]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix an illegal memory access when parsing an ELF file containing corrupt symbol versi...
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
4a94e368 3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d322d6d6 23#include "gdbsupport/gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
bf31fd38 38#include "gdbsupport/gdb_obstack.h"
4de283e4
TT
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
0f8e2034 52#include "cli/cli-decode.h"
4de283e4 53
40bc484c 54#include "value.h"
4de283e4
TT
55#include "mi/mi-common.h"
56#include "arch-utils.h"
57#include "cli/cli-utils.h"
268a13a5
TT
58#include "gdbsupport/function-view.h"
59#include "gdbsupport/byte-vector.h"
4de283e4 60#include <algorithm>
03070ee9 61#include "ada-exp.h"
315e4ebb 62#include "charset.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 101
40bc484c 102static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 103
d1183b06 104static void ada_add_block_symbols (std::vector<struct block_symbol> &,
b5ec771e
PA
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
14f9c5c9 108
d1183b06
TT
109static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
b5ec771e
PA
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
22cee43f 113
d1183b06 114static int is_nonfunction (const std::vector<struct block_symbol> &);
14f9c5c9 115
d1183b06
TT
116static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
dda83cd7 118 const struct block *);
14f9c5c9 119
d2e4a39e 120static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 121
4c4b4cd2 122static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 123
d2e4a39e 124static int numeric_type_p (struct type *);
14f9c5c9 125
d2e4a39e 126static int integer_type_p (struct type *);
14f9c5c9 127
d2e4a39e 128static int scalar_type_p (struct type *);
14f9c5c9 129
d2e4a39e 130static int discrete_type_p (struct type *);
14f9c5c9 131
a121b7c1 132static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 133 int, int);
4c4b4cd2 134
b4ba55a1 135static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 136 const char *);
b4ba55a1 137
d2e4a39e 138static int is_dynamic_field (struct type *, int);
14f9c5c9 139
10a2c479 140static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 141 const gdb_byte *,
dda83cd7 142 CORE_ADDR, struct value *);
4c4b4cd2
PH
143
144static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 145
28c85d6c 146static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 147
d2e4a39e 148static struct type *to_static_fixed_type (struct type *);
f192137b 149static struct type *static_unwrap_type (struct type *type);
14f9c5c9 150
d2e4a39e 151static struct value *unwrap_value (struct value *);
14f9c5c9 152
ad82864c 153static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 154
ad82864c 155static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 156
ad82864c
JB
157static long decode_packed_array_bitsize (struct type *);
158
159static struct value *decode_constrained_packed_array (struct value *);
160
ad82864c 161static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 162
d2e4a39e 163static struct value *value_subscript_packed (struct value *, int,
dda83cd7 164 struct value **);
14f9c5c9 165
4c4b4cd2 166static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 167 struct type *);
14f9c5c9 168
d2e4a39e 169static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 170
d2e4a39e 171static int equiv_types (struct type *, struct type *);
14f9c5c9 172
d2e4a39e 173static int is_name_suffix (const char *);
14f9c5c9 174
59c8a30b 175static int advance_wild_match (const char **, const char *, char);
73589123 176
b5ec771e 177static bool wild_match (const char *name, const char *patn);
14f9c5c9 178
d2e4a39e 179static struct value *ada_coerce_ref (struct value *);
14f9c5c9 180
4c4b4cd2
PH
181static LONGEST pos_atr (struct value *);
182
53a47a3e
TT
183static struct value *val_atr (struct type *, LONGEST);
184
4c4b4cd2 185static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 186 domain_enum);
14f9c5c9 187
108d56a4 188static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 189 struct type *);
4c4b4cd2 190
0d5cff50 191static int find_struct_field (const char *, struct type *, int,
dda83cd7 192 struct type **, int *, int *, int *, int *);
4c4b4cd2 193
d1183b06 194static int ada_resolve_function (std::vector<struct block_symbol> &,
dda83cd7 195 struct value **, int, const char *,
7056f312 196 struct type *, bool);
4c4b4cd2 197
4c4b4cd2
PH
198static int ada_is_direct_array_type (struct type *);
199
52ce6436
PH
200static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
cf608cc4 203static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
204
205
852dff6c 206static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
207
208static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
4c4b4cd2
PH
211\f
212
315e4ebb
TT
213/* The character set used for source files. */
214static const char *ada_source_charset;
215
216/* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218static const char ada_utf8[] = "UTF-8";
219
220/* Each entry in the UTF-32 case-folding table is of this form. */
221struct utf8_entry
222{
223 /* The start and end, inclusive, of this range of codepoints. */
224 uint32_t start, end;
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
227 int upper_delta;
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
230 int lower_delta;
231
232 bool operator< (uint32_t val) const
233 {
234 return end < val;
235 }
236};
237
238static const utf8_entry ada_case_fold[] =
239{
240#include "ada-casefold.h"
241};
242
243\f
244
ee01b665
JB
245/* The result of a symbol lookup to be stored in our symbol cache. */
246
247struct cache_entry
248{
249 /* The name used to perform the lookup. */
250 const char *name;
251 /* The namespace used during the lookup. */
fe978cb0 252 domain_enum domain;
ee01b665
JB
253 /* The symbol returned by the lookup, or NULL if no matching symbol
254 was found. */
255 struct symbol *sym;
256 /* The block where the symbol was found, or NULL if no matching
257 symbol was found. */
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
261};
262
263/* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
265
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
271
272#define HASH_SIZE 1009
273
274struct ada_symbol_cache
275{
276 /* An obstack used to store the entries in our cache. */
bdcccc56 277 struct auto_obstack cache_space;
ee01b665
JB
278
279 /* The root of the hash table used to implement our symbol cache. */
bdcccc56 280 struct cache_entry *root[HASH_SIZE] {};
ee01b665
JB
281};
282
67cb5b2d 283static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
27087b7f 301static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
27087b7f 305static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
c6044dd1
JB
309/* Maintenance-related settings for this module. */
310
311static struct cmd_list_element *maint_set_ada_cmdlist;
312static struct cmd_list_element *maint_show_ada_cmdlist;
313
c6044dd1
JB
314/* The "maintenance ada set/show ignore-descriptive-type" value. */
315
491144b5 316static bool ada_ignore_descriptive_types_p = false;
c6044dd1 317
e802dbe0
JB
318 /* Inferior-specific data. */
319
320/* Per-inferior data for this module. */
321
322struct ada_inferior_data
323{
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
f37b313d 328 struct type *tsd_type = nullptr;
3eecfa55
JB
329
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
332 inferior. */
f37b313d 333 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
334};
335
336/* Our key to this module's inferior data. */
08b8a139 337static const registry<inferior>::key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
338
339/* Return our inferior data for the given inferior (INF).
340
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
346
347static struct ada_inferior_data *
348get_ada_inferior_data (struct inferior *inf)
349{
350 struct ada_inferior_data *data;
351
f37b313d 352 data = ada_inferior_data.get (inf);
e802dbe0 353 if (data == NULL)
f37b313d 354 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
355
356 return data;
357}
358
359/* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362static void
363ada_inferior_exit (struct inferior *inf)
364{
f37b313d 365 ada_inferior_data.clear (inf);
e802dbe0
JB
366}
367
ee01b665
JB
368
369 /* program-space-specific data. */
370
371/* This module's per-program-space data. */
372struct ada_pspace_data
373{
374 /* The Ada symbol cache. */
bdcccc56 375 std::unique_ptr<ada_symbol_cache> sym_cache;
ee01b665
JB
376};
377
378/* Key to our per-program-space data. */
08b8a139
TT
379static const registry<program_space>::key<ada_pspace_data>
380 ada_pspace_data_handle;
ee01b665
JB
381
382/* Return this module's data for the given program space (PSPACE).
383 If not is found, add a zero'ed one now.
384
385 This function always returns a valid object. */
386
387static struct ada_pspace_data *
388get_ada_pspace_data (struct program_space *pspace)
389{
390 struct ada_pspace_data *data;
391
f37b313d 392 data = ada_pspace_data_handle.get (pspace);
ee01b665 393 if (data == NULL)
f37b313d 394 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
395
396 return data;
397}
398
dda83cd7 399 /* Utilities */
4c4b4cd2 400
720d1a40 401/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 402 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
403
404 Normally, we really expect a typedef type to only have 1 typedef layer.
405 In other words, we really expect the target type of a typedef type to be
406 a non-typedef type. This is particularly true for Ada units, because
407 the language does not have a typedef vs not-typedef distinction.
408 In that respect, the Ada compiler has been trying to eliminate as many
409 typedef definitions in the debugging information, since they generally
410 do not bring any extra information (we still use typedef under certain
411 circumstances related mostly to the GNAT encoding).
412
413 Unfortunately, we have seen situations where the debugging information
414 generated by the compiler leads to such multiple typedef layers. For
415 instance, consider the following example with stabs:
416
417 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
418 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
419
420 This is an error in the debugging information which causes type
421 pck__float_array___XUP to be defined twice, and the second time,
422 it is defined as a typedef of a typedef.
423
424 This is on the fringe of legality as far as debugging information is
425 concerned, and certainly unexpected. But it is easy to handle these
426 situations correctly, so we can afford to be lenient in this case. */
427
428static struct type *
429ada_typedef_target_type (struct type *type)
430{
78134374 431 while (type->code () == TYPE_CODE_TYPEDEF)
27710edb 432 type = type->target_type ();
720d1a40
JB
433 return type;
434}
435
41d27058
JB
436/* Given DECODED_NAME a string holding a symbol name in its
437 decoded form (ie using the Ada dotted notation), returns
438 its unqualified name. */
439
440static const char *
441ada_unqualified_name (const char *decoded_name)
442{
2b0f535a
JB
443 const char *result;
444
445 /* If the decoded name starts with '<', it means that the encoded
446 name does not follow standard naming conventions, and thus that
447 it is not your typical Ada symbol name. Trying to unqualify it
448 is therefore pointless and possibly erroneous. */
449 if (decoded_name[0] == '<')
450 return decoded_name;
451
452 result = strrchr (decoded_name, '.');
41d27058
JB
453 if (result != NULL)
454 result++; /* Skip the dot... */
455 else
456 result = decoded_name;
457
458 return result;
459}
460
39e7af3e 461/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 462
39e7af3e 463static std::string
41d27058
JB
464add_angle_brackets (const char *str)
465{
39e7af3e 466 return string_printf ("<%s>", str);
41d27058 467}
96d887e8 468
14f9c5c9 469/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 470 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
471
472static int
ebf56fd3 473field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
474{
475 int len = strlen (target);
5b4ee69b 476
d2e4a39e 477 return
4c4b4cd2
PH
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
dda83cd7
SM
480 || (startswith (field_name + len, "___")
481 && strcmp (field_name + strlen (field_name) - 6,
482 "___XVN") != 0)));
14f9c5c9
AS
483}
484
485
872c8b51
JB
486/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
493
494int
495ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 496 int maybe_missing)
4c4b4cd2
PH
497{
498 int fieldno;
872c8b51
JB
499 struct type *struct_type = check_typedef ((struct type *) type);
500
1f704f76 501 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
33d16dd9 502 if (field_name_match (struct_type->field (fieldno).name (), field_name))
4c4b4cd2
PH
503 return fieldno;
504
505 if (!maybe_missing)
323e0a4a 506 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 507 field_name, struct_type->name ());
4c4b4cd2
PH
508
509 return -1;
510}
511
512/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
513
514int
d2e4a39e 515ada_name_prefix_len (const char *name)
14f9c5c9
AS
516{
517 if (name == NULL)
518 return 0;
d2e4a39e 519 else
14f9c5c9 520 {
d2e4a39e 521 const char *p = strstr (name, "___");
5b4ee69b 522
14f9c5c9 523 if (p == NULL)
dda83cd7 524 return strlen (name);
14f9c5c9 525 else
dda83cd7 526 return p - name;
14f9c5c9
AS
527 }
528}
529
4c4b4cd2
PH
530/* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
532
14f9c5c9 533static int
d2e4a39e 534is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
535{
536 int len1, len2;
5b4ee69b 537
14f9c5c9
AS
538 if (str == NULL)
539 return 0;
540 len1 = strlen (str);
541 len2 = strlen (suffix);
4c4b4cd2 542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
543}
544
4c4b4cd2
PH
545/* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
14f9c5c9 547
d2e4a39e 548static struct value *
4c4b4cd2 549coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 550{
61ee279c 551 type = ada_check_typedef (type);
df407dfe 552 if (value_type (val) == type)
4c4b4cd2 553 return val;
d2e4a39e 554 else
14f9c5c9 555 {
4c4b4cd2
PH
556 struct value *result;
557
f73e424f
TT
558 if (value_optimized_out (val))
559 result = allocate_optimized_out_value (type);
560 else if (value_lazy (val)
561 /* Be careful not to make a lazy not_lval value. */
562 || (VALUE_LVAL (val) != not_lval
df86565b 563 && type->length () > value_type (val)->length ()))
41e8491f
JK
564 result = allocate_value_lazy (type);
565 else
566 {
567 result = allocate_value (type);
df86565b 568 value_contents_copy (result, 0, val, 0, type->length ());
41e8491f 569 }
74bcbdf3 570 set_value_component_location (result, val);
9bbda503
AC
571 set_value_bitsize (result, value_bitsize (val));
572 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
573 if (VALUE_LVAL (result) == lval_memory)
574 set_value_address (result, value_address (val));
14f9c5c9
AS
575 return result;
576 }
577}
578
fc1a4b47
AC
579static const gdb_byte *
580cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
581{
582 if (valaddr == NULL)
583 return NULL;
584 else
585 return valaddr + offset;
586}
587
588static CORE_ADDR
ebf56fd3 589cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
590{
591 if (address == 0)
592 return 0;
d2e4a39e 593 else
14f9c5c9
AS
594 return address + offset;
595}
596
4c4b4cd2
PH
597/* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
600 expression. */
a2249542 601
77109804
AC
602/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
a0b31db1 604static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 605
14f9c5c9 606static void
a2249542 607lim_warning (const char *format, ...)
14f9c5c9 608{
a2249542 609 va_list args;
a2249542 610
5b4ee69b 611 va_start (args, format);
4c4b4cd2
PH
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
a2249542
MK
614 vwarning (format, args);
615
616 va_end (args);
4c4b4cd2
PH
617}
618
0963b4bd 619/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 620static LONGEST
c3e5cd34 621max_of_size (int size)
4c4b4cd2 622{
76a01679 623 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 624
76a01679 625 return top_bit | (top_bit - 1);
4c4b4cd2
PH
626}
627
0963b4bd 628/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 629static LONGEST
c3e5cd34 630min_of_size (int size)
4c4b4cd2 631{
c3e5cd34 632 return -max_of_size (size) - 1;
4c4b4cd2
PH
633}
634
0963b4bd 635/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 636static ULONGEST
c3e5cd34 637umax_of_size (int size)
4c4b4cd2 638{
76a01679 639 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 640
76a01679 641 return top_bit | (top_bit - 1);
4c4b4cd2
PH
642}
643
0963b4bd 644/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
645static LONGEST
646max_of_type (struct type *t)
4c4b4cd2 647{
c6d940a9 648 if (t->is_unsigned ())
df86565b 649 return (LONGEST) umax_of_size (t->length ());
c3e5cd34 650 else
df86565b 651 return max_of_size (t->length ());
c3e5cd34
PH
652}
653
0963b4bd 654/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
655static LONGEST
656min_of_type (struct type *t)
657{
c6d940a9 658 if (t->is_unsigned ())
c3e5cd34
PH
659 return 0;
660 else
df86565b 661 return min_of_size (t->length ());
4c4b4cd2
PH
662}
663
664/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
665LONGEST
666ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 667{
b249d2c2 668 type = resolve_dynamic_type (type, {}, 0);
78134374 669 switch (type->code ())
4c4b4cd2
PH
670 {
671 case TYPE_CODE_RANGE:
d1fd641e
SM
672 {
673 const dynamic_prop &high = type->bounds ()->high;
674
675 if (high.kind () == PROP_CONST)
676 return high.const_val ();
677 else
678 {
679 gdb_assert (high.kind () == PROP_UNDEFINED);
680
681 /* This happens when trying to evaluate a type's dynamic bound
682 without a live target. There is nothing relevant for us to
683 return here, so return 0. */
684 return 0;
685 }
686 }
4c4b4cd2 687 case TYPE_CODE_ENUM:
970db518 688 return type->field (type->num_fields () - 1).loc_enumval ();
690cc4eb
PH
689 case TYPE_CODE_BOOL:
690 return 1;
691 case TYPE_CODE_CHAR:
76a01679 692 case TYPE_CODE_INT:
690cc4eb 693 return max_of_type (type);
4c4b4cd2 694 default:
43bbcdc2 695 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
696 }
697}
698
14e75d8e 699/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
700LONGEST
701ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 702{
b249d2c2 703 type = resolve_dynamic_type (type, {}, 0);
78134374 704 switch (type->code ())
4c4b4cd2
PH
705 {
706 case TYPE_CODE_RANGE:
d1fd641e
SM
707 {
708 const dynamic_prop &low = type->bounds ()->low;
709
710 if (low.kind () == PROP_CONST)
711 return low.const_val ();
712 else
713 {
714 gdb_assert (low.kind () == PROP_UNDEFINED);
715
716 /* This happens when trying to evaluate a type's dynamic bound
717 without a live target. There is nothing relevant for us to
718 return here, so return 0. */
719 return 0;
720 }
721 }
4c4b4cd2 722 case TYPE_CODE_ENUM:
970db518 723 return type->field (0).loc_enumval ();
690cc4eb
PH
724 case TYPE_CODE_BOOL:
725 return 0;
726 case TYPE_CODE_CHAR:
76a01679 727 case TYPE_CODE_INT:
690cc4eb 728 return min_of_type (type);
4c4b4cd2 729 default:
43bbcdc2 730 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
731 }
732}
733
734/* The identity on non-range types. For range types, the underlying
76a01679 735 non-range scalar type. */
4c4b4cd2
PH
736
737static struct type *
18af8284 738get_base_type (struct type *type)
4c4b4cd2 739{
78134374 740 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 741 {
27710edb 742 if (type == type->target_type () || type->target_type () == NULL)
dda83cd7 743 return type;
27710edb 744 type = type->target_type ();
4c4b4cd2
PH
745 }
746 return type;
14f9c5c9 747}
41246937
JB
748
749/* Return a decoded version of the given VALUE. This means returning
750 a value whose type is obtained by applying all the GNAT-specific
85102364 751 encodings, making the resulting type a static but standard description
41246937
JB
752 of the initial type. */
753
754struct value *
755ada_get_decoded_value (struct value *value)
756{
757 struct type *type = ada_check_typedef (value_type (value));
758
759 if (ada_is_array_descriptor_type (type)
760 || (ada_is_constrained_packed_array_type (type)
dda83cd7 761 && type->code () != TYPE_CODE_PTR))
41246937 762 {
78134374 763 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 764 value = ada_coerce_to_simple_array_ptr (value);
41246937 765 else
dda83cd7 766 value = ada_coerce_to_simple_array (value);
41246937
JB
767 }
768 else
769 value = ada_to_fixed_value (value);
770
771 return value;
772}
773
774/* Same as ada_get_decoded_value, but with the given TYPE.
775 Because there is no associated actual value for this type,
776 the resulting type might be a best-effort approximation in
777 the case of dynamic types. */
778
779struct type *
780ada_get_decoded_type (struct type *type)
781{
782 type = to_static_fixed_type (type);
783 if (ada_is_constrained_packed_array_type (type))
784 type = ada_coerce_to_simple_array_type (type);
785 return type;
786}
787
4c4b4cd2 788\f
76a01679 789
dda83cd7 790 /* Language Selection */
14f9c5c9
AS
791
792/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 793 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 794
de93309a 795static enum language
ccefe4c4 796ada_update_initial_language (enum language lang)
14f9c5c9 797{
cafb3438 798 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 799 return language_ada;
14f9c5c9
AS
800
801 return lang;
802}
96d887e8
PH
803
804/* If the main procedure is written in Ada, then return its name.
805 The result is good until the next call. Return NULL if the main
806 procedure doesn't appear to be in Ada. */
807
808char *
809ada_main_name (void)
810{
3b7344d5 811 struct bound_minimal_symbol msym;
e83e4e24 812 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 813
96d887e8
PH
814 /* For Ada, the name of the main procedure is stored in a specific
815 string constant, generated by the binder. Look for that symbol,
816 extract its address, and then read that string. If we didn't find
817 that string, then most probably the main procedure is not written
818 in Ada. */
819 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
820
3b7344d5 821 if (msym.minsym != NULL)
96d887e8 822 {
4aeddc50 823 CORE_ADDR main_program_name_addr = msym.value_address ();
96d887e8 824 if (main_program_name_addr == 0)
dda83cd7 825 error (_("Invalid address for Ada main program name."));
96d887e8 826
66920317 827 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 828 return main_program_name.get ();
96d887e8
PH
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
dda83cd7 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
965bc1df
TT
865/* If STR is a decoded version of a compiler-provided suffix (like the
866 "[cold]" in "symbol[cold]"), return true. Otherwise, return
867 false. */
868
869static bool
870is_compiler_suffix (const char *str)
871{
872 gdb_assert (*str == '[');
873 ++str;
874 while (*str != '\0' && isalpha (*str))
875 ++str;
876 /* We accept a missing "]" in order to support completion. */
877 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
878}
879
315e4ebb
TT
880/* Append a non-ASCII character to RESULT. */
881static void
882append_hex_encoded (std::string &result, uint32_t one_char)
883{
884 if (one_char <= 0xff)
885 {
886 result.append ("U");
887 result.append (phex (one_char, 1));
888 }
889 else if (one_char <= 0xffff)
890 {
891 result.append ("W");
892 result.append (phex (one_char, 2));
893 }
894 else
895 {
896 result.append ("WW");
897 result.append (phex (one_char, 4));
898 }
899}
900
901/* Return a string that is a copy of the data in STORAGE, with
902 non-ASCII characters replaced by the appropriate hex encoding. A
903 template is used because, for UTF-8, we actually want to work with
904 UTF-32 codepoints. */
905template<typename T>
906std::string
907copy_and_hex_encode (struct obstack *storage)
908{
909 const T *chars = (T *) obstack_base (storage);
910 int num_chars = obstack_object_size (storage) / sizeof (T);
911 std::string result;
912 for (int i = 0; i < num_chars; ++i)
913 {
914 if (chars[i] <= 0x7f)
915 {
916 /* The host character set has to be a superset of ASCII, as
917 are all the other character sets we can use. */
918 result.push_back (chars[i]);
919 }
920 else
921 append_hex_encoded (result, chars[i]);
922 }
923 return result;
924}
925
5c4258f4 926/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 927 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 928 Otherwise, return the empty string in that case. */
4c4b4cd2 929
5c4258f4 930static std::string
b5ec771e 931ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 932{
4c4b4cd2 933 if (decoded == NULL)
5c4258f4 934 return {};
14f9c5c9 935
5c4258f4 936 std::string encoding_buffer;
315e4ebb 937 bool saw_non_ascii = false;
5c4258f4 938 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 939 {
315e4ebb
TT
940 if ((*p & 0x80) != 0)
941 saw_non_ascii = true;
942
cdc7bb92 943 if (*p == '.')
5c4258f4 944 encoding_buffer.append ("__");
965bc1df
TT
945 else if (*p == '[' && is_compiler_suffix (p))
946 {
947 encoding_buffer = encoding_buffer + "." + (p + 1);
948 if (encoding_buffer.back () == ']')
949 encoding_buffer.pop_back ();
950 break;
951 }
14f9c5c9 952 else if (*p == '"')
dda83cd7
SM
953 {
954 const struct ada_opname_map *mapping;
955
956 for (mapping = ada_opname_table;
957 mapping->encoded != NULL
958 && !startswith (p, mapping->decoded); mapping += 1)
959 ;
960 if (mapping->encoded == NULL)
b5ec771e
PA
961 {
962 if (throw_errors)
963 error (_("invalid Ada operator name: %s"), p);
964 else
5c4258f4 965 return {};
b5ec771e 966 }
5c4258f4 967 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
968 break;
969 }
d2e4a39e 970 else
5c4258f4 971 encoding_buffer.push_back (*p);
14f9c5c9
AS
972 }
973
315e4ebb
TT
974 /* If a non-ASCII character is seen, we must convert it to the
975 appropriate hex form. As this is more expensive, we keep track
976 of whether it is even necessary. */
977 if (saw_non_ascii)
978 {
979 auto_obstack storage;
980 bool is_utf8 = ada_source_charset == ada_utf8;
981 try
982 {
983 convert_between_encodings
984 (host_charset (),
985 is_utf8 ? HOST_UTF32 : ada_source_charset,
986 (const gdb_byte *) encoding_buffer.c_str (),
987 encoding_buffer.length (), 1,
988 &storage, translit_none);
989 }
990 catch (const gdb_exception &)
991 {
992 static bool warned = false;
993
994 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
995 might like to know why. */
996 if (!warned)
997 {
998 warned = true;
999 warning (_("charset conversion failure for '%s'.\n"
1000 "You may have the wrong value for 'set ada source-charset'."),
1001 encoding_buffer.c_str ());
1002 }
1003
1004 /* We don't try to recover from errors. */
1005 return encoding_buffer;
1006 }
1007
1008 if (is_utf8)
1009 return copy_and_hex_encode<uint32_t> (&storage);
1010 return copy_and_hex_encode<gdb_byte> (&storage);
1011 }
1012
4c4b4cd2 1013 return encoding_buffer;
14f9c5c9
AS
1014}
1015
315e4ebb
TT
1016/* Find the entry for C in the case-folding table. Return nullptr if
1017 the entry does not cover C. */
1018static const utf8_entry *
1019find_case_fold_entry (uint32_t c)
b5ec771e 1020{
315e4ebb
TT
1021 auto iter = std::lower_bound (std::begin (ada_case_fold),
1022 std::end (ada_case_fold),
1023 c);
1024 if (iter == std::end (ada_case_fold)
1025 || c < iter->start
1026 || c > iter->end)
1027 return nullptr;
1028 return &*iter;
b5ec771e
PA
1029}
1030
14f9c5c9 1031/* Return NAME folded to lower case, or, if surrounded by single
315e4ebb
TT
1032 quotes, unfolded, but with the quotes stripped away. If
1033 THROW_ON_ERROR is true, encoding failures will throw an exception
1034 rather than emitting a warning. Result good to next call. */
4c4b4cd2 1035
5f9febe0 1036static const char *
315e4ebb 1037ada_fold_name (gdb::string_view name, bool throw_on_error = false)
14f9c5c9 1038{
5f9febe0 1039 static std::string fold_storage;
14f9c5c9 1040
6a780b67 1041 if (!name.empty () && name[0] == '\'')
01573d73 1042 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
14f9c5c9
AS
1043 else
1044 {
315e4ebb
TT
1045 /* Why convert to UTF-32 and implement our own case-folding,
1046 rather than convert to wchar_t and use the platform's
1047 functions? I'm glad you asked.
1048
1049 The main problem is that GNAT implements an unusual rule for
1050 case folding. For ASCII letters, letters in single-byte
1051 encodings (such as ISO-8859-*), and Unicode letters that fit
1052 in a single byte (i.e., code point is <= 0xff), the letter is
1053 folded to lower case. Other Unicode letters are folded to
1054 upper case.
1055
1056 This rule means that the code must be able to examine the
1057 value of the character. And, some hosts do not use Unicode
1058 for wchar_t, so examining the value of such characters is
1059 forbidden. */
1060 auto_obstack storage;
1061 try
1062 {
1063 convert_between_encodings
1064 (host_charset (), HOST_UTF32,
1065 (const gdb_byte *) name.data (),
1066 name.length (), 1,
1067 &storage, translit_none);
1068 }
1069 catch (const gdb_exception &)
1070 {
1071 if (throw_on_error)
1072 throw;
1073
1074 static bool warned = false;
1075
1076 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1077 might like to know why. */
1078 if (!warned)
1079 {
1080 warned = true;
1081 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1082 "This normally should not happen, please file a bug report."),
1083 gdb::to_string (name).c_str (), host_charset ());
1084 }
1085
1086 /* We don't try to recover from errors; just return the
1087 original string. */
1088 fold_storage = gdb::to_string (name);
1089 return fold_storage.c_str ();
1090 }
1091
1092 bool is_utf8 = ada_source_charset == ada_utf8;
1093 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1094 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1095 for (int i = 0; i < num_chars; ++i)
1096 {
1097 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1098 if (entry != nullptr)
1099 {
1100 uint32_t low = chars[i] + entry->lower_delta;
1101 if (!is_utf8 || low <= 0xff)
1102 chars[i] = low;
1103 else
1104 chars[i] = chars[i] + entry->upper_delta;
1105 }
1106 }
1107
1108 /* Now convert back to ordinary characters. */
1109 auto_obstack reconverted;
1110 try
1111 {
1112 convert_between_encodings (HOST_UTF32,
1113 host_charset (),
1114 (const gdb_byte *) chars,
1115 num_chars * sizeof (uint32_t),
1116 sizeof (uint32_t),
1117 &reconverted,
1118 translit_none);
1119 obstack_1grow (&reconverted, '\0');
1120 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1121 }
1122 catch (const gdb_exception &)
1123 {
1124 if (throw_on_error)
1125 throw;
1126
1127 static bool warned = false;
1128
1129 /* Converting back from UTF-32 shouldn't normally fail, but
1130 there are some host encodings without upper/lower
1131 equivalence. */
1132 if (!warned)
1133 {
1134 warned = true;
1135 warning (_("could not convert the lower-cased variant of '%s'\n"
1136 "from UTF-32 to the host encoding (%s)."),
1137 gdb::to_string (name).c_str (), host_charset ());
1138 }
1139
1140 /* We don't try to recover from errors; just return the
1141 original string. */
1142 fold_storage = gdb::to_string (name);
1143 }
14f9c5c9
AS
1144 }
1145
5f9febe0 1146 return fold_storage.c_str ();
14f9c5c9
AS
1147}
1148
5fea9794
TT
1149/* The "encoded" form of DECODED, according to GNAT conventions. If
1150 FOLD is true (the default), case-fold any ordinary symbol. Symbols
1151 with <...> quoting are not folded in any case. */
315e4ebb
TT
1152
1153std::string
5fea9794 1154ada_encode (const char *decoded, bool fold)
315e4ebb 1155{
5fea9794 1156 if (fold && decoded[0] != '<')
315e4ebb
TT
1157 decoded = ada_fold_name (decoded);
1158 return ada_encode_1 (decoded, true);
1159}
1160
529cad9c
PH
1161/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1162
1163static int
1164is_lower_alphanum (const char c)
1165{
1166 return (isdigit (c) || (isalpha (c) && islower (c)));
1167}
1168
c90092fe
JB
1169/* ENCODED is the linkage name of a symbol and LEN contains its length.
1170 This function saves in LEN the length of that same symbol name but
1171 without either of these suffixes:
29480c32
JB
1172 . .{DIGIT}+
1173 . ${DIGIT}+
1174 . ___{DIGIT}+
1175 . __{DIGIT}+.
c90092fe 1176
29480c32
JB
1177 These are suffixes introduced by the compiler for entities such as
1178 nested subprogram for instance, in order to avoid name clashes.
1179 They do not serve any purpose for the debugger. */
1180
1181static void
1182ada_remove_trailing_digits (const char *encoded, int *len)
1183{
1184 if (*len > 1 && isdigit (encoded[*len - 1]))
1185 {
1186 int i = *len - 2;
5b4ee69b 1187
29480c32 1188 while (i > 0 && isdigit (encoded[i]))
dda83cd7 1189 i--;
29480c32 1190 if (i >= 0 && encoded[i] == '.')
dda83cd7 1191 *len = i;
29480c32 1192 else if (i >= 0 && encoded[i] == '$')
dda83cd7 1193 *len = i;
61012eef 1194 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 1195 *len = i - 2;
61012eef 1196 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 1197 *len = i - 1;
29480c32
JB
1198 }
1199}
1200
1201/* Remove the suffix introduced by the compiler for protected object
1202 subprograms. */
1203
1204static void
1205ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1206{
1207 /* Remove trailing N. */
1208
1209 /* Protected entry subprograms are broken into two
1210 separate subprograms: The first one is unprotected, and has
1211 a 'N' suffix; the second is the protected version, and has
0963b4bd 1212 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1213 the protection. Since the P subprograms are internally generated,
1214 we leave these names undecoded, giving the user a clue that this
1215 entity is internal. */
1216
1217 if (*len > 1
1218 && encoded[*len - 1] == 'N'
1219 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1220 *len = *len - 1;
1221}
1222
965bc1df
TT
1223/* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1224 then update *LEN to remove the suffix and return the offset of the
1225 character just past the ".". Otherwise, return -1. */
1226
1227static int
1228remove_compiler_suffix (const char *encoded, int *len)
1229{
1230 int offset = *len - 1;
1231 while (offset > 0 && isalpha (encoded[offset]))
1232 --offset;
1233 if (offset > 0 && encoded[offset] == '.')
1234 {
1235 *len = offset;
1236 return offset + 1;
1237 }
1238 return -1;
1239}
1240
315e4ebb
TT
1241/* Convert an ASCII hex string to a number. Reads exactly N
1242 characters from STR. Returns true on success, false if one of the
1243 digits was not a hex digit. */
1244static bool
1245convert_hex (const char *str, int n, uint32_t *out)
1246{
1247 uint32_t result = 0;
1248
1249 for (int i = 0; i < n; ++i)
1250 {
1251 if (!isxdigit (str[i]))
1252 return false;
1253 result <<= 4;
1254 result |= fromhex (str[i]);
1255 }
1256
1257 *out = result;
1258 return true;
1259}
1260
1261/* Convert a wide character from its ASCII hex representation in STR
1262 (consisting of exactly N characters) to the host encoding,
1263 appending the resulting bytes to OUT. If N==2 and the Ada source
1264 charset is not UTF-8, then hex refers to an encoding in the
1265 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1266 Return false and do not modify OUT on conversion failure. */
1267static bool
1268convert_from_hex_encoded (std::string &out, const char *str, int n)
1269{
1270 uint32_t value;
1271
1272 if (!convert_hex (str, n, &value))
1273 return false;
1274 try
1275 {
1276 auto_obstack bytes;
1277 /* In the 'U' case, the hex digits encode the character in the
1278 Ada source charset. However, if the source charset is UTF-8,
1279 this really means it is a single-byte UTF-32 character. */
1280 if (n == 2 && ada_source_charset != ada_utf8)
1281 {
1282 gdb_byte one_char = (gdb_byte) value;
1283
1284 convert_between_encodings (ada_source_charset, host_charset (),
1285 &one_char,
1286 sizeof (one_char), sizeof (one_char),
1287 &bytes, translit_none);
1288 }
1289 else
1290 convert_between_encodings (HOST_UTF32, host_charset (),
1291 (const gdb_byte *) &value,
1292 sizeof (value), sizeof (value),
1293 &bytes, translit_none);
1294 obstack_1grow (&bytes, '\0');
1295 out.append ((const char *) obstack_base (&bytes));
1296 }
1297 catch (const gdb_exception &)
1298 {
1299 /* On failure, the caller will just let the encoded form
1300 through, which seems basically reasonable. */
1301 return false;
1302 }
1303
1304 return true;
1305}
1306
8a3df5ac 1307/* See ada-lang.h. */
14f9c5c9 1308
f945dedf 1309std::string
5c94f938 1310ada_decode (const char *encoded, bool wrap, bool operators)
14f9c5c9 1311{
36f5ca53 1312 int i;
14f9c5c9 1313 int len0;
d2e4a39e 1314 const char *p;
14f9c5c9 1315 int at_start_name;
f945dedf 1316 std::string decoded;
965bc1df 1317 int suffix = -1;
d2e4a39e 1318
0d81f350
JG
1319 /* With function descriptors on PPC64, the value of a symbol named
1320 ".FN", if it exists, is the entry point of the function "FN". */
1321 if (encoded[0] == '.')
1322 encoded += 1;
1323
29480c32
JB
1324 /* The name of the Ada main procedure starts with "_ada_".
1325 This prefix is not part of the decoded name, so skip this part
1326 if we see this prefix. */
61012eef 1327 if (startswith (encoded, "_ada_"))
4c4b4cd2 1328 encoded += 5;
81eaa506
TT
1329 /* The "___ghost_" prefix is used for ghost entities. Normally
1330 these aren't preserved but when they are, it's useful to see
1331 them. */
1332 if (startswith (encoded, "___ghost_"))
1333 encoded += 9;
14f9c5c9 1334
29480c32
JB
1335 /* If the name starts with '_', then it is not a properly encoded
1336 name, so do not attempt to decode it. Similarly, if the name
1337 starts with '<', the name should not be decoded. */
4c4b4cd2 1338 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1339 goto Suppress;
1340
4c4b4cd2 1341 len0 = strlen (encoded);
4c4b4cd2 1342
965bc1df
TT
1343 suffix = remove_compiler_suffix (encoded, &len0);
1344
29480c32
JB
1345 ada_remove_trailing_digits (encoded, &len0);
1346 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1347
4c4b4cd2
PH
1348 /* Remove the ___X.* suffix if present. Do not forget to verify that
1349 the suffix is located before the current "end" of ENCODED. We want
1350 to avoid re-matching parts of ENCODED that have previously been
1351 marked as discarded (by decrementing LEN0). */
1352 p = strstr (encoded, "___");
1353 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1354 {
1355 if (p[3] == 'X')
dda83cd7 1356 len0 = p - encoded;
14f9c5c9 1357 else
dda83cd7 1358 goto Suppress;
14f9c5c9 1359 }
4c4b4cd2 1360
29480c32
JB
1361 /* Remove any trailing TKB suffix. It tells us that this symbol
1362 is for the body of a task, but that information does not actually
1363 appear in the decoded name. */
1364
61012eef 1365 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1366 len0 -= 3;
76a01679 1367
a10967fa
JB
1368 /* Remove any trailing TB suffix. The TB suffix is slightly different
1369 from the TKB suffix because it is used for non-anonymous task
1370 bodies. */
1371
61012eef 1372 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1373 len0 -= 2;
1374
29480c32
JB
1375 /* Remove trailing "B" suffixes. */
1376 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1377
61012eef 1378 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1379 len0 -= 1;
1380
29480c32
JB
1381 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1382
4c4b4cd2 1383 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1384 {
4c4b4cd2
PH
1385 i = len0 - 2;
1386 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1387 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1388 i -= 1;
4c4b4cd2 1389 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1390 len0 = i - 1;
4c4b4cd2 1391 else if (encoded[i] == '$')
dda83cd7 1392 len0 = i;
d2e4a39e 1393 }
14f9c5c9 1394
29480c32
JB
1395 /* The first few characters that are not alphabetic are not part
1396 of any encoding we use, so we can copy them over verbatim. */
1397
36f5ca53
TT
1398 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1399 decoded.push_back (encoded[i]);
14f9c5c9
AS
1400
1401 at_start_name = 1;
1402 while (i < len0)
1403 {
29480c32 1404 /* Is this a symbol function? */
5c94f938 1405 if (operators && at_start_name && encoded[i] == 'O')
dda83cd7
SM
1406 {
1407 int k;
1408
1409 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1410 {
1411 int op_len = strlen (ada_opname_table[k].encoded);
1412 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1413 op_len - 1) == 0)
1414 && !isalnum (encoded[i + op_len]))
1415 {
36f5ca53 1416 decoded.append (ada_opname_table[k].decoded);
dda83cd7
SM
1417 at_start_name = 0;
1418 i += op_len;
dda83cd7
SM
1419 break;
1420 }
1421 }
1422 if (ada_opname_table[k].encoded != NULL)
1423 continue;
1424 }
14f9c5c9
AS
1425 at_start_name = 0;
1426
529cad9c 1427 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1428 into "." (just below). */
529cad9c 1429
61012eef 1430 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1431 i += 2;
529cad9c 1432
29480c32 1433 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1434 be translated into "." (just below). These are internal names
1435 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1436
1437 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1438 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1439 && isdigit (encoded [i+4]))
1440 {
1441 int k = i + 5;
1442
1443 while (k < len0 && isdigit (encoded[k]))
1444 k++; /* Skip any extra digit. */
1445
1446 /* Double-check that the "__B_{DIGITS}+" sequence we found
1447 is indeed followed by "__". */
1448 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1449 i = k;
1450 }
29480c32 1451
529cad9c
PH
1452 /* Remove _E{DIGITS}+[sb] */
1453
1454 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1455 of subprograms created by the compiler for each entry. The first
1456 one implements the actual entry code, and has a suffix following
1457 the convention above; the second one implements the barrier and
1458 uses the same convention as above, except that the 'E' is replaced
1459 by a 'B'.
529cad9c 1460
dda83cd7
SM
1461 Just as above, we do not decode the name of barrier functions
1462 to give the user a clue that the code he is debugging has been
1463 internally generated. */
529cad9c
PH
1464
1465 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1466 && isdigit (encoded[i+2]))
1467 {
1468 int k = i + 3;
1469
1470 while (k < len0 && isdigit (encoded[k]))
1471 k++;
1472
1473 if (k < len0
1474 && (encoded[k] == 'b' || encoded[k] == 's'))
1475 {
1476 k++;
1477 /* Just as an extra precaution, make sure that if this
1478 suffix is followed by anything else, it is a '_'.
1479 Otherwise, we matched this sequence by accident. */
1480 if (k == len0
1481 || (k < len0 && encoded[k] == '_'))
1482 i = k;
1483 }
1484 }
529cad9c
PH
1485
1486 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1487 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1488
1489 if (i < len0 + 3
dda83cd7
SM
1490 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1491 {
1492 /* Backtrack a bit up until we reach either the begining of
1493 the encoded name, or "__". Make sure that we only find
1494 digits or lowercase characters. */
1495 const char *ptr = encoded + i - 1;
1496
1497 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1498 ptr--;
1499 if (ptr < encoded
1500 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1501 i++;
1502 }
529cad9c 1503
315e4ebb
TT
1504 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1505 {
1506 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1507 {
1508 i += 3;
1509 continue;
1510 }
1511 }
1512 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1513 {
1514 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1515 {
1516 i += 5;
1517 continue;
1518 }
1519 }
1520 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1521 && isxdigit (encoded[i + 2]))
1522 {
1523 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1524 {
1525 i += 10;
1526 continue;
1527 }
1528 }
1529
4c4b4cd2 1530 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1531 {
1532 /* This is a X[bn]* sequence not separated from the previous
1533 part of the name with a non-alpha-numeric character (in other
1534 words, immediately following an alpha-numeric character), then
1535 verify that it is placed at the end of the encoded name. If
1536 not, then the encoding is not valid and we should abort the
1537 decoding. Otherwise, just skip it, it is used in body-nested
1538 package names. */
1539 do
1540 i += 1;
1541 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1542 if (i < len0)
1543 goto Suppress;
1544 }
cdc7bb92 1545 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1546 {
1547 /* Replace '__' by '.'. */
36f5ca53 1548 decoded.push_back ('.');
dda83cd7
SM
1549 at_start_name = 1;
1550 i += 2;
dda83cd7 1551 }
14f9c5c9 1552 else
dda83cd7
SM
1553 {
1554 /* It's a character part of the decoded name, so just copy it
1555 over. */
36f5ca53 1556 decoded.push_back (encoded[i]);
dda83cd7 1557 i += 1;
dda83cd7 1558 }
14f9c5c9 1559 }
14f9c5c9 1560
29480c32
JB
1561 /* Decoded names should never contain any uppercase character.
1562 Double-check this, and abort the decoding if we find one. */
1563
5c94f938
TT
1564 if (operators)
1565 {
1566 for (i = 0; i < decoded.length(); ++i)
1567 if (isupper (decoded[i]) || decoded[i] == ' ')
1568 goto Suppress;
1569 }
14f9c5c9 1570
965bc1df
TT
1571 /* If the compiler added a suffix, append it now. */
1572 if (suffix >= 0)
1573 decoded = decoded + "[" + &encoded[suffix] + "]";
1574
f945dedf 1575 return decoded;
14f9c5c9
AS
1576
1577Suppress:
8a3df5ac
TT
1578 if (!wrap)
1579 return {};
1580
4c4b4cd2 1581 if (encoded[0] == '<')
f945dedf 1582 decoded = encoded;
14f9c5c9 1583 else
f945dedf 1584 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2 1585 return decoded;
4c4b4cd2
PH
1586}
1587
1588/* Table for keeping permanent unique copies of decoded names. Once
1589 allocated, names in this table are never released. While this is a
1590 storage leak, it should not be significant unless there are massive
1591 changes in the set of decoded names in successive versions of a
1592 symbol table loaded during a single session. */
1593static struct htab *decoded_names_store;
1594
1595/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1596 in the language-specific part of GSYMBOL, if it has not been
1597 previously computed. Tries to save the decoded name in the same
1598 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1599 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1600 GSYMBOL).
4c4b4cd2
PH
1601 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1602 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1603 when a decoded name is cached in it. */
4c4b4cd2 1604
45e6c716 1605const char *
f85f34ed 1606ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1607{
f85f34ed
TT
1608 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1609 const char **resultp =
615b3f62 1610 &gsymbol->language_specific.demangled_name;
5b4ee69b 1611
f85f34ed 1612 if (!gsymbol->ada_mangled)
4c4b4cd2 1613 {
4d4eaa30 1614 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1615 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1616
f85f34ed 1617 gsymbol->ada_mangled = 1;
5b4ee69b 1618
f85f34ed 1619 if (obstack != NULL)
f945dedf 1620 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1621 else
dda83cd7 1622 {
f85f34ed
TT
1623 /* Sometimes, we can't find a corresponding objfile, in
1624 which case, we put the result on the heap. Since we only
1625 decode when needed, we hope this usually does not cause a
1626 significant memory leak (FIXME). */
1627
dda83cd7
SM
1628 char **slot = (char **) htab_find_slot (decoded_names_store,
1629 decoded.c_str (), INSERT);
5b4ee69b 1630
dda83cd7
SM
1631 if (*slot == NULL)
1632 *slot = xstrdup (decoded.c_str ());
1633 *resultp = *slot;
1634 }
4c4b4cd2 1635 }
14f9c5c9 1636
4c4b4cd2
PH
1637 return *resultp;
1638}
76a01679 1639
14f9c5c9 1640\f
d2e4a39e 1641
dda83cd7 1642 /* Arrays */
14f9c5c9 1643
28c85d6c
JB
1644/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1645 generated by the GNAT compiler to describe the index type used
1646 for each dimension of an array, check whether it follows the latest
1647 known encoding. If not, fix it up to conform to the latest encoding.
1648 Otherwise, do nothing. This function also does nothing if
1649 INDEX_DESC_TYPE is NULL.
1650
85102364 1651 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1652 Initially, the information would be provided through the name of each
1653 field of the structure type only, while the type of these fields was
1654 described as unspecified and irrelevant. The debugger was then expected
1655 to perform a global type lookup using the name of that field in order
1656 to get access to the full index type description. Because these global
1657 lookups can be very expensive, the encoding was later enhanced to make
1658 the global lookup unnecessary by defining the field type as being
1659 the full index type description.
1660
1661 The purpose of this routine is to allow us to support older versions
1662 of the compiler by detecting the use of the older encoding, and by
1663 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1664 we essentially replace each field's meaningless type by the associated
1665 index subtype). */
1666
1667void
1668ada_fixup_array_indexes_type (struct type *index_desc_type)
1669{
1670 int i;
1671
1672 if (index_desc_type == NULL)
1673 return;
1f704f76 1674 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1675
1676 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1677 to check one field only, no need to check them all). If not, return
1678 now.
1679
1680 If our INDEX_DESC_TYPE was generated using the older encoding,
1681 the field type should be a meaningless integer type whose name
1682 is not equal to the field name. */
940da03e
SM
1683 if (index_desc_type->field (0).type ()->name () != NULL
1684 && strcmp (index_desc_type->field (0).type ()->name (),
33d16dd9 1685 index_desc_type->field (0).name ()) == 0)
28c85d6c
JB
1686 return;
1687
1688 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1689 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1690 {
33d16dd9 1691 const char *name = index_desc_type->field (i).name ();
28c85d6c
JB
1692 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1693
1694 if (raw_type)
5d14b6e5 1695 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1696 }
1697}
1698
4c4b4cd2
PH
1699/* The desc_* routines return primitive portions of array descriptors
1700 (fat pointers). */
14f9c5c9
AS
1701
1702/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1703 level of indirection, if needed. */
1704
d2e4a39e
AS
1705static struct type *
1706desc_base_type (struct type *type)
14f9c5c9
AS
1707{
1708 if (type == NULL)
1709 return NULL;
61ee279c 1710 type = ada_check_typedef (type);
78134374 1711 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1712 type = ada_typedef_target_type (type);
1713
1265e4aa 1714 if (type != NULL
78134374 1715 && (type->code () == TYPE_CODE_PTR
dda83cd7 1716 || type->code () == TYPE_CODE_REF))
27710edb 1717 return ada_check_typedef (type->target_type ());
14f9c5c9
AS
1718 else
1719 return type;
1720}
1721
4c4b4cd2
PH
1722/* True iff TYPE indicates a "thin" array pointer type. */
1723
14f9c5c9 1724static int
d2e4a39e 1725is_thin_pntr (struct type *type)
14f9c5c9 1726{
d2e4a39e 1727 return
14f9c5c9
AS
1728 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1729 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1730}
1731
4c4b4cd2
PH
1732/* The descriptor type for thin pointer type TYPE. */
1733
d2e4a39e
AS
1734static struct type *
1735thin_descriptor_type (struct type *type)
14f9c5c9 1736{
d2e4a39e 1737 struct type *base_type = desc_base_type (type);
5b4ee69b 1738
14f9c5c9
AS
1739 if (base_type == NULL)
1740 return NULL;
1741 if (is_suffix (ada_type_name (base_type), "___XVE"))
1742 return base_type;
d2e4a39e 1743 else
14f9c5c9 1744 {
d2e4a39e 1745 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1746
14f9c5c9 1747 if (alt_type == NULL)
dda83cd7 1748 return base_type;
14f9c5c9 1749 else
dda83cd7 1750 return alt_type;
14f9c5c9
AS
1751 }
1752}
1753
4c4b4cd2
PH
1754/* A pointer to the array data for thin-pointer value VAL. */
1755
d2e4a39e
AS
1756static struct value *
1757thin_data_pntr (struct value *val)
14f9c5c9 1758{
828292f2 1759 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1760 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1761
556bdfd4
UW
1762 data_type = lookup_pointer_type (data_type);
1763
78134374 1764 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1765 return value_cast (data_type, value_copy (val));
d2e4a39e 1766 else
42ae5230 1767 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1768}
1769
4c4b4cd2
PH
1770/* True iff TYPE indicates a "thick" array pointer type. */
1771
14f9c5c9 1772static int
d2e4a39e 1773is_thick_pntr (struct type *type)
14f9c5c9
AS
1774{
1775 type = desc_base_type (type);
78134374 1776 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1777 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1778}
1779
4c4b4cd2
PH
1780/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1781 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1782
d2e4a39e
AS
1783static struct type *
1784desc_bounds_type (struct type *type)
14f9c5c9 1785{
d2e4a39e 1786 struct type *r;
14f9c5c9
AS
1787
1788 type = desc_base_type (type);
1789
1790 if (type == NULL)
1791 return NULL;
1792 else if (is_thin_pntr (type))
1793 {
1794 type = thin_descriptor_type (type);
1795 if (type == NULL)
dda83cd7 1796 return NULL;
14f9c5c9
AS
1797 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1798 if (r != NULL)
dda83cd7 1799 return ada_check_typedef (r);
14f9c5c9 1800 }
78134374 1801 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1802 {
1803 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1804 if (r != NULL)
27710edb 1805 return ada_check_typedef (ada_check_typedef (r)->target_type ());
14f9c5c9
AS
1806 }
1807 return NULL;
1808}
1809
1810/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1811 one, a pointer to its bounds data. Otherwise NULL. */
1812
d2e4a39e
AS
1813static struct value *
1814desc_bounds (struct value *arr)
14f9c5c9 1815{
df407dfe 1816 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1817
d2e4a39e 1818 if (is_thin_pntr (type))
14f9c5c9 1819 {
d2e4a39e 1820 struct type *bounds_type =
dda83cd7 1821 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1822 LONGEST addr;
1823
4cdfadb1 1824 if (bounds_type == NULL)
dda83cd7 1825 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1826
1827 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1828 since desc_type is an XVE-encoded type (and shouldn't be),
1829 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1830 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1831 addr = value_as_long (arr);
d2e4a39e 1832 else
dda83cd7 1833 addr = value_address (arr);
14f9c5c9 1834
d2e4a39e 1835 return
dda83cd7 1836 value_from_longest (lookup_pointer_type (bounds_type),
df86565b 1837 addr - bounds_type->length ());
14f9c5c9
AS
1838 }
1839
1840 else if (is_thick_pntr (type))
05e522ef 1841 {
158cc4fe 1842 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
05e522ef
JB
1843 _("Bad GNAT array descriptor"));
1844 struct type *p_bounds_type = value_type (p_bounds);
1845
1846 if (p_bounds_type
78134374 1847 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef 1848 {
27710edb 1849 struct type *target_type = p_bounds_type->target_type ();
05e522ef 1850
e46d3488 1851 if (target_type->is_stub ())
05e522ef
JB
1852 p_bounds = value_cast (lookup_pointer_type
1853 (ada_check_typedef (target_type)),
1854 p_bounds);
1855 }
1856 else
1857 error (_("Bad GNAT array descriptor"));
1858
1859 return p_bounds;
1860 }
14f9c5c9
AS
1861 else
1862 return NULL;
1863}
1864
4c4b4cd2
PH
1865/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1866 position of the field containing the address of the bounds data. */
1867
14f9c5c9 1868static int
d2e4a39e 1869fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9 1870{
b610c045 1871 return desc_base_type (type)->field (1).loc_bitpos ();
14f9c5c9
AS
1872}
1873
1874/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1875 size of the field containing the address of the bounds data. */
1876
14f9c5c9 1877static int
d2e4a39e 1878fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1879{
1880 type = desc_base_type (type);
1881
d2e4a39e 1882 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1883 return TYPE_FIELD_BITSIZE (type, 1);
1884 else
df86565b 1885 return 8 * ada_check_typedef (type->field (1).type ())->length ();
14f9c5c9
AS
1886}
1887
4c4b4cd2 1888/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1889 pointer to one, the type of its array data (a array-with-no-bounds type);
1890 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1891 data. */
4c4b4cd2 1892
d2e4a39e 1893static struct type *
556bdfd4 1894desc_data_target_type (struct type *type)
14f9c5c9
AS
1895{
1896 type = desc_base_type (type);
1897
4c4b4cd2 1898 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1899 if (is_thin_pntr (type))
940da03e 1900 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1901 else if (is_thick_pntr (type))
556bdfd4
UW
1902 {
1903 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1904
1905 if (data_type
78134374 1906 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
27710edb 1907 return ada_check_typedef (data_type->target_type ());
556bdfd4
UW
1908 }
1909
1910 return NULL;
14f9c5c9
AS
1911}
1912
1913/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1914 its array data. */
4c4b4cd2 1915
d2e4a39e
AS
1916static struct value *
1917desc_data (struct value *arr)
14f9c5c9 1918{
df407dfe 1919 struct type *type = value_type (arr);
5b4ee69b 1920
14f9c5c9
AS
1921 if (is_thin_pntr (type))
1922 return thin_data_pntr (arr);
1923 else if (is_thick_pntr (type))
158cc4fe 1924 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
dda83cd7 1925 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1926 else
1927 return NULL;
1928}
1929
1930
1931/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1932 position of the field containing the address of the data. */
1933
14f9c5c9 1934static int
d2e4a39e 1935fat_pntr_data_bitpos (struct type *type)
14f9c5c9 1936{
b610c045 1937 return desc_base_type (type)->field (0).loc_bitpos ();
14f9c5c9
AS
1938}
1939
1940/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1941 size of the field containing the address of the data. */
1942
14f9c5c9 1943static int
d2e4a39e 1944fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1945{
1946 type = desc_base_type (type);
1947
1948 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1949 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1950 else
df86565b 1951 return TARGET_CHAR_BIT * type->field (0).type ()->length ();
14f9c5c9
AS
1952}
1953
4c4b4cd2 1954/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1955 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1956 bound, if WHICH is 1. The first bound is I=1. */
1957
d2e4a39e
AS
1958static struct value *
1959desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1960{
250106a7
TT
1961 char bound_name[20];
1962 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1963 which ? 'U' : 'L', i - 1);
158cc4fe 1964 return value_struct_elt (&bounds, {}, bound_name, NULL,
dda83cd7 1965 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1966}
1967
1968/* If BOUNDS is an array-bounds structure type, return the bit position
1969 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1970 bound, if WHICH is 1. The first bound is I=1. */
1971
14f9c5c9 1972static int
d2e4a39e 1973desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1974{
b610c045 1975 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
14f9c5c9
AS
1976}
1977
1978/* If BOUNDS is an array-bounds structure type, return the bit field size
1979 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1980 bound, if WHICH is 1. The first bound is I=1. */
1981
76a01679 1982static int
d2e4a39e 1983desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1984{
1985 type = desc_base_type (type);
1986
d2e4a39e
AS
1987 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1988 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1989 else
df86565b 1990 return 8 * type->field (2 * i + which - 2).type ()->length ();
14f9c5c9
AS
1991}
1992
1993/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1994 Ith bound (numbering from 1). Otherwise, NULL. */
1995
d2e4a39e
AS
1996static struct type *
1997desc_index_type (struct type *type, int i)
14f9c5c9
AS
1998{
1999 type = desc_base_type (type);
2000
78134374 2001 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
2002 {
2003 char bound_name[20];
2004 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
2005 return lookup_struct_elt_type (type, bound_name, 1);
2006 }
d2e4a39e 2007 else
14f9c5c9
AS
2008 return NULL;
2009}
2010
4c4b4cd2
PH
2011/* The number of index positions in the array-bounds type TYPE.
