]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
gdb: remove SYMBOL_TYPE macro
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
4a94e368 3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d322d6d6 23#include "gdbsupport/gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
bf31fd38 38#include "gdbsupport/gdb_obstack.h"
4de283e4
TT
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
0f8e2034 52#include "cli/cli-decode.h"
4de283e4 53
40bc484c 54#include "value.h"
4de283e4
TT
55#include "mi/mi-common.h"
56#include "arch-utils.h"
57#include "cli/cli-utils.h"
268a13a5
TT
58#include "gdbsupport/function-view.h"
59#include "gdbsupport/byte-vector.h"
4de283e4 60#include <algorithm>
03070ee9 61#include "ada-exp.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
d1183b06 103static void ada_add_block_symbols (std::vector<struct block_symbol> &,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
d1183b06
TT
108static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
b5ec771e
PA
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
22cee43f 112
d1183b06 113static int is_nonfunction (const std::vector<struct block_symbol> &);
14f9c5c9 114
d1183b06
TT
115static void add_defn_to_vec (std::vector<struct block_symbol> &,
116 struct symbol *,
dda83cd7 117 const struct block *);
14f9c5c9 118
d2e4a39e 119static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 120
4c4b4cd2 121static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 122
d2e4a39e 123static int numeric_type_p (struct type *);
14f9c5c9 124
d2e4a39e 125static int integer_type_p (struct type *);
14f9c5c9 126
d2e4a39e 127static int scalar_type_p (struct type *);
14f9c5c9 128
d2e4a39e 129static int discrete_type_p (struct type *);
14f9c5c9 130
a121b7c1 131static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 132 int, int);
4c4b4cd2 133
b4ba55a1 134static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 135 const char *);
b4ba55a1 136
d2e4a39e 137static int is_dynamic_field (struct type *, int);
14f9c5c9 138
10a2c479 139static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 140 const gdb_byte *,
dda83cd7 141 CORE_ADDR, struct value *);
4c4b4cd2
PH
142
143static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 144
28c85d6c 145static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 146
d2e4a39e 147static struct type *to_static_fixed_type (struct type *);
f192137b 148static struct type *static_unwrap_type (struct type *type);
14f9c5c9 149
d2e4a39e 150static struct value *unwrap_value (struct value *);
14f9c5c9 151
ad82864c 152static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 153
ad82864c 154static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 155
ad82864c
JB
156static long decode_packed_array_bitsize (struct type *);
157
158static struct value *decode_constrained_packed_array (struct value *);
159
ad82864c 160static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 161
d2e4a39e 162static struct value *value_subscript_packed (struct value *, int,
dda83cd7 163 struct value **);
14f9c5c9 164
4c4b4cd2 165static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 166 struct type *);
14f9c5c9 167
d2e4a39e 168static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 169
d2e4a39e 170static int equiv_types (struct type *, struct type *);
14f9c5c9 171
d2e4a39e 172static int is_name_suffix (const char *);
14f9c5c9 173
59c8a30b 174static int advance_wild_match (const char **, const char *, char);
73589123 175
b5ec771e 176static bool wild_match (const char *name, const char *patn);
14f9c5c9 177
d2e4a39e 178static struct value *ada_coerce_ref (struct value *);
14f9c5c9 179
4c4b4cd2
PH
180static LONGEST pos_atr (struct value *);
181
53a47a3e
TT
182static struct value *val_atr (struct type *, LONGEST);
183
4c4b4cd2 184static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 185 domain_enum);
14f9c5c9 186
108d56a4 187static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 188 struct type *);
4c4b4cd2 189
0d5cff50 190static int find_struct_field (const char *, struct type *, int,
dda83cd7 191 struct type **, int *, int *, int *, int *);
4c4b4cd2 192
d1183b06 193static int ada_resolve_function (std::vector<struct block_symbol> &,
dda83cd7 194 struct value **, int, const char *,
7056f312 195 struct type *, bool);
4c4b4cd2 196
4c4b4cd2
PH
197static int ada_is_direct_array_type (struct type *);
198
52ce6436
PH
199static struct value *ada_index_struct_field (int, struct value *, int,
200 struct type *);
201
cf608cc4 202static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
203
204
852dff6c 205static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
206
207static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
209
4c4b4cd2
PH
210\f
211
ee01b665
JB
212/* The result of a symbol lookup to be stored in our symbol cache. */
213
214struct cache_entry
215{
216 /* The name used to perform the lookup. */
217 const char *name;
218 /* The namespace used during the lookup. */
fe978cb0 219 domain_enum domain;
ee01b665
JB
220 /* The symbol returned by the lookup, or NULL if no matching symbol
221 was found. */
222 struct symbol *sym;
223 /* The block where the symbol was found, or NULL if no matching
224 symbol was found. */
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
228};
229
230/* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
232
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
238
239#define HASH_SIZE 1009
240
241struct ada_symbol_cache
242{
243 /* An obstack used to store the entries in our cache. */
bdcccc56 244 struct auto_obstack cache_space;
ee01b665
JB
245
246 /* The root of the hash table used to implement our symbol cache. */
bdcccc56 247 struct cache_entry *root[HASH_SIZE] {};
ee01b665
JB
248};
249
67cb5b2d 250static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
251#ifdef VMS
252 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
253#else
14f9c5c9 254 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 255#endif
14f9c5c9 256
4c4b4cd2 257/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 258static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 259 = "__gnat_ada_main_program_name";
14f9c5c9 260
4c4b4cd2
PH
261/* Limit on the number of warnings to raise per expression evaluation. */
262static int warning_limit = 2;
263
264/* Number of warning messages issued; reset to 0 by cleanups after
265 expression evaluation. */
266static int warnings_issued = 0;
267
27087b7f 268static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
269 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
270};
271
27087b7f 272static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
273 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
274};
275
c6044dd1
JB
276/* Maintenance-related settings for this module. */
277
278static struct cmd_list_element *maint_set_ada_cmdlist;
279static struct cmd_list_element *maint_show_ada_cmdlist;
280
c6044dd1
JB
281/* The "maintenance ada set/show ignore-descriptive-type" value. */
282
491144b5 283static bool ada_ignore_descriptive_types_p = false;
c6044dd1 284
e802dbe0
JB
285 /* Inferior-specific data. */
286
287/* Per-inferior data for this module. */
288
289struct ada_inferior_data
290{
291 /* The ada__tags__type_specific_data type, which is used when decoding
292 tagged types. With older versions of GNAT, this type was directly
293 accessible through a component ("tsd") in the object tag. But this
294 is no longer the case, so we cache it for each inferior. */
f37b313d 295 struct type *tsd_type = nullptr;
3eecfa55
JB
296
297 /* The exception_support_info data. This data is used to determine
298 how to implement support for Ada exception catchpoints in a given
299 inferior. */
f37b313d 300 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
301};
302
303/* Our key to this module's inferior data. */
f37b313d 304static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
305
306/* Return our inferior data for the given inferior (INF).
307
308 This function always returns a valid pointer to an allocated
309 ada_inferior_data structure. If INF's inferior data has not
310 been previously set, this functions creates a new one with all
311 fields set to zero, sets INF's inferior to it, and then returns
312 a pointer to that newly allocated ada_inferior_data. */
313
314static struct ada_inferior_data *
315get_ada_inferior_data (struct inferior *inf)
316{
317 struct ada_inferior_data *data;
318
f37b313d 319 data = ada_inferior_data.get (inf);
e802dbe0 320 if (data == NULL)
f37b313d 321 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
322
323 return data;
324}
325
326/* Perform all necessary cleanups regarding our module's inferior data
327 that is required after the inferior INF just exited. */
328
329static void
330ada_inferior_exit (struct inferior *inf)
331{
f37b313d 332 ada_inferior_data.clear (inf);
e802dbe0
JB
333}
334
ee01b665
JB
335
336 /* program-space-specific data. */
337
338/* This module's per-program-space data. */
339struct ada_pspace_data
340{
341 /* The Ada symbol cache. */
bdcccc56 342 std::unique_ptr<ada_symbol_cache> sym_cache;
ee01b665
JB
343};
344
345/* Key to our per-program-space data. */
f37b313d 346static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
347
348/* Return this module's data for the given program space (PSPACE).
349 If not is found, add a zero'ed one now.
350
351 This function always returns a valid object. */
352
353static struct ada_pspace_data *
354get_ada_pspace_data (struct program_space *pspace)
355{
356 struct ada_pspace_data *data;
357
f37b313d 358 data = ada_pspace_data_handle.get (pspace);
ee01b665 359 if (data == NULL)
f37b313d 360 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
361
362 return data;
363}
364
dda83cd7 365 /* Utilities */
4c4b4cd2 366
720d1a40 367/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 368 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
369
370 Normally, we really expect a typedef type to only have 1 typedef layer.
371 In other words, we really expect the target type of a typedef type to be
372 a non-typedef type. This is particularly true for Ada units, because
373 the language does not have a typedef vs not-typedef distinction.
374 In that respect, the Ada compiler has been trying to eliminate as many
375 typedef definitions in the debugging information, since they generally
376 do not bring any extra information (we still use typedef under certain
377 circumstances related mostly to the GNAT encoding).
378
379 Unfortunately, we have seen situations where the debugging information
380 generated by the compiler leads to such multiple typedef layers. For
381 instance, consider the following example with stabs:
382
383 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
384 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
385
386 This is an error in the debugging information which causes type
387 pck__float_array___XUP to be defined twice, and the second time,
388 it is defined as a typedef of a typedef.
389
390 This is on the fringe of legality as far as debugging information is
391 concerned, and certainly unexpected. But it is easy to handle these
392 situations correctly, so we can afford to be lenient in this case. */
393
394static struct type *
395ada_typedef_target_type (struct type *type)
396{
78134374 397 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
398 type = TYPE_TARGET_TYPE (type);
399 return type;
400}
401
41d27058
JB
402/* Given DECODED_NAME a string holding a symbol name in its
403 decoded form (ie using the Ada dotted notation), returns
404 its unqualified name. */
405
406static const char *
407ada_unqualified_name (const char *decoded_name)
408{
2b0f535a
JB
409 const char *result;
410
411 /* If the decoded name starts with '<', it means that the encoded
412 name does not follow standard naming conventions, and thus that
413 it is not your typical Ada symbol name. Trying to unqualify it
414 is therefore pointless and possibly erroneous. */
415 if (decoded_name[0] == '<')
416 return decoded_name;
417
418 result = strrchr (decoded_name, '.');
41d27058
JB
419 if (result != NULL)
420 result++; /* Skip the dot... */
421 else
422 result = decoded_name;
423
424 return result;
425}
426
39e7af3e 427/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 428
39e7af3e 429static std::string
41d27058
JB
430add_angle_brackets (const char *str)
431{
39e7af3e 432 return string_printf ("<%s>", str);
41d27058 433}
96d887e8 434
14f9c5c9 435/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 436 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
437
438static int
ebf56fd3 439field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
440{
441 int len = strlen (target);
5b4ee69b 442
d2e4a39e 443 return
4c4b4cd2
PH
444 (strncmp (field_name, target, len) == 0
445 && (field_name[len] == '\0'
dda83cd7
SM
446 || (startswith (field_name + len, "___")
447 && strcmp (field_name + strlen (field_name) - 6,
448 "___XVN") != 0)));
14f9c5c9
AS
449}
450
451
872c8b51
JB
452/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
453 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
454 and return its index. This function also handles fields whose name
455 have ___ suffixes because the compiler sometimes alters their name
456 by adding such a suffix to represent fields with certain constraints.
457 If the field could not be found, return a negative number if
458 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
459
460int
461ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 462 int maybe_missing)
4c4b4cd2
PH
463{
464 int fieldno;
872c8b51
JB
465 struct type *struct_type = check_typedef ((struct type *) type);
466
1f704f76 467 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
33d16dd9 468 if (field_name_match (struct_type->field (fieldno).name (), field_name))
4c4b4cd2
PH
469 return fieldno;
470
471 if (!maybe_missing)
323e0a4a 472 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 473 field_name, struct_type->name ());
4c4b4cd2
PH
474
475 return -1;
476}
477
478/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
479
480int
d2e4a39e 481ada_name_prefix_len (const char *name)
14f9c5c9
AS
482{
483 if (name == NULL)
484 return 0;
d2e4a39e 485 else
14f9c5c9 486 {
d2e4a39e 487 const char *p = strstr (name, "___");
5b4ee69b 488
14f9c5c9 489 if (p == NULL)
dda83cd7 490 return strlen (name);
14f9c5c9 491 else
dda83cd7 492 return p - name;
14f9c5c9
AS
493 }
494}
495
4c4b4cd2
PH
496/* Return non-zero if SUFFIX is a suffix of STR.
497 Return zero if STR is null. */
498
14f9c5c9 499static int
d2e4a39e 500is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
501{
502 int len1, len2;
5b4ee69b 503
14f9c5c9
AS
504 if (str == NULL)
505 return 0;
506 len1 = strlen (str);
507 len2 = strlen (suffix);
4c4b4cd2 508 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
509}
510
4c4b4cd2
PH
511/* The contents of value VAL, treated as a value of type TYPE. The
512 result is an lval in memory if VAL is. */
14f9c5c9 513
d2e4a39e 514static struct value *
4c4b4cd2 515coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 516{
61ee279c 517 type = ada_check_typedef (type);
df407dfe 518 if (value_type (val) == type)
4c4b4cd2 519 return val;
d2e4a39e 520 else
14f9c5c9 521 {
4c4b4cd2
PH
522 struct value *result;
523
f73e424f
TT
524 if (value_optimized_out (val))
525 result = allocate_optimized_out_value (type);
526 else if (value_lazy (val)
527 /* Be careful not to make a lazy not_lval value. */
528 || (VALUE_LVAL (val) != not_lval
529 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
41e8491f
JK
530 result = allocate_value_lazy (type);
531 else
532 {
533 result = allocate_value (type);
f73e424f 534 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 535 }
74bcbdf3 536 set_value_component_location (result, val);
9bbda503
AC
537 set_value_bitsize (result, value_bitsize (val));
538 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
539 if (VALUE_LVAL (result) == lval_memory)
540 set_value_address (result, value_address (val));
14f9c5c9
AS
541 return result;
542 }
543}
544
fc1a4b47
AC
545static const gdb_byte *
546cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
547{
548 if (valaddr == NULL)
549 return NULL;
550 else
551 return valaddr + offset;
552}
553
554static CORE_ADDR
ebf56fd3 555cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
556{
557 if (address == 0)
558 return 0;
d2e4a39e 559 else
14f9c5c9
AS
560 return address + offset;
561}
562
4c4b4cd2
PH
563/* Issue a warning (as for the definition of warning in utils.c, but
564 with exactly one argument rather than ...), unless the limit on the
565 number of warnings has passed during the evaluation of the current
566 expression. */
a2249542 567
77109804
AC
568/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
569 provided by "complaint". */
a0b31db1 570static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 571
14f9c5c9 572static void
a2249542 573lim_warning (const char *format, ...)
14f9c5c9 574{
a2249542 575 va_list args;
a2249542 576
5b4ee69b 577 va_start (args, format);
4c4b4cd2
PH
578 warnings_issued += 1;
579 if (warnings_issued <= warning_limit)
a2249542
MK
580 vwarning (format, args);
581
582 va_end (args);
4c4b4cd2
PH
583}
584
0963b4bd 585/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 586static LONGEST
c3e5cd34 587max_of_size (int size)
4c4b4cd2 588{
76a01679 589 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 590
76a01679 591 return top_bit | (top_bit - 1);
4c4b4cd2
PH
592}
593
0963b4bd 594/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 595static LONGEST
c3e5cd34 596min_of_size (int size)
4c4b4cd2 597{
c3e5cd34 598 return -max_of_size (size) - 1;
4c4b4cd2
PH
599}
600
0963b4bd 601/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 602static ULONGEST
c3e5cd34 603umax_of_size (int size)
4c4b4cd2 604{
76a01679 605 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 606
76a01679 607 return top_bit | (top_bit - 1);
4c4b4cd2
PH
608}
609
0963b4bd 610/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
611static LONGEST
612max_of_type (struct type *t)
4c4b4cd2 613{
c6d940a9 614 if (t->is_unsigned ())
c3e5cd34
PH
615 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
616 else
617 return max_of_size (TYPE_LENGTH (t));
618}
619
0963b4bd 620/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
621static LONGEST
622min_of_type (struct type *t)
623{
c6d940a9 624 if (t->is_unsigned ())
c3e5cd34
PH
625 return 0;
626 else
627 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
628}
629
630/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
631LONGEST
632ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 633{
b249d2c2 634 type = resolve_dynamic_type (type, {}, 0);
78134374 635 switch (type->code ())
4c4b4cd2
PH
636 {
637 case TYPE_CODE_RANGE:
d1fd641e
SM
638 {
639 const dynamic_prop &high = type->bounds ()->high;
640
641 if (high.kind () == PROP_CONST)
642 return high.const_val ();
643 else
644 {
645 gdb_assert (high.kind () == PROP_UNDEFINED);
646
647 /* This happens when trying to evaluate a type's dynamic bound
648 without a live target. There is nothing relevant for us to
649 return here, so return 0. */
650 return 0;
651 }
652 }
4c4b4cd2 653 case TYPE_CODE_ENUM:
970db518 654 return type->field (type->num_fields () - 1).loc_enumval ();
690cc4eb
PH
655 case TYPE_CODE_BOOL:
656 return 1;
657 case TYPE_CODE_CHAR:
76a01679 658 case TYPE_CODE_INT:
690cc4eb 659 return max_of_type (type);
4c4b4cd2 660 default:
43bbcdc2 661 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
662 }
663}
664
14e75d8e 665/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
666LONGEST
667ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 668{
b249d2c2 669 type = resolve_dynamic_type (type, {}, 0);
78134374 670 switch (type->code ())
4c4b4cd2
PH
671 {
672 case TYPE_CODE_RANGE:
d1fd641e
SM
673 {
674 const dynamic_prop &low = type->bounds ()->low;
675
676 if (low.kind () == PROP_CONST)
677 return low.const_val ();
678 else
679 {
680 gdb_assert (low.kind () == PROP_UNDEFINED);
681
682 /* This happens when trying to evaluate a type's dynamic bound
683 without a live target. There is nothing relevant for us to
684 return here, so return 0. */
685 return 0;
686 }
687 }
4c4b4cd2 688 case TYPE_CODE_ENUM:
970db518 689 return type->field (0).loc_enumval ();
690cc4eb
PH
690 case TYPE_CODE_BOOL:
691 return 0;
692 case TYPE_CODE_CHAR:
76a01679 693 case TYPE_CODE_INT:
690cc4eb 694 return min_of_type (type);
4c4b4cd2 695 default:
43bbcdc2 696 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
697 }
698}
699
700/* The identity on non-range types. For range types, the underlying
76a01679 701 non-range scalar type. */
4c4b4cd2
PH
702
703static struct type *
18af8284 704get_base_type (struct type *type)
4c4b4cd2 705{
78134374 706 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 707 {
76a01679 708 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 709 return type;
4c4b4cd2
PH
710 type = TYPE_TARGET_TYPE (type);
711 }
712 return type;
14f9c5c9 713}
41246937
JB
714
715/* Return a decoded version of the given VALUE. This means returning
716 a value whose type is obtained by applying all the GNAT-specific
85102364 717 encodings, making the resulting type a static but standard description
41246937
JB
718 of the initial type. */
719
720struct value *
721ada_get_decoded_value (struct value *value)
722{
723 struct type *type = ada_check_typedef (value_type (value));
724
725 if (ada_is_array_descriptor_type (type)
726 || (ada_is_constrained_packed_array_type (type)
dda83cd7 727 && type->code () != TYPE_CODE_PTR))
41246937 728 {
78134374 729 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 730 value = ada_coerce_to_simple_array_ptr (value);
41246937 731 else
dda83cd7 732 value = ada_coerce_to_simple_array (value);
41246937
JB
733 }
734 else
735 value = ada_to_fixed_value (value);
736
737 return value;
738}
739
740/* Same as ada_get_decoded_value, but with the given TYPE.
741 Because there is no associated actual value for this type,
742 the resulting type might be a best-effort approximation in
743 the case of dynamic types. */
744
745struct type *
746ada_get_decoded_type (struct type *type)
747{
748 type = to_static_fixed_type (type);
749 if (ada_is_constrained_packed_array_type (type))
750 type = ada_coerce_to_simple_array_type (type);
751 return type;
752}
753
4c4b4cd2 754\f
76a01679 755
dda83cd7 756 /* Language Selection */
14f9c5c9
AS
757
758/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 759 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 760
de93309a 761static enum language
ccefe4c4 762ada_update_initial_language (enum language lang)
14f9c5c9 763{
cafb3438 764 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 765 return language_ada;
14f9c5c9
AS
766
767 return lang;
768}
96d887e8
PH
769
770/* If the main procedure is written in Ada, then return its name.
771 The result is good until the next call. Return NULL if the main
772 procedure doesn't appear to be in Ada. */
773
774char *
775ada_main_name (void)
776{
3b7344d5 777 struct bound_minimal_symbol msym;
e83e4e24 778 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 779
96d887e8
PH
780 /* For Ada, the name of the main procedure is stored in a specific
781 string constant, generated by the binder. Look for that symbol,
782 extract its address, and then read that string. If we didn't find
783 that string, then most probably the main procedure is not written
784 in Ada. */
785 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
786
3b7344d5 787 if (msym.minsym != NULL)
96d887e8 788 {
66920317 789 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 790 if (main_program_name_addr == 0)
dda83cd7 791 error (_("Invalid address for Ada main program name."));
96d887e8 792
66920317 793 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 794 return main_program_name.get ();
96d887e8
PH
795 }
796
797 /* The main procedure doesn't seem to be in Ada. */
798 return NULL;
799}
14f9c5c9 800\f
dda83cd7 801 /* Symbols */
d2e4a39e 802
4c4b4cd2
PH
803/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
804 of NULLs. */
14f9c5c9 805
d2e4a39e
AS
806const struct ada_opname_map ada_opname_table[] = {
807 {"Oadd", "\"+\"", BINOP_ADD},
808 {"Osubtract", "\"-\"", BINOP_SUB},
809 {"Omultiply", "\"*\"", BINOP_MUL},
810 {"Odivide", "\"/\"", BINOP_DIV},
811 {"Omod", "\"mod\"", BINOP_MOD},
812 {"Orem", "\"rem\"", BINOP_REM},
813 {"Oexpon", "\"**\"", BINOP_EXP},
814 {"Olt", "\"<\"", BINOP_LESS},
815 {"Ole", "\"<=\"", BINOP_LEQ},
816 {"Ogt", "\">\"", BINOP_GTR},
817 {"Oge", "\">=\"", BINOP_GEQ},
818 {"Oeq", "\"=\"", BINOP_EQUAL},
819 {"One", "\"/=\"", BINOP_NOTEQUAL},
820 {"Oand", "\"and\"", BINOP_BITWISE_AND},
821 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
822 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
823 {"Oconcat", "\"&\"", BINOP_CONCAT},
824 {"Oabs", "\"abs\"", UNOP_ABS},
825 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
826 {"Oadd", "\"+\"", UNOP_PLUS},
827 {"Osubtract", "\"-\"", UNOP_NEG},
828 {NULL, NULL}
14f9c5c9
AS
829};
830
965bc1df
TT
831/* If STR is a decoded version of a compiler-provided suffix (like the
832 "[cold]" in "symbol[cold]"), return true. Otherwise, return
833 false. */
834
835static bool
836is_compiler_suffix (const char *str)
837{
838 gdb_assert (*str == '[');
839 ++str;
840 while (*str != '\0' && isalpha (*str))
841 ++str;
842 /* We accept a missing "]" in order to support completion. */
843 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
844}
845
5c4258f4 846/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 847 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 848 Otherwise, return the empty string in that case. */
4c4b4cd2 849
5c4258f4 850static std::string
b5ec771e 851ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 852{
4c4b4cd2 853 if (decoded == NULL)
5c4258f4 854 return {};
14f9c5c9 855
5c4258f4
TT
856 std::string encoding_buffer;
857 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 858 {
cdc7bb92 859 if (*p == '.')
5c4258f4 860 encoding_buffer.append ("__");
965bc1df
TT
861 else if (*p == '[' && is_compiler_suffix (p))
862 {
863 encoding_buffer = encoding_buffer + "." + (p + 1);
864 if (encoding_buffer.back () == ']')
865 encoding_buffer.pop_back ();
866 break;
867 }
14f9c5c9 868 else if (*p == '"')
dda83cd7
SM
869 {
870 const struct ada_opname_map *mapping;
871
872 for (mapping = ada_opname_table;
873 mapping->encoded != NULL
874 && !startswith (p, mapping->decoded); mapping += 1)
875 ;
876 if (mapping->encoded == NULL)
b5ec771e
PA
877 {
878 if (throw_errors)
879 error (_("invalid Ada operator name: %s"), p);
880 else
5c4258f4 881 return {};
b5ec771e 882 }
5c4258f4 883 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
884 break;
885 }
d2e4a39e 886 else
5c4258f4 887 encoding_buffer.push_back (*p);
14f9c5c9
AS
888 }
889
4c4b4cd2 890 return encoding_buffer;
14f9c5c9
AS
891}
892
5c4258f4 893/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 894
5c4258f4 895std::string
b5ec771e
PA
896ada_encode (const char *decoded)
897{
898 return ada_encode_1 (decoded, true);
899}
900
14f9c5c9 901/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
902 quotes, unfolded, but with the quotes stripped away. Result good
903 to next call. */
904
5f9febe0 905static const char *
e0802d59 906ada_fold_name (gdb::string_view name)
14f9c5c9 907{
5f9febe0 908 static std::string fold_storage;
14f9c5c9 909
6a780b67 910 if (!name.empty () && name[0] == '\'')
01573d73 911 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
14f9c5c9
AS
912 else
913 {
01573d73 914 fold_storage = gdb::to_string (name);
5f9febe0
TT
915 for (int i = 0; i < name.size (); i += 1)
916 fold_storage[i] = tolower (fold_storage[i]);
14f9c5c9
AS
917 }
918
5f9febe0 919 return fold_storage.c_str ();
14f9c5c9
AS
920}
921
529cad9c
PH
922/* Return nonzero if C is either a digit or a lowercase alphabet character. */
923
924static int
925is_lower_alphanum (const char c)
926{
927 return (isdigit (c) || (isalpha (c) && islower (c)));
928}
929
c90092fe
JB
930/* ENCODED is the linkage name of a symbol and LEN contains its length.
931 This function saves in LEN the length of that same symbol name but
932 without either of these suffixes:
29480c32
JB
933 . .{DIGIT}+
934 . ${DIGIT}+
935 . ___{DIGIT}+
936 . __{DIGIT}+.
c90092fe 937
29480c32
JB
938 These are suffixes introduced by the compiler for entities such as
939 nested subprogram for instance, in order to avoid name clashes.
940 They do not serve any purpose for the debugger. */
941
942static void
943ada_remove_trailing_digits (const char *encoded, int *len)
944{
945 if (*len > 1 && isdigit (encoded[*len - 1]))
946 {
947 int i = *len - 2;
5b4ee69b 948
29480c32 949 while (i > 0 && isdigit (encoded[i]))
dda83cd7 950 i--;
29480c32 951 if (i >= 0 && encoded[i] == '.')
dda83cd7 952 *len = i;
29480c32 953 else if (i >= 0 && encoded[i] == '$')
dda83cd7 954 *len = i;
61012eef 955 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 956 *len = i - 2;
61012eef 957 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 958 *len = i - 1;
29480c32
JB
959 }
960}
961
962/* Remove the suffix introduced by the compiler for protected object
963 subprograms. */
964
965static void
966ada_remove_po_subprogram_suffix (const char *encoded, int *len)
967{
968 /* Remove trailing N. */
969
970 /* Protected entry subprograms are broken into two
971 separate subprograms: The first one is unprotected, and has
972 a 'N' suffix; the second is the protected version, and has
0963b4bd 973 the 'P' suffix. The second calls the first one after handling
29480c32
JB
974 the protection. Since the P subprograms are internally generated,
975 we leave these names undecoded, giving the user a clue that this
976 entity is internal. */
977
978 if (*len > 1
979 && encoded[*len - 1] == 'N'
980 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
981 *len = *len - 1;
982}
983
965bc1df
TT
984/* If ENCODED ends with a compiler-provided suffix (like ".cold"),
985 then update *LEN to remove the suffix and return the offset of the
986 character just past the ".". Otherwise, return -1. */
987
988static int
989remove_compiler_suffix (const char *encoded, int *len)
990{
991 int offset = *len - 1;
992 while (offset > 0 && isalpha (encoded[offset]))
993 --offset;
994 if (offset > 0 && encoded[offset] == '.')
995 {
996 *len = offset;
997 return offset + 1;
998 }
999 return -1;
1000}
1001
8a3df5ac 1002/* See ada-lang.h. */
14f9c5c9 1003
f945dedf 1004std::string
8a3df5ac 1005ada_decode (const char *encoded, bool wrap)
14f9c5c9
AS
1006{
1007 int i, j;
1008 int len0;
d2e4a39e 1009 const char *p;
14f9c5c9 1010 int at_start_name;
f945dedf 1011 std::string decoded;
965bc1df 1012 int suffix = -1;
d2e4a39e 1013
0d81f350
JG
1014 /* With function descriptors on PPC64, the value of a symbol named
1015 ".FN", if it exists, is the entry point of the function "FN". */
1016 if (encoded[0] == '.')
1017 encoded += 1;
1018
29480c32
JB
1019 /* The name of the Ada main procedure starts with "_ada_".
1020 This prefix is not part of the decoded name, so skip this part
1021 if we see this prefix. */
61012eef 1022 if (startswith (encoded, "_ada_"))
4c4b4cd2 1023 encoded += 5;
14f9c5c9 1024
29480c32
JB
1025 /* If the name starts with '_', then it is not a properly encoded
1026 name, so do not attempt to decode it. Similarly, if the name
1027 starts with '<', the name should not be decoded. */
4c4b4cd2 1028 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1029 goto Suppress;
1030
4c4b4cd2 1031 len0 = strlen (encoded);
4c4b4cd2 1032
965bc1df
TT
1033 suffix = remove_compiler_suffix (encoded, &len0);
1034
29480c32
JB
1035 ada_remove_trailing_digits (encoded, &len0);
1036 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1037
4c4b4cd2
PH
1038 /* Remove the ___X.* suffix if present. Do not forget to verify that
1039 the suffix is located before the current "end" of ENCODED. We want
1040 to avoid re-matching parts of ENCODED that have previously been
1041 marked as discarded (by decrementing LEN0). */
1042 p = strstr (encoded, "___");
1043 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1044 {
1045 if (p[3] == 'X')
dda83cd7 1046 len0 = p - encoded;
14f9c5c9 1047 else
dda83cd7 1048 goto Suppress;
14f9c5c9 1049 }
4c4b4cd2 1050
29480c32
JB
1051 /* Remove any trailing TKB suffix. It tells us that this symbol
1052 is for the body of a task, but that information does not actually
1053 appear in the decoded name. */
1054
61012eef 1055 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1056 len0 -= 3;
76a01679 1057
a10967fa
JB
1058 /* Remove any trailing TB suffix. The TB suffix is slightly different
1059 from the TKB suffix because it is used for non-anonymous task
1060 bodies. */
1061
61012eef 1062 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1063 len0 -= 2;
1064
29480c32
JB
1065 /* Remove trailing "B" suffixes. */
1066 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1067
61012eef 1068 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1069 len0 -= 1;
1070
4c4b4cd2 1071 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1072
f945dedf 1073 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1074
29480c32
JB
1075 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1076
4c4b4cd2 1077 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1078 {
4c4b4cd2
PH
1079 i = len0 - 2;
1080 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1081 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1082 i -= 1;
4c4b4cd2 1083 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1084 len0 = i - 1;
4c4b4cd2 1085 else if (encoded[i] == '$')
dda83cd7 1086 len0 = i;
d2e4a39e 1087 }
14f9c5c9 1088
29480c32
JB
1089 /* The first few characters that are not alphabetic are not part
1090 of any encoding we use, so we can copy them over verbatim. */
1091
4c4b4cd2
PH
1092 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1093 decoded[j] = encoded[i];
14f9c5c9
AS
1094
1095 at_start_name = 1;
1096 while (i < len0)
1097 {
29480c32 1098 /* Is this a symbol function? */
4c4b4cd2 1099 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1100 {
1101 int k;
1102
1103 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1104 {
1105 int op_len = strlen (ada_opname_table[k].encoded);
1106 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1107 op_len - 1) == 0)
1108 && !isalnum (encoded[i + op_len]))
1109 {
1110 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1111 at_start_name = 0;
1112 i += op_len;
1113 j += strlen (ada_opname_table[k].decoded);
1114 break;
1115 }
1116 }
1117 if (ada_opname_table[k].encoded != NULL)
1118 continue;
1119 }
14f9c5c9
AS
1120 at_start_name = 0;
1121
529cad9c 1122 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1123 into "." (just below). */
529cad9c 1124
61012eef 1125 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1126 i += 2;
529cad9c 1127
29480c32 1128 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1129 be translated into "." (just below). These are internal names
1130 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1131
1132 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1133 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1134 && isdigit (encoded [i+4]))
1135 {
1136 int k = i + 5;
1137
1138 while (k < len0 && isdigit (encoded[k]))
1139 k++; /* Skip any extra digit. */
1140
1141 /* Double-check that the "__B_{DIGITS}+" sequence we found
1142 is indeed followed by "__". */
1143 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1144 i = k;
1145 }
29480c32 1146
529cad9c
PH
1147 /* Remove _E{DIGITS}+[sb] */
1148
1149 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1150 of subprograms created by the compiler for each entry. The first
1151 one implements the actual entry code, and has a suffix following
1152 the convention above; the second one implements the barrier and
1153 uses the same convention as above, except that the 'E' is replaced
1154 by a 'B'.
529cad9c 1155
dda83cd7
SM
1156 Just as above, we do not decode the name of barrier functions
1157 to give the user a clue that the code he is debugging has been
1158 internally generated. */
529cad9c
PH
1159
1160 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1161 && isdigit (encoded[i+2]))
1162 {
1163 int k = i + 3;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++;
1167
1168 if (k < len0
1169 && (encoded[k] == 'b' || encoded[k] == 's'))
1170 {
1171 k++;
1172 /* Just as an extra precaution, make sure that if this
1173 suffix is followed by anything else, it is a '_'.
1174 Otherwise, we matched this sequence by accident. */
1175 if (k == len0
1176 || (k < len0 && encoded[k] == '_'))
1177 i = k;
1178 }
1179 }
529cad9c
PH
1180
1181 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1182 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1183
1184 if (i < len0 + 3
dda83cd7
SM
1185 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1186 {
1187 /* Backtrack a bit up until we reach either the begining of
1188 the encoded name, or "__". Make sure that we only find
1189 digits or lowercase characters. */
1190 const char *ptr = encoded + i - 1;
1191
1192 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1193 ptr--;
1194 if (ptr < encoded
1195 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1196 i++;
1197 }
529cad9c 1198
4c4b4cd2 1199 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1200 {
1201 /* This is a X[bn]* sequence not separated from the previous
1202 part of the name with a non-alpha-numeric character (in other
1203 words, immediately following an alpha-numeric character), then
1204 verify that it is placed at the end of the encoded name. If
1205 not, then the encoding is not valid and we should abort the
1206 decoding. Otherwise, just skip it, it is used in body-nested
1207 package names. */
1208 do
1209 i += 1;
1210 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1211 if (i < len0)
1212 goto Suppress;
1213 }
cdc7bb92 1214 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1215 {
1216 /* Replace '__' by '.'. */
1217 decoded[j] = '.';
1218 at_start_name = 1;
1219 i += 2;
1220 j += 1;
1221 }
14f9c5c9 1222 else
dda83cd7
SM
1223 {
1224 /* It's a character part of the decoded name, so just copy it
1225 over. */
1226 decoded[j] = encoded[i];
1227 i += 1;
1228 j += 1;
1229 }
14f9c5c9 1230 }
f945dedf 1231 decoded.resize (j);
14f9c5c9 1232
29480c32
JB
1233 /* Decoded names should never contain any uppercase character.
1234 Double-check this, and abort the decoding if we find one. */
1235
f945dedf 1236 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1237 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1238 goto Suppress;
1239
965bc1df
TT
1240 /* If the compiler added a suffix, append it now. */
1241 if (suffix >= 0)
1242 decoded = decoded + "[" + &encoded[suffix] + "]";
1243
f945dedf 1244 return decoded;
14f9c5c9
AS
1245
1246Suppress:
8a3df5ac
TT
1247 if (!wrap)
1248 return {};
1249
4c4b4cd2 1250 if (encoded[0] == '<')
f945dedf 1251 decoded = encoded;
14f9c5c9 1252 else
f945dedf 1253 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2 1254 return decoded;
4c4b4cd2
PH
1255}
1256
1257/* Table for keeping permanent unique copies of decoded names. Once
1258 allocated, names in this table are never released. While this is a
1259 storage leak, it should not be significant unless there are massive
1260 changes in the set of decoded names in successive versions of a
1261 symbol table loaded during a single session. */
1262static struct htab *decoded_names_store;
1263
1264/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1265 in the language-specific part of GSYMBOL, if it has not been
1266 previously computed. Tries to save the decoded name in the same
1267 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1268 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1269 GSYMBOL).
4c4b4cd2
PH
1270 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1271 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1272 when a decoded name is cached in it. */
4c4b4cd2 1273
45e6c716 1274const char *
f85f34ed 1275ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1276{
f85f34ed
TT
1277 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1278 const char **resultp =
615b3f62 1279 &gsymbol->language_specific.demangled_name;
5b4ee69b 1280
f85f34ed 1281 if (!gsymbol->ada_mangled)
4c4b4cd2 1282 {
4d4eaa30 1283 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1284 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1285
f85f34ed 1286 gsymbol->ada_mangled = 1;
5b4ee69b 1287
f85f34ed 1288 if (obstack != NULL)
f945dedf 1289 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1290 else
dda83cd7 1291 {
f85f34ed
TT
1292 /* Sometimes, we can't find a corresponding objfile, in
1293 which case, we put the result on the heap. Since we only
1294 decode when needed, we hope this usually does not cause a
1295 significant memory leak (FIXME). */
1296
dda83cd7
SM
1297 char **slot = (char **) htab_find_slot (decoded_names_store,
1298 decoded.c_str (), INSERT);
5b4ee69b 1299
dda83cd7
SM
1300 if (*slot == NULL)
1301 *slot = xstrdup (decoded.c_str ());
1302 *resultp = *slot;
1303 }
4c4b4cd2 1304 }
14f9c5c9 1305
4c4b4cd2
PH
1306 return *resultp;
1307}
76a01679 1308
14f9c5c9 1309\f
d2e4a39e 1310
dda83cd7 1311 /* Arrays */
14f9c5c9 1312
28c85d6c
JB
1313/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1319
85102364 1320 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1329
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1334 index subtype). */
1335
1336void
1337ada_fixup_array_indexes_type (struct type *index_desc_type)
1338{
1339 int i;
1340
1341 if (index_desc_type == NULL)
1342 return;
1f704f76 1343 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1344
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1347 now.
1348
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
940da03e
SM
1352 if (index_desc_type->field (0).type ()->name () != NULL
1353 && strcmp (index_desc_type->field (0).type ()->name (),
33d16dd9 1354 index_desc_type->field (0).name ()) == 0)
28c85d6c
JB
1355 return;
1356
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1358 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1359 {
33d16dd9 1360 const char *name = index_desc_type->field (i).name ();
28c85d6c
JB
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1362
1363 if (raw_type)
5d14b6e5 1364 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1365 }
1366}
1367
4c4b4cd2
PH
1368/* The desc_* routines return primitive portions of array descriptors
1369 (fat pointers). */
14f9c5c9
AS
1370
1371/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1372 level of indirection, if needed. */
1373
d2e4a39e
AS
1374static struct type *
1375desc_base_type (struct type *type)
14f9c5c9
AS
1376{
1377 if (type == NULL)
1378 return NULL;
61ee279c 1379 type = ada_check_typedef (type);
78134374 1380 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1381 type = ada_typedef_target_type (type);
1382
1265e4aa 1383 if (type != NULL
78134374 1384 && (type->code () == TYPE_CODE_PTR
dda83cd7 1385 || type->code () == TYPE_CODE_REF))
61ee279c 1386 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1387 else
1388 return type;
1389}
1390
4c4b4cd2
PH
1391/* True iff TYPE indicates a "thin" array pointer type. */
1392
14f9c5c9 1393static int
d2e4a39e 1394is_thin_pntr (struct type *type)
14f9c5c9 1395{
d2e4a39e 1396 return
14f9c5c9
AS
1397 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1398 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1399}
1400
4c4b4cd2
PH
1401/* The descriptor type for thin pointer type TYPE. */
1402
d2e4a39e
AS
1403static struct type *
1404thin_descriptor_type (struct type *type)
14f9c5c9 1405{
d2e4a39e 1406 struct type *base_type = desc_base_type (type);
5b4ee69b 1407
14f9c5c9
AS
1408 if (base_type == NULL)
1409 return NULL;
1410 if (is_suffix (ada_type_name (base_type), "___XVE"))
1411 return base_type;
d2e4a39e 1412 else
14f9c5c9 1413 {
d2e4a39e 1414 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1415
14f9c5c9 1416 if (alt_type == NULL)
dda83cd7 1417 return base_type;
14f9c5c9 1418 else
dda83cd7 1419 return alt_type;
14f9c5c9
AS
1420 }
1421}
1422
4c4b4cd2
PH
1423/* A pointer to the array data for thin-pointer value VAL. */
1424
d2e4a39e
AS
1425static struct value *
1426thin_data_pntr (struct value *val)
14f9c5c9 1427{
828292f2 1428 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1429 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1430
556bdfd4
UW
1431 data_type = lookup_pointer_type (data_type);
1432
78134374 1433 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1434 return value_cast (data_type, value_copy (val));
d2e4a39e 1435 else
42ae5230 1436 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1437}
1438
4c4b4cd2
PH
1439/* True iff TYPE indicates a "thick" array pointer type. */
1440
14f9c5c9 1441static int
d2e4a39e 1442is_thick_pntr (struct type *type)
14f9c5c9
AS
1443{
1444 type = desc_base_type (type);
78134374 1445 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1446 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1447}
1448
4c4b4cd2
PH
1449/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1450 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1451
d2e4a39e
AS
1452static struct type *
1453desc_bounds_type (struct type *type)
14f9c5c9 1454{
d2e4a39e 1455 struct type *r;
14f9c5c9
AS
1456
1457 type = desc_base_type (type);
1458
1459 if (type == NULL)
1460 return NULL;
1461 else if (is_thin_pntr (type))
1462 {
1463 type = thin_descriptor_type (type);
1464 if (type == NULL)
dda83cd7 1465 return NULL;
14f9c5c9
AS
1466 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1467 if (r != NULL)
dda83cd7 1468 return ada_check_typedef (r);
14f9c5c9 1469 }
78134374 1470 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1471 {
1472 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1473 if (r != NULL)
dda83cd7 1474 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1475 }
1476 return NULL;
1477}
1478
1479/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1480 one, a pointer to its bounds data. Otherwise NULL. */
1481
d2e4a39e
AS
1482static struct value *
1483desc_bounds (struct value *arr)
14f9c5c9 1484{
df407dfe 1485 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1486
d2e4a39e 1487 if (is_thin_pntr (type))
14f9c5c9 1488 {
d2e4a39e 1489 struct type *bounds_type =
dda83cd7 1490 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1491 LONGEST addr;
1492
4cdfadb1 1493 if (bounds_type == NULL)
dda83cd7 1494 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1495
1496 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1497 since desc_type is an XVE-encoded type (and shouldn't be),
1498 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1499 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1500 addr = value_as_long (arr);
d2e4a39e 1501 else
dda83cd7 1502 addr = value_address (arr);
14f9c5c9 1503
d2e4a39e 1504 return
dda83cd7
SM
1505 value_from_longest (lookup_pointer_type (bounds_type),
1506 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1507 }
1508
1509 else if (is_thick_pntr (type))
05e522ef 1510 {
158cc4fe 1511 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
05e522ef
JB
1512 _("Bad GNAT array descriptor"));
1513 struct type *p_bounds_type = value_type (p_bounds);
1514
1515 if (p_bounds_type
78134374 1516 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1517 {
1518 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1519
e46d3488 1520 if (target_type->is_stub ())
05e522ef
JB
1521 p_bounds = value_cast (lookup_pointer_type
1522 (ada_check_typedef (target_type)),
1523 p_bounds);
1524 }
1525 else
1526 error (_("Bad GNAT array descriptor"));
1527
1528 return p_bounds;
1529 }
14f9c5c9
AS
1530 else
1531 return NULL;
1532}
1533
4c4b4cd2
PH
1534/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1535 position of the field containing the address of the bounds data. */
1536
14f9c5c9 1537static int
d2e4a39e 1538fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9 1539{
b610c045 1540 return desc_base_type (type)->field (1).loc_bitpos ();
14f9c5c9
AS
1541}
1542
1543/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1544 size of the field containing the address of the bounds data. */
1545
14f9c5c9 1546static int
d2e4a39e 1547fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1548{
1549 type = desc_base_type (type);
1550
d2e4a39e 1551 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1552 return TYPE_FIELD_BITSIZE (type, 1);
1553 else
940da03e 1554 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1555}
1556
4c4b4cd2 1557/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1558 pointer to one, the type of its array data (a array-with-no-bounds type);
1559 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1560 data. */
4c4b4cd2 1561
d2e4a39e 1562static struct type *
556bdfd4 1563desc_data_target_type (struct type *type)
14f9c5c9
AS
1564{
1565 type = desc_base_type (type);
1566
4c4b4cd2 1567 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1568 if (is_thin_pntr (type))
940da03e 1569 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1570 else if (is_thick_pntr (type))
556bdfd4
UW
1571 {
1572 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1573
1574 if (data_type
78134374 1575 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1576 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1577 }
1578
1579 return NULL;
14f9c5c9
AS
1580}
1581
1582/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1583 its array data. */
4c4b4cd2 1584
d2e4a39e
AS
1585static struct value *
1586desc_data (struct value *arr)
14f9c5c9 1587{
df407dfe 1588 struct type *type = value_type (arr);
5b4ee69b 1589
14f9c5c9
AS
1590 if (is_thin_pntr (type))
1591 return thin_data_pntr (arr);
1592 else if (is_thick_pntr (type))
158cc4fe 1593 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
dda83cd7 1594 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1595 else
1596 return NULL;
1597}
1598
1599
1600/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1601 position of the field containing the address of the data. */
1602
14f9c5c9 1603static int
d2e4a39e 1604fat_pntr_data_bitpos (struct type *type)
14f9c5c9 1605{
b610c045 1606 return desc_base_type (type)->field (0).loc_bitpos ();
14f9c5c9
AS
1607}
1608
1609/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1610 size of the field containing the address of the data. */
1611
14f9c5c9 1612static int
d2e4a39e 1613fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1614{
1615 type = desc_base_type (type);
1616
1617 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1618 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1619 else
940da03e 1620 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1621}
1622
4c4b4cd2 1623/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1624 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1625 bound, if WHICH is 1. The first bound is I=1. */
1626
d2e4a39e
AS
1627static struct value *
1628desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1629{
250106a7
TT
1630 char bound_name[20];
1631 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1632 which ? 'U' : 'L', i - 1);
158cc4fe 1633 return value_struct_elt (&bounds, {}, bound_name, NULL,
dda83cd7 1634 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1635}
1636
1637/* If BOUNDS is an array-bounds structure type, return the bit position
1638 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1639 bound, if WHICH is 1. The first bound is I=1. */
1640
14f9c5c9 1641static int
d2e4a39e 1642desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1643{
b610c045 1644 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
14f9c5c9
AS
1645}
1646
1647/* If BOUNDS is an array-bounds structure type, return the bit field size
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
76a01679 1651static int
d2e4a39e 1652desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1653{
1654 type = desc_base_type (type);
1655
d2e4a39e
AS
1656 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1657 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1658 else
940da03e 1659 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1660}
1661
1662/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1663 Ith bound (numbering from 1). Otherwise, NULL. */
1664
d2e4a39e
AS
1665static struct type *
1666desc_index_type (struct type *type, int i)
14f9c5c9
AS
1667{
1668 type = desc_base_type (type);
1669
78134374 1670 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1671 {
1672 char bound_name[20];
1673 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1674 return lookup_struct_elt_type (type, bound_name, 1);
1675 }
d2e4a39e 1676 else
14f9c5c9
AS
1677 return NULL;
1678}
1679
4c4b4cd2
PH
1680/* The number of index positions in the array-bounds type TYPE.
1681 Return 0 if TYPE is NULL. */
1682
14f9c5c9 1683static int
d2e4a39e 1684desc_arity (struct type *type)
14f9c5c9
AS
1685{
1686 type = desc_base_type (type);
1687
1688 if (type != NULL)
1f704f76 1689 return type->num_fields () / 2;
14f9c5c9
AS
1690 return 0;
1691}
1692
4c4b4cd2
PH
1693/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1694 an array descriptor type (representing an unconstrained array
1695 type). */
1696
76a01679
JB
1697static int
1698ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1699{
1700 if (type == NULL)
1701 return 0;
61ee279c 1702 type = ada_check_typedef (type);
78134374 1703 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1704 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1705}
1706
52ce6436 1707/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1708 * to one. */
52ce6436 1709
2c0b251b 1710static int
52ce6436
PH
1711ada_is_array_type (struct type *type)
1712{
78134374
SM
1713 while (type != NULL
1714 && (type->code () == TYPE_CODE_PTR
1715 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1716 type = TYPE_TARGET_TYPE (type);
1717 return ada_is_direct_array_type (type);
1718}
1719
4c4b4cd2 1720/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1721
14f9c5c9 1722int
4c4b4cd2 1723ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1724{
1725 if (type == NULL)
1726 return 0;
61ee279c 1727 type = ada_check_typedef (type);
78134374
SM
1728 return (type->code () == TYPE_CODE_ARRAY
1729 || (type->code () == TYPE_CODE_PTR
1730 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1731 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1732}
1733
4c4b4cd2
PH
1734/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1735
14f9c5c9 1736int
4c4b4cd2 1737ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1738{
556bdfd4 1739 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1740
1741 if (type == NULL)
1742 return 0;
61ee279c 1743 type = ada_check_typedef (type);
556bdfd4 1744 return (data_type != NULL
78134374 1745 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1746 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1747}
1748
1749/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1750 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1751 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1752 is still needed. */
1753
14f9c5c9 1754int
ebf56fd3 1755ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1756{
d2e4a39e 1757 return
14f9c5c9 1758 type != NULL
78134374 1759 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1760 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1761 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1762 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1763}
1764
1765
4c4b4cd2 1766/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1767 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1768 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1769 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1770 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1771 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1772 a descriptor. */
de93309a
SM
1773
1774static struct type *
d2e4a39e 1775ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1776{
ad82864c
JB
1777 if (ada_is_constrained_packed_array_type (value_type (arr)))
1778 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1779
df407dfe
AC
1780 if (!ada_is_array_descriptor_type (value_type (arr)))
1781 return value_type (arr);
d2e4a39e
AS
1782
1783 if (!bounds)
ad82864c
JB
1784 {
1785 struct type *array_type =
1786 ada_check_typedef (desc_data_target_type (value_type (arr)));
1787
1788 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1789 TYPE_FIELD_BITSIZE (array_type, 0) =
1790 decode_packed_array_bitsize (value_type (arr));
1791
1792 return array_type;
1793 }
14f9c5c9
AS
1794 else
1795 {
d2e4a39e 1796 struct type *elt_type;
14f9c5c9 1797 int arity;
d2e4a39e 1798 struct value *descriptor;
14f9c5c9 1799
df407dfe
AC
1800 elt_type = ada_array_element_type (value_type (arr), -1);
1801 arity = ada_array_arity (value_type (arr));
14f9c5c9 1802
d2e4a39e 1803 if (elt_type == NULL || arity == 0)
dda83cd7 1804 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1805
1806 descriptor = desc_bounds (arr);
d2e4a39e 1807 if (value_as_long (descriptor) == 0)
dda83cd7 1808 return NULL;
d2e4a39e 1809 while (arity > 0)
dda83cd7
SM
1810 {
1811 struct type *range_type = alloc_type_copy (value_type (arr));
1812 struct type *array_type = alloc_type_copy (value_type (arr));
1813 struct value *low = desc_one_bound (descriptor, arity, 0);
1814 struct value *high = desc_one_bound (descriptor, arity, 1);
1815
1816 arity -= 1;
1817 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1818 longest_to_int (value_as_long (low)),
1819 longest_to_int (value_as_long (high)));
dda83cd7 1820 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1821
1822 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1823 {
1824 /* We need to store the element packed bitsize, as well as
dda83cd7 1825 recompute the array size, because it was previously
e67ad678
JB
1826 computed based on the unpacked element size. */
1827 LONGEST lo = value_as_long (low);
1828 LONGEST hi = value_as_long (high);
1829
1830 TYPE_FIELD_BITSIZE (elt_type, 0) =
1831 decode_packed_array_bitsize (value_type (arr));
1832 /* If the array has no element, then the size is already
dda83cd7 1833 zero, and does not need to be recomputed. */
e67ad678
JB
1834 if (lo < hi)
1835 {
1836 int array_bitsize =
dda83cd7 1837 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1838
1839 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1840 }
1841 }
dda83cd7 1842 }
14f9c5c9
AS
1843
1844 return lookup_pointer_type (elt_type);
1845 }
1846}
1847
1848/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1849 Otherwise, returns either a standard GDB array with bounds set
1850 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1851 GDB array. Returns NULL if ARR is a null fat pointer. */
1852
d2e4a39e
AS
1853struct value *
1854ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1855{
df407dfe 1856 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1857 {
d2e4a39e 1858 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1859
14f9c5c9 1860 if (arrType == NULL)
dda83cd7 1861 return NULL;
14f9c5c9
AS
1862 return value_cast (arrType, value_copy (desc_data (arr)));
1863 }
ad82864c
JB
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1866 else
1867 return arr;
1868}
1869
1870/* If ARR does not represent an array, returns ARR unchanged.
1871 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1872 be ARR itself if it already is in the proper form). */
1873
720d1a40 1874struct value *
d2e4a39e 1875ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1876{
df407dfe 1877 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1878 {
d2e4a39e 1879 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1880
14f9c5c9 1881 if (arrVal == NULL)
dda83cd7 1882 error (_("Bounds unavailable for null array pointer."));
14f9c5c9
AS
1883 return value_ind (arrVal);
1884 }
ad82864c
JB
1885 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1886 return decode_constrained_packed_array (arr);
d2e4a39e 1887 else
14f9c5c9
AS
1888 return arr;
1889}
1890
1891/* If TYPE represents a GNAT array type, return it translated to an
1892 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1893 packing). For other types, is the identity. */
1894
d2e4a39e
AS
1895struct type *
1896ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1897{
ad82864c
JB
1898 if (ada_is_constrained_packed_array_type (type))
1899 return decode_constrained_packed_array_type (type);
17280b9f
UW
1900
1901 if (ada_is_array_descriptor_type (type))
556bdfd4 1902 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1903
1904 return type;
14f9c5c9
AS
1905}
1906
4c4b4cd2
PH
1907/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1908
ad82864c 1909static int
57567375 1910ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1911{
1912 if (type == NULL)
1913 return 0;
4c4b4cd2 1914 type = desc_base_type (type);
61ee279c 1915 type = ada_check_typedef (type);
d2e4a39e 1916 return
14f9c5c9
AS
1917 ada_type_name (type) != NULL
1918 && strstr (ada_type_name (type), "___XP") != NULL;
1919}
1920
ad82864c
JB
1921/* Non-zero iff TYPE represents a standard GNAT constrained
1922 packed-array type. */
1923
1924int
1925ada_is_constrained_packed_array_type (struct type *type)
1926{
57567375 1927 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1928 && !ada_is_array_descriptor_type (type);
1929}
1930
1931/* Non-zero iff TYPE represents an array descriptor for a
1932 unconstrained packed-array type. */
1933
1934static int
1935ada_is_unconstrained_packed_array_type (struct type *type)
1936{
57567375
TT
1937 if (!ada_is_array_descriptor_type (type))
1938 return 0;
1939
1940 if (ada_is_gnat_encoded_packed_array_type (type))
1941 return 1;
1942
1943 /* If we saw GNAT encodings, then the above code is sufficient.
