]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
3666a048 3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
0f8e2034 52#include "cli/cli-decode.h"
4de283e4 53
40bc484c 54#include "value.h"
4de283e4
TT
55#include "mi/mi-common.h"
56#include "arch-utils.h"
57#include "cli/cli-utils.h"
268a13a5
TT
58#include "gdbsupport/function-view.h"
59#include "gdbsupport/byte-vector.h"
4de283e4 60#include <algorithm>
03070ee9 61#include "ada-exp.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
d1183b06 103static void ada_add_block_symbols (std::vector<struct block_symbol> &,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
d1183b06
TT
108static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
b5ec771e
PA
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
22cee43f 112
d1183b06 113static int is_nonfunction (const std::vector<struct block_symbol> &);
14f9c5c9 114
d1183b06
TT
115static void add_defn_to_vec (std::vector<struct block_symbol> &,
116 struct symbol *,
dda83cd7 117 const struct block *);
14f9c5c9 118
d2e4a39e 119static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 120
4c4b4cd2 121static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 122
d2e4a39e 123static int numeric_type_p (struct type *);
14f9c5c9 124
d2e4a39e 125static int integer_type_p (struct type *);
14f9c5c9 126
d2e4a39e 127static int scalar_type_p (struct type *);
14f9c5c9 128
d2e4a39e 129static int discrete_type_p (struct type *);
14f9c5c9 130
a121b7c1 131static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 132 int, int);
4c4b4cd2 133
b4ba55a1 134static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 135 const char *);
b4ba55a1 136
d2e4a39e 137static int is_dynamic_field (struct type *, int);
14f9c5c9 138
10a2c479 139static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 140 const gdb_byte *,
dda83cd7 141 CORE_ADDR, struct value *);
4c4b4cd2
PH
142
143static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 144
28c85d6c 145static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 146
d2e4a39e 147static struct type *to_static_fixed_type (struct type *);
f192137b 148static struct type *static_unwrap_type (struct type *type);
14f9c5c9 149
d2e4a39e 150static struct value *unwrap_value (struct value *);
14f9c5c9 151
ad82864c 152static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 153
ad82864c 154static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 155
ad82864c
JB
156static long decode_packed_array_bitsize (struct type *);
157
158static struct value *decode_constrained_packed_array (struct value *);
159
ad82864c 160static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 161
d2e4a39e 162static struct value *value_subscript_packed (struct value *, int,
dda83cd7 163 struct value **);
14f9c5c9 164
4c4b4cd2 165static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 166 struct type *);
14f9c5c9 167
d2e4a39e 168static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 169
d2e4a39e 170static int equiv_types (struct type *, struct type *);
14f9c5c9 171
d2e4a39e 172static int is_name_suffix (const char *);
14f9c5c9 173
59c8a30b 174static int advance_wild_match (const char **, const char *, char);
73589123 175
b5ec771e 176static bool wild_match (const char *name, const char *patn);
14f9c5c9 177
d2e4a39e 178static struct value *ada_coerce_ref (struct value *);
14f9c5c9 179
4c4b4cd2
PH
180static LONGEST pos_atr (struct value *);
181
53a47a3e
TT
182static struct value *val_atr (struct type *, LONGEST);
183
4c4b4cd2 184static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 185 domain_enum);
14f9c5c9 186
108d56a4 187static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 188 struct type *);
4c4b4cd2 189
0d5cff50 190static int find_struct_field (const char *, struct type *, int,
dda83cd7 191 struct type **, int *, int *, int *, int *);
4c4b4cd2 192
d1183b06 193static int ada_resolve_function (std::vector<struct block_symbol> &,
dda83cd7 194 struct value **, int, const char *,
7056f312 195 struct type *, bool);
4c4b4cd2 196
4c4b4cd2
PH
197static int ada_is_direct_array_type (struct type *);
198
52ce6436
PH
199static struct value *ada_index_struct_field (int, struct value *, int,
200 struct type *);
201
cf608cc4 202static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
203
204
852dff6c 205static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
206
207static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
209
4c4b4cd2
PH
210\f
211
ee01b665
JB
212/* The result of a symbol lookup to be stored in our symbol cache. */
213
214struct cache_entry
215{
216 /* The name used to perform the lookup. */
217 const char *name;
218 /* The namespace used during the lookup. */
fe978cb0 219 domain_enum domain;
ee01b665
JB
220 /* The symbol returned by the lookup, or NULL if no matching symbol
221 was found. */
222 struct symbol *sym;
223 /* The block where the symbol was found, or NULL if no matching
224 symbol was found. */
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
228};
229
230/* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
232
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
238
239#define HASH_SIZE 1009
240
241struct ada_symbol_cache
242{
243 /* An obstack used to store the entries in our cache. */
bdcccc56 244 struct auto_obstack cache_space;
ee01b665
JB
245
246 /* The root of the hash table used to implement our symbol cache. */
bdcccc56 247 struct cache_entry *root[HASH_SIZE] {};
ee01b665
JB
248};
249
4c4b4cd2 250/* Maximum-sized dynamic type. */
14f9c5c9
AS
251static unsigned int varsize_limit;
252
67cb5b2d 253static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
254#ifdef VMS
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
256#else
14f9c5c9 257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 258#endif
14f9c5c9 259
4c4b4cd2 260/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 261static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 262 = "__gnat_ada_main_program_name";
14f9c5c9 263
4c4b4cd2
PH
264/* Limit on the number of warnings to raise per expression evaluation. */
265static int warning_limit = 2;
266
267/* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269static int warnings_issued = 0;
270
27087b7f 271static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
273};
274
27087b7f 275static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
277};
278
c6044dd1
JB
279/* Maintenance-related settings for this module. */
280
281static struct cmd_list_element *maint_set_ada_cmdlist;
282static struct cmd_list_element *maint_show_ada_cmdlist;
283
c6044dd1
JB
284/* The "maintenance ada set/show ignore-descriptive-type" value. */
285
491144b5 286static bool ada_ignore_descriptive_types_p = false;
c6044dd1 287
e802dbe0
JB
288 /* Inferior-specific data. */
289
290/* Per-inferior data for this module. */
291
292struct ada_inferior_data
293{
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
f37b313d 298 struct type *tsd_type = nullptr;
3eecfa55
JB
299
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
302 inferior. */
f37b313d 303 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
304};
305
306/* Our key to this module's inferior data. */
f37b313d 307static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
308
309/* Return our inferior data for the given inferior (INF).
310
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
316
317static struct ada_inferior_data *
318get_ada_inferior_data (struct inferior *inf)
319{
320 struct ada_inferior_data *data;
321
f37b313d 322 data = ada_inferior_data.get (inf);
e802dbe0 323 if (data == NULL)
f37b313d 324 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
325
326 return data;
327}
328
329/* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
331
332static void
333ada_inferior_exit (struct inferior *inf)
334{
f37b313d 335 ada_inferior_data.clear (inf);
e802dbe0
JB
336}
337
ee01b665
JB
338
339 /* program-space-specific data. */
340
341/* This module's per-program-space data. */
342struct ada_pspace_data
343{
344 /* The Ada symbol cache. */
bdcccc56 345 std::unique_ptr<ada_symbol_cache> sym_cache;
ee01b665
JB
346};
347
348/* Key to our per-program-space data. */
f37b313d 349static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
350
351/* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
353
354 This function always returns a valid object. */
355
356static struct ada_pspace_data *
357get_ada_pspace_data (struct program_space *pspace)
358{
359 struct ada_pspace_data *data;
360
f37b313d 361 data = ada_pspace_data_handle.get (pspace);
ee01b665 362 if (data == NULL)
f37b313d 363 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
364
365 return data;
366}
367
dda83cd7 368 /* Utilities */
4c4b4cd2 369
720d1a40 370/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 371 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
372
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
381
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
385
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
388
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
392
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
396
397static struct type *
398ada_typedef_target_type (struct type *type)
399{
78134374 400 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
401 type = TYPE_TARGET_TYPE (type);
402 return type;
403}
404
41d27058
JB
405/* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
408
409static const char *
410ada_unqualified_name (const char *decoded_name)
411{
2b0f535a
JB
412 const char *result;
413
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
419 return decoded_name;
420
421 result = strrchr (decoded_name, '.');
41d27058
JB
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428}
429
39e7af3e 430/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 431
39e7af3e 432static std::string
41d27058
JB
433add_angle_brackets (const char *str)
434{
39e7af3e 435 return string_printf ("<%s>", str);
41d27058 436}
96d887e8 437
14f9c5c9 438/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 439 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
440
441static int
ebf56fd3 442field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
443{
444 int len = strlen (target);
5b4ee69b 445
d2e4a39e 446 return
4c4b4cd2
PH
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
dda83cd7
SM
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
451 "___XVN") != 0)));
14f9c5c9
AS
452}
453
454
872c8b51
JB
455/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
462
463int
464ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 465 int maybe_missing)
4c4b4cd2
PH
466{
467 int fieldno;
872c8b51
JB
468 struct type *struct_type = check_typedef ((struct type *) type);
469
1f704f76 470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 471 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
472 return fieldno;
473
474 if (!maybe_missing)
323e0a4a 475 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 476 field_name, struct_type->name ());
4c4b4cd2
PH
477
478 return -1;
479}
480
481/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
482
483int
d2e4a39e 484ada_name_prefix_len (const char *name)
14f9c5c9
AS
485{
486 if (name == NULL)
487 return 0;
d2e4a39e 488 else
14f9c5c9 489 {
d2e4a39e 490 const char *p = strstr (name, "___");
5b4ee69b 491
14f9c5c9 492 if (p == NULL)
dda83cd7 493 return strlen (name);
14f9c5c9 494 else
dda83cd7 495 return p - name;
14f9c5c9
AS
496 }
497}
498
4c4b4cd2
PH
499/* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
501
14f9c5c9 502static int
d2e4a39e 503is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
504{
505 int len1, len2;
5b4ee69b 506
14f9c5c9
AS
507 if (str == NULL)
508 return 0;
509 len1 = strlen (str);
510 len2 = strlen (suffix);
4c4b4cd2 511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
512}
513
4c4b4cd2
PH
514/* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
14f9c5c9 516
d2e4a39e 517static struct value *
4c4b4cd2 518coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 519{
61ee279c 520 type = ada_check_typedef (type);
df407dfe 521 if (value_type (val) == type)
4c4b4cd2 522 return val;
d2e4a39e 523 else
14f9c5c9 524 {
4c4b4cd2
PH
525 struct value *result;
526
527 /* Make sure that the object size is not unreasonable before
dda83cd7 528 trying to allocate some memory for it. */
c1b5a1a6 529 ada_ensure_varsize_limit (type);
4c4b4cd2 530
f73e424f
TT
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
41e8491f
JK
537 result = allocate_value_lazy (type);
538 else
539 {
540 result = allocate_value (type);
f73e424f 541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 542 }
74bcbdf3 543 set_value_component_location (result, val);
9bbda503
AC
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
14f9c5c9
AS
548 return result;
549 }
550}
551
fc1a4b47
AC
552static const gdb_byte *
553cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
554{
555 if (valaddr == NULL)
556 return NULL;
557 else
558 return valaddr + offset;
559}
560
561static CORE_ADDR
ebf56fd3 562cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
563{
564 if (address == 0)
565 return 0;
d2e4a39e 566 else
14f9c5c9
AS
567 return address + offset;
568}
569
4c4b4cd2
PH
570/* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
573 expression. */
a2249542 574
77109804
AC
575/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
a0b31db1 577static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 578
14f9c5c9 579static void
a2249542 580lim_warning (const char *format, ...)
14f9c5c9 581{
a2249542 582 va_list args;
a2249542 583
5b4ee69b 584 va_start (args, format);
4c4b4cd2
PH
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
a2249542
MK
587 vwarning (format, args);
588
589 va_end (args);
4c4b4cd2
PH
590}
591
714e53ab
PH
592/* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
594 GDB. */
595
c1b5a1a6
JB
596void
597ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
598{
599 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 600 error (_("object size is larger than varsize-limit"));
714e53ab
PH
601}
602
0963b4bd 603/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 604static LONGEST
c3e5cd34 605max_of_size (int size)
4c4b4cd2 606{
76a01679 607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 608
76a01679 609 return top_bit | (top_bit - 1);
4c4b4cd2
PH
610}
611
0963b4bd 612/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 613static LONGEST
c3e5cd34 614min_of_size (int size)
4c4b4cd2 615{
c3e5cd34 616 return -max_of_size (size) - 1;
4c4b4cd2
PH
617}
618
0963b4bd 619/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 620static ULONGEST
c3e5cd34 621umax_of_size (int size)
4c4b4cd2 622{
76a01679 623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 624
76a01679 625 return top_bit | (top_bit - 1);
4c4b4cd2
PH
626}
627
0963b4bd 628/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
629static LONGEST
630max_of_type (struct type *t)
4c4b4cd2 631{
c6d940a9 632 if (t->is_unsigned ())
c3e5cd34
PH
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
634 else
635 return max_of_size (TYPE_LENGTH (t));
636}
637
0963b4bd 638/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
639static LONGEST
640min_of_type (struct type *t)
641{
c6d940a9 642 if (t->is_unsigned ())
c3e5cd34
PH
643 return 0;
644 else
645 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
646}
647
648/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
649LONGEST
650ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 651{
b249d2c2 652 type = resolve_dynamic_type (type, {}, 0);
78134374 653 switch (type->code ())
4c4b4cd2
PH
654 {
655 case TYPE_CODE_RANGE:
d1fd641e
SM
656 {
657 const dynamic_prop &high = type->bounds ()->high;
658
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
661 else
662 {
663 gdb_assert (high.kind () == PROP_UNDEFINED);
664
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
668 return 0;
669 }
670 }
4c4b4cd2 671 case TYPE_CODE_ENUM:
1f704f76 672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
673 case TYPE_CODE_BOOL:
674 return 1;
675 case TYPE_CODE_CHAR:
76a01679 676 case TYPE_CODE_INT:
690cc4eb 677 return max_of_type (type);
4c4b4cd2 678 default:
43bbcdc2 679 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
680 }
681}
682
14e75d8e 683/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
684LONGEST
685ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 686{
b249d2c2 687 type = resolve_dynamic_type (type, {}, 0);
78134374 688 switch (type->code ())
4c4b4cd2
PH
689 {
690 case TYPE_CODE_RANGE:
d1fd641e
SM
691 {
692 const dynamic_prop &low = type->bounds ()->low;
693
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
696 else
697 {
698 gdb_assert (low.kind () == PROP_UNDEFINED);
699
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
703 return 0;
704 }
705 }
4c4b4cd2 706 case TYPE_CODE_ENUM:
14e75d8e 707 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
708 case TYPE_CODE_BOOL:
709 return 0;
710 case TYPE_CODE_CHAR:
76a01679 711 case TYPE_CODE_INT:
690cc4eb 712 return min_of_type (type);
4c4b4cd2 713 default:
43bbcdc2 714 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
715 }
716}
717
718/* The identity on non-range types. For range types, the underlying
76a01679 719 non-range scalar type. */
4c4b4cd2
PH
720
721static struct type *
18af8284 722get_base_type (struct type *type)
4c4b4cd2 723{
78134374 724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 725 {
76a01679 726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 727 return type;
4c4b4cd2
PH
728 type = TYPE_TARGET_TYPE (type);
729 }
730 return type;
14f9c5c9 731}
41246937
JB
732
733/* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
85102364 735 encodings, making the resulting type a static but standard description
41246937
JB
736 of the initial type. */
737
738struct value *
739ada_get_decoded_value (struct value *value)
740{
741 struct type *type = ada_check_typedef (value_type (value));
742
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
dda83cd7 745 && type->code () != TYPE_CODE_PTR))
41246937 746 {
78134374 747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 748 value = ada_coerce_to_simple_array_ptr (value);
41246937 749 else
dda83cd7 750 value = ada_coerce_to_simple_array (value);
41246937
JB
751 }
752 else
753 value = ada_to_fixed_value (value);
754
755 return value;
756}
757
758/* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
762
763struct type *
764ada_get_decoded_type (struct type *type)
765{
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
769 return type;
770}
771
4c4b4cd2 772\f
76a01679 773
dda83cd7 774 /* Language Selection */
14f9c5c9
AS
775
776/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 777 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 778
de93309a 779static enum language
ccefe4c4 780ada_update_initial_language (enum language lang)
14f9c5c9 781{
cafb3438 782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 783 return language_ada;
14f9c5c9
AS
784
785 return lang;
786}
96d887e8
PH
787
788/* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
791
792char *
793ada_main_name (void)
794{
3b7344d5 795 struct bound_minimal_symbol msym;
e83e4e24 796 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 797
96d887e8
PH
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
802 in Ada. */
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
804
3b7344d5 805 if (msym.minsym != NULL)
96d887e8 806 {
66920317 807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 808 if (main_program_name_addr == 0)
dda83cd7 809 error (_("Invalid address for Ada main program name."));
96d887e8 810
66920317 811 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 812 return main_program_name.get ();
96d887e8
PH
813 }
814
815 /* The main procedure doesn't seem to be in Ada. */
816 return NULL;
817}
14f9c5c9 818\f
dda83cd7 819 /* Symbols */
d2e4a39e 820
4c4b4cd2
PH
821/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
822 of NULLs. */
14f9c5c9 823
d2e4a39e
AS
824const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
846 {NULL, NULL}
14f9c5c9
AS
847};
848
965bc1df
TT
849/* If STR is a decoded version of a compiler-provided suffix (like the
850 "[cold]" in "symbol[cold]"), return true. Otherwise, return
851 false. */
852
853static bool
854is_compiler_suffix (const char *str)
855{
856 gdb_assert (*str == '[');
857 ++str;
858 while (*str != '\0' && isalpha (*str))
859 ++str;
860 /* We accept a missing "]" in order to support completion. */
861 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
862}
863
5c4258f4 864/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 865 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 866 Otherwise, return the empty string in that case. */
4c4b4cd2 867
5c4258f4 868static std::string
b5ec771e 869ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 870{
4c4b4cd2 871 if (decoded == NULL)
5c4258f4 872 return {};
14f9c5c9 873
5c4258f4
TT
874 std::string encoding_buffer;
875 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 876 {
cdc7bb92 877 if (*p == '.')