2012 Return 0 if TYPE is NULL. */
2013
14f9c5c9 2014static int
d2e4a39e 2015desc_arity (struct type *type)
14f9c5c9
AS
2016{
2017 type = desc_base_type (type);
2018
2019 if (type != NULL)
1f704f76 2020 return type->num_fields () / 2;
14f9c5c9
AS
2021 return 0;
2022}
2023
4c4b4cd2
PH
2024/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2025 an array descriptor type (representing an unconstrained array
2026 type). */
2027
76a01679
JB
2028static int
2029ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
2030{
2031 if (type == NULL)
2032 return 0;
61ee279c 2033 type = ada_check_typedef (type);
78134374 2034 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 2035 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
2036}
2037
52ce6436 2038/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 2039 * to one. */
52ce6436 2040
2c0b251b 2041static int
52ce6436
PH
2042ada_is_array_type (struct type *type)
2043{
78134374
SM
2044 while (type != NULL
2045 && (type->code () == TYPE_CODE_PTR
2046 || type->code () == TYPE_CODE_REF))
27710edb 2047 type = type->target_type ();
52ce6436
PH
2048 return ada_is_direct_array_type (type);
2049}
2050
4c4b4cd2 2051/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 2052
14f9c5c9 2053int
4c4b4cd2 2054ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
2055{
2056 if (type == NULL)
2057 return 0;
61ee279c 2058 type = ada_check_typedef (type);
78134374
SM
2059 return (type->code () == TYPE_CODE_ARRAY
2060 || (type->code () == TYPE_CODE_PTR
27710edb 2061 && (ada_check_typedef (type->target_type ())->code ()
78134374 2062 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
2063}
2064
4c4b4cd2
PH
2065/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2066
14f9c5c9 2067int
4c4b4cd2 2068ada_is_array_descriptor_type (struct type *type)
14f9c5c9 2069{
556bdfd4 2070 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
2071
2072 if (type == NULL)
2073 return 0;
61ee279c 2074 type = ada_check_typedef (type);
556bdfd4 2075 return (data_type != NULL
78134374 2076 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 2077 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
2078}
2079
2080/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 2081 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 2082 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
2083 is still needed. */
2084
14f9c5c9 2085int
ebf56fd3 2086ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 2087{
d2e4a39e 2088 return
14f9c5c9 2089 type != NULL
78134374 2090 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 2091 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 2092 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 2093 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
2094}
2095
2096
4c4b4cd2 2097/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 2098 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 2099 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 2100 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
2101 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2102 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 2103 a descriptor. */
de93309a
SM
2104
2105static struct type *
d2e4a39e 2106ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 2107{
ad82864c
JB
2108 if (ada_is_constrained_packed_array_type (value_type (arr)))
2109 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 2110
df407dfe
AC
2111 if (!ada_is_array_descriptor_type (value_type (arr)))
2112 return value_type (arr);
d2e4a39e
AS
2113
2114 if (!bounds)
ad82864c
JB
2115 {
2116 struct type *array_type =
2117 ada_check_typedef (desc_data_target_type (value_type (arr)));
2118
2119 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2120 TYPE_FIELD_BITSIZE (array_type, 0) =
2121 decode_packed_array_bitsize (value_type (arr));
2122
2123 return array_type;
2124 }
14f9c5c9
AS
2125 else
2126 {
d2e4a39e 2127 struct type *elt_type;
14f9c5c9 2128 int arity;
d2e4a39e 2129 struct value *descriptor;
14f9c5c9 2130
df407dfe
AC
2131 elt_type = ada_array_element_type (value_type (arr), -1);
2132 arity = ada_array_arity (value_type (arr));
14f9c5c9 2133
d2e4a39e 2134 if (elt_type == NULL || arity == 0)
dda83cd7 2135 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2136
2137 descriptor = desc_bounds (arr);
d2e4a39e 2138 if (value_as_long (descriptor) == 0)
dda83cd7 2139 return NULL;
d2e4a39e 2140 while (arity > 0)
dda83cd7
SM
2141 {
2142 struct type *range_type = alloc_type_copy (value_type (arr));
2143 struct type *array_type = alloc_type_copy (value_type (arr));
2144 struct value *low = desc_one_bound (descriptor, arity, 0);
2145 struct value *high = desc_one_bound (descriptor, arity, 1);
2146
2147 arity -= 1;
2148 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
2149 longest_to_int (value_as_long (low)),
2150 longest_to_int (value_as_long (high)));
dda83cd7 2151 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2152
2153 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2154 {
2155 /* We need to store the element packed bitsize, as well as
dda83cd7 2156 recompute the array size, because it was previously
e67ad678
JB
2157 computed based on the unpacked element size. */
2158 LONGEST lo = value_as_long (low);
2159 LONGEST hi = value_as_long (high);
2160
2161 TYPE_FIELD_BITSIZE (elt_type, 0) =
2162 decode_packed_array_bitsize (value_type (arr));
2163 /* If the array has no element, then the size is already
dda83cd7 2164 zero, and does not need to be recomputed. */
e67ad678
JB
2165 if (lo < hi)
2166 {
2167 int array_bitsize =
dda83cd7 2168 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678 2169
b6cdbc9a 2170 array_type->set_length ((array_bitsize + 7) / 8);
e67ad678
JB
2171 }
2172 }
dda83cd7 2173 }
14f9c5c9
AS
2174
2175 return lookup_pointer_type (elt_type);
2176 }
2177}
2178
2179/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2180 Otherwise, returns either a standard GDB array with bounds set
2181 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2182 GDB array. Returns NULL if ARR is a null fat pointer. */
2183
d2e4a39e
AS
2184struct value *
2185ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2186{
df407dfe 2187 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2188 {
d2e4a39e 2189 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2190
14f9c5c9 2191 if (arrType == NULL)
dda83cd7 2192 return NULL;
14f9c5c9
AS
2193 return value_cast (arrType, value_copy (desc_data (arr)));
2194 }
ad82864c
JB
2195 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2196 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2197 else
2198 return arr;
2199}
2200
2201/* If ARR does not represent an array, returns ARR unchanged.
2202 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2203 be ARR itself if it already is in the proper form). */
2204
720d1a40 2205struct value *
d2e4a39e 2206ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2207{
df407dfe 2208 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2209 {
d2e4a39e 2210 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2211
14f9c5c9 2212 if (arrVal == NULL)
dda83cd7 2213 error (_("Bounds unavailable for null array pointer."));
14f9c5c9
AS
2214 return value_ind (arrVal);
2215 }
ad82864c
JB
2216 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2217 return decode_constrained_packed_array (arr);
d2e4a39e 2218 else
14f9c5c9
AS
2219 return arr;
2220}
2221
2222/* If TYPE represents a GNAT array type, return it translated to an
2223 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2224 packing). For other types, is the identity. */
2225
d2e4a39e
AS
2226struct type *
2227ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2228{
ad82864c
JB
2229 if (ada_is_constrained_packed_array_type (type))
2230 return decode_constrained_packed_array_type (type);
17280b9f
UW
2231
2232 if (ada_is_array_descriptor_type (type))
556bdfd4 2233 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2234
2235 return type;
14f9c5c9
AS
2236}
2237
4c4b4cd2
PH
2238/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2239
ad82864c 2240static int
57567375 2241ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
2242{
2243 if (type == NULL)
2244 return 0;
4c4b4cd2 2245 type = desc_base_type (type);
61ee279c 2246 type = ada_check_typedef (type);
d2e4a39e 2247 return
14f9c5c9
AS
2248 ada_type_name (type) != NULL
2249 && strstr (ada_type_name (type), "___XP") != NULL;
2250}
2251
ad82864c
JB
2252/* Non-zero iff TYPE represents a standard GNAT constrained
2253 packed-array type. */
2254
2255int
2256ada_is_constrained_packed_array_type (struct type *type)
2257{
57567375 2258 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
2259 && !ada_is_array_descriptor_type (type);
2260}
2261
2262/* Non-zero iff TYPE represents an array descriptor for a
2263 unconstrained packed-array type. */
2264
2265static int
2266ada_is_unconstrained_packed_array_type (struct type *type)
2267{
57567375
TT
2268 if (!ada_is_array_descriptor_type (type))
2269 return 0;
2270
2271 if (ada_is_gnat_encoded_packed_array_type (type))
2272 return 1;
2273
2274 /* If we saw GNAT encodings, then the above code is sufficient.
2275 However, with minimal encodings, we will just have a thick
2276 pointer instead. */
2277 if (is_thick_pntr (type))
2278 {
2279 type = desc_base_type (type);
2280 /* The structure's first field is a pointer to an array, so this
2281 fetches the array type. */
27710edb 2282 type = type->field (0).type ()->target_type ();
af5300fe
TV
2283 if (type->code () == TYPE_CODE_TYPEDEF)
2284 type = ada_typedef_target_type (type);
57567375
TT
2285 /* Now we can see if the array elements are packed. */
2286 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2287 }
2288
2289 return 0;
ad82864c
JB
2290}
2291
c9a28cbe
TT
2292/* Return true if TYPE is a (Gnat-encoded) constrained packed array
2293 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2294
2295static bool
2296ada_is_any_packed_array_type (struct type *type)
2297{
2298 return (ada_is_constrained_packed_array_type (type)
2299 || (type->code () == TYPE_CODE_ARRAY
2300 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2301}
2302
ad82864c
JB
2303/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2304 return the size of its elements in bits. */
2305
2306static long
2307decode_packed_array_bitsize (struct type *type)
2308{
0d5cff50
DE
2309 const char *raw_name;
2310 const char *tail;
ad82864c
JB
2311 long bits;
2312
720d1a40
JB
2313 /* Access to arrays implemented as fat pointers are encoded as a typedef
2314 of the fat pointer type. We need the name of the fat pointer type
2315 to do the decoding, so strip the typedef layer. */
78134374 2316 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2317 type = ada_typedef_target_type (type);
2318
2319 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2320 if (!raw_name)
2321 raw_name = ada_type_name (desc_base_type (type));
2322
2323 if (!raw_name)
2324 return 0;
2325
2326 tail = strstr (raw_name, "___XP");
57567375
TT
2327 if (tail == nullptr)
2328 {
2329 gdb_assert (is_thick_pntr (type));
2330 /* The structure's first field is a pointer to an array, so this
2331 fetches the array type. */
27710edb 2332 type = type->field (0).type ()->target_type ();
57567375
TT
2333 /* Now we can see if the array elements are packed. */
2334 return TYPE_FIELD_BITSIZE (type, 0);
2335 }
ad82864c
JB
2336
2337 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2338 {
2339 lim_warning
2340 (_("could not understand bit size information on packed array"));
2341 return 0;
2342 }
2343
2344 return bits;
2345}
2346
14f9c5c9
AS
2347/* Given that TYPE is a standard GDB array type with all bounds filled
2348 in, and that the element size of its ultimate scalar constituents
2349 (that is, either its elements, or, if it is an array of arrays, its
2350 elements' elements, etc.) is *ELT_BITS, return an identical type,
2351 but with the bit sizes of its elements (and those of any
2352 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2353 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2354 in bits.
2355
2356 Note that, for arrays whose index type has an XA encoding where
2357 a bound references a record discriminant, getting that discriminant,
2358 and therefore the actual value of that bound, is not possible
2359 because none of the given parameters gives us access to the record.
2360 This function assumes that it is OK in the context where it is being
2361 used to return an array whose bounds are still dynamic and where
2362 the length is arbitrary. */
4c4b4cd2 2363
d2e4a39e 2364static struct type *
ad82864c 2365constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2366{
d2e4a39e
AS
2367 struct type *new_elt_type;
2368 struct type *new_type;
99b1c762
JB
2369 struct type *index_type_desc;
2370 struct type *index_type;
14f9c5c9
AS
2371 LONGEST low_bound, high_bound;
2372
61ee279c 2373 type = ada_check_typedef (type);
78134374 2374 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2375 return type;
2376
99b1c762
JB
2377 index_type_desc = ada_find_parallel_type (type, "___XA");
2378 if (index_type_desc)
940da03e 2379 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2380 NULL);
2381 else
3d967001 2382 index_type = type->index_type ();
99b1c762 2383
e9bb382b 2384 new_type = alloc_type_copy (type);
ad82864c 2385 new_elt_type =
27710edb 2386 constrained_packed_array_type (ada_check_typedef (type->target_type ()),
ad82864c 2387 elt_bits);
99b1c762 2388 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2389 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2390 new_type->set_name (ada_type_name (type));
14f9c5c9 2391
78134374 2392 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2393 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2394 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2395 low_bound = high_bound = 0;
2396 if (high_bound < low_bound)
b6cdbc9a
SM
2397 {
2398 *elt_bits = 0;
2399 new_type->set_length (0);
2400 }
d2e4a39e 2401 else
14f9c5c9
AS
2402 {
2403 *elt_bits *= (high_bound - low_bound + 1);
b6cdbc9a 2404 new_type->set_length ((*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
14f9c5c9
AS
2405 }
2406
9cdd0d12 2407 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2408 return new_type;
2409}
2410
ad82864c
JB
2411/* The array type encoded by TYPE, where
2412 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2413
d2e4a39e 2414static struct type *
ad82864c 2415decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2416{
0d5cff50 2417 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2418 char *name;
0d5cff50 2419 const char *tail;
d2e4a39e 2420 struct type *shadow_type;
14f9c5c9 2421 long bits;
14f9c5c9 2422
727e3d2e
JB
2423 if (!raw_name)
2424 raw_name = ada_type_name (desc_base_type (type));
2425
2426 if (!raw_name)
2427 return NULL;
2428
2429 name = (char *) alloca (strlen (raw_name) + 1);
2430 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2431 type = desc_base_type (type);
2432
14f9c5c9
AS
2433 memcpy (name, raw_name, tail - raw_name);
2434 name[tail - raw_name] = '\000';
2435
b4ba55a1
JB
2436 shadow_type = ada_find_parallel_type_with_name (type, name);
2437
2438 if (shadow_type == NULL)
14f9c5c9 2439 {
323e0a4a 2440 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2441 return NULL;
2442 }
f168693b 2443 shadow_type = check_typedef (shadow_type);
14f9c5c9 2444
78134374 2445 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2446 {
0963b4bd
MS
2447 lim_warning (_("could not understand bounds "
2448 "information on packed array"));
14f9c5c9
AS
2449 return NULL;
2450 }
d2e4a39e 2451
ad82864c
JB
2452 bits = decode_packed_array_bitsize (type);
2453 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2454}
2455
a7400e44
TT
2456/* Helper function for decode_constrained_packed_array. Set the field
2457 bitsize on a series of packed arrays. Returns the number of
2458 elements in TYPE. */
2459
2460static LONGEST
2461recursively_update_array_bitsize (struct type *type)
2462{
2463 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2464
2465 LONGEST low, high;
1f8d2881 2466 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2467 || low > high)
2468 return 0;
2469 LONGEST our_len = high - low + 1;
2470
27710edb 2471 struct type *elt_type = type->target_type ();
a7400e44
TT
2472 if (elt_type->code () == TYPE_CODE_ARRAY)
2473 {
2474 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2475 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2476 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2477
b6cdbc9a
SM
2478 type->set_length (((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2479 / HOST_CHAR_BIT));
a7400e44
TT
2480 }
2481
2482 return our_len;
2483}
2484
ad82864c
JB
2485/* Given that ARR is a struct value *indicating a GNAT constrained packed
2486 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2487 standard GDB array type except that the BITSIZEs of the array
2488 target types are set to the number of bits in each element, and the
4c4b4cd2 2489 type length is set appropriately. */
14f9c5c9 2490
d2e4a39e 2491static struct value *
ad82864c 2492decode_constrained_packed_array (struct value *arr)
14f9c5c9 2493{
4c4b4cd2 2494 struct type *type;
14f9c5c9 2495
11aa919a
PMR
2496 /* If our value is a pointer, then dereference it. Likewise if
2497 the value is a reference. Make sure that this operation does not
2498 cause the target type to be fixed, as this would indirectly cause
2499 this array to be decoded. The rest of the routine assumes that
2500 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2501 and "value_ind" routines to perform the dereferencing, as opposed
2502 to using "ada_coerce_ref" or "ada_value_ind". */
2503 arr = coerce_ref (arr);
78134374 2504 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2505 arr = value_ind (arr);
4c4b4cd2 2506
ad82864c 2507 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2508 if (type == NULL)
2509 {
323e0a4a 2510 error (_("can't unpack array"));
14f9c5c9
AS
2511 return NULL;
2512 }
61ee279c 2513
a7400e44
TT
2514 /* Decoding the packed array type could not correctly set the field
2515 bitsizes for any dimension except the innermost, because the
2516 bounds may be variable and were not passed to that function. So,
2517 we further resolve the array bounds here and then update the
2518 sizes. */
50888e42 2519 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
a7400e44
TT
2520 CORE_ADDR address = value_address (arr);
2521 gdb::array_view<const gdb_byte> view
df86565b 2522 = gdb::make_array_view (valaddr, type->length ());
a7400e44
TT
2523 type = resolve_dynamic_type (type, view, address);
2524 recursively_update_array_bitsize (type);
2525
d5a22e77 2526 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2527 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2528 {
2529 /* This is a (right-justified) modular type representing a packed
24b21115
SM
2530 array with no wrapper. In order to interpret the value through
2531 the (left-justified) packed array type we just built, we must
2532 first left-justify it. */
61ee279c
PH
2533 int bit_size, bit_pos;
2534 ULONGEST mod;
2535
df407dfe 2536 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2537 bit_size = 0;
2538 while (mod > 0)
2539 {
2540 bit_size += 1;
2541 mod >>= 1;
2542 }
df86565b 2543 bit_pos = HOST_CHAR_BIT * value_type (arr)->length () - bit_size;
61ee279c
PH
2544 arr = ada_value_primitive_packed_val (arr, NULL,
2545 bit_pos / HOST_CHAR_BIT,
2546 bit_pos % HOST_CHAR_BIT,
2547 bit_size,
2548 type);
2549 }
2550
4c4b4cd2 2551 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2552}
2553
2554
2555/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2556 given in IND. ARR must be a simple array. */
14f9c5c9 2557
d2e4a39e
AS
2558static struct value *
2559value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2560{
2561 int i;
2562 int bits, elt_off, bit_off;
2563 long elt_total_bit_offset;
d2e4a39e
AS
2564 struct type *elt_type;
2565 struct value *v;
14f9c5c9
AS
2566
2567 bits = 0;
2568 elt_total_bit_offset = 0;
df407dfe 2569 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2570 for (i = 0; i < arity; i += 1)
14f9c5c9 2571 {
78134374 2572 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2573 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2574 error
2575 (_("attempt to do packed indexing of "
0963b4bd 2576 "something other than a packed array"));
14f9c5c9 2577 else
dda83cd7
SM
2578 {
2579 struct type *range_type = elt_type->index_type ();
2580 LONGEST lowerbound, upperbound;
2581 LONGEST idx;
2582
1f8d2881 2583 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2584 {
2585 lim_warning (_("don't know bounds of array"));
2586 lowerbound = upperbound = 0;
2587 }
2588
2589 idx = pos_atr (ind[i]);
2590 if (idx < lowerbound || idx > upperbound)
2591 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2592 (long) idx);
dda83cd7
SM
2593 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2594 elt_total_bit_offset += (idx - lowerbound) * bits;
27710edb 2595 elt_type = ada_check_typedef (elt_type->target_type ());
dda83cd7 2596 }
14f9c5c9
AS
2597 }
2598 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2599 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2600
2601 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2602 bits, elt_type);
14f9c5c9
AS
2603 return v;
2604}
2605
4c4b4cd2 2606/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2607
2608static int
d2e4a39e 2609has_negatives (struct type *type)
14f9c5c9 2610{
78134374 2611 switch (type->code ())
d2e4a39e
AS
2612 {
2613 default:
2614 return 0;
2615 case TYPE_CODE_INT:
c6d940a9 2616 return !type->is_unsigned ();
d2e4a39e 2617 case TYPE_CODE_RANGE:
5537ddd0 2618 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2619 }
14f9c5c9 2620}
d2e4a39e 2621
f93fca70 2622/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2623 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2624 the unpacked buffer.
14f9c5c9 2625
5b639dea
JB
2626 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2627 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2628
f93fca70
JB
2629 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2630 zero otherwise.
14f9c5c9 2631
f93fca70 2632 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2633
f93fca70
JB
2634 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2635
2636static void
2637ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2638 gdb_byte *unpacked, int unpacked_len,
2639 int is_big_endian, int is_signed_type,
2640 int is_scalar)
2641{
a1c95e6b
JB
2642 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2643 int src_idx; /* Index into the source area */
2644 int src_bytes_left; /* Number of source bytes left to process. */
2645 int srcBitsLeft; /* Number of source bits left to move */
2646 int unusedLS; /* Number of bits in next significant
dda83cd7 2647 byte of source that are unused */
a1c95e6b 2648
a1c95e6b
JB
2649 int unpacked_idx; /* Index into the unpacked buffer */
2650 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2651
4c4b4cd2 2652 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2653 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2654 unsigned char sign;
a1c95e6b 2655
4c4b4cd2
PH
2656 /* Transmit bytes from least to most significant; delta is the direction
2657 the indices move. */
f93fca70 2658 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2659
5b639dea
JB
2660 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2661 bits from SRC. .*/
2662 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2663 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2664 bit_size, unpacked_len);
2665
14f9c5c9 2666 srcBitsLeft = bit_size;
086ca51f 2667 src_bytes_left = src_len;
f93fca70 2668 unpacked_bytes_left = unpacked_len;
14f9c5c9 2669 sign = 0;
f93fca70
JB
2670
2671 if (is_big_endian)
14f9c5c9 2672 {
086ca51f 2673 src_idx = src_len - 1;
f93fca70
JB
2674 if (is_signed_type
2675 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2676 sign = ~0;
d2e4a39e
AS
2677
2678 unusedLS =
dda83cd7
SM
2679 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2680 % HOST_CHAR_BIT;
14f9c5c9 2681
f93fca70
JB
2682 if (is_scalar)
2683 {
dda83cd7
SM
2684 accumSize = 0;
2685 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2686 }
2687 else
2688 {
dda83cd7
SM
2689 /* Non-scalar values must be aligned at a byte boundary... */
2690 accumSize =
2691 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2692 /* ... And are placed at the beginning (most-significant) bytes
2693 of the target. */
2694 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2695 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2696 }
14f9c5c9 2697 }
d2e4a39e 2698 else
14f9c5c9
AS
2699 {
2700 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2701
086ca51f 2702 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2703 unusedLS = bit_offset;
2704 accumSize = 0;
2705
f93fca70 2706 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2707 sign = ~0;
14f9c5c9 2708 }
d2e4a39e 2709
14f9c5c9 2710 accum = 0;
086ca51f 2711 while (src_bytes_left > 0)
14f9c5c9
AS
2712 {
2713 /* Mask for removing bits of the next source byte that are not
dda83cd7 2714 part of the value. */
d2e4a39e 2715 unsigned int unusedMSMask =
dda83cd7
SM
2716 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2717 1;
4c4b4cd2 2718 /* Sign-extend bits for this byte. */
14f9c5c9 2719 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2720
d2e4a39e 2721 accum |=
dda83cd7 2722 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2723 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2724 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2725 {
2726 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2727 accumSize -= HOST_CHAR_BIT;
2728 accum >>= HOST_CHAR_BIT;
2729 unpacked_bytes_left -= 1;
2730 unpacked_idx += delta;
2731 }
14f9c5c9
AS
2732 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2733 unusedLS = 0;
086ca51f
JB
2734 src_bytes_left -= 1;
2735 src_idx += delta;
14f9c5c9 2736 }
086ca51f 2737 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2738 {
2739 accum |= sign << accumSize;
db297a65 2740 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2741 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2742 if (accumSize < 0)
2743 accumSize = 0;
14f9c5c9 2744 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2745 unpacked_bytes_left -= 1;
2746 unpacked_idx += delta;
14f9c5c9 2747 }
f93fca70
JB
2748}
2749
2750/* Create a new value of type TYPE from the contents of OBJ starting
2751 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2752 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2753 assigning through the result will set the field fetched from.
2754 VALADDR is ignored unless OBJ is NULL, in which case,
2755 VALADDR+OFFSET must address the start of storage containing the
2756 packed value. The value returned in this case is never an lval.
2757 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2758
2759struct value *
2760ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2761 long offset, int bit_offset, int bit_size,
dda83cd7 2762 struct type *type)
f93fca70
JB
2763{
2764 struct value *v;
bfb1c796 2765 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2766 gdb_byte *unpacked;
220475ed 2767 const int is_scalar = is_scalar_type (type);
d5a22e77 2768 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2769 gdb::byte_vector staging;
f93fca70
JB
2770
2771 type = ada_check_typedef (type);
2772
d0a9e810 2773 if (obj == NULL)
bfb1c796 2774 src = valaddr + offset;
d0a9e810 2775 else
50888e42 2776 src = value_contents (obj).data () + offset;
d0a9e810
JB
2777
2778 if (is_dynamic_type (type))
2779 {
2780 /* The length of TYPE might by dynamic, so we need to resolve
2781 TYPE in order to know its actual size, which we then use
2782 to create the contents buffer of the value we return.
2783 The difficulty is that the data containing our object is
2784 packed, and therefore maybe not at a byte boundary. So, what
2785 we do, is unpack the data into a byte-aligned buffer, and then
2786 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2787 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2788 staging.resize (staging_len);
d0a9e810
JB
2789
2790 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2791 staging.data (), staging.size (),
d0a9e810
JB
2792 is_big_endian, has_negatives (type),
2793 is_scalar);
b249d2c2 2794 type = resolve_dynamic_type (type, staging, 0);
df86565b 2795 if (type->length () < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
0cafa88c
JB
2796 {
2797 /* This happens when the length of the object is dynamic,
2798 and is actually smaller than the space reserved for it.
2799 For instance, in an array of variant records, the bit_size
2800 we're given is the array stride, which is constant and
2801 normally equal to the maximum size of its element.
2802 But, in reality, each element only actually spans a portion
2803 of that stride. */
df86565b 2804 bit_size = type->length () * HOST_CHAR_BIT;
0cafa88c 2805 }
d0a9e810
JB
2806 }
2807
f93fca70
JB
2808 if (obj == NULL)
2809 {
2810 v = allocate_value (type);
bfb1c796 2811 src = valaddr + offset;
f93fca70
JB
2812 }
2813 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2814 {
0cafa88c 2815 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2816 gdb_byte *buf;
0cafa88c 2817
f93fca70 2818 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2819 buf = (gdb_byte *) alloca (src_len);
2820 read_memory (value_address (v), buf, src_len);
2821 src = buf;
f93fca70
JB
2822 }
2823 else
2824 {
2825 v = allocate_value (type);
50888e42 2826 src = value_contents (obj).data () + offset;
f93fca70
JB
2827 }
2828
2829 if (obj != NULL)
2830 {
2831 long new_offset = offset;
2832
2833 set_value_component_location (v, obj);
2834 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2835 set_value_bitsize (v, bit_size);
2836 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2837 {
f93fca70 2838 ++new_offset;
dda83cd7
SM
2839 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2840 }
f93fca70
JB
2841 set_value_offset (v, new_offset);
2842
2843 /* Also set the parent value. This is needed when trying to
2844 assign a new value (in inferior memory). */
2845 set_value_parent (v, obj);
2846 }
2847 else
2848 set_value_bitsize (v, bit_size);
50888e42 2849 unpacked = value_contents_writeable (v).data ();
f93fca70
JB
2850
2851 if (bit_size == 0)
2852 {
df86565b 2853 memset (unpacked, 0, type->length ());
f93fca70
JB
2854 return v;
2855 }
2856
df86565b 2857 if (staging.size () == type->length ())
f93fca70 2858 {
d0a9e810
JB
2859 /* Small short-cut: If we've unpacked the data into a buffer
2860 of the same size as TYPE's length, then we can reuse that,
2861 instead of doing the unpacking again. */
d5722aa2 2862 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2863 }
d0a9e810
JB
2864 else
2865 ada_unpack_from_contents (src, bit_offset, bit_size,
df86565b 2866 unpacked, type->length (),
d0a9e810 2867 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2868
14f9c5c9
AS
2869 return v;
2870}
d2e4a39e 2871
14f9c5c9
AS
2872/* Store the contents of FROMVAL into the location of TOVAL.
2873 Return a new value with the location of TOVAL and contents of
2874 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2875 floating-point or non-scalar types. */
14f9c5c9 2876
d2e4a39e
AS
2877static struct value *
2878ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2879{
df407dfe
AC
2880 struct type *type = value_type (toval);
2881 int bits = value_bitsize (toval);
14f9c5c9 2882
52ce6436
PH
2883 toval = ada_coerce_ref (toval);
2884 fromval = ada_coerce_ref (fromval);
2885
2886 if (ada_is_direct_array_type (value_type (toval)))
2887 toval = ada_coerce_to_simple_array (toval);
2888 if (ada_is_direct_array_type (value_type (fromval)))
2889 fromval = ada_coerce_to_simple_array (fromval);
2890
88e3b34b 2891 if (!deprecated_value_modifiable (toval))
323e0a4a 2892 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2893
d2e4a39e 2894 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2895 && bits > 0
78134374 2896 && (type->code () == TYPE_CODE_FLT
dda83cd7 2897 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2898 {
df407dfe
AC
2899 int len = (value_bitpos (toval)
2900 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2901 int from_size;
224c3ddb 2902 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2903 struct value *val;
42ae5230 2904 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2905
78134374 2906 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2907 fromval = value_cast (type, fromval);
14f9c5c9 2908
52ce6436 2909 read_memory (to_addr, buffer, len);
aced2898
PH
2910 from_size = value_bitsize (fromval);
2911 if (from_size == 0)
df86565b 2912 from_size = value_type (fromval)->length () * TARGET_CHAR_BIT;
d48e62f4 2913
d5a22e77 2914 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2915 ULONGEST from_offset = 0;
2916 if (is_big_endian && is_scalar_type (value_type (fromval)))
2917 from_offset = from_size - bits;
2918 copy_bitwise (buffer, value_bitpos (toval),
50888e42 2919 value_contents (fromval).data (), from_offset,
d48e62f4 2920 bits, is_big_endian);
972daa01 2921 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2922
14f9c5c9 2923 val = value_copy (toval);
fb2a515f
SM
2924 memcpy (value_contents_raw (val).data (),
2925 value_contents (fromval).data (),
df86565b 2926 type->length ());
04624583 2927 deprecated_set_value_type (val, type);
d2e4a39e 2928
14f9c5c9
AS
2929 return val;
2930 }
2931
2932 return value_assign (toval, fromval);
2933}
2934
2935
7c512744
JB
2936/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2937 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2938 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2939 COMPONENT, and not the inferior's memory. The current contents
2940 of COMPONENT are ignored.
2941
2942 Although not part of the initial design, this function also works
2943 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2944 had a null address, and COMPONENT had an address which is equal to
2945 its offset inside CONTAINER. */
2946
52ce6436
PH
2947static void
2948value_assign_to_component (struct value *container, struct value *component,
2949 struct value *val)
2950{
2951 LONGEST offset_in_container =
42ae5230 2952 (LONGEST) (value_address (component) - value_address (container));
7c512744 2953 int bit_offset_in_container =
52ce6436
PH
2954 value_bitpos (component) - value_bitpos (container);
2955 int bits;
7c512744 2956
52ce6436
PH
2957 val = value_cast (value_type (component), val);
2958
2959 if (value_bitsize (component) == 0)
df86565b 2960 bits = TARGET_CHAR_BIT * value_type (component)->length ();
52ce6436
PH
2961 else
2962 bits = value_bitsize (component);
2963
d5a22e77 2964 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2965 {
2966 int src_offset;
2967
2968 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2969 src_offset
df86565b 2970 = value_type (component)->length () * TARGET_CHAR_BIT - bits;
2a62dfa9
JB
2971 else
2972 src_offset = 0;
50888e42
SM
2973 copy_bitwise ((value_contents_writeable (container).data ()
2974 + offset_in_container),
a99bc3d2 2975 value_bitpos (container) + bit_offset_in_container,
50888e42 2976 value_contents (val).data (), src_offset, bits, 1);
2a62dfa9 2977 }
52ce6436 2978 else
50888e42
SM
2979 copy_bitwise ((value_contents_writeable (container).data ()
2980 + offset_in_container),
a99bc3d2 2981 value_bitpos (container) + bit_offset_in_container,
50888e42 2982 value_contents (val).data (), 0, bits, 0);
7c512744
JB
2983}
2984
736ade86
XR
2985/* Determine if TYPE is an access to an unconstrained array. */
2986
d91e9ea8 2987bool
736ade86
XR
2988ada_is_access_to_unconstrained_array (struct type *type)
2989{
78134374 2990 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2991 && is_thick_pntr (ada_typedef_target_type (type)));
2992}
2993
4c4b4cd2
PH
2994/* The value of the element of array ARR at the ARITY indices given in IND.
2995 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2996 thereto. */
2997
d2e4a39e
AS
2998struct value *
2999ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
3000{
3001 int k;
d2e4a39e
AS
3002 struct value *elt;
3003 struct type *elt_type;
14f9c5c9
AS
3004
3005 elt = ada_coerce_to_simple_array (arr);
3006
df407dfe 3007 elt_type = ada_check_typedef (value_type (elt));
78134374 3008 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
3009 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
3010 return value_subscript_packed (elt, arity, ind);
3011
3012 for (k = 0; k < arity; k += 1)
3013 {
27710edb 3014 struct type *saved_elt_type = elt_type->target_type ();
b9c50e9a 3015
78134374 3016 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 3017 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 3018
2497b498 3019 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
3020
3021 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 3022 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
3023 {
3024 /* The element is a typedef to an unconstrained array,
3025 except that the value_subscript call stripped the
3026 typedef layer. The typedef layer is GNAT's way to
3027 specify that the element is, at the source level, an
3028 access to the unconstrained array, rather than the
3029 unconstrained array. So, we need to restore that
3030 typedef layer, which we can do by forcing the element's
3031 type back to its original type. Otherwise, the returned
3032 value is going to be printed as the array, rather
3033 than as an access. Another symptom of the same issue
3034 would be that an expression trying to dereference the
3035 element would also be improperly rejected. */
3036 deprecated_set_value_type (elt, saved_elt_type);
3037 }
3038
3039 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 3040 }
b9c50e9a 3041
14f9c5c9
AS
3042 return elt;
3043}
3044
deede10c
JB
3045/* Assuming ARR is a pointer to a GDB array, the value of the element
3046 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
3047 Does not read the entire array into memory.
3048
3049 Note: Unlike what one would expect, this function is used instead of
3050 ada_value_subscript for basically all non-packed array types. The reason
3051 for this is that a side effect of doing our own pointer arithmetics instead
3052 of relying on value_subscript is that there is no implicit typedef peeling.
3053 This is important for arrays of array accesses, where it allows us to
3054 preserve the fact that the array's element is an array access, where the
3055 access part os encoded in a typedef layer. */
14f9c5c9 3056
2c0b251b 3057static struct value *
deede10c 3058ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
3059{
3060 int k;
919e6dbe 3061 struct value *array_ind = ada_value_ind (arr);
deede10c 3062 struct type *type
919e6dbe
PMR
3063 = check_typedef (value_enclosing_type (array_ind));
3064
78134374 3065 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
3066 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3067 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
3068
3069 for (k = 0; k < arity; k += 1)
3070 {
3071 LONGEST lwb, upb;
14f9c5c9 3072
78134374 3073 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 3074 error (_("too many subscripts (%d expected)"), k);
27710edb 3075 arr = value_cast (lookup_pointer_type (type->target_type ()),
dda83cd7 3076 value_copy (arr));
3d967001 3077 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 3078 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
27710edb 3079 type = type->target_type ();
14f9c5c9
AS
3080 }
3081
3082 return value_ind (arr);
3083}
3084
0b5d8877 3085/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
3086 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3087 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3088 this array is LOW, as per Ada rules. */
0b5d8877 3089static struct value *
f5938064 3090ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 3091 int low, int high)
0b5d8877 3092{
b0dd7688 3093 struct type *type0 = ada_check_typedef (type);
27710edb 3094 struct type *base_index_type = type0->index_type ()->target_type ();
0c9c3474 3095 struct type *index_type
aa715135 3096 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab 3097 struct type *slice_type = create_array_type_with_stride
27710edb 3098 (NULL, type0->target_type (), index_type,
24e99c6c 3099 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 3100 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 3101 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 3102 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
3103 CORE_ADDR base;
3104
6244c119
SM
3105 low_pos = discrete_position (base_index_type, low);
3106 base_low_pos = discrete_position (base_index_type, base_low);
3107
3108 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
3109 {
3110 warning (_("unable to get positions in slice, use bounds instead"));
3111 low_pos = low;
3112 base_low_pos = base_low;
3113 }
5b4ee69b 3114
7ff5b937
TT
3115 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3116 if (stride == 0)
df86565b 3117 stride = type0->target_type ()->length ();
7ff5b937 3118
6244c119 3119 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 3120 return value_at_lazy (slice_type, base);
0b5d8877
PH
3121}
3122
3123
3124static struct value *
3125ada_value_slice (struct value *array, int low, int high)
3126{
b0dd7688 3127 struct type *type = ada_check_typedef (value_type (array));
27710edb 3128 struct type *base_index_type = type->index_type ()->target_type ();
0c9c3474 3129 struct type *index_type
3d967001 3130 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab 3131 struct type *slice_type = create_array_type_with_stride
27710edb 3132 (NULL, type->target_type (), index_type,
24e99c6c 3133 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 3134 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
3135 gdb::optional<LONGEST> low_pos, high_pos;
3136
5b4ee69b 3137
6244c119
SM
3138 low_pos = discrete_position (base_index_type, low);
3139 high_pos = discrete_position (base_index_type, high);
3140
3141 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
3142 {
3143 warning (_("unable to get positions in slice, use bounds instead"));
3144 low_pos = low;
3145 high_pos = high;
3146 }
3147
3148 return value_cast (slice_type,
6244c119 3149 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
3150}
3151
14f9c5c9
AS
3152/* If type is a record type in the form of a standard GNAT array
3153 descriptor, returns the number of dimensions for type. If arr is a
3154 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 3155 type designation. Otherwise, returns 0. */
14f9c5c9
AS
3156
3157int
d2e4a39e 3158ada_array_arity (struct type *type)
14f9c5c9
AS
3159{
3160 int arity;
3161
3162 if (type == NULL)
3163 return 0;
3164
3165 type = desc_base_type (type);
3166
3167 arity = 0;
78134374 3168 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 3169 return desc_arity (desc_bounds_type (type));
d2e4a39e 3170 else
78134374 3171 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 3172 {
dda83cd7 3173 arity += 1;
27710edb 3174 type = ada_check_typedef (type->target_type ());
14f9c5c9 3175 }
d2e4a39e 3176
14f9c5c9
AS
3177 return arity;
3178}
3179
3180/* If TYPE is a record type in the form of a standard GNAT array
3181 descriptor or a simple array type, returns the element type for
3182 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3183 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3184
d2e4a39e
AS
3185struct type *
3186ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3187{
3188 type = desc_base_type (type);
3189
78134374 3190 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
3191 {
3192 int k;
d2e4a39e 3193 struct type *p_array_type;
14f9c5c9 3194
556bdfd4 3195 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3196
3197 k = ada_array_arity (type);
3198 if (k == 0)
dda83cd7 3199 return NULL;
d2e4a39e 3200
4c4b4cd2 3201 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3202 if (nindices >= 0 && k > nindices)
dda83cd7 3203 k = nindices;
d2e4a39e 3204 while (k > 0 && p_array_type != NULL)
dda83cd7 3205 {
27710edb 3206 p_array_type = ada_check_typedef (p_array_type->target_type ());
dda83cd7
SM
3207 k -= 1;
3208 }
14f9c5c9
AS
3209 return p_array_type;
3210 }
78134374 3211 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 3212 {
78134374 3213 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7 3214 {
27710edb 3215 type = type->target_type ();
6a40c6e4
TT
3216 /* A multi-dimensional array is represented using a sequence
3217 of array types. If one of these types has a name, then
3218 it is not another dimension of the outer array, but
3219 rather the element type of the outermost array. */
3220 if (type->name () != nullptr)
3221 break;
dda83cd7
SM
3222 nindices -= 1;
3223 }
14f9c5c9
AS
3224 return type;
3225 }
3226
3227 return NULL;
3228}
3229
08a057e6 3230/* See ada-lang.h. */
14f9c5c9 3231
08a057e6 3232struct type *
1eea4ebd 3233ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3234{
4c4b4cd2
PH
3235 struct type *result_type;
3236
14f9c5c9
AS
3237 type = desc_base_type (type);
3238
1eea4ebd
UW
3239 if (n < 0 || n > ada_array_arity (type))
3240 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3241
4c4b4cd2 3242 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3243 {
3244 int i;
3245
3246 for (i = 1; i < n; i += 1)
2869ac4b
TT
3247 {
3248 type = ada_check_typedef (type);
27710edb 3249 type = type->target_type ();
2869ac4b 3250 }
27710edb 3251 result_type = ada_check_typedef (type)->index_type ()->target_type ();
4c4b4cd2 3252 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
3253 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3254 perhaps stabsread.c would make more sense. */
78134374 3255 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 3256 result_type = NULL;
14f9c5c9 3257 }
d2e4a39e 3258 else
1eea4ebd
UW
3259 {
3260 result_type = desc_index_type (desc_bounds_type (type), n);
3261 if (result_type == NULL)
3262 error (_("attempt to take bound of something that is not an array"));
3263 }
3264
3265 return result_type;
14f9c5c9
AS
3266}
3267
3268/* Given that arr is an array type, returns the lower bound of the
3269 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3270 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3271 array-descriptor type. It works for other arrays with bounds supplied
3272 by run-time quantities other than discriminants. */
14f9c5c9 3273
abb68b3e 3274static LONGEST
fb5e3d5c 3275ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3276{
8a48ac95 3277 struct type *type, *index_type_desc, *index_type;
1ce677a4 3278 int i;
262452ec
JK
3279
3280 gdb_assert (which == 0 || which == 1);
14f9c5c9 3281
ad82864c
JB
3282 if (ada_is_constrained_packed_array_type (arr_type))
3283 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3284
4c4b4cd2 3285 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3286 return (LONGEST) - which;
14f9c5c9 3287
78134374 3288 if (arr_type->code () == TYPE_CODE_PTR)
27710edb 3289 type = arr_type->target_type ();
14f9c5c9
AS
3290 else
3291 type = arr_type;
3292
22c4c60c 3293 if (type->is_fixed_instance ())
bafffb51
JB
3294 {
3295 /* The array has already been fixed, so we do not need to
3296 check the parallel ___XA type again. That encoding has
3297 already been applied, so ignore it now. */
3298 index_type_desc = NULL;
3299 }
3300 else
3301 {
3302 index_type_desc = ada_find_parallel_type (type, "___XA");
3303 ada_fixup_array_indexes_type (index_type_desc);
3304 }
3305
262452ec 3306 if (index_type_desc != NULL)
940da03e 3307 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 3308 NULL);
262452ec 3309 else
8a48ac95
JB
3310 {
3311 struct type *elt_type = check_typedef (type);
3312
3313 for (i = 1; i < n; i++)
27710edb 3314 elt_type = check_typedef (elt_type->target_type ());
8a48ac95 3315
3d967001 3316 index_type = elt_type->index_type ();
8a48ac95 3317 }
262452ec 3318
43bbcdc2
PH
3319 return
3320 (LONGEST) (which == 0
dda83cd7
SM
3321 ? ada_discrete_type_low_bound (index_type)
3322 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3323}
3324
3325/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3326 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3327 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3328 supplied by run-time quantities other than discriminants. */
14f9c5c9 3329
1eea4ebd 3330static LONGEST
4dc81987 3331ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3332{
eb479039
JB
3333 struct type *arr_type;
3334
78134374 3335 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3336 arr = value_ind (arr);
3337 arr_type = value_enclosing_type (arr);
14f9c5c9 3338
ad82864c
JB
3339 if (ada_is_constrained_packed_array_type (arr_type))
3340 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3341 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3342 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3343 else
1eea4ebd 3344 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3345}
3346
3347/* Given that arr is an array value, returns the length of the
3348 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3349 supplied by run-time quantities other than discriminants.
3350 Does not work for arrays indexed by enumeration types with representation
3351 clauses at the moment. */
14f9c5c9 3352
1eea4ebd 3353static LONGEST
d2e4a39e 3354ada_array_length (struct value *arr, int n)
14f9c5c9 3355{
aa715135
JG
3356 struct type *arr_type, *index_type;
3357 int low, high;
eb479039 3358
78134374 3359 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3360 arr = value_ind (arr);
3361 arr_type = value_enclosing_type (arr);
14f9c5c9 3362
ad82864c
JB
3363 if (ada_is_constrained_packed_array_type (arr_type))
3364 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3365
4c4b4cd2 3366 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3367 {
3368 low = ada_array_bound_from_type (arr_type, n, 0);
3369 high = ada_array_bound_from_type (arr_type, n, 1);
3370 }
14f9c5c9 3371 else
aa715135
JG
3372 {
3373 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3374 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3375 }
3376
f168693b 3377 arr_type = check_typedef (arr_type);
7150d33c 3378 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3379 if (index_type != NULL)
3380 {
3381 struct type *base_type;
78134374 3382 if (index_type->code () == TYPE_CODE_RANGE)
27710edb 3383 base_type = index_type->target_type ();
aa715135
JG
3384 else
3385 base_type = index_type;
3386
3387 low = pos_atr (value_from_longest (base_type, low));
3388 high = pos_atr (value_from_longest (base_type, high));
3389 }
3390 return high - low + 1;
4c4b4cd2
PH
3391}
3392
bff8c71f
TT
3393/* An array whose type is that of ARR_TYPE (an array type), with
3394 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3395 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3396
3397static struct value *
bff8c71f 3398empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3399{
b0dd7688 3400 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3401 struct type *index_type
3402 = create_static_range_type
27710edb 3403 (NULL, arr_type0->index_type ()->target_type (), low,
bff8c71f 3404 high < low ? low - 1 : high);
b0dd7688 3405 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3406
0b5d8877 3407 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3408}
14f9c5c9 3409\f
d2e4a39e 3410
dda83cd7 3411 /* Name resolution */
14f9c5c9 3412
4c4b4cd2
PH
3413/* The "decoded" name for the user-definable Ada operator corresponding
3414 to OP. */
14f9c5c9 3415
d2e4a39e 3416static const char *
4c4b4cd2 3417ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3418{
3419 int i;
3420
4c4b4cd2 3421 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3422 {
3423 if (ada_opname_table[i].op == op)
dda83cd7 3424 return ada_opname_table[i].decoded;
14f9c5c9 3425 }
323e0a4a 3426 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3427}
3428
de93309a
SM
3429/* Returns true (non-zero) iff decoded name N0 should appear before N1
3430 in a listing of choices during disambiguation (see sort_choices, below).
3431 The idea is that overloadings of a subprogram name from the
3432 same package should sort in their source order. We settle for ordering
3433 such symbols by their trailing number (__N or $N). */
14f9c5c9 3434
de93309a
SM
3435static int
3436encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3437{
de93309a
SM
3438 if (N1 == NULL)
3439 return 0;
3440 else if (N0 == NULL)
3441 return 1;
3442 else
3443 {
3444 int k0, k1;
30b15541 3445
de93309a 3446 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3447 ;
de93309a 3448 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3449 ;
de93309a 3450 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3451 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3452 {
3453 int n0, n1;
3454
3455 n0 = k0;
3456 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3457 n0 -= 1;
3458 n1 = k1;
3459 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3460 n1 -= 1;
3461 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3462 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3463 }
de93309a
SM
3464 return (strcmp (N0, N1) < 0);
3465 }
14f9c5c9
AS
3466}
3467
de93309a
SM
3468/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3469 encoded names. */
14f9c5c9 3470
de93309a
SM
3471static void
3472sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3473{
14f9c5c9 3474 int i;
14f9c5c9 3475
de93309a 3476 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3477 {
de93309a
SM
3478 struct block_symbol sym = syms[i];
3479 int j;
3480
3481 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3482 {
3483 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3484 sym.symbol->linkage_name ()))
3485 break;
3486 syms[j + 1] = syms[j];
3487 }
de93309a
SM
3488 syms[j + 1] = sym;
3489 }
3490}
14f9c5c9 3491
de93309a
SM
3492/* Whether GDB should display formals and return types for functions in the
3493 overloads selection menu. */
3494static bool print_signatures = true;
4c4b4cd2 3495
de93309a
SM
3496/* Print the signature for SYM on STREAM according to the FLAGS options. For
3497 all but functions, the signature is just the name of the symbol. For
3498 functions, this is the name of the function, the list of types for formals
3499 and the return type (if any). */
4c4b4cd2 3500
de93309a
SM
3501static void
3502ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3503 const struct type_print_options *flags)
3504{
5f9c5a63 3505 struct type *type = sym->type ();
14f9c5c9 3506
6cb06a8c 3507 gdb_printf (stream, "%s", sym->print_name ());
de93309a
SM
3508 if (!print_signatures
3509 || type == NULL
78134374 3510 || type->code () != TYPE_CODE_FUNC)
de93309a 3511 return;
4c4b4cd2 3512
1f704f76 3513 if (type->num_fields () > 0)
de93309a
SM
3514 {
3515 int i;
14f9c5c9 3516
6cb06a8c 3517 gdb_printf (stream, " (");
1f704f76 3518 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3519 {
3520 if (i > 0)
6cb06a8c 3521 gdb_printf (stream, "; ");
940da03e 3522 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3523 flags);
3524 }
6cb06a8c 3525 gdb_printf (stream, ")");
de93309a 3526 }
27710edb
SM
3527 if (type->target_type () != NULL
3528 && type->target_type ()->code () != TYPE_CODE_VOID)
de93309a 3529 {
6cb06a8c 3530 gdb_printf (stream, " return ");
27710edb 3531 ada_print_type (type->target_type (), NULL, stream, -1, 0, flags);
de93309a
SM
3532 }
3533}
14f9c5c9 3534
de93309a
SM
3535/* Read and validate a set of numeric choices from the user in the
3536 range 0 .. N_CHOICES-1. Place the results in increasing
3537 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3538
de93309a
SM
3539 The user types choices as a sequence of numbers on one line
3540 separated by blanks, encoding them as follows:
14f9c5c9 3541
de93309a
SM
3542 + A choice of 0 means to cancel the selection, throwing an error.
3543 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3544 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3545
de93309a 3546 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3547
de93309a
SM
3548 ANNOTATION_SUFFIX, if present, is used to annotate the input
3549 prompts (for use with the -f switch). */
14f9c5c9 3550
de93309a
SM
3551static int
3552get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3553 int is_all_choice, const char *annotation_suffix)
de93309a 3554{
992a7040 3555 const char *args;
de93309a
SM
3556 const char *prompt;
3557 int n_chosen;
3558 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3559
de93309a
SM
3560 prompt = getenv ("PS2");
3561 if (prompt == NULL)
3562 prompt = "> ";
4c4b4cd2 3563
de93309a 3564 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3565
de93309a
SM
3566 if (args == NULL)
3567 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3568
de93309a 3569 n_chosen = 0;
4c4b4cd2 3570
de93309a
SM
3571 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3572 order, as given in args. Choices are validated. */
3573 while (1)
14f9c5c9 3574 {
de93309a
SM
3575 char *args2;
3576 int choice, j;
76a01679 3577
de93309a
SM
3578 args = skip_spaces (args);
3579 if (*args == '\0' && n_chosen == 0)
dda83cd7 3580 error_no_arg (_("one or more choice numbers"));
de93309a 3581 else if (*args == '\0')
dda83cd7 3582 break;
76a01679 3583
de93309a
SM
3584 choice = strtol (args, &args2, 10);
3585 if (args == args2 || choice < 0
dda83cd7
SM
3586 || choice > n_choices + first_choice - 1)
3587 error (_("Argument must be choice number"));
de93309a 3588 args = args2;
76a01679 3589
de93309a 3590 if (choice == 0)
dda83cd7 3591 error (_("cancelled"));
76a01679 3592
de93309a 3593 if (choice < first_choice)
dda83cd7
SM
3594 {
3595 n_chosen = n_choices;
3596 for (j = 0; j < n_choices; j += 1)
3597 choices[j] = j;
3598 break;
3599 }
de93309a 3600 choice -= first_choice;
76a01679 3601
de93309a 3602 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3603 {
3604 }
4c4b4cd2 3605
de93309a 3606 if (j < 0 || choice != choices[j])
dda83cd7
SM
3607 {
3608 int k;
4c4b4cd2 3609
dda83cd7
SM
3610 for (k = n_chosen - 1; k > j; k -= 1)
3611 choices[k + 1] = choices[k];
3612 choices[j + 1] = choice;
3613 n_chosen += 1;
3614 }
14f9c5c9
AS
3615 }
3616
de93309a
SM
3617 if (n_chosen > max_results)
3618 error (_("Select no more than %d of the above"), max_results);
3619
3620 return n_chosen;
14f9c5c9
AS
3621}
3622
de93309a
SM
3623/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3624 by asking the user (if necessary), returning the number selected,
3625 and setting the first elements of SYMS items. Error if no symbols
3626 selected. */
3627
3628/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3629 to be re-integrated one of these days. */
14f9c5c9
AS
3630
3631static int
de93309a 3632user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3633{
de93309a
SM
3634 int i;
3635 int *chosen = XALLOCAVEC (int , nsyms);
3636 int n_chosen;
3637 int first_choice = (max_results == 1) ? 1 : 2;
3638 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3639
de93309a
SM
3640 if (max_results < 1)
3641 error (_("Request to select 0 symbols!"));
3642 if (nsyms <= 1)
3643 return nsyms;
14f9c5c9 3644
de93309a
SM
3645 if (select_mode == multiple_symbols_cancel)
3646 error (_("\
3647canceled because the command is ambiguous\n\
3648See set/show multiple-symbol."));
14f9c5c9 3649
de93309a
SM
3650 /* If select_mode is "all", then return all possible symbols.
