]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Turn allocate_computed_value into static "constructor"
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
213516ef 3 Copyright (C) 1992-2023 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d322d6d6 23#include "gdbsupport/gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
bf31fd38 38#include "gdbsupport/gdb_obstack.h"
4de283e4
TT
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
0f8e2034 52#include "cli/cli-decode.h"
4de283e4 53
40bc484c 54#include "value.h"
4de283e4
TT
55#include "mi/mi-common.h"
56#include "arch-utils.h"
57#include "cli/cli-utils.h"
268a13a5
TT
58#include "gdbsupport/function-view.h"
59#include "gdbsupport/byte-vector.h"
4de283e4 60#include <algorithm>
03070ee9 61#include "ada-exp.h"
315e4ebb 62#include "charset.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 101
40bc484c 102static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 103
d1183b06 104static void ada_add_block_symbols (std::vector<struct block_symbol> &,
b5ec771e
PA
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
14f9c5c9 108
d1183b06
TT
109static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
b5ec771e
PA
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
22cee43f 113
d1183b06 114static int is_nonfunction (const std::vector<struct block_symbol> &);
14f9c5c9 115
d1183b06
TT
116static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
dda83cd7 118 const struct block *);
14f9c5c9 119
d2e4a39e 120static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 121
4c4b4cd2 122static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 123
d2e4a39e 124static int numeric_type_p (struct type *);
14f9c5c9 125
d2e4a39e 126static int integer_type_p (struct type *);
14f9c5c9 127
d2e4a39e 128static int scalar_type_p (struct type *);
14f9c5c9 129
d2e4a39e 130static int discrete_type_p (struct type *);
14f9c5c9 131
a121b7c1 132static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 133 int, int);
4c4b4cd2 134
b4ba55a1 135static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 136 const char *);
b4ba55a1 137
d2e4a39e 138static int is_dynamic_field (struct type *, int);
14f9c5c9 139
10a2c479 140static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 141 const gdb_byte *,
dda83cd7 142 CORE_ADDR, struct value *);
4c4b4cd2
PH
143
144static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 145
28c85d6c 146static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 147
d2e4a39e 148static struct type *to_static_fixed_type (struct type *);
f192137b 149static struct type *static_unwrap_type (struct type *type);
14f9c5c9 150
d2e4a39e 151static struct value *unwrap_value (struct value *);
14f9c5c9 152
ad82864c 153static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 154
ad82864c 155static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 156
ad82864c
JB
157static long decode_packed_array_bitsize (struct type *);
158
159static struct value *decode_constrained_packed_array (struct value *);
160
ad82864c 161static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 162
d2e4a39e 163static struct value *value_subscript_packed (struct value *, int,
dda83cd7 164 struct value **);
14f9c5c9 165
4c4b4cd2 166static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 167 struct type *);
14f9c5c9 168
d2e4a39e 169static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 170
d2e4a39e 171static int equiv_types (struct type *, struct type *);
14f9c5c9 172
d2e4a39e 173static int is_name_suffix (const char *);
14f9c5c9 174
59c8a30b 175static int advance_wild_match (const char **, const char *, char);
73589123 176
b5ec771e 177static bool wild_match (const char *name, const char *patn);
14f9c5c9 178
d2e4a39e 179static struct value *ada_coerce_ref (struct value *);
14f9c5c9 180
4c4b4cd2
PH
181static LONGEST pos_atr (struct value *);
182
53a47a3e
TT
183static struct value *val_atr (struct type *, LONGEST);
184
4c4b4cd2 185static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 186 domain_enum);
14f9c5c9 187
108d56a4 188static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 189 struct type *);
4c4b4cd2 190
0d5cff50 191static int find_struct_field (const char *, struct type *, int,
dda83cd7 192 struct type **, int *, int *, int *, int *);
4c4b4cd2 193
d1183b06 194static int ada_resolve_function (std::vector<struct block_symbol> &,
dda83cd7 195 struct value **, int, const char *,
7056f312 196 struct type *, bool);
4c4b4cd2 197
4c4b4cd2
PH
198static int ada_is_direct_array_type (struct type *);
199
52ce6436
PH
200static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
cf608cc4 203static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
204
205
852dff6c 206static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
207
208static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
4c4b4cd2
PH
211\f
212
315e4ebb
TT
213/* The character set used for source files. */
214static const char *ada_source_charset;
215
216/* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218static const char ada_utf8[] = "UTF-8";
219
220/* Each entry in the UTF-32 case-folding table is of this form. */
221struct utf8_entry
222{
223 /* The start and end, inclusive, of this range of codepoints. */
224 uint32_t start, end;
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
227 int upper_delta;
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
230 int lower_delta;
231
232 bool operator< (uint32_t val) const
233 {
234 return end < val;
235 }
236};
237
238static const utf8_entry ada_case_fold[] =
239{
240#include "ada-casefold.h"
241};
242
243\f
244
ee01b665
JB
245/* The result of a symbol lookup to be stored in our symbol cache. */
246
247struct cache_entry
248{
249 /* The name used to perform the lookup. */
250 const char *name;
251 /* The namespace used during the lookup. */
fe978cb0 252 domain_enum domain;
ee01b665
JB
253 /* The symbol returned by the lookup, or NULL if no matching symbol
254 was found. */
255 struct symbol *sym;
256 /* The block where the symbol was found, or NULL if no matching
257 symbol was found. */
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
261};
262
263/* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
265
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
271
272#define HASH_SIZE 1009
273
274struct ada_symbol_cache
275{
276 /* An obstack used to store the entries in our cache. */
bdcccc56 277 struct auto_obstack cache_space;
ee01b665
JB
278
279 /* The root of the hash table used to implement our symbol cache. */
bdcccc56 280 struct cache_entry *root[HASH_SIZE] {};
ee01b665
JB
281};
282
67cb5b2d 283static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
27087b7f 301static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
27087b7f 305static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
c6044dd1
JB
309/* Maintenance-related settings for this module. */
310
311static struct cmd_list_element *maint_set_ada_cmdlist;
312static struct cmd_list_element *maint_show_ada_cmdlist;
313
c6044dd1
JB
314/* The "maintenance ada set/show ignore-descriptive-type" value. */
315
491144b5 316static bool ada_ignore_descriptive_types_p = false;
c6044dd1 317
e802dbe0
JB
318 /* Inferior-specific data. */
319
320/* Per-inferior data for this module. */
321
322struct ada_inferior_data
323{
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
f37b313d 328 struct type *tsd_type = nullptr;
3eecfa55
JB
329
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
332 inferior. */
f37b313d 333 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
334};
335
336/* Our key to this module's inferior data. */
08b8a139 337static const registry<inferior>::key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
338
339/* Return our inferior data for the given inferior (INF).
340
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
346
347static struct ada_inferior_data *
348get_ada_inferior_data (struct inferior *inf)
349{
350 struct ada_inferior_data *data;
351
f37b313d 352 data = ada_inferior_data.get (inf);
e802dbe0 353 if (data == NULL)
f37b313d 354 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
355
356 return data;
357}
358
359/* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362static void
363ada_inferior_exit (struct inferior *inf)
364{
f37b313d 365 ada_inferior_data.clear (inf);
e802dbe0
JB
366}
367
ee01b665
JB
368
369 /* program-space-specific data. */
370
371/* This module's per-program-space data. */
372struct ada_pspace_data
373{
374 /* The Ada symbol cache. */
bdcccc56 375 std::unique_ptr<ada_symbol_cache> sym_cache;
ee01b665
JB
376};
377
378/* Key to our per-program-space data. */
08b8a139
TT
379static const registry<program_space>::key<ada_pspace_data>
380 ada_pspace_data_handle;
ee01b665
JB
381
382/* Return this module's data for the given program space (PSPACE).
383 If not is found, add a zero'ed one now.
384
385 This function always returns a valid object. */
386
387static struct ada_pspace_data *
388get_ada_pspace_data (struct program_space *pspace)
389{
390 struct ada_pspace_data *data;
391
f37b313d 392 data = ada_pspace_data_handle.get (pspace);
ee01b665 393 if (data == NULL)
f37b313d 394 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
395
396 return data;
397}
398
dda83cd7 399 /* Utilities */
4c4b4cd2 400
720d1a40 401/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 402 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
403
404 Normally, we really expect a typedef type to only have 1 typedef layer.
405 In other words, we really expect the target type of a typedef type to be
406 a non-typedef type. This is particularly true for Ada units, because
407 the language does not have a typedef vs not-typedef distinction.
408 In that respect, the Ada compiler has been trying to eliminate as many
409 typedef definitions in the debugging information, since they generally
410 do not bring any extra information (we still use typedef under certain
411 circumstances related mostly to the GNAT encoding).
412
413 Unfortunately, we have seen situations where the debugging information
414 generated by the compiler leads to such multiple typedef layers. For
415 instance, consider the following example with stabs:
416
417 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
418 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
419
420 This is an error in the debugging information which causes type
421 pck__float_array___XUP to be defined twice, and the second time,
422 it is defined as a typedef of a typedef.
423
424 This is on the fringe of legality as far as debugging information is
425 concerned, and certainly unexpected. But it is easy to handle these
426 situations correctly, so we can afford to be lenient in this case. */
427
428static struct type *
429ada_typedef_target_type (struct type *type)
430{
78134374 431 while (type->code () == TYPE_CODE_TYPEDEF)
27710edb 432 type = type->target_type ();
720d1a40
JB
433 return type;
434}
435
41d27058
JB
436/* Given DECODED_NAME a string holding a symbol name in its
437 decoded form (ie using the Ada dotted notation), returns
438 its unqualified name. */
439
440static const char *
441ada_unqualified_name (const char *decoded_name)
442{
2b0f535a
JB
443 const char *result;
444
445 /* If the decoded name starts with '<', it means that the encoded
446 name does not follow standard naming conventions, and thus that
447 it is not your typical Ada symbol name. Trying to unqualify it
448 is therefore pointless and possibly erroneous. */
449 if (decoded_name[0] == '<')
450 return decoded_name;
451
452 result = strrchr (decoded_name, '.');
41d27058
JB
453 if (result != NULL)
454 result++; /* Skip the dot... */
455 else
456 result = decoded_name;
457
458 return result;
459}
460
39e7af3e 461/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 462
39e7af3e 463static std::string
41d27058
JB
464add_angle_brackets (const char *str)
465{
39e7af3e 466 return string_printf ("<%s>", str);
41d27058 467}
96d887e8 468
14f9c5c9 469/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 470 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
471
472static int
ebf56fd3 473field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
474{
475 int len = strlen (target);
5b4ee69b 476
d2e4a39e 477 return
4c4b4cd2
PH
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
dda83cd7
SM
480 || (startswith (field_name + len, "___")
481 && strcmp (field_name + strlen (field_name) - 6,
482 "___XVN") != 0)));
14f9c5c9
AS
483}
484
485
872c8b51
JB
486/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
493
494int
495ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 496 int maybe_missing)
4c4b4cd2
PH
497{
498 int fieldno;
872c8b51
JB
499 struct type *struct_type = check_typedef ((struct type *) type);
500
1f704f76 501 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
33d16dd9 502 if (field_name_match (struct_type->field (fieldno).name (), field_name))
4c4b4cd2
PH
503 return fieldno;
504
505 if (!maybe_missing)
323e0a4a 506 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 507 field_name, struct_type->name ());
4c4b4cd2
PH
508
509 return -1;
510}
511
512/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
513
514int
d2e4a39e 515ada_name_prefix_len (const char *name)
14f9c5c9
AS
516{
517 if (name == NULL)
518 return 0;
d2e4a39e 519 else
14f9c5c9 520 {
d2e4a39e 521 const char *p = strstr (name, "___");
5b4ee69b 522
14f9c5c9 523 if (p == NULL)
dda83cd7 524 return strlen (name);
14f9c5c9 525 else
dda83cd7 526 return p - name;
14f9c5c9
AS
527 }
528}
529
4c4b4cd2
PH
530/* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
532
14f9c5c9 533static int
d2e4a39e 534is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
535{
536 int len1, len2;
5b4ee69b 537
14f9c5c9
AS
538 if (str == NULL)
539 return 0;
540 len1 = strlen (str);
541 len2 = strlen (suffix);
4c4b4cd2 542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
543}
544
4c4b4cd2
PH
545/* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
14f9c5c9 547
d2e4a39e 548static struct value *
4c4b4cd2 549coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 550{
61ee279c 551 type = ada_check_typedef (type);
d0c97917 552 if (val->type () == type)
4c4b4cd2 553 return val;
d2e4a39e 554 else
14f9c5c9 555 {
4c4b4cd2
PH
556 struct value *result;
557
f73e424f
TT
558 if (value_optimized_out (val))
559 result = allocate_optimized_out_value (type);
3ee3b270 560 else if (val->lazy ()
f73e424f
TT
561 /* Be careful not to make a lazy not_lval value. */
562 || (VALUE_LVAL (val) != not_lval
d0c97917 563 && type->length () > val->type ()->length ()))
cbe793af 564 result = value::allocate_lazy (type);
41e8491f
JK
565 else
566 {
317c3ed9 567 result = value::allocate (type);
df86565b 568 value_contents_copy (result, 0, val, 0, type->length ());
41e8491f 569 }
74bcbdf3 570 set_value_component_location (result, val);
f49d5fa2 571 result->set_bitsize (val->bitsize ());
5011c493 572 result->set_bitpos (val->bitpos ());
c408a94f 573 if (VALUE_LVAL (result) == lval_memory)
9feb2d07 574 result->set_address (val->address ());
14f9c5c9
AS
575 return result;
576 }
577}
578
fc1a4b47
AC
579static const gdb_byte *
580cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
581{
582 if (valaddr == NULL)
583 return NULL;
584 else
585 return valaddr + offset;
586}
587
588static CORE_ADDR
ebf56fd3 589cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
590{
591 if (address == 0)
592 return 0;
d2e4a39e 593 else
14f9c5c9
AS
594 return address + offset;
595}
596
4c4b4cd2
PH
597/* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
600 expression. */
a2249542 601
77109804
AC
602/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
a0b31db1 604static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 605
14f9c5c9 606static void
a2249542 607lim_warning (const char *format, ...)
14f9c5c9 608{
a2249542 609 va_list args;
a2249542 610
5b4ee69b 611 va_start (args, format);
4c4b4cd2
PH
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
a2249542
MK
614 vwarning (format, args);
615
616 va_end (args);
4c4b4cd2
PH
617}
618
0963b4bd 619/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 620static LONGEST
c3e5cd34 621max_of_size (int size)
4c4b4cd2 622{
76a01679 623 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 624
76a01679 625 return top_bit | (top_bit - 1);
4c4b4cd2
PH
626}
627
0963b4bd 628/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 629static LONGEST
c3e5cd34 630min_of_size (int size)
4c4b4cd2 631{
c3e5cd34 632 return -max_of_size (size) - 1;
4c4b4cd2
PH
633}
634
0963b4bd 635/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 636static ULONGEST
c3e5cd34 637umax_of_size (int size)
4c4b4cd2 638{
76a01679 639 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 640
76a01679 641 return top_bit | (top_bit - 1);
4c4b4cd2
PH
642}
643
0963b4bd 644/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
645static LONGEST
646max_of_type (struct type *t)
4c4b4cd2 647{
c6d940a9 648 if (t->is_unsigned ())
df86565b 649 return (LONGEST) umax_of_size (t->length ());
c3e5cd34 650 else
df86565b 651 return max_of_size (t->length ());
c3e5cd34
PH
652}
653
0963b4bd 654/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
655static LONGEST
656min_of_type (struct type *t)
657{
c6d940a9 658 if (t->is_unsigned ())
c3e5cd34
PH
659 return 0;
660 else
df86565b 661 return min_of_size (t->length ());
4c4b4cd2
PH
662}
663
664/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
665LONGEST
666ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 667{
b249d2c2 668 type = resolve_dynamic_type (type, {}, 0);
78134374 669 switch (type->code ())
4c4b4cd2
PH
670 {
671 case TYPE_CODE_RANGE:
d1fd641e
SM
672 {
673 const dynamic_prop &high = type->bounds ()->high;
674
675 if (high.kind () == PROP_CONST)
676 return high.const_val ();
677 else
678 {
679 gdb_assert (high.kind () == PROP_UNDEFINED);
680
681 /* This happens when trying to evaluate a type's dynamic bound
682 without a live target. There is nothing relevant for us to
683 return here, so return 0. */
684 return 0;
685 }
686 }
4c4b4cd2 687 case TYPE_CODE_ENUM:
970db518 688 return type->field (type->num_fields () - 1).loc_enumval ();
690cc4eb
PH
689 case TYPE_CODE_BOOL:
690 return 1;
691 case TYPE_CODE_CHAR:
76a01679 692 case TYPE_CODE_INT:
690cc4eb 693 return max_of_type (type);
4c4b4cd2 694 default:
43bbcdc2 695 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
696 }
697}
698
14e75d8e 699/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
700LONGEST
701ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 702{
b249d2c2 703 type = resolve_dynamic_type (type, {}, 0);
78134374 704 switch (type->code ())
4c4b4cd2
PH
705 {
706 case TYPE_CODE_RANGE:
d1fd641e
SM
707 {
708 const dynamic_prop &low = type->bounds ()->low;
709
710 if (low.kind () == PROP_CONST)
711 return low.const_val ();
712 else
713 {
714 gdb_assert (low.kind () == PROP_UNDEFINED);
715
716 /* This happens when trying to evaluate a type's dynamic bound
717 without a live target. There is nothing relevant for us to
718 return here, so return 0. */
719 return 0;
720 }
721 }
4c4b4cd2 722 case TYPE_CODE_ENUM:
970db518 723 return type->field (0).loc_enumval ();
690cc4eb
PH
724 case TYPE_CODE_BOOL:
725 return 0;
726 case TYPE_CODE_CHAR:
76a01679 727 case TYPE_CODE_INT:
690cc4eb 728 return min_of_type (type);
4c4b4cd2 729 default:
43bbcdc2 730 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
731 }
732}
733
734/* The identity on non-range types. For range types, the underlying
76a01679 735 non-range scalar type. */
4c4b4cd2
PH
736
737static struct type *
18af8284 738get_base_type (struct type *type)
4c4b4cd2 739{
78134374 740 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 741 {
27710edb 742 if (type == type->target_type () || type->target_type () == NULL)
dda83cd7 743 return type;
27710edb 744 type = type->target_type ();
4c4b4cd2
PH
745 }
746 return type;
14f9c5c9 747}
41246937
JB
748
749/* Return a decoded version of the given VALUE. This means returning
750 a value whose type is obtained by applying all the GNAT-specific
85102364 751 encodings, making the resulting type a static but standard description
41246937
JB
752 of the initial type. */
753
754struct value *
755ada_get_decoded_value (struct value *value)
756{
d0c97917 757 struct type *type = ada_check_typedef (value->type ());
41246937
JB
758
759 if (ada_is_array_descriptor_type (type)
760 || (ada_is_constrained_packed_array_type (type)
dda83cd7 761 && type->code () != TYPE_CODE_PTR))
41246937 762 {
78134374 763 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 764 value = ada_coerce_to_simple_array_ptr (value);
41246937 765 else
dda83cd7 766 value = ada_coerce_to_simple_array (value);
41246937
JB
767 }
768 else
769 value = ada_to_fixed_value (value);
770
771 return value;
772}
773
774/* Same as ada_get_decoded_value, but with the given TYPE.
775 Because there is no associated actual value for this type,
776 the resulting type might be a best-effort approximation in
777 the case of dynamic types. */
778
779struct type *
780ada_get_decoded_type (struct type *type)
781{
782 type = to_static_fixed_type (type);
783 if (ada_is_constrained_packed_array_type (type))
784 type = ada_coerce_to_simple_array_type (type);
785 return type;
786}
787
4c4b4cd2 788\f
76a01679 789
dda83cd7 790 /* Language Selection */
14f9c5c9
AS
791
792/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 793 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 794
de93309a 795static enum language
ccefe4c4 796ada_update_initial_language (enum language lang)
14f9c5c9 797{
cafb3438 798 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 799 return language_ada;
14f9c5c9
AS
800
801 return lang;
802}
96d887e8
PH
803
804/* If the main procedure is written in Ada, then return its name.
805 The result is good until the next call. Return NULL if the main
806 procedure doesn't appear to be in Ada. */
807
808char *
809ada_main_name (void)
810{
3b7344d5 811 struct bound_minimal_symbol msym;
e83e4e24 812 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 813
96d887e8
PH
814 /* For Ada, the name of the main procedure is stored in a specific
815 string constant, generated by the binder. Look for that symbol,
816 extract its address, and then read that string. If we didn't find
817 that string, then most probably the main procedure is not written
818 in Ada. */
819 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
820
3b7344d5 821 if (msym.minsym != NULL)
96d887e8 822 {
4aeddc50 823 CORE_ADDR main_program_name_addr = msym.value_address ();
96d887e8 824 if (main_program_name_addr == 0)
dda83cd7 825 error (_("Invalid address for Ada main program name."));
96d887e8 826
66920317 827 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 828 return main_program_name.get ();
96d887e8
PH
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
dda83cd7 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
965bc1df
TT
865/* If STR is a decoded version of a compiler-provided suffix (like the
866 "[cold]" in "symbol[cold]"), return true. Otherwise, return
867 false. */
868
869static bool
870is_compiler_suffix (const char *str)
871{
872 gdb_assert (*str == '[');
873 ++str;
874 while (*str != '\0' && isalpha (*str))
875 ++str;
876 /* We accept a missing "]" in order to support completion. */
877 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
878}
879
315e4ebb
TT
880/* Append a non-ASCII character to RESULT. */
881static void
882append_hex_encoded (std::string &result, uint32_t one_char)
883{
884 if (one_char <= 0xff)
885 {
886 result.append ("U");
887 result.append (phex (one_char, 1));
888 }
889 else if (one_char <= 0xffff)
890 {
891 result.append ("W");
892 result.append (phex (one_char, 2));
893 }
894 else
895 {
896 result.append ("WW");
897 result.append (phex (one_char, 4));
898 }
899}
900
901/* Return a string that is a copy of the data in STORAGE, with
902 non-ASCII characters replaced by the appropriate hex encoding. A
903 template is used because, for UTF-8, we actually want to work with
904 UTF-32 codepoints. */
905template<typename T>
906std::string
907copy_and_hex_encode (struct obstack *storage)
908{
909 const T *chars = (T *) obstack_base (storage);
910 int num_chars = obstack_object_size (storage) / sizeof (T);
911 std::string result;
912 for (int i = 0; i < num_chars; ++i)
913 {
914 if (chars[i] <= 0x7f)
915 {
916 /* The host character set has to be a superset of ASCII, as
917 are all the other character sets we can use. */
918 result.push_back (chars[i]);
919 }
920 else
921 append_hex_encoded (result, chars[i]);
922 }
923 return result;
924}
925
5c4258f4 926/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 927 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 928 Otherwise, return the empty string in that case. */
4c4b4cd2 929
5c4258f4 930static std::string
b5ec771e 931ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 932{
4c4b4cd2 933 if (decoded == NULL)
5c4258f4 934 return {};
14f9c5c9 935
5c4258f4 936 std::string encoding_buffer;
315e4ebb 937 bool saw_non_ascii = false;
5c4258f4 938 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 939 {
315e4ebb
TT
940 if ((*p & 0x80) != 0)
941 saw_non_ascii = true;
942
cdc7bb92 943 if (*p == '.')
5c4258f4 944 encoding_buffer.append ("__");
965bc1df
TT
945 else if (*p == '[' && is_compiler_suffix (p))
946 {
947 encoding_buffer = encoding_buffer + "." + (p + 1);
948 if (encoding_buffer.back () == ']')
949 encoding_buffer.pop_back ();
950 break;
951 }
14f9c5c9 952 else if (*p == '"')
dda83cd7
SM
953 {
954 const struct ada_opname_map *mapping;
955
956 for (mapping = ada_opname_table;
957 mapping->encoded != NULL
958 && !startswith (p, mapping->decoded); mapping += 1)
959 ;
960 if (mapping->encoded == NULL)
b5ec771e
PA
961 {
962 if (throw_errors)
963 error (_("invalid Ada operator name: %s"), p);
964 else
5c4258f4 965 return {};
b5ec771e 966 }
5c4258f4 967 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
968 break;
969 }
d2e4a39e 970 else
5c4258f4 971 encoding_buffer.push_back (*p);
14f9c5c9
AS
972 }
973
315e4ebb
TT
974 /* If a non-ASCII character is seen, we must convert it to the
975 appropriate hex form. As this is more expensive, we keep track
976 of whether it is even necessary. */
977 if (saw_non_ascii)
978 {
979 auto_obstack storage;
980 bool is_utf8 = ada_source_charset == ada_utf8;
981 try
982 {
983 convert_between_encodings
984 (host_charset (),
985 is_utf8 ? HOST_UTF32 : ada_source_charset,
986 (const gdb_byte *) encoding_buffer.c_str (),
987 encoding_buffer.length (), 1,
988 &storage, translit_none);
989 }
990 catch (const gdb_exception &)
991 {
992 static bool warned = false;
993
994 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
995 might like to know why. */
996 if (!warned)
997 {
998 warned = true;
999 warning (_("charset conversion failure for '%s'.\n"
1000 "You may have the wrong value for 'set ada source-charset'."),
1001 encoding_buffer.c_str ());
1002 }
1003
1004 /* We don't try to recover from errors. */
1005 return encoding_buffer;
1006 }
1007
1008 if (is_utf8)
1009 return copy_and_hex_encode<uint32_t> (&storage);
1010 return copy_and_hex_encode<gdb_byte> (&storage);
1011 }
1012
4c4b4cd2 1013 return encoding_buffer;
14f9c5c9
AS
1014}
1015
315e4ebb
TT
1016/* Find the entry for C in the case-folding table. Return nullptr if
1017 the entry does not cover C. */
1018static const utf8_entry *
1019find_case_fold_entry (uint32_t c)
b5ec771e 1020{
315e4ebb
TT
1021 auto iter = std::lower_bound (std::begin (ada_case_fold),
1022 std::end (ada_case_fold),
1023 c);
1024 if (iter == std::end (ada_case_fold)
1025 || c < iter->start
1026 || c > iter->end)
1027 return nullptr;
1028 return &*iter;
b5ec771e
PA
1029}
1030
14f9c5c9 1031/* Return NAME folded to lower case, or, if surrounded by single
315e4ebb
TT
1032 quotes, unfolded, but with the quotes stripped away. If
1033 THROW_ON_ERROR is true, encoding failures will throw an exception
1034 rather than emitting a warning. Result good to next call. */
4c4b4cd2 1035
5f9febe0 1036static const char *
315e4ebb 1037ada_fold_name (gdb::string_view name, bool throw_on_error = false)
14f9c5c9 1038{
5f9febe0 1039 static std::string fold_storage;
14f9c5c9 1040
6a780b67 1041 if (!name.empty () && name[0] == '\'')
01573d73 1042 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
14f9c5c9
AS
1043 else
1044 {
315e4ebb
TT
1045 /* Why convert to UTF-32 and implement our own case-folding,
1046 rather than convert to wchar_t and use the platform's
1047 functions? I'm glad you asked.
1048
1049 The main problem is that GNAT implements an unusual rule for
1050 case folding. For ASCII letters, letters in single-byte
1051 encodings (such as ISO-8859-*), and Unicode letters that fit
1052 in a single byte (i.e., code point is <= 0xff), the letter is
1053 folded to lower case. Other Unicode letters are folded to
1054 upper case.
1055
1056 This rule means that the code must be able to examine the
1057 value of the character. And, some hosts do not use Unicode
1058 for wchar_t, so examining the value of such characters is
1059 forbidden. */
1060 auto_obstack storage;
1061 try
1062 {
1063 convert_between_encodings
1064 (host_charset (), HOST_UTF32,
1065 (const gdb_byte *) name.data (),
1066 name.length (), 1,
1067 &storage, translit_none);
1068 }
1069 catch (const gdb_exception &)
1070 {
1071 if (throw_on_error)
1072 throw;
1073
1074 static bool warned = false;
1075
1076 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1077 might like to know why. */
1078 if (!warned)
1079 {
1080 warned = true;
1081 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1082 "This normally should not happen, please file a bug report."),
1083 gdb::to_string (name).c_str (), host_charset ());
1084 }
1085
1086 /* We don't try to recover from errors; just return the
1087 original string. */
1088 fold_storage = gdb::to_string (name);
1089 return fold_storage.c_str ();
1090 }
1091
1092 bool is_utf8 = ada_source_charset == ada_utf8;
1093 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1094 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1095 for (int i = 0; i < num_chars; ++i)
1096 {
1097 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1098 if (entry != nullptr)
1099 {
1100 uint32_t low = chars[i] + entry->lower_delta;
1101 if (!is_utf8 || low <= 0xff)
1102 chars[i] = low;
1103 else
1104 chars[i] = chars[i] + entry->upper_delta;
1105 }
1106 }
1107
1108 /* Now convert back to ordinary characters. */
1109 auto_obstack reconverted;
1110 try
1111 {
1112 convert_between_encodings (HOST_UTF32,
1113 host_charset (),
1114 (const gdb_byte *) chars,
1115 num_chars * sizeof (uint32_t),
1116 sizeof (uint32_t),
1117 &reconverted,
1118 translit_none);
1119 obstack_1grow (&reconverted, '\0');
1120 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1121 }
1122 catch (const gdb_exception &)
1123 {
1124 if (throw_on_error)
1125 throw;
1126
1127 static bool warned = false;
1128
1129 /* Converting back from UTF-32 shouldn't normally fail, but
1130 there are some host encodings without upper/lower
1131 equivalence. */
1132 if (!warned)
1133 {
1134 warned = true;
1135 warning (_("could not convert the lower-cased variant of '%s'\n"
1136 "from UTF-32 to the host encoding (%s)."),
1137 gdb::to_string (name).c_str (), host_charset ());
1138 }
1139
1140 /* We don't try to recover from errors; just return the
1141 original string. */
1142 fold_storage = gdb::to_string (name);
1143 }
14f9c5c9
AS
1144 }
1145
5f9febe0 1146 return fold_storage.c_str ();
14f9c5c9
AS
1147}
1148
5fea9794
TT
1149/* The "encoded" form of DECODED, according to GNAT conventions. If
1150 FOLD is true (the default), case-fold any ordinary symbol. Symbols
1151 with <...> quoting are not folded in any case. */
315e4ebb
TT
1152
1153std::string
5fea9794 1154ada_encode (const char *decoded, bool fold)
315e4ebb 1155{
5fea9794 1156 if (fold && decoded[0] != '<')
315e4ebb
TT
1157 decoded = ada_fold_name (decoded);
1158 return ada_encode_1 (decoded, true);
1159}
1160
529cad9c
PH
1161/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1162
1163static int
1164is_lower_alphanum (const char c)
1165{
1166 return (isdigit (c) || (isalpha (c) && islower (c)));
1167}
1168
c90092fe
JB
1169/* ENCODED is the linkage name of a symbol and LEN contains its length.
1170 This function saves in LEN the length of that same symbol name but
1171 without either of these suffixes:
29480c32
JB
1172 . .{DIGIT}+
1173 . ${DIGIT}+
1174 . ___{DIGIT}+
1175 . __{DIGIT}+.
c90092fe 1176
29480c32
JB
1177 These are suffixes introduced by the compiler for entities such as
1178 nested subprogram for instance, in order to avoid name clashes.
1179 They do not serve any purpose for the debugger. */
1180
1181static void
1182ada_remove_trailing_digits (const char *encoded, int *len)
1183{
1184 if (*len > 1 && isdigit (encoded[*len - 1]))
1185 {
1186 int i = *len - 2;
5b4ee69b 1187
29480c32 1188 while (i > 0 && isdigit (encoded[i]))
dda83cd7 1189 i--;
29480c32 1190 if (i >= 0 && encoded[i] == '.')
dda83cd7 1191 *len = i;
29480c32 1192 else if (i >= 0 && encoded[i] == '$')
dda83cd7 1193 *len = i;
61012eef 1194 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 1195 *len = i - 2;
61012eef 1196 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 1197 *len = i - 1;
29480c32
JB
1198 }
1199}
1200
1201/* Remove the suffix introduced by the compiler for protected object
1202 subprograms. */
1203
1204static void
1205ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1206{
1207 /* Remove trailing N. */
1208
1209 /* Protected entry subprograms are broken into two
1210 separate subprograms: The first one is unprotected, and has
1211 a 'N' suffix; the second is the protected version, and has
0963b4bd 1212 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1213 the protection. Since the P subprograms are internally generated,
1214 we leave these names undecoded, giving the user a clue that this
1215 entity is internal. */
1216
1217 if (*len > 1
1218 && encoded[*len - 1] == 'N'
1219 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1220 *len = *len - 1;
1221}
1222
965bc1df
TT
1223/* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1224 then update *LEN to remove the suffix and return the offset of the
1225 character just past the ".". Otherwise, return -1. */
1226
1227static int
1228remove_compiler_suffix (const char *encoded, int *len)
1229{
1230 int offset = *len - 1;
1231 while (offset > 0 && isalpha (encoded[offset]))
1232 --offset;
1233 if (offset > 0 && encoded[offset] == '.')
1234 {
1235 *len = offset;
1236 return offset + 1;
1237 }
1238 return -1;
1239}
1240
315e4ebb
TT
1241/* Convert an ASCII hex string to a number. Reads exactly N
1242 characters from STR. Returns true on success, false if one of the
1243 digits was not a hex digit. */
1244static bool
1245convert_hex (const char *str, int n, uint32_t *out)
1246{
1247 uint32_t result = 0;
1248
1249 for (int i = 0; i < n; ++i)
1250 {
1251 if (!isxdigit (str[i]))
1252 return false;
1253 result <<= 4;
1254 result |= fromhex (str[i]);
1255 }
1256
1257 *out = result;
1258 return true;
1259}
1260
1261/* Convert a wide character from its ASCII hex representation in STR
1262 (consisting of exactly N characters) to the host encoding,
1263 appending the resulting bytes to OUT. If N==2 and the Ada source
1264 charset is not UTF-8, then hex refers to an encoding in the
1265 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1266 Return false and do not modify OUT on conversion failure. */
1267static bool
1268convert_from_hex_encoded (std::string &out, const char *str, int n)
1269{
1270 uint32_t value;
1271
1272 if (!convert_hex (str, n, &value))
1273 return false;
1274 try
1275 {
1276 auto_obstack bytes;
1277 /* In the 'U' case, the hex digits encode the character in the
1278 Ada source charset. However, if the source charset is UTF-8,
1279 this really means it is a single-byte UTF-32 character. */
1280 if (n == 2 && ada_source_charset != ada_utf8)
1281 {
1282 gdb_byte one_char = (gdb_byte) value;
1283
1284 convert_between_encodings (ada_source_charset, host_charset (),
1285 &one_char,
1286 sizeof (one_char), sizeof (one_char),
1287 &bytes, translit_none);
1288 }
1289 else
1290 convert_between_encodings (HOST_UTF32, host_charset (),
1291 (const gdb_byte *) &value,
1292 sizeof (value), sizeof (value),
1293 &bytes, translit_none);
1294 obstack_1grow (&bytes, '\0');
1295 out.append ((const char *) obstack_base (&bytes));
1296 }
1297 catch (const gdb_exception &)
1298 {
1299 /* On failure, the caller will just let the encoded form
1300 through, which seems basically reasonable. */
1301 return false;
1302 }
1303
1304 return true;
1305}
1306
8a3df5ac 1307/* See ada-lang.h. */
14f9c5c9 1308
f945dedf 1309std::string
5c94f938 1310ada_decode (const char *encoded, bool wrap, bool operators)
14f9c5c9 1311{
36f5ca53 1312 int i;
14f9c5c9 1313 int len0;
d2e4a39e 1314 const char *p;
14f9c5c9 1315 int at_start_name;
f945dedf 1316 std::string decoded;
965bc1df 1317 int suffix = -1;
d2e4a39e 1318
0d81f350
JG
1319 /* With function descriptors on PPC64, the value of a symbol named
1320 ".FN", if it exists, is the entry point of the function "FN". */
1321 if (encoded[0] == '.')
1322 encoded += 1;
1323
29480c32
JB
1324 /* The name of the Ada main procedure starts with "_ada_".
1325 This prefix is not part of the decoded name, so skip this part
1326 if we see this prefix. */
61012eef 1327 if (startswith (encoded, "_ada_"))
4c4b4cd2 1328 encoded += 5;
81eaa506
TT
1329 /* The "___ghost_" prefix is used for ghost entities. Normally
1330 these aren't preserved but when they are, it's useful to see
1331 them. */
1332 if (startswith (encoded, "___ghost_"))
1333 encoded += 9;
14f9c5c9 1334
29480c32
JB
1335 /* If the name starts with '_', then it is not a properly encoded
1336 name, so do not attempt to decode it. Similarly, if the name
1337 starts with '<', the name should not be decoded. */
4c4b4cd2 1338 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1339 goto Suppress;
1340
4c4b4cd2 1341 len0 = strlen (encoded);
4c4b4cd2 1342
965bc1df
TT
1343 suffix = remove_compiler_suffix (encoded, &len0);
1344
29480c32
JB
1345 ada_remove_trailing_digits (encoded, &len0);
1346 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1347
4c4b4cd2
PH
1348 /* Remove the ___X.* suffix if present. Do not forget to verify that
1349 the suffix is located before the current "end" of ENCODED. We want
1350 to avoid re-matching parts of ENCODED that have previously been
1351 marked as discarded (by decrementing LEN0). */
1352 p = strstr (encoded, "___");
1353 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1354 {
1355 if (p[3] == 'X')
dda83cd7 1356 len0 = p - encoded;
14f9c5c9 1357 else
dda83cd7 1358 goto Suppress;
14f9c5c9 1359 }
4c4b4cd2 1360
29480c32
JB
1361 /* Remove any trailing TKB suffix. It tells us that this symbol
1362 is for the body of a task, but that information does not actually
1363 appear in the decoded name. */
1364
61012eef 1365 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1366 len0 -= 3;
76a01679 1367
a10967fa
JB
1368 /* Remove any trailing TB suffix. The TB suffix is slightly different
1369 from the TKB suffix because it is used for non-anonymous task
1370 bodies. */
1371
61012eef 1372 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1373 len0 -= 2;
1374
29480c32
JB
1375 /* Remove trailing "B" suffixes. */
1376 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1377
61012eef 1378 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1379 len0 -= 1;
1380
29480c32
JB
1381 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1382
4c4b4cd2 1383 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1384 {
4c4b4cd2
PH
1385 i = len0 - 2;
1386 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1387 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1388 i -= 1;
4c4b4cd2 1389 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1390 len0 = i - 1;
4c4b4cd2 1391 else if (encoded[i] == '$')
dda83cd7 1392 len0 = i;
d2e4a39e 1393 }
14f9c5c9 1394
29480c32
JB
1395 /* The first few characters that are not alphabetic are not part
1396 of any encoding we use, so we can copy them over verbatim. */
1397
36f5ca53
TT
1398 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1399 decoded.push_back (encoded[i]);
14f9c5c9
AS
1400
1401 at_start_name = 1;
1402 while (i < len0)
1403 {
29480c32 1404 /* Is this a symbol function? */
5c94f938 1405 if (operators && at_start_name && encoded[i] == 'O')
dda83cd7
SM
1406 {
1407 int k;
1408
1409 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1410 {
1411 int op_len = strlen (ada_opname_table[k].encoded);
1412 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1413 op_len - 1) == 0)
1414 && !isalnum (encoded[i + op_len]))
1415 {
36f5ca53 1416 decoded.append (ada_opname_table[k].decoded);
dda83cd7
SM
1417 at_start_name = 0;
1418 i += op_len;
dda83cd7
SM
1419 break;
1420 }
1421 }
1422 if (ada_opname_table[k].encoded != NULL)
1423 continue;
1424 }
14f9c5c9
AS
1425 at_start_name = 0;
1426
529cad9c 1427 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1428 into "." (just below). */
529cad9c 1429
61012eef 1430 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1431 i += 2;
529cad9c 1432
29480c32 1433 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1434 be translated into "." (just below). These are internal names
1435 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1436
1437 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1438 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1439 && isdigit (encoded [i+4]))
1440 {
1441 int k = i + 5;
1442
1443 while (k < len0 && isdigit (encoded[k]))
1444 k++; /* Skip any extra digit. */
1445
1446 /* Double-check that the "__B_{DIGITS}+" sequence we found
1447 is indeed followed by "__". */
1448 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1449 i = k;
1450 }
29480c32 1451
529cad9c
PH
1452 /* Remove _E{DIGITS}+[sb] */
1453
1454 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1455 of subprograms created by the compiler for each entry. The first
1456 one implements the actual entry code, and has a suffix following
1457 the convention above; the second one implements the barrier and
1458 uses the same convention as above, except that the 'E' is replaced
1459 by a 'B'.
529cad9c 1460
dda83cd7
SM
1461 Just as above, we do not decode the name of barrier functions
1462 to give the user a clue that the code he is debugging has been
1463 internally generated. */
529cad9c
PH
1464
1465 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1466 && isdigit (encoded[i+2]))
1467 {
1468 int k = i + 3;
1469
1470 while (k < len0 && isdigit (encoded[k]))
1471 k++;
1472
1473 if (k < len0
1474 && (encoded[k] == 'b' || encoded[k] == 's'))
1475 {
1476 k++;
1477 /* Just as an extra precaution, make sure that if this
1478 suffix is followed by anything else, it is a '_'.
1479 Otherwise, we matched this sequence by accident. */
1480 if (k == len0
1481 || (k < len0 && encoded[k] == '_'))
1482 i = k;
1483 }
1484 }
529cad9c
PH
1485
1486 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1487 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1488
1489 if (i < len0 + 3
dda83cd7
SM
1490 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1491 {
1492 /* Backtrack a bit up until we reach either the begining of
1493 the encoded name, or "__". Make sure that we only find
1494 digits or lowercase characters. */
1495 const char *ptr = encoded + i - 1;
1496
1497 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1498 ptr--;
1499 if (ptr < encoded
1500 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1501 i++;
1502 }
529cad9c 1503
315e4ebb
TT
1504 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1505 {
1506 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1507 {
1508 i += 3;
1509 continue;
1510 }
1511 }
1512 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1513 {
1514 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1515 {
1516 i += 5;
1517 continue;
1518 }
1519 }
1520 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1521 && isxdigit (encoded[i + 2]))
1522 {
1523 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1524 {
1525 i += 10;
1526 continue;
1527 }
1528 }
1529
4c4b4cd2 1530 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1531 {
1532 /* This is a X[bn]* sequence not separated from the previous
1533 part of the name with a non-alpha-numeric character (in other
1534 words, immediately following an alpha-numeric character), then
1535 verify that it is placed at the end of the encoded name. If
1536 not, then the encoding is not valid and we should abort the
1537 decoding. Otherwise, just skip it, it is used in body-nested
1538 package names. */
1539 do
1540 i += 1;
1541 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1542 if (i < len0)
1543 goto Suppress;
1544 }
cdc7bb92 1545 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1546 {
1547 /* Replace '__' by '.'. */
36f5ca53 1548 decoded.push_back ('.');
dda83cd7
SM
1549 at_start_name = 1;
1550 i += 2;
dda83cd7 1551 }
14f9c5c9 1552 else
dda83cd7
SM
1553 {
1554 /* It's a character part of the decoded name, so just copy it
1555 over. */
36f5ca53 1556 decoded.push_back (encoded[i]);
dda83cd7 1557 i += 1;
dda83cd7 1558 }
14f9c5c9 1559 }
14f9c5c9 1560
29480c32
JB
1561 /* Decoded names should never contain any uppercase character.
1562 Double-check this, and abort the decoding if we find one. */
1563
5c94f938
TT
1564 if (operators)
1565 {
1566 for (i = 0; i < decoded.length(); ++i)
1567 if (isupper (decoded[i]) || decoded[i] == ' ')
1568 goto Suppress;
1569 }
14f9c5c9 1570
965bc1df
TT
1571 /* If the compiler added a suffix, append it now. */
1572 if (suffix >= 0)
1573 decoded = decoded + "[" + &encoded[suffix] + "]";
1574
f945dedf 1575 return decoded;
14f9c5c9
AS
1576
1577Suppress:
8a3df5ac
TT
1578 if (!wrap)
1579 return {};
1580
4c4b4cd2 1581 if (encoded[0] == '<')
f945dedf 1582 decoded = encoded;
14f9c5c9 1583 else
f945dedf 1584 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2 1585 return decoded;
4c4b4cd2
PH
1586}
1587
1588/* Table for keeping permanent unique copies of decoded names. Once
1589 allocated, names in this table are never released. While this is a
1590 storage leak, it should not be significant unless there are massive
1591 changes in the set of decoded names in successive versions of a
1592 symbol table loaded during a single session. */
1593static struct htab *decoded_names_store;
1594
1595/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1596 in the language-specific part of GSYMBOL, if it has not been
1597 previously computed. Tries to save the decoded name in the same
1598 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1599 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1600 GSYMBOL).
4c4b4cd2
PH
1601 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1602 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1603 when a decoded name is cached in it. */
4c4b4cd2 1604
45e6c716 1605const char *
f85f34ed 1606ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1607{
f85f34ed
TT
1608 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1609 const char **resultp =
615b3f62 1610 &gsymbol->language_specific.demangled_name;
5b4ee69b 1611
f85f34ed 1612 if (!gsymbol->ada_mangled)
4c4b4cd2 1613 {
4d4eaa30 1614 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1615 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1616
f85f34ed 1617 gsymbol->ada_mangled = 1;
5b4ee69b 1618
f85f34ed 1619 if (obstack != NULL)
f945dedf 1620 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1621 else
dda83cd7 1622 {
f85f34ed
TT
1623 /* Sometimes, we can't find a corresponding objfile, in
1624 which case, we put the result on the heap. Since we only
1625 decode when needed, we hope this usually does not cause a
1626 significant memory leak (FIXME). */
1627
dda83cd7
SM
1628 char **slot = (char **) htab_find_slot (decoded_names_store,
1629 decoded.c_str (), INSERT);
5b4ee69b 1630
dda83cd7
SM
1631 if (*slot == NULL)
1632 *slot = xstrdup (decoded.c_str ());
1633 *resultp = *slot;
1634 }
4c4b4cd2 1635 }
14f9c5c9 1636
4c4b4cd2
PH
1637 return *resultp;
1638}
76a01679 1639
14f9c5c9 1640\f
d2e4a39e 1641
dda83cd7 1642 /* Arrays */
14f9c5c9 1643
28c85d6c
JB
1644/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1645 generated by the GNAT compiler to describe the index type used
1646 for each dimension of an array, check whether it follows the latest
1647 known encoding. If not, fix it up to conform to the latest encoding.
1648 Otherwise, do nothing. This function also does nothing if
1649 INDEX_DESC_TYPE is NULL.
1650
85102364 1651 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1652 Initially, the information would be provided through the name of each
1653 field of the structure type only, while the type of these fields was
1654 described as unspecified and irrelevant. The debugger was then expected
1655 to perform a global type lookup using the name of that field in order
1656 to get access to the full index type description. Because these global
1657 lookups can be very expensive, the encoding was later enhanced to make
1658 the global lookup unnecessary by defining the field type as being
1659 the full index type description.
1660
1661 The purpose of this routine is to allow us to support older versions
1662 of the compiler by detecting the use of the older encoding, and by
1663 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1664 we essentially replace each field's meaningless type by the associated
1665 index subtype). */
1666
1667void
1668ada_fixup_array_indexes_type (struct type *index_desc_type)
1669{
1670 int i;
1671
1672 if (index_desc_type == NULL)
1673 return;
1f704f76 1674 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1675
1676 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1677 to check one field only, no need to check them all). If not, return
1678 now.
1679
1680 If our INDEX_DESC_TYPE was generated using the older encoding,
1681 the field type should be a meaningless integer type whose name
1682 is not equal to the field name. */
940da03e
SM
1683 if (index_desc_type->field (0).type ()->name () != NULL
1684 && strcmp (index_desc_type->field (0).type ()->name (),
33d16dd9 1685 index_desc_type->field (0).name ()) == 0)
28c85d6c
JB
1686 return;
1687
1688 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1689 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1690 {
33d16dd9 1691 const char *name = index_desc_type->field (i).name ();
28c85d6c
JB
1692 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1693
1694 if (raw_type)
5d14b6e5 1695 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1696 }
1697}
1698
4c4b4cd2
PH
1699/* The desc_* routines return primitive portions of array descriptors
1700 (fat pointers). */
14f9c5c9
AS
1701
1702/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1703 level of indirection, if needed. */
1704
d2e4a39e
AS
1705static struct type *
1706desc_base_type (struct type *type)
14f9c5c9
AS
1707{
1708 if (type == NULL)
1709 return NULL;
61ee279c 1710 type = ada_check_typedef (type);
78134374 1711 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1712 type = ada_typedef_target_type (type);
1713
1265e4aa 1714 if (type != NULL
78134374 1715 && (type->code () == TYPE_CODE_PTR
dda83cd7 1716 || type->code () == TYPE_CODE_REF))
27710edb 1717 return ada_check_typedef (type->target_type ());
14f9c5c9
AS
1718 else
1719 return type;
1720}
1721
4c4b4cd2
PH
1722/* True iff TYPE indicates a "thin" array pointer type. */
1723
14f9c5c9 1724static int
d2e4a39e 1725is_thin_pntr (struct type *type)
14f9c5c9 1726{
d2e4a39e 1727 return
14f9c5c9
AS
1728 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1729 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1730}
1731
4c4b4cd2
PH
1732/* The descriptor type for thin pointer type TYPE. */
1733
d2e4a39e
AS
1734static struct type *
1735thin_descriptor_type (struct type *type)
14f9c5c9 1736{
d2e4a39e 1737 struct type *base_type = desc_base_type (type);
5b4ee69b 1738
14f9c5c9
AS
1739 if (base_type == NULL)
1740 return NULL;
1741 if (is_suffix (ada_type_name (base_type), "___XVE"))
1742 return base_type;
d2e4a39e 1743 else
14f9c5c9 1744 {
d2e4a39e 1745 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1746
14f9c5c9 1747 if (alt_type == NULL)
dda83cd7 1748 return base_type;
14f9c5c9 1749 else
dda83cd7 1750 return alt_type;
14f9c5c9
AS
1751 }
1752}
1753
4c4b4cd2
PH
1754/* A pointer to the array data for thin-pointer value VAL. */
1755
d2e4a39e
AS
1756static struct value *
1757thin_data_pntr (struct value *val)
14f9c5c9 1758{
d0c97917 1759 struct type *type = ada_check_typedef (val->type ());
556bdfd4 1760 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1761
556bdfd4
UW
1762 data_type = lookup_pointer_type (data_type);
1763
78134374 1764 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1765 return value_cast (data_type, value_copy (val));
d2e4a39e 1766 else
9feb2d07 1767 return value_from_longest (data_type, val->address ());
14f9c5c9
AS
1768}
1769
4c4b4cd2
PH
1770/* True iff TYPE indicates a "thick" array pointer type. */
1771
14f9c5c9 1772static int
d2e4a39e 1773is_thick_pntr (struct type *type)
14f9c5c9
AS
1774{
1775 type = desc_base_type (type);
78134374 1776 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1777 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1778}
1779
4c4b4cd2
PH
1780/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1781 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1782
d2e4a39e
AS
1783static struct type *
1784desc_bounds_type (struct type *type)
14f9c5c9 1785{
d2e4a39e 1786 struct type *r;
14f9c5c9
AS
1787
1788 type = desc_base_type (type);
1789
1790 if (type == NULL)
1791 return NULL;
1792 else if (is_thin_pntr (type))
1793 {
1794 type = thin_descriptor_type (type);
1795 if (type == NULL)
dda83cd7 1796 return NULL;
14f9c5c9
AS
1797 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1798 if (r != NULL)
dda83cd7 1799 return ada_check_typedef (r);
14f9c5c9 1800 }
78134374 1801 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1802 {
1803 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1804 if (r != NULL)
27710edb 1805 return ada_check_typedef (ada_check_typedef (r)->target_type ());
14f9c5c9
AS
1806 }
1807 return NULL;
1808}
1809
1810/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1811 one, a pointer to its bounds data. Otherwise NULL. */
1812
d2e4a39e
AS
1813static struct value *
1814desc_bounds (struct value *arr)
14f9c5c9 1815{
d0c97917 1816 struct type *type = ada_check_typedef (arr->type ());
5b4ee69b 1817
d2e4a39e 1818 if (is_thin_pntr (type))
14f9c5c9 1819 {
d2e4a39e 1820 struct type *bounds_type =
dda83cd7 1821 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1822 LONGEST addr;
1823
4cdfadb1 1824 if (bounds_type == NULL)
dda83cd7 1825 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1826
1827 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1828 since desc_type is an XVE-encoded type (and shouldn't be),
1829 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1830 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1831 addr = value_as_long (arr);
d2e4a39e 1832 else
9feb2d07 1833 addr = arr->address ();
14f9c5c9 1834
d2e4a39e 1835 return
dda83cd7 1836 value_from_longest (lookup_pointer_type (bounds_type),
df86565b 1837 addr - bounds_type->length ());
14f9c5c9
AS
1838 }
1839
1840 else if (is_thick_pntr (type))
05e522ef 1841 {
158cc4fe 1842 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
05e522ef 1843 _("Bad GNAT array descriptor"));
d0c97917 1844 struct type *p_bounds_type = p_bounds->type ();
05e522ef
JB
1845
1846 if (p_bounds_type
78134374 1847 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef 1848 {
27710edb 1849 struct type *target_type = p_bounds_type->target_type ();
05e522ef 1850
e46d3488 1851 if (target_type->is_stub ())
05e522ef
JB
1852 p_bounds = value_cast (lookup_pointer_type
1853 (ada_check_typedef (target_type)),
1854 p_bounds);
1855 }
1856 else
1857 error (_("Bad GNAT array descriptor"));
1858
1859 return p_bounds;
1860 }
14f9c5c9
AS
1861 else
1862 return NULL;
1863}
1864
4c4b4cd2
PH
1865/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1866 position of the field containing the address of the bounds data. */
1867
14f9c5c9 1868static int
d2e4a39e 1869fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9 1870{
b610c045 1871 return desc_base_type (type)->field (1).loc_bitpos ();
14f9c5c9
AS
1872}
1873
1874/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1875 size of the field containing the address of the bounds data. */
1876
14f9c5c9 1877static int
d2e4a39e 1878fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1879{
1880 type = desc_base_type (type);
1881
d2e4a39e 1882 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1883 return TYPE_FIELD_BITSIZE (type, 1);
1884 else
df86565b 1885 return 8 * ada_check_typedef (type->field (1).type ())->length ();
14f9c5c9
AS
1886}
1887
4c4b4cd2 1888/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1889 pointer to one, the type of its array data (a array-with-no-bounds type);
1890 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1891 data. */
4c4b4cd2 1892
d2e4a39e 1893static struct type *
556bdfd4 1894desc_data_target_type (struct type *type)
14f9c5c9
AS
1895{
1896 type = desc_base_type (type);
1897
4c4b4cd2 1898 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1899 if (is_thin_pntr (type))
940da03e 1900 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1901 else if (is_thick_pntr (type))
556bdfd4
UW
1902 {
1903 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1904
1905 if (data_type
78134374 1906 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
27710edb 1907 return ada_check_typedef (data_type->target_type ());
556bdfd4
UW
1908 }
1909
1910 return NULL;
14f9c5c9
AS
1911}
1912
1913/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1914 its array data. */
4c4b4cd2 1915
d2e4a39e
AS
1916static struct value *
1917desc_data (struct value *arr)
14f9c5c9 1918{
d0c97917 1919 struct type *type = arr->type ();
5b4ee69b 1920
14f9c5c9
AS
1921 if (is_thin_pntr (type))
1922 return thin_data_pntr (arr);
1923 else if (is_thick_pntr (type))
158cc4fe 1924 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
dda83cd7 1925 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1926 else
1927 return NULL;
1928}
1929
1930
1931/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1932 position of the field containing the address of the data. */
1933
14f9c5c9 1934static int
d2e4a39e 1935fat_pntr_data_bitpos (struct type *type)
14f9c5c9 1936{
b610c045 1937 return desc_base_type (type)->field (0).loc_bitpos ();
14f9c5c9
AS
1938}
1939
1940/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1941 size of the field containing the address of the data. */
1942
14f9c5c9 1943static int
d2e4a39e 1944fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1945{
1946 type = desc_base_type (type);
1947
1948 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1949 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1950 else
df86565b 1951 return TARGET_CHAR_BIT * type->field (0).type ()->length ();
14f9c5c9
AS
1952}
1953
4c4b4cd2 1954/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1955 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1956 bound, if WHICH is 1. The first bound is I=1. */
1957
d2e4a39e
AS
1958static struct value *
1959desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1960{
250106a7
TT
1961 char bound_name[20];
1962 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1963 which ? 'U' : 'L', i - 1);
158cc4fe 1964 return value_struct_elt (&bounds, {}, bound_name, NULL,
dda83cd7 1965 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1966}
1967
1968/* If BOUNDS is an array-bounds structure type, return the bit position
1969 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1970 bound, if WHICH is 1. The first bound is I=1. */
1971
14f9c5c9 1972static int
d2e4a39e 1973desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1974{
b610c045 1975 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
14f9c5c9
AS
1976}
1977
1978/* If BOUNDS is an array-bounds structure type, return the bit field size
1979 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1980 bound, if WHICH is 1. The first bound is I=1. */
1981
76a01679 1982static int
d2e4a39e 1983desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1984{
1985 type = desc_base_type (type);
1986
d2e4a39e
AS
1987 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1988 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1989 else
df86565b 1990 return 8 * type->field (2 * i + which - 2).type ()->length ();
14f9c5c9
AS
1991}
1992
1993/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1994 Ith bound (numbering from 1). Otherwise, NULL. */
1995
d2e4a39e
AS
1996static struct type *
1997desc_index_type (struct type *type, int i)
14f9c5c9
AS
1998{
1999 type = desc_base_type (type);
2000
78134374 2001 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
2002 {
2003 char bound_name[20];
2004 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
2005 return lookup_struct_elt_type (type, bound_name, 1);
2006 }
d2e4a39e 2007 else
14f9c5c9
AS
2008 return NULL;
2009}
2010
4c4b4cd2
PH
2011/* The number of index positions in the array-bounds type TYPE.