1944 However, with minimal encodings, we will just have a thick
1945 pointer instead. */
1946 if (is_thick_pntr (type))
1947 {
1948 type = desc_base_type (type);
1949 /* The structure's first field is a pointer to an array, so this
1950 fetches the array type. */
1951 type = TYPE_TARGET_TYPE (type->field (0).type ());
af5300fe
TV
1952 if (type->code () == TYPE_CODE_TYPEDEF)
1953 type = ada_typedef_target_type (type);
57567375
TT
1954 /* Now we can see if the array elements are packed. */
1955 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1956 }
1957
1958 return 0;
ad82864c
JB
1959}
1960
c9a28cbe
TT
1961/* Return true if TYPE is a (Gnat-encoded) constrained packed array
1962 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1963
1964static bool
1965ada_is_any_packed_array_type (struct type *type)
1966{
1967 return (ada_is_constrained_packed_array_type (type)
1968 || (type->code () == TYPE_CODE_ARRAY
1969 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1970}
1971
ad82864c
JB
1972/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1973 return the size of its elements in bits. */
1974
1975static long
1976decode_packed_array_bitsize (struct type *type)
1977{
0d5cff50
DE
1978 const char *raw_name;
1979 const char *tail;
ad82864c
JB
1980 long bits;
1981
720d1a40
JB
1982 /* Access to arrays implemented as fat pointers are encoded as a typedef
1983 of the fat pointer type. We need the name of the fat pointer type
1984 to do the decoding, so strip the typedef layer. */
78134374 1985 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1986 type = ada_typedef_target_type (type);
1987
1988 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1989 if (!raw_name)
1990 raw_name = ada_type_name (desc_base_type (type));
1991
1992 if (!raw_name)
1993 return 0;
1994
1995 tail = strstr (raw_name, "___XP");
57567375
TT
1996 if (tail == nullptr)
1997 {
1998 gdb_assert (is_thick_pntr (type));
1999 /* The structure's first field is a pointer to an array, so this
2000 fetches the array type. */
2001 type = TYPE_TARGET_TYPE (type->field (0).type ());
2002 /* Now we can see if the array elements are packed. */
2003 return TYPE_FIELD_BITSIZE (type, 0);
2004 }
ad82864c
JB
2005
2006 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2007 {
2008 lim_warning
2009 (_("could not understand bit size information on packed array"));
2010 return 0;
2011 }
2012
2013 return bits;
2014}
2015
14f9c5c9
AS
2016/* Given that TYPE is a standard GDB array type with all bounds filled
2017 in, and that the element size of its ultimate scalar constituents
2018 (that is, either its elements, or, if it is an array of arrays, its
2019 elements' elements, etc.) is *ELT_BITS, return an identical type,
2020 but with the bit sizes of its elements (and those of any
2021 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2022 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2023 in bits.
2024
2025 Note that, for arrays whose index type has an XA encoding where
2026 a bound references a record discriminant, getting that discriminant,
2027 and therefore the actual value of that bound, is not possible
2028 because none of the given parameters gives us access to the record.
2029 This function assumes that it is OK in the context where it is being
2030 used to return an array whose bounds are still dynamic and where
2031 the length is arbitrary. */
4c4b4cd2 2032
d2e4a39e 2033static struct type *
ad82864c 2034constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2035{
d2e4a39e
AS
2036 struct type *new_elt_type;
2037 struct type *new_type;
99b1c762
JB
2038 struct type *index_type_desc;
2039 struct type *index_type;
14f9c5c9
AS
2040 LONGEST low_bound, high_bound;
2041
61ee279c 2042 type = ada_check_typedef (type);
78134374 2043 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2044 return type;
2045
99b1c762
JB
2046 index_type_desc = ada_find_parallel_type (type, "___XA");
2047 if (index_type_desc)
940da03e 2048 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2049 NULL);
2050 else
3d967001 2051 index_type = type->index_type ();
99b1c762 2052
e9bb382b 2053 new_type = alloc_type_copy (type);
ad82864c
JB
2054 new_elt_type =
2055 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2056 elt_bits);
99b1c762 2057 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2058 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2059 new_type->set_name (ada_type_name (type));
14f9c5c9 2060
78134374 2061 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2062 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2063 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2064 low_bound = high_bound = 0;
2065 if (high_bound < low_bound)
2066 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2067 else
14f9c5c9
AS
2068 {
2069 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2070 TYPE_LENGTH (new_type) =
dda83cd7 2071 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2072 }
2073
9cdd0d12 2074 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2075 return new_type;
2076}
2077
ad82864c
JB
2078/* The array type encoded by TYPE, where
2079 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2080
d2e4a39e 2081static struct type *
ad82864c 2082decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2083{
0d5cff50 2084 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2085 char *name;
0d5cff50 2086 const char *tail;
d2e4a39e 2087 struct type *shadow_type;
14f9c5c9 2088 long bits;
14f9c5c9 2089
727e3d2e
JB
2090 if (!raw_name)
2091 raw_name = ada_type_name (desc_base_type (type));
2092
2093 if (!raw_name)
2094 return NULL;
2095
2096 name = (char *) alloca (strlen (raw_name) + 1);
2097 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2098 type = desc_base_type (type);
2099
14f9c5c9
AS
2100 memcpy (name, raw_name, tail - raw_name);
2101 name[tail - raw_name] = '\000';
2102
b4ba55a1
JB
2103 shadow_type = ada_find_parallel_type_with_name (type, name);
2104
2105 if (shadow_type == NULL)
14f9c5c9 2106 {
323e0a4a 2107 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2108 return NULL;
2109 }
f168693b 2110 shadow_type = check_typedef (shadow_type);
14f9c5c9 2111
78134374 2112 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2113 {
0963b4bd
MS
2114 lim_warning (_("could not understand bounds "
2115 "information on packed array"));
14f9c5c9
AS
2116 return NULL;
2117 }
d2e4a39e 2118
ad82864c
JB
2119 bits = decode_packed_array_bitsize (type);
2120 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2121}
2122
a7400e44
TT
2123/* Helper function for decode_constrained_packed_array. Set the field
2124 bitsize on a series of packed arrays. Returns the number of
2125 elements in TYPE. */
2126
2127static LONGEST
2128recursively_update_array_bitsize (struct type *type)
2129{
2130 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2131
2132 LONGEST low, high;
1f8d2881 2133 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2134 || low > high)
2135 return 0;
2136 LONGEST our_len = high - low + 1;
2137
2138 struct type *elt_type = TYPE_TARGET_TYPE (type);
2139 if (elt_type->code () == TYPE_CODE_ARRAY)
2140 {
2141 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2142 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2143 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2144
2145 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2146 / HOST_CHAR_BIT);
2147 }
2148
2149 return our_len;
2150}
2151
ad82864c
JB
2152/* Given that ARR is a struct value *indicating a GNAT constrained packed
2153 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2154 standard GDB array type except that the BITSIZEs of the array
2155 target types are set to the number of bits in each element, and the
4c4b4cd2 2156 type length is set appropriately. */
14f9c5c9 2157
d2e4a39e 2158static struct value *
ad82864c 2159decode_constrained_packed_array (struct value *arr)
14f9c5c9 2160{
4c4b4cd2 2161 struct type *type;
14f9c5c9 2162
11aa919a
PMR
2163 /* If our value is a pointer, then dereference it. Likewise if
2164 the value is a reference. Make sure that this operation does not
2165 cause the target type to be fixed, as this would indirectly cause
2166 this array to be decoded. The rest of the routine assumes that
2167 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2168 and "value_ind" routines to perform the dereferencing, as opposed
2169 to using "ada_coerce_ref" or "ada_value_ind". */
2170 arr = coerce_ref (arr);
78134374 2171 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2172 arr = value_ind (arr);
4c4b4cd2 2173
ad82864c 2174 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2175 if (type == NULL)
2176 {
323e0a4a 2177 error (_("can't unpack array"));
14f9c5c9
AS
2178 return NULL;
2179 }
61ee279c 2180
a7400e44
TT
2181 /* Decoding the packed array type could not correctly set the field
2182 bitsizes for any dimension except the innermost, because the
2183 bounds may be variable and were not passed to that function. So,
2184 we further resolve the array bounds here and then update the
2185 sizes. */
50888e42 2186 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
a7400e44
TT
2187 CORE_ADDR address = value_address (arr);
2188 gdb::array_view<const gdb_byte> view
2189 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2190 type = resolve_dynamic_type (type, view, address);
2191 recursively_update_array_bitsize (type);
2192
d5a22e77 2193 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2194 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2195 {
2196 /* This is a (right-justified) modular type representing a packed
24b21115
SM
2197 array with no wrapper. In order to interpret the value through
2198 the (left-justified) packed array type we just built, we must
2199 first left-justify it. */
61ee279c
PH
2200 int bit_size, bit_pos;
2201 ULONGEST mod;
2202
df407dfe 2203 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2204 bit_size = 0;
2205 while (mod > 0)
2206 {
2207 bit_size += 1;
2208 mod >>= 1;
2209 }
df407dfe 2210 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2211 arr = ada_value_primitive_packed_val (arr, NULL,
2212 bit_pos / HOST_CHAR_BIT,
2213 bit_pos % HOST_CHAR_BIT,
2214 bit_size,
2215 type);
2216 }
2217
4c4b4cd2 2218 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2219}
2220
2221
2222/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2223 given in IND. ARR must be a simple array. */
14f9c5c9 2224
d2e4a39e
AS
2225static struct value *
2226value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2227{
2228 int i;
2229 int bits, elt_off, bit_off;
2230 long elt_total_bit_offset;
d2e4a39e
AS
2231 struct type *elt_type;
2232 struct value *v;
14f9c5c9
AS
2233
2234 bits = 0;
2235 elt_total_bit_offset = 0;
df407dfe 2236 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2237 for (i = 0; i < arity; i += 1)
14f9c5c9 2238 {
78134374 2239 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2240 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2241 error
2242 (_("attempt to do packed indexing of "
0963b4bd 2243 "something other than a packed array"));
14f9c5c9 2244 else
dda83cd7
SM
2245 {
2246 struct type *range_type = elt_type->index_type ();
2247 LONGEST lowerbound, upperbound;
2248 LONGEST idx;
2249
1f8d2881 2250 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2251 {
2252 lim_warning (_("don't know bounds of array"));
2253 lowerbound = upperbound = 0;
2254 }
2255
2256 idx = pos_atr (ind[i]);
2257 if (idx < lowerbound || idx > upperbound)
2258 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2259 (long) idx);
dda83cd7
SM
2260 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2261 elt_total_bit_offset += (idx - lowerbound) * bits;
2262 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2263 }
14f9c5c9
AS
2264 }
2265 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2266 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2267
2268 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2269 bits, elt_type);
14f9c5c9
AS
2270 return v;
2271}
2272
4c4b4cd2 2273/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2274
2275static int
d2e4a39e 2276has_negatives (struct type *type)
14f9c5c9 2277{
78134374 2278 switch (type->code ())
d2e4a39e
AS
2279 {
2280 default:
2281 return 0;
2282 case TYPE_CODE_INT:
c6d940a9 2283 return !type->is_unsigned ();
d2e4a39e 2284 case TYPE_CODE_RANGE:
5537ddd0 2285 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2286 }
14f9c5c9 2287}
d2e4a39e 2288
f93fca70 2289/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2290 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2291 the unpacked buffer.
14f9c5c9 2292
5b639dea
JB
2293 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2294 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2295
f93fca70
JB
2296 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2297 zero otherwise.
14f9c5c9 2298
f93fca70 2299 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2300
f93fca70
JB
2301 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2302
2303static void
2304ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2305 gdb_byte *unpacked, int unpacked_len,
2306 int is_big_endian, int is_signed_type,
2307 int is_scalar)
2308{
a1c95e6b
JB
2309 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2310 int src_idx; /* Index into the source area */
2311 int src_bytes_left; /* Number of source bytes left to process. */
2312 int srcBitsLeft; /* Number of source bits left to move */
2313 int unusedLS; /* Number of bits in next significant
dda83cd7 2314 byte of source that are unused */
a1c95e6b 2315
a1c95e6b
JB
2316 int unpacked_idx; /* Index into the unpacked buffer */
2317 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2318
4c4b4cd2 2319 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2320 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2321 unsigned char sign;
a1c95e6b 2322
4c4b4cd2
PH
2323 /* Transmit bytes from least to most significant; delta is the direction
2324 the indices move. */
f93fca70 2325 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2326
5b639dea
JB
2327 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2328 bits from SRC. .*/
2329 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2330 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2331 bit_size, unpacked_len);
2332
14f9c5c9 2333 srcBitsLeft = bit_size;
086ca51f 2334 src_bytes_left = src_len;
f93fca70 2335 unpacked_bytes_left = unpacked_len;
14f9c5c9 2336 sign = 0;
f93fca70
JB
2337
2338 if (is_big_endian)
14f9c5c9 2339 {
086ca51f 2340 src_idx = src_len - 1;
f93fca70
JB
2341 if (is_signed_type
2342 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2343 sign = ~0;
d2e4a39e
AS
2344
2345 unusedLS =
dda83cd7
SM
2346 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2347 % HOST_CHAR_BIT;
14f9c5c9 2348
f93fca70
JB
2349 if (is_scalar)
2350 {
dda83cd7
SM
2351 accumSize = 0;
2352 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2353 }
2354 else
2355 {
dda83cd7
SM
2356 /* Non-scalar values must be aligned at a byte boundary... */
2357 accumSize =
2358 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2359 /* ... And are placed at the beginning (most-significant) bytes
2360 of the target. */
2361 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2362 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2363 }
14f9c5c9 2364 }
d2e4a39e 2365 else
14f9c5c9
AS
2366 {
2367 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2368
086ca51f 2369 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2370 unusedLS = bit_offset;
2371 accumSize = 0;
2372
f93fca70 2373 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2374 sign = ~0;
14f9c5c9 2375 }
d2e4a39e 2376
14f9c5c9 2377 accum = 0;
086ca51f 2378 while (src_bytes_left > 0)
14f9c5c9
AS
2379 {
2380 /* Mask for removing bits of the next source byte that are not
dda83cd7 2381 part of the value. */
d2e4a39e 2382 unsigned int unusedMSMask =
dda83cd7
SM
2383 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2384 1;
4c4b4cd2 2385 /* Sign-extend bits for this byte. */
14f9c5c9 2386 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2387
d2e4a39e 2388 accum |=
dda83cd7 2389 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2390 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2391 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2392 {
2393 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2394 accumSize -= HOST_CHAR_BIT;
2395 accum >>= HOST_CHAR_BIT;
2396 unpacked_bytes_left -= 1;
2397 unpacked_idx += delta;
2398 }
14f9c5c9
AS
2399 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2400 unusedLS = 0;
086ca51f
JB
2401 src_bytes_left -= 1;
2402 src_idx += delta;
14f9c5c9 2403 }
086ca51f 2404 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2405 {
2406 accum |= sign << accumSize;
db297a65 2407 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2408 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2409 if (accumSize < 0)
2410 accumSize = 0;
14f9c5c9 2411 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2412 unpacked_bytes_left -= 1;
2413 unpacked_idx += delta;
14f9c5c9 2414 }
f93fca70
JB
2415}
2416
2417/* Create a new value of type TYPE from the contents of OBJ starting
2418 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2419 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2420 assigning through the result will set the field fetched from.
2421 VALADDR is ignored unless OBJ is NULL, in which case,
2422 VALADDR+OFFSET must address the start of storage containing the
2423 packed value. The value returned in this case is never an lval.
2424 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2425
2426struct value *
2427ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2428 long offset, int bit_offset, int bit_size,
dda83cd7 2429 struct type *type)
f93fca70
JB
2430{
2431 struct value *v;
bfb1c796 2432 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2433 gdb_byte *unpacked;
220475ed 2434 const int is_scalar = is_scalar_type (type);
d5a22e77 2435 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2436 gdb::byte_vector staging;
f93fca70
JB
2437
2438 type = ada_check_typedef (type);
2439
d0a9e810 2440 if (obj == NULL)
bfb1c796 2441 src = valaddr + offset;
d0a9e810 2442 else
50888e42 2443 src = value_contents (obj).data () + offset;
d0a9e810
JB
2444
2445 if (is_dynamic_type (type))
2446 {
2447 /* The length of TYPE might by dynamic, so we need to resolve
2448 TYPE in order to know its actual size, which we then use
2449 to create the contents buffer of the value we return.
2450 The difficulty is that the data containing our object is
2451 packed, and therefore maybe not at a byte boundary. So, what
2452 we do, is unpack the data into a byte-aligned buffer, and then
2453 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2454 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2455 staging.resize (staging_len);
d0a9e810
JB
2456
2457 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2458 staging.data (), staging.size (),
d0a9e810
JB
2459 is_big_endian, has_negatives (type),
2460 is_scalar);
b249d2c2 2461 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2462 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2463 {
2464 /* This happens when the length of the object is dynamic,
2465 and is actually smaller than the space reserved for it.
2466 For instance, in an array of variant records, the bit_size
2467 we're given is the array stride, which is constant and
2468 normally equal to the maximum size of its element.
2469 But, in reality, each element only actually spans a portion
2470 of that stride. */
2471 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2472 }
d0a9e810
JB
2473 }
2474
f93fca70
JB
2475 if (obj == NULL)
2476 {
2477 v = allocate_value (type);
bfb1c796 2478 src = valaddr + offset;
f93fca70
JB
2479 }
2480 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2481 {
0cafa88c 2482 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2483 gdb_byte *buf;
0cafa88c 2484
f93fca70 2485 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2486 buf = (gdb_byte *) alloca (src_len);
2487 read_memory (value_address (v), buf, src_len);
2488 src = buf;
f93fca70
JB
2489 }
2490 else
2491 {
2492 v = allocate_value (type);
50888e42 2493 src = value_contents (obj).data () + offset;
f93fca70
JB
2494 }
2495
2496 if (obj != NULL)
2497 {
2498 long new_offset = offset;
2499
2500 set_value_component_location (v, obj);
2501 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2502 set_value_bitsize (v, bit_size);
2503 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2504 {
f93fca70 2505 ++new_offset;
dda83cd7
SM
2506 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2507 }
f93fca70
JB
2508 set_value_offset (v, new_offset);
2509
2510 /* Also set the parent value. This is needed when trying to
2511 assign a new value (in inferior memory). */
2512 set_value_parent (v, obj);
2513 }
2514 else
2515 set_value_bitsize (v, bit_size);
50888e42 2516 unpacked = value_contents_writeable (v).data ();
f93fca70
JB
2517
2518 if (bit_size == 0)
2519 {
2520 memset (unpacked, 0, TYPE_LENGTH (type));
2521 return v;
2522 }
2523
d5722aa2 2524 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2525 {
d0a9e810
JB
2526 /* Small short-cut: If we've unpacked the data into a buffer
2527 of the same size as TYPE's length, then we can reuse that,
2528 instead of doing the unpacking again. */
d5722aa2 2529 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2530 }
d0a9e810
JB
2531 else
2532 ada_unpack_from_contents (src, bit_offset, bit_size,
2533 unpacked, TYPE_LENGTH (type),
2534 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2535
14f9c5c9
AS
2536 return v;
2537}
d2e4a39e 2538
14f9c5c9
AS
2539/* Store the contents of FROMVAL into the location of TOVAL.
2540 Return a new value with the location of TOVAL and contents of
2541 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2542 floating-point or non-scalar types. */
14f9c5c9 2543
d2e4a39e
AS
2544static struct value *
2545ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2546{
df407dfe
AC
2547 struct type *type = value_type (toval);
2548 int bits = value_bitsize (toval);
14f9c5c9 2549
52ce6436
PH
2550 toval = ada_coerce_ref (toval);
2551 fromval = ada_coerce_ref (fromval);
2552
2553 if (ada_is_direct_array_type (value_type (toval)))
2554 toval = ada_coerce_to_simple_array (toval);
2555 if (ada_is_direct_array_type (value_type (fromval)))
2556 fromval = ada_coerce_to_simple_array (fromval);
2557
88e3b34b 2558 if (!deprecated_value_modifiable (toval))
323e0a4a 2559 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2560
d2e4a39e 2561 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2562 && bits > 0
78134374 2563 && (type->code () == TYPE_CODE_FLT
dda83cd7 2564 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2565 {
df407dfe
AC
2566 int len = (value_bitpos (toval)
2567 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2568 int from_size;
224c3ddb 2569 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2570 struct value *val;
42ae5230 2571 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2572
78134374 2573 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2574 fromval = value_cast (type, fromval);
14f9c5c9 2575
52ce6436 2576 read_memory (to_addr, buffer, len);
aced2898
PH
2577 from_size = value_bitsize (fromval);
2578 if (from_size == 0)
2579 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2580
d5a22e77 2581 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2582 ULONGEST from_offset = 0;
2583 if (is_big_endian && is_scalar_type (value_type (fromval)))
2584 from_offset = from_size - bits;
2585 copy_bitwise (buffer, value_bitpos (toval),
50888e42 2586 value_contents (fromval).data (), from_offset,
d48e62f4 2587 bits, is_big_endian);
972daa01 2588 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2589
14f9c5c9 2590 val = value_copy (toval);
fb2a515f
SM
2591 memcpy (value_contents_raw (val).data (),
2592 value_contents (fromval).data (),
2593 TYPE_LENGTH (type));
04624583 2594 deprecated_set_value_type (val, type);
d2e4a39e 2595
14f9c5c9
AS
2596 return val;
2597 }
2598
2599 return value_assign (toval, fromval);
2600}
2601
2602
7c512744
JB
2603/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2604 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2605 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2606 COMPONENT, and not the inferior's memory. The current contents
2607 of COMPONENT are ignored.
2608
2609 Although not part of the initial design, this function also works
2610 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2611 had a null address, and COMPONENT had an address which is equal to
2612 its offset inside CONTAINER. */
2613
52ce6436
PH
2614static void
2615value_assign_to_component (struct value *container, struct value *component,
2616 struct value *val)
2617{
2618 LONGEST offset_in_container =
42ae5230 2619 (LONGEST) (value_address (component) - value_address (container));
7c512744 2620 int bit_offset_in_container =
52ce6436
PH
2621 value_bitpos (component) - value_bitpos (container);
2622 int bits;
7c512744 2623
52ce6436
PH
2624 val = value_cast (value_type (component), val);
2625
2626 if (value_bitsize (component) == 0)
2627 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2628 else
2629 bits = value_bitsize (component);
2630
d5a22e77 2631 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2632 {
2633 int src_offset;
2634
2635 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2636 src_offset
2a62dfa9
JB
2637 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2638 else
2639 src_offset = 0;
50888e42
SM
2640 copy_bitwise ((value_contents_writeable (container).data ()
2641 + offset_in_container),
a99bc3d2 2642 value_bitpos (container) + bit_offset_in_container,
50888e42 2643 value_contents (val).data (), src_offset, bits, 1);
2a62dfa9 2644 }
52ce6436 2645 else
50888e42
SM
2646 copy_bitwise ((value_contents_writeable (container).data ()
2647 + offset_in_container),
a99bc3d2 2648 value_bitpos (container) + bit_offset_in_container,
50888e42 2649 value_contents (val).data (), 0, bits, 0);
7c512744
JB
2650}
2651
736ade86
XR
2652/* Determine if TYPE is an access to an unconstrained array. */
2653
d91e9ea8 2654bool
736ade86
XR
2655ada_is_access_to_unconstrained_array (struct type *type)
2656{
78134374 2657 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2658 && is_thick_pntr (ada_typedef_target_type (type)));
2659}
2660
4c4b4cd2
PH
2661/* The value of the element of array ARR at the ARITY indices given in IND.
2662 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2663 thereto. */
2664
d2e4a39e
AS
2665struct value *
2666ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2667{
2668 int k;
d2e4a39e
AS
2669 struct value *elt;
2670 struct type *elt_type;
14f9c5c9
AS
2671
2672 elt = ada_coerce_to_simple_array (arr);
2673
df407dfe 2674 elt_type = ada_check_typedef (value_type (elt));
78134374 2675 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2676 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2677 return value_subscript_packed (elt, arity, ind);
2678
2679 for (k = 0; k < arity; k += 1)
2680 {
b9c50e9a
XR
2681 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2682
78134374 2683 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2684 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2685
2497b498 2686 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2687
2688 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2689 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2690 {
2691 /* The element is a typedef to an unconstrained array,
2692 except that the value_subscript call stripped the
2693 typedef layer. The typedef layer is GNAT's way to
2694 specify that the element is, at the source level, an
2695 access to the unconstrained array, rather than the
2696 unconstrained array. So, we need to restore that
2697 typedef layer, which we can do by forcing the element's
2698 type back to its original type. Otherwise, the returned
2699 value is going to be printed as the array, rather
2700 than as an access. Another symptom of the same issue
2701 would be that an expression trying to dereference the
2702 element would also be improperly rejected. */
2703 deprecated_set_value_type (elt, saved_elt_type);
2704 }
2705
2706 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2707 }
b9c50e9a 2708
14f9c5c9
AS
2709 return elt;
2710}
2711
deede10c
JB
2712/* Assuming ARR is a pointer to a GDB array, the value of the element
2713 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2714 Does not read the entire array into memory.
2715
2716 Note: Unlike what one would expect, this function is used instead of
2717 ada_value_subscript for basically all non-packed array types. The reason
2718 for this is that a side effect of doing our own pointer arithmetics instead
2719 of relying on value_subscript is that there is no implicit typedef peeling.
2720 This is important for arrays of array accesses, where it allows us to
2721 preserve the fact that the array's element is an array access, where the
2722 access part os encoded in a typedef layer. */
14f9c5c9 2723
2c0b251b 2724static struct value *
deede10c 2725ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2726{
2727 int k;
919e6dbe 2728 struct value *array_ind = ada_value_ind (arr);
deede10c 2729 struct type *type
919e6dbe
PMR
2730 = check_typedef (value_enclosing_type (array_ind));
2731
78134374 2732 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2733 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2734 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2735
2736 for (k = 0; k < arity; k += 1)
2737 {
2738 LONGEST lwb, upb;
14f9c5c9 2739
78134374 2740 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2741 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2742 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2743 value_copy (arr));
3d967001 2744 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2745 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2746 type = TYPE_TARGET_TYPE (type);
2747 }
2748
2749 return value_ind (arr);
2750}
2751
0b5d8877 2752/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2753 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2754 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2755 this array is LOW, as per Ada rules. */
0b5d8877 2756static struct value *
f5938064 2757ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2758 int low, int high)
0b5d8877 2759{
b0dd7688 2760 struct type *type0 = ada_check_typedef (type);
3d967001 2761 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2762 struct type *index_type
aa715135 2763 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2764 struct type *slice_type = create_array_type_with_stride
2765 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2766 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2767 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2768 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 2769 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
2770 CORE_ADDR base;
2771
6244c119
SM
2772 low_pos = discrete_position (base_index_type, low);
2773 base_low_pos = discrete_position (base_index_type, base_low);
2774
2775 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
2776 {
2777 warning (_("unable to get positions in slice, use bounds instead"));
2778 low_pos = low;
2779 base_low_pos = base_low;
2780 }
5b4ee69b 2781
7ff5b937
TT
2782 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2783 if (stride == 0)
2784 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2785
6244c119 2786 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 2787 return value_at_lazy (slice_type, base);
0b5d8877
PH
2788}
2789
2790
2791static struct value *
2792ada_value_slice (struct value *array, int low, int high)
2793{
b0dd7688 2794 struct type *type = ada_check_typedef (value_type (array));
3d967001 2795 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2796 struct type *index_type
3d967001 2797 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2798 struct type *slice_type = create_array_type_with_stride
2799 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2800 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2801 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
2802 gdb::optional<LONGEST> low_pos, high_pos;
2803
5b4ee69b 2804
6244c119
SM
2805 low_pos = discrete_position (base_index_type, low);
2806 high_pos = discrete_position (base_index_type, high);
2807
2808 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
2809 {
2810 warning (_("unable to get positions in slice, use bounds instead"));
2811 low_pos = low;
2812 high_pos = high;
2813 }
2814
2815 return value_cast (slice_type,
6244c119 2816 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
2817}
2818
14f9c5c9
AS
2819/* If type is a record type in the form of a standard GNAT array
2820 descriptor, returns the number of dimensions for type. If arr is a
2821 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2822 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2823
2824int
d2e4a39e 2825ada_array_arity (struct type *type)
14f9c5c9
AS
2826{
2827 int arity;
2828
2829 if (type == NULL)
2830 return 0;
2831
2832 type = desc_base_type (type);
2833
2834 arity = 0;
78134374 2835 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2836 return desc_arity (desc_bounds_type (type));
d2e4a39e 2837 else
78134374 2838 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2839 {
dda83cd7
SM
2840 arity += 1;
2841 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2842 }
d2e4a39e 2843
14f9c5c9
AS
2844 return arity;
2845}
2846
2847/* If TYPE is a record type in the form of a standard GNAT array
2848 descriptor or a simple array type, returns the element type for
2849 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2850 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2851
d2e4a39e
AS
2852struct type *
2853ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2854{
2855 type = desc_base_type (type);
2856
78134374 2857 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2858 {
2859 int k;
d2e4a39e 2860 struct type *p_array_type;
14f9c5c9 2861
556bdfd4 2862 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2863
2864 k = ada_array_arity (type);
2865 if (k == 0)
dda83cd7 2866 return NULL;
d2e4a39e 2867
4c4b4cd2 2868 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2869 if (nindices >= 0 && k > nindices)
dda83cd7 2870 k = nindices;
d2e4a39e 2871 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2872 {
2873 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2874 k -= 1;
2875 }
14f9c5c9
AS
2876 return p_array_type;
2877 }
78134374 2878 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2879 {
78134374 2880 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2881 {
2882 type = TYPE_TARGET_TYPE (type);
2883 nindices -= 1;
2884 }
14f9c5c9
AS
2885 return type;
2886 }
2887
2888 return NULL;
2889}
2890
08a057e6 2891/* See ada-lang.h. */
14f9c5c9 2892
08a057e6 2893struct type *
1eea4ebd 2894ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2895{
4c4b4cd2
PH
2896 struct type *result_type;
2897
14f9c5c9
AS
2898 type = desc_base_type (type);
2899
1eea4ebd
UW
2900 if (n < 0 || n > ada_array_arity (type))
2901 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2902
4c4b4cd2 2903 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2904 {
2905 int i;
2906
2907 for (i = 1; i < n; i += 1)
2869ac4b
TT
2908 {
2909 type = ada_check_typedef (type);
2910 type = TYPE_TARGET_TYPE (type);
2911 }
2912 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
4c4b4cd2 2913 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2914 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2915 perhaps stabsread.c would make more sense. */
78134374 2916 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2917 result_type = NULL;
14f9c5c9 2918 }
d2e4a39e 2919 else
1eea4ebd
UW
2920 {
2921 result_type = desc_index_type (desc_bounds_type (type), n);
2922 if (result_type == NULL)
2923 error (_("attempt to take bound of something that is not an array"));
2924 }
2925
2926 return result_type;
14f9c5c9
AS
2927}
2928
2929/* Given that arr is an array type, returns the lower bound of the
2930 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2931 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2932 array-descriptor type. It works for other arrays with bounds supplied
2933 by run-time quantities other than discriminants. */
14f9c5c9 2934
abb68b3e 2935static LONGEST
fb5e3d5c 2936ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2937{
8a48ac95 2938 struct type *type, *index_type_desc, *index_type;
1ce677a4 2939 int i;
262452ec
JK
2940
2941 gdb_assert (which == 0 || which == 1);
14f9c5c9 2942
ad82864c
JB
2943 if (ada_is_constrained_packed_array_type (arr_type))
2944 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2945
4c4b4cd2 2946 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2947 return (LONGEST) - which;
14f9c5c9 2948
78134374 2949 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2950 type = TYPE_TARGET_TYPE (arr_type);
2951 else
2952 type = arr_type;
2953
22c4c60c 2954 if (type->is_fixed_instance ())
bafffb51
JB
2955 {
2956 /* The array has already been fixed, so we do not need to
2957 check the parallel ___XA type again. That encoding has
2958 already been applied, so ignore it now. */
2959 index_type_desc = NULL;
2960 }
2961 else
2962 {
2963 index_type_desc = ada_find_parallel_type (type, "___XA");
2964 ada_fixup_array_indexes_type (index_type_desc);
2965 }
2966
262452ec 2967 if (index_type_desc != NULL)
940da03e 2968 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2969 NULL);
262452ec 2970 else
8a48ac95
JB
2971 {
2972 struct type *elt_type = check_typedef (type);
2973
2974 for (i = 1; i < n; i++)
2975 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2976
3d967001 2977 index_type = elt_type->index_type ();
8a48ac95 2978 }
262452ec 2979
43bbcdc2
PH
2980 return
2981 (LONGEST) (which == 0
dda83cd7
SM
2982 ? ada_discrete_type_low_bound (index_type)
2983 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2984}
2985
2986/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2987 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2988 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2989 supplied by run-time quantities other than discriminants. */
14f9c5c9 2990
1eea4ebd 2991static LONGEST
4dc81987 2992ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2993{
eb479039
JB
2994 struct type *arr_type;
2995
78134374 2996 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2997 arr = value_ind (arr);
2998 arr_type = value_enclosing_type (arr);
14f9c5c9 2999
ad82864c
JB
3000 if (ada_is_constrained_packed_array_type (arr_type))
3001 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3002 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3003 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3004 else
1eea4ebd 3005 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3006}
3007
3008/* Given that arr is an array value, returns the length of the
3009 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3010 supplied by run-time quantities other than discriminants.
3011 Does not work for arrays indexed by enumeration types with representation
3012 clauses at the moment. */
14f9c5c9 3013
1eea4ebd 3014static LONGEST
d2e4a39e 3015ada_array_length (struct value *arr, int n)
14f9c5c9 3016{
aa715135
JG
3017 struct type *arr_type, *index_type;
3018 int low, high;
eb479039 3019
78134374 3020 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3021 arr = value_ind (arr);
3022 arr_type = value_enclosing_type (arr);
14f9c5c9 3023
ad82864c
JB
3024 if (ada_is_constrained_packed_array_type (arr_type))
3025 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3026
4c4b4cd2 3027 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3028 {
3029 low = ada_array_bound_from_type (arr_type, n, 0);
3030 high = ada_array_bound_from_type (arr_type, n, 1);
3031 }
14f9c5c9 3032 else
aa715135
JG
3033 {
3034 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3035 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3036 }
3037
f168693b 3038 arr_type = check_typedef (arr_type);
7150d33c 3039 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3040 if (index_type != NULL)
3041 {
3042 struct type *base_type;
78134374 3043 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3044 base_type = TYPE_TARGET_TYPE (index_type);
3045 else
3046 base_type = index_type;
3047
3048 low = pos_atr (value_from_longest (base_type, low));
3049 high = pos_atr (value_from_longest (base_type, high));
3050 }
3051 return high - low + 1;
4c4b4cd2
PH
3052}
3053
bff8c71f
TT
3054/* An array whose type is that of ARR_TYPE (an array type), with
3055 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3056 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3057
3058static struct value *
bff8c71f 3059empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3060{
b0dd7688 3061 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3062 struct type *index_type
3063 = create_static_range_type
dda83cd7 3064 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3065 high < low ? low - 1 : high);
b0dd7688 3066 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3067
0b5d8877 3068 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3069}
14f9c5c9 3070\f
d2e4a39e 3071
dda83cd7 3072 /* Name resolution */
14f9c5c9 3073
4c4b4cd2
PH
3074/* The "decoded" name for the user-definable Ada operator corresponding
3075 to OP. */
14f9c5c9 3076
d2e4a39e 3077static const char *
4c4b4cd2 3078ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3079{
3080 int i;
3081
4c4b4cd2 3082 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3083 {
3084 if (ada_opname_table[i].op == op)
dda83cd7 3085 return ada_opname_table[i].decoded;
14f9c5c9 3086 }
323e0a4a 3087 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3088}
3089
de93309a
SM
3090/* Returns true (non-zero) iff decoded name N0 should appear before N1
3091 in a listing of choices during disambiguation (see sort_choices, below).
3092 The idea is that overloadings of a subprogram name from the
3093 same package should sort in their source order. We settle for ordering
3094 such symbols by their trailing number (__N or $N). */
14f9c5c9 3095
de93309a
SM
3096static int
3097encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3098{
de93309a
SM
3099 if (N1 == NULL)
3100 return 0;
3101 else if (N0 == NULL)
3102 return 1;
3103 else
3104 {
3105 int k0, k1;
30b15541 3106
de93309a 3107 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3108 ;
de93309a 3109 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3110 ;
de93309a 3111 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3112 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3113 {
3114 int n0, n1;
3115
3116 n0 = k0;
3117 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3118 n0 -= 1;
3119 n1 = k1;
3120 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3121 n1 -= 1;
3122 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3123 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3124 }
de93309a
SM
3125 return (strcmp (N0, N1) < 0);
3126 }
14f9c5c9
AS
3127}
3128
de93309a
SM
3129/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3130 encoded names. */
14f9c5c9 3131
de93309a
SM
3132static void
3133sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3134{
14f9c5c9 3135 int i;
14f9c5c9 3136
de93309a 3137 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3138 {
de93309a
SM
3139 struct block_symbol sym = syms[i];
3140 int j;
3141
3142 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3143 {
3144 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3145 sym.symbol->linkage_name ()))
3146 break;
3147 syms[j + 1] = syms[j];
3148 }
de93309a
SM
3149 syms[j + 1] = sym;
3150 }
3151}
14f9c5c9 3152
de93309a
SM
3153/* Whether GDB should display formals and return types for functions in the
3154 overloads selection menu. */
3155static bool print_signatures = true;
4c4b4cd2 3156
de93309a
SM
3157/* Print the signature for SYM on STREAM according to the FLAGS options. For
3158 all but functions, the signature is just the name of the symbol. For
3159 functions, this is the name of the function, the list of types for formals
3160 and the return type (if any). */
4c4b4cd2 3161
de93309a
SM
3162static void
3163ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3164 const struct type_print_options *flags)
3165{
5f9c5a63 3166 struct type *type = sym->type ();
14f9c5c9 3167
987012b8 3168 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3169 if (!print_signatures
3170 || type == NULL
78134374 3171 || type->code () != TYPE_CODE_FUNC)
de93309a 3172 return;
4c4b4cd2 3173
1f704f76 3174 if (type->num_fields () > 0)
de93309a
SM
3175 {
3176 int i;
14f9c5c9 3177
de93309a 3178 fprintf_filtered (stream, " (");
1f704f76 3179 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3180 {
3181 if (i > 0)
3182 fprintf_filtered (stream, "; ");
940da03e 3183 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3184 flags);
3185 }
3186 fprintf_filtered (stream, ")");
3187 }
3188 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3189 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3190 {
3191 fprintf_filtered (stream, " return ");
3192 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3193 }
3194}
14f9c5c9 3195
de93309a
SM
3196/* Read and validate a set of numeric choices from the user in the
3197 range 0 .. N_CHOICES-1. Place the results in increasing
3198 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3199
de93309a
SM
3200 The user types choices as a sequence of numbers on one line
3201 separated by blanks, encoding them as follows:
14f9c5c9 3202
de93309a
SM
3203 + A choice of 0 means to cancel the selection, throwing an error.
3204 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3205 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3206
de93309a 3207 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3208
de93309a
SM
3209 ANNOTATION_SUFFIX, if present, is used to annotate the input
3210 prompts (for use with the -f switch). */
14f9c5c9 3211
de93309a
SM
3212static int
3213get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3214 int is_all_choice, const char *annotation_suffix)
de93309a 3215{
992a7040 3216 const char *args;
de93309a
SM
3217 const char *prompt;
3218 int n_chosen;
3219 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3220
de93309a
SM
3221 prompt = getenv ("PS2");
3222 if (prompt == NULL)
3223 prompt = "> ";
4c4b4cd2 3224
de93309a 3225 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3226
de93309a
SM
3227 if (args == NULL)
3228 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3229
de93309a 3230 n_chosen = 0;
4c4b4cd2 3231
de93309a
SM
3232 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3233 order, as given in args. Choices are validated. */
3234 while (1)
14f9c5c9 3235 {
de93309a
SM
3236 char *args2;
3237 int choice, j;
76a01679 3238
de93309a
SM
3239 args = skip_spaces (args);
3240 if (*args == '\0' && n_chosen == 0)
dda83cd7 3241 error_no_arg (_("one or more choice numbers"));
de93309a 3242 else if (*args == '\0')
dda83cd7 3243 break;
76a01679 3244
de93309a
SM
3245 choice = strtol (args, &args2, 10);
3246 if (args == args2 || choice < 0
dda83cd7
SM
3247 || choice > n_choices + first_choice - 1)
3248 error (_("Argument must be choice number"));
de93309a 3249 args = args2;
76a01679 3250
de93309a 3251 if (choice == 0)
dda83cd7 3252 error (_("cancelled"));
76a01679 3253
de93309a 3254 if (choice < first_choice)
dda83cd7
SM
3255 {
3256 n_chosen = n_choices;
3257 for (j = 0; j < n_choices; j += 1)
3258 choices[j] = j;
3259 break;
3260 }
de93309a 3261 choice -= first_choice;
76a01679 3262
de93309a 3263 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3264 {
3265 }
4c4b4cd2 3266
de93309a 3267 if (j < 0 || choice != choices[j])
dda83cd7
SM
3268 {
3269 int k;
4c4b4cd2 3270
dda83cd7
SM
3271 for (k = n_chosen - 1; k > j; k -= 1)
3272 choices[k + 1] = choices[k];
3273 choices[j + 1] = choice;
3274 n_chosen += 1;
3275 }
14f9c5c9
AS
3276 }
3277
de93309a
SM
3278 if (n_chosen > max_results)
3279 error (_("Select no more than %d of the above"), max_results);
3280
3281 return n_chosen;
14f9c5c9
AS
3282}
3283
de93309a
SM
3284/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3285 by asking the user (if necessary), returning the number selected,
3286 and setting the first elements of SYMS items. Error if no symbols
3287 selected. */
3288
3289/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3290 to be re-integrated one of these days. */
14f9c5c9
AS
3291
3292static int
de93309a 3293user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3294{
de93309a
SM
3295 int i;
3296 int *chosen = XALLOCAVEC (int , nsyms);
3297 int n_chosen;
3298 int first_choice = (max_results == 1) ? 1 : 2;
3299 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3300
de93309a
SM
3301 if (max_results < 1)
3302 error (_("Request to select 0 symbols!"));
3303 if (nsyms <= 1)
3304 return nsyms;
14f9c5c9 3305
de93309a
SM
3306 if (select_mode == multiple_symbols_cancel)
3307 error (_("\
3308canceled because the command is ambiguous\n\
3309See set/show multiple-symbol."));
14f9c5c9 3310
de93309a
SM
3311 /* If select_mode is "all", then return all possible symbols.
3312 Only do that if more than one symbol can be selected, of course.
3313 Otherwise, display the menu as usual. */
3314 if (select_mode == multiple_symbols_all && max_results > 1)
3315 return nsyms;
14f9c5c9 3316
de93309a
SM
3317 printf_filtered (_("[0] cancel\n"));
3318 if (max_results > 1)
3319 printf_filtered (_("[1] all\n"));
14f9c5c9 3320
de93309a 3321 sort_choices (syms, nsyms);
14f9c5c9 3322
de93309a
SM
3323 for (i = 0; i < nsyms; i += 1)
3324 {
3325 if (syms[i].symbol == NULL)
dda83cd7 3326 continue;
14f9c5c9 3327
66d7f48f 3328 if (syms[i].symbol->aclass () == LOC_BLOCK)
dda83cd7
SM
3329 {
3330 struct symtab_and_line sal =
3331 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3332
de93309a
SM
3333 printf_filtered ("[%d] ", i + first_choice);
3334 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3335 &type_print_raw_options);
3336 if (sal.symtab == NULL)
3337 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3338 metadata_style.style ().ptr (), nullptr, sal.line);
3339 else
3340 printf_filtered
3341 (_(" at %ps:%d\n"),
3342 styled_string (file_name_style.style (),
3343 symtab_to_filename_for_display (sal.symtab)),
3344 sal.line);
dda83cd7
SM
3345 continue;
3346 }
76a01679 3347 else
dda83cd7
SM
3348 {
3349 int is_enumeral =
66d7f48f 3350 (syms[i].symbol->aclass () == LOC_CONST
5f9c5a63
SM
3351 && syms[i].symbol->type () != NULL
3352 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
de93309a 3353 struct symtab *symtab = NULL;
4c4b4cd2 3354
7b3ecc75 3355 if (syms[i].symbol->is_objfile_owned ())
de93309a
SM
3356 symtab = symbol_symtab (syms[i].symbol);
3357
dda83cd7 3358 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3359 {
3360 printf_filtered ("[%d] ", i + first_choice);
3361 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3362 &type_print_raw_options);
3363 printf_filtered (_(" at %s:%d\n"),
3364 symtab_to_filename_for_display (symtab),
3365 SYMBOL_LINE (syms[i].symbol));
3366 }
dda83cd7 3367 else if (is_enumeral
5f9c5a63 3368 && syms[i].symbol->type ()->name () != NULL)
dda83cd7
SM
3369 {
3370 printf_filtered (("[%d] "), i + first_choice);
5f9c5a63 3371 ada_print_type (syms[i].symbol->type (), NULL,
dda83cd7
SM
3372 gdb_stdout, -1, 0, &type_print_raw_options);
3373 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3374 syms[i].symbol->print_name ());
dda83cd7 3375 }
de93309a
SM
3376 else
3377 {
3378 printf_filtered ("[%d] ", i + first_choice);
3379 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3380 &type_print_raw_options);
3381
3382 if (symtab != NULL)
3383 printf_filtered (is_enumeral
3384 ? _(" in %s (enumeral)\n")
3385 : _(" at %s:?\n"),
3386 symtab_to_filename_for_display (symtab));
3387 else
3388 printf_filtered (is_enumeral
3389 ? _(" (enumeral)\n")
3390 : _(" at ?\n"));
3391 }
dda83cd7 3392 }
14f9c5c9 3393 }
14f9c5c9 3394
de93309a 3395 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3396 "overload-choice");
14f9c5c9 3397
de93309a
SM
3398 for (i = 0; i < n_chosen; i += 1)
3399 syms[i] = syms[chosen[i]];
14f9c5c9 3400
de93309a
SM
3401 return n_chosen;
3402}
14f9c5c9 3403
cd9a3148
TT
3404/* See ada-lang.h. */
3405
3406block_symbol
7056f312 3407ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
cd9a3148
TT
3408 int nargs, value *argvec[])
3409{
3410 if (possible_user_operator_p (op, argvec))
3411 {
3412 std::vector<struct block_symbol> candidates
3413 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3414 NULL, VAR_DOMAIN);
3415
3416 int i = ada_resolve_function (candidates, argvec,
3417 nargs, ada_decoded_op_name (op), NULL,
3418 parse_completion);
3419 if (i >= 0)
3420 return candidates[i];
3421 }
3422 return {};
3423}
3424
3425/* See ada-lang.h. */
3426
3427block_symbol
3428ada_resolve_funcall (struct symbol *sym, const struct block *block,
3429 struct type *context_type,
7056f312 3430 bool parse_completion,
cd9a3148
TT
3431 int nargs, value *argvec[],
3432 innermost_block_tracker *tracker)
3433{
3434 std::vector<struct block_symbol> candidates
3435 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3436
3437 int i;
3438 if (candidates.size () == 1)
3439 i = 0;
3440 else
3441 {
3442 i = ada_resolve_function
3443 (candidates,
3444 argvec, nargs,
3445 sym->linkage_name (),
3446 context_type, parse_completion);
3447 if (i < 0)
3448 error (_("Could not find a match for %s"), sym->print_name ());
3449 }
3450
3451 tracker->update (candidates[i]);
3452 return candidates[i];
3453}
3454
ba8694b6
TT
3455/* Resolve a mention of a name where the context type is an
3456 enumeration type. */
3457
3458static int
3459ada_resolve_enum (std::vector<struct block_symbol> &syms,
3460 const char *name, struct type *context_type,
3461 bool parse_completion)
3462{
3463 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3464 context_type = ada_check_typedef (context_type);
3465
3466 for (int i = 0; i < syms.size (); ++i)
3467 {
3468 /* We already know the name matches, so we're just looking for
3469 an element of the correct enum type. */
5f9c5a63 3470 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
ba8694b6
TT
3471 return i;
3472 }
3473
3474 error (_("No name '%s' in enumeration type '%s'"), name,
3475 ada_type_name (context_type));
3476}
3477
cd9a3148
TT
3478/* See ada-lang.h. */
3479
3480block_symbol
3481ada_resolve_variable (struct symbol *sym, const struct block *block,
3482 struct type *context_type,
7056f312 3483 bool parse_completion,
cd9a3148
TT
3484 int deprocedure_p,
3485 innermost_block_tracker *tracker)
3486{
3487 std::vector<struct block_symbol> candidates
3488 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3489
3490 if (std::any_of (candidates.begin (),
3491 candidates.end (),
3492 [] (block_symbol &bsym)
3493 {
66d7f48f 3494 switch (bsym.symbol->aclass ())
cd9a3148
TT
3495 {
3496 case LOC_REGISTER:
3497 case LOC_ARG:
3498 case LOC_REF_ARG:
3499 case LOC_REGPARM_ADDR:
3500 case LOC_LOCAL:
3501 case LOC_COMPUTED:
3502 return true;
3503 default:
3504 return false;
3505 }
3506 }))
3507 {
3508 /* Types tend to get re-introduced locally, so if there
3509 are any local symbols that are not types, first filter
3510 out all types. */
3511 candidates.erase
3512 (std::remove_if
3513 (candidates.begin (),
3514 candidates.end (),
3515 [] (block_symbol &bsym)
3516 {
66d7f48f 3517 return bsym.symbol->aclass () == LOC_TYPEDEF;
cd9a3148
TT
3518 }),
3519 candidates.end ());
3520 }
3521
2c71f639
TV
3522 /* Filter out artificial symbols. */
3523 candidates.erase
3524 (std::remove_if
3525 (candidates.begin (),
3526 candidates.end (),
3527 [] (block_symbol &bsym)
3528 {
3529 return bsym.symbol->artificial;
3530 }),
3531 candidates.end ());
3532
cd9a3148
TT
3533 int i;
3534 if (candidates.empty ())
3535 error (_("No definition found for %s"), sym->print_name ());
3536 else if (candidates.size () == 1)
3537 i = 0;
ba8694b6
TT
3538 else if (context_type != nullptr
3539 && context_type->code () == TYPE_CODE_ENUM)
3540 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3541 parse_completion);
cd9a3148
TT
3542 else if (deprocedure_p && !is_nonfunction (candidates))
3543 {
3544 i = ada_resolve_function
3545 (candidates, NULL, 0,
3546 sym->linkage_name (),
3547 context_type, parse_completion);
3548 if (i < 0)
3549 error (_("Could not find a match for %s"), sym->print_name ());
3550 }
3551 else
3552 {
3553 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3554 user_select_syms (candidates.data (), candidates.size (), 1);
3555 i = 0;
3556 }
3557
3558 tracker->update (candidates[i]);
3559 return candidates[i];
3560}
3561
db2534b7 3562/* Return non-zero if formal type FTYPE matches actual type ATYPE. */
de93309a
SM
3563/* The term "match" here is rather loose. The match is heuristic and
3564 liberal. */
14f9c5c9 3565
de93309a 3566static int
db2534b7 3567ada_type_match (struct type *ftype, struct type *atype)
14f9c5c9 3568{
de93309a
SM
3569 ftype = ada_check_typedef (ftype);
3570 atype = ada_check_typedef (atype);
14f9c5c9 3571
78134374 3572 if (ftype->code () == TYPE_CODE_REF)
de93309a 3573 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3574 if (atype->code () == TYPE_CODE_REF)
de93309a 3575 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3576
78134374 3577 switch (ftype->code ())
14f9c5c9 3578 {
de93309a 3579 default:
78134374 3580 return ftype->code () == atype->code ();
de93309a 3581 case TYPE_CODE_PTR:
db2534b7
TT
3582 if (atype->code () != TYPE_CODE_PTR)
3583 return 0;
3584 atype = TYPE_TARGET_TYPE (atype);
3585 /* This can only happen if the actual argument is 'null'. */
3586 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3587 return 1;
3588 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
de93309a
SM
3589 case TYPE_CODE_INT:
3590 case TYPE_CODE_ENUM:
3591 case TYPE_CODE_RANGE:
78134374 3592 switch (atype->code ())
dda83cd7
SM
3593 {
3594 case TYPE_CODE_INT:
3595 case TYPE_CODE_ENUM:
3596 case TYPE_CODE_RANGE:
3597 return 1;
3598 default:
3599 return 0;
3600 }
d2e4a39e 3601
de93309a 3602 case TYPE_CODE_ARRAY:
78134374 3603 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3604 || ada_is_array_descriptor_type (atype));
14f9c5c9 3605
de93309a
SM
3606 case TYPE_CODE_STRUCT:
3607 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3608 return (atype->code () == TYPE_CODE_ARRAY
3609 || ada_is_array_descriptor_type (atype));
de93309a 3610 else
dda83cd7
SM
3611 return (atype->code () == TYPE_CODE_STRUCT
3612 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3613
de93309a
SM
3614 case TYPE_CODE_UNION:
3615 case TYPE_CODE_FLT:
78134374 3616 return (atype->code () == ftype->code ());
de93309a 3617 }
14f9c5c9
AS
3618}
3619
de93309a
SM
3620/* Return non-zero if the formals of FUNC "sufficiently match" the
3621 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3622 may also be an enumeral, in which case it is treated as a 0-
3623 argument function. */
14f9c5c9 3624
de93309a
SM
3625static int
3626ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3627{
3628 int i;
5f9c5a63 3629 struct type *func_type = func->type ();
14f9c5c9 3630
66d7f48f 3631 if (func->aclass () == LOC_CONST
78134374 3632 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3633 return (n_actuals == 0);
78134374 3634 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3635 return 0;
14f9c5c9 3636
1f704f76 3637 if (func_type->num_fields () != n_actuals)
de93309a 3638 return 0;
14f9c5c9 3639
de93309a
SM
3640 for (i = 0; i < n_actuals; i += 1)
3641 {
3642 if (actuals[i] == NULL)
dda83cd7 3643 return 0;
de93309a 3644 else
dda83cd7
SM
3645 {
3646 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3647 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3648
db2534b7 3649 if (!ada_type_match (ftype, atype))
dda83cd7
SM
3650 return 0;
3651 }
de93309a
SM
3652 }
3653 return 1;
3654}
d2e4a39e 3655
de93309a
SM
3656/* False iff function type FUNC_TYPE definitely does not produce a value
3657 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3658 FUNC_TYPE is not a valid function type with a non-null return type
3659 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3660
de93309a
SM
3661static int
3662return_match (struct type *func_type, struct type *context_type)
3663{
3664 struct type *return_type;
d2e4a39e 3665
de93309a
SM
3666 if (func_type == NULL)
3667 return 1;
14f9c5c9 3668
78134374 3669 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3670 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3671 else
3672 return_type = get_base_type (func_type);
3673 if (return_type == NULL)
3674 return 1;
76a01679 3675
de93309a 3676 context_type = get_base_type (context_type);
14f9c5c9 3677
78134374 3678 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3679 return context_type == NULL || return_type == context_type;
3680 else if (context_type == NULL)
78134374 3681 return return_type->code () != TYPE_CODE_VOID;
de93309a 3682 else
78134374 3683 return return_type->code () == context_type->code ();
de93309a 3684}
14f9c5c9 3685
14f9c5c9 3686
1bfa81ac 3687/* Returns the index in SYMS that contains the symbol for the
de93309a
SM
3688 function (if any) that matches the types of the NARGS arguments in
3689 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3690 that returns that type, then eliminate matches that don't. If
3691 CONTEXT_TYPE is void and there is at least one match that does not
3692 return void, eliminate all matches that do.