5c4258f4 878 encoding_buffer.append ("__");
965bc1df
TT
879 else if (*p == '[' && is_compiler_suffix (p))
880 {
881 encoding_buffer = encoding_buffer + "." + (p + 1);
882 if (encoding_buffer.back () == ']')
883 encoding_buffer.pop_back ();
884 break;
885 }
14f9c5c9 886 else if (*p == '"')
dda83cd7
SM
887 {
888 const struct ada_opname_map *mapping;
889
890 for (mapping = ada_opname_table;
891 mapping->encoded != NULL
892 && !startswith (p, mapping->decoded); mapping += 1)
893 ;
894 if (mapping->encoded == NULL)
b5ec771e
PA
895 {
896 if (throw_errors)
897 error (_("invalid Ada operator name: %s"), p);
898 else
5c4258f4 899 return {};
b5ec771e 900 }
5c4258f4 901 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
902 break;
903 }
d2e4a39e 904 else
5c4258f4 905 encoding_buffer.push_back (*p);
14f9c5c9
AS
906 }
907
4c4b4cd2 908 return encoding_buffer;
14f9c5c9
AS
909}
910
5c4258f4 911/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 912
5c4258f4 913std::string
b5ec771e
PA
914ada_encode (const char *decoded)
915{
916 return ada_encode_1 (decoded, true);
917}
918
14f9c5c9 919/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
920 quotes, unfolded, but with the quotes stripped away. Result good
921 to next call. */
922
5f9febe0 923static const char *
e0802d59 924ada_fold_name (gdb::string_view name)
14f9c5c9 925{
5f9febe0 926 static std::string fold_storage;
14f9c5c9 927
6a780b67 928 if (!name.empty () && name[0] == '\'')
01573d73 929 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
14f9c5c9
AS
930 else
931 {
01573d73 932 fold_storage = gdb::to_string (name);
5f9febe0
TT
933 for (int i = 0; i < name.size (); i += 1)
934 fold_storage[i] = tolower (fold_storage[i]);
14f9c5c9
AS
935 }
936
5f9febe0 937 return fold_storage.c_str ();
14f9c5c9
AS
938}
939
529cad9c
PH
940/* Return nonzero if C is either a digit or a lowercase alphabet character. */
941
942static int
943is_lower_alphanum (const char c)
944{
945 return (isdigit (c) || (isalpha (c) && islower (c)));
946}
947
c90092fe
JB
948/* ENCODED is the linkage name of a symbol and LEN contains its length.
949 This function saves in LEN the length of that same symbol name but
950 without either of these suffixes:
29480c32
JB
951 . .{DIGIT}+
952 . ${DIGIT}+
953 . ___{DIGIT}+
954 . __{DIGIT}+.
c90092fe 955
29480c32
JB
956 These are suffixes introduced by the compiler for entities such as
957 nested subprogram for instance, in order to avoid name clashes.
958 They do not serve any purpose for the debugger. */
959
960static void
961ada_remove_trailing_digits (const char *encoded, int *len)
962{
963 if (*len > 1 && isdigit (encoded[*len - 1]))
964 {
965 int i = *len - 2;
5b4ee69b 966
29480c32 967 while (i > 0 && isdigit (encoded[i]))
dda83cd7 968 i--;
29480c32 969 if (i >= 0 && encoded[i] == '.')
dda83cd7 970 *len = i;
29480c32 971 else if (i >= 0 && encoded[i] == '$')
dda83cd7 972 *len = i;
61012eef 973 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 974 *len = i - 2;
61012eef 975 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 976 *len = i - 1;
29480c32
JB
977 }
978}
979
980/* Remove the suffix introduced by the compiler for protected object
981 subprograms. */
982
983static void
984ada_remove_po_subprogram_suffix (const char *encoded, int *len)
985{
986 /* Remove trailing N. */
987
988 /* Protected entry subprograms are broken into two
989 separate subprograms: The first one is unprotected, and has
990 a 'N' suffix; the second is the protected version, and has
0963b4bd 991 the 'P' suffix. The second calls the first one after handling
29480c32
JB
992 the protection. Since the P subprograms are internally generated,
993 we leave these names undecoded, giving the user a clue that this
994 entity is internal. */
995
996 if (*len > 1
997 && encoded[*len - 1] == 'N'
998 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
999 *len = *len - 1;
1000}
1001
965bc1df
TT
1002/* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1003 then update *LEN to remove the suffix and return the offset of the
1004 character just past the ".". Otherwise, return -1. */
1005
1006static int
1007remove_compiler_suffix (const char *encoded, int *len)
1008{
1009 int offset = *len - 1;
1010 while (offset > 0 && isalpha (encoded[offset]))
1011 --offset;
1012 if (offset > 0 && encoded[offset] == '.')
1013 {
1014 *len = offset;
1015 return offset + 1;
1016 }
1017 return -1;
1018}
1019
8a3df5ac 1020/* See ada-lang.h. */
14f9c5c9 1021
f945dedf 1022std::string
8a3df5ac 1023ada_decode (const char *encoded, bool wrap)
14f9c5c9
AS
1024{
1025 int i, j;
1026 int len0;
d2e4a39e 1027 const char *p;
14f9c5c9 1028 int at_start_name;
f945dedf 1029 std::string decoded;
965bc1df 1030 int suffix = -1;
d2e4a39e 1031
0d81f350
JG
1032 /* With function descriptors on PPC64, the value of a symbol named
1033 ".FN", if it exists, is the entry point of the function "FN". */
1034 if (encoded[0] == '.')
1035 encoded += 1;
1036
29480c32
JB
1037 /* The name of the Ada main procedure starts with "_ada_".
1038 This prefix is not part of the decoded name, so skip this part
1039 if we see this prefix. */
61012eef 1040 if (startswith (encoded, "_ada_"))
4c4b4cd2 1041 encoded += 5;
14f9c5c9 1042
29480c32
JB
1043 /* If the name starts with '_', then it is not a properly encoded
1044 name, so do not attempt to decode it. Similarly, if the name
1045 starts with '<', the name should not be decoded. */
4c4b4cd2 1046 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1047 goto Suppress;
1048
4c4b4cd2 1049 len0 = strlen (encoded);
4c4b4cd2 1050
965bc1df
TT
1051 suffix = remove_compiler_suffix (encoded, &len0);
1052
29480c32
JB
1053 ada_remove_trailing_digits (encoded, &len0);
1054 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1055
4c4b4cd2
PH
1056 /* Remove the ___X.* suffix if present. Do not forget to verify that
1057 the suffix is located before the current "end" of ENCODED. We want
1058 to avoid re-matching parts of ENCODED that have previously been
1059 marked as discarded (by decrementing LEN0). */
1060 p = strstr (encoded, "___");
1061 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1062 {
1063 if (p[3] == 'X')
dda83cd7 1064 len0 = p - encoded;
14f9c5c9 1065 else
dda83cd7 1066 goto Suppress;
14f9c5c9 1067 }
4c4b4cd2 1068
29480c32
JB
1069 /* Remove any trailing TKB suffix. It tells us that this symbol
1070 is for the body of a task, but that information does not actually
1071 appear in the decoded name. */
1072
61012eef 1073 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1074 len0 -= 3;
76a01679 1075
a10967fa
JB
1076 /* Remove any trailing TB suffix. The TB suffix is slightly different
1077 from the TKB suffix because it is used for non-anonymous task
1078 bodies. */
1079
61012eef 1080 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1081 len0 -= 2;
1082
29480c32
JB
1083 /* Remove trailing "B" suffixes. */
1084 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1085
61012eef 1086 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1087 len0 -= 1;
1088
4c4b4cd2 1089 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1090
f945dedf 1091 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1092
29480c32
JB
1093 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1094
4c4b4cd2 1095 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1096 {
4c4b4cd2
PH
1097 i = len0 - 2;
1098 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1099 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1100 i -= 1;
4c4b4cd2 1101 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1102 len0 = i - 1;
4c4b4cd2 1103 else if (encoded[i] == '$')
dda83cd7 1104 len0 = i;
d2e4a39e 1105 }
14f9c5c9 1106
29480c32
JB
1107 /* The first few characters that are not alphabetic are not part
1108 of any encoding we use, so we can copy them over verbatim. */
1109
4c4b4cd2
PH
1110 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1111 decoded[j] = encoded[i];
14f9c5c9
AS
1112
1113 at_start_name = 1;
1114 while (i < len0)
1115 {
29480c32 1116 /* Is this a symbol function? */
4c4b4cd2 1117 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1118 {
1119 int k;
1120
1121 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1122 {
1123 int op_len = strlen (ada_opname_table[k].encoded);
1124 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1125 op_len - 1) == 0)
1126 && !isalnum (encoded[i + op_len]))
1127 {
1128 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1129 at_start_name = 0;
1130 i += op_len;
1131 j += strlen (ada_opname_table[k].decoded);
1132 break;
1133 }
1134 }
1135 if (ada_opname_table[k].encoded != NULL)
1136 continue;
1137 }
14f9c5c9
AS
1138 at_start_name = 0;
1139
529cad9c 1140 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1141 into "." (just below). */
529cad9c 1142
61012eef 1143 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1144 i += 2;
529cad9c 1145
29480c32 1146 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1147 be translated into "." (just below). These are internal names
1148 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1149
1150 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1151 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1152 && isdigit (encoded [i+4]))
1153 {
1154 int k = i + 5;
1155
1156 while (k < len0 && isdigit (encoded[k]))
1157 k++; /* Skip any extra digit. */
1158
1159 /* Double-check that the "__B_{DIGITS}+" sequence we found
1160 is indeed followed by "__". */
1161 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1162 i = k;
1163 }
29480c32 1164
529cad9c
PH
1165 /* Remove _E{DIGITS}+[sb] */
1166
1167 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1168 of subprograms created by the compiler for each entry. The first
1169 one implements the actual entry code, and has a suffix following
1170 the convention above; the second one implements the barrier and
1171 uses the same convention as above, except that the 'E' is replaced
1172 by a 'B'.
529cad9c 1173
dda83cd7
SM
1174 Just as above, we do not decode the name of barrier functions
1175 to give the user a clue that the code he is debugging has been
1176 internally generated. */
529cad9c
PH
1177
1178 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1179 && isdigit (encoded[i+2]))
1180 {
1181 int k = i + 3;
1182
1183 while (k < len0 && isdigit (encoded[k]))
1184 k++;
1185
1186 if (k < len0
1187 && (encoded[k] == 'b' || encoded[k] == 's'))
1188 {
1189 k++;
1190 /* Just as an extra precaution, make sure that if this
1191 suffix is followed by anything else, it is a '_'.
1192 Otherwise, we matched this sequence by accident. */
1193 if (k == len0
1194 || (k < len0 && encoded[k] == '_'))
1195 i = k;
1196 }
1197 }
529cad9c
PH
1198
1199 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1200 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1201
1202 if (i < len0 + 3
dda83cd7
SM
1203 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1204 {
1205 /* Backtrack a bit up until we reach either the begining of
1206 the encoded name, or "__". Make sure that we only find
1207 digits or lowercase characters. */
1208 const char *ptr = encoded + i - 1;
1209
1210 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1211 ptr--;
1212 if (ptr < encoded
1213 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1214 i++;
1215 }
529cad9c 1216
4c4b4cd2 1217 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1218 {
1219 /* This is a X[bn]* sequence not separated from the previous
1220 part of the name with a non-alpha-numeric character (in other
1221 words, immediately following an alpha-numeric character), then
1222 verify that it is placed at the end of the encoded name. If
1223 not, then the encoding is not valid and we should abort the
1224 decoding. Otherwise, just skip it, it is used in body-nested
1225 package names. */
1226 do
1227 i += 1;
1228 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1229 if (i < len0)
1230 goto Suppress;
1231 }
cdc7bb92 1232 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1233 {
1234 /* Replace '__' by '.'. */
1235 decoded[j] = '.';
1236 at_start_name = 1;
1237 i += 2;
1238 j += 1;
1239 }
14f9c5c9 1240 else
dda83cd7
SM
1241 {
1242 /* It's a character part of the decoded name, so just copy it
1243 over. */
1244 decoded[j] = encoded[i];
1245 i += 1;
1246 j += 1;
1247 }
14f9c5c9 1248 }
f945dedf 1249 decoded.resize (j);
14f9c5c9 1250
29480c32
JB
1251 /* Decoded names should never contain any uppercase character.
1252 Double-check this, and abort the decoding if we find one. */
1253
f945dedf 1254 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1255 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1256 goto Suppress;
1257
965bc1df
TT
1258 /* If the compiler added a suffix, append it now. */
1259 if (suffix >= 0)
1260 decoded = decoded + "[" + &encoded[suffix] + "]";
1261
f945dedf 1262 return decoded;
14f9c5c9
AS
1263
1264Suppress:
8a3df5ac
TT
1265 if (!wrap)
1266 return {};
1267
4c4b4cd2 1268 if (encoded[0] == '<')
f945dedf 1269 decoded = encoded;
14f9c5c9 1270 else
f945dedf 1271 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2 1272 return decoded;
4c4b4cd2
PH
1273}
1274
1275/* Table for keeping permanent unique copies of decoded names. Once
1276 allocated, names in this table are never released. While this is a
1277 storage leak, it should not be significant unless there are massive
1278 changes in the set of decoded names in successive versions of a
1279 symbol table loaded during a single session. */
1280static struct htab *decoded_names_store;
1281
1282/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1283 in the language-specific part of GSYMBOL, if it has not been
1284 previously computed. Tries to save the decoded name in the same
1285 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1286 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1287 GSYMBOL).