3651 Only do that if more than one symbol can be selected, of course.
3652 Otherwise, display the menu as usual. */
3653 if (select_mode == multiple_symbols_all && max_results > 1)
3654 return nsyms;
14f9c5c9 3655
6cb06a8c 3656 gdb_printf (_("[0] cancel\n"));
de93309a 3657 if (max_results > 1)
6cb06a8c 3658 gdb_printf (_("[1] all\n"));
14f9c5c9 3659
de93309a 3660 sort_choices (syms, nsyms);
14f9c5c9 3661
de93309a
SM
3662 for (i = 0; i < nsyms; i += 1)
3663 {
3664 if (syms[i].symbol == NULL)
dda83cd7 3665 continue;
14f9c5c9 3666
66d7f48f 3667 if (syms[i].symbol->aclass () == LOC_BLOCK)
dda83cd7
SM
3668 {
3669 struct symtab_and_line sal =
3670 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3671
6cb06a8c 3672 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3673 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3674 &type_print_raw_options);
3675 if (sal.symtab == NULL)
6cb06a8c
TT
3676 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3677 metadata_style.style ().ptr (), nullptr, sal.line);
de93309a 3678 else
6cb06a8c 3679 gdb_printf
de93309a
SM
3680 (_(" at %ps:%d\n"),
3681 styled_string (file_name_style.style (),
3682 symtab_to_filename_for_display (sal.symtab)),
3683 sal.line);
dda83cd7
SM
3684 continue;
3685 }
76a01679 3686 else
dda83cd7
SM
3687 {
3688 int is_enumeral =
66d7f48f 3689 (syms[i].symbol->aclass () == LOC_CONST
5f9c5a63
SM
3690 && syms[i].symbol->type () != NULL
3691 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
de93309a 3692 struct symtab *symtab = NULL;
4c4b4cd2 3693
7b3ecc75 3694 if (syms[i].symbol->is_objfile_owned ())
4206d69e 3695 symtab = syms[i].symbol->symtab ();
de93309a 3696
5d0027b9 3697 if (syms[i].symbol->line () != 0 && symtab != NULL)
de93309a 3698 {
6cb06a8c 3699 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3700 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3701 &type_print_raw_options);
6cb06a8c
TT
3702 gdb_printf (_(" at %s:%d\n"),
3703 symtab_to_filename_for_display (symtab),
3704 syms[i].symbol->line ());
de93309a 3705 }
dda83cd7 3706 else if (is_enumeral
5f9c5a63 3707 && syms[i].symbol->type ()->name () != NULL)
dda83cd7 3708 {
6cb06a8c 3709 gdb_printf (("[%d] "), i + first_choice);
5f9c5a63 3710 ada_print_type (syms[i].symbol->type (), NULL,
dda83cd7 3711 gdb_stdout, -1, 0, &type_print_raw_options);
6cb06a8c
TT
3712 gdb_printf (_("'(%s) (enumeral)\n"),
3713 syms[i].symbol->print_name ());
dda83cd7 3714 }
de93309a
SM
3715 else
3716 {
6cb06a8c 3717 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3718 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3719 &type_print_raw_options);
3720
3721 if (symtab != NULL)
6cb06a8c
TT
3722 gdb_printf (is_enumeral
3723 ? _(" in %s (enumeral)\n")
3724 : _(" at %s:?\n"),
3725 symtab_to_filename_for_display (symtab));
de93309a 3726 else
6cb06a8c
TT
3727 gdb_printf (is_enumeral
3728 ? _(" (enumeral)\n")
3729 : _(" at ?\n"));
de93309a 3730 }
dda83cd7 3731 }
14f9c5c9 3732 }
14f9c5c9 3733
de93309a 3734 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3735 "overload-choice");
14f9c5c9 3736
de93309a
SM
3737 for (i = 0; i < n_chosen; i += 1)
3738 syms[i] = syms[chosen[i]];
14f9c5c9 3739
de93309a
SM
3740 return n_chosen;
3741}
14f9c5c9 3742
cd9a3148
TT
3743/* See ada-lang.h. */
3744
3745block_symbol
7056f312 3746ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
cd9a3148
TT
3747 int nargs, value *argvec[])
3748{
3749 if (possible_user_operator_p (op, argvec))
3750 {
3751 std::vector<struct block_symbol> candidates
3752 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3753 NULL, VAR_DOMAIN);
3754
3755 int i = ada_resolve_function (candidates, argvec,
3756 nargs, ada_decoded_op_name (op), NULL,
3757 parse_completion);
3758 if (i >= 0)
3759 return candidates[i];
3760 }
3761 return {};
3762}
3763
3764/* See ada-lang.h. */
3765
3766block_symbol
3767ada_resolve_funcall (struct symbol *sym, const struct block *block,
3768 struct type *context_type,
7056f312 3769 bool parse_completion,
cd9a3148
TT
3770 int nargs, value *argvec[],
3771 innermost_block_tracker *tracker)
3772{
3773 std::vector<struct block_symbol> candidates
3774 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3775
3776 int i;
3777 if (candidates.size () == 1)
3778 i = 0;
3779 else
3780 {
3781 i = ada_resolve_function
3782 (candidates,
3783 argvec, nargs,
3784 sym->linkage_name (),
3785 context_type, parse_completion);
3786 if (i < 0)
3787 error (_("Could not find a match for %s"), sym->print_name ());
3788 }
3789
3790 tracker->update (candidates[i]);
3791 return candidates[i];
3792}
3793
ba8694b6
TT
3794/* Resolve a mention of a name where the context type is an
3795 enumeration type. */
3796
3797static int
3798ada_resolve_enum (std::vector<struct block_symbol> &syms,
3799 const char *name, struct type *context_type,
3800 bool parse_completion)
3801{
3802 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3803 context_type = ada_check_typedef (context_type);
3804
3805 for (int i = 0; i < syms.size (); ++i)
3806 {
3807 /* We already know the name matches, so we're just looking for
3808 an element of the correct enum type. */
5f9c5a63 3809 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
ba8694b6
TT
3810 return i;
3811 }
3812
3813 error (_("No name '%s' in enumeration type '%s'"), name,
3814 ada_type_name (context_type));
3815}
3816
cd9a3148
TT
3817/* See ada-lang.h. */
3818
3819block_symbol
3820ada_resolve_variable (struct symbol *sym, const struct block *block,
3821 struct type *context_type,
7056f312 3822 bool parse_completion,
cd9a3148
TT
3823 int deprocedure_p,
3824 innermost_block_tracker *tracker)
3825{
3826 std::vector<struct block_symbol> candidates
3827 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3828
3829 if (std::any_of (candidates.begin (),
3830 candidates.end (),
3831 [] (block_symbol &bsym)
3832 {
66d7f48f 3833 switch (bsym.symbol->aclass ())
cd9a3148
TT
3834 {
3835 case LOC_REGISTER:
3836 case LOC_ARG:
3837 case LOC_REF_ARG:
3838 case LOC_REGPARM_ADDR:
3839 case LOC_LOCAL:
3840 case LOC_COMPUTED:
3841 return true;
3842 default:
3843 return false;
3844 }
3845 }))
3846 {
3847 /* Types tend to get re-introduced locally, so if there
3848 are any local symbols that are not types, first filter
3849 out all types. */
3850 candidates.erase
3851 (std::remove_if
3852 (candidates.begin (),
3853 candidates.end (),
3854 [] (block_symbol &bsym)
3855 {
66d7f48f 3856 return bsym.symbol->aclass () == LOC_TYPEDEF;
cd9a3148
TT
3857 }),
3858 candidates.end ());
3859 }
3860
2c71f639
TV
3861 /* Filter out artificial symbols. */
3862 candidates.erase
3863 (std::remove_if
3864 (candidates.begin (),
3865 candidates.end (),
3866 [] (block_symbol &bsym)
3867 {
496feb16 3868 return bsym.symbol->is_artificial ();
2c71f639
TV
3869 }),
3870 candidates.end ());
3871
cd9a3148
TT
3872 int i;
3873 if (candidates.empty ())
3874 error (_("No definition found for %s"), sym->print_name ());
3875 else if (candidates.size () == 1)
3876 i = 0;
ba8694b6
TT
3877 else if (context_type != nullptr
3878 && context_type->code () == TYPE_CODE_ENUM)
3879 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3880 parse_completion);
cd9a3148
TT
3881 else if (deprocedure_p && !is_nonfunction (candidates))
3882 {
3883 i = ada_resolve_function
3884 (candidates, NULL, 0,
3885 sym->linkage_name (),
3886 context_type, parse_completion);
3887 if (i < 0)
3888 error (_("Could not find a match for %s"), sym->print_name ());
3889 }
3890 else
3891 {
6cb06a8c 3892 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
cd9a3148
TT
3893 user_select_syms (candidates.data (), candidates.size (), 1);
3894 i = 0;
3895 }
3896
3897 tracker->update (candidates[i]);
3898 return candidates[i];
3899}
3900
db2534b7 3901/* Return non-zero if formal type FTYPE matches actual type ATYPE. */
de93309a
SM
3902/* The term "match" here is rather loose. The match is heuristic and
3903 liberal. */
14f9c5c9 3904
de93309a 3905static int
db2534b7 3906ada_type_match (struct type *ftype, struct type *atype)
14f9c5c9 3907{
de93309a
SM
3908 ftype = ada_check_typedef (ftype);
3909 atype = ada_check_typedef (atype);
14f9c5c9 3910
78134374 3911 if (ftype->code () == TYPE_CODE_REF)
27710edb 3912 ftype = ftype->target_type ();
78134374 3913 if (atype->code () == TYPE_CODE_REF)
27710edb 3914 atype = atype->target_type ();
14f9c5c9 3915
78134374 3916 switch (ftype->code ())
14f9c5c9 3917 {
de93309a 3918 default:
78134374 3919 return ftype->code () == atype->code ();
de93309a 3920 case TYPE_CODE_PTR:
db2534b7
TT
3921 if (atype->code () != TYPE_CODE_PTR)
3922 return 0;
27710edb 3923 atype = atype->target_type ();
db2534b7 3924 /* This can only happen if the actual argument is 'null'. */
df86565b 3925 if (atype->code () == TYPE_CODE_INT && atype->length () == 0)
db2534b7 3926 return 1;
27710edb 3927 return ada_type_match (ftype->target_type (), atype);
de93309a
SM
3928 case TYPE_CODE_INT:
3929 case TYPE_CODE_ENUM:
3930 case TYPE_CODE_RANGE:
78134374 3931 switch (atype->code ())
dda83cd7
SM
3932 {
3933 case TYPE_CODE_INT:
3934 case TYPE_CODE_ENUM:
3935 case TYPE_CODE_RANGE:
3936 return 1;
3937 default:
3938 return 0;
3939 }
d2e4a39e 3940
de93309a 3941 case TYPE_CODE_ARRAY:
78134374 3942 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3943 || ada_is_array_descriptor_type (atype));
14f9c5c9 3944
de93309a
SM
3945 case TYPE_CODE_STRUCT:
3946 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3947 return (atype->code () == TYPE_CODE_ARRAY
3948 || ada_is_array_descriptor_type (atype));
de93309a 3949 else
dda83cd7
SM
3950 return (atype->code () == TYPE_CODE_STRUCT
3951 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3952
de93309a
SM
3953 case TYPE_CODE_UNION:
3954 case TYPE_CODE_FLT:
78134374 3955 return (atype->code () == ftype->code ());
de93309a 3956 }
14f9c5c9
AS
3957}
3958
de93309a
SM
3959/* Return non-zero if the formals of FUNC "sufficiently match" the
3960 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3961 may also be an enumeral, in which case it is treated as a 0-
3962 argument function. */
14f9c5c9 3963
de93309a
SM
3964static int
3965ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3966{
3967 int i;
5f9c5a63 3968 struct type *func_type = func->type ();
14f9c5c9 3969
66d7f48f 3970 if (func->aclass () == LOC_CONST
78134374 3971 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3972 return (n_actuals == 0);
78134374 3973 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3974 return 0;
14f9c5c9 3975
1f704f76 3976 if (func_type->num_fields () != n_actuals)
de93309a 3977 return 0;
14f9c5c9 3978
de93309a
SM
3979 for (i = 0; i < n_actuals; i += 1)
3980 {
3981 if (actuals[i] == NULL)
dda83cd7 3982 return 0;
de93309a 3983 else
dda83cd7
SM
3984 {
3985 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3986 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3987
db2534b7 3988 if (!ada_type_match (ftype, atype))
dda83cd7
SM
3989 return 0;
3990 }
de93309a
SM
3991 }
3992 return 1;
3993}
d2e4a39e 3994
de93309a
SM
3995/* False iff function type FUNC_TYPE definitely does not produce a value
3996 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3997 FUNC_TYPE is not a valid function type with a non-null return type
3998 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3999
de93309a
SM
4000static int
4001return_match (struct type *func_type, struct type *context_type)
4002{
4003 struct type *return_type;
d2e4a39e 4004
de93309a
SM
4005 if (func_type == NULL)
4006 return 1;
14f9c5c9 4007
78134374 4008 if (func_type->code () == TYPE_CODE_FUNC)
27710edb 4009 return_type = get_base_type (func_type->target_type ());
de93309a
SM
4010 else
4011 return_type = get_base_type (func_type);
4012 if (return_type == NULL)
4013 return 1;
76a01679 4014
de93309a 4015 context_type = get_base_type (context_type);
14f9c5c9 4016
78134374 4017 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
4018 return context_type == NULL || return_type == context_type;
4019 else if (context_type == NULL)
78134374 4020 return return_type->code () != TYPE_CODE_VOID;
de93309a 4021 else
78134374 4022 return return_type->code () == context_type->code ();
de93309a 4023}
14f9c5c9 4024
14f9c5c9 4025
1bfa81ac 4026/* Returns the index in SYMS that contains the symbol for the
de93309a
SM
4027 function (if any) that matches the types of the NARGS arguments in
4028 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4029 that returns that type, then eliminate matches that don't. If
4030 CONTEXT_TYPE is void and there is at least one match that does not
4031 return void, eliminate all matches that do.
14f9c5c9 4032
de93309a
SM
4033 Asks the user if there is more than one match remaining. Returns -1
4034 if there is no such symbol or none is selected. NAME is used
4035 solely for messages. May re-arrange and modify SYMS in
4036 the process; the index returned is for the modified vector. */
14f9c5c9 4037
de93309a 4038static int
d1183b06
TT
4039ada_resolve_function (std::vector<struct block_symbol> &syms,
4040 struct value **args, int nargs,
dda83cd7 4041 const char *name, struct type *context_type,
7056f312 4042 bool parse_completion)
de93309a
SM
4043{
4044 int fallback;
4045 int k;
4046 int m; /* Number of hits */
14f9c5c9 4047
de93309a
SM
4048 m = 0;
4049 /* In the first pass of the loop, we only accept functions matching
4050 context_type. If none are found, we add a second pass of the loop
4051 where every function is accepted. */
4052 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4053 {
d1183b06 4054 for (k = 0; k < syms.size (); k += 1)
dda83cd7 4055 {
5f9c5a63 4056 struct type *type = ada_check_typedef (syms[k].symbol->type ());
5b4ee69b 4057
dda83cd7
SM
4058 if (ada_args_match (syms[k].symbol, args, nargs)
4059 && (fallback || return_match (type, context_type)))
4060 {
4061 syms[m] = syms[k];
4062 m += 1;
4063 }
4064 }
14f9c5c9
AS
4065 }
4066
de93309a
SM
4067 /* If we got multiple matches, ask the user which one to use. Don't do this
4068 interactive thing during completion, though, as the purpose of the
4069 completion is providing a list of all possible matches. Prompting the
4070 user to filter it down would be completely unexpected in this case. */
4071 if (m == 0)
4072 return -1;
4073 else if (m > 1 && !parse_completion)
4074 {
6cb06a8c 4075 gdb_printf (_("Multiple matches for %s\n"), name);
d1183b06 4076 user_select_syms (syms.data (), m, 1);
de93309a
SM
4077 return 0;
4078 }
4079 return 0;
14f9c5c9
AS
4080}
4081
14f9c5c9
AS
4082/* Type-class predicates */
4083
4c4b4cd2
PH
4084/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4085 or FLOAT). */
14f9c5c9
AS
4086
4087static int
d2e4a39e 4088numeric_type_p (struct type *type)
14f9c5c9
AS
4089{
4090 if (type == NULL)
4091 return 0;
d2e4a39e
AS
4092 else
4093 {
78134374 4094 switch (type->code ())
dda83cd7
SM
4095 {
4096 case TYPE_CODE_INT:
4097 case TYPE_CODE_FLT:
c04da66c 4098 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
4099 return 1;
4100 case TYPE_CODE_RANGE:
27710edb
SM
4101 return (type == type->target_type ()
4102 || numeric_type_p (type->target_type ()));
dda83cd7
SM
4103 default:
4104 return 0;
4105 }
d2e4a39e 4106 }
14f9c5c9
AS
4107}
4108
4c4b4cd2 4109/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4110
4111static int
d2e4a39e 4112integer_type_p (struct type *type)
14f9c5c9
AS
4113{
4114 if (type == NULL)
4115 return 0;
d2e4a39e
AS
4116 else
4117 {
78134374 4118 switch (type->code ())
dda83cd7
SM
4119 {
4120 case TYPE_CODE_INT:
4121 return 1;
4122 case TYPE_CODE_RANGE:
27710edb
SM
4123 return (type == type->target_type ()
4124 || integer_type_p (type->target_type ()));
dda83cd7
SM
4125 default:
4126 return 0;
4127 }
d2e4a39e 4128 }
14f9c5c9
AS
4129}
4130
4c4b4cd2 4131/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4132
4133static int
d2e4a39e 4134scalar_type_p (struct type *type)
14f9c5c9
AS
4135{
4136 if (type == NULL)
4137 return 0;
d2e4a39e
AS
4138 else
4139 {
78134374 4140 switch (type->code ())
dda83cd7
SM
4141 {
4142 case TYPE_CODE_INT:
4143 case TYPE_CODE_RANGE:
4144 case TYPE_CODE_ENUM:
4145 case TYPE_CODE_FLT:
c04da66c 4146 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
4147 return 1;
4148 default:
4149 return 0;
4150 }
d2e4a39e 4151 }
14f9c5c9
AS
4152}
4153
98847c1e
TT
4154/* True iff TYPE is discrete, as defined in the Ada Reference Manual.
4155 This essentially means one of (INT, RANGE, ENUM) -- but note that
4156 "enum" includes character and boolean as well. */
14f9c5c9
AS
4157
4158static int
d2e4a39e 4159discrete_type_p (struct type *type)
14f9c5c9
AS
4160{
4161 if (type == NULL)
4162 return 0;
d2e4a39e
AS
4163 else
4164 {
78134374 4165 switch (type->code ())
dda83cd7
SM
4166 {
4167 case TYPE_CODE_INT:
4168 case TYPE_CODE_RANGE:
4169 case TYPE_CODE_ENUM:
4170 case TYPE_CODE_BOOL:
98847c1e 4171 case TYPE_CODE_CHAR:
dda83cd7
SM
4172 return 1;
4173 default:
4174 return 0;
4175 }
d2e4a39e 4176 }
14f9c5c9
AS
4177}
4178
4c4b4cd2
PH
4179/* Returns non-zero if OP with operands in the vector ARGS could be
4180 a user-defined function. Errs on the side of pre-defined operators
4181 (i.e., result 0). */
14f9c5c9
AS
4182
4183static int
d2e4a39e 4184possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4185{
76a01679 4186 struct type *type0 =
df407dfe 4187 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4188 struct type *type1 =
df407dfe 4189 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4190
4c4b4cd2
PH
4191 if (type0 == NULL)
4192 return 0;
4193
14f9c5c9
AS
4194 switch (op)
4195 {
4196 default:
4197 return 0;
4198
4199 case BINOP_ADD:
4200 case BINOP_SUB:
4201 case BINOP_MUL:
4202 case BINOP_DIV:
d2e4a39e 4203 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4204
4205 case BINOP_REM:
4206 case BINOP_MOD:
4207 case BINOP_BITWISE_AND:
4208 case BINOP_BITWISE_IOR:
4209 case BINOP_BITWISE_XOR:
d2e4a39e 4210 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4211
4212 case BINOP_EQUAL:
4213 case BINOP_NOTEQUAL:
4214 case BINOP_LESS:
4215 case BINOP_GTR:
4216 case BINOP_LEQ:
4217 case BINOP_GEQ:
d2e4a39e 4218 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4219
4220 case BINOP_CONCAT:
ee90b9ab 4221 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4222
4223 case BINOP_EXP:
d2e4a39e 4224 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4225
4226 case UNOP_NEG:
4227 case UNOP_PLUS:
4228 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4229 case UNOP_ABS:
4230 return (!numeric_type_p (type0));
14f9c5c9
AS
4231
4232 }
4233}
4234\f
dda83cd7 4235 /* Renaming */
14f9c5c9 4236
aeb5907d
JB
4237/* NOTES:
4238
4239 1. In the following, we assume that a renaming type's name may
4240 have an ___XD suffix. It would be nice if this went away at some
4241 point.
4242 2. We handle both the (old) purely type-based representation of
4243 renamings and the (new) variable-based encoding. At some point,
4244 it is devoutly to be hoped that the former goes away
4245 (FIXME: hilfinger-2007-07-09).
4246 3. Subprogram renamings are not implemented, although the XRS
4247 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4248
4249/* If SYM encodes a renaming,
4250
4251 <renaming> renames <renamed entity>,
4252
4253 sets *LEN to the length of the renamed entity's name,
4254 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4255 the string describing the subcomponent selected from the renamed
0963b4bd 4256 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4257 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4258 are undefined). Otherwise, returns a value indicating the category
4259 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4260 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4261 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4262 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4263 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4264 may be NULL, in which case they are not assigned.
4265
4266 [Currently, however, GCC does not generate subprogram renamings.] */
4267
4268enum ada_renaming_category
4269ada_parse_renaming (struct symbol *sym,
4270 const char **renamed_entity, int *len,
4271 const char **renaming_expr)
4272{
4273 enum ada_renaming_category kind;
4274 const char *info;
4275 const char *suffix;
4276
4277 if (sym == NULL)
4278 return ADA_NOT_RENAMING;
66d7f48f 4279 switch (sym->aclass ())
14f9c5c9 4280 {
aeb5907d
JB
4281 default:
4282 return ADA_NOT_RENAMING;
aeb5907d
JB
4283 case LOC_LOCAL:
4284 case LOC_STATIC:
4285 case LOC_COMPUTED:
4286 case LOC_OPTIMIZED_OUT:
987012b8 4287 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4288 if (info == NULL)
4289 return ADA_NOT_RENAMING;
4290 switch (info[5])
4291 {
4292 case '_':
4293 kind = ADA_OBJECT_RENAMING;
4294 info += 6;
4295 break;
4296 case 'E':
4297 kind = ADA_EXCEPTION_RENAMING;
4298 info += 7;
4299 break;
4300 case 'P':
4301 kind = ADA_PACKAGE_RENAMING;
4302 info += 7;
4303 break;
4304 case 'S':
4305 kind = ADA_SUBPROGRAM_RENAMING;
4306 info += 7;
4307 break;
4308 default:
4309 return ADA_NOT_RENAMING;
4310 }
14f9c5c9 4311 }
4c4b4cd2 4312
de93309a
SM
4313 if (renamed_entity != NULL)
4314 *renamed_entity = info;
4315 suffix = strstr (info, "___XE");
4316 if (suffix == NULL || suffix == info)
4317 return ADA_NOT_RENAMING;
4318 if (len != NULL)
4319 *len = strlen (info) - strlen (suffix);
4320 suffix += 5;
4321 if (renaming_expr != NULL)
4322 *renaming_expr = suffix;
4323 return kind;
4324}
4325
4326/* Compute the value of the given RENAMING_SYM, which is expected to
4327 be a symbol encoding a renaming expression. BLOCK is the block
4328 used to evaluate the renaming. */
4329
4330static struct value *
4331ada_read_renaming_var_value (struct symbol *renaming_sym,
4332 const struct block *block)
4333{
4334 const char *sym_name;
4335
987012b8 4336 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4337 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4338 return evaluate_expression (expr.get ());
4339}
4340\f
4341
dda83cd7 4342 /* Evaluation: Function Calls */
de93309a
SM
4343
4344/* Return an lvalue containing the value VAL. This is the identity on
4345 lvalues, and otherwise has the side-effect of allocating memory
4346 in the inferior where a copy of the value contents is copied. */
4347
4348static struct value *
4349ensure_lval (struct value *val)
4350{
4351 if (VALUE_LVAL (val) == not_lval
4352 || VALUE_LVAL (val) == lval_internalvar)
4353 {
df86565b 4354 int len = ada_check_typedef (value_type (val))->length ();
de93309a 4355 const CORE_ADDR addr =
dda83cd7 4356 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4357
4358 VALUE_LVAL (val) = lval_memory;
4359 set_value_address (val, addr);
50888e42 4360 write_memory (addr, value_contents (val).data (), len);
de93309a
SM
4361 }
4362
4363 return val;
4364}
4365
4366/* Given ARG, a value of type (pointer or reference to a)*
4367 structure/union, extract the component named NAME from the ultimate
4368 target structure/union and return it as a value with its
4369 appropriate type.
4370
4371 The routine searches for NAME among all members of the structure itself
4372 and (recursively) among all members of any wrapper members
4373 (e.g., '_parent').
4374
4375 If NO_ERR, then simply return NULL in case of error, rather than
4376 calling error. */
4377
4378static struct value *
4379ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4380{
4381 struct type *t, *t1;
4382 struct value *v;
4383 int check_tag;
4384
4385 v = NULL;
4386 t1 = t = ada_check_typedef (value_type (arg));
78134374 4387 if (t->code () == TYPE_CODE_REF)
de93309a 4388 {
27710edb 4389 t1 = t->target_type ();
de93309a
SM
4390 if (t1 == NULL)
4391 goto BadValue;
4392 t1 = ada_check_typedef (t1);
78134374 4393 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4394 {
4395 arg = coerce_ref (arg);
4396 t = t1;
4397 }
de93309a
SM
4398 }
4399
78134374 4400 while (t->code () == TYPE_CODE_PTR)
de93309a 4401 {
27710edb 4402 t1 = t->target_type ();
de93309a
SM
4403 if (t1 == NULL)
4404 goto BadValue;
4405 t1 = ada_check_typedef (t1);
78134374 4406 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4407 {
4408 arg = value_ind (arg);
4409 t = t1;
4410 }
de93309a 4411 else
dda83cd7 4412 break;
de93309a 4413 }
aeb5907d 4414
78134374 4415 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4416 goto BadValue;
52ce6436 4417
de93309a
SM
4418 if (t1 == t)
4419 v = ada_search_struct_field (name, arg, 0, t);
4420 else
4421 {
4422 int bit_offset, bit_size, byte_offset;
4423 struct type *field_type;
4424 CORE_ADDR address;
a5ee536b 4425
78134374 4426 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4427 address = value_address (ada_value_ind (arg));
4428 else
4429 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4430
de93309a 4431 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4432 the case where the type is a reference to a tagged type, but
4433 we have to be careful to exclude pointers to tagged types.
4434 The latter should be shown as usual (as a pointer), whereas
4435 a reference should mostly be transparent to the user. */
14f9c5c9 4436
de93309a 4437 if (ada_is_tagged_type (t1, 0)
dda83cd7 4438 || (t1->code () == TYPE_CODE_REF
27710edb 4439 && ada_is_tagged_type (t1->target_type (), 0)))
dda83cd7
SM
4440 {
4441 /* We first try to find the searched field in the current type.
de93309a 4442 If not found then let's look in the fixed type. */
14f9c5c9 4443
dda83cd7 4444 if (!find_struct_field (name, t1, 0,
4d1795ac
TT
4445 nullptr, nullptr, nullptr,
4446 nullptr, nullptr))
de93309a
SM
4447 check_tag = 1;
4448 else
4449 check_tag = 0;
dda83cd7 4450 }
de93309a
SM
4451 else
4452 check_tag = 0;
c3e5cd34 4453
de93309a
SM
4454 /* Convert to fixed type in all cases, so that we have proper
4455 offsets to each field in unconstrained record types. */
4456 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4457 address, NULL, check_tag);
4458
24aa1b02
TT
4459 /* Resolve the dynamic type as well. */
4460 arg = value_from_contents_and_address (t1, nullptr, address);
4461 t1 = value_type (arg);
4462
de93309a 4463 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4464 &field_type, &byte_offset, &bit_offset,
4465 &bit_size, NULL))
4466 {
4467 if (bit_size != 0)
4468 {
4469 if (t->code () == TYPE_CODE_REF)
4470 arg = ada_coerce_ref (arg);
4471 else
4472 arg = ada_value_ind (arg);
4473 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4474 bit_offset, bit_size,
4475 field_type);
4476 }
4477 else
4478 v = value_at_lazy (field_type, address + byte_offset);
4479 }
c3e5cd34 4480 }
14f9c5c9 4481
de93309a
SM
4482 if (v != NULL || no_err)
4483 return v;
4484 else
4485 error (_("There is no member named %s."), name);
4486
4487 BadValue:
4488 if (no_err)
4489 return NULL;
4490 else
4491 error (_("Attempt to extract a component of "
4492 "a value that is not a record."));
14f9c5c9
AS
4493}
4494
4495/* Return the value ACTUAL, converted to be an appropriate value for a
4496 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4497 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4498 values not residing in memory, updating it as needed. */
14f9c5c9 4499
a93c0eb6 4500struct value *
40bc484c 4501ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4502{
df407dfe 4503 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4504 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4505 struct type *formal_target =
78134374 4506 formal_type->code () == TYPE_CODE_PTR
27710edb 4507 ? ada_check_typedef (formal_type->target_type ()) : formal_type;
d2e4a39e 4508 struct type *actual_target =
78134374 4509 actual_type->code () == TYPE_CODE_PTR
27710edb 4510 ? ada_check_typedef (actual_type->target_type ()) : actual_type;
14f9c5c9 4511
4c4b4cd2 4512 if (ada_is_array_descriptor_type (formal_target)
78134374 4513 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4514 return make_array_descriptor (formal_type, actual);
78134374
SM
4515 else if (formal_type->code () == TYPE_CODE_PTR
4516 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4517 {
a84a8a0d 4518 struct value *result;
5b4ee69b 4519
78134374 4520 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4521 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4522 result = desc_data (actual);
78134374 4523 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4524 {
4525 if (VALUE_LVAL (actual) != lval_memory)
4526 {
4527 struct value *val;
4528
4529 actual_type = ada_check_typedef (value_type (actual));
4530 val = allocate_value (actual_type);
4bce7cda 4531 copy (value_contents (actual), value_contents_raw (val));
dda83cd7
SM
4532 actual = ensure_lval (val);
4533 }
4534 result = value_addr (actual);
4535 }
a84a8a0d
JB
4536 else
4537 return actual;
b1af9e97 4538 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4539 }
78134374 4540 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4541 return ada_value_ind (actual);
8344af1e
JB
4542 else if (ada_is_aligner_type (formal_type))
4543 {
4544 /* We need to turn this parameter into an aligner type
4545 as well. */
4546 struct value *aligner = allocate_value (formal_type);
4547 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4548
4549 value_assign_to_component (aligner, component, actual);
4550 return aligner;
4551 }
14f9c5c9
AS
4552
4553 return actual;
4554}
4555
438c98a1
JB
4556/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4557 type TYPE. This is usually an inefficient no-op except on some targets
4558 (such as AVR) where the representation of a pointer and an address
4559 differs. */
4560
4561static CORE_ADDR
4562value_pointer (struct value *value, struct type *type)
4563{
df86565b 4564 unsigned len = type->length ();
224c3ddb 4565 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4566 CORE_ADDR addr;
4567
4568 addr = value_address (value);
8ee511af 4569 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
34877895 4570 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4571 return addr;
4572}
4573
14f9c5c9 4574
4c4b4cd2
PH
4575/* Push a descriptor of type TYPE for array value ARR on the stack at
4576 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4577 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4578 to-descriptor type rather than a descriptor type), a struct value *
4579 representing a pointer to this descriptor. */
14f9c5c9 4580
d2e4a39e 4581static struct value *
40bc484c 4582make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4583{
d2e4a39e
AS
4584 struct type *bounds_type = desc_bounds_type (type);
4585 struct type *desc_type = desc_base_type (type);
4586 struct value *descriptor = allocate_value (desc_type);
4587 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4588 int i;
d2e4a39e 4589
0963b4bd
MS
4590 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4591 i > 0; i -= 1)
14f9c5c9 4592 {
50888e42
SM
4593 modify_field (value_type (bounds),
4594 value_contents_writeable (bounds).data (),
19f220c3
JK
4595 ada_array_bound (arr, i, 0),
4596 desc_bound_bitpos (bounds_type, i, 0),
4597 desc_bound_bitsize (bounds_type, i, 0));
50888e42
SM
4598 modify_field (value_type (bounds),
4599 value_contents_writeable (bounds).data (),
19f220c3
JK
4600 ada_array_bound (arr, i, 1),
4601 desc_bound_bitpos (bounds_type, i, 1),
4602 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4603 }
d2e4a39e 4604
40bc484c 4605 bounds = ensure_lval (bounds);
d2e4a39e 4606
19f220c3 4607 modify_field (value_type (descriptor),
50888e42 4608 value_contents_writeable (descriptor).data (),
19f220c3 4609 value_pointer (ensure_lval (arr),
940da03e 4610 desc_type->field (0).type ()),
19f220c3
JK
4611 fat_pntr_data_bitpos (desc_type),
4612 fat_pntr_data_bitsize (desc_type));
4613
4614 modify_field (value_type (descriptor),
50888e42 4615 value_contents_writeable (descriptor).data (),
19f220c3 4616 value_pointer (bounds,
940da03e 4617 desc_type->field (1).type ()),
19f220c3
JK
4618 fat_pntr_bounds_bitpos (desc_type),
4619 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4620
40bc484c 4621 descriptor = ensure_lval (descriptor);
14f9c5c9 4622
78134374 4623 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4624 return value_addr (descriptor);
4625 else
4626 return descriptor;
4627}
14f9c5c9 4628\f
dda83cd7 4629 /* Symbol Cache Module */
3d9434b5 4630
3d9434b5 4631/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4632 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4633 on the type of entity being printed, the cache can make it as much
4634 as an order of magnitude faster than without it.
4635
4636 The descriptive type DWARF extension has significantly reduced
4637 the need for this cache, at least when DWARF is being used. However,
4638 even in this case, some expensive name-based symbol searches are still
4639 sometimes necessary - to find an XVZ variable, mostly. */
4640
ee01b665
JB
4641/* Return the symbol cache associated to the given program space PSPACE.
4642 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4643
ee01b665
JB
4644static struct ada_symbol_cache *
4645ada_get_symbol_cache (struct program_space *pspace)
4646{
4647 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4648
bdcccc56
TT
4649 if (pspace_data->sym_cache == nullptr)
4650 pspace_data->sym_cache.reset (new ada_symbol_cache);
ee01b665 4651
bdcccc56 4652 return pspace_data->sym_cache.get ();
ee01b665 4653}
3d9434b5
JB
4654
4655/* Clear all entries from the symbol cache. */
4656
4657static void
bdcccc56 4658ada_clear_symbol_cache ()
3d9434b5 4659{
bdcccc56
TT
4660 struct ada_pspace_data *pspace_data
4661 = get_ada_pspace_data (current_program_space);
ee01b665 4662
bdcccc56
TT
4663 if (pspace_data->sym_cache != nullptr)
4664 pspace_data->sym_cache.reset ();
3d9434b5
JB
4665}
4666
fe978cb0 4667/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4668 Return it if found, or NULL otherwise. */
4669
4670static struct cache_entry **
fe978cb0 4671find_entry (const char *name, domain_enum domain)
3d9434b5 4672{
ee01b665
JB
4673 struct ada_symbol_cache *sym_cache
4674 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4675 int h = msymbol_hash (name) % HASH_SIZE;
4676 struct cache_entry **e;
4677
ee01b665 4678 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4679 {
fe978cb0 4680 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4681 return e;
3d9434b5
JB
4682 }
4683 return NULL;
4684}
4685
fe978cb0 4686/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4687 Return 1 if found, 0 otherwise.
4688
4689 If an entry was found and SYM is not NULL, set *SYM to the entry's
4690 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4691
96d887e8 4692static int
fe978cb0 4693lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4694 struct symbol **sym, const struct block **block)
96d887e8 4695{
fe978cb0 4696 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4697
4698 if (e == NULL)
4699 return 0;
4700 if (sym != NULL)
4701 *sym = (*e)->sym;
4702 if (block != NULL)
4703 *block = (*e)->block;
4704 return 1;
96d887e8
PH
4705}
4706
3d9434b5 4707/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4708 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4709
96d887e8 4710static void
fe978cb0 4711cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4712 const struct block *block)
96d887e8 4713{
ee01b665
JB
4714 struct ada_symbol_cache *sym_cache
4715 = ada_get_symbol_cache (current_program_space);
3d9434b5 4716 int h;
3d9434b5
JB
4717 struct cache_entry *e;
4718
1994afbf
DE
4719 /* Symbols for builtin types don't have a block.
4720 For now don't cache such symbols. */
7b3ecc75 4721 if (sym != NULL && !sym->is_objfile_owned ())
1994afbf
DE
4722 return;
4723
3d9434b5
JB
4724 /* If the symbol is a local symbol, then do not cache it, as a search
4725 for that symbol depends on the context. To determine whether
4726 the symbol is local or not, we check the block where we found it
4727 against the global and static blocks of its associated symtab. */
63d609de
SM
4728 if (sym != nullptr)
4729 {
4730 const blockvector &bv = *sym->symtab ()->compunit ()->blockvector ();
4731
4732 if (bv.global_block () != block && bv.static_block () != block)
4733 return;
4734 }
3d9434b5
JB
4735
4736 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4737 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4738 e->next = sym_cache->root[h];
4739 sym_cache->root[h] = e;
2ef5453b 4740 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4741 e->sym = sym;
fe978cb0 4742 e->domain = domain;
3d9434b5 4743 e->block = block;
96d887e8 4744}
4c4b4cd2 4745\f
dda83cd7 4746 /* Symbol Lookup */
4c4b4cd2 4747
b5ec771e
PA
4748/* Return the symbol name match type that should be used used when
4749 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4750
4751 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4752 for Ada lookups. */
c0431670 4753
b5ec771e
PA
4754static symbol_name_match_type
4755name_match_type_from_name (const char *lookup_name)
c0431670 4756{
b5ec771e
PA
4757 return (strstr (lookup_name, "__") == NULL
4758 ? symbol_name_match_type::WILD
4759 : symbol_name_match_type::FULL);
c0431670
JB
4760}
4761
4c4b4cd2
PH
4762/* Return the result of a standard (literal, C-like) lookup of NAME in
4763 given DOMAIN, visible from lexical block BLOCK. */
4764
4765static struct symbol *
4766standard_lookup (const char *name, const struct block *block,
dda83cd7 4767 domain_enum domain)
4c4b4cd2 4768{
acbd605d 4769 /* Initialize it just to avoid a GCC false warning. */
6640a367 4770 struct block_symbol sym = {};
4c4b4cd2 4771
d12307c1
PMR
4772 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4773 return sym.symbol;
a2cd4f14 4774 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4775 cache_symbol (name, domain, sym.symbol, sym.block);
4776 return sym.symbol;
4c4b4cd2
PH
4777}
4778
4779
4780/* Non-zero iff there is at least one non-function/non-enumeral symbol
1bfa81ac 4781 in the symbol fields of SYMS. We treat enumerals as functions,
4c4b4cd2
PH
4782 since they contend in overloading in the same way. */
4783static int
d1183b06 4784is_nonfunction (const std::vector<struct block_symbol> &syms)
4c4b4cd2 4785{
d1183b06 4786 for (const block_symbol &sym : syms)
5f9c5a63
SM
4787 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4788 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
66d7f48f 4789 || sym.symbol->aclass () != LOC_CONST))
14f9c5c9
AS
4790 return 1;
4791
4792 return 0;
4793}
4794
4795/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4796 struct types. Otherwise, they may not. */
14f9c5c9
AS
4797
4798static int
d2e4a39e 4799equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4800{
d2e4a39e 4801 if (type0 == type1)
14f9c5c9 4802 return 1;
d2e4a39e 4803 if (type0 == NULL || type1 == NULL
78134374 4804 || type0->code () != type1->code ())
14f9c5c9 4805 return 0;
78134374
SM
4806 if ((type0->code () == TYPE_CODE_STRUCT
4807 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4808 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4809 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4810 return 1;
d2e4a39e 4811
14f9c5c9
AS
4812 return 0;
4813}
4814
4815/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4816 no more defined than that of SYM1. */
14f9c5c9
AS
4817
4818static int
d2e4a39e 4819lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4820{
4821 if (sym0 == sym1)
4822 return 1;
6c9c307c 4823 if (sym0->domain () != sym1->domain ()
66d7f48f 4824 || sym0->aclass () != sym1->aclass ())
14f9c5c9
AS
4825 return 0;
4826
66d7f48f 4827 switch (sym0->aclass ())
14f9c5c9
AS
4828 {
4829 case LOC_UNDEF:
4830 return 1;
4831 case LOC_TYPEDEF:
4832 {
5f9c5a63
SM
4833 struct type *type0 = sym0->type ();
4834 struct type *type1 = sym1->type ();
dda83cd7
SM
4835 const char *name0 = sym0->linkage_name ();
4836 const char *name1 = sym1->linkage_name ();
4837 int len0 = strlen (name0);
4838
4839 return
4840 type0->code () == type1->code ()
4841 && (equiv_types (type0, type1)
4842 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4843 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4844 }
4845 case LOC_CONST:
4aeddc50 4846 return sym0->value_longest () == sym1->value_longest ()
5f9c5a63 4847 && equiv_types (sym0->type (), sym1->type ());
4b610737
TT
4848
4849 case LOC_STATIC:
4850 {
dda83cd7
SM
4851 const char *name0 = sym0->linkage_name ();
4852 const char *name1 = sym1->linkage_name ();
4853 return (strcmp (name0, name1) == 0
4aeddc50 4854 && sym0->value_address () == sym1->value_address ());
4b610737
TT
4855 }
4856
d2e4a39e
AS
4857 default:
4858 return 0;
14f9c5c9
AS
4859 }
4860}
4861
d1183b06
TT
4862/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4863 records in RESULT. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4864
4865static void
d1183b06 4866add_defn_to_vec (std::vector<struct block_symbol> &result,
dda83cd7
SM
4867 struct symbol *sym,
4868 const struct block *block)
14f9c5c9 4869{
529cad9c
PH
4870 /* Do not try to complete stub types, as the debugger is probably
4871 already scanning all symbols matching a certain name at the
4872 time when this function is called. Trying to replace the stub
4873 type by its associated full type will cause us to restart a scan
4874 which may lead to an infinite recursion. Instead, the client
4875 collecting the matching symbols will end up collecting several
4876 matches, with at least one of them complete. It can then filter
4877 out the stub ones if needed. */
4878
d1183b06 4879 for (int i = result.size () - 1; i >= 0; i -= 1)
4c4b4cd2 4880 {
d1183b06 4881 if (lesseq_defined_than (sym, result[i].symbol))
dda83cd7 4882 return;
d1183b06 4883 else if (lesseq_defined_than (result[i].symbol, sym))
dda83cd7 4884 {
d1183b06
TT
4885 result[i].symbol = sym;
4886 result[i].block = block;
dda83cd7
SM
4887 return;
4888 }
4c4b4cd2
PH
4889 }
4890
d1183b06
TT
4891 struct block_symbol info;
4892 info.symbol = sym;
4893 info.block = block;
4894 result.push_back (info);
4c4b4cd2
PH
4895}
4896
7c7b6655
TT
4897/* Return a bound minimal symbol matching NAME according to Ada
4898 decoding rules. Returns an invalid symbol if there is no such
4899 minimal symbol. Names prefixed with "standard__" are handled
4900 specially: "standard__" is first stripped off, and only static and
4901 global symbols are searched. */
4c4b4cd2 4902
7c7b6655 4903struct bound_minimal_symbol
06a670e2 4904ada_lookup_simple_minsym (const char *name, struct objfile *objfile)
4c4b4cd2 4905{
7c7b6655 4906 struct bound_minimal_symbol result;
4c4b4cd2 4907
b5ec771e
PA
4908 symbol_name_match_type match_type = name_match_type_from_name (name);
4909 lookup_name_info lookup_name (name, match_type);
4910
4911 symbol_name_matcher_ftype *match_name
4912 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4913
06a670e2
MM
4914 gdbarch_iterate_over_objfiles_in_search_order
4915 (objfile != NULL ? objfile->arch () : target_gdbarch (),
4916 [&result, lookup_name, match_name] (struct objfile *obj)
4917 {
4918 for (minimal_symbol *msymbol : obj->msymbols ())
4919 {
4920 if (match_name (msymbol->linkage_name (), lookup_name, nullptr)
4921 && msymbol->type () != mst_solib_trampoline)
4922 {
4923 result.minsym = msymbol;
4924 result.objfile = obj;
4925 return 1;
4926 }
4927 }
4928
4929 return 0;
4930 }, objfile);
4c4b4cd2 4931
7c7b6655 4932 return result;
96d887e8 4933}
4c4b4cd2 4934
96d887e8
PH
4935/* True if TYPE is definitely an artificial type supplied to a symbol
4936 for which no debugging information was given in the symbol file. */
14f9c5c9 4937
96d887e8
PH
4938static int
4939is_nondebugging_type (struct type *type)
4940{
0d5cff50 4941 const char *name = ada_type_name (type);
5b4ee69b 4942
96d887e8
PH
4943 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4944}
4c4b4cd2 4945
8f17729f
JB
4946/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4947 that are deemed "identical" for practical purposes.
4948
4949 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4950 types and that their number of enumerals is identical (in other
1f704f76 4951 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4952
4953static int
4954ada_identical_enum_types_p (struct type *type1, struct type *type2)
4955{
4956 int i;
4957
4958 /* The heuristic we use here is fairly conservative. We consider
4959 that 2 enumerate types are identical if they have the same
4960 number of enumerals and that all enumerals have the same
4961 underlying value and name. */
4962
4963 /* All enums in the type should have an identical underlying value. */
1f704f76 4964 for (i = 0; i < type1->num_fields (); i++)
970db518 4965 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
8f17729f
JB
4966 return 0;
4967
4968 /* All enumerals should also have the same name (modulo any numerical
4969 suffix). */
1f704f76 4970 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4971 {
33d16dd9
SM
4972 const char *name_1 = type1->field (i).name ();
4973 const char *name_2 = type2->field (i).name ();
8f17729f
JB
4974 int len_1 = strlen (name_1);
4975 int len_2 = strlen (name_2);
4976
33d16dd9
SM
4977 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4978 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
8f17729f 4979 if (len_1 != len_2
33d16dd9
SM
4980 || strncmp (type1->field (i).name (),
4981 type2->field (i).name (),
8f17729f
JB
4982 len_1) != 0)
4983 return 0;
4984 }
4985
4986 return 1;
4987}
4988
4989/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4990 that are deemed "identical" for practical purposes. Sometimes,
4991 enumerals are not strictly identical, but their types are so similar
4992 that they can be considered identical.
4993
4994 For instance, consider the following code:
4995
4996 type Color is (Black, Red, Green, Blue, White);
4997 type RGB_Color is new Color range Red .. Blue;
4998
4999 Type RGB_Color is a subrange of an implicit type which is a copy
5000 of type Color. If we call that implicit type RGB_ColorB ("B" is
5001 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5002 As a result, when an expression references any of the enumeral
5003 by name (Eg. "print green"), the expression is technically
5004 ambiguous and the user should be asked to disambiguate. But
5005 doing so would only hinder the user, since it wouldn't matter
5006 what choice he makes, the outcome would always be the same.
5007 So, for practical purposes, we consider them as the same. */
5008
5009static int
54d343a2 5010symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5011{
5012 int i;
5013
5014 /* Before performing a thorough comparison check of each type,
5015 we perform a series of inexpensive checks. We expect that these
5016 checks will quickly fail in the vast majority of cases, and thus
5017 help prevent the unnecessary use of a more expensive comparison.
5018 Said comparison also expects us to make some of these checks
5019 (see ada_identical_enum_types_p). */
5020
5021 /* Quick check: All symbols should have an enum type. */
54d343a2 5022 for (i = 0; i < syms.size (); i++)
5f9c5a63 5023 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
8f17729f
JB
5024 return 0;
5025
5026 /* Quick check: They should all have the same value. */
54d343a2 5027 for (i = 1; i < syms.size (); i++)
4aeddc50 5028 if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
8f17729f
JB
5029 return 0;
5030
5031 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5032 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
5033 if (syms[i].symbol->type ()->num_fields ()
5034 != syms[0].symbol->type ()->num_fields ())
8f17729f
JB
5035 return 0;
5036
5037 /* All the sanity checks passed, so we might have a set of
5038 identical enumeration types. Perform a more complete
5039 comparison of the type of each symbol. */
54d343a2 5040 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
5041 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5042 syms[0].symbol->type ()))
8f17729f
JB
5043 return 0;
5044
5045 return 1;
5046}
5047
54d343a2 5048/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5049 duplicate other symbols in the list (The only case I know of where
5050 this happens is when object files containing stabs-in-ecoff are
5051 linked with files containing ordinary ecoff debugging symbols (or no
1bfa81ac 5052 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4c4b4cd2 5053
d1183b06 5054static void
54d343a2 5055remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5056{
5057 int i, j;
4c4b4cd2 5058
8f17729f
JB
5059 /* We should never be called with less than 2 symbols, as there
5060 cannot be any extra symbol in that case. But it's easy to
5061 handle, since we have nothing to do in that case. */
54d343a2 5062 if (syms->size () < 2)
d1183b06 5063 return;
8f17729f 5064
96d887e8 5065 i = 0;
54d343a2 5066 while (i < syms->size ())
96d887e8 5067 {
a35ddb44 5068 int remove_p = 0;
339c13b6
JB
5069
5070 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 5071 the get rid of the stub. */
339c13b6 5072
5f9c5a63 5073 if ((*syms)[i].symbol->type ()->is_stub ()
dda83cd7
SM
5074 && (*syms)[i].symbol->linkage_name () != NULL)
5075 {
5076 for (j = 0; j < syms->size (); j++)
5077 {
5078 if (j != i
5f9c5a63 5079 && !(*syms)[j].symbol->type ()->is_stub ()
dda83cd7
SM
5080 && (*syms)[j].symbol->linkage_name () != NULL
5081 && strcmp ((*syms)[i].symbol->linkage_name (),
5082 (*syms)[j].symbol->linkage_name ()) == 0)
5083 remove_p = 1;
5084 }
5085 }
339c13b6
JB
5086
5087 /* Two symbols with the same name, same class and same address
dda83cd7 5088 should be identical. */
339c13b6 5089
987012b8 5090 else if ((*syms)[i].symbol->linkage_name () != NULL
66d7f48f 5091 && (*syms)[i].symbol->aclass () == LOC_STATIC
5f9c5a63 5092 && is_nondebugging_type ((*syms)[i].symbol->type ()))
dda83cd7
SM
5093 {
5094 for (j = 0; j < syms->size (); j += 1)
5095 {
5096 if (i != j
5097 && (*syms)[j].symbol->linkage_name () != NULL
5098 && strcmp ((*syms)[i].symbol->linkage_name (),
5099 (*syms)[j].symbol->linkage_name ()) == 0
66d7f48f
SM
5100 && ((*syms)[i].symbol->aclass ()
5101 == (*syms)[j].symbol->aclass ())
4aeddc50
SM
5102 && (*syms)[i].symbol->value_address ()
5103 == (*syms)[j].symbol->value_address ())
dda83cd7
SM
5104 remove_p = 1;
5105 }
5106 }
339c13b6 5107
a35ddb44 5108 if (remove_p)
54d343a2 5109 syms->erase (syms->begin () + i);
1b788fb6
TT
5110 else
5111 i += 1;
14f9c5c9 5112 }
8f17729f
JB
5113
5114 /* If all the remaining symbols are identical enumerals, then
5115 just keep the first one and discard the rest.
5116
5117 Unlike what we did previously, we do not discard any entry
5118 unless they are ALL identical. This is because the symbol
5119 comparison is not a strict comparison, but rather a practical
5120 comparison. If all symbols are considered identical, then
5121 we can just go ahead and use the first one and discard the rest.
5122 But if we cannot reduce the list to a single element, we have
5123 to ask the user to disambiguate anyways. And if we have to
5124 present a multiple-choice menu, it's less confusing if the list
5125 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5126 if (symbols_are_identical_enums (*syms))
5127 syms->resize (1);
14f9c5c9
AS
5128}
5129
96d887e8
PH
5130/* Given a type that corresponds to a renaming entity, use the type name
5131 to extract the scope (package name or function name, fully qualified,
5132 and following the GNAT encoding convention) where this renaming has been
49d83361 5133 defined. */
4c4b4cd2 5134
49d83361 5135static std::string
96d887e8 5136xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5137{
96d887e8 5138 /* The renaming types adhere to the following convention:
0963b4bd 5139 <scope>__<rename>___<XR extension>.
96d887e8
PH
5140 So, to extract the scope, we search for the "___XR" extension,
5141 and then backtrack until we find the first "__". */
76a01679 5142
7d93a1e0 5143 const char *name = renaming_type->name ();
108d56a4
SM
5144 const char *suffix = strstr (name, "___XR");
5145 const char *last;
14f9c5c9 5146
96d887e8
PH
5147 /* Now, backtrack a bit until we find the first "__". Start looking
5148 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5149
96d887e8
PH
5150 for (last = suffix - 3; last > name; last--)
5151 if (last[0] == '_' && last[1] == '_')
5152 break;
76a01679 5153
96d887e8 5154 /* Make a copy of scope and return it. */
49d83361 5155 return std::string (name, last);
4c4b4cd2
PH
5156}
5157
96d887e8 5158/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5159
96d887e8
PH
5160static int
5161is_package_name (const char *name)
4c4b4cd2 5162{
96d887e8
PH
5163 /* Here, We take advantage of the fact that no symbols are generated
5164 for packages, while symbols are generated for each function.
5165 So the condition for NAME represent a package becomes equivalent
5166 to NAME not existing in our list of symbols. There is only one
5167 small complication with library-level functions (see below). */
4c4b4cd2 5168
96d887e8
PH
5169 /* If it is a function that has not been defined at library level,
5170 then we should be able to look it up in the symbols. */
5171 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5172 return 0;
14f9c5c9 5173
96d887e8
PH
5174 /* Library-level function names start with "_ada_". See if function
5175 "_ada_" followed by NAME can be found. */
14f9c5c9 5176
96d887e8 5177 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5178 functions names cannot contain "__" in them. */
96d887e8
PH
5179 if (strstr (name, "__") != NULL)
5180 return 0;
4c4b4cd2 5181
528e1572 5182 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5183
528e1572 5184 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5185}
14f9c5c9 5186
96d887e8 5187/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5188 not visible from FUNCTION_NAME. */
14f9c5c9 5189
96d887e8 5190static int
0d5cff50 5191old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5192{
66d7f48f 5193 if (sym->aclass () != LOC_TYPEDEF)
aeb5907d
JB
5194 return 0;
5195
5f9c5a63 5196 std::string scope = xget_renaming_scope (sym->type ());
14f9c5c9 5197
96d887e8 5198 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5199 if (is_package_name (scope.c_str ()))
5200 return 0;
14f9c5c9 5201
96d887e8
PH
5202 /* Check that the rename is in the current function scope by checking
5203 that its name starts with SCOPE. */
76a01679 5204
96d887e8
PH
5205 /* If the function name starts with "_ada_", it means that it is
5206 a library-level function. Strip this prefix before doing the
5207 comparison, as the encoding for the renaming does not contain
5208 this prefix. */
61012eef 5209 if (startswith (function_name, "_ada_"))
96d887e8 5210 function_name += 5;
f26caa11 5211
49d83361 5212 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5213}
5214
aeb5907d
JB
5215/* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
d1183b06
TT
5219 SYMS.
5220
96d887e8 5221 Rationale:
aeb5907d
JB
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
f26caa11 5234
96d887e8
PH
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
dda83cd7
SM
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
96d887e8 5247 - This function will incorrectly remove valid renames if
dda83cd7
SM
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
4c4b4cd2 5251
d1183b06 5252static void
54d343a2
TT
5253remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5254 const struct block *current_block)
4c4b4cd2
PH
5255{
5256 struct symbol *current_function;
0d5cff50 5257 const char *current_function_name;
4c4b4cd2 5258 int i;
aeb5907d
JB
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
0963b4bd 5263 First, zero out such symbols, then compress. */
aeb5907d 5264 is_new_style_renaming = 0;
54d343a2 5265 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5266 {
54d343a2
TT
5267 struct symbol *sym = (*syms)[i].symbol;
5268 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5269 const char *name;
5270 const char *suffix;
5271
66d7f48f 5272 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
aeb5907d 5273 continue;
987012b8 5274 name = sym->linkage_name ();
aeb5907d
JB
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5b4ee69b 5281
aeb5907d 5282 is_new_style_renaming = 1;
54d343a2
TT
5283 for (j = 0; j < syms->size (); j += 1)
5284 if (i != j && (*syms)[j].symbol != NULL
987012b8 5285 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5286 name_len) == 0
54d343a2
TT
5287 && block == (*syms)[j].block)
5288 (*syms)[j].symbol = NULL;
aeb5907d
JB
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
54d343a2
TT
5295 for (j = k = 0; j < syms->size (); j += 1)
5296 if ((*syms)[j].symbol != NULL)
aeb5907d 5297 {
54d343a2 5298 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5299 k += 1;
5300 }
d1183b06
TT
5301 syms->resize (k);
5302 return;
aeb5907d 5303 }
4c4b4cd2
PH
5304
5305 /* Extract the function name associated to CURRENT_BLOCK.
5306 Abort if unable to do so. */
76a01679 5307
4c4b4cd2 5308 if (current_block == NULL)
d1183b06 5309 return;
76a01679 5310
7f0df278 5311 current_function = block_linkage_function (current_block);
4c4b4cd2 5312 if (current_function == NULL)
d1183b06 5313 return;
4c4b4cd2 5314
987012b8 5315 current_function_name = current_function->linkage_name ();
4c4b4cd2 5316 if (current_function_name == NULL)
d1183b06 5317 return;
4c4b4cd2
PH
5318
5319 /* Check each of the symbols, and remove it from the list if it is
5320 a type corresponding to a renaming that is out of the scope of
5321 the current block. */
5322
5323 i = 0;
54d343a2 5324 while (i < syms->size ())
4c4b4cd2 5325 {
54d343a2 5326 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5327 == ADA_OBJECT_RENAMING
5328 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5329 current_function_name))
5330 syms->erase (syms->begin () + i);
4c4b4cd2 5331 else
dda83cd7 5332 i += 1;
4c4b4cd2 5333 }
4c4b4cd2
PH
5334}
5335
d1183b06 5336/* Add to RESULT all symbols from BLOCK (and its super-blocks)
cd458349 5337 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
339c13b6 5338
cd458349 5339 Note: This function assumes that RESULT is empty. */
339c13b6
JB
5340
5341static void
d1183b06 5342ada_add_local_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5343 const lookup_name_info &lookup_name,
5344 const struct block *block, domain_enum domain)
339c13b6 5345{
339c13b6
JB
5346 while (block != NULL)
5347 {
d1183b06 5348 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
339c13b6 5349
ba8694b6
TT
5350 /* If we found a non-function match, assume that's the one. We
5351 only check this when finding a function boundary, so that we
5352 can accumulate all results from intervening blocks first. */
6c00f721 5353 if (block->function () != nullptr && is_nonfunction (result))
dda83cd7 5354 return;
339c13b6 5355
f135fe72 5356 block = block->superblock ();
339c13b6 5357 }
339c13b6
JB
5358}
5359
2315bb2d 5360/* An object of this type is used as the callback argument when
40658b94 5361 calling the map_matching_symbols method. */
ccefe4c4 5362
40658b94 5363struct match_data
ccefe4c4 5364{
1bfa81ac
TT
5365 explicit match_data (std::vector<struct block_symbol> *rp)
5366 : resultp (rp)
5367 {
5368 }
5369 DISABLE_COPY_AND_ASSIGN (match_data);
5370
2315bb2d
TT
5371 bool operator() (struct block_symbol *bsym);
5372
1bfa81ac 5373 struct objfile *objfile = nullptr;
d1183b06 5374 std::vector<struct block_symbol> *resultp;
1bfa81ac 5375 struct symbol *arg_sym = nullptr;
1178743e 5376 bool found_sym = false;
ccefe4c4
TT
5377};
5378
2315bb2d
TT
5379/* A callback for add_nonlocal_symbols that adds symbol, found in
5380 BSYM, to a list of symbols. */
ccefe4c4 5381
2315bb2d
TT
5382bool
5383match_data::operator() (struct block_symbol *bsym)
ccefe4c4 5384{
199b4314
TT
5385 const struct block *block = bsym->block;
5386 struct symbol *sym = bsym->symbol;
5387
40658b94
PH
5388 if (sym == NULL)
5389 {
2315bb2d
TT
5390 if (!found_sym && arg_sym != NULL)
5391 add_defn_to_vec (*resultp,
5392 fixup_symbol_section (arg_sym, objfile),
40658b94 5393 block);
2315bb2d
TT
5394 found_sym = false;
5395 arg_sym = NULL;
40658b94
PH
5396 }
5397 else
5398 {
66d7f48f 5399 if (sym->aclass () == LOC_UNRESOLVED)
199b4314 5400 return true;
d9743061 5401 else if (sym->is_argument ())
2315bb2d 5402 arg_sym = sym;
40658b94
PH
5403 else
5404 {
2315bb2d
TT
5405 found_sym = true;
5406 add_defn_to_vec (*resultp,
5407 fixup_symbol_section (sym, objfile),
40658b94
PH
5408 block);
5409 }
5410 }
199b4314 5411 return true;
40658b94
PH
5412}
5413
b5ec771e
PA
5414/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5415 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
1bfa81ac 5416 symbols to RESULT. Return whether we found such symbols. */
22cee43f
PMR
5417
5418static int
d1183b06 5419ada_add_block_renamings (std::vector<struct block_symbol> &result,
22cee43f 5420 const struct block *block,
b5ec771e
PA
5421 const lookup_name_info &lookup_name,
5422 domain_enum domain)
22cee43f
PMR
5423{
5424 struct using_direct *renaming;
d1183b06 5425 int defns_mark = result.size ();
22cee43f 5426
b5ec771e
PA
5427 symbol_name_matcher_ftype *name_match
5428 = ada_get_symbol_name_matcher (lookup_name);
5429
22cee43f
PMR
5430 for (renaming = block_using (block);
5431 renaming != NULL;
5432 renaming = renaming->next)
5433 {
5434 const char *r_name;
22cee43f
PMR
5435
5436 /* Avoid infinite recursions: skip this renaming if we are actually
5437 already traversing it.
