609de 5603 = cu->blockvector ()->global_block ();
22cee43f 5604
d1183b06 5605 if (ada_add_block_renamings (result, global_block, lookup_name,
b5ec771e 5606 domain))
1178743e 5607 data.found_sym = true;
22cee43f 5608 }
40658b94
PH
5609 }
5610
d1183b06 5611 if (result.empty () && global && !is_wild_match)
40658b94 5612 {
b5ec771e 5613 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5614 std::string bracket_name = std::string ("<_ada_") + name + '>';
5615 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5616
2030c079 5617 for (objfile *objfile : current_program_space->objfiles ())
0b7b2c2a
TT
5618 map_matching_symbols (objfile, name1, false, domain, global, data);
5619 }
339c13b6
JB
5620}
5621
b5ec771e
PA
5622/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5623 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
1bfa81ac 5624 returning the number of matches. Add these to RESULT.
4eeaa230 5625
22cee43f
PMR
5626 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5627 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5628 is the one match returned (no other matches in that or
d9680e73 5629 enclosing blocks is returned). If there are any matches in or
22cee43f 5630 surrounding BLOCK, then these alone are returned.
4eeaa230 5631
b5ec771e
PA
5632 Names prefixed with "standard__" are handled specially:
5633 "standard__" is first stripped off (by the lookup_name
5634 constructor), and only static and global symbols are searched.
14f9c5c9 5635
22cee43f
PMR
5636 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5637 to lookup global symbols. */
5638
5639static void
d1183b06 5640ada_add_all_symbols (std::vector<struct block_symbol> &result,
22cee43f 5641 const struct block *block,
b5ec771e 5642 const lookup_name_info &lookup_name,
22cee43f
PMR
5643 domain_enum domain,
5644 int full_search,
5645 int *made_global_lookup_p)
14f9c5c9
AS
5646{
5647 struct symbol *sym;
14f9c5c9 5648
22cee43f
PMR
5649 if (made_global_lookup_p)
5650 *made_global_lookup_p = 0;
339c13b6
JB
5651
5652 /* Special case: If the user specifies a symbol name inside package
5653 Standard, do a non-wild matching of the symbol name without
5654 the "standard__" prefix. This was primarily introduced in order
5655 to allow the user to specifically access the standard exceptions
5656 using, for instance, Standard.Constraint_Error when Constraint_Error
5657 is ambiguous (due to the user defining its own Constraint_Error
5658 entity inside its program). */
b5ec771e
PA
5659 if (lookup_name.ada ().standard_p ())
5660 block = NULL;
4c4b4cd2 5661
339c13b6 5662 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5663
4eeaa230
DE
5664 if (block != NULL)
5665 {
5666 if (full_search)
d1183b06 5667 ada_add_local_symbols (result, lookup_name, block, domain);
4eeaa230
DE
5668 else
5669 {
5670 /* In the !full_search case we're are being called by
4009ee92 5671 iterate_over_symbols, and we don't want to search
4eeaa230 5672 superblocks. */
d1183b06 5673 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4eeaa230 5674 }
d1183b06 5675 if (!result.empty () || !full_search)
22cee43f 5676 return;
4eeaa230 5677 }
d2e4a39e 5678
339c13b6
JB
5679 /* No non-global symbols found. Check our cache to see if we have
5680 already performed this search before. If we have, then return
5681 the same result. */
5682
b5ec771e
PA
5683 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5684 domain, &sym, &block))
4c4b4cd2
PH
5685 {
5686 if (sym != NULL)
d1183b06 5687 add_defn_to_vec (result, sym, block);
22cee43f 5688 return;
4c4b4cd2 5689 }
14f9c5c9 5690
22cee43f
PMR
5691 if (made_global_lookup_p)
5692 *made_global_lookup_p = 1;
b1eedac9 5693
339c13b6
JB
5694 /* Search symbols from all global blocks. */
5695
d1183b06 5696 add_nonlocal_symbols (result, lookup_name, domain, 1);
d2e4a39e 5697
4c4b4cd2 5698 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5699 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5700
d1183b06
TT
5701 if (result.empty ())
5702 add_nonlocal_symbols (result, lookup_name, domain, 0);
22cee43f
PMR
5703}
5704
b5ec771e 5705/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
d1183b06
TT
5706 is non-zero, enclosing scope and in global scopes.
5707
5708 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5709 blocks and symbol tables (if any) in which they were found.
22cee43f
PMR
5710
5711 When full_search is non-zero, any non-function/non-enumeral
5712 symbol match within the nest of blocks whose innermost member is BLOCK,
5713 is the one match returned (no other matches in that or
5714 enclosing blocks is returned). If there are any matches in or
5715 surrounding BLOCK, then these alone are returned.
5716
5717 Names prefixed with "standard__" are handled specially: "standard__"
5718 is first stripped off, and only static and global symbols are searched. */
5719
d1183b06 5720static std::vector<struct block_symbol>
b5ec771e
PA
5721ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5722 const struct block *block,
22cee43f 5723 domain_enum domain,
22cee43f
PMR
5724 int full_search)
5725{
22cee43f 5726 int syms_from_global_search;
d1183b06 5727 std::vector<struct block_symbol> results;
22cee43f 5728
d1183b06 5729 ada_add_all_symbols (results, block, lookup_name,
b5ec771e 5730 domain, full_search, &syms_from_global_search);
14f9c5c9 5731
d1183b06 5732 remove_extra_symbols (&results);
4c4b4cd2 5733
d1183b06 5734 if (results.empty () && full_search && syms_from_global_search)
b5ec771e 5735 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5736
d1183b06 5737 if (results.size () == 1 && full_search && syms_from_global_search)
b5ec771e 5738 cache_symbol (ada_lookup_name (lookup_name), domain,
d1183b06 5739 results[0].symbol, results[0].block);
ec6a20c2 5740
d1183b06
TT
5741 remove_irrelevant_renamings (&results, block);
5742 return results;
14f9c5c9
AS
5743}
5744
b5ec771e 5745/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
d1183b06 5746 in global scopes, returning (SYM,BLOCK) tuples.
ec6a20c2 5747
4eeaa230
DE
5748 See ada_lookup_symbol_list_worker for further details. */
5749
d1183b06 5750std::vector<struct block_symbol>
b5ec771e 5751ada_lookup_symbol_list (const char *name, const struct block *block,
d1183b06 5752 domain_enum domain)
4eeaa230 5753{
b5ec771e
PA
5754 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5755 lookup_name_info lookup_name (name, name_match_type);
5756
d1183b06 5757 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
4eeaa230
DE
5758}
5759
4e5c77fe
JB
5760/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5761 to 1, but choosing the first symbol found if there are multiple
5762 choices.
5763
5e2336be
JB
5764 The result is stored in *INFO, which must be non-NULL.
5765 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5766
5767void
5768ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5769 domain_enum domain,
d12307c1 5770 struct block_symbol *info)
14f9c5c9 5771{
b5ec771e
PA
5772 /* Since we already have an encoded name, wrap it in '<>' to force a
5773 verbatim match. Otherwise, if the name happens to not look like
5774 an encoded name (because it doesn't include a "__"),
5775 ada_lookup_name_info would re-encode/fold it again, and that
5776 would e.g., incorrectly lowercase object renaming names like
5777 "R28b" -> "r28b". */
12932e2c 5778 std::string verbatim = add_angle_brackets (name);
b5ec771e 5779
5e2336be 5780 gdb_assert (info != NULL);
65392b3e 5781 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5782}
aeb5907d
JB
5783
5784/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5785 scope and in global scopes, or NULL if none. NAME is folded and
5786 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5787 choosing the first symbol if there are multiple choices. */
4e5c77fe 5788
d12307c1 5789struct block_symbol
aeb5907d 5790ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5791 domain_enum domain)
aeb5907d 5792{
d1183b06
TT
5793 std::vector<struct block_symbol> candidates
5794 = ada_lookup_symbol_list (name, block0, domain);
f98fc17b 5795
d1183b06 5796 if (candidates.empty ())
54d343a2 5797 return {};
f98fc17b
PA
5798
5799 block_symbol info = candidates[0];
5800 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5801 return info;
4c4b4cd2 5802}
14f9c5c9 5803
14f9c5c9 5804
4c4b4cd2
PH
5805/* True iff STR is a possible encoded suffix of a normal Ada name
5806 that is to be ignored for matching purposes. Suffixes of parallel
5807 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5808 are given by any of the regular expressions:
4c4b4cd2 5809
babe1480
JB
5810 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5811 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5812 TKB [subprogram suffix for task bodies]
babe1480 5813 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5814 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5815
5816 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5817 match is performed. This sequence is used to differentiate homonyms,
5818 is an optional part of a valid name suffix. */
4c4b4cd2 5819
14f9c5c9 5820static int
d2e4a39e 5821is_name_suffix (const char *str)
14f9c5c9
AS
5822{
5823 int k;
4c4b4cd2
PH
5824 const char *matching;
5825 const int len = strlen (str);
5826
babe1480
JB
5827 /* Skip optional leading __[0-9]+. */
5828
4c4b4cd2
PH
5829 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5830 {
babe1480
JB
5831 str += 3;
5832 while (isdigit (str[0]))
dda83cd7 5833 str += 1;
4c4b4cd2 5834 }
babe1480
JB
5835
5836 /* [.$][0-9]+ */
4c4b4cd2 5837
babe1480 5838 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5839 {
babe1480 5840 matching = str + 1;
4c4b4cd2 5841 while (isdigit (matching[0]))
dda83cd7 5842 matching += 1;
4c4b4cd2 5843 if (matching[0] == '\0')
dda83cd7 5844 return 1;
4c4b4cd2
PH
5845 }
5846
5847 /* ___[0-9]+ */
babe1480 5848
4c4b4cd2
PH
5849 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5850 {
5851 matching = str + 3;
5852 while (isdigit (matching[0]))
dda83cd7 5853 matching += 1;
4c4b4cd2 5854 if (matching[0] == '\0')
dda83cd7 5855 return 1;
4c4b4cd2
PH
5856 }
5857
9ac7f98e
JB
5858 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5859
5860 if (strcmp (str, "TKB") == 0)
5861 return 1;
5862
529cad9c
PH
5863#if 0
5864 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5865 with a N at the end. Unfortunately, the compiler uses the same
5866 convention for other internal types it creates. So treating
529cad9c 5867 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5868 some regressions. For instance, consider the case of an enumerated
5869 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5870 name ends with N.
5871 Having a single character like this as a suffix carrying some
0963b4bd 5872 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5873 to be something like "_N" instead. In the meantime, do not do
5874 the following check. */
5875 /* Protected Object Subprograms */
5876 if (len == 1 && str [0] == 'N')
5877 return 1;
5878#endif
5879
5880 /* _E[0-9]+[bs]$ */
5881 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5882 {
5883 matching = str + 3;
5884 while (isdigit (matching[0]))
dda83cd7 5885 matching += 1;
529cad9c 5886 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5887 && matching [1] == '\0')
5888 return 1;
529cad9c
PH
5889 }
5890
4c4b4cd2
PH
5891 /* ??? We should not modify STR directly, as we are doing below. This
5892 is fine in this case, but may become problematic later if we find
5893 that this alternative did not work, and want to try matching
5894 another one from the begining of STR. Since we modified it, we
5895 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5896 if (str[0] == 'X')
5897 {
5898 str += 1;
d2e4a39e 5899 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5900 {
5901 if (str[0] != 'n' && str[0] != 'b')
5902 return 0;
5903 str += 1;
5904 }
14f9c5c9 5905 }
babe1480 5906
14f9c5c9
AS
5907 if (str[0] == '\000')
5908 return 1;
babe1480 5909
d2e4a39e 5910 if (str[0] == '_')
14f9c5c9
AS
5911 {
5912 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5913 return 0;
d2e4a39e 5914 if (str[2] == '_')
dda83cd7
SM
5915 {
5916 if (strcmp (str + 3, "JM") == 0)
5917 return 1;
5918 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5919 the LJM suffix in favor of the JM one. But we will
5920 still accept LJM as a valid suffix for a reasonable
5921 amount of time, just to allow ourselves to debug programs
5922 compiled using an older version of GNAT. */
5923 if (strcmp (str + 3, "LJM") == 0)
5924 return 1;
5925 if (str[3] != 'X')
5926 return 0;
5927 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5928 || str[4] == 'U' || str[4] == 'P')
5929 return 1;
5930 if (str[4] == 'R' && str[5] != 'T')
5931 return 1;
5932 return 0;
5933 }
4c4b4cd2 5934 if (!isdigit (str[2]))
dda83cd7 5935 return 0;
4c4b4cd2 5936 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5937 if (!isdigit (str[k]) && str[k] != '_')
5938 return 0;
14f9c5c9
AS
5939 return 1;
5940 }
4c4b4cd2 5941 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5942 {
4c4b4cd2 5943 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5944 if (!isdigit (str[k]) && str[k] != '_')
5945 return 0;
14f9c5c9
AS
5946 return 1;
5947 }
5948 return 0;
5949}
d2e4a39e 5950
aeb5907d
JB
5951/* Return non-zero if the string starting at NAME and ending before
5952 NAME_END contains no capital letters. */
529cad9c
PH
5953
5954static int
5955is_valid_name_for_wild_match (const char *name0)
5956{
f945dedf 5957 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5958 int i;
5959
5823c3ef
JB
5960 /* If the decoded name starts with an angle bracket, it means that
5961 NAME0 does not follow the GNAT encoding format. It should then
5962 not be allowed as a possible wild match. */
5963 if (decoded_name[0] == '<')
5964 return 0;
5965
529cad9c
PH
5966 for (i=0; decoded_name[i] != '\0'; i++)
5967 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5968 return 0;
5969
5970 return 1;
5971}
5972
59c8a30b
JB
5973/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5974 character which could start a simple name. Assumes that *NAMEP points
5975 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5976
14f9c5c9 5977static int
59c8a30b 5978advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5979{
73589123 5980 const char *name = *namep;
5b4ee69b 5981
5823c3ef 5982 while (1)
14f9c5c9 5983 {
59c8a30b 5984 char t0, t1;
73589123
PH
5985
5986 t0 = *name;
5987 if (t0 == '_')
5988 {
5989 t1 = name[1];
5990 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5991 {
5992 name += 1;
61012eef 5993 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5994 break;
5995 else
5996 name += 1;
5997 }
aa27d0b3
JB
5998 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5999 || name[2] == target0))
73589123
PH
6000 {
6001 name += 2;
6002 break;
6003 }
86b44259
TT
6004 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6005 {
6006 /* Names like "pkg__B_N__name", where N is a number, are
6007 block-local. We can handle these by simply skipping
6008 the "B_" here. */
6009 name += 4;
6010 }
73589123
PH
6011 else
6012 return 0;
6013 }
6014 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6015 name += 1;
6016 else
5823c3ef 6017 return 0;
73589123
PH
6018 }
6019
6020 *namep = name;
6021 return 1;
6022}
6023
b5ec771e
PA
6024/* Return true iff NAME encodes a name of the form prefix.PATN.
6025 Ignores any informational suffixes of NAME (i.e., for which
6026 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6027 simple name. */
73589123 6028
b5ec771e 6029static bool
73589123
PH
6030wild_match (const char *name, const char *patn)
6031{
22e048c9 6032 const char *p;
73589123
PH
6033 const char *name0 = name;
6034
81eaa506
TT
6035 if (startswith (name, "___ghost_"))
6036 name += 9;
6037
73589123
PH
6038 while (1)
6039 {
6040 const char *match = name;
6041
6042 if (*name == *patn)
6043 {
6044 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6045 if (*p != *name)
6046 break;
6047 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6048 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6049
6050 if (name[-1] == '_')
6051 name -= 1;
6052 }
6053 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6054 return false;
96d887e8 6055 }
96d887e8
PH
6056}
6057
d1183b06 6058/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
b5ec771e 6059 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6060
6061static void
d1183b06 6062ada_add_block_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
6063 const struct block *block,
6064 const lookup_name_info &lookup_name,
6065 domain_enum domain, struct objfile *objfile)
96d887e8 6066{
8157b174 6067 struct block_iterator iter;
96d887e8
PH
6068 /* A matching argument symbol, if any. */
6069 struct symbol *arg_sym;
6070 /* Set true when we find a matching non-argument symbol. */
1178743e 6071 bool found_sym;
96d887e8
PH
6072 struct symbol *sym;
6073
6074 arg_sym = NULL;
1178743e 6075 found_sym = false;
b5ec771e
PA
6076 for (sym = block_iter_match_first (block, lookup_name, &iter);
6077 sym != NULL;
6078 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6079 {
6c9c307c 6080 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
b5ec771e 6081 {
66d7f48f 6082 if (sym->aclass () != LOC_UNRESOLVED)
b5ec771e 6083 {
d9743061 6084 if (sym->is_argument ())
b5ec771e
PA
6085 arg_sym = sym;
6086 else
6087 {
1178743e 6088 found_sym = true;
d1183b06 6089 add_defn_to_vec (result,
b5ec771e
PA
6090 fixup_symbol_section (sym, objfile),
6091 block);
6092 }
6093 }
6094 }
96d887e8
PH
6095 }
6096
22cee43f
PMR
6097 /* Handle renamings. */
6098
d1183b06 6099 if (ada_add_block_renamings (result, block, lookup_name, domain))
1178743e 6100 found_sym = true;
22cee43f 6101
96d887e8
PH
6102 if (!found_sym && arg_sym != NULL)
6103 {
d1183b06 6104 add_defn_to_vec (result,
dda83cd7
SM
6105 fixup_symbol_section (arg_sym, objfile),
6106 block);
96d887e8
PH
6107 }
6108
b5ec771e 6109 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6110 {
6111 arg_sym = NULL;
1178743e 6112 found_sym = false;
b5ec771e
PA
6113 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6114 const char *name = ada_lookup_name.c_str ();
6115 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6116
6117 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6118 {
dda83cd7 6119 if (symbol_matches_domain (sym->language (),
6c9c307c 6120 sym->domain (), domain))
dda83cd7
SM
6121 {
6122 int cmp;
6123
6124 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6125 if (cmp == 0)
6126 {
6127 cmp = !startswith (sym->linkage_name (), "_ada_");
6128 if (cmp == 0)
6129 cmp = strncmp (name, sym->linkage_name () + 5,
6130 name_len);
6131 }
6132
6133 if (cmp == 0
6134 && is_name_suffix (sym->linkage_name () + name_len + 5))
6135 {
66d7f48f 6136 if (sym->aclass () != LOC_UNRESOLVED)
2a2d4dc3 6137 {
d9743061 6138 if (sym->is_argument ())
2a2d4dc3
AS
6139 arg_sym = sym;
6140 else
6141 {
1178743e 6142 found_sym = true;
d1183b06 6143 add_defn_to_vec (result,
2a2d4dc3
AS
6144 fixup_symbol_section (sym, objfile),
6145 block);
6146 }
6147 }
dda83cd7
SM
6148 }
6149 }
76a01679 6150 }
96d887e8
PH
6151
6152 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 6153 They aren't parameters, right? */
96d887e8 6154 if (!found_sym && arg_sym != NULL)
dda83cd7 6155 {
d1183b06 6156 add_defn_to_vec (result,
dda83cd7
SM
6157 fixup_symbol_section (arg_sym, objfile),
6158 block);
6159 }
96d887e8
PH
6160 }
6161}
6162\f
41d27058 6163
dda83cd7 6164 /* Symbol Completion */
41d27058 6165
b5ec771e 6166/* See symtab.h. */
41d27058 6167
b5ec771e
PA
6168bool
6169ada_lookup_name_info::matches
6170 (const char *sym_name,
6171 symbol_name_match_type match_type,
a207cff2 6172 completion_match_result *comp_match_res) const
41d27058 6173{
b5ec771e
PA
6174 bool match = false;
6175 const char *text = m_encoded_name.c_str ();
6176 size_t text_len = m_encoded_name.size ();
41d27058
JB
6177
6178 /* First, test against the fully qualified name of the symbol. */
6179
6180 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6181 match = true;
41d27058 6182
f945dedf 6183 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6184 if (match && !m_encoded_p)
41d27058
JB
6185 {
6186 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
6187 that iff we are doing a verbatim match, the decoded version
6188 of the symbol name starts with '<'. Otherwise, this symbol name
6189 is not a suitable completion. */
41d27058 6190
f945dedf 6191 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6192 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6193 }
6194
b5ec771e 6195 if (match && !m_verbatim_p)
41d27058
JB
6196 {
6197 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
6198 be done is to verify that the potentially matching symbol name
6199 does not include capital letters, because the ada-mode would
6200 not be able to understand these symbol names without the
6201 angle bracket notation. */
41d27058
JB
6202 const char *tmp;
6203
6204 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6205 if (*tmp != '\0')
b5ec771e 6206 match = false;
41d27058
JB
6207 }
6208
6209 /* Second: Try wild matching... */
6210
b5ec771e 6211 if (!match && m_wild_match_p)
41d27058
JB
6212 {
6213 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
6214 may represent an unqualified symbol name. We therefore must
6215 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6216 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6217
6218 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6219 match = true;
41d27058
JB
6220 }
6221
b5ec771e 6222 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6223
6224 if (!match)
b5ec771e 6225 return false;
41d27058 6226
a207cff2 6227 if (comp_match_res != NULL)
b5ec771e 6228 {
a207cff2 6229 std::string &match_str = comp_match_res->match.storage ();
41d27058 6230
b5ec771e 6231 if (!m_encoded_p)
a207cff2 6232 match_str = ada_decode (sym_name);
b5ec771e
PA
6233 else
6234 {
6235 if (m_verbatim_p)
6236 match_str = add_angle_brackets (sym_name);
6237 else
6238 match_str = sym_name;
41d27058 6239
b5ec771e 6240 }
a207cff2
PA
6241
6242 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6243 }
6244
b5ec771e 6245 return true;
41d27058
JB
6246}
6247
dda83cd7 6248 /* Field Access */
96d887e8 6249
73fb9985
JB
6250/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6251 for tagged types. */
6252
6253static int
6254ada_is_dispatch_table_ptr_type (struct type *type)
6255{
0d5cff50 6256 const char *name;
73fb9985 6257
78134374 6258 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6259 return 0;
6260
27710edb 6261 name = type->target_type ()->name ();
73fb9985
JB
6262 if (name == NULL)
6263 return 0;
6264
6265 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6266}
6267
ac4a2da4
JG
6268/* Return non-zero if TYPE is an interface tag. */
6269
6270static int
6271ada_is_interface_tag (struct type *type)
6272{
7d93a1e0 6273 const char *name = type->name ();
ac4a2da4
JG
6274
6275 if (name == NULL)
6276 return 0;
6277
6278 return (strcmp (name, "ada__tags__interface_tag") == 0);
6279}
6280
963a6417
PH
6281/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6282 to be invisible to users. */
96d887e8 6283
963a6417
PH
6284int
6285ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6286{
1f704f76 6287 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6288 return 1;
ffde82bf 6289
73fb9985
JB
6290 /* Check the name of that field. */
6291 {
33d16dd9 6292 const char *name = type->field (field_num).name ();
73fb9985
JB
6293
6294 /* Anonymous field names should not be printed.
6295 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6296 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6297 if (name == NULL)
6298 return 1;
6299
ffde82bf
JB
6300 /* Normally, fields whose name start with an underscore ("_")
6301 are fields that have been internally generated by the compiler,
6302 and thus should not be printed. The "_parent" field is special,
6303 however: This is a field internally generated by the compiler
6304 for tagged types, and it contains the components inherited from
6305 the parent type. This field should not be printed as is, but
6306 should not be ignored either. */
61012eef 6307 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985 6308 return 1;
d537777d
TT
6309
6310 /* The compiler doesn't document this, but sometimes it emits
6311 a field whose name starts with a capital letter, like 'V148s'.
6312 These aren't marked as artificial in any way, but we know they
6313 should be ignored. However, wrapper fields should not be
6314 ignored. */
6315 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6316 {
6317 /* Wrapper field. */
6318 }
6319 else if (isupper (name[0]))
6320 return 1;
73fb9985
JB
6321 }
6322
ac4a2da4
JG
6323 /* If this is the dispatch table of a tagged type or an interface tag,
6324 then ignore. */
73fb9985 6325 if (ada_is_tagged_type (type, 1)
940da03e
SM
6326 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6327 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6328 return 1;
6329
6330 /* Not a special field, so it should not be ignored. */
6331 return 0;
963a6417 6332}
96d887e8 6333
963a6417 6334/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6335 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6336
963a6417
PH
6337int
6338ada_is_tagged_type (struct type *type, int refok)
6339{
988f6b3d 6340 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6341}
96d887e8 6342
963a6417 6343/* True iff TYPE represents the type of X'Tag */
96d887e8 6344
963a6417
PH
6345int
6346ada_is_tag_type (struct type *type)
6347{
460efde1
JB
6348 type = ada_check_typedef (type);
6349
78134374 6350 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6351 return 0;
6352 else
96d887e8 6353 {
27710edb 6354 const char *name = ada_type_name (type->target_type ());
5b4ee69b 6355
963a6417 6356 return (name != NULL
dda83cd7 6357 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6358 }
96d887e8
PH
6359}
6360
963a6417 6361/* The type of the tag on VAL. */
76a01679 6362
de93309a 6363static struct type *
963a6417 6364ada_tag_type (struct value *val)
96d887e8 6365{
988f6b3d 6366 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6367}
96d887e8 6368
b50d69b5
JG
6369/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6370 retired at Ada 05). */
6371
6372static int
6373is_ada95_tag (struct value *tag)
6374{
6375 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6376}
6377
963a6417 6378/* The value of the tag on VAL. */
96d887e8 6379
de93309a 6380static struct value *
963a6417
PH
6381ada_value_tag (struct value *val)
6382{
03ee6b2e 6383 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6384}
6385
963a6417
PH
6386/* The value of the tag on the object of type TYPE whose contents are
6387 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6388 ADDRESS. */
96d887e8 6389
963a6417 6390static struct value *
10a2c479 6391value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6392 const gdb_byte *valaddr,
dda83cd7 6393 CORE_ADDR address)
96d887e8 6394{
b5385fc0 6395 int tag_byte_offset;
963a6417 6396 struct type *tag_type;
5b4ee69b 6397
4d1795ac
TT
6398 gdb::array_view<const gdb_byte> contents;
6399 if (valaddr != nullptr)
6400 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6401 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6402 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6403 NULL, NULL, NULL))
96d887e8 6404 {
fc1a4b47 6405 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6406 ? NULL
6407 : valaddr + tag_byte_offset);
963a6417 6408 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6409
963a6417 6410 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6411 }
963a6417
PH
6412 return NULL;
6413}
96d887e8 6414
963a6417
PH
6415static struct type *
6416type_from_tag (struct value *tag)
6417{
f5272a3b 6418 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6419
963a6417 6420 if (type_name != NULL)
5c4258f4 6421 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6422 return NULL;
6423}
96d887e8 6424
b50d69b5
JG
6425/* Given a value OBJ of a tagged type, return a value of this
6426 type at the base address of the object. The base address, as
6427 defined in Ada.Tags, it is the address of the primary tag of
6428 the object, and therefore where the field values of its full
6429 view can be fetched. */
6430
6431struct value *
6432ada_tag_value_at_base_address (struct value *obj)
6433{
b50d69b5
JG
6434 struct value *val;
6435 LONGEST offset_to_top = 0;
6436 struct type *ptr_type, *obj_type;
6437 struct value *tag;
6438 CORE_ADDR base_address;
6439
6440 obj_type = value_type (obj);
6441
6442 /* It is the responsability of the caller to deref pointers. */
6443
78134374 6444 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6445 return obj;
6446
6447 tag = ada_value_tag (obj);
6448 if (!tag)
6449 return obj;
6450
6451 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6452
6453 if (is_ada95_tag (tag))
6454 return obj;
6455
d537777d
TT
6456 struct type *offset_type
6457 = language_lookup_primitive_type (language_def (language_ada),
6458 target_gdbarch(), "storage_offset");
6459 ptr_type = lookup_pointer_type (offset_type);
b50d69b5
JG
6460 val = value_cast (ptr_type, tag);
6461 if (!val)
6462 return obj;
6463
6464 /* It is perfectly possible that an exception be raised while
6465 trying to determine the base address, just like for the tag;
6466 see ada_tag_name for more details. We do not print the error
6467 message for the same reason. */
6468
a70b8144 6469 try
b50d69b5
JG
6470 {
6471 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6472 }
6473
230d2906 6474 catch (const gdb_exception_error &e)
492d29ea
PA
6475 {
6476 return obj;
6477 }
b50d69b5
JG
6478
6479 /* If offset is null, nothing to do. */
6480
6481 if (offset_to_top == 0)
6482 return obj;
6483
6484 /* -1 is a special case in Ada.Tags; however, what should be done
6485 is not quite clear from the documentation. So do nothing for
6486 now. */
6487
6488 if (offset_to_top == -1)
6489 return obj;
6490
d537777d
TT
6491 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6492 top is used. In this situation the offset is stored just after
6493 the tag, in the object itself. */
6494 ULONGEST last = (((ULONGEST) 1) << (8 * TYPE_LENGTH (offset_type) - 1)) - 1;
6495 if (offset_to_top == last)
6496 {
6497 struct value *tem = value_addr (tag);
6498 tem = value_ptradd (tem, 1);
6499 tem = value_cast (ptr_type, tem);
6500 offset_to_top = value_as_long (value_ind (tem));
6501 }
05527d8c
TV
6502
6503 if (offset_to_top > 0)
d537777d
TT
6504 {
6505 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6506 from the base address. This was however incompatible with
6507 C++ dispatch table: C++ uses a *negative* value to *add*
6508 to the base address. Ada's convention has therefore been
6509 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6510 use the same convention. Here, we support both cases by
6511 checking the sign of OFFSET_TO_TOP. */
6512 offset_to_top = -offset_to_top;
6513 }
08f49010
XR
6514
6515 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6516 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6517
6518 /* Make sure that we have a proper tag at the new address.
6519 Otherwise, offset_to_top is bogus (which can happen when
6520 the object is not initialized yet). */
6521
6522 if (!tag)
6523 return obj;
6524
6525 obj_type = type_from_tag (tag);
6526
6527 if (!obj_type)
6528 return obj;
6529
6530 return value_from_contents_and_address (obj_type, NULL, base_address);
6531}
6532
1b611343
JB
6533/* Return the "ada__tags__type_specific_data" type. */
6534
6535static struct type *
6536ada_get_tsd_type (struct inferior *inf)
963a6417 6537{
1b611343 6538 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6539
1b611343
JB
6540 if (data->tsd_type == 0)
6541 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6542 return data->tsd_type;
6543}
529cad9c 6544
1b611343
JB
6545/* Return the TSD (type-specific data) associated to the given TAG.
6546 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6547
1b611343 6548 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6549
1b611343
JB
6550static struct value *
6551ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6552{
4c4b4cd2 6553 struct value *val;
1b611343 6554 struct type *type;
5b4ee69b 6555
1b611343
JB
6556 /* First option: The TSD is simply stored as a field of our TAG.
6557 Only older versions of GNAT would use this format, but we have
6558 to test it first, because there are no visible markers for
6559 the current approach except the absence of that field. */
529cad9c 6560
1b611343
JB
6561 val = ada_value_struct_elt (tag, "tsd", 1);
6562 if (val)
6563 return val;
e802dbe0 6564
1b611343
JB
6565 /* Try the second representation for the dispatch table (in which
6566 there is no explicit 'tsd' field in the referent of the tag pointer,
6567 and instead the tsd pointer is stored just before the dispatch
6568 table. */
e802dbe0 6569
1b611343
JB
6570 type = ada_get_tsd_type (current_inferior());
6571 if (type == NULL)
6572 return NULL;
6573 type = lookup_pointer_type (lookup_pointer_type (type));
6574 val = value_cast (type, tag);
6575 if (val == NULL)
6576 return NULL;
6577 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6578}
6579
1b611343
JB
6580/* Given the TSD of a tag (type-specific data), return a string
6581 containing the name of the associated type.
6582
f5272a3b 6583 May return NULL if we are unable to determine the tag name. */
1b611343 6584
f5272a3b 6585static gdb::unique_xmalloc_ptr<char>
1b611343 6586ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6587{
1b611343 6588 struct value *val;
529cad9c 6589
1b611343 6590 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6591 if (val == NULL)
1b611343 6592 return NULL;
66920317
TT
6593 gdb::unique_xmalloc_ptr<char> buffer
6594 = target_read_string (value_as_address (val), INT_MAX);
6595 if (buffer == nullptr)
f5272a3b
TT
6596 return nullptr;
6597
315e4ebb 6598 try
f5272a3b 6599 {
315e4ebb
TT
6600 /* Let this throw an exception on error. If the data is
6601 uninitialized, we'd rather not have the user see a
6602 warning. */
6603 const char *folded = ada_fold_name (buffer.get (), true);
6604 return make_unique_xstrdup (folded);
6605 }
6606 catch (const gdb_exception &)
6607 {
6608 return nullptr;
f5272a3b 6609 }
4c4b4cd2
PH
6610}
6611
6612/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6613 a C string.
6614
6615 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6616 determine the name of that tag. */
4c4b4cd2 6617
f5272a3b 6618gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6619ada_tag_name (struct value *tag)
6620{
f5272a3b 6621 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6622
df407dfe 6623 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6624 return NULL;
1b611343
JB
6625
6626 /* It is perfectly possible that an exception be raised while trying
6627 to determine the TAG's name, even under normal circumstances:
6628 The associated variable may be uninitialized or corrupted, for
6629 instance. We do not let any exception propagate past this point.
6630 instead we return NULL.
6631
6632 We also do not print the error message either (which often is very
6633 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6634 the caller print a more meaningful message if necessary. */
a70b8144 6635 try
1b611343
JB
6636 {
6637 struct value *tsd = ada_get_tsd_from_tag (tag);
6638
6639 if (tsd != NULL)
6640 name = ada_tag_name_from_tsd (tsd);
6641 }
230d2906 6642 catch (const gdb_exception_error &e)
492d29ea
PA
6643 {
6644 }
1b611343
JB
6645
6646 return name;
4c4b4cd2
PH
6647}
6648
6649/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6650
d2e4a39e 6651struct type *
ebf56fd3 6652ada_parent_type (struct type *type)
14f9c5c9
AS
6653{
6654 int i;
6655
61ee279c 6656 type = ada_check_typedef (type);
14f9c5c9 6657
78134374 6658 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6659 return NULL;
6660
1f704f76 6661 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6662 if (ada_is_parent_field (type, i))
0c1f74cf 6663 {
dda83cd7 6664 struct type *parent_type = type->field (i).type ();
0c1f74cf 6665
dda83cd7
SM
6666 /* If the _parent field is a pointer, then dereference it. */
6667 if (parent_type->code () == TYPE_CODE_PTR)
27710edb 6668 parent_type = parent_type->target_type ();
dda83cd7
SM
6669 /* If there is a parallel XVS type, get the actual base type. */
6670 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6671
dda83cd7 6672 return ada_check_typedef (parent_type);
0c1f74cf 6673 }
14f9c5c9
AS
6674
6675 return NULL;
6676}
6677
4c4b4cd2
PH
6678/* True iff field number FIELD_NUM of structure type TYPE contains the
6679 parent-type (inherited) fields of a derived type. Assumes TYPE is
6680 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6681
6682int
ebf56fd3 6683ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6684{
33d16dd9 6685 const char *name = ada_check_typedef (type)->field (field_num).name ();
5b4ee69b 6686
4c4b4cd2 6687 return (name != NULL
dda83cd7
SM
6688 && (startswith (name, "PARENT")
6689 || startswith (name, "_parent")));
14f9c5c9
AS
6690}
6691
4c4b4cd2 6692/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6693 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6694 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6695 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6696 structures. */
14f9c5c9
AS
6697
6698int
ebf56fd3 6699ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6700{
33d16dd9 6701 const char *name = type->field (field_num).name ();
5b4ee69b 6702
dddc0e16
JB
6703 if (name != NULL && strcmp (name, "RETVAL") == 0)
6704 {
6705 /* This happens in functions with "out" or "in out" parameters
6706 which are passed by copy. For such functions, GNAT describes
6707 the function's return type as being a struct where the return
6708 value is in a field called RETVAL, and where the other "out"
6709 or "in out" parameters are fields of that struct. This is not
6710 a wrapper. */
6711 return 0;
6712 }
6713
d2e4a39e 6714 return (name != NULL
dda83cd7
SM
6715 && (startswith (name, "PARENT")
6716 || strcmp (name, "REP") == 0
6717 || startswith (name, "_parent")
6718 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6719}
6720
4c4b4cd2
PH
6721/* True iff field number FIELD_NUM of structure or union type TYPE
6722 is a variant wrapper. Assumes TYPE is a structure type with at least
6723 FIELD_NUM+1 fields. */
14f9c5c9
AS
6724
6725int
ebf56fd3 6726ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6727{
8ecb59f8
TT
6728 /* Only Ada types are eligible. */
6729 if (!ADA_TYPE_P (type))
6730 return 0;
6731
940da03e 6732 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6733
78134374
SM
6734 return (field_type->code () == TYPE_CODE_UNION
6735 || (is_dynamic_field (type, field_num)
27710edb 6736 && (field_type->target_type ()->code ()
c3e5cd34 6737 == TYPE_CODE_UNION)));
14f9c5c9
AS
6738}
6739
6740/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6741 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6742 returns the type of the controlling discriminant for the variant.