14f9c5c9 3693
de93309a
SM
3694 Asks the user if there is more than one match remaining. Returns -1
3695 if there is no such symbol or none is selected. NAME is used
3696 solely for messages. May re-arrange and modify SYMS in
3697 the process; the index returned is for the modified vector. */
14f9c5c9 3698
de93309a 3699static int
d1183b06
TT
3700ada_resolve_function (std::vector<struct block_symbol> &syms,
3701 struct value **args, int nargs,
dda83cd7 3702 const char *name, struct type *context_type,
7056f312 3703 bool parse_completion)
de93309a
SM
3704{
3705 int fallback;
3706 int k;
3707 int m; /* Number of hits */
14f9c5c9 3708
de93309a
SM
3709 m = 0;
3710 /* In the first pass of the loop, we only accept functions matching
3711 context_type. If none are found, we add a second pass of the loop
3712 where every function is accepted. */
3713 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3714 {
d1183b06 3715 for (k = 0; k < syms.size (); k += 1)
dda83cd7 3716 {
5f9c5a63 3717 struct type *type = ada_check_typedef (syms[k].symbol->type ());
5b4ee69b 3718
dda83cd7
SM
3719 if (ada_args_match (syms[k].symbol, args, nargs)
3720 && (fallback || return_match (type, context_type)))
3721 {
3722 syms[m] = syms[k];
3723 m += 1;
3724 }
3725 }
14f9c5c9
AS
3726 }
3727
de93309a
SM
3728 /* If we got multiple matches, ask the user which one to use. Don't do this
3729 interactive thing during completion, though, as the purpose of the
3730 completion is providing a list of all possible matches. Prompting the
3731 user to filter it down would be completely unexpected in this case. */
3732 if (m == 0)
3733 return -1;
3734 else if (m > 1 && !parse_completion)
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"), name);
d1183b06 3737 user_select_syms (syms.data (), m, 1);
de93309a
SM
3738 return 0;
3739 }
3740 return 0;
14f9c5c9
AS
3741}
3742
14f9c5c9
AS
3743/* Type-class predicates */
3744
4c4b4cd2
PH
3745/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3746 or FLOAT). */
14f9c5c9
AS
3747
3748static int
d2e4a39e 3749numeric_type_p (struct type *type)
14f9c5c9
AS
3750{
3751 if (type == NULL)
3752 return 0;
d2e4a39e
AS
3753 else
3754 {
78134374 3755 switch (type->code ())
dda83cd7
SM
3756 {
3757 case TYPE_CODE_INT:
3758 case TYPE_CODE_FLT:
c04da66c 3759 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
3760 return 1;
3761 case TYPE_CODE_RANGE:
3762 return (type == TYPE_TARGET_TYPE (type)
3763 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3764 default:
3765 return 0;
3766 }
d2e4a39e 3767 }
14f9c5c9
AS
3768}
3769
4c4b4cd2 3770/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3771
3772static int
d2e4a39e 3773integer_type_p (struct type *type)
14f9c5c9
AS
3774{
3775 if (type == NULL)
3776 return 0;
d2e4a39e
AS
3777 else
3778 {
78134374 3779 switch (type->code ())
dda83cd7
SM
3780 {
3781 case TYPE_CODE_INT:
3782 return 1;
3783 case TYPE_CODE_RANGE:
3784 return (type == TYPE_TARGET_TYPE (type)
3785 || integer_type_p (TYPE_TARGET_TYPE (type)));
3786 default:
3787 return 0;
3788 }
d2e4a39e 3789 }
14f9c5c9
AS
3790}
3791
4c4b4cd2 3792/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3793
3794static int
d2e4a39e 3795scalar_type_p (struct type *type)
14f9c5c9
AS
3796{
3797 if (type == NULL)
3798 return 0;
d2e4a39e
AS
3799 else
3800 {
78134374 3801 switch (type->code ())
dda83cd7
SM
3802 {
3803 case TYPE_CODE_INT:
3804 case TYPE_CODE_RANGE:
3805 case TYPE_CODE_ENUM:
3806 case TYPE_CODE_FLT:
c04da66c 3807 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
3808 return 1;
3809 default:
3810 return 0;
3811 }
d2e4a39e 3812 }
14f9c5c9
AS
3813}
3814
4c4b4cd2 3815/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3816
3817static int
d2e4a39e 3818discrete_type_p (struct type *type)
14f9c5c9
AS
3819{
3820 if (type == NULL)
3821 return 0;
d2e4a39e
AS
3822 else
3823 {
78134374 3824 switch (type->code ())
dda83cd7
SM
3825 {
3826 case TYPE_CODE_INT:
3827 case TYPE_CODE_RANGE:
3828 case TYPE_CODE_ENUM:
3829 case TYPE_CODE_BOOL:
3830 return 1;
3831 default:
3832 return 0;
3833 }
d2e4a39e 3834 }
14f9c5c9
AS
3835}
3836
4c4b4cd2
PH
3837/* Returns non-zero if OP with operands in the vector ARGS could be
3838 a user-defined function. Errs on the side of pre-defined operators
3839 (i.e., result 0). */
14f9c5c9
AS
3840
3841static int
d2e4a39e 3842possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3843{
76a01679 3844 struct type *type0 =
df407dfe 3845 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3846 struct type *type1 =
df407dfe 3847 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3848
4c4b4cd2
PH
3849 if (type0 == NULL)
3850 return 0;
3851
14f9c5c9
AS
3852 switch (op)
3853 {
3854 default:
3855 return 0;
3856
3857 case BINOP_ADD:
3858 case BINOP_SUB:
3859 case BINOP_MUL:
3860 case BINOP_DIV:
d2e4a39e 3861 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3862
3863 case BINOP_REM:
3864 case BINOP_MOD:
3865 case BINOP_BITWISE_AND:
3866 case BINOP_BITWISE_IOR:
3867 case BINOP_BITWISE_XOR:
d2e4a39e 3868 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3869
3870 case BINOP_EQUAL:
3871 case BINOP_NOTEQUAL:
3872 case BINOP_LESS:
3873 case BINOP_GTR:
3874 case BINOP_LEQ:
3875 case BINOP_GEQ:
d2e4a39e 3876 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3877
3878 case BINOP_CONCAT:
ee90b9ab 3879 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3880
3881 case BINOP_EXP:
d2e4a39e 3882 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3883
3884 case UNOP_NEG:
3885 case UNOP_PLUS:
3886 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3887 case UNOP_ABS:
3888 return (!numeric_type_p (type0));
14f9c5c9
AS
3889
3890 }
3891}
3892\f
dda83cd7 3893 /* Renaming */
14f9c5c9 3894
aeb5907d
JB
3895/* NOTES:
3896
3897 1. In the following, we assume that a renaming type's name may
3898 have an ___XD suffix. It would be nice if this went away at some
3899 point.
3900 2. We handle both the (old) purely type-based representation of
3901 renamings and the (new) variable-based encoding. At some point,
3902 it is devoutly to be hoped that the former goes away
3903 (FIXME: hilfinger-2007-07-09).
3904 3. Subprogram renamings are not implemented, although the XRS
3905 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3906
3907/* If SYM encodes a renaming,
3908
3909 <renaming> renames <renamed entity>,
3910
3911 sets *LEN to the length of the renamed entity's name,
3912 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3913 the string describing the subcomponent selected from the renamed
0963b4bd 3914 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3915 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3916 are undefined). Otherwise, returns a value indicating the category
3917 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3918 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3919 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3920 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3921 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3922 may be NULL, in which case they are not assigned.
3923
3924 [Currently, however, GCC does not generate subprogram renamings.] */
3925
3926enum ada_renaming_category
3927ada_parse_renaming (struct symbol *sym,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930{
3931 enum ada_renaming_category kind;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (sym == NULL)
3936 return ADA_NOT_RENAMING;
66d7f48f 3937 switch (sym->aclass ())
14f9c5c9 3938 {
aeb5907d
JB
3939 default:
3940 return ADA_NOT_RENAMING;
aeb5907d
JB
3941 case LOC_LOCAL:
3942 case LOC_STATIC:
3943 case LOC_COMPUTED:
3944 case LOC_OPTIMIZED_OUT:
987012b8 3945 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
3946 if (info == NULL)
3947 return ADA_NOT_RENAMING;
3948 switch (info[5])
3949 {
3950 case '_':
3951 kind = ADA_OBJECT_RENAMING;
3952 info += 6;
3953 break;
3954 case 'E':
3955 kind = ADA_EXCEPTION_RENAMING;
3956 info += 7;
3957 break;
3958 case 'P':
3959 kind = ADA_PACKAGE_RENAMING;
3960 info += 7;
3961 break;
3962 case 'S':
3963 kind = ADA_SUBPROGRAM_RENAMING;
3964 info += 7;
3965 break;
3966 default:
3967 return ADA_NOT_RENAMING;
3968 }
14f9c5c9 3969 }
4c4b4cd2 3970
de93309a
SM
3971 if (renamed_entity != NULL)
3972 *renamed_entity = info;
3973 suffix = strstr (info, "___XE");
3974 if (suffix == NULL || suffix == info)
3975 return ADA_NOT_RENAMING;
3976 if (len != NULL)
3977 *len = strlen (info) - strlen (suffix);
3978 suffix += 5;
3979 if (renaming_expr != NULL)
3980 *renaming_expr = suffix;
3981 return kind;
3982}
3983
3984/* Compute the value of the given RENAMING_SYM, which is expected to
3985 be a symbol encoding a renaming expression. BLOCK is the block
3986 used to evaluate the renaming. */
3987
3988static struct value *
3989ada_read_renaming_var_value (struct symbol *renaming_sym,
3990 const struct block *block)
3991{
3992 const char *sym_name;
3993
987012b8 3994 sym_name = renaming_sym->linkage_name ();
de93309a
SM
3995 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3996 return evaluate_expression (expr.get ());
3997}
3998\f
3999
dda83cd7 4000 /* Evaluation: Function Calls */
de93309a
SM
4001
4002/* Return an lvalue containing the value VAL. This is the identity on
4003 lvalues, and otherwise has the side-effect of allocating memory
4004 in the inferior where a copy of the value contents is copied. */
4005
4006static struct value *
4007ensure_lval (struct value *val)
4008{
4009 if (VALUE_LVAL (val) == not_lval
4010 || VALUE_LVAL (val) == lval_internalvar)
4011 {
4012 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4013 const CORE_ADDR addr =
dda83cd7 4014 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4015
4016 VALUE_LVAL (val) = lval_memory;
4017 set_value_address (val, addr);
50888e42 4018 write_memory (addr, value_contents (val).data (), len);
de93309a
SM
4019 }
4020
4021 return val;
4022}
4023
4024/* Given ARG, a value of type (pointer or reference to a)*
4025 structure/union, extract the component named NAME from the ultimate
4026 target structure/union and return it as a value with its
4027 appropriate type.
4028
4029 The routine searches for NAME among all members of the structure itself
4030 and (recursively) among all members of any wrapper members
4031 (e.g., '_parent').
4032
4033 If NO_ERR, then simply return NULL in case of error, rather than
4034 calling error. */
4035
4036static struct value *
4037ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4038{
4039 struct type *t, *t1;
4040 struct value *v;
4041 int check_tag;
4042
4043 v = NULL;
4044 t1 = t = ada_check_typedef (value_type (arg));
78134374 4045 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4046 {
4047 t1 = TYPE_TARGET_TYPE (t);
4048 if (t1 == NULL)
4049 goto BadValue;
4050 t1 = ada_check_typedef (t1);
78134374 4051 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4052 {
4053 arg = coerce_ref (arg);
4054 t = t1;
4055 }
de93309a
SM
4056 }
4057
78134374 4058 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4059 {
4060 t1 = TYPE_TARGET_TYPE (t);
4061 if (t1 == NULL)
4062 goto BadValue;
4063 t1 = ada_check_typedef (t1);
78134374 4064 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4065 {
4066 arg = value_ind (arg);
4067 t = t1;
4068 }
de93309a 4069 else
dda83cd7 4070 break;
de93309a 4071 }
aeb5907d 4072
78134374 4073 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4074 goto BadValue;
52ce6436 4075
de93309a
SM
4076 if (t1 == t)
4077 v = ada_search_struct_field (name, arg, 0, t);
4078 else
4079 {
4080 int bit_offset, bit_size, byte_offset;
4081 struct type *field_type;
4082 CORE_ADDR address;
a5ee536b 4083
78134374 4084 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4085 address = value_address (ada_value_ind (arg));
4086 else
4087 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4088
de93309a 4089 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4090 the case where the type is a reference to a tagged type, but
4091 we have to be careful to exclude pointers to tagged types.
4092 The latter should be shown as usual (as a pointer), whereas
4093 a reference should mostly be transparent to the user. */
14f9c5c9 4094
de93309a 4095 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4096 || (t1->code () == TYPE_CODE_REF
4097 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4098 {
4099 /* We first try to find the searched field in the current type.
de93309a 4100 If not found then let's look in the fixed type. */
14f9c5c9 4101
dda83cd7 4102 if (!find_struct_field (name, t1, 0,
4d1795ac
TT
4103 nullptr, nullptr, nullptr,
4104 nullptr, nullptr))
de93309a
SM
4105 check_tag = 1;
4106 else
4107 check_tag = 0;
dda83cd7 4108 }
de93309a
SM
4109 else
4110 check_tag = 0;
c3e5cd34 4111
de93309a
SM
4112 /* Convert to fixed type in all cases, so that we have proper
4113 offsets to each field in unconstrained record types. */
4114 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4115 address, NULL, check_tag);
4116
24aa1b02
TT
4117 /* Resolve the dynamic type as well. */
4118 arg = value_from_contents_and_address (t1, nullptr, address);
4119 t1 = value_type (arg);
4120
de93309a 4121 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4122 &field_type, &byte_offset, &bit_offset,
4123 &bit_size, NULL))
4124 {
4125 if (bit_size != 0)
4126 {
4127 if (t->code () == TYPE_CODE_REF)
4128 arg = ada_coerce_ref (arg);
4129 else
4130 arg = ada_value_ind (arg);
4131 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4132 bit_offset, bit_size,
4133 field_type);
4134 }
4135 else
4136 v = value_at_lazy (field_type, address + byte_offset);
4137 }
c3e5cd34 4138 }
14f9c5c9 4139
de93309a
SM
4140 if (v != NULL || no_err)
4141 return v;
4142 else
4143 error (_("There is no member named %s."), name);
4144
4145 BadValue:
4146 if (no_err)
4147 return NULL;
4148 else
4149 error (_("Attempt to extract a component of "
4150 "a value that is not a record."));
14f9c5c9
AS
4151}
4152
4153/* Return the value ACTUAL, converted to be an appropriate value for a
4154 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4155 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4156 values not residing in memory, updating it as needed. */
14f9c5c9 4157
a93c0eb6 4158struct value *
40bc484c 4159ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4160{
df407dfe 4161 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4162 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4163 struct type *formal_target =
78134374 4164 formal_type->code () == TYPE_CODE_PTR
61ee279c 4165 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4166 struct type *actual_target =
78134374 4167 actual_type->code () == TYPE_CODE_PTR
61ee279c 4168 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4169
4c4b4cd2 4170 if (ada_is_array_descriptor_type (formal_target)
78134374 4171 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4172 return make_array_descriptor (formal_type, actual);
78134374
SM
4173 else if (formal_type->code () == TYPE_CODE_PTR
4174 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4175 {
a84a8a0d 4176 struct value *result;
5b4ee69b 4177
78134374 4178 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4179 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4180 result = desc_data (actual);
78134374 4181 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4182 {
4183 if (VALUE_LVAL (actual) != lval_memory)
4184 {
4185 struct value *val;
4186
4187 actual_type = ada_check_typedef (value_type (actual));
4188 val = allocate_value (actual_type);
4bce7cda 4189 copy (value_contents (actual), value_contents_raw (val));
dda83cd7
SM
4190 actual = ensure_lval (val);
4191 }
4192 result = value_addr (actual);
4193 }
a84a8a0d
JB
4194 else
4195 return actual;
b1af9e97 4196 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4197 }
78134374 4198 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4199 return ada_value_ind (actual);
8344af1e
JB
4200 else if (ada_is_aligner_type (formal_type))
4201 {
4202 /* We need to turn this parameter into an aligner type
4203 as well. */
4204 struct value *aligner = allocate_value (formal_type);
4205 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4206
4207 value_assign_to_component (aligner, component, actual);
4208 return aligner;
4209 }
14f9c5c9
AS
4210
4211 return actual;
4212}
4213
438c98a1
JB
4214/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4215 type TYPE. This is usually an inefficient no-op except on some targets
4216 (such as AVR) where the representation of a pointer and an address
4217 differs. */
4218
4219static CORE_ADDR
4220value_pointer (struct value *value, struct type *type)
4221{
438c98a1 4222 unsigned len = TYPE_LENGTH (type);
224c3ddb 4223 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4224 CORE_ADDR addr;
4225
4226 addr = value_address (value);
8ee511af 4227 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
34877895 4228 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4229 return addr;
4230}
4231
14f9c5c9 4232
4c4b4cd2
PH
4233/* Push a descriptor of type TYPE for array value ARR on the stack at
4234 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4235 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4236 to-descriptor type rather than a descriptor type), a struct value *
4237 representing a pointer to this descriptor. */
14f9c5c9 4238
d2e4a39e 4239static struct value *
40bc484c 4240make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4241{
d2e4a39e
AS
4242 struct type *bounds_type = desc_bounds_type (type);
4243 struct type *desc_type = desc_base_type (type);
4244 struct value *descriptor = allocate_value (desc_type);
4245 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4246 int i;
d2e4a39e 4247
0963b4bd
MS
4248 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4249 i > 0; i -= 1)
14f9c5c9 4250 {
50888e42
SM
4251 modify_field (value_type (bounds),
4252 value_contents_writeable (bounds).data (),
19f220c3
JK
4253 ada_array_bound (arr, i, 0),
4254 desc_bound_bitpos (bounds_type, i, 0),
4255 desc_bound_bitsize (bounds_type, i, 0));
50888e42
SM
4256 modify_field (value_type (bounds),
4257 value_contents_writeable (bounds).data (),
19f220c3
JK
4258 ada_array_bound (arr, i, 1),
4259 desc_bound_bitpos (bounds_type, i, 1),
4260 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4261 }
d2e4a39e 4262
40bc484c 4263 bounds = ensure_lval (bounds);
d2e4a39e 4264
19f220c3 4265 modify_field (value_type (descriptor),
50888e42 4266 value_contents_writeable (descriptor).data (),
19f220c3 4267 value_pointer (ensure_lval (arr),
940da03e 4268 desc_type->field (0).type ()),
19f220c3
JK
4269 fat_pntr_data_bitpos (desc_type),
4270 fat_pntr_data_bitsize (desc_type));
4271
4272 modify_field (value_type (descriptor),
50888e42 4273 value_contents_writeable (descriptor).data (),
19f220c3 4274 value_pointer (bounds,
940da03e 4275 desc_type->field (1).type ()),
19f220c3
JK
4276 fat_pntr_bounds_bitpos (desc_type),
4277 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4278
40bc484c 4279 descriptor = ensure_lval (descriptor);
14f9c5c9 4280
78134374 4281 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4282 return value_addr (descriptor);
4283 else
4284 return descriptor;
4285}
14f9c5c9 4286\f
dda83cd7 4287 /* Symbol Cache Module */
3d9434b5 4288
3d9434b5 4289/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4290 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4291 on the type of entity being printed, the cache can make it as much
4292 as an order of magnitude faster than without it.
4293
4294 The descriptive type DWARF extension has significantly reduced
4295 the need for this cache, at least when DWARF is being used. However,
4296 even in this case, some expensive name-based symbol searches are still
4297 sometimes necessary - to find an XVZ variable, mostly. */
4298
ee01b665
JB
4299/* Return the symbol cache associated to the given program space PSPACE.
4300 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4301
ee01b665
JB
4302static struct ada_symbol_cache *
4303ada_get_symbol_cache (struct program_space *pspace)
4304{
4305 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4306
bdcccc56
TT
4307 if (pspace_data->sym_cache == nullptr)
4308 pspace_data->sym_cache.reset (new ada_symbol_cache);
ee01b665 4309
bdcccc56 4310 return pspace_data->sym_cache.get ();
ee01b665 4311}
3d9434b5
JB
4312
4313/* Clear all entries from the symbol cache. */
4314
4315static void
bdcccc56 4316ada_clear_symbol_cache ()
3d9434b5 4317{
bdcccc56
TT
4318 struct ada_pspace_data *pspace_data
4319 = get_ada_pspace_data (current_program_space);
ee01b665 4320
bdcccc56
TT
4321 if (pspace_data->sym_cache != nullptr)
4322 pspace_data->sym_cache.reset ();
3d9434b5
JB
4323}
4324
fe978cb0 4325/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4326 Return it if found, or NULL otherwise. */
4327
4328static struct cache_entry **
fe978cb0 4329find_entry (const char *name, domain_enum domain)
3d9434b5 4330{
ee01b665
JB
4331 struct ada_symbol_cache *sym_cache
4332 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4333 int h = msymbol_hash (name) % HASH_SIZE;
4334 struct cache_entry **e;
4335
ee01b665 4336 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4337 {
fe978cb0 4338 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4339 return e;
3d9434b5
JB
4340 }
4341 return NULL;
4342}
4343
fe978cb0 4344/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4345 Return 1 if found, 0 otherwise.
4346
4347 If an entry was found and SYM is not NULL, set *SYM to the entry's
4348 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4349
96d887e8 4350static int
fe978cb0 4351lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4352 struct symbol **sym, const struct block **block)
96d887e8 4353{
fe978cb0 4354 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4355
4356 if (e == NULL)
4357 return 0;
4358 if (sym != NULL)
4359 *sym = (*e)->sym;
4360 if (block != NULL)
4361 *block = (*e)->block;
4362 return 1;
96d887e8
PH
4363}
4364
3d9434b5 4365/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4366 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4367
96d887e8 4368static void
fe978cb0 4369cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4370 const struct block *block)
96d887e8 4371{
ee01b665
JB
4372 struct ada_symbol_cache *sym_cache
4373 = ada_get_symbol_cache (current_program_space);
3d9434b5 4374 int h;
3d9434b5
JB
4375 struct cache_entry *e;
4376
1994afbf
DE
4377 /* Symbols for builtin types don't have a block.
4378 For now don't cache such symbols. */
7b3ecc75 4379 if (sym != NULL && !sym->is_objfile_owned ())
1994afbf
DE
4380 return;
4381
3d9434b5
JB
4382 /* If the symbol is a local symbol, then do not cache it, as a search
4383 for that symbol depends on the context. To determine whether
4384 the symbol is local or not, we check the block where we found it
4385 against the global and static blocks of its associated symtab. */
4386 if (sym
012cfab9 4387 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
439247b6 4388 GLOBAL_BLOCK) != block
012cfab9 4389 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
439247b6 4390 STATIC_BLOCK) != block)
3d9434b5
JB
4391 return;
4392
4393 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4394 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4395 e->next = sym_cache->root[h];
4396 sym_cache->root[h] = e;
2ef5453b 4397 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4398 e->sym = sym;
fe978cb0 4399 e->domain = domain;
3d9434b5 4400 e->block = block;
96d887e8 4401}
4c4b4cd2 4402\f
dda83cd7 4403 /* Symbol Lookup */
4c4b4cd2 4404
b5ec771e
PA
4405/* Return the symbol name match type that should be used used when
4406 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4407
4408 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4409 for Ada lookups. */
c0431670 4410
b5ec771e
PA
4411static symbol_name_match_type
4412name_match_type_from_name (const char *lookup_name)
c0431670 4413{
b5ec771e
PA
4414 return (strstr (lookup_name, "__") == NULL
4415 ? symbol_name_match_type::WILD
4416 : symbol_name_match_type::FULL);
c0431670
JB
4417}
4418
4c4b4cd2
PH
4419/* Return the result of a standard (literal, C-like) lookup of NAME in
4420 given DOMAIN, visible from lexical block BLOCK. */
4421
4422static struct symbol *
4423standard_lookup (const char *name, const struct block *block,
dda83cd7 4424 domain_enum domain)
4c4b4cd2 4425{
acbd605d 4426 /* Initialize it just to avoid a GCC false warning. */
6640a367 4427 struct block_symbol sym = {};
4c4b4cd2 4428
d12307c1
PMR
4429 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4430 return sym.symbol;
a2cd4f14 4431 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4432 cache_symbol (name, domain, sym.symbol, sym.block);
4433 return sym.symbol;
4c4b4cd2
PH
4434}
4435
4436
4437/* Non-zero iff there is at least one non-function/non-enumeral symbol
1bfa81ac 4438 in the symbol fields of SYMS. We treat enumerals as functions,
4c4b4cd2
PH
4439 since they contend in overloading in the same way. */
4440static int
d1183b06 4441is_nonfunction (const std::vector<struct block_symbol> &syms)
4c4b4cd2 4442{
d1183b06 4443 for (const block_symbol &sym : syms)
5f9c5a63
SM
4444 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4445 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
66d7f48f 4446 || sym.symbol->aclass () != LOC_CONST))
14f9c5c9
AS
4447 return 1;
4448
4449 return 0;
4450}
4451
4452/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4453 struct types. Otherwise, they may not. */
14f9c5c9
AS
4454
4455static int
d2e4a39e 4456equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4457{
d2e4a39e 4458 if (type0 == type1)
14f9c5c9 4459 return 1;
d2e4a39e 4460 if (type0 == NULL || type1 == NULL
78134374 4461 || type0->code () != type1->code ())
14f9c5c9 4462 return 0;
78134374
SM
4463 if ((type0->code () == TYPE_CODE_STRUCT
4464 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4465 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4466 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4467 return 1;
d2e4a39e 4468
14f9c5c9
AS
4469 return 0;
4470}
4471
4472/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4473 no more defined than that of SYM1. */
14f9c5c9
AS
4474
4475static int
d2e4a39e 4476lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4477{
4478 if (sym0 == sym1)
4479 return 1;
6c9c307c 4480 if (sym0->domain () != sym1->domain ()
66d7f48f 4481 || sym0->aclass () != sym1->aclass ())
14f9c5c9
AS
4482 return 0;
4483
66d7f48f 4484 switch (sym0->aclass ())
14f9c5c9
AS
4485 {
4486 case LOC_UNDEF:
4487 return 1;
4488 case LOC_TYPEDEF:
4489 {
5f9c5a63
SM
4490 struct type *type0 = sym0->type ();
4491 struct type *type1 = sym1->type ();
dda83cd7
SM
4492 const char *name0 = sym0->linkage_name ();
4493 const char *name1 = sym1->linkage_name ();
4494 int len0 = strlen (name0);
4495
4496 return
4497 type0->code () == type1->code ()
4498 && (equiv_types (type0, type1)
4499 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4500 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4501 }
4502 case LOC_CONST:
4503 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
5f9c5a63 4504 && equiv_types (sym0->type (), sym1->type ());
4b610737
TT
4505
4506 case LOC_STATIC:
4507 {
dda83cd7
SM
4508 const char *name0 = sym0->linkage_name ();
4509 const char *name1 = sym1->linkage_name ();
4510 return (strcmp (name0, name1) == 0
4511 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4512 }
4513
d2e4a39e
AS
4514 default:
4515 return 0;
14f9c5c9
AS
4516 }
4517}
4518
d1183b06
TT
4519/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4520 records in RESULT. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4521
4522static void
d1183b06 4523add_defn_to_vec (std::vector<struct block_symbol> &result,
dda83cd7
SM
4524 struct symbol *sym,
4525 const struct block *block)
14f9c5c9 4526{
529cad9c
PH
4527 /* Do not try to complete stub types, as the debugger is probably
4528 already scanning all symbols matching a certain name at the
4529 time when this function is called. Trying to replace the stub
4530 type by its associated full type will cause us to restart a scan
4531 which may lead to an infinite recursion. Instead, the client
4532 collecting the matching symbols will end up collecting several
4533 matches, with at least one of them complete. It can then filter
4534 out the stub ones if needed. */
4535
d1183b06 4536 for (int i = result.size () - 1; i >= 0; i -= 1)
4c4b4cd2 4537 {
d1183b06 4538 if (lesseq_defined_than (sym, result[i].symbol))
dda83cd7 4539 return;
d1183b06 4540 else if (lesseq_defined_than (result[i].symbol, sym))
dda83cd7 4541 {
d1183b06
TT
4542 result[i].symbol = sym;
4543 result[i].block = block;
dda83cd7
SM
4544 return;
4545 }
4c4b4cd2
PH
4546 }
4547
d1183b06
TT
4548 struct block_symbol info;
4549 info.symbol = sym;
4550 info.block = block;
4551 result.push_back (info);
4c4b4cd2
PH
4552}
4553
7c7b6655
TT
4554/* Return a bound minimal symbol matching NAME according to Ada
4555 decoding rules. Returns an invalid symbol if there is no such
4556 minimal symbol. Names prefixed with "standard__" are handled
4557 specially: "standard__" is first stripped off, and only static and
4558 global symbols are searched. */
4c4b4cd2 4559
7c7b6655 4560struct bound_minimal_symbol
96d887e8 4561ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4562{
7c7b6655 4563 struct bound_minimal_symbol result;
4c4b4cd2 4564
7c7b6655
TT
4565 memset (&result, 0, sizeof (result));
4566
b5ec771e
PA
4567 symbol_name_match_type match_type = name_match_type_from_name (name);
4568 lookup_name_info lookup_name (name, match_type);
4569
4570 symbol_name_matcher_ftype *match_name
4571 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4572
2030c079 4573 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4574 {
7932255d 4575 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4576 {
c9d95fa3 4577 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4578 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4579 {
4580 result.minsym = msymbol;
4581 result.objfile = objfile;
4582 break;
4583 }
4584 }
4585 }
4c4b4cd2 4586
7c7b6655 4587 return result;
96d887e8 4588}
4c4b4cd2 4589
96d887e8
PH
4590/* True if TYPE is definitely an artificial type supplied to a symbol
4591 for which no debugging information was given in the symbol file. */
14f9c5c9 4592
96d887e8
PH
4593static int
4594is_nondebugging_type (struct type *type)
4595{
0d5cff50 4596 const char *name = ada_type_name (type);
5b4ee69b 4597
96d887e8
PH
4598 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4599}
4c4b4cd2 4600
8f17729f
JB
4601/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4602 that are deemed "identical" for practical purposes.
4603
4604 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4605 types and that their number of enumerals is identical (in other
1f704f76 4606 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4607
4608static int
4609ada_identical_enum_types_p (struct type *type1, struct type *type2)
4610{
4611 int i;
4612
4613 /* The heuristic we use here is fairly conservative. We consider
4614 that 2 enumerate types are identical if they have the same
4615 number of enumerals and that all enumerals have the same
4616 underlying value and name. */
4617
4618 /* All enums in the type should have an identical underlying value. */
1f704f76 4619 for (i = 0; i < type1->num_fields (); i++)
970db518 4620 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
8f17729f
JB
4621 return 0;
4622
4623 /* All enumerals should also have the same name (modulo any numerical
4624 suffix). */
1f704f76 4625 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4626 {
33d16dd9
SM
4627 const char *name_1 = type1->field (i).name ();
4628 const char *name_2 = type2->field (i).name ();
8f17729f
JB
4629 int len_1 = strlen (name_1);
4630 int len_2 = strlen (name_2);
4631
33d16dd9
SM
4632 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4633 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
8f17729f 4634 if (len_1 != len_2
33d16dd9
SM
4635 || strncmp (type1->field (i).name (),
4636 type2->field (i).name (),
8f17729f
JB
4637 len_1) != 0)
4638 return 0;
4639 }
4640
4641 return 1;
4642}
4643
4644/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4645 that are deemed "identical" for practical purposes. Sometimes,
4646 enumerals are not strictly identical, but their types are so similar
4647 that they can be considered identical.
4648
4649 For instance, consider the following code:
4650
4651 type Color is (Black, Red, Green, Blue, White);
4652 type RGB_Color is new Color range Red .. Blue;
4653
4654 Type RGB_Color is a subrange of an implicit type which is a copy
4655 of type Color. If we call that implicit type RGB_ColorB ("B" is
4656 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4657 As a result, when an expression references any of the enumeral
4658 by name (Eg. "print green"), the expression is technically
4659 ambiguous and the user should be asked to disambiguate. But
4660 doing so would only hinder the user, since it wouldn't matter
4661 what choice he makes, the outcome would always be the same.
4662 So, for practical purposes, we consider them as the same. */
4663
4664static int
54d343a2 4665symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4666{
4667 int i;
4668
4669 /* Before performing a thorough comparison check of each type,
4670 we perform a series of inexpensive checks. We expect that these
4671 checks will quickly fail in the vast majority of cases, and thus
4672 help prevent the unnecessary use of a more expensive comparison.
4673 Said comparison also expects us to make some of these checks
4674 (see ada_identical_enum_types_p). */
4675
4676 /* Quick check: All symbols should have an enum type. */
54d343a2 4677 for (i = 0; i < syms.size (); i++)
5f9c5a63 4678 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
8f17729f
JB
4679 return 0;
4680
4681 /* Quick check: They should all have the same value. */
54d343a2 4682 for (i = 1; i < syms.size (); i++)
d12307c1 4683 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4684 return 0;
4685
4686 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4687 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
4688 if (syms[i].symbol->type ()->num_fields ()
4689 != syms[0].symbol->type ()->num_fields ())
8f17729f
JB
4690 return 0;
4691
4692 /* All the sanity checks passed, so we might have a set of
4693 identical enumeration types. Perform a more complete
4694 comparison of the type of each symbol. */
54d343a2 4695 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
4696 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
4697 syms[0].symbol->type ()))
8f17729f
JB
4698 return 0;
4699
4700 return 1;
4701}
4702
54d343a2 4703/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4704 duplicate other symbols in the list (The only case I know of where
4705 this happens is when object files containing stabs-in-ecoff are
4706 linked with files containing ordinary ecoff debugging symbols (or no
1bfa81ac 4707 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4c4b4cd2 4708
d1183b06 4709static void
54d343a2 4710remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4711{
4712 int i, j;
4c4b4cd2 4713
8f17729f
JB
4714 /* We should never be called with less than 2 symbols, as there
4715 cannot be any extra symbol in that case. But it's easy to
4716 handle, since we have nothing to do in that case. */
54d343a2 4717 if (syms->size () < 2)
d1183b06 4718 return;
8f17729f 4719
96d887e8 4720 i = 0;
54d343a2 4721 while (i < syms->size ())
96d887e8 4722 {
a35ddb44 4723 int remove_p = 0;
339c13b6
JB
4724
4725 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 4726 the get rid of the stub. */
339c13b6 4727
5f9c5a63 4728 if ((*syms)[i].symbol->type ()->is_stub ()
dda83cd7
SM
4729 && (*syms)[i].symbol->linkage_name () != NULL)
4730 {
4731 for (j = 0; j < syms->size (); j++)
4732 {
4733 if (j != i
5f9c5a63 4734 && !(*syms)[j].symbol->type ()->is_stub ()
dda83cd7
SM
4735 && (*syms)[j].symbol->linkage_name () != NULL
4736 && strcmp ((*syms)[i].symbol->linkage_name (),
4737 (*syms)[j].symbol->linkage_name ()) == 0)
4738 remove_p = 1;
4739 }
4740 }
339c13b6
JB
4741
4742 /* Two symbols with the same name, same class and same address
dda83cd7 4743 should be identical. */
339c13b6 4744
987012b8 4745 else if ((*syms)[i].symbol->linkage_name () != NULL
66d7f48f 4746 && (*syms)[i].symbol->aclass () == LOC_STATIC
5f9c5a63 4747 && is_nondebugging_type ((*syms)[i].symbol->type ()))
dda83cd7
SM
4748 {
4749 for (j = 0; j < syms->size (); j += 1)
4750 {
4751 if (i != j
4752 && (*syms)[j].symbol->linkage_name () != NULL
4753 && strcmp ((*syms)[i].symbol->linkage_name (),
4754 (*syms)[j].symbol->linkage_name ()) == 0
66d7f48f
SM
4755 && ((*syms)[i].symbol->aclass ()
4756 == (*syms)[j].symbol->aclass ())
dda83cd7
SM
4757 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4758 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4759 remove_p = 1;
4760 }
4761 }
339c13b6 4762
a35ddb44 4763 if (remove_p)
54d343a2 4764 syms->erase (syms->begin () + i);
1b788fb6
TT
4765 else
4766 i += 1;
14f9c5c9 4767 }
8f17729f
JB
4768
4769 /* If all the remaining symbols are identical enumerals, then
4770 just keep the first one and discard the rest.
4771
4772 Unlike what we did previously, we do not discard any entry
4773 unless they are ALL identical. This is because the symbol
4774 comparison is not a strict comparison, but rather a practical
4775 comparison. If all symbols are considered identical, then
4776 we can just go ahead and use the first one and discard the rest.
4777 But if we cannot reduce the list to a single element, we have
4778 to ask the user to disambiguate anyways. And if we have to
4779 present a multiple-choice menu, it's less confusing if the list
4780 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
4781 if (symbols_are_identical_enums (*syms))
4782 syms->resize (1);
14f9c5c9
AS
4783}
4784
96d887e8
PH
4785/* Given a type that corresponds to a renaming entity, use the type name
4786 to extract the scope (package name or function name, fully qualified,
4787 and following the GNAT encoding convention) where this renaming has been
49d83361 4788 defined. */
4c4b4cd2 4789
49d83361 4790static std::string
96d887e8 4791xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4792{
96d887e8 4793 /* The renaming types adhere to the following convention:
0963b4bd 4794 <scope>__<rename>___<XR extension>.
96d887e8
PH
4795 So, to extract the scope, we search for the "___XR" extension,
4796 and then backtrack until we find the first "__". */
76a01679 4797
7d93a1e0 4798 const char *name = renaming_type->name ();
108d56a4
SM
4799 const char *suffix = strstr (name, "___XR");
4800 const char *last;
14f9c5c9 4801
96d887e8
PH
4802 /* Now, backtrack a bit until we find the first "__". Start looking
4803 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4804
96d887e8
PH
4805 for (last = suffix - 3; last > name; last--)
4806 if (last[0] == '_' && last[1] == '_')
4807 break;
76a01679 4808
96d887e8 4809 /* Make a copy of scope and return it. */
49d83361 4810 return std::string (name, last);
4c4b4cd2
PH
4811}
4812
96d887e8 4813/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4814
96d887e8
PH
4815static int
4816is_package_name (const char *name)
4c4b4cd2 4817{
96d887e8
PH
4818 /* Here, We take advantage of the fact that no symbols are generated
4819 for packages, while symbols are generated for each function.
4820 So the condition for NAME represent a package becomes equivalent
4821 to NAME not existing in our list of symbols. There is only one
4822 small complication with library-level functions (see below). */
4c4b4cd2 4823
96d887e8
PH
4824 /* If it is a function that has not been defined at library level,
4825 then we should be able to look it up in the symbols. */
4826 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4827 return 0;
14f9c5c9 4828
96d887e8
PH
4829 /* Library-level function names start with "_ada_". See if function
4830 "_ada_" followed by NAME can be found. */
14f9c5c9 4831
96d887e8 4832 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4833 functions names cannot contain "__" in them. */
96d887e8
PH
4834 if (strstr (name, "__") != NULL)
4835 return 0;
4c4b4cd2 4836
528e1572 4837 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 4838
528e1572 4839 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 4840}
14f9c5c9 4841
96d887e8 4842/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4843 not visible from FUNCTION_NAME. */
14f9c5c9 4844
96d887e8 4845static int
0d5cff50 4846old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4847{
66d7f48f 4848 if (sym->aclass () != LOC_TYPEDEF)
aeb5907d
JB
4849 return 0;
4850
5f9c5a63 4851 std::string scope = xget_renaming_scope (sym->type ());
14f9c5c9 4852
96d887e8 4853 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
4854 if (is_package_name (scope.c_str ()))
4855 return 0;
14f9c5c9 4856
96d887e8
PH
4857 /* Check that the rename is in the current function scope by checking
4858 that its name starts with SCOPE. */
76a01679 4859
96d887e8
PH
4860 /* If the function name starts with "_ada_", it means that it is
4861 a library-level function. Strip this prefix before doing the
4862 comparison, as the encoding for the renaming does not contain
4863 this prefix. */
61012eef 4864 if (startswith (function_name, "_ada_"))
96d887e8 4865 function_name += 5;
f26caa11 4866
49d83361 4867 return !startswith (function_name, scope.c_str ());
f26caa11
PH
4868}
4869
aeb5907d
JB
4870/* Remove entries from SYMS that corresponds to a renaming entity that
4871 is not visible from the function associated with CURRENT_BLOCK or
4872 that is superfluous due to the presence of more specific renaming
4873 information. Places surviving symbols in the initial entries of
d1183b06
TT
4874 SYMS.
4875
96d887e8 4876 Rationale:
aeb5907d
JB
4877 First, in cases where an object renaming is implemented as a
4878 reference variable, GNAT may produce both the actual reference
4879 variable and the renaming encoding. In this case, we discard the
4880 latter.
4881
4882 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4883 entity. Unfortunately, STABS currently does not support the definition
4884 of types that are local to a given lexical block, so all renamings types
4885 are emitted at library level. As a consequence, if an application
4886 contains two renaming entities using the same name, and a user tries to
4887 print the value of one of these entities, the result of the ada symbol
4888 lookup will also contain the wrong renaming type.
f26caa11 4889
96d887e8
PH
4890 This function partially covers for this limitation by attempting to
4891 remove from the SYMS list renaming symbols that should be visible
4892 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4893 method with the current information available. The implementation
4894 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4895
4896 - When the user tries to print a rename in a function while there
dda83cd7
SM
4897 is another rename entity defined in a package: Normally, the
4898 rename in the function has precedence over the rename in the
4899 package, so the latter should be removed from the list. This is
4900 currently not the case.
4901
96d887e8 4902 - This function will incorrectly remove valid renames if
dda83cd7
SM
4903 the CURRENT_BLOCK corresponds to a function which symbol name
4904 has been changed by an "Export" pragma. As a consequence,
4905 the user will be unable to print such rename entities. */
4c4b4cd2 4906
d1183b06 4907static void
54d343a2
TT
4908remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4909 const struct block *current_block)
4c4b4cd2
PH
4910{
4911 struct symbol *current_function;
0d5cff50 4912 const char *current_function_name;
4c4b4cd2 4913 int i;
aeb5907d
JB
4914 int is_new_style_renaming;
4915
4916 /* If there is both a renaming foo___XR... encoded as a variable and
4917 a simple variable foo in the same block, discard the latter.
0963b4bd 4918 First, zero out such symbols, then compress. */
aeb5907d 4919 is_new_style_renaming = 0;
54d343a2 4920 for (i = 0; i < syms->size (); i += 1)
aeb5907d 4921 {
54d343a2
TT
4922 struct symbol *sym = (*syms)[i].symbol;
4923 const struct block *block = (*syms)[i].block;
aeb5907d
JB
4924 const char *name;
4925 const char *suffix;
4926
66d7f48f 4927 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
aeb5907d 4928 continue;
987012b8 4929 name = sym->linkage_name ();
aeb5907d
JB
4930 suffix = strstr (name, "___XR");
4931
4932 if (suffix != NULL)
4933 {
4934 int name_len = suffix - name;
4935 int j;
5b4ee69b 4936
aeb5907d 4937 is_new_style_renaming = 1;
54d343a2
TT
4938 for (j = 0; j < syms->size (); j += 1)
4939 if (i != j && (*syms)[j].symbol != NULL
987012b8 4940 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 4941 name_len) == 0
54d343a2
TT
4942 && block == (*syms)[j].block)
4943 (*syms)[j].symbol = NULL;
aeb5907d
JB
4944 }
4945 }
4946 if (is_new_style_renaming)
4947 {
4948 int j, k;
4949
54d343a2
TT
4950 for (j = k = 0; j < syms->size (); j += 1)
4951 if ((*syms)[j].symbol != NULL)
aeb5907d 4952 {
54d343a2 4953 (*syms)[k] = (*syms)[j];
aeb5907d
JB
4954 k += 1;
4955 }
d1183b06
TT
4956 syms->resize (k);
4957 return;
aeb5907d 4958 }
4c4b4cd2
PH
4959
4960 /* Extract the function name associated to CURRENT_BLOCK.
4961 Abort if unable to do so. */
76a01679 4962
4c4b4cd2 4963 if (current_block == NULL)
d1183b06 4964 return;
76a01679 4965
7f0df278 4966 current_function = block_linkage_function (current_block);
4c4b4cd2 4967 if (current_function == NULL)
d1183b06 4968 return;
4c4b4cd2 4969
987012b8 4970 current_function_name = current_function->linkage_name ();
4c4b4cd2 4971 if (current_function_name == NULL)
d1183b06 4972 return;
4c4b4cd2
PH
4973
4974 /* Check each of the symbols, and remove it from the list if it is
4975 a type corresponding to a renaming that is out of the scope of
4976 the current block. */
4977
4978 i = 0;
54d343a2 4979 while (i < syms->size ())
4c4b4cd2 4980 {
54d343a2 4981 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
4982 == ADA_OBJECT_RENAMING
4983 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
4984 current_function_name))
4985 syms->erase (syms->begin () + i);
4c4b4cd2 4986 else
dda83cd7 4987 i += 1;
4c4b4cd2 4988 }
4c4b4cd2
PH
4989}
4990
d1183b06 4991/* Add to RESULT all symbols from BLOCK (and its super-blocks)
cd458349 4992 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
339c13b6 4993
cd458349 4994 Note: This function assumes that RESULT is empty. */
339c13b6
JB
4995
4996static void
d1183b06 4997ada_add_local_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
4998 const lookup_name_info &lookup_name,
4999 const struct block *block, domain_enum domain)
339c13b6 5000{
339c13b6
JB
5001 while (block != NULL)
5002 {
d1183b06 5003 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
339c13b6 5004
ba8694b6
TT
5005 /* If we found a non-function match, assume that's the one. We
5006 only check this when finding a function boundary, so that we
5007 can accumulate all results from intervening blocks first. */
5008 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
dda83cd7 5009 return;
339c13b6
JB
5010
5011 block = BLOCK_SUPERBLOCK (block);
5012 }
339c13b6
JB
5013}
5014
2315bb2d 5015/* An object of this type is used as the callback argument when
40658b94 5016 calling the map_matching_symbols method. */
ccefe4c4 5017
40658b94 5018struct match_data
ccefe4c4 5019{
1bfa81ac
TT
5020 explicit match_data (std::vector<struct block_symbol> *rp)
5021 : resultp (rp)
5022 {
5023 }
5024 DISABLE_COPY_AND_ASSIGN (match_data);
5025
2315bb2d
TT
5026 bool operator() (struct block_symbol *bsym);
5027
1bfa81ac 5028 struct objfile *objfile = nullptr;
d1183b06 5029 std::vector<struct block_symbol> *resultp;
1bfa81ac 5030 struct symbol *arg_sym = nullptr;
1178743e 5031 bool found_sym = false;
ccefe4c4
TT
5032};
5033
2315bb2d
TT
5034/* A callback for add_nonlocal_symbols that adds symbol, found in
5035 BSYM, to a list of symbols. */
ccefe4c4 5036
2315bb2d
TT
5037bool
5038match_data::operator() (struct block_symbol *bsym)
ccefe4c4 5039{
199b4314
TT
5040 const struct block *block = bsym->block;
5041 struct symbol *sym = bsym->symbol;
5042
40658b94
PH
5043 if (sym == NULL)
5044 {
2315bb2d
TT
5045 if (!found_sym && arg_sym != NULL)
5046 add_defn_to_vec (*resultp,
5047 fixup_symbol_section (arg_sym, objfile),
40658b94 5048 block);
2315bb2d
TT
5049 found_sym = false;
5050 arg_sym = NULL;
40658b94
PH
5051 }
5052 else
5053 {
66d7f48f 5054 if (sym->aclass () == LOC_UNRESOLVED)
199b4314 5055 return true;
d9743061 5056 else if (sym->is_argument ())
2315bb2d 5057 arg_sym = sym;
40658b94
PH
5058 else
5059 {
2315bb2d
TT
5060 found_sym = true;
5061 add_defn_to_vec (*resultp,
5062 fixup_symbol_section (sym, objfile),
40658b94
PH
5063 block);
5064 }
5065 }
199b4314 5066 return true;
40658b94
PH
5067}
5068
b5ec771e
PA
5069/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5070 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
1bfa81ac 5071 symbols to RESULT. Return whether we found such symbols. */
22cee43f
PMR
5072
5073static int
d1183b06 5074ada_add_block_renamings (std::vector<struct block_symbol> &result,
22cee43f 5075 const struct block *block,
b5ec771e
PA
5076 const lookup_name_info &lookup_name,
5077 domain_enum domain)
22cee43f
PMR
5078{
5079 struct using_direct *renaming;
d1183b06 5080 int defns_mark = result.size ();
22cee43f 5081
b5ec771e
PA
5082 symbol_name_matcher_ftype *name_match
5083 = ada_get_symbol_name_matcher (lookup_name);
5084
22cee43f
PMR
5085 for (renaming = block_using (block);
5086 renaming != NULL;
5087 renaming = renaming->next)
5088 {
5089 const char *r_name;
22cee43f
PMR
5090
5091 /* Avoid infinite recursions: skip this renaming if we are actually
5092 already traversing it.
5093
5094 Currently, symbol lookup in Ada don't use the namespace machinery from
5095 C++/Fortran support: skip namespace imports that use them. */
5096 if (renaming->searched
5097 || (renaming->import_src != NULL
5098 && renaming->import_src[0] != '\0')
5099 || (renaming->import_dest != NULL
5100 && renaming->import_dest[0] != '\0'))
5101 continue;
5102 renaming->searched = 1;
5103
5104 /* TODO: here, we perform another name-based symbol lookup, which can
5105 pull its own multiple overloads. In theory, we should be able to do
5106 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5107 not a simple name. But in order to do this, we would need to enhance
5108 the DWARF reader to associate a symbol to this renaming, instead of a
5109 name. So, for now, we do something simpler: re-use the C++/Fortran
5110 namespace machinery. */
5111 r_name = (renaming->alias != NULL
5112 ? renaming->alias
5113 : renaming->declaration);
b5ec771e
PA
5114 if (name_match (r_name, lookup_name, NULL))
5115 {
5116 lookup_name_info decl_lookup_name (renaming->declaration,
5117 lookup_name.match_type ());
d1183b06 5118 ada_add_all_symbols (result, block, decl_lookup_name, domain,
b5ec771e
PA
5119 1, NULL);
5120 }
22cee43f
PMR
5121 renaming->searched = 0;
5122 }
d1183b06 5123 return result.size () != defns_mark;
22cee43f
PMR
5124}
5125
db230ce3
JB
5126/* Implements compare_names, but only applying the comparision using
5127 the given CASING. */
5b4ee69b 5128
40658b94 5129static int
db230ce3
JB
5130compare_names_with_case (const char *string1, const char *string2,
5131 enum case_sensitivity casing)
40658b94
PH
5132{
5133 while (*string1 != '\0' && *string2 != '\0')
5134 {
db230ce3
JB
5135 char c1, c2;
5136
40658b94
PH
5137 if (isspace (*string1) || isspace (*string2))
5138 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5139
5140 if (casing == case_sensitive_off)
5141 {
5142 c1 = tolower (*string1);
5143 c2 = tolower (*string2);
5144 }
5145 else
5146 {
5147 c1 = *string1;
5148 c2 = *string2;
5149 }
5150 if (c1 != c2)
40658b94 5151 break;
db230ce3 5152
40658b94
PH
5153 string1 += 1;
5154 string2 += 1;
5155 }
db230ce3 5156
40658b94
PH
5157 switch (*string1)
5158 {
5159 case '(':
5160 return strcmp_iw_ordered (string1, string2);
5161 case '_':
5162 if (*string2 == '\0')
5163 {
052874e8 5164 if (is_name_suffix (string1))
40658b94
PH
5165 return 0;
5166 else
1a1d5513 5167 return 1;
40658b94 5168 }
dbb8534f 5169 /* FALLTHROUGH */
40658b94
PH
5170 default:
5171 if (*string2 == '(')
5172 return strcmp_iw_ordered (string1, string2);
5173 else
db230ce3
JB
5174 {
5175 if (casing == case_sensitive_off)
5176 return tolower (*string1) - tolower (*string2);
5177 else
5178 return *string1 - *string2;
5179 }
40658b94 5180 }
ccefe4c4
TT
5181}
5182
db230ce3
JB
5183/* Compare STRING1 to STRING2, with results as for strcmp.
5184 Compatible with strcmp_iw_ordered in that...
5185
5186 strcmp_iw_ordered (STRING1, STRING2) <= 0
5187
5188 ... implies...