5438
5439 Currently, symbol lookup in Ada don't use the namespace machinery from
5440 C++/Fortran support: skip namespace imports that use them. */
5441 if (renaming->searched
5442 || (renaming->import_src != NULL
5443 && renaming->import_src[0] != '\0')
5444 || (renaming->import_dest != NULL
5445 && renaming->import_dest[0] != '\0'))
5446 continue;
5447 renaming->searched = 1;
5448
5449 /* TODO: here, we perform another name-based symbol lookup, which can
5450 pull its own multiple overloads. In theory, we should be able to do
5451 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5452 not a simple name. But in order to do this, we would need to enhance
5453 the DWARF reader to associate a symbol to this renaming, instead of a
5454 name. So, for now, we do something simpler: re-use the C++/Fortran
5455 namespace machinery. */
5456 r_name = (renaming->alias != NULL
5457 ? renaming->alias
5458 : renaming->declaration);
b5ec771e
PA
5459 if (name_match (r_name, lookup_name, NULL))
5460 {
5461 lookup_name_info decl_lookup_name (renaming->declaration,
5462 lookup_name.match_type ());
d1183b06 5463 ada_add_all_symbols (result, block, decl_lookup_name, domain,
b5ec771e
PA
5464 1, NULL);
5465 }
22cee43f
PMR
5466 renaming->searched = 0;
5467 }
d1183b06 5468 return result.size () != defns_mark;
22cee43f
PMR
5469}
5470
db230ce3
JB
5471/* Implements compare_names, but only applying the comparision using
5472 the given CASING. */
5b4ee69b 5473
40658b94 5474static int
db230ce3
JB
5475compare_names_with_case (const char *string1, const char *string2,
5476 enum case_sensitivity casing)
40658b94
PH
5477{
5478 while (*string1 != '\0' && *string2 != '\0')
5479 {
db230ce3
JB
5480 char c1, c2;
5481
40658b94
PH
5482 if (isspace (*string1) || isspace (*string2))
5483 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5484
5485 if (casing == case_sensitive_off)
5486 {
5487 c1 = tolower (*string1);
5488 c2 = tolower (*string2);
5489 }
5490 else
5491 {
5492 c1 = *string1;
5493 c2 = *string2;
5494 }
5495 if (c1 != c2)
40658b94 5496 break;
db230ce3 5497
40658b94
PH
5498 string1 += 1;
5499 string2 += 1;
5500 }
db230ce3 5501
40658b94
PH
5502 switch (*string1)
5503 {
5504 case '(':
5505 return strcmp_iw_ordered (string1, string2);
5506 case '_':
5507 if (*string2 == '\0')
5508 {
052874e8 5509 if (is_name_suffix (string1))
40658b94
PH
5510 return 0;
5511 else
1a1d5513 5512 return 1;
40658b94 5513 }
dbb8534f 5514 /* FALLTHROUGH */
40658b94
PH
5515 default:
5516 if (*string2 == '(')
5517 return strcmp_iw_ordered (string1, string2);
5518 else
db230ce3
JB
5519 {
5520 if (casing == case_sensitive_off)
5521 return tolower (*string1) - tolower (*string2);
5522 else
5523 return *string1 - *string2;
5524 }
40658b94 5525 }
ccefe4c4
TT
5526}
5527
db230ce3
JB
5528/* Compare STRING1 to STRING2, with results as for strcmp.
5529 Compatible with strcmp_iw_ordered in that...
5530
5531 strcmp_iw_ordered (STRING1, STRING2) <= 0
5532
5533 ... implies...
5534
5535 compare_names (STRING1, STRING2) <= 0
5536
5537 (they may differ as to what symbols compare equal). */
5538
5539static int
5540compare_names (const char *string1, const char *string2)
5541{
5542 int result;
5543
5544 /* Similar to what strcmp_iw_ordered does, we need to perform
5545 a case-insensitive comparison first, and only resort to
5546 a second, case-sensitive, comparison if the first one was
5547 not sufficient to differentiate the two strings. */
5548
5549 result = compare_names_with_case (string1, string2, case_sensitive_off);
5550 if (result == 0)
5551 result = compare_names_with_case (string1, string2, case_sensitive_on);
5552
5553 return result;
5554}
5555
b5ec771e
PA
5556/* Convenience function to get at the Ada encoded lookup name for
5557 LOOKUP_NAME, as a C string. */
5558
5559static const char *
5560ada_lookup_name (const lookup_name_info &lookup_name)
5561{
5562 return lookup_name.ada ().lookup_name ().c_str ();
5563}
5564
0b7b2c2a
TT
5565/* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5566 for OBJFILE, then walk the objfile's symtabs and update the
5567 results. */
5568
5569static void
5570map_matching_symbols (struct objfile *objfile,
5571 const lookup_name_info &lookup_name,
5572 bool is_wild_match,
5573 domain_enum domain,
5574 int global,
5575 match_data &data)
5576{
5577 data.objfile = objfile;
5578 objfile->expand_matching_symbols (lookup_name, domain, global,
5579 is_wild_match ? nullptr : compare_names);
5580
5581 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5582 for (compunit_symtab *symtab : objfile->compunits ())
5583 {
5584 const struct block *block
63d609de 5585 = symtab->blockvector ()->block (block_kind);
0b7b2c2a
TT
5586 if (!iterate_over_symbols_terminated (block, lookup_name,
5587 domain, data))
5588 break;
5589 }
5590}
5591
1bfa81ac 5592/* Add to RESULT all non-local symbols whose name and domain match
b5ec771e
PA
5593 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5594 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5595 symbols otherwise. */
339c13b6
JB
5596
5597static void
d1183b06 5598add_nonlocal_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5599 const lookup_name_info &lookup_name,
5600 domain_enum domain, int global)
339c13b6 5601{
1bfa81ac 5602 struct match_data data (&result);
339c13b6 5603
b5ec771e
PA
5604 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5605
2030c079 5606 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5607 {
0b7b2c2a
TT
5608 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5609 global, data);
22cee43f 5610
b669c953 5611 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5612 {
5613 const struct block *global_block
63d609de 5614 = cu->blockvector ()->global_block ();
22cee43f 5615
d1183b06 5616 if (ada_add_block_renamings (result, global_block, lookup_name,
b5ec771e 5617 domain))
1178743e 5618 data.found_sym = true;
22cee43f 5619 }
40658b94
PH
5620 }
5621
d1183b06 5622 if (result.empty () && global && !is_wild_match)
40658b94 5623 {
b5ec771e 5624 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5625 std::string bracket_name = std::string ("<_ada_") + name + '>';
5626 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5627
2030c079 5628 for (objfile *objfile : current_program_space->objfiles ())
0b7b2c2a
TT
5629 map_matching_symbols (objfile, name1, false, domain, global, data);
5630 }
339c13b6
JB
5631}
5632
b5ec771e
PA
5633/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5634 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
1bfa81ac 5635 returning the number of matches. Add these to RESULT.
4eeaa230 5636
22cee43f
PMR
5637 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5638 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5639 is the one match returned (no other matches in that or
d9680e73 5640 enclosing blocks is returned). If there are any matches in or
22cee43f 5641 surrounding BLOCK, then these alone are returned.
4eeaa230 5642
b5ec771e
PA
5643 Names prefixed with "standard__" are handled specially:
5644 "standard__" is first stripped off (by the lookup_name
5645 constructor), and only static and global symbols are searched.
14f9c5c9 5646
22cee43f
PMR
5647 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5648 to lookup global symbols. */
5649
5650static void
d1183b06 5651ada_add_all_symbols (std::vector<struct block_symbol> &result,
22cee43f 5652 const struct block *block,
b5ec771e 5653 const lookup_name_info &lookup_name,
22cee43f
PMR
5654 domain_enum domain,
5655 int full_search,
5656 int *made_global_lookup_p)
14f9c5c9
AS
5657{
5658 struct symbol *sym;
14f9c5c9 5659
22cee43f
PMR
5660 if (made_global_lookup_p)
5661 *made_global_lookup_p = 0;
339c13b6
JB
5662
5663 /* Special case: If the user specifies a symbol name inside package
5664 Standard, do a non-wild matching of the symbol name without
5665 the "standard__" prefix. This was primarily introduced in order
5666 to allow the user to specifically access the standard exceptions
5667 using, for instance, Standard.Constraint_Error when Constraint_Error
5668 is ambiguous (due to the user defining its own Constraint_Error
5669 entity inside its program). */
b5ec771e
PA
5670 if (lookup_name.ada ().standard_p ())
5671 block = NULL;
4c4b4cd2 5672
339c13b6 5673 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5674
4eeaa230
DE
5675 if (block != NULL)
5676 {
5677 if (full_search)
d1183b06 5678 ada_add_local_symbols (result, lookup_name, block, domain);
4eeaa230
DE
5679 else
5680 {
5681 /* In the !full_search case we're are being called by
4009ee92 5682 iterate_over_symbols, and we don't want to search
4eeaa230 5683 superblocks. */
d1183b06 5684 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4eeaa230 5685 }
d1183b06 5686 if (!result.empty () || !full_search)
22cee43f 5687 return;
4eeaa230 5688 }
d2e4a39e 5689
339c13b6
JB
5690 /* No non-global symbols found. Check our cache to see if we have
5691 already performed this search before. If we have, then return
5692 the same result. */
5693
b5ec771e
PA
5694 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5695 domain, &sym, &block))
4c4b4cd2
PH
5696 {
5697 if (sym != NULL)
d1183b06 5698 add_defn_to_vec (result, sym, block);
22cee43f 5699 return;
4c4b4cd2 5700 }
14f9c5c9 5701
22cee43f
PMR
5702 if (made_global_lookup_p)
5703 *made_global_lookup_p = 1;
b1eedac9 5704
339c13b6
JB
5705 /* Search symbols from all global blocks. */
5706
d1183b06 5707 add_nonlocal_symbols (result, lookup_name, domain, 1);
d2e4a39e 5708
4c4b4cd2 5709 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5710 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5711
d1183b06
TT
5712 if (result.empty ())
5713 add_nonlocal_symbols (result, lookup_name, domain, 0);
22cee43f
PMR
5714}
5715
b5ec771e 5716/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
d1183b06
TT
5717 is non-zero, enclosing scope and in global scopes.
5718
5719 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5720 blocks and symbol tables (if any) in which they were found.
22cee43f
PMR
5721
5722 When full_search is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially: "standard__"
5729 is first stripped off, and only static and global symbols are searched. */
5730
d1183b06 5731static std::vector<struct block_symbol>
b5ec771e
PA
5732ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5733 const struct block *block,
22cee43f 5734 domain_enum domain,
22cee43f
PMR
5735 int full_search)
5736{
22cee43f 5737 int syms_from_global_search;
d1183b06 5738 std::vector<struct block_symbol> results;
22cee43f 5739
d1183b06 5740 ada_add_all_symbols (results, block, lookup_name,
b5ec771e 5741 domain, full_search, &syms_from_global_search);
14f9c5c9 5742
d1183b06 5743 remove_extra_symbols (&results);
4c4b4cd2 5744
d1183b06 5745 if (results.empty () && full_search && syms_from_global_search)
b5ec771e 5746 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5747
d1183b06 5748 if (results.size () == 1 && full_search && syms_from_global_search)
b5ec771e 5749 cache_symbol (ada_lookup_name (lookup_name), domain,
d1183b06 5750 results[0].symbol, results[0].block);
ec6a20c2 5751
d1183b06
TT
5752 remove_irrelevant_renamings (&results, block);
5753 return results;
14f9c5c9
AS
5754}
5755
b5ec771e 5756/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
d1183b06 5757 in global scopes, returning (SYM,BLOCK) tuples.
ec6a20c2 5758
4eeaa230
DE
5759 See ada_lookup_symbol_list_worker for further details. */
5760
d1183b06 5761std::vector<struct block_symbol>
b5ec771e 5762ada_lookup_symbol_list (const char *name, const struct block *block,
d1183b06 5763 domain_enum domain)
4eeaa230 5764{
b5ec771e
PA
5765 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5766 lookup_name_info lookup_name (name, name_match_type);
5767
d1183b06 5768 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
4eeaa230
DE
5769}
5770
4e5c77fe
JB
5771/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5772 to 1, but choosing the first symbol found if there are multiple
5773 choices.
5774
5e2336be
JB
5775 The result is stored in *INFO, which must be non-NULL.
5776 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5777
5778void
5779ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5780 domain_enum domain,
d12307c1 5781 struct block_symbol *info)
14f9c5c9 5782{
b5ec771e
PA
5783 /* Since we already have an encoded name, wrap it in '<>' to force a
5784 verbatim match. Otherwise, if the name happens to not look like
5785 an encoded name (because it doesn't include a "__"),
5786 ada_lookup_name_info would re-encode/fold it again, and that
5787 would e.g., incorrectly lowercase object renaming names like
5788 "R28b" -> "r28b". */
12932e2c 5789 std::string verbatim = add_angle_brackets (name);
b5ec771e 5790
5e2336be 5791 gdb_assert (info != NULL);
65392b3e 5792 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5793}
aeb5907d
JB
5794
5795/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5796 scope and in global scopes, or NULL if none. NAME is folded and
5797 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5798 choosing the first symbol if there are multiple choices. */
4e5c77fe 5799
d12307c1 5800struct block_symbol
aeb5907d 5801ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5802 domain_enum domain)
aeb5907d 5803{
d1183b06
TT
5804 std::vector<struct block_symbol> candidates
5805 = ada_lookup_symbol_list (name, block0, domain);
f98fc17b 5806
d1183b06 5807 if (candidates.empty ())
54d343a2 5808 return {};
f98fc17b
PA
5809
5810 block_symbol info = candidates[0];
5811 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5812 return info;
4c4b4cd2 5813}
14f9c5c9 5814
14f9c5c9 5815
4c4b4cd2
PH
5816/* True iff STR is a possible encoded suffix of a normal Ada name
5817 that is to be ignored for matching purposes. Suffixes of parallel
5818 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5819 are given by any of the regular expressions:
4c4b4cd2 5820
babe1480
JB
5821 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5822 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5823 TKB [subprogram suffix for task bodies]
babe1480 5824 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5825 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5826
5827 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5828 match is performed. This sequence is used to differentiate homonyms,
5829 is an optional part of a valid name suffix. */
4c4b4cd2 5830
14f9c5c9 5831static int
d2e4a39e 5832is_name_suffix (const char *str)
14f9c5c9
AS
5833{
5834 int k;
4c4b4cd2
PH
5835 const char *matching;
5836 const int len = strlen (str);
5837
babe1480
JB
5838 /* Skip optional leading __[0-9]+. */
5839
4c4b4cd2
PH
5840 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5841 {
babe1480
JB
5842 str += 3;
5843 while (isdigit (str[0]))
dda83cd7 5844 str += 1;
4c4b4cd2 5845 }
babe1480
JB
5846
5847 /* [.$][0-9]+ */
4c4b4cd2 5848
babe1480 5849 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5850 {
babe1480 5851 matching = str + 1;
4c4b4cd2 5852 while (isdigit (matching[0]))
dda83cd7 5853 matching += 1;
4c4b4cd2 5854 if (matching[0] == '\0')
dda83cd7 5855 return 1;
4c4b4cd2
PH
5856 }
5857
5858 /* ___[0-9]+ */
babe1480 5859
4c4b4cd2
PH
5860 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5861 {
5862 matching = str + 3;
5863 while (isdigit (matching[0]))
dda83cd7 5864 matching += 1;
4c4b4cd2 5865 if (matching[0] == '\0')
dda83cd7 5866 return 1;
4c4b4cd2
PH
5867 }
5868
9ac7f98e
JB
5869 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5870
5871 if (strcmp (str, "TKB") == 0)
5872 return 1;
5873
529cad9c
PH
5874#if 0
5875 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5876 with a N at the end. Unfortunately, the compiler uses the same
5877 convention for other internal types it creates. So treating
529cad9c 5878 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5879 some regressions. For instance, consider the case of an enumerated
5880 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5881 name ends with N.
5882 Having a single character like this as a suffix carrying some
0963b4bd 5883 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5884 to be something like "_N" instead. In the meantime, do not do
5885 the following check. */
5886 /* Protected Object Subprograms */
5887 if (len == 1 && str [0] == 'N')
5888 return 1;
5889#endif
5890
5891 /* _E[0-9]+[bs]$ */
5892 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5893 {
5894 matching = str + 3;
5895 while (isdigit (matching[0]))
dda83cd7 5896 matching += 1;
529cad9c 5897 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5898 && matching [1] == '\0')
5899 return 1;
529cad9c
PH
5900 }
5901
4c4b4cd2
PH
5902 /* ??? We should not modify STR directly, as we are doing below. This
5903 is fine in this case, but may become problematic later if we find
5904 that this alternative did not work, and want to try matching
5905 another one from the begining of STR. Since we modified it, we
5906 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5907 if (str[0] == 'X')
5908 {
5909 str += 1;
d2e4a39e 5910 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5911 {
5912 if (str[0] != 'n' && str[0] != 'b')
5913 return 0;
5914 str += 1;
5915 }
14f9c5c9 5916 }
babe1480 5917
14f9c5c9
AS
5918 if (str[0] == '\000')
5919 return 1;
babe1480 5920
d2e4a39e 5921 if (str[0] == '_')
14f9c5c9
AS
5922 {
5923 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5924 return 0;
d2e4a39e 5925 if (str[2] == '_')
dda83cd7
SM
5926 {
5927 if (strcmp (str + 3, "JM") == 0)
5928 return 1;
5929 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5930 the LJM suffix in favor of the JM one. But we will
5931 still accept LJM as a valid suffix for a reasonable
5932 amount of time, just to allow ourselves to debug programs
5933 compiled using an older version of GNAT. */
5934 if (strcmp (str + 3, "LJM") == 0)
5935 return 1;
5936 if (str[3] != 'X')
5937 return 0;
5938 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5939 || str[4] == 'U' || str[4] == 'P')
5940 return 1;
5941 if (str[4] == 'R' && str[5] != 'T')
5942 return 1;
5943 return 0;
5944 }
4c4b4cd2 5945 if (!isdigit (str[2]))
dda83cd7 5946 return 0;
4c4b4cd2 5947 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5948 if (!isdigit (str[k]) && str[k] != '_')
5949 return 0;
14f9c5c9
AS
5950 return 1;
5951 }
4c4b4cd2 5952 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5953 {
4c4b4cd2 5954 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5955 if (!isdigit (str[k]) && str[k] != '_')
5956 return 0;
14f9c5c9
AS
5957 return 1;
5958 }
5959 return 0;
5960}
d2e4a39e 5961
aeb5907d
JB
5962/* Return non-zero if the string starting at NAME and ending before
5963 NAME_END contains no capital letters. */
529cad9c
PH
5964
5965static int
5966is_valid_name_for_wild_match (const char *name0)
5967{
f945dedf 5968 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5969 int i;
5970
5823c3ef
JB
5971 /* If the decoded name starts with an angle bracket, it means that
5972 NAME0 does not follow the GNAT encoding format. It should then
5973 not be allowed as a possible wild match. */
5974 if (decoded_name[0] == '<')
5975 return 0;
5976
529cad9c
PH
5977 for (i=0; decoded_name[i] != '\0'; i++)
5978 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5979 return 0;
5980
5981 return 1;
5982}
5983
59c8a30b
JB
5984/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5985 character which could start a simple name. Assumes that *NAMEP points
5986 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5987
14f9c5c9 5988static int
59c8a30b 5989advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5990{
73589123 5991 const char *name = *namep;
5b4ee69b 5992
5823c3ef 5993 while (1)
14f9c5c9 5994 {
59c8a30b 5995 char t0, t1;
73589123
PH
5996
5997 t0 = *name;
5998 if (t0 == '_')
5999 {
6000 t1 = name[1];
6001 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6002 {
6003 name += 1;
61012eef 6004 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6005 break;
6006 else
6007 name += 1;
6008 }
aa27d0b3
JB
6009 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6010 || name[2] == target0))
73589123
PH
6011 {
6012 name += 2;
6013 break;
6014 }
86b44259
TT
6015 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6016 {
6017 /* Names like "pkg__B_N__name", where N is a number, are
6018 block-local. We can handle these by simply skipping
6019 the "B_" here. */
6020 name += 4;
6021 }
73589123
PH
6022 else
6023 return 0;
6024 }
6025 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6026 name += 1;
6027 else
5823c3ef 6028 return 0;
73589123
PH
6029 }
6030
6031 *namep = name;
6032 return 1;
6033}
6034
b5ec771e
PA
6035/* Return true iff NAME encodes a name of the form prefix.PATN.
6036 Ignores any informational suffixes of NAME (i.e., for which
6037 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6038 simple name. */
73589123 6039
b5ec771e 6040static bool
73589123
PH
6041wild_match (const char *name, const char *patn)
6042{
22e048c9 6043 const char *p;
73589123
PH
6044 const char *name0 = name;
6045
81eaa506
TT
6046 if (startswith (name, "___ghost_"))
6047 name += 9;
6048
73589123
PH
6049 while (1)
6050 {
6051 const char *match = name;
6052
6053 if (*name == *patn)
6054 {
6055 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6056 if (*p != *name)
6057 break;
6058 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6059 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6060
6061 if (name[-1] == '_')
6062 name -= 1;
6063 }
6064 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6065 return false;
96d887e8 6066 }
96d887e8
PH
6067}
6068
d1183b06 6069/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
b5ec771e 6070 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6071
6072static void
d1183b06 6073ada_add_block_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
6074 const struct block *block,
6075 const lookup_name_info &lookup_name,
6076 domain_enum domain, struct objfile *objfile)
96d887e8 6077{
8157b174 6078 struct block_iterator iter;
96d887e8
PH
6079 /* A matching argument symbol, if any. */
6080 struct symbol *arg_sym;
6081 /* Set true when we find a matching non-argument symbol. */
1178743e 6082 bool found_sym;
96d887e8
PH
6083 struct symbol *sym;
6084
6085 arg_sym = NULL;
1178743e 6086 found_sym = false;
b5ec771e
PA
6087 for (sym = block_iter_match_first (block, lookup_name, &iter);
6088 sym != NULL;
6089 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6090 {
6c9c307c 6091 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
b5ec771e 6092 {
66d7f48f 6093 if (sym->aclass () != LOC_UNRESOLVED)
b5ec771e 6094 {
d9743061 6095 if (sym->is_argument ())
b5ec771e
PA
6096 arg_sym = sym;
6097 else
6098 {
1178743e 6099 found_sym = true;
d1183b06 6100 add_defn_to_vec (result,
b5ec771e
PA
6101 fixup_symbol_section (sym, objfile),
6102 block);
6103 }
6104 }
6105 }
96d887e8
PH
6106 }
6107
22cee43f
PMR
6108 /* Handle renamings. */
6109
d1183b06 6110 if (ada_add_block_renamings (result, block, lookup_name, domain))
1178743e 6111 found_sym = true;
22cee43f 6112
96d887e8
PH
6113 if (!found_sym && arg_sym != NULL)
6114 {
d1183b06 6115 add_defn_to_vec (result,
dda83cd7
SM
6116 fixup_symbol_section (arg_sym, objfile),
6117 block);
96d887e8
PH
6118 }
6119
b5ec771e 6120 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6121 {
6122 arg_sym = NULL;
1178743e 6123 found_sym = false;
b5ec771e
PA
6124 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6125 const char *name = ada_lookup_name.c_str ();
6126 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6127
6128 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6129 {
dda83cd7 6130 if (symbol_matches_domain (sym->language (),
6c9c307c 6131 sym->domain (), domain))
dda83cd7
SM
6132 {
6133 int cmp;
6134
6135 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6136 if (cmp == 0)
6137 {
6138 cmp = !startswith (sym->linkage_name (), "_ada_");
6139 if (cmp == 0)
6140 cmp = strncmp (name, sym->linkage_name () + 5,
6141 name_len);
6142 }
6143
6144 if (cmp == 0
6145 && is_name_suffix (sym->linkage_name () + name_len + 5))
6146 {
66d7f48f 6147 if (sym->aclass () != LOC_UNRESOLVED)
2a2d4dc3 6148 {
d9743061 6149 if (sym->is_argument ())
2a2d4dc3
AS
6150 arg_sym = sym;
6151 else
6152 {
1178743e 6153 found_sym = true;
d1183b06 6154 add_defn_to_vec (result,
2a2d4dc3
AS
6155 fixup_symbol_section (sym, objfile),
6156 block);
6157 }
6158 }
dda83cd7
SM
6159 }
6160 }
76a01679 6161 }
96d887e8
PH
6162
6163 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 6164 They aren't parameters, right? */
96d887e8 6165 if (!found_sym && arg_sym != NULL)
dda83cd7 6166 {
d1183b06 6167 add_defn_to_vec (result,
dda83cd7
SM
6168 fixup_symbol_section (arg_sym, objfile),
6169 block);
6170 }
96d887e8
PH
6171 }
6172}
6173\f
41d27058 6174
dda83cd7 6175 /* Symbol Completion */
41d27058 6176
b5ec771e 6177/* See symtab.h. */
41d27058 6178
b5ec771e
PA
6179bool
6180ada_lookup_name_info::matches
6181 (const char *sym_name,
6182 symbol_name_match_type match_type,
a207cff2 6183 completion_match_result *comp_match_res) const
41d27058 6184{
b5ec771e
PA
6185 bool match = false;
6186 const char *text = m_encoded_name.c_str ();
6187 size_t text_len = m_encoded_name.size ();
41d27058
JB
6188
6189 /* First, test against the fully qualified name of the symbol. */
6190
6191 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6192 match = true;
41d27058 6193
f945dedf 6194 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6195 if (match && !m_encoded_p)
41d27058
JB
6196 {
6197 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
6198 that iff we are doing a verbatim match, the decoded version
6199 of the symbol name starts with '<'. Otherwise, this symbol name
6200 is not a suitable completion. */
41d27058 6201
f945dedf 6202 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6203 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6204 }
6205
b5ec771e 6206 if (match && !m_verbatim_p)
41d27058
JB
6207 {
6208 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
6209 be done is to verify that the potentially matching symbol name
6210 does not include capital letters, because the ada-mode would
6211 not be able to understand these symbol names without the
6212 angle bracket notation. */
41d27058
JB
6213 const char *tmp;
6214
6215 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6216 if (*tmp != '\0')
b5ec771e 6217 match = false;
41d27058
JB
6218 }
6219
6220 /* Second: Try wild matching... */
6221
b5ec771e 6222 if (!match && m_wild_match_p)
41d27058
JB
6223 {
6224 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
6225 may represent an unqualified symbol name. We therefore must
6226 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6227 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6228
6229 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6230 match = true;
41d27058
JB
6231 }
6232
b5ec771e 6233 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6234
6235 if (!match)
b5ec771e 6236 return false;
41d27058 6237
a207cff2 6238 if (comp_match_res != NULL)
b5ec771e 6239 {
a207cff2 6240 std::string &match_str = comp_match_res->match.storage ();
41d27058 6241
b5ec771e 6242 if (!m_encoded_p)
a207cff2 6243 match_str = ada_decode (sym_name);
b5ec771e
PA
6244 else
6245 {
6246 if (m_verbatim_p)
6247 match_str = add_angle_brackets (sym_name);
6248 else
6249 match_str = sym_name;
41d27058 6250
b5ec771e 6251 }
a207cff2
PA
6252
6253 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6254 }
6255
b5ec771e 6256 return true;
41d27058
JB
6257}
6258
dda83cd7 6259 /* Field Access */
96d887e8 6260
73fb9985
JB
6261/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6262 for tagged types. */
6263
6264static int
6265ada_is_dispatch_table_ptr_type (struct type *type)
6266{
0d5cff50 6267 const char *name;
73fb9985 6268
78134374 6269 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6270 return 0;
6271
27710edb 6272 name = type->target_type ()->name ();
73fb9985
JB
6273 if (name == NULL)
6274 return 0;
6275
6276 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6277}
6278
ac4a2da4
JG
6279/* Return non-zero if TYPE is an interface tag. */
6280
6281static int
6282ada_is_interface_tag (struct type *type)
6283{
7d93a1e0 6284 const char *name = type->name ();
ac4a2da4
JG
6285
6286 if (name == NULL)
6287 return 0;
6288
6289 return (strcmp (name, "ada__tags__interface_tag") == 0);
6290}
6291
963a6417
PH
6292/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6293 to be invisible to users. */
96d887e8 6294
963a6417
PH
6295int
6296ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6297{
1f704f76 6298 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6299 return 1;
ffde82bf 6300
73fb9985
JB
6301 /* Check the name of that field. */
6302 {
33d16dd9 6303 const char *name = type->field (field_num).name ();
73fb9985
JB
6304
6305 /* Anonymous field names should not be printed.
6306 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6307 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6308 if (name == NULL)
6309 return 1;
6310
ffde82bf
JB
6311 /* Normally, fields whose name start with an underscore ("_")
6312 are fields that have been internally generated by the compiler,
6313 and thus should not be printed. The "_parent" field is special,
6314 however: This is a field internally generated by the compiler
6315 for tagged types, and it contains the components inherited from
6316 the parent type. This field should not be printed as is, but
6317 should not be ignored either. */
61012eef 6318 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985 6319 return 1;
d537777d
TT
6320
6321 /* The compiler doesn't document this, but sometimes it emits
6322 a field whose name starts with a capital letter, like 'V148s'.
6323 These aren't marked as artificial in any way, but we know they
6324 should be ignored. However, wrapper fields should not be
6325 ignored. */
6326 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6327 {
6328 /* Wrapper field. */
6329 }
6330 else if (isupper (name[0]))
6331 return 1;
73fb9985
JB
6332 }
6333
ac4a2da4
JG
6334 /* If this is the dispatch table of a tagged type or an interface tag,
6335 then ignore. */
73fb9985 6336 if (ada_is_tagged_type (type, 1)
940da03e
SM
6337 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6338 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6339 return 1;
6340
6341 /* Not a special field, so it should not be ignored. */
6342 return 0;
963a6417 6343}
96d887e8 6344
963a6417 6345/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6346 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6347
963a6417
PH
6348int
6349ada_is_tagged_type (struct type *type, int refok)
6350{
988f6b3d 6351 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6352}
96d887e8 6353
963a6417 6354/* True iff TYPE represents the type of X'Tag */
96d887e8 6355
963a6417
PH
6356int
6357ada_is_tag_type (struct type *type)
6358{
460efde1
JB
6359 type = ada_check_typedef (type);
6360
78134374 6361 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6362 return 0;
6363 else
96d887e8 6364 {
27710edb 6365 const char *name = ada_type_name (type->target_type ());
5b4ee69b 6366
963a6417 6367 return (name != NULL
dda83cd7 6368 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6369 }
96d887e8
PH
6370}
6371
963a6417 6372/* The type of the tag on VAL. */
76a01679 6373
de93309a 6374static struct type *
963a6417 6375ada_tag_type (struct value *val)
96d887e8 6376{
988f6b3d 6377 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6378}
96d887e8 6379
b50d69b5
JG
6380/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6381 retired at Ada 05). */
6382
6383static int
6384is_ada95_tag (struct value *tag)
6385{
6386 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6387}
6388
963a6417 6389/* The value of the tag on VAL. */
96d887e8 6390
de93309a 6391static struct value *
963a6417
PH
6392ada_value_tag (struct value *val)
6393{
03ee6b2e 6394 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6395}
6396
963a6417
PH
6397/* The value of the tag on the object of type TYPE whose contents are
6398 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6399 ADDRESS. */
96d887e8 6400
963a6417 6401static struct value *
10a2c479 6402value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6403 const gdb_byte *valaddr,
dda83cd7 6404 CORE_ADDR address)
96d887e8 6405{
b5385fc0 6406 int tag_byte_offset;
963a6417 6407 struct type *tag_type;
5b4ee69b 6408
4d1795ac
TT
6409 gdb::array_view<const gdb_byte> contents;
6410 if (valaddr != nullptr)
df86565b 6411 contents = gdb::make_array_view (valaddr, type->length ());
4d1795ac
TT
6412 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6413 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6414 NULL, NULL, NULL))
96d887e8 6415 {
fc1a4b47 6416 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6417 ? NULL
6418 : valaddr + tag_byte_offset);
963a6417 6419 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6420
963a6417 6421 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6422 }
963a6417
PH
6423 return NULL;
6424}
96d887e8 6425
963a6417
PH
6426static struct type *
6427type_from_tag (struct value *tag)
6428{
f5272a3b 6429 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6430
963a6417 6431 if (type_name != NULL)
5c4258f4 6432 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6433 return NULL;
6434}
96d887e8 6435
b50d69b5
JG
6436/* Given a value OBJ of a tagged type, return a value of this
6437 type at the base address of the object. The base address, as
6438 defined in Ada.Tags, it is the address of the primary tag of
6439 the object, and therefore where the field values of its full
6440 view can be fetched. */
6441
6442struct value *
6443ada_tag_value_at_base_address (struct value *obj)
6444{
b50d69b5
JG
6445 struct value *val;
6446 LONGEST offset_to_top = 0;
6447 struct type *ptr_type, *obj_type;
6448 struct value *tag;
6449 CORE_ADDR base_address;
6450
6451 obj_type = value_type (obj);
6452
6453 /* It is the responsability of the caller to deref pointers. */
6454
78134374 6455 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6456 return obj;
6457
6458 tag = ada_value_tag (obj);
6459 if (!tag)
6460 return obj;
6461
6462 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6463
6464 if (is_ada95_tag (tag))
6465 return obj;
6466
d537777d
TT
6467 struct type *offset_type
6468 = language_lookup_primitive_type (language_def (language_ada),
6469 target_gdbarch(), "storage_offset");
6470 ptr_type = lookup_pointer_type (offset_type);
b50d69b5
JG
6471 val = value_cast (ptr_type, tag);
6472 if (!val)
6473 return obj;
6474
6475 /* It is perfectly possible that an exception be raised while
6476 trying to determine the base address, just like for the tag;
6477 see ada_tag_name for more details. We do not print the error
6478 message for the same reason. */
6479
a70b8144 6480 try
b50d69b5
JG
6481 {
6482 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6483 }
6484
230d2906 6485 catch (const gdb_exception_error &e)
492d29ea
PA
6486 {
6487 return obj;
6488 }
b50d69b5
JG
6489
6490 /* If offset is null, nothing to do. */
6491
6492 if (offset_to_top == 0)
6493 return obj;
6494
6495 /* -1 is a special case in Ada.Tags; however, what should be done
6496 is not quite clear from the documentation. So do nothing for
6497 now. */
6498
6499 if (offset_to_top == -1)
6500 return obj;
6501
d537777d
TT
6502 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6503 top is used. In this situation the offset is stored just after
6504 the tag, in the object itself. */
df86565b 6505 ULONGEST last = (((ULONGEST) 1) << (8 * offset_type->length () - 1)) - 1;
d537777d
TT
6506 if (offset_to_top == last)
6507 {
6508 struct value *tem = value_addr (tag);
6509 tem = value_ptradd (tem, 1);
6510 tem = value_cast (ptr_type, tem);
6511 offset_to_top = value_as_long (value_ind (tem));
6512 }
05527d8c
TV
6513
6514 if (offset_to_top > 0)
d537777d
TT
6515 {
6516 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6517 from the base address. This was however incompatible with
6518 C++ dispatch table: C++ uses a *negative* value to *add*
6519 to the base address. Ada's convention has therefore been
6520 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6521 use the same convention. Here, we support both cases by
6522 checking the sign of OFFSET_TO_TOP. */
6523 offset_to_top = -offset_to_top;
6524 }
08f49010
XR
6525
6526 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6527 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6528
6529 /* Make sure that we have a proper tag at the new address.
6530 Otherwise, offset_to_top is bogus (which can happen when
6531 the object is not initialized yet). */
6532
6533 if (!tag)
6534 return obj;
6535
6536 obj_type = type_from_tag (tag);
6537
6538 if (!obj_type)
6539 return obj;
6540
6541 return value_from_contents_and_address (obj_type, NULL, base_address);
6542}
6543
1b611343
JB
6544/* Return the "ada__tags__type_specific_data" type. */
6545
6546static struct type *
6547ada_get_tsd_type (struct inferior *inf)
963a6417 6548{
1b611343 6549 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6550
1b611343
JB
6551 if (data->tsd_type == 0)
6552 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6553 return data->tsd_type;
6554}
529cad9c 6555
1b611343
JB
6556/* Return the TSD (type-specific data) associated to the given TAG.
6557 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6558
1b611343 6559 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6560
1b611343
JB
6561static struct value *
6562ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6563{
4c4b4cd2 6564 struct value *val;
1b611343 6565 struct type *type;
5b4ee69b 6566
1b611343
JB
6567 /* First option: The TSD is simply stored as a field of our TAG.
6568 Only older versions of GNAT would use this format, but we have
6569 to test it first, because there are no visible markers for
6570 the current approach except the absence of that field. */
529cad9c 6571
1b611343
JB
6572 val = ada_value_struct_elt (tag, "tsd", 1);
6573 if (val)
6574 return val;
e802dbe0 6575
1b611343
JB
6576 /* Try the second representation for the dispatch table (in which
6577 there is no explicit 'tsd' field in the referent of the tag pointer,
6578 and instead the tsd pointer is stored just before the dispatch
6579 table. */
e802dbe0 6580
1b611343
JB
6581 type = ada_get_tsd_type (current_inferior());
6582 if (type == NULL)
6583 return NULL;
6584 type = lookup_pointer_type (lookup_pointer_type (type));
6585 val = value_cast (type, tag);
6586 if (val == NULL)
6587 return NULL;
6588 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6589}
6590
1b611343
JB
6591/* Given the TSD of a tag (type-specific data), return a string
6592 containing the name of the associated type.
6593
f5272a3b 6594 May return NULL if we are unable to determine the tag name. */
1b611343 6595
f5272a3b 6596static gdb::unique_xmalloc_ptr<char>
1b611343 6597ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6598{
1b611343 6599 struct value *val;
529cad9c 6600
1b611343 6601 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6602 if (val == NULL)
1b611343 6603 return NULL;
66920317
TT
6604 gdb::unique_xmalloc_ptr<char> buffer
6605 = target_read_string (value_as_address (val), INT_MAX);
6606 if (buffer == nullptr)
f5272a3b
TT
6607 return nullptr;
6608
315e4ebb 6609 try
f5272a3b 6610 {
315e4ebb
TT
6611 /* Let this throw an exception on error. If the data is
6612 uninitialized, we'd rather not have the user see a
6613 warning. */
6614 const char *folded = ada_fold_name (buffer.get (), true);
6615 return make_unique_xstrdup (folded);
6616 }
6617 catch (const gdb_exception &)
6618 {
6619 return nullptr;
f5272a3b 6620 }
4c4b4cd2
PH
6621}
6622
6623/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6624 a C string.
6625
6626 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6627 determine the name of that tag. */
4c4b4cd2 6628
f5272a3b 6629gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6630ada_tag_name (struct value *tag)
6631{
f5272a3b 6632 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6633
df407dfe 6634 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6635 return NULL;
1b611343
JB
6636
6637 /* It is perfectly possible that an exception be raised while trying
6638 to determine the TAG's name, even under normal circumstances:
6639 The associated variable may be uninitialized or corrupted, for
6640 instance. We do not let any exception propagate past this point.
6641 instead we return NULL.
6642
6643 We also do not print the error message either (which often is very
6644 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6645 the caller print a more meaningful message if necessary. */
a70b8144 6646 try
1b611343
JB
6647 {
6648 struct value *tsd = ada_get_tsd_from_tag (tag);
6649
6650 if (tsd != NULL)
6651 name = ada_tag_name_from_tsd (tsd);
6652 }
230d2906 6653 catch (const gdb_exception_error &e)
492d29ea
PA
6654 {
6655 }
1b611343
JB
6656
6657 return name;
4c4b4cd2
PH
6658}
6659
6660/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6661
d2e4a39e 6662struct type *
ebf56fd3 6663ada_parent_type (struct type *type)
14f9c5c9
AS
6664{
6665 int i;
6666
61ee279c 6667 type = ada_check_typedef (type);
14f9c5c9 6668
78134374 6669 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6670 return NULL;
6671
1f704f76 6672 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6673 if (ada_is_parent_field (type, i))
0c1f74cf 6674 {
dda83cd7 6675 struct type *parent_type = type->field (i).type ();
0c1f74cf 6676
dda83cd7
SM
6677 /* If the _parent field is a pointer, then dereference it. */
6678 if (parent_type->code () == TYPE_CODE_PTR)
27710edb 6679 parent_type = parent_type->target_type ();
dda83cd7
SM
6680 /* If there is a parallel XVS type, get the actual base type. */
6681 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6682
dda83cd7 6683 return ada_check_typedef (parent_type);
0c1f74cf 6684 }
14f9c5c9
AS
6685
6686 return NULL;
6687}
6688
4c4b4cd2
PH
6689/* True iff field number FIELD_NUM of structure type TYPE contains the
6690 parent-type (inherited) fields of a derived type. Assumes TYPE is
6691 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6692
6693int
ebf56fd3 6694ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6695{
33d16dd9 6696 const char *name = ada_check_typedef (type)->field (field_num).name ();
5b4ee69b 6697
4c4b4cd2 6698 return (name != NULL
dda83cd7
SM
6699 && (startswith (name, "PARENT")
6700 || startswith (name, "_parent")));
14f9c5c9
AS
6701}
6702
4c4b4cd2 6703/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6704 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6705 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6706 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6707 structures. */
14f9c5c9
AS
6708
6709int
ebf56fd3 6710ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6711{
33d16dd9 6712 const char *name = type->field (field_num).name ();
5b4ee69b 6713
dddc0e16
JB
6714 if (name != NULL && strcmp (name, "RETVAL") == 0)
6715 {
6716 /* This happens in functions with "out" or "in out" parameters
6717 which are passed by copy. For such functions, GNAT describes
6718 the function's return type as being a struct where the return
6719 value is in a field called RETVAL, and where the other "out"
6720 or "in out" parameters are fields of that struct. This is not
6721 a wrapper. */
6722 return 0;
6723 }
6724
d2e4a39e 6725 return (name != NULL
dda83cd7
SM
6726 && (startswith (name, "PARENT")
6727 || strcmp (name, "REP") == 0
6728 || startswith (name, "_parent")
6729 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6730}
6731
4c4b4cd2
PH
6732/* True iff field number FIELD_NUM of structure or union type TYPE
6733 is a variant wrapper. Assumes TYPE is a structure type with at least
6734 FIELD_NUM+1 fields. */
14f9c5c9
AS
6735
6736int
ebf56fd3 6737ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6738{
8ecb59f8
TT
6739 /* Only Ada types are eligible. */
6740 if (!ADA_TYPE_P (type))
6741 return 0;
6742
940da03e 6743 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6744
78134374
SM
6745 return (field_type->code () == TYPE_CODE_UNION
6746 || (is_dynamic_field (type, field_num)
27710edb 6747 && (field_type->target_type ()->code ()
c3e5cd34 6748 == TYPE_CODE_UNION)));
14f9c5c9
AS
6749}
6750
6751/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6752 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6753 returns the type of the controlling discriminant for the variant.
6754 May return NULL if the type could not be found. */
14f9c5c9 6755
d2e4a39e 6756struct type *
ebf56fd3 6757ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6758{
a121b7c1 6759 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6760
988f6b3d 6761 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6762}
6763
4c4b4cd2 6764/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6765 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6766 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6767
de93309a 6768static int
ebf56fd3 6769ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6770{
33d16dd9 6771 const char *name = type->field (field_num).name ();
5b4ee69b 6772
14f9c5c9
AS
6773 return (name != NULL && name[0] == 'O');
6774}
6775
6776/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6777 returns the name of the discriminant controlling the variant.
6778 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6779
a121b7c1 6780const char *
ebf56fd3 6781ada_variant_discrim_name (struct type *type0)
14f9c5c9 6782{
5f9febe0 6783 static std::string result;
d2e4a39e
AS
6784 struct type *type;
6785 const char *name;
6786 const char *discrim_end;
6787 const char *discrim_start;
14f9c5c9 6788
78134374 6789 if (type0->code () == TYPE_CODE_PTR)
27710edb 6790 type = type0->target_type ();
14f9c5c9
AS
6791 else
6792 type = type0;
6793
6794 name = ada_type_name (type);
6795
6796 if (name == NULL || name[0] == '\000')
6797 return "";
6798
6799 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6800 discrim_end -= 1)
6801 {
61012eef 6802 if (startswith (discrim_end, "___XVN"))
dda83cd7 6803 break;
14f9c5c9
AS
6804 }
6805 if (discrim_end == name)
6806 return "";
6807
d2e4a39e 6808 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6809 discrim_start -= 1)
6810 {
d2e4a39e 6811 if (discrim_start == name + 1)
dda83cd7 6812 return "";
76a01679 6813 if ((discrim_start > name + 3
dda83cd7
SM
6814 && startswith (discrim_start - 3, "___"))
6815 || discrim_start[-1] == '.')
6816 break;
14f9c5c9
AS
6817 }
6818
5f9febe0
TT
6819 result = std::string (discrim_start, discrim_end - discrim_start);
6820 return result.c_str ();
14f9c5c9
AS
6821}
6822
4c4b4cd2
PH
6823/* Scan STR for a subtype-encoded number, beginning at position K.
6824 Put the position of the character just past the number scanned in
6825 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6826 Return 1 if there was a valid number at the given position, and 0
6827 otherwise. A "subtype-encoded" number consists of the absolute value
6828 in decimal, followed by the letter 'm' to indicate a negative number.
6829 Assumes 0m does not occur. */
14f9c5c9
AS
6830
6831int
d2e4a39e 6832ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6833{
6834 ULONGEST RU;
6835
d2e4a39e 6836 if (!isdigit (str[k]))
14f9c5c9
AS
6837 return 0;
6838
4c4b4cd2 6839 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6840 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6841 LONGEST. */
14f9c5c9
AS
6842 RU = 0;
6843 while (isdigit (str[k]))
6844 {
d2e4a39e 6845 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6846 k += 1;
6847 }
6848
d2e4a39e 6849 if (str[k] == 'm')
14f9c5c9
AS
6850 {
6851 if (R != NULL)
dda83cd7 6852 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6853 k += 1;
6854 }
6855 else if (R != NULL)
6856 *R = (LONGEST) RU;
6857
4c4b4cd2 6858 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6859 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6860 number representable as a LONGEST (although either would probably work
6861 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6862 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6863
6864 if (new_k != NULL)
6865 *new_k = k;
6866 return 1;
6867}
6868
4c4b4cd2
PH
6869/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6870 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6871 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6872
de93309a 6873static int
ebf56fd3 6874ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6875{
33d16dd9 6876 const char *name = type->field (field_num).name ();
14f9c5c9
AS
6877 int p;
6878
6879 p = 0;
6880 while (1)
6881 {
d2e4a39e 6882 switch (name[p])
dda83cd7
SM
6883 {
6884 case '\0':
6885 return 0;
6886 case 'S':
6887 {
6888 LONGEST W;
6889
6890 if (!ada_scan_number (name, p + 1, &W, &p))
6891 return 0;
6892 if (val == W)
6893 return 1;
6894 break;
6895 }
6896 case 'R':
6897 {
6898 LONGEST L, U;
6899
6900 if (!ada_scan_number (name, p + 1, &L, &p)
6901 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6902 return 0;
6903 if (val >= L && val <= U)
6904 return 1;
6905 break;
6906 }
6907 case 'O':
6908 return 1;
6909 default:
6910 return 0;
6911 }
4c4b4cd2
PH
6912 }
6913}
6914
0963b4bd 6915/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6916
6917/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6918 ARG_TYPE, extract and return the value of one of its (non-static)
6919 fields. FIELDNO says which field. Differs from value_primitive_field
6920 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6921
5eb68a39 6922struct value *
d2e4a39e 6923ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6924 struct type *arg_type)
14f9c5c9 6925{
14f9c5c9
AS
6926 struct type *type;
6927
61ee279c 6928 arg_type = ada_check_typedef (arg_type);
940da03e 6929 type = arg_type->field (fieldno).type ();
14f9c5c9 6930
4504bbde
TT
6931 /* Handle packed fields. It might be that the field is not packed
6932 relative to its containing structure, but the structure itself is
6933 packed; in this case we must take the bit-field path. */
6934 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9 6935 {
b610c045 6936 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
14f9c5c9 6937 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6938
50888e42
SM
6939 return ada_value_primitive_packed_val (arg1,
6940 value_contents (arg1).data (),
dda83cd7
SM
6941 offset + bit_pos / 8,
6942 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6943 }
6944 else
6945 return value_primitive_field (arg1, offset, fieldno, arg_type);
6946}
6947
52ce6436
PH
6948/* Find field with name NAME in object of type TYPE. If found,
6949 set the following for each argument that is non-null:
6950 - *FIELD_TYPE_P to the field's type;
6951 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6952 an object of that type;
6953 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6954 - *BIT_SIZE_P to its size in bits if the field is packed, and
6955 0 otherwise;
6956 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6957 fields up to but not including the desired field, or by the total
6958 number of fields if not found. A NULL value of NAME never
6959 matches; the function just counts visible fields in this case.
6960
828d5846
XR
6961 Notice that we need to handle when a tagged record hierarchy
6962 has some components with the same name, like in this scenario:
6963
6964 type Top_T is tagged record
dda83cd7
SM
6965 N : Integer := 1;
6966 U : Integer := 974;
6967 A : Integer := 48;
828d5846
XR
6968 end record;
6969
6970 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6971 N : Character := 'a';
6972 C : Integer := 3;
828d5846
XR
6973 end record;
6974
6975 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6976 N : Float := 4.0;
6977 C : Character := '5';
6978 X : Integer := 6;
6979 A : Character := 'J';
828d5846
XR
6980 end record;
6981
6982 Let's say we now have a variable declared and initialized as follow:
6983
6984 TC : Top_A := new Bottom_T;
6985
6986 And then we use this variable to call this function
6987
6988 procedure Assign (Obj: in out Top_T; TV : Integer);
6989
6990 as follow:
6991
6992 Assign (Top_T (B), 12);
6993
6994 Now, we're in the debugger, and we're inside that procedure
6995 then and we want to print the value of obj.c:
6996
6997 Usually, the tagged record or one of the parent type owns the
6998 component to print and there's no issue but in this particular
6999 case, what does it mean to ask for Obj.C? Since the actual
7000 type for object is type Bottom_T, it could mean two things: type
7001 component C from the Middle_T view, but also component C from
7002 Bottom_T. So in that "undefined" case, when the component is
7003 not found in the non-resolved type (which includes all the
7004 components of the parent type), then resolve it and see if we
7005 get better luck once expanded.
7006
7007 In the case of homonyms in the derived tagged type, we don't
7008 guaranty anything, and pick the one that's easiest for us
7009 to program.
7010
0963b4bd 7011 Returns 1 if found, 0 otherwise. */
52ce6436 7012
4c4b4cd2 7013static int
0d5cff50 7014find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
7015 struct type **field_type_p,
7016 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 7017 int *index_p)
4c4b4cd2
PH
7018{
7019 int i;
828d5846 7020 int parent_offset = -1;
4c4b4cd2 7021
61ee279c 7022 type = ada_check_typedef (type);
76a01679 7023
52ce6436
PH
7024 if (field_type_p != NULL)
7025 *field_type_p = NULL;
7026 if (byte_offset_p != NULL)
d5d6fca5 7027 *byte_offset_p = 0;
52ce6436
PH
7028 if (bit_offset_p != NULL)
7029 *bit_offset_p = 0;
7030 if (bit_size_p != NULL)
7031 *bit_size_p = 0;
7032
1f704f76 7033 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2 7034 {
4d1795ac
TT
7035 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7036 type. However, we only need the values to be correct when
7037 the caller asks for them. */
7038 int bit_pos = 0, fld_offset = 0;
7039 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7040 {
b610c045 7041 bit_pos = type->field (i).loc_bitpos ();
4d1795ac
TT
7042 fld_offset = offset + bit_pos / 8;
7043 }
7044
33d16dd9 7045 const char *t_field_name = type->field (i).name ();
76a01679 7046
4c4b4cd2 7047 if (t_field_name == NULL)
dda83cd7 7048 continue;
4c4b4cd2 7049
828d5846 7050 else if (ada_is_parent_field (type, i))
dda83cd7 7051 {
828d5846
XR
7052 /* This is a field pointing us to the parent type of a tagged
7053 type. As hinted in this function's documentation, we give
7054 preference to fields in the current record first, so what
7055 we do here is just record the index of this field before
7056 we skip it. If it turns out we couldn't find our field
7057 in the current record, then we'll get back to it and search
7058 inside it whether the field might exist in the parent. */
7059
dda83cd7
SM
7060 parent_offset = i;
7061 continue;
7062 }
828d5846 7063
52ce6436 7064 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
7065 {
7066 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7067
52ce6436 7068 if (field_type_p != NULL)
940da03e 7069 *field_type_p = type->field (i).type ();
52ce6436
PH
7070 if (byte_offset_p != NULL)
7071 *byte_offset_p = fld_offset;
7072 if (bit_offset_p != NULL)
7073 *bit_offset_p = bit_pos % 8;
7074 if (bit_size_p != NULL)
7075 *bit_size_p = bit_size;
dda83cd7
SM
7076 return 1;
7077 }
4c4b4cd2 7078 else if (ada_is_wrapper_field (type, i))
dda83cd7 7079 {
940da03e 7080 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7081 field_type_p, byte_offset_p, bit_offset_p,
7082 bit_size_p, index_p))
dda83cd7
SM
7083 return 1;
7084 }
4c4b4cd2 7085 else if (ada_is_variant_part (type, i))
dda83cd7 7086 {
52ce6436
PH
7087 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7088 fixed type?? */
dda83cd7
SM
7089 int j;
7090 struct type *field_type
940da03e 7091 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7092
dda83cd7
SM
7093 for (j = 0; j < field_type->num_fields (); j += 1)
7094 {
7095 if (find_struct_field (name, field_type->field (j).type (),
7096 fld_offset
b610c045 7097 + field_type->field (j).loc_bitpos () / 8,
dda83cd7
SM
7098 field_type_p, byte_offset_p,
7099 bit_offset_p, bit_size_p, index_p))
7100 return 1;
7101 }
7102 }
52ce6436
PH
7103 else if (index_p != NULL)
7104 *index_p += 1;
4c4b4cd2 7105 }
828d5846
XR
7106
7107 /* Field not found so far. If this is a tagged type which
7108 has a parent, try finding that field in the parent now. */
7109
7110 if (parent_offset != -1)
7111 {
4d1795ac
TT
7112 /* As above, only compute the offset when truly needed. */
7113 int fld_offset = offset;
7114 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7115 {
b610c045 7116 int bit_pos = type->field (parent_offset).loc_bitpos ();
4d1795ac
TT
7117 fld_offset += bit_pos / 8;
7118 }
828d5846 7119
940da03e 7120 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
7121 fld_offset, field_type_p, byte_offset_p,
7122 bit_offset_p, bit_size_p, index_p))
7123 return 1;
828d5846
XR
7124 }
7125
4c4b4cd2
PH
7126 return 0;
7127}
7128
0963b4bd 7129/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7130
52ce6436
PH
7131static int
7132num_visible_fields (struct type *type)
7133{
7134 int n;
5b4ee69b 7135
52ce6436
PH
7136 n = 0;
7137 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7138 return n;
7139}
14f9c5c9 7140
4c4b4cd2 7141/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7142 and search in it assuming it has (class) type TYPE.
7143 If found, return value, else return NULL.
7144
828d5846
XR
7145 Searches recursively through wrapper fields (e.g., '_parent').
7146
7147 In the case of homonyms in the tagged types, please refer to the
7148 long explanation in find_struct_field's function documentation. */
14f9c5c9 7149
4c4b4cd2 7150static struct value *
108d56a4 7151ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 7152 struct type *type)
14f9c5c9
AS
7153{
7154 int i;
828d5846 7155 int parent_offset = -1;
14f9c5c9 7156
5b4ee69b 7157 type = ada_check_typedef (type);
1f704f76 7158 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7159 {
33d16dd9 7160 const char *t_field_name = type->field (i).name ();
14f9c5c9
AS
7161
7162 if (t_field_name == NULL)
dda83cd7 7163 continue;
14f9c5c9 7164
828d5846 7165 else if (ada_is_parent_field (type, i))
dda83cd7 7166 {
828d5846
XR
7167 /* This is a field pointing us to the parent type of a tagged
7168 type. As hinted in this function's documentation, we give
7169 preference to fields in the current record first, so what
7170 we do here is just record the index of this field before
7171 we skip it. If it turns out we couldn't find our field
7172 in the current record, then we'll get back to it and search
7173 inside it whether the field might exist in the parent. */
7174
dda83cd7
SM
7175 parent_offset = i;
7176 continue;
7177 }
828d5846 7178
14f9c5c9 7179 else if (field_name_match (t_field_name, name))
dda83cd7 7180 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7181
7182 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7183 {
7184 struct value *v = /* Do not let indent join lines here. */
7185 ada_search_struct_field (name, arg,
b610c045 7186 offset + type->field (i).loc_bitpos () / 8,
dda83cd7 7187 type->field (i).type ());
5b4ee69b 7188
dda83cd7
SM
7189 if (v != NULL)
7190 return v;
7191 }
14f9c5c9
AS
7192
7193 else if (ada_is_variant_part (type, i))
dda83cd7 7194 {
0963b4bd 7195 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
7196 int j;
7197 struct type *field_type = ada_check_typedef (type->field (i).type ());
b610c045 7198 int var_offset = offset + type->field (i).loc_bitpos () / 8;
4c4b4cd2 7199
dda83cd7
SM
7200 for (j = 0; j < field_type->num_fields (); j += 1)
7201 {
7202 struct value *v = ada_search_struct_field /* Force line
0963b4bd 7203 break. */
dda83cd7 7204 (name, arg,
b610c045 7205 var_offset + field_type->field (j).loc_bitpos () / 8,
dda83cd7 7206 field_type->field (j).type ());
5b4ee69b 7207
dda83cd7
SM
7208 if (v != NULL)
7209 return v;
7210 }
7211 }
14f9c5c9 7212 }
828d5846
XR
7213
7214 /* Field not found so far. If this is a tagged type which
7215 has a parent, try finding that field in the parent now. */
7216
7217 if (parent_offset != -1)
7218 {
7219 struct value *v = ada_search_struct_field (
b610c045 7220 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
940da03e 7221 type->field (parent_offset).type ());
828d5846
XR
7222
7223 if (v != NULL)
dda83cd7 7224 return v;
828d5846
XR
7225 }
7226
14f9c5c9
AS
7227 return NULL;
7228}
d2e4a39e 7229
52ce6436
PH
7230static struct value *ada_index_struct_field_1 (int *, struct value *,
7231 int, struct type *);
7232
7233
7234/* Return field #INDEX in ARG, where the index is that returned by
7235 * find_struct_field through its INDEX_P argument. Adjust the address
7236 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7237 * If found, return value, else return NULL. */
52ce6436
PH
7238
7239static struct value *
7240ada_index_struct_field (int index, struct value *arg, int offset,
7241 struct type *type)
7242{
7243 return ada_index_struct_field_1 (&index, arg, offset, type);
7244}
7245
7246
7247/* Auxiliary function for ada_index_struct_field. Like
7248 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7249 * *INDEX_P. */
52ce6436
PH
7250
7251static struct value *
7252ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7253 struct type *type)
7254{
7255 int i;
7256 type = ada_check_typedef (type);
7257
1f704f76 7258 for (i = 0; i < type->num_fields (); i += 1)
52ce6436 7259 {
33d16dd9 7260 if (type->field (i).name () == NULL)
dda83cd7 7261 continue;
52ce6436 7262 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7263 {
7264 struct value *v = /* Do not let indent join lines here. */
7265 ada_index_struct_field_1 (index_p, arg,
b610c045 7266 offset + type->field (i).loc_bitpos () / 8,
940da03e 7267 type->field (i).type ());
5b4ee69b 7268
dda83cd7
SM
7269 if (v != NULL)
7270 return v;
7271 }
52ce6436
PH
7272
7273 else if (ada_is_variant_part (type, i))
dda83cd7 7274 {
52ce6436 7275 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7276 find_struct_field. */
52ce6436 7277 error (_("Cannot assign this kind of variant record"));
dda83cd7 7278 }
52ce6436 7279 else if (*index_p == 0)
dda83cd7 7280 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
7281 else
7282 *index_p -= 1;
7283 }
7284 return NULL;
7285}
7286
3b4de39c 7287/* Return a string representation of type TYPE. */
99bbb428 7288
3b4de39c 7289static std::string
99bbb428
PA
7290type_as_string (struct type *type)
7291{
d7e74731 7292 string_file tmp_stream;
99bbb428 7293
d7e74731 7294 type_print (type, "", &tmp_stream, -1);
99bbb428 7295
5d10a204 7296 return tmp_stream.release ();
99bbb428
PA
7297}
7298
14f9c5c9 7299/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7300 If DISPP is non-null, add its byte displacement from the beginning of a
7301 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7302 work for packed fields).