4c4b4cd2
PH
1288 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1289 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1290 when a decoded name is cached in it. */
4c4b4cd2 1291
45e6c716 1292const char *
f85f34ed 1293ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1294{
f85f34ed
TT
1295 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1296 const char **resultp =
615b3f62 1297 &gsymbol->language_specific.demangled_name;
5b4ee69b 1298
f85f34ed 1299 if (!gsymbol->ada_mangled)
4c4b4cd2 1300 {
4d4eaa30 1301 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1302 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1303
f85f34ed 1304 gsymbol->ada_mangled = 1;
5b4ee69b 1305
f85f34ed 1306 if (obstack != NULL)
f945dedf 1307 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1308 else
dda83cd7 1309 {
f85f34ed
TT
1310 /* Sometimes, we can't find a corresponding objfile, in
1311 which case, we put the result on the heap. Since we only
1312 decode when needed, we hope this usually does not cause a
1313 significant memory leak (FIXME). */
1314
dda83cd7
SM
1315 char **slot = (char **) htab_find_slot (decoded_names_store,
1316 decoded.c_str (), INSERT);
5b4ee69b 1317
dda83cd7
SM
1318 if (*slot == NULL)
1319 *slot = xstrdup (decoded.c_str ());
1320 *resultp = *slot;
1321 }
4c4b4cd2 1322 }
14f9c5c9 1323
4c4b4cd2
PH
1324 return *resultp;
1325}
76a01679 1326
2c0b251b 1327static char *
76a01679 1328ada_la_decode (const char *encoded, int options)
4c4b4cd2 1329{
f945dedf 1330 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1331}
1332
14f9c5c9 1333\f
d2e4a39e 1334
dda83cd7 1335 /* Arrays */
14f9c5c9 1336
28c85d6c
JB
1337/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1338 generated by the GNAT compiler to describe the index type used
1339 for each dimension of an array, check whether it follows the latest
1340 known encoding. If not, fix it up to conform to the latest encoding.
1341 Otherwise, do nothing. This function also does nothing if
1342 INDEX_DESC_TYPE is NULL.
1343
85102364 1344 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1345 Initially, the information would be provided through the name of each
1346 field of the structure type only, while the type of these fields was
1347 described as unspecified and irrelevant. The debugger was then expected
1348 to perform a global type lookup using the name of that field in order
1349 to get access to the full index type description. Because these global
1350 lookups can be very expensive, the encoding was later enhanced to make
1351 the global lookup unnecessary by defining the field type as being
1352 the full index type description.
1353
1354 The purpose of this routine is to allow us to support older versions
1355 of the compiler by detecting the use of the older encoding, and by
1356 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1357 we essentially replace each field's meaningless type by the associated
1358 index subtype). */
1359
1360void
1361ada_fixup_array_indexes_type (struct type *index_desc_type)
1362{
1363 int i;
1364
1365 if (index_desc_type == NULL)
1366 return;
1f704f76 1367 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1368
1369 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1370 to check one field only, no need to check them all). If not, return
1371 now.
1372
1373 If our INDEX_DESC_TYPE was generated using the older encoding,
1374 the field type should be a meaningless integer type whose name
1375 is not equal to the field name. */
940da03e
SM
1376 if (index_desc_type->field (0).type ()->name () != NULL
1377 && strcmp (index_desc_type->field (0).type ()->name (),
dda83cd7 1378 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
28c85d6c
JB
1379 return;
1380
1381 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1382 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1383 {
0d5cff50 1384 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1385 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1386
1387 if (raw_type)
5d14b6e5 1388 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1389 }
1390}
1391
4c4b4cd2
PH
1392/* The desc_* routines return primitive portions of array descriptors
1393 (fat pointers). */
14f9c5c9
AS
1394
1395/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1396 level of indirection, if needed. */
1397
d2e4a39e
AS
1398static struct type *
1399desc_base_type (struct type *type)
14f9c5c9
AS
1400{
1401 if (type == NULL)
1402 return NULL;
61ee279c 1403 type = ada_check_typedef (type);
78134374 1404 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1405 type = ada_typedef_target_type (type);
1406
1265e4aa 1407 if (type != NULL
78134374 1408 && (type->code () == TYPE_CODE_PTR
dda83cd7 1409 || type->code () == TYPE_CODE_REF))
61ee279c 1410 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1411 else
1412 return type;
1413}
1414
4c4b4cd2
PH
1415/* True iff TYPE indicates a "thin" array pointer type. */
1416
14f9c5c9 1417static int
d2e4a39e 1418is_thin_pntr (struct type *type)
14f9c5c9 1419{
d2e4a39e 1420 return
14f9c5c9
AS
1421 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1422 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1423}
1424
4c4b4cd2
PH
1425/* The descriptor type for thin pointer type TYPE. */
1426
d2e4a39e
AS
1427static struct type *
1428thin_descriptor_type (struct type *type)
14f9c5c9 1429{
d2e4a39e 1430 struct type *base_type = desc_base_type (type);
5b4ee69b 1431
14f9c5c9
AS
1432 if (base_type == NULL)
1433 return NULL;
1434 if (is_suffix (ada_type_name (base_type), "___XVE"))
1435 return base_type;
d2e4a39e 1436 else
14f9c5c9 1437 {
d2e4a39e 1438 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1439
14f9c5c9 1440 if (alt_type == NULL)
dda83cd7 1441 return base_type;
14f9c5c9 1442 else
dda83cd7 1443 return alt_type;
14f9c5c9
AS
1444 }
1445}
1446
4c4b4cd2
PH
1447/* A pointer to the array data for thin-pointer value VAL. */
1448
d2e4a39e
AS
1449static struct value *
1450thin_data_pntr (struct value *val)
14f9c5c9 1451{
828292f2 1452 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1453 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1454
556bdfd4
UW
1455 data_type = lookup_pointer_type (data_type);
1456
78134374 1457 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1458 return value_cast (data_type, value_copy (val));
d2e4a39e 1459 else
42ae5230 1460 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1461}
1462
4c4b4cd2
PH
1463/* True iff TYPE indicates a "thick" array pointer type. */
1464
14f9c5c9 1465static int
d2e4a39e 1466is_thick_pntr (struct type *type)
14f9c5c9
AS
1467{
1468 type = desc_base_type (type);
78134374 1469 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1470 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1471}
1472
4c4b4cd2
PH
1473/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1474 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1475
d2e4a39e
AS
1476static struct type *
1477desc_bounds_type (struct type *type)
14f9c5c9 1478{
d2e4a39e 1479 struct type *r;
14f9c5c9
AS
1480
1481 type = desc_base_type (type);
1482
1483 if (type == NULL)
1484 return NULL;
1485 else if (is_thin_pntr (type))
1486 {
1487 type = thin_descriptor_type (type);
1488 if (type == NULL)
dda83cd7 1489 return NULL;
14f9c5c9
AS
1490 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1491 if (r != NULL)
dda83cd7 1492 return ada_check_typedef (r);
14f9c5c9 1493 }
78134374 1494 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1495 {
1496 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1497 if (r != NULL)
dda83cd7 1498 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1499 }
1500 return NULL;
1501}
1502
1503/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1504 one, a pointer to its bounds data. Otherwise NULL. */
1505
d2e4a39e
AS
1506static struct value *
1507desc_bounds (struct value *arr)
14f9c5c9 1508{
df407dfe 1509 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1510
d2e4a39e 1511 if (is_thin_pntr (type))
14f9c5c9 1512 {
d2e4a39e 1513 struct type *bounds_type =
dda83cd7 1514 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1515 LONGEST addr;
1516
4cdfadb1 1517 if (bounds_type == NULL)
dda83cd7 1518 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1519
1520 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1521 since desc_type is an XVE-encoded type (and shouldn't be),
1522 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1523 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1524 addr = value_as_long (arr);
d2e4a39e 1525 else
dda83cd7 1526 addr = value_address (arr);
14f9c5c9 1527
d2e4a39e 1528 return
dda83cd7
SM
1529 value_from_longest (lookup_pointer_type (bounds_type),
1530 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1531 }
1532
1533 else if (is_thick_pntr (type))
05e522ef 1534 {
158cc4fe 1535 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
05e522ef
JB
1536 _("Bad GNAT array descriptor"));
1537 struct type *p_bounds_type = value_type (p_bounds);
1538
1539 if (p_bounds_type
78134374 1540 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1541 {
1542 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1543
e46d3488 1544 if (target_type->is_stub ())
05e522ef
JB
1545 p_bounds = value_cast (lookup_pointer_type
1546 (ada_check_typedef (target_type)),
1547 p_bounds);
1548 }
1549 else
1550 error (_("Bad GNAT array descriptor"));
1551
1552 return p_bounds;
1553 }
14f9c5c9
AS
1554 else
1555 return NULL;
1556}
1557
4c4b4cd2
PH
1558/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1559 position of the field containing the address of the bounds data. */
1560
14f9c5c9 1561static int
d2e4a39e 1562fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1563{
1564 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1565}
1566
1567/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1568 size of the field containing the address of the bounds data. */
1569
14f9c5c9 1570static int
d2e4a39e 1571fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1572{
1573 type = desc_base_type (type);
1574
d2e4a39e 1575 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1576 return TYPE_FIELD_BITSIZE (type, 1);
1577 else
940da03e 1578 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1579}
1580
4c4b4cd2 1581/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1582 pointer to one, the type of its array data (a array-with-no-bounds type);
1583 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1584 data. */
4c4b4cd2 1585
d2e4a39e 1586static struct type *
556bdfd4 1587desc_data_target_type (struct type *type)
14f9c5c9
AS
1588{
1589 type = desc_base_type (type);
1590
4c4b4cd2 1591 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1592 if (is_thin_pntr (type))
940da03e 1593 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1594 else if (is_thick_pntr (type))
556bdfd4
UW
1595 {
1596 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1597
1598 if (data_type
78134374 1599 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1600 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1601 }
1602
1603 return NULL;
14f9c5c9
AS
1604}
1605
1606/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1607 its array data. */
4c4b4cd2 1608
d2e4a39e
AS
1609static struct value *
1610desc_data (struct value *arr)
14f9c5c9 1611{
df407dfe 1612 struct type *type = value_type (arr);
5b4ee69b 1613
14f9c5c9
AS
1614 if (is_thin_pntr (type))
1615 return thin_data_pntr (arr);
1616 else if (is_thick_pntr (type))
158cc4fe 1617 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
dda83cd7 1618 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1619 else
1620 return NULL;
1621}
1622
1623
1624/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1625 position of the field containing the address of the data. */
1626
14f9c5c9 1627static int
d2e4a39e 1628fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1629{
1630 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1631}
1632
1633/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1634 size of the field containing the address of the data. */
1635
14f9c5c9 1636static int
d2e4a39e 1637fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1638{
1639 type = desc_base_type (type);
1640
1641 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1642 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1643 else
940da03e 1644 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1645}
1646
4c4b4cd2 1647/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1648 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
d2e4a39e
AS
1651static struct value *
1652desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1653{
250106a7
TT
1654 char bound_name[20];
1655 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1656 which ? 'U' : 'L', i - 1);
158cc4fe 1657 return value_struct_elt (&bounds, {}, bound_name, NULL,
dda83cd7 1658 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1659}
1660
1661/* If BOUNDS is an array-bounds structure type, return the bit position
1662 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1663 bound, if WHICH is 1. The first bound is I=1. */
1664
14f9c5c9 1665static int
d2e4a39e 1666desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1667{
d2e4a39e 1668 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1669}
1670
1671/* If BOUNDS is an array-bounds structure type, return the bit field size
1672 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1673 bound, if WHICH is 1. The first bound is I=1. */
1674
76a01679 1675static int
d2e4a39e 1676desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1677{
1678 type = desc_base_type (type);
1679
d2e4a39e
AS
1680 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1681 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1682 else
940da03e 1683 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1684}
1685
1686/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1687 Ith bound (numbering from 1). Otherwise, NULL. */
1688
d2e4a39e
AS
1689static struct type *
1690desc_index_type (struct type *type, int i)
14f9c5c9
AS
1691{
1692 type = desc_base_type (type);
1693
78134374 1694 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1695 {
1696 char bound_name[20];
1697 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1698 return lookup_struct_elt_type (type, bound_name, 1);
1699 }
d2e4a39e 1700 else
14f9c5c9
AS
1701 return NULL;
1702}
1703
4c4b4cd2
PH
1704/* The number of index positions in the array-bounds type TYPE.
1705 Return 0 if TYPE is NULL. */
1706
14f9c5c9 1707static int
d2e4a39e 1708desc_arity (struct type *type)
14f9c5c9
AS
1709{
1710 type = desc_base_type (type);
1711
1712 if (type != NULL)
1f704f76 1713 return type->num_fields () / 2;
14f9c5c9
AS
1714 return 0;
1715}
1716
4c4b4cd2
PH
1717/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1718 an array descriptor type (representing an unconstrained array
1719 type). */
1720
76a01679
JB
1721static int
1722ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1723{
1724 if (type == NULL)
1725 return 0;
61ee279c 1726 type = ada_check_typedef (type);
78134374 1727 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1728 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1729}
1730
52ce6436 1731/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1732 * to one. */
52ce6436 1733
2c0b251b 1734static int
52ce6436
PH
1735ada_is_array_type (struct type *type)
1736{
78134374
SM
1737 while (type != NULL
1738 && (type->code () == TYPE_CODE_PTR
1739 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1740 type = TYPE_TARGET_TYPE (type);
1741 return ada_is_direct_array_type (type);
1742}
1743
4c4b4cd2 1744/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1745
14f9c5c9 1746int
4c4b4cd2 1747ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1748{
1749 if (type == NULL)
1750 return 0;
61ee279c 1751 type = ada_check_typedef (type);
78134374
SM
1752 return (type->code () == TYPE_CODE_ARRAY
1753 || (type->code () == TYPE_CODE_PTR
1754 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1755 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1756}
1757
4c4b4cd2
PH
1758/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1759
14f9c5c9 1760int
4c4b4cd2 1761ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1762{
556bdfd4 1763 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1764
1765 if (type == NULL)
1766 return 0;
61ee279c 1767 type = ada_check_typedef (type);
556bdfd4 1768 return (data_type != NULL
78134374 1769 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1770 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1771}
1772
1773/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1774 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1775 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1776 is still needed. */
1777
14f9c5c9 1778int
ebf56fd3 1779ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1780{
d2e4a39e 1781 return
14f9c5c9 1782 type != NULL
78134374 1783 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1784 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1785 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1786 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1787}
1788
1789
4c4b4cd2 1790/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1791 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1792 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1793 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1794 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1795 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1796 a descriptor. */
de93309a
SM
1797
1798static struct type *
d2e4a39e 1799ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1800{
ad82864c
JB
1801 if (ada_is_constrained_packed_array_type (value_type (arr)))
1802 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1803
df407dfe
AC
1804 if (!ada_is_array_descriptor_type (value_type (arr)))
1805 return value_type (arr);
d2e4a39e
AS
1806
1807 if (!bounds)
ad82864c
JB
1808 {
1809 struct type *array_type =
1810 ada_check_typedef (desc_data_target_type (value_type (arr)));
1811
1812 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1813 TYPE_FIELD_BITSIZE (array_type, 0) =
1814 decode_packed_array_bitsize (value_type (arr));
1815
1816 return array_type;
1817 }
14f9c5c9
AS
1818 else
1819 {
d2e4a39e 1820 struct type *elt_type;
14f9c5c9 1821 int arity;
d2e4a39e 1822 struct value *descriptor;
14f9c5c9 1823
df407dfe
AC
1824 elt_type = ada_array_element_type (value_type (arr), -1);
1825 arity = ada_array_arity (value_type (arr));
14f9c5c9 1826
d2e4a39e 1827 if (elt_type == NULL || arity == 0)
dda83cd7 1828 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1829
1830 descriptor = desc_bounds (arr);
d2e4a39e 1831 if (value_as_long (descriptor) == 0)
dda83cd7 1832 return NULL;
d2e4a39e 1833 while (arity > 0)
dda83cd7
SM
1834 {
1835 struct type *range_type = alloc_type_copy (value_type (arr));
1836 struct type *array_type = alloc_type_copy (value_type (arr));
1837 struct value *low = desc_one_bound (descriptor, arity, 0);
1838 struct value *high = desc_one_bound (descriptor, arity, 1);
1839
1840 arity -= 1;
1841 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1842 longest_to_int (value_as_long (low)),
1843 longest_to_int (value_as_long (high)));
dda83cd7 1844 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1845
1846 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1847 {
1848 /* We need to store the element packed bitsize, as well as
dda83cd7 1849 recompute the array size, because it was previously
e67ad678
JB
1850 computed based on the unpacked element size. */
1851 LONGEST lo = value_as_long (low);
1852 LONGEST hi = value_as_long (high);
1853
1854 TYPE_FIELD_BITSIZE (elt_type, 0) =
1855 decode_packed_array_bitsize (value_type (arr));
1856 /* If the array has no element, then the size is already
dda83cd7 1857 zero, and does not need to be recomputed. */
e67ad678
JB
1858 if (lo < hi)
1859 {
1860 int array_bitsize =
dda83cd7 1861 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1862
1863 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1864 }
1865 }
dda83cd7 1866 }
14f9c5c9
AS
1867
1868 return lookup_pointer_type (elt_type);
1869 }
1870}
1871
1872/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1873 Otherwise, returns either a standard GDB array with bounds set
1874 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1875 GDB array. Returns NULL if ARR is a null fat pointer. */
1876
d2e4a39e
AS
1877struct value *
1878ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1879{
df407dfe 1880 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1881 {
d2e4a39e 1882 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1883
14f9c5c9 1884 if (arrType == NULL)
dda83cd7 1885 return NULL;
14f9c5c9
AS
1886 return value_cast (arrType, value_copy (desc_data (arr)));
1887 }
ad82864c
JB
1888 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1889 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1890 else
1891 return arr;
1892}
1893
1894/* If ARR does not represent an array, returns ARR unchanged.