5189
5190 compare_names (STRING1, STRING2) <= 0
5191
5192 (they may differ as to what symbols compare equal). */
5193
5194static int
5195compare_names (const char *string1, const char *string2)
5196{
5197 int result;
5198
5199 /* Similar to what strcmp_iw_ordered does, we need to perform
5200 a case-insensitive comparison first, and only resort to
5201 a second, case-sensitive, comparison if the first one was
5202 not sufficient to differentiate the two strings. */
5203
5204 result = compare_names_with_case (string1, string2, case_sensitive_off);
5205 if (result == 0)
5206 result = compare_names_with_case (string1, string2, case_sensitive_on);
5207
5208 return result;
5209}
5210
b5ec771e
PA
5211/* Convenience function to get at the Ada encoded lookup name for
5212 LOOKUP_NAME, as a C string. */
5213
5214static const char *
5215ada_lookup_name (const lookup_name_info &lookup_name)
5216{
5217 return lookup_name.ada ().lookup_name ().c_str ();
5218}
5219
0b7b2c2a
TT
5220/* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5221 for OBJFILE, then walk the objfile's symtabs and update the
5222 results. */
5223
5224static void
5225map_matching_symbols (struct objfile *objfile,
5226 const lookup_name_info &lookup_name,
5227 bool is_wild_match,
5228 domain_enum domain,
5229 int global,
5230 match_data &data)
5231{
5232 data.objfile = objfile;
5233 objfile->expand_matching_symbols (lookup_name, domain, global,
5234 is_wild_match ? nullptr : compare_names);
5235
5236 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5237 for (compunit_symtab *symtab : objfile->compunits ())
5238 {
5239 const struct block *block
af39c5c8 5240 = BLOCKVECTOR_BLOCK (symtab->blockvector (), block_kind);
0b7b2c2a
TT
5241 if (!iterate_over_symbols_terminated (block, lookup_name,
5242 domain, data))
5243 break;
5244 }
5245}
5246
1bfa81ac 5247/* Add to RESULT all non-local symbols whose name and domain match
b5ec771e
PA
5248 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5249 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5250 symbols otherwise. */
339c13b6
JB
5251
5252static void
d1183b06 5253add_nonlocal_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5254 const lookup_name_info &lookup_name,
5255 domain_enum domain, int global)
339c13b6 5256{
1bfa81ac 5257 struct match_data data (&result);
339c13b6 5258
b5ec771e
PA
5259 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5260
2030c079 5261 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5262 {
0b7b2c2a
TT
5263 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5264 global, data);
22cee43f 5265
b669c953 5266 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5267 {
5268 const struct block *global_block
af39c5c8 5269 = BLOCKVECTOR_BLOCK (cu->blockvector (), GLOBAL_BLOCK);
22cee43f 5270
d1183b06 5271 if (ada_add_block_renamings (result, global_block, lookup_name,
b5ec771e 5272 domain))
1178743e 5273 data.found_sym = true;
22cee43f 5274 }
40658b94
PH
5275 }
5276
d1183b06 5277 if (result.empty () && global && !is_wild_match)
40658b94 5278 {
b5ec771e 5279 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5280 std::string bracket_name = std::string ("<_ada_") + name + '>';
5281 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5282
2030c079 5283 for (objfile *objfile : current_program_space->objfiles ())
0b7b2c2a
TT
5284 map_matching_symbols (objfile, name1, false, domain, global, data);
5285 }
339c13b6
JB
5286}
5287
b5ec771e
PA
5288/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5289 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
1bfa81ac 5290 returning the number of matches. Add these to RESULT.
4eeaa230 5291
22cee43f
PMR
5292 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5293 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5294 is the one match returned (no other matches in that or
d9680e73 5295 enclosing blocks is returned). If there are any matches in or
22cee43f 5296 surrounding BLOCK, then these alone are returned.
4eeaa230 5297
b5ec771e
PA
5298 Names prefixed with "standard__" are handled specially:
5299 "standard__" is first stripped off (by the lookup_name
5300 constructor), and only static and global symbols are searched.
14f9c5c9 5301
22cee43f
PMR
5302 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5303 to lookup global symbols. */
5304
5305static void
d1183b06 5306ada_add_all_symbols (std::vector<struct block_symbol> &result,
22cee43f 5307 const struct block *block,
b5ec771e 5308 const lookup_name_info &lookup_name,
22cee43f
PMR
5309 domain_enum domain,
5310 int full_search,
5311 int *made_global_lookup_p)
14f9c5c9
AS
5312{
5313 struct symbol *sym;
14f9c5c9 5314
22cee43f
PMR
5315 if (made_global_lookup_p)
5316 *made_global_lookup_p = 0;
339c13b6
JB
5317
5318 /* Special case: If the user specifies a symbol name inside package
5319 Standard, do a non-wild matching of the symbol name without
5320 the "standard__" prefix. This was primarily introduced in order
5321 to allow the user to specifically access the standard exceptions
5322 using, for instance, Standard.Constraint_Error when Constraint_Error
5323 is ambiguous (due to the user defining its own Constraint_Error
5324 entity inside its program). */
b5ec771e
PA
5325 if (lookup_name.ada ().standard_p ())
5326 block = NULL;
4c4b4cd2 5327
339c13b6 5328 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5329
4eeaa230
DE
5330 if (block != NULL)
5331 {
5332 if (full_search)
d1183b06 5333 ada_add_local_symbols (result, lookup_name, block, domain);
4eeaa230
DE
5334 else
5335 {
5336 /* In the !full_search case we're are being called by
4009ee92 5337 iterate_over_symbols, and we don't want to search
4eeaa230 5338 superblocks. */
d1183b06 5339 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4eeaa230 5340 }
d1183b06 5341 if (!result.empty () || !full_search)
22cee43f 5342 return;
4eeaa230 5343 }
d2e4a39e 5344
339c13b6
JB
5345 /* No non-global symbols found. Check our cache to see if we have
5346 already performed this search before. If we have, then return
5347 the same result. */
5348
b5ec771e
PA
5349 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5350 domain, &sym, &block))
4c4b4cd2
PH
5351 {
5352 if (sym != NULL)
d1183b06 5353 add_defn_to_vec (result, sym, block);
22cee43f 5354 return;
4c4b4cd2 5355 }
14f9c5c9 5356
22cee43f
PMR
5357 if (made_global_lookup_p)
5358 *made_global_lookup_p = 1;
b1eedac9 5359
339c13b6
JB
5360 /* Search symbols from all global blocks. */
5361
d1183b06 5362 add_nonlocal_symbols (result, lookup_name, domain, 1);
d2e4a39e 5363
4c4b4cd2 5364 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5365 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5366
d1183b06
TT
5367 if (result.empty ())
5368 add_nonlocal_symbols (result, lookup_name, domain, 0);
22cee43f
PMR
5369}
5370
b5ec771e 5371/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
d1183b06
TT
5372 is non-zero, enclosing scope and in global scopes.
5373
5374 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5375 blocks and symbol tables (if any) in which they were found.
22cee43f
PMR
5376
5377 When full_search is non-zero, any non-function/non-enumeral
5378 symbol match within the nest of blocks whose innermost member is BLOCK,
5379 is the one match returned (no other matches in that or
5380 enclosing blocks is returned). If there are any matches in or
5381 surrounding BLOCK, then these alone are returned.
5382
5383 Names prefixed with "standard__" are handled specially: "standard__"
5384 is first stripped off, and only static and global symbols are searched. */
5385
d1183b06 5386static std::vector<struct block_symbol>
b5ec771e
PA
5387ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5388 const struct block *block,
22cee43f 5389 domain_enum domain,
22cee43f
PMR
5390 int full_search)
5391{
22cee43f 5392 int syms_from_global_search;
d1183b06 5393 std::vector<struct block_symbol> results;
22cee43f 5394
d1183b06 5395 ada_add_all_symbols (results, block, lookup_name,
b5ec771e 5396 domain, full_search, &syms_from_global_search);
14f9c5c9 5397
d1183b06 5398 remove_extra_symbols (&results);
4c4b4cd2 5399
d1183b06 5400 if (results.empty () && full_search && syms_from_global_search)
b5ec771e 5401 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5402
d1183b06 5403 if (results.size () == 1 && full_search && syms_from_global_search)
b5ec771e 5404 cache_symbol (ada_lookup_name (lookup_name), domain,
d1183b06 5405 results[0].symbol, results[0].block);
ec6a20c2 5406
d1183b06
TT
5407 remove_irrelevant_renamings (&results, block);
5408 return results;
14f9c5c9
AS
5409}
5410
b5ec771e 5411/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
d1183b06 5412 in global scopes, returning (SYM,BLOCK) tuples.
ec6a20c2 5413
4eeaa230
DE
5414 See ada_lookup_symbol_list_worker for further details. */
5415
d1183b06 5416std::vector<struct block_symbol>
b5ec771e 5417ada_lookup_symbol_list (const char *name, const struct block *block,
d1183b06 5418 domain_enum domain)
4eeaa230 5419{
b5ec771e
PA
5420 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5421 lookup_name_info lookup_name (name, name_match_type);
5422
d1183b06 5423 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
4eeaa230
DE
5424}
5425
4e5c77fe
JB
5426/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5427 to 1, but choosing the first symbol found if there are multiple
5428 choices.
5429
5e2336be
JB
5430 The result is stored in *INFO, which must be non-NULL.
5431 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5432
5433void
5434ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5435 domain_enum domain,
d12307c1 5436 struct block_symbol *info)
14f9c5c9 5437{
b5ec771e
PA
5438 /* Since we already have an encoded name, wrap it in '<>' to force a
5439 verbatim match. Otherwise, if the name happens to not look like
5440 an encoded name (because it doesn't include a "__"),
5441 ada_lookup_name_info would re-encode/fold it again, and that
5442 would e.g., incorrectly lowercase object renaming names like
5443 "R28b" -> "r28b". */
12932e2c 5444 std::string verbatim = add_angle_brackets (name);
b5ec771e 5445
5e2336be 5446 gdb_assert (info != NULL);
65392b3e 5447 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5448}
aeb5907d
JB
5449
5450/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5451 scope and in global scopes, or NULL if none. NAME is folded and
5452 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5453 choosing the first symbol if there are multiple choices. */
4e5c77fe 5454
d12307c1 5455struct block_symbol
aeb5907d 5456ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5457 domain_enum domain)
aeb5907d 5458{
d1183b06
TT
5459 std::vector<struct block_symbol> candidates
5460 = ada_lookup_symbol_list (name, block0, domain);
f98fc17b 5461
d1183b06 5462 if (candidates.empty ())
54d343a2 5463 return {};
f98fc17b
PA
5464
5465 block_symbol info = candidates[0];
5466 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5467 return info;
4c4b4cd2 5468}
14f9c5c9 5469
14f9c5c9 5470
4c4b4cd2
PH
5471/* True iff STR is a possible encoded suffix of a normal Ada name
5472 that is to be ignored for matching purposes. Suffixes of parallel
5473 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5474 are given by any of the regular expressions:
4c4b4cd2 5475
babe1480
JB
5476 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5477 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5478 TKB [subprogram suffix for task bodies]
babe1480 5479 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5480 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5481
5482 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5483 match is performed. This sequence is used to differentiate homonyms,
5484 is an optional part of a valid name suffix. */
4c4b4cd2 5485
14f9c5c9 5486static int
d2e4a39e 5487is_name_suffix (const char *str)
14f9c5c9
AS
5488{
5489 int k;
4c4b4cd2
PH
5490 const char *matching;
5491 const int len = strlen (str);
5492
babe1480
JB
5493 /* Skip optional leading __[0-9]+. */
5494
4c4b4cd2
PH
5495 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5496 {
babe1480
JB
5497 str += 3;
5498 while (isdigit (str[0]))
dda83cd7 5499 str += 1;
4c4b4cd2 5500 }
babe1480
JB
5501
5502 /* [.$][0-9]+ */
4c4b4cd2 5503
babe1480 5504 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5505 {
babe1480 5506 matching = str + 1;
4c4b4cd2 5507 while (isdigit (matching[0]))
dda83cd7 5508 matching += 1;
4c4b4cd2 5509 if (matching[0] == '\0')
dda83cd7 5510 return 1;
4c4b4cd2
PH
5511 }
5512
5513 /* ___[0-9]+ */
babe1480 5514
4c4b4cd2
PH
5515 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5516 {
5517 matching = str + 3;
5518 while (isdigit (matching[0]))
dda83cd7 5519 matching += 1;
4c4b4cd2 5520 if (matching[0] == '\0')
dda83cd7 5521 return 1;
4c4b4cd2
PH
5522 }
5523
9ac7f98e
JB
5524 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5525
5526 if (strcmp (str, "TKB") == 0)
5527 return 1;
5528
529cad9c
PH
5529#if 0
5530 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5531 with a N at the end. Unfortunately, the compiler uses the same
5532 convention for other internal types it creates. So treating
529cad9c 5533 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5534 some regressions. For instance, consider the case of an enumerated
5535 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5536 name ends with N.
5537 Having a single character like this as a suffix carrying some
0963b4bd 5538 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5539 to be something like "_N" instead. In the meantime, do not do
5540 the following check. */
5541 /* Protected Object Subprograms */
5542 if (len == 1 && str [0] == 'N')
5543 return 1;
5544#endif
5545
5546 /* _E[0-9]+[bs]$ */
5547 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5548 {
5549 matching = str + 3;
5550 while (isdigit (matching[0]))
dda83cd7 5551 matching += 1;
529cad9c 5552 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5553 && matching [1] == '\0')
5554 return 1;
529cad9c
PH
5555 }
5556
4c4b4cd2
PH
5557 /* ??? We should not modify STR directly, as we are doing below. This
5558 is fine in this case, but may become problematic later if we find
5559 that this alternative did not work, and want to try matching
5560 another one from the begining of STR. Since we modified it, we
5561 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5562 if (str[0] == 'X')
5563 {
5564 str += 1;
d2e4a39e 5565 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5566 {
5567 if (str[0] != 'n' && str[0] != 'b')
5568 return 0;
5569 str += 1;
5570 }
14f9c5c9 5571 }
babe1480 5572
14f9c5c9
AS
5573 if (str[0] == '\000')
5574 return 1;
babe1480 5575
d2e4a39e 5576 if (str[0] == '_')
14f9c5c9
AS
5577 {
5578 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5579 return 0;
d2e4a39e 5580 if (str[2] == '_')
dda83cd7
SM
5581 {
5582 if (strcmp (str + 3, "JM") == 0)
5583 return 1;
5584 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5585 the LJM suffix in favor of the JM one. But we will
5586 still accept LJM as a valid suffix for a reasonable
5587 amount of time, just to allow ourselves to debug programs
5588 compiled using an older version of GNAT. */
5589 if (strcmp (str + 3, "LJM") == 0)
5590 return 1;
5591 if (str[3] != 'X')
5592 return 0;
5593 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5594 || str[4] == 'U' || str[4] == 'P')
5595 return 1;
5596 if (str[4] == 'R' && str[5] != 'T')
5597 return 1;
5598 return 0;
5599 }
4c4b4cd2 5600 if (!isdigit (str[2]))
dda83cd7 5601 return 0;
4c4b4cd2 5602 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5603 if (!isdigit (str[k]) && str[k] != '_')
5604 return 0;
14f9c5c9
AS
5605 return 1;
5606 }
4c4b4cd2 5607 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5608 {
4c4b4cd2 5609 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5610 if (!isdigit (str[k]) && str[k] != '_')
5611 return 0;
14f9c5c9
AS
5612 return 1;
5613 }
5614 return 0;
5615}
d2e4a39e 5616
aeb5907d
JB
5617/* Return non-zero if the string starting at NAME and ending before
5618 NAME_END contains no capital letters. */
529cad9c
PH
5619
5620static int
5621is_valid_name_for_wild_match (const char *name0)
5622{
f945dedf 5623 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5624 int i;
5625
5823c3ef
JB
5626 /* If the decoded name starts with an angle bracket, it means that
5627 NAME0 does not follow the GNAT encoding format. It should then
5628 not be allowed as a possible wild match. */
5629 if (decoded_name[0] == '<')
5630 return 0;
5631
529cad9c
PH
5632 for (i=0; decoded_name[i] != '\0'; i++)
5633 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5634 return 0;
5635
5636 return 1;
5637}
5638
59c8a30b
JB
5639/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5640 character which could start a simple name. Assumes that *NAMEP points
5641 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5642
14f9c5c9 5643static int
59c8a30b 5644advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5645{
73589123 5646 const char *name = *namep;
5b4ee69b 5647
5823c3ef 5648 while (1)
14f9c5c9 5649 {
59c8a30b 5650 char t0, t1;
73589123
PH
5651
5652 t0 = *name;
5653 if (t0 == '_')
5654 {
5655 t1 = name[1];
5656 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5657 {
5658 name += 1;
61012eef 5659 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5660 break;
5661 else
5662 name += 1;
5663 }
aa27d0b3
JB
5664 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5665 || name[2] == target0))
73589123
PH
5666 {
5667 name += 2;
5668 break;
5669 }
86b44259
TT
5670 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5671 {
5672 /* Names like "pkg__B_N__name", where N is a number, are
5673 block-local. We can handle these by simply skipping
5674 the "B_" here. */
5675 name += 4;
5676 }
73589123
PH
5677 else
5678 return 0;
5679 }
5680 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5681 name += 1;
5682 else
5823c3ef 5683 return 0;
73589123
PH
5684 }
5685
5686 *namep = name;
5687 return 1;
5688}
5689
b5ec771e
PA
5690/* Return true iff NAME encodes a name of the form prefix.PATN.
5691 Ignores any informational suffixes of NAME (i.e., for which
5692 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5693 simple name. */
73589123 5694
b5ec771e 5695static bool
73589123
PH
5696wild_match (const char *name, const char *patn)
5697{
22e048c9 5698 const char *p;
73589123
PH
5699 const char *name0 = name;
5700
5701 while (1)
5702 {
5703 const char *match = name;
5704
5705 if (*name == *patn)
5706 {
5707 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5708 if (*p != *name)
5709 break;
5710 if (*p == '\0' && is_name_suffix (name))
b5ec771e 5711 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
5712
5713 if (name[-1] == '_')
5714 name -= 1;
5715 }
5716 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 5717 return false;
96d887e8 5718 }
96d887e8
PH
5719}
5720
d1183b06 5721/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
b5ec771e 5722 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
5723
5724static void
d1183b06 5725ada_add_block_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5726 const struct block *block,
5727 const lookup_name_info &lookup_name,
5728 domain_enum domain, struct objfile *objfile)
96d887e8 5729{
8157b174 5730 struct block_iterator iter;
96d887e8
PH
5731 /* A matching argument symbol, if any. */
5732 struct symbol *arg_sym;
5733 /* Set true when we find a matching non-argument symbol. */
1178743e 5734 bool found_sym;
96d887e8
PH
5735 struct symbol *sym;
5736
5737 arg_sym = NULL;
1178743e 5738 found_sym = false;
b5ec771e
PA
5739 for (sym = block_iter_match_first (block, lookup_name, &iter);
5740 sym != NULL;
5741 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 5742 {
6c9c307c 5743 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
b5ec771e 5744 {
66d7f48f 5745 if (sym->aclass () != LOC_UNRESOLVED)
b5ec771e 5746 {
d9743061 5747 if (sym->is_argument ())
b5ec771e
PA
5748 arg_sym = sym;
5749 else
5750 {
1178743e 5751 found_sym = true;
d1183b06 5752 add_defn_to_vec (result,
b5ec771e
PA
5753 fixup_symbol_section (sym, objfile),
5754 block);
5755 }
5756 }
5757 }
96d887e8
PH
5758 }
5759
22cee43f
PMR
5760 /* Handle renamings. */
5761
d1183b06 5762 if (ada_add_block_renamings (result, block, lookup_name, domain))
1178743e 5763 found_sym = true;
22cee43f 5764
96d887e8
PH
5765 if (!found_sym && arg_sym != NULL)
5766 {
d1183b06 5767 add_defn_to_vec (result,
dda83cd7
SM
5768 fixup_symbol_section (arg_sym, objfile),
5769 block);
96d887e8
PH
5770 }
5771
b5ec771e 5772 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
5773 {
5774 arg_sym = NULL;
1178743e 5775 found_sym = false;
b5ec771e
PA
5776 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5777 const char *name = ada_lookup_name.c_str ();
5778 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
5779
5780 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5781 {
dda83cd7 5782 if (symbol_matches_domain (sym->language (),
6c9c307c 5783 sym->domain (), domain))
dda83cd7
SM
5784 {
5785 int cmp;
5786
5787 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5788 if (cmp == 0)
5789 {
5790 cmp = !startswith (sym->linkage_name (), "_ada_");
5791 if (cmp == 0)
5792 cmp = strncmp (name, sym->linkage_name () + 5,
5793 name_len);
5794 }
5795
5796 if (cmp == 0
5797 && is_name_suffix (sym->linkage_name () + name_len + 5))
5798 {
66d7f48f 5799 if (sym->aclass () != LOC_UNRESOLVED)
2a2d4dc3 5800 {
d9743061 5801 if (sym->is_argument ())
2a2d4dc3
AS
5802 arg_sym = sym;
5803 else
5804 {
1178743e 5805 found_sym = true;
d1183b06 5806 add_defn_to_vec (result,
2a2d4dc3
AS
5807 fixup_symbol_section (sym, objfile),
5808 block);
5809 }
5810 }
dda83cd7
SM
5811 }
5812 }
76a01679 5813 }
96d887e8
PH
5814
5815 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 5816 They aren't parameters, right? */
96d887e8 5817 if (!found_sym && arg_sym != NULL)
dda83cd7 5818 {
d1183b06 5819 add_defn_to_vec (result,
dda83cd7
SM
5820 fixup_symbol_section (arg_sym, objfile),
5821 block);
5822 }
96d887e8
PH
5823 }
5824}
5825\f
41d27058 5826
dda83cd7 5827 /* Symbol Completion */
41d27058 5828
b5ec771e 5829/* See symtab.h. */
41d27058 5830
b5ec771e
PA
5831bool
5832ada_lookup_name_info::matches
5833 (const char *sym_name,
5834 symbol_name_match_type match_type,
a207cff2 5835 completion_match_result *comp_match_res) const
41d27058 5836{
b5ec771e
PA
5837 bool match = false;
5838 const char *text = m_encoded_name.c_str ();
5839 size_t text_len = m_encoded_name.size ();
41d27058
JB
5840
5841 /* First, test against the fully qualified name of the symbol. */
5842
5843 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5844 match = true;
41d27058 5845
f945dedf 5846 std::string decoded_name = ada_decode (sym_name);
b5ec771e 5847 if (match && !m_encoded_p)
41d27058
JB
5848 {
5849 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
5850 that iff we are doing a verbatim match, the decoded version
5851 of the symbol name starts with '<'. Otherwise, this symbol name
5852 is not a suitable completion. */
41d27058 5853
f945dedf 5854 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 5855 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
5856 }
5857
b5ec771e 5858 if (match && !m_verbatim_p)
41d27058
JB
5859 {
5860 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
5861 be done is to verify that the potentially matching symbol name
5862 does not include capital letters, because the ada-mode would
5863 not be able to understand these symbol names without the
5864 angle bracket notation. */
41d27058
JB
5865 const char *tmp;
5866
5867 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5868 if (*tmp != '\0')
b5ec771e 5869 match = false;
41d27058
JB
5870 }
5871
5872 /* Second: Try wild matching... */
5873
b5ec771e 5874 if (!match && m_wild_match_p)
41d27058
JB
5875 {
5876 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
5877 may represent an unqualified symbol name. We therefore must
5878 also compare TEXT against the unqualified name of the symbol. */
f945dedf 5879 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
5880
5881 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5882 match = true;
41d27058
JB
5883 }
5884
b5ec771e 5885 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
5886
5887 if (!match)
b5ec771e 5888 return false;
41d27058 5889
a207cff2 5890 if (comp_match_res != NULL)
b5ec771e 5891 {
a207cff2 5892 std::string &match_str = comp_match_res->match.storage ();
41d27058 5893
b5ec771e 5894 if (!m_encoded_p)
a207cff2 5895 match_str = ada_decode (sym_name);
b5ec771e
PA
5896 else
5897 {
5898 if (m_verbatim_p)
5899 match_str = add_angle_brackets (sym_name);
5900 else
5901 match_str = sym_name;
41d27058 5902
b5ec771e 5903 }
a207cff2
PA
5904
5905 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
5906 }
5907
b5ec771e 5908 return true;
41d27058
JB
5909}
5910
dda83cd7 5911 /* Field Access */
96d887e8 5912
73fb9985
JB
5913/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5914 for tagged types. */
5915
5916static int
5917ada_is_dispatch_table_ptr_type (struct type *type)
5918{
0d5cff50 5919 const char *name;
73fb9985 5920
78134374 5921 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
5922 return 0;
5923
7d93a1e0 5924 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
5925 if (name == NULL)
5926 return 0;
5927
5928 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5929}
5930
ac4a2da4
JG
5931/* Return non-zero if TYPE is an interface tag. */
5932
5933static int
5934ada_is_interface_tag (struct type *type)
5935{
7d93a1e0 5936 const char *name = type->name ();
ac4a2da4
JG
5937
5938 if (name == NULL)
5939 return 0;
5940
5941 return (strcmp (name, "ada__tags__interface_tag") == 0);
5942}
5943
963a6417
PH
5944/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5945 to be invisible to users. */
96d887e8 5946
963a6417
PH
5947int
5948ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5949{
1f704f76 5950 if (field_num < 0 || field_num > type->num_fields ())
963a6417 5951 return 1;
ffde82bf 5952
73fb9985
JB
5953 /* Check the name of that field. */
5954 {
33d16dd9 5955 const char *name = type->field (field_num).name ();
73fb9985
JB
5956
5957 /* Anonymous field names should not be printed.
5958 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 5959 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
5960 if (name == NULL)
5961 return 1;
5962
ffde82bf
JB
5963 /* Normally, fields whose name start with an underscore ("_")
5964 are fields that have been internally generated by the compiler,
5965 and thus should not be printed. The "_parent" field is special,
5966 however: This is a field internally generated by the compiler
5967 for tagged types, and it contains the components inherited from
5968 the parent type. This field should not be printed as is, but
5969 should not be ignored either. */
61012eef 5970 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
5971 return 1;
5972 }
5973
ac4a2da4
JG
5974 /* If this is the dispatch table of a tagged type or an interface tag,
5975 then ignore. */
73fb9985 5976 if (ada_is_tagged_type (type, 1)
940da03e
SM
5977 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5978 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
5979 return 1;
5980
5981 /* Not a special field, so it should not be ignored. */
5982 return 0;
963a6417 5983}
96d887e8 5984
963a6417 5985/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5986 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5987
963a6417
PH
5988int
5989ada_is_tagged_type (struct type *type, int refok)
5990{
988f6b3d 5991 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 5992}
96d887e8 5993
963a6417 5994/* True iff TYPE represents the type of X'Tag */
96d887e8 5995
963a6417
PH
5996int
5997ada_is_tag_type (struct type *type)
5998{
460efde1
JB
5999 type = ada_check_typedef (type);
6000
78134374 6001 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6002 return 0;
6003 else
96d887e8 6004 {
963a6417 6005 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6006
963a6417 6007 return (name != NULL
dda83cd7 6008 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6009 }
96d887e8
PH
6010}
6011
963a6417 6012/* The type of the tag on VAL. */
76a01679 6013
de93309a 6014static struct type *
963a6417 6015ada_tag_type (struct value *val)
96d887e8 6016{
988f6b3d 6017 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6018}
96d887e8 6019
b50d69b5
JG
6020/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6021 retired at Ada 05). */
6022
6023static int
6024is_ada95_tag (struct value *tag)
6025{
6026 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6027}
6028
963a6417 6029/* The value of the tag on VAL. */
96d887e8 6030
de93309a 6031static struct value *
963a6417
PH
6032ada_value_tag (struct value *val)
6033{
03ee6b2e 6034 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6035}
6036
963a6417
PH
6037/* The value of the tag on the object of type TYPE whose contents are
6038 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6039 ADDRESS. */
96d887e8 6040
963a6417 6041static struct value *
10a2c479 6042value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6043 const gdb_byte *valaddr,
dda83cd7 6044 CORE_ADDR address)
96d887e8 6045{
b5385fc0 6046 int tag_byte_offset;
963a6417 6047 struct type *tag_type;
5b4ee69b 6048
4d1795ac
TT
6049 gdb::array_view<const gdb_byte> contents;
6050 if (valaddr != nullptr)
6051 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6052 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6053 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6054 NULL, NULL, NULL))
96d887e8 6055 {
fc1a4b47 6056 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6057 ? NULL
6058 : valaddr + tag_byte_offset);
963a6417 6059 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6060
963a6417 6061 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6062 }
963a6417
PH
6063 return NULL;
6064}
96d887e8 6065
963a6417
PH
6066static struct type *
6067type_from_tag (struct value *tag)
6068{
f5272a3b 6069 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6070
963a6417 6071 if (type_name != NULL)
5c4258f4 6072 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6073 return NULL;
6074}
96d887e8 6075
b50d69b5
JG
6076/* Given a value OBJ of a tagged type, return a value of this
6077 type at the base address of the object. The base address, as
6078 defined in Ada.Tags, it is the address of the primary tag of
6079 the object, and therefore where the field values of its full
6080 view can be fetched. */
6081
6082struct value *
6083ada_tag_value_at_base_address (struct value *obj)
6084{
b50d69b5
JG
6085 struct value *val;
6086 LONGEST offset_to_top = 0;
6087 struct type *ptr_type, *obj_type;
6088 struct value *tag;
6089 CORE_ADDR base_address;
6090
6091 obj_type = value_type (obj);
6092
6093 /* It is the responsability of the caller to deref pointers. */
6094
78134374 6095 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6096 return obj;
6097
6098 tag = ada_value_tag (obj);
6099 if (!tag)
6100 return obj;
6101
6102 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6103
6104 if (is_ada95_tag (tag))
6105 return obj;
6106
08f49010
XR
6107 ptr_type = language_lookup_primitive_type
6108 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6109 ptr_type = lookup_pointer_type (ptr_type);
6110 val = value_cast (ptr_type, tag);
6111 if (!val)
6112 return obj;
6113
6114 /* It is perfectly possible that an exception be raised while
6115 trying to determine the base address, just like for the tag;
6116 see ada_tag_name for more details. We do not print the error
6117 message for the same reason. */
6118
a70b8144 6119 try
b50d69b5
JG
6120 {
6121 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6122 }
6123
230d2906 6124 catch (const gdb_exception_error &e)
492d29ea
PA
6125 {
6126 return obj;
6127 }
b50d69b5
JG
6128
6129 /* If offset is null, nothing to do. */
6130
6131 if (offset_to_top == 0)
6132 return obj;
6133
6134 /* -1 is a special case in Ada.Tags; however, what should be done
6135 is not quite clear from the documentation. So do nothing for
6136 now. */
6137
6138 if (offset_to_top == -1)
6139 return obj;
6140
08f49010
XR
6141 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6142 from the base address. This was however incompatible with
6143 C++ dispatch table: C++ uses a *negative* value to *add*
6144 to the base address. Ada's convention has therefore been
6145 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6146 use the same convention. Here, we support both cases by
6147 checking the sign of OFFSET_TO_TOP. */
6148
6149 if (offset_to_top > 0)
6150 offset_to_top = -offset_to_top;
6151
6152 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6153 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6154
6155 /* Make sure that we have a proper tag at the new address.
6156 Otherwise, offset_to_top is bogus (which can happen when
6157 the object is not initialized yet). */
6158
6159 if (!tag)
6160 return obj;
6161
6162 obj_type = type_from_tag (tag);
6163
6164 if (!obj_type)
6165 return obj;
6166
6167 return value_from_contents_and_address (obj_type, NULL, base_address);
6168}
6169
1b611343
JB
6170/* Return the "ada__tags__type_specific_data" type. */
6171
6172static struct type *
6173ada_get_tsd_type (struct inferior *inf)
963a6417 6174{
1b611343 6175 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6176
1b611343
JB
6177 if (data->tsd_type == 0)
6178 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6179 return data->tsd_type;
6180}
529cad9c 6181
1b611343
JB
6182/* Return the TSD (type-specific data) associated to the given TAG.
6183 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6184
1b611343 6185 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6186
1b611343
JB
6187static struct value *
6188ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6189{
4c4b4cd2 6190 struct value *val;
1b611343 6191 struct type *type;
5b4ee69b 6192
1b611343
JB
6193 /* First option: The TSD is simply stored as a field of our TAG.
6194 Only older versions of GNAT would use this format, but we have
6195 to test it first, because there are no visible markers for
6196 the current approach except the absence of that field. */
529cad9c 6197
1b611343
JB
6198 val = ada_value_struct_elt (tag, "tsd", 1);
6199 if (val)
6200 return val;
e802dbe0 6201
1b611343
JB
6202 /* Try the second representation for the dispatch table (in which
6203 there is no explicit 'tsd' field in the referent of the tag pointer,
6204 and instead the tsd pointer is stored just before the dispatch
6205 table. */
e802dbe0 6206
1b611343
JB
6207 type = ada_get_tsd_type (current_inferior());
6208 if (type == NULL)
6209 return NULL;
6210 type = lookup_pointer_type (lookup_pointer_type (type));
6211 val = value_cast (type, tag);
6212 if (val == NULL)
6213 return NULL;
6214 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6215}
6216
1b611343
JB
6217/* Given the TSD of a tag (type-specific data), return a string
6218 containing the name of the associated type.
6219
f5272a3b 6220 May return NULL if we are unable to determine the tag name. */
1b611343 6221
f5272a3b 6222static gdb::unique_xmalloc_ptr<char>
1b611343 6223ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6224{
529cad9c 6225 char *p;
1b611343 6226 struct value *val;
529cad9c 6227
1b611343 6228 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6229 if (val == NULL)
1b611343 6230 return NULL;
66920317
TT
6231 gdb::unique_xmalloc_ptr<char> buffer
6232 = target_read_string (value_as_address (val), INT_MAX);
6233 if (buffer == nullptr)
f5272a3b
TT
6234 return nullptr;
6235
6236 for (p = buffer.get (); *p != '\0'; ++p)
6237 {
6238 if (isalpha (*p))
6239 *p = tolower (*p);
6240 }
6241
6242 return buffer;
4c4b4cd2
PH
6243}
6244
6245/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6246 a C string.
6247
6248 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6249 determine the name of that tag. */
4c4b4cd2 6250
f5272a3b 6251gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6252ada_tag_name (struct value *tag)
6253{
f5272a3b 6254 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6255
df407dfe 6256 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6257 return NULL;
1b611343
JB
6258
6259 /* It is perfectly possible that an exception be raised while trying
6260 to determine the TAG's name, even under normal circumstances:
6261 The associated variable may be uninitialized or corrupted, for
6262 instance. We do not let any exception propagate past this point.
6263 instead we return NULL.
6264
6265 We also do not print the error message either (which often is very
6266 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6267 the caller print a more meaningful message if necessary. */
a70b8144 6268 try
1b611343
JB
6269 {
6270 struct value *tsd = ada_get_tsd_from_tag (tag);
6271
6272 if (tsd != NULL)
6273 name = ada_tag_name_from_tsd (tsd);
6274 }
230d2906 6275 catch (const gdb_exception_error &e)
492d29ea
PA
6276 {
6277 }
1b611343
JB
6278
6279 return name;
4c4b4cd2
PH
6280}
6281
6282/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6283
d2e4a39e 6284struct type *
ebf56fd3 6285ada_parent_type (struct type *type)
14f9c5c9
AS
6286{
6287 int i;
6288
61ee279c 6289 type = ada_check_typedef (type);
14f9c5c9 6290
78134374 6291 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6292 return NULL;
6293
1f704f76 6294 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6295 if (ada_is_parent_field (type, i))
0c1f74cf 6296 {
dda83cd7 6297 struct type *parent_type = type->field (i).type ();
0c1f74cf 6298
dda83cd7
SM
6299 /* If the _parent field is a pointer, then dereference it. */
6300 if (parent_type->code () == TYPE_CODE_PTR)
6301 parent_type = TYPE_TARGET_TYPE (parent_type);
6302 /* If there is a parallel XVS type, get the actual base type. */
6303 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6304
dda83cd7 6305 return ada_check_typedef (parent_type);
0c1f74cf 6306 }
14f9c5c9
AS
6307
6308 return NULL;
6309}
6310
4c4b4cd2
PH
6311/* True iff field number FIELD_NUM of structure type TYPE contains the
6312 parent-type (inherited) fields of a derived type. Assumes TYPE is
6313 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6314
6315int
ebf56fd3 6316ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6317{
33d16dd9 6318 const char *name = ada_check_typedef (type)->field (field_num).name ();
5b4ee69b 6319
4c4b4cd2 6320 return (name != NULL
dda83cd7
SM
6321 && (startswith (name, "PARENT")
6322 || startswith (name, "_parent")));
14f9c5c9
AS
6323}
6324
4c4b4cd2 6325/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6326 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6327 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6328 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6329 structures. */
14f9c5c9
AS
6330
6331int
ebf56fd3 6332ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6333{
33d16dd9 6334 const char *name = type->field (field_num).name ();
5b4ee69b 6335
dddc0e16
JB
6336 if (name != NULL && strcmp (name, "RETVAL") == 0)
6337 {
6338 /* This happens in functions with "out" or "in out" parameters
6339 which are passed by copy. For such functions, GNAT describes
6340 the function's return type as being a struct where the return
6341 value is in a field called RETVAL, and where the other "out"
6342 or "in out" parameters are fields of that struct. This is not
6343 a wrapper. */
6344 return 0;
6345 }
6346
d2e4a39e 6347 return (name != NULL
dda83cd7
SM
6348 && (startswith (name, "PARENT")
6349 || strcmp (name, "REP") == 0
6350 || startswith (name, "_parent")
6351 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6352}
6353
4c4b4cd2
PH
6354/* True iff field number FIELD_NUM of structure or union type TYPE
6355 is a variant wrapper. Assumes TYPE is a structure type with at least
6356 FIELD_NUM+1 fields. */
14f9c5c9
AS
6357
6358int
ebf56fd3 6359ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6360{
8ecb59f8
TT
6361 /* Only Ada types are eligible. */
6362 if (!ADA_TYPE_P (type))
6363 return 0;
6364
940da03e 6365 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6366
78134374
SM
6367 return (field_type->code () == TYPE_CODE_UNION
6368 || (is_dynamic_field (type, field_num)
6369 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6370 == TYPE_CODE_UNION)));
14f9c5c9
AS
6371}
6372
6373/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6374 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6375 returns the type of the controlling discriminant for the variant.
6376 May return NULL if the type could not be found. */
14f9c5c9 6377
d2e4a39e 6378struct type *
ebf56fd3 6379ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6380{
a121b7c1 6381 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6382
988f6b3d 6383 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6384}
6385
4c4b4cd2 6386/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6387 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6388 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6389
de93309a 6390static int
ebf56fd3 6391ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6392{
33d16dd9 6393 const char *name = type->field (field_num).name ();
5b4ee69b 6394
14f9c5c9
AS
6395 return (name != NULL && name[0] == 'O');
6396}
6397
6398/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6399 returns the name of the discriminant controlling the variant.
6400 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6401
a121b7c1 6402const char *
ebf56fd3 6403ada_variant_discrim_name (struct type *type0)
14f9c5c9 6404{
5f9febe0 6405 static std::string result;
d2e4a39e
AS
6406 struct type *type;
6407 const char *name;
6408 const char *discrim_end;
6409 const char *discrim_start;
14f9c5c9 6410
78134374 6411 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6412 type = TYPE_TARGET_TYPE (type0);
6413 else
6414 type = type0;
6415
6416 name = ada_type_name (type);
6417
6418 if (name == NULL || name[0] == '\000')
6419 return "";
6420
6421 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6422 discrim_end -= 1)
6423 {
61012eef 6424 if (startswith (discrim_end, "___XVN"))
dda83cd7 6425 break;
14f9c5c9
AS
6426 }
6427 if (discrim_end == name)
6428 return "";
6429
d2e4a39e 6430 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6431 discrim_start -= 1)
6432 {
d2e4a39e 6433 if (discrim_start == name + 1)
dda83cd7 6434 return "";
76a01679 6435 if ((discrim_start > name + 3
dda83cd7
SM
6436 && startswith (discrim_start - 3, "___"))
6437 || discrim_start[-1] == '.')
6438 break;
14f9c5c9
AS
6439 }
6440
5f9febe0
TT
6441 result = std::string (discrim_start, discrim_end - discrim_start);
6442 return result.c_str ();
14f9c5c9
AS
6443}
6444
4c4b4cd2
PH
6445/* Scan STR for a subtype-encoded number, beginning at position K.
6446 Put the position of the character just past the number scanned in
6447 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6448 Return 1 if there was a valid number at the given position, and 0
6449 otherwise. A "subtype-encoded" number consists of the absolute value
6450 in decimal, followed by the letter 'm' to indicate a negative number.
6451 Assumes 0m does not occur. */
14f9c5c9
AS
6452
6453int
d2e4a39e 6454ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6455{
6456 ULONGEST RU;
6457
d2e4a39e 6458 if (!isdigit (str[k]))
14f9c5c9
AS
6459 return 0;
6460
4c4b4cd2 6461 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6462 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6463 LONGEST. */
14f9c5c9
AS
6464 RU = 0;
6465 while (isdigit (str[k]))
6466 {
d2e4a39e 6467 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6468 k += 1;
6469 }
6470
d2e4a39e 6471 if (str[k] == 'm')
14f9c5c9
AS
6472 {
6473 if (R != NULL)
dda83cd7 6474 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6475 k += 1;
6476 }
6477 else if (R != NULL)
6478 *R = (LONGEST) RU;
6479
4c4b4cd2 6480 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6481 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6482 number representable as a LONGEST (although either would probably work
6483 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6484 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6485
6486 if (new_k != NULL)
6487 *new_k = k;
6488 return 1;
6489}
6490
4c4b4cd2
PH
6491/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6492 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6493 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6494
de93309a 6495static int
ebf56fd3 6496ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6497{
33d16dd9 6498 const char *name = type->field (field_num).name ();
14f9c5c9
AS
6499 int p;
6500
6501 p = 0;
6502 while (1)
6503 {
d2e4a39e 6504 switch (name[p])
dda83cd7
SM
6505 {
6506 case '\0':
6507 return 0;
6508 case 'S':
6509 {
6510 LONGEST W;
6511
6512 if (!ada_scan_number (name, p + 1, &W, &p))
6513 return 0;
6514 if (val == W)
6515 return 1;
6516 break;
6517 }
6518 case 'R':
6519 {
6520 LONGEST L, U;
6521
6522 if (!ada_scan_number (name, p + 1, &L, &p)
6523 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6524 return 0;
6525 if (val >= L && val <= U)
6526 return 1;
6527 break;
6528 }
6529 case 'O':
6530 return 1;
6531 default:
6532 return 0;
6533 }
4c4b4cd2
PH
6534 }
6535}
6536
0963b4bd 6537/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6538
6539/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6540 ARG_TYPE, extract and return the value of one of its (non-static)
6541 fields. FIELDNO says which field. Differs from value_primitive_field
6542 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6543
5eb68a39 6544struct value *
d2e4a39e 6545ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6546 struct type *arg_type)
14f9c5c9 6547{
14f9c5c9
AS
6548 struct type *type;
6549
61ee279c 6550 arg_type = ada_check_typedef (arg_type);
940da03e 6551 type = arg_type->field (fieldno).type ();
14f9c5c9 6552
4504bbde
TT
6553 /* Handle packed fields. It might be that the field is not packed
6554 relative to its containing structure, but the structure itself is
6555 packed; in this case we must take the bit-field path. */
6556 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9 6557 {
b610c045 6558 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
14f9c5c9 6559 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6560
50888e42
SM
6561 return ada_value_primitive_packed_val (arg1,
6562 value_contents (arg1).data (),
dda83cd7
SM
6563 offset + bit_pos / 8,
6564 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6565 }
6566 else
6567 return value_primitive_field (arg1, offset, fieldno, arg_type);
6568}
6569
52ce6436
PH
6570/* Find field with name NAME in object of type TYPE. If found,
6571 set the following for each argument that is non-null:
6572 - *FIELD_TYPE_P to the field's type;
6573 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6574 an object of that type;
6575 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6576 - *BIT_SIZE_P to its size in bits if the field is packed, and
6577 0 otherwise;
6578 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6579 fields up to but not including the desired field, or by the total
6580 number of fields if not found. A NULL value of NAME never
6581 matches; the function just counts visible fields in this case.
6582
828d5846
XR
6583 Notice that we need to handle when a tagged record hierarchy
6584 has some components with the same name, like in this scenario:
6585
6586 type Top_T is tagged record
dda83cd7
SM
6587 N : Integer := 1;
6588 U : Integer := 974;
6589 A : Integer := 48;
828d5846
XR
6590 end record;
6591
6592 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6593 N : Character := 'a';
6594 C : Integer := 3;
828d5846
XR
6595 end record;
6596
6597 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6598 N : Float := 4.0;
6599 C : Character := '5';
6600 X : Integer := 6;
6601 A : Character := 'J';
828d5846
XR
6602 end record;
6603
6604 Let's say we now have a variable declared and initialized as follow:
6605
6606 TC : Top_A := new Bottom_T;
6607
6608 And then we use this variable to call this function
6609
6610 procedure Assign (Obj: in out Top_T; TV : Integer);
6611
6612 as follow:
6613
6614 Assign (Top_T (B), 12);
6615
6616 Now, we're in the debugger, and we're inside that procedure
6617 then and we want to print the value of obj.c:
6618
6619 Usually, the tagged record or one of the parent type owns the
6620 component to print and there's no issue but in this particular
6621 case, what does it mean to ask for Obj.C? Since the actual
6622 type for object is type Bottom_T, it could mean two things: type
6623 component C from the Middle_T view, but also component C from
6624 Bottom_T. So in that "undefined" case, when the component is
6625 not found in the non-resolved type (which includes all the
6626 components of the parent type), then resolve it and see if we
6627 get better luck once expanded.
6628
6629 In the case of homonyms in the derived tagged type, we don't
6630 guaranty anything, and pick the one that's easiest for us
6631 to program.
6632
0963b4bd 6633 Returns 1 if found, 0 otherwise. */
52ce6436 6634
4c4b4cd2 6635static int
0d5cff50 6636find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
6637 struct type **field_type_p,
6638 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 6639 int *index_p)
4c4b4cd2
PH
6640{
6641 int i;
828d5846 6642 int parent_offset = -1;
4c4b4cd2 6643
61ee279c 6644 type = ada_check_typedef (type);
76a01679 6645
52ce6436
PH
6646 if (field_type_p != NULL)
6647 *field_type_p = NULL;
6648 if (byte_offset_p != NULL)
d5d6fca5 6649 *byte_offset_p = 0;
52ce6436
PH
6650 if (bit_offset_p != NULL)
6651 *bit_offset_p = 0;
6652 if (bit_size_p != NULL)
6653 *bit_size_p = 0;
6654
1f704f76 6655 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2 6656 {
4d1795ac
TT
6657 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
6658 type. However, we only need the values to be correct when
6659 the caller asks for them. */
6660 int bit_pos = 0, fld_offset = 0;
6661 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6662 {
b610c045 6663 bit_pos = type->field (i).loc_bitpos ();
4d1795ac
TT
6664 fld_offset = offset + bit_pos / 8;
6665 }
6666
33d16dd9 6667 const char *t_field_name = type->field (i).name ();
76a01679 6668
4c4b4cd2 6669 if (t_field_name == NULL)
dda83cd7 6670 continue;
4c4b4cd2 6671
828d5846 6672 else if (ada_is_parent_field (type, i))
dda83cd7 6673 {
828d5846
XR
6674 /* This is a field pointing us to the parent type of a tagged
6675 type. As hinted in this function's documentation, we give
6676 preference to fields in the current record first, so what
6677 we do here is just record the index of this field before
6678 we skip it. If it turns out we couldn't find our field
6679 in the current record, then we'll get back to it and search
6680 inside it whether the field might exist in the parent. */
6681
dda83cd7
SM
6682 parent_offset = i;
6683 continue;
6684 }
828d5846 6685
52ce6436 6686 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
6687 {
6688 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6689
52ce6436 6690 if (field_type_p != NULL)
940da03e 6691 *field_type_p = type->field (i).type ();
52ce6436
PH
6692 if (byte_offset_p != NULL)
6693 *byte_offset_p = fld_offset;
6694 if (bit_offset_p != NULL)
6695 *bit_offset_p = bit_pos % 8;
6696 if (bit_size_p != NULL)
6697 *bit_size_p = bit_size;
dda83cd7
SM
6698 return 1;
6699 }
4c4b4cd2 6700 else if (ada_is_wrapper_field (type, i))
dda83cd7 6701 {
940da03e 6702 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
6703 field_type_p, byte_offset_p, bit_offset_p,
6704 bit_size_p, index_p))
dda83cd7
SM
6705 return 1;
6706 }
4c4b4cd2 6707 else if (ada_is_variant_part (type, i))
dda83cd7 6708 {
52ce6436
PH
6709 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6710 fixed type?? */
dda83cd7
SM
6711 int j;
6712 struct type *field_type
940da03e 6713 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 6714
dda83cd7
SM
6715 for (j = 0; j < field_type->num_fields (); j += 1)
6716 {
6717 if (find_struct_field (name, field_type->field (j).type (),
6718 fld_offset
b610c045 6719 + field_type->field (j).loc_bitpos () / 8,
dda83cd7
SM
6720 field_type_p, byte_offset_p,
6721 bit_offset_p, bit_size_p, index_p))
6722 return 1;
6723 }
6724 }
52ce6436
PH
6725 else if (index_p != NULL)
6726 *index_p += 1;
4c4b4cd2 6727 }
828d5846
XR
6728
6729 /* Field not found so far. If this is a tagged type which
6730 has a parent, try finding that field in the parent now. */
6731
6732 if (parent_offset != -1)
6733 {
4d1795ac
TT
6734 /* As above, only compute the offset when truly needed. */
6735 int fld_offset = offset;
6736 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6737 {
b610c045 6738 int bit_pos = type->field (parent_offset).loc_bitpos ();
4d1795ac
TT
6739 fld_offset += bit_pos / 8;
6740 }
828d5846 6741
940da03e 6742 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
6743 fld_offset, field_type_p, byte_offset_p,
6744 bit_offset_p, bit_size_p, index_p))
6745 return 1;
828d5846
XR
6746 }
6747
4c4b4cd2
PH
6748 return 0;
6749}
6750
0963b4bd 6751/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6752
52ce6436
PH
6753static int
6754num_visible_fields (struct type *type)
6755{
6756 int n;
5b4ee69b 6757
52ce6436
PH
6758 n = 0;
6759 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6760 return n;
6761}
14f9c5c9 6762
4c4b4cd2 6763/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6764 and search in it assuming it has (class) type TYPE.
6765 If found, return value, else return NULL.
6766
828d5846
XR
6767 Searches recursively through wrapper fields (e.g., '_parent').
6768
6769 In the case of homonyms in the tagged types, please refer to the
6770 long explanation in find_struct_field's function documentation. */
14f9c5c9 6771
4c4b4cd2 6772static struct value *
108d56a4 6773ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 6774 struct type *type)
14f9c5c9
AS
6775{
6776 int i;
828d5846 6777 int parent_offset = -1;
14f9c5c9 6778
5b4ee69b 6779 type = ada_check_typedef (type);
1f704f76 6780 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6781 {
33d16dd9 6782 const char *t_field_name = type->field (i).name ();
14f9c5c9
AS
6783
6784 if (t_field_name == NULL)
dda83cd7 6785 continue;
14f9c5c9 6786
828d5846 6787 else if (ada_is_parent_field (type, i))
dda83cd7 6788 {
828d5846
XR
6789 /* This is a field pointing us to the parent type of a tagged
6790 type. As hinted in this function's documentation, we give
6791 preference to fields in the current record first, so what
6792 we do here is just record the index of this field before
6793 we skip it. If it turns out we couldn't find our field
6794 in the current record, then we'll get back to it and search
6795 inside it whether the field might exist in the parent. */
6796
dda83cd7
SM
6797 parent_offset = i;
6798 continue;
6799 }
828d5846 6800
14f9c5c9 6801 else if (field_name_match (t_field_name, name))
dda83cd7 6802 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6803
6804 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6805 {
6806 struct value *v = /* Do not let indent join lines here. */
6807 ada_search_struct_field (name, arg,
b610c045 6808 offset + type->field (i).loc_bitpos () / 8,
dda83cd7 6809 type->field (i).type ());
5b4ee69b 6810
dda83cd7
SM
6811 if (v != NULL)
6812 return v;
6813 }
14f9c5c9
AS
6814
6815 else if (ada_is_variant_part (type, i))
dda83cd7 6816 {
0963b4bd 6817 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
6818 int j;
6819 struct type *field_type = ada_check_typedef (type->field (i).type ());
b610c045 6820 int var_offset = offset + type->field (i).loc_bitpos () / 8;
4c4b4cd2 6821
dda83cd7
SM
6822 for (j = 0; j < field_type->num_fields (); j += 1)
6823 {
6824 struct value *v = ada_search_struct_field /* Force line
0963b4bd 6825 break. */
dda83cd7 6826 (name, arg,
b610c045 6827 var_offset + field_type->field (j).loc_bitpos () / 8,
dda83cd7 6828 field_type->field (j).type ());
5b4ee69b 6829
dda83cd7
SM
6830 if (v != NULL)
6831 return v;
6832 }
6833 }
14f9c5c9 6834 }
828d5846
XR
6835
6836 /* Field not found so far. If this is a tagged type which
6837 has a parent, try finding that field in the parent now. */
6838
6839 if (parent_offset != -1)
6840 {
6841 struct value *v = ada_search_struct_field (
b610c045 6842 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
940da03e 6843 type->field (parent_offset).type ());
828d5846
XR
6844
6845 if (v != NULL)
dda83cd7 6846 return v;
828d5846
XR
6847 }
6848
14f9c5c9
AS
6849 return NULL;
6850}
d2e4a39e 6851
52ce6436
PH
6852static struct value *ada_index_struct_field_1 (int *, struct value *,
6853 int, struct type *);
6854
6855
6856/* Return field #INDEX in ARG, where the index is that returned by
6857 * find_struct_field through its INDEX_P argument. Adjust the address
6858 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6859 * If found, return value, else return NULL. */
52ce6436
PH
6860
6861static struct value *
6862ada_index_struct_field (int index, struct value *arg, int offset,
6863 struct type *type)
6864{
6865 return ada_index_struct_field_1 (&index, arg, offset, type);
6866}
6867
6868
6869/* Auxiliary function for ada_index_struct_field. Like
6870 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6871 * *INDEX_P. */
52ce6436
PH
6872
6873static struct value *
6874ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6875 struct type *type)
6876{
6877 int i;
6878 type = ada_check_typedef (type);
6879
1f704f76 6880 for (i = 0; i < type->num_fields (); i += 1)
52ce6436 6881 {
33d16dd9 6882 if (type->field (i).name () == NULL)
dda83cd7 6883 continue;
52ce6436 6884 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6885 {
6886 struct value *v = /* Do not let indent join lines here. */
6887 ada_index_struct_field_1 (index_p, arg,
b610c045 6888 offset + type->field (i).loc_bitpos () / 8,
940da03e 6889 type->field (i).type ());
5b4ee69b 6890
dda83cd7
SM
6891 if (v != NULL)
6892 return v;
6893 }
52ce6436
PH
6894
6895 else if (ada_is_variant_part (type, i))
dda83cd7 6896 {
52ce6436 6897 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6898 find_struct_field. */
52ce6436 6899 error (_("Cannot assign this kind of variant record"));
dda83cd7 6900 }
52ce6436 6901 else if (*index_p == 0)
dda83cd7 6902 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
6903 else
6904 *index_p -= 1;
6905 }
6906 return NULL;
6907}
6908
3b4de39c 6909/* Return a string representation of type TYPE. */
99bbb428 6910
3b4de39c 6911static std::string
99bbb428
PA
6912type_as_string (struct type *type)
6913{
d7e74731 6914 string_file tmp_stream;
99bbb428 6915
d7e74731 6916 type_print (type, "", &tmp_stream, -1);
99bbb428 6917
5d10a204 6918 return tmp_stream.release ();
99bbb428
PA
6919}
6920
14f9c5c9 6921/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6922 If DISPP is non-null, add its byte displacement from the beginning of a
6923 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6924 work for packed fields).