7303
7304 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7305 followed by "___".
14f9c5c9 7306
0963b4bd 7307 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7308 be a (pointer or reference)+ to a struct or union, and the
7309 ultimate target type will be searched.
14f9c5c9
AS
7310
7311 Looks recursively into variant clauses and parent types.
7312
828d5846
XR
7313 In the case of homonyms in the tagged types, please refer to the
7314 long explanation in find_struct_field's function documentation.
7315
4c4b4cd2
PH
7316 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7317 TYPE is not a type of the right kind. */
14f9c5c9 7318
4c4b4cd2 7319static struct type *
a121b7c1 7320ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 7321 int noerr)
14f9c5c9
AS
7322{
7323 int i;
828d5846 7324 int parent_offset = -1;
14f9c5c9
AS
7325
7326 if (name == NULL)
7327 goto BadName;
7328
76a01679 7329 if (refok && type != NULL)
4c4b4cd2
PH
7330 while (1)
7331 {
dda83cd7
SM
7332 type = ada_check_typedef (type);
7333 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7334 break;
27710edb 7335 type = type->target_type ();
4c4b4cd2 7336 }
14f9c5c9 7337
76a01679 7338 if (type == NULL
78134374
SM
7339 || (type->code () != TYPE_CODE_STRUCT
7340 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7341 {
4c4b4cd2 7342 if (noerr)
dda83cd7 7343 return NULL;
99bbb428 7344
3b4de39c
PA
7345 error (_("Type %s is not a structure or union type"),
7346 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7347 }
7348
7349 type = to_static_fixed_type (type);
7350
1f704f76 7351 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7352 {
33d16dd9 7353 const char *t_field_name = type->field (i).name ();
14f9c5c9 7354 struct type *t;
d2e4a39e 7355
14f9c5c9 7356 if (t_field_name == NULL)
dda83cd7 7357 continue;
14f9c5c9 7358
828d5846 7359 else if (ada_is_parent_field (type, i))
dda83cd7 7360 {
828d5846
XR
7361 /* This is a field pointing us to the parent type of a tagged
7362 type. As hinted in this function's documentation, we give
7363 preference to fields in the current record first, so what
7364 we do here is just record the index of this field before
7365 we skip it. If it turns out we couldn't find our field
7366 in the current record, then we'll get back to it and search
7367 inside it whether the field might exist in the parent. */
7368
dda83cd7
SM
7369 parent_offset = i;
7370 continue;
7371 }
828d5846 7372
14f9c5c9 7373 else if (field_name_match (t_field_name, name))
940da03e 7374 return type->field (i).type ();
14f9c5c9
AS
7375
7376 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7377 {
7378 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7379 0, 1);
7380 if (t != NULL)
988f6b3d 7381 return t;
dda83cd7 7382 }
14f9c5c9
AS
7383
7384 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7385 {
7386 int j;
7387 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7388
dda83cd7
SM
7389 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7390 {
b1f33ddd 7391 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7392 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7393 generates these for unchecked variant types. Revisit
dda83cd7 7394 if the compiler changes this practice. */
33d16dd9 7395 const char *v_field_name = field_type->field (j).name ();
988f6b3d 7396
b1f33ddd
JB
7397 if (v_field_name != NULL
7398 && field_name_match (v_field_name, name))
940da03e 7399 t = field_type->field (j).type ();
b1f33ddd 7400 else
940da03e 7401 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7402 name, 0, 1);
b1f33ddd 7403
dda83cd7 7404 if (t != NULL)
988f6b3d 7405 return t;
dda83cd7
SM
7406 }
7407 }
14f9c5c9
AS
7408
7409 }
7410
828d5846
XR
7411 /* Field not found so far. If this is a tagged type which
7412 has a parent, try finding that field in the parent now. */
7413
7414 if (parent_offset != -1)
7415 {
dda83cd7 7416 struct type *t;
828d5846 7417
dda83cd7
SM
7418 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7419 name, 0, 1);
7420 if (t != NULL)
828d5846
XR
7421 return t;
7422 }
7423
14f9c5c9 7424BadName:
d2e4a39e 7425 if (!noerr)
14f9c5c9 7426 {
2b2798cc 7427 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7428
7429 error (_("Type %s has no component named %s"),
3b4de39c 7430 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7431 }
7432
7433 return NULL;
7434}
7435
b1f33ddd
JB
7436/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7437 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7438 represents an unchecked union (that is, the variant part of a
0963b4bd 7439 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7440
7441static int
7442is_unchecked_variant (struct type *var_type, struct type *outer_type)
7443{
a121b7c1 7444 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7445
988f6b3d 7446 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7447}
7448
7449
14f9c5c9 7450/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7451 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7452 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7453
d2e4a39e 7454int
d8af9068 7455ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7456{
7457 int others_clause;
7458 int i;
a121b7c1 7459 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7460 struct value *discrim;
14f9c5c9
AS
7461 LONGEST discrim_val;
7462
012370f6
TT
7463 /* Using plain value_from_contents_and_address here causes problems
7464 because we will end up trying to resolve a type that is currently
7465 being constructed. */
0c281816
JB
7466 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7467 if (discrim == NULL)
14f9c5c9 7468 return -1;
0c281816 7469 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7470
7471 others_clause = -1;
1f704f76 7472 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7473 {
7474 if (ada_is_others_clause (var_type, i))
dda83cd7 7475 others_clause = i;
14f9c5c9 7476 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7477 return i;
14f9c5c9
AS
7478 }
7479
7480 return others_clause;
7481}
d2e4a39e 7482\f
14f9c5c9
AS
7483
7484
dda83cd7 7485 /* Dynamic-Sized Records */
14f9c5c9
AS
7486
7487/* Strategy: The type ostensibly attached to a value with dynamic size
7488 (i.e., a size that is not statically recorded in the debugging
7489 data) does not accurately reflect the size or layout of the value.
7490 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7491 conventional types that are constructed on the fly. */
14f9c5c9
AS
7492
7493/* There is a subtle and tricky problem here. In general, we cannot
7494 determine the size of dynamic records without its data. However,
7495 the 'struct value' data structure, which GDB uses to represent
7496 quantities in the inferior process (the target), requires the size
7497 of the type at the time of its allocation in order to reserve space
7498 for GDB's internal copy of the data. That's why the
7499 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7500 rather than struct value*s.
14f9c5c9
AS
7501
7502 However, GDB's internal history variables ($1, $2, etc.) are
7503 struct value*s containing internal copies of the data that are not, in
7504 general, the same as the data at their corresponding addresses in
7505 the target. Fortunately, the types we give to these values are all
7506 conventional, fixed-size types (as per the strategy described
7507 above), so that we don't usually have to perform the
7508 'to_fixed_xxx_type' conversions to look at their values.
7509 Unfortunately, there is one exception: if one of the internal
7510 history variables is an array whose elements are unconstrained
7511 records, then we will need to create distinct fixed types for each
7512 element selected. */
7513
7514/* The upshot of all of this is that many routines take a (type, host
7515 address, target address) triple as arguments to represent a value.
7516 The host address, if non-null, is supposed to contain an internal
7517 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7518 target at the target address. */
14f9c5c9
AS
7519
7520/* Assuming that VAL0 represents a pointer value, the result of
7521 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7522 dynamic-sized types. */
14f9c5c9 7523
d2e4a39e
AS
7524struct value *
7525ada_value_ind (struct value *val0)
14f9c5c9 7526{
c48db5ca 7527 struct value *val = value_ind (val0);
5b4ee69b 7528
b50d69b5
JG
7529 if (ada_is_tagged_type (value_type (val), 0))
7530 val = ada_tag_value_at_base_address (val);
7531
4c4b4cd2 7532 return ada_to_fixed_value (val);
14f9c5c9
AS
7533}
7534
7535/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7536 qualifiers on VAL0. */
7537
d2e4a39e
AS
7538static struct value *
7539ada_coerce_ref (struct value *val0)
7540{
78134374 7541 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7542 {
7543 struct value *val = val0;
5b4ee69b 7544
994b9211 7545 val = coerce_ref (val);
b50d69b5
JG
7546
7547 if (ada_is_tagged_type (value_type (val), 0))
7548 val = ada_tag_value_at_base_address (val);
7549
4c4b4cd2 7550 return ada_to_fixed_value (val);
d2e4a39e
AS
7551 }
7552 else
14f9c5c9
AS
7553 return val0;
7554}
7555
4c4b4cd2 7556/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7557
7558static unsigned int
ebf56fd3 7559field_alignment (struct type *type, int f)
14f9c5c9 7560{
33d16dd9 7561 const char *name = type->field (f).name ();
64a1bf19 7562 int len;
14f9c5c9
AS
7563 int align_offset;
7564
64a1bf19
JB
7565 /* The field name should never be null, unless the debugging information
7566 is somehow malformed. In this case, we assume the field does not
7567 require any alignment. */
7568 if (name == NULL)
7569 return 1;
7570
7571 len = strlen (name);
7572
4c4b4cd2
PH
7573 if (!isdigit (name[len - 1]))
7574 return 1;
14f9c5c9 7575
d2e4a39e 7576 if (isdigit (name[len - 2]))
14f9c5c9
AS
7577 align_offset = len - 2;
7578 else
7579 align_offset = len - 1;
7580
61012eef 7581 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7582 return TARGET_CHAR_BIT;
7583
4c4b4cd2
PH
7584 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7585}
7586
852dff6c 7587/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7588
852dff6c
JB
7589static struct symbol *
7590ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7591{
7592 struct symbol *sym;
7593
7594 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
66d7f48f 7595 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
4c4b4cd2
PH
7596 return sym;
7597
4186eb54
KS
7598 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7599 return sym;
14f9c5c9
AS
7600}
7601
dddfab26
UW
7602/* Find a type named NAME. Ignores ambiguity. This routine will look
7603 solely for types defined by debug info, it will not search the GDB
7604 primitive types. */
4c4b4cd2 7605
852dff6c 7606static struct type *
ebf56fd3 7607ada_find_any_type (const char *name)
14f9c5c9 7608{
852dff6c 7609 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7610
14f9c5c9 7611 if (sym != NULL)
5f9c5a63 7612 return sym->type ();
14f9c5c9 7613
dddfab26 7614 return NULL;
14f9c5c9
AS
7615}
7616
739593e0
JB
7617/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7618 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7619 symbol, in which case it is returned. Otherwise, this looks for
7620 symbols whose name is that of NAME_SYM suffixed with "___XR".
7621 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7622
c0e70c62
TT
7623static bool
7624ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7625{
987012b8 7626 const char *name = name_sym->linkage_name ();
c0e70c62 7627 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7628}
7629
14f9c5c9 7630/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7631 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7632 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7633 otherwise return 0. */
7634
14f9c5c9 7635int
d2e4a39e 7636ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7637{
7638 if (type1 == NULL)
7639 return 1;
7640 else if (type0 == NULL)
7641 return 0;
78134374 7642 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7643 return 1;
78134374 7644 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7645 return 0;
7d93a1e0 7646 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7647 return 1;
ad82864c 7648 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7649 return 1;
4c4b4cd2 7650 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7651 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7652 return 1;
aeb5907d
JB
7653 else
7654 {
7d93a1e0
SM
7655 const char *type0_name = type0->name ();
7656 const char *type1_name = type1->name ();
aeb5907d
JB
7657
7658 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7659 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7660 return 1;
7661 }
14f9c5c9
AS
7662 return 0;
7663}
7664
e86ca25f
TT
7665/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7666 null. */
4c4b4cd2 7667
0d5cff50 7668const char *
d2e4a39e 7669ada_type_name (struct type *type)
14f9c5c9 7670{
d2e4a39e 7671 if (type == NULL)
14f9c5c9 7672 return NULL;
7d93a1e0 7673 return type->name ();
14f9c5c9
AS
7674}
7675
b4ba55a1
JB
7676/* Search the list of "descriptive" types associated to TYPE for a type
7677 whose name is NAME. */
7678
7679static struct type *
7680find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7681{
931e5bc3 7682 struct type *result, *tmp;
b4ba55a1 7683
c6044dd1
JB
7684 if (ada_ignore_descriptive_types_p)
7685 return NULL;
7686
b4ba55a1
JB
7687 /* If there no descriptive-type info, then there is no parallel type
7688 to be found. */
7689 if (!HAVE_GNAT_AUX_INFO (type))
7690 return NULL;
7691
7692 result = TYPE_DESCRIPTIVE_TYPE (type);
7693 while (result != NULL)
7694 {
0d5cff50 7695 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7696
7697 if (result_name == NULL)
dda83cd7
SM
7698 {
7699 warning (_("unexpected null name on descriptive type"));
7700 return NULL;
7701 }
b4ba55a1
JB
7702
7703 /* If the names match, stop. */
7704 if (strcmp (result_name, name) == 0)
7705 break;
7706
7707 /* Otherwise, look at the next item on the list, if any. */
7708 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7709 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7710 else
7711 tmp = NULL;
7712
7713 /* If not found either, try after having resolved the typedef. */
7714 if (tmp != NULL)
7715 result = tmp;
b4ba55a1 7716 else
931e5bc3 7717 {
f168693b 7718 result = check_typedef (result);
931e5bc3
JG
7719 if (HAVE_GNAT_AUX_INFO (result))
7720 result = TYPE_DESCRIPTIVE_TYPE (result);
7721 else
7722 result = NULL;
7723 }
b4ba55a1
JB
7724 }
7725
7726 /* If we didn't find a match, see whether this is a packed array. With
7727 older compilers, the descriptive type information is either absent or
7728 irrelevant when it comes to packed arrays so the above lookup fails.
7729 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7730 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7731 return ada_find_any_type (name);
7732
7733 return result;
7734}
7735
7736/* Find a parallel type to TYPE with the specified NAME, using the
7737 descriptive type taken from the debugging information, if available,
7738 and otherwise using the (slower) name-based method. */
7739
7740static struct type *
7741ada_find_parallel_type_with_name (struct type *type, const char *name)
7742{
7743 struct type *result = NULL;
7744
7745 if (HAVE_GNAT_AUX_INFO (type))
7746 result = find_parallel_type_by_descriptive_type (type, name);
7747 else
7748 result = ada_find_any_type (name);
7749
7750 return result;
7751}
7752
7753/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7754 SUFFIX to the name of TYPE. */
14f9c5c9 7755
d2e4a39e 7756struct type *
ebf56fd3 7757ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7758{
0d5cff50 7759 char *name;
fe978cb0 7760 const char *type_name = ada_type_name (type);
14f9c5c9 7761 int len;
d2e4a39e 7762
fe978cb0 7763 if (type_name == NULL)
14f9c5c9
AS
7764 return NULL;
7765
fe978cb0 7766 len = strlen (type_name);
14f9c5c9 7767
b4ba55a1 7768 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7769
fe978cb0 7770 strcpy (name, type_name);
14f9c5c9
AS
7771 strcpy (name + len, suffix);
7772
b4ba55a1 7773 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7774}
7775
14f9c5c9 7776/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7777 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7778
d2e4a39e
AS
7779static struct type *
7780dynamic_template_type (struct type *type)
14f9c5c9 7781{
61ee279c 7782 type = ada_check_typedef (type);
14f9c5c9 7783
78134374 7784 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7785 || ada_type_name (type) == NULL)
14f9c5c9 7786 return NULL;
d2e4a39e 7787 else
14f9c5c9
AS
7788 {
7789 int len = strlen (ada_type_name (type));
5b4ee69b 7790
4c4b4cd2 7791 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7792 return type;
14f9c5c9 7793 else
dda83cd7 7794 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7795 }
7796}
7797
7798/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7799 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7800
d2e4a39e
AS
7801static int
7802is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9 7803{
33d16dd9 7804 const char *name = templ_type->field (field_num).name ();
5b4ee69b 7805
d2e4a39e 7806 return name != NULL
940da03e 7807 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7808 && strstr (name, "___XVL") != NULL;
7809}
7810
4c4b4cd2
PH
7811/* The index of the variant field of TYPE, or -1 if TYPE does not
7812 represent a variant record type. */
14f9c5c9 7813
d2e4a39e 7814static int
4c4b4cd2 7815variant_field_index (struct type *type)
14f9c5c9
AS
7816{
7817 int f;
7818
78134374 7819 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7820 return -1;
7821
1f704f76 7822 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7823 {
7824 if (ada_is_variant_part (type, f))
dda83cd7 7825 return f;
4c4b4cd2
PH
7826 }
7827 return -1;
14f9c5c9
AS
7828}
7829
4c4b4cd2
PH
7830/* A record type with no fields. */
7831
d2e4a39e 7832static struct type *
fe978cb0 7833empty_record (struct type *templ)
14f9c5c9 7834{
fe978cb0 7835 struct type *type = alloc_type_copy (templ);
5b4ee69b 7836
67607e24 7837 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7838 INIT_NONE_SPECIFIC (type);
d0e39ea2 7839 type->set_name ("<empty>");
b6cdbc9a 7840 type->set_length (0);
14f9c5c9
AS
7841 return type;
7842}
7843
7844/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7845 the value of type TYPE at VALADDR or ADDRESS (see comments at
7846 the beginning of this section) VAL according to GNAT conventions.
7847 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7848 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7849 an outer-level type (i.e., as opposed to a branch of a variant.) A
7850 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7851 of the variant.
14f9c5c9 7852
4c4b4cd2
PH
7853 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7854 length are not statically known are discarded. As a consequence,
7855 VALADDR, ADDRESS and DVAL0 are ignored.
7856
7857 NOTE: Limitations: For now, we assume that dynamic fields and
7858 variants occupy whole numbers of bytes. However, they need not be
7859 byte-aligned. */
7860
7861struct type *
10a2c479 7862ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7863 const gdb_byte *valaddr,
dda83cd7
SM
7864 CORE_ADDR address, struct value *dval0,
7865 int keep_dynamic_fields)
14f9c5c9 7866{
d2e4a39e
AS
7867 struct value *dval;
7868 struct type *rtype;
14f9c5c9 7869 int nfields, bit_len;
4c4b4cd2 7870 int variant_field;
14f9c5c9 7871 long off;
d94e4f4f 7872 int fld_bit_len;
14f9c5c9
AS
7873 int f;
7874
65558ca5
TT
7875 scoped_value_mark mark;
7876
4c4b4cd2
PH
7877 /* Compute the number of fields in this record type that are going
7878 to be processed: unless keep_dynamic_fields, this includes only
7879 fields whose position and length are static will be processed. */
7880 if (keep_dynamic_fields)
1f704f76 7881 nfields = type->num_fields ();
4c4b4cd2
PH
7882 else
7883 {
7884 nfields = 0;
1f704f76 7885 while (nfields < type->num_fields ()
dda83cd7
SM
7886 && !ada_is_variant_part (type, nfields)
7887 && !is_dynamic_field (type, nfields))
7888 nfields++;
4c4b4cd2
PH
7889 }
7890
e9bb382b 7891 rtype = alloc_type_copy (type);
67607e24 7892 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7893 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7894 rtype->set_num_fields (nfields);
3cabb6b0
SM
7895 rtype->set_fields
7896 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7897 rtype->set_name (ada_type_name (type));
9cdd0d12 7898 rtype->set_is_fixed_instance (true);
14f9c5c9 7899
d2e4a39e
AS
7900 off = 0;
7901 bit_len = 0;
4c4b4cd2
PH
7902 variant_field = -1;
7903
14f9c5c9
AS
7904 for (f = 0; f < nfields; f += 1)
7905 {
a89febbd 7906 off = align_up (off, field_alignment (type, f))
b610c045 7907 + type->field (f).loc_bitpos ();
cd3f655c 7908 rtype->field (f).set_loc_bitpos (off);
d2e4a39e 7909 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7910
d2e4a39e 7911 if (ada_is_variant_part (type, f))
dda83cd7
SM
7912 {
7913 variant_field = f;
7914 fld_bit_len = 0;
7915 }
14f9c5c9 7916 else if (is_dynamic_field (type, f))
dda83cd7 7917 {
284614f0
JB
7918 const gdb_byte *field_valaddr = valaddr;
7919 CORE_ADDR field_address = address;
27710edb 7920 struct type *field_type = type->field (f).type ()->target_type ();
284614f0 7921
dda83cd7 7922 if (dval0 == NULL)
b5304971 7923 {
012370f6
TT
7924 /* Using plain value_from_contents_and_address here
7925 causes problems because we will end up trying to
7926 resolve a type that is currently being
7927 constructed. */
7928 dval = value_from_contents_and_address_unresolved (rtype,
7929 valaddr,
7930 address);
9f1f738a 7931 rtype = value_type (dval);
b5304971 7932 }
dda83cd7
SM
7933 else
7934 dval = dval0;
4c4b4cd2 7935
284614f0
JB
7936 /* If the type referenced by this field is an aligner type, we need
7937 to unwrap that aligner type, because its size might not be set.
7938 Keeping the aligner type would cause us to compute the wrong
7939 size for this field, impacting the offset of the all the fields
7940 that follow this one. */
7941 if (ada_is_aligner_type (field_type))
7942 {
b610c045 7943 long field_offset = type->field (f).loc_bitpos ();
284614f0
JB
7944
7945 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7946 field_address = cond_offset_target (field_address, field_offset);
7947 field_type = ada_aligned_type (field_type);
7948 }
7949
7950 field_valaddr = cond_offset_host (field_valaddr,
7951 off / TARGET_CHAR_BIT);
7952 field_address = cond_offset_target (field_address,
7953 off / TARGET_CHAR_BIT);
7954
7955 /* Get the fixed type of the field. Note that, in this case,
7956 we do not want to get the real type out of the tag: if
7957 the current field is the parent part of a tagged record,
7958 we will get the tag of the object. Clearly wrong: the real
7959 type of the parent is not the real type of the child. We
7960 would end up in an infinite loop. */
7961 field_type = ada_get_base_type (field_type);
7962 field_type = ada_to_fixed_type (field_type, field_valaddr,
7963 field_address, dval, 0);
7964
5d14b6e5 7965 rtype->field (f).set_type (field_type);
33d16dd9 7966 rtype->field (f).set_name (type->field (f).name ());
27f2a97b
JB
7967 /* The multiplication can potentially overflow. But because
7968 the field length has been size-checked just above, and
7969 assuming that the maximum size is a reasonable value,
7970 an overflow should not happen in practice. So rather than
7971 adding overflow recovery code to this already complex code,
7972 we just assume that it's not going to happen. */
df86565b 7973 fld_bit_len = rtype->field (f).type ()->length () * TARGET_CHAR_BIT;
dda83cd7 7974 }
14f9c5c9 7975 else
dda83cd7 7976 {
5ded5331
JB
7977 /* Note: If this field's type is a typedef, it is important
7978 to preserve the typedef layer.
7979
7980 Otherwise, we might be transforming a typedef to a fat
7981 pointer (encoding a pointer to an unconstrained array),
7982 into a basic fat pointer (encoding an unconstrained
7983 array). As both types are implemented using the same
7984 structure, the typedef is the only clue which allows us
7985 to distinguish between the two options. Stripping it
7986 would prevent us from printing this field appropriately. */
dda83cd7 7987 rtype->field (f).set_type (type->field (f).type ());
33d16dd9 7988 rtype->field (f).set_name (type->field (f).name ());
dda83cd7
SM
7989 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7990 fld_bit_len =
7991 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7992 else
5ded5331 7993 {
940da03e 7994 struct type *field_type = type->field (f).type ();
5ded5331
JB
7995
7996 /* We need to be careful of typedefs when computing
7997 the length of our field. If this is a typedef,
7998 get the length of the target type, not the length
7999 of the typedef. */
78134374 8000 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
8001 field_type = ada_typedef_target_type (field_type);
8002
dda83cd7 8003 fld_bit_len =
df86565b 8004 ada_check_typedef (field_type)->length () * TARGET_CHAR_BIT;
5ded5331 8005 }
dda83cd7 8006 }
14f9c5c9 8007 if (off + fld_bit_len > bit_len)
dda83cd7 8008 bit_len = off + fld_bit_len;
d94e4f4f 8009 off += fld_bit_len;
b6cdbc9a 8010 rtype->set_length (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
14f9c5c9 8011 }
4c4b4cd2
PH
8012
8013 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8014 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8015 the record. This can happen in the presence of representation
8016 clauses. */
8017 if (variant_field >= 0)
8018 {
8019 struct type *branch_type;
8020
b610c045 8021 off = rtype->field (variant_field).loc_bitpos ();
4c4b4cd2
PH
8022
8023 if (dval0 == NULL)
9f1f738a 8024 {
012370f6
TT
8025 /* Using plain value_from_contents_and_address here causes
8026 problems because we will end up trying to resolve a type
8027 that is currently being constructed. */
8028 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8029 address);
9f1f738a
SA
8030 rtype = value_type (dval);
8031 }
4c4b4cd2 8032 else
dda83cd7 8033 dval = dval0;
4c4b4cd2
PH
8034
8035 branch_type =
dda83cd7
SM
8036 to_fixed_variant_branch_type
8037 (type->field (variant_field).type (),
8038 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8039 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 8040 if (branch_type == NULL)
dda83cd7
SM
8041 {
8042 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8043 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8044 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 8045 }
4c4b4cd2 8046 else
dda83cd7
SM
8047 {
8048 rtype->field (variant_field).set_type (branch_type);
d3fd12df 8049 rtype->field (variant_field).set_name ("S");
dda83cd7 8050 fld_bit_len =
df86565b 8051 rtype->field (variant_field).type ()->length () * TARGET_CHAR_BIT;
dda83cd7
SM
8052 if (off + fld_bit_len > bit_len)
8053 bit_len = off + fld_bit_len;
b6cdbc9a
SM
8054
8055 rtype->set_length
8056 (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
dda83cd7 8057 }
4c4b4cd2
PH
8058 }
8059
714e53ab
PH
8060 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8061 should contain the alignment of that record, which should be a strictly
8062 positive value. If null or negative, then something is wrong, most
8063 probably in the debug info. In that case, we don't round up the size
0963b4bd 8064 of the resulting type. If this record is not part of another structure,
714e53ab 8065 the current RTYPE length might be good enough for our purposes. */
df86565b 8066 if (type->length () <= 0)
714e53ab 8067 {
7d93a1e0 8068 if (rtype->name ())
cc1defb1 8069 warning (_("Invalid type size for `%s' detected: %s."),
df86565b 8070 rtype->name (), pulongest (type->length ()));
323e0a4a 8071 else
cc1defb1 8072 warning (_("Invalid type size for <unnamed> detected: %s."),
df86565b 8073 pulongest (type->length ()));
714e53ab
PH
8074 }
8075 else
df86565b 8076 rtype->set_length (align_up (rtype->length (), type->length ()));
14f9c5c9 8077
14f9c5c9
AS
8078 return rtype;
8079}
8080
4c4b4cd2
PH
8081/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8082 of 1. */
14f9c5c9 8083
d2e4a39e 8084static struct type *
fc1a4b47 8085template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8086 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
8087{
8088 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 8089 address, dval0, 1);
4c4b4cd2
PH
8090}
8091
8092/* An ordinary record type in which ___XVL-convention fields and
8093 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8094 static approximations, containing all possible fields. Uses
8095 no runtime values. Useless for use in values, but that's OK,
8096 since the results are used only for type determinations. Works on both
8097 structs and unions. Representation note: to save space, we memorize
27710edb 8098 the result of this function in the type::target_type of the
4c4b4cd2
PH
8099 template type. */
8100
8101static struct type *
8102template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8103{
8104 struct type *type;
8105 int nfields;
8106 int f;
8107
9e195661 8108 /* No need no do anything if the input type is already fixed. */
22c4c60c 8109 if (type0->is_fixed_instance ())
9e195661
PMR
8110 return type0;
8111
8112 /* Likewise if we already have computed the static approximation. */
27710edb
SM
8113 if (type0->target_type () != NULL)
8114 return type0->target_type ();
4c4b4cd2 8115
9e195661 8116 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8117 type = type0;
1f704f76 8118 nfields = type0->num_fields ();
9e195661
PMR
8119
8120 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8121 recompute all over next time. */
8a50fdce 8122 type0->set_target_type (type);
14f9c5c9
AS
8123
8124 for (f = 0; f < nfields; f += 1)
8125 {
940da03e 8126 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8127 struct type *new_type;
14f9c5c9 8128
4c4b4cd2 8129 if (is_dynamic_field (type0, f))
460efde1
JB
8130 {
8131 field_type = ada_check_typedef (field_type);
27710edb 8132 new_type = to_static_fixed_type (field_type->target_type ());
460efde1 8133 }
14f9c5c9 8134 else
dda83cd7 8135 new_type = static_unwrap_type (field_type);
9e195661
PMR
8136
8137 if (new_type != field_type)
8138 {
8139 /* Clone TYPE0 only the first time we get a new field type. */
8140 if (type == type0)
8141 {
8a50fdce
SM
8142 type = alloc_type_copy (type0);
8143 type0->set_target_type (type);
78134374 8144 type->set_code (type0->code ());
8ecb59f8 8145 INIT_NONE_SPECIFIC (type);
5e33d5f4 8146 type->set_num_fields (nfields);
3cabb6b0
SM
8147
8148 field *fields =
8149 ((struct field *)
8150 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8151 memcpy (fields, type0->fields (),
9e195661 8152 sizeof (struct field) * nfields);
3cabb6b0
SM
8153 type->set_fields (fields);
8154
d0e39ea2 8155 type->set_name (ada_type_name (type0));
9cdd0d12 8156 type->set_is_fixed_instance (true);
b6cdbc9a 8157 type->set_length (0);
9e195661 8158 }
5d14b6e5 8159 type->field (f).set_type (new_type);
33d16dd9 8160 type->field (f).set_name (type0->field (f).name ());
9e195661 8161 }
14f9c5c9 8162 }
9e195661 8163
14f9c5c9
AS
8164 return type;
8165}
8166
4c4b4cd2 8167/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8168 whose address in memory is ADDRESS, returns a revision of TYPE,
8169 which should be a non-dynamic-sized record, in which the variant
8170 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8171 for discriminant values in DVAL0, which can be NULL if the record
8172 contains the necessary discriminant values. */
8173
d2e4a39e 8174static struct type *
fc1a4b47 8175to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 8176 CORE_ADDR address, struct value *dval0)
14f9c5c9 8177{
4c4b4cd2 8178 struct value *dval;
d2e4a39e 8179 struct type *rtype;
14f9c5c9 8180 struct type *branch_type;
1f704f76 8181 int nfields = type->num_fields ();
4c4b4cd2 8182 int variant_field = variant_field_index (type);
14f9c5c9 8183
4c4b4cd2 8184 if (variant_field == -1)
14f9c5c9
AS
8185 return type;
8186
65558ca5 8187 scoped_value_mark mark;
4c4b4cd2 8188 if (dval0 == NULL)
9f1f738a
SA
8189 {
8190 dval = value_from_contents_and_address (type, valaddr, address);
8191 type = value_type (dval);
8192 }
4c4b4cd2
PH
8193 else
8194 dval = dval0;
8195
e9bb382b 8196 rtype = alloc_type_copy (type);
67607e24 8197 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8198 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8199 rtype->set_num_fields (nfields);
3cabb6b0
SM
8200
8201 field *fields =
d2e4a39e 8202 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8203 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8204 rtype->set_fields (fields);
8205
d0e39ea2 8206 rtype->set_name (ada_type_name (type));
9cdd0d12 8207 rtype->set_is_fixed_instance (true);
df86565b 8208 rtype->set_length (type->length ());
14f9c5c9 8209
4c4b4cd2 8210 branch_type = to_fixed_variant_branch_type
940da03e 8211 (type->field (variant_field).type (),
d2e4a39e 8212 cond_offset_host (valaddr,
b610c045 8213 type->field (variant_field).loc_bitpos ()
dda83cd7 8214 / TARGET_CHAR_BIT),
d2e4a39e 8215 cond_offset_target (address,
b610c045 8216 type->field (variant_field).loc_bitpos ()
dda83cd7 8217 / TARGET_CHAR_BIT), dval);
d2e4a39e 8218 if (branch_type == NULL)
14f9c5c9 8219 {
4c4b4cd2 8220 int f;
5b4ee69b 8221
4c4b4cd2 8222 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 8223 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8224 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8225 }
8226 else
8227 {
5d14b6e5 8228 rtype->field (variant_field).set_type (branch_type);
d3fd12df 8229 rtype->field (variant_field).set_name ("S");
4c4b4cd2 8230 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
df86565b 8231 rtype->set_length (rtype->length () + branch_type->length ());
14f9c5c9 8232 }
b6cdbc9a 8233
df86565b
SM
8234 rtype->set_length (rtype->length ()
8235 - type->field (variant_field).type ()->length ());
d2e4a39e 8236
14f9c5c9
AS
8237 return rtype;
8238}
8239
8240/* An ordinary record type (with fixed-length fields) that describes
8241 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8242 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8243 should be in DVAL, a record value; it may be NULL if the object
8244 at ADDR itself contains any necessary discriminant values.
8245 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8246 values from the record are needed. Except in the case that DVAL,
8247 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8248 unchecked) is replaced by a particular branch of the variant.
8249
8250 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8251 is questionable and may be removed. It can arise during the
8252 processing of an unconstrained-array-of-record type where all the
8253 variant branches have exactly the same size. This is because in
8254 such cases, the compiler does not bother to use the XVS convention
8255 when encoding the record. I am currently dubious of this
8256 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8257
d2e4a39e 8258static struct type *
fc1a4b47 8259to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 8260 CORE_ADDR address, struct value *dval)
14f9c5c9 8261{
d2e4a39e 8262 struct type *templ_type;
14f9c5c9 8263
22c4c60c 8264 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8265 return type0;
8266
d2e4a39e 8267 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8268
8269 if (templ_type != NULL)
8270 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8271 else if (variant_field_index (type0) >= 0)
8272 {
8273 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 8274 return type0;
4c4b4cd2 8275 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 8276 dval);
4c4b4cd2 8277 }
14f9c5c9
AS
8278 else
8279 {
9cdd0d12 8280 type0->set_is_fixed_instance (true);
14f9c5c9
AS
8281 return type0;
8282 }
8283
8284}
8285
8286/* An ordinary record type (with fixed-length fields) that describes
8287 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8288 union type. Any necessary discriminants' values should be in DVAL,
8289 a record value. That is, this routine selects the appropriate
8290 branch of the union at ADDR according to the discriminant value
b1f33ddd 8291 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8292 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8293
d2e4a39e 8294static struct type *
fc1a4b47 8295to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 8296 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8297{
8298 int which;
d2e4a39e
AS
8299 struct type *templ_type;
8300 struct type *var_type;
14f9c5c9 8301
78134374 8302 if (var_type0->code () == TYPE_CODE_PTR)
27710edb 8303 var_type = var_type0->target_type ();
d2e4a39e 8304 else
14f9c5c9
AS
8305 var_type = var_type0;
8306
8307 templ_type = ada_find_parallel_type (var_type, "___XVU");
8308
8309 if (templ_type != NULL)
8310 var_type = templ_type;
8311
b1f33ddd
JB
8312 if (is_unchecked_variant (var_type, value_type (dval)))
8313 return var_type0;
d8af9068 8314 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8315
8316 if (which < 0)
e9bb382b 8317 return empty_record (var_type);
14f9c5c9 8318 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8319 return to_fixed_record_type
27710edb 8320 (var_type->field (which).type ()->target_type(), valaddr, address, dval);
940da03e 8321 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8322 return
8323 to_fixed_record_type
940da03e 8324 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8325 else
940da03e 8326 return var_type->field (which).type ();
14f9c5c9
AS
8327}
8328
8908fca5
JB
8329/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8330 ENCODING_TYPE, a type following the GNAT conventions for discrete
8331 type encodings, only carries redundant information. */
8332
8333static int
8334ada_is_redundant_range_encoding (struct type *range_type,
8335 struct type *encoding_type)
8336{
108d56a4 8337 const char *bounds_str;
8908fca5
JB
8338 int n;
8339 LONGEST lo, hi;
8340
78134374 8341 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8342
78134374
SM
8343 if (get_base_type (range_type)->code ()
8344 != get_base_type (encoding_type)->code ())
005e2509
JB
8345 {
8346 /* The compiler probably used a simple base type to describe
8347 the range type instead of the range's actual base type,
8348 expecting us to get the real base type from the encoding
8349 anyway. In this situation, the encoding cannot be ignored
8350 as redundant. */
8351 return 0;
8352 }
8353
8908fca5
JB
8354 if (is_dynamic_type (range_type))
8355 return 0;
8356
7d93a1e0 8357 if (encoding_type->name () == NULL)
8908fca5
JB
8358 return 0;
8359
7d93a1e0 8360 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8361 if (bounds_str == NULL)
8362 return 0;
8363
8364 n = 8; /* Skip "___XDLU_". */
8365 if (!ada_scan_number (bounds_str, n, &lo, &n))
8366 return 0;
5537ddd0 8367 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8368 return 0;
8369
8370 n += 2; /* Skip the "__" separator between the two bounds. */
8371 if (!ada_scan_number (bounds_str, n, &hi, &n))
8372 return 0;
5537ddd0 8373 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8374 return 0;
8375
8376 return 1;
8377}
8378
8379/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8380 a type following the GNAT encoding for describing array type
8381 indices, only carries redundant information. */
8382
8383static int
8384ada_is_redundant_index_type_desc (struct type *array_type,
8385 struct type *desc_type)
8386{
8387 struct type *this_layer = check_typedef (array_type);
8388 int i;
8389
1f704f76 8390 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8391 {
3d967001 8392 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8393 desc_type->field (i).type ()))
8908fca5 8394 return 0;
27710edb 8395 this_layer = check_typedef (this_layer->target_type ());
8908fca5
JB
8396 }
8397
8398 return 1;
8399}
8400
14f9c5c9
AS
8401/* Assuming that TYPE0 is an array type describing the type of a value
8402 at ADDR, and that DVAL describes a record containing any
8403 discriminants used in TYPE0, returns a type for the value that
8404 contains no dynamic components (that is, no components whose sizes
8405 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8406 true, gives an error message if the resulting type's size is over
4c4b4cd2 8407 varsize_limit. */
14f9c5c9 8408
d2e4a39e
AS
8409static struct type *
8410to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8411 int ignore_too_big)
14f9c5c9 8412{
d2e4a39e
AS
8413 struct type *index_type_desc;
8414 struct type *result;
ad82864c 8415 int constrained_packed_array_p;
931e5bc3 8416 static const char *xa_suffix = "___XA";
14f9c5c9 8417
b0dd7688 8418 type0 = ada_check_typedef (type0);
22c4c60c 8419 if (type0->is_fixed_instance ())
4c4b4cd2 8420 return type0;
14f9c5c9 8421
ad82864c
JB
8422 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8423 if (constrained_packed_array_p)
75fd6a26
TT
8424 {
8425 type0 = decode_constrained_packed_array_type (type0);
8426 if (type0 == nullptr)
8427 error (_("could not decode constrained packed array type"));
8428 }
284614f0 8429
931e5bc3
JG
8430 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8431
8432 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8433 encoding suffixed with 'P' may still be generated. If so,
8434 it should be used to find the XA type. */
8435
8436 if (index_type_desc == NULL)
8437 {
1da0522e 8438 const char *type_name = ada_type_name (type0);
931e5bc3 8439
1da0522e 8440 if (type_name != NULL)
931e5bc3 8441 {
1da0522e 8442 const int len = strlen (type_name);
931e5bc3
JG
8443 char *name = (char *) alloca (len + strlen (xa_suffix));
8444
1da0522e 8445 if (type_name[len - 1] == 'P')
931e5bc3 8446 {
1da0522e 8447 strcpy (name, type_name);
931e5bc3
JG
8448 strcpy (name + len - 1, xa_suffix);
8449 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8450 }
8451 }
8452 }
8453
28c85d6c 8454 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8455 if (index_type_desc != NULL
8456 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8457 {
8458 /* Ignore this ___XA parallel type, as it does not bring any
8459 useful information. This allows us to avoid creating fixed
8460 versions of the array's index types, which would be identical
8461 to the original ones. This, in turn, can also help avoid
8462 the creation of fixed versions of the array itself. */
8463 index_type_desc = NULL;
8464 }
8465
14f9c5c9
AS
8466 if (index_type_desc == NULL)
8467 {
27710edb 8468 struct type *elt_type0 = ada_check_typedef (type0->target_type ());
5b4ee69b 8469
14f9c5c9 8470 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8471 depend on the contents of the array in properly constructed
8472 debugging data. */
529cad9c 8473 /* Create a fixed version of the array element type.
dda83cd7
SM
8474 We're not providing the address of an element here,
8475 and thus the actual object value cannot be inspected to do
8476 the conversion. This should not be a problem, since arrays of
8477 unconstrained objects are not allowed. In particular, all
8478 the elements of an array of a tagged type should all be of
8479 the same type specified in the debugging info. No need to
8480 consult the object tag. */
1ed6ede0 8481 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8482
284614f0
JB
8483 /* Make sure we always create a new array type when dealing with
8484 packed array types, since we're going to fix-up the array
8485 type length and element bitsize a little further down. */
ad82864c 8486 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8487 result = type0;
14f9c5c9 8488 else
dda83cd7
SM
8489 result = create_array_type (alloc_type_copy (type0),
8490 elt_type, type0->index_type ());
14f9c5c9
AS
8491 }
8492 else
8493 {
8494 int i;
8495 struct type *elt_type0;
8496
8497 elt_type0 = type0;
1f704f76 8498 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
27710edb 8499 elt_type0 = elt_type0->target_type ();
14f9c5c9
AS
8500
8501 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8502 depend on the contents of the array in properly constructed
8503 debugging data. */
529cad9c 8504 /* Create a fixed version of the array element type.
dda83cd7
SM
8505 We're not providing the address of an element here,
8506 and thus the actual object value cannot be inspected to do
8507 the conversion. This should not be a problem, since arrays of
8508 unconstrained objects are not allowed. In particular, all
8509 the elements of an array of a tagged type should all be of
8510 the same type specified in the debugging info. No need to
8511 consult the object tag. */
1ed6ede0 8512 result =
dda83cd7 8513 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8514
8515 elt_type0 = type0;
1f704f76 8516 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8517 {
8518 struct type *range_type =
8519 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8520
dda83cd7
SM
8521 result = create_array_type (alloc_type_copy (elt_type0),
8522 result, range_type);
27710edb 8523 elt_type0 = elt_type0->target_type ();
dda83cd7 8524 }
14f9c5c9
AS
8525 }
8526
2e6fda7d
JB
8527 /* We want to preserve the type name. This can be useful when
8528 trying to get the type name of a value that has already been
8529 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8530 result->set_name (type0->name ());
2e6fda7d 8531
ad82864c 8532 if (constrained_packed_array_p)
284614f0
JB
8533 {
8534 /* So far, the resulting type has been created as if the original
8535 type was a regular (non-packed) array type. As a result, the
8536 bitsize of the array elements needs to be set again, and the array
8537 length needs to be recomputed based on that bitsize. */
df86565b 8538 int len = result->length () / result->target_type ()->length ();
284614f0
JB
8539 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8540
8541 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
b6cdbc9a 8542 result->set_length (len * elt_bitsize / HOST_CHAR_BIT);
df86565b
SM
8543 if (result->length () * HOST_CHAR_BIT < len * elt_bitsize)
8544 result->set_length (result->length () + 1);
284614f0
JB
8545 }
8546
9cdd0d12 8547 result->set_is_fixed_instance (true);
14f9c5c9 8548 return result;
d2e4a39e 8549}
14f9c5c9
AS
8550
8551
8552/* A standard type (containing no dynamically sized components)
8553 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8554 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8555 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8556 ADDRESS or in VALADDR contains these discriminants.
8557
1ed6ede0
JB
8558 If CHECK_TAG is not null, in the case of tagged types, this function
8559 attempts to locate the object's tag and use it to compute the actual
8560 type. However, when ADDRESS is null, we cannot use it to determine the
8561 location of the tag, and therefore compute the tagged type's actual type.
8562 So we return the tagged type without consulting the tag. */
529cad9c 8563
f192137b
JB
8564static struct type *
8565ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8566 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8567{
61ee279c 8568 type = ada_check_typedef (type);
8ecb59f8
TT
8569
8570 /* Only un-fixed types need to be handled here. */
8571 if (!HAVE_GNAT_AUX_INFO (type))
8572 return type;
8573
78134374 8574 switch (type->code ())
d2e4a39e
AS
8575 {
8576 default:
14f9c5c9 8577 return type;
d2e4a39e 8578 case TYPE_CODE_STRUCT:
4c4b4cd2 8579 {
dda83cd7
SM
8580 struct type *static_type = to_static_fixed_type (type);
8581 struct type *fixed_record_type =
8582 to_fixed_record_type (type, valaddr, address, NULL);
8583
8584 /* If STATIC_TYPE is a tagged type and we know the object's address,
8585 then we can determine its tag, and compute the object's actual
8586 type from there. Note that we have to use the fixed record
8587 type (the parent part of the record may have dynamic fields
8588 and the way the location of _tag is expressed may depend on
8589 them). */
8590
8591 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8592 {
b50d69b5
JG
8593 struct value *tag =
8594 value_tag_from_contents_and_address
8595 (fixed_record_type,
8596 valaddr,
8597 address);
8598 struct type *real_type = type_from_tag (tag);
8599 struct value *obj =
8600 value_from_contents_and_address (fixed_record_type,
8601 valaddr,
8602 address);
dda83cd7
SM
8603 fixed_record_type = value_type (obj);
8604 if (real_type != NULL)
8605 return to_fixed_record_type
b50d69b5
JG
8606 (real_type, NULL,
8607 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8608 }
8609
8610 /* Check to see if there is a parallel ___XVZ variable.
8611 If there is, then it provides the actual size of our type. */
8612 else if (ada_type_name (fixed_record_type) != NULL)
8613 {
8614 const char *name = ada_type_name (fixed_record_type);
8615 char *xvz_name
224c3ddb 8616 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8617 bool xvz_found = false;
dda83cd7 8618 LONGEST size;
4af88198 8619
dda83cd7 8620 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8621 try
eccab96d
JB
8622 {
8623 xvz_found = get_int_var_value (xvz_name, size);
8624 }
230d2906 8625 catch (const gdb_exception_error &except)
eccab96d
JB
8626 {
8627 /* We found the variable, but somehow failed to read
8628 its value. Rethrow the same error, but with a little
8629 bit more information, to help the user understand
8630 what went wrong (Eg: the variable might have been
8631 optimized out). */
8632 throw_error (except.error,
8633 _("unable to read value of %s (%s)"),
3d6e9d23 8634 xvz_name, except.what ());
eccab96d 8635 }
eccab96d 8636
df86565b 8637 if (xvz_found && fixed_record_type->length () != size)
dda83cd7
SM
8638 {
8639 fixed_record_type = copy_type (fixed_record_type);
b6cdbc9a 8640 fixed_record_type->set_length (size);
dda83cd7
SM
8641
8642 /* The FIXED_RECORD_TYPE may have be a stub. We have
8643 observed this when the debugging info is STABS, and
8644 apparently it is something that is hard to fix.
8645
8646 In practice, we don't need the actual type definition
8647 at all, because the presence of the XVZ variable allows us
8648 to assume that there must be a XVS type as well, which we
8649 should be able to use later, when we need the actual type
8650 definition.
8651
8652 In the meantime, pretend that the "fixed" type we are
8653 returning is NOT a stub, because this can cause trouble
8654 when using this type to create new types targeting it.
8655 Indeed, the associated creation routines often check
8656 whether the target type is a stub and will try to replace
8657 it, thus using a type with the wrong size. This, in turn,
8658 might cause the new type to have the wrong size too.
8659 Consider the case of an array, for instance, where the size
8660 of the array is computed from the number of elements in
8661 our array multiplied by the size of its element. */
b4b73759 8662 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8663 }
8664 }
8665 return fixed_record_type;
4c4b4cd2 8666 }
d2e4a39e 8667 case TYPE_CODE_ARRAY:
4c4b4cd2 8668 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8669 case TYPE_CODE_UNION:
8670 if (dval == NULL)
dda83cd7 8671 return type;
d2e4a39e 8672 else
dda83cd7 8673 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8674 }
14f9c5c9
AS
8675}
8676
f192137b
JB
8677/* The same as ada_to_fixed_type_1, except that it preserves the type
8678 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8679
8680 The typedef layer needs be preserved in order to differentiate between
8681 arrays and array pointers when both types are implemented using the same
8682 fat pointer. In the array pointer case, the pointer is encoded as
8683 a typedef of the pointer type. For instance, considering:
8684
8685 type String_Access is access String;
8686 S1 : String_Access := null;
8687
8688 To the debugger, S1 is defined as a typedef of type String. But
8689 to the user, it is a pointer. So if the user tries to print S1,
8690 we should not dereference the array, but print the array address
8691 instead.
8692
8693 If we didn't preserve the typedef layer, we would lose the fact that
8694 the type is to be presented as a pointer (needs de-reference before
8695 being printed). And we would also use the source-level type name. */
f192137b
JB
8696
8697struct type *
8698ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8699 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8700
8701{
8702 struct type *fixed_type =
8703 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8704
96dbd2c1
JB
8705 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8706 then preserve the typedef layer.
8707
8708 Implementation note: We can only check the main-type portion of
8709 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8710 from TYPE now returns a type that has the same instance flags
8711 as TYPE. For instance, if TYPE is a "typedef const", and its
8712 target type is a "struct", then the typedef elimination will return
8713 a "const" version of the target type. See check_typedef for more
8714 details about how the typedef layer elimination is done.
8715
8716 brobecker/2010-11-19: It seems to me that the only case where it is
8717 useful to preserve the typedef layer is when dealing with fat pointers.
8718 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8719 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8720 because we call check_typedef/ada_check_typedef pretty much everywhere.
8721 */
78134374 8722 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8723 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8724 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8725 return type;
8726
8727 return fixed_type;
8728}
8729
14f9c5c9 8730/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8731 TYPE0, but based on no runtime data. */
14f9c5c9 8732
d2e4a39e
AS
8733static struct type *
8734to_static_fixed_type (struct type *type0)
14f9c5c9 8735{
d2e4a39e 8736 struct type *type;
14f9c5c9
AS
8737
8738 if (type0 == NULL)
8739 return NULL;
8740
22c4c60c 8741 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8742 return type0;
8743
61ee279c 8744 type0 = ada_check_typedef (type0);
d2e4a39e 8745
78134374 8746 switch (type0->code ())
14f9c5c9
AS
8747 {
8748 default:
8749 return type0;
8750 case TYPE_CODE_STRUCT:
8751 type = dynamic_template_type (type0);
d2e4a39e 8752 if (type != NULL)
dda83cd7 8753 return template_to_static_fixed_type (type);
4c4b4cd2 8754 else
dda83cd7 8755 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8756 case TYPE_CODE_UNION:
8757 type = ada_find_parallel_type (type0, "___XVU");
8758 if (type != NULL)
dda83cd7 8759 return template_to_static_fixed_type (type);
4c4b4cd2 8760 else
dda83cd7 8761 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8762 }
8763}
8764
4c4b4cd2
PH
8765/* A static approximation of TYPE with all type wrappers removed. */
8766
d2e4a39e
AS
8767static struct type *
8768static_unwrap_type (struct type *type)
14f9c5c9
AS
8769{
8770 if (ada_is_aligner_type (type))
8771 {
940da03e 8772 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8773 if (ada_type_name (type1) == NULL)
d0e39ea2 8774 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8775
8776 return static_unwrap_type (type1);
8777 }
d2e4a39e 8778 else
14f9c5c9 8779 {
d2e4a39e 8780 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8781
d2e4a39e 8782 if (raw_real_type == type)
dda83cd7 8783 return type;
14f9c5c9 8784 else
dda83cd7 8785 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8786 }
8787}
8788
8789/* In some cases, incomplete and private types require
4c4b4cd2 8790 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8791 type Foo;
8792 type FooP is access Foo;
8793 V: FooP;
8794 type Foo is array ...;
4c4b4cd2 8795 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8796 cross-references to such types, we instead substitute for FooP a
8797 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8798 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8799
8800/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8801 exists, otherwise TYPE. */
8802
d2e4a39e 8803struct type *
61ee279c 8804ada_check_typedef (struct type *type)
14f9c5c9 8805{
727e3d2e
JB
8806 if (type == NULL)
8807 return NULL;
8808
736ade86
XR
8809 /* If our type is an access to an unconstrained array, which is encoded
8810 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8811 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8812 what allows us to distinguish between fat pointers that represent
8813 array types, and fat pointers that represent array access types
8814 (in both cases, the compiler implements them as fat pointers). */
736ade86 8815 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8816 return type;
8817
f168693b 8818 type = check_typedef (type);
78134374 8819 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8820 || !type->is_stub ()
7d93a1e0 8821 || type->name () == NULL)
14f9c5c9 8822 return type;
d2e4a39e 8823 else
14f9c5c9 8824 {
7d93a1e0 8825 const char *name = type->name ();
d2e4a39e 8826 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8827
05e522ef 8828 if (type1 == NULL)
dda83cd7 8829 return type;
05e522ef
JB
8830
8831 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8832 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8833 types, only for the typedef-to-array types). If that's the case,
8834 strip the typedef layer. */
78134374 8835 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8836 type1 = ada_check_typedef (type1);
8837
8838 return type1;
14f9c5c9
AS
8839 }
8840}
8841
8842/* A value representing the data at VALADDR/ADDRESS as described by
8843 type TYPE0, but with a standard (static-sized) type that correctly
8844 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8845 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8846 creation of struct values]. */
14f9c5c9 8847
4c4b4cd2
PH
8848static struct value *
8849ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8850 struct value *val0)
14f9c5c9 8851{
1ed6ede0 8852 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8853
14f9c5c9
AS
8854 if (type == type0 && val0 != NULL)
8855 return val0;
cc0e770c
JB
8856
8857 if (VALUE_LVAL (val0) != lval_memory)
8858 {
8859 /* Our value does not live in memory; it could be a convenience
8860 variable, for instance. Create a not_lval value using val0's
8861 contents. */
50888e42 8862 return value_from_contents (type, value_contents (val0).data ());
cc0e770c
JB
8863 }
8864
8865 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8866}
8867
8868/* A value representing VAL, but with a standard (static-sized) type
8869 that correctly describes it. Does not necessarily create a new
8870 value. */
8871
0c3acc09 8872struct value *
4c4b4cd2
PH
8873ada_to_fixed_value (struct value *val)
8874{
c48db5ca 8875 val = unwrap_value (val);
d8ce9127 8876 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8877 return val;
14f9c5c9 8878}
d2e4a39e 8879\f
14f9c5c9 8880
14f9c5c9
AS
8881/* Attributes */
8882
4c4b4cd2
PH
8883/* Table mapping attribute numbers to names.
8884 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8885
27087b7f 8886static const char * const attribute_names[] = {
14f9c5c9
AS
8887 "<?>",
8888
d2e4a39e 8889 "first",
14f9c5c9
AS
8890 "last",
8891 "length",
8892 "image",
14f9c5c9
AS
8893 "max",
8894 "min",
4c4b4cd2
PH
8895 "modulus",
8896 "pos",
8897 "size",
8898 "tag",
14f9c5c9 8899 "val",
14f9c5c9
AS
8900 0
8901};
8902
de93309a 8903static const char *
4c4b4cd2 8904ada_attribute_name (enum exp_opcode n)
14f9c5c9 8905{
4c4b4cd2
PH
8906 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8907 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8908 else
8909 return attribute_names[0];
8910}
8911
4c4b4cd2 8912/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8913
4c4b4cd2
PH
8914static LONGEST
8915pos_atr (struct value *arg)
14f9c5c9 8916{
24209737
PH
8917 struct value *val = coerce_ref (arg);
8918 struct type *type = value_type (val);
14f9c5c9 8919
d2e4a39e 8920 if (!discrete_type_p (type))
323e0a4a 8921 error (_("'POS only defined on discrete types"));
14f9c5c9 8922
6244c119
SM
8923 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8924 if (!result.has_value ())
aa715135 8925 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8926
6244c119 8927 return *result;
4c4b4cd2
PH
8928}
8929
7631cf6c 8930struct value *
7992accc
TT
8931ada_pos_atr (struct type *expect_type,
8932 struct expression *exp,
8933 enum noside noside, enum exp_opcode op,
8934 struct value *arg)
4c4b4cd2 8935{
7992accc
TT
8936 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8937 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8938 return value_zero (type, not_lval);
3cb382c9 8939 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8940}
8941
4c4b4cd2 8942/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8943
d2e4a39e 8944static struct value *
53a47a3e 8945val_atr (struct type *type, LONGEST val)
14f9c5c9 8946{
53a47a3e 8947 gdb_assert (discrete_type_p (type));
0bc2354b 8948 if (type->code () == TYPE_CODE_RANGE)
27710edb 8949 type = type->target_type ();
78134374 8950 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8951 {
53a47a3e 8952 if (val < 0 || val >= type->num_fields ())
dda83cd7 8953 error (_("argument to 'VAL out of range"));
970db518 8954 val = type->field (val).loc_enumval ();
14f9c5c9 8955 }
53a47a3e
TT
8956 return value_from_longest (type, val);
8957}
8958
9e99f48f 8959struct value *
3848abd6 8960ada_val_atr (enum noside noside, struct type *type, struct value *arg)
53a47a3e 8961{
3848abd6
TT
8962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8963 return value_zero (type, not_lval);
8964
53a47a3e
TT
8965 if (!discrete_type_p (type))
8966 error (_("'VAL only defined on discrete types"));
8967 if (!integer_type_p (value_type (arg)))
8968 error (_("'VAL requires integral argument"));
8969
8970 return val_atr (type, value_as_long (arg));
14f9c5c9 8971}
14f9c5c9 8972\f
d2e4a39e 8973
dda83cd7 8974 /* Evaluation */
14f9c5c9 8975
4c4b4cd2
PH
8976/* True if TYPE appears to be an Ada character type.