1895 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1896 be ARR itself if it already is in the proper form). */
1897
720d1a40 1898struct value *
d2e4a39e 1899ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1900{
df407dfe 1901 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1902 {
d2e4a39e 1903 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1904
14f9c5c9 1905 if (arrVal == NULL)
dda83cd7 1906 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1907 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1908 return value_ind (arrVal);
1909 }
ad82864c
JB
1910 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1911 return decode_constrained_packed_array (arr);
d2e4a39e 1912 else
14f9c5c9
AS
1913 return arr;
1914}
1915
1916/* If TYPE represents a GNAT array type, return it translated to an
1917 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1918 packing). For other types, is the identity. */
1919
d2e4a39e
AS
1920struct type *
1921ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1922{
ad82864c
JB
1923 if (ada_is_constrained_packed_array_type (type))
1924 return decode_constrained_packed_array_type (type);
17280b9f
UW
1925
1926 if (ada_is_array_descriptor_type (type))
556bdfd4 1927 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1928
1929 return type;
14f9c5c9
AS
1930}
1931
4c4b4cd2
PH
1932/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1933
ad82864c 1934static int
57567375 1935ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1936{
1937 if (type == NULL)
1938 return 0;
4c4b4cd2 1939 type = desc_base_type (type);
61ee279c 1940 type = ada_check_typedef (type);
d2e4a39e 1941 return
14f9c5c9
AS
1942 ada_type_name (type) != NULL
1943 && strstr (ada_type_name (type), "___XP") != NULL;
1944}
1945
ad82864c
JB
1946/* Non-zero iff TYPE represents a standard GNAT constrained
1947 packed-array type. */
1948
1949int
1950ada_is_constrained_packed_array_type (struct type *type)
1951{
57567375 1952 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1953 && !ada_is_array_descriptor_type (type);
1954}
1955
1956/* Non-zero iff TYPE represents an array descriptor for a
1957 unconstrained packed-array type. */
1958
1959static int
1960ada_is_unconstrained_packed_array_type (struct type *type)
1961{
57567375
TT
1962 if (!ada_is_array_descriptor_type (type))
1963 return 0;
1964
1965 if (ada_is_gnat_encoded_packed_array_type (type))
1966 return 1;
1967
1968 /* If we saw GNAT encodings, then the above code is sufficient.
1969 However, with minimal encodings, we will just have a thick
1970 pointer instead. */
1971 if (is_thick_pntr (type))
1972 {
1973 type = desc_base_type (type);
1974 /* The structure's first field is a pointer to an array, so this
1975 fetches the array type. */
1976 type = TYPE_TARGET_TYPE (type->field (0).type ());
1977 /* Now we can see if the array elements are packed. */
1978 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1979 }
1980
1981 return 0;
ad82864c
JB
1982}
1983
c9a28cbe
TT
1984/* Return true if TYPE is a (Gnat-encoded) constrained packed array
1985 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1986
1987static bool
1988ada_is_any_packed_array_type (struct type *type)
1989{
1990 return (ada_is_constrained_packed_array_type (type)
1991 || (type->code () == TYPE_CODE_ARRAY
1992 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1993}
1994
ad82864c
JB
1995/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1996 return the size of its elements in bits. */
1997
1998static long
1999decode_packed_array_bitsize (struct type *type)
2000{
0d5cff50
DE
2001 const char *raw_name;
2002 const char *tail;
ad82864c
JB
2003 long bits;
2004
720d1a40
JB
2005 /* Access to arrays implemented as fat pointers are encoded as a typedef
2006 of the fat pointer type. We need the name of the fat pointer type
2007 to do the decoding, so strip the typedef layer. */
78134374 2008 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2009 type = ada_typedef_target_type (type);
2010
2011 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2012 if (!raw_name)
2013 raw_name = ada_type_name (desc_base_type (type));
2014
2015 if (!raw_name)
2016 return 0;
2017
2018 tail = strstr (raw_name, "___XP");
57567375
TT
2019 if (tail == nullptr)
2020 {
2021 gdb_assert (is_thick_pntr (type));
2022 /* The structure's first field is a pointer to an array, so this
2023 fetches the array type. */
2024 type = TYPE_TARGET_TYPE (type->field (0).type ());
2025 /* Now we can see if the array elements are packed. */
2026 return TYPE_FIELD_BITSIZE (type, 0);
2027 }
ad82864c
JB
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037}
2038
14f9c5c9
AS
2039/* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2046 in bits.
2047
2048 Note that, for arrays whose index type has an XA encoding where
2049 a bound references a record discriminant, getting that discriminant,
2050 and therefore the actual value of that bound, is not possible
2051 because none of the given parameters gives us access to the record.
2052 This function assumes that it is OK in the context where it is being
2053 used to return an array whose bounds are still dynamic and where
2054 the length is arbitrary. */
4c4b4cd2 2055
d2e4a39e 2056static struct type *
ad82864c 2057constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2058{
d2e4a39e
AS
2059 struct type *new_elt_type;
2060 struct type *new_type;
99b1c762
JB
2061 struct type *index_type_desc;
2062 struct type *index_type;
14f9c5c9
AS
2063 LONGEST low_bound, high_bound;
2064
61ee279c 2065 type = ada_check_typedef (type);
78134374 2066 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2067 return type;
2068
99b1c762
JB
2069 index_type_desc = ada_find_parallel_type (type, "___XA");
2070 if (index_type_desc)
940da03e 2071 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2072 NULL);
2073 else
3d967001 2074 index_type = type->index_type ();
99b1c762 2075
e9bb382b 2076 new_type = alloc_type_copy (type);
ad82864c
JB
2077 new_elt_type =
2078 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2079 elt_bits);
99b1c762 2080 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2081 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2082 new_type->set_name (ada_type_name (type));
14f9c5c9 2083
78134374 2084 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2085 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2086 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2087 low_bound = high_bound = 0;
2088 if (high_bound < low_bound)
2089 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2090 else
14f9c5c9
AS
2091 {
2092 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2093 TYPE_LENGTH (new_type) =
dda83cd7 2094 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2095 }
2096
9cdd0d12 2097 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2098 return new_type;
2099}
2100
ad82864c
JB
2101/* The array type encoded by TYPE, where
2102 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2103
d2e4a39e 2104static struct type *
ad82864c 2105decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2106{
0d5cff50 2107 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2108 char *name;
0d5cff50 2109 const char *tail;
d2e4a39e 2110 struct type *shadow_type;
14f9c5c9 2111 long bits;
14f9c5c9 2112
727e3d2e
JB
2113 if (!raw_name)
2114 raw_name = ada_type_name (desc_base_type (type));
2115
2116 if (!raw_name)
2117 return NULL;
2118
2119 name = (char *) alloca (strlen (raw_name) + 1);
2120 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2121 type = desc_base_type (type);
2122
14f9c5c9
AS
2123 memcpy (name, raw_name, tail - raw_name);
2124 name[tail - raw_name] = '\000';
2125
b4ba55a1
JB
2126 shadow_type = ada_find_parallel_type_with_name (type, name);
2127
2128 if (shadow_type == NULL)
14f9c5c9 2129 {
323e0a4a 2130 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2131 return NULL;
2132 }
f168693b 2133 shadow_type = check_typedef (shadow_type);
14f9c5c9 2134
78134374 2135 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2136 {
0963b4bd
MS
2137 lim_warning (_("could not understand bounds "
2138 "information on packed array"));
14f9c5c9
AS
2139 return NULL;
2140 }
d2e4a39e 2141
ad82864c
JB
2142 bits = decode_packed_array_bitsize (type);
2143 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2144}
2145
a7400e44
TT
2146/* Helper function for decode_constrained_packed_array. Set the field
2147 bitsize on a series of packed arrays. Returns the number of
2148 elements in TYPE. */
2149
2150static LONGEST
2151recursively_update_array_bitsize (struct type *type)
2152{
2153 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2154
2155 LONGEST low, high;
1f8d2881 2156 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2157 || low > high)
2158 return 0;
2159 LONGEST our_len = high - low + 1;
2160
2161 struct type *elt_type = TYPE_TARGET_TYPE (type);
2162 if (elt_type->code () == TYPE_CODE_ARRAY)
2163 {
2164 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2165 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2166 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2167
2168 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2169 / HOST_CHAR_BIT);
2170 }
2171
2172 return our_len;
2173}
2174
ad82864c
JB
2175/* Given that ARR is a struct value *indicating a GNAT constrained packed
2176 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2177 standard GDB array type except that the BITSIZEs of the array
2178 target types are set to the number of bits in each element, and the
4c4b4cd2 2179 type length is set appropriately. */
14f9c5c9 2180
d2e4a39e 2181static struct value *
ad82864c 2182decode_constrained_packed_array (struct value *arr)
14f9c5c9 2183{
4c4b4cd2 2184 struct type *type;
14f9c5c9 2185
11aa919a
PMR
2186 /* If our value is a pointer, then dereference it. Likewise if
2187 the value is a reference. Make sure that this operation does not
2188 cause the target type to be fixed, as this would indirectly cause
2189 this array to be decoded. The rest of the routine assumes that
2190 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2191 and "value_ind" routines to perform the dereferencing, as opposed
2192 to using "ada_coerce_ref" or "ada_value_ind". */
2193 arr = coerce_ref (arr);
78134374 2194 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2195 arr = value_ind (arr);
4c4b4cd2 2196
ad82864c 2197 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2198 if (type == NULL)
2199 {
323e0a4a 2200 error (_("can't unpack array"));
14f9c5c9
AS
2201 return NULL;
2202 }
61ee279c 2203
a7400e44
TT
2204 /* Decoding the packed array type could not correctly set the field
2205 bitsizes for any dimension except the innermost, because the
2206 bounds may be variable and were not passed to that function. So,
2207 we further resolve the array bounds here and then update the
2208 sizes. */
2209 const gdb_byte *valaddr = value_contents_for_printing (arr);
2210 CORE_ADDR address = value_address (arr);
2211 gdb::array_view<const gdb_byte> view
2212 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2213 type = resolve_dynamic_type (type, view, address);
2214 recursively_update_array_bitsize (type);
2215
d5a22e77 2216 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2217 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2218 {
2219 /* This is a (right-justified) modular type representing a packed
24b21115
SM
2220 array with no wrapper. In order to interpret the value through
2221 the (left-justified) packed array type we just built, we must
2222 first left-justify it. */
61ee279c
PH
2223 int bit_size, bit_pos;
2224 ULONGEST mod;
2225
df407dfe 2226 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2227 bit_size = 0;
2228 while (mod > 0)
2229 {
2230 bit_size += 1;
2231 mod >>= 1;
2232 }
df407dfe 2233 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2234 arr = ada_value_primitive_packed_val (arr, NULL,
2235 bit_pos / HOST_CHAR_BIT,
2236 bit_pos % HOST_CHAR_BIT,
2237 bit_size,
2238 type);
2239 }
2240
4c4b4cd2 2241 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2242}
2243
2244
2245/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2246 given in IND. ARR must be a simple array. */
14f9c5c9 2247
d2e4a39e
AS
2248static struct value *
2249value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2250{
2251 int i;
2252 int bits, elt_off, bit_off;
2253 long elt_total_bit_offset;
d2e4a39e
AS
2254 struct type *elt_type;
2255 struct value *v;
14f9c5c9
AS
2256
2257 bits = 0;
2258 elt_total_bit_offset = 0;
df407dfe 2259 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2260 for (i = 0; i < arity; i += 1)
14f9c5c9 2261 {
78134374 2262 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2263 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2264 error
2265 (_("attempt to do packed indexing of "
0963b4bd 2266 "something other than a packed array"));
14f9c5c9 2267 else
dda83cd7
SM
2268 {
2269 struct type *range_type = elt_type->index_type ();
2270 LONGEST lowerbound, upperbound;
2271 LONGEST idx;
2272
1f8d2881 2273 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2274 {
2275 lim_warning (_("don't know bounds of array"));
2276 lowerbound = upperbound = 0;
2277 }
2278
2279 idx = pos_atr (ind[i]);
2280 if (idx < lowerbound || idx > upperbound)
2281 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2282 (long) idx);
dda83cd7
SM
2283 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2284 elt_total_bit_offset += (idx - lowerbound) * bits;
2285 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2286 }
14f9c5c9
AS
2287 }
2288 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2289 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2290
2291 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2292 bits, elt_type);
14f9c5c9
AS
2293 return v;
2294}
2295
4c4b4cd2 2296/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2297
2298static int
d2e4a39e 2299has_negatives (struct type *type)
14f9c5c9 2300{
78134374 2301 switch (type->code ())
d2e4a39e
AS
2302 {
2303 default:
2304 return 0;
2305 case TYPE_CODE_INT:
c6d940a9 2306 return !type->is_unsigned ();
d2e4a39e 2307 case TYPE_CODE_RANGE:
5537ddd0 2308 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2309 }
14f9c5c9 2310}
d2e4a39e 2311
f93fca70 2312/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2313 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2314 the unpacked buffer.
14f9c5c9 2315
5b639dea
JB
2316 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2317 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2318
f93fca70
JB
2319 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2320 zero otherwise.