2012 Return 0 if TYPE is NULL. */
2013
14f9c5c9 2014static int
d2e4a39e 2015desc_arity (struct type *type)
14f9c5c9
AS
2016{
2017 type = desc_base_type (type);
2018
2019 if (type != NULL)
1f704f76 2020 return type->num_fields () / 2;
14f9c5c9
AS
2021 return 0;
2022}
2023
4c4b4cd2
PH
2024/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2025 an array descriptor type (representing an unconstrained array
2026 type). */
2027
76a01679
JB
2028static int
2029ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
2030{
2031 if (type == NULL)
2032 return 0;
61ee279c 2033 type = ada_check_typedef (type);
78134374 2034 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 2035 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
2036}
2037
52ce6436 2038/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 2039 * to one. */
52ce6436 2040
2c0b251b 2041static int
52ce6436
PH
2042ada_is_array_type (struct type *type)
2043{
78134374
SM
2044 while (type != NULL
2045 && (type->code () == TYPE_CODE_PTR
2046 || type->code () == TYPE_CODE_REF))
27710edb 2047 type = type->target_type ();
52ce6436
PH
2048 return ada_is_direct_array_type (type);
2049}
2050
4c4b4cd2 2051/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 2052
14f9c5c9 2053int
4c4b4cd2 2054ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
2055{
2056 if (type == NULL)
2057 return 0;
61ee279c 2058 type = ada_check_typedef (type);
78134374
SM
2059 return (type->code () == TYPE_CODE_ARRAY
2060 || (type->code () == TYPE_CODE_PTR
27710edb 2061 && (ada_check_typedef (type->target_type ())->code ()
78134374 2062 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
2063}
2064
4c4b4cd2
PH
2065/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2066
14f9c5c9 2067int
4c4b4cd2 2068ada_is_array_descriptor_type (struct type *type)
14f9c5c9 2069{
556bdfd4 2070 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
2071
2072 if (type == NULL)
2073 return 0;
61ee279c 2074 type = ada_check_typedef (type);
556bdfd4 2075 return (data_type != NULL
78134374 2076 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 2077 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
2078}
2079
2080/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 2081 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 2082 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
2083 is still needed. */
2084
14f9c5c9 2085int
ebf56fd3 2086ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 2087{
d2e4a39e 2088 return
14f9c5c9 2089 type != NULL
78134374 2090 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 2091 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 2092 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 2093 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
2094}
2095
2096
4c4b4cd2 2097/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 2098 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 2099 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 2100 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
2101 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2102 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 2103 a descriptor. */
de93309a
SM
2104
2105static struct type *
d2e4a39e 2106ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 2107{
d0c97917
TT
2108 if (ada_is_constrained_packed_array_type (arr->type ()))
2109 return decode_constrained_packed_array_type (arr->type ());
14f9c5c9 2110
d0c97917
TT
2111 if (!ada_is_array_descriptor_type (arr->type ()))
2112 return arr->type ();
d2e4a39e
AS
2113
2114 if (!bounds)
ad82864c
JB
2115 {
2116 struct type *array_type =
d0c97917 2117 ada_check_typedef (desc_data_target_type (arr->type ()));
ad82864c 2118
d0c97917 2119 if (ada_is_unconstrained_packed_array_type (arr->type ()))
ad82864c 2120 TYPE_FIELD_BITSIZE (array_type, 0) =
d0c97917 2121 decode_packed_array_bitsize (arr->type ());
ad82864c
JB
2122
2123 return array_type;
2124 }
14f9c5c9
AS
2125 else
2126 {
d2e4a39e 2127 struct type *elt_type;
14f9c5c9 2128 int arity;
d2e4a39e 2129 struct value *descriptor;
14f9c5c9 2130
d0c97917
TT
2131 elt_type = ada_array_element_type (arr->type (), -1);
2132 arity = ada_array_arity (arr->type ());
14f9c5c9 2133
d2e4a39e 2134 if (elt_type == NULL || arity == 0)
d0c97917 2135 return ada_check_typedef (arr->type ());
14f9c5c9
AS
2136
2137 descriptor = desc_bounds (arr);
d2e4a39e 2138 if (value_as_long (descriptor) == 0)
dda83cd7 2139 return NULL;
d2e4a39e 2140 while (arity > 0)
dda83cd7 2141 {
d0c97917
TT
2142 struct type *range_type = alloc_type_copy (arr->type ());
2143 struct type *array_type = alloc_type_copy (arr->type ());
dda83cd7
SM
2144 struct value *low = desc_one_bound (descriptor, arity, 0);
2145 struct value *high = desc_one_bound (descriptor, arity, 1);
2146
2147 arity -= 1;
d0c97917 2148 create_static_range_type (range_type, low->type (),
0c9c3474
SA
2149 longest_to_int (value_as_long (low)),
2150 longest_to_int (value_as_long (high)));
dda83cd7 2151 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c 2152
d0c97917 2153 if (ada_is_unconstrained_packed_array_type (arr->type ()))
e67ad678
JB
2154 {
2155 /* We need to store the element packed bitsize, as well as
dda83cd7 2156 recompute the array size, because it was previously
e67ad678
JB
2157 computed based on the unpacked element size. */
2158 LONGEST lo = value_as_long (low);
2159 LONGEST hi = value_as_long (high);
2160
2161 TYPE_FIELD_BITSIZE (elt_type, 0) =
d0c97917 2162 decode_packed_array_bitsize (arr->type ());
e67ad678 2163 /* If the array has no element, then the size is already
dda83cd7 2164 zero, and does not need to be recomputed. */
e67ad678
JB
2165 if (lo < hi)
2166 {
2167 int array_bitsize =
dda83cd7 2168 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678 2169
b6cdbc9a 2170 array_type->set_length ((array_bitsize + 7) / 8);
e67ad678
JB
2171 }
2172 }
dda83cd7 2173 }
14f9c5c9
AS
2174
2175 return lookup_pointer_type (elt_type);
2176 }
2177}
2178
2179/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2180 Otherwise, returns either a standard GDB array with bounds set
2181 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2182 GDB array. Returns NULL if ARR is a null fat pointer. */
2183
d2e4a39e
AS
2184struct value *
2185ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2186{
d0c97917 2187 if (ada_is_array_descriptor_type (arr->type ()))
14f9c5c9 2188 {
d2e4a39e 2189 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2190
14f9c5c9 2191 if (arrType == NULL)
dda83cd7 2192 return NULL;
14f9c5c9
AS
2193 return value_cast (arrType, value_copy (desc_data (arr)));
2194 }
d0c97917 2195 else if (ada_is_constrained_packed_array_type (arr->type ()))
ad82864c 2196 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2197 else
2198 return arr;
2199}
2200
2201/* If ARR does not represent an array, returns ARR unchanged.
2202 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2203 be ARR itself if it already is in the proper form). */
2204
720d1a40 2205struct value *
d2e4a39e 2206ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2207{
d0c97917 2208 if (ada_is_array_descriptor_type (arr->type ()))
14f9c5c9 2209 {
d2e4a39e 2210 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2211
14f9c5c9 2212 if (arrVal == NULL)
dda83cd7 2213 error (_("Bounds unavailable for null array pointer."));
14f9c5c9
AS
2214 return value_ind (arrVal);
2215 }
d0c97917 2216 else if (ada_is_constrained_packed_array_type (arr->type ()))
ad82864c 2217 return decode_constrained_packed_array (arr);
d2e4a39e 2218 else
14f9c5c9
AS
2219 return arr;
2220}
2221
2222/* If TYPE represents a GNAT array type, return it translated to an
2223 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2224 packing). For other types, is the identity. */
2225
d2e4a39e
AS
2226struct type *
2227ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2228{
ad82864c
JB
2229 if (ada_is_constrained_packed_array_type (type))
2230 return decode_constrained_packed_array_type (type);
17280b9f
UW
2231
2232 if (ada_is_array_descriptor_type (type))
556bdfd4 2233 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2234
2235 return type;
14f9c5c9
AS
2236}
2237
4c4b4cd2
PH
2238/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2239
ad82864c 2240static int
57567375 2241ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
2242{
2243 if (type == NULL)
2244 return 0;
4c4b4cd2 2245 type = desc_base_type (type);
61ee279c 2246 type = ada_check_typedef (type);
d2e4a39e 2247 return
14f9c5c9
AS
2248 ada_type_name (type) != NULL
2249 && strstr (ada_type_name (type), "___XP") != NULL;
2250}
2251
ad82864c
JB
2252/* Non-zero iff TYPE represents a standard GNAT constrained
2253 packed-array type. */
2254
2255int
2256ada_is_constrained_packed_array_type (struct type *type)
2257{
57567375 2258 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
2259 && !ada_is_array_descriptor_type (type);
2260}
2261
2262/* Non-zero iff TYPE represents an array descriptor for a
2263 unconstrained packed-array type. */
2264
2265static int
2266ada_is_unconstrained_packed_array_type (struct type *type)
2267{
57567375
TT
2268 if (!ada_is_array_descriptor_type (type))
2269 return 0;
2270
2271 if (ada_is_gnat_encoded_packed_array_type (type))
2272 return 1;
2273
2274 /* If we saw GNAT encodings, then the above code is sufficient.
2275 However, with minimal encodings, we will just have a thick
2276 pointer instead. */
2277 if (is_thick_pntr (type))
2278 {
2279 type = desc_base_type (type);
2280 /* The structure's first field is a pointer to an array, so this
2281 fetches the array type. */
27710edb 2282 type = type->field (0).type ()->target_type ();
af5300fe
TV
2283 if (type->code () == TYPE_CODE_TYPEDEF)
2284 type = ada_typedef_target_type (type);
57567375
TT
2285 /* Now we can see if the array elements are packed. */
2286 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2287 }
2288
2289 return 0;
ad82864c
JB
2290}
2291
c9a28cbe
TT
2292/* Return true if TYPE is a (Gnat-encoded) constrained packed array
2293 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2294
2295static bool
2296ada_is_any_packed_array_type (struct type *type)
2297{
2298 return (ada_is_constrained_packed_array_type (type)
2299 || (type->code () == TYPE_CODE_ARRAY
2300 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2301}
2302
ad82864c
JB
2303/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2304 return the size of its elements in bits. */
2305
2306static long
2307decode_packed_array_bitsize (struct type *type)
2308{
0d5cff50
DE
2309 const char *raw_name;
2310 const char *tail;
ad82864c
JB
2311 long bits;
2312
720d1a40
JB
2313 /* Access to arrays implemented as fat pointers are encoded as a typedef
2314 of the fat pointer type. We need the name of the fat pointer type
2315 to do the decoding, so strip the typedef layer. */
78134374 2316 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2317 type = ada_typedef_target_type (type);
2318
2319 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2320 if (!raw_name)
2321 raw_name = ada_type_name (desc_base_type (type));
2322
2323 if (!raw_name)
2324 return 0;
2325
2326 tail = strstr (raw_name, "___XP");
57567375
TT
2327 if (tail == nullptr)
2328 {
2329 gdb_assert (is_thick_pntr (type));
2330 /* The structure's first field is a pointer to an array, so this
2331 fetches the array type. */
27710edb 2332 type = type->field (0).type ()->target_type ();
57567375
TT
2333 /* Now we can see if the array elements are packed. */
2334 return TYPE_FIELD_BITSIZE (type, 0);
2335 }
ad82864c
JB
2336
2337 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2338 {
2339 lim_warning
2340 (_("could not understand bit size information on packed array"));
2341 return 0;
2342 }
2343
2344 return bits;
2345}
2346
14f9c5c9
AS
2347/* Given that TYPE is a standard GDB array type with all bounds filled
2348 in, and that the element size of its ultimate scalar constituents
2349 (that is, either its elements, or, if it is an array of arrays, its
2350 elements' elements, etc.) is *ELT_BITS, return an identical type,
2351 but with the bit sizes of its elements (and those of any
2352 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2353 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2354 in bits.
2355
2356 Note that, for arrays whose index type has an XA encoding where
2357 a bound references a record discriminant, getting that discriminant,
2358 and therefore the actual value of that bound, is not possible
2359 because none of the given parameters gives us access to the record.
2360 This function assumes that it is OK in the context where it is being
2361 used to return an array whose bounds are still dynamic and where
2362 the length is arbitrary. */
4c4b4cd2 2363
d2e4a39e 2364static struct type *
ad82864c 2365constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2366{
d2e4a39e
AS
2367 struct type *new_elt_type;
2368 struct type *new_type;
99b1c762
JB
2369 struct type *index_type_desc;
2370 struct type *index_type;
14f9c5c9
AS
2371 LONGEST low_bound, high_bound;
2372
61ee279c 2373 type = ada_check_typedef (type);
78134374 2374 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2375 return type;
2376
99b1c762
JB
2377 index_type_desc = ada_find_parallel_type (type, "___XA");
2378 if (index_type_desc)
940da03e 2379 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2380 NULL);
2381 else
3d967001 2382 index_type = type->index_type ();
99b1c762 2383
e9bb382b 2384 new_type = alloc_type_copy (type);
ad82864c 2385 new_elt_type =
27710edb 2386 constrained_packed_array_type (ada_check_typedef (type->target_type ()),
ad82864c 2387 elt_bits);
99b1c762 2388 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2389 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2390 new_type->set_name (ada_type_name (type));
14f9c5c9 2391
78134374 2392 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2393 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2394 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2395 low_bound = high_bound = 0;
2396 if (high_bound < low_bound)
b6cdbc9a
SM
2397 {
2398 *elt_bits = 0;
2399 new_type->set_length (0);
2400 }
d2e4a39e 2401 else
14f9c5c9
AS
2402 {
2403 *elt_bits *= (high_bound - low_bound + 1);
b6cdbc9a 2404 new_type->set_length ((*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
14f9c5c9
AS
2405 }
2406
9cdd0d12 2407 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2408 return new_type;
2409}
2410
ad82864c
JB
2411/* The array type encoded by TYPE, where
2412 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2413
d2e4a39e 2414static struct type *
ad82864c 2415decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2416{
0d5cff50 2417 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2418 char *name;
0d5cff50 2419 const char *tail;
d2e4a39e 2420 struct type *shadow_type;
14f9c5c9 2421 long bits;
14f9c5c9 2422
727e3d2e
JB
2423 if (!raw_name)
2424 raw_name = ada_type_name (desc_base_type (type));
2425
2426 if (!raw_name)
2427 return NULL;
2428
2429 name = (char *) alloca (strlen (raw_name) + 1);
2430 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2431 type = desc_base_type (type);
2432
14f9c5c9
AS
2433 memcpy (name, raw_name, tail - raw_name);
2434 name[tail - raw_name] = '\000';
2435
b4ba55a1
JB
2436 shadow_type = ada_find_parallel_type_with_name (type, name);
2437
2438 if (shadow_type == NULL)
14f9c5c9 2439 {
323e0a4a 2440 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2441 return NULL;
2442 }
f168693b 2443 shadow_type = check_typedef (shadow_type);
14f9c5c9 2444
78134374 2445 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2446 {
0963b4bd
MS
2447 lim_warning (_("could not understand bounds "
2448 "information on packed array"));
14f9c5c9
AS
2449 return NULL;
2450 }
d2e4a39e 2451
ad82864c
JB
2452 bits = decode_packed_array_bitsize (type);
2453 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2454}
2455
a7400e44
TT
2456/* Helper function for decode_constrained_packed_array. Set the field
2457 bitsize on a series of packed arrays. Returns the number of
2458 elements in TYPE. */
2459
2460static LONGEST
2461recursively_update_array_bitsize (struct type *type)
2462{
2463 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2464
2465 LONGEST low, high;
1f8d2881 2466 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2467 || low > high)
2468 return 0;
2469 LONGEST our_len = high - low + 1;
2470
27710edb 2471 struct type *elt_type = type->target_type ();
a7400e44
TT
2472 if (elt_type->code () == TYPE_CODE_ARRAY)
2473 {
2474 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2475 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2476 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2477
b6cdbc9a
SM
2478 type->set_length (((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2479 / HOST_CHAR_BIT));
a7400e44
TT
2480 }
2481
2482 return our_len;
2483}
2484
ad82864c
JB
2485/* Given that ARR is a struct value *indicating a GNAT constrained packed
2486 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2487 standard GDB array type except that the BITSIZEs of the array
2488 target types are set to the number of bits in each element, and the
4c4b4cd2 2489 type length is set appropriately. */
14f9c5c9 2490
d2e4a39e 2491static struct value *
ad82864c 2492decode_constrained_packed_array (struct value *arr)
14f9c5c9 2493{
4c4b4cd2 2494 struct type *type;
14f9c5c9 2495
11aa919a
PMR
2496 /* If our value is a pointer, then dereference it. Likewise if
2497 the value is a reference. Make sure that this operation does not
2498 cause the target type to be fixed, as this would indirectly cause
2499 this array to be decoded. The rest of the routine assumes that
2500 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2501 and "value_ind" routines to perform the dereferencing, as opposed
2502 to using "ada_coerce_ref" or "ada_value_ind". */
2503 arr = coerce_ref (arr);
d0c97917 2504 if (ada_check_typedef (arr->type ())->code () == TYPE_CODE_PTR)
284614f0 2505 arr = value_ind (arr);
4c4b4cd2 2506
d0c97917 2507 type = decode_constrained_packed_array_type (arr->type ());
14f9c5c9
AS
2508 if (type == NULL)
2509 {
323e0a4a 2510 error (_("can't unpack array"));
14f9c5c9
AS
2511 return NULL;
2512 }
61ee279c 2513
a7400e44
TT
2514 /* Decoding the packed array type could not correctly set the field
2515 bitsizes for any dimension except the innermost, because the
2516 bounds may be variable and were not passed to that function. So,
2517 we further resolve the array bounds here and then update the
2518 sizes. */
50888e42 2519 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
9feb2d07 2520 CORE_ADDR address = arr->address ();
a7400e44 2521 gdb::array_view<const gdb_byte> view
df86565b 2522 = gdb::make_array_view (valaddr, type->length ());
a7400e44
TT
2523 type = resolve_dynamic_type (type, view, address);
2524 recursively_update_array_bitsize (type);
2525
d0c97917
TT
2526 if (type_byte_order (arr->type ()) == BFD_ENDIAN_BIG
2527 && ada_is_modular_type (arr->type ()))
61ee279c
PH
2528 {
2529 /* This is a (right-justified) modular type representing a packed
24b21115
SM
2530 array with no wrapper. In order to interpret the value through
2531 the (left-justified) packed array type we just built, we must
2532 first left-justify it. */
61ee279c
PH
2533 int bit_size, bit_pos;
2534 ULONGEST mod;
2535
d0c97917 2536 mod = ada_modulus (arr->type ()) - 1;
61ee279c
PH
2537 bit_size = 0;
2538 while (mod > 0)
2539 {
2540 bit_size += 1;
2541 mod >>= 1;
2542 }
d0c97917 2543 bit_pos = HOST_CHAR_BIT * arr->type ()->length () - bit_size;
61ee279c
PH
2544 arr = ada_value_primitive_packed_val (arr, NULL,
2545 bit_pos / HOST_CHAR_BIT,
2546 bit_pos % HOST_CHAR_BIT,
2547 bit_size,
2548 type);
2549 }
2550
4c4b4cd2 2551 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2552}
2553
2554
2555/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2556 given in IND. ARR must be a simple array. */
14f9c5c9 2557
d2e4a39e
AS
2558static struct value *
2559value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2560{
2561 int i;
2562 int bits, elt_off, bit_off;
2563 long elt_total_bit_offset;
d2e4a39e
AS
2564 struct type *elt_type;
2565 struct value *v;
14f9c5c9
AS
2566
2567 bits = 0;
2568 elt_total_bit_offset = 0;
d0c97917 2569 elt_type = ada_check_typedef (arr->type ());
d2e4a39e 2570 for (i = 0; i < arity; i += 1)
14f9c5c9 2571 {
78134374 2572 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2573 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2574 error
2575 (_("attempt to do packed indexing of "
0963b4bd 2576 "something other than a packed array"));
14f9c5c9 2577 else
dda83cd7
SM
2578 {
2579 struct type *range_type = elt_type->index_type ();
2580 LONGEST lowerbound, upperbound;
2581 LONGEST idx;
2582
1f8d2881 2583 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2584 {
2585 lim_warning (_("don't know bounds of array"));
2586 lowerbound = upperbound = 0;
2587 }
2588
2589 idx = pos_atr (ind[i]);
2590 if (idx < lowerbound || idx > upperbound)
2591 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2592 (long) idx);
dda83cd7
SM
2593 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2594 elt_total_bit_offset += (idx - lowerbound) * bits;
27710edb 2595 elt_type = ada_check_typedef (elt_type->target_type ());
dda83cd7 2596 }
14f9c5c9
AS
2597 }
2598 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2599 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2600
2601 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2602 bits, elt_type);
14f9c5c9
AS
2603 return v;
2604}
2605
4c4b4cd2 2606/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2607
2608static int
d2e4a39e 2609has_negatives (struct type *type)
14f9c5c9 2610{
78134374 2611 switch (type->code ())
d2e4a39e
AS
2612 {
2613 default:
2614 return 0;
2615 case TYPE_CODE_INT:
c6d940a9 2616 return !type->is_unsigned ();
d2e4a39e 2617 case TYPE_CODE_RANGE:
5537ddd0 2618 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2619 }
14f9c5c9 2620}
d2e4a39e 2621
f93fca70 2622/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2623 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2624 the unpacked buffer.
14f9c5c9 2625
5b639dea
JB
2626 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2627 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2628
f93fca70
JB
2629 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2630 zero otherwise.
14f9c5c9 2631
f93fca70 2632 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2633
f93fca70
JB
2634 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2635
2636static void
2637ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2638 gdb_byte *unpacked, int unpacked_len,
2639 int is_big_endian, int is_signed_type,
2640 int is_scalar)
2641{
a1c95e6b
JB
2642 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2643 int src_idx; /* Index into the source area */
2644 int src_bytes_left; /* Number of source bytes left to process. */
2645 int srcBitsLeft; /* Number of source bits left to move */
2646 int unusedLS; /* Number of bits in next significant
dda83cd7 2647 byte of source that are unused */
a1c95e6b 2648
a1c95e6b
JB
2649 int unpacked_idx; /* Index into the unpacked buffer */
2650 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2651
4c4b4cd2 2652 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2653 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2654 unsigned char sign;
a1c95e6b 2655
4c4b4cd2
PH
2656 /* Transmit bytes from least to most significant; delta is the direction
2657 the indices move. */
f93fca70 2658 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2659
5b639dea
JB
2660 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2661 bits from SRC. .*/
2662 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2663 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2664 bit_size, unpacked_len);
2665
14f9c5c9 2666 srcBitsLeft = bit_size;
086ca51f 2667 src_bytes_left = src_len;
f93fca70 2668 unpacked_bytes_left = unpacked_len;
14f9c5c9 2669 sign = 0;
f93fca70
JB
2670
2671 if (is_big_endian)
14f9c5c9 2672 {
086ca51f 2673 src_idx = src_len - 1;
f93fca70
JB
2674 if (is_signed_type
2675 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2676 sign = ~0;
d2e4a39e
AS
2677
2678 unusedLS =
dda83cd7
SM
2679 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2680 % HOST_CHAR_BIT;
14f9c5c9 2681
f93fca70
JB
2682 if (is_scalar)
2683 {
dda83cd7
SM
2684 accumSize = 0;
2685 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2686 }
2687 else
2688 {
dda83cd7
SM
2689 /* Non-scalar values must be aligned at a byte boundary... */
2690 accumSize =
2691 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2692 /* ... And are placed at the beginning (most-significant) bytes
2693 of the target. */
2694 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2695 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2696 }
14f9c5c9 2697 }
d2e4a39e 2698 else
14f9c5c9
AS
2699 {
2700 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2701
086ca51f 2702 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2703 unusedLS = bit_offset;
2704 accumSize = 0;
2705
f93fca70 2706 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2707 sign = ~0;
14f9c5c9 2708 }
d2e4a39e 2709
14f9c5c9 2710 accum = 0;
086ca51f 2711 while (src_bytes_left > 0)
14f9c5c9
AS
2712 {
2713 /* Mask for removing bits of the next source byte that are not
dda83cd7 2714 part of the value. */
d2e4a39e 2715 unsigned int unusedMSMask =
dda83cd7
SM
2716 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2717 1;
4c4b4cd2 2718 /* Sign-extend bits for this byte. */
14f9c5c9 2719 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2720
d2e4a39e 2721 accum |=
dda83cd7 2722 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2723 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2724 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2725 {
2726 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2727 accumSize -= HOST_CHAR_BIT;
2728 accum >>= HOST_CHAR_BIT;
2729 unpacked_bytes_left -= 1;
2730 unpacked_idx += delta;
2731 }
14f9c5c9
AS
2732 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2733 unusedLS = 0;
086ca51f
JB
2734 src_bytes_left -= 1;
2735 src_idx += delta;
14f9c5c9 2736 }
086ca51f 2737 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2738 {
2739 accum |= sign << accumSize;
db297a65 2740 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2741 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2742 if (accumSize < 0)
2743 accumSize = 0;
14f9c5c9 2744 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2745 unpacked_bytes_left -= 1;
2746 unpacked_idx += delta;
14f9c5c9 2747 }
f93fca70
JB
2748}
2749
2750/* Create a new value of type TYPE from the contents of OBJ starting
2751 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2752 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2753 assigning through the result will set the field fetched from.
2754 VALADDR is ignored unless OBJ is NULL, in which case,
2755 VALADDR+OFFSET must address the start of storage containing the
2756 packed value. The value returned in this case is never an lval.
2757 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2758
2759struct value *
2760ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2761 long offset, int bit_offset, int bit_size,
dda83cd7 2762 struct type *type)
f93fca70
JB
2763{
2764 struct value *v;
bfb1c796 2765 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2766 gdb_byte *unpacked;
220475ed 2767 const int is_scalar = is_scalar_type (type);
d5a22e77 2768 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2769 gdb::byte_vector staging;
f93fca70
JB
2770
2771 type = ada_check_typedef (type);
2772
d0a9e810 2773 if (obj == NULL)
bfb1c796 2774 src = valaddr + offset;
d0a9e810 2775 else
50888e42 2776 src = value_contents (obj).data () + offset;
d0a9e810
JB
2777
2778 if (is_dynamic_type (type))
2779 {
2780 /* The length of TYPE might by dynamic, so we need to resolve
2781 TYPE in order to know its actual size, which we then use
2782 to create the contents buffer of the value we return.
2783 The difficulty is that the data containing our object is
2784 packed, and therefore maybe not at a byte boundary. So, what
2785 we do, is unpack the data into a byte-aligned buffer, and then
2786 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2787 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2788 staging.resize (staging_len);
d0a9e810
JB
2789
2790 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2791 staging.data (), staging.size (),
d0a9e810
JB
2792 is_big_endian, has_negatives (type),
2793 is_scalar);
b249d2c2 2794 type = resolve_dynamic_type (type, staging, 0);
df86565b 2795 if (type->length () < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
0cafa88c
JB
2796 {
2797 /* This happens when the length of the object is dynamic,
2798 and is actually smaller than the space reserved for it.
2799 For instance, in an array of variant records, the bit_size
2800 we're given is the array stride, which is constant and
2801 normally equal to the maximum size of its element.
2802 But, in reality, each element only actually spans a portion
2803 of that stride. */
df86565b 2804 bit_size = type->length () * HOST_CHAR_BIT;
0cafa88c 2805 }
d0a9e810
JB
2806 }
2807
f93fca70
JB
2808 if (obj == NULL)
2809 {
317c3ed9 2810 v = value::allocate (type);
bfb1c796 2811 src = valaddr + offset;
f93fca70 2812 }
3ee3b270 2813 else if (VALUE_LVAL (obj) == lval_memory && obj->lazy ())
f93fca70 2814 {
0cafa88c 2815 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2816 gdb_byte *buf;
0cafa88c 2817
9feb2d07 2818 v = value_at (type, obj->address () + offset);
bfb1c796 2819 buf = (gdb_byte *) alloca (src_len);
9feb2d07 2820 read_memory (v->address (), buf, src_len);
bfb1c796 2821 src = buf;
f93fca70
JB
2822 }
2823 else
2824 {
317c3ed9 2825 v = value::allocate (type);
50888e42 2826 src = value_contents (obj).data () + offset;
f93fca70
JB
2827 }
2828
2829 if (obj != NULL)
2830 {
2831 long new_offset = offset;
2832
2833 set_value_component_location (v, obj);
5011c493 2834 v->set_bitpos (bit_offset + obj->bitpos ());
f49d5fa2 2835 v->set_bitsize (bit_size);
5011c493 2836 if (v->bitpos () >= HOST_CHAR_BIT)
dda83cd7 2837 {
f93fca70 2838 ++new_offset;
5011c493 2839 v->set_bitpos (v->bitpos () - HOST_CHAR_BIT);
dda83cd7 2840 }
76675c4d 2841 v->set_offset (new_offset);
f93fca70
JB
2842
2843 /* Also set the parent value. This is needed when trying to
2844 assign a new value (in inferior memory). */
fac7bdaa 2845 v->set_parent (obj);
f93fca70
JB
2846 }
2847 else
f49d5fa2 2848 v->set_bitsize (bit_size);
50888e42 2849 unpacked = value_contents_writeable (v).data ();
f93fca70
JB
2850
2851 if (bit_size == 0)
2852 {
df86565b 2853 memset (unpacked, 0, type->length ());
f93fca70
JB
2854 return v;
2855 }
2856
df86565b 2857 if (staging.size () == type->length ())
f93fca70 2858 {
d0a9e810
JB
2859 /* Small short-cut: If we've unpacked the data into a buffer
2860 of the same size as TYPE's length, then we can reuse that,
2861 instead of doing the unpacking again. */
d5722aa2 2862 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2863 }
d0a9e810
JB
2864 else
2865 ada_unpack_from_contents (src, bit_offset, bit_size,
df86565b 2866 unpacked, type->length (),
d0a9e810 2867 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2868
14f9c5c9
AS
2869 return v;
2870}
d2e4a39e 2871
14f9c5c9
AS
2872/* Store the contents of FROMVAL into the location of TOVAL.
2873 Return a new value with the location of TOVAL and contents of
2874 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2875 floating-point or non-scalar types. */
14f9c5c9 2876
d2e4a39e
AS
2877static struct value *
2878ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2879{
d0c97917 2880 struct type *type = toval->type ();
f49d5fa2 2881 int bits = toval->bitsize ();
14f9c5c9 2882
52ce6436
PH
2883 toval = ada_coerce_ref (toval);
2884 fromval = ada_coerce_ref (fromval);
2885
d0c97917 2886 if (ada_is_direct_array_type (toval->type ()))
52ce6436 2887 toval = ada_coerce_to_simple_array (toval);
d0c97917 2888 if (ada_is_direct_array_type (fromval->type ()))
52ce6436
PH
2889 fromval = ada_coerce_to_simple_array (fromval);
2890
4b53ca88 2891 if (!toval->deprecated_modifiable ())
323e0a4a 2892 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2893
d2e4a39e 2894 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2895 && bits > 0
78134374 2896 && (type->code () == TYPE_CODE_FLT
dda83cd7 2897 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2898 {
5011c493 2899 int len = (toval->bitpos ()
df407dfe 2900 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2901 int from_size;
224c3ddb 2902 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2903 struct value *val;
9feb2d07 2904 CORE_ADDR to_addr = toval->address ();
14f9c5c9 2905
78134374 2906 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2907 fromval = value_cast (type, fromval);
14f9c5c9 2908
52ce6436 2909 read_memory (to_addr, buffer, len);
f49d5fa2 2910 from_size = fromval->bitsize ();
aced2898 2911 if (from_size == 0)
d0c97917 2912 from_size = fromval->type ()->length () * TARGET_CHAR_BIT;
d48e62f4 2913
d5a22e77 2914 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4 2915 ULONGEST from_offset = 0;
d0c97917 2916 if (is_big_endian && is_scalar_type (fromval->type ()))
d48e62f4 2917 from_offset = from_size - bits;
5011c493 2918 copy_bitwise (buffer, toval->bitpos (),
50888e42 2919 value_contents (fromval).data (), from_offset,
d48e62f4 2920 bits, is_big_endian);
972daa01 2921 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2922
14f9c5c9 2923 val = value_copy (toval);
fb2a515f
SM
2924 memcpy (value_contents_raw (val).data (),
2925 value_contents (fromval).data (),
df86565b 2926 type->length ());
81ae560c 2927 val->deprecated_set_type (type);
d2e4a39e 2928
14f9c5c9
AS
2929 return val;
2930 }
2931
2932 return value_assign (toval, fromval);
2933}
2934
2935
7c512744
JB
2936/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2937 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2938 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2939 COMPONENT, and not the inferior's memory. The current contents
2940 of COMPONENT are ignored.
2941
2942 Although not part of the initial design, this function also works
2943 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2944 had a null address, and COMPONENT had an address which is equal to
2945 its offset inside CONTAINER. */
2946
52ce6436
PH
2947static void
2948value_assign_to_component (struct value *container, struct value *component,
2949 struct value *val)
2950{
2951 LONGEST offset_in_container =
9feb2d07 2952 (LONGEST) (component->address () - container->address ());
7c512744 2953 int bit_offset_in_container =
5011c493 2954 component->bitpos () - container->bitpos ();
52ce6436 2955 int bits;
7c512744 2956
d0c97917 2957 val = value_cast (component->type (), val);
52ce6436 2958
f49d5fa2 2959 if (component->bitsize () == 0)
d0c97917 2960 bits = TARGET_CHAR_BIT * component->type ()->length ();
52ce6436 2961 else
f49d5fa2 2962 bits = component->bitsize ();
52ce6436 2963
d0c97917 2964 if (type_byte_order (container->type ()) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2965 {
2966 int src_offset;
2967
d0c97917 2968 if (is_scalar_type (check_typedef (component->type ())))
dda83cd7 2969 src_offset
d0c97917 2970 = component->type ()->length () * TARGET_CHAR_BIT - bits;
2a62dfa9
JB
2971 else
2972 src_offset = 0;
50888e42
SM
2973 copy_bitwise ((value_contents_writeable (container).data ()
2974 + offset_in_container),
5011c493 2975 container->bitpos () + bit_offset_in_container,
50888e42 2976 value_contents (val).data (), src_offset, bits, 1);
2a62dfa9 2977 }
52ce6436 2978 else
50888e42
SM
2979 copy_bitwise ((value_contents_writeable (container).data ()
2980 + offset_in_container),
5011c493 2981 container->bitpos () + bit_offset_in_container,
50888e42 2982 value_contents (val).data (), 0, bits, 0);
7c512744
JB
2983}
2984
736ade86
XR
2985/* Determine if TYPE is an access to an unconstrained array. */
2986
d91e9ea8 2987bool
736ade86
XR
2988ada_is_access_to_unconstrained_array (struct type *type)
2989{
78134374 2990 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2991 && is_thick_pntr (ada_typedef_target_type (type)));
2992}
2993
4c4b4cd2
PH
2994/* The value of the element of array ARR at the ARITY indices given in IND.
2995 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2996 thereto. */
2997
d2e4a39e
AS
2998struct value *
2999ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
3000{
3001 int k;
d2e4a39e
AS
3002 struct value *elt;
3003 struct type *elt_type;
14f9c5c9
AS
3004
3005 elt = ada_coerce_to_simple_array (arr);
3006
d0c97917 3007 elt_type = ada_check_typedef (elt->type ());
78134374 3008 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
3009 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
3010 return value_subscript_packed (elt, arity, ind);
3011
3012 for (k = 0; k < arity; k += 1)
3013 {
27710edb 3014 struct type *saved_elt_type = elt_type->target_type ();
b9c50e9a 3015
78134374 3016 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 3017 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 3018
2497b498 3019 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
3020
3021 if (ada_is_access_to_unconstrained_array (saved_elt_type)
d0c97917 3022 && elt->type ()->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
3023 {
3024 /* The element is a typedef to an unconstrained array,
3025 except that the value_subscript call stripped the
3026 typedef layer. The typedef layer is GNAT's way to
3027 specify that the element is, at the source level, an
3028 access to the unconstrained array, rather than the
3029 unconstrained array. So, we need to restore that
3030 typedef layer, which we can do by forcing the element's
3031 type back to its original type. Otherwise, the returned
3032 value is going to be printed as the array, rather
3033 than as an access. Another symptom of the same issue
3034 would be that an expression trying to dereference the
3035 element would also be improperly rejected. */
81ae560c 3036 elt->deprecated_set_type (saved_elt_type);
b9c50e9a
XR
3037 }
3038
d0c97917 3039 elt_type = ada_check_typedef (elt->type ());
14f9c5c9 3040 }
b9c50e9a 3041
14f9c5c9
AS
3042 return elt;
3043}
3044
deede10c
JB
3045/* Assuming ARR is a pointer to a GDB array, the value of the element
3046 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
3047 Does not read the entire array into memory.
3048
3049 Note: Unlike what one would expect, this function is used instead of
3050 ada_value_subscript for basically all non-packed array types. The reason
3051 for this is that a side effect of doing our own pointer arithmetics instead
3052 of relying on value_subscript is that there is no implicit typedef peeling.
3053 This is important for arrays of array accesses, where it allows us to
3054 preserve the fact that the array's element is an array access, where the
3055 access part os encoded in a typedef layer. */
14f9c5c9 3056
2c0b251b 3057static struct value *
deede10c 3058ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
3059{
3060 int k;
919e6dbe 3061 struct value *array_ind = ada_value_ind (arr);
deede10c 3062 struct type *type
463b870d 3063 = check_typedef (array_ind->enclosing_type ());
919e6dbe 3064
78134374 3065 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
3066 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3067 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
3068
3069 for (k = 0; k < arity; k += 1)
3070 {
3071 LONGEST lwb, upb;
14f9c5c9 3072
78134374 3073 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 3074 error (_("too many subscripts (%d expected)"), k);
27710edb 3075 arr = value_cast (lookup_pointer_type (type->target_type ()),
dda83cd7 3076 value_copy (arr));
3d967001 3077 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 3078 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
27710edb 3079 type = type->target_type ();
14f9c5c9
AS
3080 }
3081
3082 return value_ind (arr);
3083}
3084
0b5d8877 3085/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
3086 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3087 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3088 this array is LOW, as per Ada rules. */
0b5d8877 3089static struct value *
f5938064 3090ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 3091 int low, int high)
0b5d8877 3092{
b0dd7688 3093 struct type *type0 = ada_check_typedef (type);
27710edb 3094 struct type *base_index_type = type0->index_type ()->target_type ();
0c9c3474 3095 struct type *index_type
aa715135 3096 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab 3097 struct type *slice_type = create_array_type_with_stride
27710edb 3098 (NULL, type0->target_type (), index_type,
24e99c6c 3099 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 3100 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 3101 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 3102 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
3103 CORE_ADDR base;
3104
6244c119
SM
3105 low_pos = discrete_position (base_index_type, low);
3106 base_low_pos = discrete_position (base_index_type, base_low);
3107
3108 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
3109 {
3110 warning (_("unable to get positions in slice, use bounds instead"));
3111 low_pos = low;
3112 base_low_pos = base_low;
3113 }
5b4ee69b 3114
7ff5b937
TT
3115 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3116 if (stride == 0)
df86565b 3117 stride = type0->target_type ()->length ();
7ff5b937 3118
6244c119 3119 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 3120 return value_at_lazy (slice_type, base);
0b5d8877
PH
3121}
3122
3123
3124static struct value *
3125ada_value_slice (struct value *array, int low, int high)
3126{
d0c97917 3127 struct type *type = ada_check_typedef (array->type ());
27710edb 3128 struct type *base_index_type = type->index_type ()->target_type ();
0c9c3474 3129 struct type *index_type
3d967001 3130 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab 3131 struct type *slice_type = create_array_type_with_stride
27710edb 3132 (NULL, type->target_type (), index_type,
24e99c6c 3133 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 3134 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
3135 gdb::optional<LONGEST> low_pos, high_pos;
3136
5b4ee69b 3137
6244c119
SM
3138 low_pos = discrete_position (base_index_type, low);
3139 high_pos = discrete_position (base_index_type, high);
3140
3141 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
3142 {
3143 warning (_("unable to get positions in slice, use bounds instead"));
3144 low_pos = low;
3145 high_pos = high;
3146 }
3147
3148 return value_cast (slice_type,
6244c119 3149 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
3150}
3151
14f9c5c9
AS
3152/* If type is a record type in the form of a standard GNAT array
3153 descriptor, returns the number of dimensions for type. If arr is a
3154 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 3155 type designation. Otherwise, returns 0. */
14f9c5c9
AS
3156
3157int
d2e4a39e 3158ada_array_arity (struct type *type)
14f9c5c9
AS
3159{
3160 int arity;
3161
3162 if (type == NULL)
3163 return 0;
3164
3165 type = desc_base_type (type);
3166
3167 arity = 0;
78134374 3168 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 3169 return desc_arity (desc_bounds_type (type));
d2e4a39e 3170 else
78134374 3171 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 3172 {
dda83cd7 3173 arity += 1;
27710edb 3174 type = ada_check_typedef (type->target_type ());
14f9c5c9 3175 }
d2e4a39e 3176
14f9c5c9
AS
3177 return arity;
3178}
3179
3180/* If TYPE is a record type in the form of a standard GNAT array
3181 descriptor or a simple array type, returns the element type for
3182 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3183 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3184
d2e4a39e
AS
3185struct type *
3186ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3187{
3188 type = desc_base_type (type);
3189
78134374 3190 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
3191 {
3192 int k;
d2e4a39e 3193 struct type *p_array_type;
14f9c5c9 3194
556bdfd4 3195 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3196
3197 k = ada_array_arity (type);
3198 if (k == 0)
dda83cd7 3199 return NULL;
d2e4a39e 3200
4c4b4cd2 3201 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3202 if (nindices >= 0 && k > nindices)
dda83cd7 3203 k = nindices;
d2e4a39e 3204 while (k > 0 && p_array_type != NULL)
dda83cd7 3205 {
27710edb 3206 p_array_type = ada_check_typedef (p_array_type->target_type ());
dda83cd7
SM
3207 k -= 1;
3208 }
14f9c5c9
AS
3209 return p_array_type;
3210 }
78134374 3211 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 3212 {
78134374 3213 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7 3214 {
27710edb 3215 type = type->target_type ();
6a40c6e4
TT
3216 /* A multi-dimensional array is represented using a sequence
3217 of array types. If one of these types has a name, then
3218 it is not another dimension of the outer array, but
3219 rather the element type of the outermost array. */
3220 if (type->name () != nullptr)
3221 break;
dda83cd7
SM
3222 nindices -= 1;
3223 }
14f9c5c9
AS
3224 return type;
3225 }
3226
3227 return NULL;
3228}
3229
08a057e6 3230/* See ada-lang.h. */
14f9c5c9 3231
08a057e6 3232struct type *
1eea4ebd 3233ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3234{
4c4b4cd2
PH
3235 struct type *result_type;
3236
14f9c5c9
AS
3237 type = desc_base_type (type);
3238
1eea4ebd
UW
3239 if (n < 0 || n > ada_array_arity (type))
3240 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3241
4c4b4cd2 3242 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3243 {
3244 int i;
3245
3246 for (i = 1; i < n; i += 1)
2869ac4b
TT
3247 {
3248 type = ada_check_typedef (type);
27710edb 3249 type = type->target_type ();
2869ac4b 3250 }
27710edb 3251 result_type = ada_check_typedef (type)->index_type ()->target_type ();
4c4b4cd2 3252 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
3253 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3254 perhaps stabsread.c would make more sense. */
78134374 3255 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 3256 result_type = NULL;
14f9c5c9 3257 }
d2e4a39e 3258 else
1eea4ebd
UW
3259 {
3260 result_type = desc_index_type (desc_bounds_type (type), n);
3261 if (result_type == NULL)
3262 error (_("attempt to take bound of something that is not an array"));
3263 }
3264
3265 return result_type;
14f9c5c9
AS
3266}
3267
3268/* Given that arr is an array type, returns the lower bound of the
3269 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3270 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3271 array-descriptor type. It works for other arrays with bounds supplied
3272 by run-time quantities other than discriminants. */
14f9c5c9 3273
abb68b3e 3274static LONGEST
fb5e3d5c 3275ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3276{
8a48ac95 3277 struct type *type, *index_type_desc, *index_type;
1ce677a4 3278 int i;
262452ec
JK
3279
3280 gdb_assert (which == 0 || which == 1);
14f9c5c9 3281
ad82864c
JB
3282 if (ada_is_constrained_packed_array_type (arr_type))
3283 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3284
4c4b4cd2 3285 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3286 return (LONGEST) - which;
14f9c5c9 3287
78134374 3288 if (arr_type->code () == TYPE_CODE_PTR)
27710edb 3289 type = arr_type->target_type ();
14f9c5c9
AS
3290 else
3291 type = arr_type;
3292
22c4c60c 3293 if (type->is_fixed_instance ())
bafffb51
JB
3294 {
3295 /* The array has already been fixed, so we do not need to
3296 check the parallel ___XA type again. That encoding has
3297 already been applied, so ignore it now. */
3298 index_type_desc = NULL;
3299 }
3300 else
3301 {
3302 index_type_desc = ada_find_parallel_type (type, "___XA");
3303 ada_fixup_array_indexes_type (index_type_desc);
3304 }
3305
262452ec 3306 if (index_type_desc != NULL)
940da03e 3307 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 3308 NULL);
262452ec 3309 else
8a48ac95
JB
3310 {
3311 struct type *elt_type = check_typedef (type);
3312
3313 for (i = 1; i < n; i++)
27710edb 3314 elt_type = check_typedef (elt_type->target_type ());
8a48ac95 3315
3d967001 3316 index_type = elt_type->index_type ();
8a48ac95 3317 }
262452ec 3318
43bbcdc2
PH
3319 return
3320 (LONGEST) (which == 0
dda83cd7
SM
3321 ? ada_discrete_type_low_bound (index_type)
3322 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3323}
3324
3325/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3326 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3327 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3328 supplied by run-time quantities other than discriminants. */
14f9c5c9 3329
1eea4ebd 3330static LONGEST
4dc81987 3331ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3332{
eb479039
JB
3333 struct type *arr_type;
3334
d0c97917 3335 if (check_typedef (arr->type ())->code () == TYPE_CODE_PTR)
eb479039 3336 arr = value_ind (arr);
463b870d 3337 arr_type = arr->enclosing_type ();
14f9c5c9 3338
ad82864c
JB
3339 if (ada_is_constrained_packed_array_type (arr_type))
3340 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3341 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3342 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3343 else
1eea4ebd 3344 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3345}
3346
3347/* Given that arr is an array value, returns the length of the
3348 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3349 supplied by run-time quantities other than discriminants.
3350 Does not work for arrays indexed by enumeration types with representation
3351 clauses at the moment. */
14f9c5c9 3352
1eea4ebd 3353static LONGEST
d2e4a39e 3354ada_array_length (struct value *arr, int n)
14f9c5c9 3355{
aa715135
JG
3356 struct type *arr_type, *index_type;
3357 int low, high;
eb479039 3358
d0c97917 3359 if (check_typedef (arr->type ())->code () == TYPE_CODE_PTR)
eb479039 3360 arr = value_ind (arr);
463b870d 3361 arr_type = arr->enclosing_type ();
14f9c5c9 3362
ad82864c
JB
3363 if (ada_is_constrained_packed_array_type (arr_type))
3364 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3365
4c4b4cd2 3366 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3367 {
3368 low = ada_array_bound_from_type (arr_type, n, 0);
3369 high = ada_array_bound_from_type (arr_type, n, 1);
3370 }
14f9c5c9 3371 else
aa715135
JG
3372 {
3373 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3374 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3375 }
3376
f168693b 3377 arr_type = check_typedef (arr_type);
7150d33c 3378 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3379 if (index_type != NULL)
3380 {
3381 struct type *base_type;
78134374 3382 if (index_type->code () == TYPE_CODE_RANGE)
27710edb 3383 base_type = index_type->target_type ();
aa715135
JG
3384 else
3385 base_type = index_type;
3386
3387 low = pos_atr (value_from_longest (base_type, low));
3388 high = pos_atr (value_from_longest (base_type, high));
3389 }
3390 return high - low + 1;
4c4b4cd2
PH
3391}
3392
bff8c71f
TT
3393/* An array whose type is that of ARR_TYPE (an array type), with
3394 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3395 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3396
3397static struct value *
bff8c71f 3398empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3399{
b0dd7688 3400 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3401 struct type *index_type
3402 = create_static_range_type
27710edb 3403 (NULL, arr_type0->index_type ()->target_type (), low,
bff8c71f 3404 high < low ? low - 1 : high);
b0dd7688 3405 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3406
317c3ed9 3407 return value::allocate (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3408}
14f9c5c9 3409\f
d2e4a39e 3410
dda83cd7 3411 /* Name resolution */
14f9c5c9 3412
4c4b4cd2
PH
3413/* The "decoded" name for the user-definable Ada operator corresponding
3414 to OP. */
14f9c5c9 3415
d2e4a39e 3416static const char *
4c4b4cd2 3417ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3418{
3419 int i;
3420
4c4b4cd2 3421 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3422 {
3423 if (ada_opname_table[i].op == op)
dda83cd7 3424 return ada_opname_table[i].decoded;
14f9c5c9 3425 }
323e0a4a 3426 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3427}
3428
de93309a
SM
3429/* Returns true (non-zero) iff decoded name N0 should appear before N1
3430 in a listing of choices during disambiguation (see sort_choices, below).
3431 The idea is that overloadings of a subprogram name from the
3432 same package should sort in their source order. We settle for ordering
3433 such symbols by their trailing number (__N or $N). */
14f9c5c9 3434
de93309a
SM
3435static int
3436encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3437{
de93309a
SM
3438 if (N1 == NULL)
3439 return 0;
3440 else if (N0 == NULL)
3441 return 1;
3442 else
3443 {
3444 int k0, k1;
30b15541 3445
de93309a 3446 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3447 ;
de93309a 3448 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3449 ;
de93309a 3450 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3451 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3452 {
3453 int n0, n1;
3454
3455 n0 = k0;
3456 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3457 n0 -= 1;
3458 n1 = k1;
3459 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3460 n1 -= 1;
3461 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3462 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3463 }
de93309a
SM
3464 return (strcmp (N0, N1) < 0);
3465 }
14f9c5c9
AS
3466}
3467
de93309a
SM
3468/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3469 encoded names. */
14f9c5c9 3470
de93309a
SM
3471static void
3472sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3473{
14f9c5c9 3474 int i;
14f9c5c9 3475
de93309a 3476 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3477 {
de93309a
SM
3478 struct block_symbol sym = syms[i];
3479 int j;
3480
3481 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3482 {
3483 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3484 sym.symbol->linkage_name ()))
3485 break;
3486 syms[j + 1] = syms[j];
3487 }
de93309a
SM
3488 syms[j + 1] = sym;
3489 }
3490}
14f9c5c9 3491
de93309a
SM
3492/* Whether GDB should display formals and return types for functions in the
3493 overloads selection menu. */
3494static bool print_signatures = true;
4c4b4cd2 3495
de93309a
SM
3496/* Print the signature for SYM on STREAM according to the FLAGS options. For
3497 all but functions, the signature is just the name of the symbol. For
3498 functions, this is the name of the function, the list of types for formals
3499 and the return type (if any). */
4c4b4cd2 3500
de93309a
SM
3501static void
3502ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3503 const struct type_print_options *flags)
3504{
5f9c5a63 3505 struct type *type = sym->type ();
14f9c5c9 3506
6cb06a8c 3507 gdb_printf (stream, "%s", sym->print_name ());
de93309a
SM
3508 if (!print_signatures
3509 || type == NULL
78134374 3510 || type->code () != TYPE_CODE_FUNC)
de93309a 3511 return;
4c4b4cd2 3512
1f704f76 3513 if (type->num_fields () > 0)
de93309a
SM
3514 {
3515 int i;
14f9c5c9 3516
6cb06a8c 3517 gdb_printf (stream, " (");
1f704f76 3518 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3519 {
3520 if (i > 0)
6cb06a8c 3521 gdb_printf (stream, "; ");
940da03e 3522 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3523 flags);
3524 }
6cb06a8c 3525 gdb_printf (stream, ")");
de93309a 3526 }
27710edb
SM
3527 if (type->target_type () != NULL
3528 && type->target_type ()->code () != TYPE_CODE_VOID)
de93309a 3529 {
6cb06a8c 3530 gdb_printf (stream, " return ");
27710edb 3531 ada_print_type (type->target_type (), NULL, stream, -1, 0, flags);
de93309a
SM
3532 }
3533}
14f9c5c9 3534
de93309a
SM
3535/* Read and validate a set of numeric choices from the user in the
3536 range 0 .. N_CHOICES-1. Place the results in increasing
3537 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3538
de93309a
SM
3539 The user types choices as a sequence of numbers on one line
3540 separated by blanks, encoding them as follows:
14f9c5c9 3541
de93309a
SM
3542 + A choice of 0 means to cancel the selection, throwing an error.
3543 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3544 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3545
de93309a 3546 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3547
de93309a
SM
3548 ANNOTATION_SUFFIX, if present, is used to annotate the input
3549 prompts (for use with the -f switch). */
14f9c5c9 3550
de93309a
SM
3551static int
3552get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3553 int is_all_choice, const char *annotation_suffix)
de93309a 3554{
992a7040 3555 const char *args;
de93309a
SM
3556 const char *prompt;
3557 int n_chosen;
3558 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3559
de93309a
SM
3560 prompt = getenv ("PS2");
3561 if (prompt == NULL)
3562 prompt = "> ";
4c4b4cd2 3563
f8631e5e
SM
3564 std::string buffer;
3565 args = command_line_input (buffer, prompt, annotation_suffix);
4c4b4cd2 3566
de93309a
SM
3567 if (args == NULL)
3568 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3569
de93309a 3570 n_chosen = 0;
4c4b4cd2 3571
de93309a
SM
3572 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3573 order, as given in args. Choices are validated. */
3574 while (1)
14f9c5c9 3575 {
de93309a
SM
3576 char *args2;
3577 int choice, j;
76a01679 3578
de93309a
SM
3579 args = skip_spaces (args);
3580 if (*args == '\0' && n_chosen == 0)
dda83cd7 3581 error_no_arg (_("one or more choice numbers"));
de93309a 3582 else if (*args == '\0')
dda83cd7 3583 break;
76a01679 3584
de93309a
SM
3585 choice = strtol (args, &args2, 10);
3586 if (args == args2 || choice < 0
dda83cd7
SM
3587 || choice > n_choices + first_choice - 1)
3588 error (_("Argument must be choice number"));
de93309a 3589 args = args2;
76a01679 3590
de93309a 3591 if (choice == 0)
dda83cd7 3592 error (_("cancelled"));
76a01679 3593
de93309a 3594 if (choice < first_choice)
dda83cd7
SM
3595 {
3596 n_chosen = n_choices;
3597 for (j = 0; j < n_choices; j += 1)
3598 choices[j] = j;
3599 break;
3600 }
de93309a 3601 choice -= first_choice;
76a01679 3602
de93309a 3603 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3604 {
3605 }
4c4b4cd2 3606
de93309a 3607 if (j < 0 || choice != choices[j])
dda83cd7
SM
3608 {
3609 int k;
4c4b4cd2 3610
dda83cd7
SM
3611 for (k = n_chosen - 1; k > j; k -= 1)
3612 choices[k + 1] = choices[k];
3613 choices[j + 1] = choice;
3614 n_chosen += 1;
3615 }
14f9c5c9
AS
3616 }
3617
de93309a
SM
3618 if (n_chosen > max_results)
3619 error (_("Select no more than %d of the above"), max_results);
3620
3621 return n_chosen;
14f9c5c9
AS
3622}
3623
de93309a
SM
3624/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3625 by asking the user (if necessary), returning the number selected,
3626 and setting the first elements of SYMS items. Error if no symbols
3627 selected. */
3628
3629/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3630 to be re-integrated one of these days. */
14f9c5c9
AS
3631
3632static int
de93309a 3633user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3634{
de93309a
SM
3635 int i;
3636 int *chosen = XALLOCAVEC (int , nsyms);
3637 int n_chosen;
3638 int first_choice = (max_results == 1) ? 1 : 2;
3639 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3640
de93309a
SM
3641 if (max_results < 1)
3642 error (_("Request to select 0 symbols!"));
3643 if (nsyms <= 1)
3644 return nsyms;
14f9c5c9 3645
de93309a
SM
3646 if (select_mode == multiple_symbols_cancel)
3647 error (_("\
3648canceled because the command is ambiguous\n\
3649See set/show multiple-symbol."));
14f9c5c9 3650
de93309a
SM
3651 /* If select_mode is "all", then return all possible symbols.