8977 [At the moment, this is true only for Character and Wide_Character;
8978 It is a heuristic test that could stand improvement]. */
14f9c5c9 8979
fc913e53 8980bool
d2e4a39e 8981ada_is_character_type (struct type *type)
14f9c5c9 8982{
7b9f71f2
JB
8983 const char *name;
8984
8985 /* If the type code says it's a character, then assume it really is,
8986 and don't check any further. */
78134374 8987 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8988 return true;
7b9f71f2
JB
8989
8990 /* Otherwise, assume it's a character type iff it is a discrete type
8991 with a known character type name. */
8992 name = ada_type_name (type);
8993 return (name != NULL
dda83cd7
SM
8994 && (type->code () == TYPE_CODE_INT
8995 || type->code () == TYPE_CODE_RANGE)
8996 && (strcmp (name, "character") == 0
8997 || strcmp (name, "wide_character") == 0
8998 || strcmp (name, "wide_wide_character") == 0
8999 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9000}
9001
4c4b4cd2 9002/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9003
fc913e53 9004bool
ebf56fd3 9005ada_is_string_type (struct type *type)
14f9c5c9 9006{
61ee279c 9007 type = ada_check_typedef (type);
d2e4a39e 9008 if (type != NULL
78134374 9009 && type->code () != TYPE_CODE_PTR
76a01679 9010 && (ada_is_simple_array_type (type)
dda83cd7 9011 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9012 && ada_array_arity (type) == 1)
9013 {
9014 struct type *elttype = ada_array_element_type (type, 1);
9015
9016 return ada_is_character_type (elttype);
9017 }
d2e4a39e 9018 else
fc913e53 9019 return false;
14f9c5c9
AS
9020}
9021
5bf03f13
JB
9022/* The compiler sometimes provides a parallel XVS type for a given
9023 PAD type. Normally, it is safe to follow the PAD type directly,
9024 but older versions of the compiler have a bug that causes the offset
9025 of its "F" field to be wrong. Following that field in that case
9026 would lead to incorrect results, but this can be worked around
9027 by ignoring the PAD type and using the associated XVS type instead.
9028
9029 Set to True if the debugger should trust the contents of PAD types.
9030 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9031static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9032
9033/* True if TYPE is a struct type introduced by the compiler to force the
9034 alignment of a value. Such types have a single field with a
4c4b4cd2 9035 distinctive name. */
14f9c5c9
AS
9036
9037int
ebf56fd3 9038ada_is_aligner_type (struct type *type)
14f9c5c9 9039{
61ee279c 9040 type = ada_check_typedef (type);
714e53ab 9041
5bf03f13 9042 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9043 return 0;
9044
78134374 9045 return (type->code () == TYPE_CODE_STRUCT
dda83cd7 9046 && type->num_fields () == 1
33d16dd9 9047 && strcmp (type->field (0).name (), "F") == 0);
14f9c5c9
AS
9048}
9049
9050/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9051 the parallel type. */
14f9c5c9 9052
d2e4a39e
AS
9053struct type *
9054ada_get_base_type (struct type *raw_type)
14f9c5c9 9055{
d2e4a39e
AS
9056 struct type *real_type_namer;
9057 struct type *raw_real_type;
14f9c5c9 9058
78134374 9059 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9060 return raw_type;
9061
284614f0
JB
9062 if (ada_is_aligner_type (raw_type))
9063 /* The encoding specifies that we should always use the aligner type.
9064 So, even if this aligner type has an associated XVS type, we should
9065 simply ignore it.
9066
9067 According to the compiler gurus, an XVS type parallel to an aligner
9068 type may exist because of a stabs limitation. In stabs, aligner
9069 types are empty because the field has a variable-sized type, and
9070 thus cannot actually be used as an aligner type. As a result,
9071 we need the associated parallel XVS type to decode the type.
9072 Since the policy in the compiler is to not change the internal
9073 representation based on the debugging info format, we sometimes
9074 end up having a redundant XVS type parallel to the aligner type. */
9075 return raw_type;
9076
14f9c5c9 9077 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9078 if (real_type_namer == NULL
78134374 9079 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9080 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9081 return raw_type;
9082
940da03e 9083 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9084 {
9085 /* This is an older encoding form where the base type needs to be
85102364 9086 looked up by name. We prefer the newer encoding because it is
f80d3ff2 9087 more efficient. */
33d16dd9 9088 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
f80d3ff2
JB
9089 if (raw_real_type == NULL)
9090 return raw_type;
9091 else
9092 return raw_real_type;
9093 }
9094
9095 /* The field in our XVS type is a reference to the base type. */
27710edb 9096 return real_type_namer->field (0).type ()->target_type ();
d2e4a39e 9097}
14f9c5c9 9098
4c4b4cd2 9099/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9100
d2e4a39e
AS
9101struct type *
9102ada_aligned_type (struct type *type)
14f9c5c9
AS
9103{
9104 if (ada_is_aligner_type (type))
940da03e 9105 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9106 else
9107 return ada_get_base_type (type);
9108}
9109
9110
9111/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9112 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9113
fc1a4b47
AC
9114const gdb_byte *
9115ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9116{
d2e4a39e 9117 if (ada_is_aligner_type (type))
b610c045
SM
9118 return ada_aligned_value_addr
9119 (type->field (0).type (),
9120 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
14f9c5c9
AS
9121 else
9122 return valaddr;
9123}
9124
4c4b4cd2
PH
9125
9126
14f9c5c9 9127/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9128 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9129const char *
9130ada_enum_name (const char *name)
14f9c5c9 9131{
5f9febe0 9132 static std::string storage;
e6a959d6 9133 const char *tmp;
14f9c5c9 9134
4c4b4cd2
PH
9135 /* First, unqualify the enumeration name:
9136 1. Search for the last '.' character. If we find one, then skip
177b42fe 9137 all the preceding characters, the unqualified name starts
76a01679 9138 right after that dot.
4c4b4cd2 9139 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9140 translates dots into "__". Search forward for double underscores,
9141 but stop searching when we hit an overloading suffix, which is
9142 of the form "__" followed by digits. */
4c4b4cd2 9143
c3e5cd34
PH
9144 tmp = strrchr (name, '.');
9145 if (tmp != NULL)
4c4b4cd2
PH
9146 name = tmp + 1;
9147 else
14f9c5c9 9148 {
4c4b4cd2 9149 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
9150 {
9151 if (isdigit (tmp[2]))
9152 break;
9153 else
9154 name = tmp + 2;
9155 }
14f9c5c9
AS
9156 }
9157
9158 if (name[0] == 'Q')
9159 {
14f9c5c9 9160 int v;
5b4ee69b 9161
14f9c5c9 9162 if (name[1] == 'U' || name[1] == 'W')
dda83cd7 9163 {
a7041de8
TT
9164 int offset = 2;
9165 if (name[1] == 'W' && name[2] == 'W')
9166 {
9167 /* Also handle the QWW case. */
9168 ++offset;
9169 }
9170 if (sscanf (name + offset, "%x", &v) != 1)
dda83cd7
SM
9171 return name;
9172 }
272560b5
TT
9173 else if (((name[1] >= '0' && name[1] <= '9')
9174 || (name[1] >= 'a' && name[1] <= 'z'))
9175 && name[2] == '\0')
9176 {
5f9febe0
TT
9177 storage = string_printf ("'%c'", name[1]);
9178 return storage.c_str ();
272560b5 9179 }
14f9c5c9 9180 else
dda83cd7 9181 return name;
14f9c5c9
AS
9182
9183 if (isascii (v) && isprint (v))
5f9febe0 9184 storage = string_printf ("'%c'", v);
14f9c5c9 9185 else if (name[1] == 'U')
a7041de8
TT
9186 storage = string_printf ("'[\"%02x\"]'", v);
9187 else if (name[2] != 'W')
9188 storage = string_printf ("'[\"%04x\"]'", v);
14f9c5c9 9189 else
a7041de8 9190 storage = string_printf ("'[\"%06x\"]'", v);
14f9c5c9 9191
5f9febe0 9192 return storage.c_str ();
14f9c5c9 9193 }
d2e4a39e 9194 else
4c4b4cd2 9195 {
c3e5cd34
PH
9196 tmp = strstr (name, "__");
9197 if (tmp == NULL)
9198 tmp = strstr (name, "$");
9199 if (tmp != NULL)
dda83cd7 9200 {
5f9febe0
TT
9201 storage = std::string (name, tmp - name);
9202 return storage.c_str ();
dda83cd7 9203 }
4c4b4cd2
PH
9204
9205 return name;
9206 }
14f9c5c9
AS
9207}
9208
14f9c5c9 9209/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9210 value it wraps. */
14f9c5c9 9211
d2e4a39e
AS
9212static struct value *
9213unwrap_value (struct value *val)
14f9c5c9 9214{
df407dfe 9215 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9216
14f9c5c9
AS
9217 if (ada_is_aligner_type (type))
9218 {
de4d072f 9219 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9220 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9221
14f9c5c9 9222 if (ada_type_name (val_type) == NULL)
d0e39ea2 9223 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9224
9225 return unwrap_value (v);
9226 }
d2e4a39e 9227 else
14f9c5c9 9228 {
d2e4a39e 9229 struct type *raw_real_type =
dda83cd7 9230 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9231
5bf03f13
JB
9232 /* If there is no parallel XVS or XVE type, then the value is
9233 already unwrapped. Return it without further modification. */
9234 if ((type == raw_real_type)
9235 && ada_find_parallel_type (type, "___XVE") == NULL)
9236 return val;
14f9c5c9 9237
d2e4a39e 9238 return
dda83cd7
SM
9239 coerce_unspec_val_to_type
9240 (val, ada_to_fixed_type (raw_real_type, 0,
9241 value_address (val),
9242 NULL, 1));
14f9c5c9
AS
9243 }
9244}
d2e4a39e 9245
d99dcf51
JB
9246/* Given two array types T1 and T2, return nonzero iff both arrays
9247 contain the same number of elements. */
9248
9249static int
9250ada_same_array_size_p (struct type *t1, struct type *t2)
9251{
9252 LONGEST lo1, hi1, lo2, hi2;
9253
9254 /* Get the array bounds in order to verify that the size of
9255 the two arrays match. */
9256 if (!get_array_bounds (t1, &lo1, &hi1)
9257 || !get_array_bounds (t2, &lo2, &hi2))
9258 error (_("unable to determine array bounds"));
9259
9260 /* To make things easier for size comparison, normalize a bit
9261 the case of empty arrays by making sure that the difference
9262 between upper bound and lower bound is always -1. */
9263 if (lo1 > hi1)
9264 hi1 = lo1 - 1;
9265 if (lo2 > hi2)
9266 hi2 = lo2 - 1;
9267
9268 return (hi1 - lo1 == hi2 - lo2);
9269}
9270
9271/* Assuming that VAL is an array of integrals, and TYPE represents
9272 an array with the same number of elements, but with wider integral
9273 elements, return an array "casted" to TYPE. In practice, this
9274 means that the returned array is built by casting each element
9275 of the original array into TYPE's (wider) element type. */
9276
9277static struct value *
9278ada_promote_array_of_integrals (struct type *type, struct value *val)
9279{
27710edb 9280 struct type *elt_type = type->target_type ();
d99dcf51 9281 LONGEST lo, hi;
d99dcf51
JB
9282 LONGEST i;
9283
9284 /* Verify that both val and type are arrays of scalars, and
9285 that the size of val's elements is smaller than the size
9286 of type's element. */
78134374 9287 gdb_assert (type->code () == TYPE_CODE_ARRAY);
27710edb 9288 gdb_assert (is_integral_type (type->target_type ()));
78134374 9289 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
27710edb 9290 gdb_assert (is_integral_type (value_type (val)->target_type ()));
df86565b
SM
9291 gdb_assert (type->target_type ()->length ()
9292 > value_type (val)->target_type ()->length ());
d99dcf51
JB
9293
9294 if (!get_array_bounds (type, &lo, &hi))
9295 error (_("unable to determine array bounds"));
9296
4bce7cda
SM
9297 value *res = allocate_value (type);
9298 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
d99dcf51
JB
9299
9300 /* Promote each array element. */
9301 for (i = 0; i < hi - lo + 1; i++)
9302 {
9303 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
df86565b 9304 int elt_len = elt_type->length ();
d99dcf51 9305
4bce7cda 9306 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
d99dcf51
JB
9307 }
9308
9309 return res;
9310}
9311
4c4b4cd2
PH
9312/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9313 return the converted value. */
9314
d2e4a39e
AS
9315static struct value *
9316coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9317{
df407dfe 9318 struct type *type2 = value_type (val);
5b4ee69b 9319
14f9c5c9
AS
9320 if (type == type2)
9321 return val;
9322
61ee279c
PH
9323 type2 = ada_check_typedef (type2);
9324 type = ada_check_typedef (type);
14f9c5c9 9325
78134374
SM
9326 if (type2->code () == TYPE_CODE_PTR
9327 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9328 {
9329 val = ada_value_ind (val);
df407dfe 9330 type2 = value_type (val);
14f9c5c9
AS
9331 }
9332
78134374
SM
9333 if (type2->code () == TYPE_CODE_ARRAY
9334 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9335 {
d99dcf51
JB
9336 if (!ada_same_array_size_p (type, type2))
9337 error (_("cannot assign arrays of different length"));
9338
27710edb
SM
9339 if (is_integral_type (type->target_type ())
9340 && is_integral_type (type2->target_type ())
df86565b 9341 && type2->target_type ()->length () < type->target_type ()->length ())
d99dcf51
JB
9342 {
9343 /* Allow implicit promotion of the array elements to
9344 a wider type. */
9345 return ada_promote_array_of_integrals (type, val);
9346 }
9347
df86565b 9348 if (type2->target_type ()->length () != type->target_type ()->length ())
dda83cd7 9349 error (_("Incompatible types in assignment"));
04624583 9350 deprecated_set_value_type (val, type);
14f9c5c9 9351 }
d2e4a39e 9352 return val;
14f9c5c9
AS
9353}
9354
4c4b4cd2
PH
9355static struct value *
9356ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9357{
9358 struct value *val;
9359 struct type *type1, *type2;
9360 LONGEST v, v1, v2;
9361
994b9211
AC
9362 arg1 = coerce_ref (arg1);
9363 arg2 = coerce_ref (arg2);
18af8284
JB
9364 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9365 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9366
78134374
SM
9367 if (type1->code () != TYPE_CODE_INT
9368 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9369 return value_binop (arg1, arg2, op);
9370
76a01679 9371 switch (op)
4c4b4cd2
PH
9372 {
9373 case BINOP_MOD:
9374 case BINOP_DIV:
9375 case BINOP_REM:
9376 break;
9377 default:
9378 return value_binop (arg1, arg2, op);
9379 }
9380
9381 v2 = value_as_long (arg2);
9382 if (v2 == 0)
b0f9164c
TT
9383 {
9384 const char *name;
9385 if (op == BINOP_MOD)
9386 name = "mod";
9387 else if (op == BINOP_DIV)
9388 name = "/";
9389 else
9390 {
9391 gdb_assert (op == BINOP_REM);
9392 name = "rem";
9393 }
9394
9395 error (_("second operand of %s must not be zero."), name);
9396 }
4c4b4cd2 9397
c6d940a9 9398 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9399 return value_binop (arg1, arg2, op);
9400
9401 v1 = value_as_long (arg1);
9402 switch (op)
9403 {
9404 case BINOP_DIV:
9405 v = v1 / v2;
76a01679 9406 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9407 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9408 break;
9409 case BINOP_REM:
9410 v = v1 % v2;
76a01679 9411 if (v * v1 < 0)
dda83cd7 9412 v -= v2;
4c4b4cd2
PH
9413 break;
9414 default:
9415 /* Should not reach this point. */
9416 v = 0;
9417 }
9418
9419 val = allocate_value (type1);
50888e42 9420 store_unsigned_integer (value_contents_raw (val).data (),
df86565b 9421 value_type (val)->length (),
34877895 9422 type_byte_order (type1), v);
4c4b4cd2
PH
9423 return val;
9424}
9425
9426static int
9427ada_value_equal (struct value *arg1, struct value *arg2)
9428{
df407dfe
AC
9429 if (ada_is_direct_array_type (value_type (arg1))
9430 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9431 {
79e8fcaa
JB
9432 struct type *arg1_type, *arg2_type;
9433
f58b38bf 9434 /* Automatically dereference any array reference before
dda83cd7 9435 we attempt to perform the comparison. */
f58b38bf
JB
9436 arg1 = ada_coerce_ref (arg1);
9437 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9438
4c4b4cd2
PH
9439 arg1 = ada_coerce_to_simple_array (arg1);
9440 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9441
9442 arg1_type = ada_check_typedef (value_type (arg1));
9443 arg2_type = ada_check_typedef (value_type (arg2));
9444
78134374 9445 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9446 || arg2_type->code () != TYPE_CODE_ARRAY)
9447 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9448 /* FIXME: The following works only for types whose
dda83cd7
SM
9449 representations use all bits (no padding or undefined bits)
9450 and do not have user-defined equality. */
df86565b 9451 return (arg1_type->length () == arg2_type->length ()
50888e42
SM
9452 && memcmp (value_contents (arg1).data (),
9453 value_contents (arg2).data (),
df86565b 9454 arg1_type->length ()) == 0);
4c4b4cd2
PH
9455 }
9456 return value_equal (arg1, arg2);
9457}
9458
d3c54a1c
TT
9459namespace expr
9460{
9461
9462bool
9463check_objfile (const std::unique_ptr<ada_component> &comp,
9464 struct objfile *objfile)
9465{
9466 return comp->uses_objfile (objfile);
9467}
9468
9469/* Assign the result of evaluating ARG starting at *POS to the INDEXth
9470 component of LHS (a simple array or a record). Does not modify the
9471 inferior's memory, nor does it modify LHS (unless LHS ==
9472 CONTAINER). */
52ce6436
PH
9473
9474static void
9475assign_component (struct value *container, struct value *lhs, LONGEST index,
d3c54a1c 9476 struct expression *exp, operation_up &arg)
52ce6436 9477{
d3c54a1c
TT
9478 scoped_value_mark mark;
9479
52ce6436 9480 struct value *elt;
0e2da9f0 9481 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9482
78134374 9483 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9484 {
22601c15
UW
9485 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9486 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9487
52ce6436
PH
9488 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9489 }
9490 else
9491 {
9492 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9493 elt = ada_to_fixed_value (elt);
52ce6436
PH
9494 }
9495
d3c54a1c
TT
9496 ada_aggregate_operation *ag_op
9497 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9498 if (ag_op != nullptr)
9499 ag_op->assign_aggregate (container, elt, exp);
52ce6436 9500 else
d3c54a1c
TT
9501 value_assign_to_component (container, elt,
9502 arg->evaluate (nullptr, exp,
9503 EVAL_NORMAL));
9504}
52ce6436 9505
d3c54a1c
TT
9506bool
9507ada_aggregate_component::uses_objfile (struct objfile *objfile)
9508{
9509 for (const auto &item : m_components)
9510 if (item->uses_objfile (objfile))
9511 return true;
9512 return false;
9513}
9514
9515void
9516ada_aggregate_component::dump (ui_file *stream, int depth)
9517{
6cb06a8c 9518 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
d3c54a1c
TT
9519 for (const auto &item : m_components)
9520 item->dump (stream, depth + 1);
9521}
9522
9523void
9524ada_aggregate_component::assign (struct value *container,
9525 struct value *lhs, struct expression *exp,
9526 std::vector<LONGEST> &indices,
9527 LONGEST low, LONGEST high)
9528{
9529 for (auto &item : m_components)
9530 item->assign (container, lhs, exp, indices, low, high);
52ce6436
PH
9531}
9532
207582c0 9533/* See ada-exp.h. */
52ce6436 9534
207582c0 9535value *
d3c54a1c
TT
9536ada_aggregate_operation::assign_aggregate (struct value *container,
9537 struct value *lhs,
9538 struct expression *exp)
52ce6436
PH
9539{
9540 struct type *lhs_type;
52ce6436 9541 LONGEST low_index, high_index;
52ce6436
PH
9542
9543 container = ada_coerce_ref (container);
9544 if (ada_is_direct_array_type (value_type (container)))
9545 container = ada_coerce_to_simple_array (container);
9546 lhs = ada_coerce_ref (lhs);
9547 if (!deprecated_value_modifiable (lhs))
9548 error (_("Left operand of assignment is not a modifiable lvalue."));
9549
0e2da9f0 9550 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9551 if (ada_is_direct_array_type (lhs_type))
9552 {
9553 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9554 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9555 low_index = lhs_type->bounds ()->low.const_val ();
9556 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9557 }
78134374 9558 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9559 {
9560 low_index = 0;
9561 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9562 }
9563 else
9564 error (_("Left-hand side must be array or record."));
9565
cf608cc4 9566 std::vector<LONGEST> indices (4);
52ce6436
PH
9567 indices[0] = indices[1] = low_index - 1;
9568 indices[2] = indices[3] = high_index + 1;
52ce6436 9569
d3c54a1c
TT
9570 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9571 low_index, high_index);
207582c0
TT
9572
9573 return container;
d3c54a1c
TT
9574}
9575
9576bool
9577ada_positional_component::uses_objfile (struct objfile *objfile)
9578{
9579 return m_op->uses_objfile (objfile);
9580}
52ce6436 9581
d3c54a1c
TT
9582void
9583ada_positional_component::dump (ui_file *stream, int depth)
9584{
6cb06a8c
TT
9585 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9586 depth, "", m_index);
d3c54a1c 9587 m_op->dump (stream, depth + 1);
52ce6436 9588}
d3c54a1c 9589
52ce6436 9590/* Assign into the component of LHS indexed by the OP_POSITIONAL
d3c54a1c
TT
9591 construct, given that the positions are relative to lower bound
9592 LOW, where HIGH is the upper bound. Record the position in
9593 INDICES. CONTAINER is as for assign_aggregate. */
9594void
9595ada_positional_component::assign (struct value *container,
9596 struct value *lhs, struct expression *exp,
9597 std::vector<LONGEST> &indices,
9598 LONGEST low, LONGEST high)
52ce6436 9599{
d3c54a1c
TT
9600 LONGEST ind = m_index + low;
9601
52ce6436 9602 if (ind - 1 == high)
e1d5a0d2 9603 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9604 if (ind <= high)
9605 {
cf608cc4 9606 add_component_interval (ind, ind, indices);
d3c54a1c 9607 assign_component (container, lhs, ind, exp, m_op);
52ce6436 9608 }
52ce6436
PH
9609}
9610
d3c54a1c
TT
9611bool
9612ada_discrete_range_association::uses_objfile (struct objfile *objfile)
a88c4354
TT
9613{
9614 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9615}
9616
9617void
9618ada_discrete_range_association::dump (ui_file *stream, int depth)
9619{
6cb06a8c 9620 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
a88c4354
TT
9621 m_low->dump (stream, depth + 1);
9622 m_high->dump (stream, depth + 1);
9623}
9624
9625void
9626ada_discrete_range_association::assign (struct value *container,
9627 struct value *lhs,
9628 struct expression *exp,
9629 std::vector<LONGEST> &indices,
9630 LONGEST low, LONGEST high,
9631 operation_up &op)
9632{
9633 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9634 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9635
9636 if (lower <= upper && (lower < low || upper > high))
9637 error (_("Index in component association out of bounds."));
9638
9639 add_component_interval (lower, upper, indices);
9640 while (lower <= upper)
9641 {
9642 assign_component (container, lhs, lower, exp, op);
9643 lower += 1;
9644 }
9645}
9646
9647bool
9648ada_name_association::uses_objfile (struct objfile *objfile)
9649{
9650 return m_val->uses_objfile (objfile);
9651}
9652
9653void
9654ada_name_association::dump (ui_file *stream, int depth)
9655{
6cb06a8c 9656 gdb_printf (stream, _("%*sName:\n"), depth, "");
a88c4354
TT
9657 m_val->dump (stream, depth + 1);
9658}
9659
9660void
9661ada_name_association::assign (struct value *container,
9662 struct value *lhs,
9663 struct expression *exp,
9664 std::vector<LONGEST> &indices,
9665 LONGEST low, LONGEST high,
9666 operation_up &op)
9667{
9668 int index;
9669
9670 if (ada_is_direct_array_type (value_type (lhs)))
9671 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9672 EVAL_NORMAL)));
9673 else
9674 {
9675 ada_string_operation *strop
9676 = dynamic_cast<ada_string_operation *> (m_val.get ());
9677
9678 const char *name;
9679 if (strop != nullptr)
9680 name = strop->get_name ();
9681 else
9682 {
9683 ada_var_value_operation *vvo
9684 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9685 if (vvo != nullptr)
9686 error (_("Invalid record component association."));
9687 name = vvo->get_symbol ()->natural_name ();
9688 }
9689
9690 index = 0;
9691 if (! find_struct_field (name, value_type (lhs), 0,
9692 NULL, NULL, NULL, NULL, &index))
9693 error (_("Unknown component name: %s."), name);
9694 }
9695
9696 add_component_interval (index, index, indices);
9697 assign_component (container, lhs, index, exp, op);
9698}
9699
9700bool
9701ada_choices_component::uses_objfile (struct objfile *objfile)
9702{
9703 if (m_op->uses_objfile (objfile))
9704 return true;
9705 for (const auto &item : m_assocs)
9706 if (item->uses_objfile (objfile))
9707 return true;
9708 return false;
9709}
9710
9711void
9712ada_choices_component::dump (ui_file *stream, int depth)
9713{
6cb06a8c 9714 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
a88c4354
TT
9715 m_op->dump (stream, depth + 1);
9716 for (const auto &item : m_assocs)
9717 item->dump (stream, depth + 1);
9718}
9719
9720/* Assign into the components of LHS indexed by the OP_CHOICES
9721 construct at *POS, updating *POS past the construct, given that
9722 the allowable indices are LOW..HIGH. Record the indices assigned
9723 to in INDICES. CONTAINER is as for assign_aggregate. */
9724void
9725ada_choices_component::assign (struct value *container,
9726 struct value *lhs, struct expression *exp,
9727 std::vector<LONGEST> &indices,
9728 LONGEST low, LONGEST high)
9729{
9730 for (auto &item : m_assocs)
9731 item->assign (container, lhs, exp, indices, low, high, m_op);
9732}
9733
9734bool
9735ada_others_component::uses_objfile (struct objfile *objfile)
9736{
9737 return m_op->uses_objfile (objfile);
9738}
9739
9740void
9741ada_others_component::dump (ui_file *stream, int depth)
9742{
6cb06a8c 9743 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
a88c4354
TT
9744 m_op->dump (stream, depth + 1);
9745}
9746
9747/* Assign the value of the expression in the OP_OTHERS construct in
9748 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9749 have not been previously assigned. The index intervals already assigned
9750 are in INDICES. CONTAINER is as for assign_aggregate. */
9751void
9752ada_others_component::assign (struct value *container,
9753 struct value *lhs, struct expression *exp,
9754 std::vector<LONGEST> &indices,
9755 LONGEST low, LONGEST high)
9756{
9757 int num_indices = indices.size ();
9758 for (int i = 0; i < num_indices - 2; i += 2)
9759 {
9760 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9761 assign_component (container, lhs, ind, exp, m_op);
9762 }
9763}
9764
9765struct value *
9766ada_assign_operation::evaluate (struct type *expect_type,
9767 struct expression *exp,
9768 enum noside noside)
9769{
9770 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9771
9772 ada_aggregate_operation *ag_op
9773 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9774 if (ag_op != nullptr)
9775 {
9776 if (noside != EVAL_NORMAL)
9777 return arg1;
9778
207582c0 9779 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
a88c4354
TT
9780 return ada_value_assign (arg1, arg1);
9781 }
9782 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9783 except if the lhs of our assignment is a convenience variable.
9784 In the case of assigning to a convenience variable, the lhs
9785 should be exactly the result of the evaluation of the rhs. */
9786 struct type *type = value_type (arg1);
9787 if (VALUE_LVAL (arg1) == lval_internalvar)
9788 type = NULL;
9789 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
0b2b0b82 9790 if (noside == EVAL_AVOID_SIDE_EFFECTS)
a88c4354
TT
9791 return arg1;
9792 if (VALUE_LVAL (arg1) == lval_internalvar)
9793 {
9794 /* Nothing. */
9795 }
9796 else
9797 arg2 = coerce_for_assign (value_type (arg1), arg2);
9798 return ada_value_assign (arg1, arg2);
9799}
9800
9801} /* namespace expr */
9802
cf608cc4
TT
9803/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9804 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9805 overlap. */
52ce6436
PH
9806static void
9807add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9808 std::vector<LONGEST> &indices)
52ce6436
PH
9809{
9810 int i, j;
5b4ee69b 9811
cf608cc4
TT
9812 int size = indices.size ();
9813 for (i = 0; i < size; i += 2) {
52ce6436
PH
9814 if (high >= indices[i] && low <= indices[i + 1])
9815 {
9816 int kh;
5b4ee69b 9817
cf608cc4 9818 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9819 if (high < indices[kh])
9820 break;
9821 if (low < indices[i])
9822 indices[i] = low;
9823 indices[i + 1] = indices[kh - 1];
9824 if (high > indices[i + 1])
9825 indices[i + 1] = high;
cf608cc4
TT
9826 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9827 indices.resize (kh - i - 2);
52ce6436
PH
9828 return;
9829 }
9830 else if (high < indices[i])
9831 break;
9832 }
9833
cf608cc4 9834 indices.resize (indices.size () + 2);
d4813f10 9835 for (j = indices.size () - 1; j >= i + 2; j -= 1)
52ce6436
PH
9836 indices[j] = indices[j - 2];
9837 indices[i] = low;
9838 indices[i + 1] = high;
9839}
9840
6e48bd2c
JB
9841/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9842 is different. */
9843
9844static struct value *
b7e22850 9845ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9846{
9847 if (type == ada_check_typedef (value_type (arg2)))
9848 return arg2;
9849
6e48bd2c
JB
9850 return value_cast (type, arg2);
9851}
9852
284614f0
JB
9853/* Evaluating Ada expressions, and printing their result.
9854 ------------------------------------------------------
9855
21649b50
JB
9856 1. Introduction:
9857 ----------------
9858
284614f0
JB
9859 We usually evaluate an Ada expression in order to print its value.
9860 We also evaluate an expression in order to print its type, which
9861 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9862 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9863 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9864 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9865 similar.
9866
9867 Evaluating expressions is a little more complicated for Ada entities
9868 than it is for entities in languages such as C. The main reason for
9869 this is that Ada provides types whose definition might be dynamic.
9870 One example of such types is variant records. Or another example
9871 would be an array whose bounds can only be known at run time.
9872
9873 The following description is a general guide as to what should be
9874 done (and what should NOT be done) in order to evaluate an expression
9875 involving such types, and when. This does not cover how the semantic
9876 information is encoded by GNAT as this is covered separatly. For the
9877 document used as the reference for the GNAT encoding, see exp_dbug.ads
9878 in the GNAT sources.
9879
9880 Ideally, we should embed each part of this description next to its
9881 associated code. Unfortunately, the amount of code is so vast right
9882 now that it's hard to see whether the code handling a particular
9883 situation might be duplicated or not. One day, when the code is
9884 cleaned up, this guide might become redundant with the comments
9885 inserted in the code, and we might want to remove it.
9886
21649b50
JB
9887 2. ``Fixing'' an Entity, the Simple Case:
9888 -----------------------------------------
9889
284614f0
JB
9890 When evaluating Ada expressions, the tricky issue is that they may
9891 reference entities whose type contents and size are not statically
9892 known. Consider for instance a variant record:
9893
9894 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9895 case Empty is
9896 when True => null;
9897 when False => Value : Integer;
9898 end case;
284614f0
JB
9899 end record;
9900 Yes : Rec := (Empty => False, Value => 1);
9901 No : Rec := (empty => True);
9902
9903 The size and contents of that record depends on the value of the
9904 descriminant (Rec.Empty). At this point, neither the debugging
9905 information nor the associated type structure in GDB are able to
9906 express such dynamic types. So what the debugger does is to create
9907 "fixed" versions of the type that applies to the specific object.
30baf67b 9908 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9909 which means creating its associated fixed type.
9910
9911 Example: when printing the value of variable "Yes" above, its fixed
9912 type would look like this:
9913
9914 type Rec is record
dda83cd7
SM
9915 Empty : Boolean;
9916 Value : Integer;
284614f0
JB
9917 end record;
9918
9919 On the other hand, if we printed the value of "No", its fixed type
9920 would become:
9921
9922 type Rec is record
dda83cd7 9923 Empty : Boolean;
284614f0
JB
9924 end record;
9925
9926 Things become a little more complicated when trying to fix an entity
9927 with a dynamic type that directly contains another dynamic type,
9928 such as an array of variant records, for instance. There are
9929 two possible cases: Arrays, and records.
9930
21649b50
JB
9931 3. ``Fixing'' Arrays:
9932 ---------------------
9933
9934 The type structure in GDB describes an array in terms of its bounds,
9935 and the type of its elements. By design, all elements in the array
9936 have the same type and we cannot represent an array of variant elements
9937 using the current type structure in GDB. When fixing an array,
9938 we cannot fix the array element, as we would potentially need one
9939 fixed type per element of the array. As a result, the best we can do
9940 when fixing an array is to produce an array whose bounds and size
9941 are correct (allowing us to read it from memory), but without having
9942 touched its element type. Fixing each element will be done later,
9943 when (if) necessary.
9944
9945 Arrays are a little simpler to handle than records, because the same
9946 amount of memory is allocated for each element of the array, even if
1b536f04 9947 the amount of space actually used by each element differs from element
21649b50 9948 to element. Consider for instance the following array of type Rec:
284614f0
JB
9949
9950 type Rec_Array is array (1 .. 2) of Rec;
9951
1b536f04
JB
9952 The actual amount of memory occupied by each element might be different
9953 from element to element, depending on the value of their discriminant.
21649b50 9954 But the amount of space reserved for each element in the array remains
1b536f04 9955 fixed regardless. So we simply need to compute that size using
21649b50
JB
9956 the debugging information available, from which we can then determine
9957 the array size (we multiply the number of elements of the array by
9958 the size of each element).
9959
9960 The simplest case is when we have an array of a constrained element
9961 type. For instance, consider the following type declarations:
9962
dda83cd7
SM
9963 type Bounded_String (Max_Size : Integer) is
9964 Length : Integer;
9965 Buffer : String (1 .. Max_Size);
9966 end record;
9967 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9968
9969 In this case, the compiler describes the array as an array of
9970 variable-size elements (identified by its XVS suffix) for which
9971 the size can be read in the parallel XVZ variable.
9972
9973 In the case of an array of an unconstrained element type, the compiler
9974 wraps the array element inside a private PAD type. This type should not
9975 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9976 that we also use the adjective "aligner" in our code to designate
9977 these wrapper types.
9978
1b536f04 9979 In some cases, the size allocated for each element is statically
21649b50
JB
9980 known. In that case, the PAD type already has the correct size,
9981 and the array element should remain unfixed.
9982
9983 But there are cases when this size is not statically known.
9984 For instance, assuming that "Five" is an integer variable:
284614f0 9985
dda83cd7
SM
9986 type Dynamic is array (1 .. Five) of Integer;
9987 type Wrapper (Has_Length : Boolean := False) is record
9988 Data : Dynamic;
9989 case Has_Length is
9990 when True => Length : Integer;
9991 when False => null;
9992 end case;
9993 end record;
9994 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9995
dda83cd7
SM
9996 Hello : Wrapper_Array := (others => (Has_Length => True,
9997 Data => (others => 17),
9998 Length => 1));
284614f0
JB
9999
10000
10001 The debugging info would describe variable Hello as being an
10002 array of a PAD type. The size of that PAD type is not statically
10003 known, but can be determined using a parallel XVZ variable.
10004 In that case, a copy of the PAD type with the correct size should
10005 be used for the fixed array.
10006
21649b50
JB
10007 3. ``Fixing'' record type objects:
10008 ----------------------------------
10009
10010 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10011 record types. In this case, in order to compute the associated
10012 fixed type, we need to determine the size and offset of each of
10013 its components. This, in turn, requires us to compute the fixed
10014 type of each of these components.
10015
10016 Consider for instance the example:
10017
dda83cd7
SM
10018 type Bounded_String (Max_Size : Natural) is record
10019 Str : String (1 .. Max_Size);
10020 Length : Natural;
10021 end record;
10022 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
10023
10024 In that case, the position of field "Length" depends on the size
10025 of field Str, which itself depends on the value of the Max_Size
21649b50 10026 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10027 we need to fix the type of field Str. Therefore, fixing a variant
10028 record requires us to fix each of its components.
10029
10030 However, if a component does not have a dynamic size, the component
10031 should not be fixed. In particular, fields that use a PAD type
10032 should not fixed. Here is an example where this might happen
10033 (assuming type Rec above):
10034
10035 type Container (Big : Boolean) is record
dda83cd7
SM
10036 First : Rec;
10037 After : Integer;
10038 case Big is
10039 when True => Another : Integer;
10040 when False => null;
10041 end case;
284614f0
JB
10042 end record;
10043 My_Container : Container := (Big => False,
dda83cd7
SM
10044 First => (Empty => True),
10045 After => 42);
284614f0
JB
10046
10047 In that example, the compiler creates a PAD type for component First,
10048 whose size is constant, and then positions the component After just
10049 right after it. The offset of component After is therefore constant
10050 in this case.
10051
10052 The debugger computes the position of each field based on an algorithm
10053 that uses, among other things, the actual position and size of the field
21649b50
JB
10054 preceding it. Let's now imagine that the user is trying to print
10055 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10056 end up computing the offset of field After based on the size of the
10057 fixed version of field First. And since in our example First has
10058 only one actual field, the size of the fixed type is actually smaller
10059 than the amount of space allocated to that field, and thus we would
10060 compute the wrong offset of field After.
10061
21649b50
JB
10062 To make things more complicated, we need to watch out for dynamic
10063 components of variant records (identified by the ___XVL suffix in
10064 the component name). Even if the target type is a PAD type, the size
10065 of that type might not be statically known. So the PAD type needs
10066 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10067 we might end up with the wrong size for our component. This can be
10068 observed with the following type declarations:
284614f0 10069
dda83cd7
SM
10070 type Octal is new Integer range 0 .. 7;
10071 type Octal_Array is array (Positive range <>) of Octal;
10072 pragma Pack (Octal_Array);
284614f0 10073
dda83cd7
SM
10074 type Octal_Buffer (Size : Positive) is record
10075 Buffer : Octal_Array (1 .. Size);
10076 Length : Integer;
10077 end record;
284614f0
JB
10078
10079 In that case, Buffer is a PAD type whose size is unset and needs
10080 to be computed by fixing the unwrapped type.
10081
21649b50
JB
10082 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10083 ----------------------------------------------------------
10084
10085 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10086 thus far, be actually fixed?
10087
10088 The answer is: Only when referencing that element. For instance
10089 when selecting one component of a record, this specific component
10090 should be fixed at that point in time. Or when printing the value
10091 of a record, each component should be fixed before its value gets
10092 printed. Similarly for arrays, the element of the array should be
10093 fixed when printing each element of the array, or when extracting
10094 one element out of that array. On the other hand, fixing should
10095 not be performed on the elements when taking a slice of an array!
10096
31432a67 10097 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10098 size of each field is that we end up also miscomputing the size
10099 of the containing type. This can have adverse results when computing
10100 the value of an entity. GDB fetches the value of an entity based
10101 on the size of its type, and thus a wrong size causes GDB to fetch
10102 the wrong amount of memory. In the case where the computed size is
10103 too small, GDB fetches too little data to print the value of our
31432a67 10104 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10105 past the buffer containing the data =:-o. */
10106
62d4bd94
TT
10107/* A helper function for TERNOP_IN_RANGE. */
10108
10109static value *
10110eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10111 enum noside noside,
10112 value *arg1, value *arg2, value *arg3)
10113{
62d4bd94
TT
10114 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10115 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10116 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10117 return
10118 value_from_longest (type,
10119 (value_less (arg1, arg3)
10120 || value_equal (arg1, arg3))
10121 && (value_less (arg2, arg1)
10122 || value_equal (arg2, arg1)));
10123}
10124
82390ab8
TT
10125/* A helper function for UNOP_NEG. */
10126
7c15d377 10127value *
82390ab8
TT
10128ada_unop_neg (struct type *expect_type,
10129 struct expression *exp,
10130 enum noside noside, enum exp_opcode op,
10131 struct value *arg1)
10132{
82390ab8
TT
10133 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10134 return value_neg (arg1);
10135}
10136
7efc87ff
TT
10137/* A helper function for UNOP_IN_RANGE. */
10138
95d49dfb 10139value *
7efc87ff
TT
10140ada_unop_in_range (struct type *expect_type,
10141 struct expression *exp,
10142 enum noside noside, enum exp_opcode op,
10143 struct value *arg1, struct type *type)
10144{
7efc87ff
TT
10145 struct value *arg2, *arg3;
10146 switch (type->code ())
10147 {
10148 default:
10149 lim_warning (_("Membership test incompletely implemented; "
10150 "always returns true"));
10151 type = language_bool_type (exp->language_defn, exp->gdbarch);
10152 return value_from_longest (type, (LONGEST) 1);
10153
10154 case TYPE_CODE_RANGE:
10155 arg2 = value_from_longest (type,
10156 type->bounds ()->low.const_val ());
10157 arg3 = value_from_longest (type,
10158 type->bounds ()->high.const_val ());
10159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10161 type = language_bool_type (exp->language_defn, exp->gdbarch);
10162 return
10163 value_from_longest (type,
10164 (value_less (arg1, arg3)
10165 || value_equal (arg1, arg3))
10166 && (value_less (arg2, arg1)
10167 || value_equal (arg2, arg1)));
10168 }
10169}
10170
020dbabe
TT
10171/* A helper function for OP_ATR_TAG. */
10172
7c15d377 10173value *
020dbabe
TT
10174ada_atr_tag (struct type *expect_type,
10175 struct expression *exp,
10176 enum noside noside, enum exp_opcode op,
10177 struct value *arg1)
10178{
10179 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10180 return value_zero (ada_tag_type (arg1), not_lval);
10181
10182 return ada_value_tag (arg1);
10183}
10184
68c75735
TT
10185/* A helper function for OP_ATR_SIZE. */
10186
7c15d377 10187value *
68c75735
TT
10188ada_atr_size (struct type *expect_type,
10189 struct expression *exp,
10190 enum noside noside, enum exp_opcode op,
10191 struct value *arg1)
10192{
10193 struct type *type = value_type (arg1);
10194
10195 /* If the argument is a reference, then dereference its type, since
10196 the user is really asking for the size of the actual object,
10197 not the size of the pointer. */
10198 if (type->code () == TYPE_CODE_REF)
27710edb 10199 type = type->target_type ();
68c75735 10200
0b2b0b82 10201 if (noside == EVAL_AVOID_SIDE_EFFECTS)
68c75735
TT
10202 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10203 else
10204 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
df86565b 10205 TARGET_CHAR_BIT * type->length ());
68c75735
TT
10206}
10207
d05e24e6
TT
10208/* A helper function for UNOP_ABS. */
10209
7c15d377 10210value *
d05e24e6
TT
10211ada_abs (struct type *expect_type,
10212 struct expression *exp,
10213 enum noside noside, enum exp_opcode op,
10214 struct value *arg1)
10215{
10216 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10217 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10218 return value_neg (arg1);
10219 else
10220 return arg1;
10221}
10222
faa1dfd7
TT
10223/* A helper function for BINOP_MUL. */
10224
d9e7db06 10225value *
faa1dfd7
TT
10226ada_mult_binop (struct type *expect_type,
10227 struct expression *exp,
10228 enum noside noside, enum exp_opcode op,
10229 struct value *arg1, struct value *arg2)
10230{
10231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10232 {
10233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10234 return value_zero (value_type (arg1), not_lval);
10235 }
10236 else
10237 {
10238 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10239 return ada_value_binop (arg1, arg2, op);
10240 }
10241}
10242
214b13ac
TT
10243/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10244
6e8fb7b7 10245value *
214b13ac
TT
10246ada_equal_binop (struct type *expect_type,
10247 struct expression *exp,
10248 enum noside noside, enum exp_opcode op,
10249 struct value *arg1, struct value *arg2)
10250{
10251 int tem;
10252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10253 tem = 0;
10254 else
10255 {
10256 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10257 tem = ada_value_equal (arg1, arg2);
10258 }
10259 if (op == BINOP_NOTEQUAL)
10260 tem = !tem;
10261 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10262 return value_from_longest (type, (LONGEST) tem);
10263}
10264
5ce19db8
TT
10265/* A helper function for TERNOP_SLICE. */
10266
1b1ebfab 10267value *
5ce19db8
TT
10268ada_ternop_slice (struct expression *exp,
10269 enum noside noside,
10270 struct value *array, struct value *low_bound_val,
10271 struct value *high_bound_val)
10272{
10273 LONGEST low_bound;
10274 LONGEST high_bound;
10275
10276 low_bound_val = coerce_ref (low_bound_val);
10277 high_bound_val = coerce_ref (high_bound_val);
10278 low_bound = value_as_long (low_bound_val);
10279 high_bound = value_as_long (high_bound_val);
10280
10281 /* If this is a reference to an aligner type, then remove all
10282 the aligners. */
10283 if (value_type (array)->code () == TYPE_CODE_REF
27710edb 10284 && ada_is_aligner_type (value_type (array)->target_type ()))
8a50fdce 10285 value_type (array)->set_target_type
27710edb 10286 (ada_aligned_type (value_type (array)->target_type ()));
5ce19db8
TT
10287
10288 if (ada_is_any_packed_array_type (value_type (array)))
10289 error (_("cannot slice a packed array"));
10290
10291 /* If this is a reference to an array or an array lvalue,
10292 convert to a pointer. */
10293 if (value_type (array)->code () == TYPE_CODE_REF
10294 || (value_type (array)->code () == TYPE_CODE_ARRAY
10295 && VALUE_LVAL (array) == lval_memory))
10296 array = value_addr (array);
10297
10298 if (noside == EVAL_AVOID_SIDE_EFFECTS
10299 && ada_is_array_descriptor_type (ada_check_typedef
10300 (value_type (array))))
10301 return empty_array (ada_type_of_array (array, 0), low_bound,
10302 high_bound);
10303
10304 array = ada_coerce_to_simple_array_ptr (array);
10305
10306 /* If we have more than one level of pointer indirection,
10307 dereference the value until we get only one level. */
10308 while (value_type (array)->code () == TYPE_CODE_PTR
27710edb 10309 && (value_type (array)->target_type ()->code ()
5ce19db8
TT
10310 == TYPE_CODE_PTR))
10311 array = value_ind (array);
10312
10313 /* Make sure we really do have an array type before going further,
10314 to avoid a SEGV when trying to get the index type or the target
10315 type later down the road if the debug info generated by
10316 the compiler is incorrect or incomplete. */
10317 if (!ada_is_simple_array_type (value_type (array)))
10318 error (_("cannot take slice of non-array"));
10319
10320 if (ada_check_typedef (value_type (array))->code ()
10321 == TYPE_CODE_PTR)
10322 {
10323 struct type *type0 = ada_check_typedef (value_type (array));
10324
10325 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
27710edb 10326 return empty_array (type0->target_type (), low_bound, high_bound);
5ce19db8
TT
10327 else
10328 {
10329 struct type *arr_type0 =
27710edb 10330 to_fixed_array_type (type0->target_type (), NULL, 1);
5ce19db8
TT
10331
10332 return ada_value_slice_from_ptr (array, arr_type0,
10333 longest_to_int (low_bound),
10334 longest_to_int (high_bound));
10335 }
10336 }
10337 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10338 return array;
10339 else if (high_bound < low_bound)
10340 return empty_array (value_type (array), low_bound, high_bound);
10341 else
10342 return ada_value_slice (array, longest_to_int (low_bound),
10343 longest_to_int (high_bound));
10344}
10345
b467efaa
TT
10346/* A helper function for BINOP_IN_BOUNDS. */
10347
82c3886e 10348value *
b467efaa
TT
10349ada_binop_in_bounds (struct expression *exp, enum noside noside,
10350 struct value *arg1, struct value *arg2, int n)
10351{
10352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10353 {
10354 struct type *type = language_bool_type (exp->language_defn,
10355 exp->gdbarch);
10356 return value_zero (type, not_lval);
10357 }
10358
10359 struct type *type = ada_index_type (value_type (arg2), n, "range");
10360 if (!type)
10361 type = value_type (arg1);
10362
10363 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10364 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10365
10366 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10367 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10368 type = language_bool_type (exp->language_defn, exp->gdbarch);
10369 return value_from_longest (type,
10370 (value_less (arg1, arg3)
10371 || value_equal (arg1, arg3))
10372 && (value_less (arg2, arg1)
10373 || value_equal (arg2, arg1)));
10374}
10375
b84564fc
TT
10376/* A helper function for some attribute operations. */
10377
10378static value *
10379ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10380 struct value *arg1, struct type *type_arg, int tem)
10381{
10382 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10383 {
10384 if (type_arg == NULL)
10385 type_arg = value_type (arg1);
10386
10387 if (ada_is_constrained_packed_array_type (type_arg))
10388 type_arg = decode_constrained_packed_array_type (type_arg);
10389
10390 if (!discrete_type_p (type_arg))
10391 {
10392 switch (op)
10393 {
10394 default: /* Should never happen. */
10395 error (_("unexpected attribute encountered"));
10396 case OP_ATR_FIRST:
10397 case OP_ATR_LAST:
10398 type_arg = ada_index_type (type_arg, tem,
10399 ada_attribute_name (op));
10400 break;
10401 case OP_ATR_LENGTH:
10402 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10403 break;
10404 }
10405 }
10406
10407 return value_zero (type_arg, not_lval);
10408 }
10409 else if (type_arg == NULL)
10410 {
10411 arg1 = ada_coerce_ref (arg1);
10412
10413 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10414 arg1 = ada_coerce_to_simple_array (arg1);
10415
10416 struct type *type;
10417 if (op == OP_ATR_LENGTH)
10418 type = builtin_type (exp->gdbarch)->builtin_int;
10419 else
10420 {
10421 type = ada_index_type (value_type (arg1), tem,
10422 ada_attribute_name (op));
10423 if (type == NULL)
10424 type = builtin_type (exp->gdbarch)->builtin_int;
10425 }
10426
10427 switch (op)
10428 {
10429 default: /* Should never happen. */
10430 error (_("unexpected attribute encountered"));
10431 case OP_ATR_FIRST:
10432 return value_from_longest
10433 (type, ada_array_bound (arg1, tem, 0));
10434 case OP_ATR_LAST:
10435 return value_from_longest
10436 (type, ada_array_bound (arg1, tem, 1));
10437 case OP_ATR_LENGTH:
10438 return value_from_longest
10439 (type, ada_array_length (arg1, tem));
10440 }
10441 }
10442 else if (discrete_type_p (type_arg))
10443 {
10444 struct type *range_type;
10445 const char *name = ada_type_name (type_arg);
10446
10447 range_type = NULL;
10448 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10449 range_type = to_fixed_range_type (type_arg, NULL);
10450 if (range_type == NULL)
10451 range_type = type_arg;
10452 switch (op)
10453 {
10454 default:
10455 error (_("unexpected attribute encountered"));
10456 case OP_ATR_FIRST:
10457 return value_from_longest
10458 (range_type, ada_discrete_type_low_bound (range_type));
10459 case OP_ATR_LAST:
10460 return value_from_longest
10461 (range_type, ada_discrete_type_high_bound (range_type));
10462 case OP_ATR_LENGTH:
10463 error (_("the 'length attribute applies only to array types"));
10464 }
10465 }
10466 else if (type_arg->code () == TYPE_CODE_FLT)
10467 error (_("unimplemented type attribute"));
10468 else
10469 {
10470 LONGEST low, high;
10471
10472 if (ada_is_constrained_packed_array_type (type_arg))
10473 type_arg = decode_constrained_packed_array_type (type_arg);
10474
10475 struct type *type;
10476 if (op == OP_ATR_LENGTH)
10477 type = builtin_type (exp->gdbarch)->builtin_int;
10478 else
10479 {
10480 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10481 if (type == NULL)
10482 type = builtin_type (exp->gdbarch)->builtin_int;
10483 }
10484
10485 switch (op)
10486 {
10487 default:
10488 error (_("unexpected attribute encountered"));
10489 case OP_ATR_FIRST:
10490 low = ada_array_bound_from_type (type_arg, tem, 0);
10491 return value_from_longest (type, low);
10492 case OP_ATR_LAST:
10493 high = ada_array_bound_from_type (type_arg, tem, 1);
10494 return value_from_longest (type, high);
10495 case OP_ATR_LENGTH:
10496 low = ada_array_bound_from_type (type_arg, tem, 0);
10497 high = ada_array_bound_from_type (type_arg, tem, 1);
10498 return value_from_longest (type, high - low + 1);
10499 }
10500 }
10501}
10502
38dc70cf
TT
10503/* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10504
6ad3b8bf 10505struct value *
38dc70cf
TT
10506ada_binop_minmax (struct type *expect_type,
10507 struct expression *exp,
10508 enum noside noside, enum exp_opcode op,
10509 struct value *arg1, struct value *arg2)
10510{
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 return value_zero (value_type (arg1), not_lval);
10513 else
10514 {
10515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
0922dc84 10516 return value_binop (arg1, arg2, op);
38dc70cf
TT
10517 }
10518}
10519
dd5fd283
TT
10520/* A helper function for BINOP_EXP. */
10521
065ec826 10522struct value *
dd5fd283
TT
10523ada_binop_exp (struct type *expect_type,
10524 struct expression *exp,
10525 enum noside noside, enum exp_opcode op,
10526 struct value *arg1, struct value *arg2)
10527{
10528 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10529 return value_zero (value_type (arg1), not_lval);
10530 else
10531 {
10532 /* For integer exponentiation operations,
10533 only promote the first argument. */
10534 if (is_integral_type (value_type (arg2)))
10535 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10536 else
10537 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10538
10539 return value_binop (arg1, arg2, op);
10540 }
10541}
10542
03070ee9
TT
10543namespace expr
10544{
10545
8b12db26
TT
10546/* See ada-exp.h. */
10547
10548operation_up
10549ada_resolvable::replace (operation_up &&owner,
10550 struct expression *exp,
10551 bool deprocedure_p,
10552 bool parse_completion,
10553 innermost_block_tracker *tracker,
10554 struct type *context_type)
10555{
10556 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10557 return (make_operation<ada_funcall_operation>
10558 (std::move (owner),
10559 std::vector<operation_up> ()));
10560 return std::move (owner);
10561}
10562
c9f66f00 10563/* Convert the character literal whose value would be VAL to the
03adb248
TT
10564 appropriate value of type TYPE, if there is a translation.
10565 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10566 the literal 'A' (VAL == 65), returns 0. */
10567
10568static LONGEST
10569convert_char_literal (struct type *type, LONGEST val)
10570{
c9f66f00 10571 char name[12];
03adb248
TT
10572 int f;
10573
10574 if (type == NULL)
10575 return val;
10576 type = check_typedef (type);
10577 if (type->code () != TYPE_CODE_ENUM)
10578 return val;
10579
10580 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10581 xsnprintf (name, sizeof (name), "Q%c", (int) val);
c9f66f00
TT
10582 else if (val >= 0 && val < 256)
10583 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10584 else if (val >= 0 && val < 0x10000)
10585 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
03adb248 10586 else
c9f66f00 10587 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
03adb248
TT
10588 size_t len = strlen (name);
10589 for (f = 0; f < type->num_fields (); f += 1)
10590 {
10591 /* Check the suffix because an enum constant in a package will
10592 have a name like "pkg__QUxx". This is safe enough because we
10593 already have the correct type, and because mangling means
10594 there can't be clashes. */
33d16dd9 10595 const char *ename = type->field (f).name ();
03adb248
TT
10596 size_t elen = strlen (ename);
10597
10598 if (elen >= len && strcmp (name, ename + elen - len) == 0)
970db518 10599 return type->field (f).loc_enumval ();
03adb248
TT
10600 }
10601 return val;
10602}
10603
b1b9c411
TT
10604value *
10605ada_char_operation::evaluate (struct type *expect_type,
10606 struct expression *exp,
10607 enum noside noside)
10608{
10609 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10610 if (expect_type != nullptr)
10611 result = ada_value_cast (expect_type, result);
10612 return result;
10613}
10614
03adb248
TT
10615/* See ada-exp.h. */
10616
10617operation_up
10618ada_char_operation::replace (operation_up &&owner,
10619 struct expression *exp,
10620 bool deprocedure_p,
10621 bool parse_completion,
10622 innermost_block_tracker *tracker,
10623 struct type *context_type)
10624{
10625 operation_up result = std::move (owner);
10626
10627 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10628 {
10629 gdb_assert (result.get () == this);
10630 std::get<0> (m_storage) = context_type;
10631 std::get<1> (m_storage)
10632 = convert_char_literal (context_type, std::get<1> (m_storage));
10633 }
10634
b1b9c411 10635 return result;
03adb248
TT
10636}
10637
03070ee9
TT
10638value *
10639ada_wrapped_operation::evaluate (struct type *expect_type,
10640 struct expression *exp,
10641 enum noside noside)
10642{
10643 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10644 if (noside == EVAL_NORMAL)
10645 result = unwrap_value (result);
10646
10647 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10648 then we need to perform the conversion manually, because
10649 evaluate_subexp_standard doesn't do it. This conversion is
10650 necessary in Ada because the different kinds of float/fixed
10651 types in Ada have different representations.