6925
6926 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6927 followed by "___".
14f9c5c9 6928
0963b4bd 6929 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6930 be a (pointer or reference)+ to a struct or union, and the
6931 ultimate target type will be searched.
14f9c5c9
AS
6932
6933 Looks recursively into variant clauses and parent types.
6934
828d5846
XR
6935 In the case of homonyms in the tagged types, please refer to the
6936 long explanation in find_struct_field's function documentation.
6937
4c4b4cd2
PH
6938 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6939 TYPE is not a type of the right kind. */
14f9c5c9 6940
4c4b4cd2 6941static struct type *
a121b7c1 6942ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 6943 int noerr)
14f9c5c9
AS
6944{
6945 int i;
828d5846 6946 int parent_offset = -1;
14f9c5c9
AS
6947
6948 if (name == NULL)
6949 goto BadName;
6950
76a01679 6951 if (refok && type != NULL)
4c4b4cd2
PH
6952 while (1)
6953 {
dda83cd7
SM
6954 type = ada_check_typedef (type);
6955 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6956 break;
6957 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6958 }
14f9c5c9 6959
76a01679 6960 if (type == NULL
78134374
SM
6961 || (type->code () != TYPE_CODE_STRUCT
6962 && type->code () != TYPE_CODE_UNION))
14f9c5c9 6963 {
4c4b4cd2 6964 if (noerr)
dda83cd7 6965 return NULL;
99bbb428 6966
3b4de39c
PA
6967 error (_("Type %s is not a structure or union type"),
6968 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
6969 }
6970
6971 type = to_static_fixed_type (type);
6972
1f704f76 6973 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6974 {
33d16dd9 6975 const char *t_field_name = type->field (i).name ();
14f9c5c9 6976 struct type *t;
d2e4a39e 6977
14f9c5c9 6978 if (t_field_name == NULL)
dda83cd7 6979 continue;
14f9c5c9 6980
828d5846 6981 else if (ada_is_parent_field (type, i))
dda83cd7 6982 {
828d5846
XR
6983 /* This is a field pointing us to the parent type of a tagged
6984 type. As hinted in this function's documentation, we give
6985 preference to fields in the current record first, so what
6986 we do here is just record the index of this field before
6987 we skip it. If it turns out we couldn't find our field
6988 in the current record, then we'll get back to it and search
6989 inside it whether the field might exist in the parent. */
6990
dda83cd7
SM
6991 parent_offset = i;
6992 continue;
6993 }
828d5846 6994
14f9c5c9 6995 else if (field_name_match (t_field_name, name))
940da03e 6996 return type->field (i).type ();
14f9c5c9
AS
6997
6998 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6999 {
7000 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7001 0, 1);
7002 if (t != NULL)
988f6b3d 7003 return t;
dda83cd7 7004 }
14f9c5c9
AS
7005
7006 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7007 {
7008 int j;
7009 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7010
dda83cd7
SM
7011 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7012 {
b1f33ddd 7013 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7014 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7015 generates these for unchecked variant types. Revisit
dda83cd7 7016 if the compiler changes this practice. */
33d16dd9 7017 const char *v_field_name = field_type->field (j).name ();
988f6b3d 7018
b1f33ddd
JB
7019 if (v_field_name != NULL
7020 && field_name_match (v_field_name, name))
940da03e 7021 t = field_type->field (j).type ();
b1f33ddd 7022 else
940da03e 7023 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7024 name, 0, 1);
b1f33ddd 7025
dda83cd7 7026 if (t != NULL)
988f6b3d 7027 return t;
dda83cd7
SM
7028 }
7029 }
14f9c5c9
AS
7030
7031 }
7032
828d5846
XR
7033 /* Field not found so far. If this is a tagged type which
7034 has a parent, try finding that field in the parent now. */
7035
7036 if (parent_offset != -1)
7037 {
dda83cd7 7038 struct type *t;
828d5846 7039
dda83cd7
SM
7040 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7041 name, 0, 1);
7042 if (t != NULL)
828d5846
XR
7043 return t;
7044 }
7045
14f9c5c9 7046BadName:
d2e4a39e 7047 if (!noerr)
14f9c5c9 7048 {
2b2798cc 7049 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7050
7051 error (_("Type %s has no component named %s"),
3b4de39c 7052 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7053 }
7054
7055 return NULL;
7056}
7057
b1f33ddd
JB
7058/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7059 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7060 represents an unchecked union (that is, the variant part of a
0963b4bd 7061 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7062
7063static int
7064is_unchecked_variant (struct type *var_type, struct type *outer_type)
7065{
a121b7c1 7066 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7067
988f6b3d 7068 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7069}
7070
7071
14f9c5c9 7072/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7073 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7074 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7075
d2e4a39e 7076int
d8af9068 7077ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7078{
7079 int others_clause;
7080 int i;
a121b7c1 7081 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7082 struct value *discrim;
14f9c5c9
AS
7083 LONGEST discrim_val;
7084
012370f6
TT
7085 /* Using plain value_from_contents_and_address here causes problems
7086 because we will end up trying to resolve a type that is currently
7087 being constructed. */
0c281816
JB
7088 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7089 if (discrim == NULL)
14f9c5c9 7090 return -1;
0c281816 7091 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7092
7093 others_clause = -1;
1f704f76 7094 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7095 {
7096 if (ada_is_others_clause (var_type, i))
dda83cd7 7097 others_clause = i;
14f9c5c9 7098 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7099 return i;
14f9c5c9
AS
7100 }
7101
7102 return others_clause;
7103}
d2e4a39e 7104\f
14f9c5c9
AS
7105
7106
dda83cd7 7107 /* Dynamic-Sized Records */
14f9c5c9
AS
7108
7109/* Strategy: The type ostensibly attached to a value with dynamic size
7110 (i.e., a size that is not statically recorded in the debugging
7111 data) does not accurately reflect the size or layout of the value.
7112 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7113 conventional types that are constructed on the fly. */
14f9c5c9
AS
7114
7115/* There is a subtle and tricky problem here. In general, we cannot
7116 determine the size of dynamic records without its data. However,
7117 the 'struct value' data structure, which GDB uses to represent
7118 quantities in the inferior process (the target), requires the size
7119 of the type at the time of its allocation in order to reserve space
7120 for GDB's internal copy of the data. That's why the
7121 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7122 rather than struct value*s.
14f9c5c9
AS
7123
7124 However, GDB's internal history variables ($1, $2, etc.) are
7125 struct value*s containing internal copies of the data that are not, in
7126 general, the same as the data at their corresponding addresses in
7127 the target. Fortunately, the types we give to these values are all
7128 conventional, fixed-size types (as per the strategy described
7129 above), so that we don't usually have to perform the
7130 'to_fixed_xxx_type' conversions to look at their values.
7131 Unfortunately, there is one exception: if one of the internal
7132 history variables is an array whose elements are unconstrained
7133 records, then we will need to create distinct fixed types for each
7134 element selected. */
7135
7136/* The upshot of all of this is that many routines take a (type, host
7137 address, target address) triple as arguments to represent a value.
7138 The host address, if non-null, is supposed to contain an internal
7139 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7140 target at the target address. */
14f9c5c9
AS
7141
7142/* Assuming that VAL0 represents a pointer value, the result of
7143 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7144 dynamic-sized types. */
14f9c5c9 7145
d2e4a39e
AS
7146struct value *
7147ada_value_ind (struct value *val0)
14f9c5c9 7148{
c48db5ca 7149 struct value *val = value_ind (val0);
5b4ee69b 7150
b50d69b5
JG
7151 if (ada_is_tagged_type (value_type (val), 0))
7152 val = ada_tag_value_at_base_address (val);
7153
4c4b4cd2 7154 return ada_to_fixed_value (val);
14f9c5c9
AS
7155}
7156
7157/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7158 qualifiers on VAL0. */
7159
d2e4a39e
AS
7160static struct value *
7161ada_coerce_ref (struct value *val0)
7162{
78134374 7163 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7164 {
7165 struct value *val = val0;
5b4ee69b 7166
994b9211 7167 val = coerce_ref (val);
b50d69b5
JG
7168
7169 if (ada_is_tagged_type (value_type (val), 0))
7170 val = ada_tag_value_at_base_address (val);
7171
4c4b4cd2 7172 return ada_to_fixed_value (val);
d2e4a39e
AS
7173 }
7174 else
14f9c5c9
AS
7175 return val0;
7176}
7177
4c4b4cd2 7178/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7179
7180static unsigned int
ebf56fd3 7181field_alignment (struct type *type, int f)
14f9c5c9 7182{
33d16dd9 7183 const char *name = type->field (f).name ();
64a1bf19 7184 int len;
14f9c5c9
AS
7185 int align_offset;
7186
64a1bf19
JB
7187 /* The field name should never be null, unless the debugging information
7188 is somehow malformed. In this case, we assume the field does not
7189 require any alignment. */
7190 if (name == NULL)
7191 return 1;
7192
7193 len = strlen (name);
7194
4c4b4cd2
PH
7195 if (!isdigit (name[len - 1]))
7196 return 1;
14f9c5c9 7197
d2e4a39e 7198 if (isdigit (name[len - 2]))
14f9c5c9
AS
7199 align_offset = len - 2;
7200 else
7201 align_offset = len - 1;
7202
61012eef 7203 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7204 return TARGET_CHAR_BIT;
7205
4c4b4cd2
PH
7206 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7207}
7208
852dff6c 7209/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7210
852dff6c
JB
7211static struct symbol *
7212ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7213{
7214 struct symbol *sym;
7215
7216 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
66d7f48f 7217 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
4c4b4cd2
PH
7218 return sym;
7219
4186eb54
KS
7220 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7221 return sym;
14f9c5c9
AS
7222}
7223
dddfab26
UW
7224/* Find a type named NAME. Ignores ambiguity. This routine will look
7225 solely for types defined by debug info, it will not search the GDB
7226 primitive types. */
4c4b4cd2 7227
852dff6c 7228static struct type *
ebf56fd3 7229ada_find_any_type (const char *name)
14f9c5c9 7230{
852dff6c 7231 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7232
14f9c5c9 7233 if (sym != NULL)
5f9c5a63 7234 return sym->type ();
14f9c5c9 7235
dddfab26 7236 return NULL;
14f9c5c9
AS
7237}
7238
739593e0
JB
7239/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7240 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7241 symbol, in which case it is returned. Otherwise, this looks for
7242 symbols whose name is that of NAME_SYM suffixed with "___XR".
7243 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7244
c0e70c62
TT
7245static bool
7246ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7247{
987012b8 7248 const char *name = name_sym->linkage_name ();
c0e70c62 7249 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7250}
7251
14f9c5c9 7252/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7253 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7254 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7255 otherwise return 0. */
7256
14f9c5c9 7257int
d2e4a39e 7258ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7259{
7260 if (type1 == NULL)
7261 return 1;
7262 else if (type0 == NULL)
7263 return 0;
78134374 7264 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7265 return 1;
78134374 7266 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7267 return 0;
7d93a1e0 7268 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7269 return 1;
ad82864c 7270 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7271 return 1;
4c4b4cd2 7272 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7273 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7274 return 1;
aeb5907d
JB
7275 else
7276 {
7d93a1e0
SM
7277 const char *type0_name = type0->name ();
7278 const char *type1_name = type1->name ();
aeb5907d
JB
7279
7280 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7281 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7282 return 1;
7283 }
14f9c5c9
AS
7284 return 0;
7285}
7286
e86ca25f
TT
7287/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7288 null. */
4c4b4cd2 7289
0d5cff50 7290const char *
d2e4a39e 7291ada_type_name (struct type *type)
14f9c5c9 7292{
d2e4a39e 7293 if (type == NULL)
14f9c5c9 7294 return NULL;
7d93a1e0 7295 return type->name ();
14f9c5c9
AS
7296}
7297
b4ba55a1
JB
7298/* Search the list of "descriptive" types associated to TYPE for a type
7299 whose name is NAME. */
7300
7301static struct type *
7302find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7303{
931e5bc3 7304 struct type *result, *tmp;
b4ba55a1 7305
c6044dd1
JB
7306 if (ada_ignore_descriptive_types_p)
7307 return NULL;
7308
b4ba55a1
JB
7309 /* If there no descriptive-type info, then there is no parallel type
7310 to be found. */
7311 if (!HAVE_GNAT_AUX_INFO (type))
7312 return NULL;
7313
7314 result = TYPE_DESCRIPTIVE_TYPE (type);
7315 while (result != NULL)
7316 {
0d5cff50 7317 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7318
7319 if (result_name == NULL)
dda83cd7
SM
7320 {
7321 warning (_("unexpected null name on descriptive type"));
7322 return NULL;
7323 }
b4ba55a1
JB
7324
7325 /* If the names match, stop. */
7326 if (strcmp (result_name, name) == 0)
7327 break;
7328
7329 /* Otherwise, look at the next item on the list, if any. */
7330 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7331 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7332 else
7333 tmp = NULL;
7334
7335 /* If not found either, try after having resolved the typedef. */
7336 if (tmp != NULL)
7337 result = tmp;
b4ba55a1 7338 else
931e5bc3 7339 {
f168693b 7340 result = check_typedef (result);
931e5bc3
JG
7341 if (HAVE_GNAT_AUX_INFO (result))
7342 result = TYPE_DESCRIPTIVE_TYPE (result);
7343 else
7344 result = NULL;
7345 }
b4ba55a1
JB
7346 }
7347
7348 /* If we didn't find a match, see whether this is a packed array. With
7349 older compilers, the descriptive type information is either absent or
7350 irrelevant when it comes to packed arrays so the above lookup fails.
7351 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7352 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7353 return ada_find_any_type (name);
7354
7355 return result;
7356}
7357
7358/* Find a parallel type to TYPE with the specified NAME, using the
7359 descriptive type taken from the debugging information, if available,
7360 and otherwise using the (slower) name-based method. */
7361
7362static struct type *
7363ada_find_parallel_type_with_name (struct type *type, const char *name)
7364{
7365 struct type *result = NULL;
7366
7367 if (HAVE_GNAT_AUX_INFO (type))
7368 result = find_parallel_type_by_descriptive_type (type, name);
7369 else
7370 result = ada_find_any_type (name);
7371
7372 return result;
7373}
7374
7375/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7376 SUFFIX to the name of TYPE. */
14f9c5c9 7377
d2e4a39e 7378struct type *
ebf56fd3 7379ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7380{
0d5cff50 7381 char *name;
fe978cb0 7382 const char *type_name = ada_type_name (type);
14f9c5c9 7383 int len;
d2e4a39e 7384
fe978cb0 7385 if (type_name == NULL)
14f9c5c9
AS
7386 return NULL;
7387
fe978cb0 7388 len = strlen (type_name);
14f9c5c9 7389
b4ba55a1 7390 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7391
fe978cb0 7392 strcpy (name, type_name);
14f9c5c9
AS
7393 strcpy (name + len, suffix);
7394
b4ba55a1 7395 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7396}
7397
14f9c5c9 7398/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7399 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7400
d2e4a39e
AS
7401static struct type *
7402dynamic_template_type (struct type *type)
14f9c5c9 7403{
61ee279c 7404 type = ada_check_typedef (type);
14f9c5c9 7405
78134374 7406 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7407 || ada_type_name (type) == NULL)
14f9c5c9 7408 return NULL;
d2e4a39e 7409 else
14f9c5c9
AS
7410 {
7411 int len = strlen (ada_type_name (type));
5b4ee69b 7412
4c4b4cd2 7413 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7414 return type;
14f9c5c9 7415 else
dda83cd7 7416 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7417 }
7418}
7419
7420/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7421 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7422
d2e4a39e
AS
7423static int
7424is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9 7425{
33d16dd9 7426 const char *name = templ_type->field (field_num).name ();
5b4ee69b 7427
d2e4a39e 7428 return name != NULL
940da03e 7429 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7430 && strstr (name, "___XVL") != NULL;
7431}
7432
4c4b4cd2
PH
7433/* The index of the variant field of TYPE, or -1 if TYPE does not
7434 represent a variant record type. */
14f9c5c9 7435
d2e4a39e 7436static int
4c4b4cd2 7437variant_field_index (struct type *type)
14f9c5c9
AS
7438{
7439 int f;
7440
78134374 7441 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7442 return -1;
7443
1f704f76 7444 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7445 {
7446 if (ada_is_variant_part (type, f))
dda83cd7 7447 return f;
4c4b4cd2
PH
7448 }
7449 return -1;
14f9c5c9
AS
7450}
7451
4c4b4cd2
PH
7452/* A record type with no fields. */
7453
d2e4a39e 7454static struct type *
fe978cb0 7455empty_record (struct type *templ)
14f9c5c9 7456{
fe978cb0 7457 struct type *type = alloc_type_copy (templ);
5b4ee69b 7458
67607e24 7459 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7460 INIT_NONE_SPECIFIC (type);
d0e39ea2 7461 type->set_name ("<empty>");
14f9c5c9
AS
7462 TYPE_LENGTH (type) = 0;
7463 return type;
7464}
7465
7466/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7467 the value of type TYPE at VALADDR or ADDRESS (see comments at
7468 the beginning of this section) VAL according to GNAT conventions.
7469 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7470 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7471 an outer-level type (i.e., as opposed to a branch of a variant.) A
7472 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7473 of the variant.
14f9c5c9 7474
4c4b4cd2
PH
7475 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7476 length are not statically known are discarded. As a consequence,
7477 VALADDR, ADDRESS and DVAL0 are ignored.
7478
7479 NOTE: Limitations: For now, we assume that dynamic fields and
7480 variants occupy whole numbers of bytes. However, they need not be
7481 byte-aligned. */
7482
7483struct type *
10a2c479 7484ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7485 const gdb_byte *valaddr,
dda83cd7
SM
7486 CORE_ADDR address, struct value *dval0,
7487 int keep_dynamic_fields)
14f9c5c9 7488{
d2e4a39e
AS
7489 struct value *mark = value_mark ();
7490 struct value *dval;
7491 struct type *rtype;
14f9c5c9 7492 int nfields, bit_len;
4c4b4cd2 7493 int variant_field;
14f9c5c9 7494 long off;
d94e4f4f 7495 int fld_bit_len;
14f9c5c9
AS
7496 int f;
7497
4c4b4cd2
PH
7498 /* Compute the number of fields in this record type that are going
7499 to be processed: unless keep_dynamic_fields, this includes only
7500 fields whose position and length are static will be processed. */
7501 if (keep_dynamic_fields)
1f704f76 7502 nfields = type->num_fields ();
4c4b4cd2
PH
7503 else
7504 {
7505 nfields = 0;
1f704f76 7506 while (nfields < type->num_fields ()
dda83cd7
SM
7507 && !ada_is_variant_part (type, nfields)
7508 && !is_dynamic_field (type, nfields))
7509 nfields++;
4c4b4cd2
PH
7510 }
7511
e9bb382b 7512 rtype = alloc_type_copy (type);
67607e24 7513 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7514 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7515 rtype->set_num_fields (nfields);
3cabb6b0
SM
7516 rtype->set_fields
7517 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7518 rtype->set_name (ada_type_name (type));
9cdd0d12 7519 rtype->set_is_fixed_instance (true);
14f9c5c9 7520
d2e4a39e
AS
7521 off = 0;
7522 bit_len = 0;
4c4b4cd2
PH
7523 variant_field = -1;
7524
14f9c5c9
AS
7525 for (f = 0; f < nfields; f += 1)
7526 {
a89febbd 7527 off = align_up (off, field_alignment (type, f))
b610c045 7528 + type->field (f).loc_bitpos ();
cd3f655c 7529 rtype->field (f).set_loc_bitpos (off);
d2e4a39e 7530 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7531
d2e4a39e 7532 if (ada_is_variant_part (type, f))
dda83cd7
SM
7533 {
7534 variant_field = f;
7535 fld_bit_len = 0;
7536 }
14f9c5c9 7537 else if (is_dynamic_field (type, f))
dda83cd7 7538 {
284614f0
JB
7539 const gdb_byte *field_valaddr = valaddr;
7540 CORE_ADDR field_address = address;
7541 struct type *field_type =
940da03e 7542 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7543
dda83cd7 7544 if (dval0 == NULL)
b5304971 7545 {
012370f6
TT
7546 /* Using plain value_from_contents_and_address here
7547 causes problems because we will end up trying to
7548 resolve a type that is currently being
7549 constructed. */
7550 dval = value_from_contents_and_address_unresolved (rtype,
7551 valaddr,
7552 address);
9f1f738a 7553 rtype = value_type (dval);
b5304971 7554 }
dda83cd7
SM
7555 else
7556 dval = dval0;
4c4b4cd2 7557
284614f0
JB
7558 /* If the type referenced by this field is an aligner type, we need
7559 to unwrap that aligner type, because its size might not be set.
7560 Keeping the aligner type would cause us to compute the wrong
7561 size for this field, impacting the offset of the all the fields
7562 that follow this one. */
7563 if (ada_is_aligner_type (field_type))
7564 {
b610c045 7565 long field_offset = type->field (f).loc_bitpos ();
284614f0
JB
7566
7567 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7568 field_address = cond_offset_target (field_address, field_offset);
7569 field_type = ada_aligned_type (field_type);
7570 }
7571
7572 field_valaddr = cond_offset_host (field_valaddr,
7573 off / TARGET_CHAR_BIT);
7574 field_address = cond_offset_target (field_address,
7575 off / TARGET_CHAR_BIT);
7576
7577 /* Get the fixed type of the field. Note that, in this case,
7578 we do not want to get the real type out of the tag: if
7579 the current field is the parent part of a tagged record,
7580 we will get the tag of the object. Clearly wrong: the real
7581 type of the parent is not the real type of the child. We
7582 would end up in an infinite loop. */
7583 field_type = ada_get_base_type (field_type);
7584 field_type = ada_to_fixed_type (field_type, field_valaddr,
7585 field_address, dval, 0);
7586
5d14b6e5 7587 rtype->field (f).set_type (field_type);
33d16dd9 7588 rtype->field (f).set_name (type->field (f).name ());
27f2a97b
JB
7589 /* The multiplication can potentially overflow. But because
7590 the field length has been size-checked just above, and
7591 assuming that the maximum size is a reasonable value,
7592 an overflow should not happen in practice. So rather than
7593 adding overflow recovery code to this already complex code,
7594 we just assume that it's not going to happen. */
dda83cd7
SM
7595 fld_bit_len =
7596 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7597 }
14f9c5c9 7598 else
dda83cd7 7599 {
5ded5331
JB
7600 /* Note: If this field's type is a typedef, it is important
7601 to preserve the typedef layer.
7602
7603 Otherwise, we might be transforming a typedef to a fat
7604 pointer (encoding a pointer to an unconstrained array),
7605 into a basic fat pointer (encoding an unconstrained
7606 array). As both types are implemented using the same
7607 structure, the typedef is the only clue which allows us
7608 to distinguish between the two options. Stripping it
7609 would prevent us from printing this field appropriately. */
dda83cd7 7610 rtype->field (f).set_type (type->field (f).type ());
33d16dd9 7611 rtype->field (f).set_name (type->field (f).name ());
dda83cd7
SM
7612 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7613 fld_bit_len =
7614 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7615 else
5ded5331 7616 {
940da03e 7617 struct type *field_type = type->field (f).type ();
5ded5331
JB
7618
7619 /* We need to be careful of typedefs when computing
7620 the length of our field. If this is a typedef,
7621 get the length of the target type, not the length
7622 of the typedef. */
78134374 7623 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7624 field_type = ada_typedef_target_type (field_type);
7625
dda83cd7
SM
7626 fld_bit_len =
7627 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 7628 }
dda83cd7 7629 }
14f9c5c9 7630 if (off + fld_bit_len > bit_len)
dda83cd7 7631 bit_len = off + fld_bit_len;
d94e4f4f 7632 off += fld_bit_len;
4c4b4cd2 7633 TYPE_LENGTH (rtype) =
dda83cd7 7634 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7635 }
4c4b4cd2
PH
7636
7637 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7638 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7639 the record. This can happen in the presence of representation
7640 clauses. */
7641 if (variant_field >= 0)
7642 {
7643 struct type *branch_type;
7644
b610c045 7645 off = rtype->field (variant_field).loc_bitpos ();
4c4b4cd2
PH
7646
7647 if (dval0 == NULL)
9f1f738a 7648 {
012370f6
TT
7649 /* Using plain value_from_contents_and_address here causes
7650 problems because we will end up trying to resolve a type
7651 that is currently being constructed. */
7652 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7653 address);
9f1f738a
SA
7654 rtype = value_type (dval);
7655 }
4c4b4cd2 7656 else
dda83cd7 7657 dval = dval0;
4c4b4cd2
PH
7658
7659 branch_type =
dda83cd7
SM
7660 to_fixed_variant_branch_type
7661 (type->field (variant_field).type (),
7662 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7663 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 7664 if (branch_type == NULL)
dda83cd7
SM
7665 {
7666 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7667 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7668 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 7669 }
4c4b4cd2 7670 else
dda83cd7
SM
7671 {
7672 rtype->field (variant_field).set_type (branch_type);
d3fd12df 7673 rtype->field (variant_field).set_name ("S");
dda83cd7
SM
7674 fld_bit_len =
7675 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7676 TARGET_CHAR_BIT;
7677 if (off + fld_bit_len > bit_len)
7678 bit_len = off + fld_bit_len;
7679 TYPE_LENGTH (rtype) =
7680 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7681 }
4c4b4cd2
PH
7682 }
7683
714e53ab
PH
7684 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7685 should contain the alignment of that record, which should be a strictly
7686 positive value. If null or negative, then something is wrong, most
7687 probably in the debug info. In that case, we don't round up the size
0963b4bd 7688 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7689 the current RTYPE length might be good enough for our purposes. */
7690 if (TYPE_LENGTH (type) <= 0)
7691 {
7d93a1e0 7692 if (rtype->name ())
cc1defb1 7693 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 7694 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 7695 else
cc1defb1
KS
7696 warning (_("Invalid type size for <unnamed> detected: %s."),
7697 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
7698 }
7699 else
7700 {
a89febbd
TT
7701 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7702 TYPE_LENGTH (type));
714e53ab 7703 }
14f9c5c9
AS
7704
7705 value_free_to_mark (mark);
14f9c5c9
AS
7706 return rtype;
7707}
7708
4c4b4cd2
PH
7709/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7710 of 1. */
14f9c5c9 7711
d2e4a39e 7712static struct type *
fc1a4b47 7713template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 7714 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
7715{
7716 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 7717 address, dval0, 1);
4c4b4cd2
PH
7718}
7719
7720/* An ordinary record type in which ___XVL-convention fields and
7721 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7722 static approximations, containing all possible fields. Uses
7723 no runtime values. Useless for use in values, but that's OK,
7724 since the results are used only for type determinations. Works on both
7725 structs and unions. Representation note: to save space, we memorize
7726 the result of this function in the TYPE_TARGET_TYPE of the
7727 template type. */
7728
7729static struct type *
7730template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7731{
7732 struct type *type;
7733 int nfields;
7734 int f;
7735
9e195661 7736 /* No need no do anything if the input type is already fixed. */
22c4c60c 7737 if (type0->is_fixed_instance ())
9e195661
PMR
7738 return type0;
7739
7740 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
7741 if (TYPE_TARGET_TYPE (type0) != NULL)
7742 return TYPE_TARGET_TYPE (type0);
7743
9e195661 7744 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 7745 type = type0;
1f704f76 7746 nfields = type0->num_fields ();
9e195661
PMR
7747
7748 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7749 recompute all over next time. */
7750 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
7751
7752 for (f = 0; f < nfields; f += 1)
7753 {
940da03e 7754 struct type *field_type = type0->field (f).type ();
4c4b4cd2 7755 struct type *new_type;
14f9c5c9 7756
4c4b4cd2 7757 if (is_dynamic_field (type0, f))
460efde1
JB
7758 {
7759 field_type = ada_check_typedef (field_type);
dda83cd7 7760 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 7761 }
14f9c5c9 7762 else
dda83cd7 7763 new_type = static_unwrap_type (field_type);
9e195661
PMR
7764
7765 if (new_type != field_type)
7766 {
7767 /* Clone TYPE0 only the first time we get a new field type. */
7768 if (type == type0)
7769 {
7770 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 7771 type->set_code (type0->code ());
8ecb59f8 7772 INIT_NONE_SPECIFIC (type);
5e33d5f4 7773 type->set_num_fields (nfields);
3cabb6b0
SM
7774
7775 field *fields =
7776 ((struct field *)
7777 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 7778 memcpy (fields, type0->fields (),
9e195661 7779 sizeof (struct field) * nfields);
3cabb6b0
SM
7780 type->set_fields (fields);
7781
d0e39ea2 7782 type->set_name (ada_type_name (type0));
9cdd0d12 7783 type->set_is_fixed_instance (true);
9e195661
PMR
7784 TYPE_LENGTH (type) = 0;
7785 }
5d14b6e5 7786 type->field (f).set_type (new_type);
33d16dd9 7787 type->field (f).set_name (type0->field (f).name ());
9e195661 7788 }
14f9c5c9 7789 }
9e195661 7790
14f9c5c9
AS
7791 return type;
7792}
7793
4c4b4cd2 7794/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7795 whose address in memory is ADDRESS, returns a revision of TYPE,
7796 which should be a non-dynamic-sized record, in which the variant
7797 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7798 for discriminant values in DVAL0, which can be NULL if the record
7799 contains the necessary discriminant values. */
7800
d2e4a39e 7801static struct type *
fc1a4b47 7802to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 7803 CORE_ADDR address, struct value *dval0)
14f9c5c9 7804{
d2e4a39e 7805 struct value *mark = value_mark ();
4c4b4cd2 7806 struct value *dval;
d2e4a39e 7807 struct type *rtype;
14f9c5c9 7808 struct type *branch_type;
1f704f76 7809 int nfields = type->num_fields ();
4c4b4cd2 7810 int variant_field = variant_field_index (type);
14f9c5c9 7811
4c4b4cd2 7812 if (variant_field == -1)
14f9c5c9
AS
7813 return type;
7814
4c4b4cd2 7815 if (dval0 == NULL)
9f1f738a
SA
7816 {
7817 dval = value_from_contents_and_address (type, valaddr, address);
7818 type = value_type (dval);
7819 }
4c4b4cd2
PH
7820 else
7821 dval = dval0;
7822
e9bb382b 7823 rtype = alloc_type_copy (type);
67607e24 7824 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7825 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7826 rtype->set_num_fields (nfields);
3cabb6b0
SM
7827
7828 field *fields =
d2e4a39e 7829 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 7830 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
7831 rtype->set_fields (fields);
7832
d0e39ea2 7833 rtype->set_name (ada_type_name (type));
9cdd0d12 7834 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
7835 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7836
4c4b4cd2 7837 branch_type = to_fixed_variant_branch_type
940da03e 7838 (type->field (variant_field).type (),
d2e4a39e 7839 cond_offset_host (valaddr,
b610c045 7840 type->field (variant_field).loc_bitpos ()
dda83cd7 7841 / TARGET_CHAR_BIT),
d2e4a39e 7842 cond_offset_target (address,
b610c045 7843 type->field (variant_field).loc_bitpos ()
dda83cd7 7844 / TARGET_CHAR_BIT), dval);
d2e4a39e 7845 if (branch_type == NULL)
14f9c5c9 7846 {
4c4b4cd2 7847 int f;
5b4ee69b 7848
4c4b4cd2 7849 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 7850 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7851 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
7852 }
7853 else
7854 {
5d14b6e5 7855 rtype->field (variant_field).set_type (branch_type);
d3fd12df 7856 rtype->field (variant_field).set_name ("S");
4c4b4cd2 7857 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7858 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7859 }
940da03e 7860 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 7861
4c4b4cd2 7862 value_free_to_mark (mark);
14f9c5c9
AS
7863 return rtype;
7864}
7865
7866/* An ordinary record type (with fixed-length fields) that describes
7867 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7868 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7869 should be in DVAL, a record value; it may be NULL if the object
7870 at ADDR itself contains any necessary discriminant values.
7871 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7872 values from the record are needed. Except in the case that DVAL,
7873 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7874 unchecked) is replaced by a particular branch of the variant.
7875
7876 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7877 is questionable and may be removed. It can arise during the
7878 processing of an unconstrained-array-of-record type where all the
7879 variant branches have exactly the same size. This is because in
7880 such cases, the compiler does not bother to use the XVS convention
7881 when encoding the record. I am currently dubious of this
7882 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7883
d2e4a39e 7884static struct type *
fc1a4b47 7885to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 7886 CORE_ADDR address, struct value *dval)
14f9c5c9 7887{
d2e4a39e 7888 struct type *templ_type;
14f9c5c9 7889
22c4c60c 7890 if (type0->is_fixed_instance ())
4c4b4cd2
PH
7891 return type0;
7892
d2e4a39e 7893 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7894
7895 if (templ_type != NULL)
7896 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7897 else if (variant_field_index (type0) >= 0)
7898 {
7899 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 7900 return type0;
4c4b4cd2 7901 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 7902 dval);
4c4b4cd2 7903 }
14f9c5c9
AS
7904 else
7905 {
9cdd0d12 7906 type0->set_is_fixed_instance (true);
14f9c5c9
AS
7907 return type0;
7908 }
7909
7910}
7911
7912/* An ordinary record type (with fixed-length fields) that describes
7913 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7914 union type. Any necessary discriminants' values should be in DVAL,
7915 a record value. That is, this routine selects the appropriate
7916 branch of the union at ADDR according to the discriminant value
b1f33ddd 7917 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7918 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7919
d2e4a39e 7920static struct type *
fc1a4b47 7921to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 7922 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7923{
7924 int which;
d2e4a39e
AS
7925 struct type *templ_type;
7926 struct type *var_type;
14f9c5c9 7927
78134374 7928 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 7929 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7930 else
14f9c5c9
AS
7931 var_type = var_type0;
7932
7933 templ_type = ada_find_parallel_type (var_type, "___XVU");
7934
7935 if (templ_type != NULL)
7936 var_type = templ_type;
7937
b1f33ddd
JB
7938 if (is_unchecked_variant (var_type, value_type (dval)))
7939 return var_type0;
d8af9068 7940 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
7941
7942 if (which < 0)
e9bb382b 7943 return empty_record (var_type);
14f9c5c9 7944 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7945 return to_fixed_record_type
940da03e 7946 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 7947 valaddr, address, dval);
940da03e 7948 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
7949 return
7950 to_fixed_record_type
940da03e 7951 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 7952 else
940da03e 7953 return var_type->field (which).type ();
14f9c5c9
AS
7954}
7955
8908fca5
JB
7956/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7957 ENCODING_TYPE, a type following the GNAT conventions for discrete
7958 type encodings, only carries redundant information. */
7959
7960static int
7961ada_is_redundant_range_encoding (struct type *range_type,
7962 struct type *encoding_type)
7963{
108d56a4 7964 const char *bounds_str;
8908fca5
JB
7965 int n;
7966 LONGEST lo, hi;
7967
78134374 7968 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 7969
78134374
SM
7970 if (get_base_type (range_type)->code ()
7971 != get_base_type (encoding_type)->code ())
005e2509
JB
7972 {
7973 /* The compiler probably used a simple base type to describe
7974 the range type instead of the range's actual base type,
7975 expecting us to get the real base type from the encoding
7976 anyway. In this situation, the encoding cannot be ignored
7977 as redundant. */
7978 return 0;
7979 }
7980
8908fca5
JB
7981 if (is_dynamic_type (range_type))
7982 return 0;
7983
7d93a1e0 7984 if (encoding_type->name () == NULL)
8908fca5
JB
7985 return 0;
7986
7d93a1e0 7987 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
7988 if (bounds_str == NULL)
7989 return 0;
7990
7991 n = 8; /* Skip "___XDLU_". */
7992 if (!ada_scan_number (bounds_str, n, &lo, &n))
7993 return 0;
5537ddd0 7994 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
7995 return 0;
7996
7997 n += 2; /* Skip the "__" separator between the two bounds. */
7998 if (!ada_scan_number (bounds_str, n, &hi, &n))
7999 return 0;
5537ddd0 8000 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8001 return 0;
8002
8003 return 1;
8004}
8005
8006/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8007 a type following the GNAT encoding for describing array type
8008 indices, only carries redundant information. */
8009
8010static int
8011ada_is_redundant_index_type_desc (struct type *array_type,
8012 struct type *desc_type)
8013{
8014 struct type *this_layer = check_typedef (array_type);
8015 int i;
8016
1f704f76 8017 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8018 {
3d967001 8019 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8020 desc_type->field (i).type ()))
8908fca5
JB
8021 return 0;
8022 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8023 }
8024
8025 return 1;
8026}
8027
14f9c5c9
AS
8028/* Assuming that TYPE0 is an array type describing the type of a value
8029 at ADDR, and that DVAL describes a record containing any
8030 discriminants used in TYPE0, returns a type for the value that
8031 contains no dynamic components (that is, no components whose sizes
8032 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8033 true, gives an error message if the resulting type's size is over
4c4b4cd2 8034 varsize_limit. */
14f9c5c9 8035
d2e4a39e
AS
8036static struct type *
8037to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8038 int ignore_too_big)
14f9c5c9 8039{
d2e4a39e
AS
8040 struct type *index_type_desc;
8041 struct type *result;
ad82864c 8042 int constrained_packed_array_p;
931e5bc3 8043 static const char *xa_suffix = "___XA";
14f9c5c9 8044
b0dd7688 8045 type0 = ada_check_typedef (type0);
22c4c60c 8046 if (type0->is_fixed_instance ())
4c4b4cd2 8047 return type0;
14f9c5c9 8048
ad82864c
JB
8049 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8050 if (constrained_packed_array_p)
75fd6a26
TT
8051 {
8052 type0 = decode_constrained_packed_array_type (type0);
8053 if (type0 == nullptr)
8054 error (_("could not decode constrained packed array type"));
8055 }
284614f0 8056
931e5bc3
JG
8057 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8058
8059 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8060 encoding suffixed with 'P' may still be generated. If so,
8061 it should be used to find the XA type. */
8062
8063 if (index_type_desc == NULL)
8064 {
1da0522e 8065 const char *type_name = ada_type_name (type0);
931e5bc3 8066
1da0522e 8067 if (type_name != NULL)
931e5bc3 8068 {
1da0522e 8069 const int len = strlen (type_name);
931e5bc3
JG
8070 char *name = (char *) alloca (len + strlen (xa_suffix));
8071
1da0522e 8072 if (type_name[len - 1] == 'P')
931e5bc3 8073 {
1da0522e 8074 strcpy (name, type_name);
931e5bc3
JG
8075 strcpy (name + len - 1, xa_suffix);
8076 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8077 }
8078 }
8079 }
8080
28c85d6c 8081 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8082 if (index_type_desc != NULL
8083 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8084 {
8085 /* Ignore this ___XA parallel type, as it does not bring any
8086 useful information. This allows us to avoid creating fixed
8087 versions of the array's index types, which would be identical
8088 to the original ones. This, in turn, can also help avoid
8089 the creation of fixed versions of the array itself. */
8090 index_type_desc = NULL;
8091 }
8092
14f9c5c9
AS
8093 if (index_type_desc == NULL)
8094 {
61ee279c 8095 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8096
14f9c5c9 8097 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8098 depend on the contents of the array in properly constructed
8099 debugging data. */
529cad9c 8100 /* Create a fixed version of the array element type.
dda83cd7
SM
8101 We're not providing the address of an element here,
8102 and thus the actual object value cannot be inspected to do
8103 the conversion. This should not be a problem, since arrays of
8104 unconstrained objects are not allowed. In particular, all
8105 the elements of an array of a tagged type should all be of
8106 the same type specified in the debugging info. No need to
8107 consult the object tag. */
1ed6ede0 8108 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8109
284614f0
JB
8110 /* Make sure we always create a new array type when dealing with
8111 packed array types, since we're going to fix-up the array
8112 type length and element bitsize a little further down. */
ad82864c 8113 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8114 result = type0;
14f9c5c9 8115 else
dda83cd7
SM
8116 result = create_array_type (alloc_type_copy (type0),
8117 elt_type, type0->index_type ());
14f9c5c9
AS
8118 }
8119 else
8120 {
8121 int i;
8122 struct type *elt_type0;
8123
8124 elt_type0 = type0;
1f704f76 8125 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8126 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8127
8128 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8129 depend on the contents of the array in properly constructed
8130 debugging data. */
529cad9c 8131 /* Create a fixed version of the array element type.
dda83cd7
SM
8132 We're not providing the address of an element here,
8133 and thus the actual object value cannot be inspected to do
8134 the conversion. This should not be a problem, since arrays of
8135 unconstrained objects are not allowed. In particular, all
8136 the elements of an array of a tagged type should all be of
8137 the same type specified in the debugging info. No need to
8138 consult the object tag. */
1ed6ede0 8139 result =
dda83cd7 8140 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8141
8142 elt_type0 = type0;
1f704f76 8143 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8144 {
8145 struct type *range_type =
8146 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8147
dda83cd7
SM
8148 result = create_array_type (alloc_type_copy (elt_type0),
8149 result, range_type);
1ce677a4 8150 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8151 }
14f9c5c9
AS
8152 }
8153
2e6fda7d
JB
8154 /* We want to preserve the type name. This can be useful when
8155 trying to get the type name of a value that has already been
8156 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8157 result->set_name (type0->name ());
2e6fda7d 8158
ad82864c 8159 if (constrained_packed_array_p)
284614f0
JB
8160 {
8161 /* So far, the resulting type has been created as if the original
8162 type was a regular (non-packed) array type. As a result, the
8163 bitsize of the array elements needs to be set again, and the array
8164 length needs to be recomputed based on that bitsize. */
8165 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8166 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8167
8168 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8169 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8170 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8171 TYPE_LENGTH (result)++;
284614f0
JB
8172 }
8173
9cdd0d12 8174 result->set_is_fixed_instance (true);
14f9c5c9 8175 return result;
d2e4a39e 8176}
14f9c5c9
AS
8177
8178
8179/* A standard type (containing no dynamically sized components)
8180 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8181 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8182 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8183 ADDRESS or in VALADDR contains these discriminants.
8184
1ed6ede0
JB
8185 If CHECK_TAG is not null, in the case of tagged types, this function
8186 attempts to locate the object's tag and use it to compute the actual
8187 type. However, when ADDRESS is null, we cannot use it to determine the
8188 location of the tag, and therefore compute the tagged type's actual type.
8189 So we return the tagged type without consulting the tag. */
529cad9c 8190
f192137b
JB
8191static struct type *
8192ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8193 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8194{
61ee279c 8195 type = ada_check_typedef (type);
8ecb59f8
TT
8196
8197 /* Only un-fixed types need to be handled here. */
8198 if (!HAVE_GNAT_AUX_INFO (type))
8199 return type;
8200
78134374 8201 switch (type->code ())
d2e4a39e
AS
8202 {
8203 default:
14f9c5c9 8204 return type;
d2e4a39e 8205 case TYPE_CODE_STRUCT:
4c4b4cd2 8206 {
dda83cd7
SM
8207 struct type *static_type = to_static_fixed_type (type);
8208 struct type *fixed_record_type =
8209 to_fixed_record_type (type, valaddr, address, NULL);
8210
8211 /* If STATIC_TYPE is a tagged type and we know the object's address,
8212 then we can determine its tag, and compute the object's actual
8213 type from there. Note that we have to use the fixed record
8214 type (the parent part of the record may have dynamic fields
8215 and the way the location of _tag is expressed may depend on
8216 them). */
8217
8218 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8219 {
b50d69b5
JG
8220 struct value *tag =
8221 value_tag_from_contents_and_address
8222 (fixed_record_type,
8223 valaddr,
8224 address);
8225 struct type *real_type = type_from_tag (tag);
8226 struct value *obj =
8227 value_from_contents_and_address (fixed_record_type,
8228 valaddr,
8229 address);
dda83cd7
SM
8230 fixed_record_type = value_type (obj);
8231 if (real_type != NULL)
8232 return to_fixed_record_type
b50d69b5
JG
8233 (real_type, NULL,
8234 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8235 }
8236
8237 /* Check to see if there is a parallel ___XVZ variable.
8238 If there is, then it provides the actual size of our type. */
8239 else if (ada_type_name (fixed_record_type) != NULL)
8240 {
8241 const char *name = ada_type_name (fixed_record_type);
8242 char *xvz_name
224c3ddb 8243 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8244 bool xvz_found = false;
dda83cd7 8245 LONGEST size;
4af88198 8246
dda83cd7 8247 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8248 try
eccab96d
JB
8249 {
8250 xvz_found = get_int_var_value (xvz_name, size);
8251 }
230d2906 8252 catch (const gdb_exception_error &except)
eccab96d
JB
8253 {
8254 /* We found the variable, but somehow failed to read
8255 its value. Rethrow the same error, but with a little
8256 bit more information, to help the user understand
8257 what went wrong (Eg: the variable might have been
8258 optimized out). */
8259 throw_error (except.error,
8260 _("unable to read value of %s (%s)"),
3d6e9d23 8261 xvz_name, except.what ());
eccab96d 8262 }
eccab96d 8263
dda83cd7
SM
8264 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8265 {
8266 fixed_record_type = copy_type (fixed_record_type);
8267 TYPE_LENGTH (fixed_record_type) = size;
8268
8269 /* The FIXED_RECORD_TYPE may have be a stub. We have
8270 observed this when the debugging info is STABS, and
8271 apparently it is something that is hard to fix.
8272
8273 In practice, we don't need the actual type definition
8274 at all, because the presence of the XVZ variable allows us
8275 to assume that there must be a XVS type as well, which we
8276 should be able to use later, when we need the actual type
8277 definition.
8278
8279 In the meantime, pretend that the "fixed" type we are
8280 returning is NOT a stub, because this can cause trouble
8281 when using this type to create new types targeting it.
8282 Indeed, the associated creation routines often check
8283 whether the target type is a stub and will try to replace
8284 it, thus using a type with the wrong size. This, in turn,
8285 might cause the new type to have the wrong size too.
8286 Consider the case of an array, for instance, where the size
8287 of the array is computed from the number of elements in
8288 our array multiplied by the size of its element. */
b4b73759 8289 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8290 }
8291 }
8292 return fixed_record_type;
4c4b4cd2 8293 }
d2e4a39e 8294 case TYPE_CODE_ARRAY:
4c4b4cd2 8295 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8296 case TYPE_CODE_UNION:
8297 if (dval == NULL)
dda83cd7 8298 return type;
d2e4a39e 8299 else
dda83cd7 8300 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8301 }
14f9c5c9
AS
8302}
8303
f192137b
JB
8304/* The same as ada_to_fixed_type_1, except that it preserves the type
8305 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8306
8307 The typedef layer needs be preserved in order to differentiate between
8308 arrays and array pointers when both types are implemented using the same
8309 fat pointer. In the array pointer case, the pointer is encoded as
8310 a typedef of the pointer type. For instance, considering:
8311
8312 type String_Access is access String;
8313 S1 : String_Access := null;
8314
8315 To the debugger, S1 is defined as a typedef of type String. But
8316 to the user, it is a pointer. So if the user tries to print S1,
8317 we should not dereference the array, but print the array address
8318 instead.
8319
8320 If we didn't preserve the typedef layer, we would lose the fact that
8321 the type is to be presented as a pointer (needs de-reference before
8322 being printed). And we would also use the source-level type name. */
f192137b
JB
8323
8324struct type *
8325ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8326 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8327
8328{
8329 struct type *fixed_type =
8330 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8331
96dbd2c1
JB
8332 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8333 then preserve the typedef layer.
8334
8335 Implementation note: We can only check the main-type portion of
8336 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8337 from TYPE now returns a type that has the same instance flags
8338 as TYPE. For instance, if TYPE is a "typedef const", and its
8339 target type is a "struct", then the typedef elimination will return
8340 a "const" version of the target type. See check_typedef for more
8341 details about how the typedef layer elimination is done.
8342
8343 brobecker/2010-11-19: It seems to me that the only case where it is
8344 useful to preserve the typedef layer is when dealing with fat pointers.
8345 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8346 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8347 because we call check_typedef/ada_check_typedef pretty much everywhere.
8348 */
78134374 8349 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8350 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8351 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8352 return type;
8353
8354 return fixed_type;
8355}
8356
14f9c5c9 8357/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8358 TYPE0, but based on no runtime data. */
14f9c5c9 8359
d2e4a39e
AS
8360static struct type *
8361to_static_fixed_type (struct type *type0)
14f9c5c9 8362{
d2e4a39e 8363 struct type *type;
14f9c5c9
AS
8364
8365 if (type0 == NULL)
8366 return NULL;
8367
22c4c60c 8368 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8369 return type0;
8370
61ee279c 8371 type0 = ada_check_typedef (type0);
d2e4a39e 8372
78134374 8373 switch (type0->code ())
14f9c5c9
AS
8374 {
8375 default:
8376 return type0;
8377 case TYPE_CODE_STRUCT:
8378 type = dynamic_template_type (type0);
d2e4a39e 8379 if (type != NULL)
dda83cd7 8380 return template_to_static_fixed_type (type);
4c4b4cd2 8381 else
dda83cd7 8382 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8383 case TYPE_CODE_UNION:
8384 type = ada_find_parallel_type (type0, "___XVU");
8385 if (type != NULL)
dda83cd7 8386 return template_to_static_fixed_type (type);
4c4b4cd2 8387 else
dda83cd7 8388 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8389 }
8390}
8391
4c4b4cd2
PH
8392/* A static approximation of TYPE with all type wrappers removed. */
8393
d2e4a39e
AS
8394static struct type *
8395static_unwrap_type (struct type *type)
14f9c5c9
AS
8396{
8397 if (ada_is_aligner_type (type))
8398 {
940da03e 8399 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8400 if (ada_type_name (type1) == NULL)
d0e39ea2 8401 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8402
8403 return static_unwrap_type (type1);
8404 }
d2e4a39e 8405 else
14f9c5c9 8406 {
d2e4a39e 8407 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8408
d2e4a39e 8409 if (raw_real_type == type)
dda83cd7 8410 return type;
14f9c5c9 8411 else
dda83cd7 8412 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8413 }
8414}
8415
8416/* In some cases, incomplete and private types require
4c4b4cd2 8417 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8418 type Foo;
8419 type FooP is access Foo;
8420 V: FooP;
8421 type Foo is array ...;
4c4b4cd2 8422 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8423 cross-references to such types, we instead substitute for FooP a
8424 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8425 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8426
8427/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8428 exists, otherwise TYPE. */
8429
d2e4a39e 8430struct type *
61ee279c 8431ada_check_typedef (struct type *type)
14f9c5c9 8432{
727e3d2e
JB
8433 if (type == NULL)
8434 return NULL;
8435
736ade86
XR
8436 /* If our type is an access to an unconstrained array, which is encoded
8437 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8438 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8439 what allows us to distinguish between fat pointers that represent
8440 array types, and fat pointers that represent array access types
8441 (in both cases, the compiler implements them as fat pointers). */
736ade86 8442 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8443 return type;
8444
f168693b 8445 type = check_typedef (type);
78134374 8446 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8447 || !type->is_stub ()
7d93a1e0 8448 || type->name () == NULL)
14f9c5c9 8449 return type;
d2e4a39e 8450 else
14f9c5c9 8451 {
7d93a1e0 8452 const char *name = type->name ();
d2e4a39e 8453 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8454
05e522ef 8455 if (type1 == NULL)
dda83cd7 8456 return type;
05e522ef
JB
8457
8458 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8459 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8460 types, only for the typedef-to-array types). If that's the case,
8461 strip the typedef layer. */
78134374 8462 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8463 type1 = ada_check_typedef (type1);
8464
8465 return type1;
14f9c5c9
AS
8466 }
8467}
8468
8469/* A value representing the data at VALADDR/ADDRESS as described by
8470 type TYPE0, but with a standard (static-sized) type that correctly
8471 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8472 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8473 creation of struct values]. */
14f9c5c9 8474
4c4b4cd2
PH
8475static struct value *
8476ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8477 struct value *val0)
14f9c5c9 8478{
1ed6ede0 8479 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8480
14f9c5c9
AS
8481 if (type == type0 && val0 != NULL)
8482 return val0;
cc0e770c
JB
8483
8484 if (VALUE_LVAL (val0) != lval_memory)
8485 {
8486 /* Our value does not live in memory; it could be a convenience
8487 variable, for instance. Create a not_lval value using val0's
8488 contents. */
50888e42 8489 return value_from_contents (type, value_contents (val0).data ());
cc0e770c
JB
8490 }
8491
8492 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8493}
8494
8495/* A value representing VAL, but with a standard (static-sized) type
8496 that correctly describes it. Does not necessarily create a new
8497 value. */
8498
0c3acc09 8499struct value *
4c4b4cd2
PH
8500ada_to_fixed_value (struct value *val)
8501{
c48db5ca 8502 val = unwrap_value (val);
d8ce9127 8503 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8504 return val;
14f9c5c9 8505}
d2e4a39e 8506\f
14f9c5c9 8507
14f9c5c9
AS
8508/* Attributes */
8509
4c4b4cd2
PH
8510/* Table mapping attribute numbers to names.
8511 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8512
27087b7f 8513static const char * const attribute_names[] = {
14f9c5c9
AS
8514 "<?>",
8515
d2e4a39e 8516 "first",
14f9c5c9
AS
8517 "last",
8518 "length",
8519 "image",
14f9c5c9
AS
8520 "max",
8521 "min",
4c4b4cd2
PH
8522 "modulus",
8523 "pos",
8524 "size",
8525 "tag",
14f9c5c9 8526 "val",
14f9c5c9
AS
8527 0
8528};
8529
de93309a 8530static const char *
4c4b4cd2 8531ada_attribute_name (enum exp_opcode n)
14f9c5c9 8532{
4c4b4cd2
PH
8533 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8534 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8535 else
8536 return attribute_names[0];
8537}
8538
4c4b4cd2 8539/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8540
4c4b4cd2
PH
8541static LONGEST
8542pos_atr (struct value *arg)
14f9c5c9 8543{
24209737
PH
8544 struct value *val = coerce_ref (arg);
8545 struct type *type = value_type (val);
14f9c5c9 8546
d2e4a39e 8547 if (!discrete_type_p (type))
323e0a4a 8548 error (_("'POS only defined on discrete types"));
14f9c5c9 8549
6244c119
SM
8550 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8551 if (!result.has_value ())
aa715135 8552 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8553
6244c119 8554 return *result;
4c4b4cd2
PH
8555}
8556
7631cf6c 8557struct value *
7992accc
TT
8558ada_pos_atr (struct type *expect_type,
8559 struct expression *exp,
8560 enum noside noside, enum exp_opcode op,
8561 struct value *arg)
4c4b4cd2 8562{
7992accc
TT
8563 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8564 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8565 return value_zero (type, not_lval);
3cb382c9 8566 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8567}
8568
4c4b4cd2 8569/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8570
d2e4a39e 8571static struct value *
53a47a3e 8572val_atr (struct type *type, LONGEST val)
14f9c5c9 8573{
53a47a3e 8574 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8575 if (type->code () == TYPE_CODE_RANGE)
8576 type = TYPE_TARGET_TYPE (type);
78134374 8577 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8578 {
53a47a3e 8579 if (val < 0 || val >= type->num_fields ())
dda83cd7 8580 error (_("argument to 'VAL out of range"));
970db518 8581 val = type->field (val).loc_enumval ();
14f9c5c9 8582 }
53a47a3e
TT
8583 return value_from_longest (type, val);
8584}
8585
9e99f48f 8586struct value *
3848abd6 8587ada_val_atr (enum noside noside, struct type *type, struct value *arg)
53a47a3e 8588{
3848abd6
TT
8589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8590 return value_zero (type, not_lval);
8591
53a47a3e
TT
8592 if (!discrete_type_p (type))
8593 error (_("'VAL only defined on discrete types"));
8594 if (!integer_type_p (value_type (arg)))
8595 error (_("'VAL requires integral argument"));
8596
8597 return val_atr (type, value_as_long (arg));
14f9c5c9 8598}
14f9c5c9 8599\f
d2e4a39e 8600
dda83cd7 8601 /* Evaluation */
14f9c5c9 8602
4c4b4cd2
PH
8603/* True if TYPE appears to be an Ada character type.