3652 Only do that if more than one symbol can be selected, of course.
3653 Otherwise, display the menu as usual. */
3654 if (select_mode == multiple_symbols_all && max_results > 1)
3655 return nsyms;
14f9c5c9 3656
6cb06a8c 3657 gdb_printf (_("[0] cancel\n"));
de93309a 3658 if (max_results > 1)
6cb06a8c 3659 gdb_printf (_("[1] all\n"));
14f9c5c9 3660
de93309a 3661 sort_choices (syms, nsyms);
14f9c5c9 3662
de93309a
SM
3663 for (i = 0; i < nsyms; i += 1)
3664 {
3665 if (syms[i].symbol == NULL)
dda83cd7 3666 continue;
14f9c5c9 3667
66d7f48f 3668 if (syms[i].symbol->aclass () == LOC_BLOCK)
dda83cd7
SM
3669 {
3670 struct symtab_and_line sal =
3671 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3672
6cb06a8c 3673 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3674 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3675 &type_print_raw_options);
3676 if (sal.symtab == NULL)
6cb06a8c
TT
3677 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3678 metadata_style.style ().ptr (), nullptr, sal.line);
de93309a 3679 else
6cb06a8c 3680 gdb_printf
de93309a
SM
3681 (_(" at %ps:%d\n"),
3682 styled_string (file_name_style.style (),
3683 symtab_to_filename_for_display (sal.symtab)),
3684 sal.line);
dda83cd7
SM
3685 continue;
3686 }
76a01679 3687 else
dda83cd7
SM
3688 {
3689 int is_enumeral =
66d7f48f 3690 (syms[i].symbol->aclass () == LOC_CONST
5f9c5a63
SM
3691 && syms[i].symbol->type () != NULL
3692 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
de93309a 3693 struct symtab *symtab = NULL;
4c4b4cd2 3694
7b3ecc75 3695 if (syms[i].symbol->is_objfile_owned ())
4206d69e 3696 symtab = syms[i].symbol->symtab ();
de93309a 3697
5d0027b9 3698 if (syms[i].symbol->line () != 0 && symtab != NULL)
de93309a 3699 {
6cb06a8c 3700 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3701 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3702 &type_print_raw_options);
6cb06a8c
TT
3703 gdb_printf (_(" at %s:%d\n"),
3704 symtab_to_filename_for_display (symtab),
3705 syms[i].symbol->line ());
de93309a 3706 }
dda83cd7 3707 else if (is_enumeral
5f9c5a63 3708 && syms[i].symbol->type ()->name () != NULL)
dda83cd7 3709 {
6cb06a8c 3710 gdb_printf (("[%d] "), i + first_choice);
5f9c5a63 3711 ada_print_type (syms[i].symbol->type (), NULL,
dda83cd7 3712 gdb_stdout, -1, 0, &type_print_raw_options);
6cb06a8c
TT
3713 gdb_printf (_("'(%s) (enumeral)\n"),
3714 syms[i].symbol->print_name ());
dda83cd7 3715 }
de93309a
SM
3716 else
3717 {
6cb06a8c 3718 gdb_printf ("[%d] ", i + first_choice);
de93309a
SM
3719 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3720 &type_print_raw_options);
3721
3722 if (symtab != NULL)
6cb06a8c
TT
3723 gdb_printf (is_enumeral
3724 ? _(" in %s (enumeral)\n")
3725 : _(" at %s:?\n"),
3726 symtab_to_filename_for_display (symtab));
de93309a 3727 else
6cb06a8c
TT
3728 gdb_printf (is_enumeral
3729 ? _(" (enumeral)\n")
3730 : _(" at ?\n"));
de93309a 3731 }
dda83cd7 3732 }
14f9c5c9 3733 }
14f9c5c9 3734
de93309a 3735 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3736 "overload-choice");
14f9c5c9 3737
de93309a
SM
3738 for (i = 0; i < n_chosen; i += 1)
3739 syms[i] = syms[chosen[i]];
14f9c5c9 3740
de93309a
SM
3741 return n_chosen;
3742}
14f9c5c9 3743
cd9a3148
TT
3744/* See ada-lang.h. */
3745
3746block_symbol
7056f312 3747ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
cd9a3148
TT
3748 int nargs, value *argvec[])
3749{
3750 if (possible_user_operator_p (op, argvec))
3751 {
3752 std::vector<struct block_symbol> candidates
3753 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3754 NULL, VAR_DOMAIN);
3755
3756 int i = ada_resolve_function (candidates, argvec,
3757 nargs, ada_decoded_op_name (op), NULL,
3758 parse_completion);
3759 if (i >= 0)
3760 return candidates[i];
3761 }
3762 return {};
3763}
3764
3765/* See ada-lang.h. */
3766
3767block_symbol
3768ada_resolve_funcall (struct symbol *sym, const struct block *block,
3769 struct type *context_type,
7056f312 3770 bool parse_completion,
cd9a3148
TT
3771 int nargs, value *argvec[],
3772 innermost_block_tracker *tracker)
3773{
3774 std::vector<struct block_symbol> candidates
3775 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3776
3777 int i;
3778 if (candidates.size () == 1)
3779 i = 0;
3780 else
3781 {
3782 i = ada_resolve_function
3783 (candidates,
3784 argvec, nargs,
3785 sym->linkage_name (),
3786 context_type, parse_completion);
3787 if (i < 0)
3788 error (_("Could not find a match for %s"), sym->print_name ());
3789 }
3790
3791 tracker->update (candidates[i]);
3792 return candidates[i];
3793}
3794
ba8694b6
TT
3795/* Resolve a mention of a name where the context type is an
3796 enumeration type. */
3797
3798static int
3799ada_resolve_enum (std::vector<struct block_symbol> &syms,
3800 const char *name, struct type *context_type,
3801 bool parse_completion)
3802{
3803 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3804 context_type = ada_check_typedef (context_type);
3805
3806 for (int i = 0; i < syms.size (); ++i)
3807 {
3808 /* We already know the name matches, so we're just looking for
3809 an element of the correct enum type. */
5f9c5a63 3810 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
ba8694b6
TT
3811 return i;
3812 }
3813
3814 error (_("No name '%s' in enumeration type '%s'"), name,
3815 ada_type_name (context_type));
3816}
3817
cd9a3148
TT
3818/* See ada-lang.h. */
3819
3820block_symbol
3821ada_resolve_variable (struct symbol *sym, const struct block *block,
3822 struct type *context_type,
7056f312 3823 bool parse_completion,
cd9a3148
TT
3824 int deprocedure_p,
3825 innermost_block_tracker *tracker)
3826{
3827 std::vector<struct block_symbol> candidates
3828 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3829
3830 if (std::any_of (candidates.begin (),
3831 candidates.end (),
3832 [] (block_symbol &bsym)
3833 {
66d7f48f 3834 switch (bsym.symbol->aclass ())
cd9a3148
TT
3835 {
3836 case LOC_REGISTER:
3837 case LOC_ARG:
3838 case LOC_REF_ARG:
3839 case LOC_REGPARM_ADDR:
3840 case LOC_LOCAL:
3841 case LOC_COMPUTED:
3842 return true;
3843 default:
3844 return false;
3845 }
3846 }))
3847 {
3848 /* Types tend to get re-introduced locally, so if there
3849 are any local symbols that are not types, first filter
3850 out all types. */
3851 candidates.erase
3852 (std::remove_if
3853 (candidates.begin (),
3854 candidates.end (),
3855 [] (block_symbol &bsym)
3856 {
66d7f48f 3857 return bsym.symbol->aclass () == LOC_TYPEDEF;
cd9a3148
TT
3858 }),
3859 candidates.end ());
3860 }
3861
2c71f639
TV
3862 /* Filter out artificial symbols. */
3863 candidates.erase
3864 (std::remove_if
3865 (candidates.begin (),
3866 candidates.end (),
3867 [] (block_symbol &bsym)
3868 {
496feb16 3869 return bsym.symbol->is_artificial ();
2c71f639
TV
3870 }),
3871 candidates.end ());
3872
cd9a3148
TT
3873 int i;
3874 if (candidates.empty ())
3875 error (_("No definition found for %s"), sym->print_name ());
3876 else if (candidates.size () == 1)
3877 i = 0;
ba8694b6
TT
3878 else if (context_type != nullptr
3879 && context_type->code () == TYPE_CODE_ENUM)
3880 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3881 parse_completion);
cd9a3148
TT
3882 else if (deprocedure_p && !is_nonfunction (candidates))
3883 {
3884 i = ada_resolve_function
3885 (candidates, NULL, 0,
3886 sym->linkage_name (),
3887 context_type, parse_completion);
3888 if (i < 0)
3889 error (_("Could not find a match for %s"), sym->print_name ());
3890 }
3891 else
3892 {
6cb06a8c 3893 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
cd9a3148
TT
3894 user_select_syms (candidates.data (), candidates.size (), 1);
3895 i = 0;
3896 }
3897
3898 tracker->update (candidates[i]);
3899 return candidates[i];
3900}
3901
db2534b7 3902/* Return non-zero if formal type FTYPE matches actual type ATYPE. */
de93309a
SM
3903/* The term "match" here is rather loose. The match is heuristic and
3904 liberal. */
14f9c5c9 3905
de93309a 3906static int
db2534b7 3907ada_type_match (struct type *ftype, struct type *atype)
14f9c5c9 3908{
de93309a
SM
3909 ftype = ada_check_typedef (ftype);
3910 atype = ada_check_typedef (atype);
14f9c5c9 3911
78134374 3912 if (ftype->code () == TYPE_CODE_REF)
27710edb 3913 ftype = ftype->target_type ();
78134374 3914 if (atype->code () == TYPE_CODE_REF)
27710edb 3915 atype = atype->target_type ();
14f9c5c9 3916
78134374 3917 switch (ftype->code ())
14f9c5c9 3918 {
de93309a 3919 default:
78134374 3920 return ftype->code () == atype->code ();
de93309a 3921 case TYPE_CODE_PTR:
db2534b7
TT
3922 if (atype->code () != TYPE_CODE_PTR)
3923 return 0;
27710edb 3924 atype = atype->target_type ();
db2534b7 3925 /* This can only happen if the actual argument is 'null'. */
df86565b 3926 if (atype->code () == TYPE_CODE_INT && atype->length () == 0)
db2534b7 3927 return 1;
27710edb 3928 return ada_type_match (ftype->target_type (), atype);
de93309a
SM
3929 case TYPE_CODE_INT:
3930 case TYPE_CODE_ENUM:
3931 case TYPE_CODE_RANGE:
78134374 3932 switch (atype->code ())
dda83cd7
SM
3933 {
3934 case TYPE_CODE_INT:
3935 case TYPE_CODE_ENUM:
3936 case TYPE_CODE_RANGE:
3937 return 1;
3938 default:
3939 return 0;
3940 }
d2e4a39e 3941
de93309a 3942 case TYPE_CODE_ARRAY:
78134374 3943 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3944 || ada_is_array_descriptor_type (atype));
14f9c5c9 3945
de93309a
SM
3946 case TYPE_CODE_STRUCT:
3947 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3948 return (atype->code () == TYPE_CODE_ARRAY
3949 || ada_is_array_descriptor_type (atype));
de93309a 3950 else
dda83cd7
SM
3951 return (atype->code () == TYPE_CODE_STRUCT
3952 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3953
de93309a
SM
3954 case TYPE_CODE_UNION:
3955 case TYPE_CODE_FLT:
78134374 3956 return (atype->code () == ftype->code ());
de93309a 3957 }
14f9c5c9
AS
3958}
3959
de93309a
SM
3960/* Return non-zero if the formals of FUNC "sufficiently match" the
3961 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3962 may also be an enumeral, in which case it is treated as a 0-
3963 argument function. */
14f9c5c9 3964
de93309a
SM
3965static int
3966ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3967{
3968 int i;
5f9c5a63 3969 struct type *func_type = func->type ();
14f9c5c9 3970
66d7f48f 3971 if (func->aclass () == LOC_CONST
78134374 3972 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3973 return (n_actuals == 0);
78134374 3974 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3975 return 0;
14f9c5c9 3976
1f704f76 3977 if (func_type->num_fields () != n_actuals)
de93309a 3978 return 0;
14f9c5c9 3979
de93309a
SM
3980 for (i = 0; i < n_actuals; i += 1)
3981 {
3982 if (actuals[i] == NULL)
dda83cd7 3983 return 0;
de93309a 3984 else
dda83cd7
SM
3985 {
3986 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
d0c97917 3987 struct type *atype = ada_check_typedef (actuals[i]->type ());
14f9c5c9 3988
db2534b7 3989 if (!ada_type_match (ftype, atype))
dda83cd7
SM
3990 return 0;
3991 }
de93309a
SM
3992 }
3993 return 1;
3994}
d2e4a39e 3995
de93309a
SM
3996/* False iff function type FUNC_TYPE definitely does not produce a value
3997 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3998 FUNC_TYPE is not a valid function type with a non-null return type
3999 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 4000
de93309a
SM
4001static int
4002return_match (struct type *func_type, struct type *context_type)
4003{
4004 struct type *return_type;
d2e4a39e 4005
de93309a
SM
4006 if (func_type == NULL)
4007 return 1;
14f9c5c9 4008
78134374 4009 if (func_type->code () == TYPE_CODE_FUNC)
27710edb 4010 return_type = get_base_type (func_type->target_type ());
de93309a
SM
4011 else
4012 return_type = get_base_type (func_type);
4013 if (return_type == NULL)
4014 return 1;
76a01679 4015
de93309a 4016 context_type = get_base_type (context_type);
14f9c5c9 4017
78134374 4018 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
4019 return context_type == NULL || return_type == context_type;
4020 else if (context_type == NULL)
78134374 4021 return return_type->code () != TYPE_CODE_VOID;
de93309a 4022 else
78134374 4023 return return_type->code () == context_type->code ();
de93309a 4024}
14f9c5c9 4025
14f9c5c9 4026
1bfa81ac 4027/* Returns the index in SYMS that contains the symbol for the
de93309a
SM
4028 function (if any) that matches the types of the NARGS arguments in
4029 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4030 that returns that type, then eliminate matches that don't. If
4031 CONTEXT_TYPE is void and there is at least one match that does not
4032 return void, eliminate all matches that do.
14f9c5c9 4033
de93309a
SM
4034 Asks the user if there is more than one match remaining. Returns -1
4035 if there is no such symbol or none is selected. NAME is used
4036 solely for messages. May re-arrange and modify SYMS in
4037 the process; the index returned is for the modified vector. */
14f9c5c9 4038
de93309a 4039static int
d1183b06
TT
4040ada_resolve_function (std::vector<struct block_symbol> &syms,
4041 struct value **args, int nargs,
dda83cd7 4042 const char *name, struct type *context_type,
7056f312 4043 bool parse_completion)
de93309a
SM
4044{
4045 int fallback;
4046 int k;
4047 int m; /* Number of hits */
14f9c5c9 4048
de93309a
SM
4049 m = 0;
4050 /* In the first pass of the loop, we only accept functions matching
4051 context_type. If none are found, we add a second pass of the loop
4052 where every function is accepted. */
4053 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4054 {
d1183b06 4055 for (k = 0; k < syms.size (); k += 1)
dda83cd7 4056 {
5f9c5a63 4057 struct type *type = ada_check_typedef (syms[k].symbol->type ());
5b4ee69b 4058
dda83cd7
SM
4059 if (ada_args_match (syms[k].symbol, args, nargs)
4060 && (fallback || return_match (type, context_type)))
4061 {
4062 syms[m] = syms[k];
4063 m += 1;
4064 }
4065 }
14f9c5c9
AS
4066 }
4067
de93309a
SM
4068 /* If we got multiple matches, ask the user which one to use. Don't do this
4069 interactive thing during completion, though, as the purpose of the
4070 completion is providing a list of all possible matches. Prompting the
4071 user to filter it down would be completely unexpected in this case. */
4072 if (m == 0)
4073 return -1;
4074 else if (m > 1 && !parse_completion)
4075 {
6cb06a8c 4076 gdb_printf (_("Multiple matches for %s\n"), name);
d1183b06 4077 user_select_syms (syms.data (), m, 1);
de93309a
SM
4078 return 0;
4079 }
4080 return 0;
14f9c5c9
AS
4081}
4082
14f9c5c9
AS
4083/* Type-class predicates */
4084
4c4b4cd2
PH
4085/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4086 or FLOAT). */
14f9c5c9
AS
4087
4088static int
d2e4a39e 4089numeric_type_p (struct type *type)
14f9c5c9
AS
4090{
4091 if (type == NULL)
4092 return 0;
d2e4a39e
AS
4093 else
4094 {
78134374 4095 switch (type->code ())
dda83cd7
SM
4096 {
4097 case TYPE_CODE_INT:
4098 case TYPE_CODE_FLT:
c04da66c 4099 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
4100 return 1;
4101 case TYPE_CODE_RANGE:
27710edb
SM
4102 return (type == type->target_type ()
4103 || numeric_type_p (type->target_type ()));
dda83cd7
SM
4104 default:
4105 return 0;
4106 }
d2e4a39e 4107 }
14f9c5c9
AS
4108}
4109
4c4b4cd2 4110/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4111
4112static int
d2e4a39e 4113integer_type_p (struct type *type)
14f9c5c9
AS
4114{
4115 if (type == NULL)
4116 return 0;
d2e4a39e
AS
4117 else
4118 {
78134374 4119 switch (type->code ())
dda83cd7
SM
4120 {
4121 case TYPE_CODE_INT:
4122 return 1;
4123 case TYPE_CODE_RANGE:
27710edb
SM
4124 return (type == type->target_type ()
4125 || integer_type_p (type->target_type ()));
dda83cd7
SM
4126 default:
4127 return 0;
4128 }
d2e4a39e 4129 }
14f9c5c9
AS
4130}
4131
4c4b4cd2 4132/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4133
4134static int
d2e4a39e 4135scalar_type_p (struct type *type)
14f9c5c9
AS
4136{
4137 if (type == NULL)
4138 return 0;
d2e4a39e
AS
4139 else
4140 {
78134374 4141 switch (type->code ())
dda83cd7
SM
4142 {
4143 case TYPE_CODE_INT:
4144 case TYPE_CODE_RANGE:
4145 case TYPE_CODE_ENUM:
4146 case TYPE_CODE_FLT:
c04da66c 4147 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
4148 return 1;
4149 default:
4150 return 0;
4151 }
d2e4a39e 4152 }
14f9c5c9
AS
4153}
4154
98847c1e
TT
4155/* True iff TYPE is discrete, as defined in the Ada Reference Manual.
4156 This essentially means one of (INT, RANGE, ENUM) -- but note that
4157 "enum" includes character and boolean as well. */
14f9c5c9
AS
4158
4159static int
d2e4a39e 4160discrete_type_p (struct type *type)
14f9c5c9
AS
4161{
4162 if (type == NULL)
4163 return 0;
d2e4a39e
AS
4164 else
4165 {
78134374 4166 switch (type->code ())
dda83cd7
SM
4167 {
4168 case TYPE_CODE_INT:
4169 case TYPE_CODE_RANGE:
4170 case TYPE_CODE_ENUM:
4171 case TYPE_CODE_BOOL:
98847c1e 4172 case TYPE_CODE_CHAR:
dda83cd7
SM
4173 return 1;
4174 default:
4175 return 0;
4176 }
d2e4a39e 4177 }
14f9c5c9
AS
4178}
4179
4c4b4cd2
PH
4180/* Returns non-zero if OP with operands in the vector ARGS could be
4181 a user-defined function. Errs on the side of pre-defined operators
4182 (i.e., result 0). */
14f9c5c9
AS
4183
4184static int
d2e4a39e 4185possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4186{
76a01679 4187 struct type *type0 =
d0c97917 4188 (args[0] == NULL) ? NULL : ada_check_typedef (args[0]->type ());
d2e4a39e 4189 struct type *type1 =
d0c97917 4190 (args[1] == NULL) ? NULL : ada_check_typedef (args[1]->type ());
d2e4a39e 4191
4c4b4cd2
PH
4192 if (type0 == NULL)
4193 return 0;
4194
14f9c5c9
AS
4195 switch (op)
4196 {
4197 default:
4198 return 0;
4199
4200 case BINOP_ADD:
4201 case BINOP_SUB:
4202 case BINOP_MUL:
4203 case BINOP_DIV:
d2e4a39e 4204 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4205
4206 case BINOP_REM:
4207 case BINOP_MOD:
4208 case BINOP_BITWISE_AND:
4209 case BINOP_BITWISE_IOR:
4210 case BINOP_BITWISE_XOR:
d2e4a39e 4211 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4212
4213 case BINOP_EQUAL:
4214 case BINOP_NOTEQUAL:
4215 case BINOP_LESS:
4216 case BINOP_GTR:
4217 case BINOP_LEQ:
4218 case BINOP_GEQ:
d2e4a39e 4219 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4220
4221 case BINOP_CONCAT:
ee90b9ab 4222 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4223
4224 case BINOP_EXP:
d2e4a39e 4225 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4226
4227 case UNOP_NEG:
4228 case UNOP_PLUS:
4229 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4230 case UNOP_ABS:
4231 return (!numeric_type_p (type0));
14f9c5c9
AS
4232
4233 }
4234}
4235\f
dda83cd7 4236 /* Renaming */
14f9c5c9 4237
aeb5907d
JB
4238/* NOTES:
4239
4240 1. In the following, we assume that a renaming type's name may
4241 have an ___XD suffix. It would be nice if this went away at some
4242 point.
4243 2. We handle both the (old) purely type-based representation of
4244 renamings and the (new) variable-based encoding. At some point,
4245 it is devoutly to be hoped that the former goes away
4246 (FIXME: hilfinger-2007-07-09).
4247 3. Subprogram renamings are not implemented, although the XRS
4248 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4249
4250/* If SYM encodes a renaming,
4251
4252 <renaming> renames <renamed entity>,
4253
4254 sets *LEN to the length of the renamed entity's name,
4255 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4256 the string describing the subcomponent selected from the renamed
0963b4bd 4257 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4258 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4259 are undefined). Otherwise, returns a value indicating the category
4260 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4261 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4262 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4263 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4264 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4265 may be NULL, in which case they are not assigned.
4266
4267 [Currently, however, GCC does not generate subprogram renamings.] */
4268
4269enum ada_renaming_category
4270ada_parse_renaming (struct symbol *sym,
4271 const char **renamed_entity, int *len,
4272 const char **renaming_expr)
4273{
4274 enum ada_renaming_category kind;
4275 const char *info;
4276 const char *suffix;
4277
4278 if (sym == NULL)
4279 return ADA_NOT_RENAMING;
66d7f48f 4280 switch (sym->aclass ())
14f9c5c9 4281 {
aeb5907d
JB
4282 default:
4283 return ADA_NOT_RENAMING;
aeb5907d
JB
4284 case LOC_LOCAL:
4285 case LOC_STATIC:
4286 case LOC_COMPUTED:
4287 case LOC_OPTIMIZED_OUT:
987012b8 4288 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4289 if (info == NULL)
4290 return ADA_NOT_RENAMING;
4291 switch (info[5])
4292 {
4293 case '_':
4294 kind = ADA_OBJECT_RENAMING;
4295 info += 6;
4296 break;
4297 case 'E':
4298 kind = ADA_EXCEPTION_RENAMING;
4299 info += 7;
4300 break;
4301 case 'P':
4302 kind = ADA_PACKAGE_RENAMING;
4303 info += 7;
4304 break;
4305 case 'S':
4306 kind = ADA_SUBPROGRAM_RENAMING;
4307 info += 7;
4308 break;
4309 default:
4310 return ADA_NOT_RENAMING;
4311 }
14f9c5c9 4312 }
4c4b4cd2 4313
de93309a
SM
4314 if (renamed_entity != NULL)
4315 *renamed_entity = info;
4316 suffix = strstr (info, "___XE");
4317 if (suffix == NULL || suffix == info)
4318 return ADA_NOT_RENAMING;
4319 if (len != NULL)
4320 *len = strlen (info) - strlen (suffix);
4321 suffix += 5;
4322 if (renaming_expr != NULL)
4323 *renaming_expr = suffix;
4324 return kind;
4325}
4326
4327/* Compute the value of the given RENAMING_SYM, which is expected to
4328 be a symbol encoding a renaming expression. BLOCK is the block
4329 used to evaluate the renaming. */
4330
4331static struct value *
4332ada_read_renaming_var_value (struct symbol *renaming_sym,
4333 const struct block *block)
4334{
4335 const char *sym_name;
4336
987012b8 4337 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4338 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4339 return evaluate_expression (expr.get ());
4340}
4341\f
4342
dda83cd7 4343 /* Evaluation: Function Calls */
de93309a
SM
4344
4345/* Return an lvalue containing the value VAL. This is the identity on
4346 lvalues, and otherwise has the side-effect of allocating memory
4347 in the inferior where a copy of the value contents is copied. */
4348
4349static struct value *
4350ensure_lval (struct value *val)
4351{
4352 if (VALUE_LVAL (val) == not_lval
4353 || VALUE_LVAL (val) == lval_internalvar)
4354 {
d0c97917 4355 int len = ada_check_typedef (val->type ())->length ();
de93309a 4356 const CORE_ADDR addr =
dda83cd7 4357 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4358
4359 VALUE_LVAL (val) = lval_memory;
9feb2d07 4360 val->set_address (addr);
50888e42 4361 write_memory (addr, value_contents (val).data (), len);
de93309a
SM
4362 }
4363
4364 return val;
4365}
4366
4367/* Given ARG, a value of type (pointer or reference to a)*
4368 structure/union, extract the component named NAME from the ultimate
4369 target structure/union and return it as a value with its
4370 appropriate type.
4371
4372 The routine searches for NAME among all members of the structure itself
4373 and (recursively) among all members of any wrapper members
4374 (e.g., '_parent').
4375
4376 If NO_ERR, then simply return NULL in case of error, rather than
4377 calling error. */
4378
4379static struct value *
4380ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4381{
4382 struct type *t, *t1;
4383 struct value *v;
4384 int check_tag;
4385
4386 v = NULL;
d0c97917 4387 t1 = t = ada_check_typedef (arg->type ());
78134374 4388 if (t->code () == TYPE_CODE_REF)
de93309a 4389 {
27710edb 4390 t1 = t->target_type ();
de93309a
SM
4391 if (t1 == NULL)
4392 goto BadValue;
4393 t1 = ada_check_typedef (t1);
78134374 4394 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4395 {
4396 arg = coerce_ref (arg);
4397 t = t1;
4398 }
de93309a
SM
4399 }
4400
78134374 4401 while (t->code () == TYPE_CODE_PTR)
de93309a 4402 {
27710edb 4403 t1 = t->target_type ();
de93309a
SM
4404 if (t1 == NULL)
4405 goto BadValue;
4406 t1 = ada_check_typedef (t1);
78134374 4407 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4408 {
4409 arg = value_ind (arg);
4410 t = t1;
4411 }
de93309a 4412 else
dda83cd7 4413 break;
de93309a 4414 }
aeb5907d 4415
78134374 4416 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4417 goto BadValue;
52ce6436 4418
de93309a
SM
4419 if (t1 == t)
4420 v = ada_search_struct_field (name, arg, 0, t);
4421 else
4422 {
4423 int bit_offset, bit_size, byte_offset;
4424 struct type *field_type;
4425 CORE_ADDR address;
a5ee536b 4426
78134374 4427 if (t->code () == TYPE_CODE_PTR)
9feb2d07 4428 address = ada_value_ind (arg)->address ();
de93309a 4429 else
9feb2d07 4430 address = ada_coerce_ref (arg)->address ();
d2e4a39e 4431
de93309a 4432 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4433 the case where the type is a reference to a tagged type, but
4434 we have to be careful to exclude pointers to tagged types.
4435 The latter should be shown as usual (as a pointer), whereas
4436 a reference should mostly be transparent to the user. */
14f9c5c9 4437
de93309a 4438 if (ada_is_tagged_type (t1, 0)
dda83cd7 4439 || (t1->code () == TYPE_CODE_REF
27710edb 4440 && ada_is_tagged_type (t1->target_type (), 0)))
dda83cd7
SM
4441 {
4442 /* We first try to find the searched field in the current type.
de93309a 4443 If not found then let's look in the fixed type. */
14f9c5c9 4444
dda83cd7 4445 if (!find_struct_field (name, t1, 0,
4d1795ac
TT
4446 nullptr, nullptr, nullptr,
4447 nullptr, nullptr))
de93309a
SM
4448 check_tag = 1;
4449 else
4450 check_tag = 0;
dda83cd7 4451 }
de93309a
SM
4452 else
4453 check_tag = 0;
c3e5cd34 4454
de93309a
SM
4455 /* Convert to fixed type in all cases, so that we have proper
4456 offsets to each field in unconstrained record types. */
4457 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4458 address, NULL, check_tag);
4459
24aa1b02
TT
4460 /* Resolve the dynamic type as well. */
4461 arg = value_from_contents_and_address (t1, nullptr, address);
d0c97917 4462 t1 = arg->type ();
24aa1b02 4463
de93309a 4464 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4465 &field_type, &byte_offset, &bit_offset,
4466 &bit_size, NULL))
4467 {
4468 if (bit_size != 0)
4469 {
4470 if (t->code () == TYPE_CODE_REF)
4471 arg = ada_coerce_ref (arg);
4472 else
4473 arg = ada_value_ind (arg);
4474 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4475 bit_offset, bit_size,
4476 field_type);
4477 }
4478 else
4479 v = value_at_lazy (field_type, address + byte_offset);
4480 }
c3e5cd34 4481 }
14f9c5c9 4482
de93309a
SM
4483 if (v != NULL || no_err)
4484 return v;
4485 else
4486 error (_("There is no member named %s."), name);
4487
4488 BadValue:
4489 if (no_err)
4490 return NULL;
4491 else
4492 error (_("Attempt to extract a component of "
4493 "a value that is not a record."));
14f9c5c9
AS
4494}
4495
4496/* Return the value ACTUAL, converted to be an appropriate value for a
4497 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4498 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4499 values not residing in memory, updating it as needed. */
14f9c5c9 4500
a93c0eb6 4501struct value *
40bc484c 4502ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4503{
d0c97917 4504 struct type *actual_type = ada_check_typedef (actual->type ());
61ee279c 4505 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4506 struct type *formal_target =
78134374 4507 formal_type->code () == TYPE_CODE_PTR
27710edb 4508 ? ada_check_typedef (formal_type->target_type ()) : formal_type;
d2e4a39e 4509 struct type *actual_target =
78134374 4510 actual_type->code () == TYPE_CODE_PTR
27710edb 4511 ? ada_check_typedef (actual_type->target_type ()) : actual_type;
14f9c5c9 4512
4c4b4cd2 4513 if (ada_is_array_descriptor_type (formal_target)
78134374 4514 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4515 return make_array_descriptor (formal_type, actual);
78134374
SM
4516 else if (formal_type->code () == TYPE_CODE_PTR
4517 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4518 {
a84a8a0d 4519 struct value *result;
5b4ee69b 4520
78134374 4521 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4522 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4523 result = desc_data (actual);
78134374 4524 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4525 {
4526 if (VALUE_LVAL (actual) != lval_memory)
4527 {
4528 struct value *val;
4529
d0c97917 4530 actual_type = ada_check_typedef (actual->type ());
317c3ed9 4531 val = value::allocate (actual_type);
4bce7cda 4532 copy (value_contents (actual), value_contents_raw (val));
dda83cd7
SM
4533 actual = ensure_lval (val);
4534 }
4535 result = value_addr (actual);
4536 }
a84a8a0d
JB
4537 else
4538 return actual;
b1af9e97 4539 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4540 }
78134374 4541 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4542 return ada_value_ind (actual);
8344af1e
JB
4543 else if (ada_is_aligner_type (formal_type))
4544 {
4545 /* We need to turn this parameter into an aligner type
4546 as well. */
317c3ed9 4547 struct value *aligner = value::allocate (formal_type);
8344af1e
JB
4548 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4549
4550 value_assign_to_component (aligner, component, actual);
4551 return aligner;
4552 }
14f9c5c9
AS
4553
4554 return actual;
4555}
4556
438c98a1
JB
4557/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4558 type TYPE. This is usually an inefficient no-op except on some targets
4559 (such as AVR) where the representation of a pointer and an address
4560 differs. */
4561
4562static CORE_ADDR
4563value_pointer (struct value *value, struct type *type)
4564{
df86565b 4565 unsigned len = type->length ();
224c3ddb 4566 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4567 CORE_ADDR addr;
4568
9feb2d07 4569 addr = value->address ();
8ee511af 4570 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
34877895 4571 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4572 return addr;
4573}
4574
14f9c5c9 4575
4c4b4cd2
PH
4576/* Push a descriptor of type TYPE for array value ARR on the stack at
4577 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4578 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4579 to-descriptor type rather than a descriptor type), a struct value *
4580 representing a pointer to this descriptor. */
14f9c5c9 4581
d2e4a39e 4582static struct value *
40bc484c 4583make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4584{
d2e4a39e
AS
4585 struct type *bounds_type = desc_bounds_type (type);
4586 struct type *desc_type = desc_base_type (type);
317c3ed9
TT
4587 struct value *descriptor = value::allocate (desc_type);
4588 struct value *bounds = value::allocate (bounds_type);
14f9c5c9 4589 int i;
d2e4a39e 4590
d0c97917 4591 for (i = ada_array_arity (ada_check_typedef (arr->type ()));
0963b4bd 4592 i > 0; i -= 1)
14f9c5c9 4593 {
d0c97917 4594 modify_field (bounds->type (),
50888e42 4595 value_contents_writeable (bounds).data (),
19f220c3
JK
4596 ada_array_bound (arr, i, 0),
4597 desc_bound_bitpos (bounds_type, i, 0),
4598 desc_bound_bitsize (bounds_type, i, 0));
d0c97917 4599 modify_field (bounds->type (),
50888e42 4600 value_contents_writeable (bounds).data (),
19f220c3
JK
4601 ada_array_bound (arr, i, 1),
4602 desc_bound_bitpos (bounds_type, i, 1),
4603 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4604 }
d2e4a39e 4605
40bc484c 4606 bounds = ensure_lval (bounds);
d2e4a39e 4607
d0c97917 4608 modify_field (descriptor->type (),
50888e42 4609 value_contents_writeable (descriptor).data (),
19f220c3 4610 value_pointer (ensure_lval (arr),
940da03e 4611 desc_type->field (0).type ()),
19f220c3
JK
4612 fat_pntr_data_bitpos (desc_type),
4613 fat_pntr_data_bitsize (desc_type));
4614
d0c97917 4615 modify_field (descriptor->type (),
50888e42 4616 value_contents_writeable (descriptor).data (),
19f220c3 4617 value_pointer (bounds,
940da03e 4618 desc_type->field (1).type ()),
19f220c3
JK
4619 fat_pntr_bounds_bitpos (desc_type),
4620 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4621
40bc484c 4622 descriptor = ensure_lval (descriptor);
14f9c5c9 4623
78134374 4624 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4625 return value_addr (descriptor);
4626 else
4627 return descriptor;
4628}
14f9c5c9 4629\f
dda83cd7 4630 /* Symbol Cache Module */
3d9434b5 4631
3d9434b5 4632/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4633 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4634 on the type of entity being printed, the cache can make it as much
4635 as an order of magnitude faster than without it.
4636
4637 The descriptive type DWARF extension has significantly reduced
4638 the need for this cache, at least when DWARF is being used. However,
4639 even in this case, some expensive name-based symbol searches are still
4640 sometimes necessary - to find an XVZ variable, mostly. */
4641
ee01b665
JB
4642/* Return the symbol cache associated to the given program space PSPACE.
4643 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4644
ee01b665
JB
4645static struct ada_symbol_cache *
4646ada_get_symbol_cache (struct program_space *pspace)
4647{
4648 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4649
bdcccc56
TT
4650 if (pspace_data->sym_cache == nullptr)
4651 pspace_data->sym_cache.reset (new ada_symbol_cache);
ee01b665 4652
bdcccc56 4653 return pspace_data->sym_cache.get ();
ee01b665 4654}
3d9434b5
JB
4655
4656/* Clear all entries from the symbol cache. */
4657
4658static void
bdcccc56 4659ada_clear_symbol_cache ()
3d9434b5 4660{
bdcccc56
TT
4661 struct ada_pspace_data *pspace_data
4662 = get_ada_pspace_data (current_program_space);
ee01b665 4663
bdcccc56
TT
4664 if (pspace_data->sym_cache != nullptr)
4665 pspace_data->sym_cache.reset ();
3d9434b5
JB
4666}
4667
fe978cb0 4668/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4669 Return it if found, or NULL otherwise. */
4670
4671static struct cache_entry **
fe978cb0 4672find_entry (const char *name, domain_enum domain)
3d9434b5 4673{
ee01b665
JB
4674 struct ada_symbol_cache *sym_cache
4675 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4676 int h = msymbol_hash (name) % HASH_SIZE;
4677 struct cache_entry **e;
4678
ee01b665 4679 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4680 {
fe978cb0 4681 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4682 return e;
3d9434b5
JB
4683 }
4684 return NULL;
4685}
4686
fe978cb0 4687/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4688 Return 1 if found, 0 otherwise.
4689
4690 If an entry was found and SYM is not NULL, set *SYM to the entry's
4691 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4692
96d887e8 4693static int
fe978cb0 4694lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4695 struct symbol **sym, const struct block **block)
96d887e8 4696{
fe978cb0 4697 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4698
4699 if (e == NULL)
4700 return 0;
4701 if (sym != NULL)
4702 *sym = (*e)->sym;
4703 if (block != NULL)
4704 *block = (*e)->block;
4705 return 1;
96d887e8
PH
4706}
4707
3d9434b5 4708/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4709 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4710
96d887e8 4711static void
fe978cb0 4712cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4713 const struct block *block)
96d887e8 4714{
ee01b665
JB
4715 struct ada_symbol_cache *sym_cache
4716 = ada_get_symbol_cache (current_program_space);
3d9434b5 4717 int h;
3d9434b5
JB
4718 struct cache_entry *e;
4719
1994afbf
DE
4720 /* Symbols for builtin types don't have a block.
4721 For now don't cache such symbols. */
7b3ecc75 4722 if (sym != NULL && !sym->is_objfile_owned ())
1994afbf
DE
4723 return;
4724
3d9434b5
JB
4725 /* If the symbol is a local symbol, then do not cache it, as a search
4726 for that symbol depends on the context. To determine whether
4727 the symbol is local or not, we check the block where we found it
4728 against the global and static blocks of its associated symtab. */
63d609de
SM
4729 if (sym != nullptr)
4730 {
4731 const blockvector &bv = *sym->symtab ()->compunit ()->blockvector ();
4732
4733 if (bv.global_block () != block && bv.static_block () != block)
4734 return;
4735 }
3d9434b5
JB
4736
4737 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4738 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4739 e->next = sym_cache->root[h];
4740 sym_cache->root[h] = e;
2ef5453b 4741 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4742 e->sym = sym;
fe978cb0 4743 e->domain = domain;
3d9434b5 4744 e->block = block;
96d887e8 4745}
4c4b4cd2 4746\f
dda83cd7 4747 /* Symbol Lookup */
4c4b4cd2 4748
b5ec771e
PA
4749/* Return the symbol name match type that should be used used when
4750 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4751
4752 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4753 for Ada lookups. */
c0431670 4754
b5ec771e
PA
4755static symbol_name_match_type
4756name_match_type_from_name (const char *lookup_name)
c0431670 4757{
b5ec771e
PA
4758 return (strstr (lookup_name, "__") == NULL
4759 ? symbol_name_match_type::WILD
4760 : symbol_name_match_type::FULL);
c0431670
JB
4761}
4762
4c4b4cd2
PH
4763/* Return the result of a standard (literal, C-like) lookup of NAME in
4764 given DOMAIN, visible from lexical block BLOCK. */
4765
4766static struct symbol *
4767standard_lookup (const char *name, const struct block *block,
dda83cd7 4768 domain_enum domain)
4c4b4cd2 4769{
acbd605d 4770 /* Initialize it just to avoid a GCC false warning. */
6640a367 4771 struct block_symbol sym = {};
4c4b4cd2 4772
d12307c1
PMR
4773 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4774 return sym.symbol;
a2cd4f14 4775 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4776 cache_symbol (name, domain, sym.symbol, sym.block);
4777 return sym.symbol;
4c4b4cd2
PH
4778}
4779
4780
4781/* Non-zero iff there is at least one non-function/non-enumeral symbol
1bfa81ac 4782 in the symbol fields of SYMS. We treat enumerals as functions,
4c4b4cd2
PH
4783 since they contend in overloading in the same way. */
4784static int
d1183b06 4785is_nonfunction (const std::vector<struct block_symbol> &syms)
4c4b4cd2 4786{
d1183b06 4787 for (const block_symbol &sym : syms)
5f9c5a63
SM
4788 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4789 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
66d7f48f 4790 || sym.symbol->aclass () != LOC_CONST))
14f9c5c9
AS
4791 return 1;
4792
4793 return 0;
4794}
4795
4796/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4797 struct types. Otherwise, they may not. */
14f9c5c9
AS
4798
4799static int
d2e4a39e 4800equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4801{
d2e4a39e 4802 if (type0 == type1)
14f9c5c9 4803 return 1;
d2e4a39e 4804 if (type0 == NULL || type1 == NULL
78134374 4805 || type0->code () != type1->code ())
14f9c5c9 4806 return 0;
78134374
SM
4807 if ((type0->code () == TYPE_CODE_STRUCT
4808 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4809 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4810 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4811 return 1;
d2e4a39e 4812
14f9c5c9
AS
4813 return 0;
4814}
4815
4816/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4817 no more defined than that of SYM1. */
14f9c5c9
AS
4818
4819static int
d2e4a39e 4820lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4821{
4822 if (sym0 == sym1)
4823 return 1;
6c9c307c 4824 if (sym0->domain () != sym1->domain ()
66d7f48f 4825 || sym0->aclass () != sym1->aclass ())
14f9c5c9
AS
4826 return 0;
4827
66d7f48f 4828 switch (sym0->aclass ())
14f9c5c9
AS
4829 {
4830 case LOC_UNDEF:
4831 return 1;
4832 case LOC_TYPEDEF:
4833 {
5f9c5a63
SM
4834 struct type *type0 = sym0->type ();
4835 struct type *type1 = sym1->type ();
dda83cd7
SM
4836 const char *name0 = sym0->linkage_name ();
4837 const char *name1 = sym1->linkage_name ();
4838 int len0 = strlen (name0);
4839
4840 return
4841 type0->code () == type1->code ()
4842 && (equiv_types (type0, type1)
4843 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4844 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4845 }
4846 case LOC_CONST:
4aeddc50 4847 return sym0->value_longest () == sym1->value_longest ()
5f9c5a63 4848 && equiv_types (sym0->type (), sym1->type ());
4b610737
TT
4849
4850 case LOC_STATIC:
4851 {
dda83cd7
SM
4852 const char *name0 = sym0->linkage_name ();
4853 const char *name1 = sym1->linkage_name ();
4854 return (strcmp (name0, name1) == 0
4aeddc50 4855 && sym0->value_address () == sym1->value_address ());
4b610737
TT
4856 }
4857
d2e4a39e
AS
4858 default:
4859 return 0;
14f9c5c9
AS
4860 }
4861}
4862
d1183b06
TT
4863/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4864 records in RESULT. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4865
4866static void
d1183b06 4867add_defn_to_vec (std::vector<struct block_symbol> &result,
dda83cd7
SM
4868 struct symbol *sym,
4869 const struct block *block)
14f9c5c9 4870{
529cad9c
PH
4871 /* Do not try to complete stub types, as the debugger is probably
4872 already scanning all symbols matching a certain name at the
4873 time when this function is called. Trying to replace the stub
4874 type by its associated full type will cause us to restart a scan
4875 which may lead to an infinite recursion. Instead, the client
4876 collecting the matching symbols will end up collecting several
4877 matches, with at least one of them complete. It can then filter
4878 out the stub ones if needed. */
4879
d1183b06 4880 for (int i = result.size () - 1; i >= 0; i -= 1)
4c4b4cd2 4881 {
d1183b06 4882 if (lesseq_defined_than (sym, result[i].symbol))
dda83cd7 4883 return;
d1183b06 4884 else if (lesseq_defined_than (result[i].symbol, sym))
dda83cd7 4885 {
d1183b06
TT
4886 result[i].symbol = sym;
4887 result[i].block = block;
dda83cd7
SM
4888 return;
4889 }
4c4b4cd2
PH
4890 }
4891
d1183b06
TT
4892 struct block_symbol info;
4893 info.symbol = sym;
4894 info.block = block;
4895 result.push_back (info);
4c4b4cd2
PH
4896}
4897
7c7b6655
TT
4898/* Return a bound minimal symbol matching NAME according to Ada
4899 decoding rules. Returns an invalid symbol if there is no such
4900 minimal symbol. Names prefixed with "standard__" are handled
4901 specially: "standard__" is first stripped off, and only static and
4902 global symbols are searched. */
4c4b4cd2 4903
7c7b6655 4904struct bound_minimal_symbol
06a670e2 4905ada_lookup_simple_minsym (const char *name, struct objfile *objfile)
4c4b4cd2 4906{
7c7b6655 4907 struct bound_minimal_symbol result;
4c4b4cd2 4908
b5ec771e
PA
4909 symbol_name_match_type match_type = name_match_type_from_name (name);
4910 lookup_name_info lookup_name (name, match_type);
4911
4912 symbol_name_matcher_ftype *match_name
4913 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4914
06a670e2
MM
4915 gdbarch_iterate_over_objfiles_in_search_order
4916 (objfile != NULL ? objfile->arch () : target_gdbarch (),
4917 [&result, lookup_name, match_name] (struct objfile *obj)
4918 {
4919 for (minimal_symbol *msymbol : obj->msymbols ())
4920 {
4921 if (match_name (msymbol->linkage_name (), lookup_name, nullptr)
4922 && msymbol->type () != mst_solib_trampoline)
4923 {
4924 result.minsym = msymbol;
4925 result.objfile = obj;
4926 return 1;
4927 }
4928 }
4929
4930 return 0;
4931 }, objfile);
4c4b4cd2 4932
7c7b6655 4933 return result;
96d887e8 4934}
4c4b4cd2 4935
96d887e8
PH
4936/* True if TYPE is definitely an artificial type supplied to a symbol
4937 for which no debugging information was given in the symbol file. */
14f9c5c9 4938
96d887e8
PH
4939static int
4940is_nondebugging_type (struct type *type)
4941{
0d5cff50 4942 const char *name = ada_type_name (type);
5b4ee69b 4943
96d887e8
PH
4944 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4945}
4c4b4cd2 4946
8f17729f
JB
4947/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4948 that are deemed "identical" for practical purposes.
4949
4950 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4951 types and that their number of enumerals is identical (in other
1f704f76 4952 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4953
4954static int
4955ada_identical_enum_types_p (struct type *type1, struct type *type2)
4956{
4957 int i;
4958
4959 /* The heuristic we use here is fairly conservative. We consider
4960 that 2 enumerate types are identical if they have the same
4961 number of enumerals and that all enumerals have the same
4962 underlying value and name. */
4963
4964 /* All enums in the type should have an identical underlying value. */
1f704f76 4965 for (i = 0; i < type1->num_fields (); i++)
970db518 4966 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
8f17729f
JB
4967 return 0;
4968
4969 /* All enumerals should also have the same name (modulo any numerical
4970 suffix). */
1f704f76 4971 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4972 {
33d16dd9
SM
4973 const char *name_1 = type1->field (i).name ();
4974 const char *name_2 = type2->field (i).name ();
8f17729f
JB
4975 int len_1 = strlen (name_1);
4976 int len_2 = strlen (name_2);
4977
33d16dd9
SM
4978 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4979 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
8f17729f 4980 if (len_1 != len_2
33d16dd9
SM
4981 || strncmp (type1->field (i).name (),
4982 type2->field (i).name (),
8f17729f
JB
4983 len_1) != 0)
4984 return 0;
4985 }
4986
4987 return 1;
4988}
4989
4990/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4991 that are deemed "identical" for practical purposes. Sometimes,
4992 enumerals are not strictly identical, but their types are so similar
4993 that they can be considered identical.
4994
4995 For instance, consider the following code:
4996
4997 type Color is (Black, Red, Green, Blue, White);
4998 type RGB_Color is new Color range Red .. Blue;
4999
5000 Type RGB_Color is a subrange of an implicit type which is a copy
5001 of type Color. If we call that implicit type RGB_ColorB ("B" is
5002 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5003 As a result, when an expression references any of the enumeral
5004 by name (Eg. "print green"), the expression is technically
5005 ambiguous and the user should be asked to disambiguate. But
5006 doing so would only hinder the user, since it wouldn't matter
5007 what choice he makes, the outcome would always be the same.
5008 So, for practical purposes, we consider them as the same. */
5009
5010static int
54d343a2 5011symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5012{
5013 int i;
5014
5015 /* Before performing a thorough comparison check of each type,
5016 we perform a series of inexpensive checks. We expect that these
5017 checks will quickly fail in the vast majority of cases, and thus
5018 help prevent the unnecessary use of a more expensive comparison.
5019 Said comparison also expects us to make some of these checks
5020 (see ada_identical_enum_types_p). */
5021
5022 /* Quick check: All symbols should have an enum type. */
54d343a2 5023 for (i = 0; i < syms.size (); i++)
5f9c5a63 5024 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
8f17729f
JB
5025 return 0;
5026
5027 /* Quick check: They should all have the same value. */
54d343a2 5028 for (i = 1; i < syms.size (); i++)
4aeddc50 5029 if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
8f17729f
JB
5030 return 0;
5031
5032 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5033 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
5034 if (syms[i].symbol->type ()->num_fields ()
5035 != syms[0].symbol->type ()->num_fields ())
8f17729f
JB
5036 return 0;
5037
5038 /* All the sanity checks passed, so we might have a set of
5039 identical enumeration types. Perform a more complete
5040 comparison of the type of each symbol. */
54d343a2 5041 for (i = 1; i < syms.size (); i++)
5f9c5a63
SM
5042 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5043 syms[0].symbol->type ()))
8f17729f
JB
5044 return 0;
5045
5046 return 1;
5047}
5048
54d343a2 5049/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5050 duplicate other symbols in the list (The only case I know of where
5051 this happens is when object files containing stabs-in-ecoff are
5052 linked with files containing ordinary ecoff debugging symbols (or no
1bfa81ac 5053 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4c4b4cd2 5054
d1183b06 5055static void
54d343a2 5056remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5057{
5058 int i, j;
4c4b4cd2 5059
8f17729f
JB
5060 /* We should never be called with less than 2 symbols, as there
5061 cannot be any extra symbol in that case. But it's easy to
5062 handle, since we have nothing to do in that case. */
54d343a2 5063 if (syms->size () < 2)
d1183b06 5064 return;
8f17729f 5065
96d887e8 5066 i = 0;
54d343a2 5067 while (i < syms->size ())
96d887e8 5068 {
a35ddb44 5069 int remove_p = 0;
339c13b6
JB
5070
5071 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 5072 the get rid of the stub. */
339c13b6 5073
5f9c5a63 5074 if ((*syms)[i].symbol->type ()->is_stub ()
dda83cd7
SM
5075 && (*syms)[i].symbol->linkage_name () != NULL)
5076 {
5077 for (j = 0; j < syms->size (); j++)
5078 {
5079 if (j != i
5f9c5a63 5080 && !(*syms)[j].symbol->type ()->is_stub ()
dda83cd7
SM
5081 && (*syms)[j].symbol->linkage_name () != NULL
5082 && strcmp ((*syms)[i].symbol->linkage_name (),
5083 (*syms)[j].symbol->linkage_name ()) == 0)
5084 remove_p = 1;
5085 }
5086 }
339c13b6
JB
5087
5088 /* Two symbols with the same name, same class and same address
dda83cd7 5089 should be identical. */
339c13b6 5090
987012b8 5091 else if ((*syms)[i].symbol->linkage_name () != NULL
66d7f48f 5092 && (*syms)[i].symbol->aclass () == LOC_STATIC
5f9c5a63 5093 && is_nondebugging_type ((*syms)[i].symbol->type ()))
dda83cd7
SM
5094 {
5095 for (j = 0; j < syms->size (); j += 1)
5096 {
5097 if (i != j
5098 && (*syms)[j].symbol->linkage_name () != NULL
5099 && strcmp ((*syms)[i].symbol->linkage_name (),
5100 (*syms)[j].symbol->linkage_name ()) == 0
66d7f48f
SM
5101 && ((*syms)[i].symbol->aclass ()
5102 == (*syms)[j].symbol->aclass ())
4aeddc50
SM
5103 && (*syms)[i].symbol->value_address ()
5104 == (*syms)[j].symbol->value_address ())
dda83cd7
SM
5105 remove_p = 1;
5106 }
5107 }
339c13b6 5108
a35ddb44 5109 if (remove_p)
54d343a2 5110 syms->erase (syms->begin () + i);
1b788fb6
TT
5111 else
5112 i += 1;
14f9c5c9 5113 }
8f17729f
JB
5114
5115 /* If all the remaining symbols are identical enumerals, then
5116 just keep the first one and discard the rest.
5117
5118 Unlike what we did previously, we do not discard any entry
5119 unless they are ALL identical. This is because the symbol
5120 comparison is not a strict comparison, but rather a practical
5121 comparison. If all symbols are considered identical, then
5122 we can just go ahead and use the first one and discard the rest.
5123 But if we cannot reduce the list to a single element, we have
5124 to ask the user to disambiguate anyways. And if we have to
5125 present a multiple-choice menu, it's less confusing if the list
5126 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5127 if (symbols_are_identical_enums (*syms))
5128 syms->resize (1);
14f9c5c9
AS
5129}
5130
96d887e8
PH
5131/* Given a type that corresponds to a renaming entity, use the type name
5132 to extract the scope (package name or function name, fully qualified,
5133 and following the GNAT encoding convention) where this renaming has been
49d83361 5134 defined. */
4c4b4cd2 5135
49d83361 5136static std::string
96d887e8 5137xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5138{
96d887e8 5139 /* The renaming types adhere to the following convention:
0963b4bd 5140 <scope>__<rename>___<XR extension>.
96d887e8
PH
5141 So, to extract the scope, we search for the "___XR" extension,
5142 and then backtrack until we find the first "__". */
76a01679 5143
7d93a1e0 5144 const char *name = renaming_type->name ();
108d56a4
SM
5145 const char *suffix = strstr (name, "___XR");
5146 const char *last;
14f9c5c9 5147
96d887e8
PH
5148 /* Now, backtrack a bit until we find the first "__". Start looking
5149 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5150
96d887e8
PH
5151 for (last = suffix - 3; last > name; last--)
5152 if (last[0] == '_' && last[1] == '_')
5153 break;
76a01679 5154
96d887e8 5155 /* Make a copy of scope and return it. */
49d83361 5156 return std::string (name, last);
4c4b4cd2
PH
5157}
5158
96d887e8 5159/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5160
96d887e8
PH
5161static int
5162is_package_name (const char *name)
4c4b4cd2 5163{
96d887e8
PH
5164 /* Here, We take advantage of the fact that no symbols are generated
5165 for packages, while symbols are generated for each function.
5166 So the condition for NAME represent a package becomes equivalent
5167 to NAME not existing in our list of symbols. There is only one
5168 small complication with library-level functions (see below). */
4c4b4cd2 5169
96d887e8
PH
5170 /* If it is a function that has not been defined at library level,
5171 then we should be able to look it up in the symbols. */
5172 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5173 return 0;
14f9c5c9 5174
96d887e8
PH
5175 /* Library-level function names start with "_ada_". See if function
5176 "_ada_" followed by NAME can be found. */
14f9c5c9 5177
96d887e8 5178 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5179 functions names cannot contain "__" in them. */
96d887e8
PH
5180 if (strstr (name, "__") != NULL)
5181 return 0;
4c4b4cd2 5182
528e1572 5183 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5184
528e1572 5185 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5186}
14f9c5c9 5187
96d887e8 5188/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5189 not visible from FUNCTION_NAME. */
14f9c5c9 5190
96d887e8 5191static int
0d5cff50 5192old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5193{
66d7f48f 5194 if (sym->aclass () != LOC_TYPEDEF)
aeb5907d
JB
5195 return 0;
5196
5f9c5a63 5197 std::string scope = xget_renaming_scope (sym->type ());
14f9c5c9 5198
96d887e8 5199 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5200 if (is_package_name (scope.c_str ()))
5201 return 0;
14f9c5c9 5202
96d887e8
PH
5203 /* Check that the rename is in the current function scope by checking
5204 that its name starts with SCOPE. */
76a01679 5205
96d887e8
PH
5206 /* If the function name starts with "_ada_", it means that it is
5207 a library-level function. Strip this prefix before doing the
5208 comparison, as the encoding for the renaming does not contain
5209 this prefix. */
61012eef 5210 if (startswith (function_name, "_ada_"))
96d887e8 5211 function_name += 5;
f26caa11 5212
49d83361 5213 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5214}
5215
aeb5907d
JB
5216/* Remove entries from SYMS that corresponds to a renaming entity that
5217 is not visible from the function associated with CURRENT_BLOCK or
5218 that is superfluous due to the presence of more specific renaming
5219 information. Places surviving symbols in the initial entries of
d1183b06
TT
5220 SYMS.
5221
96d887e8 5222 Rationale:
aeb5907d
JB
5223 First, in cases where an object renaming is implemented as a
5224 reference variable, GNAT may produce both the actual reference
5225 variable and the renaming encoding. In this case, we discard the
5226 latter.
5227
5228 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5229 entity. Unfortunately, STABS currently does not support the definition
5230 of types that are local to a given lexical block, so all renamings types
5231 are emitted at library level. As a consequence, if an application
5232 contains two renaming entities using the same name, and a user tries to
5233 print the value of one of these entities, the result of the ada symbol
5234 lookup will also contain the wrong renaming type.
f26caa11 5235
96d887e8
PH
5236 This function partially covers for this limitation by attempting to
5237 remove from the SYMS list renaming symbols that should be visible
5238 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5239 method with the current information available. The implementation
5240 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5241
5242 - When the user tries to print a rename in a function while there
dda83cd7
SM
5243 is another rename entity defined in a package: Normally, the
5244 rename in the function has precedence over the rename in the
5245 package, so the latter should be removed from the list. This is
5246 currently not the case.
5247
96d887e8 5248 - This function will incorrectly remove valid renames if
dda83cd7
SM
5249 the CURRENT_BLOCK corresponds to a function which symbol name
5250 has been changed by an "Export" pragma. As a consequence,
5251 the user will be unable to print such rename entities. */
4c4b4cd2 5252
d1183b06 5253static void
54d343a2
TT
5254remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5255 const struct block *current_block)
4c4b4cd2
PH
5256{
5257 struct symbol *current_function;
0d5cff50 5258 const char *current_function_name;
4c4b4cd2 5259 int i;
aeb5907d
JB
5260 int is_new_style_renaming;
5261
5262 /* If there is both a renaming foo___XR... encoded as a variable and
5263 a simple variable foo in the same block, discard the latter.
0963b4bd 5264 First, zero out such symbols, then compress. */
aeb5907d 5265 is_new_style_renaming = 0;
54d343a2 5266 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5267 {
54d343a2
TT
5268 struct symbol *sym = (*syms)[i].symbol;
5269 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5270 const char *name;
5271 const char *suffix;
5272
66d7f48f 5273 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
aeb5907d 5274 continue;
987012b8 5275 name = sym->linkage_name ();
aeb5907d
JB
5276 suffix = strstr (name, "___XR");
5277
5278 if (suffix != NULL)
5279 {
5280 int name_len = suffix - name;
5281 int j;
5b4ee69b 5282
aeb5907d 5283 is_new_style_renaming = 1;
54d343a2
TT
5284 for (j = 0; j < syms->size (); j += 1)
5285 if (i != j && (*syms)[j].symbol != NULL
987012b8 5286 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5287 name_len) == 0
54d343a2
TT
5288 && block == (*syms)[j].block)
5289 (*syms)[j].symbol = NULL;
aeb5907d
JB
5290 }
5291 }
5292 if (is_new_style_renaming)
5293 {
5294 int j, k;
5295
54d343a2
TT
5296 for (j = k = 0; j < syms->size (); j += 1)
5297 if ((*syms)[j].symbol != NULL)
aeb5907d 5298 {
54d343a2 5299 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5300 k += 1;
5301 }
d1183b06
TT
5302 syms->resize (k);
5303 return;
aeb5907d 5304 }
4c4b4cd2
PH
5305
5306 /* Extract the function name associated to CURRENT_BLOCK.
5307 Abort if unable to do so. */
76a01679 5308
4c4b4cd2 5309 if (current_block == NULL)
d1183b06 5310 return;
76a01679 5311
7f0df278 5312 current_function = block_linkage_function (current_block);
4c4b4cd2 5313 if (current_function == NULL)
d1183b06 5314 return;
4c4b4cd2 5315
987012b8 5316 current_function_name = current_function->linkage_name ();
4c4b4cd2 5317 if (current_function_name == NULL)
d1183b06 5318 return;
4c4b4cd2
PH
5319
5320 /* Check each of the symbols, and remove it from the list if it is
5321 a type corresponding to a renaming that is out of the scope of
5322 the current block. */
5323
5324 i = 0;
54d343a2 5325 while (i < syms->size ())
4c4b4cd2 5326 {
54d343a2 5327 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5328 == ADA_OBJECT_RENAMING
5329 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5330 current_function_name))
5331 syms->erase (syms->begin () + i);
4c4b4cd2 5332 else
dda83cd7 5333 i += 1;
4c4b4cd2 5334 }
4c4b4cd2
PH
5335}
5336
d1183b06 5337/* Add to RESULT all symbols from BLOCK (and its super-blocks)
cd458349 5338 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
339c13b6 5339
cd458349 5340 Note: This function assumes that RESULT is empty. */
339c13b6
JB
5341
5342static void
d1183b06 5343ada_add_local_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5344 const lookup_name_info &lookup_name,
5345 const struct block *block, domain_enum domain)
339c13b6 5346{
339c13b6
JB
5347 while (block != NULL)
5348 {
d1183b06 5349 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
339c13b6 5350
ba8694b6
TT
5351 /* If we found a non-function match, assume that's the one. We
5352 only check this when finding a function boundary, so that we
5353 can accumulate all results from intervening blocks first. */
6c00f721 5354 if (block->function () != nullptr && is_nonfunction (result))
dda83cd7 5355 return;
339c13b6 5356
f135fe72 5357 block = block->superblock ();
339c13b6 5358 }
339c13b6
JB
5359}
5360
2315bb2d 5361/* An object of this type is used as the callback argument when
40658b94 5362 calling the map_matching_symbols method. */
ccefe4c4 5363
40658b94 5364struct match_data
ccefe4c4 5365{
1bfa81ac
TT
5366 explicit match_data (std::vector<struct block_symbol> *rp)
5367 : resultp (rp)
5368 {
5369 }
5370 DISABLE_COPY_AND_ASSIGN (match_data);
5371
2315bb2d
TT
5372 bool operator() (struct block_symbol *bsym);
5373
1bfa81ac 5374 struct objfile *objfile = nullptr;
d1183b06 5375 std::vector<struct block_symbol> *resultp;
1bfa81ac 5376 struct symbol *arg_sym = nullptr;
1178743e 5377 bool found_sym = false;
ccefe4c4
TT
5378};
5379
2315bb2d
TT
5380/* A callback for add_nonlocal_symbols that adds symbol, found in
5381 BSYM, to a list of symbols. */
ccefe4c4 5382
2315bb2d
TT
5383bool
5384match_data::operator() (struct block_symbol *bsym)
ccefe4c4 5385{
199b4314
TT
5386 const struct block *block = bsym->block;
5387 struct symbol *sym = bsym->symbol;
5388
40658b94
PH
5389 if (sym == NULL)
5390 {
2315bb2d 5391 if (!found_sym && arg_sym != NULL)
dae58e04 5392 add_defn_to_vec (*resultp, arg_sym, block);
2315bb2d
TT
5393 found_sym = false;
5394 arg_sym = NULL;
40658b94
PH
5395 }
5396 else
5397 {
66d7f48f 5398 if (sym->aclass () == LOC_UNRESOLVED)
199b4314 5399 return true;
d9743061 5400 else if (sym->is_argument ())
2315bb2d 5401 arg_sym = sym;
40658b94
PH
5402 else
5403 {
2315bb2d 5404 found_sym = true;
dae58e04 5405 add_defn_to_vec (*resultp, sym, block);
40658b94
PH
5406 }
5407 }
199b4314 5408 return true;
40658b94
PH
5409}
5410
b5ec771e
PA
5411/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5412 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
1bfa81ac 5413 symbols to RESULT. Return whether we found such symbols. */
22cee43f
PMR
5414
5415static int
d1183b06 5416ada_add_block_renamings (std::vector<struct block_symbol> &result,
22cee43f 5417 const struct block *block,
b5ec771e
PA
5418 const lookup_name_info &lookup_name,
5419 domain_enum domain)
22cee43f
PMR
5420{
5421 struct using_direct *renaming;
d1183b06 5422 int defns_mark = result.size ();
22cee43f 5423
b5ec771e
PA
5424 symbol_name_matcher_ftype *name_match
5425 = ada_get_symbol_name_matcher (lookup_name);
5426
22cee43f
PMR
5427 for (renaming = block_using (block);
5428 renaming != NULL;
5429 renaming = renaming->next)
5430 {
5431 const char *r_name;
22cee43f
PMR
5432
5433 /* Avoid infinite recursions: skip this renaming if we are actually
5434 already traversing it.