10652
10653 Similarly, we need to perform the conversion from OP_LONG
10654 ourselves. */
10655 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10656 result = ada_value_cast (expect_type, result);
10657
10658 return result;
10659}
10660
42fecb61
TT
10661value *
10662ada_string_operation::evaluate (struct type *expect_type,
10663 struct expression *exp,
10664 enum noside noside)
10665{
fc18a21b
TT
10666 struct type *char_type;
10667 if (expect_type != nullptr && ada_is_string_type (expect_type))
10668 char_type = ada_array_element_type (expect_type, 1);
10669 else
10670 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10671
10672 const std::string &str = std::get<0> (m_storage);
10673 const char *encoding;
df86565b 10674 switch (char_type->length ())
fc18a21b
TT
10675 {
10676 case 1:
10677 {
10678 /* Simply copy over the data -- this isn't perhaps strictly
10679 correct according to the encodings, but it is gdb's
10680 historical behavior. */
10681 struct type *stringtype
10682 = lookup_array_range_type (char_type, 1, str.length ());
10683 struct value *val = allocate_value (stringtype);
10684 memcpy (value_contents_raw (val).data (), str.c_str (),
10685 str.length ());
10686 return val;
10687 }
10688
10689 case 2:
10690 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10691 encoding = "UTF-16BE";
10692 else
10693 encoding = "UTF-16LE";
10694 break;
10695
10696 case 4:
10697 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10698 encoding = "UTF-32BE";
10699 else
10700 encoding = "UTF-32LE";
10701 break;
10702
10703 default:
10704 error (_("unexpected character type size %s"),
df86565b 10705 pulongest (char_type->length ()));
fc18a21b
TT
10706 }
10707
10708 auto_obstack converted;
10709 convert_between_encodings (host_charset (), encoding,
10710 (const gdb_byte *) str.c_str (),
10711 str.length (), 1,
10712 &converted, translit_none);
10713
10714 struct type *stringtype
10715 = lookup_array_range_type (char_type, 1,
10716 obstack_object_size (&converted)
df86565b 10717 / char_type->length ());
fc18a21b
TT
10718 struct value *val = allocate_value (stringtype);
10719 memcpy (value_contents_raw (val).data (),
10720 obstack_base (&converted),
10721 obstack_object_size (&converted));
10722 return val;
42fecb61
TT
10723}
10724
b1b9c411
TT
10725value *
10726ada_concat_operation::evaluate (struct type *expect_type,
10727 struct expression *exp,
10728 enum noside noside)
10729{
10730 /* If one side is a literal, evaluate the other side first so that
10731 the expected type can be set properly. */
10732 const operation_up &lhs_expr = std::get<0> (m_storage);
10733 const operation_up &rhs_expr = std::get<1> (m_storage);
10734
10735 value *lhs, *rhs;
10736 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10737 {
10738 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10739 lhs = lhs_expr->evaluate (value_type (rhs), exp, noside);
10740 }
10741 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10742 {
10743 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10744 struct type *rhs_type = check_typedef (value_type (rhs));
10745 struct type *elt_type = nullptr;
10746 if (rhs_type->code () == TYPE_CODE_ARRAY)
27710edb 10747 elt_type = rhs_type->target_type ();
b1b9c411
TT
10748 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10749 }
10750 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10751 {
10752 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10753 rhs = rhs_expr->evaluate (value_type (lhs), exp, noside);
10754 }
10755 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10756 {
10757 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10758 struct type *lhs_type = check_typedef (value_type (lhs));
10759 struct type *elt_type = nullptr;
10760 if (lhs_type->code () == TYPE_CODE_ARRAY)
27710edb 10761 elt_type = lhs_type->target_type ();
b1b9c411
TT
10762 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10763 }
10764 else
10765 return concat_operation::evaluate (expect_type, exp, noside);
10766
10767 return value_concat (lhs, rhs);
10768}
10769
cc6bd32e
TT
10770value *
10771ada_qual_operation::evaluate (struct type *expect_type,
10772 struct expression *exp,
10773 enum noside noside)
10774{
10775 struct type *type = std::get<1> (m_storage);
10776 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10777}
10778
fc715eb2
TT
10779value *
10780ada_ternop_range_operation::evaluate (struct type *expect_type,
10781 struct expression *exp,
10782 enum noside noside)
10783{
10784 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10785 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10786 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10787 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10788}
10789
73796c73
TT
10790value *
10791ada_binop_addsub_operation::evaluate (struct type *expect_type,
10792 struct expression *exp,
10793 enum noside noside)
10794{
10795 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10796 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10797
10798 auto do_op = [=] (LONGEST x, LONGEST y)
10799 {
10800 if (std::get<0> (m_storage) == BINOP_ADD)
10801 return x + y;
10802 return x - y;
10803 };
10804
10805 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10806 return (value_from_longest
10807 (value_type (arg1),
10808 do_op (value_as_long (arg1), value_as_long (arg2))));
10809 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10810 return (value_from_longest
10811 (value_type (arg2),
10812 do_op (value_as_long (arg1), value_as_long (arg2))));
10813 /* Preserve the original type for use by the range case below.
10814 We cannot cast the result to a reference type, so if ARG1 is
10815 a reference type, find its underlying type. */
10816 struct type *type = value_type (arg1);
10817 while (type->code () == TYPE_CODE_REF)
27710edb 10818 type = type->target_type ();
73796c73
TT
10819 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10820 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10821 /* We need to special-case the result with a range.
10822 This is done for the benefit of "ptype". gdb's Ada support
10823 historically used the LHS to set the result type here, so
10824 preserve this behavior. */
10825 if (type->code () == TYPE_CODE_RANGE)
10826 arg1 = value_cast (type, arg1);
10827 return arg1;
10828}
10829
60fa02ca
TT
10830value *
10831ada_unop_atr_operation::evaluate (struct type *expect_type,
10832 struct expression *exp,
10833 enum noside noside)
10834{
10835 struct type *type_arg = nullptr;
10836 value *val = nullptr;
10837
10838 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10839 {
10840 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10841 EVAL_AVOID_SIDE_EFFECTS);
10842 type_arg = value_type (tem);
10843 }
10844 else
10845 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10846
10847 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10848 val, type_arg, std::get<2> (m_storage));
10849}
10850
3f4a0053
TT
10851value *
10852ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10853 struct expression *exp,
10854 enum noside noside)
10855{
10856 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10857 return value_zero (expect_type, not_lval);
10858
9c79936b
TT
10859 const bound_minimal_symbol &b = std::get<0> (m_storage);
10860 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
3f4a0053
TT
10861
10862 val = ada_value_cast (expect_type, val);
10863
10864 /* Follow the Ada language semantics that do not allow taking
10865 an address of the result of a cast (view conversion in Ada). */
10866 if (VALUE_LVAL (val) == lval_memory)
10867 {
10868 if (value_lazy (val))
10869 value_fetch_lazy (val);
10870 VALUE_LVAL (val) = not_lval;
10871 }
10872 return val;
10873}
10874
99a3b1e7
TT
10875value *
10876ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10877 struct expression *exp,
10878 enum noside noside)
10879{
10880 value *val = evaluate_var_value (noside,
9e5e03df
TT
10881 std::get<0> (m_storage).block,
10882 std::get<0> (m_storage).symbol);
99a3b1e7
TT
10883
10884 val = ada_value_cast (expect_type, val);
10885
10886 /* Follow the Ada language semantics that do not allow taking
10887 an address of the result of a cast (view conversion in Ada). */
10888 if (VALUE_LVAL (val) == lval_memory)
10889 {
10890 if (value_lazy (val))
10891 value_fetch_lazy (val);
10892 VALUE_LVAL (val) = not_lval;
10893 }
10894 return val;
10895}
10896
10897value *
10898ada_var_value_operation::evaluate (struct type *expect_type,
10899 struct expression *exp,
10900 enum noside noside)
10901{
9e5e03df 10902 symbol *sym = std::get<0> (m_storage).symbol;
99a3b1e7 10903
6c9c307c 10904 if (sym->domain () == UNDEF_DOMAIN)
99a3b1e7
TT
10905 /* Only encountered when an unresolved symbol occurs in a
10906 context other than a function call, in which case, it is
10907 invalid. */
10908 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10909 sym->print_name ());
10910
10911 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10912 {
5f9c5a63 10913 struct type *type = static_unwrap_type (sym->type ());
99a3b1e7
TT
10914 /* Check to see if this is a tagged type. We also need to handle
10915 the case where the type is a reference to a tagged type, but
10916 we have to be careful to exclude pointers to tagged types.
10917 The latter should be shown as usual (as a pointer), whereas
10918 a reference should mostly be transparent to the user. */
10919 if (ada_is_tagged_type (type, 0)
10920 || (type->code () == TYPE_CODE_REF
27710edb 10921 && ada_is_tagged_type (type->target_type (), 0)))
99a3b1e7
TT
10922 {
10923 /* Tagged types are a little special in the fact that the real
10924 type is dynamic and can only be determined by inspecting the
10925 object's tag. This means that we need to get the object's
10926 value first (EVAL_NORMAL) and then extract the actual object
10927 type from its tag.
10928
10929 Note that we cannot skip the final step where we extract
10930 the object type from its tag, because the EVAL_NORMAL phase
10931 results in dynamic components being resolved into fixed ones.
10932 This can cause problems when trying to print the type
10933 description of tagged types whose parent has a dynamic size:
10934 We use the type name of the "_parent" component in order
10935 to print the name of the ancestor type in the type description.
10936 If that component had a dynamic size, the resolution into
10937 a fixed type would result in the loss of that type name,
10938 thus preventing us from printing the name of the ancestor
10939 type in the type description. */
9863c3b5 10940 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
99a3b1e7
TT
10941
10942 if (type->code () != TYPE_CODE_REF)
10943 {
10944 struct type *actual_type;
10945
10946 actual_type = type_from_tag (ada_value_tag (arg1));
10947 if (actual_type == NULL)
10948 /* If, for some reason, we were unable to determine
10949 the actual type from the tag, then use the static
10950 approximation that we just computed as a fallback.
10951 This can happen if the debugging information is
10952 incomplete, for instance. */
10953 actual_type = type;
10954 return value_zero (actual_type, not_lval);
10955 }
10956 else
10957 {
10958 /* In the case of a ref, ada_coerce_ref takes care
10959 of determining the actual type. But the evaluation
10960 should return a ref as it should be valid to ask
10961 for its address; so rebuild a ref after coerce. */
10962 arg1 = ada_coerce_ref (arg1);
10963 return value_ref (arg1, TYPE_CODE_REF);
10964 }
10965 }
10966
10967 /* Records and unions for which GNAT encodings have been
10968 generated need to be statically fixed as well.
10969 Otherwise, non-static fixing produces a type where
10970 all dynamic properties are removed, which prevents "ptype"
10971 from being able to completely describe the type.
10972 For instance, a case statement in a variant record would be
10973 replaced by the relevant components based on the actual
10974 value of the discriminants. */
10975 if ((type->code () == TYPE_CODE_STRUCT
10976 && dynamic_template_type (type) != NULL)
10977 || (type->code () == TYPE_CODE_UNION
10978 && ada_find_parallel_type (type, "___XVU") != NULL))
10979 return value_zero (to_static_fixed_type (type), not_lval);
10980 }
10981
10982 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10983 return ada_to_fixed_value (arg1);
10984}
10985
d8a4ed8a
TT
10986bool
10987ada_var_value_operation::resolve (struct expression *exp,
10988 bool deprocedure_p,
10989 bool parse_completion,
10990 innermost_block_tracker *tracker,
10991 struct type *context_type)
10992{
9e5e03df 10993 symbol *sym = std::get<0> (m_storage).symbol;
6c9c307c 10994 if (sym->domain () == UNDEF_DOMAIN)
d8a4ed8a
TT
10995 {
10996 block_symbol resolved
9e5e03df 10997 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
d8a4ed8a
TT
10998 context_type, parse_completion,
10999 deprocedure_p, tracker);
9e5e03df 11000 std::get<0> (m_storage) = resolved;
d8a4ed8a
TT
11001 }
11002
11003 if (deprocedure_p
5f9c5a63 11004 && (std::get<0> (m_storage).symbol->type ()->code ()
9e5e03df 11005 == TYPE_CODE_FUNC))
d8a4ed8a
TT
11006 return true;
11007
11008 return false;
11009}
11010
9e99f48f
TT
11011value *
11012ada_atr_val_operation::evaluate (struct type *expect_type,
11013 struct expression *exp,
11014 enum noside noside)
11015{
11016 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
11017 return ada_val_atr (noside, std::get<0> (m_storage), arg);
11018}
11019
e8c33fa1
TT
11020value *
11021ada_unop_ind_operation::evaluate (struct type *expect_type,
11022 struct expression *exp,
11023 enum noside noside)
11024{
11025 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11026
11027 struct type *type = ada_check_typedef (value_type (arg1));
11028 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11029 {
11030 if (ada_is_array_descriptor_type (type))
11031 /* GDB allows dereferencing GNAT array descriptors. */
11032 {
11033 struct type *arrType = ada_type_of_array (arg1, 0);
11034
11035 if (arrType == NULL)
11036 error (_("Attempt to dereference null array pointer."));
11037 return value_at_lazy (arrType, 0);
11038 }
11039 else if (type->code () == TYPE_CODE_PTR
11040 || type->code () == TYPE_CODE_REF
11041 /* In C you can dereference an array to get the 1st elt. */
11042 || type->code () == TYPE_CODE_ARRAY)
11043 {
11044 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11045 only be determined by inspecting the object's tag.
11046 This means that we need to evaluate completely the
11047 expression in order to get its type. */
11048
11049 if ((type->code () == TYPE_CODE_REF
11050 || type->code () == TYPE_CODE_PTR)
27710edb 11051 && ada_is_tagged_type (type->target_type (), 0))
e8c33fa1
TT
11052 {
11053 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11054 EVAL_NORMAL);
11055 type = value_type (ada_value_ind (arg1));
11056 }
11057 else
11058 {
11059 type = to_static_fixed_type
11060 (ada_aligned_type
27710edb 11061 (ada_check_typedef (type->target_type ())));
e8c33fa1 11062 }
e8c33fa1
TT
11063 return value_zero (type, lval_memory);
11064 }
11065 else if (type->code () == TYPE_CODE_INT)
11066 {
11067 /* GDB allows dereferencing an int. */
11068 if (expect_type == NULL)
11069 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11070 lval_memory);
11071 else
11072 {
11073 expect_type =
11074 to_static_fixed_type (ada_aligned_type (expect_type));
11075 return value_zero (expect_type, lval_memory);
11076 }
11077 }
11078 else
11079 error (_("Attempt to take contents of a non-pointer value."));
11080 }
11081 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11082 type = ada_check_typedef (value_type (arg1));
11083
11084 if (type->code () == TYPE_CODE_INT)
11085 /* GDB allows dereferencing an int. If we were given
11086 the expect_type, then use that as the target type.
11087 Otherwise, assume that the target type is an int. */
11088 {
11089 if (expect_type != NULL)
11090 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11091 arg1));
11092 else
11093 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11094 (CORE_ADDR) value_as_address (arg1));
11095 }
11096
11097 if (ada_is_array_descriptor_type (type))
11098 /* GDB allows dereferencing GNAT array descriptors. */
11099 return ada_coerce_to_simple_array (arg1);
11100 else
11101 return ada_value_ind (arg1);
11102}
11103
ebc06ad8
TT
11104value *
11105ada_structop_operation::evaluate (struct type *expect_type,
11106 struct expression *exp,
11107 enum noside noside)
11108{
11109 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11110 const char *str = std::get<1> (m_storage).c_str ();
11111 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11112 {
11113 struct type *type;
11114 struct type *type1 = value_type (arg1);
11115
11116 if (ada_is_tagged_type (type1, 1))
11117 {
11118 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11119
11120 /* If the field is not found, check if it exists in the
11121 extension of this object's type. This means that we
11122 need to evaluate completely the expression. */
11123
11124 if (type == NULL)
11125 {
11126 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11127 EVAL_NORMAL);
11128 arg1 = ada_value_struct_elt (arg1, str, 0);
11129 arg1 = unwrap_value (arg1);
11130 type = value_type (ada_to_fixed_value (arg1));
11131 }
11132 }
11133 else
11134 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11135
11136 return value_zero (ada_aligned_type (type), lval_memory);
11137 }
11138 else
11139 {
11140 arg1 = ada_value_struct_elt (arg1, str, 0);
11141 arg1 = unwrap_value (arg1);
11142 return ada_to_fixed_value (arg1);
11143 }
11144}
11145
efe3af2f
TT
11146value *
11147ada_funcall_operation::evaluate (struct type *expect_type,
11148 struct expression *exp,
11149 enum noside noside)
11150{
11151 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11152 int nargs = args_up.size ();
11153 std::vector<value *> argvec (nargs);
11154 operation_up &callee_op = std::get<0> (m_storage);
11155
11156 ada_var_value_operation *avv
11157 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11158 if (avv != nullptr
6c9c307c 11159 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
efe3af2f
TT
11160 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11161 avv->get_symbol ()->print_name ());
11162
11163 value *callee = callee_op->evaluate (nullptr, exp, noside);
11164 for (int i = 0; i < args_up.size (); ++i)
11165 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11166
11167 if (ada_is_constrained_packed_array_type
11168 (desc_base_type (value_type (callee))))
11169 callee = ada_coerce_to_simple_array (callee);
11170 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11171 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11172 /* This is a packed array that has already been fixed, and
11173 therefore already coerced to a simple array. Nothing further
11174 to do. */
11175 ;
11176 else if (value_type (callee)->code () == TYPE_CODE_REF)
11177 {
11178 /* Make sure we dereference references so that all the code below
11179 feels like it's really handling the referenced value. Wrapping
11180 types (for alignment) may be there, so make sure we strip them as
11181 well. */
11182 callee = ada_to_fixed_value (coerce_ref (callee));
11183 }
11184 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11185 && VALUE_LVAL (callee) == lval_memory)
11186 callee = value_addr (callee);
11187
11188 struct type *type = ada_check_typedef (value_type (callee));
11189
11190 /* Ada allows us to implicitly dereference arrays when subscripting
11191 them. So, if this is an array typedef (encoding use for array
11192 access types encoded as fat pointers), strip it now. */
11193 if (type->code () == TYPE_CODE_TYPEDEF)
11194 type = ada_typedef_target_type (type);
11195
11196 if (type->code () == TYPE_CODE_PTR)
11197 {
27710edb 11198 switch (ada_check_typedef (type->target_type ())->code ())
efe3af2f
TT
11199 {
11200 case TYPE_CODE_FUNC:
27710edb 11201 type = ada_check_typedef (type->target_type ());
efe3af2f
TT
11202 break;
11203 case TYPE_CODE_ARRAY:
11204 break;
11205 case TYPE_CODE_STRUCT:
11206 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11207 callee = ada_value_ind (callee);
27710edb 11208 type = ada_check_typedef (type->target_type ());
efe3af2f
TT
11209 break;
11210 default:
11211 error (_("cannot subscript or call something of type `%s'"),
11212 ada_type_name (value_type (callee)));
11213 break;
11214 }
11215 }
11216
11217 switch (type->code ())
11218 {
11219 case TYPE_CODE_FUNC:
11220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11221 {
27710edb 11222 if (type->target_type () == NULL)
efe3af2f 11223 error_call_unknown_return_type (NULL);
27710edb 11224 return allocate_value (type->target_type ());
efe3af2f
TT
11225 }
11226 return call_function_by_hand (callee, NULL, argvec);
11227 case TYPE_CODE_INTERNAL_FUNCTION:
11228 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 /* We don't know anything about what the internal
11230 function might return, but we have to return
11231 something. */
11232 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11233 not_lval);
11234 else
11235 return call_internal_function (exp->gdbarch, exp->language_defn,
11236 callee, nargs,
11237 argvec.data ());
11238
d3c54a1c
TT
11239 case TYPE_CODE_STRUCT:
11240 {
11241 int arity;
4c4b4cd2 11242
d3c54a1c
TT
11243 arity = ada_array_arity (type);
11244 type = ada_array_element_type (type, nargs);
11245 if (type == NULL)
11246 error (_("cannot subscript or call a record"));
11247 if (arity != nargs)
11248 error (_("wrong number of subscripts; expecting %d"), arity);
11249 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11250 return value_zero (ada_aligned_type (type), lval_memory);
11251 return
11252 unwrap_value (ada_value_subscript
11253 (callee, nargs, argvec.data ()));
11254 }
11255 case TYPE_CODE_ARRAY:
14f9c5c9 11256 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11257 {
d3c54a1c
TT
11258 type = ada_array_element_type (type, nargs);
11259 if (type == NULL)
11260 error (_("element type of array unknown"));
dda83cd7 11261 else
d3c54a1c 11262 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 11263 }
d3c54a1c
TT
11264 return
11265 unwrap_value (ada_value_subscript
11266 (ada_coerce_to_simple_array (callee),
11267 nargs, argvec.data ()));
11268 case TYPE_CODE_PTR: /* Pointer to array */
11269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11270 {
27710edb 11271 type = to_fixed_array_type (type->target_type (), NULL, 1);
d3c54a1c
TT
11272 type = ada_array_element_type (type, nargs);
11273 if (type == NULL)
11274 error (_("element type of array unknown"));
96967637 11275 else
d3c54a1c 11276 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 11277 }
d3c54a1c
TT
11278 return
11279 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11280 argvec.data ()));
6b0d7253 11281
d3c54a1c
TT
11282 default:
11283 error (_("Attempt to index or call something other than an "
11284 "array or function"));
11285 }
11286}
5b4ee69b 11287
d3c54a1c
TT
11288bool
11289ada_funcall_operation::resolve (struct expression *exp,
11290 bool deprocedure_p,
11291 bool parse_completion,
11292 innermost_block_tracker *tracker,
11293 struct type *context_type)
11294{
11295 operation_up &callee_op = std::get<0> (m_storage);
5ec18f2b 11296
d3c54a1c
TT
11297 ada_var_value_operation *avv
11298 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11299 if (avv == nullptr)
11300 return false;
5ec18f2b 11301
d3c54a1c 11302 symbol *sym = avv->get_symbol ();
6c9c307c 11303 if (sym->domain () != UNDEF_DOMAIN)
d3c54a1c 11304 return false;
dda83cd7 11305
d3c54a1c
TT
11306 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11307 int nargs = args_up.size ();
11308 std::vector<value *> argvec (nargs);
284614f0 11309
d3c54a1c
TT
11310 for (int i = 0; i < args_up.size (); ++i)
11311 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
52ce6436 11312
d3c54a1c
TT
11313 const block *block = avv->get_block ();
11314 block_symbol resolved
11315 = ada_resolve_funcall (sym, block,
11316 context_type, parse_completion,
11317 nargs, argvec.data (),
11318 tracker);
11319
11320 std::get<0> (m_storage)
9e5e03df 11321 = make_operation<ada_var_value_operation> (resolved);
d3c54a1c
TT
11322 return false;
11323}
11324
11325bool
11326ada_ternop_slice_operation::resolve (struct expression *exp,
11327 bool deprocedure_p,
11328 bool parse_completion,
11329 innermost_block_tracker *tracker,
11330 struct type *context_type)
11331{
11332 /* Historically this check was done during resolution, so we
11333 continue that here. */
11334 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11335 EVAL_AVOID_SIDE_EFFECTS);
11336 if (ada_is_any_packed_array_type (value_type (v)))
11337 error (_("cannot slice a packed array"));
11338 return false;
11339}
14f9c5c9 11340
14f9c5c9 11341}
d3c54a1c 11342
14f9c5c9 11343\f
d2e4a39e 11344
4c4b4cd2
PH
11345/* Return non-zero iff TYPE represents a System.Address type. */
11346
11347int
11348ada_is_system_address_type (struct type *type)
11349{
7d93a1e0 11350 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11351}
11352
14f9c5c9 11353\f
d2e4a39e 11354
dda83cd7 11355 /* Range types */
14f9c5c9
AS
11356
11357/* Scan STR beginning at position K for a discriminant name, and
11358 return the value of that discriminant field of DVAL in *PX. If
11359 PNEW_K is not null, put the position of the character beyond the
11360 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11361 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11362
11363static int
108d56a4 11364scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 11365 int *pnew_k)
14f9c5c9 11366{
5f9febe0 11367 static std::string storage;
5da1a4d3 11368 const char *pstart, *pend, *bound;
d2e4a39e 11369 struct value *bound_val;
14f9c5c9
AS
11370
11371 if (dval == NULL || str == NULL || str[k] == '\0')
11372 return 0;
11373
5da1a4d3
SM
11374 pstart = str + k;
11375 pend = strstr (pstart, "__");
14f9c5c9
AS
11376 if (pend == NULL)
11377 {
5da1a4d3 11378 bound = pstart;
14f9c5c9
AS
11379 k += strlen (bound);
11380 }
d2e4a39e 11381 else
14f9c5c9 11382 {
5da1a4d3
SM
11383 int len = pend - pstart;
11384
11385 /* Strip __ and beyond. */
5f9febe0
TT
11386 storage = std::string (pstart, len);
11387 bound = storage.c_str ();
d2e4a39e 11388 k = pend - str;
14f9c5c9 11389 }
d2e4a39e 11390
df407dfe 11391 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11392 if (bound_val == NULL)
11393 return 0;
11394
11395 *px = value_as_long (bound_val);
11396 if (pnew_k != NULL)
11397 *pnew_k = k;
11398 return 1;
11399}
11400
25a1127b
TT
11401/* Value of variable named NAME. Only exact matches are considered.
11402 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11403 otherwise causes an error with message ERR_MSG. */
11404
d2e4a39e 11405static struct value *
edb0c9cb 11406get_var_value (const char *name, const char *err_msg)
14f9c5c9 11407{
25a1127b
TT
11408 std::string quoted_name = add_angle_brackets (name);
11409
11410 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 11411
d1183b06
TT
11412 std::vector<struct block_symbol> syms
11413 = ada_lookup_symbol_list_worker (lookup_name,
11414 get_selected_block (0),
11415 VAR_DOMAIN, 1);
14f9c5c9 11416
d1183b06 11417 if (syms.size () != 1)
14f9c5c9
AS
11418 {
11419 if (err_msg == NULL)
dda83cd7 11420 return 0;
14f9c5c9 11421 else
dda83cd7 11422 error (("%s"), err_msg);
14f9c5c9
AS
11423 }
11424
54d343a2 11425 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11426}
d2e4a39e 11427
edb0c9cb
PA
11428/* Value of integer variable named NAME in the current environment.
11429 If no such variable is found, returns false. Otherwise, sets VALUE
11430 to the variable's value and returns true. */
4c4b4cd2 11431
edb0c9cb
PA
11432bool
11433get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11434{
4c4b4cd2 11435 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11436
14f9c5c9 11437 if (var_val == 0)
edb0c9cb
PA
11438 return false;
11439
11440 value = value_as_long (var_val);
11441 return true;
14f9c5c9 11442}
d2e4a39e 11443
14f9c5c9
AS
11444
11445/* Return a range type whose base type is that of the range type named
11446 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11447 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11448 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11449 corresponding range type from debug information; fall back to using it
11450 if symbol lookup fails. If a new type must be created, allocate it
11451 like ORIG_TYPE was. The bounds information, in general, is encoded
11452 in NAME, the base type given in the named range type. */
14f9c5c9 11453
d2e4a39e 11454static struct type *
28c85d6c 11455to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11456{
0d5cff50 11457 const char *name;
14f9c5c9 11458 struct type *base_type;
108d56a4 11459 const char *subtype_info;
14f9c5c9 11460
28c85d6c 11461 gdb_assert (raw_type != NULL);
7d93a1e0 11462 gdb_assert (raw_type->name () != NULL);
dddfab26 11463
78134374 11464 if (raw_type->code () == TYPE_CODE_RANGE)
27710edb 11465 base_type = raw_type->target_type ();
14f9c5c9
AS
11466 else
11467 base_type = raw_type;
11468
7d93a1e0 11469 name = raw_type->name ();
14f9c5c9
AS
11470 subtype_info = strstr (name, "___XD");
11471 if (subtype_info == NULL)
690cc4eb 11472 {
43bbcdc2
PH
11473 LONGEST L = ada_discrete_type_low_bound (raw_type);
11474 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11475
690cc4eb
PH
11476 if (L < INT_MIN || U > INT_MAX)
11477 return raw_type;
11478 else
0c9c3474
SA
11479 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11480 L, U);
690cc4eb 11481 }
14f9c5c9
AS
11482 else
11483 {
14f9c5c9
AS
11484 int prefix_len = subtype_info - name;
11485 LONGEST L, U;
11486 struct type *type;
108d56a4 11487 const char *bounds_str;
14f9c5c9
AS
11488 int n;
11489
14f9c5c9
AS
11490 subtype_info += 5;
11491 bounds_str = strchr (subtype_info, '_');
11492 n = 1;
11493
d2e4a39e 11494 if (*subtype_info == 'L')
dda83cd7
SM
11495 {
11496 if (!ada_scan_number (bounds_str, n, &L, &n)
11497 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11498 return raw_type;
11499 if (bounds_str[n] == '_')
11500 n += 2;
11501 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11502 n += 1;
11503 subtype_info += 1;
11504 }
d2e4a39e 11505 else
dda83cd7 11506 {
5f9febe0
TT
11507 std::string name_buf = std::string (name, prefix_len) + "___L";
11508 if (!get_int_var_value (name_buf.c_str (), L))
dda83cd7
SM
11509 {
11510 lim_warning (_("Unknown lower bound, using 1."));
11511 L = 1;
11512 }
11513 }
14f9c5c9 11514
d2e4a39e 11515 if (*subtype_info == 'U')
dda83cd7
SM
11516 {
11517 if (!ada_scan_number (bounds_str, n, &U, &n)
11518 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11519 return raw_type;
11520 }
d2e4a39e 11521 else
dda83cd7 11522 {
5f9febe0
TT
11523 std::string name_buf = std::string (name, prefix_len) + "___U";
11524 if (!get_int_var_value (name_buf.c_str (), U))
dda83cd7
SM
11525 {
11526 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11527 U = L;
11528 }
11529 }
14f9c5c9 11530
0c9c3474
SA
11531 type = create_static_range_type (alloc_type_copy (raw_type),
11532 base_type, L, U);
f5a91472 11533 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11534 to match the size of the base_type, which is not what we want.
11535 Set it back to the original range type's length. */
df86565b 11536 type->set_length (raw_type->length ());
d0e39ea2 11537 type->set_name (name);
14f9c5c9
AS
11538 return type;
11539 }
11540}
11541
4c4b4cd2
PH
11542/* True iff NAME is the name of a range type. */
11543
14f9c5c9 11544int
d2e4a39e 11545ada_is_range_type_name (const char *name)
14f9c5c9
AS
11546{
11547 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11548}
14f9c5c9 11549\f
d2e4a39e 11550
dda83cd7 11551 /* Modular types */
4c4b4cd2
PH
11552
11553/* True iff TYPE is an Ada modular type. */
14f9c5c9 11554
14f9c5c9 11555int
d2e4a39e 11556ada_is_modular_type (struct type *type)
14f9c5c9 11557{
18af8284 11558 struct type *subranged_type = get_base_type (type);
14f9c5c9 11559
78134374 11560 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11561 && subranged_type->code () == TYPE_CODE_INT
11562 && subranged_type->is_unsigned ());
14f9c5c9
AS
11563}
11564
4c4b4cd2
PH
11565/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11566
61ee279c 11567ULONGEST
0056e4d5 11568ada_modulus (struct type *type)
14f9c5c9 11569{
5e500d33
SM
11570 const dynamic_prop &high = type->bounds ()->high;
11571
11572 if (high.kind () == PROP_CONST)
11573 return (ULONGEST) high.const_val () + 1;
11574
11575 /* If TYPE is unresolved, the high bound might be a location list. Return
11576 0, for lack of a better value to return. */
11577 return 0;
14f9c5c9 11578}
d2e4a39e 11579\f
f7f9143b
JB
11580
11581/* Ada exception catchpoint support:
11582 ---------------------------------
11583
11584 We support 3 kinds of exception catchpoints:
11585 . catchpoints on Ada exceptions
11586 . catchpoints on unhandled Ada exceptions
11587 . catchpoints on failed assertions
11588
11589 Exceptions raised during failed assertions, or unhandled exceptions
11590 could perfectly be caught with the general catchpoint on Ada exceptions.
11591 However, we can easily differentiate these two special cases, and having
11592 the option to distinguish these two cases from the rest can be useful
11593 to zero-in on certain situations.
11594
11595 Exception catchpoints are a specialized form of breakpoint,
11596 since they rely on inserting breakpoints inside known routines
11597 of the GNAT runtime. The implementation therefore uses a standard
11598 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11599 of breakpoint_ops.
11600
0259addd
JB
11601 Support in the runtime for exception catchpoints have been changed
11602 a few times already, and these changes affect the implementation
11603 of these catchpoints. In order to be able to support several
11604 variants of the runtime, we use a sniffer that will determine
28010a5d 11605 the runtime variant used by the program being debugged. */
f7f9143b 11606
82eacd52
JB
11607/* Ada's standard exceptions.
11608
11609 The Ada 83 standard also defined Numeric_Error. But there so many
11610 situations where it was unclear from the Ada 83 Reference Manual
11611 (RM) whether Constraint_Error or Numeric_Error should be raised,
11612 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11613 Interpretation saying that anytime the RM says that Numeric_Error
11614 should be raised, the implementation may raise Constraint_Error.
11615 Ada 95 went one step further and pretty much removed Numeric_Error
11616 from the list of standard exceptions (it made it a renaming of
11617 Constraint_Error, to help preserve compatibility when compiling
11618 an Ada83 compiler). As such, we do not include Numeric_Error from
11619 this list of standard exceptions. */
3d0b0fa3 11620
27087b7f 11621static const char * const standard_exc[] = {
3d0b0fa3
JB
11622 "constraint_error",
11623 "program_error",
11624 "storage_error",
11625 "tasking_error"
11626};
11627
0259addd
JB
11628typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11629
11630/* A structure that describes how to support exception catchpoints
11631 for a given executable. */
11632
11633struct exception_support_info
11634{
11635 /* The name of the symbol to break on in order to insert
11636 a catchpoint on exceptions. */
11637 const char *catch_exception_sym;
11638
11639 /* The name of the symbol to break on in order to insert
11640 a catchpoint on unhandled exceptions. */
11641 const char *catch_exception_unhandled_sym;
11642
11643 /* The name of the symbol to break on in order to insert
11644 a catchpoint on failed assertions. */
11645 const char *catch_assert_sym;
11646
9f757bf7
XR
11647 /* The name of the symbol to break on in order to insert
11648 a catchpoint on exception handling. */
11649 const char *catch_handlers_sym;
11650
0259addd
JB
11651 /* Assuming that the inferior just triggered an unhandled exception
11652 catchpoint, this function is responsible for returning the address
11653 in inferior memory where the name of that exception is stored.
11654 Return zero if the address could not be computed. */
11655 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11656};
11657
11658static CORE_ADDR ada_unhandled_exception_name_addr (void);
11659static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11660
11661/* The following exception support info structure describes how to
11662 implement exception catchpoints with the latest version of the
ca683e3a 11663 Ada runtime (as of 2019-08-??). */
0259addd
JB
11664
11665static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11666{
11667 "__gnat_debug_raise_exception", /* catch_exception_sym */
11668 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11669 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11670 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11671 ada_unhandled_exception_name_addr
11672};
11673
11674/* The following exception support info structure describes how to
11675 implement exception catchpoints with an earlier version of the
11676 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11677
11678static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11679{
11680 "__gnat_debug_raise_exception", /* catch_exception_sym */
11681 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11682 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11683 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11684 ada_unhandled_exception_name_addr
11685};
11686
11687/* The following exception support info structure describes how to
11688 implement exception catchpoints with a slightly older version
11689 of the Ada runtime. */
11690
11691static const struct exception_support_info exception_support_info_fallback =
11692{
11693 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11694 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11695 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11696 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11697 ada_unhandled_exception_name_addr_from_raise
11698};
11699
f17011e0
JB
11700/* Return nonzero if we can detect the exception support routines
11701 described in EINFO.
11702
11703 This function errors out if an abnormal situation is detected
11704 (for instance, if we find the exception support routines, but
11705 that support is found to be incomplete). */
11706
11707static int
11708ada_has_this_exception_support (const struct exception_support_info *einfo)
11709{
11710 struct symbol *sym;
11711
11712 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11713 that should be compiled with debugging information. As a result, we
11714 expect to find that symbol in the symtabs. */
11715
11716 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11717 if (sym == NULL)
a6af7abe
JB
11718 {
11719 /* Perhaps we did not find our symbol because the Ada runtime was
11720 compiled without debugging info, or simply stripped of it.
11721 It happens on some GNU/Linux distributions for instance, where
11722 users have to install a separate debug package in order to get
11723 the runtime's debugging info. In that situation, let the user
11724 know why we cannot insert an Ada exception catchpoint.
11725
11726 Note: Just for the purpose of inserting our Ada exception
11727 catchpoint, we could rely purely on the associated minimal symbol.
11728 But we would be operating in degraded mode anyway, since we are
11729 still lacking the debugging info needed later on to extract
11730 the name of the exception being raised (this name is printed in
11731 the catchpoint message, and is also used when trying to catch
11732 a specific exception). We do not handle this case for now. */
3b7344d5 11733 struct bound_minimal_symbol msym
1c8e84b0
JB
11734 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11735
60f62e2b 11736 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
a6af7abe
JB
11737 error (_("Your Ada runtime appears to be missing some debugging "
11738 "information.\nCannot insert Ada exception catchpoint "
11739 "in this configuration."));
11740
11741 return 0;
11742 }
f17011e0
JB
11743
11744 /* Make sure that the symbol we found corresponds to a function. */
11745
66d7f48f 11746 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11747 {
11748 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11749 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11750 return 0;
11751 }
11752
11753 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11754 if (sym == NULL)
11755 {
11756 struct bound_minimal_symbol msym
11757 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11758
60f62e2b 11759 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
ca683e3a
AO
11760 error (_("Your Ada runtime appears to be missing some debugging "
11761 "information.\nCannot insert Ada exception catchpoint "
11762 "in this configuration."));
11763
11764 return 0;
11765 }
11766
11767 /* Make sure that the symbol we found corresponds to a function. */
11768
66d7f48f 11769 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11770 {
11771 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11772 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11773 return 0;
11774 }
f17011e0
JB
11775
11776 return 1;
11777}
11778
0259addd
JB
11779/* Inspect the Ada runtime and determine which exception info structure
11780 should be used to provide support for exception catchpoints.
11781
3eecfa55
JB
11782 This function will always set the per-inferior exception_info,
11783 or raise an error. */
0259addd
JB
11784
11785static void
11786ada_exception_support_info_sniffer (void)
11787{
3eecfa55 11788 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11789
11790 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11791 if (data->exception_info != NULL)
0259addd
JB
11792 return;
11793
11794 /* Check the latest (default) exception support info. */
f17011e0 11795 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11796 {
3eecfa55 11797 data->exception_info = &default_exception_support_info;
0259addd
JB
11798 return;
11799 }
11800
ca683e3a
AO
11801 /* Try the v0 exception suport info. */
11802 if (ada_has_this_exception_support (&exception_support_info_v0))
11803 {
11804 data->exception_info = &exception_support_info_v0;
11805 return;
11806 }
11807
0259addd 11808 /* Try our fallback exception suport info. */
f17011e0 11809 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11810 {
3eecfa55 11811 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11812 return;
11813 }
11814
11815 /* Sometimes, it is normal for us to not be able to find the routine
11816 we are looking for. This happens when the program is linked with
11817 the shared version of the GNAT runtime, and the program has not been
11818 started yet. Inform the user of these two possible causes if
11819 applicable. */
11820
ccefe4c4 11821 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11822 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11823
11824 /* If the symbol does not exist, then check that the program is
11825 already started, to make sure that shared libraries have been
11826 loaded. If it is not started, this may mean that the symbol is
11827 in a shared library. */
11828
e99b03dc 11829 if (inferior_ptid.pid () == 0)
0259addd
JB
11830 error (_("Unable to insert catchpoint. Try to start the program first."));
11831
11832 /* At this point, we know that we are debugging an Ada program and
11833 that the inferior has been started, but we still are not able to
0963b4bd 11834 find the run-time symbols. That can mean that we are in
0259addd
JB
11835 configurable run time mode, or that a-except as been optimized
11836 out by the linker... In any case, at this point it is not worth
11837 supporting this feature. */
11838
7dda8cff 11839 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11840}
11841
f7f9143b
JB
11842/* True iff FRAME is very likely to be that of a function that is
11843 part of the runtime system. This is all very heuristic, but is
11844 intended to be used as advice as to what frames are uninteresting
11845 to most users. */
11846
11847static int
bd2b40ac 11848is_known_support_routine (frame_info_ptr frame)
f7f9143b 11849{
692465f1 11850 enum language func_lang;
f7f9143b 11851 int i;
f35a17b5 11852 const char *fullname;
f7f9143b 11853
4ed6b5be
JB
11854 /* If this code does not have any debugging information (no symtab),
11855 This cannot be any user code. */
f7f9143b 11856
51abb421 11857 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11858 if (sal.symtab == NULL)
11859 return 1;
11860
4ed6b5be
JB
11861 /* If there is a symtab, but the associated source file cannot be
11862 located, then assume this is not user code: Selecting a frame
11863 for which we cannot display the code would not be very helpful
11864 for the user. This should also take care of case such as VxWorks
11865 where the kernel has some debugging info provided for a few units. */
f7f9143b 11866
f35a17b5
JK
11867 fullname = symtab_to_fullname (sal.symtab);
11868 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11869 return 1;
11870
85102364 11871 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11872 We also check the name of the objfile against the name of some
11873 known system libraries that sometimes come with debugging info
11874 too. */
11875
f7f9143b
JB
11876 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11877 {
11878 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11879 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11880 return 1;
3c86fae3
SM
11881 if (sal.symtab->compunit ()->objfile () != NULL
11882 && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
dda83cd7 11883 return 1;
f7f9143b
JB
11884 }
11885
4ed6b5be 11886 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11887
c6dc63a1
TT
11888 gdb::unique_xmalloc_ptr<char> func_name
11889 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11890 if (func_name == NULL)
11891 return 1;
11892
11893 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11894 {
11895 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11896 if (re_exec (func_name.get ()))
11897 return 1;
f7f9143b
JB
11898 }
11899
11900 return 0;
11901}
11902
11903/* Find the first frame that contains debugging information and that is not
11904 part of the Ada run-time, starting from FI and moving upward. */
11905
0ef643c8 11906void
bd2b40ac 11907ada_find_printable_frame (frame_info_ptr fi)
f7f9143b
JB
11908{
11909 for (; fi != NULL; fi = get_prev_frame (fi))
11910 {
11911 if (!is_known_support_routine (fi))
dda83cd7
SM
11912 {
11913 select_frame (fi);
11914 break;
11915 }
f7f9143b
JB
11916 }
11917
11918}
11919
11920/* Assuming that the inferior just triggered an unhandled exception
11921 catchpoint, return the address in inferior memory where the name
11922 of the exception is stored.
11923
11924 Return zero if the address could not be computed. */
11925
11926static CORE_ADDR
11927ada_unhandled_exception_name_addr (void)
0259addd
JB
11928{
11929 return parse_and_eval_address ("e.full_name");
11930}
11931
11932/* Same as ada_unhandled_exception_name_addr, except that this function
11933 should be used when the inferior uses an older version of the runtime,
11934 where the exception name needs to be extracted from a specific frame
11935 several frames up in the callstack. */
11936
11937static CORE_ADDR
11938ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11939{
11940 int frame_level;
bd2b40ac 11941 frame_info_ptr fi;
3eecfa55 11942 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11943
11944 /* To determine the name of this exception, we need to select
11945 the frame corresponding to RAISE_SYM_NAME. This frame is
11946 at least 3 levels up, so we simply skip the first 3 frames
11947 without checking the name of their associated function. */
11948 fi = get_current_frame ();
11949 for (frame_level = 0; frame_level < 3; frame_level += 1)
11950 if (fi != NULL)
11951 fi = get_prev_frame (fi);
11952
11953 while (fi != NULL)
11954 {
692465f1
JB
11955 enum language func_lang;
11956
c6dc63a1
TT
11957 gdb::unique_xmalloc_ptr<char> func_name
11958 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11959 if (func_name != NULL)
11960 {
dda83cd7 11961 if (strcmp (func_name.get (),
55b87a52
KS
11962 data->exception_info->catch_exception_sym) == 0)
11963 break; /* We found the frame we were looking for... */
55b87a52 11964 }
fb44b1a7 11965 fi = get_prev_frame (fi);
f7f9143b
JB
11966 }
11967
11968 if (fi == NULL)
11969 return 0;
11970
11971 select_frame (fi);
11972 return parse_and_eval_address ("id.full_name");
11973}
11974
11975/* Assuming the inferior just triggered an Ada exception catchpoint
11976 (of any type), return the address in inferior memory where the name
11977 of the exception is stored, if applicable.
11978
45db7c09
PA
11979 Assumes the selected frame is the current frame.
11980
f7f9143b
JB
11981 Return zero if the address could not be computed, or if not relevant. */
11982
11983static CORE_ADDR
7bd86313 11984ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex)
f7f9143b 11985{
3eecfa55
JB
11986 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11987
f7f9143b
JB
11988 switch (ex)
11989 {
761269c8 11990 case ada_catch_exception:
dda83cd7
SM
11991 return (parse_and_eval_address ("e.full_name"));
11992 break;
f7f9143b 11993
761269c8 11994 case ada_catch_exception_unhandled:
dda83cd7
SM
11995 return data->exception_info->unhandled_exception_name_addr ();
11996 break;
9f757bf7
XR
11997
11998 case ada_catch_handlers:
dda83cd7 11999 return 0; /* The runtimes does not provide access to the exception
9f757bf7 12000 name. */
dda83cd7 12001 break;
9f757bf7 12002
761269c8 12003 case ada_catch_assert:
dda83cd7
SM
12004 return 0; /* Exception name is not relevant in this case. */
12005 break;
f7f9143b
JB
12006
12007 default:
dda83cd7
SM
12008 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12009 break;
f7f9143b
JB
12010 }
12011
12012 return 0; /* Should never be reached. */
12013}
12014
e547c119
JB
12015/* Assuming the inferior is stopped at an exception catchpoint,
12016 return the message which was associated to the exception, if
12017 available. Return NULL if the message could not be retrieved.
12018
e547c119
JB
12019 Note: The exception message can be associated to an exception
12020 either through the use of the Raise_Exception function, or
12021 more simply (Ada 2005 and later), via:
12022
12023 raise Exception_Name with "exception message";
12024
12025 */
12026
6f46ac85 12027static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12028ada_exception_message_1 (void)
12029{
12030 struct value *e_msg_val;
e547c119 12031 int e_msg_len;
e547c119
JB
12032
12033 /* For runtimes that support this feature, the exception message
12034 is passed as an unbounded string argument called "message". */
12035 e_msg_val = parse_and_eval ("message");
12036 if (e_msg_val == NULL)
12037 return NULL; /* Exception message not supported. */
12038
12039 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12040 gdb_assert (e_msg_val != NULL);
df86565b 12041 e_msg_len = value_type (e_msg_val)->length ();
e547c119
JB
12042
12043 /* If the message string is empty, then treat it as if there was
12044 no exception message. */
12045 if (e_msg_len <= 0)
12046 return NULL;
12047
15f3b077
TT
12048 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12049 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12050 e_msg_len);
12051 e_msg.get ()[e_msg_len] = '\0';
12052
12053 return e_msg;
e547c119
JB
12054}
12055
12056/* Same as ada_exception_message_1, except that all exceptions are
12057 contained here (returning NULL instead). */
12058
6f46ac85 12059static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12060ada_exception_message (void)
12061{
6f46ac85 12062 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12063
a70b8144 12064 try
e547c119
JB
12065 {
12066 e_msg = ada_exception_message_1 ();
12067 }
230d2906 12068 catch (const gdb_exception_error &e)
e547c119 12069 {
6f46ac85 12070 e_msg.reset (nullptr);
e547c119 12071 }
e547c119
JB
12072
12073 return e_msg;
12074}
12075
f7f9143b
JB
12076/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12077 any error that ada_exception_name_addr_1 might cause to be thrown.
12078 When an error is intercepted, a warning with the error message is printed,
12079 and zero is returned. */
12080
12081static CORE_ADDR
7bd86313 12082ada_exception_name_addr (enum ada_exception_catchpoint_kind ex)
f7f9143b 12083{
f7f9143b
JB
12084 CORE_ADDR result = 0;
12085
a70b8144 12086 try
f7f9143b 12087 {
7bd86313 12088 result = ada_exception_name_addr_1 (ex);
f7f9143b
JB
12089 }
12090
230d2906 12091 catch (const gdb_exception_error &e)
f7f9143b 12092 {
3d6e9d23 12093 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12094 return 0;
12095 }
12096
12097 return result;
12098}
12099
cb7de75e 12100static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12101 (const char *excep_string,
12102 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12103
12104/* Ada catchpoints.
12105
12106 In the case of catchpoints on Ada exceptions, the catchpoint will
12107 stop the target on every exception the program throws. When a user
12108 specifies the name of a specific exception, we translate this
12109 request into a condition expression (in text form), and then parse
12110 it into an expression stored in each of the catchpoint's locations.
12111 We then use this condition to check whether the exception that was
12112 raised is the one the user is interested in. If not, then the
12113 target is resumed again. We store the name of the requested
12114 exception, in order to be able to re-set the condition expression
12115 when symbols change. */
12116
c1fc2657 12117/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12118
74421c0b 12119struct ada_catchpoint : public code_breakpoint
28010a5d 12120{
73063f51 12121 ada_catchpoint (struct gdbarch *gdbarch_,
bd21b6c9
PA
12122 enum ada_exception_catchpoint_kind kind,
12123 struct symtab_and_line sal,
12124 const char *addr_string_,
12125 bool tempflag,
12126 bool enabled,
12127 bool from_tty)
74421c0b 12128 : code_breakpoint (gdbarch_, bp_catchpoint),
73063f51 12129 m_kind (kind)
37f6a7f4 12130 {
bd21b6c9
PA
12131 add_location (sal);
12132
74421c0b 12133 /* Unlike most code_breakpoint types, Ada catchpoints are
bd21b6c9
PA
12134 pspace-specific. */
12135 gdb_assert (sal.pspace != nullptr);
12136 this->pspace = sal.pspace;
12137
12138 if (from_tty)
12139 {
12140 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12141 if (!loc_gdbarch)
12142 loc_gdbarch = gdbarch;
12143
12144 describe_other_breakpoints (loc_gdbarch,
12145 sal.pspace, sal.pc, sal.section, -1);
12146 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12147 version for exception catchpoints, because two catchpoints
12148 used for different exception names will use the same address.
12149 In this case, a "breakpoint ... also set at..." warning is
12150 unproductive. Besides, the warning phrasing is also a bit
12151 inappropriate, we should use the word catchpoint, and tell
12152 the user what type of catchpoint it is. The above is good
12153 enough for now, though. */
12154 }
12155
12156 enable_state = enabled ? bp_enabled : bp_disabled;
12157 disposition = tempflag ? disp_del : disp_donttouch;
264f9890
PA
12158 locspec = string_to_location_spec (&addr_string_,
12159 language_def (language_ada));
bd21b6c9 12160 language = language_ada;
37f6a7f4
TT
12161 }
12162
ae72050b
TT
12163 struct bp_location *allocate_location () override;
12164 void re_set () override;
12165 void check_status (struct bpstat *bs) override;
7bd86313 12166 enum print_stop_action print_it (const bpstat *bs) const override;
a67bcaba 12167 bool print_one (bp_location **) const override;
b713485d 12168 void print_mention () const override;
4d1ae558 12169 void print_recreate (struct ui_file *fp) const override;
ae72050b 12170
28010a5d 12171 /* The name of the specific exception the user specified. */
bc18fbb5 12172 std::string excep_string;
37f6a7f4
TT
12173
12174 /* What kind of catchpoint this is. */
12175 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12176};
12177
8cd0bf5e
PA
12178/* An instance of this type is used to represent an Ada catchpoint
12179 breakpoint location. */
12180
12181class ada_catchpoint_location : public bp_location
12182{
12183public:
12184 explicit ada_catchpoint_location (ada_catchpoint *owner)
12185 : bp_location (owner, bp_loc_software_breakpoint)
12186 {}
12187
12188 /* The condition that checks whether the exception that was raised
12189 is the specific exception the user specified on catchpoint
12190 creation. */
12191 expression_up excep_cond_expr;
12192};
12193
28010a5d
PA
12194/* Parse the exception condition string in the context of each of the
12195 catchpoint's locations, and store them for later evaluation. */
12196
12197static void
9f757bf7 12198create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 12199 enum ada_exception_catchpoint_kind ex)
28010a5d 12200{
28010a5d 12201 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12202 if (c->excep_string.empty ())
28010a5d
PA
12203 return;
12204
12205 /* Same if there are no locations... */
c1fc2657 12206 if (c->loc == NULL)
28010a5d
PA
12207 return;
12208
fccf9de1
TT
12209 /* Compute the condition expression in text form, from the specific
12210 expection we want to catch. */
12211 std::string cond_string
12212 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12213
fccf9de1
TT
12214 /* Iterate over all the catchpoint's locations, and parse an
12215 expression for each. */
40cb8ca5 12216 for (bp_location *bl : c->locations ())
28010a5d
PA
12217 {
12218 struct ada_catchpoint_location *ada_loc
fccf9de1 12219 = (struct ada_catchpoint_location *) bl;
4d01a485 12220 expression_up exp;
28010a5d 12221
fccf9de1 12222 if (!bl->shlib_disabled)
28010a5d 12223 {
bbc13ae3 12224 const char *s;
28010a5d 12225
cb7de75e 12226 s = cond_string.c_str ();
a70b8144 12227 try
28010a5d 12228 {
fccf9de1
TT
12229 exp = parse_exp_1 (&s, bl->address,
12230 block_for_pc (bl->address),
036e657b 12231 0);
28010a5d 12232 }
230d2906 12233 catch (const gdb_exception_error &e)
849f2b52
JB
12234 {
12235 warning (_("failed to reevaluate internal exception condition "
12236 "for catchpoint %d: %s"),
3d6e9d23 12237 c->number, e.what ());
849f2b52 12238 }
28010a5d
PA
12239 }
12240
b22e99fd 12241 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12242 }
28010a5d
PA
12243}
12244
ae72050b
TT
12245/* Implement the ALLOCATE_LOCATION method in the structure for all
12246 exception catchpoint kinds. */
28010a5d 12247
ae72050b
TT
12248struct bp_location *
12249ada_catchpoint::allocate_location ()
28010a5d 12250{
ae72050b 12251 return new ada_catchpoint_location (this);
28010a5d
PA
12252}
12253
ae72050b
TT
12254/* Implement the RE_SET method in the structure for all exception
12255 catchpoint kinds. */
28010a5d 12256
ae72050b
TT
12257void
12258ada_catchpoint::re_set ()
28010a5d 12259{
28010a5d
PA
12260 /* Call the base class's method. This updates the catchpoint's
12261 locations. */
74421c0b 12262 this->code_breakpoint::re_set ();
28010a5d
PA
12263
12264 /* Reparse the exception conditional expressions. One for each
12265 location. */
ae72050b 12266 create_excep_cond_exprs (this, m_kind);
28010a5d
PA
12267}
12268
12269/* Returns true if we should stop for this breakpoint hit. If the
12270 user specified a specific exception, we only want to cause a stop
12271 if the program thrown that exception. */
12272
7ebaa5f7 12273static bool
28010a5d
PA
12274should_stop_exception (const struct bp_location *bl)
12275{
12276 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12277 const struct ada_catchpoint_location *ada_loc
12278 = (const struct ada_catchpoint_location *) bl;
7ebaa5f7 12279 bool stop;
28010a5d 12280
37f6a7f4
TT
12281 struct internalvar *var = lookup_internalvar ("_ada_exception");
12282 if (c->m_kind == ada_catch_assert)
12283 clear_internalvar (var);
12284 else
12285 {
12286 try
12287 {
12288 const char *expr;
12289
12290 if (c->m_kind == ada_catch_handlers)
12291 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12292 ".all.occurrence.id");
12293 else
12294 expr = "e";
12295
12296 struct value *exc = parse_and_eval (expr);
12297 set_internalvar (var, exc);
12298 }
12299 catch (const gdb_exception_error &ex)
12300 {
12301 clear_internalvar (var);
12302 }
12303 }
12304
28010a5d 12305 /* With no specific exception, should always stop. */
bc18fbb5 12306 if (c->excep_string.empty ())
7ebaa5f7 12307 return true;
28010a5d
PA
12308
12309 if (ada_loc->excep_cond_expr == NULL)
12310 {
12311 /* We will have a NULL expression if back when we were creating
12312 the expressions, this location's had failed to parse. */
7ebaa5f7 12313 return true;
28010a5d
PA
12314 }
12315
7ebaa5f7 12316 stop = true;
a70b8144 12317 try
28010a5d 12318 {
65558ca5 12319 scoped_value_mark mark;
4d01a485 12320 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d 12321 }
230d2906 12322 catch (const gdb_exception &ex)
492d29ea
PA
12323 {
12324 exception_fprintf (gdb_stderr, ex,
12325 _("Error in testing exception condition:\n"));
12326 }
492d29ea 12327
28010a5d
PA
12328 return stop;
12329}
12330
ae72050b
TT
12331/* Implement the CHECK_STATUS method in the structure for all
12332 exception catchpoint kinds. */
28010a5d 12333
ae72050b
TT
12334void
12335ada_catchpoint::check_status (bpstat *bs)
28010a5d 12336{
b6433ede 12337 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
12338}
12339
ae72050b
TT
12340/* Implement the PRINT_IT method in the structure for all exception
12341 catchpoint kinds. */
f7f9143b 12342
ae72050b 12343enum print_stop_action
7bd86313 12344ada_catchpoint::print_it (const bpstat *bs) const
f7f9143b 12345{
79a45e25 12346 struct ui_out *uiout = current_uiout;
348d480f 12347
ae72050b 12348 annotate_catchpoint (number);
f7f9143b 12349
112e8700 12350 if (uiout->is_mi_like_p ())
f7f9143b 12351 {
112e8700 12352 uiout->field_string ("reason",
956a9fb9 12353 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
ae72050b 12354 uiout->field_string ("disp", bpdisp_text (disposition));
f7f9143b
JB
12355 }
12356
ae72050b 12357 uiout->text (disposition == disp_del
112e8700 12358 ? "\nTemporary catchpoint " : "\nCatchpoint ");
ae72050b 12359 uiout->field_signed ("bkptno", number);
112e8700 12360 uiout->text (", ");
f7f9143b 12361
45db7c09
PA
12362 /* ada_exception_name_addr relies on the selected frame being the
12363 current frame. Need to do this here because this function may be
12364 called more than once when printing a stop, and below, we'll
12365 select the first frame past the Ada run-time (see
12366 ada_find_printable_frame). */
12367 select_frame (get_current_frame ());
12368
ae72050b 12369 switch (m_kind)
f7f9143b 12370 {
761269c8
JB
12371 case ada_catch_exception:
12372 case ada_catch_exception_unhandled:
9f757bf7 12373 case ada_catch_handlers:
956a9fb9 12374 {
7bd86313 12375 const CORE_ADDR addr = ada_exception_name_addr (m_kind);
956a9fb9
JB
12376 char exception_name[256];
12377
12378 if (addr != 0)
12379 {
c714b426
PA
12380 read_memory (addr, (gdb_byte *) exception_name,
12381 sizeof (exception_name) - 1);
956a9fb9
JB
12382 exception_name [sizeof (exception_name) - 1] = '\0';
12383 }
12384 else
12385 {
12386 /* For some reason, we were unable to read the exception
12387 name. This could happen if the Runtime was compiled
12388 without debugging info, for instance. In that case,
12389 just replace the exception name by the generic string
12390 "exception" - it will read as "an exception" in the
12391 notification we are about to print. */
967cff16 12392 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12393 }
12394 /* In the case of unhandled exception breakpoints, we print
12395 the exception name as "unhandled EXCEPTION_NAME", to make
12396 it clearer to the user which kind of catchpoint just got
12397 hit. We used ui_out_text to make sure that this extra
12398 info does not pollute the exception name in the MI case. */
ae72050b 12399 if (m_kind == ada_catch_exception_unhandled)
112e8700
SM
12400 uiout->text ("unhandled ");
12401 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12402 }
12403 break;
761269c8 12404 case ada_catch_assert:
956a9fb9
JB
12405 /* In this case, the name of the exception is not really
12406 important. Just print "failed assertion" to make it clearer
12407 that his program just hit an assertion-failure catchpoint.