6743 May return NULL if the type could not be found. */
14f9c5c9 6744
d2e4a39e 6745struct type *
ebf56fd3 6746ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6747{
a121b7c1 6748 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6749
988f6b3d 6750 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6751}
6752
4c4b4cd2 6753/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6754 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6755 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6756
de93309a 6757static int
ebf56fd3 6758ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6759{
33d16dd9 6760 const char *name = type->field (field_num).name ();
5b4ee69b 6761
14f9c5c9
AS
6762 return (name != NULL && name[0] == 'O');
6763}
6764
6765/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6766 returns the name of the discriminant controlling the variant.
6767 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6768
a121b7c1 6769const char *
ebf56fd3 6770ada_variant_discrim_name (struct type *type0)
14f9c5c9 6771{
5f9febe0 6772 static std::string result;
d2e4a39e
AS
6773 struct type *type;
6774 const char *name;
6775 const char *discrim_end;
6776 const char *discrim_start;
14f9c5c9 6777
78134374 6778 if (type0->code () == TYPE_CODE_PTR)
27710edb 6779 type = type0->target_type ();
14f9c5c9
AS
6780 else
6781 type = type0;
6782
6783 name = ada_type_name (type);
6784
6785 if (name == NULL || name[0] == '\000')
6786 return "";
6787
6788 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6789 discrim_end -= 1)
6790 {
61012eef 6791 if (startswith (discrim_end, "___XVN"))
dda83cd7 6792 break;
14f9c5c9
AS
6793 }
6794 if (discrim_end == name)
6795 return "";
6796
d2e4a39e 6797 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6798 discrim_start -= 1)
6799 {
d2e4a39e 6800 if (discrim_start == name + 1)
dda83cd7 6801 return "";
76a01679 6802 if ((discrim_start > name + 3
dda83cd7
SM
6803 && startswith (discrim_start - 3, "___"))
6804 || discrim_start[-1] == '.')
6805 break;
14f9c5c9
AS
6806 }
6807
5f9febe0
TT
6808 result = std::string (discrim_start, discrim_end - discrim_start);
6809 return result.c_str ();
14f9c5c9
AS
6810}
6811
4c4b4cd2
PH
6812/* Scan STR for a subtype-encoded number, beginning at position K.
6813 Put the position of the character just past the number scanned in
6814 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6815 Return 1 if there was a valid number at the given position, and 0
6816 otherwise. A "subtype-encoded" number consists of the absolute value
6817 in decimal, followed by the letter 'm' to indicate a negative number.
6818 Assumes 0m does not occur. */
14f9c5c9
AS
6819
6820int
d2e4a39e 6821ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6822{
6823 ULONGEST RU;
6824
d2e4a39e 6825 if (!isdigit (str[k]))
14f9c5c9
AS
6826 return 0;
6827
4c4b4cd2 6828 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6829 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6830 LONGEST. */
14f9c5c9
AS
6831 RU = 0;
6832 while (isdigit (str[k]))
6833 {
d2e4a39e 6834 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6835 k += 1;
6836 }
6837
d2e4a39e 6838 if (str[k] == 'm')
14f9c5c9
AS
6839 {
6840 if (R != NULL)
dda83cd7 6841 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6842 k += 1;
6843 }
6844 else if (R != NULL)
6845 *R = (LONGEST) RU;
6846
4c4b4cd2 6847 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6848 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6849 number representable as a LONGEST (although either would probably work
6850 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6851 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6852
6853 if (new_k != NULL)
6854 *new_k = k;
6855 return 1;
6856}
6857
4c4b4cd2
PH
6858/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6859 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6860 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6861
de93309a 6862static int
ebf56fd3 6863ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6864{
33d16dd9 6865 const char *name = type->field (field_num).name ();
14f9c5c9
AS
6866 int p;
6867
6868 p = 0;
6869 while (1)
6870 {
d2e4a39e 6871 switch (name[p])
dda83cd7
SM
6872 {
6873 case '\0':
6874 return 0;
6875 case 'S':
6876 {
6877 LONGEST W;
6878
6879 if (!ada_scan_number (name, p + 1, &W, &p))
6880 return 0;
6881 if (val == W)
6882 return 1;
6883 break;
6884 }
6885 case 'R':
6886 {
6887 LONGEST L, U;
6888
6889 if (!ada_scan_number (name, p + 1, &L, &p)
6890 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6891 return 0;
6892 if (val >= L && val <= U)
6893 return 1;
6894 break;
6895 }
6896 case 'O':
6897 return 1;
6898 default:
6899 return 0;
6900 }
4c4b4cd2
PH
6901 }
6902}
6903
0963b4bd 6904/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6905
6906/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6907 ARG_TYPE, extract and return the value of one of its (non-static)
6908 fields. FIELDNO says which field. Differs from value_primitive_field
6909 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6910
5eb68a39 6911struct value *
d2e4a39e 6912ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6913 struct type *arg_type)
14f9c5c9 6914{
14f9c5c9
AS
6915 struct type *type;
6916
61ee279c 6917 arg_type = ada_check_typedef (arg_type);
940da03e 6918 type = arg_type->field (fieldno).type ();
14f9c5c9 6919
4504bbde
TT
6920 /* Handle packed fields. It might be that the field is not packed
6921 relative to its containing structure, but the structure itself is
6922 packed; in this case we must take the bit-field path. */
6923 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9 6924 {
b610c045 6925 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
14f9c5c9 6926 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6927
50888e42
SM
6928 return ada_value_primitive_packed_val (arg1,
6929 value_contents (arg1).data (),
dda83cd7
SM
6930 offset + bit_pos / 8,
6931 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6932 }
6933 else
6934 return value_primitive_field (arg1, offset, fieldno, arg_type);
6935}
6936
52ce6436
PH
6937/* Find field with name NAME in object of type TYPE. If found,
6938 set the following for each argument that is non-null:
6939 - *FIELD_TYPE_P to the field's type;
6940 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6941 an object of that type;
6942 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6943 - *BIT_SIZE_P to its size in bits if the field is packed, and
6944 0 otherwise;
6945 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6946 fields up to but not including the desired field, or by the total
6947 number of fields if not found. A NULL value of NAME never
6948 matches; the function just counts visible fields in this case.
6949
828d5846
XR
6950 Notice that we need to handle when a tagged record hierarchy
6951 has some components with the same name, like in this scenario:
6952
6953 type Top_T is tagged record
dda83cd7
SM
6954 N : Integer := 1;
6955 U : Integer := 974;
6956 A : Integer := 48;
828d5846
XR
6957 end record;
6958
6959 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6960 N : Character := 'a';
6961 C : Integer := 3;
828d5846
XR
6962 end record;
6963
6964 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6965 N : Float := 4.0;
6966 C : Character := '5';
6967 X : Integer := 6;
6968 A : Character := 'J';
828d5846
XR
6969 end record;
6970
6971 Let's say we now have a variable declared and initialized as follow:
6972
6973 TC : Top_A := new Bottom_T;
6974
6975 And then we use this variable to call this function
6976
6977 procedure Assign (Obj: in out Top_T; TV : Integer);
6978
6979 as follow:
6980
6981 Assign (Top_T (B), 12);
6982
6983 Now, we're in the debugger, and we're inside that procedure
6984 then and we want to print the value of obj.c:
6985
6986 Usually, the tagged record or one of the parent type owns the
6987 component to print and there's no issue but in this particular
6988 case, what does it mean to ask for Obj.C? Since the actual
6989 type for object is type Bottom_T, it could mean two things: type
6990 component C from the Middle_T view, but also component C from
6991 Bottom_T. So in that "undefined" case, when the component is
6992 not found in the non-resolved type (which includes all the
6993 components of the parent type), then resolve it and see if we
6994 get better luck once expanded.
6995
6996 In the case of homonyms in the derived tagged type, we don't
6997 guaranty anything, and pick the one that's easiest for us
6998 to program.
6999
0963b4bd 7000 Returns 1 if found, 0 otherwise. */
52ce6436 7001
4c4b4cd2 7002static int
0d5cff50 7003find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
7004 struct type **field_type_p,
7005 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 7006 int *index_p)
4c4b4cd2
PH
7007{
7008 int i;
828d5846 7009 int parent_offset = -1;
4c4b4cd2 7010
61ee279c 7011 type = ada_check_typedef (type);
76a01679 7012
52ce6436
PH
7013 if (field_type_p != NULL)
7014 *field_type_p = NULL;
7015 if (byte_offset_p != NULL)
d5d6fca5 7016 *byte_offset_p = 0;
52ce6436
PH
7017 if (bit_offset_p != NULL)
7018 *bit_offset_p = 0;
7019 if (bit_size_p != NULL)
7020 *bit_size_p = 0;
7021
1f704f76 7022 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2 7023 {
4d1795ac
TT
7024 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7025 type. However, we only need the values to be correct when
7026 the caller asks for them. */
7027 int bit_pos = 0, fld_offset = 0;
7028 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7029 {
b610c045 7030 bit_pos = type->field (i).loc_bitpos ();
4d1795ac
TT
7031 fld_offset = offset + bit_pos / 8;
7032 }
7033
33d16dd9 7034 const char *t_field_name = type->field (i).name ();
76a01679 7035
4c4b4cd2 7036 if (t_field_name == NULL)
dda83cd7 7037 continue;
4c4b4cd2 7038
828d5846 7039 else if (ada_is_parent_field (type, i))
dda83cd7 7040 {
828d5846
XR
7041 /* This is a field pointing us to the parent type of a tagged
7042 type. As hinted in this function's documentation, we give
7043 preference to fields in the current record first, so what
7044 we do here is just record the index of this field before
7045 we skip it. If it turns out we couldn't find our field
7046 in the current record, then we'll get back to it and search
7047 inside it whether the field might exist in the parent. */
7048
dda83cd7
SM
7049 parent_offset = i;
7050 continue;
7051 }
828d5846 7052
52ce6436 7053 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
7054 {
7055 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7056
52ce6436 7057 if (field_type_p != NULL)
940da03e 7058 *field_type_p = type->field (i).type ();
52ce6436
PH
7059 if (byte_offset_p != NULL)
7060 *byte_offset_p = fld_offset;
7061 if (bit_offset_p != NULL)
7062 *bit_offset_p = bit_pos % 8;
7063 if (bit_size_p != NULL)
7064 *bit_size_p = bit_size;
dda83cd7
SM
7065 return 1;
7066 }
4c4b4cd2 7067 else if (ada_is_wrapper_field (type, i))
dda83cd7 7068 {
940da03e 7069 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7070 field_type_p, byte_offset_p, bit_offset_p,
7071 bit_size_p, index_p))
dda83cd7
SM
7072 return 1;
7073 }
4c4b4cd2 7074 else if (ada_is_variant_part (type, i))
dda83cd7 7075 {
52ce6436
PH
7076 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7077 fixed type?? */
dda83cd7
SM
7078 int j;
7079 struct type *field_type
940da03e 7080 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7081
dda83cd7
SM
7082 for (j = 0; j < field_type->num_fields (); j += 1)
7083 {
7084 if (find_struct_field (name, field_type->field (j).type (),
7085 fld_offset
b610c045 7086 + field_type->field (j).loc_bitpos () / 8,
dda83cd7
SM
7087 field_type_p, byte_offset_p,
7088 bit_offset_p, bit_size_p, index_p))
7089 return 1;
7090 }
7091 }
52ce6436
PH
7092 else if (index_p != NULL)
7093 *index_p += 1;
4c4b4cd2 7094 }
828d5846
XR
7095
7096 /* Field not found so far. If this is a tagged type which
7097 has a parent, try finding that field in the parent now. */
7098
7099 if (parent_offset != -1)
7100 {
4d1795ac
TT
7101 /* As above, only compute the offset when truly needed. */
7102 int fld_offset = offset;
7103 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7104 {
b610c045 7105 int bit_pos = type->field (parent_offset).loc_bitpos ();
4d1795ac
TT
7106 fld_offset += bit_pos / 8;
7107 }
828d5846 7108
940da03e 7109 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
7110 fld_offset, field_type_p, byte_offset_p,
7111 bit_offset_p, bit_size_p, index_p))
7112 return 1;
828d5846
XR
7113 }
7114
4c4b4cd2
PH
7115 return 0;
7116}
7117
0963b4bd 7118/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7119
52ce6436
PH
7120static int
7121num_visible_fields (struct type *type)
7122{
7123 int n;
5b4ee69b 7124
52ce6436
PH
7125 n = 0;
7126 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7127 return n;
7128}
14f9c5c9 7129
4c4b4cd2 7130/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7131 and search in it assuming it has (class) type TYPE.
7132 If found, return value, else return NULL.
7133
828d5846
XR
7134 Searches recursively through wrapper fields (e.g., '_parent').
7135
7136 In the case of homonyms in the tagged types, please refer to the
7137 long explanation in find_struct_field's function documentation. */
14f9c5c9 7138
4c4b4cd2 7139static struct value *
108d56a4 7140ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 7141 struct type *type)
14f9c5c9
AS
7142{
7143 int i;
828d5846 7144 int parent_offset = -1;
14f9c5c9 7145
5b4ee69b 7146 type = ada_check_typedef (type);
1f704f76 7147 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7148 {
33d16dd9 7149 const char *t_field_name = type->field (i).name ();
14f9c5c9
AS
7150
7151 if (t_field_name == NULL)
dda83cd7 7152 continue;
14f9c5c9 7153
828d5846 7154 else if (ada_is_parent_field (type, i))
dda83cd7 7155 {
828d5846
XR
7156 /* This is a field pointing us to the parent type of a tagged
7157 type. As hinted in this function's documentation, we give
7158 preference to fields in the current record first, so what
7159 we do here is just record the index of this field before
7160 we skip it. If it turns out we couldn't find our field
7161 in the current record, then we'll get back to it and search
7162 inside it whether the field might exist in the parent. */
7163
dda83cd7
SM
7164 parent_offset = i;
7165 continue;
7166 }
828d5846 7167
14f9c5c9 7168 else if (field_name_match (t_field_name, name))
dda83cd7 7169 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7170
7171 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7172 {
7173 struct value *v = /* Do not let indent join lines here. */
7174 ada_search_struct_field (name, arg,
b610c045 7175 offset + type->field (i).loc_bitpos () / 8,
dda83cd7 7176 type->field (i).type ());
5b4ee69b 7177
dda83cd7
SM
7178 if (v != NULL)
7179 return v;
7180 }
14f9c5c9
AS
7181
7182 else if (ada_is_variant_part (type, i))
dda83cd7 7183 {
0963b4bd 7184 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
7185 int j;
7186 struct type *field_type = ada_check_typedef (type->field (i).type ());
b610c045 7187 int var_offset = offset + type->field (i).loc_bitpos () / 8;
4c4b4cd2 7188
dda83cd7
SM
7189 for (j = 0; j < field_type->num_fields (); j += 1)
7190 {
7191 struct value *v = ada_search_struct_field /* Force line
0963b4bd 7192 break. */
dda83cd7 7193 (name, arg,
b610c045 7194 var_offset + field_type->field (j).loc_bitpos () / 8,
dda83cd7 7195 field_type->field (j).type ());
5b4ee69b 7196
dda83cd7
SM
7197 if (v != NULL)
7198 return v;
7199 }
7200 }
14f9c5c9 7201 }
828d5846
XR
7202
7203 /* Field not found so far. If this is a tagged type which
7204 has a parent, try finding that field in the parent now. */
7205
7206 if (parent_offset != -1)
7207 {
7208 struct value *v = ada_search_struct_field (
b610c045 7209 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
940da03e 7210 type->field (parent_offset).type ());
828d5846
XR
7211
7212 if (v != NULL)
dda83cd7 7213 return v;
828d5846
XR
7214 }
7215
14f9c5c9
AS
7216 return NULL;
7217}
d2e4a39e 7218
52ce6436
PH
7219static struct value *ada_index_struct_field_1 (int *, struct value *,
7220 int, struct type *);
7221
7222
7223/* Return field #INDEX in ARG, where the index is that returned by
7224 * find_struct_field through its INDEX_P argument. Adjust the address
7225 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7226 * If found, return value, else return NULL. */
52ce6436
PH
7227
7228static struct value *
7229ada_index_struct_field (int index, struct value *arg, int offset,
7230 struct type *type)
7231{
7232 return ada_index_struct_field_1 (&index, arg, offset, type);
7233}
7234
7235
7236/* Auxiliary function for ada_index_struct_field. Like
7237 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7238 * *INDEX_P. */
52ce6436
PH
7239
7240static struct value *
7241ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7242 struct type *type)
7243{
7244 int i;
7245 type = ada_check_typedef (type);
7246
1f704f76 7247 for (i = 0; i < type->num_fields (); i += 1)
52ce6436 7248 {
33d16dd9 7249 if (type->field (i).name () == NULL)
dda83cd7 7250 continue;
52ce6436 7251 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7252 {
7253 struct value *v = /* Do not let indent join lines here. */
7254 ada_index_struct_field_1 (index_p, arg,
b610c045 7255 offset + type->field (i).loc_bitpos () / 8,
940da03e 7256 type->field (i).type ());
5b4ee69b 7257
dda83cd7
SM
7258 if (v != NULL)
7259 return v;
7260 }
52ce6436
PH
7261
7262 else if (ada_is_variant_part (type, i))
dda83cd7 7263 {
52ce6436 7264 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7265 find_struct_field. */
52ce6436 7266 error (_("Cannot assign this kind of variant record"));
dda83cd7 7267 }
52ce6436 7268 else if (*index_p == 0)
dda83cd7 7269 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
7270 else
7271 *index_p -= 1;
7272 }
7273 return NULL;
7274}
7275
3b4de39c 7276/* Return a string representation of type TYPE. */
99bbb428 7277
3b4de39c 7278static std::string
99bbb428
PA
7279type_as_string (struct type *type)
7280{
d7e74731 7281 string_file tmp_stream;
99bbb428 7282
d7e74731 7283 type_print (type, "", &tmp_stream, -1);
99bbb428 7284
5d10a204 7285 return tmp_stream.release ();
99bbb428
PA
7286}
7287
14f9c5c9 7288/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7289 If DISPP is non-null, add its byte displacement from the beginning of a
7290 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7291 work for packed fields).
7292
7293 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7294 followed by "___".
14f9c5c9 7295
0963b4bd 7296 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7297 be a (pointer or reference)+ to a struct or union, and the
7298 ultimate target type will be searched.
14f9c5c9
AS
7299
7300 Looks recursively into variant clauses and parent types.
7301
828d5846
XR
7302 In the case of homonyms in the tagged types, please refer to the
7303 long explanation in find_struct_field's function documentation.
7304
4c4b4cd2
PH
7305 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7306 TYPE is not a type of the right kind. */
14f9c5c9 7307
4c4b4cd2 7308static struct type *
a121b7c1 7309ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 7310 int noerr)
14f9c5c9
AS
7311{
7312 int i;
828d5846 7313 int parent_offset = -1;
14f9c5c9
AS
7314
7315 if (name == NULL)
7316 goto BadName;
7317
76a01679 7318 if (refok && type != NULL)
4c4b4cd2
PH
7319 while (1)
7320 {
dda83cd7
SM
7321 type = ada_check_typedef (type);
7322 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7323 break;
27710edb 7324 type = type->target_type ();
4c4b4cd2 7325 }
14f9c5c9 7326
76a01679 7327 if (type == NULL
78134374
SM
7328 || (type->code () != TYPE_CODE_STRUCT
7329 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7330 {
4c4b4cd2 7331 if (noerr)
dda83cd7 7332 return NULL;
99bbb428 7333
3b4de39c
PA
7334 error (_("Type %s is not a structure or union type"),
7335 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7336 }
7337
7338 type = to_static_fixed_type (type);
7339
1f704f76 7340 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7341 {
33d16dd9 7342 const char *t_field_name = type->field (i).name ();
14f9c5c9 7343 struct type *t;
d2e4a39e 7344
14f9c5c9 7345 if (t_field_name == NULL)
dda83cd7 7346 continue;
14f9c5c9 7347
828d5846 7348 else if (ada_is_parent_field (type, i))
dda83cd7 7349 {
828d5846
XR
7350 /* This is a field pointing us to the parent type of a tagged
7351 type. As hinted in this function's documentation, we give
7352 preference to fields in the current record first, so what
7353 we do here is just record the index of this field before
7354 we skip it. If it turns out we couldn't find our field
7355 in the current record, then we'll get back to it and search
7356 inside it whether the field might exist in the parent. */
7357
dda83cd7
SM
7358 parent_offset = i;
7359 continue;
7360 }
828d5846 7361
14f9c5c9 7362 else if (field_name_match (t_field_name, name))
940da03e 7363 return type->field (i).type ();
14f9c5c9
AS
7364
7365 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7366 {
7367 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7368 0, 1);
7369 if (t != NULL)
988f6b3d 7370 return t;
dda83cd7 7371 }
14f9c5c9
AS
7372
7373 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7374 {
7375 int j;
7376 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7377
dda83cd7
SM
7378 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7379 {
b1f33ddd 7380 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7381 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7382 generates these for unchecked variant types. Revisit
dda83cd7 7383 if the compiler changes this practice. */
33d16dd9 7384 const char *v_field_name = field_type->field (j).name ();
988f6b3d 7385
b1f33ddd
JB
7386 if (v_field_name != NULL
7387 && field_name_match (v_field_name, name))
940da03e 7388 t = field_type->field (j).type ();
b1f33ddd 7389 else
940da03e 7390 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7391 name, 0, 1);
b1f33ddd 7392
dda83cd7 7393 if (t != NULL)
988f6b3d 7394 return t;
dda83cd7
SM
7395 }
7396 }
14f9c5c9
AS
7397
7398 }
7399
828d5846
XR
7400 /* Field not found so far. If this is a tagged type which
7401 has a parent, try finding that field in the parent now. */
7402
7403 if (parent_offset != -1)
7404 {
dda83cd7 7405 struct type *t;
828d5846 7406
dda83cd7
SM
7407 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7408 name, 0, 1);
7409 if (t != NULL)
828d5846
XR
7410 return t;
7411 }
7412
14f9c5c9 7413BadName:
d2e4a39e 7414 if (!noerr)
14f9c5c9 7415 {
2b2798cc 7416 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7417
7418 error (_("Type %s has no component named %s"),
3b4de39c 7419 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7420 }
7421
7422 return NULL;
7423}
7424
b1f33ddd
JB
7425/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7426 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7427 represents an unchecked union (that is, the variant part of a
0963b4bd 7428 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7429
7430static int
7431is_unchecked_variant (struct type *var_type, struct type *outer_type)
7432{
a121b7c1 7433 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7434
988f6b3d 7435 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7436}
7437
7438
14f9c5c9 7439/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7440 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7441 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7442
d2e4a39e 7443int
d8af9068 7444ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7445{
7446 int others_clause;
7447 int i;
a121b7c1 7448 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7449 struct value *discrim;
14f9c5c9
AS
7450 LONGEST discrim_val;
7451
012370f6
TT
7452 /* Using plain value_from_contents_and_address here causes problems
7453 because we will end up trying to resolve a type that is currently
7454 being constructed. */
0c281816
JB
7455 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7456 if (discrim == NULL)
14f9c5c9 7457 return -1;
0c281816 7458 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7459
7460 others_clause = -1;
1f704f76 7461 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7462 {
7463 if (ada_is_others_clause (var_type, i))
dda83cd7 7464 others_clause = i;
14f9c5c9 7465 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7466 return i;
14f9c5c9
AS
7467 }
7468
7469 return others_clause;
7470}
d2e4a39e 7471\f
14f9c5c9
AS
7472
7473
dda83cd7 7474 /* Dynamic-Sized Records */
14f9c5c9
AS
7475
7476/* Strategy: The type ostensibly attached to a value with dynamic size
7477 (i.e., a size that is not statically recorded in the debugging
7478 data) does not accurately reflect the size or layout of the value.
7479 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7480 conventional types that are constructed on the fly. */
14f9c5c9
AS
7481
7482/* There is a subtle and tricky problem here. In general, we cannot
7483 determine the size of dynamic records without its data. However,
7484 the 'struct value' data structure, which GDB uses to represent
7485 quantities in the inferior process (the target), requires the size
7486 of the type at the time of its allocation in order to reserve space
7487 for GDB's internal copy of the data. That's why the
7488 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7489 rather than struct value*s.
14f9c5c9
AS
7490
7491 However, GDB's internal history variables ($1, $2, etc.) are
7492 struct value*s containing internal copies of the data that are not, in
7493 general, the same as the data at their corresponding addresses in
7494 the target. Fortunately, the types we give to these values are all
7495 conventional, fixed-size types (as per the strategy described
7496 above), so that we don't usually have to perform the
7497 'to_fixed_xxx_type' conversions to look at their values.
7498 Unfortunately, there is one exception: if one of the internal
7499 history variables is an array whose elements are unconstrained
7500 records, then we will need to create distinct fixed types for each
7501 element selected. */
7502
7503/* The upshot of all of this is that many routines take a (type, host
7504 address, target address) triple as arguments to represent a value.
7505 The host address, if non-null, is supposed to contain an internal
7506 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7507 target at the target address. */
14f9c5c9
AS
7508
7509/* Assuming that VAL0 represents a pointer value, the result of
7510 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7511 dynamic-sized types. */
14f9c5c9 7512
d2e4a39e
AS
7513struct value *
7514ada_value_ind (struct value *val0)
14f9c5c9 7515{
c48db5ca 7516 struct value *val = value_ind (val0);
5b4ee69b 7517
b50d69b5
JG
7518 if (ada_is_tagged_type (value_type (val), 0))
7519 val = ada_tag_value_at_base_address (val);
7520
4c4b4cd2 7521 return ada_to_fixed_value (val);
14f9c5c9
AS
7522}
7523
7524/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7525 qualifiers on VAL0. */
7526
d2e4a39e
AS
7527static struct value *
7528ada_coerce_ref (struct value *val0)
7529{
78134374 7530 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7531 {
7532 struct value *val = val0;
5b4ee69b 7533
994b9211 7534 val = coerce_ref (val);
b50d69b5
JG
7535
7536 if (ada_is_tagged_type (value_type (val), 0))
7537 val = ada_tag_value_at_base_address (val);
7538
4c4b4cd2 7539 return ada_to_fixed_value (val);
d2e4a39e
AS
7540 }
7541 else
14f9c5c9
AS
7542 return val0;
7543}
7544
4c4b4cd2 7545/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7546
7547static unsigned int
ebf56fd3 7548field_alignment (struct type *type, int f)
14f9c5c9 7549{
33d16dd9 7550 const char *name = type->field (f).name ();
64a1bf19 7551 int len;
14f9c5c9
AS
7552 int align_offset;
7553
64a1bf19
JB
7554 /* The field name should never be null, unless the debugging information
7555 is somehow malformed. In this case, we assume the field does not
7556 require any alignment. */
7557 if (name == NULL)
7558 return 1;
7559
7560 len = strlen (name);
7561
4c4b4cd2
PH
7562 if (!isdigit (name[len - 1]))
7563 return 1;
14f9c5c9 7564
d2e4a39e 7565 if (isdigit (name[len - 2]))
14f9c5c9
AS
7566 align_offset = len - 2;
7567 else
7568 align_offset = len - 1;
7569
61012eef 7570 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7571 return TARGET_CHAR_BIT;
7572
4c4b4cd2
PH
7573 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7574}
7575
852dff6c 7576/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7577
852dff6c
JB
7578static struct symbol *
7579ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7580{
7581 struct symbol *sym;
7582
7583 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
66d7f48f 7584 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
4c4b4cd2
PH
7585 return sym;
7586
4186eb54
KS
7587 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7588 return sym;
14f9c5c9
AS
7589}
7590
dddfab26
UW
7591/* Find a type named NAME. Ignores ambiguity. This routine will look
7592 solely for types defined by debug info, it will not search the GDB
7593 primitive types. */
4c4b4cd2 7594
852dff6c 7595static struct type *
ebf56fd3 7596ada_find_any_type (const char *name)
14f9c5c9 7597{
852dff6c 7598 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7599
14f9c5c9 7600 if (sym != NULL)
5f9c5a63 7601 return sym->type ();
14f9c5c9 7602
dddfab26 7603 return NULL;
14f9c5c9
AS
7604}
7605
739593e0
JB
7606/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7607 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7608 symbol, in which case it is returned. Otherwise, this looks for
7609 symbols whose name is that of NAME_SYM suffixed with "___XR".
7610 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7611
c0e70c62
TT
7612static bool
7613ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7614{
987012b8 7615 const char *name = name_sym->linkage_name ();
c0e70c62 7616 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7617}
7618
14f9c5c9 7619/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7620 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7621 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7622 otherwise return 0. */
7623
14f9c5c9 7624int
d2e4a39e 7625ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7626{
7627 if (type1 == NULL)
7628 return 1;
7629 else if (type0 == NULL)
7630 return 0;
78134374 7631 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7632 return 1;
78134374 7633 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7634 return 0;
7d93a1e0 7635 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7636 return 1;
ad82864c 7637 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7638 return 1;
4c4b4cd2 7639 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7640 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7641 return 1;
aeb5907d
JB
7642 else
7643 {
7d93a1e0
SM
7644 const char *type0_name = type0->name ();
7645 const char *type1_name = type1->name ();
aeb5907d
JB
7646
7647 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7648 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7649 return 1;
7650 }
14f9c5c9
AS
7651 return 0;
7652}
7653
e86ca25f
TT
7654/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7655 null. */
4c4b4cd2 7656
0d5cff50 7657const char *
d2e4a39e 7658ada_type_name (struct type *type)
14f9c5c9 7659{
d2e4a39e 7660 if (type == NULL)
14f9c5c9 7661 return NULL;
7d93a1e0 7662 return type->name ();
14f9c5c9
AS
7663}
7664
b4ba55a1
JB
7665/* Search the list of "descriptive" types associated to TYPE for a type
7666 whose name is NAME. */
7667
7668static struct type *
7669find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7670{
931e5bc3 7671 struct type *result, *tmp;
b4ba55a1 7672
c6044dd1
JB
7673 if (ada_ignore_descriptive_types_p)
7674 return NULL;
7675
b4ba55a1
JB
7676 /* If there no descriptive-type info, then there is no parallel type
7677 to be found. */
7678 if (!HAVE_GNAT_AUX_INFO (type))
7679 return NULL;
7680
7681 result = TYPE_DESCRIPTIVE_TYPE (type);
7682 while (result != NULL)
7683 {
0d5cff50 7684 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7685
7686 if (result_name == NULL)
dda83cd7
SM
7687 {
7688 warning (_("unexpected null name on descriptive type"));
7689 return NULL;
7690 }
b4ba55a1
JB
7691
7692 /* If the names match, stop. */
7693 if (strcmp (result_name, name) == 0)
7694 break;
7695
7696 /* Otherwise, look at the next item on the list, if any. */
7697 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7698 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7699 else
7700 tmp = NULL;
7701
7702 /* If not found either, try after having resolved the typedef. */
7703 if (tmp != NULL)
7704 result = tmp;
b4ba55a1 7705 else
931e5bc3 7706 {
f168693b 7707 result = check_typedef (result);
931e5bc3
JG
7708 if (HAVE_GNAT_AUX_INFO (result))
7709 result = TYPE_DESCRIPTIVE_TYPE (result);
7710 else
7711 result = NULL;
7712 }
b4ba55a1
JB
7713 }
7714
7715 /* If we didn't find a match, see whether this is a packed array. With
7716 older compilers, the descriptive type information is either absent or
7717 irrelevant when it comes to packed arrays so the above lookup fails.
7718 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7719 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7720 return ada_find_any_type (name);
7721
7722 return result;
7723}
7724
7725/* Find a parallel type to TYPE with the specified NAME, using the
7726 descriptive type taken from the debugging information, if available,
7727 and otherwise using the (slower) name-based method. */
7728
7729static struct type *
7730ada_find_parallel_type_with_name (struct type *type, const char *name)
7731{
7732 struct type *result = NULL;
7733
7734 if (HAVE_GNAT_AUX_INFO (type))
7735 result = find_parallel_type_by_descriptive_type (type, name);
7736 else
7737 result = ada_find_any_type (name);
7738
7739 return result;
7740}
7741
7742/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7743 SUFFIX to the name of TYPE. */
14f9c5c9 7744
d2e4a39e 7745struct type *
ebf56fd3 7746ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7747{
0d5cff50 7748 char *name;
fe978cb0 7749 const char *type_name = ada_type_name (type);
14f9c5c9 7750 int len;
d2e4a39e 7751
fe978cb0 7752 if (type_name == NULL)
14f9c5c9
AS
7753 return NULL;
7754
fe978cb0 7755 len = strlen (type_name);
14f9c5c9 7756
b4ba55a1 7757 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7758
fe978cb0 7759 strcpy (name, type_name);
14f9c5c9
AS
7760 strcpy (name + len, suffix);
7761
b4ba55a1 7762 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7763}
7764
14f9c5c9 7765/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7766 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7767
d2e4a39e
AS
7768static struct type *
7769dynamic_template_type (struct type *type)
14f9c5c9 7770{
61ee279c 7771 type = ada_check_typedef (type);
14f9c5c9 7772
78134374 7773 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7774 || ada_type_name (type) == NULL)
14f9c5c9 7775 return NULL;
d2e4a39e 7776 else
14f9c5c9
AS
7777 {
7778 int len = strlen (ada_type_name (type));
5b4ee69b 7779
4c4b4cd2 7780 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7781 return type;
14f9c5c9 7782 else
dda83cd7 7783 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7784 }
7785}
7786
7787/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7788 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7789
d2e4a39e
AS
7790static int
7791is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9 7792{
33d16dd9 7793 const char *name = templ_type->field (field_num).name ();
5b4ee69b 7794
d2e4a39e 7795 return name != NULL
940da03e 7796 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7797 && strstr (name, "___XVL") != NULL;
7798}
7799
4c4b4cd2
PH
7800/* The index of the variant field of TYPE, or -1 if TYPE does not
7801 represent a variant record type. */
14f9c5c9 7802
d2e4a39e 7803static int
4c4b4cd2 7804variant_field_index (struct type *type)
14f9c5c9
AS
7805{
7806 int f;
7807
78134374 7808 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7809 return -1;
7810
1f704f76 7811 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7812 {
7813 if (ada_is_variant_part (type, f))
dda83cd7 7814 return f;
4c4b4cd2
PH
7815 }
7816 return -1;
14f9c5c9
AS
7817}
7818
4c4b4cd2
PH
7819/* A record type with no fields. */
7820
d2e4a39e 7821static struct type *
fe978cb0 7822empty_record (struct type *templ)
14f9c5c9 7823{
fe978cb0 7824 struct type *type = alloc_type_copy (templ);
5b4ee69b 7825
67607e24 7826 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7827 INIT_NONE_SPECIFIC (type);
d0e39ea2 7828 type->set_name ("<empty>");
14f9c5c9
AS
7829 TYPE_LENGTH (type) = 0;
7830 return type;
7831}
7832
7833/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7834 the value of type TYPE at VALADDR or ADDRESS (see comments at
7835 the beginning of this section) VAL according to GNAT conventions.