5435
5436 Currently, symbol lookup in Ada don't use the namespace machinery from
5437 C++/Fortran support: skip namespace imports that use them. */
5438 if (renaming->searched
5439 || (renaming->import_src != NULL
5440 && renaming->import_src[0] != '\0')
5441 || (renaming->import_dest != NULL
5442 && renaming->import_dest[0] != '\0'))
5443 continue;
5444 renaming->searched = 1;
5445
5446 /* TODO: here, we perform another name-based symbol lookup, which can
5447 pull its own multiple overloads. In theory, we should be able to do
5448 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5449 not a simple name. But in order to do this, we would need to enhance
5450 the DWARF reader to associate a symbol to this renaming, instead of a
5451 name. So, for now, we do something simpler: re-use the C++/Fortran
5452 namespace machinery. */
5453 r_name = (renaming->alias != NULL
5454 ? renaming->alias
5455 : renaming->declaration);
b5ec771e
PA
5456 if (name_match (r_name, lookup_name, NULL))
5457 {
5458 lookup_name_info decl_lookup_name (renaming->declaration,
5459 lookup_name.match_type ());
d1183b06 5460 ada_add_all_symbols (result, block, decl_lookup_name, domain,
b5ec771e
PA
5461 1, NULL);
5462 }
22cee43f
PMR
5463 renaming->searched = 0;
5464 }
d1183b06 5465 return result.size () != defns_mark;
22cee43f
PMR
5466}
5467
db230ce3
JB
5468/* Implements compare_names, but only applying the comparision using
5469 the given CASING. */
5b4ee69b 5470
40658b94 5471static int
db230ce3
JB
5472compare_names_with_case (const char *string1, const char *string2,
5473 enum case_sensitivity casing)
40658b94
PH
5474{
5475 while (*string1 != '\0' && *string2 != '\0')
5476 {
db230ce3
JB
5477 char c1, c2;
5478
40658b94
PH
5479 if (isspace (*string1) || isspace (*string2))
5480 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5481
5482 if (casing == case_sensitive_off)
5483 {
5484 c1 = tolower (*string1);
5485 c2 = tolower (*string2);
5486 }
5487 else
5488 {
5489 c1 = *string1;
5490 c2 = *string2;
5491 }
5492 if (c1 != c2)
40658b94 5493 break;
db230ce3 5494
40658b94
PH
5495 string1 += 1;
5496 string2 += 1;
5497 }
db230ce3 5498
40658b94
PH
5499 switch (*string1)
5500 {
5501 case '(':
5502 return strcmp_iw_ordered (string1, string2);
5503 case '_':
5504 if (*string2 == '\0')
5505 {
052874e8 5506 if (is_name_suffix (string1))
40658b94
PH
5507 return 0;
5508 else
1a1d5513 5509 return 1;
40658b94 5510 }
dbb8534f 5511 /* FALLTHROUGH */
40658b94
PH
5512 default:
5513 if (*string2 == '(')
5514 return strcmp_iw_ordered (string1, string2);
5515 else
db230ce3
JB
5516 {
5517 if (casing == case_sensitive_off)
5518 return tolower (*string1) - tolower (*string2);
5519 else
5520 return *string1 - *string2;
5521 }
40658b94 5522 }
ccefe4c4
TT
5523}
5524
db230ce3
JB
5525/* Compare STRING1 to STRING2, with results as for strcmp.
5526 Compatible with strcmp_iw_ordered in that...
5527
5528 strcmp_iw_ordered (STRING1, STRING2) <= 0
5529
5530 ... implies...
5531
5532 compare_names (STRING1, STRING2) <= 0
5533
5534 (they may differ as to what symbols compare equal). */
5535
5536static int
5537compare_names (const char *string1, const char *string2)
5538{
5539 int result;
5540
5541 /* Similar to what strcmp_iw_ordered does, we need to perform
5542 a case-insensitive comparison first, and only resort to
5543 a second, case-sensitive, comparison if the first one was
5544 not sufficient to differentiate the two strings. */
5545
5546 result = compare_names_with_case (string1, string2, case_sensitive_off);
5547 if (result == 0)
5548 result = compare_names_with_case (string1, string2, case_sensitive_on);
5549
5550 return result;
5551}
5552
b5ec771e
PA
5553/* Convenience function to get at the Ada encoded lookup name for
5554 LOOKUP_NAME, as a C string. */
5555
5556static const char *
5557ada_lookup_name (const lookup_name_info &lookup_name)
5558{
5559 return lookup_name.ada ().lookup_name ().c_str ();
5560}
5561
0b7b2c2a
TT
5562/* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5563 for OBJFILE, then walk the objfile's symtabs and update the
5564 results. */
5565
5566static void
5567map_matching_symbols (struct objfile *objfile,
5568 const lookup_name_info &lookup_name,
5569 bool is_wild_match,
5570 domain_enum domain,
5571 int global,
5572 match_data &data)
5573{
5574 data.objfile = objfile;
5575 objfile->expand_matching_symbols (lookup_name, domain, global,
5576 is_wild_match ? nullptr : compare_names);
5577
5578 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5579 for (compunit_symtab *symtab : objfile->compunits ())
5580 {
5581 const struct block *block
63d609de 5582 = symtab->blockvector ()->block (block_kind);
0b7b2c2a
TT
5583 if (!iterate_over_symbols_terminated (block, lookup_name,
5584 domain, data))
5585 break;
5586 }
5587}
5588
1bfa81ac 5589/* Add to RESULT all non-local symbols whose name and domain match
b5ec771e
PA
5590 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5591 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5592 symbols otherwise. */
339c13b6
JB
5593
5594static void
d1183b06 5595add_nonlocal_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5596 const lookup_name_info &lookup_name,
5597 domain_enum domain, int global)
339c13b6 5598{
1bfa81ac 5599 struct match_data data (&result);
339c13b6 5600
b5ec771e
PA
5601 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5602
2030c079 5603 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5604 {
0b7b2c2a
TT
5605 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5606 global, data);
22cee43f 5607
b669c953 5608 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5609 {
5610 const struct block *global_block
63d609de 5611 = cu->blockvector ()->global_block ();
22cee43f 5612
d1183b06 5613 if (ada_add_block_renamings (result, global_block, lookup_name,
b5ec771e 5614 domain))
1178743e 5615 data.found_sym = true;
22cee43f 5616 }
40658b94
PH
5617 }
5618
d1183b06 5619 if (result.empty () && global && !is_wild_match)
40658b94 5620 {
b5ec771e 5621 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5622 std::string bracket_name = std::string ("<_ada_") + name + '>';
5623 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5624
2030c079 5625 for (objfile *objfile : current_program_space->objfiles ())
0b7b2c2a
TT
5626 map_matching_symbols (objfile, name1, false, domain, global, data);
5627 }
339c13b6
JB
5628}
5629
b5ec771e
PA
5630/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5631 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
1bfa81ac 5632 returning the number of matches. Add these to RESULT.
4eeaa230 5633
22cee43f
PMR
5634 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5635 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5636 is the one match returned (no other matches in that or
d9680e73 5637 enclosing blocks is returned). If there are any matches in or
22cee43f 5638 surrounding BLOCK, then these alone are returned.
4eeaa230 5639
b5ec771e
PA
5640 Names prefixed with "standard__" are handled specially:
5641 "standard__" is first stripped off (by the lookup_name
5642 constructor), and only static and global symbols are searched.
14f9c5c9 5643
22cee43f
PMR
5644 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5645 to lookup global symbols. */
5646
5647static void
d1183b06 5648ada_add_all_symbols (std::vector<struct block_symbol> &result,
22cee43f 5649 const struct block *block,
b5ec771e 5650 const lookup_name_info &lookup_name,
22cee43f
PMR
5651 domain_enum domain,
5652 int full_search,
5653 int *made_global_lookup_p)
14f9c5c9
AS
5654{
5655 struct symbol *sym;
14f9c5c9 5656
22cee43f
PMR
5657 if (made_global_lookup_p)
5658 *made_global_lookup_p = 0;
339c13b6
JB
5659
5660 /* Special case: If the user specifies a symbol name inside package
5661 Standard, do a non-wild matching of the symbol name without
5662 the "standard__" prefix. This was primarily introduced in order
5663 to allow the user to specifically access the standard exceptions
5664 using, for instance, Standard.Constraint_Error when Constraint_Error
5665 is ambiguous (due to the user defining its own Constraint_Error
5666 entity inside its program). */
b5ec771e
PA
5667 if (lookup_name.ada ().standard_p ())
5668 block = NULL;
4c4b4cd2 5669
339c13b6 5670 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5671
4eeaa230
DE
5672 if (block != NULL)
5673 {
5674 if (full_search)
d1183b06 5675 ada_add_local_symbols (result, lookup_name, block, domain);
4eeaa230
DE
5676 else
5677 {
5678 /* In the !full_search case we're are being called by
4009ee92 5679 iterate_over_symbols, and we don't want to search
4eeaa230 5680 superblocks. */
d1183b06 5681 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4eeaa230 5682 }
d1183b06 5683 if (!result.empty () || !full_search)
22cee43f 5684 return;
4eeaa230 5685 }
d2e4a39e 5686
339c13b6
JB
5687 /* No non-global symbols found. Check our cache to see if we have
5688 already performed this search before. If we have, then return
5689 the same result. */
5690
b5ec771e
PA
5691 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5692 domain, &sym, &block))
4c4b4cd2
PH
5693 {
5694 if (sym != NULL)
d1183b06 5695 add_defn_to_vec (result, sym, block);
22cee43f 5696 return;
4c4b4cd2 5697 }
14f9c5c9 5698
22cee43f
PMR
5699 if (made_global_lookup_p)
5700 *made_global_lookup_p = 1;
b1eedac9 5701
339c13b6
JB
5702 /* Search symbols from all global blocks. */
5703
d1183b06 5704 add_nonlocal_symbols (result, lookup_name, domain, 1);
d2e4a39e 5705
4c4b4cd2 5706 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5707 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5708
d1183b06
TT
5709 if (result.empty ())
5710 add_nonlocal_symbols (result, lookup_name, domain, 0);
22cee43f
PMR
5711}
5712
b5ec771e 5713/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
d1183b06
TT
5714 is non-zero, enclosing scope and in global scopes.
5715
5716 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5717 blocks and symbol tables (if any) in which they were found.
22cee43f
PMR
5718
5719 When full_search is non-zero, any non-function/non-enumeral
5720 symbol match within the nest of blocks whose innermost member is BLOCK,
5721 is the one match returned (no other matches in that or
5722 enclosing blocks is returned). If there are any matches in or
5723 surrounding BLOCK, then these alone are returned.
5724
5725 Names prefixed with "standard__" are handled specially: "standard__"
5726 is first stripped off, and only static and global symbols are searched. */
5727
d1183b06 5728static std::vector<struct block_symbol>
b5ec771e
PA
5729ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5730 const struct block *block,
22cee43f 5731 domain_enum domain,
22cee43f
PMR
5732 int full_search)
5733{
22cee43f 5734 int syms_from_global_search;
d1183b06 5735 std::vector<struct block_symbol> results;
22cee43f 5736
d1183b06 5737 ada_add_all_symbols (results, block, lookup_name,
b5ec771e 5738 domain, full_search, &syms_from_global_search);
14f9c5c9 5739
d1183b06 5740 remove_extra_symbols (&results);
4c4b4cd2 5741
d1183b06 5742 if (results.empty () && full_search && syms_from_global_search)
b5ec771e 5743 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5744
d1183b06 5745 if (results.size () == 1 && full_search && syms_from_global_search)
b5ec771e 5746 cache_symbol (ada_lookup_name (lookup_name), domain,
d1183b06 5747 results[0].symbol, results[0].block);
ec6a20c2 5748
d1183b06
TT
5749 remove_irrelevant_renamings (&results, block);
5750 return results;
14f9c5c9
AS
5751}
5752
b5ec771e 5753/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
d1183b06 5754 in global scopes, returning (SYM,BLOCK) tuples.
ec6a20c2 5755
4eeaa230
DE
5756 See ada_lookup_symbol_list_worker for further details. */
5757
d1183b06 5758std::vector<struct block_symbol>
b5ec771e 5759ada_lookup_symbol_list (const char *name, const struct block *block,
d1183b06 5760 domain_enum domain)
4eeaa230 5761{
b5ec771e
PA
5762 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5763 lookup_name_info lookup_name (name, name_match_type);
5764
d1183b06 5765 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
4eeaa230
DE
5766}
5767
4e5c77fe
JB
5768/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5769 to 1, but choosing the first symbol found if there are multiple
5770 choices.
5771
5e2336be
JB
5772 The result is stored in *INFO, which must be non-NULL.
5773 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5774
5775void
5776ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5777 domain_enum domain,
d12307c1 5778 struct block_symbol *info)
14f9c5c9 5779{
b5ec771e
PA
5780 /* Since we already have an encoded name, wrap it in '<>' to force a
5781 verbatim match. Otherwise, if the name happens to not look like
5782 an encoded name (because it doesn't include a "__"),
5783 ada_lookup_name_info would re-encode/fold it again, and that
5784 would e.g., incorrectly lowercase object renaming names like
5785 "R28b" -> "r28b". */
12932e2c 5786 std::string verbatim = add_angle_brackets (name);
b5ec771e 5787
5e2336be 5788 gdb_assert (info != NULL);
65392b3e 5789 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5790}
aeb5907d
JB
5791
5792/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5793 scope and in global scopes, or NULL if none. NAME is folded and
5794 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5795 choosing the first symbol if there are multiple choices. */
4e5c77fe 5796
d12307c1 5797struct block_symbol
aeb5907d 5798ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5799 domain_enum domain)
aeb5907d 5800{
d1183b06
TT
5801 std::vector<struct block_symbol> candidates
5802 = ada_lookup_symbol_list (name, block0, domain);
f98fc17b 5803
d1183b06 5804 if (candidates.empty ())
54d343a2 5805 return {};
f98fc17b 5806
dae58e04 5807 return candidates[0];
4c4b4cd2 5808}
14f9c5c9 5809
14f9c5c9 5810
4c4b4cd2
PH
5811/* True iff STR is a possible encoded suffix of a normal Ada name
5812 that is to be ignored for matching purposes. Suffixes of parallel
5813 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5814 are given by any of the regular expressions:
4c4b4cd2 5815
babe1480
JB
5816 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5817 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5818 TKB [subprogram suffix for task bodies]
babe1480 5819 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5820 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5821
5822 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5823 match is performed. This sequence is used to differentiate homonyms,
5824 is an optional part of a valid name suffix. */
4c4b4cd2 5825
14f9c5c9 5826static int
d2e4a39e 5827is_name_suffix (const char *str)
14f9c5c9
AS
5828{
5829 int k;
4c4b4cd2
PH
5830 const char *matching;
5831 const int len = strlen (str);
5832
babe1480
JB
5833 /* Skip optional leading __[0-9]+. */
5834
4c4b4cd2
PH
5835 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5836 {
babe1480
JB
5837 str += 3;
5838 while (isdigit (str[0]))
dda83cd7 5839 str += 1;
4c4b4cd2 5840 }
babe1480
JB
5841
5842 /* [.$][0-9]+ */
4c4b4cd2 5843
babe1480 5844 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5845 {
babe1480 5846 matching = str + 1;
4c4b4cd2 5847 while (isdigit (matching[0]))
dda83cd7 5848 matching += 1;
4c4b4cd2 5849 if (matching[0] == '\0')
dda83cd7 5850 return 1;
4c4b4cd2
PH
5851 }
5852
5853 /* ___[0-9]+ */
babe1480 5854
4c4b4cd2
PH
5855 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5856 {
5857 matching = str + 3;
5858 while (isdigit (matching[0]))
dda83cd7 5859 matching += 1;
4c4b4cd2 5860 if (matching[0] == '\0')
dda83cd7 5861 return 1;
4c4b4cd2
PH
5862 }
5863
9ac7f98e
JB
5864 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5865
5866 if (strcmp (str, "TKB") == 0)
5867 return 1;
5868
529cad9c
PH
5869#if 0
5870 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5871 with a N at the end. Unfortunately, the compiler uses the same
5872 convention for other internal types it creates. So treating
529cad9c 5873 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5874 some regressions. For instance, consider the case of an enumerated
5875 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5876 name ends with N.
5877 Having a single character like this as a suffix carrying some
0963b4bd 5878 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5879 to be something like "_N" instead. In the meantime, do not do
5880 the following check. */
5881 /* Protected Object Subprograms */
5882 if (len == 1 && str [0] == 'N')
5883 return 1;
5884#endif
5885
5886 /* _E[0-9]+[bs]$ */
5887 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5888 {
5889 matching = str + 3;
5890 while (isdigit (matching[0]))
dda83cd7 5891 matching += 1;
529cad9c 5892 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5893 && matching [1] == '\0')
5894 return 1;
529cad9c
PH
5895 }
5896
4c4b4cd2
PH
5897 /* ??? We should not modify STR directly, as we are doing below. This
5898 is fine in this case, but may become problematic later if we find
5899 that this alternative did not work, and want to try matching
5900 another one from the begining of STR. Since we modified it, we
5901 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5902 if (str[0] == 'X')
5903 {
5904 str += 1;
d2e4a39e 5905 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5906 {
5907 if (str[0] != 'n' && str[0] != 'b')
5908 return 0;
5909 str += 1;
5910 }
14f9c5c9 5911 }
babe1480 5912
14f9c5c9
AS
5913 if (str[0] == '\000')
5914 return 1;
babe1480 5915
d2e4a39e 5916 if (str[0] == '_')
14f9c5c9
AS
5917 {
5918 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5919 return 0;
d2e4a39e 5920 if (str[2] == '_')
dda83cd7
SM
5921 {
5922 if (strcmp (str + 3, "JM") == 0)
5923 return 1;
5924 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5925 the LJM suffix in favor of the JM one. But we will
5926 still accept LJM as a valid suffix for a reasonable
5927 amount of time, just to allow ourselves to debug programs
5928 compiled using an older version of GNAT. */
5929 if (strcmp (str + 3, "LJM") == 0)
5930 return 1;
5931 if (str[3] != 'X')
5932 return 0;
5933 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5934 || str[4] == 'U' || str[4] == 'P')
5935 return 1;
5936 if (str[4] == 'R' && str[5] != 'T')
5937 return 1;
5938 return 0;
5939 }
4c4b4cd2 5940 if (!isdigit (str[2]))
dda83cd7 5941 return 0;
4c4b4cd2 5942 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5943 if (!isdigit (str[k]) && str[k] != '_')
5944 return 0;
14f9c5c9
AS
5945 return 1;
5946 }
4c4b4cd2 5947 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5948 {
4c4b4cd2 5949 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5950 if (!isdigit (str[k]) && str[k] != '_')
5951 return 0;
14f9c5c9
AS
5952 return 1;
5953 }
5954 return 0;
5955}
d2e4a39e 5956
aeb5907d
JB
5957/* Return non-zero if the string starting at NAME and ending before
5958 NAME_END contains no capital letters. */
529cad9c
PH
5959
5960static int
5961is_valid_name_for_wild_match (const char *name0)
5962{
f945dedf 5963 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5964 int i;
5965
5823c3ef
JB
5966 /* If the decoded name starts with an angle bracket, it means that
5967 NAME0 does not follow the GNAT encoding format. It should then
5968 not be allowed as a possible wild match. */
5969 if (decoded_name[0] == '<')
5970 return 0;
5971
529cad9c
PH
5972 for (i=0; decoded_name[i] != '\0'; i++)
5973 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5974 return 0;
5975
5976 return 1;
5977}
5978
59c8a30b
JB
5979/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5980 character which could start a simple name. Assumes that *NAMEP points
5981 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5982
14f9c5c9 5983static int
59c8a30b 5984advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5985{
73589123 5986 const char *name = *namep;
5b4ee69b 5987
5823c3ef 5988 while (1)
14f9c5c9 5989 {
59c8a30b 5990 char t0, t1;
73589123
PH
5991
5992 t0 = *name;
5993 if (t0 == '_')
5994 {
5995 t1 = name[1];
5996 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5997 {
5998 name += 1;
61012eef 5999 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6000 break;
6001 else
6002 name += 1;
6003 }
aa27d0b3
JB
6004 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6005 || name[2] == target0))
73589123
PH
6006 {
6007 name += 2;
6008 break;
6009 }
86b44259
TT
6010 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6011 {
6012 /* Names like "pkg__B_N__name", where N is a number, are
6013 block-local. We can handle these by simply skipping
6014 the "B_" here. */
6015 name += 4;
6016 }
73589123
PH
6017 else
6018 return 0;
6019 }
6020 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6021 name += 1;
6022 else
5823c3ef 6023 return 0;
73589123
PH
6024 }
6025
6026 *namep = name;
6027 return 1;
6028}
6029
b5ec771e
PA
6030/* Return true iff NAME encodes a name of the form prefix.PATN.
6031 Ignores any informational suffixes of NAME (i.e., for which
6032 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6033 simple name. */
73589123 6034
b5ec771e 6035static bool
73589123
PH
6036wild_match (const char *name, const char *patn)
6037{
22e048c9 6038 const char *p;
73589123
PH
6039 const char *name0 = name;
6040
81eaa506
TT
6041 if (startswith (name, "___ghost_"))
6042 name += 9;
6043
73589123
PH
6044 while (1)
6045 {
6046 const char *match = name;
6047
6048 if (*name == *patn)
6049 {
6050 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6051 if (*p != *name)
6052 break;
6053 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6054 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6055
6056 if (name[-1] == '_')
6057 name -= 1;
6058 }
6059 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6060 return false;
96d887e8 6061 }
96d887e8
PH
6062}
6063
d1183b06 6064/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
b5ec771e 6065 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6066
6067static void
d1183b06 6068ada_add_block_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
6069 const struct block *block,
6070 const lookup_name_info &lookup_name,
6071 domain_enum domain, struct objfile *objfile)
96d887e8 6072{
8157b174 6073 struct block_iterator iter;
96d887e8
PH
6074 /* A matching argument symbol, if any. */
6075 struct symbol *arg_sym;
6076 /* Set true when we find a matching non-argument symbol. */
1178743e 6077 bool found_sym;
96d887e8
PH
6078 struct symbol *sym;
6079
6080 arg_sym = NULL;
1178743e 6081 found_sym = false;
b5ec771e
PA
6082 for (sym = block_iter_match_first (block, lookup_name, &iter);
6083 sym != NULL;
6084 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6085 {
6c9c307c 6086 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
b5ec771e 6087 {
66d7f48f 6088 if (sym->aclass () != LOC_UNRESOLVED)
b5ec771e 6089 {
d9743061 6090 if (sym->is_argument ())
b5ec771e
PA
6091 arg_sym = sym;
6092 else
6093 {
1178743e 6094 found_sym = true;
dae58e04 6095 add_defn_to_vec (result, sym, block);
b5ec771e
PA
6096 }
6097 }
6098 }
96d887e8
PH
6099 }
6100
22cee43f
PMR
6101 /* Handle renamings. */
6102
d1183b06 6103 if (ada_add_block_renamings (result, block, lookup_name, domain))
1178743e 6104 found_sym = true;
22cee43f 6105
96d887e8
PH
6106 if (!found_sym && arg_sym != NULL)
6107 {
dae58e04 6108 add_defn_to_vec (result, arg_sym, block);
96d887e8
PH
6109 }
6110
b5ec771e 6111 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6112 {
6113 arg_sym = NULL;
1178743e 6114 found_sym = false;
b5ec771e
PA
6115 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6116 const char *name = ada_lookup_name.c_str ();
6117 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6118
6119 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6120 {
dda83cd7 6121 if (symbol_matches_domain (sym->language (),
6c9c307c 6122 sym->domain (), domain))
dda83cd7
SM
6123 {
6124 int cmp;
6125
6126 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6127 if (cmp == 0)
6128 {
6129 cmp = !startswith (sym->linkage_name (), "_ada_");
6130 if (cmp == 0)
6131 cmp = strncmp (name, sym->linkage_name () + 5,
6132 name_len);
6133 }
6134
6135 if (cmp == 0
6136 && is_name_suffix (sym->linkage_name () + name_len + 5))
6137 {
66d7f48f 6138 if (sym->aclass () != LOC_UNRESOLVED)
2a2d4dc3 6139 {
d9743061 6140 if (sym->is_argument ())
2a2d4dc3
AS
6141 arg_sym = sym;
6142 else
6143 {
1178743e 6144 found_sym = true;
dae58e04 6145 add_defn_to_vec (result, sym, block);
2a2d4dc3
AS
6146 }
6147 }
dda83cd7
SM
6148 }
6149 }
76a01679 6150 }
96d887e8
PH
6151
6152 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 6153 They aren't parameters, right? */
96d887e8 6154 if (!found_sym && arg_sym != NULL)
dda83cd7 6155 {
dae58e04 6156 add_defn_to_vec (result, arg_sym, block);
dda83cd7 6157 }
96d887e8
PH
6158 }
6159}
6160\f
41d27058 6161
dda83cd7 6162 /* Symbol Completion */
41d27058 6163
b5ec771e 6164/* See symtab.h. */
41d27058 6165
b5ec771e
PA
6166bool
6167ada_lookup_name_info::matches
6168 (const char *sym_name,
6169 symbol_name_match_type match_type,
a207cff2 6170 completion_match_result *comp_match_res) const
41d27058 6171{
b5ec771e
PA
6172 bool match = false;
6173 const char *text = m_encoded_name.c_str ();
6174 size_t text_len = m_encoded_name.size ();
41d27058
JB
6175
6176 /* First, test against the fully qualified name of the symbol. */
6177
6178 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6179 match = true;
41d27058 6180
f945dedf 6181 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6182 if (match && !m_encoded_p)
41d27058
JB
6183 {
6184 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
6185 that iff we are doing a verbatim match, the decoded version
6186 of the symbol name starts with '<'. Otherwise, this symbol name
6187 is not a suitable completion. */
41d27058 6188
f945dedf 6189 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6190 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6191 }
6192
b5ec771e 6193 if (match && !m_verbatim_p)
41d27058
JB
6194 {
6195 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
6196 be done is to verify that the potentially matching symbol name
6197 does not include capital letters, because the ada-mode would
6198 not be able to understand these symbol names without the
6199 angle bracket notation. */
41d27058
JB
6200 const char *tmp;
6201
6202 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6203 if (*tmp != '\0')
b5ec771e 6204 match = false;
41d27058
JB
6205 }
6206
6207 /* Second: Try wild matching... */
6208
b5ec771e 6209 if (!match && m_wild_match_p)
41d27058
JB
6210 {
6211 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
6212 may represent an unqualified symbol name. We therefore must
6213 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6214 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6215
6216 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6217 match = true;
41d27058
JB
6218 }
6219
b5ec771e 6220 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6221
6222 if (!match)
b5ec771e 6223 return false;
41d27058 6224
a207cff2 6225 if (comp_match_res != NULL)
b5ec771e 6226 {
a207cff2 6227 std::string &match_str = comp_match_res->match.storage ();
41d27058 6228
b5ec771e 6229 if (!m_encoded_p)
a207cff2 6230 match_str = ada_decode (sym_name);
b5ec771e
PA
6231 else
6232 {
6233 if (m_verbatim_p)
6234 match_str = add_angle_brackets (sym_name);
6235 else
6236 match_str = sym_name;
41d27058 6237
b5ec771e 6238 }
a207cff2
PA
6239
6240 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6241 }
6242
b5ec771e 6243 return true;
41d27058
JB
6244}
6245
dda83cd7 6246 /* Field Access */
96d887e8 6247
73fb9985
JB
6248/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6249 for tagged types. */
6250
6251static int
6252ada_is_dispatch_table_ptr_type (struct type *type)
6253{
0d5cff50 6254 const char *name;
73fb9985 6255
78134374 6256 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6257 return 0;
6258
27710edb 6259 name = type->target_type ()->name ();
73fb9985
JB
6260 if (name == NULL)
6261 return 0;
6262
6263 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6264}
6265
ac4a2da4
JG
6266/* Return non-zero if TYPE is an interface tag. */
6267
6268static int
6269ada_is_interface_tag (struct type *type)
6270{
7d93a1e0 6271 const char *name = type->name ();
ac4a2da4
JG
6272
6273 if (name == NULL)
6274 return 0;
6275
6276 return (strcmp (name, "ada__tags__interface_tag") == 0);
6277}
6278
963a6417
PH
6279/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6280 to be invisible to users. */
96d887e8 6281
963a6417
PH
6282int
6283ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6284{
1f704f76 6285 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6286 return 1;
ffde82bf 6287
73fb9985
JB
6288 /* Check the name of that field. */
6289 {
33d16dd9 6290 const char *name = type->field (field_num).name ();
73fb9985
JB
6291
6292 /* Anonymous field names should not be printed.
6293 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6294 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6295 if (name == NULL)
6296 return 1;
6297
ffde82bf
JB
6298 /* Normally, fields whose name start with an underscore ("_")
6299 are fields that have been internally generated by the compiler,
6300 and thus should not be printed. The "_parent" field is special,
6301 however: This is a field internally generated by the compiler
6302 for tagged types, and it contains the components inherited from
6303 the parent type. This field should not be printed as is, but
6304 should not be ignored either. */
61012eef 6305 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985 6306 return 1;
d537777d
TT
6307
6308 /* The compiler doesn't document this, but sometimes it emits
6309 a field whose name starts with a capital letter, like 'V148s'.
6310 These aren't marked as artificial in any way, but we know they
6311 should be ignored. However, wrapper fields should not be
6312 ignored. */
6313 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6314 {
6315 /* Wrapper field. */
6316 }
6317 else if (isupper (name[0]))
6318 return 1;
73fb9985
JB
6319 }
6320
ac4a2da4
JG
6321 /* If this is the dispatch table of a tagged type or an interface tag,
6322 then ignore. */
73fb9985 6323 if (ada_is_tagged_type (type, 1)
940da03e
SM
6324 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6325 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6326 return 1;
6327
6328 /* Not a special field, so it should not be ignored. */
6329 return 0;
963a6417 6330}
96d887e8 6331
963a6417 6332/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6333 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6334
963a6417
PH
6335int
6336ada_is_tagged_type (struct type *type, int refok)
6337{
988f6b3d 6338 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6339}
96d887e8 6340
963a6417 6341/* True iff TYPE represents the type of X'Tag */
96d887e8 6342
963a6417
PH
6343int
6344ada_is_tag_type (struct type *type)
6345{
460efde1
JB
6346 type = ada_check_typedef (type);
6347
78134374 6348 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6349 return 0;
6350 else
96d887e8 6351 {
27710edb 6352 const char *name = ada_type_name (type->target_type ());
5b4ee69b 6353
963a6417 6354 return (name != NULL
dda83cd7 6355 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6356 }
96d887e8
PH
6357}
6358
963a6417 6359/* The type of the tag on VAL. */
76a01679 6360
de93309a 6361static struct type *
963a6417 6362ada_tag_type (struct value *val)
96d887e8 6363{
d0c97917 6364 return ada_lookup_struct_elt_type (val->type (), "_tag", 1, 0);
963a6417 6365}
96d887e8 6366
b50d69b5
JG
6367/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6368 retired at Ada 05). */
6369
6370static int
6371is_ada95_tag (struct value *tag)
6372{
6373 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6374}
6375
963a6417 6376/* The value of the tag on VAL. */
96d887e8 6377
de93309a 6378static struct value *
963a6417
PH
6379ada_value_tag (struct value *val)
6380{
03ee6b2e 6381 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6382}
6383
963a6417
PH
6384/* The value of the tag on the object of type TYPE whose contents are
6385 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6386 ADDRESS. */
96d887e8 6387
963a6417 6388static struct value *
10a2c479 6389value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6390 const gdb_byte *valaddr,
dda83cd7 6391 CORE_ADDR address)
96d887e8 6392{
b5385fc0 6393 int tag_byte_offset;
963a6417 6394 struct type *tag_type;
5b4ee69b 6395
4d1795ac
TT
6396 gdb::array_view<const gdb_byte> contents;
6397 if (valaddr != nullptr)
df86565b 6398 contents = gdb::make_array_view (valaddr, type->length ());
4d1795ac
TT
6399 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6400 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6401 NULL, NULL, NULL))
96d887e8 6402 {
fc1a4b47 6403 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6404 ? NULL
6405 : valaddr + tag_byte_offset);
963a6417 6406 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6407
963a6417 6408 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6409 }
963a6417
PH
6410 return NULL;
6411}
96d887e8 6412
963a6417
PH
6413static struct type *
6414type_from_tag (struct value *tag)
6415{
f5272a3b 6416 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6417
963a6417 6418 if (type_name != NULL)
5c4258f4 6419 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6420 return NULL;
6421}
96d887e8 6422
b50d69b5
JG
6423/* Given a value OBJ of a tagged type, return a value of this
6424 type at the base address of the object. The base address, as
6425 defined in Ada.Tags, it is the address of the primary tag of
6426 the object, and therefore where the field values of its full
6427 view can be fetched. */
6428
6429struct value *
6430ada_tag_value_at_base_address (struct value *obj)
6431{
b50d69b5
JG
6432 struct value *val;
6433 LONGEST offset_to_top = 0;
6434 struct type *ptr_type, *obj_type;
6435 struct value *tag;
6436 CORE_ADDR base_address;
6437
d0c97917 6438 obj_type = obj->type ();
b50d69b5
JG
6439
6440 /* It is the responsability of the caller to deref pointers. */
6441
78134374 6442 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6443 return obj;
6444
6445 tag = ada_value_tag (obj);
6446 if (!tag)
6447 return obj;
6448
6449 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6450
6451 if (is_ada95_tag (tag))
6452 return obj;
6453
d537777d
TT
6454 struct type *offset_type
6455 = language_lookup_primitive_type (language_def (language_ada),
6456 target_gdbarch(), "storage_offset");
6457 ptr_type = lookup_pointer_type (offset_type);
b50d69b5
JG
6458 val = value_cast (ptr_type, tag);
6459 if (!val)
6460 return obj;
6461
6462 /* It is perfectly possible that an exception be raised while
6463 trying to determine the base address, just like for the tag;
6464 see ada_tag_name for more details. We do not print the error
6465 message for the same reason. */
6466
a70b8144 6467 try
b50d69b5
JG
6468 {
6469 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6470 }
6471
230d2906 6472 catch (const gdb_exception_error &e)
492d29ea
PA
6473 {
6474 return obj;
6475 }
b50d69b5
JG
6476
6477 /* If offset is null, nothing to do. */
6478
6479 if (offset_to_top == 0)
6480 return obj;
6481
6482 /* -1 is a special case in Ada.Tags; however, what should be done
6483 is not quite clear from the documentation. So do nothing for
6484 now. */
6485
6486 if (offset_to_top == -1)
6487 return obj;
6488
d537777d
TT
6489 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6490 top is used. In this situation the offset is stored just after
6491 the tag, in the object itself. */
df86565b 6492 ULONGEST last = (((ULONGEST) 1) << (8 * offset_type->length () - 1)) - 1;
d537777d
TT
6493 if (offset_to_top == last)
6494 {
6495 struct value *tem = value_addr (tag);
6496 tem = value_ptradd (tem, 1);
6497 tem = value_cast (ptr_type, tem);
6498 offset_to_top = value_as_long (value_ind (tem));
6499 }
05527d8c
TV
6500
6501 if (offset_to_top > 0)
d537777d
TT
6502 {
6503 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6504 from the base address. This was however incompatible with
6505 C++ dispatch table: C++ uses a *negative* value to *add*
6506 to the base address. Ada's convention has therefore been
6507 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6508 use the same convention. Here, we support both cases by
6509 checking the sign of OFFSET_TO_TOP. */
6510 offset_to_top = -offset_to_top;
6511 }
08f49010 6512
9feb2d07 6513 base_address = obj->address () + offset_to_top;
b50d69b5
JG
6514 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6515
6516 /* Make sure that we have a proper tag at the new address.
6517 Otherwise, offset_to_top is bogus (which can happen when
6518 the object is not initialized yet). */
6519
6520 if (!tag)
6521 return obj;
6522
6523 obj_type = type_from_tag (tag);
6524
6525 if (!obj_type)
6526 return obj;
6527
6528 return value_from_contents_and_address (obj_type, NULL, base_address);
6529}
6530
1b611343
JB
6531/* Return the "ada__tags__type_specific_data" type. */
6532
6533static struct type *
6534ada_get_tsd_type (struct inferior *inf)
963a6417 6535{
1b611343 6536 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6537
1b611343
JB
6538 if (data->tsd_type == 0)
6539 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6540 return data->tsd_type;
6541}
529cad9c 6542
1b611343
JB
6543/* Return the TSD (type-specific data) associated to the given TAG.
6544 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6545
1b611343 6546 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6547
1b611343
JB
6548static struct value *
6549ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6550{
4c4b4cd2 6551 struct value *val;
1b611343 6552 struct type *type;
5b4ee69b 6553
1b611343
JB
6554 /* First option: The TSD is simply stored as a field of our TAG.
6555 Only older versions of GNAT would use this format, but we have
6556 to test it first, because there are no visible markers for
6557 the current approach except the absence of that field. */
529cad9c 6558
1b611343
JB
6559 val = ada_value_struct_elt (tag, "tsd", 1);
6560 if (val)
6561 return val;
e802dbe0 6562
1b611343
JB
6563 /* Try the second representation for the dispatch table (in which
6564 there is no explicit 'tsd' field in the referent of the tag pointer,
6565 and instead the tsd pointer is stored just before the dispatch
6566 table. */
e802dbe0 6567
1b611343
JB
6568 type = ada_get_tsd_type (current_inferior());
6569 if (type == NULL)
6570 return NULL;
6571 type = lookup_pointer_type (lookup_pointer_type (type));
6572 val = value_cast (type, tag);
6573 if (val == NULL)
6574 return NULL;
6575 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6576}
6577
1b611343
JB
6578/* Given the TSD of a tag (type-specific data), return a string
6579 containing the name of the associated type.
6580
f5272a3b 6581 May return NULL if we are unable to determine the tag name. */
1b611343 6582
f5272a3b 6583static gdb::unique_xmalloc_ptr<char>
1b611343 6584ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6585{
1b611343 6586 struct value *val;
529cad9c 6587
1b611343 6588 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6589 if (val == NULL)
1b611343 6590 return NULL;
66920317
TT
6591 gdb::unique_xmalloc_ptr<char> buffer
6592 = target_read_string (value_as_address (val), INT_MAX);
6593 if (buffer == nullptr)
f5272a3b
TT
6594 return nullptr;
6595
315e4ebb 6596 try
f5272a3b 6597 {
315e4ebb
TT
6598 /* Let this throw an exception on error. If the data is
6599 uninitialized, we'd rather not have the user see a
6600 warning. */
6601 const char *folded = ada_fold_name (buffer.get (), true);
6602 return make_unique_xstrdup (folded);
6603 }
6604 catch (const gdb_exception &)
6605 {
6606 return nullptr;
f5272a3b 6607 }
4c4b4cd2
PH
6608}
6609
6610/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6611 a C string.
6612
6613 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6614 determine the name of that tag. */
4c4b4cd2 6615
f5272a3b 6616gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6617ada_tag_name (struct value *tag)
6618{
f5272a3b 6619 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6620
d0c97917 6621 if (!ada_is_tag_type (tag->type ()))
4c4b4cd2 6622 return NULL;
1b611343
JB
6623
6624 /* It is perfectly possible that an exception be raised while trying
6625 to determine the TAG's name, even under normal circumstances:
6626 The associated variable may be uninitialized or corrupted, for
6627 instance. We do not let any exception propagate past this point.
6628 instead we return NULL.
6629
6630 We also do not print the error message either (which often is very
6631 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6632 the caller print a more meaningful message if necessary. */
a70b8144 6633 try
1b611343
JB
6634 {
6635 struct value *tsd = ada_get_tsd_from_tag (tag);
6636
6637 if (tsd != NULL)
6638 name = ada_tag_name_from_tsd (tsd);
6639 }
230d2906 6640 catch (const gdb_exception_error &e)
492d29ea
PA
6641 {
6642 }
1b611343
JB
6643
6644 return name;
4c4b4cd2
PH
6645}
6646
6647/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6648
d2e4a39e 6649struct type *
ebf56fd3 6650ada_parent_type (struct type *type)
14f9c5c9
AS
6651{
6652 int i;
6653
61ee279c 6654 type = ada_check_typedef (type);
14f9c5c9 6655
78134374 6656 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6657 return NULL;
6658
1f704f76 6659 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6660 if (ada_is_parent_field (type, i))
0c1f74cf 6661 {
dda83cd7 6662 struct type *parent_type = type->field (i).type ();
0c1f74cf 6663
dda83cd7
SM
6664 /* If the _parent field is a pointer, then dereference it. */
6665 if (parent_type->code () == TYPE_CODE_PTR)
27710edb 6666 parent_type = parent_type->target_type ();
dda83cd7
SM
6667 /* If there is a parallel XVS type, get the actual base type. */
6668 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6669
dda83cd7 6670 return ada_check_typedef (parent_type);
0c1f74cf 6671 }
14f9c5c9
AS
6672
6673 return NULL;
6674}
6675
4c4b4cd2
PH
6676/* True iff field number FIELD_NUM of structure type TYPE contains the
6677 parent-type (inherited) fields of a derived type. Assumes TYPE is
6678 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6679
6680int
ebf56fd3 6681ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6682{
33d16dd9 6683 const char *name = ada_check_typedef (type)->field (field_num).name ();
5b4ee69b 6684
4c4b4cd2 6685 return (name != NULL
dda83cd7
SM
6686 && (startswith (name, "PARENT")
6687 || startswith (name, "_parent")));
14f9c5c9
AS
6688}
6689
4c4b4cd2 6690/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6691 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6692 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6693 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6694 structures. */
14f9c5c9
AS
6695
6696int
ebf56fd3 6697ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6698{
33d16dd9 6699 const char *name = type->field (field_num).name ();
5b4ee69b 6700
dddc0e16
JB
6701 if (name != NULL && strcmp (name, "RETVAL") == 0)
6702 {
6703 /* This happens in functions with "out" or "in out" parameters
6704 which are passed by copy. For such functions, GNAT describes
6705 the function's return type as being a struct where the return
6706 value is in a field called RETVAL, and where the other "out"
6707 or "in out" parameters are fields of that struct. This is not
6708 a wrapper. */
6709 return 0;
6710 }
6711
d2e4a39e 6712 return (name != NULL
dda83cd7
SM
6713 && (startswith (name, "PARENT")
6714 || strcmp (name, "REP") == 0
6715 || startswith (name, "_parent")
6716 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6717}
6718
4c4b4cd2
PH
6719/* True iff field number FIELD_NUM of structure or union type TYPE
6720 is a variant wrapper. Assumes TYPE is a structure type with at least
6721 FIELD_NUM+1 fields. */
14f9c5c9
AS
6722
6723int
ebf56fd3 6724ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6725{
8ecb59f8
TT
6726 /* Only Ada types are eligible. */
6727 if (!ADA_TYPE_P (type))
6728 return 0;
6729
940da03e 6730 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6731
78134374
SM
6732 return (field_type->code () == TYPE_CODE_UNION
6733 || (is_dynamic_field (type, field_num)
27710edb 6734 && (field_type->target_type ()->code ()
c3e5cd34 6735 == TYPE_CODE_UNION)));
14f9c5c9
AS
6736}
6737
6738/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6739 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6740 returns the type of the controlling discriminant for the variant.
6741 May return NULL if the type could not be found. */
14f9c5c9 6742
d2e4a39e 6743struct type *
ebf56fd3 6744ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6745{
a121b7c1 6746 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6747
988f6b3d 6748 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6749}
6750
4c4b4cd2 6751/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6752 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6753 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6754
de93309a 6755static int
ebf56fd3 6756ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6757{
33d16dd9 6758 const char *name = type->field (field_num).name ();
5b4ee69b 6759
14f9c5c9
AS
6760 return (name != NULL && name[0] == 'O');
6761}
6762
6763/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6764 returns the name of the discriminant controlling the variant.
6765 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6766
a121b7c1 6767const char *
ebf56fd3 6768ada_variant_discrim_name (struct type *type0)
14f9c5c9 6769{
5f9febe0 6770 static std::string result;
d2e4a39e
AS
6771 struct type *type;
6772 const char *name;
6773 const char *discrim_end;
6774 const char *discrim_start;
14f9c5c9 6775
78134374 6776 if (type0->code () == TYPE_CODE_PTR)
27710edb 6777 type = type0->target_type ();
14f9c5c9
AS
6778 else
6779 type = type0;
6780
6781 name = ada_type_name (type);
6782
6783 if (name == NULL || name[0] == '\000')
6784 return "";
6785
6786 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6787 discrim_end -= 1)
6788 {
61012eef 6789 if (startswith (discrim_end, "___XVN"))
dda83cd7 6790 break;
14f9c5c9
AS
6791 }
6792 if (discrim_end == name)
6793 return "";
6794
d2e4a39e 6795 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6796 discrim_start -= 1)
6797 {
d2e4a39e 6798 if (discrim_start == name + 1)
dda83cd7 6799 return "";
76a01679 6800 if ((discrim_start > name + 3
dda83cd7
SM
6801 && startswith (discrim_start - 3, "___"))
6802 || discrim_start[-1] == '.')
6803 break;
14f9c5c9
AS
6804 }
6805
5f9febe0
TT
6806 result = std::string (discrim_start, discrim_end - discrim_start);
6807 return result.c_str ();
14f9c5c9
AS
6808}
6809
4c4b4cd2
PH
6810/* Scan STR for a subtype-encoded number, beginning at position K.
6811 Put the position of the character just past the number scanned in
6812 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6813 Return 1 if there was a valid number at the given position, and 0
6814 otherwise. A "subtype-encoded" number consists of the absolute value
6815 in decimal, followed by the letter 'm' to indicate a negative number.
6816 Assumes 0m does not occur. */
14f9c5c9
AS
6817
6818int
d2e4a39e 6819ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6820{
6821 ULONGEST RU;
6822
d2e4a39e 6823 if (!isdigit (str[k]))
14f9c5c9
AS
6824 return 0;
6825
4c4b4cd2 6826 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6827 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6828 LONGEST. */
14f9c5c9
AS
6829 RU = 0;
6830 while (isdigit (str[k]))
6831 {
d2e4a39e 6832 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6833 k += 1;
6834 }
6835
d2e4a39e 6836 if (str[k] == 'm')
14f9c5c9
AS
6837 {
6838 if (R != NULL)
dda83cd7 6839 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6840 k += 1;
6841 }
6842 else if (R != NULL)
6843 *R = (LONGEST) RU;
6844
4c4b4cd2 6845 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6846 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6847 number representable as a LONGEST (although either would probably work
6848 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6849 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6850
6851 if (new_k != NULL)
6852 *new_k = k;
6853 return 1;
6854}
6855
4c4b4cd2
PH
6856/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6857 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6858 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6859
de93309a 6860static int
ebf56fd3 6861ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6862{
33d16dd9 6863 const char *name = type->field (field_num).name ();
14f9c5c9
AS
6864 int p;
6865
6866 p = 0;
6867 while (1)
6868 {
d2e4a39e 6869 switch (name[p])
dda83cd7
SM
6870 {
6871 case '\0':
6872 return 0;
6873 case 'S':
6874 {
6875 LONGEST W;
6876
6877 if (!ada_scan_number (name, p + 1, &W, &p))
6878 return 0;
6879 if (val == W)
6880 return 1;
6881 break;
6882 }
6883 case 'R':
6884 {
6885 LONGEST L, U;
6886
6887 if (!ada_scan_number (name, p + 1, &L, &p)
6888 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6889 return 0;
6890 if (val >= L && val <= U)
6891 return 1;
6892 break;
6893 }
6894 case 'O':
6895 return 1;
6896 default:
6897 return 0;
6898 }
4c4b4cd2
PH
6899 }
6900}
6901
0963b4bd 6902/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6903
6904/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6905 ARG_TYPE, extract and return the value of one of its (non-static)
6906 fields. FIELDNO says which field. Differs from value_primitive_field
6907 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6908
5eb68a39 6909struct value *
d2e4a39e 6910ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6911 struct type *arg_type)
14f9c5c9 6912{
14f9c5c9
AS
6913 struct type *type;
6914
61ee279c 6915 arg_type = ada_check_typedef (arg_type);
940da03e 6916 type = arg_type->field (fieldno).type ();
14f9c5c9 6917
4504bbde
TT
6918 /* Handle packed fields. It might be that the field is not packed
6919 relative to its containing structure, but the structure itself is
6920 packed; in this case we must take the bit-field path. */
5011c493 6921 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || arg1->bitpos () != 0)
14f9c5c9 6922 {
b610c045 6923 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
14f9c5c9 6924 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6925
50888e42
SM
6926 return ada_value_primitive_packed_val (arg1,
6927 value_contents (arg1).data (),
dda83cd7
SM
6928 offset + bit_pos / 8,
6929 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6930 }
6931 else
6932 return value_primitive_field (arg1, offset, fieldno, arg_type);
6933}
6934
52ce6436
PH
6935/* Find field with name NAME in object of type TYPE. If found,
6936 set the following for each argument that is non-null:
6937 - *FIELD_TYPE_P to the field's type;
6938 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6939 an object of that type;
6940 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6941 - *BIT_SIZE_P to its size in bits if the field is packed, and
6942 0 otherwise;
6943 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6944 fields up to but not including the desired field, or by the total
6945 number of fields if not found. A NULL value of NAME never
6946 matches; the function just counts visible fields in this case.
6947
828d5846
XR
6948 Notice that we need to handle when a tagged record hierarchy
6949 has some components with the same name, like in this scenario:
6950
6951 type Top_T is tagged record
dda83cd7
SM
6952 N : Integer := 1;
6953 U : Integer := 974;
6954 A : Integer := 48;
828d5846
XR
6955 end record;
6956
6957 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6958 N : Character := 'a';
6959 C : Integer := 3;
828d5846
XR
6960 end record;
6961
6962 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6963 N : Float := 4.0;
6964 C : Character := '5';
6965 X : Integer := 6;
6966 A : Character := 'J';
828d5846
XR
6967 end record;
6968
6969 Let's say we now have a variable declared and initialized as follow:
6970
6971 TC : Top_A := new Bottom_T;
6972
6973 And then we use this variable to call this function
6974
6975 procedure Assign (Obj: in out Top_T; TV : Integer);
6976
6977 as follow:
6978
6979 Assign (Top_T (B), 12);
6980
6981 Now, we're in the debugger, and we're inside that procedure
6982 then and we want to print the value of obj.c:
6983
6984 Usually, the tagged record or one of the parent type owns the
6985 component to print and there's no issue but in this particular
6986 case, what does it mean to ask for Obj.C? Since the actual
6987 type for object is type Bottom_T, it could mean two things: type
6988 component C from the Middle_T view, but also component C from
6989 Bottom_T. So in that "undefined" case, when the component is
6990 not found in the non-resolved type (which includes all the
6991 components of the parent type), then resolve it and see if we
6992 get better luck once expanded.
6993
6994 In the case of homonyms in the derived tagged type, we don't
6995 guaranty anything, and pick the one that's easiest for us
6996 to program.
6997
0963b4bd 6998 Returns 1 if found, 0 otherwise. */
52ce6436 6999
4c4b4cd2 7000static int
0d5cff50 7001find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
7002 struct type **field_type_p,
7003 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 7004 int *index_p)
4c4b4cd2
PH
7005{
7006 int i;
828d5846 7007 int parent_offset = -1;
4c4b4cd2 7008
61ee279c 7009 type = ada_check_typedef (type);
76a01679 7010
52ce6436
PH
7011 if (field_type_p != NULL)
7012 *field_type_p = NULL;
7013 if (byte_offset_p != NULL)
d5d6fca5 7014 *byte_offset_p = 0;
52ce6436
PH
7015 if (bit_offset_p != NULL)
7016 *bit_offset_p = 0;
7017 if (bit_size_p != NULL)
7018 *bit_size_p = 0;
7019
1f704f76 7020 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2 7021 {
4d1795ac
TT
7022 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7023 type. However, we only need the values to be correct when
7024 the caller asks for them. */
7025 int bit_pos = 0, fld_offset = 0;
7026 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7027 {
b610c045 7028 bit_pos = type->field (i).loc_bitpos ();
4d1795ac
TT
7029 fld_offset = offset + bit_pos / 8;
7030 }
7031
33d16dd9 7032 const char *t_field_name = type->field (i).name ();
76a01679 7033
4c4b4cd2 7034 if (t_field_name == NULL)
dda83cd7 7035 continue;
4c4b4cd2 7036
828d5846 7037 else if (ada_is_parent_field (type, i))
dda83cd7 7038 {
828d5846
XR
7039 /* This is a field pointing us to the parent type of a tagged
7040 type. As hinted in this function's documentation, we give
7041 preference to fields in the current record first, so what
7042 we do here is just record the index of this field before
7043 we skip it. If it turns out we couldn't find our field
7044 in the current record, then we'll get back to it and search
7045 inside it whether the field might exist in the parent. */
7046
dda83cd7
SM
7047 parent_offset = i;
7048 continue;
7049 }
828d5846 7050
52ce6436 7051 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
7052 {
7053 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7054
52ce6436 7055 if (field_type_p != NULL)
940da03e 7056 *field_type_p = type->field (i).type ();
52ce6436
PH
7057 if (byte_offset_p != NULL)
7058 *byte_offset_p = fld_offset;
7059 if (bit_offset_p != NULL)
7060 *bit_offset_p = bit_pos % 8;
7061 if (bit_size_p != NULL)
7062 *bit_size_p = bit_size;
dda83cd7
SM
7063 return 1;
7064 }
4c4b4cd2 7065 else if (ada_is_wrapper_field (type, i))
dda83cd7 7066 {
940da03e 7067 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7068 field_type_p, byte_offset_p, bit_offset_p,
7069 bit_size_p, index_p))
dda83cd7
SM
7070 return 1;
7071 }
4c4b4cd2 7072 else if (ada_is_variant_part (type, i))
dda83cd7 7073 {
52ce6436
PH
7074 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7075 fixed type?? */
dda83cd7
SM
7076 int j;
7077 struct type *field_type
940da03e 7078 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7079
dda83cd7
SM
7080 for (j = 0; j < field_type->num_fields (); j += 1)
7081 {
7082 if (find_struct_field (name, field_type->field (j).type (),
7083 fld_offset
b610c045 7084 + field_type->field (j).loc_bitpos () / 8,
dda83cd7
SM
7085 field_type_p, byte_offset_p,
7086 bit_offset_p, bit_size_p, index_p))
7087 return 1;
7088 }
7089 }
52ce6436
PH
7090 else if (index_p != NULL)
7091 *index_p += 1;
4c4b4cd2 7092 }
828d5846
XR
7093
7094 /* Field not found so far. If this is a tagged type which
7095 has a parent, try finding that field in the parent now. */
7096
7097 if (parent_offset != -1)
7098 {
4d1795ac
TT
7099 /* As above, only compute the offset when truly needed. */
7100 int fld_offset = offset;
7101 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7102 {
b610c045 7103 int bit_pos = type->field (parent_offset).loc_bitpos ();
4d1795ac
TT
7104 fld_offset += bit_pos / 8;
7105 }
828d5846 7106
940da03e 7107 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
7108 fld_offset, field_type_p, byte_offset_p,
7109 bit_offset_p, bit_size_p, index_p))
7110 return 1;
828d5846
XR
7111 }
7112
4c4b4cd2
PH
7113 return 0;
7114}
7115
0963b4bd 7116/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7117
52ce6436
PH
7118static int
7119num_visible_fields (struct type *type)
7120{
7121 int n;
5b4ee69b 7122
52ce6436
PH
7123 n = 0;
7124 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7125 return n;
7126}
14f9c5c9 7127
4c4b4cd2 7128/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7129 and search in it assuming it has (class) type TYPE.
7130 If found, return value, else return NULL.
7131
828d5846
XR
7132 Searches recursively through wrapper fields (e.g., '_parent').
7133
7134 In the case of homonyms in the tagged types, please refer to the
7135 long explanation in find_struct_field's function documentation. */
14f9c5c9 7136
4c4b4cd2 7137static struct value *
108d56a4 7138ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 7139 struct type *type)
14f9c5c9
AS
7140{
7141 int i;
828d5846 7142 int parent_offset = -1;
14f9c5c9 7143
5b4ee69b 7144 type = ada_check_typedef (type);
1f704f76 7145 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7146 {
33d16dd9 7147 const char *t_field_name = type->field (i).name ();
14f9c5c9
AS
7148
7149 if (t_field_name == NULL)
dda83cd7 7150 continue;
14f9c5c9 7151
828d5846 7152 else if (ada_is_parent_field (type, i))
dda83cd7 7153 {
828d5846
XR
7154 /* This is a field pointing us to the parent type of a tagged
7155 type. As hinted in this function's documentation, we give
7156 preference to fields in the current record first, so what
7157 we do here is just record the index of this field before
7158 we skip it. If it turns out we couldn't find our field
7159 in the current record, then we'll get back to it and search
7160 inside it whether the field might exist in the parent. */
7161
dda83cd7
SM
7162 parent_offset = i;
7163 continue;
7164 }
828d5846 7165
14f9c5c9 7166 else if (field_name_match (t_field_name, name))
dda83cd7 7167 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7168
7169 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7170 {
7171 struct value *v = /* Do not let indent join lines here. */
7172 ada_search_struct_field (name, arg,
b610c045 7173 offset + type->field (i).loc_bitpos () / 8,
dda83cd7 7174 type->field (i).type ());
5b4ee69b 7175
dda83cd7
SM
7176 if (v != NULL)
7177 return v;
7178 }
14f9c5c9
AS
7179
7180 else if (ada_is_variant_part (type, i))
dda83cd7 7181 {
0963b4bd 7182 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
7183 int j;
7184 struct type *field_type = ada_check_typedef (type->field (i).type ());
b610c045 7185 int var_offset = offset + type->field (i).loc_bitpos () / 8;
4c4b4cd2 7186
dda83cd7
SM
7187 for (j = 0; j < field_type->num_fields (); j += 1)
7188 {
7189 struct value *v = ada_search_struct_field /* Force line
0963b4bd 7190 break. */
dda83cd7 7191 (name, arg,
b610c045 7192 var_offset + field_type->field (j).loc_bitpos () / 8,
dda83cd7 7193 field_type->field (j).type ());
5b4ee69b 7194
dda83cd7
SM
7195 if (v != NULL)
7196 return v;
7197 }
7198 }
14f9c5c9 7199 }
828d5846
XR
7200
7201 /* Field not found so far. If this is a tagged type which
7202 has a parent, try finding that field in the parent now. */
7203
7204 if (parent_offset != -1)
7205 {
7206 struct value *v = ada_search_struct_field (
b610c045 7207 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
940da03e 7208 type->field (parent_offset).type ());
828d5846
XR
7209
7210 if (v != NULL)
dda83cd7 7211 return v;
828d5846
XR
7212 }
7213
14f9c5c9
AS
7214 return NULL;
7215}
d2e4a39e 7216
52ce6436
PH
7217static struct value *ada_index_struct_field_1 (int *, struct value *,
7218 int, struct type *);
7219
7220
7221/* Return field #INDEX in ARG, where the index is that returned by
7222 * find_struct_field through its INDEX_P argument. Adjust the address
7223 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7224 * If found, return value, else return NULL. */
52ce6436
PH
7225
7226static struct value *
7227ada_index_struct_field (int index, struct value *arg, int offset,
7228 struct type *type)
7229{
7230 return ada_index_struct_field_1 (&index, arg, offset, type);
7231}
7232
7233
7234/* Auxiliary function for ada_index_struct_field. Like
7235 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7236 * *INDEX_P. */
52ce6436
PH
7237
7238static struct value *
7239ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7240 struct type *type)
7241{
7242 int i;
7243 type = ada_check_typedef (type);
7244
1f704f76 7245 for (i = 0; i < type->num_fields (); i += 1)
52ce6436 7246 {
33d16dd9 7247 if (type->field (i).name () == NULL)
dda83cd7 7248 continue;
52ce6436 7249 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7250 {
7251 struct value *v = /* Do not let indent join lines here. */
7252 ada_index_struct_field_1 (index_p, arg,
b610c045 7253 offset + type->field (i).loc_bitpos () / 8,
940da03e 7254 type->field (i).type ());
5b4ee69b 7255
dda83cd7
SM
7256 if (v != NULL)
7257 return v;
7258 }
52ce6436
PH
7259
7260 else if (ada_is_variant_part (type, i))
dda83cd7 7261 {
52ce6436 7262 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7263 find_struct_field. */
52ce6436 7264 error (_("Cannot assign this kind of variant record"));
dda83cd7 7265 }
52ce6436 7266 else if (*index_p == 0)
dda83cd7 7267 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
7268 else
7269 *index_p -= 1;
7270 }
7271 return NULL;
7272}
7273
3b4de39c 7274/* Return a string representation of type TYPE. */
99bbb428 7275
3b4de39c 7276static std::string
99bbb428
PA
7277type_as_string (struct type *type)
7278{
d7e74731 7279 string_file tmp_stream;
99bbb428 7280
d7e74731 7281 type_print (type, "", &tmp_stream, -1);
99bbb428 7282
5d10a204 7283 return tmp_stream.release ();
99bbb428
PA
7284}
7285
14f9c5c9 7286/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7287 If DISPP is non-null, add its byte displacement from the beginning of a
7288 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7289 work for packed fields).