8604 [At the moment, this is true only for Character and Wide_Character;
8605 It is a heuristic test that could stand improvement]. */
14f9c5c9 8606
fc913e53 8607bool
d2e4a39e 8608ada_is_character_type (struct type *type)
14f9c5c9 8609{
7b9f71f2
JB
8610 const char *name;
8611
8612 /* If the type code says it's a character, then assume it really is,
8613 and don't check any further. */
78134374 8614 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8615 return true;
7b9f71f2
JB
8616
8617 /* Otherwise, assume it's a character type iff it is a discrete type
8618 with a known character type name. */
8619 name = ada_type_name (type);
8620 return (name != NULL
dda83cd7
SM
8621 && (type->code () == TYPE_CODE_INT
8622 || type->code () == TYPE_CODE_RANGE)
8623 && (strcmp (name, "character") == 0
8624 || strcmp (name, "wide_character") == 0
8625 || strcmp (name, "wide_wide_character") == 0
8626 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8627}
8628
4c4b4cd2 8629/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8630
fc913e53 8631bool
ebf56fd3 8632ada_is_string_type (struct type *type)
14f9c5c9 8633{
61ee279c 8634 type = ada_check_typedef (type);
d2e4a39e 8635 if (type != NULL
78134374 8636 && type->code () != TYPE_CODE_PTR
76a01679 8637 && (ada_is_simple_array_type (type)
dda83cd7 8638 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8639 && ada_array_arity (type) == 1)
8640 {
8641 struct type *elttype = ada_array_element_type (type, 1);
8642
8643 return ada_is_character_type (elttype);
8644 }
d2e4a39e 8645 else
fc913e53 8646 return false;
14f9c5c9
AS
8647}
8648
5bf03f13
JB
8649/* The compiler sometimes provides a parallel XVS type for a given
8650 PAD type. Normally, it is safe to follow the PAD type directly,
8651 but older versions of the compiler have a bug that causes the offset
8652 of its "F" field to be wrong. Following that field in that case
8653 would lead to incorrect results, but this can be worked around
8654 by ignoring the PAD type and using the associated XVS type instead.
8655
8656 Set to True if the debugger should trust the contents of PAD types.
8657 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 8658static bool trust_pad_over_xvs = true;
14f9c5c9
AS
8659
8660/* True if TYPE is a struct type introduced by the compiler to force the
8661 alignment of a value. Such types have a single field with a
4c4b4cd2 8662 distinctive name. */
14f9c5c9
AS
8663
8664int
ebf56fd3 8665ada_is_aligner_type (struct type *type)
14f9c5c9 8666{
61ee279c 8667 type = ada_check_typedef (type);
714e53ab 8668
5bf03f13 8669 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8670 return 0;
8671
78134374 8672 return (type->code () == TYPE_CODE_STRUCT
dda83cd7 8673 && type->num_fields () == 1
33d16dd9 8674 && strcmp (type->field (0).name (), "F") == 0);
14f9c5c9
AS
8675}
8676
8677/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8678 the parallel type. */
14f9c5c9 8679
d2e4a39e
AS
8680struct type *
8681ada_get_base_type (struct type *raw_type)
14f9c5c9 8682{
d2e4a39e
AS
8683 struct type *real_type_namer;
8684 struct type *raw_real_type;
14f9c5c9 8685
78134374 8686 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
8687 return raw_type;
8688
284614f0
JB
8689 if (ada_is_aligner_type (raw_type))
8690 /* The encoding specifies that we should always use the aligner type.
8691 So, even if this aligner type has an associated XVS type, we should
8692 simply ignore it.
8693
8694 According to the compiler gurus, an XVS type parallel to an aligner
8695 type may exist because of a stabs limitation. In stabs, aligner
8696 types are empty because the field has a variable-sized type, and
8697 thus cannot actually be used as an aligner type. As a result,
8698 we need the associated parallel XVS type to decode the type.
8699 Since the policy in the compiler is to not change the internal
8700 representation based on the debugging info format, we sometimes
8701 end up having a redundant XVS type parallel to the aligner type. */
8702 return raw_type;
8703
14f9c5c9 8704 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8705 if (real_type_namer == NULL
78134374 8706 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 8707 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
8708 return raw_type;
8709
940da03e 8710 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
8711 {
8712 /* This is an older encoding form where the base type needs to be
85102364 8713 looked up by name. We prefer the newer encoding because it is
f80d3ff2 8714 more efficient. */
33d16dd9 8715 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
f80d3ff2
JB
8716 if (raw_real_type == NULL)
8717 return raw_type;
8718 else
8719 return raw_real_type;
8720 }
8721
8722 /* The field in our XVS type is a reference to the base type. */
940da03e 8723 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 8724}
14f9c5c9 8725
4c4b4cd2 8726/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8727
d2e4a39e
AS
8728struct type *
8729ada_aligned_type (struct type *type)
14f9c5c9
AS
8730{
8731 if (ada_is_aligner_type (type))
940da03e 8732 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
8733 else
8734 return ada_get_base_type (type);
8735}
8736
8737
8738/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8739 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8740
fc1a4b47
AC
8741const gdb_byte *
8742ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8743{
d2e4a39e 8744 if (ada_is_aligner_type (type))
b610c045
SM
8745 return ada_aligned_value_addr
8746 (type->field (0).type (),
8747 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
14f9c5c9
AS
8748 else
8749 return valaddr;
8750}
8751
4c4b4cd2
PH
8752
8753
14f9c5c9 8754/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8755 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8756const char *
8757ada_enum_name (const char *name)
14f9c5c9 8758{
5f9febe0 8759 static std::string storage;
e6a959d6 8760 const char *tmp;
14f9c5c9 8761
4c4b4cd2
PH
8762 /* First, unqualify the enumeration name:
8763 1. Search for the last '.' character. If we find one, then skip
177b42fe 8764 all the preceding characters, the unqualified name starts
76a01679 8765 right after that dot.
4c4b4cd2 8766 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8767 translates dots into "__". Search forward for double underscores,
8768 but stop searching when we hit an overloading suffix, which is
8769 of the form "__" followed by digits. */
4c4b4cd2 8770
c3e5cd34
PH
8771 tmp = strrchr (name, '.');
8772 if (tmp != NULL)
4c4b4cd2
PH
8773 name = tmp + 1;
8774 else
14f9c5c9 8775 {
4c4b4cd2 8776 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
8777 {
8778 if (isdigit (tmp[2]))
8779 break;
8780 else
8781 name = tmp + 2;
8782 }
14f9c5c9
AS
8783 }
8784
8785 if (name[0] == 'Q')
8786 {
14f9c5c9 8787 int v;
5b4ee69b 8788
14f9c5c9 8789 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
8790 {
8791 if (sscanf (name + 2, "%x", &v) != 1)
8792 return name;
8793 }
272560b5
TT
8794 else if (((name[1] >= '0' && name[1] <= '9')
8795 || (name[1] >= 'a' && name[1] <= 'z'))
8796 && name[2] == '\0')
8797 {
5f9febe0
TT
8798 storage = string_printf ("'%c'", name[1]);
8799 return storage.c_str ();
272560b5 8800 }
14f9c5c9 8801 else
dda83cd7 8802 return name;
14f9c5c9
AS
8803
8804 if (isascii (v) && isprint (v))
5f9febe0 8805 storage = string_printf ("'%c'", v);
14f9c5c9 8806 else if (name[1] == 'U')
5f9febe0 8807 storage = string_printf ("[\"%02x\"]", v);
14f9c5c9 8808 else
5f9febe0 8809 storage = string_printf ("[\"%04x\"]", v);
14f9c5c9 8810
5f9febe0 8811 return storage.c_str ();
14f9c5c9 8812 }
d2e4a39e 8813 else
4c4b4cd2 8814 {
c3e5cd34
PH
8815 tmp = strstr (name, "__");
8816 if (tmp == NULL)
8817 tmp = strstr (name, "$");
8818 if (tmp != NULL)
dda83cd7 8819 {
5f9febe0
TT
8820 storage = std::string (name, tmp - name);
8821 return storage.c_str ();
dda83cd7 8822 }
4c4b4cd2
PH
8823
8824 return name;
8825 }
14f9c5c9
AS
8826}
8827
14f9c5c9 8828/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8829 value it wraps. */
14f9c5c9 8830
d2e4a39e
AS
8831static struct value *
8832unwrap_value (struct value *val)
14f9c5c9 8833{
df407dfe 8834 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8835
14f9c5c9
AS
8836 if (ada_is_aligner_type (type))
8837 {
de4d072f 8838 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8839 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8840
14f9c5c9 8841 if (ada_type_name (val_type) == NULL)
d0e39ea2 8842 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
8843
8844 return unwrap_value (v);
8845 }
d2e4a39e 8846 else
14f9c5c9 8847 {
d2e4a39e 8848 struct type *raw_real_type =
dda83cd7 8849 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8850
5bf03f13
JB
8851 /* If there is no parallel XVS or XVE type, then the value is
8852 already unwrapped. Return it without further modification. */
8853 if ((type == raw_real_type)
8854 && ada_find_parallel_type (type, "___XVE") == NULL)
8855 return val;
14f9c5c9 8856
d2e4a39e 8857 return
dda83cd7
SM
8858 coerce_unspec_val_to_type
8859 (val, ada_to_fixed_type (raw_real_type, 0,
8860 value_address (val),
8861 NULL, 1));
14f9c5c9
AS
8862 }
8863}
d2e4a39e 8864
d99dcf51
JB
8865/* Given two array types T1 and T2, return nonzero iff both arrays
8866 contain the same number of elements. */
8867
8868static int
8869ada_same_array_size_p (struct type *t1, struct type *t2)
8870{
8871 LONGEST lo1, hi1, lo2, hi2;
8872
8873 /* Get the array bounds in order to verify that the size of
8874 the two arrays match. */
8875 if (!get_array_bounds (t1, &lo1, &hi1)
8876 || !get_array_bounds (t2, &lo2, &hi2))
8877 error (_("unable to determine array bounds"));
8878
8879 /* To make things easier for size comparison, normalize a bit
8880 the case of empty arrays by making sure that the difference
8881 between upper bound and lower bound is always -1. */
8882 if (lo1 > hi1)
8883 hi1 = lo1 - 1;
8884 if (lo2 > hi2)
8885 hi2 = lo2 - 1;
8886
8887 return (hi1 - lo1 == hi2 - lo2);
8888}
8889
8890/* Assuming that VAL is an array of integrals, and TYPE represents
8891 an array with the same number of elements, but with wider integral
8892 elements, return an array "casted" to TYPE. In practice, this
8893 means that the returned array is built by casting each element
8894 of the original array into TYPE's (wider) element type. */
8895
8896static struct value *
8897ada_promote_array_of_integrals (struct type *type, struct value *val)
8898{
8899 struct type *elt_type = TYPE_TARGET_TYPE (type);
8900 LONGEST lo, hi;
d99dcf51
JB
8901 LONGEST i;
8902
8903 /* Verify that both val and type are arrays of scalars, and
8904 that the size of val's elements is smaller than the size
8905 of type's element. */
78134374 8906 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 8907 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 8908 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
8909 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8910 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8911 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8912
8913 if (!get_array_bounds (type, &lo, &hi))
8914 error (_("unable to determine array bounds"));
8915
4bce7cda
SM
8916 value *res = allocate_value (type);
8917 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
d99dcf51
JB
8918
8919 /* Promote each array element. */
8920 for (i = 0; i < hi - lo + 1; i++)
8921 {
8922 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
4bce7cda 8923 int elt_len = TYPE_LENGTH (elt_type);
d99dcf51 8924
4bce7cda 8925 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
d99dcf51
JB
8926 }
8927
8928 return res;
8929}
8930
4c4b4cd2
PH
8931/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8932 return the converted value. */
8933
d2e4a39e
AS
8934static struct value *
8935coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8936{
df407dfe 8937 struct type *type2 = value_type (val);
5b4ee69b 8938
14f9c5c9
AS
8939 if (type == type2)
8940 return val;
8941
61ee279c
PH
8942 type2 = ada_check_typedef (type2);
8943 type = ada_check_typedef (type);
14f9c5c9 8944
78134374
SM
8945 if (type2->code () == TYPE_CODE_PTR
8946 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
8947 {
8948 val = ada_value_ind (val);
df407dfe 8949 type2 = value_type (val);
14f9c5c9
AS
8950 }
8951
78134374
SM
8952 if (type2->code () == TYPE_CODE_ARRAY
8953 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 8954 {
d99dcf51
JB
8955 if (!ada_same_array_size_p (type, type2))
8956 error (_("cannot assign arrays of different length"));
8957
8958 if (is_integral_type (TYPE_TARGET_TYPE (type))
8959 && is_integral_type (TYPE_TARGET_TYPE (type2))
8960 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8961 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8962 {
8963 /* Allow implicit promotion of the array elements to
8964 a wider type. */
8965 return ada_promote_array_of_integrals (type, val);
8966 }
8967
8968 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
8969 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8970 error (_("Incompatible types in assignment"));
04624583 8971 deprecated_set_value_type (val, type);
14f9c5c9 8972 }
d2e4a39e 8973 return val;
14f9c5c9
AS
8974}
8975
4c4b4cd2
PH
8976static struct value *
8977ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8978{
8979 struct value *val;
8980 struct type *type1, *type2;
8981 LONGEST v, v1, v2;
8982
994b9211
AC
8983 arg1 = coerce_ref (arg1);
8984 arg2 = coerce_ref (arg2);
18af8284
JB
8985 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8986 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8987
78134374
SM
8988 if (type1->code () != TYPE_CODE_INT
8989 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
8990 return value_binop (arg1, arg2, op);
8991
76a01679 8992 switch (op)
4c4b4cd2
PH
8993 {
8994 case BINOP_MOD:
8995 case BINOP_DIV:
8996 case BINOP_REM:
8997 break;
8998 default:
8999 return value_binop (arg1, arg2, op);
9000 }
9001
9002 v2 = value_as_long (arg2);
9003 if (v2 == 0)
b0f9164c
TT
9004 {
9005 const char *name;
9006 if (op == BINOP_MOD)
9007 name = "mod";
9008 else if (op == BINOP_DIV)
9009 name = "/";
9010 else
9011 {
9012 gdb_assert (op == BINOP_REM);
9013 name = "rem";
9014 }
9015
9016 error (_("second operand of %s must not be zero."), name);
9017 }
4c4b4cd2 9018
c6d940a9 9019 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9020 return value_binop (arg1, arg2, op);
9021
9022 v1 = value_as_long (arg1);
9023 switch (op)
9024 {
9025 case BINOP_DIV:
9026 v = v1 / v2;
76a01679 9027 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9028 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9029 break;
9030 case BINOP_REM:
9031 v = v1 % v2;
76a01679 9032 if (v * v1 < 0)
dda83cd7 9033 v -= v2;
4c4b4cd2
PH
9034 break;
9035 default:
9036 /* Should not reach this point. */
9037 v = 0;
9038 }
9039
9040 val = allocate_value (type1);
50888e42 9041 store_unsigned_integer (value_contents_raw (val).data (),
dda83cd7 9042 TYPE_LENGTH (value_type (val)),
34877895 9043 type_byte_order (type1), v);
4c4b4cd2
PH
9044 return val;
9045}
9046
9047static int
9048ada_value_equal (struct value *arg1, struct value *arg2)
9049{
df407dfe
AC
9050 if (ada_is_direct_array_type (value_type (arg1))
9051 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9052 {
79e8fcaa
JB
9053 struct type *arg1_type, *arg2_type;
9054
f58b38bf 9055 /* Automatically dereference any array reference before
dda83cd7 9056 we attempt to perform the comparison. */
f58b38bf
JB
9057 arg1 = ada_coerce_ref (arg1);
9058 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9059
4c4b4cd2
PH
9060 arg1 = ada_coerce_to_simple_array (arg1);
9061 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9062
9063 arg1_type = ada_check_typedef (value_type (arg1));
9064 arg2_type = ada_check_typedef (value_type (arg2));
9065
78134374 9066 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9067 || arg2_type->code () != TYPE_CODE_ARRAY)
9068 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9069 /* FIXME: The following works only for types whose
dda83cd7
SM
9070 representations use all bits (no padding or undefined bits)
9071 and do not have user-defined equality. */
79e8fcaa 9072 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
50888e42
SM
9073 && memcmp (value_contents (arg1).data (),
9074 value_contents (arg2).data (),
79e8fcaa 9075 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9076 }
9077 return value_equal (arg1, arg2);
9078}
9079
d3c54a1c
TT
9080namespace expr
9081{
9082
9083bool
9084check_objfile (const std::unique_ptr<ada_component> &comp,
9085 struct objfile *objfile)
9086{
9087 return comp->uses_objfile (objfile);
9088}
9089
9090/* Assign the result of evaluating ARG starting at *POS to the INDEXth
9091 component of LHS (a simple array or a record). Does not modify the
9092 inferior's memory, nor does it modify LHS (unless LHS ==
9093 CONTAINER). */
52ce6436
PH
9094
9095static void
9096assign_component (struct value *container, struct value *lhs, LONGEST index,
d3c54a1c 9097 struct expression *exp, operation_up &arg)
52ce6436 9098{
d3c54a1c
TT
9099 scoped_value_mark mark;
9100
52ce6436 9101 struct value *elt;
0e2da9f0 9102 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9103
78134374 9104 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9105 {
22601c15
UW
9106 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9107 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9108
52ce6436
PH
9109 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9110 }
9111 else
9112 {
9113 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9114 elt = ada_to_fixed_value (elt);
52ce6436
PH
9115 }
9116
d3c54a1c
TT
9117 ada_aggregate_operation *ag_op
9118 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9119 if (ag_op != nullptr)
9120 ag_op->assign_aggregate (container, elt, exp);
52ce6436 9121 else
d3c54a1c
TT
9122 value_assign_to_component (container, elt,
9123 arg->evaluate (nullptr, exp,
9124 EVAL_NORMAL));
9125}
52ce6436 9126
d3c54a1c
TT
9127bool
9128ada_aggregate_component::uses_objfile (struct objfile *objfile)
9129{
9130 for (const auto &item : m_components)
9131 if (item->uses_objfile (objfile))
9132 return true;
9133 return false;
9134}
9135
9136void
9137ada_aggregate_component::dump (ui_file *stream, int depth)
9138{
9139 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9140 for (const auto &item : m_components)
9141 item->dump (stream, depth + 1);
9142}
9143
9144void
9145ada_aggregate_component::assign (struct value *container,
9146 struct value *lhs, struct expression *exp,
9147 std::vector<LONGEST> &indices,
9148 LONGEST low, LONGEST high)
9149{
9150 for (auto &item : m_components)
9151 item->assign (container, lhs, exp, indices, low, high);
52ce6436
PH
9152}
9153
207582c0 9154/* See ada-exp.h. */
52ce6436 9155
207582c0 9156value *
d3c54a1c
TT
9157ada_aggregate_operation::assign_aggregate (struct value *container,
9158 struct value *lhs,
9159 struct expression *exp)
52ce6436
PH
9160{
9161 struct type *lhs_type;
52ce6436 9162 LONGEST low_index, high_index;
52ce6436
PH
9163
9164 container = ada_coerce_ref (container);
9165 if (ada_is_direct_array_type (value_type (container)))
9166 container = ada_coerce_to_simple_array (container);
9167 lhs = ada_coerce_ref (lhs);
9168 if (!deprecated_value_modifiable (lhs))
9169 error (_("Left operand of assignment is not a modifiable lvalue."));
9170
0e2da9f0 9171 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9172 if (ada_is_direct_array_type (lhs_type))
9173 {
9174 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9175 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9176 low_index = lhs_type->bounds ()->low.const_val ();
9177 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9178 }
78134374 9179 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9180 {
9181 low_index = 0;
9182 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9183 }
9184 else
9185 error (_("Left-hand side must be array or record."));
9186
cf608cc4 9187 std::vector<LONGEST> indices (4);
52ce6436
PH
9188 indices[0] = indices[1] = low_index - 1;
9189 indices[2] = indices[3] = high_index + 1;
52ce6436 9190
d3c54a1c
TT
9191 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9192 low_index, high_index);
207582c0
TT
9193
9194 return container;
d3c54a1c
TT
9195}
9196
9197bool
9198ada_positional_component::uses_objfile (struct objfile *objfile)
9199{
9200 return m_op->uses_objfile (objfile);
9201}
52ce6436 9202
d3c54a1c
TT
9203void
9204ada_positional_component::dump (ui_file *stream, int depth)
9205{
9206 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9207 depth, "", m_index);
9208 m_op->dump (stream, depth + 1);
52ce6436 9209}
d3c54a1c 9210
52ce6436 9211/* Assign into the component of LHS indexed by the OP_POSITIONAL
d3c54a1c
TT
9212 construct, given that the positions are relative to lower bound
9213 LOW, where HIGH is the upper bound. Record the position in
9214 INDICES. CONTAINER is as for assign_aggregate. */
9215void
9216ada_positional_component::assign (struct value *container,
9217 struct value *lhs, struct expression *exp,
9218 std::vector<LONGEST> &indices,
9219 LONGEST low, LONGEST high)
52ce6436 9220{
d3c54a1c
TT
9221 LONGEST ind = m_index + low;
9222
52ce6436 9223 if (ind - 1 == high)
e1d5a0d2 9224 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9225 if (ind <= high)
9226 {
cf608cc4 9227 add_component_interval (ind, ind, indices);
d3c54a1c 9228 assign_component (container, lhs, ind, exp, m_op);
52ce6436 9229 }
52ce6436
PH
9230}
9231
d3c54a1c
TT
9232bool
9233ada_discrete_range_association::uses_objfile (struct objfile *objfile)
a88c4354
TT
9234{
9235 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9236}
9237
9238void
9239ada_discrete_range_association::dump (ui_file *stream, int depth)
9240{
9241 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9242 m_low->dump (stream, depth + 1);
9243 m_high->dump (stream, depth + 1);
9244}
9245
9246void
9247ada_discrete_range_association::assign (struct value *container,
9248 struct value *lhs,
9249 struct expression *exp,
9250 std::vector<LONGEST> &indices,
9251 LONGEST low, LONGEST high,
9252 operation_up &op)
9253{
9254 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9255 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9256
9257 if (lower <= upper && (lower < low || upper > high))
9258 error (_("Index in component association out of bounds."));
9259
9260 add_component_interval (lower, upper, indices);
9261 while (lower <= upper)
9262 {
9263 assign_component (container, lhs, lower, exp, op);
9264 lower += 1;
9265 }
9266}
9267
9268bool
9269ada_name_association::uses_objfile (struct objfile *objfile)
9270{
9271 return m_val->uses_objfile (objfile);
9272}
9273
9274void
9275ada_name_association::dump (ui_file *stream, int depth)
9276{
9277 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9278 m_val->dump (stream, depth + 1);
9279}
9280
9281void
9282ada_name_association::assign (struct value *container,
9283 struct value *lhs,
9284 struct expression *exp,
9285 std::vector<LONGEST> &indices,
9286 LONGEST low, LONGEST high,
9287 operation_up &op)
9288{
9289 int index;
9290
9291 if (ada_is_direct_array_type (value_type (lhs)))
9292 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9293 EVAL_NORMAL)));
9294 else
9295 {
9296 ada_string_operation *strop
9297 = dynamic_cast<ada_string_operation *> (m_val.get ());
9298
9299 const char *name;
9300 if (strop != nullptr)
9301 name = strop->get_name ();
9302 else
9303 {
9304 ada_var_value_operation *vvo
9305 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9306 if (vvo != nullptr)
9307 error (_("Invalid record component association."));
9308 name = vvo->get_symbol ()->natural_name ();
9309 }
9310
9311 index = 0;
9312 if (! find_struct_field (name, value_type (lhs), 0,
9313 NULL, NULL, NULL, NULL, &index))
9314 error (_("Unknown component name: %s."), name);
9315 }
9316
9317 add_component_interval (index, index, indices);
9318 assign_component (container, lhs, index, exp, op);
9319}
9320
9321bool
9322ada_choices_component::uses_objfile (struct objfile *objfile)
9323{
9324 if (m_op->uses_objfile (objfile))
9325 return true;
9326 for (const auto &item : m_assocs)
9327 if (item->uses_objfile (objfile))
9328 return true;
9329 return false;
9330}
9331
9332void
9333ada_choices_component::dump (ui_file *stream, int depth)
9334{
9335 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9336 m_op->dump (stream, depth + 1);
9337 for (const auto &item : m_assocs)
9338 item->dump (stream, depth + 1);
9339}
9340
9341/* Assign into the components of LHS indexed by the OP_CHOICES
9342 construct at *POS, updating *POS past the construct, given that
9343 the allowable indices are LOW..HIGH. Record the indices assigned
9344 to in INDICES. CONTAINER is as for assign_aggregate. */
9345void
9346ada_choices_component::assign (struct value *container,
9347 struct value *lhs, struct expression *exp,
9348 std::vector<LONGEST> &indices,
9349 LONGEST low, LONGEST high)
9350{
9351 for (auto &item : m_assocs)
9352 item->assign (container, lhs, exp, indices, low, high, m_op);
9353}
9354
9355bool
9356ada_others_component::uses_objfile (struct objfile *objfile)
9357{
9358 return m_op->uses_objfile (objfile);
9359}
9360
9361void
9362ada_others_component::dump (ui_file *stream, int depth)
9363{
9364 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9365 m_op->dump (stream, depth + 1);
9366}
9367
9368/* Assign the value of the expression in the OP_OTHERS construct in
9369 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9370 have not been previously assigned. The index intervals already assigned
9371 are in INDICES. CONTAINER is as for assign_aggregate. */
9372void
9373ada_others_component::assign (struct value *container,
9374 struct value *lhs, struct expression *exp,
9375 std::vector<LONGEST> &indices,
9376 LONGEST low, LONGEST high)
9377{
9378 int num_indices = indices.size ();
9379 for (int i = 0; i < num_indices - 2; i += 2)
9380 {
9381 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9382 assign_component (container, lhs, ind, exp, m_op);
9383 }
9384}
9385
9386struct value *
9387ada_assign_operation::evaluate (struct type *expect_type,
9388 struct expression *exp,
9389 enum noside noside)
9390{
9391 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9392
9393 ada_aggregate_operation *ag_op
9394 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9395 if (ag_op != nullptr)
9396 {
9397 if (noside != EVAL_NORMAL)
9398 return arg1;
9399
207582c0 9400 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
a88c4354
TT
9401 return ada_value_assign (arg1, arg1);
9402 }
9403 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9404 except if the lhs of our assignment is a convenience variable.
9405 In the case of assigning to a convenience variable, the lhs
9406 should be exactly the result of the evaluation of the rhs. */
9407 struct type *type = value_type (arg1);
9408 if (VALUE_LVAL (arg1) == lval_internalvar)
9409 type = NULL;
9410 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
0b2b0b82 9411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
a88c4354
TT
9412 return arg1;
9413 if (VALUE_LVAL (arg1) == lval_internalvar)
9414 {
9415 /* Nothing. */
9416 }
9417 else
9418 arg2 = coerce_for_assign (value_type (arg1), arg2);
9419 return ada_value_assign (arg1, arg2);
9420}
9421
9422} /* namespace expr */
9423
cf608cc4
TT
9424/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9425 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9426 overlap. */
52ce6436
PH
9427static void
9428add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9429 std::vector<LONGEST> &indices)
52ce6436
PH
9430{
9431 int i, j;
5b4ee69b 9432
cf608cc4
TT
9433 int size = indices.size ();
9434 for (i = 0; i < size; i += 2) {
52ce6436
PH
9435 if (high >= indices[i] && low <= indices[i + 1])
9436 {
9437 int kh;
5b4ee69b 9438
cf608cc4 9439 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9440 if (high < indices[kh])
9441 break;
9442 if (low < indices[i])
9443 indices[i] = low;
9444 indices[i + 1] = indices[kh - 1];
9445 if (high > indices[i + 1])
9446 indices[i + 1] = high;
cf608cc4
TT
9447 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9448 indices.resize (kh - i - 2);
52ce6436
PH
9449 return;
9450 }
9451 else if (high < indices[i])
9452 break;
9453 }
9454
cf608cc4 9455 indices.resize (indices.size () + 2);
d4813f10 9456 for (j = indices.size () - 1; j >= i + 2; j -= 1)
52ce6436
PH
9457 indices[j] = indices[j - 2];
9458 indices[i] = low;
9459 indices[i + 1] = high;
9460}
9461
6e48bd2c
JB
9462/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9463 is different. */
9464
9465static struct value *
b7e22850 9466ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9467{
9468 if (type == ada_check_typedef (value_type (arg2)))
9469 return arg2;
9470
6e48bd2c
JB
9471 return value_cast (type, arg2);
9472}
9473
284614f0
JB
9474/* Evaluating Ada expressions, and printing their result.
9475 ------------------------------------------------------
9476
21649b50
JB
9477 1. Introduction:
9478 ----------------
9479
284614f0
JB
9480 We usually evaluate an Ada expression in order to print its value.
9481 We also evaluate an expression in order to print its type, which
9482 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9483 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9484 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9485 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9486 similar.
9487
9488 Evaluating expressions is a little more complicated for Ada entities
9489 than it is for entities in languages such as C. The main reason for
9490 this is that Ada provides types whose definition might be dynamic.
9491 One example of such types is variant records. Or another example
9492 would be an array whose bounds can only be known at run time.
9493
9494 The following description is a general guide as to what should be
9495 done (and what should NOT be done) in order to evaluate an expression
9496 involving such types, and when. This does not cover how the semantic
9497 information is encoded by GNAT as this is covered separatly. For the
9498 document used as the reference for the GNAT encoding, see exp_dbug.ads
9499 in the GNAT sources.
9500
9501 Ideally, we should embed each part of this description next to its
9502 associated code. Unfortunately, the amount of code is so vast right
9503 now that it's hard to see whether the code handling a particular
9504 situation might be duplicated or not. One day, when the code is
9505 cleaned up, this guide might become redundant with the comments
9506 inserted in the code, and we might want to remove it.
9507
21649b50
JB
9508 2. ``Fixing'' an Entity, the Simple Case:
9509 -----------------------------------------
9510
284614f0
JB
9511 When evaluating Ada expressions, the tricky issue is that they may
9512 reference entities whose type contents and size are not statically
9513 known. Consider for instance a variant record:
9514
9515 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9516 case Empty is
9517 when True => null;
9518 when False => Value : Integer;
9519 end case;
284614f0
JB
9520 end record;
9521 Yes : Rec := (Empty => False, Value => 1);
9522 No : Rec := (empty => True);
9523
9524 The size and contents of that record depends on the value of the
9525 descriminant (Rec.Empty). At this point, neither the debugging
9526 information nor the associated type structure in GDB are able to
9527 express such dynamic types. So what the debugger does is to create
9528 "fixed" versions of the type that applies to the specific object.
30baf67b 9529 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9530 which means creating its associated fixed type.
9531
9532 Example: when printing the value of variable "Yes" above, its fixed
9533 type would look like this:
9534
9535 type Rec is record
dda83cd7
SM
9536 Empty : Boolean;
9537 Value : Integer;
284614f0
JB
9538 end record;
9539
9540 On the other hand, if we printed the value of "No", its fixed type
9541 would become:
9542
9543 type Rec is record
dda83cd7 9544 Empty : Boolean;
284614f0
JB
9545 end record;
9546
9547 Things become a little more complicated when trying to fix an entity
9548 with a dynamic type that directly contains another dynamic type,
9549 such as an array of variant records, for instance. There are
9550 two possible cases: Arrays, and records.
9551
21649b50
JB
9552 3. ``Fixing'' Arrays:
9553 ---------------------
9554
9555 The type structure in GDB describes an array in terms of its bounds,
9556 and the type of its elements. By design, all elements in the array
9557 have the same type and we cannot represent an array of variant elements
9558 using the current type structure in GDB. When fixing an array,
9559 we cannot fix the array element, as we would potentially need one
9560 fixed type per element of the array. As a result, the best we can do
9561 when fixing an array is to produce an array whose bounds and size
9562 are correct (allowing us to read it from memory), but without having
9563 touched its element type. Fixing each element will be done later,
9564 when (if) necessary.
9565
9566 Arrays are a little simpler to handle than records, because the same
9567 amount of memory is allocated for each element of the array, even if
1b536f04 9568 the amount of space actually used by each element differs from element
21649b50 9569 to element. Consider for instance the following array of type Rec:
284614f0
JB
9570
9571 type Rec_Array is array (1 .. 2) of Rec;
9572
1b536f04
JB
9573 The actual amount of memory occupied by each element might be different
9574 from element to element, depending on the value of their discriminant.
21649b50 9575 But the amount of space reserved for each element in the array remains
1b536f04 9576 fixed regardless. So we simply need to compute that size using
21649b50
JB
9577 the debugging information available, from which we can then determine
9578 the array size (we multiply the number of elements of the array by
9579 the size of each element).
9580
9581 The simplest case is when we have an array of a constrained element
9582 type. For instance, consider the following type declarations:
9583
dda83cd7
SM
9584 type Bounded_String (Max_Size : Integer) is
9585 Length : Integer;
9586 Buffer : String (1 .. Max_Size);
9587 end record;
9588 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9589
9590 In this case, the compiler describes the array as an array of
9591 variable-size elements (identified by its XVS suffix) for which
9592 the size can be read in the parallel XVZ variable.
9593
9594 In the case of an array of an unconstrained element type, the compiler
9595 wraps the array element inside a private PAD type. This type should not
9596 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9597 that we also use the adjective "aligner" in our code to designate
9598 these wrapper types.
9599
1b536f04 9600 In some cases, the size allocated for each element is statically
21649b50
JB
9601 known. In that case, the PAD type already has the correct size,
9602 and the array element should remain unfixed.
9603
9604 But there are cases when this size is not statically known.
9605 For instance, assuming that "Five" is an integer variable:
284614f0 9606
dda83cd7
SM
9607 type Dynamic is array (1 .. Five) of Integer;
9608 type Wrapper (Has_Length : Boolean := False) is record
9609 Data : Dynamic;
9610 case Has_Length is
9611 when True => Length : Integer;
9612 when False => null;
9613 end case;
9614 end record;
9615 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9616
dda83cd7
SM
9617 Hello : Wrapper_Array := (others => (Has_Length => True,
9618 Data => (others => 17),
9619 Length => 1));
284614f0
JB
9620
9621
9622 The debugging info would describe variable Hello as being an
9623 array of a PAD type. The size of that PAD type is not statically
9624 known, but can be determined using a parallel XVZ variable.
9625 In that case, a copy of the PAD type with the correct size should
9626 be used for the fixed array.
9627
21649b50
JB
9628 3. ``Fixing'' record type objects:
9629 ----------------------------------
9630
9631 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9632 record types. In this case, in order to compute the associated
9633 fixed type, we need to determine the size and offset of each of
9634 its components. This, in turn, requires us to compute the fixed
9635 type of each of these components.
9636
9637 Consider for instance the example:
9638
dda83cd7
SM
9639 type Bounded_String (Max_Size : Natural) is record
9640 Str : String (1 .. Max_Size);
9641 Length : Natural;
9642 end record;
9643 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
9644
9645 In that case, the position of field "Length" depends on the size
9646 of field Str, which itself depends on the value of the Max_Size
21649b50 9647 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9648 we need to fix the type of field Str. Therefore, fixing a variant
9649 record requires us to fix each of its components.
9650
9651 However, if a component does not have a dynamic size, the component
9652 should not be fixed. In particular, fields that use a PAD type
9653 should not fixed. Here is an example where this might happen
9654 (assuming type Rec above):
9655
9656 type Container (Big : Boolean) is record
dda83cd7
SM
9657 First : Rec;
9658 After : Integer;
9659 case Big is
9660 when True => Another : Integer;
9661 when False => null;
9662 end case;
284614f0
JB
9663 end record;
9664 My_Container : Container := (Big => False,
dda83cd7
SM
9665 First => (Empty => True),
9666 After => 42);
284614f0
JB
9667
9668 In that example, the compiler creates a PAD type for component First,
9669 whose size is constant, and then positions the component After just
9670 right after it. The offset of component After is therefore constant
9671 in this case.
9672
9673 The debugger computes the position of each field based on an algorithm
9674 that uses, among other things, the actual position and size of the field
21649b50
JB
9675 preceding it. Let's now imagine that the user is trying to print
9676 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9677 end up computing the offset of field After based on the size of the
9678 fixed version of field First. And since in our example First has
9679 only one actual field, the size of the fixed type is actually smaller
9680 than the amount of space allocated to that field, and thus we would
9681 compute the wrong offset of field After.
9682
21649b50
JB
9683 To make things more complicated, we need to watch out for dynamic
9684 components of variant records (identified by the ___XVL suffix in
9685 the component name). Even if the target type is a PAD type, the size
9686 of that type might not be statically known. So the PAD type needs
9687 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9688 we might end up with the wrong size for our component. This can be
9689 observed with the following type declarations:
284614f0 9690
dda83cd7
SM
9691 type Octal is new Integer range 0 .. 7;
9692 type Octal_Array is array (Positive range <>) of Octal;
9693 pragma Pack (Octal_Array);
284614f0 9694
dda83cd7
SM
9695 type Octal_Buffer (Size : Positive) is record
9696 Buffer : Octal_Array (1 .. Size);
9697 Length : Integer;
9698 end record;
284614f0
JB
9699
9700 In that case, Buffer is a PAD type whose size is unset and needs
9701 to be computed by fixing the unwrapped type.
9702
21649b50
JB
9703 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9704 ----------------------------------------------------------
9705
9706 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9707 thus far, be actually fixed?
9708
9709 The answer is: Only when referencing that element. For instance
9710 when selecting one component of a record, this specific component
9711 should be fixed at that point in time. Or when printing the value
9712 of a record, each component should be fixed before its value gets
9713 printed. Similarly for arrays, the element of the array should be
9714 fixed when printing each element of the array, or when extracting
9715 one element out of that array. On the other hand, fixing should
9716 not be performed on the elements when taking a slice of an array!
9717
31432a67 9718 Note that one of the side effects of miscomputing the offset and
284614f0
JB
9719 size of each field is that we end up also miscomputing the size
9720 of the containing type. This can have adverse results when computing
9721 the value of an entity. GDB fetches the value of an entity based
9722 on the size of its type, and thus a wrong size causes GDB to fetch
9723 the wrong amount of memory. In the case where the computed size is
9724 too small, GDB fetches too little data to print the value of our
31432a67 9725 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
9726 past the buffer containing the data =:-o. */
9727
62d4bd94
TT
9728/* A helper function for TERNOP_IN_RANGE. */
9729
9730static value *
9731eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9732 enum noside noside,
9733 value *arg1, value *arg2, value *arg3)
9734{
62d4bd94
TT
9735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9737 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9738 return
9739 value_from_longest (type,
9740 (value_less (arg1, arg3)
9741 || value_equal (arg1, arg3))
9742 && (value_less (arg2, arg1)
9743 || value_equal (arg2, arg1)));
9744}
9745
82390ab8
TT
9746/* A helper function for UNOP_NEG. */
9747
7c15d377 9748value *
82390ab8
TT
9749ada_unop_neg (struct type *expect_type,
9750 struct expression *exp,
9751 enum noside noside, enum exp_opcode op,
9752 struct value *arg1)
9753{
82390ab8
TT
9754 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9755 return value_neg (arg1);
9756}
9757
7efc87ff
TT
9758/* A helper function for UNOP_IN_RANGE. */
9759
95d49dfb 9760value *
7efc87ff
TT
9761ada_unop_in_range (struct type *expect_type,
9762 struct expression *exp,
9763 enum noside noside, enum exp_opcode op,
9764 struct value *arg1, struct type *type)
9765{
7efc87ff
TT
9766 struct value *arg2, *arg3;
9767 switch (type->code ())
9768 {
9769 default:
9770 lim_warning (_("Membership test incompletely implemented; "
9771 "always returns true"));
9772 type = language_bool_type (exp->language_defn, exp->gdbarch);
9773 return value_from_longest (type, (LONGEST) 1);
9774
9775 case TYPE_CODE_RANGE:
9776 arg2 = value_from_longest (type,
9777 type->bounds ()->low.const_val ());
9778 arg3 = value_from_longest (type,
9779 type->bounds ()->high.const_val ());
9780 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9781 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9782 type = language_bool_type (exp->language_defn, exp->gdbarch);
9783 return
9784 value_from_longest (type,
9785 (value_less (arg1, arg3)
9786 || value_equal (arg1, arg3))
9787 && (value_less (arg2, arg1)
9788 || value_equal (arg2, arg1)));
9789 }
9790}
9791
020dbabe
TT
9792/* A helper function for OP_ATR_TAG. */
9793
7c15d377 9794value *
020dbabe
TT
9795ada_atr_tag (struct type *expect_type,
9796 struct expression *exp,
9797 enum noside noside, enum exp_opcode op,
9798 struct value *arg1)
9799{
9800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9801 return value_zero (ada_tag_type (arg1), not_lval);
9802
9803 return ada_value_tag (arg1);
9804}
9805
68c75735
TT
9806/* A helper function for OP_ATR_SIZE. */
9807
7c15d377 9808value *
68c75735
TT
9809ada_atr_size (struct type *expect_type,
9810 struct expression *exp,
9811 enum noside noside, enum exp_opcode op,
9812 struct value *arg1)
9813{
9814 struct type *type = value_type (arg1);
9815
9816 /* If the argument is a reference, then dereference its type, since
9817 the user is really asking for the size of the actual object,
9818 not the size of the pointer. */
9819 if (type->code () == TYPE_CODE_REF)
9820 type = TYPE_TARGET_TYPE (type);
9821
0b2b0b82 9822 if (noside == EVAL_AVOID_SIDE_EFFECTS)
68c75735
TT
9823 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9824 else
9825 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9826 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9827}
9828
d05e24e6
TT
9829/* A helper function for UNOP_ABS. */
9830
7c15d377 9831value *
d05e24e6
TT
9832ada_abs (struct type *expect_type,
9833 struct expression *exp,
9834 enum noside noside, enum exp_opcode op,
9835 struct value *arg1)
9836{
9837 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9838 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9839 return value_neg (arg1);
9840 else
9841 return arg1;
9842}
9843
faa1dfd7
TT
9844/* A helper function for BINOP_MUL. */
9845
d9e7db06 9846value *
faa1dfd7
TT
9847ada_mult_binop (struct type *expect_type,
9848 struct expression *exp,
9849 enum noside noside, enum exp_opcode op,
9850 struct value *arg1, struct value *arg2)
9851{
9852 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9853 {
9854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9855 return value_zero (value_type (arg1), not_lval);
9856 }
9857 else
9858 {
9859 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9860 return ada_value_binop (arg1, arg2, op);
9861 }
9862}
9863
214b13ac
TT
9864/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9865
6e8fb7b7 9866value *
214b13ac
TT
9867ada_equal_binop (struct type *expect_type,
9868 struct expression *exp,
9869 enum noside noside, enum exp_opcode op,
9870 struct value *arg1, struct value *arg2)
9871{
9872 int tem;
9873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9874 tem = 0;
9875 else
9876 {
9877 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9878 tem = ada_value_equal (arg1, arg2);
9879 }
9880 if (op == BINOP_NOTEQUAL)
9881 tem = !tem;
9882 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9883 return value_from_longest (type, (LONGEST) tem);
9884}
9885
5ce19db8
TT
9886/* A helper function for TERNOP_SLICE. */
9887
1b1ebfab 9888value *
5ce19db8
TT
9889ada_ternop_slice (struct expression *exp,
9890 enum noside noside,
9891 struct value *array, struct value *low_bound_val,
9892 struct value *high_bound_val)
9893{
9894 LONGEST low_bound;
9895 LONGEST high_bound;
9896
9897 low_bound_val = coerce_ref (low_bound_val);
9898 high_bound_val = coerce_ref (high_bound_val);
9899 low_bound = value_as_long (low_bound_val);
9900 high_bound = value_as_long (high_bound_val);
9901
9902 /* If this is a reference to an aligner type, then remove all
9903 the aligners. */
9904 if (value_type (array)->code () == TYPE_CODE_REF
9905 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9906 TYPE_TARGET_TYPE (value_type (array)) =
9907 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9908
9909 if (ada_is_any_packed_array_type (value_type (array)))
9910 error (_("cannot slice a packed array"));
9911
9912 /* If this is a reference to an array or an array lvalue,
9913 convert to a pointer. */
9914 if (value_type (array)->code () == TYPE_CODE_REF
9915 || (value_type (array)->code () == TYPE_CODE_ARRAY
9916 && VALUE_LVAL (array) == lval_memory))
9917 array = value_addr (array);
9918
9919 if (noside == EVAL_AVOID_SIDE_EFFECTS
9920 && ada_is_array_descriptor_type (ada_check_typedef
9921 (value_type (array))))
9922 return empty_array (ada_type_of_array (array, 0), low_bound,
9923 high_bound);
9924
9925 array = ada_coerce_to_simple_array_ptr (array);
9926
9927 /* If we have more than one level of pointer indirection,
9928 dereference the value until we get only one level. */
9929 while (value_type (array)->code () == TYPE_CODE_PTR
9930 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9931 == TYPE_CODE_PTR))
9932 array = value_ind (array);
9933
9934 /* Make sure we really do have an array type before going further,
9935 to avoid a SEGV when trying to get the index type or the target
9936 type later down the road if the debug info generated by
9937 the compiler is incorrect or incomplete. */
9938 if (!ada_is_simple_array_type (value_type (array)))
9939 error (_("cannot take slice of non-array"));
9940
9941 if (ada_check_typedef (value_type (array))->code ()
9942 == TYPE_CODE_PTR)
9943 {
9944 struct type *type0 = ada_check_typedef (value_type (array));
9945
9946 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9947 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9948 else
9949 {
9950 struct type *arr_type0 =
9951 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9952
9953 return ada_value_slice_from_ptr (array, arr_type0,
9954 longest_to_int (low_bound),
9955 longest_to_int (high_bound));
9956 }
9957 }
9958 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9959 return array;
9960 else if (high_bound < low_bound)
9961 return empty_array (value_type (array), low_bound, high_bound);
9962 else
9963 return ada_value_slice (array, longest_to_int (low_bound),
9964 longest_to_int (high_bound));
9965}
9966
b467efaa
TT
9967/* A helper function for BINOP_IN_BOUNDS. */
9968
82c3886e 9969value *
b467efaa
TT
9970ada_binop_in_bounds (struct expression *exp, enum noside noside,
9971 struct value *arg1, struct value *arg2, int n)
9972{
9973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9974 {
9975 struct type *type = language_bool_type (exp->language_defn,
9976 exp->gdbarch);
9977 return value_zero (type, not_lval);
9978 }
9979
9980 struct type *type = ada_index_type (value_type (arg2), n, "range");
9981 if (!type)
9982 type = value_type (arg1);
9983
9984 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9985 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9986
9987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9989 type = language_bool_type (exp->language_defn, exp->gdbarch);
9990 return value_from_longest (type,
9991 (value_less (arg1, arg3)
9992 || value_equal (arg1, arg3))
9993 && (value_less (arg2, arg1)
9994 || value_equal (arg2, arg1)));
9995}
9996
b84564fc
TT
9997/* A helper function for some attribute operations. */
9998
9999static value *
10000ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10001 struct value *arg1, struct type *type_arg, int tem)
10002{
10003 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10004 {
10005 if (type_arg == NULL)
10006 type_arg = value_type (arg1);
10007
10008 if (ada_is_constrained_packed_array_type (type_arg))
10009 type_arg = decode_constrained_packed_array_type (type_arg);
10010
10011 if (!discrete_type_p (type_arg))
10012 {
10013 switch (op)
10014 {
10015 default: /* Should never happen. */
10016 error (_("unexpected attribute encountered"));
10017 case OP_ATR_FIRST:
10018 case OP_ATR_LAST:
10019 type_arg = ada_index_type (type_arg, tem,
10020 ada_attribute_name (op));
10021 break;
10022 case OP_ATR_LENGTH:
10023 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10024 break;
10025 }
10026 }
10027
10028 return value_zero (type_arg, not_lval);
10029 }
10030 else if (type_arg == NULL)
10031 {
10032 arg1 = ada_coerce_ref (arg1);
10033
10034 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10035 arg1 = ada_coerce_to_simple_array (arg1);
10036
10037 struct type *type;
10038 if (op == OP_ATR_LENGTH)
10039 type = builtin_type (exp->gdbarch)->builtin_int;
10040 else
10041 {
10042 type = ada_index_type (value_type (arg1), tem,
10043 ada_attribute_name (op));
10044 if (type == NULL)
10045 type = builtin_type (exp->gdbarch)->builtin_int;
10046 }
10047
10048 switch (op)
10049 {
10050 default: /* Should never happen. */
10051 error (_("unexpected attribute encountered"));
10052 case OP_ATR_FIRST:
10053 return value_from_longest
10054 (type, ada_array_bound (arg1, tem, 0));
10055 case OP_ATR_LAST:
10056 return value_from_longest
10057 (type, ada_array_bound (arg1, tem, 1));
10058 case OP_ATR_LENGTH:
10059 return value_from_longest
10060 (type, ada_array_length (arg1, tem));
10061 }
10062 }
10063 else if (discrete_type_p (type_arg))
10064 {
10065 struct type *range_type;
10066 const char *name = ada_type_name (type_arg);
10067
10068 range_type = NULL;
10069 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10070 range_type = to_fixed_range_type (type_arg, NULL);
10071 if (range_type == NULL)
10072 range_type = type_arg;
10073 switch (op)
10074 {
10075 default:
10076 error (_("unexpected attribute encountered"));
10077 case OP_ATR_FIRST:
10078 return value_from_longest
10079 (range_type, ada_discrete_type_low_bound (range_type));
10080 case OP_ATR_LAST:
10081 return value_from_longest
10082 (range_type, ada_discrete_type_high_bound (range_type));
10083 case OP_ATR_LENGTH:
10084 error (_("the 'length attribute applies only to array types"));
10085 }
10086 }
10087 else if (type_arg->code () == TYPE_CODE_FLT)
10088 error (_("unimplemented type attribute"));
10089 else
10090 {
10091 LONGEST low, high;
10092
10093 if (ada_is_constrained_packed_array_type (type_arg))
10094 type_arg = decode_constrained_packed_array_type (type_arg);
10095
10096 struct type *type;
10097 if (op == OP_ATR_LENGTH)
10098 type = builtin_type (exp->gdbarch)->builtin_int;
10099 else
10100 {
10101 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10102 if (type == NULL)
10103 type = builtin_type (exp->gdbarch)->builtin_int;
10104 }
10105
10106 switch (op)
10107 {
10108 default:
10109 error (_("unexpected attribute encountered"));
10110 case OP_ATR_FIRST:
10111 low = ada_array_bound_from_type (type_arg, tem, 0);
10112 return value_from_longest (type, low);
10113 case OP_ATR_LAST:
10114 high = ada_array_bound_from_type (type_arg, tem, 1);
10115 return value_from_longest (type, high);
10116 case OP_ATR_LENGTH:
10117 low = ada_array_bound_from_type (type_arg, tem, 0);
10118 high = ada_array_bound_from_type (type_arg, tem, 1);
10119 return value_from_longest (type, high - low + 1);
10120 }
10121 }
10122}
10123
38dc70cf
TT
10124/* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10125
6ad3b8bf 10126struct value *
38dc70cf
TT
10127ada_binop_minmax (struct type *expect_type,
10128 struct expression *exp,
10129 enum noside noside, enum exp_opcode op,
10130 struct value *arg1, struct value *arg2)
10131{
10132 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10133 return value_zero (value_type (arg1), not_lval);
10134 else
10135 {
10136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
0922dc84 10137 return value_binop (arg1, arg2, op);
38dc70cf
TT
10138 }
10139}
10140
dd5fd283
TT
10141/* A helper function for BINOP_EXP. */
10142
065ec826 10143struct value *
dd5fd283
TT
10144ada_binop_exp (struct type *expect_type,
10145 struct expression *exp,
10146 enum noside noside, enum exp_opcode op,
10147 struct value *arg1, struct value *arg2)
10148{
10149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10150 return value_zero (value_type (arg1), not_lval);
10151 else
10152 {
10153 /* For integer exponentiation operations,
10154 only promote the first argument. */
10155 if (is_integral_type (value_type (arg2)))
10156 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10157 else
10158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10159
10160 return value_binop (arg1, arg2, op);
10161 }
10162}
10163
03070ee9
TT
10164namespace expr
10165{
10166
8b12db26
TT
10167/* See ada-exp.h. */
10168
10169operation_up
10170ada_resolvable::replace (operation_up &&owner,
10171 struct expression *exp,
10172 bool deprocedure_p,
10173 bool parse_completion,
10174 innermost_block_tracker *tracker,
10175 struct type *context_type)
10176{
10177 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10178 return (make_operation<ada_funcall_operation>
10179 (std::move (owner),
10180 std::vector<operation_up> ()));
10181 return std::move (owner);
10182}
10183
03adb248
TT
10184/* Convert the character literal whose ASCII value would be VAL to the
10185 appropriate value of type TYPE, if there is a translation.
10186 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10187 the literal 'A' (VAL == 65), returns 0. */
10188
10189static LONGEST
10190convert_char_literal (struct type *type, LONGEST val)
10191{
10192 char name[7];
10193 int f;
10194
10195 if (type == NULL)
10196 return val;
10197 type = check_typedef (type);
10198 if (type->code () != TYPE_CODE_ENUM)
10199 return val;
10200
10201 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10202 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10203 else
10204 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10205 size_t len = strlen (name);
10206 for (f = 0; f < type->num_fields (); f += 1)
10207 {
10208 /* Check the suffix because an enum constant in a package will
10209 have a name like "pkg__QUxx". This is safe enough because we
10210 already have the correct type, and because mangling means
10211 there can't be clashes. */
33d16dd9 10212 const char *ename = type->field (f).name ();
03adb248
TT
10213 size_t elen = strlen (ename);
10214
10215 if (elen >= len && strcmp (name, ename + elen - len) == 0)
970db518 10216 return type->field (f).loc_enumval ();
03adb248
TT
10217 }
10218 return val;
10219}
10220
10221/* See ada-exp.h. */
10222
10223operation_up
10224ada_char_operation::replace (operation_up &&owner,
10225 struct expression *exp,
10226 bool deprocedure_p,
10227 bool parse_completion,
10228 innermost_block_tracker *tracker,
10229 struct type *context_type)
10230{
10231 operation_up result = std::move (owner);
10232
10233 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10234 {
10235 gdb_assert (result.get () == this);
10236 std::get<0> (m_storage) = context_type;
10237 std::get<1> (m_storage)
10238 = convert_char_literal (context_type, std::get<1> (m_storage));
10239 }
10240
10241 return make_operation<ada_wrapped_operation> (std::move (result));
10242}
10243
03070ee9
TT
10244value *
10245ada_wrapped_operation::evaluate (struct type *expect_type,
10246 struct expression *exp,
10247 enum noside noside)
10248{
10249 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10250 if (noside == EVAL_NORMAL)
10251 result = unwrap_value (result);
10252
10253 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10254 then we need to perform the conversion manually, because
10255 evaluate_subexp_standard doesn't do it. This conversion is
10256 necessary in Ada because the different kinds of float/fixed
10257 types in Ada have different representations.