12408 We used ui_out_text because this info does not belong in
12409 the MI output. */
112e8700 12410 uiout->text ("failed assertion");
956a9fb9 12411 break;
f7f9143b 12412 }
e547c119 12413
6f46ac85 12414 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12415 if (exception_message != NULL)
12416 {
e547c119 12417 uiout->text (" (");
6f46ac85 12418 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12419 uiout->text (")");
e547c119
JB
12420 }
12421
112e8700 12422 uiout->text (" at ");
956a9fb9 12423 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12424
12425 return PRINT_SRC_AND_LOC;
12426}
12427
ae72050b
TT
12428/* Implement the PRINT_ONE method in the structure for all exception
12429 catchpoint kinds. */
f7f9143b 12430
ae72050b 12431bool
a67bcaba 12432ada_catchpoint::print_one (bp_location **last_loc) const
f7f9143b 12433{
79a45e25 12434 struct ui_out *uiout = current_uiout;
79a45b7d
TT
12435 struct value_print_options opts;
12436
12437 get_user_print_options (&opts);
f06f1252 12438
79a45b7d 12439 if (opts.addressprint)
f06f1252 12440 uiout->field_skip ("addr");
f7f9143b
JB
12441
12442 annotate_field (5);
ae72050b 12443 switch (m_kind)
f7f9143b 12444 {
761269c8 12445 case ada_catch_exception:
ae72050b 12446 if (!excep_string.empty ())
dda83cd7 12447 {
bc18fbb5 12448 std::string msg = string_printf (_("`%s' Ada exception"),
ae72050b 12449 excep_string.c_str ());
28010a5d 12450
dda83cd7
SM
12451 uiout->field_string ("what", msg);
12452 }
12453 else
12454 uiout->field_string ("what", "all Ada exceptions");
12455
12456 break;
f7f9143b 12457
761269c8 12458 case ada_catch_exception_unhandled:
dda83cd7
SM
12459 uiout->field_string ("what", "unhandled Ada exceptions");
12460 break;
f7f9143b 12461
9f757bf7 12462 case ada_catch_handlers:
ae72050b 12463 if (!excep_string.empty ())
dda83cd7 12464 {
9f757bf7
XR
12465 uiout->field_fmt ("what",
12466 _("`%s' Ada exception handlers"),
ae72050b 12467 excep_string.c_str ());
dda83cd7
SM
12468 }
12469 else
9f757bf7 12470 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 12471 break;
9f757bf7 12472
761269c8 12473 case ada_catch_assert:
dda83cd7
SM
12474 uiout->field_string ("what", "failed Ada assertions");
12475 break;
f7f9143b
JB
12476
12477 default:
dda83cd7
SM
12478 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12479 break;
f7f9143b 12480 }
c01e038b
TT
12481
12482 return true;
f7f9143b
JB
12483}
12484
12485/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12486 for all exception catchpoint kinds. */
12487
ae72050b 12488void
b713485d 12489ada_catchpoint::print_mention () const
f7f9143b 12490{
79a45e25 12491 struct ui_out *uiout = current_uiout;
28010a5d 12492
ae72050b 12493 uiout->text (disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 12494 : _("Catchpoint "));
ae72050b 12495 uiout->field_signed ("bkptno", number);
112e8700 12496 uiout->text (": ");
00eb2c4a 12497
ae72050b 12498 switch (m_kind)
f7f9143b 12499 {
761269c8 12500 case ada_catch_exception:
ae72050b 12501 if (!excep_string.empty ())
00eb2c4a 12502 {
862d101a 12503 std::string info = string_printf (_("`%s' Ada exception"),
ae72050b 12504 excep_string.c_str ());
4915bfdc 12505 uiout->text (info);
00eb2c4a 12506 }
dda83cd7
SM
12507 else
12508 uiout->text (_("all Ada exceptions"));
12509 break;
f7f9143b 12510
761269c8 12511 case ada_catch_exception_unhandled:
dda83cd7
SM
12512 uiout->text (_("unhandled Ada exceptions"));
12513 break;
9f757bf7
XR
12514
12515 case ada_catch_handlers:
ae72050b 12516 if (!excep_string.empty ())
9f757bf7
XR
12517 {
12518 std::string info
12519 = string_printf (_("`%s' Ada exception handlers"),
ae72050b 12520 excep_string.c_str ());
4915bfdc 12521 uiout->text (info);
9f757bf7 12522 }
dda83cd7
SM
12523 else
12524 uiout->text (_("all Ada exceptions handlers"));
12525 break;
9f757bf7 12526
761269c8 12527 case ada_catch_assert:
dda83cd7
SM
12528 uiout->text (_("failed Ada assertions"));
12529 break;
f7f9143b
JB
12530
12531 default:
dda83cd7
SM
12532 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12533 break;
f7f9143b
JB
12534 }
12535}
12536
ae72050b
TT
12537/* Implement the PRINT_RECREATE method in the structure for all
12538 exception catchpoint kinds. */
6149aea9 12539
ae72050b 12540void
4d1ae558 12541ada_catchpoint::print_recreate (struct ui_file *fp) const
6149aea9 12542{
ae72050b 12543 switch (m_kind)
6149aea9 12544 {
761269c8 12545 case ada_catch_exception:
6cb06a8c 12546 gdb_printf (fp, "catch exception");
ae72050b
TT
12547 if (!excep_string.empty ())
12548 gdb_printf (fp, " %s", excep_string.c_str ());
6149aea9
PA
12549 break;
12550
761269c8 12551 case ada_catch_exception_unhandled:
6cb06a8c 12552 gdb_printf (fp, "catch exception unhandled");
6149aea9
PA
12553 break;
12554
9f757bf7 12555 case ada_catch_handlers:
6cb06a8c 12556 gdb_printf (fp, "catch handlers");
9f757bf7
XR
12557 break;
12558
761269c8 12559 case ada_catch_assert:
6cb06a8c 12560 gdb_printf (fp, "catch assert");
6149aea9
PA
12561 break;
12562
12563 default:
12564 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12565 }
04d0163c 12566 print_recreate_thread (fp);
6149aea9
PA
12567}
12568
f06f1252
TT
12569/* See ada-lang.h. */
12570
12571bool
12572is_ada_exception_catchpoint (breakpoint *bp)
12573{
ae72050b 12574 return dynamic_cast<ada_catchpoint *> (bp) != nullptr;
f06f1252
TT
12575}
12576
f7f9143b
JB
12577/* Split the arguments specified in a "catch exception" command.
12578 Set EX to the appropriate catchpoint type.
28010a5d 12579 Set EXCEP_STRING to the name of the specific exception if
5845583d 12580 specified by the user.
9f757bf7
XR
12581 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12582 "catch handlers" command. False otherwise.
5845583d
JB
12583 If a condition is found at the end of the arguments, the condition
12584 expression is stored in COND_STRING (memory must be deallocated
12585 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12586
12587static void
a121b7c1 12588catch_ada_exception_command_split (const char *args,
9f757bf7 12589 bool is_catch_handlers_cmd,
dda83cd7 12590 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12591 std::string *excep_string,
12592 std::string *cond_string)
f7f9143b 12593{
bc18fbb5 12594 std::string exception_name;
f7f9143b 12595
bc18fbb5
TT
12596 exception_name = extract_arg (&args);
12597 if (exception_name == "if")
5845583d
JB
12598 {
12599 /* This is not an exception name; this is the start of a condition
12600 expression for a catchpoint on all exceptions. So, "un-get"
12601 this token, and set exception_name to NULL. */
bc18fbb5 12602 exception_name.clear ();
5845583d
JB
12603 args -= 2;
12604 }
f7f9143b 12605
5845583d 12606 /* Check to see if we have a condition. */
f7f9143b 12607
f1735a53 12608 args = skip_spaces (args);
61012eef 12609 if (startswith (args, "if")
5845583d
JB
12610 && (isspace (args[2]) || args[2] == '\0'))
12611 {
12612 args += 2;
f1735a53 12613 args = skip_spaces (args);
5845583d
JB
12614
12615 if (args[0] == '\0')
dda83cd7 12616 error (_("Condition missing after `if' keyword"));
bc18fbb5 12617 *cond_string = args;
5845583d
JB
12618
12619 args += strlen (args);
12620 }
12621
12622 /* Check that we do not have any more arguments. Anything else
12623 is unexpected. */
f7f9143b
JB
12624
12625 if (args[0] != '\0')
12626 error (_("Junk at end of expression"));
12627
9f757bf7
XR
12628 if (is_catch_handlers_cmd)
12629 {
12630 /* Catch handling of exceptions. */
12631 *ex = ada_catch_handlers;
12632 *excep_string = exception_name;
12633 }
bc18fbb5 12634 else if (exception_name.empty ())
f7f9143b
JB
12635 {
12636 /* Catch all exceptions. */
761269c8 12637 *ex = ada_catch_exception;
bc18fbb5 12638 excep_string->clear ();
f7f9143b 12639 }
bc18fbb5 12640 else if (exception_name == "unhandled")
f7f9143b
JB
12641 {
12642 /* Catch unhandled exceptions. */
761269c8 12643 *ex = ada_catch_exception_unhandled;
bc18fbb5 12644 excep_string->clear ();
f7f9143b
JB
12645 }
12646 else
12647 {
12648 /* Catch a specific exception. */
761269c8 12649 *ex = ada_catch_exception;
28010a5d 12650 *excep_string = exception_name;
f7f9143b
JB
12651 }
12652}
12653
12654/* Return the name of the symbol on which we should break in order to
12655 implement a catchpoint of the EX kind. */
12656
12657static const char *
761269c8 12658ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12659{
3eecfa55
JB
12660 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12661
12662 gdb_assert (data->exception_info != NULL);
0259addd 12663
f7f9143b
JB
12664 switch (ex)
12665 {
761269c8 12666 case ada_catch_exception:
dda83cd7
SM
12667 return (data->exception_info->catch_exception_sym);
12668 break;
761269c8 12669 case ada_catch_exception_unhandled:
dda83cd7
SM
12670 return (data->exception_info->catch_exception_unhandled_sym);
12671 break;
761269c8 12672 case ada_catch_assert:
dda83cd7
SM
12673 return (data->exception_info->catch_assert_sym);
12674 break;
9f757bf7 12675 case ada_catch_handlers:
dda83cd7
SM
12676 return (data->exception_info->catch_handlers_sym);
12677 break;
f7f9143b 12678 default:
dda83cd7
SM
12679 internal_error (__FILE__, __LINE__,
12680 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12681 }
12682}
12683
f7f9143b
JB
12684/* Return the condition that will be used to match the current exception
12685 being raised with the exception that the user wants to catch. This
12686 assumes that this condition is used when the inferior just triggered
12687 an exception catchpoint.
cb7de75e 12688 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12689
cb7de75e 12690static std::string
9f757bf7 12691ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12692 enum ada_exception_catchpoint_kind ex)
f7f9143b 12693{
fccf9de1 12694 bool is_standard_exc = false;
cb7de75e 12695 std::string result;
9f757bf7
XR
12696
12697 if (ex == ada_catch_handlers)
12698 {
12699 /* For exception handlers catchpoints, the condition string does
dda83cd7 12700 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12701 result = ("long_integer (GNAT_GCC_exception_Access"
12702 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12703 }
12704 else
fccf9de1 12705 result = "long_integer (e)";
3d0b0fa3 12706
0963b4bd 12707 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12708 runtime units that have been compiled without debugging info; if
28010a5d 12709 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12710 exception (e.g. "constraint_error") then, during the evaluation
12711 of the condition expression, the symbol lookup on this name would
0963b4bd 12712 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12713 may then be set only on user-defined exceptions which have the
12714 same not-fully-qualified name (e.g. my_package.constraint_error).
12715
12716 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12717 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12718 exception constraint_error" is rewritten into "catch exception
12719 standard.constraint_error".
12720
85102364 12721 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12722 the inferior program, then the only way to specify this exception as a
12723 breakpoint condition is to use its fully-qualified named:
fccf9de1 12724 e.g. my_package.constraint_error. */
3d0b0fa3 12725
696d6f4d 12726 for (const char *name : standard_exc)
3d0b0fa3 12727 {
696d6f4d 12728 if (strcmp (name, excep_string) == 0)
3d0b0fa3 12729 {
fccf9de1 12730 is_standard_exc = true;
9f757bf7 12731 break;
3d0b0fa3
JB
12732 }
12733 }
9f757bf7 12734
fccf9de1
TT
12735 result += " = ";
12736
12737 if (is_standard_exc)
12738 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12739 else
12740 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12741
9f757bf7 12742 return result;
f7f9143b
JB
12743}
12744
12745/* Return the symtab_and_line that should be used to insert an exception
12746 catchpoint of the TYPE kind.
12747
28010a5d
PA
12748 ADDR_STRING returns the name of the function where the real
12749 breakpoint that implements the catchpoints is set, depending on the
12750 type of catchpoint we need to create. */
f7f9143b
JB
12751
12752static struct symtab_and_line
bc18fbb5 12753ada_exception_sal (enum ada_exception_catchpoint_kind ex,
ae72050b 12754 std::string *addr_string)
f7f9143b
JB
12755{
12756 const char *sym_name;
12757 struct symbol *sym;
f7f9143b 12758
0259addd
JB
12759 /* First, find out which exception support info to use. */
12760 ada_exception_support_info_sniffer ();
12761
12762 /* Then lookup the function on which we will break in order to catch
f7f9143b 12763 the Ada exceptions requested by the user. */
f7f9143b
JB
12764 sym_name = ada_exception_sym_name (ex);
12765 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12766
57aff202
JB
12767 if (sym == NULL)
12768 error (_("Catchpoint symbol not found: %s"), sym_name);
12769
66d7f48f 12770 if (sym->aclass () != LOC_BLOCK)
57aff202 12771 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12772
12773 /* Set ADDR_STRING. */
cc12f4a8 12774 *addr_string = sym_name;
f7f9143b 12775
f17011e0 12776 return find_function_start_sal (sym, 1);
f7f9143b
JB
12777}
12778
b4a5b78b 12779/* Create an Ada exception catchpoint.
f7f9143b 12780
b4a5b78b 12781 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12782
bc18fbb5 12783 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12784 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12785 of the exception to which this catchpoint applies.
2df4d1d5 12786
bc18fbb5 12787 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12788
b4a5b78b
JB
12789 TEMPFLAG, if nonzero, means that the underlying breakpoint
12790 should be temporary.
28010a5d 12791
b4a5b78b 12792 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12793
349774ef 12794void
28010a5d 12795create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12796 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12797 const std::string &excep_string,
56ecd069 12798 const std::string &cond_string,
28010a5d 12799 int tempflag,
349774ef 12800 int disabled,
28010a5d
PA
12801 int from_tty)
12802{
cc12f4a8 12803 std::string addr_string;
ae72050b 12804 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string);
28010a5d 12805
bd21b6c9
PA
12806 std::unique_ptr<ada_catchpoint> c
12807 (new ada_catchpoint (gdbarch, ex_kind, sal, addr_string.c_str (),
12808 tempflag, disabled, from_tty));
28010a5d 12809 c->excep_string = excep_string;
9f757bf7 12810 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12811 if (!cond_string.empty ())
733d554a 12812 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12813 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12814}
12815
9ac4176b
PA
12816/* Implement the "catch exception" command. */
12817
12818static void
eb4c3f4a 12819catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12820 struct cmd_list_element *command)
12821{
a121b7c1 12822 const char *arg = arg_entry;
9ac4176b
PA
12823 struct gdbarch *gdbarch = get_current_arch ();
12824 int tempflag;
761269c8 12825 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12826 std::string excep_string;
56ecd069 12827 std::string cond_string;
9ac4176b 12828
0f8e2034 12829 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12830
12831 if (!arg)
12832 arg = "";
9f757bf7 12833 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12834 &cond_string);
9f757bf7
XR
12835 create_ada_exception_catchpoint (gdbarch, ex_kind,
12836 excep_string, cond_string,
12837 tempflag, 1 /* enabled */,
12838 from_tty);
12839}
12840
12841/* Implement the "catch handlers" command. */
12842
12843static void
12844catch_ada_handlers_command (const char *arg_entry, int from_tty,
12845 struct cmd_list_element *command)
12846{
12847 const char *arg = arg_entry;
12848 struct gdbarch *gdbarch = get_current_arch ();
12849 int tempflag;
12850 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12851 std::string excep_string;
56ecd069 12852 std::string cond_string;
9f757bf7 12853
0f8e2034 12854 tempflag = command->context () == CATCH_TEMPORARY;
9f757bf7
XR
12855
12856 if (!arg)
12857 arg = "";
12858 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12859 &cond_string);
b4a5b78b
JB
12860 create_ada_exception_catchpoint (gdbarch, ex_kind,
12861 excep_string, cond_string,
349774ef
JB
12862 tempflag, 1 /* enabled */,
12863 from_tty);
9ac4176b
PA
12864}
12865
71bed2db
TT
12866/* Completion function for the Ada "catch" commands. */
12867
12868static void
12869catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12870 const char *text, const char *word)
12871{
12872 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12873
12874 for (const ada_exc_info &info : exceptions)
12875 {
12876 if (startswith (info.name, word))
b02f78f9 12877 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12878 }
12879}
12880
b4a5b78b 12881/* Split the arguments specified in a "catch assert" command.
5845583d 12882
b4a5b78b
JB
12883 ARGS contains the command's arguments (or the empty string if
12884 no arguments were passed).
5845583d
JB
12885
12886 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12887 (the memory needs to be deallocated after use). */
5845583d 12888
b4a5b78b 12889static void
56ecd069 12890catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12891{
f1735a53 12892 args = skip_spaces (args);
f7f9143b 12893
5845583d 12894 /* Check whether a condition was provided. */
61012eef 12895 if (startswith (args, "if")
5845583d 12896 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12897 {
5845583d 12898 args += 2;
f1735a53 12899 args = skip_spaces (args);
5845583d 12900 if (args[0] == '\0')
dda83cd7 12901 error (_("condition missing after `if' keyword"));
56ecd069 12902 cond_string.assign (args);
f7f9143b
JB
12903 }
12904
5845583d
JB
12905 /* Otherwise, there should be no other argument at the end of
12906 the command. */
12907 else if (args[0] != '\0')
12908 error (_("Junk at end of arguments."));
f7f9143b
JB
12909}
12910
9ac4176b
PA
12911/* Implement the "catch assert" command. */
12912
12913static void
eb4c3f4a 12914catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12915 struct cmd_list_element *command)
12916{
a121b7c1 12917 const char *arg = arg_entry;
9ac4176b
PA
12918 struct gdbarch *gdbarch = get_current_arch ();
12919 int tempflag;
56ecd069 12920 std::string cond_string;
9ac4176b 12921
0f8e2034 12922 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12923
12924 if (!arg)
12925 arg = "";
56ecd069 12926 catch_ada_assert_command_split (arg, cond_string);
761269c8 12927 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12928 "", cond_string,
349774ef
JB
12929 tempflag, 1 /* enabled */,
12930 from_tty);
9ac4176b 12931}
778865d3
JB
12932
12933/* Return non-zero if the symbol SYM is an Ada exception object. */
12934
12935static int
12936ada_is_exception_sym (struct symbol *sym)
12937{
5f9c5a63 12938 const char *type_name = sym->type ()->name ();
778865d3 12939
66d7f48f
SM
12940 return (sym->aclass () != LOC_TYPEDEF
12941 && sym->aclass () != LOC_BLOCK
12942 && sym->aclass () != LOC_CONST
12943 && sym->aclass () != LOC_UNRESOLVED
dda83cd7 12944 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12945}
12946
12947/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12948 Ada exception object. This matches all exceptions except the ones
12949 defined by the Ada language. */
12950
12951static int
12952ada_is_non_standard_exception_sym (struct symbol *sym)
12953{
778865d3
JB
12954 if (!ada_is_exception_sym (sym))
12955 return 0;
12956
696d6f4d
TT
12957 for (const char *name : standard_exc)
12958 if (strcmp (sym->linkage_name (), name) == 0)
778865d3
JB
12959 return 0; /* A standard exception. */
12960
12961 /* Numeric_Error is also a standard exception, so exclude it.
12962 See the STANDARD_EXC description for more details as to why
12963 this exception is not listed in that array. */
987012b8 12964 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12965 return 0;
12966
12967 return 1;
12968}
12969
ab816a27 12970/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12971 objects.
12972
12973 The comparison is determined first by exception name, and then
12974 by exception address. */
12975
ab816a27 12976bool
cc536b21 12977ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12978{
778865d3
JB
12979 int result;
12980
ab816a27
TT
12981 result = strcmp (name, other.name);
12982 if (result < 0)
12983 return true;
12984 if (result == 0 && addr < other.addr)
12985 return true;
12986 return false;
12987}
778865d3 12988
ab816a27 12989bool
cc536b21 12990ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12991{
12992 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12993}
12994
12995/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12996 routine, but keeping the first SKIP elements untouched.
12997
12998 All duplicates are also removed. */
12999
13000static void
ab816a27 13001sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13002 int skip)
13003{
ab816a27
TT
13004 std::sort (exceptions->begin () + skip, exceptions->end ());
13005 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13006 exceptions->end ());
778865d3
JB
13007}
13008
778865d3
JB
13009/* Add all exceptions defined by the Ada standard whose name match
13010 a regular expression.
13011
13012 If PREG is not NULL, then this regexp_t object is used to
13013 perform the symbol name matching. Otherwise, no name-based
13014 filtering is performed.
13015
13016 EXCEPTIONS is a vector of exceptions to which matching exceptions
13017 gets pushed. */
13018
13019static void
2d7cc5c7 13020ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13021 std::vector<ada_exc_info> *exceptions)
778865d3 13022{
696d6f4d 13023 for (const char *name : standard_exc)
778865d3 13024 {
696d6f4d 13025 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
778865d3 13026 {
4326580d
MM
13027 symbol_name_match_type match_type = name_match_type_from_name (name);
13028 lookup_name_info lookup_name (name, match_type);
778865d3 13029
4326580d
MM
13030 symbol_name_matcher_ftype *match_name
13031 = ada_get_symbol_name_matcher (lookup_name);
778865d3 13032
4326580d
MM
13033 /* Iterate over all objfiles irrespective of scope or linker
13034 namespaces so we get all exceptions anywhere in the
13035 progspace. */
13036 for (objfile *objfile : current_program_space->objfiles ())
13037 {
13038 for (minimal_symbol *msymbol : objfile->msymbols ())
13039 {
13040 if (match_name (msymbol->linkage_name (), lookup_name,
13041 nullptr)
13042 && msymbol->type () != mst_solib_trampoline)
13043 {
13044 ada_exc_info info
13045 = {name, msymbol->value_address (objfile)};
13046
13047 exceptions->push_back (info);
13048 }
13049 }
778865d3
JB
13050 }
13051 }
13052 }
13053}
13054
13055/* Add all Ada exceptions defined locally and accessible from the given
13056 FRAME.
13057
13058 If PREG is not NULL, then this regexp_t object is used to
13059 perform the symbol name matching. Otherwise, no name-based
13060 filtering is performed.
13061
13062 EXCEPTIONS is a vector of exceptions to which matching exceptions
13063 gets pushed. */
13064
13065static void
2d7cc5c7 13066ada_add_exceptions_from_frame (compiled_regex *preg,
bd2b40ac 13067 frame_info_ptr frame,
ab816a27 13068 std::vector<ada_exc_info> *exceptions)
778865d3 13069{
3977b71f 13070 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13071
13072 while (block != 0)
13073 {
13074 struct block_iterator iter;
13075 struct symbol *sym;
13076
13077 ALL_BLOCK_SYMBOLS (block, iter, sym)
13078 {
66d7f48f 13079 switch (sym->aclass ())
778865d3
JB
13080 {
13081 case LOC_TYPEDEF:
13082 case LOC_BLOCK:
13083 case LOC_CONST:
13084 break;
13085 default:
13086 if (ada_is_exception_sym (sym))
13087 {
987012b8 13088 struct ada_exc_info info = {sym->print_name (),
4aeddc50 13089 sym->value_address ()};
778865d3 13090
ab816a27 13091 exceptions->push_back (info);
778865d3
JB
13092 }
13093 }
13094 }
6c00f721 13095 if (block->function () != NULL)
778865d3 13096 break;
f135fe72 13097 block = block->superblock ();
778865d3
JB
13098 }
13099}
13100
14bc53a8
PA
13101/* Return true if NAME matches PREG or if PREG is NULL. */
13102
13103static bool
2d7cc5c7 13104name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13105{
13106 return (preg == NULL
f945dedf 13107 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13108}
13109
778865d3
JB
13110/* Add all exceptions defined globally whose name name match
13111 a regular expression, excluding standard exceptions.
13112
13113 The reason we exclude standard exceptions is that they need
13114 to be handled separately: Standard exceptions are defined inside
13115 a runtime unit which is normally not compiled with debugging info,
13116 and thus usually do not show up in our symbol search. However,
13117 if the unit was in fact built with debugging info, we need to
13118 exclude them because they would duplicate the entry we found
13119 during the special loop that specifically searches for those
13120 standard exceptions.
13121
13122 If PREG is not NULL, then this regexp_t object is used to
13123 perform the symbol name matching. Otherwise, no name-based
13124 filtering is performed.
13125
13126 EXCEPTIONS is a vector of exceptions to which matching exceptions
13127 gets pushed. */
13128
13129static void
2d7cc5c7 13130ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13131 std::vector<ada_exc_info> *exceptions)
778865d3 13132{
14bc53a8
PA
13133 /* In Ada, the symbol "search name" is a linkage name, whereas the
13134 regular expression used to do the matching refers to the natural
13135 name. So match against the decoded name. */
13136 expand_symtabs_matching (NULL,
b5ec771e 13137 lookup_name_info::match_any (),
14bc53a8
PA
13138 [&] (const char *search_name)
13139 {
f945dedf
CB
13140 std::string decoded = ada_decode (search_name);
13141 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13142 },
13143 NULL,
03a8ea51 13144 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
14bc53a8 13145 VARIABLES_DOMAIN);
778865d3 13146
4326580d
MM
13147 /* Iterate over all objfiles irrespective of scope or linker namespaces
13148 so we get all exceptions anywhere in the progspace. */
2030c079 13149 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13150 {
b669c953 13151 for (compunit_symtab *s : objfile->compunits ())
778865d3 13152 {
af39c5c8 13153 const struct blockvector *bv = s->blockvector ();
d8aeb77f 13154 int i;
778865d3 13155
d8aeb77f
TT
13156 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13157 {
63d609de 13158 const struct block *b = bv->block (i);
d8aeb77f
TT
13159 struct block_iterator iter;
13160 struct symbol *sym;
778865d3 13161
d8aeb77f
TT
13162 ALL_BLOCK_SYMBOLS (b, iter, sym)
13163 if (ada_is_non_standard_exception_sym (sym)
987012b8 13164 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13165 {
13166 struct ada_exc_info info
4aeddc50 13167 = {sym->print_name (), sym->value_address ()};
d8aeb77f
TT
13168
13169 exceptions->push_back (info);
13170 }
13171 }
778865d3
JB
13172 }
13173 }
13174}
13175
13176/* Implements ada_exceptions_list with the regular expression passed
13177 as a regex_t, rather than a string.
13178
13179 If not NULL, PREG is used to filter out exceptions whose names
13180 do not match. Otherwise, all exceptions are listed. */
13181
ab816a27 13182static std::vector<ada_exc_info>
2d7cc5c7 13183ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13184{
ab816a27 13185 std::vector<ada_exc_info> result;
778865d3
JB
13186 int prev_len;
13187
13188 /* First, list the known standard exceptions. These exceptions
13189 need to be handled separately, as they are usually defined in
13190 runtime units that have been compiled without debugging info. */
13191
13192 ada_add_standard_exceptions (preg, &result);
13193
13194 /* Next, find all exceptions whose scope is local and accessible
13195 from the currently selected frame. */
13196
13197 if (has_stack_frames ())
13198 {
ab816a27 13199 prev_len = result.size ();
778865d3
JB
13200 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13201 &result);
ab816a27 13202 if (result.size () > prev_len)
778865d3
JB
13203 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13204 }
13205
13206 /* Add all exceptions whose scope is global. */
13207
ab816a27 13208 prev_len = result.size ();
778865d3 13209 ada_add_global_exceptions (preg, &result);
ab816a27 13210 if (result.size () > prev_len)
778865d3
JB
13211 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13212
778865d3
JB
13213 return result;
13214}
13215
13216/* Return a vector of ada_exc_info.
13217
13218 If REGEXP is NULL, all exceptions are included in the result.
13219 Otherwise, it should contain a valid regular expression,
13220 and only the exceptions whose names match that regular expression
13221 are included in the result.
13222
13223 The exceptions are sorted in the following order:
13224 - Standard exceptions (defined by the Ada language), in
13225 alphabetical order;
13226 - Exceptions only visible from the current frame, in
13227 alphabetical order;
13228 - Exceptions whose scope is global, in alphabetical order. */
13229
ab816a27 13230std::vector<ada_exc_info>
778865d3
JB
13231ada_exceptions_list (const char *regexp)
13232{
2d7cc5c7
PA
13233 if (regexp == NULL)
13234 return ada_exceptions_list_1 (NULL);
778865d3 13235
2d7cc5c7
PA
13236 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13237 return ada_exceptions_list_1 (&reg);
778865d3
JB
13238}
13239
13240/* Implement the "info exceptions" command. */
13241
13242static void
1d12d88f 13243info_exceptions_command (const char *regexp, int from_tty)
778865d3 13244{
778865d3 13245 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13246
ab816a27 13247 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13248
13249 if (regexp != NULL)
6cb06a8c 13250 gdb_printf
778865d3
JB
13251 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13252 else
6cb06a8c 13253 gdb_printf (_("All defined Ada exceptions:\n"));
778865d3 13254
ab816a27 13255 for (const ada_exc_info &info : exceptions)
6cb06a8c 13256 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13257}
13258
6c038f32
PH
13259\f
13260 /* Language vector */
13261
b5ec771e
PA
13262/* symbol_name_matcher_ftype adapter for wild_match. */
13263
13264static bool
13265do_wild_match (const char *symbol_search_name,
13266 const lookup_name_info &lookup_name,
a207cff2 13267 completion_match_result *comp_match_res)
b5ec771e
PA
13268{
13269 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13270}
13271
13272/* symbol_name_matcher_ftype adapter for full_match. */
13273
13274static bool
13275do_full_match (const char *symbol_search_name,
13276 const lookup_name_info &lookup_name,
a207cff2 13277 completion_match_result *comp_match_res)
b5ec771e 13278{
959d6a67
TT
13279 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13280
13281 /* If both symbols start with "_ada_", just let the loop below
13282 handle the comparison. However, if only the symbol name starts
13283 with "_ada_", skip the prefix and let the match proceed as
13284 usual. */
13285 if (startswith (symbol_search_name, "_ada_")
13286 && !startswith (lname, "_ada"))
86b44259 13287 symbol_search_name += 5;
81eaa506
TT
13288 /* Likewise for ghost entities. */
13289 if (startswith (symbol_search_name, "___ghost_")
13290 && !startswith (lname, "___ghost_"))
13291 symbol_search_name += 9;
86b44259 13292
86b44259
TT
13293 int uscore_count = 0;
13294 while (*lname != '\0')
13295 {
13296 if (*symbol_search_name != *lname)
13297 {
13298 if (*symbol_search_name == 'B' && uscore_count == 2
13299 && symbol_search_name[1] == '_')
13300 {
13301 symbol_search_name += 2;
13302 while (isdigit (*symbol_search_name))
13303 ++symbol_search_name;
13304 if (symbol_search_name[0] == '_'
13305 && symbol_search_name[1] == '_')
13306 {
13307 symbol_search_name += 2;
13308 continue;
13309 }
13310 }
13311 return false;
13312 }
13313
13314 if (*symbol_search_name == '_')
13315 ++uscore_count;
13316 else
13317 uscore_count = 0;
13318
13319 ++symbol_search_name;
13320 ++lname;
13321 }
13322
13323 return is_name_suffix (symbol_search_name);
b5ec771e
PA
13324}
13325
a2cd4f14
JB
13326/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13327
13328static bool
13329do_exact_match (const char *symbol_search_name,
13330 const lookup_name_info &lookup_name,
13331 completion_match_result *comp_match_res)
13332{
13333 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13334}
13335
b5ec771e
PA
13336/* Build the Ada lookup name for LOOKUP_NAME. */
13337
13338ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13339{
e0802d59 13340 gdb::string_view user_name = lookup_name.name ();
b5ec771e 13341
6a780b67 13342 if (!user_name.empty () && user_name[0] == '<')
b5ec771e
PA
13343 {
13344 if (user_name.back () == '>')
e0802d59 13345 m_encoded_name
5ac58899 13346 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 13347 else
e0802d59 13348 m_encoded_name
5ac58899 13349 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
13350 m_encoded_p = true;
13351 m_verbatim_p = true;
13352 m_wild_match_p = false;
13353 m_standard_p = false;
13354 }
13355 else
13356 {
13357 m_verbatim_p = false;
13358
e0802d59 13359 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13360
13361 if (!m_encoded_p)
13362 {
e0802d59 13363 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
13364 m_encoded_name = ada_encode_1 (folded, false);
13365 if (m_encoded_name.empty ())
5ac58899 13366 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13367 }
13368 else
5ac58899 13369 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13370
13371 /* Handle the 'package Standard' special case. See description
13372 of m_standard_p. */
13373 if (startswith (m_encoded_name.c_str (), "standard__"))
13374 {
13375 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13376 m_standard_p = true;
13377 }
13378 else
13379 m_standard_p = false;
74ccd7f5 13380
b5ec771e
PA
13381 /* If the name contains a ".", then the user is entering a fully
13382 qualified entity name, and the match must not be done in wild
13383 mode. Similarly, if the user wants to complete what looks
13384 like an encoded name, the match must not be done in wild
13385 mode. Also, in the standard__ special case always do
13386 non-wild matching. */
13387 m_wild_match_p
13388 = (lookup_name.match_type () != symbol_name_match_type::FULL
13389 && !m_encoded_p
13390 && !m_standard_p
13391 && user_name.find ('.') == std::string::npos);
13392 }
13393}
13394
13395/* symbol_name_matcher_ftype method for Ada. This only handles
13396 completion mode. */
13397
13398static bool
13399ada_symbol_name_matches (const char *symbol_search_name,
13400 const lookup_name_info &lookup_name,
a207cff2 13401 completion_match_result *comp_match_res)
74ccd7f5 13402{
b5ec771e
PA
13403 return lookup_name.ada ().matches (symbol_search_name,
13404 lookup_name.match_type (),
a207cff2 13405 comp_match_res);
b5ec771e
PA
13406}
13407
de63c46b
PA
13408/* A name matcher that matches the symbol name exactly, with
13409 strcmp. */
13410
13411static bool
13412literal_symbol_name_matcher (const char *symbol_search_name,
13413 const lookup_name_info &lookup_name,
13414 completion_match_result *comp_match_res)
13415{
e0802d59 13416 gdb::string_view name_view = lookup_name.name ();
de63c46b 13417
e0802d59
TT
13418 if (lookup_name.completion_mode ()
13419 ? (strncmp (symbol_search_name, name_view.data (),
13420 name_view.size ()) == 0)
13421 : symbol_search_name == name_view)
de63c46b
PA
13422 {
13423 if (comp_match_res != NULL)
13424 comp_match_res->set_match (symbol_search_name);
13425 return true;
13426 }
13427 else
13428 return false;
13429}
13430
c9debfb9 13431/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13432 Ada. */
13433
13434static symbol_name_matcher_ftype *
13435ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13436{
de63c46b
PA
13437 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13438 return literal_symbol_name_matcher;
13439
b5ec771e
PA
13440 if (lookup_name.completion_mode ())
13441 return ada_symbol_name_matches;
74ccd7f5 13442 else
b5ec771e
PA
13443 {
13444 if (lookup_name.ada ().wild_match_p ())
13445 return do_wild_match;
a2cd4f14
JB
13446 else if (lookup_name.ada ().verbatim_p ())
13447 return do_exact_match;
b5ec771e
PA
13448 else
13449 return do_full_match;
13450 }
74ccd7f5
JB
13451}
13452
0874fd07
AB
13453/* Class representing the Ada language. */
13454
13455class ada_language : public language_defn
13456{
13457public:
13458 ada_language ()
0e25e767 13459 : language_defn (language_ada)
0874fd07 13460 { /* Nothing. */ }
5bd40f2a 13461
6f7664a9
AB
13462 /* See language.h. */
13463
13464 const char *name () const override
13465 { return "ada"; }
13466
13467 /* See language.h. */
13468
13469 const char *natural_name () const override
13470 { return "Ada"; }
13471
e171d6f1
AB
13472 /* See language.h. */
13473
13474 const std::vector<const char *> &filename_extensions () const override
13475 {
13476 static const std::vector<const char *> extensions
13477 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13478 return extensions;
13479 }
13480
5bd40f2a
AB
13481 /* Print an array element index using the Ada syntax. */
13482
13483 void print_array_index (struct type *index_type,
13484 LONGEST index,
13485 struct ui_file *stream,
13486 const value_print_options *options) const override
13487 {
13488 struct value *index_value = val_atr (index_type, index);
13489
00c696a6 13490 value_print (index_value, stream, options);
6cb06a8c 13491 gdb_printf (stream, " => ");
5bd40f2a 13492 }
15e5fd35
AB
13493
13494 /* Implement the "read_var_value" language_defn method for Ada. */
13495
13496 struct value *read_var_value (struct symbol *var,
13497 const struct block *var_block,
bd2b40ac 13498 frame_info_ptr frame) const override
15e5fd35
AB
13499 {
13500 /* The only case where default_read_var_value is not sufficient
13501 is when VAR is a renaming... */
13502 if (frame != nullptr)
13503 {
13504 const struct block *frame_block = get_frame_block (frame, NULL);
13505 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13506 return ada_read_renaming_var_value (var, frame_block);
13507 }
13508
13509 /* This is a typical case where we expect the default_read_var_value
13510 function to work. */
13511 return language_defn::read_var_value (var, var_block, frame);
13512 }
1fb314aa 13513
2c71f639 13514 /* See language.h. */
496feb16 13515 bool symbol_printing_suppressed (struct symbol *symbol) const override
2c71f639 13516 {
496feb16 13517 return symbol->is_artificial ();
2c71f639
TV
13518 }
13519
1fb314aa
AB
13520 /* See language.h. */
13521 void language_arch_info (struct gdbarch *gdbarch,
13522 struct language_arch_info *lai) const override
13523 {
13524 const struct builtin_type *builtin = builtin_type (gdbarch);
13525
7bea47f0
AB
13526 /* Helper function to allow shorter lines below. */
13527 auto add = [&] (struct type *t)
13528 {
13529 lai->add_primitive_type (t);
13530 };
13531
13532 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13533 0, "integer"));
13534 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13535 0, "long_integer"));
13536 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13537 0, "short_integer"));
13538 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
c9f66f00 13539 1, "character");
7bea47f0
AB
13540 lai->set_string_char_type (char_type);
13541 add (char_type);
c9f66f00
TT
13542 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13543 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
7bea47f0
AB
13544 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13545 "float", gdbarch_float_format (gdbarch)));
13546 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13547 "long_float", gdbarch_double_format (gdbarch)));
13548 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13549 0, "long_long_integer"));
13550 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13551 "long_long_float",
13552 gdbarch_long_double_format (gdbarch)));
13553 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13554 0, "natural"));
13555 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13556 0, "positive"));
13557 add (builtin->builtin_void);
13558
13559 struct type *system_addr_ptr
1fb314aa
AB
13560 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13561 "void"));
7bea47f0
AB
13562 system_addr_ptr->set_name ("system__address");
13563 add (system_addr_ptr);
1fb314aa
AB
13564
13565 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13566 type. This is a signed integral type whose size is the same as
13567 the size of addresses. */
df86565b 13568 unsigned int addr_length = system_addr_ptr->length ();
7bea47f0
AB
13569 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13570 "storage_offset"));
1fb314aa 13571
7bea47f0 13572 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 13573 }
4009ee92
AB
13574
13575 /* See language.h. */
13576
13577 bool iterate_over_symbols
13578 (const struct block *block, const lookup_name_info &name,
13579 domain_enum domain,
13580 gdb::function_view<symbol_found_callback_ftype> callback) const override
13581 {
d1183b06
TT
13582 std::vector<struct block_symbol> results
13583 = ada_lookup_symbol_list_worker (name, block, domain, 0);
4009ee92
AB
13584 for (block_symbol &sym : results)
13585 {
13586 if (!callback (&sym))
13587 return false;
13588 }
13589
13590 return true;
13591 }
6f827019
AB
13592
13593 /* See language.h. */
3456e70c
TT
13594 bool sniff_from_mangled_name
13595 (const char *mangled,
13596 gdb::unique_xmalloc_ptr<char> *out) const override
6f827019
AB
13597 {
13598 std::string demangled = ada_decode (mangled);
13599
13600 *out = NULL;
13601
13602 if (demangled != mangled && demangled[0] != '<')
13603 {
13604 /* Set the gsymbol language to Ada, but still return 0.
13605 Two reasons for that:
13606
13607 1. For Ada, we prefer computing the symbol's decoded name
13608 on the fly rather than pre-compute it, in order to save
13609 memory (Ada projects are typically very large).
13610
13611 2. There are some areas in the definition of the GNAT
13612 encoding where, with a bit of bad luck, we might be able
13613 to decode a non-Ada symbol, generating an incorrect
13614 demangled name (Eg: names ending with "TB" for instance
13615 are identified as task bodies and so stripped from
13616 the decoded name returned).
13617
13618 Returning true, here, but not setting *DEMANGLED, helps us get
13619 a little bit of the best of both worlds. Because we're last,
13620 we should not affect any of the other languages that were
13621 able to demangle the symbol before us; we get to correctly
13622 tag Ada symbols as such; and even if we incorrectly tagged a
13623 non-Ada symbol, which should be rare, any routing through the
13624 Ada language should be transparent (Ada tries to behave much
13625 like C/C++ with non-Ada symbols). */
13626 return true;
13627 }
13628
13629 return false;
13630 }
fbfb0a46
AB
13631
13632 /* See language.h. */
13633
3456e70c
TT
13634 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13635 int options) const override
0a50df5d 13636 {
3456e70c 13637 return make_unique_xstrdup (ada_decode (mangled).c_str ());
0a50df5d
AB
13638 }
13639
13640 /* See language.h. */
13641
fbfb0a46
AB
13642 void print_type (struct type *type, const char *varstring,
13643 struct ui_file *stream, int show, int level,
13644 const struct type_print_options *flags) const override
13645 {
13646 ada_print_type (type, varstring, stream, show, level, flags);
13647 }
c9debfb9 13648
53fc67f8
AB
13649 /* See language.h. */
13650
13651 const char *word_break_characters (void) const override
13652 {
13653 return ada_completer_word_break_characters;
13654 }
13655
7e56227d
AB
13656 /* See language.h. */
13657
13658 void collect_symbol_completion_matches (completion_tracker &tracker,
13659 complete_symbol_mode mode,
13660 symbol_name_match_type name_match_type,
13661 const char *text, const char *word,
13662 enum type_code code) const override
13663 {
13664 struct symbol *sym;
13665 const struct block *b, *surrounding_static_block = 0;
13666 struct block_iterator iter;
13667
13668 gdb_assert (code == TYPE_CODE_UNDEF);
13669
13670 lookup_name_info lookup_name (text, name_match_type, true);
13671
13672 /* First, look at the partial symtab symbols. */
13673 expand_symtabs_matching (NULL,
13674 lookup_name,
13675 NULL,
13676 NULL,
03a8ea51 13677 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
7e56227d
AB
13678 ALL_DOMAIN);
13679
13680 /* At this point scan through the misc symbol vectors and add each
13681 symbol you find to the list. Eventually we want to ignore
13682 anything that isn't a text symbol (everything else will be
13683 handled by the psymtab code above). */
13684
13685 for (objfile *objfile : current_program_space->objfiles ())
13686 {
13687 for (minimal_symbol *msymbol : objfile->msymbols ())
13688 {
13689 QUIT;
13690
13691 if (completion_skip_symbol (mode, msymbol))
13692 continue;
13693
13694 language symbol_language = msymbol->language ();
13695
13696 /* Ada minimal symbols won't have their language set to Ada. If
13697 we let completion_list_add_name compare using the
13698 default/C-like matcher, then when completing e.g., symbols in a
13699 package named "pck", we'd match internal Ada symbols like
13700 "pckS", which are invalid in an Ada expression, unless you wrap
13701 them in '<' '>' to request a verbatim match.
13702
13703 Unfortunately, some Ada encoded names successfully demangle as
13704 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13705 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13706 with the wrong language set. Paper over that issue here. */
13707 if (symbol_language == language_auto
13708 || symbol_language == language_cplus)
13709 symbol_language = language_ada;
13710
13711 completion_list_add_name (tracker,
13712 symbol_language,
13713 msymbol->linkage_name (),
13714 lookup_name, text, word);
13715 }
13716 }
13717
13718 /* Search upwards from currently selected frame (so that we can
13719 complete on local vars. */
13720
f135fe72 13721 for (b = get_selected_block (0); b != NULL; b = b->superblock ())
7e56227d 13722 {
f135fe72 13723 if (!b->superblock ())
7e56227d
AB
13724 surrounding_static_block = b; /* For elmin of dups */
13725
13726 ALL_BLOCK_SYMBOLS (b, iter, sym)
13727 {
13728 if (completion_skip_symbol (mode, sym))
13729 continue;
13730
13731 completion_list_add_name (tracker,
13732 sym->language (),
13733 sym->linkage_name (),
13734 lookup_name, text, word);
13735 }
13736 }
13737
13738 /* Go through the symtabs and check the externs and statics for
13739 symbols which match. */
13740
13741 for (objfile *objfile : current_program_space->objfiles ())
13742 {
13743 for (compunit_symtab *s : objfile->compunits ())
13744 {
13745 QUIT;
63d609de 13746 b = s->blockvector ()->global_block ();
7e56227d
AB
13747 ALL_BLOCK_SYMBOLS (b, iter, sym)
13748 {
13749 if (completion_skip_symbol (mode, sym))
13750 continue;
13751
13752 completion_list_add_name (tracker,
13753 sym->language (),
13754 sym->linkage_name (),
13755 lookup_name, text, word);
13756 }
13757 }
13758 }
13759
13760 for (objfile *objfile : current_program_space->objfiles ())
13761 {
13762 for (compunit_symtab *s : objfile->compunits ())
13763 {
13764 QUIT;
63d609de 13765 b = s->blockvector ()->static_block ();
7e56227d
AB
13766 /* Don't do this block twice. */
13767 if (b == surrounding_static_block)
13768 continue;
13769 ALL_BLOCK_SYMBOLS (b, iter, sym)
13770 {
13771 if (completion_skip_symbol (mode, sym))
13772 continue;
13773
13774 completion_list_add_name (tracker,
13775 sym->language (),
13776 sym->linkage_name (),
13777 lookup_name, text, word);
13778 }
13779 }
13780 }
13781 }
13782
f16a9f57
AB
13783 /* See language.h. */
13784
13785 gdb::unique_xmalloc_ptr<char> watch_location_expression
13786 (struct type *type, CORE_ADDR addr) const override
13787 {
27710edb 13788 type = check_typedef (check_typedef (type)->target_type ());
f16a9f57 13789 std::string name = type_to_string (type);
8579fd13 13790 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
f16a9f57
AB
13791 }
13792
a1d1fa3e
AB
13793 /* See language.h. */
13794
13795 void value_print (struct value *val, struct ui_file *stream,
13796 const struct value_print_options *options) const override
13797 {
13798 return ada_value_print (val, stream, options);
13799 }
13800
ebe2334e
AB
13801 /* See language.h. */
13802
13803 void value_print_inner
13804 (struct value *val, struct ui_file *stream, int recurse,
13805 const struct value_print_options *options) const override
13806 {
13807 return ada_value_print_inner (val, stream, recurse, options);
13808 }
13809
a78a19b1
AB
13810 /* See language.h. */
13811
13812 struct block_symbol lookup_symbol_nonlocal
13813 (const char *name, const struct block *block,
13814 const domain_enum domain) const override
13815 {
13816 struct block_symbol sym;
13817
13818 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13819 if (sym.symbol != NULL)
13820 return sym;
13821
13822 /* If we haven't found a match at this point, try the primitive
13823 types. In other languages, this search is performed before
13824 searching for global symbols in order to short-circuit that
13825 global-symbol search if it happens that the name corresponds
13826 to a primitive type. But we cannot do the same in Ada, because
13827 it is perfectly legitimate for a program to declare a type which
13828 has the same name as a standard type. If looking up a type in
13829 that situation, we have traditionally ignored the primitive type
13830 in favor of user-defined types. This is why, unlike most other
13831 languages, we search the primitive types this late and only after
13832 having searched the global symbols without success. */
13833
13834 if (domain == VAR_DOMAIN)
13835 {
13836 struct gdbarch *gdbarch;
13837
13838 if (block == NULL)
13839 gdbarch = target_gdbarch ();
13840 else
13841 gdbarch = block_gdbarch (block);
13842 sym.symbol
13843 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13844 if (sym.symbol != NULL)
13845 return sym;
13846 }
13847
13848 return {};
13849 }
13850
87afa652
AB
13851 /* See language.h. */
13852
13853 int parser (struct parser_state *ps) const override
13854 {
13855 warnings_issued = 0;
13856 return ada_parse (ps);
13857 }
13858
ec8cec5b
AB
13859 /* See language.h. */
13860
13861 void emitchar (int ch, struct type *chtype,
13862 struct ui_file *stream, int quoter) const override
13863 {
13864 ada_emit_char (ch, chtype, stream, quoter, 1);
13865 }
13866
52b50f2c
AB
13867 /* See language.h. */
13868
13869 void printchar (int ch, struct type *chtype,
13870 struct ui_file *stream) const override
13871 {
13872 ada_printchar (ch, chtype, stream);
13873 }
13874
d711ee67
AB
13875 /* See language.h. */
13876
13877 void printstr (struct ui_file *stream, struct type *elttype,
13878 const gdb_byte *string, unsigned int length,
13879 const char *encoding, int force_ellipses,
13880 const struct value_print_options *options) const override
13881 {
13882 ada_printstr (stream, elttype, string, length, encoding,
13883 force_ellipses, options);
13884 }
13885
4ffc13fb
AB
13886 /* See language.h. */
13887
13888 void print_typedef (struct type *type, struct symbol *new_symbol,
13889 struct ui_file *stream) const override
13890 {
13891 ada_print_typedef (type, new_symbol, stream);
13892 }
13893
39e7ecca
AB
13894 /* See language.h. */
13895
13896 bool is_string_type_p (struct type *type) const override
13897 {
13898 return ada_is_string_type (type);
13899 }
13900
22e3f3ed
AB
13901 /* See language.h. */
13902
13903 const char *struct_too_deep_ellipsis () const override
13904 { return "(...)"; }
39e7ecca 13905
67bd3fd5
AB
13906 /* See language.h. */
13907
13908 bool c_style_arrays_p () const override
13909 { return false; }
13910
d3355e4d
AB
13911 /* See language.h. */
13912
13913 bool store_sym_names_in_linkage_form_p () const override
13914 { return true; }
13915
b63a3f3f
AB
13916 /* See language.h. */
13917
13918 const struct lang_varobj_ops *varobj_ops () const override
13919 { return &ada_varobj_ops; }
13920
c9debfb9
AB
13921protected:
13922 /* See language.h. */
13923
13924 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13925 (const lookup_name_info &lookup_name) const override
13926 {
13927 return ada_get_symbol_name_matcher (lookup_name);
13928 }
0874fd07
AB
13929};
13930
13931/* Single instance of the Ada language class. */
13932
13933static ada_language ada_language_defn;
13934
5bf03f13
JB
13935/* Command-list for the "set/show ada" prefix command. */
13936static struct cmd_list_element *set_ada_list;
13937static struct cmd_list_element *show_ada_list;
13938
3d9434b5
JB
13939/* This module's 'new_objfile' observer. */
13940
13941static void
13942ada_new_objfile_observer (struct objfile *objfile)
13943{
13944 ada_clear_symbol_cache ();
13945}
13946
13947/* This module's 'free_objfile' observer. */
13948
13949static void
13950ada_free_objfile_observer (struct objfile *objfile)
13951{
13952 ada_clear_symbol_cache ();
13953}
13954
315e4ebb
TT
13955/* Charsets known to GNAT. */
13956static const char * const gnat_source_charsets[] =
13957{
13958 /* Note that code below assumes that the default comes first.
13959 Latin-1 is the default here, because that is also GNAT's
13960 default. */
13961 "ISO-8859-1",
13962 "ISO-8859-2",
13963 "ISO-8859-3",
13964 "ISO-8859-4",
13965 "ISO-8859-5",
13966 "ISO-8859-15",
13967 "CP437",
13968 "CP850",
13969 /* Note that this value is special-cased in the encoder and
13970 decoder. */
13971 ada_utf8,
13972 nullptr
13973};
13974
6c265988 13975void _initialize_ada_language ();
d2e4a39e 13976void
6c265988 13977_initialize_ada_language ()
14f9c5c9 13978{
f54bdb6d
SM
13979 add_setshow_prefix_cmd
13980 ("ada", no_class,
13981 _("Prefix command for changing Ada-specific settings."),
13982 _("Generic command for showing Ada-specific settings."),
13983 &set_ada_list, &show_ada_list,
13984 &setlist, &showlist);
5bf03f13
JB
13985
13986 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 13987 &trust_pad_over_xvs, _("\
590042fc
PW
13988Enable or disable an optimization trusting PAD types over XVS types."), _("\
13989Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 13990 _("\
5bf03f13
JB
13991This is related to the encoding used by the GNAT compiler. The debugger\n\
13992should normally trust the contents of PAD types, but certain older versions\n\
13993of GNAT have a bug that sometimes causes the information in the PAD type\n\
13994to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13995work around this bug. It is always safe to turn this option \"off\", but\n\
13996this incurs a slight performance penalty, so it is recommended to NOT change\n\
13997this option to \"off\" unless necessary."),
dda83cd7 13998 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 13999
d72413e6
PMR
14000 add_setshow_boolean_cmd ("print-signatures", class_vars,
14001 &print_signatures, _("\
14002Enable or disable the output of formal and return types for functions in the \
590042fc 14003overloads selection menu."), _("\
d72413e6 14004Show whether the output of formal and return types for functions in the \
590042fc 14005overloads selection menu is activated."),
d72413e6
PMR
14006 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14007
315e4ebb
TT
14008 ada_source_charset = gnat_source_charsets[0];
14009 add_setshow_enum_cmd ("source-charset", class_files,
14010 gnat_source_charsets,
14011 &ada_source_charset, _("\
14012Set the Ada source character set."), _("\
14013Show the Ada source character set."), _("\
14014The character set used for Ada source files.\n\
14015This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
14016 nullptr, nullptr,
14017 &set_ada_list, &show_ada_list);
14018
9ac4176b
PA
14019 add_catch_command ("exception", _("\
14020Catch Ada exceptions, when raised.\n\
9bf7038b 14021Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14022Without any argument, stop when any Ada exception is raised.\n\
14023If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14024being raised does not have a handler (and will therefore lead to the task's\n\
14025termination).\n\
14026Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14027raised is the same as ARG.\n\
14028CONDITION is a boolean expression that is evaluated to see whether the\n\
14029exception should cause a stop."),
9ac4176b 14030 catch_ada_exception_command,
71bed2db 14031 catch_ada_completer,
9ac4176b
PA
14032 CATCH_PERMANENT,
14033 CATCH_TEMPORARY);
9f757bf7
XR
14034
14035 add_catch_command ("handlers", _("\
14036Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14037Usage: catch handlers [ARG] [if CONDITION]\n\
14038Without any argument, stop when any Ada exception is handled.\n\
14039With an argument, catch only exceptions with the given name.\n\
14040CONDITION is a boolean expression that is evaluated to see whether the\n\
14041exception should cause a stop."),
9f757bf7 14042 catch_ada_handlers_command,
dda83cd7 14043 catch_ada_completer,
9f757bf7
XR
14044 CATCH_PERMANENT,
14045 CATCH_TEMPORARY);
9ac4176b
PA
14046 add_catch_command ("assert", _("\
14047Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14048Usage: catch assert [if CONDITION]\n\
14049CONDITION is a boolean expression that is evaluated to see whether the\n\
14050exception should cause a stop."),
9ac4176b 14051 catch_assert_command,
dda83cd7 14052 NULL,
9ac4176b
PA
14053 CATCH_PERMANENT,
14054 CATCH_TEMPORARY);
14055
778865d3
JB
14056 add_info ("exceptions", info_exceptions_command,
14057 _("\
14058List all Ada exception names.\n\
9bf7038b 14059Usage: info exceptions [REGEXP]\n\
778865d3
JB
14060If a regular expression is passed as an argument, only those matching\n\
14061the regular expression are listed."));
14062
f54bdb6d
SM
14063 add_setshow_prefix_cmd ("ada", class_maintenance,
14064 _("Set Ada maintenance-related variables."),
14065 _("Show Ada maintenance-related variables."),
14066 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14067 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
c6044dd1
JB
14068
14069 add_setshow_boolean_cmd
14070 ("ignore-descriptive-types", class_maintenance,
14071 &ada_ignore_descriptive_types_p,
14072 _("Set whether descriptive types generated by GNAT should be ignored."),
14073 _("Show whether descriptive types generated by GNAT should be ignored."),
14074 _("\
14075When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14076DWARF attribute."),
14077 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14078
2698f5ea
TT
14079 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14080 htab_eq_string,
459a2e4c 14081 NULL, xcalloc, xfree);
6b69afc4 14082
3d9434b5 14083 /* The ada-lang observers. */
c90e7d63
SM
14084 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14085 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14086 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14f9c5c9 14087}