14f9c5c9 2321
f93fca70 2322 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2323
f93fca70
JB
2324 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2325
2326static void
2327ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2328 gdb_byte *unpacked, int unpacked_len,
2329 int is_big_endian, int is_signed_type,
2330 int is_scalar)
2331{
a1c95e6b
JB
2332 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2333 int src_idx; /* Index into the source area */
2334 int src_bytes_left; /* Number of source bytes left to process. */
2335 int srcBitsLeft; /* Number of source bits left to move */
2336 int unusedLS; /* Number of bits in next significant
dda83cd7 2337 byte of source that are unused */
a1c95e6b 2338
a1c95e6b
JB
2339 int unpacked_idx; /* Index into the unpacked buffer */
2340 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2341
4c4b4cd2 2342 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2343 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2344 unsigned char sign;
a1c95e6b 2345
4c4b4cd2
PH
2346 /* Transmit bytes from least to most significant; delta is the direction
2347 the indices move. */
f93fca70 2348 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2349
5b639dea
JB
2350 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2351 bits from SRC. .*/
2352 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2353 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2354 bit_size, unpacked_len);
2355
14f9c5c9 2356 srcBitsLeft = bit_size;
086ca51f 2357 src_bytes_left = src_len;
f93fca70 2358 unpacked_bytes_left = unpacked_len;
14f9c5c9 2359 sign = 0;
f93fca70
JB
2360
2361 if (is_big_endian)
14f9c5c9 2362 {
086ca51f 2363 src_idx = src_len - 1;
f93fca70
JB
2364 if (is_signed_type
2365 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2366 sign = ~0;
d2e4a39e
AS
2367
2368 unusedLS =
dda83cd7
SM
2369 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2370 % HOST_CHAR_BIT;
14f9c5c9 2371
f93fca70
JB
2372 if (is_scalar)
2373 {
dda83cd7
SM
2374 accumSize = 0;
2375 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2376 }
2377 else
2378 {
dda83cd7
SM
2379 /* Non-scalar values must be aligned at a byte boundary... */
2380 accumSize =
2381 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2382 /* ... And are placed at the beginning (most-significant) bytes
2383 of the target. */
2384 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2385 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2386 }
14f9c5c9 2387 }
d2e4a39e 2388 else
14f9c5c9
AS
2389 {
2390 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2391
086ca51f 2392 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2393 unusedLS = bit_offset;
2394 accumSize = 0;
2395
f93fca70 2396 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2397 sign = ~0;
14f9c5c9 2398 }
d2e4a39e 2399
14f9c5c9 2400 accum = 0;
086ca51f 2401 while (src_bytes_left > 0)
14f9c5c9
AS
2402 {
2403 /* Mask for removing bits of the next source byte that are not
dda83cd7 2404 part of the value. */
d2e4a39e 2405 unsigned int unusedMSMask =
dda83cd7
SM
2406 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2407 1;
4c4b4cd2 2408 /* Sign-extend bits for this byte. */
14f9c5c9 2409 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2410
d2e4a39e 2411 accum |=
dda83cd7 2412 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2413 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2414 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2415 {
2416 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 unpacked_bytes_left -= 1;
2420 unpacked_idx += delta;
2421 }
14f9c5c9
AS
2422 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2423 unusedLS = 0;
086ca51f
JB
2424 src_bytes_left -= 1;
2425 src_idx += delta;
14f9c5c9 2426 }
086ca51f 2427 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2428 {
2429 accum |= sign << accumSize;
db297a65 2430 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2431 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2432 if (accumSize < 0)
2433 accumSize = 0;
14f9c5c9 2434 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2435 unpacked_bytes_left -= 1;
2436 unpacked_idx += delta;
14f9c5c9 2437 }
f93fca70
JB
2438}
2439
2440/* Create a new value of type TYPE from the contents of OBJ starting
2441 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2442 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2443 assigning through the result will set the field fetched from.
2444 VALADDR is ignored unless OBJ is NULL, in which case,
2445 VALADDR+OFFSET must address the start of storage containing the
2446 packed value. The value returned in this case is never an lval.
2447 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2448
2449struct value *
2450ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2451 long offset, int bit_offset, int bit_size,
dda83cd7 2452 struct type *type)
f93fca70
JB
2453{
2454 struct value *v;
bfb1c796 2455 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2456 gdb_byte *unpacked;
220475ed 2457 const int is_scalar = is_scalar_type (type);
d5a22e77 2458 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2459 gdb::byte_vector staging;
f93fca70
JB
2460
2461 type = ada_check_typedef (type);
2462
d0a9e810 2463 if (obj == NULL)
bfb1c796 2464 src = valaddr + offset;
d0a9e810 2465 else
bfb1c796 2466 src = value_contents (obj) + offset;
d0a9e810
JB
2467
2468 if (is_dynamic_type (type))
2469 {
2470 /* The length of TYPE might by dynamic, so we need to resolve
2471 TYPE in order to know its actual size, which we then use
2472 to create the contents buffer of the value we return.
2473 The difficulty is that the data containing our object is
2474 packed, and therefore maybe not at a byte boundary. So, what
2475 we do, is unpack the data into a byte-aligned buffer, and then
2476 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2477 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2478 staging.resize (staging_len);
d0a9e810
JB
2479
2480 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2481 staging.data (), staging.size (),
d0a9e810
JB
2482 is_big_endian, has_negatives (type),
2483 is_scalar);
b249d2c2 2484 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2485 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2486 {
2487 /* This happens when the length of the object is dynamic,
2488 and is actually smaller than the space reserved for it.
2489 For instance, in an array of variant records, the bit_size
2490 we're given is the array stride, which is constant and
2491 normally equal to the maximum size of its element.
2492 But, in reality, each element only actually spans a portion
2493 of that stride. */
2494 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2495 }
d0a9e810
JB
2496 }
2497
f93fca70
JB
2498 if (obj == NULL)
2499 {
2500 v = allocate_value (type);
bfb1c796 2501 src = valaddr + offset;
f93fca70
JB
2502 }
2503 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2504 {
0cafa88c 2505 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2506 gdb_byte *buf;
0cafa88c 2507
f93fca70 2508 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2509 buf = (gdb_byte *) alloca (src_len);
2510 read_memory (value_address (v), buf, src_len);
2511 src = buf;
f93fca70
JB
2512 }
2513 else
2514 {
2515 v = allocate_value (type);
bfb1c796 2516 src = value_contents (obj) + offset;
f93fca70
JB
2517 }
2518
2519 if (obj != NULL)
2520 {
2521 long new_offset = offset;
2522
2523 set_value_component_location (v, obj);
2524 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2525 set_value_bitsize (v, bit_size);
2526 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2527 {
f93fca70 2528 ++new_offset;
dda83cd7
SM
2529 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2530 }
f93fca70
JB
2531 set_value_offset (v, new_offset);
2532
2533 /* Also set the parent value. This is needed when trying to
2534 assign a new value (in inferior memory). */
2535 set_value_parent (v, obj);
2536 }
2537 else
2538 set_value_bitsize (v, bit_size);
bfb1c796 2539 unpacked = value_contents_writeable (v);
f93fca70
JB
2540
2541 if (bit_size == 0)
2542 {
2543 memset (unpacked, 0, TYPE_LENGTH (type));
2544 return v;
2545 }
2546
d5722aa2 2547 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2548 {
d0a9e810
JB
2549 /* Small short-cut: If we've unpacked the data into a buffer
2550 of the same size as TYPE's length, then we can reuse that,
2551 instead of doing the unpacking again. */
d5722aa2 2552 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2553 }
d0a9e810
JB
2554 else
2555 ada_unpack_from_contents (src, bit_offset, bit_size,
2556 unpacked, TYPE_LENGTH (type),
2557 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2558
14f9c5c9
AS
2559 return v;
2560}
d2e4a39e 2561
14f9c5c9
AS
2562/* Store the contents of FROMVAL into the location of TOVAL.
2563 Return a new value with the location of TOVAL and contents of
2564 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2565 floating-point or non-scalar types. */
14f9c5c9 2566
d2e4a39e
AS
2567static struct value *
2568ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2569{
df407dfe
AC
2570 struct type *type = value_type (toval);
2571 int bits = value_bitsize (toval);
14f9c5c9 2572
52ce6436
PH
2573 toval = ada_coerce_ref (toval);
2574 fromval = ada_coerce_ref (fromval);
2575
2576 if (ada_is_direct_array_type (value_type (toval)))
2577 toval = ada_coerce_to_simple_array (toval);
2578 if (ada_is_direct_array_type (value_type (fromval)))
2579 fromval = ada_coerce_to_simple_array (fromval);
2580
88e3b34b 2581 if (!deprecated_value_modifiable (toval))
323e0a4a 2582 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2583
d2e4a39e 2584 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2585 && bits > 0
78134374 2586 && (type->code () == TYPE_CODE_FLT
dda83cd7 2587 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2588 {
df407dfe
AC
2589 int len = (value_bitpos (toval)
2590 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2591 int from_size;
224c3ddb 2592 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2593 struct value *val;
42ae5230 2594 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2595
78134374 2596 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2597 fromval = value_cast (type, fromval);
14f9c5c9 2598
52ce6436 2599 read_memory (to_addr, buffer, len);
aced2898
PH
2600 from_size = value_bitsize (fromval);
2601 if (from_size == 0)
2602 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2603
d5a22e77 2604 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2605 ULONGEST from_offset = 0;
2606 if (is_big_endian && is_scalar_type (value_type (fromval)))
2607 from_offset = from_size - bits;
2608 copy_bitwise (buffer, value_bitpos (toval),
2609 value_contents (fromval), from_offset,
2610 bits, is_big_endian);
972daa01 2611 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2612
14f9c5c9 2613 val = value_copy (toval);
0fd88904 2614 memcpy (value_contents_raw (val), value_contents (fromval),
dda83cd7 2615 TYPE_LENGTH (type));
04624583 2616 deprecated_set_value_type (val, type);
d2e4a39e 2617
14f9c5c9
AS
2618 return val;
2619 }
2620
2621 return value_assign (toval, fromval);
2622}
2623
2624
7c512744
JB
2625/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2626 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2627 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2628 COMPONENT, and not the inferior's memory. The current contents
2629 of COMPONENT are ignored.
2630
2631 Although not part of the initial design, this function also works
2632 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2633 had a null address, and COMPONENT had an address which is equal to
2634 its offset inside CONTAINER. */
2635
52ce6436
PH
2636static void
2637value_assign_to_component (struct value *container, struct value *component,
2638 struct value *val)
2639{
2640 LONGEST offset_in_container =
42ae5230 2641 (LONGEST) (value_address (component) - value_address (container));
7c512744 2642 int bit_offset_in_container =
52ce6436
PH
2643 value_bitpos (component) - value_bitpos (container);
2644 int bits;
7c512744 2645
52ce6436
PH
2646 val = value_cast (value_type (component), val);
2647
2648 if (value_bitsize (component) == 0)
2649 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2650 else
2651 bits = value_bitsize (component);
2652
d5a22e77 2653 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2654 {
2655 int src_offset;
2656
2657 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2658 src_offset
2a62dfa9
JB
2659 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2660 else
2661 src_offset = 0;
a99bc3d2
JB
2662 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2663 value_bitpos (container) + bit_offset_in_container,
2664 value_contents (val), src_offset, bits, 1);
2a62dfa9 2665 }
52ce6436 2666 else
a99bc3d2
JB
2667 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2668 value_bitpos (container) + bit_offset_in_container,
2669 value_contents (val), 0, bits, 0);
7c512744
JB
2670}
2671
736ade86
XR
2672/* Determine if TYPE is an access to an unconstrained array. */
2673
d91e9ea8 2674bool
736ade86
XR
2675ada_is_access_to_unconstrained_array (struct type *type)
2676{
78134374 2677 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2678 && is_thick_pntr (ada_typedef_target_type (type)));
2679}
2680
4c4b4cd2
PH
2681/* The value of the element of array ARR at the ARITY indices given in IND.
2682 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2683 thereto. */
2684
d2e4a39e
AS
2685struct value *
2686ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2687{
2688 int k;
d2e4a39e
AS
2689 struct value *elt;
2690 struct type *elt_type;
14f9c5c9
AS
2691
2692 elt = ada_coerce_to_simple_array (arr);
2693
df407dfe 2694 elt_type = ada_check_typedef (value_type (elt));
78134374 2695 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2696 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2697 return value_subscript_packed (elt, arity, ind);
2698
2699 for (k = 0; k < arity; k += 1)
2700 {
b9c50e9a
XR
2701 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2702
78134374 2703 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2704 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2705
2497b498 2706 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2707
2708 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2709 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2710 {
2711 /* The element is a typedef to an unconstrained array,
2712 except that the value_subscript call stripped the
2713 typedef layer. The typedef layer is GNAT's way to
2714 specify that the element is, at the source level, an
2715 access to the unconstrained array, rather than the
2716 unconstrained array. So, we need to restore that
2717 typedef layer, which we can do by forcing the element's
2718 type back to its original type. Otherwise, the returned
2719 value is going to be printed as the array, rather
2720 than as an access. Another symptom of the same issue
2721 would be that an expression trying to dereference the
2722 element would also be improperly rejected. */
2723 deprecated_set_value_type (elt, saved_elt_type);
2724 }
2725
2726 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2727 }
b9c50e9a 2728
14f9c5c9
AS
2729 return elt;
2730}
2731
deede10c
JB
2732/* Assuming ARR is a pointer to a GDB array, the value of the element
2733 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2734 Does not read the entire array into memory.
2735
2736 Note: Unlike what one would expect, this function is used instead of
2737 ada_value_subscript for basically all non-packed array types. The reason
2738 for this is that a side effect of doing our own pointer arithmetics instead
2739 of relying on value_subscript is that there is no implicit typedef peeling.