10258
10259 Similarly, we need to perform the conversion from OP_LONG
10260 ourselves. */
10261 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10262 result = ada_value_cast (expect_type, result);
10263
10264 return result;
10265}
10266
42fecb61
TT
10267value *
10268ada_string_operation::evaluate (struct type *expect_type,
10269 struct expression *exp,
10270 enum noside noside)
10271{
10272 value *result = string_operation::evaluate (expect_type, exp, noside);
10273 /* The result type will have code OP_STRING, bashed there from
10274 OP_ARRAY. Bash it back. */
10275 if (value_type (result)->code () == TYPE_CODE_STRING)
10276 value_type (result)->set_code (TYPE_CODE_ARRAY);
10277 return result;
10278}
10279
cc6bd32e
TT
10280value *
10281ada_qual_operation::evaluate (struct type *expect_type,
10282 struct expression *exp,
10283 enum noside noside)
10284{
10285 struct type *type = std::get<1> (m_storage);
10286 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10287}
10288
fc715eb2
TT
10289value *
10290ada_ternop_range_operation::evaluate (struct type *expect_type,
10291 struct expression *exp,
10292 enum noside noside)
10293{
10294 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10295 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10296 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10297 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10298}
10299
73796c73
TT
10300value *
10301ada_binop_addsub_operation::evaluate (struct type *expect_type,
10302 struct expression *exp,
10303 enum noside noside)
10304{
10305 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10306 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10307
10308 auto do_op = [=] (LONGEST x, LONGEST y)
10309 {
10310 if (std::get<0> (m_storage) == BINOP_ADD)
10311 return x + y;
10312 return x - y;
10313 };
10314
10315 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10316 return (value_from_longest
10317 (value_type (arg1),
10318 do_op (value_as_long (arg1), value_as_long (arg2))));
10319 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10320 return (value_from_longest
10321 (value_type (arg2),
10322 do_op (value_as_long (arg1), value_as_long (arg2))));
10323 /* Preserve the original type for use by the range case below.
10324 We cannot cast the result to a reference type, so if ARG1 is
10325 a reference type, find its underlying type. */
10326 struct type *type = value_type (arg1);
10327 while (type->code () == TYPE_CODE_REF)
10328 type = TYPE_TARGET_TYPE (type);
10329 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10330 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10331 /* We need to special-case the result with a range.
10332 This is done for the benefit of "ptype". gdb's Ada support
10333 historically used the LHS to set the result type here, so
10334 preserve this behavior. */
10335 if (type->code () == TYPE_CODE_RANGE)
10336 arg1 = value_cast (type, arg1);
10337 return arg1;
10338}
10339
60fa02ca
TT
10340value *
10341ada_unop_atr_operation::evaluate (struct type *expect_type,
10342 struct expression *exp,
10343 enum noside noside)
10344{
10345 struct type *type_arg = nullptr;
10346 value *val = nullptr;
10347
10348 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10349 {
10350 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10351 EVAL_AVOID_SIDE_EFFECTS);
10352 type_arg = value_type (tem);
10353 }
10354 else
10355 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10356
10357 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10358 val, type_arg, std::get<2> (m_storage));
10359}
10360
3f4a0053
TT
10361value *
10362ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10363 struct expression *exp,
10364 enum noside noside)
10365{
10366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10367 return value_zero (expect_type, not_lval);
10368
9c79936b
TT
10369 const bound_minimal_symbol &b = std::get<0> (m_storage);
10370 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
3f4a0053
TT
10371
10372 val = ada_value_cast (expect_type, val);
10373
10374 /* Follow the Ada language semantics that do not allow taking
10375 an address of the result of a cast (view conversion in Ada). */
10376 if (VALUE_LVAL (val) == lval_memory)
10377 {
10378 if (value_lazy (val))
10379 value_fetch_lazy (val);
10380 VALUE_LVAL (val) = not_lval;
10381 }
10382 return val;
10383}
10384
99a3b1e7
TT
10385value *
10386ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10387 struct expression *exp,
10388 enum noside noside)
10389{
10390 value *val = evaluate_var_value (noside,
9e5e03df
TT
10391 std::get<0> (m_storage).block,
10392 std::get<0> (m_storage).symbol);
99a3b1e7
TT
10393
10394 val = ada_value_cast (expect_type, val);
10395
10396 /* Follow the Ada language semantics that do not allow taking
10397 an address of the result of a cast (view conversion in Ada). */
10398 if (VALUE_LVAL (val) == lval_memory)
10399 {
10400 if (value_lazy (val))
10401 value_fetch_lazy (val);
10402 VALUE_LVAL (val) = not_lval;
10403 }
10404 return val;
10405}
10406
10407value *
10408ada_var_value_operation::evaluate (struct type *expect_type,
10409 struct expression *exp,
10410 enum noside noside)
10411{
9e5e03df 10412 symbol *sym = std::get<0> (m_storage).symbol;
99a3b1e7 10413
6c9c307c 10414 if (sym->domain () == UNDEF_DOMAIN)
99a3b1e7
TT
10415 /* Only encountered when an unresolved symbol occurs in a
10416 context other than a function call, in which case, it is
10417 invalid. */
10418 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10419 sym->print_name ());
10420
10421 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10422 {
5f9c5a63 10423 struct type *type = static_unwrap_type (sym->type ());
99a3b1e7
TT
10424 /* Check to see if this is a tagged type. We also need to handle
10425 the case where the type is a reference to a tagged type, but
10426 we have to be careful to exclude pointers to tagged types.
10427 The latter should be shown as usual (as a pointer), whereas
10428 a reference should mostly be transparent to the user. */
10429 if (ada_is_tagged_type (type, 0)
10430 || (type->code () == TYPE_CODE_REF
10431 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10432 {
10433 /* Tagged types are a little special in the fact that the real
10434 type is dynamic and can only be determined by inspecting the
10435 object's tag. This means that we need to get the object's
10436 value first (EVAL_NORMAL) and then extract the actual object
10437 type from its tag.
10438
10439 Note that we cannot skip the final step where we extract
10440 the object type from its tag, because the EVAL_NORMAL phase
10441 results in dynamic components being resolved into fixed ones.
10442 This can cause problems when trying to print the type
10443 description of tagged types whose parent has a dynamic size:
10444 We use the type name of the "_parent" component in order
10445 to print the name of the ancestor type in the type description.
10446 If that component had a dynamic size, the resolution into
10447 a fixed type would result in the loss of that type name,
10448 thus preventing us from printing the name of the ancestor
10449 type in the type description. */
9863c3b5 10450 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
99a3b1e7
TT
10451
10452 if (type->code () != TYPE_CODE_REF)
10453 {
10454 struct type *actual_type;
10455
10456 actual_type = type_from_tag (ada_value_tag (arg1));
10457 if (actual_type == NULL)
10458 /* If, for some reason, we were unable to determine
10459 the actual type from the tag, then use the static
10460 approximation that we just computed as a fallback.
10461 This can happen if the debugging information is
10462 incomplete, for instance. */
10463 actual_type = type;
10464 return value_zero (actual_type, not_lval);
10465 }
10466 else
10467 {
10468 /* In the case of a ref, ada_coerce_ref takes care
10469 of determining the actual type. But the evaluation
10470 should return a ref as it should be valid to ask
10471 for its address; so rebuild a ref after coerce. */
10472 arg1 = ada_coerce_ref (arg1);
10473 return value_ref (arg1, TYPE_CODE_REF);
10474 }
10475 }
10476
10477 /* Records and unions for which GNAT encodings have been
10478 generated need to be statically fixed as well.
10479 Otherwise, non-static fixing produces a type where
10480 all dynamic properties are removed, which prevents "ptype"
10481 from being able to completely describe the type.
10482 For instance, a case statement in a variant record would be
10483 replaced by the relevant components based on the actual
10484 value of the discriminants. */
10485 if ((type->code () == TYPE_CODE_STRUCT
10486 && dynamic_template_type (type) != NULL)
10487 || (type->code () == TYPE_CODE_UNION
10488 && ada_find_parallel_type (type, "___XVU") != NULL))
10489 return value_zero (to_static_fixed_type (type), not_lval);
10490 }
10491
10492 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10493 return ada_to_fixed_value (arg1);
10494}
10495
d8a4ed8a
TT
10496bool
10497ada_var_value_operation::resolve (struct expression *exp,
10498 bool deprocedure_p,
10499 bool parse_completion,
10500 innermost_block_tracker *tracker,
10501 struct type *context_type)
10502{
9e5e03df 10503 symbol *sym = std::get<0> (m_storage).symbol;
6c9c307c 10504 if (sym->domain () == UNDEF_DOMAIN)
d8a4ed8a
TT
10505 {
10506 block_symbol resolved
9e5e03df 10507 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
d8a4ed8a
TT
10508 context_type, parse_completion,
10509 deprocedure_p, tracker);
9e5e03df 10510 std::get<0> (m_storage) = resolved;
d8a4ed8a
TT
10511 }
10512
10513 if (deprocedure_p
5f9c5a63 10514 && (std::get<0> (m_storage).symbol->type ()->code ()
9e5e03df 10515 == TYPE_CODE_FUNC))
d8a4ed8a
TT
10516 return true;
10517
10518 return false;
10519}
10520
9e99f48f
TT
10521value *
10522ada_atr_val_operation::evaluate (struct type *expect_type,
10523 struct expression *exp,
10524 enum noside noside)
10525{
10526 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10527 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10528}
10529
e8c33fa1
TT
10530value *
10531ada_unop_ind_operation::evaluate (struct type *expect_type,
10532 struct expression *exp,
10533 enum noside noside)
10534{
10535 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10536
10537 struct type *type = ada_check_typedef (value_type (arg1));
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10539 {
10540 if (ada_is_array_descriptor_type (type))
10541 /* GDB allows dereferencing GNAT array descriptors. */
10542 {
10543 struct type *arrType = ada_type_of_array (arg1, 0);
10544
10545 if (arrType == NULL)
10546 error (_("Attempt to dereference null array pointer."));
10547 return value_at_lazy (arrType, 0);
10548 }
10549 else if (type->code () == TYPE_CODE_PTR
10550 || type->code () == TYPE_CODE_REF
10551 /* In C you can dereference an array to get the 1st elt. */
10552 || type->code () == TYPE_CODE_ARRAY)
10553 {
10554 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10555 only be determined by inspecting the object's tag.
10556 This means that we need to evaluate completely the
10557 expression in order to get its type. */
10558
10559 if ((type->code () == TYPE_CODE_REF
10560 || type->code () == TYPE_CODE_PTR)
10561 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10562 {
10563 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10564 EVAL_NORMAL);
10565 type = value_type (ada_value_ind (arg1));
10566 }
10567 else
10568 {
10569 type = to_static_fixed_type
10570 (ada_aligned_type
10571 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10572 }
e8c33fa1
TT
10573 return value_zero (type, lval_memory);
10574 }
10575 else if (type->code () == TYPE_CODE_INT)
10576 {
10577 /* GDB allows dereferencing an int. */
10578 if (expect_type == NULL)
10579 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10580 lval_memory);
10581 else
10582 {
10583 expect_type =
10584 to_static_fixed_type (ada_aligned_type (expect_type));
10585 return value_zero (expect_type, lval_memory);
10586 }
10587 }
10588 else
10589 error (_("Attempt to take contents of a non-pointer value."));
10590 }
10591 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10592 type = ada_check_typedef (value_type (arg1));
10593
10594 if (type->code () == TYPE_CODE_INT)
10595 /* GDB allows dereferencing an int. If we were given
10596 the expect_type, then use that as the target type.
10597 Otherwise, assume that the target type is an int. */
10598 {
10599 if (expect_type != NULL)
10600 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10601 arg1));
10602 else
10603 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10604 (CORE_ADDR) value_as_address (arg1));
10605 }
10606
10607 if (ada_is_array_descriptor_type (type))
10608 /* GDB allows dereferencing GNAT array descriptors. */
10609 return ada_coerce_to_simple_array (arg1);
10610 else
10611 return ada_value_ind (arg1);
10612}
10613
ebc06ad8
TT
10614value *
10615ada_structop_operation::evaluate (struct type *expect_type,
10616 struct expression *exp,
10617 enum noside noside)
10618{
10619 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10620 const char *str = std::get<1> (m_storage).c_str ();
10621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10622 {
10623 struct type *type;
10624 struct type *type1 = value_type (arg1);
10625
10626 if (ada_is_tagged_type (type1, 1))
10627 {
10628 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10629
10630 /* If the field is not found, check if it exists in the
10631 extension of this object's type. This means that we
10632 need to evaluate completely the expression. */
10633
10634 if (type == NULL)
10635 {
10636 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10637 EVAL_NORMAL);
10638 arg1 = ada_value_struct_elt (arg1, str, 0);
10639 arg1 = unwrap_value (arg1);
10640 type = value_type (ada_to_fixed_value (arg1));
10641 }
10642 }
10643 else
10644 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10645
10646 return value_zero (ada_aligned_type (type), lval_memory);
10647 }
10648 else
10649 {
10650 arg1 = ada_value_struct_elt (arg1, str, 0);
10651 arg1 = unwrap_value (arg1);
10652 return ada_to_fixed_value (arg1);
10653 }
10654}
10655
efe3af2f
TT
10656value *
10657ada_funcall_operation::evaluate (struct type *expect_type,
10658 struct expression *exp,
10659 enum noside noside)
10660{
10661 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10662 int nargs = args_up.size ();
10663 std::vector<value *> argvec (nargs);
10664 operation_up &callee_op = std::get<0> (m_storage);
10665
10666 ada_var_value_operation *avv
10667 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10668 if (avv != nullptr
6c9c307c 10669 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
efe3af2f
TT
10670 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10671 avv->get_symbol ()->print_name ());
10672
10673 value *callee = callee_op->evaluate (nullptr, exp, noside);
10674 for (int i = 0; i < args_up.size (); ++i)
10675 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10676
10677 if (ada_is_constrained_packed_array_type
10678 (desc_base_type (value_type (callee))))
10679 callee = ada_coerce_to_simple_array (callee);
10680 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10681 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10682 /* This is a packed array that has already been fixed, and
10683 therefore already coerced to a simple array. Nothing further
10684 to do. */
10685 ;
10686 else if (value_type (callee)->code () == TYPE_CODE_REF)
10687 {
10688 /* Make sure we dereference references so that all the code below
10689 feels like it's really handling the referenced value. Wrapping
10690 types (for alignment) may be there, so make sure we strip them as
10691 well. */
10692 callee = ada_to_fixed_value (coerce_ref (callee));
10693 }
10694 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10695 && VALUE_LVAL (callee) == lval_memory)
10696 callee = value_addr (callee);
10697
10698 struct type *type = ada_check_typedef (value_type (callee));
10699
10700 /* Ada allows us to implicitly dereference arrays when subscripting
10701 them. So, if this is an array typedef (encoding use for array
10702 access types encoded as fat pointers), strip it now. */
10703 if (type->code () == TYPE_CODE_TYPEDEF)
10704 type = ada_typedef_target_type (type);
10705
10706 if (type->code () == TYPE_CODE_PTR)
10707 {
10708 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10709 {
10710 case TYPE_CODE_FUNC:
10711 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10712 break;
10713 case TYPE_CODE_ARRAY:
10714 break;
10715 case TYPE_CODE_STRUCT:
10716 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10717 callee = ada_value_ind (callee);
10718 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10719 break;
10720 default:
10721 error (_("cannot subscript or call something of type `%s'"),
10722 ada_type_name (value_type (callee)));
10723 break;
10724 }
10725 }
10726
10727 switch (type->code ())
10728 {
10729 case TYPE_CODE_FUNC:
10730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10731 {
10732 if (TYPE_TARGET_TYPE (type) == NULL)
10733 error_call_unknown_return_type (NULL);
10734 return allocate_value (TYPE_TARGET_TYPE (type));
10735 }
10736 return call_function_by_hand (callee, NULL, argvec);
10737 case TYPE_CODE_INTERNAL_FUNCTION:
10738 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10739 /* We don't know anything about what the internal
10740 function might return, but we have to return
10741 something. */
10742 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10743 not_lval);
10744 else
10745 return call_internal_function (exp->gdbarch, exp->language_defn,
10746 callee, nargs,
10747 argvec.data ());
10748
d3c54a1c
TT
10749 case TYPE_CODE_STRUCT:
10750 {
10751 int arity;
4c4b4cd2 10752
d3c54a1c
TT
10753 arity = ada_array_arity (type);
10754 type = ada_array_element_type (type, nargs);
10755 if (type == NULL)
10756 error (_("cannot subscript or call a record"));
10757 if (arity != nargs)
10758 error (_("wrong number of subscripts; expecting %d"), arity);
10759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10760 return value_zero (ada_aligned_type (type), lval_memory);
10761 return
10762 unwrap_value (ada_value_subscript
10763 (callee, nargs, argvec.data ()));
10764 }
10765 case TYPE_CODE_ARRAY:
14f9c5c9 10766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10767 {
d3c54a1c
TT
10768 type = ada_array_element_type (type, nargs);
10769 if (type == NULL)
10770 error (_("element type of array unknown"));
dda83cd7 10771 else
d3c54a1c 10772 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10773 }
d3c54a1c
TT
10774 return
10775 unwrap_value (ada_value_subscript
10776 (ada_coerce_to_simple_array (callee),
10777 nargs, argvec.data ()));
10778 case TYPE_CODE_PTR: /* Pointer to array */
10779 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10780 {
d3c54a1c
TT
10781 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10782 type = ada_array_element_type (type, nargs);
10783 if (type == NULL)
10784 error (_("element type of array unknown"));
96967637 10785 else
d3c54a1c 10786 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10787 }
d3c54a1c
TT
10788 return
10789 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10790 argvec.data ()));
6b0d7253 10791
d3c54a1c
TT
10792 default:
10793 error (_("Attempt to index or call something other than an "
10794 "array or function"));
10795 }
10796}
5b4ee69b 10797
d3c54a1c
TT
10798bool
10799ada_funcall_operation::resolve (struct expression *exp,
10800 bool deprocedure_p,
10801 bool parse_completion,
10802 innermost_block_tracker *tracker,
10803 struct type *context_type)
10804{
10805 operation_up &callee_op = std::get<0> (m_storage);
5ec18f2b 10806
d3c54a1c
TT
10807 ada_var_value_operation *avv
10808 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10809 if (avv == nullptr)
10810 return false;
5ec18f2b 10811
d3c54a1c 10812 symbol *sym = avv->get_symbol ();
6c9c307c 10813 if (sym->domain () != UNDEF_DOMAIN)
d3c54a1c 10814 return false;
dda83cd7 10815
d3c54a1c
TT
10816 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10817 int nargs = args_up.size ();
10818 std::vector<value *> argvec (nargs);
284614f0 10819
d3c54a1c
TT
10820 for (int i = 0; i < args_up.size (); ++i)
10821 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
52ce6436 10822
d3c54a1c
TT
10823 const block *block = avv->get_block ();
10824 block_symbol resolved
10825 = ada_resolve_funcall (sym, block,
10826 context_type, parse_completion,
10827 nargs, argvec.data (),
10828 tracker);
10829
10830 std::get<0> (m_storage)
9e5e03df 10831 = make_operation<ada_var_value_operation> (resolved);
d3c54a1c
TT
10832 return false;
10833}
10834
10835bool
10836ada_ternop_slice_operation::resolve (struct expression *exp,
10837 bool deprocedure_p,
10838 bool parse_completion,
10839 innermost_block_tracker *tracker,
10840 struct type *context_type)
10841{
10842 /* Historically this check was done during resolution, so we
10843 continue that here. */
10844 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10845 EVAL_AVOID_SIDE_EFFECTS);
10846 if (ada_is_any_packed_array_type (value_type (v)))
10847 error (_("cannot slice a packed array"));
10848 return false;
10849}
14f9c5c9 10850
14f9c5c9 10851}
d3c54a1c 10852
14f9c5c9 10853\f
d2e4a39e 10854
4c4b4cd2
PH
10855/* Return non-zero iff TYPE represents a System.Address type. */
10856
10857int
10858ada_is_system_address_type (struct type *type)
10859{
7d93a1e0 10860 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
10861}
10862
14f9c5c9 10863\f
d2e4a39e 10864
dda83cd7 10865 /* Range types */
14f9c5c9
AS
10866
10867/* Scan STR beginning at position K for a discriminant name, and
10868 return the value of that discriminant field of DVAL in *PX. If
10869 PNEW_K is not null, put the position of the character beyond the
10870 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10871 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10872
10873static int
108d56a4 10874scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 10875 int *pnew_k)
14f9c5c9 10876{
5f9febe0 10877 static std::string storage;
5da1a4d3 10878 const char *pstart, *pend, *bound;
d2e4a39e 10879 struct value *bound_val;
14f9c5c9
AS
10880
10881 if (dval == NULL || str == NULL || str[k] == '\0')
10882 return 0;
10883
5da1a4d3
SM
10884 pstart = str + k;
10885 pend = strstr (pstart, "__");
14f9c5c9
AS
10886 if (pend == NULL)
10887 {
5da1a4d3 10888 bound = pstart;
14f9c5c9
AS
10889 k += strlen (bound);
10890 }
d2e4a39e 10891 else
14f9c5c9 10892 {
5da1a4d3
SM
10893 int len = pend - pstart;
10894
10895 /* Strip __ and beyond. */
5f9febe0
TT
10896 storage = std::string (pstart, len);
10897 bound = storage.c_str ();
d2e4a39e 10898 k = pend - str;
14f9c5c9 10899 }
d2e4a39e 10900
df407dfe 10901 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10902 if (bound_val == NULL)
10903 return 0;
10904
10905 *px = value_as_long (bound_val);
10906 if (pnew_k != NULL)
10907 *pnew_k = k;
10908 return 1;
10909}
10910
25a1127b
TT
10911/* Value of variable named NAME. Only exact matches are considered.
10912 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10913 otherwise causes an error with message ERR_MSG. */
10914
d2e4a39e 10915static struct value *
edb0c9cb 10916get_var_value (const char *name, const char *err_msg)
14f9c5c9 10917{
25a1127b
TT
10918 std::string quoted_name = add_angle_brackets (name);
10919
10920 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 10921
d1183b06
TT
10922 std::vector<struct block_symbol> syms
10923 = ada_lookup_symbol_list_worker (lookup_name,
10924 get_selected_block (0),
10925 VAR_DOMAIN, 1);
14f9c5c9 10926
d1183b06 10927 if (syms.size () != 1)
14f9c5c9
AS
10928 {
10929 if (err_msg == NULL)
dda83cd7 10930 return 0;
14f9c5c9 10931 else
dda83cd7 10932 error (("%s"), err_msg);
14f9c5c9
AS
10933 }
10934
54d343a2 10935 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 10936}
d2e4a39e 10937
edb0c9cb
PA
10938/* Value of integer variable named NAME in the current environment.
10939 If no such variable is found, returns false. Otherwise, sets VALUE
10940 to the variable's value and returns true. */
4c4b4cd2 10941
edb0c9cb
PA
10942bool
10943get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 10944{
4c4b4cd2 10945 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10946
14f9c5c9 10947 if (var_val == 0)
edb0c9cb
PA
10948 return false;
10949
10950 value = value_as_long (var_val);
10951 return true;
14f9c5c9 10952}
d2e4a39e 10953
14f9c5c9
AS
10954
10955/* Return a range type whose base type is that of the range type named
10956 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10957 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10958 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10959 corresponding range type from debug information; fall back to using it
10960 if symbol lookup fails. If a new type must be created, allocate it
10961 like ORIG_TYPE was. The bounds information, in general, is encoded
10962 in NAME, the base type given in the named range type. */
14f9c5c9 10963
d2e4a39e 10964static struct type *
28c85d6c 10965to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10966{
0d5cff50 10967 const char *name;
14f9c5c9 10968 struct type *base_type;
108d56a4 10969 const char *subtype_info;
14f9c5c9 10970
28c85d6c 10971 gdb_assert (raw_type != NULL);
7d93a1e0 10972 gdb_assert (raw_type->name () != NULL);
dddfab26 10973
78134374 10974 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
10975 base_type = TYPE_TARGET_TYPE (raw_type);
10976 else
10977 base_type = raw_type;
10978
7d93a1e0 10979 name = raw_type->name ();
14f9c5c9
AS
10980 subtype_info = strstr (name, "___XD");
10981 if (subtype_info == NULL)
690cc4eb 10982 {
43bbcdc2
PH
10983 LONGEST L = ada_discrete_type_low_bound (raw_type);
10984 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10985
690cc4eb
PH
10986 if (L < INT_MIN || U > INT_MAX)
10987 return raw_type;
10988 else
0c9c3474
SA
10989 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10990 L, U);
690cc4eb 10991 }
14f9c5c9
AS
10992 else
10993 {
14f9c5c9
AS
10994 int prefix_len = subtype_info - name;
10995 LONGEST L, U;
10996 struct type *type;
108d56a4 10997 const char *bounds_str;
14f9c5c9
AS
10998 int n;
10999
14f9c5c9
AS
11000 subtype_info += 5;
11001 bounds_str = strchr (subtype_info, '_');
11002 n = 1;
11003
d2e4a39e 11004 if (*subtype_info == 'L')
dda83cd7
SM
11005 {
11006 if (!ada_scan_number (bounds_str, n, &L, &n)
11007 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11008 return raw_type;
11009 if (bounds_str[n] == '_')
11010 n += 2;
11011 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11012 n += 1;
11013 subtype_info += 1;
11014 }
d2e4a39e 11015 else
dda83cd7 11016 {
5f9febe0
TT
11017 std::string name_buf = std::string (name, prefix_len) + "___L";
11018 if (!get_int_var_value (name_buf.c_str (), L))
dda83cd7
SM
11019 {
11020 lim_warning (_("Unknown lower bound, using 1."));
11021 L = 1;
11022 }
11023 }
14f9c5c9 11024
d2e4a39e 11025 if (*subtype_info == 'U')
dda83cd7
SM
11026 {
11027 if (!ada_scan_number (bounds_str, n, &U, &n)
11028 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11029 return raw_type;
11030 }
d2e4a39e 11031 else
dda83cd7 11032 {
5f9febe0
TT
11033 std::string name_buf = std::string (name, prefix_len) + "___U";
11034 if (!get_int_var_value (name_buf.c_str (), U))
dda83cd7
SM
11035 {
11036 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11037 U = L;
11038 }
11039 }
14f9c5c9 11040
0c9c3474
SA
11041 type = create_static_range_type (alloc_type_copy (raw_type),
11042 base_type, L, U);
f5a91472 11043 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11044 to match the size of the base_type, which is not what we want.
11045 Set it back to the original range type's length. */
f5a91472 11046 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11047 type->set_name (name);
14f9c5c9
AS
11048 return type;
11049 }
11050}
11051
4c4b4cd2
PH
11052/* True iff NAME is the name of a range type. */
11053
14f9c5c9 11054int
d2e4a39e 11055ada_is_range_type_name (const char *name)
14f9c5c9
AS
11056{
11057 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11058}
14f9c5c9 11059\f
d2e4a39e 11060
dda83cd7 11061 /* Modular types */
4c4b4cd2
PH
11062
11063/* True iff TYPE is an Ada modular type. */
14f9c5c9 11064
14f9c5c9 11065int
d2e4a39e 11066ada_is_modular_type (struct type *type)
14f9c5c9 11067{
18af8284 11068 struct type *subranged_type = get_base_type (type);
14f9c5c9 11069
78134374 11070 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11071 && subranged_type->code () == TYPE_CODE_INT
11072 && subranged_type->is_unsigned ());
14f9c5c9
AS
11073}
11074
4c4b4cd2
PH
11075/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11076
61ee279c 11077ULONGEST
0056e4d5 11078ada_modulus (struct type *type)
14f9c5c9 11079{
5e500d33
SM
11080 const dynamic_prop &high = type->bounds ()->high;
11081
11082 if (high.kind () == PROP_CONST)
11083 return (ULONGEST) high.const_val () + 1;
11084
11085 /* If TYPE is unresolved, the high bound might be a location list. Return
11086 0, for lack of a better value to return. */
11087 return 0;
14f9c5c9 11088}
d2e4a39e 11089\f
f7f9143b
JB
11090
11091/* Ada exception catchpoint support:
11092 ---------------------------------
11093
11094 We support 3 kinds of exception catchpoints:
11095 . catchpoints on Ada exceptions
11096 . catchpoints on unhandled Ada exceptions
11097 . catchpoints on failed assertions
11098
11099 Exceptions raised during failed assertions, or unhandled exceptions
11100 could perfectly be caught with the general catchpoint on Ada exceptions.
11101 However, we can easily differentiate these two special cases, and having
11102 the option to distinguish these two cases from the rest can be useful
11103 to zero-in on certain situations.
11104
11105 Exception catchpoints are a specialized form of breakpoint,
11106 since they rely on inserting breakpoints inside known routines
11107 of the GNAT runtime. The implementation therefore uses a standard
11108 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11109 of breakpoint_ops.
11110
0259addd
JB
11111 Support in the runtime for exception catchpoints have been changed
11112 a few times already, and these changes affect the implementation
11113 of these catchpoints. In order to be able to support several
11114 variants of the runtime, we use a sniffer that will determine
28010a5d 11115 the runtime variant used by the program being debugged. */
f7f9143b 11116
82eacd52
JB
11117/* Ada's standard exceptions.
11118
11119 The Ada 83 standard also defined Numeric_Error. But there so many
11120 situations where it was unclear from the Ada 83 Reference Manual
11121 (RM) whether Constraint_Error or Numeric_Error should be raised,
11122 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11123 Interpretation saying that anytime the RM says that Numeric_Error
11124 should be raised, the implementation may raise Constraint_Error.
11125 Ada 95 went one step further and pretty much removed Numeric_Error
11126 from the list of standard exceptions (it made it a renaming of
11127 Constraint_Error, to help preserve compatibility when compiling
11128 an Ada83 compiler). As such, we do not include Numeric_Error from
11129 this list of standard exceptions. */
3d0b0fa3 11130
27087b7f 11131static const char * const standard_exc[] = {
3d0b0fa3
JB
11132 "constraint_error",
11133 "program_error",
11134 "storage_error",
11135 "tasking_error"
11136};
11137
0259addd
JB
11138typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11139
11140/* A structure that describes how to support exception catchpoints
11141 for a given executable. */
11142
11143struct exception_support_info
11144{
11145 /* The name of the symbol to break on in order to insert
11146 a catchpoint on exceptions. */
11147 const char *catch_exception_sym;
11148
11149 /* The name of the symbol to break on in order to insert
11150 a catchpoint on unhandled exceptions. */
11151 const char *catch_exception_unhandled_sym;
11152
11153 /* The name of the symbol to break on in order to insert
11154 a catchpoint on failed assertions. */
11155 const char *catch_assert_sym;
11156
9f757bf7
XR
11157 /* The name of the symbol to break on in order to insert
11158 a catchpoint on exception handling. */
11159 const char *catch_handlers_sym;
11160
0259addd
JB
11161 /* Assuming that the inferior just triggered an unhandled exception
11162 catchpoint, this function is responsible for returning the address
11163 in inferior memory where the name of that exception is stored.
11164 Return zero if the address could not be computed. */
11165 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11166};
11167
11168static CORE_ADDR ada_unhandled_exception_name_addr (void);
11169static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11170
11171/* The following exception support info structure describes how to
11172 implement exception catchpoints with the latest version of the
ca683e3a 11173 Ada runtime (as of 2019-08-??). */
0259addd
JB
11174
11175static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11176{
11177 "__gnat_debug_raise_exception", /* catch_exception_sym */
11178 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11179 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11180 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11181 ada_unhandled_exception_name_addr
11182};
11183
11184/* The following exception support info structure describes how to
11185 implement exception catchpoints with an earlier version of the
11186 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11187
11188static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11189{
11190 "__gnat_debug_raise_exception", /* catch_exception_sym */
11191 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11192 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11193 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11194 ada_unhandled_exception_name_addr
11195};
11196
11197/* The following exception support info structure describes how to
11198 implement exception catchpoints with a slightly older version
11199 of the Ada runtime. */
11200
11201static const struct exception_support_info exception_support_info_fallback =
11202{
11203 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11204 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11205 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11206 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11207 ada_unhandled_exception_name_addr_from_raise
11208};
11209
f17011e0
JB
11210/* Return nonzero if we can detect the exception support routines
11211 described in EINFO.
11212
11213 This function errors out if an abnormal situation is detected
11214 (for instance, if we find the exception support routines, but
11215 that support is found to be incomplete). */
11216
11217static int
11218ada_has_this_exception_support (const struct exception_support_info *einfo)
11219{
11220 struct symbol *sym;
11221
11222 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11223 that should be compiled with debugging information. As a result, we
11224 expect to find that symbol in the symtabs. */
11225
11226 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11227 if (sym == NULL)
a6af7abe
JB
11228 {
11229 /* Perhaps we did not find our symbol because the Ada runtime was
11230 compiled without debugging info, or simply stripped of it.
11231 It happens on some GNU/Linux distributions for instance, where
11232 users have to install a separate debug package in order to get
11233 the runtime's debugging info. In that situation, let the user
11234 know why we cannot insert an Ada exception catchpoint.
11235
11236 Note: Just for the purpose of inserting our Ada exception
11237 catchpoint, we could rely purely on the associated minimal symbol.
11238 But we would be operating in degraded mode anyway, since we are
11239 still lacking the debugging info needed later on to extract
11240 the name of the exception being raised (this name is printed in
11241 the catchpoint message, and is also used when trying to catch
11242 a specific exception). We do not handle this case for now. */
3b7344d5 11243 struct bound_minimal_symbol msym
1c8e84b0
JB
11244 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11245
3b7344d5 11246 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11247 error (_("Your Ada runtime appears to be missing some debugging "
11248 "information.\nCannot insert Ada exception catchpoint "
11249 "in this configuration."));
11250
11251 return 0;
11252 }
f17011e0
JB
11253
11254 /* Make sure that the symbol we found corresponds to a function. */
11255
66d7f48f 11256 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11257 {
11258 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11259 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11260 return 0;
11261 }
11262
11263 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11264 if (sym == NULL)
11265 {
11266 struct bound_minimal_symbol msym
11267 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11268
11269 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11270 error (_("Your Ada runtime appears to be missing some debugging "
11271 "information.\nCannot insert Ada exception catchpoint "
11272 "in this configuration."));
11273
11274 return 0;
11275 }
11276
11277 /* Make sure that the symbol we found corresponds to a function. */
11278
66d7f48f 11279 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11280 {
11281 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11282 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11283 return 0;
11284 }
f17011e0
JB
11285
11286 return 1;
11287}
11288
0259addd
JB
11289/* Inspect the Ada runtime and determine which exception info structure
11290 should be used to provide support for exception catchpoints.
11291
3eecfa55
JB
11292 This function will always set the per-inferior exception_info,
11293 or raise an error. */
0259addd
JB
11294
11295static void
11296ada_exception_support_info_sniffer (void)
11297{
3eecfa55 11298 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11299
11300 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11301 if (data->exception_info != NULL)
0259addd
JB
11302 return;
11303
11304 /* Check the latest (default) exception support info. */
f17011e0 11305 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11306 {
3eecfa55 11307 data->exception_info = &default_exception_support_info;
0259addd
JB
11308 return;
11309 }
11310
ca683e3a
AO
11311 /* Try the v0 exception suport info. */
11312 if (ada_has_this_exception_support (&exception_support_info_v0))
11313 {
11314 data->exception_info = &exception_support_info_v0;
11315 return;
11316 }
11317
0259addd 11318 /* Try our fallback exception suport info. */
f17011e0 11319 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11320 {
3eecfa55 11321 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11322 return;
11323 }
11324
11325 /* Sometimes, it is normal for us to not be able to find the routine
11326 we are looking for. This happens when the program is linked with
11327 the shared version of the GNAT runtime, and the program has not been
11328 started yet. Inform the user of these two possible causes if
11329 applicable. */
11330
ccefe4c4 11331 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11332 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11333
11334 /* If the symbol does not exist, then check that the program is
11335 already started, to make sure that shared libraries have been
11336 loaded. If it is not started, this may mean that the symbol is
11337 in a shared library. */
11338
e99b03dc 11339 if (inferior_ptid.pid () == 0)
0259addd
JB
11340 error (_("Unable to insert catchpoint. Try to start the program first."));
11341
11342 /* At this point, we know that we are debugging an Ada program and
11343 that the inferior has been started, but we still are not able to
0963b4bd 11344 find the run-time symbols. That can mean that we are in
0259addd
JB
11345 configurable run time mode, or that a-except as been optimized
11346 out by the linker... In any case, at this point it is not worth
11347 supporting this feature. */
11348
7dda8cff 11349 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11350}
11351
f7f9143b
JB
11352/* True iff FRAME is very likely to be that of a function that is
11353 part of the runtime system. This is all very heuristic, but is
11354 intended to be used as advice as to what frames are uninteresting
11355 to most users. */
11356
11357static int
11358is_known_support_routine (struct frame_info *frame)
11359{
692465f1 11360 enum language func_lang;
f7f9143b 11361 int i;
f35a17b5 11362 const char *fullname;
f7f9143b 11363
4ed6b5be
JB
11364 /* If this code does not have any debugging information (no symtab),
11365 This cannot be any user code. */
f7f9143b 11366
51abb421 11367 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11368 if (sal.symtab == NULL)
11369 return 1;
11370
4ed6b5be
JB
11371 /* If there is a symtab, but the associated source file cannot be
11372 located, then assume this is not user code: Selecting a frame
11373 for which we cannot display the code would not be very helpful
11374 for the user. This should also take care of case such as VxWorks
11375 where the kernel has some debugging info provided for a few units. */
f7f9143b 11376
f35a17b5
JK
11377 fullname = symtab_to_fullname (sal.symtab);
11378 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11379 return 1;
11380
85102364 11381 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11382 We also check the name of the objfile against the name of some
11383 known system libraries that sometimes come with debugging info
11384 too. */
11385
f7f9143b
JB
11386 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11387 {
11388 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11389 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11390 return 1;
65209971
SM
11391 if (sal.symtab->objfile () != NULL
11392 && re_exec (objfile_name (sal.symtab->objfile ())))
dda83cd7 11393 return 1;
f7f9143b
JB
11394 }
11395
4ed6b5be 11396 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11397
c6dc63a1
TT
11398 gdb::unique_xmalloc_ptr<char> func_name
11399 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11400 if (func_name == NULL)
11401 return 1;
11402
11403 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11404 {
11405 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11406 if (re_exec (func_name.get ()))
11407 return 1;
f7f9143b
JB
11408 }
11409
11410 return 0;
11411}
11412
11413/* Find the first frame that contains debugging information and that is not
11414 part of the Ada run-time, starting from FI and moving upward. */
11415
0ef643c8 11416void
f7f9143b
JB
11417ada_find_printable_frame (struct frame_info *fi)
11418{
11419 for (; fi != NULL; fi = get_prev_frame (fi))
11420 {
11421 if (!is_known_support_routine (fi))
dda83cd7
SM
11422 {
11423 select_frame (fi);
11424 break;
11425 }
f7f9143b
JB
11426 }
11427
11428}
11429
11430/* Assuming that the inferior just triggered an unhandled exception
11431 catchpoint, return the address in inferior memory where the name
11432 of the exception is stored.
11433
11434 Return zero if the address could not be computed. */
11435
11436static CORE_ADDR
11437ada_unhandled_exception_name_addr (void)
0259addd
JB
11438{
11439 return parse_and_eval_address ("e.full_name");
11440}
11441
11442/* Same as ada_unhandled_exception_name_addr, except that this function
11443 should be used when the inferior uses an older version of the runtime,
11444 where the exception name needs to be extracted from a specific frame
11445 several frames up in the callstack. */
11446
11447static CORE_ADDR
11448ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11449{
11450 int frame_level;
11451 struct frame_info *fi;
3eecfa55 11452 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11453
11454 /* To determine the name of this exception, we need to select
11455 the frame corresponding to RAISE_SYM_NAME. This frame is
11456 at least 3 levels up, so we simply skip the first 3 frames
11457 without checking the name of their associated function. */
11458 fi = get_current_frame ();
11459 for (frame_level = 0; frame_level < 3; frame_level += 1)
11460 if (fi != NULL)
11461 fi = get_prev_frame (fi);
11462
11463 while (fi != NULL)
11464 {
692465f1
JB
11465 enum language func_lang;
11466
c6dc63a1
TT
11467 gdb::unique_xmalloc_ptr<char> func_name
11468 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11469 if (func_name != NULL)
11470 {
dda83cd7 11471 if (strcmp (func_name.get (),
55b87a52
KS
11472 data->exception_info->catch_exception_sym) == 0)
11473 break; /* We found the frame we were looking for... */
55b87a52 11474 }
fb44b1a7 11475 fi = get_prev_frame (fi);
f7f9143b
JB
11476 }
11477
11478 if (fi == NULL)
11479 return 0;
11480
11481 select_frame (fi);
11482 return parse_and_eval_address ("id.full_name");
11483}
11484
11485/* Assuming the inferior just triggered an Ada exception catchpoint
11486 (of any type), return the address in inferior memory where the name
11487 of the exception is stored, if applicable.
11488
45db7c09
PA
11489 Assumes the selected frame is the current frame.
11490
f7f9143b
JB
11491 Return zero if the address could not be computed, or if not relevant. */
11492
11493static CORE_ADDR
761269c8 11494ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11495 struct breakpoint *b)
f7f9143b 11496{
3eecfa55
JB
11497 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11498
f7f9143b
JB
11499 switch (ex)
11500 {
761269c8 11501 case ada_catch_exception:
dda83cd7
SM
11502 return (parse_and_eval_address ("e.full_name"));
11503 break;
f7f9143b 11504
761269c8 11505 case ada_catch_exception_unhandled:
dda83cd7
SM
11506 return data->exception_info->unhandled_exception_name_addr ();
11507 break;
9f757bf7
XR
11508
11509 case ada_catch_handlers:
dda83cd7 11510 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11511 name. */
dda83cd7 11512 break;
9f757bf7 11513
761269c8 11514 case ada_catch_assert:
dda83cd7
SM
11515 return 0; /* Exception name is not relevant in this case. */
11516 break;
f7f9143b
JB
11517
11518 default:
dda83cd7
SM
11519 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11520 break;
f7f9143b
JB
11521 }
11522
11523 return 0; /* Should never be reached. */
11524}
11525
e547c119
JB
11526/* Assuming the inferior is stopped at an exception catchpoint,
11527 return the message which was associated to the exception, if
11528 available. Return NULL if the message could not be retrieved.
11529
e547c119
JB
11530 Note: The exception message can be associated to an exception
11531 either through the use of the Raise_Exception function, or
11532 more simply (Ada 2005 and later), via:
11533
11534 raise Exception_Name with "exception message";
11535
11536 */
11537
6f46ac85 11538static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11539ada_exception_message_1 (void)
11540{
11541 struct value *e_msg_val;
e547c119 11542 int e_msg_len;
e547c119
JB
11543
11544 /* For runtimes that support this feature, the exception message
11545 is passed as an unbounded string argument called "message". */
11546 e_msg_val = parse_and_eval ("message");
11547 if (e_msg_val == NULL)
11548 return NULL; /* Exception message not supported. */
11549
11550 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11551 gdb_assert (e_msg_val != NULL);
11552 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11553
11554 /* If the message string is empty, then treat it as if there was
11555 no exception message. */
11556 if (e_msg_len <= 0)
11557 return NULL;
11558
15f3b077
TT
11559 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11560 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11561 e_msg_len);
11562 e_msg.get ()[e_msg_len] = '\0';
11563
11564 return e_msg;
e547c119
JB
11565}
11566
11567/* Same as ada_exception_message_1, except that all exceptions are
11568 contained here (returning NULL instead). */
11569
6f46ac85 11570static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11571ada_exception_message (void)
11572{
6f46ac85 11573 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11574
a70b8144 11575 try
e547c119
JB
11576 {
11577 e_msg = ada_exception_message_1 ();
11578 }
230d2906 11579 catch (const gdb_exception_error &e)
e547c119 11580 {
6f46ac85 11581 e_msg.reset (nullptr);
e547c119 11582 }
e547c119
JB
11583
11584 return e_msg;
11585}
11586
f7f9143b
JB
11587/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11588 any error that ada_exception_name_addr_1 might cause to be thrown.
11589 When an error is intercepted, a warning with the error message is printed,
11590 and zero is returned. */
11591
11592static CORE_ADDR
761269c8 11593ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 11594 struct breakpoint *b)
f7f9143b 11595{
f7f9143b
JB
11596 CORE_ADDR result = 0;
11597
a70b8144 11598 try
f7f9143b
JB
11599 {
11600 result = ada_exception_name_addr_1 (ex, b);
11601 }
11602
230d2906 11603 catch (const gdb_exception_error &e)
f7f9143b 11604 {
3d6e9d23 11605 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
11606 return 0;
11607 }
11608
11609 return result;
11610}
11611
cb7de75e 11612static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
11613 (const char *excep_string,
11614 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
11615
11616/* Ada catchpoints.
11617
11618 In the case of catchpoints on Ada exceptions, the catchpoint will
11619 stop the target on every exception the program throws. When a user
11620 specifies the name of a specific exception, we translate this
11621 request into a condition expression (in text form), and then parse
11622 it into an expression stored in each of the catchpoint's locations.
11623 We then use this condition to check whether the exception that was
11624 raised is the one the user is interested in. If not, then the
11625 target is resumed again. We store the name of the requested
11626 exception, in order to be able to re-set the condition expression
11627 when symbols change. */
11628
11629/* An instance of this type is used to represent an Ada catchpoint
5625a286 11630 breakpoint location. */
28010a5d 11631
5625a286 11632class ada_catchpoint_location : public bp_location
28010a5d 11633{
5625a286 11634public:
5f486660 11635 ada_catchpoint_location (breakpoint *owner)
f06f1252 11636 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 11637 {}
28010a5d
PA
11638
11639 /* The condition that checks whether the exception that was raised
11640 is the specific exception the user specified on catchpoint
11641 creation. */
4d01a485 11642 expression_up excep_cond_expr;
28010a5d
PA
11643};
11644
c1fc2657 11645/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 11646
c1fc2657 11647struct ada_catchpoint : public breakpoint
28010a5d 11648{
37f6a7f4
TT
11649 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11650 : m_kind (kind)
11651 {
11652 }
11653
28010a5d 11654 /* The name of the specific exception the user specified. */
bc18fbb5 11655 std::string excep_string;
37f6a7f4
TT
11656
11657 /* What kind of catchpoint this is. */
11658 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
11659};
11660
11661/* Parse the exception condition string in the context of each of the
11662 catchpoint's locations, and store them for later evaluation. */
11663
11664static void
9f757bf7 11665create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 11666 enum ada_exception_catchpoint_kind ex)
28010a5d 11667{
28010a5d 11668 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 11669 if (c->excep_string.empty ())
28010a5d
PA
11670 return;
11671
11672 /* Same if there are no locations... */
c1fc2657 11673 if (c->loc == NULL)
28010a5d
PA
11674 return;
11675
fccf9de1
TT
11676 /* Compute the condition expression in text form, from the specific
11677 expection we want to catch. */
11678 std::string cond_string
11679 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 11680
fccf9de1
TT
11681 /* Iterate over all the catchpoint's locations, and parse an
11682 expression for each. */
40cb8ca5 11683 for (bp_location *bl : c->locations ())
28010a5d
PA
11684 {
11685 struct ada_catchpoint_location *ada_loc
fccf9de1 11686 = (struct ada_catchpoint_location *) bl;
4d01a485 11687 expression_up exp;
28010a5d 11688
fccf9de1 11689 if (!bl->shlib_disabled)
28010a5d 11690 {
bbc13ae3 11691 const char *s;
28010a5d 11692
cb7de75e 11693 s = cond_string.c_str ();
a70b8144 11694 try
28010a5d 11695 {
fccf9de1
TT
11696 exp = parse_exp_1 (&s, bl->address,
11697 block_for_pc (bl->address),
036e657b 11698 0);
28010a5d 11699 }
230d2906 11700 catch (const gdb_exception_error &e)
849f2b52
JB
11701 {
11702 warning (_("failed to reevaluate internal exception condition "
11703 "for catchpoint %d: %s"),
3d6e9d23 11704 c->number, e.what ());
849f2b52 11705 }
28010a5d
PA
11706 }
11707
b22e99fd 11708 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 11709 }
28010a5d
PA
11710}
11711
28010a5d
PA
11712/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11713 structure for all exception catchpoint kinds. */
11714
11715static struct bp_location *
37f6a7f4 11716allocate_location_exception (struct breakpoint *self)
28010a5d 11717{
5f486660 11718 return new ada_catchpoint_location (self);
28010a5d
PA
11719}
11720
11721/* Implement the RE_SET method in the breakpoint_ops structure for all
11722 exception catchpoint kinds. */
11723
11724static void
37f6a7f4 11725re_set_exception (struct breakpoint *b)
28010a5d
PA
11726{
11727 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11728
11729 /* Call the base class's method. This updates the catchpoint's
11730 locations. */
2060206e 11731 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11732
11733 /* Reparse the exception conditional expressions. One for each
11734 location. */
37f6a7f4 11735 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
11736}
11737
11738/* Returns true if we should stop for this breakpoint hit. If the
11739 user specified a specific exception, we only want to cause a stop
11740 if the program thrown that exception. */
11741
7ebaa5f7 11742static bool
28010a5d
PA
11743should_stop_exception (const struct bp_location *bl)
11744{
11745 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11746 const struct ada_catchpoint_location *ada_loc
11747 = (const struct ada_catchpoint_location *) bl;
7ebaa5f7 11748 bool stop;
28010a5d 11749
37f6a7f4
TT
11750 struct internalvar *var = lookup_internalvar ("_ada_exception");
11751 if (c->m_kind == ada_catch_assert)
11752 clear_internalvar (var);
11753 else
11754 {
11755 try
11756 {
11757 const char *expr;
11758
11759 if (c->m_kind == ada_catch_handlers)
11760 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11761 ".all.occurrence.id");
11762 else
11763 expr = "e";
11764
11765 struct value *exc = parse_and_eval (expr);
11766 set_internalvar (var, exc);
11767 }
11768 catch (const gdb_exception_error &ex)
11769 {
11770 clear_internalvar (var);
11771 }
11772 }
11773
28010a5d 11774 /* With no specific exception, should always stop. */
bc18fbb5 11775 if (c->excep_string.empty ())
7ebaa5f7 11776 return true;
28010a5d
PA
11777
11778 if (ada_loc->excep_cond_expr == NULL)
11779 {
11780 /* We will have a NULL expression if back when we were creating
11781 the expressions, this location's had failed to parse. */
7ebaa5f7 11782 return true;
28010a5d
PA
11783 }
11784
7ebaa5f7 11785 stop = true;
a70b8144 11786 try
28010a5d
PA
11787 {
11788 struct value *mark;
11789
11790 mark = value_mark ();
4d01a485 11791 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
11792 value_free_to_mark (mark);
11793 }
230d2906 11794 catch (const gdb_exception &ex)
492d29ea
PA
11795 {
11796 exception_fprintf (gdb_stderr, ex,
11797 _("Error in testing exception condition:\n"));
11798 }
492d29ea 11799
28010a5d
PA
11800 return stop;
11801}
11802
11803/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11804 for all exception catchpoint kinds. */
11805
11806static void
313f3b21 11807check_status_exception (bpstat *bs)
28010a5d 11808{
b6433ede 11809 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
11810}
11811
f7f9143b
JB
11812/* Implement the PRINT_IT method in the breakpoint_ops structure
11813 for all exception catchpoint kinds. */
11814
11815static enum print_stop_action
313f3b21 11816print_it_exception (bpstat *bs)
f7f9143b 11817{
79a45e25 11818 struct ui_out *uiout = current_uiout;
348d480f
PA
11819 struct breakpoint *b = bs->breakpoint_at;
11820
956a9fb9 11821 annotate_catchpoint (b->number);
f7f9143b 11822
112e8700 11823 if (uiout->is_mi_like_p ())
f7f9143b 11824 {
112e8700 11825 uiout->field_string ("reason",
956a9fb9 11826 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 11827 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
11828 }
11829
112e8700
SM
11830 uiout->text (b->disposition == disp_del
11831 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 11832 uiout->field_signed ("bkptno", b->number);
112e8700 11833 uiout->text (", ");
f7f9143b 11834
45db7c09
PA
11835 /* ada_exception_name_addr relies on the selected frame being the
11836 current frame. Need to do this here because this function may be
11837 called more than once when printing a stop, and below, we'll
11838 select the first frame past the Ada run-time (see
11839 ada_find_printable_frame). */
11840 select_frame (get_current_frame ());
11841
37f6a7f4
TT
11842 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11843 switch (c->m_kind)
f7f9143b 11844 {
761269c8
JB
11845 case ada_catch_exception:
11846 case ada_catch_exception_unhandled:
9f757bf7 11847 case ada_catch_handlers:
956a9fb9 11848 {
37f6a7f4 11849 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
11850 char exception_name[256];
11851
11852 if (addr != 0)
11853 {
c714b426
PA
11854 read_memory (addr, (gdb_byte *) exception_name,
11855 sizeof (exception_name) - 1);
956a9fb9
JB
11856 exception_name [sizeof (exception_name) - 1] = '\0';
11857 }
11858 else
11859 {
11860 /* For some reason, we were unable to read the exception
11861 name. This could happen if the Runtime was compiled
11862 without debugging info, for instance. In that case,
11863 just replace the exception name by the generic string
11864 "exception" - it will read as "an exception" in the
11865 notification we are about to print. */
967cff16 11866 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11867 }
11868 /* In the case of unhandled exception breakpoints, we print
11869 the exception name as "unhandled EXCEPTION_NAME", to make
11870 it clearer to the user which kind of catchpoint just got
11871 hit. We used ui_out_text to make sure that this extra
11872 info does not pollute the exception name in the MI case. */
37f6a7f4 11873 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
11874 uiout->text ("unhandled ");
11875 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
11876 }
11877 break;
761269c8 11878 case ada_catch_assert:
956a9fb9
JB
11879 /* In this case, the name of the exception is not really
11880 important. Just print "failed assertion" to make it clearer
11881 that his program just hit an assertion-failure catchpoint.