7836 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7837 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7838 an outer-level type (i.e., as opposed to a branch of a variant.) A
7839 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7840 of the variant.
14f9c5c9 7841
4c4b4cd2
PH
7842 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7843 length are not statically known are discarded. As a consequence,
7844 VALADDR, ADDRESS and DVAL0 are ignored.
7845
7846 NOTE: Limitations: For now, we assume that dynamic fields and
7847 variants occupy whole numbers of bytes. However, they need not be
7848 byte-aligned. */
7849
7850struct type *
10a2c479 7851ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7852 const gdb_byte *valaddr,
dda83cd7
SM
7853 CORE_ADDR address, struct value *dval0,
7854 int keep_dynamic_fields)
14f9c5c9 7855{
d2e4a39e
AS
7856 struct value *mark = value_mark ();
7857 struct value *dval;
7858 struct type *rtype;
14f9c5c9 7859 int nfields, bit_len;
4c4b4cd2 7860 int variant_field;
14f9c5c9 7861 long off;
d94e4f4f 7862 int fld_bit_len;
14f9c5c9
AS
7863 int f;
7864
4c4b4cd2
PH
7865 /* Compute the number of fields in this record type that are going
7866 to be processed: unless keep_dynamic_fields, this includes only
7867 fields whose position and length are static will be processed. */
7868 if (keep_dynamic_fields)
1f704f76 7869 nfields = type->num_fields ();
4c4b4cd2
PH
7870 else
7871 {
7872 nfields = 0;
1f704f76 7873 while (nfields < type->num_fields ()
dda83cd7
SM
7874 && !ada_is_variant_part (type, nfields)
7875 && !is_dynamic_field (type, nfields))
7876 nfields++;
4c4b4cd2
PH
7877 }
7878
e9bb382b 7879 rtype = alloc_type_copy (type);
67607e24 7880 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7881 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7882 rtype->set_num_fields (nfields);
3cabb6b0
SM
7883 rtype->set_fields
7884 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7885 rtype->set_name (ada_type_name (type));
9cdd0d12 7886 rtype->set_is_fixed_instance (true);
14f9c5c9 7887
d2e4a39e
AS
7888 off = 0;
7889 bit_len = 0;
4c4b4cd2
PH
7890 variant_field = -1;
7891
14f9c5c9
AS
7892 for (f = 0; f < nfields; f += 1)
7893 {
a89febbd 7894 off = align_up (off, field_alignment (type, f))
b610c045 7895 + type->field (f).loc_bitpos ();
cd3f655c 7896 rtype->field (f).set_loc_bitpos (off);
d2e4a39e 7897 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7898
d2e4a39e 7899 if (ada_is_variant_part (type, f))
dda83cd7
SM
7900 {
7901 variant_field = f;
7902 fld_bit_len = 0;
7903 }
14f9c5c9 7904 else if (is_dynamic_field (type, f))
dda83cd7 7905 {
284614f0
JB
7906 const gdb_byte *field_valaddr = valaddr;
7907 CORE_ADDR field_address = address;
27710edb 7908 struct type *field_type = type->field (f).type ()->target_type ();
284614f0 7909
dda83cd7 7910 if (dval0 == NULL)
b5304971 7911 {
012370f6
TT
7912 /* Using plain value_from_contents_and_address here
7913 causes problems because we will end up trying to
7914 resolve a type that is currently being
7915 constructed. */
7916 dval = value_from_contents_and_address_unresolved (rtype,
7917 valaddr,
7918 address);
9f1f738a 7919 rtype = value_type (dval);
b5304971 7920 }
dda83cd7
SM
7921 else
7922 dval = dval0;
4c4b4cd2 7923
284614f0
JB
7924 /* If the type referenced by this field is an aligner type, we need
7925 to unwrap that aligner type, because its size might not be set.
7926 Keeping the aligner type would cause us to compute the wrong
7927 size for this field, impacting the offset of the all the fields
7928 that follow this one. */
7929 if (ada_is_aligner_type (field_type))
7930 {
b610c045 7931 long field_offset = type->field (f).loc_bitpos ();
284614f0
JB
7932
7933 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7934 field_address = cond_offset_target (field_address, field_offset);
7935 field_type = ada_aligned_type (field_type);
7936 }
7937
7938 field_valaddr = cond_offset_host (field_valaddr,
7939 off / TARGET_CHAR_BIT);
7940 field_address = cond_offset_target (field_address,
7941 off / TARGET_CHAR_BIT);
7942
7943 /* Get the fixed type of the field. Note that, in this case,
7944 we do not want to get the real type out of the tag: if
7945 the current field is the parent part of a tagged record,
7946 we will get the tag of the object. Clearly wrong: the real
7947 type of the parent is not the real type of the child. We
7948 would end up in an infinite loop. */
7949 field_type = ada_get_base_type (field_type);
7950 field_type = ada_to_fixed_type (field_type, field_valaddr,
7951 field_address, dval, 0);
7952
5d14b6e5 7953 rtype->field (f).set_type (field_type);
33d16dd9 7954 rtype->field (f).set_name (type->field (f).name ());
27f2a97b
JB
7955 /* The multiplication can potentially overflow. But because
7956 the field length has been size-checked just above, and
7957 assuming that the maximum size is a reasonable value,
7958 an overflow should not happen in practice. So rather than
7959 adding overflow recovery code to this already complex code,
7960 we just assume that it's not going to happen. */
dda83cd7
SM
7961 fld_bit_len =
7962 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7963 }
14f9c5c9 7964 else
dda83cd7 7965 {
5ded5331
JB
7966 /* Note: If this field's type is a typedef, it is important
7967 to preserve the typedef layer.
7968
7969 Otherwise, we might be transforming a typedef to a fat
7970 pointer (encoding a pointer to an unconstrained array),
7971 into a basic fat pointer (encoding an unconstrained
7972 array). As both types are implemented using the same
7973 structure, the typedef is the only clue which allows us
7974 to distinguish between the two options. Stripping it
7975 would prevent us from printing this field appropriately. */
dda83cd7 7976 rtype->field (f).set_type (type->field (f).type ());
33d16dd9 7977 rtype->field (f).set_name (type->field (f).name ());
dda83cd7
SM
7978 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7979 fld_bit_len =
7980 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7981 else
5ded5331 7982 {
940da03e 7983 struct type *field_type = type->field (f).type ();
5ded5331
JB
7984
7985 /* We need to be careful of typedefs when computing
7986 the length of our field. If this is a typedef,
7987 get the length of the target type, not the length
7988 of the typedef. */
78134374 7989 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7990 field_type = ada_typedef_target_type (field_type);
7991
dda83cd7
SM
7992 fld_bit_len =
7993 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 7994 }
dda83cd7 7995 }
14f9c5c9 7996 if (off + fld_bit_len > bit_len)
dda83cd7 7997 bit_len = off + fld_bit_len;
d94e4f4f 7998 off += fld_bit_len;
4c4b4cd2 7999 TYPE_LENGTH (rtype) =
dda83cd7 8000 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8001 }
4c4b4cd2
PH
8002
8003 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8004 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8005 the record. This can happen in the presence of representation
8006 clauses. */
8007 if (variant_field >= 0)
8008 {
8009 struct type *branch_type;
8010
b610c045 8011 off = rtype->field (variant_field).loc_bitpos ();
4c4b4cd2
PH
8012
8013 if (dval0 == NULL)
9f1f738a 8014 {
012370f6
TT
8015 /* Using plain value_from_contents_and_address here causes
8016 problems because we will end up trying to resolve a type
8017 that is currently being constructed. */
8018 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8019 address);
9f1f738a
SA
8020 rtype = value_type (dval);
8021 }
4c4b4cd2 8022 else
dda83cd7 8023 dval = dval0;
4c4b4cd2
PH
8024
8025 branch_type =
dda83cd7
SM
8026 to_fixed_variant_branch_type
8027 (type->field (variant_field).type (),
8028 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8029 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 8030 if (branch_type == NULL)
dda83cd7
SM
8031 {
8032 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8033 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8034 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 8035 }
4c4b4cd2 8036 else
dda83cd7
SM
8037 {
8038 rtype->field (variant_field).set_type (branch_type);
d3fd12df 8039 rtype->field (variant_field).set_name ("S");
dda83cd7
SM
8040 fld_bit_len =
8041 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8042 TARGET_CHAR_BIT;
8043 if (off + fld_bit_len > bit_len)
8044 bit_len = off + fld_bit_len;
8045 TYPE_LENGTH (rtype) =
8046 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8047 }
4c4b4cd2
PH
8048 }
8049
714e53ab
PH
8050 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8051 should contain the alignment of that record, which should be a strictly
8052 positive value. If null or negative, then something is wrong, most
8053 probably in the debug info. In that case, we don't round up the size
0963b4bd 8054 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8055 the current RTYPE length might be good enough for our purposes. */
8056 if (TYPE_LENGTH (type) <= 0)
8057 {
7d93a1e0 8058 if (rtype->name ())
cc1defb1 8059 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8060 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8061 else
cc1defb1
KS
8062 warning (_("Invalid type size for <unnamed> detected: %s."),
8063 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8064 }
8065 else
8066 {
a89febbd
TT
8067 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8068 TYPE_LENGTH (type));
714e53ab 8069 }
14f9c5c9
AS
8070
8071 value_free_to_mark (mark);
14f9c5c9
AS
8072 return rtype;
8073}
8074
4c4b4cd2
PH
8075/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8076 of 1. */
14f9c5c9 8077
d2e4a39e 8078static struct type *
fc1a4b47 8079template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8080 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
8081{
8082 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 8083 address, dval0, 1);
4c4b4cd2
PH
8084}
8085
8086/* An ordinary record type in which ___XVL-convention fields and
8087 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8088 static approximations, containing all possible fields. Uses
8089 no runtime values. Useless for use in values, but that's OK,
8090 since the results are used only for type determinations. Works on both
8091 structs and unions. Representation note: to save space, we memorize
27710edb 8092 the result of this function in the type::target_type of the
4c4b4cd2
PH
8093 template type. */
8094
8095static struct type *
8096template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8097{
8098 struct type *type;
8099 int nfields;
8100 int f;
8101
9e195661 8102 /* No need no do anything if the input type is already fixed. */
22c4c60c 8103 if (type0->is_fixed_instance ())
9e195661
PMR
8104 return type0;
8105
8106 /* Likewise if we already have computed the static approximation. */
27710edb
SM
8107 if (type0->target_type () != NULL)
8108 return type0->target_type ();
4c4b4cd2 8109
9e195661 8110 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8111 type = type0;
1f704f76 8112 nfields = type0->num_fields ();
9e195661
PMR
8113
8114 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8115 recompute all over next time. */
8a50fdce 8116 type0->set_target_type (type);
14f9c5c9
AS
8117
8118 for (f = 0; f < nfields; f += 1)
8119 {
940da03e 8120 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8121 struct type *new_type;
14f9c5c9 8122
4c4b4cd2 8123 if (is_dynamic_field (type0, f))
460efde1
JB
8124 {
8125 field_type = ada_check_typedef (field_type);
27710edb 8126 new_type = to_static_fixed_type (field_type->target_type ());
460efde1 8127 }
14f9c5c9 8128 else
dda83cd7 8129 new_type = static_unwrap_type (field_type);
9e195661
PMR
8130
8131 if (new_type != field_type)
8132 {
8133 /* Clone TYPE0 only the first time we get a new field type. */
8134 if (type == type0)
8135 {
8a50fdce
SM
8136 type = alloc_type_copy (type0);
8137 type0->set_target_type (type);
78134374 8138 type->set_code (type0->code ());
8ecb59f8 8139 INIT_NONE_SPECIFIC (type);
5e33d5f4 8140 type->set_num_fields (nfields);
3cabb6b0
SM
8141
8142 field *fields =
8143 ((struct field *)
8144 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8145 memcpy (fields, type0->fields (),
9e195661 8146 sizeof (struct field) * nfields);
3cabb6b0
SM
8147 type->set_fields (fields);
8148
d0e39ea2 8149 type->set_name (ada_type_name (type0));
9cdd0d12 8150 type->set_is_fixed_instance (true);
9e195661
PMR
8151 TYPE_LENGTH (type) = 0;
8152 }
5d14b6e5 8153 type->field (f).set_type (new_type);
33d16dd9 8154 type->field (f).set_name (type0->field (f).name ());
9e195661 8155 }
14f9c5c9 8156 }
9e195661 8157
14f9c5c9
AS
8158 return type;
8159}
8160
4c4b4cd2 8161/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8162 whose address in memory is ADDRESS, returns a revision of TYPE,
8163 which should be a non-dynamic-sized record, in which the variant
8164 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8165 for discriminant values in DVAL0, which can be NULL if the record
8166 contains the necessary discriminant values. */
8167
d2e4a39e 8168static struct type *
fc1a4b47 8169to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 8170 CORE_ADDR address, struct value *dval0)
14f9c5c9 8171{
d2e4a39e 8172 struct value *mark = value_mark ();
4c4b4cd2 8173 struct value *dval;
d2e4a39e 8174 struct type *rtype;
14f9c5c9 8175 struct type *branch_type;
1f704f76 8176 int nfields = type->num_fields ();
4c4b4cd2 8177 int variant_field = variant_field_index (type);
14f9c5c9 8178
4c4b4cd2 8179 if (variant_field == -1)
14f9c5c9
AS
8180 return type;
8181
4c4b4cd2 8182 if (dval0 == NULL)
9f1f738a
SA
8183 {
8184 dval = value_from_contents_and_address (type, valaddr, address);
8185 type = value_type (dval);
8186 }
4c4b4cd2
PH
8187 else
8188 dval = dval0;
8189
e9bb382b 8190 rtype = alloc_type_copy (type);
67607e24 8191 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8192 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8193 rtype->set_num_fields (nfields);
3cabb6b0
SM
8194
8195 field *fields =
d2e4a39e 8196 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8197 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8198 rtype->set_fields (fields);
8199
d0e39ea2 8200 rtype->set_name (ada_type_name (type));
9cdd0d12 8201 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
8202 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8203
4c4b4cd2 8204 branch_type = to_fixed_variant_branch_type
940da03e 8205 (type->field (variant_field).type (),
d2e4a39e 8206 cond_offset_host (valaddr,
b610c045 8207 type->field (variant_field).loc_bitpos ()
dda83cd7 8208 / TARGET_CHAR_BIT),
d2e4a39e 8209 cond_offset_target (address,
b610c045 8210 type->field (variant_field).loc_bitpos ()
dda83cd7 8211 / TARGET_CHAR_BIT), dval);
d2e4a39e 8212 if (branch_type == NULL)
14f9c5c9 8213 {
4c4b4cd2 8214 int f;
5b4ee69b 8215
4c4b4cd2 8216 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 8217 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8218 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8219 }
8220 else
8221 {
5d14b6e5 8222 rtype->field (variant_field).set_type (branch_type);
d3fd12df 8223 rtype->field (variant_field).set_name ("S");
4c4b4cd2 8224 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8225 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8226 }
940da03e 8227 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8228
4c4b4cd2 8229 value_free_to_mark (mark);
14f9c5c9
AS
8230 return rtype;
8231}
8232
8233/* An ordinary record type (with fixed-length fields) that describes
8234 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8235 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8236 should be in DVAL, a record value; it may be NULL if the object
8237 at ADDR itself contains any necessary discriminant values.
8238 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8239 values from the record are needed. Except in the case that DVAL,
8240 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8241 unchecked) is replaced by a particular branch of the variant.
8242
8243 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8244 is questionable and may be removed. It can arise during the
8245 processing of an unconstrained-array-of-record type where all the
8246 variant branches have exactly the same size. This is because in
8247 such cases, the compiler does not bother to use the XVS convention
8248 when encoding the record. I am currently dubious of this
8249 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8250
d2e4a39e 8251static struct type *
fc1a4b47 8252to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 8253 CORE_ADDR address, struct value *dval)
14f9c5c9 8254{
d2e4a39e 8255 struct type *templ_type;
14f9c5c9 8256
22c4c60c 8257 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8258 return type0;
8259
d2e4a39e 8260 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8261
8262 if (templ_type != NULL)
8263 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8264 else if (variant_field_index (type0) >= 0)
8265 {
8266 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 8267 return type0;
4c4b4cd2 8268 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 8269 dval);
4c4b4cd2 8270 }
14f9c5c9
AS
8271 else
8272 {
9cdd0d12 8273 type0->set_is_fixed_instance (true);
14f9c5c9
AS
8274 return type0;
8275 }
8276
8277}
8278
8279/* An ordinary record type (with fixed-length fields) that describes
8280 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8281 union type. Any necessary discriminants' values should be in DVAL,
8282 a record value. That is, this routine selects the appropriate
8283 branch of the union at ADDR according to the discriminant value
b1f33ddd 8284 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8285 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8286
d2e4a39e 8287static struct type *
fc1a4b47 8288to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 8289 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8290{
8291 int which;
d2e4a39e
AS
8292 struct type *templ_type;
8293 struct type *var_type;
14f9c5c9 8294
78134374 8295 if (var_type0->code () == TYPE_CODE_PTR)
27710edb 8296 var_type = var_type0->target_type ();
d2e4a39e 8297 else
14f9c5c9
AS
8298 var_type = var_type0;
8299
8300 templ_type = ada_find_parallel_type (var_type, "___XVU");
8301
8302 if (templ_type != NULL)
8303 var_type = templ_type;
8304
b1f33ddd
JB
8305 if (is_unchecked_variant (var_type, value_type (dval)))
8306 return var_type0;
d8af9068 8307 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8308
8309 if (which < 0)
e9bb382b 8310 return empty_record (var_type);
14f9c5c9 8311 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8312 return to_fixed_record_type
27710edb 8313 (var_type->field (which).type ()->target_type(), valaddr, address, dval);
940da03e 8314 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8315 return
8316 to_fixed_record_type
940da03e 8317 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8318 else
940da03e 8319 return var_type->field (which).type ();
14f9c5c9
AS
8320}
8321
8908fca5
JB
8322/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8323 ENCODING_TYPE, a type following the GNAT conventions for discrete
8324 type encodings, only carries redundant information. */
8325
8326static int
8327ada_is_redundant_range_encoding (struct type *range_type,
8328 struct type *encoding_type)
8329{
108d56a4 8330 const char *bounds_str;
8908fca5
JB
8331 int n;
8332 LONGEST lo, hi;
8333
78134374 8334 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8335
78134374
SM
8336 if (get_base_type (range_type)->code ()
8337 != get_base_type (encoding_type)->code ())
005e2509
JB
8338 {
8339 /* The compiler probably used a simple base type to describe
8340 the range type instead of the range's actual base type,
8341 expecting us to get the real base type from the encoding
8342 anyway. In this situation, the encoding cannot be ignored
8343 as redundant. */
8344 return 0;
8345 }
8346
8908fca5
JB
8347 if (is_dynamic_type (range_type))
8348 return 0;
8349
7d93a1e0 8350 if (encoding_type->name () == NULL)
8908fca5
JB
8351 return 0;
8352
7d93a1e0 8353 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8354 if (bounds_str == NULL)
8355 return 0;
8356
8357 n = 8; /* Skip "___XDLU_". */
8358 if (!ada_scan_number (bounds_str, n, &lo, &n))
8359 return 0;
5537ddd0 8360 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8361 return 0;
8362
8363 n += 2; /* Skip the "__" separator between the two bounds. */
8364 if (!ada_scan_number (bounds_str, n, &hi, &n))
8365 return 0;
5537ddd0 8366 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8367 return 0;
8368
8369 return 1;
8370}
8371
8372/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8373 a type following the GNAT encoding for describing array type
8374 indices, only carries redundant information. */
8375
8376static int
8377ada_is_redundant_index_type_desc (struct type *array_type,
8378 struct type *desc_type)
8379{
8380 struct type *this_layer = check_typedef (array_type);
8381 int i;
8382
1f704f76 8383 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8384 {
3d967001 8385 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8386 desc_type->field (i).type ()))
8908fca5 8387 return 0;
27710edb 8388 this_layer = check_typedef (this_layer->target_type ());
8908fca5
JB
8389 }
8390
8391 return 1;
8392}
8393
14f9c5c9
AS
8394/* Assuming that TYPE0 is an array type describing the type of a value
8395 at ADDR, and that DVAL describes a record containing any
8396 discriminants used in TYPE0, returns a type for the value that
8397 contains no dynamic components (that is, no components whose sizes
8398 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8399 true, gives an error message if the resulting type's size is over
4c4b4cd2 8400 varsize_limit. */
14f9c5c9 8401
d2e4a39e
AS
8402static struct type *
8403to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8404 int ignore_too_big)
14f9c5c9 8405{
d2e4a39e
AS
8406 struct type *index_type_desc;
8407 struct type *result;
ad82864c 8408 int constrained_packed_array_p;
931e5bc3 8409 static const char *xa_suffix = "___XA";
14f9c5c9 8410
b0dd7688 8411 type0 = ada_check_typedef (type0);
22c4c60c 8412 if (type0->is_fixed_instance ())
4c4b4cd2 8413 return type0;
14f9c5c9 8414
ad82864c
JB
8415 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8416 if (constrained_packed_array_p)
75fd6a26
TT
8417 {
8418 type0 = decode_constrained_packed_array_type (type0);
8419 if (type0 == nullptr)
8420 error (_("could not decode constrained packed array type"));
8421 }
284614f0 8422
931e5bc3
JG
8423 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8424
8425 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8426 encoding suffixed with 'P' may still be generated. If so,
8427 it should be used to find the XA type. */
8428
8429 if (index_type_desc == NULL)
8430 {
1da0522e 8431 const char *type_name = ada_type_name (type0);
931e5bc3 8432
1da0522e 8433 if (type_name != NULL)
931e5bc3 8434 {
1da0522e 8435 const int len = strlen (type_name);
931e5bc3
JG
8436 char *name = (char *) alloca (len + strlen (xa_suffix));
8437
1da0522e 8438 if (type_name[len - 1] == 'P')
931e5bc3 8439 {
1da0522e 8440 strcpy (name, type_name);
931e5bc3
JG
8441 strcpy (name + len - 1, xa_suffix);
8442 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8443 }
8444 }
8445 }
8446
28c85d6c 8447 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8448 if (index_type_desc != NULL
8449 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8450 {
8451 /* Ignore this ___XA parallel type, as it does not bring any
8452 useful information. This allows us to avoid creating fixed
8453 versions of the array's index types, which would be identical
8454 to the original ones. This, in turn, can also help avoid
8455 the creation of fixed versions of the array itself. */
8456 index_type_desc = NULL;
8457 }
8458
14f9c5c9
AS
8459 if (index_type_desc == NULL)
8460 {
27710edb 8461 struct type *elt_type0 = ada_check_typedef (type0->target_type ());
5b4ee69b 8462
14f9c5c9 8463 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8464 depend on the contents of the array in properly constructed
8465 debugging data. */
529cad9c 8466 /* Create a fixed version of the array element type.
dda83cd7
SM
8467 We're not providing the address of an element here,
8468 and thus the actual object value cannot be inspected to do
8469 the conversion. This should not be a problem, since arrays of
8470 unconstrained objects are not allowed. In particular, all
8471 the elements of an array of a tagged type should all be of
8472 the same type specified in the debugging info. No need to
8473 consult the object tag. */
1ed6ede0 8474 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8475
284614f0
JB
8476 /* Make sure we always create a new array type when dealing with
8477 packed array types, since we're going to fix-up the array
8478 type length and element bitsize a little further down. */
ad82864c 8479 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8480 result = type0;
14f9c5c9 8481 else
dda83cd7
SM
8482 result = create_array_type (alloc_type_copy (type0),
8483 elt_type, type0->index_type ());
14f9c5c9
AS
8484 }
8485 else
8486 {
8487 int i;
8488 struct type *elt_type0;
8489
8490 elt_type0 = type0;
1f704f76 8491 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
27710edb 8492 elt_type0 = elt_type0->target_type ();
14f9c5c9
AS
8493
8494 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8495 depend on the contents of the array in properly constructed
8496 debugging data. */
529cad9c 8497 /* Create a fixed version of the array element type.
dda83cd7
SM
8498 We're not providing the address of an element here,
8499 and thus the actual object value cannot be inspected to do
8500 the conversion. This should not be a problem, since arrays of
8501 unconstrained objects are not allowed. In particular, all
8502 the elements of an array of a tagged type should all be of
8503 the same type specified in the debugging info. No need to
8504 consult the object tag. */
1ed6ede0 8505 result =
dda83cd7 8506 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8507
8508 elt_type0 = type0;
1f704f76 8509 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8510 {
8511 struct type *range_type =
8512 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8513
dda83cd7
SM
8514 result = create_array_type (alloc_type_copy (elt_type0),
8515 result, range_type);
27710edb 8516 elt_type0 = elt_type0->target_type ();
dda83cd7 8517 }
14f9c5c9
AS
8518 }
8519
2e6fda7d
JB
8520 /* We want to preserve the type name. This can be useful when
8521 trying to get the type name of a value that has already been
8522 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8523 result->set_name (type0->name ());
2e6fda7d 8524
ad82864c 8525 if (constrained_packed_array_p)
284614f0
JB
8526 {
8527 /* So far, the resulting type has been created as if the original
8528 type was a regular (non-packed) array type. As a result, the
8529 bitsize of the array elements needs to be set again, and the array
8530 length needs to be recomputed based on that bitsize. */
27710edb 8531 int len = TYPE_LENGTH (result) / TYPE_LENGTH (result->target_type ());
284614f0
JB
8532 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8533
8534 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8535 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8536 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8537 TYPE_LENGTH (result)++;
284614f0
JB
8538 }
8539
9cdd0d12 8540 result->set_is_fixed_instance (true);
14f9c5c9 8541 return result;
d2e4a39e 8542}
14f9c5c9
AS
8543
8544
8545/* A standard type (containing no dynamically sized components)
8546 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8547 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8548 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8549 ADDRESS or in VALADDR contains these discriminants.
8550
1ed6ede0
JB
8551 If CHECK_TAG is not null, in the case of tagged types, this function
8552 attempts to locate the object's tag and use it to compute the actual
8553 type. However, when ADDRESS is null, we cannot use it to determine the
8554 location of the tag, and therefore compute the tagged type's actual type.
8555 So we return the tagged type without consulting the tag. */
529cad9c 8556
f192137b
JB
8557static struct type *
8558ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8559 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8560{
61ee279c 8561 type = ada_check_typedef (type);
8ecb59f8
TT
8562
8563 /* Only un-fixed types need to be handled here. */
8564 if (!HAVE_GNAT_AUX_INFO (type))
8565 return type;
8566
78134374 8567 switch (type->code ())
d2e4a39e
AS
8568 {
8569 default:
14f9c5c9 8570 return type;
d2e4a39e 8571 case TYPE_CODE_STRUCT:
4c4b4cd2 8572 {
dda83cd7
SM
8573 struct type *static_type = to_static_fixed_type (type);
8574 struct type *fixed_record_type =
8575 to_fixed_record_type (type, valaddr, address, NULL);
8576
8577 /* If STATIC_TYPE is a tagged type and we know the object's address,
8578 then we can determine its tag, and compute the object's actual
8579 type from there. Note that we have to use the fixed record
8580 type (the parent part of the record may have dynamic fields
8581 and the way the location of _tag is expressed may depend on
8582 them). */
8583
8584 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8585 {
b50d69b5
JG
8586 struct value *tag =
8587 value_tag_from_contents_and_address
8588 (fixed_record_type,
8589 valaddr,
8590 address);
8591 struct type *real_type = type_from_tag (tag);
8592 struct value *obj =
8593 value_from_contents_and_address (fixed_record_type,
8594 valaddr,
8595 address);
dda83cd7
SM
8596 fixed_record_type = value_type (obj);
8597 if (real_type != NULL)
8598 return to_fixed_record_type
b50d69b5
JG
8599 (real_type, NULL,
8600 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8601 }
8602
8603 /* Check to see if there is a parallel ___XVZ variable.
8604 If there is, then it provides the actual size of our type. */
8605 else if (ada_type_name (fixed_record_type) != NULL)
8606 {
8607 const char *name = ada_type_name (fixed_record_type);
8608 char *xvz_name
224c3ddb 8609 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8610 bool xvz_found = false;
dda83cd7 8611 LONGEST size;
4af88198 8612
dda83cd7 8613 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8614 try
eccab96d
JB
8615 {
8616 xvz_found = get_int_var_value (xvz_name, size);
8617 }
230d2906 8618 catch (const gdb_exception_error &except)
eccab96d
JB
8619 {
8620 /* We found the variable, but somehow failed to read
8621 its value. Rethrow the same error, but with a little
8622 bit more information, to help the user understand
8623 what went wrong (Eg: the variable might have been
8624 optimized out). */
8625 throw_error (except.error,
8626 _("unable to read value of %s (%s)"),
3d6e9d23 8627 xvz_name, except.what ());
eccab96d 8628 }
eccab96d 8629
dda83cd7
SM
8630 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8631 {
8632 fixed_record_type = copy_type (fixed_record_type);
8633 TYPE_LENGTH (fixed_record_type) = size;
8634
8635 /* The FIXED_RECORD_TYPE may have be a stub. We have
8636 observed this when the debugging info is STABS, and
8637 apparently it is something that is hard to fix.
8638
8639 In practice, we don't need the actual type definition
8640 at all, because the presence of the XVZ variable allows us
8641 to assume that there must be a XVS type as well, which we
8642 should be able to use later, when we need the actual type
8643 definition.
8644
8645 In the meantime, pretend that the "fixed" type we are
8646 returning is NOT a stub, because this can cause trouble
8647 when using this type to create new types targeting it.
8648 Indeed, the associated creation routines often check
8649 whether the target type is a stub and will try to replace
8650 it, thus using a type with the wrong size. This, in turn,
8651 might cause the new type to have the wrong size too.
8652 Consider the case of an array, for instance, where the size
8653 of the array is computed from the number of elements in
8654 our array multiplied by the size of its element. */
b4b73759 8655 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8656 }
8657 }
8658 return fixed_record_type;
4c4b4cd2 8659 }
d2e4a39e 8660 case TYPE_CODE_ARRAY:
4c4b4cd2 8661 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8662 case TYPE_CODE_UNION:
8663 if (dval == NULL)
dda83cd7 8664 return type;
d2e4a39e 8665 else
dda83cd7 8666 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8667 }
14f9c5c9
AS
8668}
8669
f192137b
JB
8670/* The same as ada_to_fixed_type_1, except that it preserves the type
8671 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8672
8673 The typedef layer needs be preserved in order to differentiate between
8674 arrays and array pointers when both types are implemented using the same
8675 fat pointer. In the array pointer case, the pointer is encoded as
8676 a typedef of the pointer type. For instance, considering:
8677
8678 type String_Access is access String;
8679 S1 : String_Access := null;
8680
8681 To the debugger, S1 is defined as a typedef of type String. But
8682 to the user, it is a pointer. So if the user tries to print S1,
8683 we should not dereference the array, but print the array address
8684 instead.
8685
8686 If we didn't preserve the typedef layer, we would lose the fact that
8687 the type is to be presented as a pointer (needs de-reference before
8688 being printed). And we would also use the source-level type name. */
f192137b
JB
8689
8690struct type *
8691ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8692 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8693
8694{
8695 struct type *fixed_type =
8696 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8697
96dbd2c1
JB
8698 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8699 then preserve the typedef layer.
8700
8701 Implementation note: We can only check the main-type portion of
8702 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8703 from TYPE now returns a type that has the same instance flags
8704 as TYPE. For instance, if TYPE is a "typedef const", and its
8705 target type is a "struct", then the typedef elimination will return
8706 a "const" version of the target type. See check_typedef for more
8707 details about how the typedef layer elimination is done.
8708
8709 brobecker/2010-11-19: It seems to me that the only case where it is
8710 useful to preserve the typedef layer is when dealing with fat pointers.
8711 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8712 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8713 because we call check_typedef/ada_check_typedef pretty much everywhere.
8714 */
78134374 8715 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8716 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8717 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8718 return type;
8719
8720 return fixed_type;
8721}
8722
14f9c5c9 8723/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8724 TYPE0, but based on no runtime data. */
14f9c5c9 8725
d2e4a39e
AS
8726static struct type *
8727to_static_fixed_type (struct type *type0)
14f9c5c9 8728{
d2e4a39e 8729 struct type *type;
14f9c5c9
AS
8730
8731 if (type0 == NULL)
8732 return NULL;
8733
22c4c60c 8734 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8735 return type0;
8736
61ee279c 8737 type0 = ada_check_typedef (type0);
d2e4a39e 8738
78134374 8739 switch (type0->code ())
14f9c5c9
AS
8740 {
8741 default:
8742 return type0;
8743 case TYPE_CODE_STRUCT:
8744 type = dynamic_template_type (type0);
d2e4a39e 8745 if (type != NULL)
dda83cd7 8746 return template_to_static_fixed_type (type);
4c4b4cd2 8747 else
dda83cd7 8748 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8749 case TYPE_CODE_UNION:
8750 type = ada_find_parallel_type (type0, "___XVU");
8751 if (type != NULL)
dda83cd7 8752 return template_to_static_fixed_type (type);
4c4b4cd2 8753 else
dda83cd7 8754 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8755 }
8756}
8757
4c4b4cd2
PH
8758/* A static approximation of TYPE with all type wrappers removed. */
8759
d2e4a39e
AS
8760static struct type *
8761static_unwrap_type (struct type *type)
14f9c5c9
AS
8762{
8763 if (ada_is_aligner_type (type))
8764 {
940da03e 8765 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8766 if (ada_type_name (type1) == NULL)
d0e39ea2 8767 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8768
8769 return static_unwrap_type (type1);
8770 }
d2e4a39e 8771 else
14f9c5c9 8772 {
d2e4a39e 8773 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8774
d2e4a39e 8775 if (raw_real_type == type)
dda83cd7 8776 return type;
14f9c5c9 8777 else
dda83cd7 8778 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8779 }
8780}
8781
8782/* In some cases, incomplete and private types require
4c4b4cd2 8783 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8784 type Foo;
8785 type FooP is access Foo;
8786 V: FooP;
8787 type Foo is array ...;
4c4b4cd2 8788 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8789 cross-references to such types, we instead substitute for FooP a
8790 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8791 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8792
8793/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8794 exists, otherwise TYPE. */
8795
d2e4a39e 8796struct type *
61ee279c 8797ada_check_typedef (struct type *type)
14f9c5c9 8798{
727e3d2e
JB
8799 if (type == NULL)
8800 return NULL;
8801
736ade86
XR
8802 /* If our type is an access to an unconstrained array, which is encoded
8803 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8804 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8805 what allows us to distinguish between fat pointers that represent
8806 array types, and fat pointers that represent array access types
8807 (in both cases, the compiler implements them as fat pointers). */
736ade86 8808 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8809 return type;
8810
f168693b 8811 type = check_typedef (type);
78134374 8812 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8813 || !type->is_stub ()
7d93a1e0 8814 || type->name () == NULL)
14f9c5c9 8815 return type;
d2e4a39e 8816 else
14f9c5c9 8817 {
7d93a1e0 8818 const char *name = type->name ();
d2e4a39e 8819 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8820
05e522ef 8821 if (type1 == NULL)
dda83cd7 8822 return type;
05e522ef
JB
8823
8824 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8825 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8826 types, only for the typedef-to-array types). If that's the case,
8827 strip the typedef layer. */
78134374 8828 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8829 type1 = ada_check_typedef (type1);
8830
8831 return type1;
14f9c5c9
AS
8832 }
8833}
8834
8835/* A value representing the data at VALADDR/ADDRESS as described by
8836 type TYPE0, but with a standard (static-sized) type that correctly
8837 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8838 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8839 creation of struct values]. */
14f9c5c9 8840
4c4b4cd2
PH
8841static struct value *
8842ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8843 struct value *val0)
14f9c5c9 8844{
1ed6ede0 8845 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8846
14f9c5c9
AS
8847 if (type == type0 && val0 != NULL)
8848 return val0;
cc0e770c
JB
8849
8850 if (VALUE_LVAL (val0) != lval_memory)
8851 {
8852 /* Our value does not live in memory; it could be a convenience
8853 variable, for instance. Create a not_lval value using val0's
8854 contents. */
50888e42 8855 return value_from_contents (type, value_contents (val0).data ());
cc0e770c
JB
8856 }
8857
8858 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8859}
8860
8861/* A value representing VAL, but with a standard (static-sized) type
8862 that correctly describes it. Does not necessarily create a new
8863 value. */
8864
0c3acc09 8865struct value *
4c4b4cd2
PH
8866ada_to_fixed_value (struct value *val)
8867{
c48db5ca 8868 val = unwrap_value (val);
d8ce9127 8869 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8870 return val;
14f9c5c9 8871}
d2e4a39e 8872\f
14f9c5c9 8873
14f9c5c9
AS
8874/* Attributes */
8875
4c4b4cd2
PH
8876/* Table mapping attribute numbers to names.