2740 This is important for arrays of array accesses, where it allows us to
2741 preserve the fact that the array's element is an array access, where the
2742 access part os encoded in a typedef layer. */
14f9c5c9 2743
2c0b251b 2744static struct value *
deede10c 2745ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2746{
2747 int k;
919e6dbe 2748 struct value *array_ind = ada_value_ind (arr);
deede10c 2749 struct type *type
919e6dbe
PMR
2750 = check_typedef (value_enclosing_type (array_ind));
2751
78134374 2752 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2753 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2754 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2755
2756 for (k = 0; k < arity; k += 1)
2757 {
2758 LONGEST lwb, upb;
14f9c5c9 2759
78134374 2760 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2761 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2762 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2763 value_copy (arr));
3d967001 2764 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2765 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2766 type = TYPE_TARGET_TYPE (type);
2767 }
2768
2769 return value_ind (arr);
2770}
2771
0b5d8877 2772/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2773 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2774 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2775 this array is LOW, as per Ada rules. */
0b5d8877 2776static struct value *
f5938064 2777ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2778 int low, int high)
0b5d8877 2779{
b0dd7688 2780 struct type *type0 = ada_check_typedef (type);
3d967001 2781 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2782 struct type *index_type
aa715135 2783 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2784 struct type *slice_type = create_array_type_with_stride
2785 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2786 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2787 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2788 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 2789 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
2790 CORE_ADDR base;
2791
6244c119
SM
2792 low_pos = discrete_position (base_index_type, low);
2793 base_low_pos = discrete_position (base_index_type, base_low);
2794
2795 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
2796 {
2797 warning (_("unable to get positions in slice, use bounds instead"));
2798 low_pos = low;
2799 base_low_pos = base_low;
2800 }
5b4ee69b 2801
7ff5b937
TT
2802 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2803 if (stride == 0)
2804 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2805
6244c119 2806 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 2807 return value_at_lazy (slice_type, base);
0b5d8877
PH
2808}
2809
2810
2811static struct value *
2812ada_value_slice (struct value *array, int low, int high)
2813{
b0dd7688 2814 struct type *type = ada_check_typedef (value_type (array));
3d967001 2815 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2816 struct type *index_type
3d967001 2817 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2818 struct type *slice_type = create_array_type_with_stride
2819 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2820 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2821 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
2822 gdb::optional<LONGEST> low_pos, high_pos;
2823
5b4ee69b 2824
6244c119
SM
2825 low_pos = discrete_position (base_index_type, low);
2826 high_pos = discrete_position (base_index_type, high);
2827
2828 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
2829 {
2830 warning (_("unable to get positions in slice, use bounds instead"));
2831 low_pos = low;
2832 high_pos = high;
2833 }
2834
2835 return value_cast (slice_type,
6244c119 2836 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
2837}
2838
14f9c5c9
AS
2839/* If type is a record type in the form of a standard GNAT array
2840 descriptor, returns the number of dimensions for type. If arr is a
2841 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2842 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2843
2844int
d2e4a39e 2845ada_array_arity (struct type *type)
14f9c5c9
AS
2846{
2847 int arity;
2848
2849 if (type == NULL)
2850 return 0;
2851
2852 type = desc_base_type (type);
2853
2854 arity = 0;
78134374 2855 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2856 return desc_arity (desc_bounds_type (type));
d2e4a39e 2857 else
78134374 2858 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2859 {
dda83cd7
SM
2860 arity += 1;
2861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2862 }
d2e4a39e 2863
14f9c5c9
AS
2864 return arity;
2865}
2866
2867/* If TYPE is a record type in the form of a standard GNAT array
2868 descriptor or a simple array type, returns the element type for
2869 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2870 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2871
d2e4a39e
AS
2872struct type *
2873ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2874{
2875 type = desc_base_type (type);
2876
78134374 2877 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2878 {
2879 int k;
d2e4a39e 2880 struct type *p_array_type;
14f9c5c9 2881
556bdfd4 2882 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2883
2884 k = ada_array_arity (type);
2885 if (k == 0)
dda83cd7 2886 return NULL;
d2e4a39e 2887
4c4b4cd2 2888 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2889 if (nindices >= 0 && k > nindices)
dda83cd7 2890 k = nindices;
d2e4a39e 2891 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2892 {
2893 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2894 k -= 1;
2895 }
14f9c5c9
AS
2896 return p_array_type;
2897 }
78134374 2898 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2899 {
78134374 2900 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2901 {
2902 type = TYPE_TARGET_TYPE (type);
2903 nindices -= 1;
2904 }
14f9c5c9
AS
2905 return type;
2906 }
2907
2908 return NULL;
2909}
2910
08a057e6 2911/* See ada-lang.h. */
14f9c5c9 2912
08a057e6 2913struct type *
1eea4ebd 2914ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2915{
4c4b4cd2
PH
2916 struct type *result_type;
2917
14f9c5c9
AS
2918 type = desc_base_type (type);
2919
1eea4ebd
UW
2920 if (n < 0 || n > ada_array_arity (type))
2921 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2922
4c4b4cd2 2923 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2924 {
2925 int i;
2926
2927 for (i = 1; i < n; i += 1)
2869ac4b
TT
2928 {
2929 type = ada_check_typedef (type);
2930 type = TYPE_TARGET_TYPE (type);
2931 }
2932 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
4c4b4cd2 2933 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2934 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2935 perhaps stabsread.c would make more sense. */
78134374 2936 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2937 result_type = NULL;
14f9c5c9 2938 }
d2e4a39e 2939 else
1eea4ebd
UW
2940 {
2941 result_type = desc_index_type (desc_bounds_type (type), n);
2942 if (result_type == NULL)
2943 error (_("attempt to take bound of something that is not an array"));
2944 }
2945
2946 return result_type;
14f9c5c9
AS
2947}
2948
2949/* Given that arr is an array type, returns the lower bound of the
2950 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2951 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2952 array-descriptor type. It works for other arrays with bounds supplied
2953 by run-time quantities other than discriminants. */
14f9c5c9 2954
abb68b3e 2955static LONGEST
fb5e3d5c 2956ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2957{
8a48ac95 2958 struct type *type, *index_type_desc, *index_type;
1ce677a4 2959 int i;
262452ec
JK
2960
2961 gdb_assert (which == 0 || which == 1);
14f9c5c9 2962
ad82864c
JB
2963 if (ada_is_constrained_packed_array_type (arr_type))
2964 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2965
4c4b4cd2 2966 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2967 return (LONGEST) - which;
14f9c5c9 2968
78134374 2969 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2970 type = TYPE_TARGET_TYPE (arr_type);
2971 else
2972 type = arr_type;
2973
22c4c60c 2974 if (type->is_fixed_instance ())
bafffb51
JB
2975 {
2976 /* The array has already been fixed, so we do not need to
2977 check the parallel ___XA type again. That encoding has
2978 already been applied, so ignore it now. */
2979 index_type_desc = NULL;
2980 }
2981 else
2982 {
2983 index_type_desc = ada_find_parallel_type (type, "___XA");
2984 ada_fixup_array_indexes_type (index_type_desc);
2985 }
2986
262452ec 2987 if (index_type_desc != NULL)
940da03e 2988 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2989 NULL);
262452ec 2990 else
8a48ac95
JB
2991 {
2992 struct type *elt_type = check_typedef (type);
2993
2994 for (i = 1; i < n; i++)
2995 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2996
3d967001 2997 index_type = elt_type->index_type ();
8a48ac95 2998 }
262452ec 2999
43bbcdc2
PH
3000 return
3001 (LONGEST) (which == 0
dda83cd7
SM
3002 ? ada_discrete_type_low_bound (index_type)
3003 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3004}
3005
3006/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3007 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3008 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3009 supplied by run-time quantities other than discriminants. */
14f9c5c9 3010
1eea4ebd 3011static LONGEST
4dc81987 3012ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3013{
eb479039
JB
3014 struct type *arr_type;
3015
78134374 3016 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3017 arr = value_ind (arr);
3018 arr_type = value_enclosing_type (arr);
14f9c5c9 3019
ad82864c
JB
3020 if (ada_is_constrained_packed_array_type (arr_type))
3021 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3022 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3023 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3024 else
1eea4ebd 3025 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3026}
3027
3028/* Given that arr is an array value, returns the length of the
3029 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3030 supplied by run-time quantities other than discriminants.
3031 Does not work for arrays indexed by enumeration types with representation
3032 clauses at the moment. */
14f9c5c9 3033
1eea4ebd 3034static LONGEST
d2e4a39e 3035ada_array_length (struct value *arr, int n)
14f9c5c9 3036{
aa715135
JG
3037 struct type *arr_type, *index_type;
3038 int low, high;
eb479039 3039
78134374 3040 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3041 arr = value_ind (arr);
3042 arr_type = value_enclosing_type (arr);
14f9c5c9 3043
ad82864c
JB
3044 if (ada_is_constrained_packed_array_type (arr_type))
3045 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3046
4c4b4cd2 3047 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3048 {
3049 low = ada_array_bound_from_type (arr_type, n, 0);
3050 high = ada_array_bound_from_type (arr_type, n, 1);
3051 }
14f9c5c9 3052 else
aa715135
JG
3053 {
3054 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3055 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3056 }
3057
f168693b 3058 arr_type = check_typedef (arr_type);
7150d33c 3059 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3060 if (index_type != NULL)
3061 {
3062 struct type *base_type;
78134374 3063 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3064 base_type = TYPE_TARGET_TYPE (index_type);
3065 else
3066 base_type = index_type;
3067
3068 low = pos_atr (value_from_longest (base_type, low));
3069 high = pos_atr (value_from_longest (base_type, high));
3070 }
3071 return high - low + 1;
4c4b4cd2
PH
3072}
3073
bff8c71f
TT
3074/* An array whose type is that of ARR_TYPE (an array type), with
3075 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3076 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3077
3078static struct value *
bff8c71f 3079empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3080{
b0dd7688 3081 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3082 struct type *index_type
3083 = create_static_range_type
dda83cd7 3084 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3085 high < low ? low - 1 : high);
b0dd7688 3086 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3087
0b5d8877 3088 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3089}
14f9c5c9 3090\f
d2e4a39e 3091
dda83cd7 3092 /* Name resolution */
14f9c5c9 3093
4c4b4cd2
PH
3094/* The "decoded" name for the user-definable Ada operator corresponding
3095 to OP. */
14f9c5c9 3096
d2e4a39e 3097static const char *
4c4b4cd2 3098ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3099{
3100 int i;
3101
4c4b4cd2 3102 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3103 {
3104 if (ada_opname_table[i].op == op)
dda83cd7 3105 return ada_opname_table[i].decoded;
14f9c5c9 3106 }
323e0a4a 3107 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3108}
3109
de93309a
SM
3110/* Returns true (non-zero) iff decoded name N0 should appear before N1
3111 in a listing of choices during disambiguation (see sort_choices, below).
3112 The idea is that overloadings of a subprogram name from the
3113 same package should sort in their source order. We settle for ordering
3114 such symbols by their trailing number (__N or $N). */
14f9c5c9 3115
de93309a
SM
3116static int
3117encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3118{
de93309a
SM
3119 if (N1 == NULL)
3120 return 0;
3121 else if (N0 == NULL)
3122 return 1;
3123 else
3124 {
3125 int k0, k1;
30b15541 3126
de93309a 3127 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3128 ;
de93309a 3129 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3130 ;
de93309a 3131 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3132 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3133 {
3134 int n0, n1;
3135
3136 n0 = k0;
3137 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3138 n0 -= 1;
3139 n1 = k1;
3140 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3141 n1 -= 1;
3142 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3143 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3144 }
de93309a
SM
3145 return (strcmp (N0, N1) < 0);
3146 }
14f9c5c9
AS
3147}
3148
de93309a
SM
3149/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3150 encoded names. */
14f9c5c9 3151
de93309a
SM
3152static void
3153sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3154{
14f9c5c9 3155 int i;
14f9c5c9 3156
de93309a 3157 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3158 {
de93309a
SM
3159 struct block_symbol sym = syms[i];
3160 int j;
3161
3162 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3163 {
3164 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3165 sym.symbol->linkage_name ()))
3166 break;
3167 syms[j + 1] = syms[j];
3168 }
de93309a
SM
3169 syms[j + 1] = sym;
3170 }
3171}
14f9c5c9 3172
de93309a
SM
3173/* Whether GDB should display formals and return types for functions in the
3174 overloads selection menu. */
3175static bool print_signatures = true;
4c4b4cd2 3176
de93309a
SM
3177/* Print the signature for SYM on STREAM according to the FLAGS options. For
3178 all but functions, the signature is just the name of the symbol. For
3179 functions, this is the name of the function, the list of types for formals
3180 and the return type (if any). */
4c4b4cd2 3181
de93309a
SM
3182static void
3183ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3184 const struct type_print_options *flags)
3185{
3186 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3187
987012b8 3188 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3189 if (!print_signatures
3190 || type == NULL
78134374 3191 || type->code () != TYPE_CODE_FUNC)
de93309a 3192 return;
4c4b4cd2 3193
1f704f76 3194 if (type->num_fields () > 0)
de93309a
SM
3195 {
3196 int i;
14f9c5c9 3197
de93309a 3198 fprintf_filtered (stream, " (");
1f704f76 3199 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3200 {
3201 if (i > 0)
3202 fprintf_filtered (stream, "; ");
940da03e 3203 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3204 flags);
3205 }
3206 fprintf_filtered (stream, ")");
3207 }
3208 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3209 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3210 {
3211 fprintf_filtered (stream, " return ");
3212 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3213 }
3214}
14f9c5c9 3215
de93309a
SM
3216/* Read and validate a set of numeric choices from the user in the
3217 range 0 .. N_CHOICES-1. Place the results in increasing
3218 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3219
de93309a
SM
3220 The user types choices as a sequence of numbers on one line
3221 separated by blanks, encoding them as follows:
14f9c5c9 3222
de93309a
SM
3223 + A choice of 0 means to cancel the selection, throwing an error.
3224 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3225 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3226
de93309a 3227 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3228
de93309a
SM
3229 ANNOTATION_SUFFIX, if present, is used to annotate the input
3230 prompts (for use with the -f switch). */
14f9c5c9 3231
de93309a
SM
3232static int
3233get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3234 int is_all_choice, const char *annotation_suffix)
de93309a 3235{
992a7040 3236 const char *args;
de93309a
SM
3237 const char *prompt;
3238 int n_chosen;
3239 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3240
de93309a
SM
3241 prompt = getenv ("PS2");
3242 if (prompt == NULL)
3243 prompt = "> ";
4c4b4cd2 3244
de93309a 3245 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3246
de93309a
SM
3247 if (args == NULL)
3248 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3249
de93309a 3250 n_chosen = 0;
4c4b4cd2 3251
de93309a
SM
3252 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3253 order, as given in args. Choices are validated. */
3254 while (1)
14f9c5c9 3255 {
de93309a
SM
3256 char *args2;
3257 int choice, j;
76a01679 3258
de93309a
SM
3259 args = skip_spaces (args);
3260 if (*args == '\0' && n_chosen == 0)
dda83cd7 3261 error_no_arg (_("one or more choice numbers"));
de93309a 3262 else if (*args == '\0')
dda83cd7 3263 break;
76a01679 3264
de93309a
SM
3265 choice = strtol (args, &args2, 10);
3266 if (args == args2 || choice < 0
dda83cd7
SM
3267 || choice > n_choices + first_choice - 1)
3268 error (_("Argument must be choice number"));
de93309a 3269 args = args2;
76a01679 3270
de93309a 3271 if (choice == 0)
dda83cd7 3272 error (_("cancelled"));
76a01679 3273
de93309a 3274 if (choice < first_choice)
dda83cd7
SM
3275 {
3276 n_chosen = n_choices;
3277 for (j = 0; j < n_choices; j += 1)
3278 choices[j] = j;
3279 break;
3280 }
de93309a 3281 choice -= first_choice;
76a01679 3282
de93309a 3283 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3284 {
3285 }
4c4b4cd2 3286
de93309a 3287 if (j < 0 || choice != choices[j])
dda83cd7
SM
3288 {
3289 int k;
4c4b4cd2 3290
dda83cd7
SM
3291 for (k = n_chosen - 1; k > j; k -= 1)
3292 choices[k + 1] = choices[k];
3293 choices[j + 1] = choice;
3294 n_chosen += 1;
3295 }
14f9c5c9
AS
3296 }
3297
de93309a
SM
3298 if (n_chosen > max_results)
3299 error (_("Select no more than %d of the above"), max_results);
3300
3301 return n_chosen;
14f9c5c9
AS
3302}
3303
de93309a
SM
3304/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3305 by asking the user (if necessary), returning the number selected,
3306 and setting the first elements of SYMS items. Error if no symbols
3307 selected. */
3308
3309/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3310 to be re-integrated one of these days. */
14f9c5c9
AS
3311
3312static int
de93309a 3313user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3314{
de93309a
SM
3315 int i;
3316 int *chosen = XALLOCAVEC (int , nsyms);
3317 int n_chosen;
3318 int first_choice = (max_results == 1) ? 1 : 2;
3319 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3320
de93309a
SM
3321 if (max_results < 1)
3322 error (_("Request to select 0 symbols!"));
3323 if (nsyms <= 1)
3324 return nsyms;
14f9c5c9 3325
de93309a
SM
3326 if (select_mode == multiple_symbols_cancel)
3327 error (_("\
3328canceled because the command is ambiguous\n\
3329See set/show multiple-symbol."));
14f9c5c9 3330
de93309a
SM
3331 /* If select_mode is "all", then return all possible symbols.