7290
7291 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7292 followed by "___".
14f9c5c9 7293
0963b4bd 7294 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7295 be a (pointer or reference)+ to a struct or union, and the
7296 ultimate target type will be searched.
14f9c5c9
AS
7297
7298 Looks recursively into variant clauses and parent types.
7299
828d5846
XR
7300 In the case of homonyms in the tagged types, please refer to the
7301 long explanation in find_struct_field's function documentation.
7302
4c4b4cd2
PH
7303 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7304 TYPE is not a type of the right kind. */
14f9c5c9 7305
4c4b4cd2 7306static struct type *
a121b7c1 7307ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 7308 int noerr)
14f9c5c9
AS
7309{
7310 int i;
828d5846 7311 int parent_offset = -1;
14f9c5c9
AS
7312
7313 if (name == NULL)
7314 goto BadName;
7315
76a01679 7316 if (refok && type != NULL)
4c4b4cd2
PH
7317 while (1)
7318 {
dda83cd7
SM
7319 type = ada_check_typedef (type);
7320 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7321 break;
27710edb 7322 type = type->target_type ();
4c4b4cd2 7323 }
14f9c5c9 7324
76a01679 7325 if (type == NULL
78134374
SM
7326 || (type->code () != TYPE_CODE_STRUCT
7327 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7328 {
4c4b4cd2 7329 if (noerr)
dda83cd7 7330 return NULL;
99bbb428 7331
3b4de39c
PA
7332 error (_("Type %s is not a structure or union type"),
7333 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7334 }
7335
7336 type = to_static_fixed_type (type);
7337
1f704f76 7338 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7339 {
33d16dd9 7340 const char *t_field_name = type->field (i).name ();
14f9c5c9 7341 struct type *t;
d2e4a39e 7342
14f9c5c9 7343 if (t_field_name == NULL)
dda83cd7 7344 continue;
14f9c5c9 7345
828d5846 7346 else if (ada_is_parent_field (type, i))
dda83cd7 7347 {
828d5846
XR
7348 /* This is a field pointing us to the parent type of a tagged
7349 type. As hinted in this function's documentation, we give
7350 preference to fields in the current record first, so what
7351 we do here is just record the index of this field before
7352 we skip it. If it turns out we couldn't find our field
7353 in the current record, then we'll get back to it and search
7354 inside it whether the field might exist in the parent. */
7355
dda83cd7
SM
7356 parent_offset = i;
7357 continue;
7358 }
828d5846 7359
14f9c5c9 7360 else if (field_name_match (t_field_name, name))
940da03e 7361 return type->field (i).type ();
14f9c5c9
AS
7362
7363 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7364 {
7365 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7366 0, 1);
7367 if (t != NULL)
988f6b3d 7368 return t;
dda83cd7 7369 }
14f9c5c9
AS
7370
7371 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7372 {
7373 int j;
7374 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7375
dda83cd7
SM
7376 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7377 {
b1f33ddd 7378 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7379 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7380 generates these for unchecked variant types. Revisit
dda83cd7 7381 if the compiler changes this practice. */
33d16dd9 7382 const char *v_field_name = field_type->field (j).name ();
988f6b3d 7383
b1f33ddd
JB
7384 if (v_field_name != NULL
7385 && field_name_match (v_field_name, name))
940da03e 7386 t = field_type->field (j).type ();
b1f33ddd 7387 else
940da03e 7388 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7389 name, 0, 1);
b1f33ddd 7390
dda83cd7 7391 if (t != NULL)
988f6b3d 7392 return t;
dda83cd7
SM
7393 }
7394 }
14f9c5c9
AS
7395
7396 }
7397
828d5846
XR
7398 /* Field not found so far. If this is a tagged type which
7399 has a parent, try finding that field in the parent now. */
7400
7401 if (parent_offset != -1)
7402 {
dda83cd7 7403 struct type *t;
828d5846 7404
dda83cd7
SM
7405 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7406 name, 0, 1);
7407 if (t != NULL)
828d5846
XR
7408 return t;
7409 }
7410
14f9c5c9 7411BadName:
d2e4a39e 7412 if (!noerr)
14f9c5c9 7413 {
2b2798cc 7414 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7415
7416 error (_("Type %s has no component named %s"),
3b4de39c 7417 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7418 }
7419
7420 return NULL;
7421}
7422
b1f33ddd
JB
7423/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7424 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7425 represents an unchecked union (that is, the variant part of a
0963b4bd 7426 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7427
7428static int
7429is_unchecked_variant (struct type *var_type, struct type *outer_type)
7430{
a121b7c1 7431 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7432
988f6b3d 7433 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7434}
7435
7436
14f9c5c9 7437/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7438 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7439 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7440
d2e4a39e 7441int
d8af9068 7442ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7443{
7444 int others_clause;
7445 int i;
a121b7c1 7446 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7447 struct value *discrim;
14f9c5c9
AS
7448 LONGEST discrim_val;
7449
012370f6
TT
7450 /* Using plain value_from_contents_and_address here causes problems
7451 because we will end up trying to resolve a type that is currently
7452 being constructed. */
0c281816
JB
7453 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7454 if (discrim == NULL)
14f9c5c9 7455 return -1;
0c281816 7456 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7457
7458 others_clause = -1;
1f704f76 7459 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7460 {
7461 if (ada_is_others_clause (var_type, i))
dda83cd7 7462 others_clause = i;
14f9c5c9 7463 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7464 return i;
14f9c5c9
AS
7465 }
7466
7467 return others_clause;
7468}
d2e4a39e 7469\f
14f9c5c9
AS
7470
7471
dda83cd7 7472 /* Dynamic-Sized Records */
14f9c5c9
AS
7473
7474/* Strategy: The type ostensibly attached to a value with dynamic size
7475 (i.e., a size that is not statically recorded in the debugging
7476 data) does not accurately reflect the size or layout of the value.
7477 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7478 conventional types that are constructed on the fly. */
14f9c5c9
AS
7479
7480/* There is a subtle and tricky problem here. In general, we cannot
7481 determine the size of dynamic records without its data. However,
7482 the 'struct value' data structure, which GDB uses to represent
7483 quantities in the inferior process (the target), requires the size
7484 of the type at the time of its allocation in order to reserve space
7485 for GDB's internal copy of the data. That's why the
7486 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7487 rather than struct value*s.
14f9c5c9
AS
7488
7489 However, GDB's internal history variables ($1, $2, etc.) are
7490 struct value*s containing internal copies of the data that are not, in
7491 general, the same as the data at their corresponding addresses in
7492 the target. Fortunately, the types we give to these values are all
7493 conventional, fixed-size types (as per the strategy described
7494 above), so that we don't usually have to perform the
7495 'to_fixed_xxx_type' conversions to look at their values.
7496 Unfortunately, there is one exception: if one of the internal
7497 history variables is an array whose elements are unconstrained
7498 records, then we will need to create distinct fixed types for each
7499 element selected. */
7500
7501/* The upshot of all of this is that many routines take a (type, host
7502 address, target address) triple as arguments to represent a value.
7503 The host address, if non-null, is supposed to contain an internal
7504 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7505 target at the target address. */
14f9c5c9
AS
7506
7507/* Assuming that VAL0 represents a pointer value, the result of
7508 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7509 dynamic-sized types. */
14f9c5c9 7510
d2e4a39e
AS
7511struct value *
7512ada_value_ind (struct value *val0)
14f9c5c9 7513{
c48db5ca 7514 struct value *val = value_ind (val0);
5b4ee69b 7515
d0c97917 7516 if (ada_is_tagged_type (val->type (), 0))
b50d69b5
JG
7517 val = ada_tag_value_at_base_address (val);
7518
4c4b4cd2 7519 return ada_to_fixed_value (val);
14f9c5c9
AS
7520}
7521
7522/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7523 qualifiers on VAL0. */
7524
d2e4a39e
AS
7525static struct value *
7526ada_coerce_ref (struct value *val0)
7527{
d0c97917 7528 if (val0->type ()->code () == TYPE_CODE_REF)
d2e4a39e
AS
7529 {
7530 struct value *val = val0;
5b4ee69b 7531
994b9211 7532 val = coerce_ref (val);
b50d69b5 7533
d0c97917 7534 if (ada_is_tagged_type (val->type (), 0))
b50d69b5
JG
7535 val = ada_tag_value_at_base_address (val);
7536
4c4b4cd2 7537 return ada_to_fixed_value (val);
d2e4a39e
AS
7538 }
7539 else
14f9c5c9
AS
7540 return val0;
7541}
7542
4c4b4cd2 7543/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7544
7545static unsigned int
ebf56fd3 7546field_alignment (struct type *type, int f)
14f9c5c9 7547{
33d16dd9 7548 const char *name = type->field (f).name ();
64a1bf19 7549 int len;
14f9c5c9
AS
7550 int align_offset;
7551
64a1bf19
JB
7552 /* The field name should never be null, unless the debugging information
7553 is somehow malformed. In this case, we assume the field does not
7554 require any alignment. */
7555 if (name == NULL)
7556 return 1;
7557
7558 len = strlen (name);
7559
4c4b4cd2
PH
7560 if (!isdigit (name[len - 1]))
7561 return 1;
14f9c5c9 7562
d2e4a39e 7563 if (isdigit (name[len - 2]))
14f9c5c9
AS
7564 align_offset = len - 2;
7565 else
7566 align_offset = len - 1;
7567
61012eef 7568 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7569 return TARGET_CHAR_BIT;
7570
4c4b4cd2
PH
7571 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7572}
7573
852dff6c 7574/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7575
852dff6c
JB
7576static struct symbol *
7577ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7578{
7579 struct symbol *sym;
7580
7581 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
66d7f48f 7582 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
4c4b4cd2
PH
7583 return sym;
7584
4186eb54
KS
7585 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7586 return sym;
14f9c5c9
AS
7587}
7588
dddfab26
UW
7589/* Find a type named NAME. Ignores ambiguity. This routine will look
7590 solely for types defined by debug info, it will not search the GDB
7591 primitive types. */
4c4b4cd2 7592
852dff6c 7593static struct type *
ebf56fd3 7594ada_find_any_type (const char *name)
14f9c5c9 7595{
852dff6c 7596 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7597
14f9c5c9 7598 if (sym != NULL)
5f9c5a63 7599 return sym->type ();
14f9c5c9 7600
dddfab26 7601 return NULL;
14f9c5c9
AS
7602}
7603
739593e0
JB
7604/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7605 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7606 symbol, in which case it is returned. Otherwise, this looks for
7607 symbols whose name is that of NAME_SYM suffixed with "___XR".
7608 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7609
c0e70c62
TT
7610static bool
7611ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7612{
987012b8 7613 const char *name = name_sym->linkage_name ();
c0e70c62 7614 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7615}
7616
14f9c5c9 7617/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7618 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7619 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7620 otherwise return 0. */
7621
14f9c5c9 7622int
d2e4a39e 7623ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7624{
7625 if (type1 == NULL)
7626 return 1;
7627 else if (type0 == NULL)
7628 return 0;
78134374 7629 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7630 return 1;
78134374 7631 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7632 return 0;
7d93a1e0 7633 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7634 return 1;
ad82864c 7635 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7636 return 1;
4c4b4cd2 7637 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7638 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7639 return 1;
aeb5907d
JB
7640 else
7641 {
7d93a1e0
SM
7642 const char *type0_name = type0->name ();
7643 const char *type1_name = type1->name ();
aeb5907d
JB
7644
7645 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7646 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7647 return 1;
7648 }
14f9c5c9
AS
7649 return 0;
7650}
7651
e86ca25f
TT
7652/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7653 null. */
4c4b4cd2 7654
0d5cff50 7655const char *
d2e4a39e 7656ada_type_name (struct type *type)
14f9c5c9 7657{
d2e4a39e 7658 if (type == NULL)
14f9c5c9 7659 return NULL;
7d93a1e0 7660 return type->name ();
14f9c5c9
AS
7661}
7662
b4ba55a1
JB
7663/* Search the list of "descriptive" types associated to TYPE for a type
7664 whose name is NAME. */
7665
7666static struct type *
7667find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7668{
931e5bc3 7669 struct type *result, *tmp;
b4ba55a1 7670
c6044dd1
JB
7671 if (ada_ignore_descriptive_types_p)
7672 return NULL;
7673
b4ba55a1
JB
7674 /* If there no descriptive-type info, then there is no parallel type
7675 to be found. */
7676 if (!HAVE_GNAT_AUX_INFO (type))
7677 return NULL;
7678
7679 result = TYPE_DESCRIPTIVE_TYPE (type);
7680 while (result != NULL)
7681 {
0d5cff50 7682 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7683
7684 if (result_name == NULL)
dda83cd7
SM
7685 {
7686 warning (_("unexpected null name on descriptive type"));
7687 return NULL;
7688 }
b4ba55a1
JB
7689
7690 /* If the names match, stop. */
7691 if (strcmp (result_name, name) == 0)
7692 break;
7693
7694 /* Otherwise, look at the next item on the list, if any. */
7695 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7696 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7697 else
7698 tmp = NULL;
7699
7700 /* If not found either, try after having resolved the typedef. */
7701 if (tmp != NULL)
7702 result = tmp;
b4ba55a1 7703 else
931e5bc3 7704 {
f168693b 7705 result = check_typedef (result);
931e5bc3
JG
7706 if (HAVE_GNAT_AUX_INFO (result))
7707 result = TYPE_DESCRIPTIVE_TYPE (result);
7708 else
7709 result = NULL;
7710 }
b4ba55a1
JB
7711 }
7712
7713 /* If we didn't find a match, see whether this is a packed array. With
7714 older compilers, the descriptive type information is either absent or
7715 irrelevant when it comes to packed arrays so the above lookup fails.
7716 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7717 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7718 return ada_find_any_type (name);
7719
7720 return result;
7721}
7722
7723/* Find a parallel type to TYPE with the specified NAME, using the
7724 descriptive type taken from the debugging information, if available,
7725 and otherwise using the (slower) name-based method. */
7726
7727static struct type *
7728ada_find_parallel_type_with_name (struct type *type, const char *name)
7729{
7730 struct type *result = NULL;
7731
7732 if (HAVE_GNAT_AUX_INFO (type))
7733 result = find_parallel_type_by_descriptive_type (type, name);
7734 else
7735 result = ada_find_any_type (name);
7736
7737 return result;
7738}
7739
7740/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7741 SUFFIX to the name of TYPE. */
14f9c5c9 7742
d2e4a39e 7743struct type *
ebf56fd3 7744ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7745{
0d5cff50 7746 char *name;
fe978cb0 7747 const char *type_name = ada_type_name (type);
14f9c5c9 7748 int len;
d2e4a39e 7749
fe978cb0 7750 if (type_name == NULL)
14f9c5c9
AS
7751 return NULL;
7752
fe978cb0 7753 len = strlen (type_name);
14f9c5c9 7754
b4ba55a1 7755 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7756
fe978cb0 7757 strcpy (name, type_name);
14f9c5c9
AS
7758 strcpy (name + len, suffix);
7759
b4ba55a1 7760 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7761}
7762
14f9c5c9 7763/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7764 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7765
d2e4a39e
AS
7766static struct type *
7767dynamic_template_type (struct type *type)
14f9c5c9 7768{
61ee279c 7769 type = ada_check_typedef (type);
14f9c5c9 7770
78134374 7771 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7772 || ada_type_name (type) == NULL)
14f9c5c9 7773 return NULL;
d2e4a39e 7774 else
14f9c5c9
AS
7775 {
7776 int len = strlen (ada_type_name (type));
5b4ee69b 7777
4c4b4cd2 7778 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7779 return type;
14f9c5c9 7780 else
dda83cd7 7781 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7782 }
7783}
7784
7785/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7786 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7787
d2e4a39e
AS
7788static int
7789is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9 7790{
33d16dd9 7791 const char *name = templ_type->field (field_num).name ();
5b4ee69b 7792
d2e4a39e 7793 return name != NULL
940da03e 7794 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7795 && strstr (name, "___XVL") != NULL;
7796}
7797
4c4b4cd2
PH
7798/* The index of the variant field of TYPE, or -1 if TYPE does not
7799 represent a variant record type. */
14f9c5c9 7800
d2e4a39e 7801static int
4c4b4cd2 7802variant_field_index (struct type *type)
14f9c5c9
AS
7803{
7804 int f;
7805
78134374 7806 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7807 return -1;
7808
1f704f76 7809 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7810 {
7811 if (ada_is_variant_part (type, f))
dda83cd7 7812 return f;
4c4b4cd2
PH
7813 }
7814 return -1;
14f9c5c9
AS
7815}
7816
4c4b4cd2
PH
7817/* A record type with no fields. */
7818
d2e4a39e 7819static struct type *
fe978cb0 7820empty_record (struct type *templ)
14f9c5c9 7821{
fe978cb0 7822 struct type *type = alloc_type_copy (templ);
5b4ee69b 7823
67607e24 7824 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7825 INIT_NONE_SPECIFIC (type);
d0e39ea2 7826 type->set_name ("<empty>");
b6cdbc9a 7827 type->set_length (0);
14f9c5c9
AS
7828 return type;
7829}
7830
7831/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7832 the value of type TYPE at VALADDR or ADDRESS (see comments at
7833 the beginning of this section) VAL according to GNAT conventions.
7834 DVAL0 should describe the (portion of a) record that contains any
d0c97917 7835 necessary discriminants. It should be NULL if VAL->type () is
14f9c5c9
AS
7836 an outer-level type (i.e., as opposed to a branch of a variant.) A
7837 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7838 of the variant.
14f9c5c9 7839
4c4b4cd2
PH
7840 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7841 length are not statically known are discarded. As a consequence,
7842 VALADDR, ADDRESS and DVAL0 are ignored.
7843
7844 NOTE: Limitations: For now, we assume that dynamic fields and
7845 variants occupy whole numbers of bytes. However, they need not be
7846 byte-aligned. */
7847
7848struct type *
10a2c479 7849ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7850 const gdb_byte *valaddr,
dda83cd7
SM
7851 CORE_ADDR address, struct value *dval0,
7852 int keep_dynamic_fields)
14f9c5c9 7853{
d2e4a39e
AS
7854 struct value *dval;
7855 struct type *rtype;
14f9c5c9 7856 int nfields, bit_len;
4c4b4cd2 7857 int variant_field;
14f9c5c9 7858 long off;
d94e4f4f 7859 int fld_bit_len;
14f9c5c9
AS
7860 int f;
7861
65558ca5
TT
7862 scoped_value_mark mark;
7863
4c4b4cd2
PH
7864 /* Compute the number of fields in this record type that are going
7865 to be processed: unless keep_dynamic_fields, this includes only
7866 fields whose position and length are static will be processed. */
7867 if (keep_dynamic_fields)
1f704f76 7868 nfields = type->num_fields ();
4c4b4cd2
PH
7869 else
7870 {
7871 nfields = 0;
1f704f76 7872 while (nfields < type->num_fields ()
dda83cd7
SM
7873 && !ada_is_variant_part (type, nfields)
7874 && !is_dynamic_field (type, nfields))
7875 nfields++;
4c4b4cd2
PH
7876 }
7877
e9bb382b 7878 rtype = alloc_type_copy (type);
67607e24 7879 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7880 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7881 rtype->set_num_fields (nfields);
3cabb6b0
SM
7882 rtype->set_fields
7883 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7884 rtype->set_name (ada_type_name (type));
9cdd0d12 7885 rtype->set_is_fixed_instance (true);
14f9c5c9 7886
d2e4a39e
AS
7887 off = 0;
7888 bit_len = 0;
4c4b4cd2
PH
7889 variant_field = -1;
7890
14f9c5c9
AS
7891 for (f = 0; f < nfields; f += 1)
7892 {
a89febbd 7893 off = align_up (off, field_alignment (type, f))
b610c045 7894 + type->field (f).loc_bitpos ();
cd3f655c 7895 rtype->field (f).set_loc_bitpos (off);
d2e4a39e 7896 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7897
d2e4a39e 7898 if (ada_is_variant_part (type, f))
dda83cd7
SM
7899 {
7900 variant_field = f;
7901 fld_bit_len = 0;
7902 }
14f9c5c9 7903 else if (is_dynamic_field (type, f))
dda83cd7 7904 {
284614f0
JB
7905 const gdb_byte *field_valaddr = valaddr;
7906 CORE_ADDR field_address = address;
27710edb 7907 struct type *field_type = type->field (f).type ()->target_type ();
284614f0 7908
dda83cd7 7909 if (dval0 == NULL)
b5304971 7910 {
012370f6
TT
7911 /* Using plain value_from_contents_and_address here
7912 causes problems because we will end up trying to
7913 resolve a type that is currently being
7914 constructed. */
7915 dval = value_from_contents_and_address_unresolved (rtype,
7916 valaddr,
7917 address);
d0c97917 7918 rtype = dval->type ();
b5304971 7919 }
dda83cd7
SM
7920 else
7921 dval = dval0;
4c4b4cd2 7922
284614f0
JB
7923 /* If the type referenced by this field is an aligner type, we need
7924 to unwrap that aligner type, because its size might not be set.
7925 Keeping the aligner type would cause us to compute the wrong
7926 size for this field, impacting the offset of the all the fields
7927 that follow this one. */
7928 if (ada_is_aligner_type (field_type))
7929 {
b610c045 7930 long field_offset = type->field (f).loc_bitpos ();
284614f0
JB
7931
7932 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7933 field_address = cond_offset_target (field_address, field_offset);
7934 field_type = ada_aligned_type (field_type);
7935 }
7936
7937 field_valaddr = cond_offset_host (field_valaddr,
7938 off / TARGET_CHAR_BIT);
7939 field_address = cond_offset_target (field_address,
7940 off / TARGET_CHAR_BIT);
7941
7942 /* Get the fixed type of the field. Note that, in this case,
7943 we do not want to get the real type out of the tag: if
7944 the current field is the parent part of a tagged record,
7945 we will get the tag of the object. Clearly wrong: the real
7946 type of the parent is not the real type of the child. We
7947 would end up in an infinite loop. */
7948 field_type = ada_get_base_type (field_type);
7949 field_type = ada_to_fixed_type (field_type, field_valaddr,
7950 field_address, dval, 0);
7951
5d14b6e5 7952 rtype->field (f).set_type (field_type);
33d16dd9 7953 rtype->field (f).set_name (type->field (f).name ());
27f2a97b
JB
7954 /* The multiplication can potentially overflow. But because
7955 the field length has been size-checked just above, and
7956 assuming that the maximum size is a reasonable value,
7957 an overflow should not happen in practice. So rather than
7958 adding overflow recovery code to this already complex code,
7959 we just assume that it's not going to happen. */
df86565b 7960 fld_bit_len = rtype->field (f).type ()->length () * TARGET_CHAR_BIT;
dda83cd7 7961 }
14f9c5c9 7962 else
dda83cd7 7963 {
5ded5331
JB
7964 /* Note: If this field's type is a typedef, it is important
7965 to preserve the typedef layer.
7966
7967 Otherwise, we might be transforming a typedef to a fat
7968 pointer (encoding a pointer to an unconstrained array),
7969 into a basic fat pointer (encoding an unconstrained
7970 array). As both types are implemented using the same
7971 structure, the typedef is the only clue which allows us
7972 to distinguish between the two options. Stripping it
7973 would prevent us from printing this field appropriately. */
dda83cd7 7974 rtype->field (f).set_type (type->field (f).type ());
33d16dd9 7975 rtype->field (f).set_name (type->field (f).name ());
dda83cd7
SM
7976 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7977 fld_bit_len =
7978 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7979 else
5ded5331 7980 {
940da03e 7981 struct type *field_type = type->field (f).type ();
5ded5331
JB
7982
7983 /* We need to be careful of typedefs when computing
7984 the length of our field. If this is a typedef,
7985 get the length of the target type, not the length
7986 of the typedef. */
78134374 7987 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7988 field_type = ada_typedef_target_type (field_type);
7989
dda83cd7 7990 fld_bit_len =
df86565b 7991 ada_check_typedef (field_type)->length () * TARGET_CHAR_BIT;
5ded5331 7992 }
dda83cd7 7993 }
14f9c5c9 7994 if (off + fld_bit_len > bit_len)
dda83cd7 7995 bit_len = off + fld_bit_len;
d94e4f4f 7996 off += fld_bit_len;
b6cdbc9a 7997 rtype->set_length (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
14f9c5c9 7998 }
4c4b4cd2
PH
7999
8000 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8001 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8002 the record. This can happen in the presence of representation
8003 clauses. */
8004 if (variant_field >= 0)
8005 {
8006 struct type *branch_type;
8007
b610c045 8008 off = rtype->field (variant_field).loc_bitpos ();
4c4b4cd2
PH
8009
8010 if (dval0 == NULL)
9f1f738a 8011 {
012370f6
TT
8012 /* Using plain value_from_contents_and_address here causes
8013 problems because we will end up trying to resolve a type
8014 that is currently being constructed. */
8015 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8016 address);
d0c97917 8017 rtype = dval->type ();
9f1f738a 8018 }
4c4b4cd2 8019 else
dda83cd7 8020 dval = dval0;
4c4b4cd2
PH
8021
8022 branch_type =
dda83cd7
SM
8023 to_fixed_variant_branch_type
8024 (type->field (variant_field).type (),
8025 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8026 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 8027 if (branch_type == NULL)
dda83cd7
SM
8028 {
8029 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8030 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8031 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 8032 }
4c4b4cd2 8033 else
dda83cd7
SM
8034 {
8035 rtype->field (variant_field).set_type (branch_type);
d3fd12df 8036 rtype->field (variant_field).set_name ("S");
dda83cd7 8037 fld_bit_len =
df86565b 8038 rtype->field (variant_field).type ()->length () * TARGET_CHAR_BIT;
dda83cd7
SM
8039 if (off + fld_bit_len > bit_len)
8040 bit_len = off + fld_bit_len;
b6cdbc9a
SM
8041
8042 rtype->set_length
8043 (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
dda83cd7 8044 }
4c4b4cd2
PH
8045 }
8046
714e53ab
PH
8047 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8048 should contain the alignment of that record, which should be a strictly
8049 positive value. If null or negative, then something is wrong, most
8050 probably in the debug info. In that case, we don't round up the size
0963b4bd 8051 of the resulting type. If this record is not part of another structure,
714e53ab 8052 the current RTYPE length might be good enough for our purposes. */
df86565b 8053 if (type->length () <= 0)
714e53ab 8054 {
7d93a1e0 8055 if (rtype->name ())
cc1defb1 8056 warning (_("Invalid type size for `%s' detected: %s."),
df86565b 8057 rtype->name (), pulongest (type->length ()));
323e0a4a 8058 else
cc1defb1 8059 warning (_("Invalid type size for <unnamed> detected: %s."),
df86565b 8060 pulongest (type->length ()));
714e53ab
PH
8061 }
8062 else
df86565b 8063 rtype->set_length (align_up (rtype->length (), type->length ()));
14f9c5c9 8064
14f9c5c9
AS
8065 return rtype;
8066}
8067
4c4b4cd2
PH
8068/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8069 of 1. */
14f9c5c9 8070
d2e4a39e 8071static struct type *
fc1a4b47 8072template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8073 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
8074{
8075 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 8076 address, dval0, 1);
4c4b4cd2
PH
8077}
8078
8079/* An ordinary record type in which ___XVL-convention fields and
8080 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8081 static approximations, containing all possible fields. Uses
8082 no runtime values. Useless for use in values, but that's OK,
8083 since the results are used only for type determinations. Works on both
8084 structs and unions. Representation note: to save space, we memorize
27710edb 8085 the result of this function in the type::target_type of the
4c4b4cd2
PH
8086 template type. */
8087
8088static struct type *
8089template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8090{
8091 struct type *type;
8092 int nfields;
8093 int f;
8094
9e195661 8095 /* No need no do anything if the input type is already fixed. */
22c4c60c 8096 if (type0->is_fixed_instance ())
9e195661
PMR
8097 return type0;
8098
8099 /* Likewise if we already have computed the static approximation. */
27710edb
SM
8100 if (type0->target_type () != NULL)
8101 return type0->target_type ();
4c4b4cd2 8102
9e195661 8103 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8104 type = type0;
1f704f76 8105 nfields = type0->num_fields ();
9e195661
PMR
8106
8107 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8108 recompute all over next time. */
8a50fdce 8109 type0->set_target_type (type);
14f9c5c9
AS
8110
8111 for (f = 0; f < nfields; f += 1)
8112 {
940da03e 8113 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8114 struct type *new_type;
14f9c5c9 8115
4c4b4cd2 8116 if (is_dynamic_field (type0, f))
460efde1
JB
8117 {
8118 field_type = ada_check_typedef (field_type);
27710edb 8119 new_type = to_static_fixed_type (field_type->target_type ());
460efde1 8120 }
14f9c5c9 8121 else
dda83cd7 8122 new_type = static_unwrap_type (field_type);
9e195661
PMR
8123
8124 if (new_type != field_type)
8125 {
8126 /* Clone TYPE0 only the first time we get a new field type. */
8127 if (type == type0)
8128 {
8a50fdce
SM
8129 type = alloc_type_copy (type0);
8130 type0->set_target_type (type);
78134374 8131 type->set_code (type0->code ());
8ecb59f8 8132 INIT_NONE_SPECIFIC (type);
5e33d5f4 8133 type->set_num_fields (nfields);
3cabb6b0
SM
8134
8135 field *fields =
8136 ((struct field *)
8137 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8138 memcpy (fields, type0->fields (),
9e195661 8139 sizeof (struct field) * nfields);
3cabb6b0
SM
8140 type->set_fields (fields);
8141
d0e39ea2 8142 type->set_name (ada_type_name (type0));
9cdd0d12 8143 type->set_is_fixed_instance (true);
b6cdbc9a 8144 type->set_length (0);
9e195661 8145 }
5d14b6e5 8146 type->field (f).set_type (new_type);
33d16dd9 8147 type->field (f).set_name (type0->field (f).name ());
9e195661 8148 }
14f9c5c9 8149 }
9e195661 8150
14f9c5c9
AS
8151 return type;
8152}
8153
4c4b4cd2 8154/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8155 whose address in memory is ADDRESS, returns a revision of TYPE,
8156 which should be a non-dynamic-sized record, in which the variant
8157 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8158 for discriminant values in DVAL0, which can be NULL if the record
8159 contains the necessary discriminant values. */
8160
d2e4a39e 8161static struct type *
fc1a4b47 8162to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 8163 CORE_ADDR address, struct value *dval0)
14f9c5c9 8164{
4c4b4cd2 8165 struct value *dval;
d2e4a39e 8166 struct type *rtype;
14f9c5c9 8167 struct type *branch_type;
1f704f76 8168 int nfields = type->num_fields ();
4c4b4cd2 8169 int variant_field = variant_field_index (type);
14f9c5c9 8170
4c4b4cd2 8171 if (variant_field == -1)
14f9c5c9
AS
8172 return type;
8173
65558ca5 8174 scoped_value_mark mark;
4c4b4cd2 8175 if (dval0 == NULL)
9f1f738a
SA
8176 {
8177 dval = value_from_contents_and_address (type, valaddr, address);
d0c97917 8178 type = dval->type ();
9f1f738a 8179 }
4c4b4cd2
PH
8180 else
8181 dval = dval0;
8182
e9bb382b 8183 rtype = alloc_type_copy (type);
67607e24 8184 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8185 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8186 rtype->set_num_fields (nfields);
3cabb6b0
SM
8187
8188 field *fields =
d2e4a39e 8189 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8190 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8191 rtype->set_fields (fields);
8192
d0e39ea2 8193 rtype->set_name (ada_type_name (type));
9cdd0d12 8194 rtype->set_is_fixed_instance (true);
df86565b 8195 rtype->set_length (type->length ());
14f9c5c9 8196
4c4b4cd2 8197 branch_type = to_fixed_variant_branch_type
940da03e 8198 (type->field (variant_field).type (),
d2e4a39e 8199 cond_offset_host (valaddr,
b610c045 8200 type->field (variant_field).loc_bitpos ()
dda83cd7 8201 / TARGET_CHAR_BIT),
d2e4a39e 8202 cond_offset_target (address,
b610c045 8203 type->field (variant_field).loc_bitpos ()
dda83cd7 8204 / TARGET_CHAR_BIT), dval);
d2e4a39e 8205 if (branch_type == NULL)
14f9c5c9 8206 {
4c4b4cd2 8207 int f;
5b4ee69b 8208
4c4b4cd2 8209 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 8210 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8211 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8212 }
8213 else
8214 {
5d14b6e5 8215 rtype->field (variant_field).set_type (branch_type);
d3fd12df 8216 rtype->field (variant_field).set_name ("S");
4c4b4cd2 8217 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
df86565b 8218 rtype->set_length (rtype->length () + branch_type->length ());
14f9c5c9 8219 }
b6cdbc9a 8220
df86565b
SM
8221 rtype->set_length (rtype->length ()
8222 - type->field (variant_field).type ()->length ());
d2e4a39e 8223
14f9c5c9
AS
8224 return rtype;
8225}
8226
8227/* An ordinary record type (with fixed-length fields) that describes
8228 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8229 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8230 should be in DVAL, a record value; it may be NULL if the object
8231 at ADDR itself contains any necessary discriminant values.
8232 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8233 values from the record are needed. Except in the case that DVAL,
8234 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8235 unchecked) is replaced by a particular branch of the variant.
8236
8237 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8238 is questionable and may be removed. It can arise during the
8239 processing of an unconstrained-array-of-record type where all the
8240 variant branches have exactly the same size. This is because in
8241 such cases, the compiler does not bother to use the XVS convention
8242 when encoding the record. I am currently dubious of this
8243 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8244
d2e4a39e 8245static struct type *
fc1a4b47 8246to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 8247 CORE_ADDR address, struct value *dval)
14f9c5c9 8248{
d2e4a39e 8249 struct type *templ_type;
14f9c5c9 8250
22c4c60c 8251 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8252 return type0;
8253
d2e4a39e 8254 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8255
8256 if (templ_type != NULL)
8257 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8258 else if (variant_field_index (type0) >= 0)
8259 {
8260 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 8261 return type0;
4c4b4cd2 8262 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 8263 dval);
4c4b4cd2 8264 }
14f9c5c9
AS
8265 else
8266 {
9cdd0d12 8267 type0->set_is_fixed_instance (true);
14f9c5c9
AS
8268 return type0;
8269 }
8270
8271}
8272
8273/* An ordinary record type (with fixed-length fields) that describes
8274 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8275 union type. Any necessary discriminants' values should be in DVAL,
8276 a record value. That is, this routine selects the appropriate
8277 branch of the union at ADDR according to the discriminant value
b1f33ddd 8278 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8279 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8280
d2e4a39e 8281static struct type *
fc1a4b47 8282to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 8283 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8284{
8285 int which;
d2e4a39e
AS
8286 struct type *templ_type;
8287 struct type *var_type;
14f9c5c9 8288
78134374 8289 if (var_type0->code () == TYPE_CODE_PTR)
27710edb 8290 var_type = var_type0->target_type ();
d2e4a39e 8291 else
14f9c5c9
AS
8292 var_type = var_type0;
8293
8294 templ_type = ada_find_parallel_type (var_type, "___XVU");
8295
8296 if (templ_type != NULL)
8297 var_type = templ_type;
8298
d0c97917 8299 if (is_unchecked_variant (var_type, dval->type ()))
b1f33ddd 8300 return var_type0;
d8af9068 8301 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8302
8303 if (which < 0)
e9bb382b 8304 return empty_record (var_type);
14f9c5c9 8305 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8306 return to_fixed_record_type
27710edb 8307 (var_type->field (which).type ()->target_type(), valaddr, address, dval);
940da03e 8308 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8309 return
8310 to_fixed_record_type
940da03e 8311 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8312 else
940da03e 8313 return var_type->field (which).type ();
14f9c5c9
AS
8314}
8315
8908fca5
JB
8316/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8317 ENCODING_TYPE, a type following the GNAT conventions for discrete
8318 type encodings, only carries redundant information. */
8319
8320static int
8321ada_is_redundant_range_encoding (struct type *range_type,
8322 struct type *encoding_type)
8323{
108d56a4 8324 const char *bounds_str;
8908fca5
JB
8325 int n;
8326 LONGEST lo, hi;
8327
78134374 8328 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8329
78134374
SM
8330 if (get_base_type (range_type)->code ()
8331 != get_base_type (encoding_type)->code ())
005e2509
JB
8332 {
8333 /* The compiler probably used a simple base type to describe
8334 the range type instead of the range's actual base type,
8335 expecting us to get the real base type from the encoding
8336 anyway. In this situation, the encoding cannot be ignored
8337 as redundant. */
8338 return 0;
8339 }
8340
8908fca5
JB
8341 if (is_dynamic_type (range_type))
8342 return 0;
8343
7d93a1e0 8344 if (encoding_type->name () == NULL)
8908fca5
JB
8345 return 0;
8346
7d93a1e0 8347 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8348 if (bounds_str == NULL)
8349 return 0;
8350
8351 n = 8; /* Skip "___XDLU_". */
8352 if (!ada_scan_number (bounds_str, n, &lo, &n))
8353 return 0;
5537ddd0 8354 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8355 return 0;
8356
8357 n += 2; /* Skip the "__" separator between the two bounds. */
8358 if (!ada_scan_number (bounds_str, n, &hi, &n))
8359 return 0;
5537ddd0 8360 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8361 return 0;
8362
8363 return 1;
8364}
8365
8366/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8367 a type following the GNAT encoding for describing array type
8368 indices, only carries redundant information. */
8369
8370static int
8371ada_is_redundant_index_type_desc (struct type *array_type,
8372 struct type *desc_type)
8373{
8374 struct type *this_layer = check_typedef (array_type);
8375 int i;
8376
1f704f76 8377 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8378 {
3d967001 8379 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8380 desc_type->field (i).type ()))
8908fca5 8381 return 0;
27710edb 8382 this_layer = check_typedef (this_layer->target_type ());
8908fca5
JB
8383 }
8384
8385 return 1;
8386}
8387
14f9c5c9
AS
8388/* Assuming that TYPE0 is an array type describing the type of a value
8389 at ADDR, and that DVAL describes a record containing any
8390 discriminants used in TYPE0, returns a type for the value that
8391 contains no dynamic components (that is, no components whose sizes
8392 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8393 true, gives an error message if the resulting type's size is over
4c4b4cd2 8394 varsize_limit. */
14f9c5c9 8395
d2e4a39e
AS
8396static struct type *
8397to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8398 int ignore_too_big)
14f9c5c9 8399{
d2e4a39e
AS
8400 struct type *index_type_desc;
8401 struct type *result;
ad82864c 8402 int constrained_packed_array_p;
931e5bc3 8403 static const char *xa_suffix = "___XA";
14f9c5c9 8404
b0dd7688 8405 type0 = ada_check_typedef (type0);
22c4c60c 8406 if (type0->is_fixed_instance ())
4c4b4cd2 8407 return type0;
14f9c5c9 8408
ad82864c
JB
8409 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8410 if (constrained_packed_array_p)
75fd6a26
TT
8411 {
8412 type0 = decode_constrained_packed_array_type (type0);
8413 if (type0 == nullptr)
8414 error (_("could not decode constrained packed array type"));
8415 }
284614f0 8416
931e5bc3
JG
8417 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8418
8419 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8420 encoding suffixed with 'P' may still be generated. If so,
8421 it should be used to find the XA type. */
8422
8423 if (index_type_desc == NULL)
8424 {
1da0522e 8425 const char *type_name = ada_type_name (type0);
931e5bc3 8426
1da0522e 8427 if (type_name != NULL)
931e5bc3 8428 {
1da0522e 8429 const int len = strlen (type_name);
931e5bc3
JG
8430 char *name = (char *) alloca (len + strlen (xa_suffix));
8431
1da0522e 8432 if (type_name[len - 1] == 'P')
931e5bc3 8433 {
1da0522e 8434 strcpy (name, type_name);
931e5bc3
JG
8435 strcpy (name + len - 1, xa_suffix);
8436 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8437 }
8438 }
8439 }
8440
28c85d6c 8441 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8442 if (index_type_desc != NULL
8443 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8444 {
8445 /* Ignore this ___XA parallel type, as it does not bring any
8446 useful information. This allows us to avoid creating fixed
8447 versions of the array's index types, which would be identical
8448 to the original ones. This, in turn, can also help avoid
8449 the creation of fixed versions of the array itself. */
8450 index_type_desc = NULL;
8451 }
8452
14f9c5c9
AS
8453 if (index_type_desc == NULL)
8454 {
27710edb 8455 struct type *elt_type0 = ada_check_typedef (type0->target_type ());
5b4ee69b 8456
14f9c5c9 8457 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8458 depend on the contents of the array in properly constructed
8459 debugging data. */
529cad9c 8460 /* Create a fixed version of the array element type.
dda83cd7
SM
8461 We're not providing the address of an element here,
8462 and thus the actual object value cannot be inspected to do
8463 the conversion. This should not be a problem, since arrays of
8464 unconstrained objects are not allowed. In particular, all
8465 the elements of an array of a tagged type should all be of
8466 the same type specified in the debugging info. No need to
8467 consult the object tag. */
1ed6ede0 8468 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8469
284614f0
JB
8470 /* Make sure we always create a new array type when dealing with
8471 packed array types, since we're going to fix-up the array
8472 type length and element bitsize a little further down. */
ad82864c 8473 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8474 result = type0;
14f9c5c9 8475 else
dda83cd7
SM
8476 result = create_array_type (alloc_type_copy (type0),
8477 elt_type, type0->index_type ());
14f9c5c9
AS
8478 }
8479 else
8480 {
8481 int i;
8482 struct type *elt_type0;
8483
8484 elt_type0 = type0;
1f704f76 8485 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
27710edb 8486 elt_type0 = elt_type0->target_type ();
14f9c5c9
AS
8487
8488 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8489 depend on the contents of the array in properly constructed
8490 debugging data. */
529cad9c 8491 /* Create a fixed version of the array element type.
dda83cd7
SM
8492 We're not providing the address of an element here,
8493 and thus the actual object value cannot be inspected to do
8494 the conversion. This should not be a problem, since arrays of
8495 unconstrained objects are not allowed. In particular, all
8496 the elements of an array of a tagged type should all be of
8497 the same type specified in the debugging info. No need to
8498 consult the object tag. */
1ed6ede0 8499 result =
dda83cd7 8500 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8501
8502 elt_type0 = type0;
1f704f76 8503 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8504 {
8505 struct type *range_type =
8506 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8507
dda83cd7
SM
8508 result = create_array_type (alloc_type_copy (elt_type0),
8509 result, range_type);
27710edb 8510 elt_type0 = elt_type0->target_type ();
dda83cd7 8511 }
14f9c5c9
AS
8512 }
8513
2e6fda7d
JB
8514 /* We want to preserve the type name. This can be useful when
8515 trying to get the type name of a value that has already been
8516 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8517 result->set_name (type0->name ());
2e6fda7d 8518
ad82864c 8519 if (constrained_packed_array_p)
284614f0
JB
8520 {
8521 /* So far, the resulting type has been created as if the original
8522 type was a regular (non-packed) array type. As a result, the
8523 bitsize of the array elements needs to be set again, and the array
8524 length needs to be recomputed based on that bitsize. */
df86565b 8525 int len = result->length () / result->target_type ()->length ();
284614f0
JB
8526 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8527
8528 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
b6cdbc9a 8529 result->set_length (len * elt_bitsize / HOST_CHAR_BIT);
df86565b
SM
8530 if (result->length () * HOST_CHAR_BIT < len * elt_bitsize)
8531 result->set_length (result->length () + 1);
284614f0
JB
8532 }
8533
9cdd0d12 8534 result->set_is_fixed_instance (true);
14f9c5c9 8535 return result;
d2e4a39e 8536}
14f9c5c9
AS
8537
8538
8539/* A standard type (containing no dynamically sized components)
8540 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8541 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8542 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8543 ADDRESS or in VALADDR contains these discriminants.
8544
1ed6ede0
JB
8545 If CHECK_TAG is not null, in the case of tagged types, this function
8546 attempts to locate the object's tag and use it to compute the actual
8547 type. However, when ADDRESS is null, we cannot use it to determine the
8548 location of the tag, and therefore compute the tagged type's actual type.
8549 So we return the tagged type without consulting the tag. */
529cad9c 8550
f192137b
JB
8551static struct type *
8552ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8553 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8554{
61ee279c 8555 type = ada_check_typedef (type);
8ecb59f8
TT
8556
8557 /* Only un-fixed types need to be handled here. */
8558 if (!HAVE_GNAT_AUX_INFO (type))
8559 return type;
8560
78134374 8561 switch (type->code ())
d2e4a39e
AS
8562 {
8563 default:
14f9c5c9 8564 return type;
d2e4a39e 8565 case TYPE_CODE_STRUCT:
4c4b4cd2 8566 {
dda83cd7
SM
8567 struct type *static_type = to_static_fixed_type (type);
8568 struct type *fixed_record_type =
8569 to_fixed_record_type (type, valaddr, address, NULL);
8570
8571 /* If STATIC_TYPE is a tagged type and we know the object's address,
8572 then we can determine its tag, and compute the object's actual
8573 type from there. Note that we have to use the fixed record
8574 type (the parent part of the record may have dynamic fields
8575 and the way the location of _tag is expressed may depend on
8576 them). */
8577
8578 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8579 {
b50d69b5
JG
8580 struct value *tag =
8581 value_tag_from_contents_and_address
8582 (fixed_record_type,
8583 valaddr,
8584 address);
8585 struct type *real_type = type_from_tag (tag);
8586 struct value *obj =
8587 value_from_contents_and_address (fixed_record_type,
8588 valaddr,
8589 address);
d0c97917 8590 fixed_record_type = obj->type ();
dda83cd7
SM
8591 if (real_type != NULL)
8592 return to_fixed_record_type
b50d69b5 8593 (real_type, NULL,
9feb2d07 8594 ada_tag_value_at_base_address (obj)->address (), NULL);
dda83cd7
SM
8595 }
8596
8597 /* Check to see if there is a parallel ___XVZ variable.
8598 If there is, then it provides the actual size of our type. */
8599 else if (ada_type_name (fixed_record_type) != NULL)
8600 {
8601 const char *name = ada_type_name (fixed_record_type);
8602 char *xvz_name
224c3ddb 8603 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8604 bool xvz_found = false;
dda83cd7 8605 LONGEST size;
4af88198 8606
dda83cd7 8607 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8608 try
eccab96d
JB
8609 {
8610 xvz_found = get_int_var_value (xvz_name, size);
8611 }
230d2906 8612 catch (const gdb_exception_error &except)
eccab96d
JB
8613 {
8614 /* We found the variable, but somehow failed to read
8615 its value. Rethrow the same error, but with a little
8616 bit more information, to help the user understand
8617 what went wrong (Eg: the variable might have been
8618 optimized out). */
8619 throw_error (except.error,
8620 _("unable to read value of %s (%s)"),
3d6e9d23 8621 xvz_name, except.what ());
eccab96d 8622 }
eccab96d 8623
df86565b 8624 if (xvz_found && fixed_record_type->length () != size)
dda83cd7
SM
8625 {
8626 fixed_record_type = copy_type (fixed_record_type);
b6cdbc9a 8627 fixed_record_type->set_length (size);
dda83cd7
SM
8628
8629 /* The FIXED_RECORD_TYPE may have be a stub. We have
8630 observed this when the debugging info is STABS, and
8631 apparently it is something that is hard to fix.
8632
8633 In practice, we don't need the actual type definition
8634 at all, because the presence of the XVZ variable allows us
8635 to assume that there must be a XVS type as well, which we
8636 should be able to use later, when we need the actual type
8637 definition.
8638
8639 In the meantime, pretend that the "fixed" type we are
8640 returning is NOT a stub, because this can cause trouble
8641 when using this type to create new types targeting it.
8642 Indeed, the associated creation routines often check
8643 whether the target type is a stub and will try to replace
8644 it, thus using a type with the wrong size. This, in turn,
8645 might cause the new type to have the wrong size too.
8646 Consider the case of an array, for instance, where the size
8647 of the array is computed from the number of elements in
8648 our array multiplied by the size of its element. */
b4b73759 8649 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8650 }
8651 }
8652 return fixed_record_type;
4c4b4cd2 8653 }
d2e4a39e 8654 case TYPE_CODE_ARRAY:
4c4b4cd2 8655 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8656 case TYPE_CODE_UNION:
8657 if (dval == NULL)
dda83cd7 8658 return type;
d2e4a39e 8659 else
dda83cd7 8660 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8661 }
14f9c5c9
AS
8662}
8663
f192137b
JB
8664/* The same as ada_to_fixed_type_1, except that it preserves the type
8665 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8666
8667 The typedef layer needs be preserved in order to differentiate between
8668 arrays and array pointers when both types are implemented using the same
8669 fat pointer. In the array pointer case, the pointer is encoded as
8670 a typedef of the pointer type. For instance, considering:
8671
8672 type String_Access is access String;
8673 S1 : String_Access := null;
8674
8675 To the debugger, S1 is defined as a typedef of type String. But
8676 to the user, it is a pointer. So if the user tries to print S1,
8677 we should not dereference the array, but print the array address
8678 instead.
8679
8680 If we didn't preserve the typedef layer, we would lose the fact that
8681 the type is to be presented as a pointer (needs de-reference before
8682 being printed). And we would also use the source-level type name. */
f192137b
JB
8683
8684struct type *
8685ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8686 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8687
8688{
8689 struct type *fixed_type =
8690 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8691
96dbd2c1
JB
8692 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8693 then preserve the typedef layer.
8694
8695 Implementation note: We can only check the main-type portion of
8696 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8697 from TYPE now returns a type that has the same instance flags
8698 as TYPE. For instance, if TYPE is a "typedef const", and its
8699 target type is a "struct", then the typedef elimination will return
8700 a "const" version of the target type. See check_typedef for more
8701 details about how the typedef layer elimination is done.
8702
8703 brobecker/2010-11-19: It seems to me that the only case where it is
8704 useful to preserve the typedef layer is when dealing with fat pointers.
8705 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8706 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8707 because we call check_typedef/ada_check_typedef pretty much everywhere.
8708 */
78134374 8709 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8710 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8711 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8712 return type;
8713
8714 return fixed_type;
8715}
8716
14f9c5c9 8717/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8718 TYPE0, but based on no runtime data. */
14f9c5c9 8719
d2e4a39e
AS
8720static struct type *
8721to_static_fixed_type (struct type *type0)
14f9c5c9 8722{
d2e4a39e 8723 struct type *type;
14f9c5c9
AS
8724
8725 if (type0 == NULL)
8726 return NULL;
8727
22c4c60c 8728 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8729 return type0;
8730
61ee279c 8731 type0 = ada_check_typedef (type0);
d2e4a39e 8732
78134374 8733 switch (type0->code ())
14f9c5c9
AS
8734 {
8735 default:
8736 return type0;
8737 case TYPE_CODE_STRUCT:
8738 type = dynamic_template_type (type0);
d2e4a39e 8739 if (type != NULL)
dda83cd7 8740 return template_to_static_fixed_type (type);
4c4b4cd2 8741 else
dda83cd7 8742 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8743 case TYPE_CODE_UNION:
8744 type = ada_find_parallel_type (type0, "___XVU");
8745 if (type != NULL)
dda83cd7 8746 return template_to_static_fixed_type (type);
4c4b4cd2 8747 else
dda83cd7 8748 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8749 }
8750}
8751
4c4b4cd2
PH
8752/* A static approximation of TYPE with all type wrappers removed. */
8753
d2e4a39e
AS
8754static struct type *
8755static_unwrap_type (struct type *type)
14f9c5c9
AS
8756{
8757 if (ada_is_aligner_type (type))
8758 {
940da03e 8759 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8760 if (ada_type_name (type1) == NULL)
d0e39ea2 8761 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8762
8763 return static_unwrap_type (type1);
8764 }
d2e4a39e 8765 else
14f9c5c9 8766 {
d2e4a39e 8767 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8768
d2e4a39e 8769 if (raw_real_type == type)
dda83cd7 8770 return type;
14f9c5c9 8771 else
dda83cd7 8772 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8773 }
8774}
8775
8776/* In some cases, incomplete and private types require
4c4b4cd2 8777 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8778 type Foo;
8779 type FooP is access Foo;
8780 V: FooP;
8781 type Foo is array ...;
4c4b4cd2 8782 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8783 cross-references to such types, we instead substitute for FooP a
8784 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8785 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8786
8787/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8788 exists, otherwise TYPE. */
8789
d2e4a39e 8790struct type *
61ee279c 8791ada_check_typedef (struct type *type)
14f9c5c9 8792{
727e3d2e
JB
8793 if (type == NULL)
8794 return NULL;
8795
736ade86
XR
8796 /* If our type is an access to an unconstrained array, which is encoded
8797 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8798 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8799 what allows us to distinguish between fat pointers that represent
8800 array types, and fat pointers that represent array access types
8801 (in both cases, the compiler implements them as fat pointers). */
736ade86 8802 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8803 return type;
8804
f168693b 8805 type = check_typedef (type);
78134374 8806 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8807 || !type->is_stub ()
7d93a1e0 8808 || type->name () == NULL)
14f9c5c9 8809 return type;
d2e4a39e 8810 else
14f9c5c9 8811 {
7d93a1e0 8812 const char *name = type->name ();
d2e4a39e 8813 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8814
05e522ef 8815 if (type1 == NULL)
dda83cd7 8816 return type;
05e522ef
JB
8817
8818 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8819 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8820 types, only for the typedef-to-array types). If that's the case,
8821 strip the typedef layer. */
78134374 8822 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8823 type1 = ada_check_typedef (type1);
8824
8825 return type1;
14f9c5c9
AS
8826 }
8827}
8828
8829/* A value representing the data at VALADDR/ADDRESS as described by
8830 type TYPE0, but with a standard (static-sized) type that correctly
8831 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8832 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8833 creation of struct values]. */
14f9c5c9 8834
4c4b4cd2
PH
8835static struct value *
8836ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8837 struct value *val0)
14f9c5c9 8838{
1ed6ede0 8839 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8840
14f9c5c9
AS
8841 if (type == type0 && val0 != NULL)
8842 return val0;
cc0e770c
JB
8843
8844 if (VALUE_LVAL (val0) != lval_memory)
8845 {
8846 /* Our value does not live in memory; it could be a convenience
8847 variable, for instance. Create a not_lval value using val0's
8848 contents. */
50888e42 8849 return value_from_contents (type, value_contents (val0).data ());
cc0e770c
JB
8850 }
8851
8852 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8853}
8854
8855/* A value representing VAL, but with a standard (static-sized) type
8856 that correctly describes it. Does not necessarily create a new
8857 value. */
8858
0c3acc09 8859struct value *
4c4b4cd2
PH
8860ada_to_fixed_value (struct value *val)
8861{
c48db5ca 8862 val = unwrap_value (val);
9feb2d07 8863 val = ada_to_fixed_value_create (val->type (), val->address (), val);
c48db5ca 8864 return val;
14f9c5c9 8865}
d2e4a39e 8866\f
14f9c5c9 8867
14f9c5c9
AS
8868/* Attributes */
8869
4c4b4cd2
PH
8870/* Table mapping attribute numbers to names.
8871 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8872
27087b7f 8873static const char * const attribute_names[] = {
14f9c5c9
AS
8874 "<?>",
8875
d2e4a39e 8876 "first",
14f9c5c9
AS
8877 "last",
8878 "length",
8879 "image",
14f9c5c9
AS
8880 "max",
8881 "min",
4c4b4cd2
PH
8882 "modulus",
8883 "pos",
8884 "size",
8885 "tag",
14f9c5c9 8886 "val",
14f9c5c9
AS
8887 0
8888};
8889
de93309a 8890static const char *
4c4b4cd2 8891ada_attribute_name (enum exp_opcode n)
14f9c5c9 8892{
4c4b4cd2
PH
8893 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8894 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8895 else
8896 return attribute_names[0];
8897}
8898
4c4b4cd2 8899/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8900
4c4b4cd2
PH
8901static LONGEST
8902pos_atr (struct value *arg)
14f9c5c9 8903{
24209737 8904 struct value *val = coerce_ref (arg);
d0c97917 8905 struct type *type = val->type ();
14f9c5c9 8906
d2e4a39e 8907 if (!discrete_type_p (type))
323e0a4a 8908 error (_("'POS only defined on discrete types"));
14f9c5c9 8909
6244c119
SM
8910 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8911 if (!result.has_value ())
aa715135 8912 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8913
6244c119 8914 return *result;
4c4b4cd2
PH
8915}
8916
7631cf6c 8917struct value *
7992accc
TT
8918ada_pos_atr (struct type *expect_type,
8919 struct expression *exp,
8920 enum noside noside, enum exp_opcode op,
8921 struct value *arg)
4c4b4cd2 8922{
7992accc
TT
8923 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8925 return value_zero (type, not_lval);
3cb382c9 8926 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8927}
8928
4c4b4cd2 8929/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8930
d2e4a39e 8931static struct value *
53a47a3e 8932val_atr (struct type *type, LONGEST val)
14f9c5c9 8933{
53a47a3e 8934 gdb_assert (discrete_type_p (type));
0bc2354b 8935 if (type->code () == TYPE_CODE_RANGE)
27710edb 8936 type = type->target_type ();
78134374 8937 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8938 {
53a47a3e 8939 if (val < 0 || val >= type->num_fields ())
dda83cd7 8940 error (_("argument to 'VAL out of range"));
970db518 8941 val = type->field (val).loc_enumval ();
14f9c5c9 8942 }
53a47a3e
TT
8943 return value_from_longest (type, val);
8944}
8945
9e99f48f 8946struct value *
3848abd6 8947ada_val_atr (enum noside noside, struct type *type, struct value *arg)
53a47a3e 8948{
3848abd6
TT
8949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8950 return value_zero (type, not_lval);
8951
53a47a3e
TT
8952 if (!discrete_type_p (type))
8953 error (_("'VAL only defined on discrete types"));
d0c97917 8954 if (!integer_type_p (arg->type ()))
53a47a3e
TT
8955 error (_("'VAL requires integral argument"));
8956
8957 return val_atr (type, value_as_long (arg));
14f9c5c9 8958}
14f9c5c9 8959\f
d2e4a39e 8960
dda83cd7 8961 /* Evaluation */
14f9c5c9 8962
4c4b4cd2
PH
8963/* True if TYPE appears to be an Ada character type.