8877 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8878
27087b7f 8879static const char * const attribute_names[] = {
14f9c5c9
AS
8880 "<?>",
8881
d2e4a39e 8882 "first",
14f9c5c9
AS
8883 "last",
8884 "length",
8885 "image",
14f9c5c9
AS
8886 "max",
8887 "min",
4c4b4cd2
PH
8888 "modulus",
8889 "pos",
8890 "size",
8891 "tag",
14f9c5c9 8892 "val",
14f9c5c9
AS
8893 0
8894};
8895
de93309a 8896static const char *
4c4b4cd2 8897ada_attribute_name (enum exp_opcode n)
14f9c5c9 8898{
4c4b4cd2
PH
8899 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8900 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8901 else
8902 return attribute_names[0];
8903}
8904
4c4b4cd2 8905/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8906
4c4b4cd2
PH
8907static LONGEST
8908pos_atr (struct value *arg)
14f9c5c9 8909{
24209737
PH
8910 struct value *val = coerce_ref (arg);
8911 struct type *type = value_type (val);
14f9c5c9 8912
d2e4a39e 8913 if (!discrete_type_p (type))
323e0a4a 8914 error (_("'POS only defined on discrete types"));
14f9c5c9 8915
6244c119
SM
8916 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8917 if (!result.has_value ())
aa715135 8918 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8919
6244c119 8920 return *result;
4c4b4cd2
PH
8921}
8922
7631cf6c 8923struct value *
7992accc
TT
8924ada_pos_atr (struct type *expect_type,
8925 struct expression *exp,
8926 enum noside noside, enum exp_opcode op,
8927 struct value *arg)
4c4b4cd2 8928{
7992accc
TT
8929 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8930 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8931 return value_zero (type, not_lval);
3cb382c9 8932 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8933}
8934
4c4b4cd2 8935/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8936
d2e4a39e 8937static struct value *
53a47a3e 8938val_atr (struct type *type, LONGEST val)
14f9c5c9 8939{
53a47a3e 8940 gdb_assert (discrete_type_p (type));
0bc2354b 8941 if (type->code () == TYPE_CODE_RANGE)
27710edb 8942 type = type->target_type ();
78134374 8943 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8944 {
53a47a3e 8945 if (val < 0 || val >= type->num_fields ())
dda83cd7 8946 error (_("argument to 'VAL out of range"));
970db518 8947 val = type->field (val).loc_enumval ();
14f9c5c9 8948 }
53a47a3e
TT
8949 return value_from_longest (type, val);
8950}
8951
9e99f48f 8952struct value *
3848abd6 8953ada_val_atr (enum noside noside, struct type *type, struct value *arg)
53a47a3e 8954{
3848abd6
TT
8955 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8956 return value_zero (type, not_lval);
8957
53a47a3e
TT
8958 if (!discrete_type_p (type))
8959 error (_("'VAL only defined on discrete types"));
8960 if (!integer_type_p (value_type (arg)))
8961 error (_("'VAL requires integral argument"));
8962
8963 return val_atr (type, value_as_long (arg));
14f9c5c9 8964}
14f9c5c9 8965\f
d2e4a39e 8966
dda83cd7 8967 /* Evaluation */
14f9c5c9 8968
4c4b4cd2
PH
8969/* True if TYPE appears to be an Ada character type.
8970 [At the moment, this is true only for Character and Wide_Character;
8971 It is a heuristic test that could stand improvement]. */
14f9c5c9 8972
fc913e53 8973bool
d2e4a39e 8974ada_is_character_type (struct type *type)
14f9c5c9 8975{
7b9f71f2
JB
8976 const char *name;
8977
8978 /* If the type code says it's a character, then assume it really is,
8979 and don't check any further. */
78134374 8980 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8981 return true;
7b9f71f2
JB
8982
8983 /* Otherwise, assume it's a character type iff it is a discrete type
8984 with a known character type name. */
8985 name = ada_type_name (type);
8986 return (name != NULL
dda83cd7
SM
8987 && (type->code () == TYPE_CODE_INT
8988 || type->code () == TYPE_CODE_RANGE)
8989 && (strcmp (name, "character") == 0
8990 || strcmp (name, "wide_character") == 0
8991 || strcmp (name, "wide_wide_character") == 0
8992 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8993}
8994
4c4b4cd2 8995/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8996
fc913e53 8997bool
ebf56fd3 8998ada_is_string_type (struct type *type)
14f9c5c9 8999{
61ee279c 9000 type = ada_check_typedef (type);
d2e4a39e 9001 if (type != NULL
78134374 9002 && type->code () != TYPE_CODE_PTR
76a01679 9003 && (ada_is_simple_array_type (type)
dda83cd7 9004 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9005 && ada_array_arity (type) == 1)
9006 {
9007 struct type *elttype = ada_array_element_type (type, 1);
9008
9009 return ada_is_character_type (elttype);
9010 }
d2e4a39e 9011 else
fc913e53 9012 return false;
14f9c5c9
AS
9013}
9014
5bf03f13
JB
9015/* The compiler sometimes provides a parallel XVS type for a given
9016 PAD type. Normally, it is safe to follow the PAD type directly,
9017 but older versions of the compiler have a bug that causes the offset
9018 of its "F" field to be wrong. Following that field in that case
9019 would lead to incorrect results, but this can be worked around
9020 by ignoring the PAD type and using the associated XVS type instead.
9021
9022 Set to True if the debugger should trust the contents of PAD types.
9023 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9024static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9025
9026/* True if TYPE is a struct type introduced by the compiler to force the
9027 alignment of a value. Such types have a single field with a
4c4b4cd2 9028 distinctive name. */
14f9c5c9
AS
9029
9030int
ebf56fd3 9031ada_is_aligner_type (struct type *type)
14f9c5c9 9032{
61ee279c 9033 type = ada_check_typedef (type);
714e53ab 9034
5bf03f13 9035 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9036 return 0;
9037
78134374 9038 return (type->code () == TYPE_CODE_STRUCT
dda83cd7 9039 && type->num_fields () == 1
33d16dd9 9040 && strcmp (type->field (0).name (), "F") == 0);
14f9c5c9
AS
9041}
9042
9043/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9044 the parallel type. */
14f9c5c9 9045
d2e4a39e
AS
9046struct type *
9047ada_get_base_type (struct type *raw_type)
14f9c5c9 9048{
d2e4a39e
AS
9049 struct type *real_type_namer;
9050 struct type *raw_real_type;
14f9c5c9 9051
78134374 9052 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9053 return raw_type;
9054
284614f0
JB
9055 if (ada_is_aligner_type (raw_type))
9056 /* The encoding specifies that we should always use the aligner type.
9057 So, even if this aligner type has an associated XVS type, we should
9058 simply ignore it.
9059
9060 According to the compiler gurus, an XVS type parallel to an aligner
9061 type may exist because of a stabs limitation. In stabs, aligner
9062 types are empty because the field has a variable-sized type, and
9063 thus cannot actually be used as an aligner type. As a result,
9064 we need the associated parallel XVS type to decode the type.
9065 Since the policy in the compiler is to not change the internal
9066 representation based on the debugging info format, we sometimes
9067 end up having a redundant XVS type parallel to the aligner type. */
9068 return raw_type;
9069
14f9c5c9 9070 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9071 if (real_type_namer == NULL
78134374 9072 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9073 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9074 return raw_type;
9075
940da03e 9076 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9077 {
9078 /* This is an older encoding form where the base type needs to be
85102364 9079 looked up by name. We prefer the newer encoding because it is
f80d3ff2 9080 more efficient. */
33d16dd9 9081 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
f80d3ff2
JB
9082 if (raw_real_type == NULL)
9083 return raw_type;
9084 else
9085 return raw_real_type;
9086 }
9087
9088 /* The field in our XVS type is a reference to the base type. */
27710edb 9089 return real_type_namer->field (0).type ()->target_type ();
d2e4a39e 9090}
14f9c5c9 9091
4c4b4cd2 9092/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9093
d2e4a39e
AS
9094struct type *
9095ada_aligned_type (struct type *type)
14f9c5c9
AS
9096{
9097 if (ada_is_aligner_type (type))
940da03e 9098 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9099 else
9100 return ada_get_base_type (type);
9101}
9102
9103
9104/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9105 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9106
fc1a4b47
AC
9107const gdb_byte *
9108ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9109{
d2e4a39e 9110 if (ada_is_aligner_type (type))
b610c045
SM
9111 return ada_aligned_value_addr
9112 (type->field (0).type (),
9113 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
14f9c5c9
AS
9114 else
9115 return valaddr;
9116}
9117
4c4b4cd2
PH
9118
9119
14f9c5c9 9120/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9121 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9122const char *
9123ada_enum_name (const char *name)
14f9c5c9 9124{
5f9febe0 9125 static std::string storage;
e6a959d6 9126 const char *tmp;
14f9c5c9 9127
4c4b4cd2
PH
9128 /* First, unqualify the enumeration name:
9129 1. Search for the last '.' character. If we find one, then skip
177b42fe 9130 all the preceding characters, the unqualified name starts
76a01679 9131 right after that dot.
4c4b4cd2 9132 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9133 translates dots into "__". Search forward for double underscores,
9134 but stop searching when we hit an overloading suffix, which is
9135 of the form "__" followed by digits. */
4c4b4cd2 9136
c3e5cd34
PH
9137 tmp = strrchr (name, '.');
9138 if (tmp != NULL)
4c4b4cd2
PH
9139 name = tmp + 1;
9140 else
14f9c5c9 9141 {
4c4b4cd2 9142 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
9143 {
9144 if (isdigit (tmp[2]))
9145 break;
9146 else
9147 name = tmp + 2;
9148 }
14f9c5c9
AS
9149 }
9150
9151 if (name[0] == 'Q')
9152 {
14f9c5c9 9153 int v;
5b4ee69b 9154
14f9c5c9 9155 if (name[1] == 'U' || name[1] == 'W')
dda83cd7 9156 {
a7041de8
TT
9157 int offset = 2;
9158 if (name[1] == 'W' && name[2] == 'W')
9159 {
9160 /* Also handle the QWW case. */
9161 ++offset;
9162 }
9163 if (sscanf (name + offset, "%x", &v) != 1)
dda83cd7
SM
9164 return name;
9165 }
272560b5
TT
9166 else if (((name[1] >= '0' && name[1] <= '9')
9167 || (name[1] >= 'a' && name[1] <= 'z'))
9168 && name[2] == '\0')
9169 {
5f9febe0
TT
9170 storage = string_printf ("'%c'", name[1]);
9171 return storage.c_str ();
272560b5 9172 }
14f9c5c9 9173 else
dda83cd7 9174 return name;
14f9c5c9
AS
9175
9176 if (isascii (v) && isprint (v))
5f9febe0 9177 storage = string_printf ("'%c'", v);
14f9c5c9 9178 else if (name[1] == 'U')
a7041de8
TT
9179 storage = string_printf ("'[\"%02x\"]'", v);
9180 else if (name[2] != 'W')
9181 storage = string_printf ("'[\"%04x\"]'", v);
14f9c5c9 9182 else
a7041de8 9183 storage = string_printf ("'[\"%06x\"]'", v);
14f9c5c9 9184
5f9febe0 9185 return storage.c_str ();
14f9c5c9 9186 }
d2e4a39e 9187 else
4c4b4cd2 9188 {
c3e5cd34
PH
9189 tmp = strstr (name, "__");
9190 if (tmp == NULL)
9191 tmp = strstr (name, "$");
9192 if (tmp != NULL)
dda83cd7 9193 {
5f9febe0
TT
9194 storage = std::string (name, tmp - name);
9195 return storage.c_str ();
dda83cd7 9196 }
4c4b4cd2
PH
9197
9198 return name;
9199 }
14f9c5c9
AS
9200}
9201
14f9c5c9 9202/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9203 value it wraps. */
14f9c5c9 9204
d2e4a39e
AS
9205static struct value *
9206unwrap_value (struct value *val)
14f9c5c9 9207{
df407dfe 9208 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9209
14f9c5c9
AS
9210 if (ada_is_aligner_type (type))
9211 {
de4d072f 9212 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9213 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9214
14f9c5c9 9215 if (ada_type_name (val_type) == NULL)
d0e39ea2 9216 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9217
9218 return unwrap_value (v);
9219 }
d2e4a39e 9220 else
14f9c5c9 9221 {
d2e4a39e 9222 struct type *raw_real_type =
dda83cd7 9223 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9224
5bf03f13
JB
9225 /* If there is no parallel XVS or XVE type, then the value is
9226 already unwrapped. Return it without further modification. */
9227 if ((type == raw_real_type)
9228 && ada_find_parallel_type (type, "___XVE") == NULL)
9229 return val;
14f9c5c9 9230
d2e4a39e 9231 return
dda83cd7
SM
9232 coerce_unspec_val_to_type
9233 (val, ada_to_fixed_type (raw_real_type, 0,
9234 value_address (val),
9235 NULL, 1));
14f9c5c9
AS
9236 }
9237}
d2e4a39e 9238
d99dcf51
JB
9239/* Given two array types T1 and T2, return nonzero iff both arrays
9240 contain the same number of elements. */
9241
9242static int
9243ada_same_array_size_p (struct type *t1, struct type *t2)
9244{
9245 LONGEST lo1, hi1, lo2, hi2;
9246
9247 /* Get the array bounds in order to verify that the size of
9248 the two arrays match. */
9249 if (!get_array_bounds (t1, &lo1, &hi1)
9250 || !get_array_bounds (t2, &lo2, &hi2))
9251 error (_("unable to determine array bounds"));
9252
9253 /* To make things easier for size comparison, normalize a bit
9254 the case of empty arrays by making sure that the difference
9255 between upper bound and lower bound is always -1. */
9256 if (lo1 > hi1)
9257 hi1 = lo1 - 1;
9258 if (lo2 > hi2)
9259 hi2 = lo2 - 1;
9260
9261 return (hi1 - lo1 == hi2 - lo2);
9262}
9263
9264/* Assuming that VAL is an array of integrals, and TYPE represents
9265 an array with the same number of elements, but with wider integral
9266 elements, return an array "casted" to TYPE. In practice, this
9267 means that the returned array is built by casting each element
9268 of the original array into TYPE's (wider) element type. */
9269
9270static struct value *
9271ada_promote_array_of_integrals (struct type *type, struct value *val)
9272{
27710edb 9273 struct type *elt_type = type->target_type ();
d99dcf51 9274 LONGEST lo, hi;
d99dcf51
JB
9275 LONGEST i;
9276
9277 /* Verify that both val and type are arrays of scalars, and
9278 that the size of val's elements is smaller than the size
9279 of type's element. */
78134374 9280 gdb_assert (type->code () == TYPE_CODE_ARRAY);
27710edb 9281 gdb_assert (is_integral_type (type->target_type ()));
78134374 9282 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
27710edb
SM
9283 gdb_assert (is_integral_type (value_type (val)->target_type ()));
9284 gdb_assert (TYPE_LENGTH (type->target_type ())
9285 > TYPE_LENGTH (value_type (val)->target_type ()));
d99dcf51
JB
9286
9287 if (!get_array_bounds (type, &lo, &hi))
9288 error (_("unable to determine array bounds"));
9289
4bce7cda
SM
9290 value *res = allocate_value (type);
9291 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
d99dcf51
JB
9292
9293 /* Promote each array element. */
9294 for (i = 0; i < hi - lo + 1; i++)
9295 {
9296 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
4bce7cda 9297 int elt_len = TYPE_LENGTH (elt_type);
d99dcf51 9298
4bce7cda 9299 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
d99dcf51
JB
9300 }
9301
9302 return res;
9303}
9304
4c4b4cd2
PH
9305/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9306 return the converted value. */
9307
d2e4a39e
AS
9308static struct value *
9309coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9310{
df407dfe 9311 struct type *type2 = value_type (val);
5b4ee69b 9312
14f9c5c9
AS
9313 if (type == type2)
9314 return val;
9315
61ee279c
PH
9316 type2 = ada_check_typedef (type2);
9317 type = ada_check_typedef (type);
14f9c5c9 9318
78134374
SM
9319 if (type2->code () == TYPE_CODE_PTR
9320 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9321 {
9322 val = ada_value_ind (val);
df407dfe 9323 type2 = value_type (val);
14f9c5c9
AS
9324 }
9325
78134374
SM
9326 if (type2->code () == TYPE_CODE_ARRAY
9327 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9328 {
d99dcf51
JB
9329 if (!ada_same_array_size_p (type, type2))
9330 error (_("cannot assign arrays of different length"));
9331
27710edb
SM
9332 if (is_integral_type (type->target_type ())
9333 && is_integral_type (type2->target_type ())
9334 && TYPE_LENGTH (type2->target_type ())
9335 < TYPE_LENGTH (type->target_type ()))
d99dcf51
JB
9336 {
9337 /* Allow implicit promotion of the array elements to
9338 a wider type. */
9339 return ada_promote_array_of_integrals (type, val);
9340 }
9341
27710edb
SM
9342 if (TYPE_LENGTH (type2->target_type ())
9343 != TYPE_LENGTH (type->target_type ()))
dda83cd7 9344 error (_("Incompatible types in assignment"));
04624583 9345 deprecated_set_value_type (val, type);
14f9c5c9 9346 }
d2e4a39e 9347 return val;
14f9c5c9
AS
9348}
9349
4c4b4cd2
PH
9350static struct value *
9351ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9352{
9353 struct value *val;
9354 struct type *type1, *type2;
9355 LONGEST v, v1, v2;
9356
994b9211
AC
9357 arg1 = coerce_ref (arg1);
9358 arg2 = coerce_ref (arg2);
18af8284
JB
9359 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9360 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9361
78134374
SM
9362 if (type1->code () != TYPE_CODE_INT
9363 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9364 return value_binop (arg1, arg2, op);
9365
76a01679 9366 switch (op)
4c4b4cd2
PH
9367 {
9368 case BINOP_MOD:
9369 case BINOP_DIV:
9370 case BINOP_REM:
9371 break;
9372 default:
9373 return value_binop (arg1, arg2, op);
9374 }
9375
9376 v2 = value_as_long (arg2);
9377 if (v2 == 0)
b0f9164c
TT
9378 {
9379 const char *name;
9380 if (op == BINOP_MOD)
9381 name = "mod";
9382 else if (op == BINOP_DIV)
9383 name = "/";
9384 else
9385 {
9386 gdb_assert (op == BINOP_REM);
9387 name = "rem";
9388 }
9389
9390 error (_("second operand of %s must not be zero."), name);
9391 }
4c4b4cd2 9392
c6d940a9 9393 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9394 return value_binop (arg1, arg2, op);
9395
9396 v1 = value_as_long (arg1);
9397 switch (op)
9398 {
9399 case BINOP_DIV:
9400 v = v1 / v2;
76a01679 9401 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9402 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9403 break;
9404 case BINOP_REM:
9405 v = v1 % v2;
76a01679 9406 if (v * v1 < 0)
dda83cd7 9407 v -= v2;
4c4b4cd2
PH
9408 break;
9409 default:
9410 /* Should not reach this point. */
9411 v = 0;
9412 }
9413
9414 val = allocate_value (type1);
50888e42 9415 store_unsigned_integer (value_contents_raw (val).data (),
dda83cd7 9416 TYPE_LENGTH (value_type (val)),
34877895 9417 type_byte_order (type1), v);
4c4b4cd2
PH
9418 return val;
9419}
9420
9421static int
9422ada_value_equal (struct value *arg1, struct value *arg2)
9423{
df407dfe
AC
9424 if (ada_is_direct_array_type (value_type (arg1))
9425 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9426 {
79e8fcaa
JB
9427 struct type *arg1_type, *arg2_type;
9428
f58b38bf 9429 /* Automatically dereference any array reference before
dda83cd7 9430 we attempt to perform the comparison. */
f58b38bf
JB
9431 arg1 = ada_coerce_ref (arg1);
9432 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9433
4c4b4cd2
PH
9434 arg1 = ada_coerce_to_simple_array (arg1);
9435 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9436
9437 arg1_type = ada_check_typedef (value_type (arg1));
9438 arg2_type = ada_check_typedef (value_type (arg2));
9439
78134374 9440 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9441 || arg2_type->code () != TYPE_CODE_ARRAY)
9442 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9443 /* FIXME: The following works only for types whose
dda83cd7
SM
9444 representations use all bits (no padding or undefined bits)
9445 and do not have user-defined equality. */
79e8fcaa 9446 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
50888e42
SM
9447 && memcmp (value_contents (arg1).data (),
9448 value_contents (arg2).data (),
79e8fcaa 9449 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9450 }
9451 return value_equal (arg1, arg2);
9452}
9453
d3c54a1c
TT
9454namespace expr
9455{
9456
9457bool
9458check_objfile (const std::unique_ptr<ada_component> &comp,
9459 struct objfile *objfile)
9460{
9461 return comp->uses_objfile (objfile);
9462}
9463
9464/* Assign the result of evaluating ARG starting at *POS to the INDEXth
9465 component of LHS (a simple array or a record). Does not modify the
9466 inferior's memory, nor does it modify LHS (unless LHS ==
9467 CONTAINER). */
52ce6436
PH
9468
9469static void
9470assign_component (struct value *container, struct value *lhs, LONGEST index,
d3c54a1c 9471 struct expression *exp, operation_up &arg)
52ce6436 9472{
d3c54a1c
TT
9473 scoped_value_mark mark;
9474
52ce6436 9475 struct value *elt;
0e2da9f0 9476 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9477
78134374 9478 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9479 {
22601c15
UW
9480 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9481 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9482
52ce6436
PH
9483 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9484 }
9485 else
9486 {
9487 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9488 elt = ada_to_fixed_value (elt);
52ce6436
PH
9489 }
9490
d3c54a1c
TT
9491 ada_aggregate_operation *ag_op
9492 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9493 if (ag_op != nullptr)
9494 ag_op->assign_aggregate (container, elt, exp);
52ce6436 9495 else
d3c54a1c
TT
9496 value_assign_to_component (container, elt,
9497 arg->evaluate (nullptr, exp,
9498 EVAL_NORMAL));
9499}
52ce6436 9500
d3c54a1c
TT
9501bool
9502ada_aggregate_component::uses_objfile (struct objfile *objfile)
9503{
9504 for (const auto &item : m_components)
9505 if (item->uses_objfile (objfile))
9506 return true;
9507 return false;
9508}
9509
9510void
9511ada_aggregate_component::dump (ui_file *stream, int depth)
9512{
6cb06a8c 9513 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
d3c54a1c
TT
9514 for (const auto &item : m_components)
9515 item->dump (stream, depth + 1);
9516}
9517
9518void
9519ada_aggregate_component::assign (struct value *container,
9520 struct value *lhs, struct expression *exp,
9521 std::vector<LONGEST> &indices,
9522 LONGEST low, LONGEST high)
9523{
9524 for (auto &item : m_components)
9525 item->assign (container, lhs, exp, indices, low, high);
52ce6436
PH
9526}
9527
207582c0 9528/* See ada-exp.h. */
52ce6436 9529
207582c0 9530value *
d3c54a1c
TT
9531ada_aggregate_operation::assign_aggregate (struct value *container,
9532 struct value *lhs,
9533 struct expression *exp)
52ce6436
PH
9534{
9535 struct type *lhs_type;
52ce6436 9536 LONGEST low_index, high_index;
52ce6436
PH
9537
9538 container = ada_coerce_ref (container);
9539 if (ada_is_direct_array_type (value_type (container)))
9540 container = ada_coerce_to_simple_array (container);
9541 lhs = ada_coerce_ref (lhs);
9542 if (!deprecated_value_modifiable (lhs))
9543 error (_("Left operand of assignment is not a modifiable lvalue."));
9544
0e2da9f0 9545 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9546 if (ada_is_direct_array_type (lhs_type))
9547 {
9548 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9549 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9550 low_index = lhs_type->bounds ()->low.const_val ();
9551 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9552 }
78134374 9553 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9554 {
9555 low_index = 0;
9556 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9557 }
9558 else
9559 error (_("Left-hand side must be array or record."));
9560
cf608cc4 9561 std::vector<LONGEST> indices (4);
52ce6436
PH
9562 indices[0] = indices[1] = low_index - 1;
9563 indices[2] = indices[3] = high_index + 1;
52ce6436 9564
d3c54a1c
TT
9565 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9566 low_index, high_index);
207582c0
TT
9567
9568 return container;
d3c54a1c
TT
9569}
9570
9571bool
9572ada_positional_component::uses_objfile (struct objfile *objfile)
9573{
9574 return m_op->uses_objfile (objfile);
9575}
52ce6436 9576
d3c54a1c
TT
9577void
9578ada_positional_component::dump (ui_file *stream, int depth)
9579{
6cb06a8c
TT
9580 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9581 depth, "", m_index);
d3c54a1c 9582 m_op->dump (stream, depth + 1);
52ce6436 9583}
d3c54a1c 9584
52ce6436 9585/* Assign into the component of LHS indexed by the OP_POSITIONAL
d3c54a1c
TT
9586 construct, given that the positions are relative to lower bound
9587 LOW, where HIGH is the upper bound. Record the position in
9588 INDICES. CONTAINER is as for assign_aggregate. */
9589void
9590ada_positional_component::assign (struct value *container,
9591 struct value *lhs, struct expression *exp,
9592 std::vector<LONGEST> &indices,
9593 LONGEST low, LONGEST high)
52ce6436 9594{
d3c54a1c
TT
9595 LONGEST ind = m_index + low;
9596
52ce6436 9597 if (ind - 1 == high)
e1d5a0d2 9598 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9599 if (ind <= high)
9600 {
cf608cc4 9601 add_component_interval (ind, ind, indices);
d3c54a1c 9602 assign_component (container, lhs, ind, exp, m_op);
52ce6436 9603 }
52ce6436
PH
9604}
9605
d3c54a1c
TT
9606bool
9607ada_discrete_range_association::uses_objfile (struct objfile *objfile)
a88c4354
TT
9608{
9609 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9610}
9611
9612void
9613ada_discrete_range_association::dump (ui_file *stream, int depth)
9614{
6cb06a8c 9615 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
a88c4354
TT
9616 m_low->dump (stream, depth + 1);
9617 m_high->dump (stream, depth + 1);
9618}
9619
9620void
9621ada_discrete_range_association::assign (struct value *container,
9622 struct value *lhs,
9623 struct expression *exp,
9624 std::vector<LONGEST> &indices,
9625 LONGEST low, LONGEST high,
9626 operation_up &op)
9627{
9628 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9629 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9630
9631 if (lower <= upper && (lower < low || upper > high))
9632 error (_("Index in component association out of bounds."));
9633
9634 add_component_interval (lower, upper, indices);
9635 while (lower <= upper)
9636 {
9637 assign_component (container, lhs, lower, exp, op);
9638 lower += 1;
9639 }
9640}
9641
9642bool
9643ada_name_association::uses_objfile (struct objfile *objfile)
9644{
9645 return m_val->uses_objfile (objfile);
9646}
9647
9648void
9649ada_name_association::dump (ui_file *stream, int depth)
9650{
6cb06a8c 9651 gdb_printf (stream, _("%*sName:\n"), depth, "");
a88c4354
TT
9652 m_val->dump (stream, depth + 1);
9653}
9654
9655void
9656ada_name_association::assign (struct value *container,
9657 struct value *lhs,
9658 struct expression *exp,
9659 std::vector<LONGEST> &indices,
9660 LONGEST low, LONGEST high,
9661 operation_up &op)
9662{
9663 int index;
9664
9665 if (ada_is_direct_array_type (value_type (lhs)))
9666 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9667 EVAL_NORMAL)));
9668 else
9669 {
9670 ada_string_operation *strop
9671 = dynamic_cast<ada_string_operation *> (m_val.get ());
9672
9673 const char *name;
9674 if (strop != nullptr)
9675 name = strop->get_name ();
9676 else
9677 {
9678 ada_var_value_operation *vvo
9679 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9680 if (vvo != nullptr)
9681 error (_("Invalid record component association."));
9682 name = vvo->get_symbol ()->natural_name ();
9683 }
9684
9685 index = 0;
9686 if (! find_struct_field (name, value_type (lhs), 0,
9687 NULL, NULL, NULL, NULL, &index))
9688 error (_("Unknown component name: %s."), name);
9689 }
9690
9691 add_component_interval (index, index, indices);
9692 assign_component (container, lhs, index, exp, op);
9693}
9694
9695bool
9696ada_choices_component::uses_objfile (struct objfile *objfile)
9697{
9698 if (m_op->uses_objfile (objfile))
9699 return true;
9700 for (const auto &item : m_assocs)
9701 if (item->uses_objfile (objfile))
9702 return true;
9703 return false;
9704}
9705
9706void
9707ada_choices_component::dump (ui_file *stream, int depth)
9708{
6cb06a8c 9709 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
a88c4354
TT
9710 m_op->dump (stream, depth + 1);
9711 for (const auto &item : m_assocs)
9712 item->dump (stream, depth + 1);
9713}
9714
9715/* Assign into the components of LHS indexed by the OP_CHOICES
9716 construct at *POS, updating *POS past the construct, given that
9717 the allowable indices are LOW..HIGH. Record the indices assigned
9718 to in INDICES. CONTAINER is as for assign_aggregate. */
9719void
9720ada_choices_component::assign (struct value *container,
9721 struct value *lhs, struct expression *exp,
9722 std::vector<LONGEST> &indices,
9723 LONGEST low, LONGEST high)
9724{
9725 for (auto &item : m_assocs)
9726 item->assign (container, lhs, exp, indices, low, high, m_op);
9727}
9728
9729bool
9730ada_others_component::uses_objfile (struct objfile *objfile)
9731{
9732 return m_op->uses_objfile (objfile);
9733}
9734
9735void
9736ada_others_component::dump (ui_file *stream, int depth)
9737{
6cb06a8c 9738 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
a88c4354
TT
9739 m_op->dump (stream, depth + 1);
9740}
9741
9742/* Assign the value of the expression in the OP_OTHERS construct in
9743 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9744 have not been previously assigned. The index intervals already assigned
9745 are in INDICES. CONTAINER is as for assign_aggregate. */
9746void
9747ada_others_component::assign (struct value *container,
9748 struct value *lhs, struct expression *exp,
9749 std::vector<LONGEST> &indices,
9750 LONGEST low, LONGEST high)
9751{
9752 int num_indices = indices.size ();
9753 for (int i = 0; i < num_indices - 2; i += 2)
9754 {
9755 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9756 assign_component (container, lhs, ind, exp, m_op);
9757 }
9758}
9759
9760struct value *
9761ada_assign_operation::evaluate (struct type *expect_type,
9762 struct expression *exp,
9763 enum noside noside)
9764{
9765 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9766
9767 ada_aggregate_operation *ag_op
9768 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9769 if (ag_op != nullptr)
9770 {
9771 if (noside != EVAL_NORMAL)
9772 return arg1;
9773
207582c0 9774 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
a88c4354
TT
9775 return ada_value_assign (arg1, arg1);
9776 }
9777 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9778 except if the lhs of our assignment is a convenience variable.
9779 In the case of assigning to a convenience variable, the lhs
9780 should be exactly the result of the evaluation of the rhs. */
9781 struct type *type = value_type (arg1);
9782 if (VALUE_LVAL (arg1) == lval_internalvar)
9783 type = NULL;
9784 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
0b2b0b82 9785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
a88c4354
TT
9786 return arg1;
9787 if (VALUE_LVAL (arg1) == lval_internalvar)
9788 {
9789 /* Nothing. */
9790 }
9791 else
9792 arg2 = coerce_for_assign (value_type (arg1), arg2);
9793 return ada_value_assign (arg1, arg2);
9794}
9795
9796} /* namespace expr */
9797
cf608cc4
TT
9798/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9799 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9800 overlap. */
52ce6436
PH
9801static void
9802add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9803 std::vector<LONGEST> &indices)
52ce6436
PH
9804{
9805 int i, j;
5b4ee69b 9806
cf608cc4
TT
9807 int size = indices.size ();
9808 for (i = 0; i < size; i += 2) {
52ce6436
PH
9809 if (high >= indices[i] && low <= indices[i + 1])
9810 {
9811 int kh;
5b4ee69b 9812
cf608cc4 9813 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9814 if (high < indices[kh])
9815 break;
9816 if (low < indices[i])
9817 indices[i] = low;
9818 indices[i + 1] = indices[kh - 1];
9819 if (high > indices[i + 1])
9820 indices[i + 1] = high;
cf608cc4
TT
9821 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9822 indices.resize (kh - i - 2);
52ce6436
PH
9823 return;
9824 }
9825 else if (high < indices[i])
9826 break;
9827 }
9828
cf608cc4 9829 indices.resize (indices.size () + 2);
d4813f10 9830 for (j = indices.size () - 1; j >= i + 2; j -= 1)
52ce6436
PH
9831 indices[j] = indices[j - 2];
9832 indices[i] = low;
9833 indices[i + 1] = high;
9834}
9835
6e48bd2c
JB
9836/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9837 is different. */
9838
9839static struct value *
b7e22850 9840ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9841{
9842 if (type == ada_check_typedef (value_type (arg2)))
9843 return arg2;
9844
6e48bd2c
JB
9845 return value_cast (type, arg2);
9846}
9847
284614f0
JB
9848/* Evaluating Ada expressions, and printing their result.
9849 ------------------------------------------------------
9850
21649b50
JB
9851 1. Introduction:
9852 ----------------
9853
284614f0
JB
9854 We usually evaluate an Ada expression in order to print its value.
9855 We also evaluate an expression in order to print its type, which
9856 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9857 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9858 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9859 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9860 similar.
9861
9862 Evaluating expressions is a little more complicated for Ada entities
9863 than it is for entities in languages such as C. The main reason for
9864 this is that Ada provides types whose definition might be dynamic.
9865 One example of such types is variant records. Or another example
9866 would be an array whose bounds can only be known at run time.
9867
9868 The following description is a general guide as to what should be
9869 done (and what should NOT be done) in order to evaluate an expression
9870 involving such types, and when. This does not cover how the semantic
9871 information is encoded by GNAT as this is covered separatly. For the
9872 document used as the reference for the GNAT encoding, see exp_dbug.ads
9873 in the GNAT sources.
9874
9875 Ideally, we should embed each part of this description next to its
9876 associated code. Unfortunately, the amount of code is so vast right
9877 now that it's hard to see whether the code handling a particular
9878 situation might be duplicated or not. One day, when the code is
9879 cleaned up, this guide might become redundant with the comments
9880 inserted in the code, and we might want to remove it.