3332 Only do that if more than one symbol can be selected, of course.
3333 Otherwise, display the menu as usual. */
3334 if (select_mode == multiple_symbols_all && max_results > 1)
3335 return nsyms;
14f9c5c9 3336
de93309a
SM
3337 printf_filtered (_("[0] cancel\n"));
3338 if (max_results > 1)
3339 printf_filtered (_("[1] all\n"));
14f9c5c9 3340
de93309a 3341 sort_choices (syms, nsyms);
14f9c5c9 3342
de93309a
SM
3343 for (i = 0; i < nsyms; i += 1)
3344 {
3345 if (syms[i].symbol == NULL)
dda83cd7 3346 continue;
14f9c5c9 3347
de93309a 3348 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
dda83cd7
SM
3349 {
3350 struct symtab_and_line sal =
3351 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3352
de93309a
SM
3353 printf_filtered ("[%d] ", i + first_choice);
3354 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3355 &type_print_raw_options);
3356 if (sal.symtab == NULL)
3357 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3358 metadata_style.style ().ptr (), nullptr, sal.line);
3359 else
3360 printf_filtered
3361 (_(" at %ps:%d\n"),
3362 styled_string (file_name_style.style (),
3363 symtab_to_filename_for_display (sal.symtab)),
3364 sal.line);
dda83cd7
SM
3365 continue;
3366 }
76a01679 3367 else
dda83cd7
SM
3368 {
3369 int is_enumeral =
3370 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3371 && SYMBOL_TYPE (syms[i].symbol) != NULL
3372 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3373 struct symtab *symtab = NULL;
4c4b4cd2 3374
de93309a
SM
3375 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3376 symtab = symbol_symtab (syms[i].symbol);
3377
dda83cd7 3378 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3379 {
3380 printf_filtered ("[%d] ", i + first_choice);
3381 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3382 &type_print_raw_options);
3383 printf_filtered (_(" at %s:%d\n"),
3384 symtab_to_filename_for_display (symtab),
3385 SYMBOL_LINE (syms[i].symbol));
3386 }
dda83cd7
SM
3387 else if (is_enumeral
3388 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3389 {
3390 printf_filtered (("[%d] "), i + first_choice);
3391 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3392 gdb_stdout, -1, 0, &type_print_raw_options);
3393 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3394 syms[i].symbol->print_name ());
dda83cd7 3395 }
de93309a
SM
3396 else
3397 {
3398 printf_filtered ("[%d] ", i + first_choice);
3399 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3400 &type_print_raw_options);
3401
3402 if (symtab != NULL)
3403 printf_filtered (is_enumeral
3404 ? _(" in %s (enumeral)\n")
3405 : _(" at %s:?\n"),
3406 symtab_to_filename_for_display (symtab));
3407 else
3408 printf_filtered (is_enumeral
3409 ? _(" (enumeral)\n")
3410 : _(" at ?\n"));
3411 }
dda83cd7 3412 }
14f9c5c9 3413 }
14f9c5c9 3414
de93309a 3415 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3416 "overload-choice");
14f9c5c9 3417
de93309a
SM
3418 for (i = 0; i < n_chosen; i += 1)
3419 syms[i] = syms[chosen[i]];
14f9c5c9 3420
de93309a
SM
3421 return n_chosen;
3422}
14f9c5c9 3423
cd9a3148
TT
3424/* See ada-lang.h. */
3425
3426block_symbol
7056f312 3427ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
cd9a3148
TT
3428 int nargs, value *argvec[])
3429{
3430 if (possible_user_operator_p (op, argvec))
3431 {
3432 std::vector<struct block_symbol> candidates
3433 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3434 NULL, VAR_DOMAIN);
3435
3436 int i = ada_resolve_function (candidates, argvec,
3437 nargs, ada_decoded_op_name (op), NULL,
3438 parse_completion);
3439 if (i >= 0)
3440 return candidates[i];
3441 }
3442 return {};
3443}
3444
3445/* See ada-lang.h. */
3446
3447block_symbol
3448ada_resolve_funcall (struct symbol *sym, const struct block *block,
3449 struct type *context_type,
7056f312 3450 bool parse_completion,
cd9a3148
TT
3451 int nargs, value *argvec[],
3452 innermost_block_tracker *tracker)
3453{
3454 std::vector<struct block_symbol> candidates
3455 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3456
3457 int i;
3458 if (candidates.size () == 1)
3459 i = 0;
3460 else
3461 {
3462 i = ada_resolve_function
3463 (candidates,
3464 argvec, nargs,
3465 sym->linkage_name (),
3466 context_type, parse_completion);
3467 if (i < 0)
3468 error (_("Could not find a match for %s"), sym->print_name ());
3469 }
3470
3471 tracker->update (candidates[i]);
3472 return candidates[i];
3473}
3474
ba8694b6
TT
3475/* Resolve a mention of a name where the context type is an
3476 enumeration type. */
3477
3478static int
3479ada_resolve_enum (std::vector<struct block_symbol> &syms,
3480 const char *name, struct type *context_type,
3481 bool parse_completion)
3482{
3483 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3484 context_type = ada_check_typedef (context_type);
3485
3486 for (int i = 0; i < syms.size (); ++i)
3487 {
3488 /* We already know the name matches, so we're just looking for
3489 an element of the correct enum type. */
3490 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3491 return i;
3492 }
3493
3494 error (_("No name '%s' in enumeration type '%s'"), name,
3495 ada_type_name (context_type));
3496}
3497
cd9a3148
TT
3498/* See ada-lang.h. */
3499
3500block_symbol
3501ada_resolve_variable (struct symbol *sym, const struct block *block,
3502 struct type *context_type,
7056f312 3503 bool parse_completion,
cd9a3148
TT
3504 int deprocedure_p,
3505 innermost_block_tracker *tracker)
3506{
3507 std::vector<struct block_symbol> candidates
3508 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3509
3510 if (std::any_of (candidates.begin (),
3511 candidates.end (),
3512 [] (block_symbol &bsym)
3513 {
3514 switch (SYMBOL_CLASS (bsym.symbol))
3515 {
3516 case LOC_REGISTER:
3517 case LOC_ARG:
3518 case LOC_REF_ARG:
3519 case LOC_REGPARM_ADDR:
3520 case LOC_LOCAL:
3521 case LOC_COMPUTED:
3522 return true;
3523 default:
3524 return false;
3525 }
3526 }))
3527 {
3528 /* Types tend to get re-introduced locally, so if there
3529 are any local symbols that are not types, first filter
3530 out all types. */
3531 candidates.erase
3532 (std::remove_if
3533 (candidates.begin (),
3534 candidates.end (),
3535 [] (block_symbol &bsym)
3536 {
3537 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3538 }),
3539 candidates.end ());
3540 }
3541
2c71f639
TV
3542 /* Filter out artificial symbols. */
3543 candidates.erase
3544 (std::remove_if
3545 (candidates.begin (),
3546 candidates.end (),
3547 [] (block_symbol &bsym)
3548 {
3549 return bsym.symbol->artificial;
3550 }),
3551 candidates.end ());
3552
cd9a3148
TT
3553 int i;
3554 if (candidates.empty ())
3555 error (_("No definition found for %s"), sym->print_name ());
3556 else if (candidates.size () == 1)
3557 i = 0;
ba8694b6
TT
3558 else if (context_type != nullptr
3559 && context_type->code () == TYPE_CODE_ENUM)
3560 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3561 parse_completion);
cd9a3148
TT
3562 else if (deprocedure_p && !is_nonfunction (candidates))
3563 {
3564 i = ada_resolve_function
3565 (candidates, NULL, 0,
3566 sym->linkage_name (),
3567 context_type, parse_completion);
3568 if (i < 0)
3569 error (_("Could not find a match for %s"), sym->print_name ());
3570 }
3571 else
3572 {
3573 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3574 user_select_syms (candidates.data (), candidates.size (), 1);
3575 i = 0;
3576 }
3577
3578 tracker->update (candidates[i]);
3579 return candidates[i];
3580}
3581
db2534b7 3582/* Return non-zero if formal type FTYPE matches actual type ATYPE. */
de93309a
SM
3583/* The term "match" here is rather loose. The match is heuristic and
3584 liberal. */
14f9c5c9 3585
de93309a 3586static int
db2534b7 3587ada_type_match (struct type *ftype, struct type *atype)
14f9c5c9 3588{
de93309a
SM
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
14f9c5c9 3591
78134374 3592 if (ftype->code () == TYPE_CODE_REF)
de93309a 3593 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3594 if (atype->code () == TYPE_CODE_REF)
de93309a 3595 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3596
78134374 3597 switch (ftype->code ())
14f9c5c9 3598 {
de93309a 3599 default:
78134374 3600 return ftype->code () == atype->code ();
de93309a 3601 case TYPE_CODE_PTR:
db2534b7
TT
3602 if (atype->code () != TYPE_CODE_PTR)
3603 return 0;
3604 atype = TYPE_TARGET_TYPE (atype);
3605 /* This can only happen if the actual argument is 'null'. */
3606 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3607 return 1;
3608 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
de93309a
SM
3609 case TYPE_CODE_INT:
3610 case TYPE_CODE_ENUM:
3611 case TYPE_CODE_RANGE:
78134374 3612 switch (atype->code ())
dda83cd7
SM
3613 {
3614 case TYPE_CODE_INT:
3615 case TYPE_CODE_ENUM:
3616 case TYPE_CODE_RANGE:
3617 return 1;
3618 default:
3619 return 0;
3620 }
d2e4a39e 3621
de93309a 3622 case TYPE_CODE_ARRAY:
78134374 3623 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3624 || ada_is_array_descriptor_type (atype));
14f9c5c9 3625
de93309a
SM
3626 case TYPE_CODE_STRUCT:
3627 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3628 return (atype->code () == TYPE_CODE_ARRAY
3629 || ada_is_array_descriptor_type (atype));
de93309a 3630 else
dda83cd7
SM
3631 return (atype->code () == TYPE_CODE_STRUCT
3632 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3633
de93309a
SM
3634 case TYPE_CODE_UNION:
3635 case TYPE_CODE_FLT:
78134374 3636 return (atype->code () == ftype->code ());
de93309a 3637 }
14f9c5c9
AS
3638}
3639
de93309a
SM
3640/* Return non-zero if the formals of FUNC "sufficiently match" the
3641 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3642 may also be an enumeral, in which case it is treated as a 0-
3643 argument function. */
14f9c5c9 3644
de93309a
SM
3645static int
3646ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3647{
3648 int i;
3649 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3650
de93309a 3651 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3652 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3653 return (n_actuals == 0);
78134374 3654 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3655 return 0;
14f9c5c9 3656
1f704f76 3657 if (func_type->num_fields () != n_actuals)
de93309a 3658 return 0;
14f9c5c9 3659
de93309a
SM
3660 for (i = 0; i < n_actuals; i += 1)
3661 {
3662 if (actuals[i] == NULL)
dda83cd7 3663 return 0;
de93309a 3664 else
dda83cd7
SM
3665 {
3666 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3668
db2534b7 3669 if (!ada_type_match (ftype, atype))
dda83cd7
SM
3670 return 0;
3671 }
de93309a
SM
3672 }
3673 return 1;
3674}
d2e4a39e 3675
de93309a
SM
3676/* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3680
de93309a
SM
3681static int
3682return_match (struct type *func_type, struct type *context_type)
3683{
3684 struct type *return_type;
d2e4a39e 3685
de93309a
SM
3686 if (func_type == NULL)
3687 return 1;
14f9c5c9 3688
78134374 3689 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3691 else
3692 return_type = get_base_type (func_type);
3693 if (return_type == NULL)
3694 return 1;
76a01679 3695
de93309a 3696 context_type = get_base_type (context_type);
14f9c5c9 3697
78134374 3698 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
78134374 3701 return return_type->code () != TYPE_CODE_VOID;
de93309a 3702 else
78134374 3703 return return_type->code () == context_type->code ();
de93309a 3704}
14f9c5c9 3705
14f9c5c9 3706
1bfa81ac 3707/* Returns the index in SYMS that contains the symbol for the
de93309a
SM
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
14f9c5c9 3713
de93309a
SM
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
14f9c5c9 3718
de93309a 3719static int
d1183b06
TT
3720ada_resolve_function (std::vector<struct block_symbol> &syms,
3721 struct value **args, int nargs,
dda83cd7 3722 const char *name, struct type *context_type,
7056f312 3723 bool parse_completion)
de93309a
SM
3724{
3725 int fallback;
3726 int k;
3727 int m; /* Number of hits */
14f9c5c9 3728
de93309a
SM
3729 m = 0;
3730 /* In the first pass of the loop, we only accept functions matching
3731 context_type. If none are found, we add a second pass of the loop
3732 where every function is accepted. */
3733 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3734 {
d1183b06 3735 for (k = 0; k < syms.size (); k += 1)
dda83cd7
SM
3736 {
3737 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3738
dda83cd7
SM
3739 if (ada_args_match (syms[k].symbol, args, nargs)
3740 && (fallback || return_match (type, context_type)))
3741 {
3742 syms[m] = syms[k];
3743 m += 1;
3744 }
3745 }
14f9c5c9
AS
3746 }
3747
de93309a
SM
3748 /* If we got multiple matches, ask the user which one to use. Don't do this
3749 interactive thing during completion, though, as the purpose of the
3750 completion is providing a list of all possible matches. Prompting the
3751 user to filter it down would be completely unexpected in this case. */
3752 if (m == 0)
3753 return -1;
3754 else if (m > 1 && !parse_completion)
3755 {
3756 printf_filtered (_("Multiple matches for %s\n"), name);
d1183b06 3757 user_select_syms (syms.data (), m, 1);
de93309a
SM
3758 return 0;
3759 }
3760 return 0;
14f9c5c9
AS
3761}
3762
14f9c5c9
AS
3763/* Type-class predicates */
3764
4c4b4cd2
PH
3765/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3766 or FLOAT). */
14f9c5c9
AS
3767
3768static int
d2e4a39e 3769numeric_type_p (struct type *type)
14f9c5c9
AS
3770{
3771 if (type == NULL)
3772 return 0;
d2e4a39e
AS
3773 else
3774 {
78134374 3775 switch (type->code ())
dda83cd7
SM
3776 {
3777 case TYPE_CODE_INT:
3778 case TYPE_CODE_FLT:
c04da66c 3779 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
3780 return 1;
3781 case TYPE_CODE_RANGE:
3782 return (type == TYPE_TARGET_TYPE (type)
3783 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3784 default:
3785 return 0;
3786 }
d2e4a39e 3787 }
14f9c5c9
AS
3788}
3789
4c4b4cd2 3790/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3791
3792static int
d2e4a39e 3793integer_type_p (struct type *type)
14f9c5c9
AS
3794{
3795 if (type == NULL)
3796 return 0;
d2e4a39e
AS
3797 else
3798 {
78134374 3799 switch (type->code ())
dda83cd7
SM
3800 {
3801 case TYPE_CODE_INT:
3802 return 1;
3803 case TYPE_CODE_RANGE:
3804 return (type == TYPE_TARGET_TYPE (type)
3805 || integer_type_p (TYPE_TARGET_TYPE (type)));
3806 default:
3807 return 0;
3808 }
d2e4a39e 3809 }
14f9c5c9
AS
3810}
3811
4c4b4cd2 3812/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3813
3814static int
d2e4a39e 3815scalar_type_p (struct type *type)
14f9c5c9
AS
3816{
3817 if (type == NULL)
3818 return 0;
d2e4a39e
AS
3819 else
3820 {
78134374 3821 switch (type->code ())
dda83cd7
SM
3822 {
3823 case TYPE_CODE_INT:
3824 case TYPE_CODE_RANGE:
3825 case TYPE_CODE_ENUM:
3826 case TYPE_CODE_FLT:
c04da66c 3827 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
3828 return 1;
3829 default:
3830 return 0;
3831 }
d2e4a39e 3832 }
14f9c5c9
AS
3833}
3834
4c4b4cd2 3835/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3836
3837static int
d2e4a39e 3838discrete_type_p (struct type *type)
14f9c5c9
AS
3839{
3840 if (type == NULL)
3841 return 0;
d2e4a39e
AS
3842 else
3843 {
78134374 3844 switch (type->code ())
dda83cd7
SM
3845 {
3846 case TYPE_CODE_INT:
3847 case TYPE_CODE_RANGE:
3848 case TYPE_CODE_ENUM:
3849 case TYPE_CODE_BOOL:
3850 return 1;
3851 default:
3852 return 0;
3853 }
d2e4a39e 3854 }
14f9c5c9
AS
3855}
3856
4c4b4cd2
PH
3857/* Returns non-zero if OP with operands in the vector ARGS could be
3858 a user-defined function. Errs on the side of pre-defined operators
3859 (i.e., result 0). */
14f9c5c9
AS
3860
3861static int
d2e4a39e 3862possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3863{
76a01679 3864 struct type *type0 =
df407dfe 3865 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3866 struct type *type1 =
df407dfe 3867 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3868
4c4b4cd2
PH
3869 if (type0 == NULL)
3870 return 0;
3871
14f9c5c9
AS
3872 switch (op)
3873 {
3874 default:
3875 return 0;
3876
3877 case BINOP_ADD:
3878 case BINOP_SUB:
3879 case BINOP_MUL:
3880 case BINOP_DIV:
d2e4a39e 3881 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3882
3883 case BINOP_REM:
3884 case BINOP_MOD:
3885 case BINOP_BITWISE_AND:
3886 case BINOP_BITWISE_IOR:
3887 case BINOP_BITWISE_XOR:
d2e4a39e 3888 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3889
3890 case BINOP_EQUAL:
3891 case BINOP_NOTEQUAL:
3892 case BINOP_LESS:
3893 case BINOP_GTR:
3894 case BINOP_LEQ:
3895 case BINOP_GEQ:
d2e4a39e 3896 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3897
3898 case BINOP_CONCAT:
ee90b9ab 3899 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3900
3901 case BINOP_EXP:
d2e4a39e 3902 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3903
3904 case UNOP_NEG:
3905 case UNOP_PLUS:
3906 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3907 case UNOP_ABS:
3908 return (!numeric_type_p (type0));
14f9c5c9
AS
3909
3910 }
3911}
3912\f
dda83cd7 3913 /* Renaming */
14f9c5c9 3914
aeb5907d
JB
3915/* NOTES:
3916
3917 1. In the following, we assume that a renaming type's name may
3918 have an ___XD suffix. It would be nice if this went away at some
3919 point.