8964 [At the moment, this is true only for Character and Wide_Character;
8965 It is a heuristic test that could stand improvement]. */
14f9c5c9 8966
fc913e53 8967bool
d2e4a39e 8968ada_is_character_type (struct type *type)
14f9c5c9 8969{
7b9f71f2
JB
8970 const char *name;
8971
8972 /* If the type code says it's a character, then assume it really is,
8973 and don't check any further. */
78134374 8974 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8975 return true;
7b9f71f2
JB
8976
8977 /* Otherwise, assume it's a character type iff it is a discrete type
8978 with a known character type name. */
8979 name = ada_type_name (type);
8980 return (name != NULL
dda83cd7
SM
8981 && (type->code () == TYPE_CODE_INT
8982 || type->code () == TYPE_CODE_RANGE)
8983 && (strcmp (name, "character") == 0
8984 || strcmp (name, "wide_character") == 0
8985 || strcmp (name, "wide_wide_character") == 0
8986 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8987}
8988
4c4b4cd2 8989/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8990
fc913e53 8991bool
ebf56fd3 8992ada_is_string_type (struct type *type)
14f9c5c9 8993{
61ee279c 8994 type = ada_check_typedef (type);
d2e4a39e 8995 if (type != NULL
78134374 8996 && type->code () != TYPE_CODE_PTR
76a01679 8997 && (ada_is_simple_array_type (type)
dda83cd7 8998 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8999 && ada_array_arity (type) == 1)
9000 {
9001 struct type *elttype = ada_array_element_type (type, 1);
9002
9003 return ada_is_character_type (elttype);
9004 }
d2e4a39e 9005 else
fc913e53 9006 return false;
14f9c5c9
AS
9007}
9008
5bf03f13
JB
9009/* The compiler sometimes provides a parallel XVS type for a given
9010 PAD type. Normally, it is safe to follow the PAD type directly,
9011 but older versions of the compiler have a bug that causes the offset
9012 of its "F" field to be wrong. Following that field in that case
9013 would lead to incorrect results, but this can be worked around
9014 by ignoring the PAD type and using the associated XVS type instead.
9015
9016 Set to True if the debugger should trust the contents of PAD types.
9017 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9018static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9019
9020/* True if TYPE is a struct type introduced by the compiler to force the
9021 alignment of a value. Such types have a single field with a
4c4b4cd2 9022 distinctive name. */
14f9c5c9
AS
9023
9024int
ebf56fd3 9025ada_is_aligner_type (struct type *type)
14f9c5c9 9026{
61ee279c 9027 type = ada_check_typedef (type);
714e53ab 9028
5bf03f13 9029 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9030 return 0;
9031
78134374 9032 return (type->code () == TYPE_CODE_STRUCT
dda83cd7 9033 && type->num_fields () == 1
33d16dd9 9034 && strcmp (type->field (0).name (), "F") == 0);
14f9c5c9
AS
9035}
9036
9037/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9038 the parallel type. */
14f9c5c9 9039
d2e4a39e
AS
9040struct type *
9041ada_get_base_type (struct type *raw_type)
14f9c5c9 9042{
d2e4a39e
AS
9043 struct type *real_type_namer;
9044 struct type *raw_real_type;
14f9c5c9 9045
78134374 9046 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9047 return raw_type;
9048
284614f0
JB
9049 if (ada_is_aligner_type (raw_type))
9050 /* The encoding specifies that we should always use the aligner type.
9051 So, even if this aligner type has an associated XVS type, we should
9052 simply ignore it.
9053
9054 According to the compiler gurus, an XVS type parallel to an aligner
9055 type may exist because of a stabs limitation. In stabs, aligner
9056 types are empty because the field has a variable-sized type, and
9057 thus cannot actually be used as an aligner type. As a result,
9058 we need the associated parallel XVS type to decode the type.
9059 Since the policy in the compiler is to not change the internal
9060 representation based on the debugging info format, we sometimes
9061 end up having a redundant XVS type parallel to the aligner type. */
9062 return raw_type;
9063
14f9c5c9 9064 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9065 if (real_type_namer == NULL
78134374 9066 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9067 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9068 return raw_type;
9069
940da03e 9070 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9071 {
9072 /* This is an older encoding form where the base type needs to be
85102364 9073 looked up by name. We prefer the newer encoding because it is
f80d3ff2 9074 more efficient. */
33d16dd9 9075 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
f80d3ff2
JB
9076 if (raw_real_type == NULL)
9077 return raw_type;
9078 else
9079 return raw_real_type;
9080 }
9081
9082 /* The field in our XVS type is a reference to the base type. */
27710edb 9083 return real_type_namer->field (0).type ()->target_type ();
d2e4a39e 9084}
14f9c5c9 9085
4c4b4cd2 9086/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9087
d2e4a39e
AS
9088struct type *
9089ada_aligned_type (struct type *type)
14f9c5c9
AS
9090{
9091 if (ada_is_aligner_type (type))
940da03e 9092 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9093 else
9094 return ada_get_base_type (type);
9095}
9096
9097
9098/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9099 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9100
fc1a4b47
AC
9101const gdb_byte *
9102ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9103{
d2e4a39e 9104 if (ada_is_aligner_type (type))
b610c045
SM
9105 return ada_aligned_value_addr
9106 (type->field (0).type (),
9107 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
14f9c5c9
AS
9108 else
9109 return valaddr;
9110}
9111
4c4b4cd2
PH
9112
9113
14f9c5c9 9114/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9115 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9116const char *
9117ada_enum_name (const char *name)
14f9c5c9 9118{
5f9febe0 9119 static std::string storage;
e6a959d6 9120 const char *tmp;
14f9c5c9 9121
4c4b4cd2
PH
9122 /* First, unqualify the enumeration name:
9123 1. Search for the last '.' character. If we find one, then skip
177b42fe 9124 all the preceding characters, the unqualified name starts
76a01679 9125 right after that dot.
4c4b4cd2 9126 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9127 translates dots into "__". Search forward for double underscores,
9128 but stop searching when we hit an overloading suffix, which is
9129 of the form "__" followed by digits. */
4c4b4cd2 9130
c3e5cd34
PH
9131 tmp = strrchr (name, '.');
9132 if (tmp != NULL)
4c4b4cd2
PH
9133 name = tmp + 1;
9134 else
14f9c5c9 9135 {
4c4b4cd2 9136 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
9137 {
9138 if (isdigit (tmp[2]))
9139 break;
9140 else
9141 name = tmp + 2;
9142 }
14f9c5c9
AS
9143 }
9144
9145 if (name[0] == 'Q')
9146 {
14f9c5c9 9147 int v;
5b4ee69b 9148
14f9c5c9 9149 if (name[1] == 'U' || name[1] == 'W')
dda83cd7 9150 {
a7041de8
TT
9151 int offset = 2;
9152 if (name[1] == 'W' && name[2] == 'W')
9153 {
9154 /* Also handle the QWW case. */
9155 ++offset;
9156 }
9157 if (sscanf (name + offset, "%x", &v) != 1)
dda83cd7
SM
9158 return name;
9159 }
272560b5
TT
9160 else if (((name[1] >= '0' && name[1] <= '9')
9161 || (name[1] >= 'a' && name[1] <= 'z'))
9162 && name[2] == '\0')
9163 {
5f9febe0
TT
9164 storage = string_printf ("'%c'", name[1]);
9165 return storage.c_str ();
272560b5 9166 }
14f9c5c9 9167 else
dda83cd7 9168 return name;
14f9c5c9
AS
9169
9170 if (isascii (v) && isprint (v))
5f9febe0 9171 storage = string_printf ("'%c'", v);
14f9c5c9 9172 else if (name[1] == 'U')
a7041de8
TT
9173 storage = string_printf ("'[\"%02x\"]'", v);
9174 else if (name[2] != 'W')
9175 storage = string_printf ("'[\"%04x\"]'", v);
14f9c5c9 9176 else
a7041de8 9177 storage = string_printf ("'[\"%06x\"]'", v);
14f9c5c9 9178
5f9febe0 9179 return storage.c_str ();
14f9c5c9 9180 }
d2e4a39e 9181 else
4c4b4cd2 9182 {
c3e5cd34
PH
9183 tmp = strstr (name, "__");
9184 if (tmp == NULL)
9185 tmp = strstr (name, "$");
9186 if (tmp != NULL)
dda83cd7 9187 {
5f9febe0
TT
9188 storage = std::string (name, tmp - name);
9189 return storage.c_str ();
dda83cd7 9190 }
4c4b4cd2
PH
9191
9192 return name;
9193 }
14f9c5c9
AS
9194}
9195
14f9c5c9 9196/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9197 value it wraps. */
14f9c5c9 9198
d2e4a39e
AS
9199static struct value *
9200unwrap_value (struct value *val)
14f9c5c9 9201{
d0c97917 9202 struct type *type = ada_check_typedef (val->type ());
5b4ee69b 9203
14f9c5c9
AS
9204 if (ada_is_aligner_type (type))
9205 {
de4d072f 9206 struct value *v = ada_value_struct_elt (val, "F", 0);
d0c97917 9207 struct type *val_type = ada_check_typedef (v->type ());
5b4ee69b 9208
14f9c5c9 9209 if (ada_type_name (val_type) == NULL)
d0e39ea2 9210 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9211
9212 return unwrap_value (v);
9213 }
d2e4a39e 9214 else
14f9c5c9 9215 {
d2e4a39e 9216 struct type *raw_real_type =
dda83cd7 9217 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9218
5bf03f13
JB
9219 /* If there is no parallel XVS or XVE type, then the value is
9220 already unwrapped. Return it without further modification. */
9221 if ((type == raw_real_type)
9222 && ada_find_parallel_type (type, "___XVE") == NULL)
9223 return val;
14f9c5c9 9224
d2e4a39e 9225 return
dda83cd7
SM
9226 coerce_unspec_val_to_type
9227 (val, ada_to_fixed_type (raw_real_type, 0,
9feb2d07 9228 val->address (),
dda83cd7 9229 NULL, 1));
14f9c5c9
AS
9230 }
9231}
d2e4a39e 9232
d99dcf51
JB
9233/* Given two array types T1 and T2, return nonzero iff both arrays
9234 contain the same number of elements. */
9235
9236static int
9237ada_same_array_size_p (struct type *t1, struct type *t2)
9238{
9239 LONGEST lo1, hi1, lo2, hi2;
9240
9241 /* Get the array bounds in order to verify that the size of
9242 the two arrays match. */
9243 if (!get_array_bounds (t1, &lo1, &hi1)
9244 || !get_array_bounds (t2, &lo2, &hi2))
9245 error (_("unable to determine array bounds"));
9246
9247 /* To make things easier for size comparison, normalize a bit
9248 the case of empty arrays by making sure that the difference
9249 between upper bound and lower bound is always -1. */
9250 if (lo1 > hi1)
9251 hi1 = lo1 - 1;
9252 if (lo2 > hi2)
9253 hi2 = lo2 - 1;
9254
9255 return (hi1 - lo1 == hi2 - lo2);
9256}
9257
9258/* Assuming that VAL is an array of integrals, and TYPE represents
9259 an array with the same number of elements, but with wider integral
9260 elements, return an array "casted" to TYPE. In practice, this
9261 means that the returned array is built by casting each element
9262 of the original array into TYPE's (wider) element type. */
9263
9264static struct value *
9265ada_promote_array_of_integrals (struct type *type, struct value *val)
9266{
27710edb 9267 struct type *elt_type = type->target_type ();
d99dcf51 9268 LONGEST lo, hi;
d99dcf51
JB
9269 LONGEST i;
9270
9271 /* Verify that both val and type are arrays of scalars, and
9272 that the size of val's elements is smaller than the size
9273 of type's element. */
78134374 9274 gdb_assert (type->code () == TYPE_CODE_ARRAY);
27710edb 9275 gdb_assert (is_integral_type (type->target_type ()));
d0c97917
TT
9276 gdb_assert (val->type ()->code () == TYPE_CODE_ARRAY);
9277 gdb_assert (is_integral_type (val->type ()->target_type ()));
df86565b 9278 gdb_assert (type->target_type ()->length ()
d0c97917 9279 > val->type ()->target_type ()->length ());
d99dcf51
JB
9280
9281 if (!get_array_bounds (type, &lo, &hi))
9282 error (_("unable to determine array bounds"));
9283
317c3ed9 9284 value *res = value::allocate (type);
4bce7cda 9285 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
d99dcf51
JB
9286
9287 /* Promote each array element. */
9288 for (i = 0; i < hi - lo + 1; i++)
9289 {
9290 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
df86565b 9291 int elt_len = elt_type->length ();
d99dcf51 9292
4bce7cda 9293 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
d99dcf51
JB
9294 }
9295
9296 return res;
9297}
9298
4c4b4cd2
PH
9299/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9300 return the converted value. */
9301
d2e4a39e
AS
9302static struct value *
9303coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9304{
d0c97917 9305 struct type *type2 = val->type ();
5b4ee69b 9306
14f9c5c9
AS
9307 if (type == type2)
9308 return val;
9309
61ee279c
PH
9310 type2 = ada_check_typedef (type2);
9311 type = ada_check_typedef (type);
14f9c5c9 9312
78134374
SM
9313 if (type2->code () == TYPE_CODE_PTR
9314 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9315 {
9316 val = ada_value_ind (val);
d0c97917 9317 type2 = val->type ();
14f9c5c9
AS
9318 }
9319
78134374
SM
9320 if (type2->code () == TYPE_CODE_ARRAY
9321 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9322 {
d99dcf51
JB
9323 if (!ada_same_array_size_p (type, type2))
9324 error (_("cannot assign arrays of different length"));
9325
27710edb
SM
9326 if (is_integral_type (type->target_type ())
9327 && is_integral_type (type2->target_type ())
df86565b 9328 && type2->target_type ()->length () < type->target_type ()->length ())
d99dcf51
JB
9329 {
9330 /* Allow implicit promotion of the array elements to
9331 a wider type. */
9332 return ada_promote_array_of_integrals (type, val);
9333 }
9334
df86565b 9335 if (type2->target_type ()->length () != type->target_type ()->length ())
dda83cd7 9336 error (_("Incompatible types in assignment"));
81ae560c 9337 val->deprecated_set_type (type);
14f9c5c9 9338 }
d2e4a39e 9339 return val;
14f9c5c9
AS
9340}
9341
4c4b4cd2
PH
9342static struct value *
9343ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9344{
9345 struct value *val;
9346 struct type *type1, *type2;
9347 LONGEST v, v1, v2;
9348
994b9211
AC
9349 arg1 = coerce_ref (arg1);
9350 arg2 = coerce_ref (arg2);
d0c97917
TT
9351 type1 = get_base_type (ada_check_typedef (arg1->type ()));
9352 type2 = get_base_type (ada_check_typedef (arg2->type ()));
4c4b4cd2 9353
78134374
SM
9354 if (type1->code () != TYPE_CODE_INT
9355 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9356 return value_binop (arg1, arg2, op);
9357
76a01679 9358 switch (op)
4c4b4cd2
PH
9359 {
9360 case BINOP_MOD:
9361 case BINOP_DIV:
9362 case BINOP_REM:
9363 break;
9364 default:
9365 return value_binop (arg1, arg2, op);
9366 }
9367
9368 v2 = value_as_long (arg2);
9369 if (v2 == 0)
b0f9164c
TT
9370 {
9371 const char *name;
9372 if (op == BINOP_MOD)
9373 name = "mod";
9374 else if (op == BINOP_DIV)
9375 name = "/";
9376 else
9377 {
9378 gdb_assert (op == BINOP_REM);
9379 name = "rem";
9380 }
9381
9382 error (_("second operand of %s must not be zero."), name);
9383 }
4c4b4cd2 9384
c6d940a9 9385 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9386 return value_binop (arg1, arg2, op);
9387
9388 v1 = value_as_long (arg1);
9389 switch (op)
9390 {
9391 case BINOP_DIV:
9392 v = v1 / v2;
76a01679 9393 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9394 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9395 break;
9396 case BINOP_REM:
9397 v = v1 % v2;
76a01679 9398 if (v * v1 < 0)
dda83cd7 9399 v -= v2;
4c4b4cd2
PH
9400 break;
9401 default:
9402 /* Should not reach this point. */
9403 v = 0;
9404 }
9405
317c3ed9 9406 val = value::allocate (type1);
50888e42 9407 store_unsigned_integer (value_contents_raw (val).data (),
d0c97917 9408 val->type ()->length (),
34877895 9409 type_byte_order (type1), v);
4c4b4cd2
PH
9410 return val;
9411}
9412
9413static int
9414ada_value_equal (struct value *arg1, struct value *arg2)
9415{
d0c97917
TT
9416 if (ada_is_direct_array_type (arg1->type ())
9417 || ada_is_direct_array_type (arg2->type ()))
4c4b4cd2 9418 {
79e8fcaa
JB
9419 struct type *arg1_type, *arg2_type;
9420
f58b38bf 9421 /* Automatically dereference any array reference before
dda83cd7 9422 we attempt to perform the comparison. */
f58b38bf
JB
9423 arg1 = ada_coerce_ref (arg1);
9424 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9425
4c4b4cd2
PH
9426 arg1 = ada_coerce_to_simple_array (arg1);
9427 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa 9428
d0c97917
TT
9429 arg1_type = ada_check_typedef (arg1->type ());
9430 arg2_type = ada_check_typedef (arg2->type ());
79e8fcaa 9431
78134374 9432 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9433 || arg2_type->code () != TYPE_CODE_ARRAY)
9434 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9435 /* FIXME: The following works only for types whose
dda83cd7
SM
9436 representations use all bits (no padding or undefined bits)
9437 and do not have user-defined equality. */
df86565b 9438 return (arg1_type->length () == arg2_type->length ()
50888e42
SM
9439 && memcmp (value_contents (arg1).data (),
9440 value_contents (arg2).data (),
df86565b 9441 arg1_type->length ()) == 0);
4c4b4cd2
PH
9442 }
9443 return value_equal (arg1, arg2);
9444}
9445
d3c54a1c
TT
9446namespace expr
9447{
9448
9449bool
9450check_objfile (const std::unique_ptr<ada_component> &comp,
9451 struct objfile *objfile)
9452{
9453 return comp->uses_objfile (objfile);
9454}
9455
9456/* Assign the result of evaluating ARG starting at *POS to the INDEXth
9457 component of LHS (a simple array or a record). Does not modify the
9458 inferior's memory, nor does it modify LHS (unless LHS ==
9459 CONTAINER). */
52ce6436
PH
9460
9461static void
9462assign_component (struct value *container, struct value *lhs, LONGEST index,
d3c54a1c 9463 struct expression *exp, operation_up &arg)
52ce6436 9464{
d3c54a1c
TT
9465 scoped_value_mark mark;
9466
52ce6436 9467 struct value *elt;
d0c97917 9468 struct type *lhs_type = check_typedef (lhs->type ());
5b4ee69b 9469
78134374 9470 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9471 {
22601c15
UW
9472 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9473 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9474
52ce6436
PH
9475 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9476 }
9477 else
9478 {
d0c97917 9479 elt = ada_index_struct_field (index, lhs, 0, lhs->type ());
c48db5ca 9480 elt = ada_to_fixed_value (elt);
52ce6436
PH
9481 }
9482
d3c54a1c
TT
9483 ada_aggregate_operation *ag_op
9484 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9485 if (ag_op != nullptr)
9486 ag_op->assign_aggregate (container, elt, exp);
52ce6436 9487 else
d3c54a1c
TT
9488 value_assign_to_component (container, elt,
9489 arg->evaluate (nullptr, exp,
9490 EVAL_NORMAL));
9491}
52ce6436 9492
d3c54a1c
TT
9493bool
9494ada_aggregate_component::uses_objfile (struct objfile *objfile)
9495{
9496 for (const auto &item : m_components)
9497 if (item->uses_objfile (objfile))
9498 return true;
9499 return false;
9500}
9501
9502void
9503ada_aggregate_component::dump (ui_file *stream, int depth)
9504{
6cb06a8c 9505 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
d3c54a1c
TT
9506 for (const auto &item : m_components)
9507 item->dump (stream, depth + 1);
9508}
9509
9510void
9511ada_aggregate_component::assign (struct value *container,
9512 struct value *lhs, struct expression *exp,
9513 std::vector<LONGEST> &indices,
9514 LONGEST low, LONGEST high)
9515{
9516 for (auto &item : m_components)
9517 item->assign (container, lhs, exp, indices, low, high);
52ce6436
PH
9518}
9519
207582c0 9520/* See ada-exp.h. */
52ce6436 9521
207582c0 9522value *
d3c54a1c
TT
9523ada_aggregate_operation::assign_aggregate (struct value *container,
9524 struct value *lhs,
9525 struct expression *exp)
52ce6436
PH
9526{
9527 struct type *lhs_type;
52ce6436 9528 LONGEST low_index, high_index;
52ce6436
PH
9529
9530 container = ada_coerce_ref (container);
d0c97917 9531 if (ada_is_direct_array_type (container->type ()))
52ce6436
PH
9532 container = ada_coerce_to_simple_array (container);
9533 lhs = ada_coerce_ref (lhs);
4b53ca88 9534 if (!lhs->deprecated_modifiable ())
52ce6436
PH
9535 error (_("Left operand of assignment is not a modifiable lvalue."));
9536
d0c97917 9537 lhs_type = check_typedef (lhs->type ());
52ce6436
PH
9538 if (ada_is_direct_array_type (lhs_type))
9539 {
9540 lhs = ada_coerce_to_simple_array (lhs);
d0c97917 9541 lhs_type = check_typedef (lhs->type ());
cf88be68
SM
9542 low_index = lhs_type->bounds ()->low.const_val ();
9543 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9544 }
78134374 9545 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9546 {
9547 low_index = 0;
9548 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9549 }
9550 else
9551 error (_("Left-hand side must be array or record."));
9552
cf608cc4 9553 std::vector<LONGEST> indices (4);
52ce6436
PH
9554 indices[0] = indices[1] = low_index - 1;
9555 indices[2] = indices[3] = high_index + 1;
52ce6436 9556
d3c54a1c
TT
9557 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9558 low_index, high_index);
207582c0
TT
9559
9560 return container;
d3c54a1c
TT
9561}
9562
9563bool
9564ada_positional_component::uses_objfile (struct objfile *objfile)
9565{
9566 return m_op->uses_objfile (objfile);
9567}
52ce6436 9568
d3c54a1c
TT
9569void
9570ada_positional_component::dump (ui_file *stream, int depth)
9571{
6cb06a8c
TT
9572 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9573 depth, "", m_index);
d3c54a1c 9574 m_op->dump (stream, depth + 1);
52ce6436 9575}
d3c54a1c 9576
52ce6436 9577/* Assign into the component of LHS indexed by the OP_POSITIONAL
d3c54a1c
TT
9578 construct, given that the positions are relative to lower bound
9579 LOW, where HIGH is the upper bound. Record the position in
9580 INDICES. CONTAINER is as for assign_aggregate. */
9581void
9582ada_positional_component::assign (struct value *container,
9583 struct value *lhs, struct expression *exp,
9584 std::vector<LONGEST> &indices,
9585 LONGEST low, LONGEST high)
52ce6436 9586{
d3c54a1c
TT
9587 LONGEST ind = m_index + low;
9588
52ce6436 9589 if (ind - 1 == high)
e1d5a0d2 9590 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9591 if (ind <= high)
9592 {
cf608cc4 9593 add_component_interval (ind, ind, indices);
d3c54a1c 9594 assign_component (container, lhs, ind, exp, m_op);
52ce6436 9595 }
52ce6436
PH
9596}
9597
d3c54a1c
TT
9598bool
9599ada_discrete_range_association::uses_objfile (struct objfile *objfile)
a88c4354
TT
9600{
9601 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9602}
9603
9604void
9605ada_discrete_range_association::dump (ui_file *stream, int depth)
9606{
6cb06a8c 9607 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
a88c4354
TT
9608 m_low->dump (stream, depth + 1);
9609 m_high->dump (stream, depth + 1);
9610}
9611
9612void
9613ada_discrete_range_association::assign (struct value *container,
9614 struct value *lhs,
9615 struct expression *exp,
9616 std::vector<LONGEST> &indices,
9617 LONGEST low, LONGEST high,
9618 operation_up &op)
9619{
9620 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9621 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9622
9623 if (lower <= upper && (lower < low || upper > high))
9624 error (_("Index in component association out of bounds."));
9625
9626 add_component_interval (lower, upper, indices);
9627 while (lower <= upper)
9628 {
9629 assign_component (container, lhs, lower, exp, op);
9630 lower += 1;
9631 }
9632}
9633
9634bool
9635ada_name_association::uses_objfile (struct objfile *objfile)
9636{
9637 return m_val->uses_objfile (objfile);
9638}
9639
9640void
9641ada_name_association::dump (ui_file *stream, int depth)
9642{
6cb06a8c 9643 gdb_printf (stream, _("%*sName:\n"), depth, "");
a88c4354
TT
9644 m_val->dump (stream, depth + 1);
9645}
9646
9647void
9648ada_name_association::assign (struct value *container,
9649 struct value *lhs,
9650 struct expression *exp,
9651 std::vector<LONGEST> &indices,
9652 LONGEST low, LONGEST high,
9653 operation_up &op)
9654{
9655 int index;
9656
d0c97917 9657 if (ada_is_direct_array_type (lhs->type ()))
a88c4354
TT
9658 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9659 EVAL_NORMAL)));
9660 else
9661 {
9662 ada_string_operation *strop
9663 = dynamic_cast<ada_string_operation *> (m_val.get ());
9664
9665 const char *name;
9666 if (strop != nullptr)
9667 name = strop->get_name ();
9668 else
9669 {
9670 ada_var_value_operation *vvo
9671 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9672 if (vvo != nullptr)
9673 error (_("Invalid record component association."));
9674 name = vvo->get_symbol ()->natural_name ();
9675 }
9676
9677 index = 0;
d0c97917 9678 if (! find_struct_field (name, lhs->type (), 0,
a88c4354
TT
9679 NULL, NULL, NULL, NULL, &index))
9680 error (_("Unknown component name: %s."), name);
9681 }
9682
9683 add_component_interval (index, index, indices);
9684 assign_component (container, lhs, index, exp, op);
9685}
9686
9687bool
9688ada_choices_component::uses_objfile (struct objfile *objfile)
9689{
9690 if (m_op->uses_objfile (objfile))
9691 return true;
9692 for (const auto &item : m_assocs)
9693 if (item->uses_objfile (objfile))
9694 return true;
9695 return false;
9696}
9697
9698void
9699ada_choices_component::dump (ui_file *stream, int depth)
9700{
6cb06a8c 9701 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
a88c4354
TT
9702 m_op->dump (stream, depth + 1);
9703 for (const auto &item : m_assocs)
9704 item->dump (stream, depth + 1);
9705}
9706
9707/* Assign into the components of LHS indexed by the OP_CHOICES
9708 construct at *POS, updating *POS past the construct, given that
9709 the allowable indices are LOW..HIGH. Record the indices assigned
9710 to in INDICES. CONTAINER is as for assign_aggregate. */
9711void
9712ada_choices_component::assign (struct value *container,
9713 struct value *lhs, struct expression *exp,
9714 std::vector<LONGEST> &indices,
9715 LONGEST low, LONGEST high)
9716{
9717 for (auto &item : m_assocs)
9718 item->assign (container, lhs, exp, indices, low, high, m_op);
9719}
9720
9721bool
9722ada_others_component::uses_objfile (struct objfile *objfile)
9723{
9724 return m_op->uses_objfile (objfile);
9725}
9726
9727void
9728ada_others_component::dump (ui_file *stream, int depth)
9729{
6cb06a8c 9730 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
a88c4354
TT
9731 m_op->dump (stream, depth + 1);
9732}
9733
9734/* Assign the value of the expression in the OP_OTHERS construct in
9735 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9736 have not been previously assigned. The index intervals already assigned
9737 are in INDICES. CONTAINER is as for assign_aggregate. */
9738void
9739ada_others_component::assign (struct value *container,
9740 struct value *lhs, struct expression *exp,
9741 std::vector<LONGEST> &indices,
9742 LONGEST low, LONGEST high)
9743{
9744 int num_indices = indices.size ();
9745 for (int i = 0; i < num_indices - 2; i += 2)
9746 {
9747 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9748 assign_component (container, lhs, ind, exp, m_op);
9749 }
9750}
9751
9752struct value *
9753ada_assign_operation::evaluate (struct type *expect_type,
9754 struct expression *exp,
9755 enum noside noside)
9756{
9757 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9758
9759 ada_aggregate_operation *ag_op
9760 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9761 if (ag_op != nullptr)
9762 {
9763 if (noside != EVAL_NORMAL)
9764 return arg1;
9765
207582c0 9766 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
a88c4354
TT
9767 return ada_value_assign (arg1, arg1);
9768 }
9769 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9770 except if the lhs of our assignment is a convenience variable.
9771 In the case of assigning to a convenience variable, the lhs
9772 should be exactly the result of the evaluation of the rhs. */
d0c97917 9773 struct type *type = arg1->type ();
a88c4354
TT
9774 if (VALUE_LVAL (arg1) == lval_internalvar)
9775 type = NULL;
9776 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
0b2b0b82 9777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
a88c4354
TT
9778 return arg1;
9779 if (VALUE_LVAL (arg1) == lval_internalvar)
9780 {
9781 /* Nothing. */
9782 }
9783 else
d0c97917 9784 arg2 = coerce_for_assign (arg1->type (), arg2);
a88c4354
TT
9785 return ada_value_assign (arg1, arg2);
9786}
9787
9788} /* namespace expr */
9789
cf608cc4
TT
9790/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9791 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9792 overlap. */
52ce6436
PH
9793static void
9794add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9795 std::vector<LONGEST> &indices)
52ce6436
PH
9796{
9797 int i, j;
5b4ee69b 9798
cf608cc4
TT
9799 int size = indices.size ();
9800 for (i = 0; i < size; i += 2) {
52ce6436
PH
9801 if (high >= indices[i] && low <= indices[i + 1])
9802 {
9803 int kh;
5b4ee69b 9804
cf608cc4 9805 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9806 if (high < indices[kh])
9807 break;
9808 if (low < indices[i])
9809 indices[i] = low;
9810 indices[i + 1] = indices[kh - 1];
9811 if (high > indices[i + 1])
9812 indices[i + 1] = high;
cf608cc4
TT
9813 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9814 indices.resize (kh - i - 2);
52ce6436
PH
9815 return;
9816 }
9817 else if (high < indices[i])
9818 break;
9819 }
9820
cf608cc4 9821 indices.resize (indices.size () + 2);
d4813f10 9822 for (j = indices.size () - 1; j >= i + 2; j -= 1)
52ce6436
PH
9823 indices[j] = indices[j - 2];
9824 indices[i] = low;
9825 indices[i + 1] = high;
9826}
9827
6e48bd2c
JB
9828/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9829 is different. */
9830
9831static struct value *
b7e22850 9832ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c 9833{
d0c97917 9834 if (type == ada_check_typedef (arg2->type ()))
6e48bd2c
JB
9835 return arg2;
9836
6e48bd2c
JB
9837 return value_cast (type, arg2);
9838}
9839
284614f0
JB
9840/* Evaluating Ada expressions, and printing their result.
9841 ------------------------------------------------------
9842
21649b50
JB
9843 1. Introduction:
9844 ----------------
9845
284614f0
JB
9846 We usually evaluate an Ada expression in order to print its value.
9847 We also evaluate an expression in order to print its type, which
9848 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9849 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9850 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9851 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9852 similar.
9853
9854 Evaluating expressions is a little more complicated for Ada entities
9855 than it is for entities in languages such as C. The main reason for
9856 this is that Ada provides types whose definition might be dynamic.
9857 One example of such types is variant records. Or another example
9858 would be an array whose bounds can only be known at run time.
9859
9860 The following description is a general guide as to what should be
9861 done (and what should NOT be done) in order to evaluate an expression
9862 involving such types, and when. This does not cover how the semantic
9863 information is encoded by GNAT as this is covered separatly. For the
9864 document used as the reference for the GNAT encoding, see exp_dbug.ads
9865 in the GNAT sources.
9866
9867 Ideally, we should embed each part of this description next to its
9868 associated code. Unfortunately, the amount of code is so vast right
9869 now that it's hard to see whether the code handling a particular
9870 situation might be duplicated or not. One day, when the code is
9871 cleaned up, this guide might become redundant with the comments
9872 inserted in the code, and we might want to remove it.
9873
21649b50
JB
9874 2. ``Fixing'' an Entity, the Simple Case:
9875 -----------------------------------------
9876
284614f0
JB
9877 When evaluating Ada expressions, the tricky issue is that they may
9878 reference entities whose type contents and size are not statically
9879 known. Consider for instance a variant record:
9880
9881 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9882 case Empty is
9883 when True => null;
9884 when False => Value : Integer;
9885 end case;
284614f0
JB
9886 end record;
9887 Yes : Rec := (Empty => False, Value => 1);
9888 No : Rec := (empty => True);
9889
9890 The size and contents of that record depends on the value of the
9891 descriminant (Rec.Empty). At this point, neither the debugging
9892 information nor the associated type structure in GDB are able to
9893 express such dynamic types. So what the debugger does is to create
9894 "fixed" versions of the type that applies to the specific object.
30baf67b 9895 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9896 which means creating its associated fixed type.
9897
9898 Example: when printing the value of variable "Yes" above, its fixed
9899 type would look like this:
9900
9901 type Rec is record
dda83cd7
SM
9902 Empty : Boolean;
9903 Value : Integer;
284614f0
JB
9904 end record;
9905
9906 On the other hand, if we printed the value of "No", its fixed type
9907 would become:
9908
9909 type Rec is record
dda83cd7 9910 Empty : Boolean;
284614f0
JB
9911 end record;
9912
9913 Things become a little more complicated when trying to fix an entity
9914 with a dynamic type that directly contains another dynamic type,
9915 such as an array of variant records, for instance. There are
9916 two possible cases: Arrays, and records.
9917
21649b50
JB
9918 3. ``Fixing'' Arrays:
9919 ---------------------
9920
9921 The type structure in GDB describes an array in terms of its bounds,
9922 and the type of its elements. By design, all elements in the array
9923 have the same type and we cannot represent an array of variant elements
9924 using the current type structure in GDB. When fixing an array,
9925 we cannot fix the array element, as we would potentially need one
9926 fixed type per element of the array. As a result, the best we can do
9927 when fixing an array is to produce an array whose bounds and size
9928 are correct (allowing us to read it from memory), but without having
9929 touched its element type. Fixing each element will be done later,
9930 when (if) necessary.
9931
9932 Arrays are a little simpler to handle than records, because the same
9933 amount of memory is allocated for each element of the array, even if
1b536f04 9934 the amount of space actually used by each element differs from element
21649b50 9935 to element. Consider for instance the following array of type Rec:
284614f0
JB
9936
9937 type Rec_Array is array (1 .. 2) of Rec;
9938
1b536f04
JB
9939 The actual amount of memory occupied by each element might be different
9940 from element to element, depending on the value of their discriminant.
21649b50 9941 But the amount of space reserved for each element in the array remains
1b536f04 9942 fixed regardless. So we simply need to compute that size using
21649b50
JB
9943 the debugging information available, from which we can then determine
9944 the array size (we multiply the number of elements of the array by
9945 the size of each element).
9946
9947 The simplest case is when we have an array of a constrained element
9948 type. For instance, consider the following type declarations:
9949
dda83cd7
SM
9950 type Bounded_String (Max_Size : Integer) is
9951 Length : Integer;
9952 Buffer : String (1 .. Max_Size);
9953 end record;
9954 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9955
9956 In this case, the compiler describes the array as an array of
9957 variable-size elements (identified by its XVS suffix) for which
9958 the size can be read in the parallel XVZ variable.
9959
9960 In the case of an array of an unconstrained element type, the compiler
9961 wraps the array element inside a private PAD type. This type should not
9962 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9963 that we also use the adjective "aligner" in our code to designate
9964 these wrapper types.
9965
1b536f04 9966 In some cases, the size allocated for each element is statically
21649b50
JB
9967 known. In that case, the PAD type already has the correct size,
9968 and the array element should remain unfixed.
9969
9970 But there are cases when this size is not statically known.
9971 For instance, assuming that "Five" is an integer variable:
284614f0 9972
dda83cd7
SM
9973 type Dynamic is array (1 .. Five) of Integer;
9974 type Wrapper (Has_Length : Boolean := False) is record
9975 Data : Dynamic;
9976 case Has_Length is
9977 when True => Length : Integer;
9978 when False => null;
9979 end case;
9980 end record;
9981 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9982
dda83cd7
SM
9983 Hello : Wrapper_Array := (others => (Has_Length => True,
9984 Data => (others => 17),
9985 Length => 1));
284614f0
JB
9986
9987
9988 The debugging info would describe variable Hello as being an
9989 array of a PAD type. The size of that PAD type is not statically
9990 known, but can be determined using a parallel XVZ variable.
9991 In that case, a copy of the PAD type with the correct size should
9992 be used for the fixed array.
9993
21649b50
JB
9994 3. ``Fixing'' record type objects:
9995 ----------------------------------
9996
9997 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9998 record types. In this case, in order to compute the associated
9999 fixed type, we need to determine the size and offset of each of
10000 its components. This, in turn, requires us to compute the fixed
10001 type of each of these components.
10002
10003 Consider for instance the example:
10004
dda83cd7
SM
10005 type Bounded_String (Max_Size : Natural) is record
10006 Str : String (1 .. Max_Size);
10007 Length : Natural;
10008 end record;
10009 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
10010
10011 In that case, the position of field "Length" depends on the size
10012 of field Str, which itself depends on the value of the Max_Size
21649b50 10013 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10014 we need to fix the type of field Str. Therefore, fixing a variant
10015 record requires us to fix each of its components.
10016
10017 However, if a component does not have a dynamic size, the component
10018 should not be fixed. In particular, fields that use a PAD type
10019 should not fixed. Here is an example where this might happen
10020 (assuming type Rec above):
10021
10022 type Container (Big : Boolean) is record
dda83cd7
SM
10023 First : Rec;
10024 After : Integer;
10025 case Big is
10026 when True => Another : Integer;
10027 when False => null;
10028 end case;
284614f0
JB
10029 end record;
10030 My_Container : Container := (Big => False,
dda83cd7
SM
10031 First => (Empty => True),
10032 After => 42);
284614f0
JB
10033
10034 In that example, the compiler creates a PAD type for component First,
10035 whose size is constant, and then positions the component After just
10036 right after it. The offset of component After is therefore constant
10037 in this case.
10038
10039 The debugger computes the position of each field based on an algorithm
10040 that uses, among other things, the actual position and size of the field
21649b50
JB
10041 preceding it. Let's now imagine that the user is trying to print
10042 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10043 end up computing the offset of field After based on the size of the
10044 fixed version of field First. And since in our example First has
10045 only one actual field, the size of the fixed type is actually smaller
10046 than the amount of space allocated to that field, and thus we would
10047 compute the wrong offset of field After.
10048
21649b50
JB
10049 To make things more complicated, we need to watch out for dynamic
10050 components of variant records (identified by the ___XVL suffix in
10051 the component name). Even if the target type is a PAD type, the size
10052 of that type might not be statically known. So the PAD type needs
10053 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10054 we might end up with the wrong size for our component. This can be
10055 observed with the following type declarations:
284614f0 10056
dda83cd7
SM
10057 type Octal is new Integer range 0 .. 7;
10058 type Octal_Array is array (Positive range <>) of Octal;
10059 pragma Pack (Octal_Array);
284614f0 10060
dda83cd7
SM
10061 type Octal_Buffer (Size : Positive) is record
10062 Buffer : Octal_Array (1 .. Size);
10063 Length : Integer;
10064 end record;
284614f0
JB
10065
10066 In that case, Buffer is a PAD type whose size is unset and needs
10067 to be computed by fixing the unwrapped type.
10068
21649b50
JB
10069 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10070 ----------------------------------------------------------
10071
10072 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10073 thus far, be actually fixed?
10074
10075 The answer is: Only when referencing that element. For instance
10076 when selecting one component of a record, this specific component
10077 should be fixed at that point in time. Or when printing the value
10078 of a record, each component should be fixed before its value gets
10079 printed. Similarly for arrays, the element of the array should be
10080 fixed when printing each element of the array, or when extracting
10081 one element out of that array. On the other hand, fixing should
10082 not be performed on the elements when taking a slice of an array!
10083
31432a67 10084 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10085 size of each field is that we end up also miscomputing the size
10086 of the containing type. This can have adverse results when computing
10087 the value of an entity. GDB fetches the value of an entity based
10088 on the size of its type, and thus a wrong size causes GDB to fetch
10089 the wrong amount of memory. In the case where the computed size is
10090 too small, GDB fetches too little data to print the value of our
31432a67 10091 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10092 past the buffer containing the data =:-o. */
10093
62d4bd94
TT
10094/* A helper function for TERNOP_IN_RANGE. */
10095
10096static value *
10097eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10098 enum noside noside,
10099 value *arg1, value *arg2, value *arg3)
10100{
62d4bd94
TT
10101 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10102 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10103 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10104 return
10105 value_from_longest (type,
10106 (value_less (arg1, arg3)
10107 || value_equal (arg1, arg3))
10108 && (value_less (arg2, arg1)
10109 || value_equal (arg2, arg1)));
10110}
10111
82390ab8
TT
10112/* A helper function for UNOP_NEG. */
10113
7c15d377 10114value *
82390ab8
TT
10115ada_unop_neg (struct type *expect_type,
10116 struct expression *exp,
10117 enum noside noside, enum exp_opcode op,
10118 struct value *arg1)
10119{
82390ab8
TT
10120 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10121 return value_neg (arg1);
10122}
10123
7efc87ff
TT
10124/* A helper function for UNOP_IN_RANGE. */
10125
95d49dfb 10126value *
7efc87ff
TT
10127ada_unop_in_range (struct type *expect_type,
10128 struct expression *exp,
10129 enum noside noside, enum exp_opcode op,
10130 struct value *arg1, struct type *type)
10131{
7efc87ff
TT
10132 struct value *arg2, *arg3;
10133 switch (type->code ())
10134 {
10135 default:
10136 lim_warning (_("Membership test incompletely implemented; "
10137 "always returns true"));
10138 type = language_bool_type (exp->language_defn, exp->gdbarch);
10139 return value_from_longest (type, (LONGEST) 1);
10140
10141 case TYPE_CODE_RANGE:
10142 arg2 = value_from_longest (type,
10143 type->bounds ()->low.const_val ());
10144 arg3 = value_from_longest (type,
10145 type->bounds ()->high.const_val ());
10146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10148 type = language_bool_type (exp->language_defn, exp->gdbarch);
10149 return
10150 value_from_longest (type,
10151 (value_less (arg1, arg3)
10152 || value_equal (arg1, arg3))
10153 && (value_less (arg2, arg1)
10154 || value_equal (arg2, arg1)));
10155 }
10156}
10157
020dbabe
TT
10158/* A helper function for OP_ATR_TAG. */
10159
7c15d377 10160value *
020dbabe
TT
10161ada_atr_tag (struct type *expect_type,
10162 struct expression *exp,
10163 enum noside noside, enum exp_opcode op,
10164 struct value *arg1)
10165{
10166 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10167 return value_zero (ada_tag_type (arg1), not_lval);
10168
10169 return ada_value_tag (arg1);
10170}
10171
68c75735
TT
10172/* A helper function for OP_ATR_SIZE. */
10173
7c15d377 10174value *
68c75735
TT
10175ada_atr_size (struct type *expect_type,
10176 struct expression *exp,
10177 enum noside noside, enum exp_opcode op,
10178 struct value *arg1)
10179{
d0c97917 10180 struct type *type = arg1->type ();
68c75735
TT
10181
10182 /* If the argument is a reference, then dereference its type, since
10183 the user is really asking for the size of the actual object,
10184 not the size of the pointer. */
10185 if (type->code () == TYPE_CODE_REF)
27710edb 10186 type = type->target_type ();
68c75735 10187
0b2b0b82 10188 if (noside == EVAL_AVOID_SIDE_EFFECTS)
68c75735
TT
10189 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10190 else
10191 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
df86565b 10192 TARGET_CHAR_BIT * type->length ());
68c75735
TT
10193}
10194
d05e24e6
TT
10195/* A helper function for UNOP_ABS. */
10196
7c15d377 10197value *
d05e24e6
TT
10198ada_abs (struct type *expect_type,
10199 struct expression *exp,
10200 enum noside noside, enum exp_opcode op,
10201 struct value *arg1)
10202{
10203 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
d0c97917 10204 if (value_less (arg1, value_zero (arg1->type (), not_lval)))
d05e24e6
TT
10205 return value_neg (arg1);
10206 else
10207 return arg1;
10208}
10209
faa1dfd7
TT
10210/* A helper function for BINOP_MUL. */
10211
d9e7db06 10212value *
faa1dfd7
TT
10213ada_mult_binop (struct type *expect_type,
10214 struct expression *exp,
10215 enum noside noside, enum exp_opcode op,
10216 struct value *arg1, struct value *arg2)
10217{
10218 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10219 {
10220 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
d0c97917 10221 return value_zero (arg1->type (), not_lval);
faa1dfd7
TT
10222 }
10223 else
10224 {
10225 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10226 return ada_value_binop (arg1, arg2, op);
10227 }
10228}
10229
214b13ac
TT
10230/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10231
6e8fb7b7 10232value *
214b13ac
TT
10233ada_equal_binop (struct type *expect_type,
10234 struct expression *exp,
10235 enum noside noside, enum exp_opcode op,
10236 struct value *arg1, struct value *arg2)
10237{
10238 int tem;
10239 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10240 tem = 0;
10241 else
10242 {
10243 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10244 tem = ada_value_equal (arg1, arg2);
10245 }
10246 if (op == BINOP_NOTEQUAL)
10247 tem = !tem;
10248 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10249 return value_from_longest (type, (LONGEST) tem);
10250}
10251
5ce19db8
TT
10252/* A helper function for TERNOP_SLICE. */
10253
1b1ebfab 10254value *
5ce19db8
TT
10255ada_ternop_slice (struct expression *exp,
10256 enum noside noside,
10257 struct value *array, struct value *low_bound_val,
10258 struct value *high_bound_val)
10259{
10260 LONGEST low_bound;
10261 LONGEST high_bound;
10262
10263 low_bound_val = coerce_ref (low_bound_val);
10264 high_bound_val = coerce_ref (high_bound_val);
10265 low_bound = value_as_long (low_bound_val);
10266 high_bound = value_as_long (high_bound_val);
10267
10268 /* If this is a reference to an aligner type, then remove all
10269 the aligners. */
d0c97917
TT
10270 if (array->type ()->code () == TYPE_CODE_REF
10271 && ada_is_aligner_type (array->type ()->target_type ()))
10272 array->type ()->set_target_type
10273 (ada_aligned_type (array->type ()->target_type ()));
5ce19db8 10274
d0c97917 10275 if (ada_is_any_packed_array_type (array->type ()))
5ce19db8
TT
10276 error (_("cannot slice a packed array"));
10277
10278 /* If this is a reference to an array or an array lvalue,
10279 convert to a pointer. */
d0c97917
TT
10280 if (array->type ()->code () == TYPE_CODE_REF
10281 || (array->type ()->code () == TYPE_CODE_ARRAY
5ce19db8
TT
10282 && VALUE_LVAL (array) == lval_memory))
10283 array = value_addr (array);
10284
10285 if (noside == EVAL_AVOID_SIDE_EFFECTS
10286 && ada_is_array_descriptor_type (ada_check_typedef
d0c97917 10287 (array->type ())))
5ce19db8
TT
10288 return empty_array (ada_type_of_array (array, 0), low_bound,
10289 high_bound);
10290
10291 array = ada_coerce_to_simple_array_ptr (array);
10292
10293 /* If we have more than one level of pointer indirection,
10294 dereference the value until we get only one level. */
d0c97917
TT
10295 while (array->type ()->code () == TYPE_CODE_PTR
10296 && (array->type ()->target_type ()->code ()
5ce19db8
TT
10297 == TYPE_CODE_PTR))
10298 array = value_ind (array);
10299
10300 /* Make sure we really do have an array type before going further,
10301 to avoid a SEGV when trying to get the index type or the target
10302 type later down the road if the debug info generated by
10303 the compiler is incorrect or incomplete. */
d0c97917 10304 if (!ada_is_simple_array_type (array->type ()))
5ce19db8
TT
10305 error (_("cannot take slice of non-array"));
10306
d0c97917 10307 if (ada_check_typedef (array->type ())->code ()
5ce19db8
TT
10308 == TYPE_CODE_PTR)
10309 {
d0c97917 10310 struct type *type0 = ada_check_typedef (array->type ());
5ce19db8
TT
10311
10312 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
27710edb 10313 return empty_array (type0->target_type (), low_bound, high_bound);
5ce19db8
TT
10314 else
10315 {
10316 struct type *arr_type0 =
27710edb 10317 to_fixed_array_type (type0->target_type (), NULL, 1);
5ce19db8
TT
10318
10319 return ada_value_slice_from_ptr (array, arr_type0,
10320 longest_to_int (low_bound),
10321 longest_to_int (high_bound));
10322 }
10323 }
10324 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10325 return array;
10326 else if (high_bound < low_bound)
d0c97917 10327 return empty_array (array->type (), low_bound, high_bound);
5ce19db8
TT
10328 else
10329 return ada_value_slice (array, longest_to_int (low_bound),
10330 longest_to_int (high_bound));
10331}
10332
b467efaa
TT
10333/* A helper function for BINOP_IN_BOUNDS. */
10334
82c3886e 10335value *
b467efaa
TT
10336ada_binop_in_bounds (struct expression *exp, enum noside noside,
10337 struct value *arg1, struct value *arg2, int n)
10338{
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 {
10341 struct type *type = language_bool_type (exp->language_defn,
10342 exp->gdbarch);
10343 return value_zero (type, not_lval);
10344 }
10345
d0c97917 10346 struct type *type = ada_index_type (arg2->type (), n, "range");
b467efaa 10347 if (!type)
d0c97917 10348 type = arg1->type ();
b467efaa
TT
10349
10350 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10351 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10352
10353 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10354 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10355 type = language_bool_type (exp->language_defn, exp->gdbarch);
10356 return value_from_longest (type,
10357 (value_less (arg1, arg3)
10358 || value_equal (arg1, arg3))
10359 && (value_less (arg2, arg1)
10360 || value_equal (arg2, arg1)));
10361}
10362
b84564fc
TT
10363/* A helper function for some attribute operations. */
10364
10365static value *
10366ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10367 struct value *arg1, struct type *type_arg, int tem)
10368{
10369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10370 {
10371 if (type_arg == NULL)
d0c97917 10372 type_arg = arg1->type ();
b84564fc
TT
10373
10374 if (ada_is_constrained_packed_array_type (type_arg))
10375 type_arg = decode_constrained_packed_array_type (type_arg);
10376
10377 if (!discrete_type_p (type_arg))
10378 {
10379 switch (op)
10380 {
10381 default: /* Should never happen. */
10382 error (_("unexpected attribute encountered"));
10383 case OP_ATR_FIRST:
10384 case OP_ATR_LAST:
10385 type_arg = ada_index_type (type_arg, tem,
10386 ada_attribute_name (op));
10387 break;
10388 case OP_ATR_LENGTH:
10389 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10390 break;
10391 }
10392 }
10393
10394 return value_zero (type_arg, not_lval);
10395 }
10396 else if (type_arg == NULL)
10397 {
10398 arg1 = ada_coerce_ref (arg1);
10399
d0c97917 10400 if (ada_is_constrained_packed_array_type (arg1->type ()))
b84564fc
TT
10401 arg1 = ada_coerce_to_simple_array (arg1);
10402
10403 struct type *type;
10404 if (op == OP_ATR_LENGTH)
10405 type = builtin_type (exp->gdbarch)->builtin_int;
10406 else
10407 {
d0c97917 10408 type = ada_index_type (arg1->type (), tem,
b84564fc
TT
10409 ada_attribute_name (op));
10410 if (type == NULL)
10411 type = builtin_type (exp->gdbarch)->builtin_int;
10412 }
10413
10414 switch (op)
10415 {
10416 default: /* Should never happen. */
10417 error (_("unexpected attribute encountered"));
10418 case OP_ATR_FIRST:
10419 return value_from_longest
10420 (type, ada_array_bound (arg1, tem, 0));
10421 case OP_ATR_LAST:
10422 return value_from_longest
10423 (type, ada_array_bound (arg1, tem, 1));
10424 case OP_ATR_LENGTH:
10425 return value_from_longest
10426 (type, ada_array_length (arg1, tem));
10427 }
10428 }
10429 else if (discrete_type_p (type_arg))
10430 {
10431 struct type *range_type;
10432 const char *name = ada_type_name (type_arg);
10433
10434 range_type = NULL;
10435 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10436 range_type = to_fixed_range_type (type_arg, NULL);
10437 if (range_type == NULL)
10438 range_type = type_arg;
10439 switch (op)
10440 {
10441 default:
10442 error (_("unexpected attribute encountered"));
10443 case OP_ATR_FIRST:
10444 return value_from_longest
10445 (range_type, ada_discrete_type_low_bound (range_type));
10446 case OP_ATR_LAST:
10447 return value_from_longest
10448 (range_type, ada_discrete_type_high_bound (range_type));
10449 case OP_ATR_LENGTH:
10450 error (_("the 'length attribute applies only to array types"));
10451 }
10452 }
10453 else if (type_arg->code () == TYPE_CODE_FLT)
10454 error (_("unimplemented type attribute"));
10455 else
10456 {
10457 LONGEST low, high;
10458
10459 if (ada_is_constrained_packed_array_type (type_arg))
10460 type_arg = decode_constrained_packed_array_type (type_arg);
10461
10462 struct type *type;
10463 if (op == OP_ATR_LENGTH)
10464 type = builtin_type (exp->gdbarch)->builtin_int;
10465 else
10466 {
10467 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10468 if (type == NULL)
10469 type = builtin_type (exp->gdbarch)->builtin_int;
10470 }
10471
10472 switch (op)
10473 {
10474 default:
10475 error (_("unexpected attribute encountered"));
10476 case OP_ATR_FIRST:
10477 low = ada_array_bound_from_type (type_arg, tem, 0);
10478 return value_from_longest (type, low);
10479 case OP_ATR_LAST:
10480 high = ada_array_bound_from_type (type_arg, tem, 1);
10481 return value_from_longest (type, high);
10482 case OP_ATR_LENGTH:
10483 low = ada_array_bound_from_type (type_arg, tem, 0);
10484 high = ada_array_bound_from_type (type_arg, tem, 1);
10485 return value_from_longest (type, high - low + 1);
10486 }
10487 }
10488}
10489
38dc70cf
TT
10490/* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10491
6ad3b8bf 10492struct value *
38dc70cf
TT
10493ada_binop_minmax (struct type *expect_type,
10494 struct expression *exp,
10495 enum noside noside, enum exp_opcode op,
10496 struct value *arg1, struct value *arg2)
10497{
10498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
d0c97917 10499 return value_zero (arg1->type (), not_lval);
38dc70cf
TT
10500 else
10501 {
10502 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
0922dc84 10503 return value_binop (arg1, arg2, op);
38dc70cf
TT
10504 }
10505}
10506
dd5fd283
TT
10507/* A helper function for BINOP_EXP. */
10508
065ec826 10509struct value *
dd5fd283
TT
10510ada_binop_exp (struct type *expect_type,
10511 struct expression *exp,
10512 enum noside noside, enum exp_opcode op,
10513 struct value *arg1, struct value *arg2)
10514{
10515 if (noside == EVAL_AVOID_SIDE_EFFECTS)
d0c97917 10516 return value_zero (arg1->type (), not_lval);
dd5fd283
TT
10517 else
10518 {
10519 /* For integer exponentiation operations,
10520 only promote the first argument. */
d0c97917 10521 if (is_integral_type (arg2->type ()))
dd5fd283
TT
10522 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10523 else
10524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10525
10526 return value_binop (arg1, arg2, op);
10527 }
10528}
10529
03070ee9
TT
10530namespace expr
10531{
10532
8b12db26
TT
10533/* See ada-exp.h. */
10534
10535operation_up
10536ada_resolvable::replace (operation_up &&owner,
10537 struct expression *exp,
10538 bool deprocedure_p,
10539 bool parse_completion,
10540 innermost_block_tracker *tracker,
10541 struct type *context_type)
10542{
10543 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10544 return (make_operation<ada_funcall_operation>
10545 (std::move (owner),
10546 std::vector<operation_up> ()));
10547 return std::move (owner);
10548}
10549
c9f66f00 10550/* Convert the character literal whose value would be VAL to the
03adb248
TT
10551 appropriate value of type TYPE, if there is a translation.
10552 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10553 the literal 'A' (VAL == 65), returns 0. */
10554
10555static LONGEST
10556convert_char_literal (struct type *type, LONGEST val)
10557{
c9f66f00 10558 char name[12];
03adb248
TT
10559 int f;
10560
10561 if (type == NULL)
10562 return val;
10563 type = check_typedef (type);
10564 if (type->code () != TYPE_CODE_ENUM)
10565 return val;
10566
10567 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10568 xsnprintf (name, sizeof (name), "Q%c", (int) val);
c9f66f00
TT
10569 else if (val >= 0 && val < 256)
10570 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10571 else if (val >= 0 && val < 0x10000)
10572 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
03adb248 10573 else
c9f66f00 10574 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
03adb248
TT
10575 size_t len = strlen (name);
10576 for (f = 0; f < type->num_fields (); f += 1)
10577 {
10578 /* Check the suffix because an enum constant in a package will
10579 have a name like "pkg__QUxx". This is safe enough because we
10580 already have the correct type, and because mangling means
10581 there can't be clashes. */
33d16dd9 10582 const char *ename = type->field (f).name ();
03adb248
TT
10583 size_t elen = strlen (ename);
10584
10585 if (elen >= len && strcmp (name, ename + elen - len) == 0)
970db518 10586 return type->field (f).loc_enumval ();
03adb248
TT
10587 }
10588 return val;
10589}
10590
b1b9c411
TT
10591value *
10592ada_char_operation::evaluate (struct type *expect_type,
10593 struct expression *exp,
10594 enum noside noside)
10595{
10596 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10597 if (expect_type != nullptr)
10598 result = ada_value_cast (expect_type, result);
10599 return result;
10600}
10601
03adb248
TT
10602/* See ada-exp.h. */
10603
10604operation_up
10605ada_char_operation::replace (operation_up &&owner,
10606 struct expression *exp,
10607 bool deprocedure_p,
10608 bool parse_completion,
10609 innermost_block_tracker *tracker,
10610 struct type *context_type)
10611{
10612 operation_up result = std::move (owner);
10613
10614 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10615 {
10616 gdb_assert (result.get () == this);
10617 std::get<0> (m_storage) = context_type;
10618 std::get<1> (m_storage)
10619 = convert_char_literal (context_type, std::get<1> (m_storage));
10620 }
10621
b1b9c411 10622 return result;
03adb248
TT
10623}
10624
03070ee9
TT
10625value *
10626ada_wrapped_operation::evaluate (struct type *expect_type,
10627 struct expression *exp,
10628 enum noside noside)
10629{
10630 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10631 if (noside == EVAL_NORMAL)
10632 result = unwrap_value (result);
10633
10634 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10635 then we need to perform the conversion manually, because
10636 evaluate_subexp_standard doesn't do it. This conversion is
10637 necessary in Ada because the different kinds of float/fixed
10638 types in Ada have different representations.