9881
21649b50
JB
9882 2. ``Fixing'' an Entity, the Simple Case:
9883 -----------------------------------------
9884
284614f0
JB
9885 When evaluating Ada expressions, the tricky issue is that they may
9886 reference entities whose type contents and size are not statically
9887 known. Consider for instance a variant record:
9888
9889 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9890 case Empty is
9891 when True => null;
9892 when False => Value : Integer;
9893 end case;
284614f0
JB
9894 end record;
9895 Yes : Rec := (Empty => False, Value => 1);
9896 No : Rec := (empty => True);
9897
9898 The size and contents of that record depends on the value of the
9899 descriminant (Rec.Empty). At this point, neither the debugging
9900 information nor the associated type structure in GDB are able to
9901 express such dynamic types. So what the debugger does is to create
9902 "fixed" versions of the type that applies to the specific object.
30baf67b 9903 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9904 which means creating its associated fixed type.
9905
9906 Example: when printing the value of variable "Yes" above, its fixed
9907 type would look like this:
9908
9909 type Rec is record
dda83cd7
SM
9910 Empty : Boolean;
9911 Value : Integer;
284614f0
JB
9912 end record;
9913
9914 On the other hand, if we printed the value of "No", its fixed type
9915 would become:
9916
9917 type Rec is record
dda83cd7 9918 Empty : Boolean;
284614f0
JB
9919 end record;
9920
9921 Things become a little more complicated when trying to fix an entity
9922 with a dynamic type that directly contains another dynamic type,
9923 such as an array of variant records, for instance. There are
9924 two possible cases: Arrays, and records.
9925
21649b50
JB
9926 3. ``Fixing'' Arrays:
9927 ---------------------
9928
9929 The type structure in GDB describes an array in terms of its bounds,
9930 and the type of its elements. By design, all elements in the array
9931 have the same type and we cannot represent an array of variant elements
9932 using the current type structure in GDB. When fixing an array,
9933 we cannot fix the array element, as we would potentially need one
9934 fixed type per element of the array. As a result, the best we can do
9935 when fixing an array is to produce an array whose bounds and size
9936 are correct (allowing us to read it from memory), but without having
9937 touched its element type. Fixing each element will be done later,
9938 when (if) necessary.
9939
9940 Arrays are a little simpler to handle than records, because the same
9941 amount of memory is allocated for each element of the array, even if
1b536f04 9942 the amount of space actually used by each element differs from element
21649b50 9943 to element. Consider for instance the following array of type Rec:
284614f0
JB
9944
9945 type Rec_Array is array (1 .. 2) of Rec;
9946
1b536f04
JB
9947 The actual amount of memory occupied by each element might be different
9948 from element to element, depending on the value of their discriminant.
21649b50 9949 But the amount of space reserved for each element in the array remains
1b536f04 9950 fixed regardless. So we simply need to compute that size using
21649b50
JB
9951 the debugging information available, from which we can then determine
9952 the array size (we multiply the number of elements of the array by
9953 the size of each element).
9954
9955 The simplest case is when we have an array of a constrained element
9956 type. For instance, consider the following type declarations:
9957
dda83cd7
SM
9958 type Bounded_String (Max_Size : Integer) is
9959 Length : Integer;
9960 Buffer : String (1 .. Max_Size);
9961 end record;
9962 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9963
9964 In this case, the compiler describes the array as an array of
9965 variable-size elements (identified by its XVS suffix) for which
9966 the size can be read in the parallel XVZ variable.
9967
9968 In the case of an array of an unconstrained element type, the compiler
9969 wraps the array element inside a private PAD type. This type should not
9970 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9971 that we also use the adjective "aligner" in our code to designate
9972 these wrapper types.
9973
1b536f04 9974 In some cases, the size allocated for each element is statically
21649b50
JB
9975 known. In that case, the PAD type already has the correct size,
9976 and the array element should remain unfixed.
9977
9978 But there are cases when this size is not statically known.
9979 For instance, assuming that "Five" is an integer variable:
284614f0 9980
dda83cd7
SM
9981 type Dynamic is array (1 .. Five) of Integer;
9982 type Wrapper (Has_Length : Boolean := False) is record
9983 Data : Dynamic;
9984 case Has_Length is
9985 when True => Length : Integer;
9986 when False => null;
9987 end case;
9988 end record;
9989 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9990
dda83cd7
SM
9991 Hello : Wrapper_Array := (others => (Has_Length => True,
9992 Data => (others => 17),
9993 Length => 1));
284614f0
JB
9994
9995
9996 The debugging info would describe variable Hello as being an
9997 array of a PAD type. The size of that PAD type is not statically
9998 known, but can be determined using a parallel XVZ variable.
9999 In that case, a copy of the PAD type with the correct size should
10000 be used for the fixed array.
10001
21649b50
JB
10002 3. ``Fixing'' record type objects:
10003 ----------------------------------
10004
10005 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10006 record types. In this case, in order to compute the associated
10007 fixed type, we need to determine the size and offset of each of
10008 its components. This, in turn, requires us to compute the fixed
10009 type of each of these components.
10010
10011 Consider for instance the example:
10012
dda83cd7
SM
10013 type Bounded_String (Max_Size : Natural) is record
10014 Str : String (1 .. Max_Size);
10015 Length : Natural;
10016 end record;
10017 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
10018
10019 In that case, the position of field "Length" depends on the size
10020 of field Str, which itself depends on the value of the Max_Size
21649b50 10021 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10022 we need to fix the type of field Str. Therefore, fixing a variant
10023 record requires us to fix each of its components.
10024
10025 However, if a component does not have a dynamic size, the component
10026 should not be fixed. In particular, fields that use a PAD type
10027 should not fixed. Here is an example where this might happen
10028 (assuming type Rec above):
10029
10030 type Container (Big : Boolean) is record
dda83cd7
SM
10031 First : Rec;
10032 After : Integer;
10033 case Big is
10034 when True => Another : Integer;
10035 when False => null;
10036 end case;
284614f0
JB
10037 end record;
10038 My_Container : Container := (Big => False,
dda83cd7
SM
10039 First => (Empty => True),
10040 After => 42);
284614f0
JB
10041
10042 In that example, the compiler creates a PAD type for component First,
10043 whose size is constant, and then positions the component After just
10044 right after it. The offset of component After is therefore constant
10045 in this case.
10046
10047 The debugger computes the position of each field based on an algorithm
10048 that uses, among other things, the actual position and size of the field
21649b50
JB
10049 preceding it. Let's now imagine that the user is trying to print
10050 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10051 end up computing the offset of field After based on the size of the
10052 fixed version of field First. And since in our example First has
10053 only one actual field, the size of the fixed type is actually smaller
10054 than the amount of space allocated to that field, and thus we would
10055 compute the wrong offset of field After.
10056
21649b50
JB
10057 To make things more complicated, we need to watch out for dynamic
10058 components of variant records (identified by the ___XVL suffix in
10059 the component name). Even if the target type is a PAD type, the size
10060 of that type might not be statically known. So the PAD type needs
10061 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10062 we might end up with the wrong size for our component. This can be
10063 observed with the following type declarations:
284614f0 10064
dda83cd7
SM
10065 type Octal is new Integer range 0 .. 7;
10066 type Octal_Array is array (Positive range <>) of Octal;
10067 pragma Pack (Octal_Array);
284614f0 10068
dda83cd7
SM
10069 type Octal_Buffer (Size : Positive) is record
10070 Buffer : Octal_Array (1 .. Size);
10071 Length : Integer;
10072 end record;
284614f0
JB
10073
10074 In that case, Buffer is a PAD type whose size is unset and needs
10075 to be computed by fixing the unwrapped type.
10076
21649b50
JB
10077 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10078 ----------------------------------------------------------
10079
10080 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10081 thus far, be actually fixed?
10082
10083 The answer is: Only when referencing that element. For instance
10084 when selecting one component of a record, this specific component
10085 should be fixed at that point in time. Or when printing the value
10086 of a record, each component should be fixed before its value gets
10087 printed. Similarly for arrays, the element of the array should be
10088 fixed when printing each element of the array, or when extracting
10089 one element out of that array. On the other hand, fixing should
10090 not be performed on the elements when taking a slice of an array!
10091
31432a67 10092 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10093 size of each field is that we end up also miscomputing the size
10094 of the containing type. This can have adverse results when computing
10095 the value of an entity. GDB fetches the value of an entity based
10096 on the size of its type, and thus a wrong size causes GDB to fetch
10097 the wrong amount of memory. In the case where the computed size is
10098 too small, GDB fetches too little data to print the value of our
31432a67 10099 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10100 past the buffer containing the data =:-o. */
10101
62d4bd94
TT
10102/* A helper function for TERNOP_IN_RANGE. */
10103
10104static value *
10105eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10106 enum noside noside,
10107 value *arg1, value *arg2, value *arg3)
10108{
62d4bd94
TT
10109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10110 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10111 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10112 return
10113 value_from_longest (type,
10114 (value_less (arg1, arg3)
10115 || value_equal (arg1, arg3))
10116 && (value_less (arg2, arg1)
10117 || value_equal (arg2, arg1)));
10118}
10119
82390ab8
TT
10120/* A helper function for UNOP_NEG. */
10121
7c15d377 10122value *
82390ab8
TT
10123ada_unop_neg (struct type *expect_type,
10124 struct expression *exp,
10125 enum noside noside, enum exp_opcode op,
10126 struct value *arg1)
10127{
82390ab8
TT
10128 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10129 return value_neg (arg1);
10130}
10131
7efc87ff
TT
10132/* A helper function for UNOP_IN_RANGE. */
10133
95d49dfb 10134value *
7efc87ff
TT
10135ada_unop_in_range (struct type *expect_type,
10136 struct expression *exp,
10137 enum noside noside, enum exp_opcode op,
10138 struct value *arg1, struct type *type)
10139{
7efc87ff
TT
10140 struct value *arg2, *arg3;
10141 switch (type->code ())
10142 {
10143 default:
10144 lim_warning (_("Membership test incompletely implemented; "
10145 "always returns true"));
10146 type = language_bool_type (exp->language_defn, exp->gdbarch);
10147 return value_from_longest (type, (LONGEST) 1);
10148
10149 case TYPE_CODE_RANGE:
10150 arg2 = value_from_longest (type,
10151 type->bounds ()->low.const_val ());
10152 arg3 = value_from_longest (type,
10153 type->bounds ()->high.const_val ());
10154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10156 type = language_bool_type (exp->language_defn, exp->gdbarch);
10157 return
10158 value_from_longest (type,
10159 (value_less (arg1, arg3)
10160 || value_equal (arg1, arg3))
10161 && (value_less (arg2, arg1)
10162 || value_equal (arg2, arg1)));
10163 }
10164}
10165
020dbabe
TT
10166/* A helper function for OP_ATR_TAG. */
10167
7c15d377 10168value *
020dbabe
TT
10169ada_atr_tag (struct type *expect_type,
10170 struct expression *exp,
10171 enum noside noside, enum exp_opcode op,
10172 struct value *arg1)
10173{
10174 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10175 return value_zero (ada_tag_type (arg1), not_lval);
10176
10177 return ada_value_tag (arg1);
10178}
10179
68c75735
TT
10180/* A helper function for OP_ATR_SIZE. */
10181
7c15d377 10182value *
68c75735
TT
10183ada_atr_size (struct type *expect_type,
10184 struct expression *exp,
10185 enum noside noside, enum exp_opcode op,
10186 struct value *arg1)
10187{
10188 struct type *type = value_type (arg1);
10189
10190 /* If the argument is a reference, then dereference its type, since
10191 the user is really asking for the size of the actual object,
10192 not the size of the pointer. */
10193 if (type->code () == TYPE_CODE_REF)
27710edb 10194 type = type->target_type ();
68c75735 10195
0b2b0b82 10196 if (noside == EVAL_AVOID_SIDE_EFFECTS)
68c75735
TT
10197 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10198 else
10199 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10200 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10201}
10202
d05e24e6
TT
10203/* A helper function for UNOP_ABS. */
10204
7c15d377 10205value *
d05e24e6
TT
10206ada_abs (struct type *expect_type,
10207 struct expression *exp,
10208 enum noside noside, enum exp_opcode op,
10209 struct value *arg1)
10210{
10211 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10212 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10213 return value_neg (arg1);
10214 else
10215 return arg1;
10216}
10217
faa1dfd7
TT
10218/* A helper function for BINOP_MUL. */
10219
d9e7db06 10220value *
faa1dfd7
TT
10221ada_mult_binop (struct type *expect_type,
10222 struct expression *exp,
10223 enum noside noside, enum exp_opcode op,
10224 struct value *arg1, struct value *arg2)
10225{
10226 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10227 {
10228 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10229 return value_zero (value_type (arg1), not_lval);
10230 }
10231 else
10232 {
10233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10234 return ada_value_binop (arg1, arg2, op);
10235 }
10236}
10237
214b13ac
TT
10238/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10239
6e8fb7b7 10240value *
214b13ac
TT
10241ada_equal_binop (struct type *expect_type,
10242 struct expression *exp,
10243 enum noside noside, enum exp_opcode op,
10244 struct value *arg1, struct value *arg2)
10245{
10246 int tem;
10247 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10248 tem = 0;
10249 else
10250 {
10251 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10252 tem = ada_value_equal (arg1, arg2);
10253 }
10254 if (op == BINOP_NOTEQUAL)
10255 tem = !tem;
10256 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10257 return value_from_longest (type, (LONGEST) tem);
10258}
10259
5ce19db8
TT
10260/* A helper function for TERNOP_SLICE. */
10261
1b1ebfab 10262value *
5ce19db8
TT
10263ada_ternop_slice (struct expression *exp,
10264 enum noside noside,
10265 struct value *array, struct value *low_bound_val,
10266 struct value *high_bound_val)
10267{
10268 LONGEST low_bound;
10269 LONGEST high_bound;
10270
10271 low_bound_val = coerce_ref (low_bound_val);
10272 high_bound_val = coerce_ref (high_bound_val);
10273 low_bound = value_as_long (low_bound_val);
10274 high_bound = value_as_long (high_bound_val);
10275
10276 /* If this is a reference to an aligner type, then remove all
10277 the aligners. */
10278 if (value_type (array)->code () == TYPE_CODE_REF
27710edb 10279 && ada_is_aligner_type (value_type (array)->target_type ()))
8a50fdce 10280 value_type (array)->set_target_type
27710edb 10281 (ada_aligned_type (value_type (array)->target_type ()));
5ce19db8
TT
10282
10283 if (ada_is_any_packed_array_type (value_type (array)))
10284 error (_("cannot slice a packed array"));
10285
10286 /* If this is a reference to an array or an array lvalue,
10287 convert to a pointer. */
10288 if (value_type (array)->code () == TYPE_CODE_REF
10289 || (value_type (array)->code () == TYPE_CODE_ARRAY
10290 && VALUE_LVAL (array) == lval_memory))
10291 array = value_addr (array);
10292
10293 if (noside == EVAL_AVOID_SIDE_EFFECTS
10294 && ada_is_array_descriptor_type (ada_check_typedef
10295 (value_type (array))))
10296 return empty_array (ada_type_of_array (array, 0), low_bound,
10297 high_bound);
10298
10299 array = ada_coerce_to_simple_array_ptr (array);
10300
10301 /* If we have more than one level of pointer indirection,
10302 dereference the value until we get only one level. */
10303 while (value_type (array)->code () == TYPE_CODE_PTR
27710edb 10304 && (value_type (array)->target_type ()->code ()
5ce19db8
TT
10305 == TYPE_CODE_PTR))
10306 array = value_ind (array);
10307
10308 /* Make sure we really do have an array type before going further,
10309 to avoid a SEGV when trying to get the index type or the target
10310 type later down the road if the debug info generated by
10311 the compiler is incorrect or incomplete. */
10312 if (!ada_is_simple_array_type (value_type (array)))
10313 error (_("cannot take slice of non-array"));
10314
10315 if (ada_check_typedef (value_type (array))->code ()
10316 == TYPE_CODE_PTR)
10317 {
10318 struct type *type0 = ada_check_typedef (value_type (array));
10319
10320 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
27710edb 10321 return empty_array (type0->target_type (), low_bound, high_bound);
5ce19db8
TT
10322 else
10323 {
10324 struct type *arr_type0 =
27710edb 10325 to_fixed_array_type (type0->target_type (), NULL, 1);
5ce19db8
TT
10326
10327 return ada_value_slice_from_ptr (array, arr_type0,
10328 longest_to_int (low_bound),
10329 longest_to_int (high_bound));
10330 }
10331 }
10332 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10333 return array;
10334 else if (high_bound < low_bound)
10335 return empty_array (value_type (array), low_bound, high_bound);
10336 else
10337 return ada_value_slice (array, longest_to_int (low_bound),
10338 longest_to_int (high_bound));
10339}
10340
b467efaa
TT
10341/* A helper function for BINOP_IN_BOUNDS. */
10342
82c3886e 10343value *
b467efaa
TT
10344ada_binop_in_bounds (struct expression *exp, enum noside noside,
10345 struct value *arg1, struct value *arg2, int n)
10346{
10347 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10348 {
10349 struct type *type = language_bool_type (exp->language_defn,
10350 exp->gdbarch);
10351 return value_zero (type, not_lval);
10352 }
10353
10354 struct type *type = ada_index_type (value_type (arg2), n, "range");
10355 if (!type)
10356 type = value_type (arg1);
10357
10358 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10359 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10360
10361 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10362 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10363 type = language_bool_type (exp->language_defn, exp->gdbarch);
10364 return value_from_longest (type,
10365 (value_less (arg1, arg3)
10366 || value_equal (arg1, arg3))
10367 && (value_less (arg2, arg1)
10368 || value_equal (arg2, arg1)));
10369}
10370
b84564fc
TT
10371/* A helper function for some attribute operations. */
10372
10373static value *
10374ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10375 struct value *arg1, struct type *type_arg, int tem)
10376{
10377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10378 {
10379 if (type_arg == NULL)
10380 type_arg = value_type (arg1);
10381
10382 if (ada_is_constrained_packed_array_type (type_arg))
10383 type_arg = decode_constrained_packed_array_type (type_arg);
10384
10385 if (!discrete_type_p (type_arg))
10386 {
10387 switch (op)
10388 {
10389 default: /* Should never happen. */
10390 error (_("unexpected attribute encountered"));
10391 case OP_ATR_FIRST:
10392 case OP_ATR_LAST:
10393 type_arg = ada_index_type (type_arg, tem,
10394 ada_attribute_name (op));
10395 break;
10396 case OP_ATR_LENGTH:
10397 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10398 break;
10399 }
10400 }
10401
10402 return value_zero (type_arg, not_lval);
10403 }
10404 else if (type_arg == NULL)
10405 {
10406 arg1 = ada_coerce_ref (arg1);
10407
10408 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10409 arg1 = ada_coerce_to_simple_array (arg1);
10410
10411 struct type *type;
10412 if (op == OP_ATR_LENGTH)
10413 type = builtin_type (exp->gdbarch)->builtin_int;
10414 else
10415 {
10416 type = ada_index_type (value_type (arg1), tem,
10417 ada_attribute_name (op));
10418 if (type == NULL)
10419 type = builtin_type (exp->gdbarch)->builtin_int;
10420 }
10421
10422 switch (op)
10423 {
10424 default: /* Should never happen. */
10425 error (_("unexpected attribute encountered"));
10426 case OP_ATR_FIRST:
10427 return value_from_longest
10428 (type, ada_array_bound (arg1, tem, 0));
10429 case OP_ATR_LAST:
10430 return value_from_longest
10431 (type, ada_array_bound (arg1, tem, 1));
10432 case OP_ATR_LENGTH:
10433 return value_from_longest
10434 (type, ada_array_length (arg1, tem));
10435 }
10436 }
10437 else if (discrete_type_p (type_arg))
10438 {
10439 struct type *range_type;
10440 const char *name = ada_type_name (type_arg);
10441
10442 range_type = NULL;
10443 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10444 range_type = to_fixed_range_type (type_arg, NULL);
10445 if (range_type == NULL)
10446 range_type = type_arg;
10447 switch (op)
10448 {
10449 default:
10450 error (_("unexpected attribute encountered"));
10451 case OP_ATR_FIRST:
10452 return value_from_longest
10453 (range_type, ada_discrete_type_low_bound (range_type));
10454 case OP_ATR_LAST:
10455 return value_from_longest
10456 (range_type, ada_discrete_type_high_bound (range_type));
10457 case OP_ATR_LENGTH:
10458 error (_("the 'length attribute applies only to array types"));
10459 }
10460 }
10461 else if (type_arg->code () == TYPE_CODE_FLT)
10462 error (_("unimplemented type attribute"));
10463 else
10464 {
10465 LONGEST low, high;
10466
10467 if (ada_is_constrained_packed_array_type (type_arg))
10468 type_arg = decode_constrained_packed_array_type (type_arg);
10469
10470 struct type *type;
10471 if (op == OP_ATR_LENGTH)
10472 type = builtin_type (exp->gdbarch)->builtin_int;
10473 else
10474 {
10475 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10476 if (type == NULL)
10477 type = builtin_type (exp->gdbarch)->builtin_int;
10478 }
10479
10480 switch (op)
10481 {
10482 default:
10483 error (_("unexpected attribute encountered"));
10484 case OP_ATR_FIRST:
10485 low = ada_array_bound_from_type (type_arg, tem, 0);
10486 return value_from_longest (type, low);
10487 case OP_ATR_LAST:
10488 high = ada_array_bound_from_type (type_arg, tem, 1);
10489 return value_from_longest (type, high);
10490 case OP_ATR_LENGTH:
10491 low = ada_array_bound_from_type (type_arg, tem, 0);
10492 high = ada_array_bound_from_type (type_arg, tem, 1);
10493 return value_from_longest (type, high - low + 1);
10494 }
10495 }
10496}
10497
38dc70cf
TT
10498/* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10499
6ad3b8bf 10500struct value *
38dc70cf
TT
10501ada_binop_minmax (struct type *expect_type,
10502 struct expression *exp,
10503 enum noside noside, enum exp_opcode op,
10504 struct value *arg1, struct value *arg2)
10505{
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10507 return value_zero (value_type (arg1), not_lval);
10508 else
10509 {
10510 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
0922dc84 10511 return value_binop (arg1, arg2, op);
38dc70cf
TT
10512 }
10513}
10514
dd5fd283
TT
10515/* A helper function for BINOP_EXP. */
10516
065ec826 10517struct value *
dd5fd283
TT
10518ada_binop_exp (struct type *expect_type,
10519 struct expression *exp,
10520 enum noside noside, enum exp_opcode op,
10521 struct value *arg1, struct value *arg2)
10522{
10523 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10524 return value_zero (value_type (arg1), not_lval);
10525 else
10526 {
10527 /* For integer exponentiation operations,
10528 only promote the first argument. */
10529 if (is_integral_type (value_type (arg2)))
10530 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10531 else
10532 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10533
10534 return value_binop (arg1, arg2, op);
10535 }
10536}
10537
03070ee9
TT
10538namespace expr
10539{
10540
8b12db26
TT
10541/* See ada-exp.h. */
10542
10543operation_up
10544ada_resolvable::replace (operation_up &&owner,
10545 struct expression *exp,
10546 bool deprocedure_p,
10547 bool parse_completion,
10548 innermost_block_tracker *tracker,
10549 struct type *context_type)
10550{
10551 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10552 return (make_operation<ada_funcall_operation>
10553 (std::move (owner),
10554 std::vector<operation_up> ()));
10555 return std::move (owner);
10556}
10557
c9f66f00 10558/* Convert the character literal whose value would be VAL to the
03adb248
TT
10559 appropriate value of type TYPE, if there is a translation.
10560 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10561 the literal 'A' (VAL == 65), returns 0. */
10562
10563static LONGEST
10564convert_char_literal (struct type *type, LONGEST val)
10565{
c9f66f00 10566 char name[12];
03adb248
TT
10567 int f;
10568
10569 if (type == NULL)
10570 return val;
10571 type = check_typedef (type);
10572 if (type->code () != TYPE_CODE_ENUM)
10573 return val;
10574
10575 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10576 xsnprintf (name, sizeof (name), "Q%c", (int) val);
c9f66f00
TT
10577 else if (val >= 0 && val < 256)
10578 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10579 else if (val >= 0 && val < 0x10000)
10580 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
03adb248 10581 else
c9f66f00 10582 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
03adb248
TT
10583 size_t len = strlen (name);
10584 for (f = 0; f < type->num_fields (); f += 1)
10585 {
10586 /* Check the suffix because an enum constant in a package will
10587 have a name like "pkg__QUxx". This is safe enough because we
10588 already have the correct type, and because mangling means
10589 there can't be clashes. */
33d16dd9 10590 const char *ename = type->field (f).name ();
03adb248
TT
10591 size_t elen = strlen (ename);
10592
10593 if (elen >= len && strcmp (name, ename + elen - len) == 0)
970db518 10594 return type->field (f).loc_enumval ();
03adb248
TT
10595 }
10596 return val;
10597}
10598
b1b9c411
TT
10599value *
10600ada_char_operation::evaluate (struct type *expect_type,
10601 struct expression *exp,
10602 enum noside noside)
10603{
10604 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10605 if (expect_type != nullptr)
10606 result = ada_value_cast (expect_type, result);
10607 return result;
10608}
10609
03adb248
TT
10610/* See ada-exp.h. */
10611
10612operation_up
10613ada_char_operation::replace (operation_up &&owner,
10614 struct expression *exp,
10615 bool deprocedure_p,
10616 bool parse_completion,
10617 innermost_block_tracker *tracker,
10618 struct type *context_type)
10619{
10620 operation_up result = std::move (owner);
10621
10622 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10623 {
10624 gdb_assert (result.get () == this);
10625 std::get<0> (m_storage) = context_type;
10626 std::get<1> (m_storage)
10627 = convert_char_literal (context_type, std::get<1> (m_storage));
10628 }
10629
b1b9c411 10630 return result;
03adb248
TT
10631}
10632
03070ee9
TT
10633value *
10634ada_wrapped_operation::evaluate (struct type *expect_type,
10635 struct expression *exp,
10636 enum noside noside)
10637{
10638 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10639 if (noside == EVAL_NORMAL)
10640 result = unwrap_value (result);
10641
10642 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10643 then we need to perform the conversion manually, because
10644 evaluate_subexp_standard doesn't do it. This conversion is
10645 necessary in Ada because the different kinds of float/fixed
10646 types in Ada have different representations.
10647
10648 Similarly, we need to perform the conversion from OP_LONG
10649 ourselves. */
10650 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10651 result = ada_value_cast (expect_type, result);
10652
10653 return result;
10654}
10655
42fecb61
TT
10656value *
10657ada_string_operation::evaluate (struct type *expect_type,
10658 struct expression *exp,
10659 enum noside noside)
10660{
fc18a21b
TT
10661 struct type *char_type;
10662 if (expect_type != nullptr && ada_is_string_type (expect_type))
10663 char_type = ada_array_element_type (expect_type, 1);
10664 else
10665 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10666
10667 const std::string &str = std::get<0> (m_storage);
10668 const char *encoding;
10669 switch (TYPE_LENGTH (char_type))
10670 {
10671 case 1:
10672 {
10673 /* Simply copy over the data -- this isn't perhaps strictly
10674 correct according to the encodings, but it is gdb's
10675 historical behavior. */
10676 struct type *stringtype
10677 = lookup_array_range_type (char_type, 1, str.length ());
10678 struct value *val = allocate_value (stringtype);
10679 memcpy (value_contents_raw (val).data (), str.c_str (),
10680 str.length ());
10681 return val;
10682 }
10683
10684 case 2:
10685 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10686 encoding = "UTF-16BE";
10687 else
10688 encoding = "UTF-16LE";
10689 break;
10690
10691 case 4:
10692 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10693 encoding = "UTF-32BE";
10694 else
10695 encoding = "UTF-32LE";
10696 break;
10697
10698 default:
10699 error (_("unexpected character type size %s"),
10700 pulongest (TYPE_LENGTH (char_type)));
10701 }
10702
10703 auto_obstack converted;
10704 convert_between_encodings (host_charset (), encoding,
10705 (const gdb_byte *) str.c_str (),
10706 str.length (), 1,
10707 &converted, translit_none);
10708
10709 struct type *stringtype
10710 = lookup_array_range_type (char_type, 1,
10711 obstack_object_size (&converted)
10712 / TYPE_LENGTH (char_type));
10713 struct value *val = allocate_value (stringtype);
10714 memcpy (value_contents_raw (val).data (),
10715 obstack_base (&converted),
10716 obstack_object_size (&converted));
10717 return val;
42fecb61
TT
10718}
10719
b1b9c411
TT
10720value *
10721ada_concat_operation::evaluate (struct type *expect_type,
10722 struct expression *exp,
10723 enum noside noside)
10724{
10725 /* If one side is a literal, evaluate the other side first so that
10726 the expected type can be set properly. */
10727 const operation_up &lhs_expr = std::get<0> (m_storage);
10728 const operation_up &rhs_expr = std::get<1> (m_storage);
10729
10730 value *lhs, *rhs;
10731 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10732 {
10733 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10734 lhs = lhs_expr->evaluate (value_type (rhs), exp, noside);
10735 }
10736 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10737 {
10738 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10739 struct type *rhs_type = check_typedef (value_type (rhs));
10740 struct type *elt_type = nullptr;
10741 if (rhs_type->code () == TYPE_CODE_ARRAY)
27710edb 10742 elt_type = rhs_type->target_type ();
b1b9c411
TT
10743 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10744 }
10745 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10746 {
10747 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10748 rhs = rhs_expr->evaluate (value_type (lhs), exp, noside);
10749 }
10750 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10751 {
10752 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10753 struct type *lhs_type = check_typedef (value_type (lhs));
10754 struct type *elt_type = nullptr;
10755 if (lhs_type->code () == TYPE_CODE_ARRAY)
27710edb 10756 elt_type = lhs_type->target_type ();
b1b9c411
TT
10757 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10758 }
10759 else
10760 return concat_operation::evaluate (expect_type, exp, noside);
10761
10762 return value_concat (lhs, rhs);
10763}
10764
cc6bd32e
TT
10765value *
10766ada_qual_operation::evaluate (struct type *expect_type,
10767 struct expression *exp,
10768 enum noside noside)
10769{
10770 struct type *type = std::get<1> (m_storage);
10771 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10772}
10773
fc715eb2
TT
10774value *
10775ada_ternop_range_operation::evaluate (struct type *expect_type,
10776 struct expression *exp,
10777 enum noside noside)
10778{
10779 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10780 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10781 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10782 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10783}
10784
73796c73
TT
10785value *
10786ada_binop_addsub_operation::evaluate (struct type *expect_type,
10787 struct expression *exp,
10788 enum noside noside)
10789{
10790 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10791 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10792
10793 auto do_op = [=] (LONGEST x, LONGEST y)
10794 {
10795 if (std::get<0> (m_storage) == BINOP_ADD)
10796 return x + y;
10797 return x - y;
10798 };
10799
10800 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10801 return (value_from_longest
10802 (value_type (arg1),
10803 do_op (value_as_long (arg1), value_as_long (arg2))));
10804 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10805 return (value_from_longest
10806 (value_type (arg2),
10807 do_op (value_as_long (arg1), value_as_long (arg2))));
10808 /* Preserve the original type for use by the range case below.
10809 We cannot cast the result to a reference type, so if ARG1 is
10810 a reference type, find its underlying type. */
10811 struct type *type = value_type (arg1);
10812 while (type->code () == TYPE_CODE_REF)
27710edb 10813 type = type->target_type ();
73796c73
TT
10814 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10815 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10816 /* We need to special-case the result with a range.
10817 This is done for the benefit of "ptype". gdb's Ada support
10818 historically used the LHS to set the result type here, so
10819 preserve this behavior. */
10820 if (type->code () == TYPE_CODE_RANGE)
10821 arg1 = value_cast (type, arg1);
10822 return arg1;
10823}
10824
60fa02ca
TT
10825value *
10826ada_unop_atr_operation::evaluate (struct type *expect_type,
10827 struct expression *exp,
10828 enum noside noside)
10829{
10830 struct type *type_arg = nullptr;
10831 value *val = nullptr;
10832
10833 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10834 {
10835 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10836 EVAL_AVOID_SIDE_EFFECTS);
10837 type_arg = value_type (tem);
10838 }
10839 else
10840 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10841
10842 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10843 val, type_arg, std::get<2> (m_storage));
10844}
10845
3f4a0053
TT
10846value *
10847ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10848 struct expression *exp,
10849 enum noside noside)
10850{
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 return value_zero (expect_type, not_lval);
10853
9c79936b
TT
10854 const bound_minimal_symbol &b = std::get<0> (m_storage);
10855 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
3f4a0053
TT
10856
10857 val = ada_value_cast (expect_type, val);
10858
10859 /* Follow the Ada language semantics that do not allow taking
10860 an address of the result of a cast (view conversion in Ada). */
10861 if (VALUE_LVAL (val) == lval_memory)
10862 {
10863 if (value_lazy (val))
10864 value_fetch_lazy (val);
10865 VALUE_LVAL (val) = not_lval;
10866 }
10867 return val;
10868}
10869
99a3b1e7
TT
10870value *
10871ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10872 struct expression *exp,
10873 enum noside noside)
10874{
10875 value *val = evaluate_var_value (noside,
9e5e03df
TT
10876 std::get<0> (m_storage).block,
10877 std::get<0> (m_storage).symbol);
99a3b1e7
TT
10878
10879 val = ada_value_cast (expect_type, val);
10880
10881 /* Follow the Ada language semantics that do not allow taking
10882 an address of the result of a cast (view conversion in Ada). */
10883 if (VALUE_LVAL (val) == lval_memory)
10884 {
10885 if (value_lazy (val))
10886 value_fetch_lazy (val);
10887 VALUE_LVAL (val) = not_lval;
10888 }
10889 return val;
10890}
10891
10892value *
10893ada_var_value_operation::evaluate (struct type *expect_type,
10894 struct expression *exp,
10895 enum noside noside)
10896{
9e5e03df 10897 symbol *sym = std::get<0> (m_storage).symbol;
99a3b1e7 10898
6c9c307c 10899 if (sym->domain () == UNDEF_DOMAIN)
99a3b1e7
TT
10900 /* Only encountered when an unresolved symbol occurs in a
10901 context other than a function call, in which case, it is
10902 invalid. */
10903 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10904 sym->print_name ());
10905
10906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10907 {
5f9c5a63 10908 struct type *type = static_unwrap_type (sym->type ());
99a3b1e7
TT
10909 /* Check to see if this is a tagged type. We also need to handle
10910 the case where the type is a reference to a tagged type, but
10911 we have to be careful to exclude pointers to tagged types.
10912 The latter should be shown as usual (as a pointer), whereas
10913 a reference should mostly be transparent to the user. */
10914 if (ada_is_tagged_type (type, 0)
10915 || (type->code () == TYPE_CODE_REF
27710edb 10916 && ada_is_tagged_type (type->target_type (), 0)))
99a3b1e7
TT
10917 {
10918 /* Tagged types are a little special in the fact that the real
10919 type is dynamic and can only be determined by inspecting the
10920 object's tag. This means that we need to get the object's
10921 value first (EVAL_NORMAL) and then extract the actual object
10922 type from its tag.
10923
10924 Note that we cannot skip the final step where we extract
10925 the object type from its tag, because the EVAL_NORMAL phase
10926 results in dynamic components being resolved into fixed ones.
10927 This can cause problems when trying to print the type
10928 description of tagged types whose parent has a dynamic size:
10929 We use the type name of the "_parent" component in order
10930 to print the name of the ancestor type in the type description.
10931 If that component had a dynamic size, the resolution into
10932 a fixed type would result in the loss of that type name,
10933 thus preventing us from printing the name of the ancestor
10934 type in the type description. */
9863c3b5 10935 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
99a3b1e7
TT
10936
10937 if (type->code () != TYPE_CODE_REF)
10938 {
10939 struct type *actual_type;
10940
10941 actual_type = type_from_tag (ada_value_tag (arg1));
10942 if (actual_type == NULL)
10943 /* If, for some reason, we were unable to determine
10944 the actual type from the tag, then use the static
10945 approximation that we just computed as a fallback.