11882 We used ui_out_text because this info does not belong in
11883 the MI output. */
112e8700 11884 uiout->text ("failed assertion");
956a9fb9 11885 break;
f7f9143b 11886 }
e547c119 11887
6f46ac85 11888 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
11889 if (exception_message != NULL)
11890 {
e547c119 11891 uiout->text (" (");
6f46ac85 11892 uiout->field_string ("exception-message", exception_message.get ());
e547c119 11893 uiout->text (")");
e547c119
JB
11894 }
11895
112e8700 11896 uiout->text (" at ");
956a9fb9 11897 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11898
11899 return PRINT_SRC_AND_LOC;
11900}
11901
11902/* Implement the PRINT_ONE method in the breakpoint_ops structure
11903 for all exception catchpoint kinds. */
11904
11905static void
37f6a7f4 11906print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11907{
79a45e25 11908 struct ui_out *uiout = current_uiout;
28010a5d 11909 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11910 struct value_print_options opts;
11911
11912 get_user_print_options (&opts);
f06f1252 11913
79a45b7d 11914 if (opts.addressprint)
f06f1252 11915 uiout->field_skip ("addr");
f7f9143b
JB
11916
11917 annotate_field (5);
37f6a7f4 11918 switch (c->m_kind)
f7f9143b 11919 {
761269c8 11920 case ada_catch_exception:
dda83cd7
SM
11921 if (!c->excep_string.empty ())
11922 {
bc18fbb5
TT
11923 std::string msg = string_printf (_("`%s' Ada exception"),
11924 c->excep_string.c_str ());
28010a5d 11925
dda83cd7
SM
11926 uiout->field_string ("what", msg);
11927 }
11928 else
11929 uiout->field_string ("what", "all Ada exceptions");
11930
11931 break;
f7f9143b 11932
761269c8 11933 case ada_catch_exception_unhandled:
dda83cd7
SM
11934 uiout->field_string ("what", "unhandled Ada exceptions");
11935 break;
f7f9143b 11936
9f757bf7 11937 case ada_catch_handlers:
dda83cd7
SM
11938 if (!c->excep_string.empty ())
11939 {
9f757bf7
XR
11940 uiout->field_fmt ("what",
11941 _("`%s' Ada exception handlers"),
bc18fbb5 11942 c->excep_string.c_str ());
dda83cd7
SM
11943 }
11944 else
9f757bf7 11945 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 11946 break;
9f757bf7 11947
761269c8 11948 case ada_catch_assert:
dda83cd7
SM
11949 uiout->field_string ("what", "failed Ada assertions");
11950 break;
f7f9143b
JB
11951
11952 default:
dda83cd7
SM
11953 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11954 break;
f7f9143b
JB
11955 }
11956}
11957
11958/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11959 for all exception catchpoint kinds. */
11960
11961static void
37f6a7f4 11962print_mention_exception (struct breakpoint *b)
f7f9143b 11963{
28010a5d 11964 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11965 struct ui_out *uiout = current_uiout;
28010a5d 11966
112e8700 11967 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 11968 : _("Catchpoint "));
381befee 11969 uiout->field_signed ("bkptno", b->number);
112e8700 11970 uiout->text (": ");
00eb2c4a 11971
37f6a7f4 11972 switch (c->m_kind)
f7f9143b 11973 {
761269c8 11974 case ada_catch_exception:
dda83cd7 11975 if (!c->excep_string.empty ())
00eb2c4a 11976 {
862d101a 11977 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 11978 c->excep_string.c_str ());
4915bfdc 11979 uiout->text (info);
00eb2c4a 11980 }
dda83cd7
SM
11981 else
11982 uiout->text (_("all Ada exceptions"));
11983 break;
f7f9143b 11984
761269c8 11985 case ada_catch_exception_unhandled:
dda83cd7
SM
11986 uiout->text (_("unhandled Ada exceptions"));
11987 break;
9f757bf7
XR
11988
11989 case ada_catch_handlers:
dda83cd7 11990 if (!c->excep_string.empty ())
9f757bf7
XR
11991 {
11992 std::string info
11993 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 11994 c->excep_string.c_str ());
4915bfdc 11995 uiout->text (info);
9f757bf7 11996 }
dda83cd7
SM
11997 else
11998 uiout->text (_("all Ada exceptions handlers"));
11999 break;
9f757bf7 12000
761269c8 12001 case ada_catch_assert:
dda83cd7
SM
12002 uiout->text (_("failed Ada assertions"));
12003 break;
f7f9143b
JB
12004
12005 default:
dda83cd7
SM
12006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12007 break;
f7f9143b
JB
12008 }
12009}
12010
6149aea9
PA
12011/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12012 for all exception catchpoint kinds. */
12013
12014static void
37f6a7f4 12015print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12016{
28010a5d
PA
12017 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12018
37f6a7f4 12019 switch (c->m_kind)
6149aea9 12020 {
761269c8 12021 case ada_catch_exception:
6149aea9 12022 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12023 if (!c->excep_string.empty ())
12024 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12025 break;
12026
761269c8 12027 case ada_catch_exception_unhandled:
78076abc 12028 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12029 break;
12030
9f757bf7
XR
12031 case ada_catch_handlers:
12032 fprintf_filtered (fp, "catch handlers");
12033 break;
12034
761269c8 12035 case ada_catch_assert:
6149aea9
PA
12036 fprintf_filtered (fp, "catch assert");
12037 break;
12038
12039 default:
12040 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12041 }
d9b3f62e 12042 print_recreate_thread (b, fp);
6149aea9
PA
12043}
12044
d66beefa 12045/* Virtual table for breakpoint type. */
2060206e 12046static struct breakpoint_ops catch_exception_breakpoint_ops;
9f757bf7 12047
f06f1252
TT
12048/* See ada-lang.h. */
12049
12050bool
12051is_ada_exception_catchpoint (breakpoint *bp)
12052{
d66beefa 12053 return bp->ops == &catch_exception_breakpoint_ops;
f06f1252
TT
12054}
12055
f7f9143b
JB
12056/* Split the arguments specified in a "catch exception" command.
12057 Set EX to the appropriate catchpoint type.
28010a5d 12058 Set EXCEP_STRING to the name of the specific exception if
5845583d 12059 specified by the user.
9f757bf7
XR
12060 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12061 "catch handlers" command. False otherwise.
5845583d
JB
12062 If a condition is found at the end of the arguments, the condition
12063 expression is stored in COND_STRING (memory must be deallocated
12064 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12065
12066static void
a121b7c1 12067catch_ada_exception_command_split (const char *args,
9f757bf7 12068 bool is_catch_handlers_cmd,
dda83cd7 12069 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12070 std::string *excep_string,
12071 std::string *cond_string)
f7f9143b 12072{
bc18fbb5 12073 std::string exception_name;
f7f9143b 12074
bc18fbb5
TT
12075 exception_name = extract_arg (&args);
12076 if (exception_name == "if")
5845583d
JB
12077 {
12078 /* This is not an exception name; this is the start of a condition
12079 expression for a catchpoint on all exceptions. So, "un-get"
12080 this token, and set exception_name to NULL. */
bc18fbb5 12081 exception_name.clear ();
5845583d
JB
12082 args -= 2;
12083 }
f7f9143b 12084
5845583d 12085 /* Check to see if we have a condition. */
f7f9143b 12086
f1735a53 12087 args = skip_spaces (args);
61012eef 12088 if (startswith (args, "if")
5845583d
JB
12089 && (isspace (args[2]) || args[2] == '\0'))
12090 {
12091 args += 2;
f1735a53 12092 args = skip_spaces (args);
5845583d
JB
12093
12094 if (args[0] == '\0')
dda83cd7 12095 error (_("Condition missing after `if' keyword"));
bc18fbb5 12096 *cond_string = args;
5845583d
JB
12097
12098 args += strlen (args);
12099 }
12100
12101 /* Check that we do not have any more arguments. Anything else
12102 is unexpected. */
f7f9143b
JB
12103
12104 if (args[0] != '\0')
12105 error (_("Junk at end of expression"));
12106
9f757bf7
XR
12107 if (is_catch_handlers_cmd)
12108 {
12109 /* Catch handling of exceptions. */
12110 *ex = ada_catch_handlers;
12111 *excep_string = exception_name;
12112 }
bc18fbb5 12113 else if (exception_name.empty ())
f7f9143b
JB
12114 {
12115 /* Catch all exceptions. */
761269c8 12116 *ex = ada_catch_exception;
bc18fbb5 12117 excep_string->clear ();
f7f9143b 12118 }
bc18fbb5 12119 else if (exception_name == "unhandled")
f7f9143b
JB
12120 {
12121 /* Catch unhandled exceptions. */
761269c8 12122 *ex = ada_catch_exception_unhandled;
bc18fbb5 12123 excep_string->clear ();
f7f9143b
JB
12124 }
12125 else
12126 {
12127 /* Catch a specific exception. */
761269c8 12128 *ex = ada_catch_exception;
28010a5d 12129 *excep_string = exception_name;
f7f9143b
JB
12130 }
12131}
12132
12133/* Return the name of the symbol on which we should break in order to
12134 implement a catchpoint of the EX kind. */
12135
12136static const char *
761269c8 12137ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12138{
3eecfa55
JB
12139 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12140
12141 gdb_assert (data->exception_info != NULL);
0259addd 12142
f7f9143b
JB
12143 switch (ex)
12144 {
761269c8 12145 case ada_catch_exception:
dda83cd7
SM
12146 return (data->exception_info->catch_exception_sym);
12147 break;
761269c8 12148 case ada_catch_exception_unhandled:
dda83cd7
SM
12149 return (data->exception_info->catch_exception_unhandled_sym);
12150 break;
761269c8 12151 case ada_catch_assert:
dda83cd7
SM
12152 return (data->exception_info->catch_assert_sym);
12153 break;
9f757bf7 12154 case ada_catch_handlers:
dda83cd7
SM
12155 return (data->exception_info->catch_handlers_sym);
12156 break;
f7f9143b 12157 default:
dda83cd7
SM
12158 internal_error (__FILE__, __LINE__,
12159 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12160 }
12161}
12162
f7f9143b
JB
12163/* Return the condition that will be used to match the current exception
12164 being raised with the exception that the user wants to catch. This
12165 assumes that this condition is used when the inferior just triggered
12166 an exception catchpoint.
cb7de75e 12167 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12168
cb7de75e 12169static std::string
9f757bf7 12170ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12171 enum ada_exception_catchpoint_kind ex)
f7f9143b 12172{
fccf9de1 12173 bool is_standard_exc = false;
cb7de75e 12174 std::string result;
9f757bf7
XR
12175
12176 if (ex == ada_catch_handlers)
12177 {
12178 /* For exception handlers catchpoints, the condition string does
dda83cd7 12179 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12180 result = ("long_integer (GNAT_GCC_exception_Access"
12181 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12182 }
12183 else
fccf9de1 12184 result = "long_integer (e)";
3d0b0fa3 12185
0963b4bd 12186 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12187 runtime units that have been compiled without debugging info; if
28010a5d 12188 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12189 exception (e.g. "constraint_error") then, during the evaluation
12190 of the condition expression, the symbol lookup on this name would
0963b4bd 12191 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12192 may then be set only on user-defined exceptions which have the
12193 same not-fully-qualified name (e.g. my_package.constraint_error).
12194
12195 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12196 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12197 exception constraint_error" is rewritten into "catch exception
12198 standard.constraint_error".
12199
85102364 12200 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12201 the inferior program, then the only way to specify this exception as a
12202 breakpoint condition is to use its fully-qualified named:
fccf9de1 12203 e.g. my_package.constraint_error. */
3d0b0fa3 12204
696d6f4d 12205 for (const char *name : standard_exc)
3d0b0fa3 12206 {
696d6f4d 12207 if (strcmp (name, excep_string) == 0)
3d0b0fa3 12208 {
fccf9de1 12209 is_standard_exc = true;
9f757bf7 12210 break;
3d0b0fa3
JB
12211 }
12212 }
9f757bf7 12213
fccf9de1
TT
12214 result += " = ";
12215
12216 if (is_standard_exc)
12217 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12218 else
12219 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12220
9f757bf7 12221 return result;
f7f9143b
JB
12222}
12223
12224/* Return the symtab_and_line that should be used to insert an exception
12225 catchpoint of the TYPE kind.
12226
28010a5d
PA
12227 ADDR_STRING returns the name of the function where the real
12228 breakpoint that implements the catchpoints is set, depending on the
12229 type of catchpoint we need to create. */
f7f9143b
JB
12230
12231static struct symtab_and_line
bc18fbb5 12232ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12233 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12234{
12235 const char *sym_name;
12236 struct symbol *sym;
f7f9143b 12237
0259addd
JB
12238 /* First, find out which exception support info to use. */
12239 ada_exception_support_info_sniffer ();
12240
12241 /* Then lookup the function on which we will break in order to catch
f7f9143b 12242 the Ada exceptions requested by the user. */
f7f9143b
JB
12243 sym_name = ada_exception_sym_name (ex);
12244 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12245
57aff202
JB
12246 if (sym == NULL)
12247 error (_("Catchpoint symbol not found: %s"), sym_name);
12248
66d7f48f 12249 if (sym->aclass () != LOC_BLOCK)
57aff202 12250 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12251
12252 /* Set ADDR_STRING. */
cc12f4a8 12253 *addr_string = sym_name;
f7f9143b 12254
f7f9143b 12255 /* Set OPS. */
d66beefa 12256 *ops = &catch_exception_breakpoint_ops;
f7f9143b 12257
f17011e0 12258 return find_function_start_sal (sym, 1);
f7f9143b
JB
12259}
12260
b4a5b78b 12261/* Create an Ada exception catchpoint.
f7f9143b 12262
b4a5b78b 12263 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12264
bc18fbb5 12265 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12266 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12267 of the exception to which this catchpoint applies.
2df4d1d5 12268
bc18fbb5 12269 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12270
b4a5b78b
JB
12271 TEMPFLAG, if nonzero, means that the underlying breakpoint
12272 should be temporary.
28010a5d 12273
b4a5b78b 12274 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12275
349774ef 12276void
28010a5d 12277create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12278 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12279 const std::string &excep_string,
56ecd069 12280 const std::string &cond_string,
28010a5d 12281 int tempflag,
349774ef 12282 int disabled,
28010a5d
PA
12283 int from_tty)
12284{
cc12f4a8 12285 std::string addr_string;
b4a5b78b 12286 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12287 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12288
37f6a7f4 12289 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12290 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12291 ops, tempflag, disabled, from_tty);
28010a5d 12292 c->excep_string = excep_string;
9f757bf7 12293 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12294 if (!cond_string.empty ())
733d554a 12295 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12296 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12297}
12298
9ac4176b
PA
12299/* Implement the "catch exception" command. */
12300
12301static void
eb4c3f4a 12302catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12303 struct cmd_list_element *command)
12304{
a121b7c1 12305 const char *arg = arg_entry;
9ac4176b
PA
12306 struct gdbarch *gdbarch = get_current_arch ();
12307 int tempflag;
761269c8 12308 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12309 std::string excep_string;
56ecd069 12310 std::string cond_string;
9ac4176b 12311
0f8e2034 12312 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12313
12314 if (!arg)
12315 arg = "";
9f757bf7 12316 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12317 &cond_string);
9f757bf7
XR
12318 create_ada_exception_catchpoint (gdbarch, ex_kind,
12319 excep_string, cond_string,
12320 tempflag, 1 /* enabled */,
12321 from_tty);
12322}
12323
12324/* Implement the "catch handlers" command. */
12325
12326static void
12327catch_ada_handlers_command (const char *arg_entry, int from_tty,
12328 struct cmd_list_element *command)
12329{
12330 const char *arg = arg_entry;
12331 struct gdbarch *gdbarch = get_current_arch ();
12332 int tempflag;
12333 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12334 std::string excep_string;
56ecd069 12335 std::string cond_string;
9f757bf7 12336
0f8e2034 12337 tempflag = command->context () == CATCH_TEMPORARY;
9f757bf7
XR
12338
12339 if (!arg)
12340 arg = "";
12341 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12342 &cond_string);
b4a5b78b
JB
12343 create_ada_exception_catchpoint (gdbarch, ex_kind,
12344 excep_string, cond_string,
349774ef
JB
12345 tempflag, 1 /* enabled */,
12346 from_tty);
9ac4176b
PA
12347}
12348
71bed2db
TT
12349/* Completion function for the Ada "catch" commands. */
12350
12351static void
12352catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12353 const char *text, const char *word)
12354{
12355 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12356
12357 for (const ada_exc_info &info : exceptions)
12358 {
12359 if (startswith (info.name, word))
b02f78f9 12360 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12361 }
12362}
12363
b4a5b78b 12364/* Split the arguments specified in a "catch assert" command.
5845583d 12365
b4a5b78b
JB
12366 ARGS contains the command's arguments (or the empty string if
12367 no arguments were passed).
5845583d
JB
12368
12369 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12370 (the memory needs to be deallocated after use). */
5845583d 12371
b4a5b78b 12372static void
56ecd069 12373catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12374{
f1735a53 12375 args = skip_spaces (args);
f7f9143b 12376
5845583d 12377 /* Check whether a condition was provided. */
61012eef 12378 if (startswith (args, "if")
5845583d 12379 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12380 {
5845583d 12381 args += 2;
f1735a53 12382 args = skip_spaces (args);
5845583d 12383 if (args[0] == '\0')
dda83cd7 12384 error (_("condition missing after `if' keyword"));
56ecd069 12385 cond_string.assign (args);
f7f9143b
JB
12386 }
12387
5845583d
JB
12388 /* Otherwise, there should be no other argument at the end of
12389 the command. */
12390 else if (args[0] != '\0')
12391 error (_("Junk at end of arguments."));
f7f9143b
JB
12392}
12393
9ac4176b
PA
12394/* Implement the "catch assert" command. */
12395
12396static void
eb4c3f4a 12397catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12398 struct cmd_list_element *command)
12399{
a121b7c1 12400 const char *arg = arg_entry;
9ac4176b
PA
12401 struct gdbarch *gdbarch = get_current_arch ();
12402 int tempflag;
56ecd069 12403 std::string cond_string;
9ac4176b 12404
0f8e2034 12405 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12406
12407 if (!arg)
12408 arg = "";
56ecd069 12409 catch_ada_assert_command_split (arg, cond_string);
761269c8 12410 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12411 "", cond_string,
349774ef
JB
12412 tempflag, 1 /* enabled */,
12413 from_tty);
9ac4176b 12414}
778865d3
JB
12415
12416/* Return non-zero if the symbol SYM is an Ada exception object. */
12417
12418static int
12419ada_is_exception_sym (struct symbol *sym)
12420{
5f9c5a63 12421 const char *type_name = sym->type ()->name ();
778865d3 12422
66d7f48f
SM
12423 return (sym->aclass () != LOC_TYPEDEF
12424 && sym->aclass () != LOC_BLOCK
12425 && sym->aclass () != LOC_CONST
12426 && sym->aclass () != LOC_UNRESOLVED
dda83cd7 12427 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12428}
12429
12430/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12431 Ada exception object. This matches all exceptions except the ones
12432 defined by the Ada language. */
12433
12434static int
12435ada_is_non_standard_exception_sym (struct symbol *sym)
12436{
778865d3
JB
12437 if (!ada_is_exception_sym (sym))
12438 return 0;
12439
696d6f4d
TT
12440 for (const char *name : standard_exc)
12441 if (strcmp (sym->linkage_name (), name) == 0)
778865d3
JB
12442 return 0; /* A standard exception. */
12443
12444 /* Numeric_Error is also a standard exception, so exclude it.
12445 See the STANDARD_EXC description for more details as to why
12446 this exception is not listed in that array. */
987012b8 12447 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12448 return 0;
12449
12450 return 1;
12451}
12452
ab816a27 12453/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12454 objects.
12455
12456 The comparison is determined first by exception name, and then
12457 by exception address. */
12458
ab816a27 12459bool
cc536b21 12460ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12461{
778865d3
JB
12462 int result;
12463
ab816a27
TT
12464 result = strcmp (name, other.name);
12465 if (result < 0)
12466 return true;
12467 if (result == 0 && addr < other.addr)
12468 return true;
12469 return false;
12470}
778865d3 12471
ab816a27 12472bool
cc536b21 12473ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12474{
12475 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12476}
12477
12478/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12479 routine, but keeping the first SKIP elements untouched.
12480
12481 All duplicates are also removed. */
12482
12483static void
ab816a27 12484sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12485 int skip)
12486{
ab816a27
TT
12487 std::sort (exceptions->begin () + skip, exceptions->end ());
12488 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12489 exceptions->end ());
778865d3
JB
12490}
12491
778865d3
JB
12492/* Add all exceptions defined by the Ada standard whose name match
12493 a regular expression.
12494
12495 If PREG is not NULL, then this regexp_t object is used to
12496 perform the symbol name matching. Otherwise, no name-based
12497 filtering is performed.
12498
12499 EXCEPTIONS is a vector of exceptions to which matching exceptions
12500 gets pushed. */
12501
12502static void
2d7cc5c7 12503ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12504 std::vector<ada_exc_info> *exceptions)
778865d3 12505{
696d6f4d 12506 for (const char *name : standard_exc)
778865d3 12507 {
696d6f4d 12508 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
778865d3
JB
12509 {
12510 struct bound_minimal_symbol msymbol
696d6f4d 12511 = ada_lookup_simple_minsym (name);
778865d3
JB
12512
12513 if (msymbol.minsym != NULL)
12514 {
12515 struct ada_exc_info info
696d6f4d 12516 = {name, BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12517
ab816a27 12518 exceptions->push_back (info);
778865d3
JB
12519 }
12520 }
12521 }
12522}
12523
12524/* Add all Ada exceptions defined locally and accessible from the given
12525 FRAME.
12526
12527 If PREG is not NULL, then this regexp_t object is used to
12528 perform the symbol name matching. Otherwise, no name-based
12529 filtering is performed.
12530
12531 EXCEPTIONS is a vector of exceptions to which matching exceptions
12532 gets pushed. */
12533
12534static void
2d7cc5c7
PA
12535ada_add_exceptions_from_frame (compiled_regex *preg,
12536 struct frame_info *frame,
ab816a27 12537 std::vector<ada_exc_info> *exceptions)
778865d3 12538{
3977b71f 12539 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12540
12541 while (block != 0)
12542 {
12543 struct block_iterator iter;
12544 struct symbol *sym;
12545
12546 ALL_BLOCK_SYMBOLS (block, iter, sym)
12547 {
66d7f48f 12548 switch (sym->aclass ())
778865d3
JB
12549 {
12550 case LOC_TYPEDEF:
12551 case LOC_BLOCK:
12552 case LOC_CONST:
12553 break;
12554 default:
12555 if (ada_is_exception_sym (sym))
12556 {
987012b8 12557 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
12558 SYMBOL_VALUE_ADDRESS (sym)};
12559
ab816a27 12560 exceptions->push_back (info);
778865d3
JB
12561 }
12562 }
12563 }
12564 if (BLOCK_FUNCTION (block) != NULL)
12565 break;
12566 block = BLOCK_SUPERBLOCK (block);
12567 }
12568}
12569
14bc53a8
PA
12570/* Return true if NAME matches PREG or if PREG is NULL. */
12571
12572static bool
2d7cc5c7 12573name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
12574{
12575 return (preg == NULL
f945dedf 12576 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
12577}
12578
778865d3
JB
12579/* Add all exceptions defined globally whose name name match
12580 a regular expression, excluding standard exceptions.
12581
12582 The reason we exclude standard exceptions is that they need
12583 to be handled separately: Standard exceptions are defined inside
12584 a runtime unit which is normally not compiled with debugging info,
12585 and thus usually do not show up in our symbol search. However,
12586 if the unit was in fact built with debugging info, we need to
12587 exclude them because they would duplicate the entry we found
12588 during the special loop that specifically searches for those
12589 standard exceptions.
12590
12591 If PREG is not NULL, then this regexp_t object is used to
12592 perform the symbol name matching. Otherwise, no name-based
12593 filtering is performed.
12594
12595 EXCEPTIONS is a vector of exceptions to which matching exceptions
12596 gets pushed. */
12597
12598static void
2d7cc5c7 12599ada_add_global_exceptions (compiled_regex *preg,
ab816a27 12600 std::vector<ada_exc_info> *exceptions)
778865d3 12601{
14bc53a8
PA
12602 /* In Ada, the symbol "search name" is a linkage name, whereas the
12603 regular expression used to do the matching refers to the natural
12604 name. So match against the decoded name. */
12605 expand_symtabs_matching (NULL,
b5ec771e 12606 lookup_name_info::match_any (),
14bc53a8
PA
12607 [&] (const char *search_name)
12608 {
f945dedf
CB
12609 std::string decoded = ada_decode (search_name);
12610 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
12611 },
12612 NULL,
03a8ea51 12613 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
14bc53a8 12614 VARIABLES_DOMAIN);
778865d3 12615
2030c079 12616 for (objfile *objfile : current_program_space->objfiles ())
778865d3 12617 {
b669c953 12618 for (compunit_symtab *s : objfile->compunits ())
778865d3 12619 {
af39c5c8 12620 const struct blockvector *bv = s->blockvector ();
d8aeb77f 12621 int i;
778865d3 12622
d8aeb77f
TT
12623 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12624 {
582942f4 12625 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
12626 struct block_iterator iter;
12627 struct symbol *sym;
778865d3 12628
d8aeb77f
TT
12629 ALL_BLOCK_SYMBOLS (b, iter, sym)
12630 if (ada_is_non_standard_exception_sym (sym)
987012b8 12631 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
12632 {
12633 struct ada_exc_info info
987012b8 12634 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
12635
12636 exceptions->push_back (info);
12637 }
12638 }
778865d3
JB
12639 }
12640 }
12641}
12642
12643/* Implements ada_exceptions_list with the regular expression passed
12644 as a regex_t, rather than a string.
12645
12646 If not NULL, PREG is used to filter out exceptions whose names
12647 do not match. Otherwise, all exceptions are listed. */
12648
ab816a27 12649static std::vector<ada_exc_info>
2d7cc5c7 12650ada_exceptions_list_1 (compiled_regex *preg)
778865d3 12651{
ab816a27 12652 std::vector<ada_exc_info> result;
778865d3
JB
12653 int prev_len;
12654
12655 /* First, list the known standard exceptions. These exceptions
12656 need to be handled separately, as they are usually defined in
12657 runtime units that have been compiled without debugging info. */
12658
12659 ada_add_standard_exceptions (preg, &result);
12660
12661 /* Next, find all exceptions whose scope is local and accessible
12662 from the currently selected frame. */
12663
12664 if (has_stack_frames ())
12665 {
ab816a27 12666 prev_len = result.size ();
778865d3
JB
12667 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12668 &result);
ab816a27 12669 if (result.size () > prev_len)
778865d3
JB
12670 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12671 }
12672
12673 /* Add all exceptions whose scope is global. */
12674
ab816a27 12675 prev_len = result.size ();
778865d3 12676 ada_add_global_exceptions (preg, &result);
ab816a27 12677 if (result.size () > prev_len)
778865d3
JB
12678 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12679
778865d3
JB
12680 return result;
12681}
12682
12683/* Return a vector of ada_exc_info.
12684
12685 If REGEXP is NULL, all exceptions are included in the result.
12686 Otherwise, it should contain a valid regular expression,
12687 and only the exceptions whose names match that regular expression
12688 are included in the result.
12689
12690 The exceptions are sorted in the following order:
12691 - Standard exceptions (defined by the Ada language), in
12692 alphabetical order;
12693 - Exceptions only visible from the current frame, in
12694 alphabetical order;
12695 - Exceptions whose scope is global, in alphabetical order. */
12696
ab816a27 12697std::vector<ada_exc_info>
778865d3
JB
12698ada_exceptions_list (const char *regexp)
12699{
2d7cc5c7
PA
12700 if (regexp == NULL)
12701 return ada_exceptions_list_1 (NULL);
778865d3 12702
2d7cc5c7
PA
12703 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12704 return ada_exceptions_list_1 (&reg);
778865d3
JB
12705}
12706
12707/* Implement the "info exceptions" command. */
12708
12709static void
1d12d88f 12710info_exceptions_command (const char *regexp, int from_tty)
778865d3 12711{
778865d3 12712 struct gdbarch *gdbarch = get_current_arch ();
778865d3 12713
ab816a27 12714 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
12715
12716 if (regexp != NULL)
12717 printf_filtered
12718 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12719 else
12720 printf_filtered (_("All defined Ada exceptions:\n"));
12721
ab816a27
TT
12722 for (const ada_exc_info &info : exceptions)
12723 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
12724}
12725
6c038f32
PH
12726\f
12727 /* Language vector */
12728
b5ec771e
PA
12729/* symbol_name_matcher_ftype adapter for wild_match. */
12730
12731static bool
12732do_wild_match (const char *symbol_search_name,
12733 const lookup_name_info &lookup_name,
a207cff2 12734 completion_match_result *comp_match_res)
b5ec771e
PA
12735{
12736 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12737}
12738
12739/* symbol_name_matcher_ftype adapter for full_match. */
12740
12741static bool
12742do_full_match (const char *symbol_search_name,
12743 const lookup_name_info &lookup_name,
a207cff2 12744 completion_match_result *comp_match_res)
b5ec771e 12745{
959d6a67
TT
12746 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12747
12748 /* If both symbols start with "_ada_", just let the loop below
12749 handle the comparison. However, if only the symbol name starts
12750 with "_ada_", skip the prefix and let the match proceed as
12751 usual. */
12752 if (startswith (symbol_search_name, "_ada_")
12753 && !startswith (lname, "_ada"))
86b44259
TT
12754 symbol_search_name += 5;
12755
86b44259
TT
12756 int uscore_count = 0;
12757 while (*lname != '\0')
12758 {
12759 if (*symbol_search_name != *lname)
12760 {
12761 if (*symbol_search_name == 'B' && uscore_count == 2
12762 && symbol_search_name[1] == '_')
12763 {
12764 symbol_search_name += 2;
12765 while (isdigit (*symbol_search_name))
12766 ++symbol_search_name;
12767 if (symbol_search_name[0] == '_'
12768 && symbol_search_name[1] == '_')
12769 {
12770 symbol_search_name += 2;
12771 continue;
12772 }
12773 }
12774 return false;
12775 }
12776
12777 if (*symbol_search_name == '_')
12778 ++uscore_count;
12779 else
12780 uscore_count = 0;
12781
12782 ++symbol_search_name;
12783 ++lname;
12784 }
12785
12786 return is_name_suffix (symbol_search_name);
b5ec771e
PA
12787}
12788
a2cd4f14
JB
12789/* symbol_name_matcher_ftype for exact (verbatim) matches. */
12790
12791static bool
12792do_exact_match (const char *symbol_search_name,
12793 const lookup_name_info &lookup_name,
12794 completion_match_result *comp_match_res)
12795{
12796 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12797}
12798
b5ec771e
PA
12799/* Build the Ada lookup name for LOOKUP_NAME. */
12800
12801ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12802{
e0802d59 12803 gdb::string_view user_name = lookup_name.name ();
b5ec771e 12804
6a780b67 12805 if (!user_name.empty () && user_name[0] == '<')
b5ec771e
PA
12806 {
12807 if (user_name.back () == '>')
e0802d59 12808 m_encoded_name
5ac58899 12809 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 12810 else
e0802d59 12811 m_encoded_name
5ac58899 12812 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
12813 m_encoded_p = true;
12814 m_verbatim_p = true;
12815 m_wild_match_p = false;
12816 m_standard_p = false;
12817 }
12818 else
12819 {
12820 m_verbatim_p = false;
12821
e0802d59 12822 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
12823
12824 if (!m_encoded_p)
12825 {
e0802d59 12826 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
12827 m_encoded_name = ada_encode_1 (folded, false);
12828 if (m_encoded_name.empty ())
5ac58899 12829 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12830 }
12831 else
5ac58899 12832 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12833
12834 /* Handle the 'package Standard' special case. See description
12835 of m_standard_p. */
12836 if (startswith (m_encoded_name.c_str (), "standard__"))
12837 {
12838 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12839 m_standard_p = true;
12840 }
12841 else
12842 m_standard_p = false;
74ccd7f5 12843
b5ec771e
PA
12844 /* If the name contains a ".", then the user is entering a fully
12845 qualified entity name, and the match must not be done in wild
12846 mode. Similarly, if the user wants to complete what looks
12847 like an encoded name, the match must not be done in wild
12848 mode. Also, in the standard__ special case always do
12849 non-wild matching. */
12850 m_wild_match_p
12851 = (lookup_name.match_type () != symbol_name_match_type::FULL
12852 && !m_encoded_p
12853 && !m_standard_p
12854 && user_name.find ('.') == std::string::npos);
12855 }
12856}
12857
12858/* symbol_name_matcher_ftype method for Ada. This only handles
12859 completion mode. */
12860
12861static bool
12862ada_symbol_name_matches (const char *symbol_search_name,
12863 const lookup_name_info &lookup_name,
a207cff2 12864 completion_match_result *comp_match_res)
74ccd7f5 12865{
b5ec771e
PA
12866 return lookup_name.ada ().matches (symbol_search_name,
12867 lookup_name.match_type (),
a207cff2 12868 comp_match_res);
b5ec771e
PA
12869}
12870
de63c46b
PA
12871/* A name matcher that matches the symbol name exactly, with
12872 strcmp. */
12873
12874static bool
12875literal_symbol_name_matcher (const char *symbol_search_name,
12876 const lookup_name_info &lookup_name,
12877 completion_match_result *comp_match_res)
12878{
e0802d59 12879 gdb::string_view name_view = lookup_name.name ();
de63c46b 12880
e0802d59
TT
12881 if (lookup_name.completion_mode ()
12882 ? (strncmp (symbol_search_name, name_view.data (),
12883 name_view.size ()) == 0)
12884 : symbol_search_name == name_view)
de63c46b
PA
12885 {
12886 if (comp_match_res != NULL)
12887 comp_match_res->set_match (symbol_search_name);
12888 return true;
12889 }
12890 else
12891 return false;
12892}
12893
c9debfb9 12894/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
12895 Ada. */
12896
12897static symbol_name_matcher_ftype *
12898ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12899{
de63c46b
PA
12900 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12901 return literal_symbol_name_matcher;
12902
b5ec771e
PA
12903 if (lookup_name.completion_mode ())
12904 return ada_symbol_name_matches;
74ccd7f5 12905 else
b5ec771e
PA
12906 {
12907 if (lookup_name.ada ().wild_match_p ())
12908 return do_wild_match;
a2cd4f14
JB
12909 else if (lookup_name.ada ().verbatim_p ())
12910 return do_exact_match;
b5ec771e
PA
12911 else
12912 return do_full_match;
12913 }
74ccd7f5
JB
12914}
12915
0874fd07
AB
12916/* Class representing the Ada language. */
12917
12918class ada_language : public language_defn
12919{
12920public:
12921 ada_language ()
0e25e767 12922 : language_defn (language_ada)
0874fd07 12923 { /* Nothing. */ }
5bd40f2a 12924
6f7664a9
AB
12925 /* See language.h. */
12926
12927 const char *name () const override
12928 { return "ada"; }
12929
12930 /* See language.h. */
12931
12932 const char *natural_name () const override
12933 { return "Ada"; }
12934
e171d6f1
AB
12935 /* See language.h. */
12936
12937 const std::vector<const char *> &filename_extensions () const override
12938 {
12939 static const std::vector<const char *> extensions
12940 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12941 return extensions;
12942 }
12943
5bd40f2a
AB
12944 /* Print an array element index using the Ada syntax. */
12945
12946 void print_array_index (struct type *index_type,
12947 LONGEST index,
12948 struct ui_file *stream,
12949 const value_print_options *options) const override
12950 {
12951 struct value *index_value = val_atr (index_type, index);
12952
00c696a6 12953 value_print (index_value, stream, options);
5bd40f2a
AB
12954 fprintf_filtered (stream, " => ");
12955 }
15e5fd35
AB
12956
12957 /* Implement the "read_var_value" language_defn method for Ada. */
12958
12959 struct value *read_var_value (struct symbol *var,
12960 const struct block *var_block,
12961 struct frame_info *frame) const override
12962 {
12963 /* The only case where default_read_var_value is not sufficient
12964 is when VAR is a renaming... */
12965 if (frame != nullptr)
12966 {
12967 const struct block *frame_block = get_frame_block (frame, NULL);
12968 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12969 return ada_read_renaming_var_value (var, frame_block);
12970 }
12971
12972 /* This is a typical case where we expect the default_read_var_value
12973 function to work. */
12974 return language_defn::read_var_value (var, var_block, frame);
12975 }
1fb314aa 12976
2c71f639
TV
12977 /* See language.h. */
12978 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
12979 {
12980 return symbol->artificial;
12981 }
12982
1fb314aa
AB
12983 /* See language.h. */
12984 void language_arch_info (struct gdbarch *gdbarch,
12985 struct language_arch_info *lai) const override
12986 {
12987 const struct builtin_type *builtin = builtin_type (gdbarch);
12988
7bea47f0
AB
12989 /* Helper function to allow shorter lines below. */
12990 auto add = [&] (struct type *t)
12991 {
12992 lai->add_primitive_type (t);
12993 };
12994
12995 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12996 0, "integer"));
12997 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12998 0, "long_integer"));
12999 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13000 0, "short_integer"));
13001 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13002 0, "character");
13003 lai->set_string_char_type (char_type);
13004 add (char_type);
13005 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13006 "float", gdbarch_float_format (gdbarch)));
13007 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13008 "long_float", gdbarch_double_format (gdbarch)));
13009 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13010 0, "long_long_integer"));
13011 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13012 "long_long_float",
13013 gdbarch_long_double_format (gdbarch)));
13014 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13015 0, "natural"));
13016 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13017 0, "positive"));
13018 add (builtin->builtin_void);
13019
13020 struct type *system_addr_ptr
1fb314aa
AB
13021 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13022 "void"));
7bea47f0
AB
13023 system_addr_ptr->set_name ("system__address");
13024 add (system_addr_ptr);
1fb314aa
AB
13025
13026 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13027 type. This is a signed integral type whose size is the same as
13028 the size of addresses. */
7bea47f0
AB
13029 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13030 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13031 "storage_offset"));
1fb314aa 13032
7bea47f0 13033 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 13034 }
4009ee92
AB
13035
13036 /* See language.h. */
13037
13038 bool iterate_over_symbols
13039 (const struct block *block, const lookup_name_info &name,
13040 domain_enum domain,
13041 gdb::function_view<symbol_found_callback_ftype> callback) const override
13042 {
d1183b06
TT
13043 std::vector<struct block_symbol> results
13044 = ada_lookup_symbol_list_worker (name, block, domain, 0);
4009ee92
AB
13045 for (block_symbol &sym : results)
13046 {
13047 if (!callback (&sym))
13048 return false;
13049 }
13050
13051 return true;
13052 }
6f827019
AB
13053
13054 /* See language.h. */
3456e70c
TT
13055 bool sniff_from_mangled_name
13056 (const char *mangled,
13057 gdb::unique_xmalloc_ptr<char> *out) const override
6f827019
AB
13058 {
13059 std::string demangled = ada_decode (mangled);
13060
13061 *out = NULL;
13062
13063 if (demangled != mangled && demangled[0] != '<')
13064 {
13065 /* Set the gsymbol language to Ada, but still return 0.
13066 Two reasons for that:
13067
13068 1. For Ada, we prefer computing the symbol's decoded name
13069 on the fly rather than pre-compute it, in order to save
13070 memory (Ada projects are typically very large).
13071
13072 2. There are some areas in the definition of the GNAT
13073 encoding where, with a bit of bad luck, we might be able
13074 to decode a non-Ada symbol, generating an incorrect
13075 demangled name (Eg: names ending with "TB" for instance
13076 are identified as task bodies and so stripped from
13077 the decoded name returned).
13078
13079 Returning true, here, but not setting *DEMANGLED, helps us get
13080 a little bit of the best of both worlds. Because we're last,
13081 we should not affect any of the other languages that were
13082 able to demangle the symbol before us; we get to correctly
13083 tag Ada symbols as such; and even if we incorrectly tagged a
13084 non-Ada symbol, which should be rare, any routing through the
13085 Ada language should be transparent (Ada tries to behave much
13086 like C/C++ with non-Ada symbols). */
13087 return true;
13088 }
13089
13090 return false;
13091 }
fbfb0a46
AB
13092
13093 /* See language.h. */
13094
3456e70c
TT
13095 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13096 int options) const override
0a50df5d 13097 {
3456e70c 13098 return make_unique_xstrdup (ada_decode (mangled).c_str ());
0a50df5d
AB
13099 }
13100
13101 /* See language.h. */
13102
fbfb0a46
AB
13103 void print_type (struct type *type, const char *varstring,
13104 struct ui_file *stream, int show, int level,
13105 const struct type_print_options *flags) const override
13106 {
13107 ada_print_type (type, varstring, stream, show, level, flags);
13108 }
c9debfb9 13109
53fc67f8
AB
13110 /* See language.h. */
13111
13112 const char *word_break_characters (void) const override
13113 {
13114 return ada_completer_word_break_characters;
13115 }
13116
7e56227d
AB
13117 /* See language.h. */
13118
13119 void collect_symbol_completion_matches (completion_tracker &tracker,
13120 complete_symbol_mode mode,
13121 symbol_name_match_type name_match_type,
13122 const char *text, const char *word,
13123 enum type_code code) const override
13124 {
13125 struct symbol *sym;
13126 const struct block *b, *surrounding_static_block = 0;
13127 struct block_iterator iter;
13128
13129 gdb_assert (code == TYPE_CODE_UNDEF);
13130
13131 lookup_name_info lookup_name (text, name_match_type, true);
13132
13133 /* First, look at the partial symtab symbols. */
13134 expand_symtabs_matching (NULL,
13135 lookup_name,
13136 NULL,
13137 NULL,
03a8ea51 13138 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
7e56227d
AB
13139 ALL_DOMAIN);
13140
13141 /* At this point scan through the misc symbol vectors and add each
13142 symbol you find to the list. Eventually we want to ignore
13143 anything that isn't a text symbol (everything else will be
13144 handled by the psymtab code above). */
13145
13146 for (objfile *objfile : current_program_space->objfiles ())
13147 {
13148 for (minimal_symbol *msymbol : objfile->msymbols ())
13149 {
13150 QUIT;
13151
13152 if (completion_skip_symbol (mode, msymbol))
13153 continue;
13154
13155 language symbol_language = msymbol->language ();
13156
13157 /* Ada minimal symbols won't have their language set to Ada. If
13158 we let completion_list_add_name compare using the
13159 default/C-like matcher, then when completing e.g., symbols in a
13160 package named "pck", we'd match internal Ada symbols like
13161 "pckS", which are invalid in an Ada expression, unless you wrap
13162 them in '<' '>' to request a verbatim match.
13163
13164 Unfortunately, some Ada encoded names successfully demangle as
13165 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13166 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13167 with the wrong language set. Paper over that issue here. */
13168 if (symbol_language == language_auto
13169 || symbol_language == language_cplus)
13170 symbol_language = language_ada;
13171
13172 completion_list_add_name (tracker,
13173 symbol_language,
13174 msymbol->linkage_name (),
13175 lookup_name, text, word);
13176 }
13177 }
13178
13179 /* Search upwards from currently selected frame (so that we can
13180 complete on local vars. */
13181
13182 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13183 {
13184 if (!BLOCK_SUPERBLOCK (b))
13185 surrounding_static_block = b; /* For elmin of dups */
13186
13187 ALL_BLOCK_SYMBOLS (b, iter, sym)
13188 {
13189 if (completion_skip_symbol (mode, sym))
13190 continue;
13191
13192 completion_list_add_name (tracker,
13193 sym->language (),
13194 sym->linkage_name (),
13195 lookup_name, text, word);
13196 }
13197 }
13198
13199 /* Go through the symtabs and check the externs and statics for
13200 symbols which match. */
13201
13202 for (objfile *objfile : current_program_space->objfiles ())
13203 {
13204 for (compunit_symtab *s : objfile->compunits ())
13205 {
13206 QUIT;
af39c5c8 13207 b = BLOCKVECTOR_BLOCK (s->blockvector (), GLOBAL_BLOCK);
7e56227d
AB
13208 ALL_BLOCK_SYMBOLS (b, iter, sym)
13209 {
13210 if (completion_skip_symbol (mode, sym))
13211 continue;
13212
13213 completion_list_add_name (tracker,
13214 sym->language (),
13215 sym->linkage_name (),
13216 lookup_name, text, word);
13217 }
13218 }
13219 }
13220
13221 for (objfile *objfile : current_program_space->objfiles ())
13222 {
13223 for (compunit_symtab *s : objfile->compunits ())
13224 {
13225 QUIT;
af39c5c8 13226 b = BLOCKVECTOR_BLOCK (s->blockvector (), STATIC_BLOCK);
7e56227d
AB
13227 /* Don't do this block twice. */
13228 if (b == surrounding_static_block)
13229 continue;
13230 ALL_BLOCK_SYMBOLS (b, iter, sym)
13231 {
13232 if (completion_skip_symbol (mode, sym))
13233 continue;
13234
13235 completion_list_add_name (tracker,
13236 sym->language (),
13237 sym->linkage_name (),
13238 lookup_name, text, word);
13239 }
13240 }
13241 }
13242 }
13243
f16a9f57
AB
13244 /* See language.h. */
13245
13246 gdb::unique_xmalloc_ptr<char> watch_location_expression
13247 (struct type *type, CORE_ADDR addr) const override
13248 {
13249 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13250 std::string name = type_to_string (type);
8579fd13 13251 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
f16a9f57
AB
13252 }
13253
a1d1fa3e
AB
13254 /* See language.h. */
13255
13256 void value_print (struct value *val, struct ui_file *stream,
13257 const struct value_print_options *options) const override
13258 {
13259 return ada_value_print (val, stream, options);
13260 }
13261
ebe2334e
AB
13262 /* See language.h. */
13263
13264 void value_print_inner
13265 (struct value *val, struct ui_file *stream, int recurse,
13266 const struct value_print_options *options) const override
13267 {
13268 return ada_value_print_inner (val, stream, recurse, options);
13269 }
13270
a78a19b1
AB
13271 /* See language.h. */
13272
13273 struct block_symbol lookup_symbol_nonlocal
13274 (const char *name, const struct block *block,
13275 const domain_enum domain) const override
13276 {
13277 struct block_symbol sym;
13278
13279 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13280 if (sym.symbol != NULL)
13281 return sym;
13282
13283 /* If we haven't found a match at this point, try the primitive
13284 types. In other languages, this search is performed before
13285 searching for global symbols in order to short-circuit that
13286 global-symbol search if it happens that the name corresponds
13287 to a primitive type. But we cannot do the same in Ada, because
13288 it is perfectly legitimate for a program to declare a type which
13289 has the same name as a standard type. If looking up a type in
13290 that situation, we have traditionally ignored the primitive type
13291 in favor of user-defined types. This is why, unlike most other
13292 languages, we search the primitive types this late and only after
13293 having searched the global symbols without success. */
13294
13295 if (domain == VAR_DOMAIN)
13296 {
13297 struct gdbarch *gdbarch;
13298
13299 if (block == NULL)
13300 gdbarch = target_gdbarch ();
13301 else
13302 gdbarch = block_gdbarch (block);
13303 sym.symbol
13304 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13305 if (sym.symbol != NULL)
13306 return sym;
13307 }
13308
13309 return {};
13310 }
13311
87afa652
AB
13312 /* See language.h. */
13313
13314 int parser (struct parser_state *ps) const override
13315 {
13316 warnings_issued = 0;
13317 return ada_parse (ps);
13318 }
13319
ec8cec5b
AB
13320 /* See language.h. */
13321
13322 void emitchar (int ch, struct type *chtype,
13323 struct ui_file *stream, int quoter) const override
13324 {
13325 ada_emit_char (ch, chtype, stream, quoter, 1);
13326 }
13327
52b50f2c
AB
13328 /* See language.h. */
13329
13330 void printchar (int ch, struct type *chtype,
13331 struct ui_file *stream) const override
13332 {
13333 ada_printchar (ch, chtype, stream);
13334 }
13335
d711ee67
AB
13336 /* See language.h. */
13337
13338 void printstr (struct ui_file *stream, struct type *elttype,
13339 const gdb_byte *string, unsigned int length,
13340 const char *encoding, int force_ellipses,
13341 const struct value_print_options *options) const override
13342 {
13343 ada_printstr (stream, elttype, string, length, encoding,
13344 force_ellipses, options);
13345 }
13346
4ffc13fb
AB
13347 /* See language.h. */
13348
13349 void print_typedef (struct type *type, struct symbol *new_symbol,
13350 struct ui_file *stream) const override
13351 {
13352 ada_print_typedef (type, new_symbol, stream);
13353 }
13354
39e7ecca
AB
13355 /* See language.h. */
13356
13357 bool is_string_type_p (struct type *type) const override
13358 {
13359 return ada_is_string_type (type);
13360 }
13361
22e3f3ed
AB
13362 /* See language.h. */
13363
13364 const char *struct_too_deep_ellipsis () const override
13365 { return "(...)"; }
39e7ecca 13366
67bd3fd5
AB
13367 /* See language.h. */
13368
13369 bool c_style_arrays_p () const override
13370 { return false; }
13371
d3355e4d
AB
13372 /* See language.h. */
13373
13374 bool store_sym_names_in_linkage_form_p () const override
13375 { return true; }
13376
b63a3f3f
AB
13377 /* See language.h. */
13378
13379 const struct lang_varobj_ops *varobj_ops () const override
13380 { return &ada_varobj_ops; }
13381
c9debfb9
AB
13382protected:
13383 /* See language.h. */
13384
13385 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13386 (const lookup_name_info &lookup_name) const override
13387 {
13388 return ada_get_symbol_name_matcher (lookup_name);
13389 }
0874fd07
AB
13390};
13391
13392/* Single instance of the Ada language class. */
13393
13394static ada_language ada_language_defn;
13395
5bf03f13
JB
13396/* Command-list for the "set/show ada" prefix command. */
13397static struct cmd_list_element *set_ada_list;
13398static struct cmd_list_element *show_ada_list;
13399
2060206e
PA
13400static void
13401initialize_ada_catchpoint_ops (void)
13402{
13403 struct breakpoint_ops *ops;
13404
13405 initialize_breakpoint_ops ();
13406
13407 ops = &catch_exception_breakpoint_ops;
13408 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13409 ops->allocate_location = allocate_location_exception;
13410 ops->re_set = re_set_exception;
13411 ops->check_status = check_status_exception;
13412 ops->print_it = print_it_exception;
13413 ops->print_one = print_one_exception;
13414 ops->print_mention = print_mention_exception;
13415 ops->print_recreate = print_recreate_exception;
2060206e
PA
13416}
13417
3d9434b5
JB
13418/* This module's 'new_objfile' observer. */
13419
13420static void
13421ada_new_objfile_observer (struct objfile *objfile)
13422{
13423 ada_clear_symbol_cache ();
13424}
13425
13426/* This module's 'free_objfile' observer. */
13427
13428static void
13429ada_free_objfile_observer (struct objfile *objfile)
13430{
13431 ada_clear_symbol_cache ();
13432}
13433
6c265988 13434void _initialize_ada_language ();
d2e4a39e 13435void
6c265988 13436_initialize_ada_language ()
14f9c5c9 13437{
2060206e
PA
13438 initialize_ada_catchpoint_ops ();
13439
f54bdb6d
SM
13440 add_setshow_prefix_cmd
13441 ("ada", no_class,
13442 _("Prefix command for changing Ada-specific settings."),
13443 _("Generic command for showing Ada-specific settings."),
13444 &set_ada_list, &show_ada_list,
13445 &setlist, &showlist);
5bf03f13
JB
13446
13447 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 13448 &trust_pad_over_xvs, _("\
590042fc
PW
13449Enable or disable an optimization trusting PAD types over XVS types."), _("\
13450Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 13451 _("\
5bf03f13
JB
13452This is related to the encoding used by the GNAT compiler. The debugger\n\
13453should normally trust the contents of PAD types, but certain older versions\n\
13454of GNAT have a bug that sometimes causes the information in the PAD type\n\
13455to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13456work around this bug. It is always safe to turn this option \"off\", but\n\
13457this incurs a slight performance penalty, so it is recommended to NOT change\n\
13458this option to \"off\" unless necessary."),
dda83cd7 13459 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 13460
d72413e6
PMR
13461 add_setshow_boolean_cmd ("print-signatures", class_vars,
13462 &print_signatures, _("\
13463Enable or disable the output of formal and return types for functions in the \
590042fc 13464overloads selection menu."), _("\
d72413e6 13465Show whether the output of formal and return types for functions in the \
590042fc 13466overloads selection menu is activated."),
d72413e6
PMR
13467 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13468
9ac4176b
PA
13469 add_catch_command ("exception", _("\
13470Catch Ada exceptions, when raised.\n\
9bf7038b 13471Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
13472Without any argument, stop when any Ada exception is raised.\n\
13473If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13474being raised does not have a handler (and will therefore lead to the task's\n\
13475termination).\n\
13476Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
13477raised is the same as ARG.\n\
13478CONDITION is a boolean expression that is evaluated to see whether the\n\
13479exception should cause a stop."),
9ac4176b 13480 catch_ada_exception_command,
71bed2db 13481 catch_ada_completer,
9ac4176b
PA
13482 CATCH_PERMANENT,
13483 CATCH_TEMPORARY);
9f757bf7
XR
13484
13485 add_catch_command ("handlers", _("\
13486Catch Ada exceptions, when handled.\n\
9bf7038b
TT
13487Usage: catch handlers [ARG] [if CONDITION]\n\
13488Without any argument, stop when any Ada exception is handled.\n\
13489With an argument, catch only exceptions with the given name.\n\
13490CONDITION is a boolean expression that is evaluated to see whether the\n\
13491exception should cause a stop."),
9f757bf7 13492 catch_ada_handlers_command,
dda83cd7 13493 catch_ada_completer,
9f757bf7
XR
13494 CATCH_PERMANENT,
13495 CATCH_TEMPORARY);
9ac4176b
PA
13496 add_catch_command ("assert", _("\
13497Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
13498Usage: catch assert [if CONDITION]\n\
13499CONDITION is a boolean expression that is evaluated to see whether the\n\
13500exception should cause a stop."),
9ac4176b 13501 catch_assert_command,
dda83cd7 13502 NULL,
9ac4176b
PA
13503 CATCH_PERMANENT,
13504 CATCH_TEMPORARY);
13505
778865d3
JB
13506 add_info ("exceptions", info_exceptions_command,
13507 _("\
13508List all Ada exception names.\n\
9bf7038b 13509Usage: info exceptions [REGEXP]\n\
778865d3
JB
13510If a regular expression is passed as an argument, only those matching\n\
13511the regular expression are listed."));
13512
f54bdb6d
SM
13513 add_setshow_prefix_cmd ("ada", class_maintenance,
13514 _("Set Ada maintenance-related variables."),
13515 _("Show Ada maintenance-related variables."),
13516 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
13517 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
c6044dd1
JB
13518
13519 add_setshow_boolean_cmd
13520 ("ignore-descriptive-types", class_maintenance,
13521 &ada_ignore_descriptive_types_p,
13522 _("Set whether descriptive types generated by GNAT should be ignored."),
13523 _("Show whether descriptive types generated by GNAT should be ignored."),
13524 _("\
13525When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13526DWARF attribute."),
13527 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13528
2698f5ea
TT
13529 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13530 htab_eq_string,
459a2e4c 13531 NULL, xcalloc, xfree);
6b69afc4 13532
3d9434b5 13533 /* The ada-lang observers. */
c90e7d63
SM
13534 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13535 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13536 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14f9c5c9 13537}