10639
10640 Similarly, we need to perform the conversion from OP_LONG
10641 ourselves. */
10642 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10643 result = ada_value_cast (expect_type, result);
10644
10645 return result;
10646}
10647
42fecb61
TT
10648value *
10649ada_string_operation::evaluate (struct type *expect_type,
10650 struct expression *exp,
10651 enum noside noside)
10652{
fc18a21b
TT
10653 struct type *char_type;
10654 if (expect_type != nullptr && ada_is_string_type (expect_type))
10655 char_type = ada_array_element_type (expect_type, 1);
10656 else
10657 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10658
10659 const std::string &str = std::get<0> (m_storage);
10660 const char *encoding;
df86565b 10661 switch (char_type->length ())
fc18a21b
TT
10662 {
10663 case 1:
10664 {
10665 /* Simply copy over the data -- this isn't perhaps strictly
10666 correct according to the encodings, but it is gdb's
10667 historical behavior. */
10668 struct type *stringtype
10669 = lookup_array_range_type (char_type, 1, str.length ());
317c3ed9 10670 struct value *val = value::allocate (stringtype);
fc18a21b
TT
10671 memcpy (value_contents_raw (val).data (), str.c_str (),
10672 str.length ());
10673 return val;
10674 }
10675
10676 case 2:
10677 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10678 encoding = "UTF-16BE";
10679 else
10680 encoding = "UTF-16LE";
10681 break;
10682
10683 case 4:
10684 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10685 encoding = "UTF-32BE";
10686 else
10687 encoding = "UTF-32LE";
10688 break;
10689
10690 default:
10691 error (_("unexpected character type size %s"),
df86565b 10692 pulongest (char_type->length ()));
fc18a21b
TT
10693 }
10694
10695 auto_obstack converted;
10696 convert_between_encodings (host_charset (), encoding,
10697 (const gdb_byte *) str.c_str (),
10698 str.length (), 1,
10699 &converted, translit_none);
10700
10701 struct type *stringtype
10702 = lookup_array_range_type (char_type, 1,
10703 obstack_object_size (&converted)
df86565b 10704 / char_type->length ());
317c3ed9 10705 struct value *val = value::allocate (stringtype);
fc18a21b
TT
10706 memcpy (value_contents_raw (val).data (),
10707 obstack_base (&converted),
10708 obstack_object_size (&converted));
10709 return val;
42fecb61
TT
10710}
10711
b1b9c411
TT
10712value *
10713ada_concat_operation::evaluate (struct type *expect_type,
10714 struct expression *exp,
10715 enum noside noside)
10716{
10717 /* If one side is a literal, evaluate the other side first so that
10718 the expected type can be set properly. */
10719 const operation_up &lhs_expr = std::get<0> (m_storage);
10720 const operation_up &rhs_expr = std::get<1> (m_storage);
10721
10722 value *lhs, *rhs;
10723 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10724 {
10725 rhs = rhs_expr->evaluate (nullptr, exp, noside);
d0c97917 10726 lhs = lhs_expr->evaluate (rhs->type (), exp, noside);
b1b9c411
TT
10727 }
10728 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10729 {
10730 rhs = rhs_expr->evaluate (nullptr, exp, noside);
d0c97917 10731 struct type *rhs_type = check_typedef (rhs->type ());
b1b9c411
TT
10732 struct type *elt_type = nullptr;
10733 if (rhs_type->code () == TYPE_CODE_ARRAY)
27710edb 10734 elt_type = rhs_type->target_type ();
b1b9c411
TT
10735 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10736 }
10737 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10738 {
10739 lhs = lhs_expr->evaluate (nullptr, exp, noside);
d0c97917 10740 rhs = rhs_expr->evaluate (lhs->type (), exp, noside);
b1b9c411
TT
10741 }
10742 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10743 {
10744 lhs = lhs_expr->evaluate (nullptr, exp, noside);
d0c97917 10745 struct type *lhs_type = check_typedef (lhs->type ());
b1b9c411
TT
10746 struct type *elt_type = nullptr;
10747 if (lhs_type->code () == TYPE_CODE_ARRAY)
27710edb 10748 elt_type = lhs_type->target_type ();
b1b9c411
TT
10749 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10750 }
10751 else
10752 return concat_operation::evaluate (expect_type, exp, noside);
10753
10754 return value_concat (lhs, rhs);
10755}
10756
cc6bd32e
TT
10757value *
10758ada_qual_operation::evaluate (struct type *expect_type,
10759 struct expression *exp,
10760 enum noside noside)
10761{
10762 struct type *type = std::get<1> (m_storage);
10763 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10764}
10765
fc715eb2
TT
10766value *
10767ada_ternop_range_operation::evaluate (struct type *expect_type,
10768 struct expression *exp,
10769 enum noside noside)
10770{
10771 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10772 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10773 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10774 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10775}
10776
73796c73
TT
10777value *
10778ada_binop_addsub_operation::evaluate (struct type *expect_type,
10779 struct expression *exp,
10780 enum noside noside)
10781{
10782 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10783 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10784
10785 auto do_op = [=] (LONGEST x, LONGEST y)
10786 {
10787 if (std::get<0> (m_storage) == BINOP_ADD)
10788 return x + y;
10789 return x - y;
10790 };
10791
d0c97917 10792 if (arg1->type ()->code () == TYPE_CODE_PTR)
73796c73 10793 return (value_from_longest
d0c97917 10794 (arg1->type (),
73796c73 10795 do_op (value_as_long (arg1), value_as_long (arg2))));
d0c97917 10796 if (arg2->type ()->code () == TYPE_CODE_PTR)
73796c73 10797 return (value_from_longest
d0c97917 10798 (arg2->type (),
73796c73
TT
10799 do_op (value_as_long (arg1), value_as_long (arg2))));
10800 /* Preserve the original type for use by the range case below.
10801 We cannot cast the result to a reference type, so if ARG1 is
10802 a reference type, find its underlying type. */
d0c97917 10803 struct type *type = arg1->type ();
73796c73 10804 while (type->code () == TYPE_CODE_REF)
27710edb 10805 type = type->target_type ();
73796c73
TT
10806 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10807 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10808 /* We need to special-case the result with a range.
10809 This is done for the benefit of "ptype". gdb's Ada support
10810 historically used the LHS to set the result type here, so
10811 preserve this behavior. */
10812 if (type->code () == TYPE_CODE_RANGE)
10813 arg1 = value_cast (type, arg1);
10814 return arg1;
10815}
10816
60fa02ca
TT
10817value *
10818ada_unop_atr_operation::evaluate (struct type *expect_type,
10819 struct expression *exp,
10820 enum noside noside)
10821{
10822 struct type *type_arg = nullptr;
10823 value *val = nullptr;
10824
10825 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10826 {
10827 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10828 EVAL_AVOID_SIDE_EFFECTS);
d0c97917 10829 type_arg = tem->type ();
60fa02ca
TT
10830 }
10831 else
10832 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10833
10834 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10835 val, type_arg, std::get<2> (m_storage));
10836}
10837
3f4a0053
TT
10838value *
10839ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10840 struct expression *exp,
10841 enum noside noside)
10842{
10843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10844 return value_zero (expect_type, not_lval);
10845
9c79936b
TT
10846 const bound_minimal_symbol &b = std::get<0> (m_storage);
10847 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
3f4a0053
TT
10848
10849 val = ada_value_cast (expect_type, val);
10850
10851 /* Follow the Ada language semantics that do not allow taking
10852 an address of the result of a cast (view conversion in Ada). */
10853 if (VALUE_LVAL (val) == lval_memory)
10854 {
3ee3b270 10855 if (val->lazy ())
3f4a0053
TT
10856 value_fetch_lazy (val);
10857 VALUE_LVAL (val) = not_lval;
10858 }
10859 return val;
10860}
10861
99a3b1e7
TT
10862value *
10863ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10864 struct expression *exp,
10865 enum noside noside)
10866{
10867 value *val = evaluate_var_value (noside,
9e5e03df
TT
10868 std::get<0> (m_storage).block,
10869 std::get<0> (m_storage).symbol);
99a3b1e7
TT
10870
10871 val = ada_value_cast (expect_type, val);
10872
10873 /* Follow the Ada language semantics that do not allow taking
10874 an address of the result of a cast (view conversion in Ada). */
10875 if (VALUE_LVAL (val) == lval_memory)
10876 {
3ee3b270 10877 if (val->lazy ())
99a3b1e7
TT
10878 value_fetch_lazy (val);
10879 VALUE_LVAL (val) = not_lval;
10880 }
10881 return val;
10882}
10883
10884value *
10885ada_var_value_operation::evaluate (struct type *expect_type,
10886 struct expression *exp,
10887 enum noside noside)
10888{
9e5e03df 10889 symbol *sym = std::get<0> (m_storage).symbol;
99a3b1e7 10890
6c9c307c 10891 if (sym->domain () == UNDEF_DOMAIN)
99a3b1e7
TT
10892 /* Only encountered when an unresolved symbol occurs in a
10893 context other than a function call, in which case, it is
10894 invalid. */
10895 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10896 sym->print_name ());
10897
10898 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10899 {
5f9c5a63 10900 struct type *type = static_unwrap_type (sym->type ());
99a3b1e7
TT
10901 /* Check to see if this is a tagged type. We also need to handle
10902 the case where the type is a reference to a tagged type, but
10903 we have to be careful to exclude pointers to tagged types.
10904 The latter should be shown as usual (as a pointer), whereas
10905 a reference should mostly be transparent to the user. */
10906 if (ada_is_tagged_type (type, 0)
10907 || (type->code () == TYPE_CODE_REF
27710edb 10908 && ada_is_tagged_type (type->target_type (), 0)))
99a3b1e7
TT
10909 {
10910 /* Tagged types are a little special in the fact that the real
10911 type is dynamic and can only be determined by inspecting the
10912 object's tag. This means that we need to get the object's
10913 value first (EVAL_NORMAL) and then extract the actual object
10914 type from its tag.
10915
10916 Note that we cannot skip the final step where we extract
10917 the object type from its tag, because the EVAL_NORMAL phase
10918 results in dynamic components being resolved into fixed ones.
10919 This can cause problems when trying to print the type
10920 description of tagged types whose parent has a dynamic size:
10921 We use the type name of the "_parent" component in order
10922 to print the name of the ancestor type in the type description.
10923 If that component had a dynamic size, the resolution into
10924 a fixed type would result in the loss of that type name,
10925 thus preventing us from printing the name of the ancestor
10926 type in the type description. */
9863c3b5 10927 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
99a3b1e7
TT
10928
10929 if (type->code () != TYPE_CODE_REF)
10930 {
10931 struct type *actual_type;
10932
10933 actual_type = type_from_tag (ada_value_tag (arg1));
10934 if (actual_type == NULL)
10935 /* If, for some reason, we were unable to determine
10936 the actual type from the tag, then use the static
10937 approximation that we just computed as a fallback.
10938 This can happen if the debugging information is
10939 incomplete, for instance. */
10940 actual_type = type;
10941 return value_zero (actual_type, not_lval);
10942 }
10943 else
10944 {
10945 /* In the case of a ref, ada_coerce_ref takes care
10946 of determining the actual type. But the evaluation
10947 should return a ref as it should be valid to ask
10948 for its address; so rebuild a ref after coerce. */
10949 arg1 = ada_coerce_ref (arg1);
10950 return value_ref (arg1, TYPE_CODE_REF);
10951 }
10952 }
10953
10954 /* Records and unions for which GNAT encodings have been
10955 generated need to be statically fixed as well.
10956 Otherwise, non-static fixing produces a type where
10957 all dynamic properties are removed, which prevents "ptype"
10958 from being able to completely describe the type.
10959 For instance, a case statement in a variant record would be
10960 replaced by the relevant components based on the actual
10961 value of the discriminants. */
10962 if ((type->code () == TYPE_CODE_STRUCT
10963 && dynamic_template_type (type) != NULL)
10964 || (type->code () == TYPE_CODE_UNION
10965 && ada_find_parallel_type (type, "___XVU") != NULL))
10966 return value_zero (to_static_fixed_type (type), not_lval);
10967 }
10968
10969 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10970 return ada_to_fixed_value (arg1);
10971}
10972
d8a4ed8a
TT
10973bool
10974ada_var_value_operation::resolve (struct expression *exp,
10975 bool deprocedure_p,
10976 bool parse_completion,
10977 innermost_block_tracker *tracker,
10978 struct type *context_type)
10979{
9e5e03df 10980 symbol *sym = std::get<0> (m_storage).symbol;
6c9c307c 10981 if (sym->domain () == UNDEF_DOMAIN)
d8a4ed8a
TT
10982 {
10983 block_symbol resolved
9e5e03df 10984 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
d8a4ed8a
TT
10985 context_type, parse_completion,
10986 deprocedure_p, tracker);
9e5e03df 10987 std::get<0> (m_storage) = resolved;
d8a4ed8a
TT
10988 }
10989
10990 if (deprocedure_p
5f9c5a63 10991 && (std::get<0> (m_storage).symbol->type ()->code ()
9e5e03df 10992 == TYPE_CODE_FUNC))
d8a4ed8a
TT
10993 return true;
10994
10995 return false;
10996}
10997
9e99f48f
TT
10998value *
10999ada_atr_val_operation::evaluate (struct type *expect_type,
11000 struct expression *exp,
11001 enum noside noside)
11002{
11003 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
11004 return ada_val_atr (noside, std::get<0> (m_storage), arg);
11005}
11006
e8c33fa1
TT
11007value *
11008ada_unop_ind_operation::evaluate (struct type *expect_type,
11009 struct expression *exp,
11010 enum noside noside)
11011{
11012 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11013
d0c97917 11014 struct type *type = ada_check_typedef (arg1->type ());
e8c33fa1
TT
11015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11016 {
11017 if (ada_is_array_descriptor_type (type))
11018 /* GDB allows dereferencing GNAT array descriptors. */
11019 {
11020 struct type *arrType = ada_type_of_array (arg1, 0);
11021
11022 if (arrType == NULL)
11023 error (_("Attempt to dereference null array pointer."));
11024 return value_at_lazy (arrType, 0);
11025 }
11026 else if (type->code () == TYPE_CODE_PTR
11027 || type->code () == TYPE_CODE_REF
11028 /* In C you can dereference an array to get the 1st elt. */
11029 || type->code () == TYPE_CODE_ARRAY)
11030 {
11031 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11032 only be determined by inspecting the object's tag.
11033 This means that we need to evaluate completely the
11034 expression in order to get its type. */
11035
11036 if ((type->code () == TYPE_CODE_REF
11037 || type->code () == TYPE_CODE_PTR)
27710edb 11038 && ada_is_tagged_type (type->target_type (), 0))
e8c33fa1
TT
11039 {
11040 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11041 EVAL_NORMAL);
d0c97917 11042 type = ada_value_ind (arg1)->type ();
e8c33fa1
TT
11043 }
11044 else
11045 {
11046 type = to_static_fixed_type
11047 (ada_aligned_type
27710edb 11048 (ada_check_typedef (type->target_type ())));
e8c33fa1 11049 }
e8c33fa1
TT
11050 return value_zero (type, lval_memory);
11051 }
11052 else if (type->code () == TYPE_CODE_INT)
11053 {
11054 /* GDB allows dereferencing an int. */
11055 if (expect_type == NULL)
11056 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11057 lval_memory);
11058 else
11059 {
11060 expect_type =
11061 to_static_fixed_type (ada_aligned_type (expect_type));
11062 return value_zero (expect_type, lval_memory);
11063 }
11064 }
11065 else
11066 error (_("Attempt to take contents of a non-pointer value."));
11067 }
11068 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
d0c97917 11069 type = ada_check_typedef (arg1->type ());
e8c33fa1
TT
11070
11071 if (type->code () == TYPE_CODE_INT)
11072 /* GDB allows dereferencing an int. If we were given
11073 the expect_type, then use that as the target type.
11074 Otherwise, assume that the target type is an int. */
11075 {
11076 if (expect_type != NULL)
11077 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11078 arg1));
11079 else
11080 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11081 (CORE_ADDR) value_as_address (arg1));
11082 }
11083
11084 if (ada_is_array_descriptor_type (type))
11085 /* GDB allows dereferencing GNAT array descriptors. */
11086 return ada_coerce_to_simple_array (arg1);
11087 else
11088 return ada_value_ind (arg1);
11089}
11090
ebc06ad8
TT
11091value *
11092ada_structop_operation::evaluate (struct type *expect_type,
11093 struct expression *exp,
11094 enum noside noside)
11095{
11096 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11097 const char *str = std::get<1> (m_storage).c_str ();
11098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11099 {
11100 struct type *type;
d0c97917 11101 struct type *type1 = arg1->type ();
ebc06ad8
TT
11102
11103 if (ada_is_tagged_type (type1, 1))
11104 {
11105 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11106
11107 /* If the field is not found, check if it exists in the
11108 extension of this object's type. This means that we
11109 need to evaluate completely the expression. */
11110
11111 if (type == NULL)
11112 {
11113 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11114 EVAL_NORMAL);
11115 arg1 = ada_value_struct_elt (arg1, str, 0);
11116 arg1 = unwrap_value (arg1);
d0c97917 11117 type = ada_to_fixed_value (arg1)->type ();
ebc06ad8
TT
11118 }
11119 }
11120 else
11121 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11122
11123 return value_zero (ada_aligned_type (type), lval_memory);
11124 }
11125 else
11126 {
11127 arg1 = ada_value_struct_elt (arg1, str, 0);
11128 arg1 = unwrap_value (arg1);
11129 return ada_to_fixed_value (arg1);
11130 }
11131}
11132
efe3af2f
TT
11133value *
11134ada_funcall_operation::evaluate (struct type *expect_type,
11135 struct expression *exp,
11136 enum noside noside)
11137{
11138 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11139 int nargs = args_up.size ();
11140 std::vector<value *> argvec (nargs);
11141 operation_up &callee_op = std::get<0> (m_storage);
11142
11143 ada_var_value_operation *avv
11144 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11145 if (avv != nullptr
6c9c307c 11146 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
efe3af2f
TT
11147 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11148 avv->get_symbol ()->print_name ());
11149
11150 value *callee = callee_op->evaluate (nullptr, exp, noside);
11151 for (int i = 0; i < args_up.size (); ++i)
11152 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11153
11154 if (ada_is_constrained_packed_array_type
d0c97917 11155 (desc_base_type (callee->type ())))
efe3af2f 11156 callee = ada_coerce_to_simple_array (callee);
d0c97917
TT
11157 else if (callee->type ()->code () == TYPE_CODE_ARRAY
11158 && TYPE_FIELD_BITSIZE (callee->type (), 0) != 0)
efe3af2f
TT
11159 /* This is a packed array that has already been fixed, and
11160 therefore already coerced to a simple array. Nothing further
11161 to do. */
11162 ;
d0c97917 11163 else if (callee->type ()->code () == TYPE_CODE_REF)
efe3af2f
TT
11164 {
11165 /* Make sure we dereference references so that all the code below
11166 feels like it's really handling the referenced value. Wrapping
11167 types (for alignment) may be there, so make sure we strip them as
11168 well. */
11169 callee = ada_to_fixed_value (coerce_ref (callee));
11170 }
d0c97917 11171 else if (callee->type ()->code () == TYPE_CODE_ARRAY
efe3af2f
TT
11172 && VALUE_LVAL (callee) == lval_memory)
11173 callee = value_addr (callee);
11174
d0c97917 11175 struct type *type = ada_check_typedef (callee->type ());
efe3af2f
TT
11176
11177 /* Ada allows us to implicitly dereference arrays when subscripting
11178 them. So, if this is an array typedef (encoding use for array
11179 access types encoded as fat pointers), strip it now. */
11180 if (type->code () == TYPE_CODE_TYPEDEF)
11181 type = ada_typedef_target_type (type);
11182
11183 if (type->code () == TYPE_CODE_PTR)
11184 {
27710edb 11185 switch (ada_check_typedef (type->target_type ())->code ())
efe3af2f
TT
11186 {
11187 case TYPE_CODE_FUNC:
27710edb 11188 type = ada_check_typedef (type->target_type ());
efe3af2f
TT
11189 break;
11190 case TYPE_CODE_ARRAY:
11191 break;
11192 case TYPE_CODE_STRUCT:
11193 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11194 callee = ada_value_ind (callee);
27710edb 11195 type = ada_check_typedef (type->target_type ());
efe3af2f
TT
11196 break;
11197 default:
11198 error (_("cannot subscript or call something of type `%s'"),
d0c97917 11199 ada_type_name (callee->type ()));
efe3af2f
TT
11200 break;
11201 }
11202 }
11203
11204 switch (type->code ())
11205 {
11206 case TYPE_CODE_FUNC:
11207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11208 {
27710edb 11209 if (type->target_type () == NULL)
efe3af2f 11210 error_call_unknown_return_type (NULL);
317c3ed9 11211 return value::allocate (type->target_type ());
efe3af2f
TT
11212 }
11213 return call_function_by_hand (callee, NULL, argvec);
11214 case TYPE_CODE_INTERNAL_FUNCTION:
11215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11216 /* We don't know anything about what the internal
11217 function might return, but we have to return
11218 something. */
11219 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11220 not_lval);
11221 else
11222 return call_internal_function (exp->gdbarch, exp->language_defn,
11223 callee, nargs,
11224 argvec.data ());
11225
d3c54a1c
TT
11226 case TYPE_CODE_STRUCT:
11227 {
11228 int arity;
4c4b4cd2 11229
d3c54a1c
TT
11230 arity = ada_array_arity (type);
11231 type = ada_array_element_type (type, nargs);
11232 if (type == NULL)
11233 error (_("cannot subscript or call a record"));
11234 if (arity != nargs)
11235 error (_("wrong number of subscripts; expecting %d"), arity);
11236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11237 return value_zero (ada_aligned_type (type), lval_memory);
11238 return
11239 unwrap_value (ada_value_subscript
11240 (callee, nargs, argvec.data ()));
11241 }
11242 case TYPE_CODE_ARRAY:
14f9c5c9 11243 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11244 {
d3c54a1c
TT
11245 type = ada_array_element_type (type, nargs);
11246 if (type == NULL)
11247 error (_("element type of array unknown"));
dda83cd7 11248 else
d3c54a1c 11249 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 11250 }
d3c54a1c
TT
11251 return
11252 unwrap_value (ada_value_subscript
11253 (ada_coerce_to_simple_array (callee),
11254 nargs, argvec.data ()));
11255 case TYPE_CODE_PTR: /* Pointer to array */
11256 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11257 {
27710edb 11258 type = to_fixed_array_type (type->target_type (), NULL, 1);
d3c54a1c
TT
11259 type = ada_array_element_type (type, nargs);
11260 if (type == NULL)
11261 error (_("element type of array unknown"));
96967637 11262 else
d3c54a1c 11263 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 11264 }
d3c54a1c
TT
11265 return
11266 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11267 argvec.data ()));
6b0d7253 11268
d3c54a1c
TT
11269 default:
11270 error (_("Attempt to index or call something other than an "
11271 "array or function"));
11272 }
11273}
5b4ee69b 11274
d3c54a1c
TT
11275bool
11276ada_funcall_operation::resolve (struct expression *exp,
11277 bool deprocedure_p,
11278 bool parse_completion,
11279 innermost_block_tracker *tracker,
11280 struct type *context_type)
11281{
11282 operation_up &callee_op = std::get<0> (m_storage);
5ec18f2b 11283
d3c54a1c
TT
11284 ada_var_value_operation *avv
11285 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11286 if (avv == nullptr)
11287 return false;
5ec18f2b 11288
d3c54a1c 11289 symbol *sym = avv->get_symbol ();
6c9c307c 11290 if (sym->domain () != UNDEF_DOMAIN)
d3c54a1c 11291 return false;
dda83cd7 11292
d3c54a1c
TT
11293 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11294 int nargs = args_up.size ();
11295 std::vector<value *> argvec (nargs);
284614f0 11296
d3c54a1c
TT
11297 for (int i = 0; i < args_up.size (); ++i)
11298 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
52ce6436 11299
d3c54a1c
TT
11300 const block *block = avv->get_block ();
11301 block_symbol resolved
11302 = ada_resolve_funcall (sym, block,
11303 context_type, parse_completion,
11304 nargs, argvec.data (),
11305 tracker);
11306
11307 std::get<0> (m_storage)
9e5e03df 11308 = make_operation<ada_var_value_operation> (resolved);
d3c54a1c
TT
11309 return false;
11310}
11311
11312bool
11313ada_ternop_slice_operation::resolve (struct expression *exp,
11314 bool deprocedure_p,
11315 bool parse_completion,
11316 innermost_block_tracker *tracker,
11317 struct type *context_type)
11318{
11319 /* Historically this check was done during resolution, so we
11320 continue that here. */
11321 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11322 EVAL_AVOID_SIDE_EFFECTS);
d0c97917 11323 if (ada_is_any_packed_array_type (v->type ()))
d3c54a1c
TT
11324 error (_("cannot slice a packed array"));
11325 return false;
11326}
14f9c5c9 11327
14f9c5c9 11328}
d3c54a1c 11329
14f9c5c9 11330\f
d2e4a39e 11331
4c4b4cd2
PH
11332/* Return non-zero iff TYPE represents a System.Address type. */
11333
11334int
11335ada_is_system_address_type (struct type *type)
11336{
7d93a1e0 11337 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11338}
11339
14f9c5c9 11340\f
d2e4a39e 11341
dda83cd7 11342 /* Range types */
14f9c5c9
AS
11343
11344/* Scan STR beginning at position K for a discriminant name, and
11345 return the value of that discriminant field of DVAL in *PX. If
11346 PNEW_K is not null, put the position of the character beyond the
11347 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11348 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11349
11350static int
108d56a4 11351scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 11352 int *pnew_k)
14f9c5c9 11353{
5f9febe0 11354 static std::string storage;
5da1a4d3 11355 const char *pstart, *pend, *bound;
d2e4a39e 11356 struct value *bound_val;
14f9c5c9
AS
11357
11358 if (dval == NULL || str == NULL || str[k] == '\0')
11359 return 0;
11360
5da1a4d3
SM
11361 pstart = str + k;
11362 pend = strstr (pstart, "__");
14f9c5c9
AS
11363 if (pend == NULL)
11364 {
5da1a4d3 11365 bound = pstart;
14f9c5c9
AS
11366 k += strlen (bound);
11367 }
d2e4a39e 11368 else
14f9c5c9 11369 {
5da1a4d3
SM
11370 int len = pend - pstart;
11371
11372 /* Strip __ and beyond. */
5f9febe0
TT
11373 storage = std::string (pstart, len);
11374 bound = storage.c_str ();
d2e4a39e 11375 k = pend - str;
14f9c5c9 11376 }
d2e4a39e 11377
d0c97917 11378 bound_val = ada_search_struct_field (bound, dval, 0, dval->type ());
14f9c5c9
AS
11379 if (bound_val == NULL)
11380 return 0;
11381
11382 *px = value_as_long (bound_val);
11383 if (pnew_k != NULL)
11384 *pnew_k = k;
11385 return 1;
11386}
11387
25a1127b
TT
11388/* Value of variable named NAME. Only exact matches are considered.
11389 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11390 otherwise causes an error with message ERR_MSG. */
11391
d2e4a39e 11392static struct value *
edb0c9cb 11393get_var_value (const char *name, const char *err_msg)
14f9c5c9 11394{
25a1127b
TT
11395 std::string quoted_name = add_angle_brackets (name);
11396
11397 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 11398
d1183b06
TT
11399 std::vector<struct block_symbol> syms
11400 = ada_lookup_symbol_list_worker (lookup_name,
11401 get_selected_block (0),
11402 VAR_DOMAIN, 1);
14f9c5c9 11403
d1183b06 11404 if (syms.size () != 1)
14f9c5c9
AS
11405 {
11406 if (err_msg == NULL)
dda83cd7 11407 return 0;
14f9c5c9 11408 else
dda83cd7 11409 error (("%s"), err_msg);
14f9c5c9
AS
11410 }
11411
54d343a2 11412 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11413}
d2e4a39e 11414
edb0c9cb
PA
11415/* Value of integer variable named NAME in the current environment.
11416 If no such variable is found, returns false. Otherwise, sets VALUE
11417 to the variable's value and returns true. */
4c4b4cd2 11418
edb0c9cb
PA
11419bool
11420get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11421{
4c4b4cd2 11422 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11423
14f9c5c9 11424 if (var_val == 0)
edb0c9cb
PA
11425 return false;
11426
11427 value = value_as_long (var_val);
11428 return true;
14f9c5c9 11429}
d2e4a39e 11430
14f9c5c9
AS
11431
11432/* Return a range type whose base type is that of the range type named
11433 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11434 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11435 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11436 corresponding range type from debug information; fall back to using it
11437 if symbol lookup fails. If a new type must be created, allocate it
11438 like ORIG_TYPE was. The bounds information, in general, is encoded
11439 in NAME, the base type given in the named range type. */
14f9c5c9 11440
d2e4a39e 11441static struct type *
28c85d6c 11442to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11443{
0d5cff50 11444 const char *name;
14f9c5c9 11445 struct type *base_type;
108d56a4 11446 const char *subtype_info;
14f9c5c9 11447
28c85d6c 11448 gdb_assert (raw_type != NULL);
7d93a1e0 11449 gdb_assert (raw_type->name () != NULL);
dddfab26 11450
78134374 11451 if (raw_type->code () == TYPE_CODE_RANGE)
27710edb 11452 base_type = raw_type->target_type ();
14f9c5c9
AS
11453 else
11454 base_type = raw_type;
11455
7d93a1e0 11456 name = raw_type->name ();
14f9c5c9
AS
11457 subtype_info = strstr (name, "___XD");
11458 if (subtype_info == NULL)
690cc4eb 11459 {
43bbcdc2
PH
11460 LONGEST L = ada_discrete_type_low_bound (raw_type);
11461 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11462
690cc4eb
PH
11463 if (L < INT_MIN || U > INT_MAX)
11464 return raw_type;
11465 else
0c9c3474
SA
11466 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11467 L, U);
690cc4eb 11468 }
14f9c5c9
AS
11469 else
11470 {
14f9c5c9
AS
11471 int prefix_len = subtype_info - name;
11472 LONGEST L, U;
11473 struct type *type;
108d56a4 11474 const char *bounds_str;
14f9c5c9
AS
11475 int n;
11476
14f9c5c9
AS
11477 subtype_info += 5;
11478 bounds_str = strchr (subtype_info, '_');
11479 n = 1;
11480
d2e4a39e 11481 if (*subtype_info == 'L')
dda83cd7
SM
11482 {
11483 if (!ada_scan_number (bounds_str, n, &L, &n)
11484 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11485 return raw_type;
11486 if (bounds_str[n] == '_')
11487 n += 2;
11488 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11489 n += 1;
11490 subtype_info += 1;
11491 }
d2e4a39e 11492 else
dda83cd7 11493 {
5f9febe0
TT
11494 std::string name_buf = std::string (name, prefix_len) + "___L";
11495 if (!get_int_var_value (name_buf.c_str (), L))
dda83cd7
SM
11496 {
11497 lim_warning (_("Unknown lower bound, using 1."));
11498 L = 1;
11499 }
11500 }
14f9c5c9 11501
d2e4a39e 11502 if (*subtype_info == 'U')
dda83cd7
SM
11503 {
11504 if (!ada_scan_number (bounds_str, n, &U, &n)
11505 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11506 return raw_type;
11507 }
d2e4a39e 11508 else
dda83cd7 11509 {
5f9febe0
TT
11510 std::string name_buf = std::string (name, prefix_len) + "___U";
11511 if (!get_int_var_value (name_buf.c_str (), U))
dda83cd7
SM
11512 {
11513 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11514 U = L;
11515 }
11516 }
14f9c5c9 11517
0c9c3474
SA
11518 type = create_static_range_type (alloc_type_copy (raw_type),
11519 base_type, L, U);
f5a91472 11520 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11521 to match the size of the base_type, which is not what we want.
11522 Set it back to the original range type's length. */
df86565b 11523 type->set_length (raw_type->length ());
d0e39ea2 11524 type->set_name (name);
14f9c5c9
AS
11525 return type;
11526 }
11527}
11528
4c4b4cd2
PH
11529/* True iff NAME is the name of a range type. */
11530
14f9c5c9 11531int
d2e4a39e 11532ada_is_range_type_name (const char *name)
14f9c5c9
AS
11533{
11534 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11535}
14f9c5c9 11536\f
d2e4a39e 11537
dda83cd7 11538 /* Modular types */
4c4b4cd2
PH
11539
11540/* True iff TYPE is an Ada modular type. */
14f9c5c9 11541
14f9c5c9 11542int
d2e4a39e 11543ada_is_modular_type (struct type *type)
14f9c5c9 11544{
18af8284 11545 struct type *subranged_type = get_base_type (type);
14f9c5c9 11546
78134374 11547 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11548 && subranged_type->code () == TYPE_CODE_INT
11549 && subranged_type->is_unsigned ());
14f9c5c9
AS
11550}
11551
4c4b4cd2
PH
11552/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11553
61ee279c 11554ULONGEST
0056e4d5 11555ada_modulus (struct type *type)
14f9c5c9 11556{
5e500d33
SM
11557 const dynamic_prop &high = type->bounds ()->high;
11558
11559 if (high.kind () == PROP_CONST)
11560 return (ULONGEST) high.const_val () + 1;
11561
11562 /* If TYPE is unresolved, the high bound might be a location list. Return
11563 0, for lack of a better value to return. */
11564 return 0;
14f9c5c9 11565}
d2e4a39e 11566\f
f7f9143b
JB
11567
11568/* Ada exception catchpoint support:
11569 ---------------------------------
11570
11571 We support 3 kinds of exception catchpoints:
11572 . catchpoints on Ada exceptions
11573 . catchpoints on unhandled Ada exceptions
11574 . catchpoints on failed assertions
11575
11576 Exceptions raised during failed assertions, or unhandled exceptions
11577 could perfectly be caught with the general catchpoint on Ada exceptions.
11578 However, we can easily differentiate these two special cases, and having
11579 the option to distinguish these two cases from the rest can be useful
11580 to zero-in on certain situations.
11581
11582 Exception catchpoints are a specialized form of breakpoint,
11583 since they rely on inserting breakpoints inside known routines
11584 of the GNAT runtime. The implementation therefore uses a standard
11585 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11586 of breakpoint_ops.
11587
0259addd
JB
11588 Support in the runtime for exception catchpoints have been changed
11589 a few times already, and these changes affect the implementation
11590 of these catchpoints. In order to be able to support several
11591 variants of the runtime, we use a sniffer that will determine
28010a5d 11592 the runtime variant used by the program being debugged. */
f7f9143b 11593
82eacd52
JB
11594/* Ada's standard exceptions.
11595
11596 The Ada 83 standard also defined Numeric_Error. But there so many
11597 situations where it was unclear from the Ada 83 Reference Manual
11598 (RM) whether Constraint_Error or Numeric_Error should be raised,
11599 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11600 Interpretation saying that anytime the RM says that Numeric_Error
11601 should be raised, the implementation may raise Constraint_Error.
11602 Ada 95 went one step further and pretty much removed Numeric_Error
11603 from the list of standard exceptions (it made it a renaming of
11604 Constraint_Error, to help preserve compatibility when compiling
11605 an Ada83 compiler). As such, we do not include Numeric_Error from
11606 this list of standard exceptions. */
3d0b0fa3 11607
27087b7f 11608static const char * const standard_exc[] = {
3d0b0fa3
JB
11609 "constraint_error",
11610 "program_error",
11611 "storage_error",
11612 "tasking_error"
11613};
11614
0259addd
JB
11615typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11616
11617/* A structure that describes how to support exception catchpoints
11618 for a given executable. */
11619
11620struct exception_support_info
11621{
11622 /* The name of the symbol to break on in order to insert
11623 a catchpoint on exceptions. */
11624 const char *catch_exception_sym;
11625
11626 /* The name of the symbol to break on in order to insert
11627 a catchpoint on unhandled exceptions. */
11628 const char *catch_exception_unhandled_sym;
11629
11630 /* The name of the symbol to break on in order to insert
11631 a catchpoint on failed assertions. */
11632 const char *catch_assert_sym;
11633
9f757bf7
XR
11634 /* The name of the symbol to break on in order to insert
11635 a catchpoint on exception handling. */
11636 const char *catch_handlers_sym;
11637
0259addd
JB
11638 /* Assuming that the inferior just triggered an unhandled exception
11639 catchpoint, this function is responsible for returning the address
11640 in inferior memory where the name of that exception is stored.
11641 Return zero if the address could not be computed. */
11642 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11643};
11644
11645static CORE_ADDR ada_unhandled_exception_name_addr (void);
11646static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11647
11648/* The following exception support info structure describes how to
11649 implement exception catchpoints with the latest version of the
ca683e3a 11650 Ada runtime (as of 2019-08-??). */
0259addd
JB
11651
11652static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11653{
11654 "__gnat_debug_raise_exception", /* catch_exception_sym */
11655 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11656 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11657 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11658 ada_unhandled_exception_name_addr
11659};
11660
11661/* The following exception support info structure describes how to
11662 implement exception catchpoints with an earlier version of the
11663 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11664
11665static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11666{
11667 "__gnat_debug_raise_exception", /* catch_exception_sym */
11668 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11669 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11670 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11671 ada_unhandled_exception_name_addr
11672};
11673
11674/* The following exception support info structure describes how to
11675 implement exception catchpoints with a slightly older version
11676 of the Ada runtime. */
11677
11678static const struct exception_support_info exception_support_info_fallback =
11679{
11680 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11681 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11682 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11683 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11684 ada_unhandled_exception_name_addr_from_raise
11685};
11686
f17011e0
JB
11687/* Return nonzero if we can detect the exception support routines
11688 described in EINFO.
11689
11690 This function errors out if an abnormal situation is detected
11691 (for instance, if we find the exception support routines, but
11692 that support is found to be incomplete). */
11693
11694static int
11695ada_has_this_exception_support (const struct exception_support_info *einfo)
11696{
11697 struct symbol *sym;
11698
11699 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11700 that should be compiled with debugging information. As a result, we
11701 expect to find that symbol in the symtabs. */
11702
11703 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11704 if (sym == NULL)
a6af7abe
JB
11705 {
11706 /* Perhaps we did not find our symbol because the Ada runtime was
11707 compiled without debugging info, or simply stripped of it.
11708 It happens on some GNU/Linux distributions for instance, where
11709 users have to install a separate debug package in order to get
11710 the runtime's debugging info. In that situation, let the user
11711 know why we cannot insert an Ada exception catchpoint.
11712
11713 Note: Just for the purpose of inserting our Ada exception
11714 catchpoint, we could rely purely on the associated minimal symbol.
11715 But we would be operating in degraded mode anyway, since we are
11716 still lacking the debugging info needed later on to extract
11717 the name of the exception being raised (this name is printed in
11718 the catchpoint message, and is also used when trying to catch
11719 a specific exception). We do not handle this case for now. */
3b7344d5 11720 struct bound_minimal_symbol msym
1c8e84b0
JB
11721 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11722
60f62e2b 11723 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
a6af7abe
JB
11724 error (_("Your Ada runtime appears to be missing some debugging "
11725 "information.\nCannot insert Ada exception catchpoint "
11726 "in this configuration."));
11727
11728 return 0;
11729 }
f17011e0
JB
11730
11731 /* Make sure that the symbol we found corresponds to a function. */
11732
66d7f48f 11733 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11734 {
11735 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11736 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11737 return 0;
11738 }
11739
11740 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11741 if (sym == NULL)
11742 {
11743 struct bound_minimal_symbol msym
11744 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11745
60f62e2b 11746 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
ca683e3a
AO
11747 error (_("Your Ada runtime appears to be missing some debugging "
11748 "information.\nCannot insert Ada exception catchpoint "
11749 "in this configuration."));
11750
11751 return 0;
11752 }
11753
11754 /* Make sure that the symbol we found corresponds to a function. */
11755
66d7f48f 11756 if (sym->aclass () != LOC_BLOCK)
ca683e3a
AO
11757 {
11758 error (_("Symbol \"%s\" is not a function (class = %d)"),
66d7f48f 11759 sym->linkage_name (), sym->aclass ());
ca683e3a
AO
11760 return 0;
11761 }
f17011e0
JB
11762
11763 return 1;
11764}
11765
0259addd
JB
11766/* Inspect the Ada runtime and determine which exception info structure
11767 should be used to provide support for exception catchpoints.
11768
3eecfa55
JB
11769 This function will always set the per-inferior exception_info,
11770 or raise an error. */
0259addd
JB
11771
11772static void
11773ada_exception_support_info_sniffer (void)
11774{
3eecfa55 11775 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11776
11777 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11778 if (data->exception_info != NULL)
0259addd
JB
11779 return;
11780
11781 /* Check the latest (default) exception support info. */
f17011e0 11782 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11783 {
3eecfa55 11784 data->exception_info = &default_exception_support_info;
0259addd
JB
11785 return;
11786 }
11787
ca683e3a
AO
11788 /* Try the v0 exception suport info. */
11789 if (ada_has_this_exception_support (&exception_support_info_v0))
11790 {
11791 data->exception_info = &exception_support_info_v0;
11792 return;
11793 }
11794
0259addd 11795 /* Try our fallback exception suport info. */
f17011e0 11796 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11797 {
3eecfa55 11798 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11799 return;
11800 }
11801
11802 /* Sometimes, it is normal for us to not be able to find the routine
11803 we are looking for. This happens when the program is linked with
11804 the shared version of the GNAT runtime, and the program has not been
11805 started yet. Inform the user of these two possible causes if
11806 applicable. */
11807
ccefe4c4 11808 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11809 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11810
11811 /* If the symbol does not exist, then check that the program is
11812 already started, to make sure that shared libraries have been
11813 loaded. If it is not started, this may mean that the symbol is
11814 in a shared library. */
11815
e99b03dc 11816 if (inferior_ptid.pid () == 0)
0259addd
JB
11817 error (_("Unable to insert catchpoint. Try to start the program first."));
11818
11819 /* At this point, we know that we are debugging an Ada program and
11820 that the inferior has been started, but we still are not able to
0963b4bd 11821 find the run-time symbols. That can mean that we are in
0259addd
JB
11822 configurable run time mode, or that a-except as been optimized
11823 out by the linker... In any case, at this point it is not worth
11824 supporting this feature. */
11825
7dda8cff 11826 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11827}
11828
f7f9143b
JB
11829/* True iff FRAME is very likely to be that of a function that is
11830 part of the runtime system. This is all very heuristic, but is
11831 intended to be used as advice as to what frames are uninteresting
11832 to most users. */
11833
11834static int
bd2b40ac 11835is_known_support_routine (frame_info_ptr frame)
f7f9143b 11836{
692465f1 11837 enum language func_lang;
f7f9143b 11838 int i;
f35a17b5 11839 const char *fullname;
f7f9143b 11840
4ed6b5be
JB
11841 /* If this code does not have any debugging information (no symtab),
11842 This cannot be any user code. */
f7f9143b 11843
51abb421 11844 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11845 if (sal.symtab == NULL)
11846 return 1;
11847
4ed6b5be
JB
11848 /* If there is a symtab, but the associated source file cannot be
11849 located, then assume this is not user code: Selecting a frame
11850 for which we cannot display the code would not be very helpful
11851 for the user. This should also take care of case such as VxWorks
11852 where the kernel has some debugging info provided for a few units. */
f7f9143b 11853
f35a17b5
JK
11854 fullname = symtab_to_fullname (sal.symtab);
11855 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11856 return 1;
11857
85102364 11858 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11859 We also check the name of the objfile against the name of some
11860 known system libraries that sometimes come with debugging info
11861 too. */
11862
f7f9143b
JB
11863 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11864 {
11865 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11866 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11867 return 1;
3c86fae3
SM
11868 if (sal.symtab->compunit ()->objfile () != NULL
11869 && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
dda83cd7 11870 return 1;
f7f9143b
JB
11871 }
11872
4ed6b5be 11873 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11874
c6dc63a1
TT
11875 gdb::unique_xmalloc_ptr<char> func_name
11876 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11877 if (func_name == NULL)
11878 return 1;
11879
11880 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11881 {
11882 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11883 if (re_exec (func_name.get ()))
11884 return 1;
f7f9143b
JB
11885 }
11886
11887 return 0;
11888}
11889
11890/* Find the first frame that contains debugging information and that is not
11891 part of the Ada run-time, starting from FI and moving upward. */
11892
0ef643c8 11893void
bd2b40ac 11894ada_find_printable_frame (frame_info_ptr fi)
f7f9143b
JB
11895{
11896 for (; fi != NULL; fi = get_prev_frame (fi))
11897 {
11898 if (!is_known_support_routine (fi))
dda83cd7
SM
11899 {
11900 select_frame (fi);
11901 break;
11902 }
f7f9143b
JB
11903 }
11904
11905}
11906
11907/* Assuming that the inferior just triggered an unhandled exception
11908 catchpoint, return the address in inferior memory where the name
11909 of the exception is stored.
11910
11911 Return zero if the address could not be computed. */
11912
11913static CORE_ADDR
11914ada_unhandled_exception_name_addr (void)
0259addd
JB
11915{
11916 return parse_and_eval_address ("e.full_name");
11917}
11918
11919/* Same as ada_unhandled_exception_name_addr, except that this function
11920 should be used when the inferior uses an older version of the runtime,
11921 where the exception name needs to be extracted from a specific frame
11922 several frames up in the callstack. */
11923
11924static CORE_ADDR
11925ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11926{
11927 int frame_level;
bd2b40ac 11928 frame_info_ptr fi;
3eecfa55 11929 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11930
11931 /* To determine the name of this exception, we need to select
11932 the frame corresponding to RAISE_SYM_NAME. This frame is
11933 at least 3 levels up, so we simply skip the first 3 frames
11934 without checking the name of their associated function. */
11935 fi = get_current_frame ();
11936 for (frame_level = 0; frame_level < 3; frame_level += 1)
11937 if (fi != NULL)
11938 fi = get_prev_frame (fi);
11939
11940 while (fi != NULL)
11941 {
692465f1
JB
11942 enum language func_lang;
11943
c6dc63a1
TT
11944 gdb::unique_xmalloc_ptr<char> func_name
11945 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11946 if (func_name != NULL)
11947 {
dda83cd7 11948 if (strcmp (func_name.get (),
55b87a52
KS
11949 data->exception_info->catch_exception_sym) == 0)
11950 break; /* We found the frame we were looking for... */
55b87a52 11951 }
fb44b1a7 11952 fi = get_prev_frame (fi);
f7f9143b
JB
11953 }
11954
11955 if (fi == NULL)
11956 return 0;
11957
11958 select_frame (fi);
11959 return parse_and_eval_address ("id.full_name");
11960}
11961
11962/* Assuming the inferior just triggered an Ada exception catchpoint
11963 (of any type), return the address in inferior memory where the name
11964 of the exception is stored, if applicable.
11965
45db7c09
PA
11966 Assumes the selected frame is the current frame.
11967
f7f9143b
JB
11968 Return zero if the address could not be computed, or if not relevant. */
11969
11970static CORE_ADDR
7bd86313 11971ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex)
f7f9143b 11972{
3eecfa55
JB
11973 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11974
f7f9143b
JB
11975 switch (ex)
11976 {
761269c8 11977 case ada_catch_exception:
dda83cd7
SM
11978 return (parse_and_eval_address ("e.full_name"));
11979 break;
f7f9143b 11980
761269c8 11981 case ada_catch_exception_unhandled:
dda83cd7
SM
11982 return data->exception_info->unhandled_exception_name_addr ();
11983 break;
9f757bf7
XR
11984
11985 case ada_catch_handlers:
dda83cd7 11986 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11987 name. */
dda83cd7 11988 break;
9f757bf7 11989
761269c8 11990 case ada_catch_assert:
dda83cd7
SM
11991 return 0; /* Exception name is not relevant in this case. */
11992 break;
f7f9143b
JB
11993
11994 default:
f34652de 11995 internal_error (_("unexpected catchpoint type"));
dda83cd7 11996 break;
f7f9143b
JB
11997 }
11998
11999 return 0; /* Should never be reached. */
12000}
12001
e547c119
JB
12002/* Assuming the inferior is stopped at an exception catchpoint,
12003 return the message which was associated to the exception, if
12004 available. Return NULL if the message could not be retrieved.
12005
e547c119
JB
12006 Note: The exception message can be associated to an exception
12007 either through the use of the Raise_Exception function, or
12008 more simply (Ada 2005 and later), via:
12009
12010 raise Exception_Name with "exception message";
12011
12012 */
12013
6f46ac85 12014static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12015ada_exception_message_1 (void)
12016{
12017 struct value *e_msg_val;
e547c119 12018 int e_msg_len;
e547c119
JB
12019
12020 /* For runtimes that support this feature, the exception message
12021 is passed as an unbounded string argument called "message". */
12022 e_msg_val = parse_and_eval ("message");
12023 if (e_msg_val == NULL)
12024 return NULL; /* Exception message not supported. */
12025
12026 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12027 gdb_assert (e_msg_val != NULL);
d0c97917 12028 e_msg_len = e_msg_val->type ()->length ();
e547c119
JB
12029
12030 /* If the message string is empty, then treat it as if there was
12031 no exception message. */
12032 if (e_msg_len <= 0)
12033 return NULL;
12034
15f3b077 12035 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
9feb2d07 12036 read_memory (e_msg_val->address (), (gdb_byte *) e_msg.get (),
15f3b077
TT
12037 e_msg_len);
12038 e_msg.get ()[e_msg_len] = '\0';
12039
12040 return e_msg;
e547c119
JB
12041}
12042
12043/* Same as ada_exception_message_1, except that all exceptions are
12044 contained here (returning NULL instead). */
12045
6f46ac85 12046static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12047ada_exception_message (void)
12048{
6f46ac85 12049 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12050
a70b8144 12051 try
e547c119
JB
12052 {
12053 e_msg = ada_exception_message_1 ();
12054 }
230d2906 12055 catch (const gdb_exception_error &e)
e547c119 12056 {
6f46ac85 12057 e_msg.reset (nullptr);
e547c119 12058 }
e547c119
JB
12059
12060 return e_msg;
12061}
12062
f7f9143b
JB
12063/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12064 any error that ada_exception_name_addr_1 might cause to be thrown.
12065 When an error is intercepted, a warning with the error message is printed,
12066 and zero is returned. */
12067
12068static CORE_ADDR
7bd86313 12069ada_exception_name_addr (enum ada_exception_catchpoint_kind ex)
f7f9143b 12070{
f7f9143b
JB
12071 CORE_ADDR result = 0;
12072
a70b8144 12073 try
f7f9143b 12074 {
7bd86313 12075 result = ada_exception_name_addr_1 (ex);
f7f9143b
JB
12076 }
12077
230d2906 12078 catch (const gdb_exception_error &e)
f7f9143b 12079 {
3d6e9d23 12080 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12081 return 0;
12082 }
12083
12084 return result;
12085}
12086
cb7de75e 12087static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12088 (const char *excep_string,
12089 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12090
12091/* Ada catchpoints.
12092
12093 In the case of catchpoints on Ada exceptions, the catchpoint will
12094 stop the target on every exception the program throws. When a user
12095 specifies the name of a specific exception, we translate this
12096 request into a condition expression (in text form), and then parse
12097 it into an expression stored in each of the catchpoint's locations.
12098 We then use this condition to check whether the exception that was
12099 raised is the one the user is interested in. If not, then the
12100 target is resumed again. We store the name of the requested
12101 exception, in order to be able to re-set the condition expression
12102 when symbols change. */
12103
c1fc2657 12104/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12105
74421c0b 12106struct ada_catchpoint : public code_breakpoint
28010a5d 12107{
73063f51 12108 ada_catchpoint (struct gdbarch *gdbarch_,
bd21b6c9
PA
12109 enum ada_exception_catchpoint_kind kind,
12110 struct symtab_and_line sal,
12111 const char *addr_string_,
12112 bool tempflag,
12113 bool enabled,
12114 bool from_tty)
74421c0b 12115 : code_breakpoint (gdbarch_, bp_catchpoint),
73063f51 12116 m_kind (kind)
37f6a7f4 12117 {
bd21b6c9
PA
12118 add_location (sal);
12119
74421c0b 12120 /* Unlike most code_breakpoint types, Ada catchpoints are
bd21b6c9
PA
12121 pspace-specific. */
12122 gdb_assert (sal.pspace != nullptr);
12123 this->pspace = sal.pspace;
12124
12125 if (from_tty)
12126 {
12127 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12128 if (!loc_gdbarch)
12129 loc_gdbarch = gdbarch;
12130
12131 describe_other_breakpoints (loc_gdbarch,
12132 sal.pspace, sal.pc, sal.section, -1);
12133 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12134 version for exception catchpoints, because two catchpoints
12135 used for different exception names will use the same address.
12136 In this case, a "breakpoint ... also set at..." warning is
12137 unproductive. Besides, the warning phrasing is also a bit
12138 inappropriate, we should use the word catchpoint, and tell
12139 the user what type of catchpoint it is. The above is good
12140 enough for now, though. */
12141 }
12142
12143 enable_state = enabled ? bp_enabled : bp_disabled;
12144 disposition = tempflag ? disp_del : disp_donttouch;
264f9890
PA
12145 locspec = string_to_location_spec (&addr_string_,
12146 language_def (language_ada));
bd21b6c9 12147 language = language_ada;
37f6a7f4
TT
12148 }
12149
ae72050b
TT
12150 struct bp_location *allocate_location () override;
12151 void re_set () override;
12152 void check_status (struct bpstat *bs) override;
7bd86313 12153 enum print_stop_action print_it (const bpstat *bs) const override;
a67bcaba 12154 bool print_one (bp_location **) const override;
b713485d 12155 void print_mention () const override;
4d1ae558 12156 void print_recreate (struct ui_file *fp) const override;
ae72050b 12157
28010a5d 12158 /* The name of the specific exception the user specified. */
bc18fbb5 12159 std::string excep_string;
37f6a7f4
TT
12160
12161 /* What kind of catchpoint this is. */
12162 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12163};
12164
8cd0bf5e
PA
12165/* An instance of this type is used to represent an Ada catchpoint
12166 breakpoint location. */
12167
12168class ada_catchpoint_location : public bp_location
12169{
12170public:
12171 explicit ada_catchpoint_location (ada_catchpoint *owner)
12172 : bp_location (owner, bp_loc_software_breakpoint)
12173 {}
12174
12175 /* The condition that checks whether the exception that was raised
12176 is the specific exception the user specified on catchpoint
12177 creation. */
12178 expression_up excep_cond_expr;
12179};
12180
28010a5d
PA
12181/* Parse the exception condition string in the context of each of the
12182 catchpoint's locations, and store them for later evaluation. */
12183
12184static void
9f757bf7 12185create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 12186 enum ada_exception_catchpoint_kind ex)
28010a5d 12187{
28010a5d 12188 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12189 if (c->excep_string.empty ())
28010a5d
PA
12190 return;
12191
12192 /* Same if there are no locations... */
c1fc2657 12193 if (c->loc == NULL)
28010a5d
PA
12194 return;
12195
fccf9de1
TT
12196 /* Compute the condition expression in text form, from the specific
12197 expection we want to catch. */
12198 std::string cond_string
12199 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12200
fccf9de1
TT
12201 /* Iterate over all the catchpoint's locations, and parse an
12202 expression for each. */
40cb8ca5 12203 for (bp_location *bl : c->locations ())
28010a5d
PA
12204 {
12205 struct ada_catchpoint_location *ada_loc
fccf9de1 12206 = (struct ada_catchpoint_location *) bl;
4d01a485 12207 expression_up exp;
28010a5d 12208
fccf9de1 12209 if (!bl->shlib_disabled)
28010a5d 12210 {
bbc13ae3 12211 const char *s;
28010a5d 12212
cb7de75e 12213 s = cond_string.c_str ();
a70b8144 12214 try
28010a5d 12215 {
fccf9de1
TT
12216 exp = parse_exp_1 (&s, bl->address,
12217 block_for_pc (bl->address),
036e657b 12218 0);
28010a5d 12219 }
230d2906 12220 catch (const gdb_exception_error &e)
849f2b52
JB
12221 {
12222 warning (_("failed to reevaluate internal exception condition "
12223 "for catchpoint %d: %s"),
3d6e9d23 12224 c->number, e.what ());
849f2b52 12225 }
28010a5d
PA
12226 }
12227
b22e99fd 12228 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12229 }
28010a5d
PA
12230}
12231
ae72050b
TT
12232/* Implement the ALLOCATE_LOCATION method in the structure for all
12233 exception catchpoint kinds. */
28010a5d 12234
ae72050b
TT
12235struct bp_location *
12236ada_catchpoint::allocate_location ()
28010a5d 12237{
ae72050b 12238 return new ada_catchpoint_location (this);
28010a5d
PA
12239}
12240
ae72050b
TT
12241/* Implement the RE_SET method in the structure for all exception
12242 catchpoint kinds. */
28010a5d 12243
ae72050b
TT
12244void
12245ada_catchpoint::re_set ()
28010a5d 12246{
28010a5d
PA
12247 /* Call the base class's method. This updates the catchpoint's
12248 locations. */
74421c0b 12249 this->code_breakpoint::re_set ();
28010a5d
PA
12250
12251 /* Reparse the exception conditional expressions. One for each
12252 location. */
ae72050b 12253 create_excep_cond_exprs (this, m_kind);
28010a5d
PA
12254}
12255
12256/* Returns true if we should stop for this breakpoint hit. If the
12257 user specified a specific exception, we only want to cause a stop
12258 if the program thrown that exception. */
12259
7ebaa5f7 12260static bool
28010a5d
PA
12261should_stop_exception (const struct bp_location *bl)
12262{
12263 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12264 const struct ada_catchpoint_location *ada_loc
12265 = (const struct ada_catchpoint_location *) bl;
7ebaa5f7 12266 bool stop;
28010a5d 12267
37f6a7f4
TT
12268 struct internalvar *var = lookup_internalvar ("_ada_exception");
12269 if (c->m_kind == ada_catch_assert)
12270 clear_internalvar (var);
12271 else
12272 {
12273 try
12274 {
12275 const char *expr;
12276
12277 if (c->m_kind == ada_catch_handlers)
12278 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12279 ".all.occurrence.id");
12280 else
12281 expr = "e";
12282
12283 struct value *exc = parse_and_eval (expr);
12284 set_internalvar (var, exc);
12285 }
12286 catch (const gdb_exception_error &ex)
12287 {
12288 clear_internalvar (var);
12289 }
12290 }
12291
28010a5d 12292 /* With no specific exception, should always stop. */
bc18fbb5 12293 if (c->excep_string.empty ())
7ebaa5f7 12294 return true;
28010a5d
PA
12295
12296 if (ada_loc->excep_cond_expr == NULL)
12297 {
12298 /* We will have a NULL expression if back when we were creating
12299 the expressions, this location's had failed to parse. */
7ebaa5f7 12300 return true;
28010a5d
PA
12301 }
12302
7ebaa5f7 12303 stop = true;
a70b8144 12304 try
28010a5d 12305 {
65558ca5 12306 scoped_value_mark mark;
4d01a485 12307 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d 12308 }
230d2906 12309 catch (const gdb_exception &ex)
492d29ea
PA
12310 {
12311 exception_fprintf (gdb_stderr, ex,
12312 _("Error in testing exception condition:\n"));
12313 }
492d29ea 12314
28010a5d
PA
12315 return stop;
12316}
12317
ae72050b
TT
12318/* Implement the CHECK_STATUS method in the structure for all
12319 exception catchpoint kinds. */
28010a5d 12320
ae72050b
TT
12321void
12322ada_catchpoint::check_status (bpstat *bs)
28010a5d 12323{
b6433ede 12324 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
12325}
12326
ae72050b
TT
12327/* Implement the PRINT_IT method in the structure for all exception
12328 catchpoint kinds. */
f7f9143b 12329
ae72050b 12330enum print_stop_action
7bd86313 12331ada_catchpoint::print_it (const bpstat *bs) const
f7f9143b 12332{
79a45e25 12333 struct ui_out *uiout = current_uiout;
348d480f 12334
ae72050b 12335 annotate_catchpoint (number);
f7f9143b 12336
112e8700 12337 if (uiout->is_mi_like_p ())
f7f9143b 12338 {
112e8700 12339 uiout->field_string ("reason",
956a9fb9 12340 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
ae72050b 12341 uiout->field_string ("disp", bpdisp_text (disposition));
f7f9143b
JB
12342 }
12343
ae72050b 12344 uiout->text (disposition == disp_del
112e8700 12345 ? "\nTemporary catchpoint " : "\nCatchpoint ");
78805ff8 12346 print_num_locno (bs, uiout);
112e8700 12347 uiout->text (", ");
f7f9143b 12348
45db7c09
PA
12349 /* ada_exception_name_addr relies on the selected frame being the
12350 current frame. Need to do this here because this function may be
12351 called more than once when printing a stop, and below, we'll
12352 select the first frame past the Ada run-time (see
12353 ada_find_printable_frame). */
12354 select_frame (get_current_frame ());
12355
ae72050b 12356 switch (m_kind)
f7f9143b 12357 {
761269c8
JB
12358 case ada_catch_exception:
12359 case ada_catch_exception_unhandled:
9f757bf7 12360 case ada_catch_handlers:
956a9fb9 12361 {
7bd86313 12362 const CORE_ADDR addr = ada_exception_name_addr (m_kind);
956a9fb9
JB
12363 char exception_name[256];
12364
12365 if (addr != 0)
12366 {
c714b426
PA
12367 read_memory (addr, (gdb_byte *) exception_name,
12368 sizeof (exception_name) - 1);
956a9fb9
JB
12369 exception_name [sizeof (exception_name) - 1] = '\0';
12370 }
12371 else
12372 {
12373 /* For some reason, we were unable to read the exception
12374 name. This could happen if the Runtime was compiled
12375 without debugging info, for instance. In that case,
12376 just replace the exception name by the generic string
12377 "exception" - it will read as "an exception" in the
12378 notification we are about to print. */
967cff16 12379 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12380 }
12381 /* In the case of unhandled exception breakpoints, we print
12382 the exception name as "unhandled EXCEPTION_NAME", to make
12383 it clearer to the user which kind of catchpoint just got
12384 hit. We used ui_out_text to make sure that this extra
12385 info does not pollute the exception name in the MI case. */
ae72050b 12386 if (m_kind == ada_catch_exception_unhandled)
112e8700
SM
12387 uiout->text ("unhandled ");
12388 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12389 }
12390 break;
761269c8 12391 case ada_catch_assert:
956a9fb9
JB
12392 /* In this case, the name of the exception is not really
12393 important. Just print "failed assertion" to make it clearer
12394 that his program just hit an assertion-failure catchpoint.