10946 This can happen if the debugging information is
10947 incomplete, for instance. */
10948 actual_type = type;
10949 return value_zero (actual_type, not_lval);
10950 }
10951 else
10952 {
10953 /* In the case of a ref, ada_coerce_ref takes care
10954 of determining the actual type. But the evaluation
10955 should return a ref as it should be valid to ask
10956 for its address; so rebuild a ref after coerce. */
10957 arg1 = ada_coerce_ref (arg1);
10958 return value_ref (arg1, TYPE_CODE_REF);
10959 }
10960 }
10961
10962 /* Records and unions for which GNAT encodings have been
10963 generated need to be statically fixed as well.
10964 Otherwise, non-static fixing produces a type where
10965 all dynamic properties are removed, which prevents "ptype"
10966 from being able to completely describe the type.
10967 For instance, a case statement in a variant record would be
10968 replaced by the relevant components based on the actual
10969 value of the discriminants. */
10970 if ((type->code () == TYPE_CODE_STRUCT
10971 && dynamic_template_type (type) != NULL)
10972 || (type->code () == TYPE_CODE_UNION
10973 && ada_find_parallel_type (type, "___XVU") != NULL))
10974 return value_zero (to_static_fixed_type (type), not_lval);
10975 }
10976
10977 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10978 return ada_to_fixed_value (arg1);
10979}
10980
d8a4ed8a
TT
10981bool
10982ada_var_value_operation::resolve (struct expression *exp,
10983 bool deprocedure_p,
10984 bool parse_completion,
10985 innermost_block_tracker *tracker,
10986 struct type *context_type)
10987{
9e5e03df 10988 symbol *sym = std::get<0> (m_storage).symbol;
6c9c307c 10989 if (sym->domain () == UNDEF_DOMAIN)
d8a4ed8a
TT
10990 {
10991 block_symbol resolved
9e5e03df 10992 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
d8a4ed8a
TT
10993 context_type, parse_completion,
10994 deprocedure_p, tracker);
9e5e03df 10995 std::get<0> (m_storage) = resolved;
d8a4ed8a
TT
10996 }
10997
10998 if (deprocedure_p
5f9c5a63 10999 && (std::get<0> (m_storage).symbol->type ()->code ()
9e5e03df 11000 == TYPE_CODE_FUNC))
d8a4ed8a
TT
11001 return true;
11002
11003 return false;
11004}
11005
9e99f48f
TT
11006value *
11007ada_atr_val_operation::evaluate (struct type *expect_type,
11008 struct expression *exp,
11009 enum noside noside)
11010{
11011 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
11012 return ada_val_atr (noside, std::get<0> (m_storage), arg);
11013}
11014
e8c33fa1
TT
11015value *
11016ada_unop_ind_operation::evaluate (struct type *expect_type,
11017 struct expression *exp,
11018 enum noside noside)
11019{
11020 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11021
11022 struct type *type = ada_check_typedef (value_type (arg1));
11023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11024 {
11025 if (ada_is_array_descriptor_type (type))
11026 /* GDB allows dereferencing GNAT array descriptors. */
11027 {
11028 struct type *arrType = ada_type_of_array (arg1, 0);
11029
11030 if (arrType == NULL)
11031 error (_("Attempt to dereference null array pointer."));
11032 return value_at_lazy (arrType, 0);
11033 }
11034 else if (type->code () == TYPE_CODE_PTR
11035 || type->code () == TYPE_CODE_REF
11036 /* In C you can dereference an array to get the 1st elt. */
11037 || type->code () == TYPE_CODE_ARRAY)
11038 {
11039 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11040 only be determined by inspecting the object's tag.
11041 This means that we need to evaluate completely the
11042 expression in order to get its type. */
11043
11044 if ((type->code () == TYPE_CODE_REF
11045 || type->code () == TYPE_CODE_PTR)
27710edb 11046 && ada_is_tagged_type (type->target_type (), 0))
e8c33fa1
TT
11047 {
11048 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11049 EVAL_NORMAL);
11050 type = value_type (ada_value_ind (arg1));
11051 }
11052 else
11053 {
11054 type = to_static_fixed_type
11055 (ada_aligned_type
27710edb 11056 (ada_check_typedef (type->target_type ())));
e8c33fa1 11057 }
e8c33fa1
TT
11058 return value_zero (type, lval_memory);
11059 }
11060 else if (type->code () == TYPE_CODE_INT)
11061 {
11062 /* GDB allows dereferencing an int. */
11063 if (expect_type == NULL)
11064 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11065 lval_memory);
11066 else
11067 {
11068 expect_type =
11069 to_static_fixed_type (ada_aligned_type (expect_type));
11070 return value_zero (expect_type, lval_memory);
11071 }
11072 }
11073 else
11074 error (_("Attempt to take contents of a non-pointer value."));
11075 }
11076 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11077 type = ada_check_typedef (value_type (arg1));
11078
11079 if (type->code () == TYPE_CODE_INT)
11080 /* GDB allows dereferencing an int. If we were given
11081 the expect_type, then use that as the target type.
11082 Otherwise, assume that the target type is an int. */
11083 {
11084 if (expect_type != NULL)
11085 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11086 arg1));
11087 else
11088 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11089 (CORE_ADDR) value_as_address (arg1));
11090 }
11091
11092 if (ada_is_array_descriptor_type (type))
11093 /* GDB allows dereferencing GNAT array descriptors. */
11094 return ada_coerce_to_simple_array (arg1);
11095 else
11096 return ada_value_ind (arg1);
11097}
11098
ebc06ad8
TT
11099value *
11100ada_structop_operation::evaluate (struct type *expect_type,
11101 struct expression *exp,
11102 enum noside noside)
11103{
11104 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11105 const char *str = std::get<1> (m_storage).c_str ();
11106 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11107 {
11108 struct type *type;
11109 struct type *type1 = value_type (arg1);
11110
11111 if (ada_is_tagged_type (type1, 1))
11112 {
11113 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11114
11115 /* If the field is not found, check if it exists in the
11116 extension of this object's type. This means that we
11117 need to evaluate completely the expression. */
11118
11119 if (type == NULL)
11120 {
11121 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11122 EVAL_NORMAL);
11123 arg1 = ada_value_struct_elt (arg1, str, 0);
11124 arg1 = unwrap_value (arg1);
11125 type = value_type (ada_to_fixed_value (arg1));
11126 }
11127 }
11128 else
11129 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11130
11131 return value_zero (ada_aligned_type (type), lval_memory);
11132 }
11133 else
11134 {
11135 arg1 = ada_value_struct_elt (arg1, str, 0);
11136 arg1 = unwrap_value (arg1);
11137 return ada_to_fixed_value (arg1);
11138 }
11139}
11140
efe3af2f
TT
11141value *
11142ada_funcall_operation::evaluate (struct type *expect_type,
11143 struct expression *exp,
11144 enum noside noside)
11145{
11146 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11147 int nargs = args_up.size ();
11148 std::vector<value *> argvec (nargs);
11149 operation_up &callee_op = std::get<0> (m_storage);
11150
11151 ada_var_value_operation *avv
11152 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11153 if (avv != nullptr
6c9c307c 11154 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
efe3af2f
TT
11155 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11156 avv->get_symbol ()->print_name ());
11157
11158 value *callee = callee_op->evaluate (nullptr, exp, noside);
11159 for (int i = 0; i < args_up.size (); ++i)
11160 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11161
11162 if (ada_is_constrained_packed_array_type
11163 (desc_base_type (value_type (callee))))
11164 callee = ada_coerce_to_simple_array (callee);
11165 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11166 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11167 /* This is a packed array that has already been fixed, and
11168 therefore already coerced to a simple array. Nothing further
11169 to do. */
11170 ;
11171 else if (value_type (callee)->code () == TYPE_CODE_REF)
11172 {
11173 /* Make sure we dereference references so that all the code below
11174 feels like it's really handling the referenced value. Wrapping
11175 types (for alignment) may be there, so make sure we strip them as
11176 well. */
11177 callee = ada_to_fixed_value (coerce_ref (callee));
11178 }
11179 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11180 && VALUE_LVAL (callee) == lval_memory)
11181 callee = value_addr (callee);
11182
11183 struct type *type = ada_check_typedef (value_type (callee));
11184
11185 /* Ada allows us to implicitly dereference arrays when subscripting
11186 them. So, if this is an array typedef (encoding use for array
11187 access types encoded as fat pointers), strip it now. */
11188 if (type->code () == TYPE_CODE_TYPEDEF)
11189 type = ada_typedef_target_type (type);
11190
11191 if (type->code () == TYPE_CODE_PTR)
11192 {
27710edb 11193 switch (ada_check_typedef (type->target_type ())->code ())
efe3af2f
TT
11194 {
11195 case TYPE_CODE_FUNC:
27710edb 11196 type = ada_check_typedef (type->target_type ());
efe3af2f
TT
11197 break;
11198 case TYPE_CODE_ARRAY:
11199 break;
11200 case TYPE_CODE_STRUCT:
11201 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11202 callee = ada_value_ind (callee);
27710edb 11203 type = ada_check_typedef (type->target_type ());
efe3af2f
TT
11204 break;
11205 default:
11206 error (_("cannot subscript or call something of type `%s'"),
11207 ada_type_name (value_type (callee)));
11208 break;
11209 }
11210 }
11211
11212 switch (type->code ())
11213 {
11214 case TYPE_CODE_FUNC:
11215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11216 {
27710edb 11217 if (type->target_type () == NULL)
efe3af2f 11218 error_call_unknown_return_type (NULL);
27710edb 11219 return allocate_value (type->target_type ());
efe3af2f
TT
11220 }
11221 return call_function_by_hand (callee, NULL, argvec);
11222 case TYPE_CODE_INTERNAL_FUNCTION:
11223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11224 /* We don't know anything about what the internal
11225 function might return, but we have to return
11226 something. */
11227 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11228 not_lval);
11229 else
11230 return call_internal_function (exp->gdbarch, exp->language_defn,
11231 callee, nargs,
11232 argvec.data ());
11233
d3c54a1c
TT
11234 case TYPE_CODE_STRUCT:
11235 {
11236 int arity;
4c4b4cd2 11237
d3c54a1c
TT
11238 arity = ada_array_arity (type);
11239 type = ada_array_element_type (type, nargs);
11240 if (type == NULL)
11241 error (_("cannot subscript or call a record"));
11242 if (arity != nargs)
11243 error (_("wrong number of subscripts; expecting %d"), arity);
11244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11245 return value_zero (ada_aligned_type (type), lval_memory);
11246 return
11247 unwrap_value (ada_value_subscript
11248 (callee, nargs, argvec.data ()));
11249 }
11250 case TYPE_CODE_ARRAY:
14f9c5c9 11251 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11252 {
d3c54a1c
TT
11253 type = ada_array_element_type (type, nargs);
11254 if (type == NULL)
11255 error (_("element type of array unknown"));
dda83cd7 11256 else
d3c54a1c 11257 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 11258 }
d3c54a1c
TT
11259 return
11260 unwrap_value (ada_value_subscript
11261 (ada_coerce_to_simple_array (callee),
11262 nargs, argvec.data ()));
11263 case TYPE_CODE_PTR: /* Pointer to array */
11264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11265 {
27710edb 11266 type = to_fixed_array_type (type->target_type (), NULL, 1);
d3c54a1c
TT
11267 type = ada_array_element_type (type, nargs);
11268 if (type == NULL)
11269 error (_("element type of array unknown"));
96967637 11270 else
d3c54a1c 11271 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 11272 }
d3c54a1c
TT
11273 return
11274 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11275 argvec.data ()));
6b0d7253 11276
d3c54a1c
TT
11277 default:
11278 error (_("Attempt to index or call something other than an "
11279 "array or function"));
11280 }
11281}
5b4ee69b 11282
d3c54a1c
TT
11283bool
11284ada_funcall_operation::resolve (struct expression *exp,
11285 bool deprocedure_p,
11286 bool parse_completion,
11287 innermost_block_tracker *tracker,
11288 struct type *context_type)
11289{
11290 operation_up &callee_op = std::get<0> (m_storage);
5ec18f2b 11291
d3c54a1c
TT
11292 ada_var_value_operation *avv
11293 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11294 if (avv == nullptr)
11295 return false;
5ec18f2b 11296
d3c54a1c 11297 symbol *sym = avv->get_symbol ();
6c9c307c 11298 if (sym->domain () != UNDEF_DOMAIN)
d3c54a1c 11299 return false;
dda83cd7 11300
d3c54a1c
TT
11301 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11302 int nargs = args_up.size ();
11303 std::vector<value *> argvec (nargs);
284614f0 11304
d3c54a1c
TT
11305 for (int i = 0; i < args_up.size (); ++i)
11306 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
52ce6436 11307
d3c54a1c
TT
11308 const block *block = avv->get_block ();
11309 block_symbol resolved
11310 = ada_resolve_funcall (sym, block,
11311 context_type, parse_completion,
11312 nargs, argvec.data (),
11313 tracker);
11314
11315 std::get<0> (m_storage)
9e5e03df 11316 = make_operation<ada_var_value_operation> (resolved);
d3c54a1c
TT
11317 return false;
11318}
11319
11320bool
11321ada_ternop_slice_operation::resolve (struct expression *exp,
11322 bool deprocedure_p,
11323 bool parse_completion,
11324 innermost_block_tracker *tracker,
11325 struct type *context_type)
11326{
11327 /* Historically this check was done during resolution, so we
11328 continue that here. */
11329 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11330 EVAL_AVOID_SIDE_EFFECTS);
11331 if (ada_is_any_packed_array_type (value_type (v)))
11332 error (_("cannot slice a packed array"));
11333 return false;
11334}
14f9c5c9 11335
14f9c5c9 11336}
d3c54a1c 11337
14f9c5c9 11338\f
d2e4a39e 11339
4c4b4cd2
PH
11340/* Return non-zero iff TYPE represents a System.Address type. */
11341
11342int
11343ada_is_system_address_type (struct type *type)
11344{
7d93a1e0 11345 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11346}
11347
14f9c5c9 11348\f
d2e4a39e 11349
dda83cd7 11350 /* Range types */
14f9c5c9
AS
11351
11352/* Scan STR beginning at position K for a discriminant name, and
11353 return the value of that discriminant field of DVAL in *PX. If
11354 PNEW_K is not null, put the position of the character beyond the
11355 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11356 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11357
11358static int
108d56a4 11359scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 11360 int *pnew_k)
14f9c5c9 11361{
5f9febe0 11362 static std::string storage;
5da1a4d3 11363 const char *pstart, *pend, *bound;
d2e4a39e 11364 struct value *bound_val;
14f9c5c9
AS
11365
11366 if (dval == NULL || str == NULL || str[k] == '\0')
11367 return 0;
11368
5da1a4d3
SM
11369 pstart = str + k;
11370 pend = strstr (pstart, "__");
14f9c5c9
AS
11371 if (pend == NULL)
11372 {
5da1a4d3 11373 bound = pstart;
14f9c5c9
AS
11374 k += strlen (bound);
11375 }
d2e4a39e 11376 else
14f9c5c9 11377 {
5da1a4d3
SM
11378 int len = pend - pstart;
11379
11380 /* Strip __ and beyond. */
5f9febe0
TT
11381 storage = std::string (pstart, len);
11382 bound = storage.c_str ();
d2e4a39e 11383 k = pend - str;
14f9c5c9 11384 }
d2e4a39e 11385
df407dfe 11386 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11387 if (bound_val == NULL)
11388 return 0;
11389
11390 *px = value_as_long (bound_val);
11391 if (pnew_k != NULL)
11392 *pnew_k = k;
11393 return 1;
11394}
11395
25a1127b
TT
11396/* Value of variable named NAME. Only exact matches are considered.
11397 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11398 otherwise causes an error with message ERR_MSG. */
11399
d2e4a39e 11400static struct value *
edb0c9cb 11401get_var_value (const char *name, const char *err_msg)
14f9c5c9 11402{
25a1127b
TT
11403 std::string quoted_name = add_angle_brackets (name);
11404
11405 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 11406
d1183b06
TT
11407 std::vector<struct block_symbol> syms
11408 = ada_lookup_symbol_list_worker (lookup_name,
11409 get_selected_block (0),
11410 VAR_DOMAIN, 1);
14f9c5c9 11411
d1183b06 11412 if (syms.size () != 1)
14f9c5c9
AS
11413 {
11414 if (err_msg == NULL)
dda83cd7 11415 return 0;
14f9c5c9 11416 else
dda83cd7 11417 error (("%s"), err_msg);
14f9c5c9
AS
11418 }
11419
54d343a2 11420 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11421}
d2e4a39e 11422
edb0c9cb
PA
11423/* Value of integer variable named NAME in the current environment.
11424 If no such variable is found, returns false. Otherwise, sets VALUE
11425 to the variable's value and returns true. */
4c4b4cd2 11426
edb0c9cb
PA
11427bool
11428get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11429{
4c4b4cd2 11430 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11431
14f9c5c9 11432 if (var_val == 0)
edb0c9cb
PA
11433 return false;
11434
11435 value = value_as_long (var_val);
11436 return true;
14f9c5c9 11437}
d2e4a39e 11438
14f9c5c9
AS
11439
11440/* Return a range type whose base type is that of the range type named
11441 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11442 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11443 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11444 corresponding range type from debug information; fall back to using it
11445 if symbol lookup fails. If a new type must be created, allocate it
11446 like ORIG_TYPE was. The bounds information, in general, is encoded
11447 in NAME, the base type given in the named range type. */
14f9c5c9 11448
d2e4a39e 11449static struct type *
28c85d6c 11450to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11451{
0d5cff50 11452 const char *name;
14f9c5c9 11453 struct type *base_type;
108d56a4 11454 const char *subtype_info;
14f9c5c9 11455
28c85d6c 11456 gdb_assert (raw_type != NULL);
7d93a1e0 11457 gdb_assert (raw_type->name () != NULL);
dddfab26 11458
78134374 11459 if (raw_type->code () == TYPE_CODE_RANGE)
27710edb 11460 base_type = raw_type->target_type ();
14f9c5c9
AS
11461 else
11462 base_type = raw_type;
11463
7d93a1e0 11464 name = raw_type->name ();
14f9c5c9
AS
11465 subtype_info = strstr (name, "___XD");
11466 if (subtype_info == NULL)
690cc4eb 11467 {
43bbcdc2
PH
11468 LONGEST L = ada_discrete_type_low_bound (raw_type);
11469 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11470
690cc4eb
PH
11471 if (L < INT_MIN || U > INT_MAX)
11472 return raw_type;
11473 else
0c9c3474
SA
11474 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11475 L, U);
690cc4eb 11476 }
14f9c5c9
AS
11477 else
11478 {
14f9c5c9
AS
11479 int prefix_len = subtype_info - name;
11480 LONGEST L, U;
11481 struct type *type;
108d56a4 11482 const char *bounds_str;
14f9c5c9
AS
11483 int n;
11484
14f9c5c9
AS
11485 subtype_info += 5;
11486 bounds_str = strchr (subtype_info, '_');
11487 n = 1;
11488
d2e4a39e 11489 if (*subtype_info == 'L')
dda83cd7
SM
11490 {
11491 if (!ada_scan_number (bounds_str, n, &L, &n)
11492 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11493 return raw_type;
11494 if (bounds_str[n] == '_')
11495 n += 2;
11496 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11497 n += 1;
11498 subtype_info += 1;
11499 }
d2e4a39e 11500 else
dda83cd7 11501 {
5f9febe0
TT
11502 std::string name_buf = std::string (name, prefix_len) + "___L";
11503 if (!get_int_var_value (name_buf.c_str (), L))
dda83cd7
SM
11504 {
11505 lim_warning (_("Unknown lower bound, using 1."));
11506 L = 1;
11507 }
11508 }
14f9c5c9 11509
d2e4a39e 11510 if (*subtype_info == 'U')
dda83cd7
SM
11511 {
11512 if (!ada_scan_number (bounds_str, n, &U, &n)
11513 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11514 return raw_type;
11515 }
d2e4a39e 11516 else
dda83cd7 11517 {
5f9febe0
TT
11518 std::string name_buf = std::string (name, prefix_len) + "___U";
11519 if (!get_int_var_value (name_buf.c_str (), U))
dda83cd7
SM
11520 {
11521 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11522 U = L;
11523 }
11524 }
14f9c5c9 11525
0c9c3474
SA
11526 type = create_static_range_type (alloc_type_copy (raw_type),
11527 base_type, L, U);
f5a91472 11528 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11529 to match the size of the base_type, which is not what we want.
11530 Set it back to the original range type's length. */
f5a91472 11531 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11532 type->set_name (name);
14f9c5c9
AS
11533 return type;
11534 }
11535}
11536
4c4b4cd2
PH
11537/* True iff NAME is the name of a range type. */
11538
14f9c5c9 11539int
d2e4a39e 11540ada_is_range_type_name (const char *name)
14f9c5c9
AS
11541{
11542 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11543}
14f9c5c9 11544\f
d2e4a39e 11545
dda83cd7 11546 /* Modular types */
4c4b4cd2
PH
11547
11548/* True iff TYPE is an Ada modular type. */
14f9c5c9 11549
14f9c5c9 11550int
d2e4a39e 11551ada_is_modular_type (struct type *type)
14f9c5c9 11552{
18af8284 11553 struct type *subranged_type = get_base_type (type);
14f9c5c9 11554
78134374 11555 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11556 && subranged_type->code () == TYPE_CODE_INT
11557 && subranged_type->is_unsigned ());
14f9c5c9
AS
11558}
11559
4c4b4cd2
PH
11560/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11561
61ee279c 11562ULONGEST
0056e4d5 11563ada_modulus (struct type *type)
14f9c5c9 11564{
5e500d33
SM
11565 const dynamic_prop &high = type->bounds ()->high;
11566
11567 if (high.kind () == PROP_CONST)
11568 return (ULONGEST) high.const_val () + 1;
11569
11570 /* If TYPE is unresolved, the high bound might be a location list. Return
11571 0, for lack of a better value to return. */
11572 return 0;
14f9c5c9 11573}
d2e4a39e 11574\f
f7f9143b
JB
11575
11576/* Ada exception catchpoint support:
11577 ---------------------------------
11578
11579 We support 3 kinds of exception catchpoints:
11580 . catchpoints on Ada exceptions
11581 . catchpoints on unhandled Ada exceptions
11582 . catchpoints on failed assertions
11583
11584 Exceptions raised during failed assertions, or unhandled exceptions
11585 could perfectly be caught with the general catchpoint on Ada exceptions.
11586 However, we can easily differentiate these two special cases, and having
11587 the option to distinguish these two cases from the rest can be useful
11588 to zero-in on certain situations.
11589
11590 Exception catchpoints are a specialized form of breakpoint,
11591 since they rely on inserting breakpoints inside known routines
11592 of the GNAT runtime. The implementation therefore uses a standard
11593 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11594 of breakpoint_ops.
11595
0259addd
JB
11596 Support in the runtime for exception catchpoints have been changed
11597 a few times already, and these changes affect the implementation
11598 of these catchpoints. In order to be able to support several
11599 variants of the runtime, we use a sniffer that will determine
28010a5d 11600 the runtime variant used by the program being debugged. */
f7f9143b 11601
82eacd52
JB
11602/* Ada's standard exceptions.
11603
11604 The Ada 83 standard also defined Numeric_Error. But there so many
11605 situations where it was unclear from the Ada 83 Reference Manual
11606 (RM) whether Constraint_Error or Numeric_Error should be raised,
11607 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11608 Interpretation saying that anytime the RM says that Numeric_Error
11609 should be raised, the implementation may raise Constraint_Error.
11610 Ada 95 went one step further and pretty much removed Numeric_Error
11611 from the list of standard exceptions (it made it a renaming of
11612 Constraint_Error, to help preserve compatibility when compiling
11613 an Ada83 compiler). As such, we do not include Numeric_Error from
11614 this list of standard exceptions. */
3d0b0fa3 11615
27087b7f 11616static const char * const standard_exc[] = {
3d0b0fa3
JB
11617 "constraint_error",
11618 "program_error",
11619 "storage_error",
11620 "tasking_error"
11621};
11622
0259addd
JB
11623typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11624
11625/* A structure that describes how to support exception catchpoints
11626 for a given executable. */
11627
11628struct exception_support_info
11629{
11630 /* The name of the symbol to break on in order to insert
11631 a catchpoint on exceptions. */
11632 const char *catch_exception_sym;
11633
11634 /* The name of the symbol to break on in order to insert
11635 a catchpoint on unhandled exceptions. */
11636 const char *catch_exception_unhandled_sym;
11637
11638 /* The name of the symbol to break on in order to insert
11639 a catchpoint on failed assertions. */
11640 const char *catch_assert_sym;
11641
9f757bf7
XR
11642 /* The name of the symbol to break on in order to insert
11643 a catchpoint on exception handling. */
11644 const char *catch_handlers_sym;
11645
0259addd
JB
11646 /* Assuming that the inferior just triggered an unhandled exception
11647 catchpoint, this function is responsible for returning the address
11648 in inferior memory where the name of that exception is stored.
11649 Return zero if the address could not be computed. */
11650 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11651};
11652
11653static CORE_ADDR ada_unhandled_exception_name_addr (void);
11654static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11655
11656/* The following exception support info structure describes how to
11657 implement exception catchpoints with the latest version of the
ca683e3a 11658 Ada runtime (as of 2019-08-??). */
0259addd
JB
11659
11660static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11661{
11662 "__gnat_debug_raise_exception", /* catch_exception_sym */
11663 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11664 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11665 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11666 ada_unhandled_exception_name_addr
11667};
11668
11669/* The following exception support info structure describes how to
11670 implement exception catchpoints with an earlier version of the
11671 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11672
11673static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11674{
11675 "__gnat_debug_raise_exception", /* catch_exception_sym */
11676 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11677 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11678 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11679 ada_unhandled_exception_name_addr
11680};
11681
11682/* The following exception support info structure describes how to
11683 implement exception catchpoints with a slightly older version
11684 of the Ada runtime. */
11685
11686static const struct exception_support_info exception_support_info_fallback =
11687{
11688 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11689 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11690 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11691 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11692 ada_unhandled_exception_name_addr_from_raise
11693};
11694
f17011e0
JB
11695/* Return nonzero if we can detect the exception support routines
11696 described in EINFO.
11697
11698 This function errors out if an abnormal situation is detected
11699 (for instance, if we find the exception support routines, but
11700 that support is found to be incomplete). */
11701
11702static int
11703ada_has_this_exception_support (const struct exception_support_info *einfo)
11704{
11705 struct symbol *sym;
11706
11707 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11708 that should be compiled with debugging information. As a result, we
11709 expect to find that symbol in the symtabs. */
11710
11711 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11712 if (sym == NULL)
a6af7abe
JB
11713 {
11714 /* Perhaps we did not find our symbol because the Ada runtime was
11715 compiled without debugging info, or simply stripped of it.
11716 It happens on some GNU/Linux distributions for instance, where
11717 users have to install a separate debug package in order to get
11718 the runtime's debugging info. In that situation, let the user
11719 know why we cannot insert an Ada exception catchpoint.
11720
11721 Note: Just for the purpose of inserting our Ada exception
11722 catchpoint, we could rely purely on the associated minimal symbol.
11723 But we would be operating in degraded mode anyway, since we are
11724 still lacking the debugging info needed later on to extract
11725 the name of the exception being raised (this name is printed in
11726 the catchpoint message, and is also used when trying to catch
11727 a specific exception). We do not handle this case for now. */
3b7344d5 11728 struct bound_minimal_symbol msym
1c8e84b0
JB
11729 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11730
60f62e2b 11731 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
a6af7abe
JB
11732 error (_("Your Ada runtime appears to be missing some debugging "
11733 "information.\nCannot insert Ada exception catchpoint "
11734 "in this configuration."));
11735
11736 return 0;
11737 }
f17011e0
JB
11738
11739 /* Make sure that the symbol we found corresponds to a function. */
11740
66d7f48f 11741 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11742 {
11743 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11744 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11745 return 0;
11746 }
11747
11748 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11749 if (sym == NULL)
11750 {
11751 struct bound_minimal_symbol msym
11752 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11753
60f62e2b 11754 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
ca683e3a
AO
11755 error (_("Your Ada runtime appears to be missing some debugging "
11756 "information.\nCannot insert Ada exception catchpoint "
11757 "in this configuration."));
11758
11759 return 0;
11760 }
11761
11762 /* Make sure that the symbol we found corresponds to a function. */
11763
66d7f48f 11764 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11765 {
11766 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11767 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11768 return 0;
11769 }
f17011e0
JB
11770
11771 return 1;
11772}
11773
0259addd
JB
11774/* Inspect the Ada runtime and determine which exception info structure
11775 should be used to provide support for exception catchpoints.
11776
3eecfa55
JB
11777 This function will always set the per-inferior exception_info,
11778 or raise an error. */
0259addd
JB
11779
11780static void
11781ada_exception_support_info_sniffer (void)
11782{
3eecfa55 11783 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11784
11785 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11786 if (data->exception_info != NULL)
0259addd
JB
11787 return;
11788
11789 /* Check the latest (default) exception support info. */
f17011e0 11790 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11791 {
3eecfa55 11792 data->exception_info = &default_exception_support_info;
0259addd
JB
11793 return;
11794 }
11795
ca683e3a
AO
11796 /* Try the v0 exception suport info. */
11797 if (ada_has_this_exception_support (&exception_support_info_v0))
11798 {
11799 data->exception_info = &exception_support_info_v0;
11800 return;
11801 }
11802
0259addd 11803 /* Try our fallback exception suport info. */
f17011e0 11804 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11805 {
3eecfa55 11806 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11807 return;
11808 }
11809
11810 /* Sometimes, it is normal for us to not be able to find the routine
11811 we are looking for. This happens when the program is linked with
11812 the shared version of the GNAT runtime, and the program has not been
11813 started yet. Inform the user of these two possible causes if
11814 applicable. */
11815
ccefe4c4 11816 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11817 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11818
11819 /* If the symbol does not exist, then check that the program is
11820 already started, to make sure that shared libraries have been
11821 loaded. If it is not started, this may mean that the symbol is
11822 in a shared library. */
11823
e99b03dc 11824 if (inferior_ptid.pid () == 0)
0259addd
JB
11825 error (_("Unable to insert catchpoint. Try to start the program first."));
11826
11827 /* At this point, we know that we are debugging an Ada program and
11828 that the inferior has been started, but we still are not able to
0963b4bd 11829 find the run-time symbols. That can mean that we are in
0259addd
JB
11830 configurable run time mode, or that a-except as been optimized
11831 out by the linker... In any case, at this point it is not worth
11832 supporting this feature. */
11833
7dda8cff 11834 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11835}
11836
f7f9143b
JB
11837/* True iff FRAME is very likely to be that of a function that is
11838 part of the runtime system. This is all very heuristic, but is
11839 intended to be used as advice as to what frames are uninteresting
11840 to most users. */
11841
11842static int
11843is_known_support_routine (struct frame_info *frame)
11844{
692465f1 11845 enum language func_lang;
f7f9143b 11846 int i;
f35a17b5 11847 const char *fullname;
f7f9143b 11848
4ed6b5be
JB
11849 /* If this code does not have any debugging information (no symtab),
11850 This cannot be any user code. */
f7f9143b 11851
51abb421 11852 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11853 if (sal.symtab == NULL)
11854 return 1;
11855
4ed6b5be
JB
11856 /* If there is a symtab, but the associated source file cannot be
11857 located, then assume this is not user code: Selecting a frame
11858 for which we cannot display the code would not be very helpful
11859 for the user. This should also take care of case such as VxWorks
11860 where the kernel has some debugging info provided for a few units. */
f7f9143b 11861
f35a17b5
JK
11862 fullname = symtab_to_fullname (sal.symtab);
11863 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11864 return 1;
11865
85102364 11866 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11867 We also check the name of the objfile against the name of some
11868 known system libraries that sometimes come with debugging info
11869 too. */
11870
f7f9143b
JB
11871 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11872 {
11873 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11874 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11875 return 1;
3c86fae3
SM
11876 if (sal.symtab->compunit ()->objfile () != NULL
11877 && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
dda83cd7 11878 return 1;
f7f9143b
JB
11879 }
11880
4ed6b5be 11881 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11882
c6dc63a1
TT
11883 gdb::unique_xmalloc_ptr<char> func_name
11884 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11885 if (func_name == NULL)
11886 return 1;
11887
11888 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11889 {
11890 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11891 if (re_exec (func_name.get ()))
11892 return 1;
f7f9143b
JB
11893 }
11894
11895 return 0;
11896}
11897
11898/* Find the first frame that contains debugging information and that is not
11899 part of the Ada run-time, starting from FI and moving upward. */
11900
0ef643c8 11901void
f7f9143b
JB
11902ada_find_printable_frame (struct frame_info *fi)
11903{
11904 for (; fi != NULL; fi = get_prev_frame (fi))
11905 {
11906 if (!is_known_support_routine (fi))
dda83cd7
SM
11907 {
11908 select_frame (fi);
11909 break;
11910 }
f7f9143b
JB
11911 }
11912
11913}
11914
11915/* Assuming that the inferior just triggered an unhandled exception
11916 catchpoint, return the address in inferior memory where the name
11917 of the exception is stored.
11918
11919 Return zero if the address could not be computed. */
11920
11921static CORE_ADDR
11922ada_unhandled_exception_name_addr (void)
0259addd
JB
11923{
11924 return parse_and_eval_address ("e.full_name");
11925}
11926
11927/* Same as ada_unhandled_exception_name_addr, except that this function
11928 should be used when the inferior uses an older version of the runtime,
11929 where the exception name needs to be extracted from a specific frame
11930 several frames up in the callstack. */
11931
11932static CORE_ADDR
11933ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11934{
11935 int frame_level;
11936 struct frame_info *fi;
3eecfa55 11937 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11938
11939 /* To determine the name of this exception, we need to select
11940 the frame corresponding to RAISE_SYM_NAME. This frame is
11941 at least 3 levels up, so we simply skip the first 3 frames
11942 without checking the name of their associated function. */
11943 fi = get_current_frame ();
11944 for (frame_level = 0; frame_level < 3; frame_level += 1)
11945 if (fi != NULL)
11946 fi = get_prev_frame (fi);
11947
11948 while (fi != NULL)
11949 {
692465f1
JB
11950 enum language func_lang;
11951
c6dc63a1
TT
11952 gdb::unique_xmalloc_ptr<char> func_name
11953 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11954 if (func_name != NULL)
11955 {
dda83cd7 11956 if (strcmp (func_name.get (),
55b87a52
KS
11957 data->exception_info->catch_exception_sym) == 0)
11958 break; /* We found the frame we were looking for... */
55b87a52 11959 }
fb44b1a7 11960 fi = get_prev_frame (fi);
f7f9143b
JB
11961 }
11962
11963 if (fi == NULL)
11964 return 0;
11965
11966 select_frame (fi);
11967 return parse_and_eval_address ("id.full_name");
11968}
11969
11970/* Assuming the inferior just triggered an Ada exception catchpoint
11971 (of any type), return the address in inferior memory where the name
11972 of the exception is stored, if applicable.
11973
45db7c09
PA
11974 Assumes the selected frame is the current frame.
11975
f7f9143b
JB
11976 Return zero if the address could not be computed, or if not relevant. */
11977
11978static CORE_ADDR
7bd86313 11979ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex)
f7f9143b 11980{
3eecfa55
JB
11981 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11982
f7f9143b
JB
11983 switch (ex)
11984 {
761269c8 11985 case ada_catch_exception:
dda83cd7
SM
11986 return (parse_and_eval_address ("e.full_name"));
11987 break;
f7f9143b 11988
761269c8 11989 case ada_catch_exception_unhandled:
dda83cd7
SM
11990 return data->exception_info->unhandled_exception_name_addr ();
11991 break;
9f757bf7
XR
11992
11993 case ada_catch_handlers:
dda83cd7 11994 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11995 name. */
dda83cd7 11996 break;
9f757bf7 11997
761269c8 11998 case ada_catch_assert:
dda83cd7
SM
11999 return 0; /* Exception name is not relevant in this case. */
12000 break;
f7f9143b
JB
12001
12002 default:
dda83cd7
SM
12003 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12004 break;
f7f9143b
JB
12005 }
12006
12007 return 0; /* Should never be reached. */
12008}
12009
e547c119
JB
12010/* Assuming the inferior is stopped at an exception catchpoint,
12011 return the message which was associated to the exception, if
12012 available. Return NULL if the message could not be retrieved.
12013
e547c119
JB
12014 Note: The exception message can be associated to an exception
12015 either through the use of the Raise_Exception function, or
12016 more simply (Ada 2005 and later), via:
12017
12018 raise Exception_Name with "exception message";
12019
12020 */
12021
6f46ac85 12022static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12023ada_exception_message_1 (void)
12024{
12025 struct value *e_msg_val;
e547c119 12026 int e_msg_len;
e547c119
JB
12027
12028 /* For runtimes that support this feature, the exception message
12029 is passed as an unbounded string argument called "message". */
12030 e_msg_val = parse_and_eval ("message");
12031 if (e_msg_val == NULL)
12032 return NULL; /* Exception message not supported. */
12033
12034 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12035 gdb_assert (e_msg_val != NULL);
12036 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12037
12038 /* If the message string is empty, then treat it as if there was
12039 no exception message. */
12040 if (e_msg_len <= 0)
12041 return NULL;
12042
15f3b077
TT
12043 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12044 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12045 e_msg_len);
12046 e_msg.get ()[e_msg_len] = '\0';
12047
12048 return e_msg;
e547c119
JB
12049}
12050
12051/* Same as ada_exception_message_1, except that all exceptions are
12052 contained here (returning NULL instead). */
12053
6f46ac85 12054static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12055ada_exception_message (void)
12056{
6f46ac85 12057 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12058
a70b8144 12059 try
e547c119
JB
12060 {
12061 e_msg = ada_exception_message_1 ();
12062 }
230d2906 12063 catch (const gdb_exception_error &e)
e547c119 12064 {
6f46ac85 12065 e_msg.reset (nullptr);
e547c119 12066 }
e547c119
JB
12067
12068 return e_msg;
12069}
12070
f7f9143b
JB
12071/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12072 any error that ada_exception_name_addr_1 might cause to be thrown.
12073 When an error is intercepted, a warning with the error message is printed,
12074 and zero is returned. */
12075
12076static CORE_ADDR
7bd86313 12077ada_exception_name_addr (enum ada_exception_catchpoint_kind ex)
f7f9143b 12078{
f7f9143b
JB
12079 CORE_ADDR result = 0;
12080
a70b8144 12081 try
f7f9143b 12082 {
7bd86313 12083 result = ada_exception_name_addr_1 (ex);
f7f9143b
JB
12084 }
12085
230d2906 12086 catch (const gdb_exception_error &e)
f7f9143b 12087 {
3d6e9d23 12088 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12089 return 0;
12090 }
12091
12092 return result;
12093}
12094
cb7de75e 12095static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12096 (const char *excep_string,
12097 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12098
12099/* Ada catchpoints.
12100
12101 In the case of catchpoints on Ada exceptions, the catchpoint will
12102 stop the target on every exception the program throws. When a user
12103 specifies the name of a specific exception, we translate this
12104 request into a condition expression (in text form), and then parse
12105 it into an expression stored in each of the catchpoint's locations.
12106 We then use this condition to check whether the exception that was
12107 raised is the one the user is interested in. If not, then the
12108 target is resumed again. We store the name of the requested
12109 exception, in order to be able to re-set the condition expression
12110 when symbols change. */
12111
c1fc2657 12112/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12113
74421c0b 12114struct ada_catchpoint : public code_breakpoint
28010a5d 12115{
73063f51 12116 ada_catchpoint (struct gdbarch *gdbarch_,
bd21b6c9
PA
12117 enum ada_exception_catchpoint_kind kind,
12118 struct symtab_and_line sal,
12119 const char *addr_string_,
12120 bool tempflag,
12121 bool enabled,
12122 bool from_tty)
74421c0b 12123 : code_breakpoint (gdbarch_, bp_catchpoint),
73063f51 12124 m_kind (kind)
37f6a7f4 12125 {
bd21b6c9
PA
12126 add_location (sal);
12127
74421c0b 12128 /* Unlike most code_breakpoint types, Ada catchpoints are
bd21b6c9
PA
12129 pspace-specific. */
12130 gdb_assert (sal.pspace != nullptr);
12131 this->pspace = sal.pspace;
12132
12133 if (from_tty)
12134 {
12135 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12136 if (!loc_gdbarch)
12137 loc_gdbarch = gdbarch;
12138
12139 describe_other_breakpoints (loc_gdbarch,
12140 sal.pspace, sal.pc, sal.section, -1);
12141 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12142 version for exception catchpoints, because two catchpoints
12143 used for different exception names will use the same address.
12144 In this case, a "breakpoint ... also set at..." warning is
12145 unproductive. Besides, the warning phrasing is also a bit
12146 inappropriate, we should use the word catchpoint, and tell
12147 the user what type of catchpoint it is. The above is good
12148 enough for now, though. */
12149 }
12150
12151 enable_state = enabled ? bp_enabled : bp_disabled;
12152 disposition = tempflag ? disp_del : disp_donttouch;
264f9890
PA
12153 locspec = string_to_location_spec (&addr_string_,
12154 language_def (language_ada));
bd21b6c9 12155 language = language_ada;
37f6a7f4
TT
12156 }
12157
ae72050b
TT
12158 struct bp_location *allocate_location () override;
12159 void re_set () override;
12160 void check_status (struct bpstat *bs) override;
7bd86313 12161 enum print_stop_action print_it (const bpstat *bs) const override;
a67bcaba 12162 bool print_one (bp_location **) const override;
b713485d 12163 void print_mention () const override;
4d1ae558 12164 void print_recreate (struct ui_file *fp) const override;
ae72050b 12165
28010a5d 12166 /* The name of the specific exception the user specified. */
bc18fbb5 12167 std::string excep_string;
37f6a7f4
TT
12168
12169 /* What kind of catchpoint this is. */
12170 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12171};
12172
8cd0bf5e
PA
12173/* An instance of this type is used to represent an Ada catchpoint
12174 breakpoint location. */
12175
12176class ada_catchpoint_location : public bp_location
12177{
12178public:
12179 explicit ada_catchpoint_location (ada_catchpoint *owner)
12180 : bp_location (owner, bp_loc_software_breakpoint)
12181 {}
12182
12183 /* The condition that checks whether the exception that was raised
12184 is the specific exception the user specified on catchpoint
12185 creation. */
12186 expression_up excep_cond_expr;
12187};
12188
28010a5d
PA
12189/* Parse the exception condition string in the context of each of the
12190 catchpoint's locations, and store them for later evaluation. */
12191
12192static void
9f757bf7 12193create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 12194 enum ada_exception_catchpoint_kind ex)
28010a5d 12195{
28010a5d 12196 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12197 if (c->excep_string.empty ())
28010a5d
PA
12198 return;
12199
12200 /* Same if there are no locations... */
c1fc2657 12201 if (c->loc == NULL)
28010a5d
PA
12202 return;
12203
fccf9de1
TT
12204 /* Compute the condition expression in text form, from the specific
12205 expection we want to catch. */
12206 std::string cond_string
12207 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12208
fccf9de1
TT
12209 /* Iterate over all the catchpoint's locations, and parse an
12210 expression for each. */
40cb8ca5 12211 for (bp_location *bl : c->locations ())
28010a5d
PA
12212 {
12213 struct ada_catchpoint_location *ada_loc
fccf9de1 12214 = (struct ada_catchpoint_location *) bl;
4d01a485 12215 expression_up exp;
28010a5d 12216
fccf9de1 12217 if (!bl->shlib_disabled)
28010a5d 12218 {
bbc13ae3 12219 const char *s;
28010a5d 12220
cb7de75e 12221 s = cond_string.c_str ();
a70b8144 12222 try
28010a5d 12223 {
fccf9de1
TT
12224 exp = parse_exp_1 (&s, bl->address,
12225 block_for_pc (bl->address),
036e657b 12226 0);
28010a5d 12227 }
230d2906 12228 catch (const gdb_exception_error &e)
849f2b52
JB
12229 {
12230 warning (_("failed to reevaluate internal exception condition "
12231 "for catchpoint %d: %s"),
3d6e9d23 12232 c->number, e.what ());
849f2b52 12233 }
28010a5d
PA
12234 }
12235
b22e99fd 12236 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12237 }
28010a5d
PA
12238}
12239
ae72050b
TT
12240/* Implement the ALLOCATE_LOCATION method in the structure for all
12241 exception catchpoint kinds. */
28010a5d 12242
ae72050b
TT
12243struct bp_location *
12244ada_catchpoint::allocate_location ()
28010a5d 12245{
ae72050b 12246 return new ada_catchpoint_location (this);
28010a5d
PA
12247}
12248
ae72050b
TT
12249/* Implement the RE_SET method in the structure for all exception
12250 catchpoint kinds. */
28010a5d 12251
ae72050b
TT
12252void
12253ada_catchpoint::re_set ()
28010a5d 12254{
28010a5d
PA
12255 /* Call the base class's method. This updates the catchpoint's
12256 locations. */
74421c0b 12257 this->code_breakpoint::re_set ();
28010a5d
PA
12258
12259 /* Reparse the exception conditional expressions. One for each
12260 location. */
ae72050b 12261 create_excep_cond_exprs (this, m_kind);
28010a5d
PA
12262}
12263
12264/* Returns true if we should stop for this breakpoint hit. If the
12265 user specified a specific exception, we only want to cause a stop
12266 if the program thrown that exception. */
12267
7ebaa5f7 12268static bool
28010a5d
PA
12269should_stop_exception (const struct bp_location *bl)
12270{
12271 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12272 const struct ada_catchpoint_location *ada_loc
12273 = (const struct ada_catchpoint_location *) bl;
7ebaa5f7 12274 bool stop;
28010a5d 12275
37f6a7f4
TT
12276 struct internalvar *var = lookup_internalvar ("_ada_exception");
12277 if (c->m_kind == ada_catch_assert)
12278 clear_internalvar (var);
12279 else
12280 {
12281 try
12282 {
12283 const char *expr;
12284
12285 if (c->m_kind == ada_catch_handlers)
12286 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12287 ".all.occurrence.id");
12288 else
12289 expr = "e";
12290
12291 struct value *exc = parse_and_eval (expr);
12292 set_internalvar (var, exc);
12293 }
12294 catch (const gdb_exception_error &ex)
12295 {
12296 clear_internalvar (var);
12297 }
12298 }
12299
28010a5d 12300 /* With no specific exception, should always stop. */
bc18fbb5 12301 if (c->excep_string.empty ())
7ebaa5f7 12302 return true;
28010a5d
PA
12303
12304 if (ada_loc->excep_cond_expr == NULL)
12305 {
12306 /* We will have a NULL expression if back when we were creating
12307 the expressions, this location's had failed to parse. */
7ebaa5f7 12308 return true;
28010a5d
PA
12309 }
12310
7ebaa5f7 12311 stop = true;
a70b8144 12312 try
28010a5d
PA
12313 {
12314 struct value *mark;
12315
12316 mark = value_mark ();
4d01a485 12317 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12318 value_free_to_mark (mark);
12319 }
230d2906 12320 catch (const gdb_exception &ex)
492d29ea
PA
12321 {
12322 exception_fprintf (gdb_stderr, ex,
12323 _("Error in testing exception condition:\n"));
12324 }
492d29ea 12325
28010a5d
PA
12326 return stop;
12327}
12328
ae72050b
TT
12329/* Implement the CHECK_STATUS method in the structure for all
12330 exception catchpoint kinds. */
28010a5d 12331
ae72050b
TT
12332void
12333ada_catchpoint::check_status (bpstat *bs)
28010a5d 12334{
b6433ede 12335 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
12336}
12337
ae72050b
TT
12338/* Implement the PRINT_IT method in the structure for all exception
12339 catchpoint kinds. */
f7f9143b 12340
ae72050b 12341enum print_stop_action
7bd86313 12342ada_catchpoint::print_it (const bpstat *bs) const
f7f9143b 12343{
79a45e25 12344 struct ui_out *uiout = current_uiout;
348d480f 12345
ae72050b 12346 annotate_catchpoint (number);
f7f9143b 12347
112e8700 12348 if (uiout->is_mi_like_p ())
f7f9143b 12349 {
112e8700 12350 uiout->field_string ("reason",
956a9fb9 12351 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
ae72050b 12352 uiout->field_string ("disp", bpdisp_text (disposition));
f7f9143b
JB
12353 }
12354
ae72050b 12355 uiout->text (disposition == disp_del
112e8700 12356 ? "\nTemporary catchpoint " : "\nCatchpoint ");
ae72050b 12357 uiout->field_signed ("bkptno", number);
112e8700 12358 uiout->text (", ");
f7f9143b 12359
45db7c09
PA
12360 /* ada_exception_name_addr relies on the selected frame being the
12361 current frame. Need to do this here because this function may be
12362 called more than once when printing a stop, and below, we'll
12363 select the first frame past the Ada run-time (see
12364 ada_find_printable_frame). */
12365 select_frame (get_current_frame ());
12366
ae72050b 12367 switch (m_kind)
f7f9143b 12368 {
761269c8
JB
12369 case ada_catch_exception:
12370 case ada_catch_exception_unhandled:
9f757bf7 12371 case ada_catch_handlers:
956a9fb9 12372 {
7bd86313 12373 const CORE_ADDR addr = ada_exception_name_addr (m_kind);
956a9fb9
JB
12374 char exception_name[256];
12375
12376 if (addr != 0)
12377 {
c714b426
PA
12378 read_memory (addr, (gdb_byte *) exception_name,
12379 sizeof (exception_name) - 1);
956a9fb9
JB
12380 exception_name [sizeof (exception_name) - 1] = '\0';
12381 }
12382 else
12383 {
12384 /* For some reason, we were unable to read the exception
12385 name. This could happen if the Runtime was compiled
12386 without debugging info, for instance. In that case,
12387 just replace the exception name by the generic string
12388 "exception" - it will read as "an exception" in the
12389 notification we are about to print. */
967cff16 12390 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12391 }
12392 /* In the case of unhandled exception breakpoints, we print
12393 the exception name as "unhandled EXCEPTION_NAME", to make
12394 it clearer to the user which kind of catchpoint just got
12395 hit. We used ui_out_text to make sure that this extra
12396 info does not pollute the exception name in the MI case. */
ae72050b 12397 if (m_kind == ada_catch_exception_unhandled)
112e8700
SM
12398 uiout->text ("unhandled ");
12399 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12400 }
12401 break;
761269c8 12402 case ada_catch_assert:
956a9fb9
JB
12403 /* In this case, the name of the exception is not really
12404 important. Just print "failed assertion" to make it clearer
12405 that his program just hit an assertion-failure catchpoint.
12406 We used ui_out_text because this info does not belong in
12407 the MI output. */
112e8700 12408 uiout->text ("failed assertion");
956a9fb9 12409 break;
f7f9143b 12410 }
e547c119 12411
6f46ac85 12412 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12413 if (exception_message != NULL)
12414 {
e547c119 12415 uiout->text (" (");
6f46ac85 12416 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12417 uiout->text (")");
e547c119
JB
12418 }
12419
112e8700 12420 uiout->text (" at ");
956a9fb9 12421 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12422
12423 return PRINT_SRC_AND_LOC;
12424}
12425
ae72050b
TT
12426/* Implement the PRINT_ONE method in the structure for all exception
12427 catchpoint kinds. */
f7f9143b 12428
ae72050b 12429bool
a67bcaba 12430ada_catchpoint::print_one (bp_location **last_loc) const
f7f9143b 12431{
79a45e25 12432 struct ui_out *uiout = current_uiout;
79a45b7d
TT
12433 struct value_print_options opts;
12434
12435 get_user_print_options (&opts);
f06f1252 12436
79a45b7d 12437 if (opts.addressprint)
f06f1252 12438 uiout->field_skip ("addr");
f7f9143b
JB
12439
12440 annotate_field (5);
ae72050b 12441 switch (m_kind)
f7f9143b 12442 {
761269c8 12443 case ada_catch_exception:
ae72050b 12444 if (!excep_string.empty ())
dda83cd7 12445 {
bc18fbb5 12446 std::string msg = string_printf (_("`%s' Ada exception"),
ae72050b 12447 excep_string.c_str ());
28010a5d 12448
dda83cd7
SM
12449 uiout->field_string ("what", msg);
12450 }
12451 else
12452 uiout->field_string ("what", "all Ada exceptions");
12453
12454 break;
f7f9143b 12455
761269c8 12456 case ada_catch_exception_unhandled:
dda83cd7
SM
12457 uiout->field_string ("what", "unhandled Ada exceptions");
12458 break;
f7f9143b 12459
9f757bf7 12460 case ada_catch_handlers:
ae72050b 12461 if (!excep_string.empty ())
dda83cd7 12462 {
9f757bf7
XR
12463 uiout->field_fmt ("what",
12464 _("`%s' Ada exception handlers"),
ae72050b 12465 excep_string.c_str ());
dda83cd7
SM
12466 }
12467 else
9f757bf7 12468 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 12469 break;
9f757bf7 12470
761269c8 12471 case ada_catch_assert:
dda83cd7
SM
12472 uiout->field_string ("what", "failed Ada assertions");
12473 break;
f7f9143b
JB
12474
12475 default:
dda83cd7
SM
12476 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12477 break;
f7f9143b 12478 }
c01e038b
TT
12479
12480 return true;
f7f9143b
JB
12481}
12482
12483/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12484 for all exception catchpoint kinds. */
12485
ae72050b 12486void
b713485d 12487ada_catchpoint::print_mention () const
f7f9143b 12488{
79a45e25 12489 struct ui_out *uiout = current_uiout;
28010a5d 12490
ae72050b 12491 uiout->text (disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 12492 : _("Catchpoint "));
ae72050b 12493 uiout->field_signed ("bkptno", number);
112e8700 12494 uiout->text (": ");
00eb2c4a 12495
ae72050b 12496 switch (m_kind)
f7f9143b 12497 {
761269c8 12498 case ada_catch_exception:
ae72050b 12499 if (!excep_string.empty ())
00eb2c4a 12500 {
862d101a 12501 std::string info = string_printf (_("`%s' Ada exception"),
ae72050b 12502 excep_string.c_str ());
4915bfdc 12503 uiout->text (info);
00eb2c4a 12504 }
dda83cd7
SM
12505 else
12506 uiout->text (_("all Ada exceptions"));
12507 break;
f7f9143b 12508
761269c8 12509 case ada_catch_exception_unhandled:
dda83cd7
SM
12510 uiout->text (_("unhandled Ada exceptions"));
12511 break;
9f757bf7
XR
12512
12513 case ada_catch_handlers:
ae72050b 12514 if (!excep_string.empty ())
9f757bf7
XR
12515 {
12516 std::string info
12517 = string_printf (_("`%s' Ada exception handlers"),
ae72050b 12518 excep_string.c_str ());
4915bfdc 12519 uiout->text (info);
9f757bf7 12520 }
dda83cd7
SM
12521 else
12522 uiout->text (_("all Ada exceptions handlers"));
12523 break;
9f757bf7 12524
761269c8 12525 case ada_catch_assert:
dda83cd7
SM
12526 uiout->text (_("failed Ada assertions"));
12527 break;
f7f9143b
JB
12528
12529 default:
dda83cd7
SM
12530 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12531 break;
f7f9143b
JB
12532 }
12533}
12534
ae72050b
TT
12535/* Implement the PRINT_RECREATE method in the structure for all
12536 exception catchpoint kinds. */
6149aea9 12537
ae72050b 12538void
4d1ae558 12539ada_catchpoint::print_recreate (struct ui_file *fp) const
6149aea9 12540{
ae72050b 12541 switch (m_kind)
6149aea9 12542 {
761269c8 12543 case ada_catch_exception:
6cb06a8c 12544 gdb_printf (fp, "catch exception");
ae72050b
TT
12545 if (!excep_string.empty ())
12546 gdb_printf (fp, " %s", excep_string.c_str ());
6149aea9
PA
12547 break;
12548
761269c8 12549 case ada_catch_exception_unhandled:
6cb06a8c 12550 gdb_printf (fp, "catch exception unhandled");
6149aea9
PA
12551 break;
12552
9f757bf7 12553 case ada_catch_handlers:
6cb06a8c 12554 gdb_printf (fp, "catch handlers");
9f757bf7
XR
12555 break;
12556
761269c8 12557 case ada_catch_assert:
6cb06a8c 12558 gdb_printf (fp, "catch assert");
6149aea9
PA
12559 break;
12560
12561 default:
12562 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12563 }
04d0163c 12564 print_recreate_thread (fp);
6149aea9
PA
12565}
12566
f06f1252
TT
12567/* See ada-lang.h. */
12568
12569bool
12570is_ada_exception_catchpoint (breakpoint *bp)
12571{
ae72050b 12572 return dynamic_cast<ada_catchpoint *> (bp) != nullptr;
f06f1252
TT
12573}
12574
f7f9143b
JB
12575/* Split the arguments specified in a "catch exception" command.
12576 Set EX to the appropriate catchpoint type.
28010a5d 12577 Set EXCEP_STRING to the name of the specific exception if
5845583d 12578 specified by the user.
9f757bf7
XR
12579 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12580 "catch handlers" command. False otherwise.
5845583d
JB
12581 If a condition is found at the end of the arguments, the condition
12582 expression is stored in COND_STRING (memory must be deallocated
12583 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12584
12585static void
a121b7c1 12586catch_ada_exception_command_split (const char *args,
9f757bf7 12587 bool is_catch_handlers_cmd,
dda83cd7 12588 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12589 std::string *excep_string,
12590 std::string *cond_string)
f7f9143b 12591{
bc18fbb5 12592 std::string exception_name;
f7f9143b 12593
bc18fbb5
TT
12594 exception_name = extract_arg (&args);
12595 if (exception_name == "if")
5845583d
JB
12596 {
12597 /* This is not an exception name; this is the start of a condition
12598 expression for a catchpoint on all exceptions. So, "un-get"
12599 this token, and set exception_name to NULL. */
bc18fbb5 12600 exception_name.clear ();
5845583d
JB
12601 args -= 2;
12602 }
f7f9143b 12603
5845583d 12604 /* Check to see if we have a condition. */
f7f9143b 12605
f1735a53 12606 args = skip_spaces (args);
61012eef 12607 if (startswith (args, "if")
5845583d
JB
12608 && (isspace (args[2]) || args[2] == '\0'))
12609 {
12610 args += 2;
f1735a53 12611 args = skip_spaces (args);
5845583d
JB
12612
12613 if (args[0] == '\0')
dda83cd7 12614 error (_("Condition missing after `if' keyword"));
bc18fbb5 12615 *cond_string = args;
5845583d
JB
12616
12617 args += strlen (args);
12618 }
12619
12620 /* Check that we do not have any more arguments. Anything else
12621 is unexpected. */
f7f9143b
JB
12622
12623 if (args[0] != '\0')
12624 error (_("Junk at end of expression"));
12625
9f757bf7
XR
12626 if (is_catch_handlers_cmd)
12627 {
12628 /* Catch handling of exceptions. */
12629 *ex = ada_catch_handlers;
12630 *excep_string = exception_name;
12631 }
bc18fbb5 12632 else if (exception_name.empty ())
f7f9143b
JB
12633 {
12634 /* Catch all exceptions. */
761269c8 12635 *ex = ada_catch_exception;
bc18fbb5 12636 excep_string->clear ();
f7f9143b 12637 }
bc18fbb5 12638 else if (exception_name == "unhandled")
f7f9143b
JB
12639 {
12640 /* Catch unhandled exceptions. */
761269c8 12641 *ex = ada_catch_exception_unhandled;
bc18fbb5 12642 excep_string->clear ();
f7f9143b
JB
12643 }
12644 else
12645 {
12646 /* Catch a specific exception. */
761269c8 12647 *ex = ada_catch_exception;
28010a5d 12648 *excep_string = exception_name;
f7f9143b
JB
12649 }
12650}
12651
12652/* Return the name of the symbol on which we should break in order to
12653 implement a catchpoint of the EX kind. */
12654
12655static const char *
761269c8 12656ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12657{
3eecfa55
JB
12658 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12659
12660 gdb_assert (data->exception_info != NULL);
0259addd 12661
f7f9143b
JB
12662 switch (ex)
12663 {
761269c8 12664 case ada_catch_exception:
dda83cd7
SM
12665 return (data->exception_info->catch_exception_sym);
12666 break;
761269c8 12667 case ada_catch_exception_unhandled:
dda83cd7
SM
12668 return (data->exception_info->catch_exception_unhandled_sym);
12669 break;
761269c8 12670 case ada_catch_assert:
dda83cd7
SM
12671 return (data->exception_info->catch_assert_sym);
12672 break;
9f757bf7 12673 case ada_catch_handlers:
dda83cd7
SM
12674 return (data->exception_info->catch_handlers_sym);
12675 break;
f7f9143b 12676 default:
dda83cd7
SM
12677 internal_error (__FILE__, __LINE__,
12678 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12679 }
12680}
12681
f7f9143b
JB
12682/* Return the condition that will be used to match the current exception
12683 being raised with the exception that the user wants to catch. This
12684 assumes that this condition is used when the inferior just triggered
12685 an exception catchpoint.
cb7de75e 12686 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12687
cb7de75e 12688static std::string
9f757bf7 12689ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12690 enum ada_exception_catchpoint_kind ex)
f7f9143b 12691{
fccf9de1 12692 bool is_standard_exc = false;
cb7de75e 12693 std::string result;
9f757bf7
XR
12694
12695 if (ex == ada_catch_handlers)
12696 {
12697 /* For exception handlers catchpoints, the condition string does
dda83cd7 12698 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12699 result = ("long_integer (GNAT_GCC_exception_Access"
12700 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12701 }
12702 else
fccf9de1 12703 result = "long_integer (e)";
3d0b0fa3 12704
0963b4bd 12705 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12706 runtime units that have been compiled without debugging info; if
28010a5d 12707 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12708 exception (e.g. "constraint_error") then, during the evaluation
12709 of the condition expression, the symbol lookup on this name would
0963b4bd 12710 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12711 may then be set only on user-defined exceptions which have the
12712 same not-fully-qualified name (e.g. my_package.constraint_error).
12713
12714 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12715 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12716 exception constraint_error" is rewritten into "catch exception
12717 standard.constraint_error".
12718
85102364 12719 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12720 the inferior program, then the only way to specify this exception as a
12721 breakpoint condition is to use its fully-qualified named:
fccf9de1 12722 e.g. my_package.constraint_error. */
3d0b0fa3 12723
696d6f4d 12724 for (const char *name : standard_exc)
3d0b0fa3 12725 {
696d6f4d 12726 if (strcmp (name, excep_string) == 0)
3d0b0fa3 12727 {
fccf9de1 12728 is_standard_exc = true;
9f757bf7 12729 break;
3d0b0fa3
JB
12730 }
12731 }
9f757bf7 12732
fccf9de1
TT
12733 result += " = ";
12734
12735 if (is_standard_exc)
12736 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12737 else
12738 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12739
9f757bf7 12740 return result;
f7f9143b
JB
12741}
12742
12743/* Return the symtab_and_line that should be used to insert an exception
12744 catchpoint of the TYPE kind.
12745
28010a5d
PA
12746 ADDR_STRING returns the name of the function where the real
12747 breakpoint that implements the catchpoints is set, depending on the
12748 type of catchpoint we need to create. */
f7f9143b
JB
12749
12750static struct symtab_and_line
bc18fbb5 12751ada_exception_sal (enum ada_exception_catchpoint_kind ex,
ae72050b 12752 std::string *addr_string)
f7f9143b
JB
12753{
12754 const char *sym_name;
12755 struct symbol *sym;
f7f9143b 12756
0259addd
JB
12757 /* First, find out which exception support info to use. */
12758 ada_exception_support_info_sniffer ();
12759
12760 /* Then lookup the function on which we will break in order to catch
f7f9143b 12761 the Ada exceptions requested by the user. */
f7f9143b
JB
12762 sym_name = ada_exception_sym_name (ex);
12763 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12764
57aff202
JB
12765 if (sym == NULL)
12766 error (_("Catchpoint symbol not found: %s"), sym_name);
12767
66d7f48f 12768 if (sym->aclass () != LOC_BLOCK)
57aff202 12769 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12770
12771 /* Set ADDR_STRING. */
cc12f4a8 12772 *addr_string = sym_name;
f7f9143b 12773
f17011e0 12774 return find_function_start_sal (sym, 1);
f7f9143b
JB
12775}
12776
b4a5b78b 12777/* Create an Ada exception catchpoint.
f7f9143b 12778
b4a5b78b 12779 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12780
bc18fbb5 12781 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12782 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12783 of the exception to which this catchpoint applies.
2df4d1d5 12784
bc18fbb5 12785 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12786
b4a5b78b
JB
12787 TEMPFLAG, if nonzero, means that the underlying breakpoint
12788 should be temporary.
28010a5d 12789
b4a5b78b 12790 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12791
349774ef 12792void
28010a5d 12793create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12794 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12795 const std::string &excep_string,
56ecd069 12796 const std::string &cond_string,
28010a5d 12797 int tempflag,
349774ef 12798 int disabled,
28010a5d
PA
12799 int from_tty)
12800{
cc12f4a8 12801 std::string addr_string;
ae72050b 12802 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string);
28010a5d 12803
bd21b6c9
PA
12804 std::unique_ptr<ada_catchpoint> c
12805 (new ada_catchpoint (gdbarch, ex_kind, sal, addr_string.c_str (),
12806 tempflag, disabled, from_tty));
28010a5d 12807 c->excep_string = excep_string;
9f757bf7 12808 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12809 if (!cond_string.empty ())
733d554a 12810 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12811 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12812}
12813
9ac4176b
PA
12814/* Implement the "catch exception" command. */
12815
12816static void
eb4c3f4a 12817catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12818 struct cmd_list_element *command)
12819{
a121b7c1 12820 const char *arg = arg_entry;
9ac4176b
PA
12821 struct gdbarch *gdbarch = get_current_arch ();
12822 int tempflag;
761269c8 12823 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12824 std::string excep_string;
56ecd069 12825 std::string cond_string;
9ac4176b 12826
0f8e2034 12827 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12828
12829 if (!arg)
12830 arg = "";
9f757bf7 12831 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12832 &cond_string);
9f757bf7
XR
12833 create_ada_exception_catchpoint (gdbarch, ex_kind,
12834 excep_string, cond_string,
12835 tempflag, 1 /* enabled */,
12836 from_tty);
12837}
12838
12839/* Implement the "catch handlers" command. */
12840
12841static void
12842catch_ada_handlers_command (const char *arg_entry, int from_tty,
12843 struct cmd_list_element *command)
12844{
12845 const char *arg = arg_entry;
12846 struct gdbarch *gdbarch = get_current_arch ();
12847 int tempflag;
12848 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12849 std::string excep_string;
56ecd069 12850 std::string cond_string;
9f757bf7 12851
0f8e2034 12852 tempflag = command->context () == CATCH_TEMPORARY;
9f757bf7
XR
12853
12854 if (!arg)
12855 arg = "";
12856 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12857 &cond_string);
b4a5b78b
JB
12858 create_ada_exception_catchpoint (gdbarch, ex_kind,
12859 excep_string, cond_string,
349774ef
JB
12860 tempflag, 1 /* enabled */,
12861 from_tty);
9ac4176b
PA
12862}
12863
71bed2db
TT
12864/* Completion function for the Ada "catch" commands. */
12865
12866static void
12867catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12868 const char *text, const char *word)
12869{
12870 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12871
12872 for (const ada_exc_info &info : exceptions)
12873 {
12874 if (startswith (info.name, word))
b02f78f9 12875 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12876 }
12877}
12878
b4a5b78b 12879/* Split the arguments specified in a "catch assert" command.
5845583d 12880
b4a5b78b
JB
12881 ARGS contains the command's arguments (or the empty string if
12882 no arguments were passed).
5845583d
JB
12883
12884 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12885 (the memory needs to be deallocated after use). */
5845583d 12886
b4a5b78b 12887static void
56ecd069 12888catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12889{
f1735a53 12890 args = skip_spaces (args);
f7f9143b 12891
5845583d 12892 /* Check whether a condition was provided. */
61012eef 12893 if (startswith (args, "if")
5845583d 12894 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12895 {
5845583d 12896 args += 2;
f1735a53 12897 args = skip_spaces (args);
5845583d 12898 if (args[0] == '\0')
dda83cd7 12899 error (_("condition missing after `if' keyword"));
56ecd069 12900 cond_string.assign (args);
f7f9143b
JB
12901 }
12902
5845583d
JB
12903 /* Otherwise, there should be no other argument at the end of
12904 the command. */
12905 else if (args[0] != '\0')
12906 error (_("Junk at end of arguments."));
f7f9143b
JB
12907}
12908
9ac4176b
PA
12909/* Implement the "catch assert" command. */
12910
12911static void
eb4c3f4a 12912catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12913 struct cmd_list_element *command)
12914{
a121b7c1 12915 const char *arg = arg_entry;
9ac4176b
PA
12916 struct gdbarch *gdbarch = get_current_arch ();
12917 int tempflag;
56ecd069 12918 std::string cond_string;
9ac4176b 12919
0f8e2034 12920 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12921
12922 if (!arg)
12923 arg = "";
56ecd069 12924 catch_ada_assert_command_split (arg, cond_string);
761269c8 12925 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12926 "", cond_string,
349774ef
JB
12927 tempflag, 1 /* enabled */,
12928 from_tty);
9ac4176b 12929}
778865d3
JB
12930
12931/* Return non-zero if the symbol SYM is an Ada exception object. */
12932
12933static int
12934ada_is_exception_sym (struct symbol *sym)
12935{
5f9c5a63 12936 const char *type_name = sym->type ()->name ();
778865d3 12937
66d7f48f
SM
12938 return (sym->aclass () != LOC_TYPEDEF
12939 && sym->aclass () != LOC_BLOCK
12940 && sym->aclass () != LOC_CONST
12941 && sym->aclass () != LOC_UNRESOLVED
dda83cd7 12942 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12943}
12944
12945/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12946 Ada exception object. This matches all exceptions except the ones
12947 defined by the Ada language. */
12948
12949static int
12950ada_is_non_standard_exception_sym (struct symbol *sym)
12951{
778865d3
JB
12952 if (!ada_is_exception_sym (sym))
12953 return 0;
12954
696d6f4d
TT
12955 for (const char *name : standard_exc)
12956 if (strcmp (sym->linkage_name (), name) == 0)
778865d3
JB
12957 return 0; /* A standard exception. */
12958
12959 /* Numeric_Error is also a standard exception, so exclude it.
12960 See the STANDARD_EXC description for more details as to why
12961 this exception is not listed in that array. */
987012b8 12962 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12963 return 0;
12964
12965 return 1;
12966}
12967
ab816a27 12968/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12969 objects.
12970
12971 The comparison is determined first by exception name, and then
12972 by exception address. */
12973
ab816a27 12974bool
cc536b21 12975ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12976{
778865d3
JB
12977 int result;
12978
ab816a27
TT
12979 result = strcmp (name, other.name);
12980 if (result < 0)
12981 return true;
12982 if (result == 0 && addr < other.addr)
12983 return true;
12984 return false;
12985}
778865d3 12986
ab816a27 12987bool
cc536b21 12988ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12989{
12990 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12991}
12992
12993/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12994 routine, but keeping the first SKIP elements untouched.
12995
12996 All duplicates are also removed. */
12997
12998static void
ab816a27 12999sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13000 int skip)
13001{
ab816a27
TT
13002 std::sort (exceptions->begin () + skip, exceptions->end ());
13003 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13004 exceptions->end ());
778865d3
JB
13005}
13006
778865d3
JB
13007/* Add all exceptions defined by the Ada standard whose name match
13008 a regular expression.