12395 We used ui_out_text because this info does not belong in
12396 the MI output. */
112e8700 12397 uiout->text ("failed assertion");
956a9fb9 12398 break;
f7f9143b 12399 }
e547c119 12400
6f46ac85 12401 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12402 if (exception_message != NULL)
12403 {
e547c119 12404 uiout->text (" (");
6f46ac85 12405 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12406 uiout->text (")");
e547c119
JB
12407 }
12408
112e8700 12409 uiout->text (" at ");
956a9fb9 12410 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12411
12412 return PRINT_SRC_AND_LOC;
12413}
12414
ae72050b
TT
12415/* Implement the PRINT_ONE method in the structure for all exception
12416 catchpoint kinds. */
f7f9143b 12417
ae72050b 12418bool
a67bcaba 12419ada_catchpoint::print_one (bp_location **last_loc) const
f7f9143b 12420{
79a45e25 12421 struct ui_out *uiout = current_uiout;
79a45b7d
TT
12422 struct value_print_options opts;
12423
12424 get_user_print_options (&opts);
f06f1252 12425
79a45b7d 12426 if (opts.addressprint)
f06f1252 12427 uiout->field_skip ("addr");
f7f9143b
JB
12428
12429 annotate_field (5);
ae72050b 12430 switch (m_kind)
f7f9143b 12431 {
761269c8 12432 case ada_catch_exception:
ae72050b 12433 if (!excep_string.empty ())
dda83cd7 12434 {
bc18fbb5 12435 std::string msg = string_printf (_("`%s' Ada exception"),
ae72050b 12436 excep_string.c_str ());
28010a5d 12437
dda83cd7
SM
12438 uiout->field_string ("what", msg);
12439 }
12440 else
12441 uiout->field_string ("what", "all Ada exceptions");
12442
12443 break;
f7f9143b 12444
761269c8 12445 case ada_catch_exception_unhandled:
dda83cd7
SM
12446 uiout->field_string ("what", "unhandled Ada exceptions");
12447 break;
f7f9143b 12448
9f757bf7 12449 case ada_catch_handlers:
ae72050b 12450 if (!excep_string.empty ())
dda83cd7 12451 {
9f757bf7
XR
12452 uiout->field_fmt ("what",
12453 _("`%s' Ada exception handlers"),
ae72050b 12454 excep_string.c_str ());
dda83cd7
SM
12455 }
12456 else
9f757bf7 12457 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 12458 break;
9f757bf7 12459
761269c8 12460 case ada_catch_assert:
dda83cd7
SM
12461 uiout->field_string ("what", "failed Ada assertions");
12462 break;
f7f9143b
JB
12463
12464 default:
f34652de 12465 internal_error (_("unexpected catchpoint type"));
dda83cd7 12466 break;
f7f9143b 12467 }
c01e038b
TT
12468
12469 return true;
f7f9143b
JB
12470}
12471
12472/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12473 for all exception catchpoint kinds. */
12474
ae72050b 12475void
b713485d 12476ada_catchpoint::print_mention () const
f7f9143b 12477{
79a45e25 12478 struct ui_out *uiout = current_uiout;
28010a5d 12479
ae72050b 12480 uiout->text (disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 12481 : _("Catchpoint "));
ae72050b 12482 uiout->field_signed ("bkptno", number);
112e8700 12483 uiout->text (": ");
00eb2c4a 12484
ae72050b 12485 switch (m_kind)
f7f9143b 12486 {
761269c8 12487 case ada_catch_exception:
ae72050b 12488 if (!excep_string.empty ())
00eb2c4a 12489 {
862d101a 12490 std::string info = string_printf (_("`%s' Ada exception"),
ae72050b 12491 excep_string.c_str ());
4915bfdc 12492 uiout->text (info);
00eb2c4a 12493 }
dda83cd7
SM
12494 else
12495 uiout->text (_("all Ada exceptions"));
12496 break;
f7f9143b 12497
761269c8 12498 case ada_catch_exception_unhandled:
dda83cd7
SM
12499 uiout->text (_("unhandled Ada exceptions"));
12500 break;
9f757bf7
XR
12501
12502 case ada_catch_handlers:
ae72050b 12503 if (!excep_string.empty ())
9f757bf7
XR
12504 {
12505 std::string info
12506 = string_printf (_("`%s' Ada exception handlers"),
ae72050b 12507 excep_string.c_str ());
4915bfdc 12508 uiout->text (info);
9f757bf7 12509 }
dda83cd7
SM
12510 else
12511 uiout->text (_("all Ada exceptions handlers"));
12512 break;
9f757bf7 12513
761269c8 12514 case ada_catch_assert:
dda83cd7
SM
12515 uiout->text (_("failed Ada assertions"));
12516 break;
f7f9143b
JB
12517
12518 default:
f34652de 12519 internal_error (_("unexpected catchpoint type"));
dda83cd7 12520 break;
f7f9143b
JB
12521 }
12522}
12523
ae72050b
TT
12524/* Implement the PRINT_RECREATE method in the structure for all
12525 exception catchpoint kinds. */
6149aea9 12526
ae72050b 12527void
4d1ae558 12528ada_catchpoint::print_recreate (struct ui_file *fp) const
6149aea9 12529{
ae72050b 12530 switch (m_kind)
6149aea9 12531 {
761269c8 12532 case ada_catch_exception:
6cb06a8c 12533 gdb_printf (fp, "catch exception");
ae72050b
TT
12534 if (!excep_string.empty ())
12535 gdb_printf (fp, " %s", excep_string.c_str ());
6149aea9
PA
12536 break;
12537
761269c8 12538 case ada_catch_exception_unhandled:
6cb06a8c 12539 gdb_printf (fp, "catch exception unhandled");
6149aea9
PA
12540 break;
12541
9f757bf7 12542 case ada_catch_handlers:
6cb06a8c 12543 gdb_printf (fp, "catch handlers");
9f757bf7
XR
12544 break;
12545
761269c8 12546 case ada_catch_assert:
6cb06a8c 12547 gdb_printf (fp, "catch assert");
6149aea9
PA
12548 break;
12549
12550 default:
f34652de 12551 internal_error (_("unexpected catchpoint type"));
6149aea9 12552 }
04d0163c 12553 print_recreate_thread (fp);
6149aea9
PA
12554}
12555
f06f1252
TT
12556/* See ada-lang.h. */
12557
12558bool
12559is_ada_exception_catchpoint (breakpoint *bp)
12560{
ae72050b 12561 return dynamic_cast<ada_catchpoint *> (bp) != nullptr;
f06f1252
TT
12562}
12563
f7f9143b
JB
12564/* Split the arguments specified in a "catch exception" command.
12565 Set EX to the appropriate catchpoint type.
28010a5d 12566 Set EXCEP_STRING to the name of the specific exception if
5845583d 12567 specified by the user.
9f757bf7
XR
12568 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12569 "catch handlers" command. False otherwise.
5845583d
JB
12570 If a condition is found at the end of the arguments, the condition
12571 expression is stored in COND_STRING (memory must be deallocated
12572 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12573
12574static void
a121b7c1 12575catch_ada_exception_command_split (const char *args,
9f757bf7 12576 bool is_catch_handlers_cmd,
dda83cd7 12577 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12578 std::string *excep_string,
12579 std::string *cond_string)
f7f9143b 12580{
bc18fbb5 12581 std::string exception_name;
f7f9143b 12582
bc18fbb5
TT
12583 exception_name = extract_arg (&args);
12584 if (exception_name == "if")
5845583d
JB
12585 {
12586 /* This is not an exception name; this is the start of a condition
12587 expression for a catchpoint on all exceptions. So, "un-get"
12588 this token, and set exception_name to NULL. */
bc18fbb5 12589 exception_name.clear ();
5845583d
JB
12590 args -= 2;
12591 }
f7f9143b 12592
5845583d 12593 /* Check to see if we have a condition. */
f7f9143b 12594
f1735a53 12595 args = skip_spaces (args);
61012eef 12596 if (startswith (args, "if")
5845583d
JB
12597 && (isspace (args[2]) || args[2] == '\0'))
12598 {
12599 args += 2;
f1735a53 12600 args = skip_spaces (args);
5845583d
JB
12601
12602 if (args[0] == '\0')
dda83cd7 12603 error (_("Condition missing after `if' keyword"));
bc18fbb5 12604 *cond_string = args;
5845583d
JB
12605
12606 args += strlen (args);
12607 }
12608
12609 /* Check that we do not have any more arguments. Anything else
12610 is unexpected. */
f7f9143b
JB
12611
12612 if (args[0] != '\0')
12613 error (_("Junk at end of expression"));
12614
9f757bf7
XR
12615 if (is_catch_handlers_cmd)
12616 {
12617 /* Catch handling of exceptions. */
12618 *ex = ada_catch_handlers;
12619 *excep_string = exception_name;
12620 }
bc18fbb5 12621 else if (exception_name.empty ())
f7f9143b
JB
12622 {
12623 /* Catch all exceptions. */
761269c8 12624 *ex = ada_catch_exception;
bc18fbb5 12625 excep_string->clear ();
f7f9143b 12626 }
bc18fbb5 12627 else if (exception_name == "unhandled")
f7f9143b
JB
12628 {
12629 /* Catch unhandled exceptions. */
761269c8 12630 *ex = ada_catch_exception_unhandled;
bc18fbb5 12631 excep_string->clear ();
f7f9143b
JB
12632 }
12633 else
12634 {
12635 /* Catch a specific exception. */
761269c8 12636 *ex = ada_catch_exception;
28010a5d 12637 *excep_string = exception_name;
f7f9143b
JB
12638 }
12639}
12640
12641/* Return the name of the symbol on which we should break in order to
12642 implement a catchpoint of the EX kind. */
12643
12644static const char *
761269c8 12645ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12646{
3eecfa55
JB
12647 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12648
12649 gdb_assert (data->exception_info != NULL);
0259addd 12650
f7f9143b
JB
12651 switch (ex)
12652 {
761269c8 12653 case ada_catch_exception:
dda83cd7
SM
12654 return (data->exception_info->catch_exception_sym);
12655 break;
761269c8 12656 case ada_catch_exception_unhandled:
dda83cd7
SM
12657 return (data->exception_info->catch_exception_unhandled_sym);
12658 break;
761269c8 12659 case ada_catch_assert:
dda83cd7
SM
12660 return (data->exception_info->catch_assert_sym);
12661 break;
9f757bf7 12662 case ada_catch_handlers:
dda83cd7
SM
12663 return (data->exception_info->catch_handlers_sym);
12664 break;
f7f9143b 12665 default:
f34652de 12666 internal_error (_("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12667 }
12668}
12669
f7f9143b
JB
12670/* Return the condition that will be used to match the current exception
12671 being raised with the exception that the user wants to catch. This
12672 assumes that this condition is used when the inferior just triggered
12673 an exception catchpoint.
cb7de75e 12674 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12675
cb7de75e 12676static std::string
9f757bf7 12677ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12678 enum ada_exception_catchpoint_kind ex)
f7f9143b 12679{
fccf9de1 12680 bool is_standard_exc = false;
cb7de75e 12681 std::string result;
9f757bf7
XR
12682
12683 if (ex == ada_catch_handlers)
12684 {
12685 /* For exception handlers catchpoints, the condition string does
dda83cd7 12686 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12687 result = ("long_integer (GNAT_GCC_exception_Access"
12688 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12689 }
12690 else
fccf9de1 12691 result = "long_integer (e)";
3d0b0fa3 12692
0963b4bd 12693 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12694 runtime units that have been compiled without debugging info; if
28010a5d 12695 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12696 exception (e.g. "constraint_error") then, during the evaluation
12697 of the condition expression, the symbol lookup on this name would
0963b4bd 12698 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12699 may then be set only on user-defined exceptions which have the
12700 same not-fully-qualified name (e.g. my_package.constraint_error).
12701
12702 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12703 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12704 exception constraint_error" is rewritten into "catch exception
12705 standard.constraint_error".
12706
85102364 12707 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12708 the inferior program, then the only way to specify this exception as a
12709 breakpoint condition is to use its fully-qualified named:
fccf9de1 12710 e.g. my_package.constraint_error. */
3d0b0fa3 12711
696d6f4d 12712 for (const char *name : standard_exc)
3d0b0fa3 12713 {
696d6f4d 12714 if (strcmp (name, excep_string) == 0)
3d0b0fa3 12715 {
fccf9de1 12716 is_standard_exc = true;
9f757bf7 12717 break;
3d0b0fa3
JB
12718 }
12719 }
9f757bf7 12720
fccf9de1
TT
12721 result += " = ";
12722
12723 if (is_standard_exc)
12724 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12725 else
12726 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12727
9f757bf7 12728 return result;
f7f9143b
JB
12729}
12730
12731/* Return the symtab_and_line that should be used to insert an exception
12732 catchpoint of the TYPE kind.
12733
28010a5d
PA
12734 ADDR_STRING returns the name of the function where the real
12735 breakpoint that implements the catchpoints is set, depending on the
12736 type of catchpoint we need to create. */
f7f9143b
JB
12737
12738static struct symtab_and_line
bc18fbb5 12739ada_exception_sal (enum ada_exception_catchpoint_kind ex,
ae72050b 12740 std::string *addr_string)
f7f9143b
JB
12741{
12742 const char *sym_name;
12743 struct symbol *sym;
f7f9143b 12744
0259addd
JB
12745 /* First, find out which exception support info to use. */
12746 ada_exception_support_info_sniffer ();
12747
12748 /* Then lookup the function on which we will break in order to catch
f7f9143b 12749 the Ada exceptions requested by the user. */
f7f9143b
JB
12750 sym_name = ada_exception_sym_name (ex);
12751 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12752
57aff202
JB
12753 if (sym == NULL)
12754 error (_("Catchpoint symbol not found: %s"), sym_name);
12755
66d7f48f 12756 if (sym->aclass () != LOC_BLOCK)
57aff202 12757 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12758
12759 /* Set ADDR_STRING. */
cc12f4a8 12760 *addr_string = sym_name;
f7f9143b 12761
f17011e0 12762 return find_function_start_sal (sym, 1);
f7f9143b
JB
12763}
12764
b4a5b78b 12765/* Create an Ada exception catchpoint.
f7f9143b 12766
b4a5b78b 12767 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12768
bc18fbb5 12769 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12770 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12771 of the exception to which this catchpoint applies.
2df4d1d5 12772
bc18fbb5 12773 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12774
b4a5b78b
JB
12775 TEMPFLAG, if nonzero, means that the underlying breakpoint
12776 should be temporary.
28010a5d 12777
b4a5b78b 12778 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12779
349774ef 12780void
28010a5d 12781create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12782 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12783 const std::string &excep_string,
56ecd069 12784 const std::string &cond_string,
28010a5d 12785 int tempflag,
349774ef 12786 int disabled,
28010a5d
PA
12787 int from_tty)
12788{
cc12f4a8 12789 std::string addr_string;
ae72050b 12790 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string);
28010a5d 12791
bd21b6c9
PA
12792 std::unique_ptr<ada_catchpoint> c
12793 (new ada_catchpoint (gdbarch, ex_kind, sal, addr_string.c_str (),
12794 tempflag, disabled, from_tty));
28010a5d 12795 c->excep_string = excep_string;
9f757bf7 12796 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12797 if (!cond_string.empty ())
733d554a 12798 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12799 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12800}
12801
9ac4176b
PA
12802/* Implement the "catch exception" command. */
12803
12804static void
eb4c3f4a 12805catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12806 struct cmd_list_element *command)
12807{
a121b7c1 12808 const char *arg = arg_entry;
9ac4176b
PA
12809 struct gdbarch *gdbarch = get_current_arch ();
12810 int tempflag;
761269c8 12811 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12812 std::string excep_string;
56ecd069 12813 std::string cond_string;
9ac4176b 12814
0f8e2034 12815 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12816
12817 if (!arg)
12818 arg = "";
9f757bf7 12819 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12820 &cond_string);
9f757bf7
XR
12821 create_ada_exception_catchpoint (gdbarch, ex_kind,
12822 excep_string, cond_string,
12823 tempflag, 1 /* enabled */,
12824 from_tty);
12825}
12826
12827/* Implement the "catch handlers" command. */
12828
12829static void
12830catch_ada_handlers_command (const char *arg_entry, int from_tty,
12831 struct cmd_list_element *command)
12832{
12833 const char *arg = arg_entry;
12834 struct gdbarch *gdbarch = get_current_arch ();
12835 int tempflag;
12836 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12837 std::string excep_string;
56ecd069 12838 std::string cond_string;
9f757bf7 12839
0f8e2034 12840 tempflag = command->context () == CATCH_TEMPORARY;
9f757bf7
XR
12841
12842 if (!arg)
12843 arg = "";
12844 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12845 &cond_string);
b4a5b78b
JB
12846 create_ada_exception_catchpoint (gdbarch, ex_kind,
12847 excep_string, cond_string,
349774ef
JB
12848 tempflag, 1 /* enabled */,
12849 from_tty);
9ac4176b
PA
12850}
12851
71bed2db
TT
12852/* Completion function for the Ada "catch" commands. */
12853
12854static void
12855catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12856 const char *text, const char *word)
12857{
12858 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12859
12860 for (const ada_exc_info &info : exceptions)
12861 {
12862 if (startswith (info.name, word))
b02f78f9 12863 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12864 }
12865}
12866
b4a5b78b 12867/* Split the arguments specified in a "catch assert" command.
5845583d 12868
b4a5b78b
JB
12869 ARGS contains the command's arguments (or the empty string if
12870 no arguments were passed).
5845583d
JB
12871
12872 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12873 (the memory needs to be deallocated after use). */
5845583d 12874
b4a5b78b 12875static void
56ecd069 12876catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12877{
f1735a53 12878 args = skip_spaces (args);
f7f9143b 12879
5845583d 12880 /* Check whether a condition was provided. */
61012eef 12881 if (startswith (args, "if")
5845583d 12882 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12883 {
5845583d 12884 args += 2;
f1735a53 12885 args = skip_spaces (args);
5845583d 12886 if (args[0] == '\0')
dda83cd7 12887 error (_("condition missing after `if' keyword"));
56ecd069 12888 cond_string.assign (args);
f7f9143b
JB
12889 }
12890
5845583d
JB
12891 /* Otherwise, there should be no other argument at the end of
12892 the command. */
12893 else if (args[0] != '\0')
12894 error (_("Junk at end of arguments."));
f7f9143b
JB
12895}
12896
9ac4176b
PA
12897/* Implement the "catch assert" command. */
12898
12899static void
eb4c3f4a 12900catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12901 struct cmd_list_element *command)
12902{
a121b7c1 12903 const char *arg = arg_entry;
9ac4176b
PA
12904 struct gdbarch *gdbarch = get_current_arch ();
12905 int tempflag;
56ecd069 12906 std::string cond_string;
9ac4176b 12907
0f8e2034 12908 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12909
12910 if (!arg)
12911 arg = "";
56ecd069 12912 catch_ada_assert_command_split (arg, cond_string);
761269c8 12913 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12914 "", cond_string,
349774ef
JB
12915 tempflag, 1 /* enabled */,
12916 from_tty);
9ac4176b 12917}
778865d3
JB
12918
12919/* Return non-zero if the symbol SYM is an Ada exception object. */
12920
12921static int
12922ada_is_exception_sym (struct symbol *sym)
12923{
5f9c5a63 12924 const char *type_name = sym->type ()->name ();
778865d3 12925
66d7f48f
SM
12926 return (sym->aclass () != LOC_TYPEDEF
12927 && sym->aclass () != LOC_BLOCK
12928 && sym->aclass () != LOC_CONST
12929 && sym->aclass () != LOC_UNRESOLVED
dda83cd7 12930 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12931}
12932
12933/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12934 Ada exception object. This matches all exceptions except the ones
12935 defined by the Ada language. */
12936
12937static int
12938ada_is_non_standard_exception_sym (struct symbol *sym)
12939{
778865d3
JB
12940 if (!ada_is_exception_sym (sym))
12941 return 0;
12942
696d6f4d
TT
12943 for (const char *name : standard_exc)
12944 if (strcmp (sym->linkage_name (), name) == 0)
778865d3
JB
12945 return 0; /* A standard exception. */
12946
12947 /* Numeric_Error is also a standard exception, so exclude it.
12948 See the STANDARD_EXC description for more details as to why
12949 this exception is not listed in that array. */
987012b8 12950 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12951 return 0;
12952
12953 return 1;
12954}
12955
ab816a27 12956/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12957 objects.
12958
12959 The comparison is determined first by exception name, and then
12960 by exception address. */
12961
ab816a27 12962bool
cc536b21 12963ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12964{
778865d3
JB
12965 int result;
12966
ab816a27
TT
12967 result = strcmp (name, other.name);
12968 if (result < 0)
12969 return true;
12970 if (result == 0 && addr < other.addr)
12971 return true;
12972 return false;
12973}
778865d3 12974
ab816a27 12975bool
cc536b21 12976ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12977{
12978 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12979}
12980
12981/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12982 routine, but keeping the first SKIP elements untouched.
12983
12984 All duplicates are also removed. */
12985
12986static void
ab816a27 12987sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12988 int skip)
12989{
ab816a27
TT
12990 std::sort (exceptions->begin () + skip, exceptions->end ());
12991 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12992 exceptions->end ());
778865d3
JB
12993}
12994
778865d3
JB
12995/* Add all exceptions defined by the Ada standard whose name match
12996 a regular expression.
12997
12998 If PREG is not NULL, then this regexp_t object is used to
12999 perform the symbol name matching. Otherwise, no name-based
13000 filtering is performed.
13001
13002 EXCEPTIONS is a vector of exceptions to which matching exceptions
13003 gets pushed. */
13004
13005static void
2d7cc5c7 13006ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13007 std::vector<ada_exc_info> *exceptions)
778865d3 13008{
696d6f4d 13009 for (const char *name : standard_exc)
778865d3 13010 {
696d6f4d 13011 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
778865d3 13012 {
4326580d
MM
13013 symbol_name_match_type match_type = name_match_type_from_name (name);
13014 lookup_name_info lookup_name (name, match_type);
778865d3 13015
4326580d
MM
13016 symbol_name_matcher_ftype *match_name
13017 = ada_get_symbol_name_matcher (lookup_name);
778865d3 13018
4326580d
MM
13019 /* Iterate over all objfiles irrespective of scope or linker
13020 namespaces so we get all exceptions anywhere in the
13021 progspace. */
13022 for (objfile *objfile : current_program_space->objfiles ())
13023 {
13024 for (minimal_symbol *msymbol : objfile->msymbols ())
13025 {
13026 if (match_name (msymbol->linkage_name (), lookup_name,
13027 nullptr)
13028 && msymbol->type () != mst_solib_trampoline)
13029 {
13030 ada_exc_info info
13031 = {name, msymbol->value_address (objfile)};
13032
13033 exceptions->push_back (info);
13034 }
13035 }
778865d3
JB
13036 }
13037 }
13038 }
13039}
13040
13041/* Add all Ada exceptions defined locally and accessible from the given
13042 FRAME.
13043
13044 If PREG is not NULL, then this regexp_t object is used to
13045 perform the symbol name matching. Otherwise, no name-based
13046 filtering is performed.
13047
13048 EXCEPTIONS is a vector of exceptions to which matching exceptions
13049 gets pushed. */
13050
13051static void
2d7cc5c7 13052ada_add_exceptions_from_frame (compiled_regex *preg,
bd2b40ac 13053 frame_info_ptr frame,
ab816a27 13054 std::vector<ada_exc_info> *exceptions)
778865d3 13055{
3977b71f 13056 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13057
13058 while (block != 0)
13059 {
13060 struct block_iterator iter;
13061 struct symbol *sym;
13062
13063 ALL_BLOCK_SYMBOLS (block, iter, sym)
13064 {
66d7f48f 13065 switch (sym->aclass ())
778865d3
JB
13066 {
13067 case LOC_TYPEDEF:
13068 case LOC_BLOCK:
13069 case LOC_CONST:
13070 break;
13071 default:
13072 if (ada_is_exception_sym (sym))
13073 {
987012b8 13074 struct ada_exc_info info = {sym->print_name (),
4aeddc50 13075 sym->value_address ()};
778865d3 13076
ab816a27 13077 exceptions->push_back (info);
778865d3
JB
13078 }
13079 }
13080 }
6c00f721 13081 if (block->function () != NULL)
778865d3 13082 break;
f135fe72 13083 block = block->superblock ();
778865d3
JB
13084 }
13085}
13086
14bc53a8
PA
13087/* Return true if NAME matches PREG or if PREG is NULL. */
13088
13089static bool
2d7cc5c7 13090name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13091{
13092 return (preg == NULL
f945dedf 13093 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13094}
13095
778865d3
JB
13096/* Add all exceptions defined globally whose name name match
13097 a regular expression, excluding standard exceptions.
13098
13099 The reason we exclude standard exceptions is that they need
13100 to be handled separately: Standard exceptions are defined inside
13101 a runtime unit which is normally not compiled with debugging info,
13102 and thus usually do not show up in our symbol search. However,
13103 if the unit was in fact built with debugging info, we need to
13104 exclude them because they would duplicate the entry we found
13105 during the special loop that specifically searches for those
13106 standard exceptions.
13107
13108 If PREG is not NULL, then this regexp_t object is used to
13109 perform the symbol name matching. Otherwise, no name-based
13110 filtering is performed.
13111
13112 EXCEPTIONS is a vector of exceptions to which matching exceptions
13113 gets pushed. */
13114
13115static void
2d7cc5c7 13116ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13117 std::vector<ada_exc_info> *exceptions)
778865d3 13118{
14bc53a8
PA
13119 /* In Ada, the symbol "search name" is a linkage name, whereas the
13120 regular expression used to do the matching refers to the natural
13121 name. So match against the decoded name. */
13122 expand_symtabs_matching (NULL,
b5ec771e 13123 lookup_name_info::match_any (),
14bc53a8
PA
13124 [&] (const char *search_name)
13125 {
f945dedf
CB
13126 std::string decoded = ada_decode (search_name);
13127 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13128 },
13129 NULL,
03a8ea51 13130 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
14bc53a8 13131 VARIABLES_DOMAIN);
778865d3 13132
4326580d
MM
13133 /* Iterate over all objfiles irrespective of scope or linker namespaces
13134 so we get all exceptions anywhere in the progspace. */
2030c079 13135 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13136 {
b669c953 13137 for (compunit_symtab *s : objfile->compunits ())
778865d3 13138 {
af39c5c8 13139 const struct blockvector *bv = s->blockvector ();
d8aeb77f 13140 int i;
778865d3 13141
d8aeb77f
TT
13142 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13143 {
63d609de 13144 const struct block *b = bv->block (i);
d8aeb77f
TT
13145 struct block_iterator iter;
13146 struct symbol *sym;
778865d3 13147
d8aeb77f
TT
13148 ALL_BLOCK_SYMBOLS (b, iter, sym)
13149 if (ada_is_non_standard_exception_sym (sym)
987012b8 13150 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13151 {
13152 struct ada_exc_info info
4aeddc50 13153 = {sym->print_name (), sym->value_address ()};
d8aeb77f
TT
13154
13155 exceptions->push_back (info);
13156 }
13157 }
778865d3
JB
13158 }
13159 }
13160}
13161
13162/* Implements ada_exceptions_list with the regular expression passed
13163 as a regex_t, rather than a string.
13164
13165 If not NULL, PREG is used to filter out exceptions whose names
13166 do not match. Otherwise, all exceptions are listed. */
13167
ab816a27 13168static std::vector<ada_exc_info>
2d7cc5c7 13169ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13170{
ab816a27 13171 std::vector<ada_exc_info> result;
778865d3
JB
13172 int prev_len;
13173
13174 /* First, list the known standard exceptions. These exceptions
13175 need to be handled separately, as they are usually defined in
13176 runtime units that have been compiled without debugging info. */
13177
13178 ada_add_standard_exceptions (preg, &result);
13179
13180 /* Next, find all exceptions whose scope is local and accessible
13181 from the currently selected frame. */
13182
13183 if (has_stack_frames ())
13184 {
ab816a27 13185 prev_len = result.size ();
778865d3
JB
13186 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13187 &result);
ab816a27 13188 if (result.size () > prev_len)
778865d3
JB
13189 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13190 }
13191
13192 /* Add all exceptions whose scope is global. */
13193
ab816a27 13194 prev_len = result.size ();
778865d3 13195 ada_add_global_exceptions (preg, &result);
ab816a27 13196 if (result.size () > prev_len)
778865d3
JB
13197 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13198
778865d3
JB
13199 return result;
13200}
13201
13202/* Return a vector of ada_exc_info.
13203
13204 If REGEXP is NULL, all exceptions are included in the result.
13205 Otherwise, it should contain a valid regular expression,
13206 and only the exceptions whose names match that regular expression
13207 are included in the result.
13208
13209 The exceptions are sorted in the following order:
13210 - Standard exceptions (defined by the Ada language), in
13211 alphabetical order;
13212 - Exceptions only visible from the current frame, in
13213 alphabetical order;
13214 - Exceptions whose scope is global, in alphabetical order. */
13215
ab816a27 13216std::vector<ada_exc_info>
778865d3
JB
13217ada_exceptions_list (const char *regexp)
13218{
2d7cc5c7
PA
13219 if (regexp == NULL)
13220 return ada_exceptions_list_1 (NULL);
778865d3 13221
2d7cc5c7
PA
13222 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13223 return ada_exceptions_list_1 (&reg);
778865d3
JB
13224}
13225
13226/* Implement the "info exceptions" command. */
13227
13228static void
1d12d88f 13229info_exceptions_command (const char *regexp, int from_tty)
778865d3 13230{
778865d3 13231 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13232
ab816a27 13233 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13234
13235 if (regexp != NULL)
6cb06a8c 13236 gdb_printf
778865d3
JB
13237 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13238 else
6cb06a8c 13239 gdb_printf (_("All defined Ada exceptions:\n"));
778865d3 13240
ab816a27 13241 for (const ada_exc_info &info : exceptions)
6cb06a8c 13242 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13243}
13244
6c038f32
PH
13245\f
13246 /* Language vector */
13247
b5ec771e
PA
13248/* symbol_name_matcher_ftype adapter for wild_match. */
13249
13250static bool
13251do_wild_match (const char *symbol_search_name,
13252 const lookup_name_info &lookup_name,
a207cff2 13253 completion_match_result *comp_match_res)
b5ec771e
PA
13254{
13255 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13256}
13257
13258/* symbol_name_matcher_ftype adapter for full_match. */
13259
13260static bool
13261do_full_match (const char *symbol_search_name,
13262 const lookup_name_info &lookup_name,
a207cff2 13263 completion_match_result *comp_match_res)
b5ec771e 13264{
959d6a67
TT
13265 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13266
13267 /* If both symbols start with "_ada_", just let the loop below
13268 handle the comparison. However, if only the symbol name starts
13269 with "_ada_", skip the prefix and let the match proceed as
13270 usual. */
13271 if (startswith (symbol_search_name, "_ada_")
13272 && !startswith (lname, "_ada"))
86b44259 13273 symbol_search_name += 5;
81eaa506
TT
13274 /* Likewise for ghost entities. */
13275 if (startswith (symbol_search_name, "___ghost_")
13276 && !startswith (lname, "___ghost_"))
13277 symbol_search_name += 9;
86b44259 13278
86b44259
TT
13279 int uscore_count = 0;
13280 while (*lname != '\0')
13281 {
13282 if (*symbol_search_name != *lname)
13283 {
13284 if (*symbol_search_name == 'B' && uscore_count == 2
13285 && symbol_search_name[1] == '_')
13286 {
13287 symbol_search_name += 2;
13288 while (isdigit (*symbol_search_name))
13289 ++symbol_search_name;
13290 if (symbol_search_name[0] == '_'
13291 && symbol_search_name[1] == '_')
13292 {
13293 symbol_search_name += 2;
13294 continue;
13295 }
13296 }
13297 return false;
13298 }
13299
13300 if (*symbol_search_name == '_')
13301 ++uscore_count;
13302 else
13303 uscore_count = 0;
13304
13305 ++symbol_search_name;
13306 ++lname;
13307 }
13308
13309 return is_name_suffix (symbol_search_name);
b5ec771e
PA
13310}
13311
a2cd4f14
JB
13312/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13313
13314static bool
13315do_exact_match (const char *symbol_search_name,
13316 const lookup_name_info &lookup_name,
13317 completion_match_result *comp_match_res)
13318{
13319 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13320}
13321
b5ec771e
PA
13322/* Build the Ada lookup name for LOOKUP_NAME. */
13323
13324ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13325{
e0802d59 13326 gdb::string_view user_name = lookup_name.name ();
b5ec771e 13327
6a780b67 13328 if (!user_name.empty () && user_name[0] == '<')
b5ec771e
PA
13329 {
13330 if (user_name.back () == '>')
e0802d59 13331 m_encoded_name
5ac58899 13332 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 13333 else
e0802d59 13334 m_encoded_name
5ac58899 13335 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
13336 m_encoded_p = true;
13337 m_verbatim_p = true;
13338 m_wild_match_p = false;
13339 m_standard_p = false;
13340 }
13341 else
13342 {
13343 m_verbatim_p = false;
13344
e0802d59 13345 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13346
13347 if (!m_encoded_p)
13348 {
e0802d59 13349 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
13350 m_encoded_name = ada_encode_1 (folded, false);
13351 if (m_encoded_name.empty ())
5ac58899 13352 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13353 }
13354 else
5ac58899 13355 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13356
13357 /* Handle the 'package Standard' special case. See description
13358 of m_standard_p. */
13359 if (startswith (m_encoded_name.c_str (), "standard__"))
13360 {
13361 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13362 m_standard_p = true;
13363 }
13364 else
13365 m_standard_p = false;
74ccd7f5 13366
b5ec771e
PA
13367 /* If the name contains a ".", then the user is entering a fully
13368 qualified entity name, and the match must not be done in wild
13369 mode. Similarly, if the user wants to complete what looks
13370 like an encoded name, the match must not be done in wild
13371 mode. Also, in the standard__ special case always do
13372 non-wild matching. */
13373 m_wild_match_p
13374 = (lookup_name.match_type () != symbol_name_match_type::FULL
13375 && !m_encoded_p
13376 && !m_standard_p
13377 && user_name.find ('.') == std::string::npos);
13378 }
13379}
13380
13381/* symbol_name_matcher_ftype method for Ada. This only handles
13382 completion mode. */
13383
13384static bool
13385ada_symbol_name_matches (const char *symbol_search_name,
13386 const lookup_name_info &lookup_name,
a207cff2 13387 completion_match_result *comp_match_res)
74ccd7f5 13388{
b5ec771e
PA
13389 return lookup_name.ada ().matches (symbol_search_name,
13390 lookup_name.match_type (),
a207cff2 13391 comp_match_res);
b5ec771e
PA
13392}
13393
de63c46b
PA
13394/* A name matcher that matches the symbol name exactly, with
13395 strcmp. */
13396
13397static bool
13398literal_symbol_name_matcher (const char *symbol_search_name,
13399 const lookup_name_info &lookup_name,
13400 completion_match_result *comp_match_res)
13401{
e0802d59 13402 gdb::string_view name_view = lookup_name.name ();
de63c46b 13403
e0802d59
TT
13404 if (lookup_name.completion_mode ()
13405 ? (strncmp (symbol_search_name, name_view.data (),
13406 name_view.size ()) == 0)
13407 : symbol_search_name == name_view)
de63c46b
PA
13408 {
13409 if (comp_match_res != NULL)
13410 comp_match_res->set_match (symbol_search_name);
13411 return true;
13412 }
13413 else
13414 return false;
13415}
13416
c9debfb9 13417/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13418 Ada. */
13419
13420static symbol_name_matcher_ftype *
13421ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13422{
de63c46b
PA
13423 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13424 return literal_symbol_name_matcher;
13425
b5ec771e
PA
13426 if (lookup_name.completion_mode ())
13427 return ada_symbol_name_matches;
74ccd7f5 13428 else
b5ec771e
PA
13429 {
13430 if (lookup_name.ada ().wild_match_p ())
13431 return do_wild_match;
a2cd4f14
JB
13432 else if (lookup_name.ada ().verbatim_p ())
13433 return do_exact_match;
b5ec771e
PA
13434 else
13435 return do_full_match;
13436 }
74ccd7f5
JB
13437}
13438
0874fd07
AB
13439/* Class representing the Ada language. */
13440
13441class ada_language : public language_defn
13442{
13443public:
13444 ada_language ()
0e25e767 13445 : language_defn (language_ada)
0874fd07 13446 { /* Nothing. */ }
5bd40f2a 13447
6f7664a9
AB
13448 /* See language.h. */
13449
13450 const char *name () const override
13451 { return "ada"; }
13452
13453 /* See language.h. */
13454
13455 const char *natural_name () const override
13456 { return "Ada"; }
13457
e171d6f1
AB
13458 /* See language.h. */
13459
13460 const std::vector<const char *> &filename_extensions () const override
13461 {
13462 static const std::vector<const char *> extensions
13463 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13464 return extensions;
13465 }
13466
5bd40f2a
AB
13467 /* Print an array element index using the Ada syntax. */
13468
13469 void print_array_index (struct type *index_type,
13470 LONGEST index,
13471 struct ui_file *stream,
13472 const value_print_options *options) const override
13473 {
13474 struct value *index_value = val_atr (index_type, index);
13475
00c696a6 13476 value_print (index_value, stream, options);
6cb06a8c 13477 gdb_printf (stream, " => ");
5bd40f2a 13478 }
15e5fd35
AB
13479
13480 /* Implement the "read_var_value" language_defn method for Ada. */
13481
13482 struct value *read_var_value (struct symbol *var,
13483 const struct block *var_block,
bd2b40ac 13484 frame_info_ptr frame) const override
15e5fd35
AB
13485 {
13486 /* The only case where default_read_var_value is not sufficient
13487 is when VAR is a renaming... */
13488 if (frame != nullptr)
13489 {
13490 const struct block *frame_block = get_frame_block (frame, NULL);
13491 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13492 return ada_read_renaming_var_value (var, frame_block);
13493 }
13494
13495 /* This is a typical case where we expect the default_read_var_value
13496 function to work. */
13497 return language_defn::read_var_value (var, var_block, frame);
13498 }
1fb314aa 13499
2c71f639 13500 /* See language.h. */
496feb16 13501 bool symbol_printing_suppressed (struct symbol *symbol) const override
2c71f639 13502 {
496feb16 13503 return symbol->is_artificial ();
2c71f639
TV
13504 }
13505
1fb314aa
AB
13506 /* See language.h. */
13507 void language_arch_info (struct gdbarch *gdbarch,
13508 struct language_arch_info *lai) const override
13509 {
13510 const struct builtin_type *builtin = builtin_type (gdbarch);
13511
7bea47f0
AB
13512 /* Helper function to allow shorter lines below. */
13513 auto add = [&] (struct type *t)
13514 {
13515 lai->add_primitive_type (t);
13516 };
13517
13518 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13519 0, "integer"));
13520 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13521 0, "long_integer"));
13522 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13523 0, "short_integer"));
13524 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
c9f66f00 13525 1, "character");
7bea47f0
AB
13526 lai->set_string_char_type (char_type);
13527 add (char_type);
c9f66f00
TT
13528 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13529 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
7bea47f0
AB
13530 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13531 "float", gdbarch_float_format (gdbarch)));
13532 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13533 "long_float", gdbarch_double_format (gdbarch)));
13534 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13535 0, "long_long_integer"));
13536 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13537 "long_long_float",
13538 gdbarch_long_double_format (gdbarch)));
13539 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13540 0, "natural"));
13541 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13542 0, "positive"));
13543 add (builtin->builtin_void);
13544
13545 struct type *system_addr_ptr
1fb314aa
AB
13546 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13547 "void"));
7bea47f0
AB
13548 system_addr_ptr->set_name ("system__address");
13549 add (system_addr_ptr);
1fb314aa
AB
13550
13551 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13552 type. This is a signed integral type whose size is the same as
13553 the size of addresses. */
df86565b 13554 unsigned int addr_length = system_addr_ptr->length ();
7bea47f0
AB
13555 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13556 "storage_offset"));
1fb314aa 13557
7bea47f0 13558 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 13559 }
4009ee92
AB
13560
13561 /* See language.h. */
13562
13563 bool iterate_over_symbols
13564 (const struct block *block, const lookup_name_info &name,
13565 domain_enum domain,
13566 gdb::function_view<symbol_found_callback_ftype> callback) const override
13567 {
d1183b06
TT
13568 std::vector<struct block_symbol> results
13569 = ada_lookup_symbol_list_worker (name, block, domain, 0);
4009ee92
AB
13570 for (block_symbol &sym : results)
13571 {
13572 if (!callback (&sym))
13573 return false;
13574 }
13575
13576 return true;
13577 }
6f827019
AB
13578
13579 /* See language.h. */
3456e70c
TT
13580 bool sniff_from_mangled_name
13581 (const char *mangled,
13582 gdb::unique_xmalloc_ptr<char> *out) const override
6f827019
AB
13583 {
13584 std::string demangled = ada_decode (mangled);
13585
13586 *out = NULL;
13587
13588 if (demangled != mangled && demangled[0] != '<')
13589 {
13590 /* Set the gsymbol language to Ada, but still return 0.
13591 Two reasons for that:
13592
13593 1. For Ada, we prefer computing the symbol's decoded name
13594 on the fly rather than pre-compute it, in order to save
13595 memory (Ada projects are typically very large).
13596
13597 2. There are some areas in the definition of the GNAT
13598 encoding where, with a bit of bad luck, we might be able
13599 to decode a non-Ada symbol, generating an incorrect
13600 demangled name (Eg: names ending with "TB" for instance
13601 are identified as task bodies and so stripped from
13602 the decoded name returned).
13603
13604 Returning true, here, but not setting *DEMANGLED, helps us get
13605 a little bit of the best of both worlds. Because we're last,
13606 we should not affect any of the other languages that were
13607 able to demangle the symbol before us; we get to correctly
13608 tag Ada symbols as such; and even if we incorrectly tagged a
13609 non-Ada symbol, which should be rare, any routing through the
13610 Ada language should be transparent (Ada tries to behave much
13611 like C/C++ with non-Ada symbols). */
13612 return true;
13613 }
13614
13615 return false;
13616 }
fbfb0a46
AB
13617
13618 /* See language.h. */
13619
3456e70c
TT
13620 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13621 int options) const override
0a50df5d 13622 {
3456e70c 13623 return make_unique_xstrdup (ada_decode (mangled).c_str ());
0a50df5d
AB
13624 }
13625
13626 /* See language.h. */
13627
fbfb0a46
AB
13628 void print_type (struct type *type, const char *varstring,
13629 struct ui_file *stream, int show, int level,
13630 const struct type_print_options *flags) const override
13631 {
13632 ada_print_type (type, varstring, stream, show, level, flags);
13633 }
c9debfb9 13634
53fc67f8
AB
13635 /* See language.h. */
13636
13637 const char *word_break_characters (void) const override
13638 {
13639 return ada_completer_word_break_characters;
13640 }
13641
7e56227d
AB
13642 /* See language.h. */
13643
13644 void collect_symbol_completion_matches (completion_tracker &tracker,
13645 complete_symbol_mode mode,
13646 symbol_name_match_type name_match_type,
13647 const char *text, const char *word,
13648 enum type_code code) const override
13649 {
13650 struct symbol *sym;
13651 const struct block *b, *surrounding_static_block = 0;
13652 struct block_iterator iter;
13653
13654 gdb_assert (code == TYPE_CODE_UNDEF);
13655
13656 lookup_name_info lookup_name (text, name_match_type, true);
13657
13658 /* First, look at the partial symtab symbols. */
13659 expand_symtabs_matching (NULL,
13660 lookup_name,
13661 NULL,
13662 NULL,
03a8ea51 13663 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
7e56227d
AB
13664 ALL_DOMAIN);
13665
13666 /* At this point scan through the misc symbol vectors and add each
13667 symbol you find to the list. Eventually we want to ignore
13668 anything that isn't a text symbol (everything else will be
13669 handled by the psymtab code above). */
13670
13671 for (objfile *objfile : current_program_space->objfiles ())
13672 {
13673 for (minimal_symbol *msymbol : objfile->msymbols ())
13674 {
13675 QUIT;
13676
13677 if (completion_skip_symbol (mode, msymbol))
13678 continue;
13679
13680 language symbol_language = msymbol->language ();
13681
13682 /* Ada minimal symbols won't have their language set to Ada. If
13683 we let completion_list_add_name compare using the
13684 default/C-like matcher, then when completing e.g., symbols in a
13685 package named "pck", we'd match internal Ada symbols like
13686 "pckS", which are invalid in an Ada expression, unless you wrap
13687 them in '<' '>' to request a verbatim match.
13688
13689 Unfortunately, some Ada encoded names successfully demangle as
13690 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13691 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13692 with the wrong language set. Paper over that issue here. */
13693 if (symbol_language == language_auto
13694 || symbol_language == language_cplus)
13695 symbol_language = language_ada;
13696
13697 completion_list_add_name (tracker,
13698 symbol_language,
13699 msymbol->linkage_name (),
13700 lookup_name, text, word);
13701 }
13702 }
13703
13704 /* Search upwards from currently selected frame (so that we can
13705 complete on local vars. */
13706
f135fe72 13707 for (b = get_selected_block (0); b != NULL; b = b->superblock ())
7e56227d 13708 {
f135fe72 13709 if (!b->superblock ())
7e56227d
AB
13710 surrounding_static_block = b; /* For elmin of dups */
13711
13712 ALL_BLOCK_SYMBOLS (b, iter, sym)
13713 {
13714 if (completion_skip_symbol (mode, sym))
13715 continue;
13716
13717 completion_list_add_name (tracker,
13718 sym->language (),
13719 sym->linkage_name (),
13720 lookup_name, text, word);
13721 }
13722 }
13723
13724 /* Go through the symtabs and check the externs and statics for
13725 symbols which match. */
13726
13727 for (objfile *objfile : current_program_space->objfiles ())
13728 {
13729 for (compunit_symtab *s : objfile->compunits ())
13730 {
13731 QUIT;
63d609de 13732 b = s->blockvector ()->global_block ();
7e56227d
AB
13733 ALL_BLOCK_SYMBOLS (b, iter, sym)
13734 {
13735 if (completion_skip_symbol (mode, sym))
13736 continue;
13737
13738 completion_list_add_name (tracker,
13739 sym->language (),
13740 sym->linkage_name (),
13741 lookup_name, text, word);
13742 }
13743 }
13744 }
13745
13746 for (objfile *objfile : current_program_space->objfiles ())
13747 {
13748 for (compunit_symtab *s : objfile->compunits ())
13749 {
13750 QUIT;
63d609de 13751 b = s->blockvector ()->static_block ();
7e56227d
AB
13752 /* Don't do this block twice. */
13753 if (b == surrounding_static_block)
13754 continue;
13755 ALL_BLOCK_SYMBOLS (b, iter, sym)
13756 {
13757 if (completion_skip_symbol (mode, sym))
13758 continue;
13759
13760 completion_list_add_name (tracker,
13761 sym->language (),
13762 sym->linkage_name (),
13763 lookup_name, text, word);
13764 }
13765 }
13766 }
13767 }
13768
f16a9f57
AB
13769 /* See language.h. */
13770
13771 gdb::unique_xmalloc_ptr<char> watch_location_expression
13772 (struct type *type, CORE_ADDR addr) const override
13773 {
27710edb 13774 type = check_typedef (check_typedef (type)->target_type ());
f16a9f57 13775 std::string name = type_to_string (type);
8579fd13 13776 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
f16a9f57
AB
13777 }
13778
a1d1fa3e
AB
13779 /* See language.h. */
13780
13781 void value_print (struct value *val, struct ui_file *stream,
13782 const struct value_print_options *options) const override
13783 {
13784 return ada_value_print (val, stream, options);
13785 }
13786
ebe2334e
AB
13787 /* See language.h. */
13788
13789 void value_print_inner
13790 (struct value *val, struct ui_file *stream, int recurse,
13791 const struct value_print_options *options) const override
13792 {
13793 return ada_value_print_inner (val, stream, recurse, options);
13794 }
13795
a78a19b1
AB
13796 /* See language.h. */
13797
13798 struct block_symbol lookup_symbol_nonlocal
13799 (const char *name, const struct block *block,
13800 const domain_enum domain) const override
13801 {
13802 struct block_symbol sym;
13803
13804 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13805 if (sym.symbol != NULL)
13806 return sym;
13807
13808 /* If we haven't found a match at this point, try the primitive
13809 types. In other languages, this search is performed before
13810 searching for global symbols in order to short-circuit that
13811 global-symbol search if it happens that the name corresponds
13812 to a primitive type. But we cannot do the same in Ada, because
13813 it is perfectly legitimate for a program to declare a type which
13814 has the same name as a standard type. If looking up a type in
13815 that situation, we have traditionally ignored the primitive type
13816 in favor of user-defined types. This is why, unlike most other
13817 languages, we search the primitive types this late and only after
13818 having searched the global symbols without success. */
13819
13820 if (domain == VAR_DOMAIN)
13821 {
13822 struct gdbarch *gdbarch;
13823
13824 if (block == NULL)
13825 gdbarch = target_gdbarch ();
13826 else
13827 gdbarch = block_gdbarch (block);
13828 sym.symbol
13829 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13830 if (sym.symbol != NULL)
13831 return sym;
13832 }
13833
13834 return {};
13835 }
13836
87afa652
AB
13837 /* See language.h. */
13838
13839 int parser (struct parser_state *ps) const override
13840 {
13841 warnings_issued = 0;
13842 return ada_parse (ps);
13843 }
13844
ec8cec5b
AB
13845 /* See language.h. */
13846
13847 void emitchar (int ch, struct type *chtype,
13848 struct ui_file *stream, int quoter) const override
13849 {
13850 ada_emit_char (ch, chtype, stream, quoter, 1);
13851 }
13852
52b50f2c
AB
13853 /* See language.h. */
13854
13855 void printchar (int ch, struct type *chtype,
13856 struct ui_file *stream) const override
13857 {
13858 ada_printchar (ch, chtype, stream);
13859 }
13860
d711ee67
AB
13861 /* See language.h. */
13862
13863 void printstr (struct ui_file *stream, struct type *elttype,
13864 const gdb_byte *string, unsigned int length,
13865 const char *encoding, int force_ellipses,
13866 const struct value_print_options *options) const override
13867 {
13868 ada_printstr (stream, elttype, string, length, encoding,
13869 force_ellipses, options);
13870 }
13871
4ffc13fb
AB
13872 /* See language.h. */
13873
13874 void print_typedef (struct type *type, struct symbol *new_symbol,
13875 struct ui_file *stream) const override
13876 {
13877 ada_print_typedef (type, new_symbol, stream);
13878 }
13879
39e7ecca
AB
13880 /* See language.h. */
13881
13882 bool is_string_type_p (struct type *type) const override
13883 {
13884 return ada_is_string_type (type);
13885 }
13886
22e3f3ed
AB
13887 /* See language.h. */
13888
13889 const char *struct_too_deep_ellipsis () const override
13890 { return "(...)"; }
39e7ecca 13891
67bd3fd5
AB
13892 /* See language.h. */
13893
13894 bool c_style_arrays_p () const override
13895 { return false; }
13896
d3355e4d
AB
13897 /* See language.h. */
13898
13899 bool store_sym_names_in_linkage_form_p () const override
13900 { return true; }
13901
b63a3f3f
AB
13902 /* See language.h. */
13903
13904 const struct lang_varobj_ops *varobj_ops () const override
13905 { return &ada_varobj_ops; }
13906
c9debfb9
AB
13907protected:
13908 /* See language.h. */
13909
13910 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13911 (const lookup_name_info &lookup_name) const override
13912 {
13913 return ada_get_symbol_name_matcher (lookup_name);
13914 }
0874fd07
AB
13915};
13916
13917/* Single instance of the Ada language class. */
13918
13919static ada_language ada_language_defn;
13920
5bf03f13
JB
13921/* Command-list for the "set/show ada" prefix command. */
13922static struct cmd_list_element *set_ada_list;
13923static struct cmd_list_element *show_ada_list;
13924
3d9434b5
JB
13925/* This module's 'new_objfile' observer. */
13926
13927static void
13928ada_new_objfile_observer (struct objfile *objfile)
13929{
13930 ada_clear_symbol_cache ();
13931}
13932
13933/* This module's 'free_objfile' observer. */
13934
13935static void
13936ada_free_objfile_observer (struct objfile *objfile)
13937{
13938 ada_clear_symbol_cache ();
13939}
13940
315e4ebb
TT
13941/* Charsets known to GNAT. */
13942static const char * const gnat_source_charsets[] =
13943{
13944 /* Note that code below assumes that the default comes first.
13945 Latin-1 is the default here, because that is also GNAT's
13946 default. */
13947 "ISO-8859-1",
13948 "ISO-8859-2",
13949 "ISO-8859-3",
13950 "ISO-8859-4",
13951 "ISO-8859-5",
13952 "ISO-8859-15",
13953 "CP437",
13954 "CP850",
13955 /* Note that this value is special-cased in the encoder and
13956 decoder. */
13957 ada_utf8,
13958 nullptr
13959};
13960
6c265988 13961void _initialize_ada_language ();
d2e4a39e 13962void
6c265988 13963_initialize_ada_language ()
14f9c5c9 13964{
f54bdb6d
SM
13965 add_setshow_prefix_cmd
13966 ("ada", no_class,
13967 _("Prefix command for changing Ada-specific settings."),
13968 _("Generic command for showing Ada-specific settings."),
13969 &set_ada_list, &show_ada_list,
13970 &setlist, &showlist);
5bf03f13
JB
13971
13972 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 13973 &trust_pad_over_xvs, _("\
590042fc
PW
13974Enable or disable an optimization trusting PAD types over XVS types."), _("\
13975Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 13976 _("\
5bf03f13
JB
13977This is related to the encoding used by the GNAT compiler. The debugger\n\
13978should normally trust the contents of PAD types, but certain older versions\n\
13979of GNAT have a bug that sometimes causes the information in the PAD type\n\
13980to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13981work around this bug. It is always safe to turn this option \"off\", but\n\
13982this incurs a slight performance penalty, so it is recommended to NOT change\n\
13983this option to \"off\" unless necessary."),
dda83cd7 13984 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 13985
d72413e6
PMR
13986 add_setshow_boolean_cmd ("print-signatures", class_vars,
13987 &print_signatures, _("\
13988Enable or disable the output of formal and return types for functions in the \
590042fc 13989overloads selection menu."), _("\
d72413e6 13990Show whether the output of formal and return types for functions in the \
590042fc 13991overloads selection menu is activated."),
d72413e6
PMR
13992 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13993
315e4ebb
TT
13994 ada_source_charset = gnat_source_charsets[0];
13995 add_setshow_enum_cmd ("source-charset", class_files,
13996 gnat_source_charsets,
13997 &ada_source_charset, _("\
13998Set the Ada source character set."), _("\
13999Show the Ada source character set."), _("\
14000The character set used for Ada source files.\n\
14001This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
14002 nullptr, nullptr,
14003 &set_ada_list, &show_ada_list);
14004
9ac4176b
PA
14005 add_catch_command ("exception", _("\
14006Catch Ada exceptions, when raised.\n\
9bf7038b 14007Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14008Without any argument, stop when any Ada exception is raised.\n\
14009If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14010being raised does not have a handler (and will therefore lead to the task's\n\
14011termination).\n\
14012Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14013raised is the same as ARG.\n\
14014CONDITION is a boolean expression that is evaluated to see whether the\n\
14015exception should cause a stop."),
9ac4176b 14016 catch_ada_exception_command,
71bed2db 14017 catch_ada_completer,
9ac4176b
PA
14018 CATCH_PERMANENT,
14019 CATCH_TEMPORARY);
9f757bf7
XR
14020
14021 add_catch_command ("handlers", _("\
14022Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14023Usage: catch handlers [ARG] [if CONDITION]\n\
14024Without any argument, stop when any Ada exception is handled.\n\
14025With an argument, catch only exceptions with the given name.\n\
14026CONDITION is a boolean expression that is evaluated to see whether the\n\
14027exception should cause a stop."),
9f757bf7 14028 catch_ada_handlers_command,
dda83cd7 14029 catch_ada_completer,
9f757bf7
XR
14030 CATCH_PERMANENT,
14031 CATCH_TEMPORARY);
9ac4176b
PA
14032 add_catch_command ("assert", _("\
14033Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14034Usage: catch assert [if CONDITION]\n\
14035CONDITION is a boolean expression that is evaluated to see whether the\n\
14036exception should cause a stop."),
9ac4176b 14037 catch_assert_command,
dda83cd7 14038 NULL,
9ac4176b
PA
14039 CATCH_PERMANENT,
14040 CATCH_TEMPORARY);
14041
778865d3
JB
14042 add_info ("exceptions", info_exceptions_command,
14043 _("\
14044List all Ada exception names.\n\
9bf7038b 14045Usage: info exceptions [REGEXP]\n\
778865d3
JB
14046If a regular expression is passed as an argument, only those matching\n\
14047the regular expression are listed."));
14048
f54bdb6d
SM
14049 add_setshow_prefix_cmd ("ada", class_maintenance,
14050 _("Set Ada maintenance-related variables."),
14051 _("Show Ada maintenance-related variables."),
14052 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14053 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
c6044dd1
JB
14054
14055 add_setshow_boolean_cmd
14056 ("ignore-descriptive-types", class_maintenance,
14057 &ada_ignore_descriptive_types_p,
14058 _("Set whether descriptive types generated by GNAT should be ignored."),
14059 _("Show whether descriptive types generated by GNAT should be ignored."),
14060 _("\
14061When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14062DWARF attribute."),
14063 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14064
2698f5ea
TT
14065 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14066 htab_eq_string,
459a2e4c 14067 NULL, xcalloc, xfree);
6b69afc4 14068
3d9434b5 14069 /* The ada-lang observers. */
c90e7d63
SM
14070 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14071 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14072 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14f9c5c9 14073}