13009
13010 If PREG is not NULL, then this regexp_t object is used to
13011 perform the symbol name matching. Otherwise, no name-based
13012 filtering is performed.
13013
13014 EXCEPTIONS is a vector of exceptions to which matching exceptions
13015 gets pushed. */
13016
13017static void
2d7cc5c7 13018ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13019 std::vector<ada_exc_info> *exceptions)
778865d3 13020{
696d6f4d 13021 for (const char *name : standard_exc)
778865d3 13022 {
696d6f4d 13023 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
778865d3
JB
13024 {
13025 struct bound_minimal_symbol msymbol
696d6f4d 13026 = ada_lookup_simple_minsym (name);
778865d3
JB
13027
13028 if (msymbol.minsym != NULL)
13029 {
13030 struct ada_exc_info info
4aeddc50 13031 = {name, msymbol.value_address ()};
778865d3 13032
ab816a27 13033 exceptions->push_back (info);
778865d3
JB
13034 }
13035 }
13036 }
13037}
13038
13039/* Add all Ada exceptions defined locally and accessible from the given
13040 FRAME.
13041
13042 If PREG is not NULL, then this regexp_t object is used to
13043 perform the symbol name matching. Otherwise, no name-based
13044 filtering is performed.
13045
13046 EXCEPTIONS is a vector of exceptions to which matching exceptions
13047 gets pushed. */
13048
13049static void
2d7cc5c7
PA
13050ada_add_exceptions_from_frame (compiled_regex *preg,
13051 struct frame_info *frame,
ab816a27 13052 std::vector<ada_exc_info> *exceptions)
778865d3 13053{
3977b71f 13054 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13055
13056 while (block != 0)
13057 {
13058 struct block_iterator iter;
13059 struct symbol *sym;
13060
13061 ALL_BLOCK_SYMBOLS (block, iter, sym)
13062 {
66d7f48f 13063 switch (sym->aclass ())
778865d3
JB
13064 {
13065 case LOC_TYPEDEF:
13066 case LOC_BLOCK:
13067 case LOC_CONST:
13068 break;
13069 default:
13070 if (ada_is_exception_sym (sym))
13071 {
987012b8 13072 struct ada_exc_info info = {sym->print_name (),
4aeddc50 13073 sym->value_address ()};
778865d3 13074
ab816a27 13075 exceptions->push_back (info);
778865d3
JB
13076 }
13077 }
13078 }
6c00f721 13079 if (block->function () != NULL)
778865d3 13080 break;
f135fe72 13081 block = block->superblock ();
778865d3
JB
13082 }
13083}
13084
14bc53a8
PA
13085/* Return true if NAME matches PREG or if PREG is NULL. */
13086
13087static bool
2d7cc5c7 13088name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13089{
13090 return (preg == NULL
f945dedf 13091 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13092}
13093
778865d3
JB
13094/* Add all exceptions defined globally whose name name match
13095 a regular expression, excluding standard exceptions.
13096
13097 The reason we exclude standard exceptions is that they need
13098 to be handled separately: Standard exceptions are defined inside
13099 a runtime unit which is normally not compiled with debugging info,
13100 and thus usually do not show up in our symbol search. However,
13101 if the unit was in fact built with debugging info, we need to
13102 exclude them because they would duplicate the entry we found
13103 during the special loop that specifically searches for those
13104 standard exceptions.
13105
13106 If PREG is not NULL, then this regexp_t object is used to
13107 perform the symbol name matching. Otherwise, no name-based
13108 filtering is performed.
13109
13110 EXCEPTIONS is a vector of exceptions to which matching exceptions
13111 gets pushed. */
13112
13113static void
2d7cc5c7 13114ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13115 std::vector<ada_exc_info> *exceptions)
778865d3 13116{
14bc53a8
PA
13117 /* In Ada, the symbol "search name" is a linkage name, whereas the
13118 regular expression used to do the matching refers to the natural
13119 name. So match against the decoded name. */
13120 expand_symtabs_matching (NULL,
b5ec771e 13121 lookup_name_info::match_any (),
14bc53a8
PA
13122 [&] (const char *search_name)
13123 {
f945dedf
CB
13124 std::string decoded = ada_decode (search_name);
13125 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13126 },
13127 NULL,
03a8ea51 13128 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
14bc53a8 13129 VARIABLES_DOMAIN);
778865d3 13130
2030c079 13131 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13132 {
b669c953 13133 for (compunit_symtab *s : objfile->compunits ())
778865d3 13134 {
af39c5c8 13135 const struct blockvector *bv = s->blockvector ();
d8aeb77f 13136 int i;
778865d3 13137
d8aeb77f
TT
13138 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13139 {
63d609de 13140 const struct block *b = bv->block (i);
d8aeb77f
TT
13141 struct block_iterator iter;
13142 struct symbol *sym;
778865d3 13143
d8aeb77f
TT
13144 ALL_BLOCK_SYMBOLS (b, iter, sym)
13145 if (ada_is_non_standard_exception_sym (sym)
987012b8 13146 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13147 {
13148 struct ada_exc_info info
4aeddc50 13149 = {sym->print_name (), sym->value_address ()};
d8aeb77f
TT
13150
13151 exceptions->push_back (info);
13152 }
13153 }
778865d3
JB
13154 }
13155 }
13156}
13157
13158/* Implements ada_exceptions_list with the regular expression passed
13159 as a regex_t, rather than a string.
13160
13161 If not NULL, PREG is used to filter out exceptions whose names
13162 do not match. Otherwise, all exceptions are listed. */
13163
ab816a27 13164static std::vector<ada_exc_info>
2d7cc5c7 13165ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13166{
ab816a27 13167 std::vector<ada_exc_info> result;
778865d3
JB
13168 int prev_len;
13169
13170 /* First, list the known standard exceptions. These exceptions
13171 need to be handled separately, as they are usually defined in
13172 runtime units that have been compiled without debugging info. */
13173
13174 ada_add_standard_exceptions (preg, &result);
13175
13176 /* Next, find all exceptions whose scope is local and accessible
13177 from the currently selected frame. */
13178
13179 if (has_stack_frames ())
13180 {
ab816a27 13181 prev_len = result.size ();
778865d3
JB
13182 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13183 &result);
ab816a27 13184 if (result.size () > prev_len)
778865d3
JB
13185 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13186 }
13187
13188 /* Add all exceptions whose scope is global. */
13189
ab816a27 13190 prev_len = result.size ();
778865d3 13191 ada_add_global_exceptions (preg, &result);
ab816a27 13192 if (result.size () > prev_len)
778865d3
JB
13193 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13194
778865d3
JB
13195 return result;
13196}
13197
13198/* Return a vector of ada_exc_info.
13199
13200 If REGEXP is NULL, all exceptions are included in the result.
13201 Otherwise, it should contain a valid regular expression,
13202 and only the exceptions whose names match that regular expression
13203 are included in the result.
13204
13205 The exceptions are sorted in the following order:
13206 - Standard exceptions (defined by the Ada language), in
13207 alphabetical order;
13208 - Exceptions only visible from the current frame, in
13209 alphabetical order;
13210 - Exceptions whose scope is global, in alphabetical order. */
13211
ab816a27 13212std::vector<ada_exc_info>
778865d3
JB
13213ada_exceptions_list (const char *regexp)
13214{
2d7cc5c7
PA
13215 if (regexp == NULL)
13216 return ada_exceptions_list_1 (NULL);
778865d3 13217
2d7cc5c7
PA
13218 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13219 return ada_exceptions_list_1 (&reg);
778865d3
JB
13220}
13221
13222/* Implement the "info exceptions" command. */
13223
13224static void
1d12d88f 13225info_exceptions_command (const char *regexp, int from_tty)
778865d3 13226{
778865d3 13227 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13228
ab816a27 13229 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13230
13231 if (regexp != NULL)
6cb06a8c 13232 gdb_printf
778865d3
JB
13233 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13234 else
6cb06a8c 13235 gdb_printf (_("All defined Ada exceptions:\n"));
778865d3 13236
ab816a27 13237 for (const ada_exc_info &info : exceptions)
6cb06a8c 13238 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13239}
13240
6c038f32
PH
13241\f
13242 /* Language vector */
13243
b5ec771e
PA
13244/* symbol_name_matcher_ftype adapter for wild_match. */
13245
13246static bool
13247do_wild_match (const char *symbol_search_name,
13248 const lookup_name_info &lookup_name,
a207cff2 13249 completion_match_result *comp_match_res)
b5ec771e
PA
13250{
13251 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13252}
13253
13254/* symbol_name_matcher_ftype adapter for full_match. */
13255
13256static bool
13257do_full_match (const char *symbol_search_name,
13258 const lookup_name_info &lookup_name,
a207cff2 13259 completion_match_result *comp_match_res)
b5ec771e 13260{
959d6a67
TT
13261 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13262
13263 /* If both symbols start with "_ada_", just let the loop below
13264 handle the comparison. However, if only the symbol name starts
13265 with "_ada_", skip the prefix and let the match proceed as
13266 usual. */
13267 if (startswith (symbol_search_name, "_ada_")
13268 && !startswith (lname, "_ada"))
86b44259 13269 symbol_search_name += 5;
81eaa506
TT
13270 /* Likewise for ghost entities. */
13271 if (startswith (symbol_search_name, "___ghost_")
13272 && !startswith (lname, "___ghost_"))
13273 symbol_search_name += 9;
86b44259 13274
86b44259
TT
13275 int uscore_count = 0;
13276 while (*lname != '\0')
13277 {
13278 if (*symbol_search_name != *lname)
13279 {
13280 if (*symbol_search_name == 'B' && uscore_count == 2
13281 && symbol_search_name[1] == '_')
13282 {
13283 symbol_search_name += 2;
13284 while (isdigit (*symbol_search_name))
13285 ++symbol_search_name;
13286 if (symbol_search_name[0] == '_'
13287 && symbol_search_name[1] == '_')
13288 {
13289 symbol_search_name += 2;
13290 continue;
13291 }
13292 }
13293 return false;
13294 }
13295
13296 if (*symbol_search_name == '_')
13297 ++uscore_count;
13298 else
13299 uscore_count = 0;
13300
13301 ++symbol_search_name;
13302 ++lname;
13303 }
13304
13305 return is_name_suffix (symbol_search_name);
b5ec771e
PA
13306}
13307
a2cd4f14
JB
13308/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13309
13310static bool
13311do_exact_match (const char *symbol_search_name,
13312 const lookup_name_info &lookup_name,
13313 completion_match_result *comp_match_res)
13314{
13315 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13316}
13317
b5ec771e
PA
13318/* Build the Ada lookup name for LOOKUP_NAME. */
13319
13320ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13321{
e0802d59 13322 gdb::string_view user_name = lookup_name.name ();
b5ec771e 13323
6a780b67 13324 if (!user_name.empty () && user_name[0] == '<')
b5ec771e
PA
13325 {
13326 if (user_name.back () == '>')
e0802d59 13327 m_encoded_name
5ac58899 13328 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 13329 else
e0802d59 13330 m_encoded_name
5ac58899 13331 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
13332 m_encoded_p = true;
13333 m_verbatim_p = true;
13334 m_wild_match_p = false;
13335 m_standard_p = false;
13336 }
13337 else
13338 {
13339 m_verbatim_p = false;
13340
e0802d59 13341 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13342
13343 if (!m_encoded_p)
13344 {
e0802d59 13345 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
13346 m_encoded_name = ada_encode_1 (folded, false);
13347 if (m_encoded_name.empty ())
5ac58899 13348 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13349 }
13350 else
5ac58899 13351 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13352
13353 /* Handle the 'package Standard' special case. See description
13354 of m_standard_p. */
13355 if (startswith (m_encoded_name.c_str (), "standard__"))
13356 {
13357 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13358 m_standard_p = true;
13359 }
13360 else
13361 m_standard_p = false;
74ccd7f5 13362
b5ec771e
PA
13363 /* If the name contains a ".", then the user is entering a fully
13364 qualified entity name, and the match must not be done in wild
13365 mode. Similarly, if the user wants to complete what looks
13366 like an encoded name, the match must not be done in wild
13367 mode. Also, in the standard__ special case always do
13368 non-wild matching. */
13369 m_wild_match_p
13370 = (lookup_name.match_type () != symbol_name_match_type::FULL
13371 && !m_encoded_p
13372 && !m_standard_p
13373 && user_name.find ('.') == std::string::npos);
13374 }
13375}
13376
13377/* symbol_name_matcher_ftype method for Ada. This only handles
13378 completion mode. */
13379
13380static bool
13381ada_symbol_name_matches (const char *symbol_search_name,
13382 const lookup_name_info &lookup_name,
a207cff2 13383 completion_match_result *comp_match_res)
74ccd7f5 13384{
b5ec771e
PA
13385 return lookup_name.ada ().matches (symbol_search_name,
13386 lookup_name.match_type (),
a207cff2 13387 comp_match_res);
b5ec771e
PA
13388}
13389
de63c46b
PA
13390/* A name matcher that matches the symbol name exactly, with
13391 strcmp. */
13392
13393static bool
13394literal_symbol_name_matcher (const char *symbol_search_name,
13395 const lookup_name_info &lookup_name,
13396 completion_match_result *comp_match_res)
13397{
e0802d59 13398 gdb::string_view name_view = lookup_name.name ();
de63c46b 13399
e0802d59
TT
13400 if (lookup_name.completion_mode ()
13401 ? (strncmp (symbol_search_name, name_view.data (),
13402 name_view.size ()) == 0)
13403 : symbol_search_name == name_view)
de63c46b
PA
13404 {
13405 if (comp_match_res != NULL)
13406 comp_match_res->set_match (symbol_search_name);
13407 return true;
13408 }
13409 else
13410 return false;
13411}
13412
c9debfb9 13413/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13414 Ada. */
13415
13416static symbol_name_matcher_ftype *
13417ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13418{
de63c46b
PA
13419 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13420 return literal_symbol_name_matcher;
13421
b5ec771e
PA
13422 if (lookup_name.completion_mode ())
13423 return ada_symbol_name_matches;
74ccd7f5 13424 else
b5ec771e
PA
13425 {
13426 if (lookup_name.ada ().wild_match_p ())
13427 return do_wild_match;
a2cd4f14
JB
13428 else if (lookup_name.ada ().verbatim_p ())
13429 return do_exact_match;
b5ec771e
PA
13430 else
13431 return do_full_match;
13432 }
74ccd7f5
JB
13433}
13434
0874fd07
AB
13435/* Class representing the Ada language. */
13436
13437class ada_language : public language_defn
13438{
13439public:
13440 ada_language ()
0e25e767 13441 : language_defn (language_ada)
0874fd07 13442 { /* Nothing. */ }
5bd40f2a 13443
6f7664a9
AB
13444 /* See language.h. */
13445
13446 const char *name () const override
13447 { return "ada"; }
13448
13449 /* See language.h. */
13450
13451 const char *natural_name () const override
13452 { return "Ada"; }
13453
e171d6f1
AB
13454 /* See language.h. */
13455
13456 const std::vector<const char *> &filename_extensions () const override
13457 {
13458 static const std::vector<const char *> extensions
13459 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13460 return extensions;
13461 }
13462
5bd40f2a
AB
13463 /* Print an array element index using the Ada syntax. */
13464
13465 void print_array_index (struct type *index_type,
13466 LONGEST index,
13467 struct ui_file *stream,
13468 const value_print_options *options) const override
13469 {
13470 struct value *index_value = val_atr (index_type, index);
13471
00c696a6 13472 value_print (index_value, stream, options);
6cb06a8c 13473 gdb_printf (stream, " => ");
5bd40f2a 13474 }
15e5fd35
AB
13475
13476 /* Implement the "read_var_value" language_defn method for Ada. */
13477
13478 struct value *read_var_value (struct symbol *var,
13479 const struct block *var_block,
13480 struct frame_info *frame) const override
13481 {
13482 /* The only case where default_read_var_value is not sufficient
13483 is when VAR is a renaming... */
13484 if (frame != nullptr)
13485 {
13486 const struct block *frame_block = get_frame_block (frame, NULL);
13487 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13488 return ada_read_renaming_var_value (var, frame_block);
13489 }
13490
13491 /* This is a typical case where we expect the default_read_var_value
13492 function to work. */
13493 return language_defn::read_var_value (var, var_block, frame);
13494 }
1fb314aa 13495
2c71f639 13496 /* See language.h. */
496feb16 13497 bool symbol_printing_suppressed (struct symbol *symbol) const override
2c71f639 13498 {
496feb16 13499 return symbol->is_artificial ();
2c71f639
TV
13500 }
13501
1fb314aa
AB
13502 /* See language.h. */
13503 void language_arch_info (struct gdbarch *gdbarch,
13504 struct language_arch_info *lai) const override
13505 {
13506 const struct builtin_type *builtin = builtin_type (gdbarch);
13507
7bea47f0
AB
13508 /* Helper function to allow shorter lines below. */
13509 auto add = [&] (struct type *t)
13510 {
13511 lai->add_primitive_type (t);
13512 };
13513
13514 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13515 0, "integer"));
13516 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13517 0, "long_integer"));
13518 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13519 0, "short_integer"));
13520 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
c9f66f00 13521 1, "character");
7bea47f0
AB
13522 lai->set_string_char_type (char_type);
13523 add (char_type);
c9f66f00
TT
13524 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13525 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
7bea47f0
AB
13526 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13527 "float", gdbarch_float_format (gdbarch)));
13528 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13529 "long_float", gdbarch_double_format (gdbarch)));
13530 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13531 0, "long_long_integer"));
13532 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13533 "long_long_float",
13534 gdbarch_long_double_format (gdbarch)));
13535 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13536 0, "natural"));
13537 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13538 0, "positive"));
13539 add (builtin->builtin_void);
13540
13541 struct type *system_addr_ptr
1fb314aa
AB
13542 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13543 "void"));
7bea47f0
AB
13544 system_addr_ptr->set_name ("system__address");
13545 add (system_addr_ptr);
1fb314aa
AB
13546
13547 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13548 type. This is a signed integral type whose size is the same as
13549 the size of addresses. */
7bea47f0
AB
13550 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13551 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13552 "storage_offset"));
1fb314aa 13553
7bea47f0 13554 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 13555 }
4009ee92
AB
13556
13557 /* See language.h. */
13558
13559 bool iterate_over_symbols
13560 (const struct block *block, const lookup_name_info &name,
13561 domain_enum domain,
13562 gdb::function_view<symbol_found_callback_ftype> callback) const override
13563 {
d1183b06
TT
13564 std::vector<struct block_symbol> results
13565 = ada_lookup_symbol_list_worker (name, block, domain, 0);
4009ee92
AB
13566 for (block_symbol &sym : results)
13567 {
13568 if (!callback (&sym))
13569 return false;
13570 }
13571
13572 return true;
13573 }
6f827019
AB
13574
13575 /* See language.h. */
3456e70c
TT
13576 bool sniff_from_mangled_name
13577 (const char *mangled,
13578 gdb::unique_xmalloc_ptr<char> *out) const override
6f827019
AB
13579 {
13580 std::string demangled = ada_decode (mangled);
13581
13582 *out = NULL;
13583
13584 if (demangled != mangled && demangled[0] != '<')
13585 {
13586 /* Set the gsymbol language to Ada, but still return 0.
13587 Two reasons for that:
13588
13589 1. For Ada, we prefer computing the symbol's decoded name
13590 on the fly rather than pre-compute it, in order to save
13591 memory (Ada projects are typically very large).
13592
13593 2. There are some areas in the definition of the GNAT
13594 encoding where, with a bit of bad luck, we might be able
13595 to decode a non-Ada symbol, generating an incorrect
13596 demangled name (Eg: names ending with "TB" for instance
13597 are identified as task bodies and so stripped from
13598 the decoded name returned).
13599
13600 Returning true, here, but not setting *DEMANGLED, helps us get
13601 a little bit of the best of both worlds. Because we're last,
13602 we should not affect any of the other languages that were
13603 able to demangle the symbol before us; we get to correctly
13604 tag Ada symbols as such; and even if we incorrectly tagged a
13605 non-Ada symbol, which should be rare, any routing through the
13606 Ada language should be transparent (Ada tries to behave much
13607 like C/C++ with non-Ada symbols). */
13608 return true;
13609 }
13610
13611 return false;
13612 }
fbfb0a46
AB
13613
13614 /* See language.h. */
13615
3456e70c
TT
13616 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13617 int options) const override
0a50df5d 13618 {
3456e70c 13619 return make_unique_xstrdup (ada_decode (mangled).c_str ());
0a50df5d
AB
13620 }
13621
13622 /* See language.h. */
13623
fbfb0a46
AB
13624 void print_type (struct type *type, const char *varstring,
13625 struct ui_file *stream, int show, int level,
13626 const struct type_print_options *flags) const override
13627 {
13628 ada_print_type (type, varstring, stream, show, level, flags);
13629 }
c9debfb9 13630
53fc67f8
AB
13631 /* See language.h. */
13632
13633 const char *word_break_characters (void) const override
13634 {
13635 return ada_completer_word_break_characters;
13636 }
13637
7e56227d
AB
13638 /* See language.h. */
13639
13640 void collect_symbol_completion_matches (completion_tracker &tracker,
13641 complete_symbol_mode mode,
13642 symbol_name_match_type name_match_type,
13643 const char *text, const char *word,
13644 enum type_code code) const override
13645 {
13646 struct symbol *sym;
13647 const struct block *b, *surrounding_static_block = 0;
13648 struct block_iterator iter;
13649
13650 gdb_assert (code == TYPE_CODE_UNDEF);
13651
13652 lookup_name_info lookup_name (text, name_match_type, true);
13653
13654 /* First, look at the partial symtab symbols. */
13655 expand_symtabs_matching (NULL,
13656 lookup_name,
13657 NULL,
13658 NULL,
03a8ea51 13659 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
7e56227d
AB
13660 ALL_DOMAIN);
13661
13662 /* At this point scan through the misc symbol vectors and add each
13663 symbol you find to the list. Eventually we want to ignore
13664 anything that isn't a text symbol (everything else will be
13665 handled by the psymtab code above). */
13666
13667 for (objfile *objfile : current_program_space->objfiles ())
13668 {
13669 for (minimal_symbol *msymbol : objfile->msymbols ())
13670 {
13671 QUIT;
13672
13673 if (completion_skip_symbol (mode, msymbol))
13674 continue;
13675
13676 language symbol_language = msymbol->language ();
13677
13678 /* Ada minimal symbols won't have their language set to Ada. If
13679 we let completion_list_add_name compare using the
13680 default/C-like matcher, then when completing e.g., symbols in a
13681 package named "pck", we'd match internal Ada symbols like
13682 "pckS", which are invalid in an Ada expression, unless you wrap
13683 them in '<' '>' to request a verbatim match.
13684
13685 Unfortunately, some Ada encoded names successfully demangle as
13686 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13687 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13688 with the wrong language set. Paper over that issue here. */
13689 if (symbol_language == language_auto
13690 || symbol_language == language_cplus)
13691 symbol_language = language_ada;
13692
13693 completion_list_add_name (tracker,
13694 symbol_language,
13695 msymbol->linkage_name (),
13696 lookup_name, text, word);
13697 }
13698 }
13699
13700 /* Search upwards from currently selected frame (so that we can
13701 complete on local vars. */
13702
f135fe72 13703 for (b = get_selected_block (0); b != NULL; b = b->superblock ())
7e56227d 13704 {
f135fe72 13705 if (!b->superblock ())
7e56227d
AB
13706 surrounding_static_block = b; /* For elmin of dups */
13707
13708 ALL_BLOCK_SYMBOLS (b, iter, sym)
13709 {
13710 if (completion_skip_symbol (mode, sym))
13711 continue;
13712
13713 completion_list_add_name (tracker,
13714 sym->language (),
13715 sym->linkage_name (),
13716 lookup_name, text, word);
13717 }
13718 }
13719
13720 /* Go through the symtabs and check the externs and statics for
13721 symbols which match. */
13722
13723 for (objfile *objfile : current_program_space->objfiles ())
13724 {
13725 for (compunit_symtab *s : objfile->compunits ())
13726 {
13727 QUIT;
63d609de 13728 b = s->blockvector ()->global_block ();
7e56227d
AB
13729 ALL_BLOCK_SYMBOLS (b, iter, sym)
13730 {
13731 if (completion_skip_symbol (mode, sym))
13732 continue;
13733
13734 completion_list_add_name (tracker,
13735 sym->language (),
13736 sym->linkage_name (),
13737 lookup_name, text, word);
13738 }
13739 }
13740 }
13741
13742 for (objfile *objfile : current_program_space->objfiles ())
13743 {
13744 for (compunit_symtab *s : objfile->compunits ())
13745 {
13746 QUIT;
63d609de 13747 b = s->blockvector ()->static_block ();
7e56227d
AB
13748 /* Don't do this block twice. */
13749 if (b == surrounding_static_block)
13750 continue;
13751 ALL_BLOCK_SYMBOLS (b, iter, sym)
13752 {
13753 if (completion_skip_symbol (mode, sym))
13754 continue;
13755
13756 completion_list_add_name (tracker,
13757 sym->language (),
13758 sym->linkage_name (),
13759 lookup_name, text, word);
13760 }
13761 }
13762 }
13763 }
13764
f16a9f57
AB
13765 /* See language.h. */
13766
13767 gdb::unique_xmalloc_ptr<char> watch_location_expression
13768 (struct type *type, CORE_ADDR addr) const override
13769 {
27710edb 13770 type = check_typedef (check_typedef (type)->target_type ());
f16a9f57 13771 std::string name = type_to_string (type);
8579fd13 13772 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
f16a9f57
AB
13773 }
13774
a1d1fa3e
AB
13775 /* See language.h. */
13776
13777 void value_print (struct value *val, struct ui_file *stream,
13778 const struct value_print_options *options) const override
13779 {
13780 return ada_value_print (val, stream, options);
13781 }
13782
ebe2334e
AB
13783 /* See language.h. */
13784
13785 void value_print_inner
13786 (struct value *val, struct ui_file *stream, int recurse,
13787 const struct value_print_options *options) const override
13788 {
13789 return ada_value_print_inner (val, stream, recurse, options);
13790 }
13791
a78a19b1
AB
13792 /* See language.h. */
13793
13794 struct block_symbol lookup_symbol_nonlocal
13795 (const char *name, const struct block *block,
13796 const domain_enum domain) const override
13797 {
13798 struct block_symbol sym;
13799
13800 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13801 if (sym.symbol != NULL)
13802 return sym;
13803
13804 /* If we haven't found a match at this point, try the primitive
13805 types. In other languages, this search is performed before
13806 searching for global symbols in order to short-circuit that
13807 global-symbol search if it happens that the name corresponds
13808 to a primitive type. But we cannot do the same in Ada, because
13809 it is perfectly legitimate for a program to declare a type which
13810 has the same name as a standard type. If looking up a type in
13811 that situation, we have traditionally ignored the primitive type
13812 in favor of user-defined types. This is why, unlike most other
13813 languages, we search the primitive types this late and only after
13814 having searched the global symbols without success. */
13815
13816 if (domain == VAR_DOMAIN)
13817 {
13818 struct gdbarch *gdbarch;
13819
13820 if (block == NULL)
13821 gdbarch = target_gdbarch ();
13822 else
13823 gdbarch = block_gdbarch (block);
13824 sym.symbol
13825 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13826 if (sym.symbol != NULL)
13827 return sym;
13828 }
13829
13830 return {};
13831 }
13832
87afa652
AB
13833 /* See language.h. */
13834
13835 int parser (struct parser_state *ps) const override
13836 {
13837 warnings_issued = 0;
13838 return ada_parse (ps);
13839 }
13840
ec8cec5b
AB
13841 /* See language.h. */
13842
13843 void emitchar (int ch, struct type *chtype,
13844 struct ui_file *stream, int quoter) const override
13845 {
13846 ada_emit_char (ch, chtype, stream, quoter, 1);
13847 }
13848
52b50f2c
AB
13849 /* See language.h. */
13850
13851 void printchar (int ch, struct type *chtype,
13852 struct ui_file *stream) const override
13853 {
13854 ada_printchar (ch, chtype, stream);
13855 }
13856
d711ee67
AB
13857 /* See language.h. */
13858
13859 void printstr (struct ui_file *stream, struct type *elttype,
13860 const gdb_byte *string, unsigned int length,
13861 const char *encoding, int force_ellipses,
13862 const struct value_print_options *options) const override
13863 {
13864 ada_printstr (stream, elttype, string, length, encoding,
13865 force_ellipses, options);
13866 }
13867
4ffc13fb
AB
13868 /* See language.h. */
13869
13870 void print_typedef (struct type *type, struct symbol *new_symbol,
13871 struct ui_file *stream) const override
13872 {
13873 ada_print_typedef (type, new_symbol, stream);
13874 }
13875
39e7ecca
AB
13876 /* See language.h. */
13877
13878 bool is_string_type_p (struct type *type) const override
13879 {
13880 return ada_is_string_type (type);
13881 }
13882
22e3f3ed
AB
13883 /* See language.h. */
13884
13885 const char *struct_too_deep_ellipsis () const override
13886 { return "(...)"; }
39e7ecca 13887
67bd3fd5
AB
13888 /* See language.h. */
13889
13890 bool c_style_arrays_p () const override
13891 { return false; }
13892
d3355e4d
AB
13893 /* See language.h. */
13894
13895 bool store_sym_names_in_linkage_form_p () const override
13896 { return true; }
13897
b63a3f3f
AB
13898 /* See language.h. */
13899
13900 const struct lang_varobj_ops *varobj_ops () const override
13901 { return &ada_varobj_ops; }
13902
c9debfb9
AB
13903protected:
13904 /* See language.h. */
13905
13906 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13907 (const lookup_name_info &lookup_name) const override
13908 {
13909 return ada_get_symbol_name_matcher (lookup_name);
13910 }
0874fd07
AB
13911};
13912
13913/* Single instance of the Ada language class. */
13914
13915static ada_language ada_language_defn;
13916
5bf03f13
JB
13917/* Command-list for the "set/show ada" prefix command. */
13918static struct cmd_list_element *set_ada_list;
13919static struct cmd_list_element *show_ada_list;
13920
3d9434b5
JB
13921/* This module's 'new_objfile' observer. */
13922
13923static void
13924ada_new_objfile_observer (struct objfile *objfile)
13925{
13926 ada_clear_symbol_cache ();
13927}
13928
13929/* This module's 'free_objfile' observer. */
13930
13931static void
13932ada_free_objfile_observer (struct objfile *objfile)
13933{
13934 ada_clear_symbol_cache ();
13935}
13936
315e4ebb
TT
13937/* Charsets known to GNAT. */
13938static const char * const gnat_source_charsets[] =
13939{
13940 /* Note that code below assumes that the default comes first.
13941 Latin-1 is the default here, because that is also GNAT's
13942 default. */
13943 "ISO-8859-1",
13944 "ISO-8859-2",
13945 "ISO-8859-3",
13946 "ISO-8859-4",
13947 "ISO-8859-5",
13948 "ISO-8859-15",
13949 "CP437",
13950 "CP850",
13951 /* Note that this value is special-cased in the encoder and
13952 decoder. */
13953 ada_utf8,
13954 nullptr
13955};
13956
6c265988 13957void _initialize_ada_language ();
d2e4a39e 13958void
6c265988 13959_initialize_ada_language ()
14f9c5c9 13960{
f54bdb6d
SM
13961 add_setshow_prefix_cmd
13962 ("ada", no_class,
13963 _("Prefix command for changing Ada-specific settings."),
13964 _("Generic command for showing Ada-specific settings."),
13965 &set_ada_list, &show_ada_list,
13966 &setlist, &showlist);
5bf03f13
JB
13967
13968 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 13969 &trust_pad_over_xvs, _("\
590042fc
PW
13970Enable or disable an optimization trusting PAD types over XVS types."), _("\
13971Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 13972 _("\
5bf03f13
JB
13973This is related to the encoding used by the GNAT compiler. The debugger\n\
13974should normally trust the contents of PAD types, but certain older versions\n\
13975of GNAT have a bug that sometimes causes the information in the PAD type\n\
13976to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13977work around this bug. It is always safe to turn this option \"off\", but\n\
13978this incurs a slight performance penalty, so it is recommended to NOT change\n\
13979this option to \"off\" unless necessary."),
dda83cd7 13980 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 13981
d72413e6
PMR
13982 add_setshow_boolean_cmd ("print-signatures", class_vars,
13983 &print_signatures, _("\
13984Enable or disable the output of formal and return types for functions in the \
590042fc 13985overloads selection menu."), _("\
d72413e6 13986Show whether the output of formal and return types for functions in the \
590042fc 13987overloads selection menu is activated."),
d72413e6
PMR
13988 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13989
315e4ebb
TT
13990 ada_source_charset = gnat_source_charsets[0];
13991 add_setshow_enum_cmd ("source-charset", class_files,
13992 gnat_source_charsets,
13993 &ada_source_charset, _("\
13994Set the Ada source character set."), _("\
13995Show the Ada source character set."), _("\
13996The character set used for Ada source files.\n\
13997This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13998 nullptr, nullptr,
13999 &set_ada_list, &show_ada_list);
14000
9ac4176b
PA
14001 add_catch_command ("exception", _("\
14002Catch Ada exceptions, when raised.\n\
9bf7038b 14003Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14004Without any argument, stop when any Ada exception is raised.\n\
14005If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14006being raised does not have a handler (and will therefore lead to the task's\n\
14007termination).\n\
14008Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14009raised is the same as ARG.\n\
14010CONDITION is a boolean expression that is evaluated to see whether the\n\
14011exception should cause a stop."),
9ac4176b 14012 catch_ada_exception_command,
71bed2db 14013 catch_ada_completer,
9ac4176b
PA
14014 CATCH_PERMANENT,
14015 CATCH_TEMPORARY);
9f757bf7
XR
14016
14017 add_catch_command ("handlers", _("\
14018Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14019Usage: catch handlers [ARG] [if CONDITION]\n\
14020Without any argument, stop when any Ada exception is handled.\n\
14021With an argument, catch only exceptions with the given name.\n\
14022CONDITION is a boolean expression that is evaluated to see whether the\n\
14023exception should cause a stop."),
9f757bf7 14024 catch_ada_handlers_command,
dda83cd7 14025 catch_ada_completer,
9f757bf7
XR
14026 CATCH_PERMANENT,
14027 CATCH_TEMPORARY);
9ac4176b
PA
14028 add_catch_command ("assert", _("\
14029Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14030Usage: catch assert [if CONDITION]\n\
14031CONDITION is a boolean expression that is evaluated to see whether the\n\
14032exception should cause a stop."),
9ac4176b 14033 catch_assert_command,
dda83cd7 14034 NULL,
9ac4176b
PA
14035 CATCH_PERMANENT,
14036 CATCH_TEMPORARY);
14037
778865d3
JB
14038 add_info ("exceptions", info_exceptions_command,
14039 _("\
14040List all Ada exception names.\n\
9bf7038b 14041Usage: info exceptions [REGEXP]\n\
778865d3
JB
14042If a regular expression is passed as an argument, only those matching\n\
14043the regular expression are listed."));
14044
f54bdb6d
SM
14045 add_setshow_prefix_cmd ("ada", class_maintenance,
14046 _("Set Ada maintenance-related variables."),
14047 _("Show Ada maintenance-related variables."),
14048 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14049 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
c6044dd1
JB
14050
14051 add_setshow_boolean_cmd
14052 ("ignore-descriptive-types", class_maintenance,
14053 &ada_ignore_descriptive_types_p,
14054 _("Set whether descriptive types generated by GNAT should be ignored."),
14055 _("Show whether descriptive types generated by GNAT should be ignored."),
14056 _("\
14057When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14058DWARF attribute."),
14059 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14060
2698f5ea
TT
14061 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14062 htab_eq_string,
459a2e4c 14063 NULL, xcalloc, xfree);
6b69afc4 14064
3d9434b5 14065 /* The ada-lang observers. */
c90e7d63
SM
14066 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14067 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14068 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14f9c5c9 14069}