3920 2. We handle both the (old) purely type-based representation of
3921 renamings and the (new) variable-based encoding. At some point,
3922 it is devoutly to be hoped that the former goes away
3923 (FIXME: hilfinger-2007-07-09).
3924 3. Subprogram renamings are not implemented, although the XRS
3925 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3926
3927/* If SYM encodes a renaming,
3928
3929 <renaming> renames <renamed entity>,
3930
3931 sets *LEN to the length of the renamed entity's name,
3932 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3933 the string describing the subcomponent selected from the renamed
0963b4bd 3934 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3935 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3936 are undefined). Otherwise, returns a value indicating the category
3937 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3938 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3939 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3940 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3941 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3942 may be NULL, in which case they are not assigned.
3943
3944 [Currently, however, GCC does not generate subprogram renamings.] */
3945
3946enum ada_renaming_category
3947ada_parse_renaming (struct symbol *sym,
3948 const char **renamed_entity, int *len,
3949 const char **renaming_expr)
3950{
3951 enum ada_renaming_category kind;
3952 const char *info;
3953 const char *suffix;
3954
3955 if (sym == NULL)
3956 return ADA_NOT_RENAMING;
3957 switch (SYMBOL_CLASS (sym))
14f9c5c9 3958 {
aeb5907d
JB
3959 default:
3960 return ADA_NOT_RENAMING;
aeb5907d
JB
3961 case LOC_LOCAL:
3962 case LOC_STATIC:
3963 case LOC_COMPUTED:
3964 case LOC_OPTIMIZED_OUT:
987012b8 3965 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
3966 if (info == NULL)
3967 return ADA_NOT_RENAMING;
3968 switch (info[5])
3969 {
3970 case '_':
3971 kind = ADA_OBJECT_RENAMING;
3972 info += 6;
3973 break;
3974 case 'E':
3975 kind = ADA_EXCEPTION_RENAMING;
3976 info += 7;
3977 break;
3978 case 'P':
3979 kind = ADA_PACKAGE_RENAMING;
3980 info += 7;
3981 break;
3982 case 'S':
3983 kind = ADA_SUBPROGRAM_RENAMING;
3984 info += 7;
3985 break;
3986 default:
3987 return ADA_NOT_RENAMING;
3988 }
14f9c5c9 3989 }
4c4b4cd2 3990
de93309a
SM
3991 if (renamed_entity != NULL)
3992 *renamed_entity = info;
3993 suffix = strstr (info, "___XE");
3994 if (suffix == NULL || suffix == info)
3995 return ADA_NOT_RENAMING;
3996 if (len != NULL)
3997 *len = strlen (info) - strlen (suffix);
3998 suffix += 5;
3999 if (renaming_expr != NULL)
4000 *renaming_expr = suffix;
4001 return kind;
4002}
4003
4004/* Compute the value of the given RENAMING_SYM, which is expected to
4005 be a symbol encoding a renaming expression. BLOCK is the block
4006 used to evaluate the renaming. */
4007
4008static struct value *
4009ada_read_renaming_var_value (struct symbol *renaming_sym,
4010 const struct block *block)
4011{
4012 const char *sym_name;
4013
987012b8 4014 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4015 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4016 return evaluate_expression (expr.get ());
4017}
4018\f
4019
dda83cd7 4020 /* Evaluation: Function Calls */
de93309a
SM
4021
4022/* Return an lvalue containing the value VAL. This is the identity on
4023 lvalues, and otherwise has the side-effect of allocating memory
4024 in the inferior where a copy of the value contents is copied. */
4025
4026static struct value *
4027ensure_lval (struct value *val)
4028{
4029 if (VALUE_LVAL (val) == not_lval
4030 || VALUE_LVAL (val) == lval_internalvar)
4031 {
4032 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4033 const CORE_ADDR addr =
dda83cd7 4034 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4035
4036 VALUE_LVAL (val) = lval_memory;
4037 set_value_address (val, addr);
4038 write_memory (addr, value_contents (val), len);
4039 }
4040
4041 return val;
4042}
4043
4044/* Given ARG, a value of type (pointer or reference to a)*
4045 structure/union, extract the component named NAME from the ultimate
4046 target structure/union and return it as a value with its
4047 appropriate type.
4048
4049 The routine searches for NAME among all members of the structure itself
4050 and (recursively) among all members of any wrapper members
4051 (e.g., '_parent').
4052
4053 If NO_ERR, then simply return NULL in case of error, rather than
4054 calling error. */
4055
4056static struct value *
4057ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4058{
4059 struct type *t, *t1;
4060 struct value *v;
4061 int check_tag;
4062
4063 v = NULL;
4064 t1 = t = ada_check_typedef (value_type (arg));
78134374 4065 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4066 {
4067 t1 = TYPE_TARGET_TYPE (t);
4068 if (t1 == NULL)
4069 goto BadValue;
4070 t1 = ada_check_typedef (t1);
78134374 4071 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4072 {
4073 arg = coerce_ref (arg);
4074 t = t1;
4075 }
de93309a
SM
4076 }
4077
78134374 4078 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4079 {
4080 t1 = TYPE_TARGET_TYPE (t);
4081 if (t1 == NULL)
4082 goto BadValue;
4083 t1 = ada_check_typedef (t1);
78134374 4084 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4085 {
4086 arg = value_ind (arg);
4087 t = t1;
4088 }
de93309a 4089 else
dda83cd7 4090 break;
de93309a 4091 }
aeb5907d 4092
78134374 4093 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4094 goto BadValue;
52ce6436 4095
de93309a
SM
4096 if (t1 == t)
4097 v = ada_search_struct_field (name, arg, 0, t);
4098 else
4099 {
4100 int bit_offset, bit_size, byte_offset;
4101 struct type *field_type;
4102 CORE_ADDR address;
a5ee536b 4103
78134374 4104 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4105 address = value_address (ada_value_ind (arg));
4106 else
4107 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4108
de93309a 4109 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4110 the case where the type is a reference to a tagged type, but
4111 we have to be careful to exclude pointers to tagged types.
4112 The latter should be shown as usual (as a pointer), whereas
4113 a reference should mostly be transparent to the user. */
14f9c5c9 4114
de93309a 4115 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4116 || (t1->code () == TYPE_CODE_REF
4117 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4118 {
4119 /* We first try to find the searched field in the current type.
de93309a 4120 If not found then let's look in the fixed type. */
14f9c5c9 4121
dda83cd7
SM
4122 if (!find_struct_field (name, t1, 0,
4123 &field_type, &byte_offset, &bit_offset,
4124 &bit_size, NULL))
de93309a
SM
4125 check_tag = 1;
4126 else
4127 check_tag = 0;
dda83cd7 4128 }
de93309a
SM
4129 else
4130 check_tag = 0;
c3e5cd34 4131
de93309a
SM
4132 /* Convert to fixed type in all cases, so that we have proper
4133 offsets to each field in unconstrained record types. */
4134 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4135 address, NULL, check_tag);
4136
24aa1b02
TT
4137 /* Resolve the dynamic type as well. */
4138 arg = value_from_contents_and_address (t1, nullptr, address);
4139 t1 = value_type (arg);
4140
de93309a 4141 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4142 &field_type, &byte_offset, &bit_offset,
4143 &bit_size, NULL))
4144 {
4145 if (bit_size != 0)
4146 {
4147 if (t->code () == TYPE_CODE_REF)
4148 arg = ada_coerce_ref (arg);
4149 else
4150 arg = ada_value_ind (arg);
4151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4152 bit_offset, bit_size,
4153 field_type);
4154 }
4155 else
4156 v = value_at_lazy (field_type, address + byte_offset);
4157 }
c3e5cd34 4158 }
14f9c5c9 4159
de93309a
SM
4160 if (v != NULL || no_err)
4161 return v;
4162 else
4163 error (_("There is no member named %s."), name);
4164
4165 BadValue:
4166 if (no_err)
4167 return NULL;
4168 else
4169 error (_("Attempt to extract a component of "
4170 "a value that is not a record."));
14f9c5c9
AS
4171}
4172
4173/* Return the value ACTUAL, converted to be an appropriate value for a
4174 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4175 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4176 values not residing in memory, updating it as needed. */
14f9c5c9 4177
a93c0eb6 4178struct value *
40bc484c 4179ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4180{
df407dfe 4181 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4182 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4183 struct type *formal_target =
78134374 4184 formal_type->code () == TYPE_CODE_PTR
61ee279c 4185 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4186 struct type *actual_target =
78134374 4187 actual_type->code () == TYPE_CODE_PTR
61ee279c 4188 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4189
4c4b4cd2 4190 if (ada_is_array_descriptor_type (formal_target)
78134374 4191 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4192 return make_array_descriptor (formal_type, actual);
78134374
SM
4193 else if (formal_type->code () == TYPE_CODE_PTR
4194 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4195 {
a84a8a0d 4196 struct value *result;
5b4ee69b 4197
78134374 4198 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4199 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4200 result = desc_data (actual);
78134374 4201 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4202 {
4203 if (VALUE_LVAL (actual) != lval_memory)
4204 {
4205 struct value *val;
4206
4207 actual_type = ada_check_typedef (value_type (actual));
4208 val = allocate_value (actual_type);
4209 memcpy ((char *) value_contents_raw (val),
4210 (char *) value_contents (actual),
4211 TYPE_LENGTH (actual_type));
4212 actual = ensure_lval (val);
4213 }
4214 result = value_addr (actual);
4215 }
a84a8a0d
JB
4216 else
4217 return actual;
b1af9e97 4218 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4219 }
78134374 4220 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4221 return ada_value_ind (actual);
8344af1e
JB
4222 else if (ada_is_aligner_type (formal_type))
4223 {
4224 /* We need to turn this parameter into an aligner type
4225 as well. */
4226 struct value *aligner = allocate_value (formal_type);
4227 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4228
4229 value_assign_to_component (aligner, component, actual);
4230 return aligner;
4231 }
14f9c5c9
AS
4232
4233 return actual;
4234}
4235
438c98a1
JB
4236/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4237 type TYPE. This is usually an inefficient no-op except on some targets
4238 (such as AVR) where the representation of a pointer and an address
4239 differs. */
4240
4241static CORE_ADDR
4242value_pointer (struct value *value, struct type *type)
4243{
438c98a1 4244 unsigned len = TYPE_LENGTH (type);
224c3ddb 4245 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4246 CORE_ADDR addr;
4247
4248 addr = value_address (value);
8ee511af 4249 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
34877895 4250 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4251 return addr;
4252}
4253
14f9c5c9 4254
4c4b4cd2
PH
4255/* Push a descriptor of type TYPE for array value ARR on the stack at
4256 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4257 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4258 to-descriptor type rather than a descriptor type), a struct value *
4259 representing a pointer to this descriptor. */
14f9c5c9 4260
d2e4a39e 4261static struct value *
40bc484c 4262make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4263{
d2e4a39e
AS
4264 struct type *bounds_type = desc_bounds_type (type);
4265 struct type *desc_type = desc_base_type (type);
4266 struct value *descriptor = allocate_value (desc_type);
4267 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4268 int i;
d2e4a39e 4269
0963b4bd
MS
4270 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4271 i > 0; i -= 1)
14f9c5c9 4272 {
19f220c3
JK
4273 modify_field (value_type (bounds), value_contents_writeable (bounds),
4274 ada_array_bound (arr, i, 0),
4275 desc_bound_bitpos (bounds_type, i, 0),
4276 desc_bound_bitsize (bounds_type, i, 0));
4277 modify_field (value_type (bounds), value_contents_writeable (bounds),
4278 ada_array_bound (arr, i, 1),
4279 desc_bound_bitpos (bounds_type, i, 1),
4280 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4281 }
d2e4a39e 4282
40bc484c 4283 bounds = ensure_lval (bounds);
d2e4a39e 4284
19f220c3
JK
4285 modify_field (value_type (descriptor),
4286 value_contents_writeable (descriptor),
4287 value_pointer (ensure_lval (arr),
940da03e 4288 desc_type->field (0).type ()),
19f220c3
JK
4289 fat_pntr_data_bitpos (desc_type),
4290 fat_pntr_data_bitsize (desc_type));
4291
4292 modify_field (value_type (descriptor),
4293 value_contents_writeable (descriptor),
4294 value_pointer (bounds,
940da03e 4295 desc_type->field (1).type ()),
19f220c3
JK
4296 fat_pntr_bounds_bitpos (desc_type),
4297 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4298
40bc484c 4299 descriptor = ensure_lval (descriptor);
14f9c5c9 4300
78134374 4301 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4302 return value_addr (descriptor);
4303 else
4304 return descriptor;
4305}
14f9c5c9 4306\f
dda83cd7 4307 /* Symbol Cache Module */
3d9434b5 4308
3d9434b5 4309/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4310 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4311 on the type of entity being printed, the cache can make it as much
4312 as an order of magnitude faster than without it.
4313
4314 The descriptive type DWARF extension has significantly reduced
4315 the need for this cache, at least when DWARF is being used. However,
4316 even in this case, some expensive name-based symbol searches are still
4317 sometimes necessary - to find an XVZ variable, mostly. */
4318
ee01b665
JB
4319/* Return the symbol cache associated to the given program space PSPACE.
4320 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4321
ee01b665
JB
4322static struct ada_symbol_cache *
4323ada_get_symbol_cache (struct program_space *pspace)
4324{
4325 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4326
bdcccc56
TT
4327 if (pspace_data->sym_cache == nullptr)
4328 pspace_data->sym_cache.reset (new ada_symbol_cache);
ee01b665 4329
bdcccc56 4330 return pspace_data->sym_cache.get ();
ee01b665 4331}
3d9434b5
JB
4332
4333/* Clear all entries from the symbol cache. */
4334
4335static void
bdcccc56 4336ada_clear_symbol_cache ()
3d9434b5 4337{
bdcccc56
TT
4338 struct ada_pspace_data *pspace_data
4339 = get_ada_pspace_data (current_program_space);
ee01b665 4340
bdcccc56
TT
4341 if (pspace_data->sym_cache != nullptr)
4342 pspace_data->sym_cache.reset ();
3d9434b5
JB
4343}
4344
fe978cb0 4345/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4346 Return it if found, or NULL otherwise. */
4347
4348static struct cache_entry **
fe978cb0 4349find_entry (const char *name, domain_enum domain)
3d9434b5 4350{
ee01b665
JB
4351 struct ada_symbol_cache *sym_cache
4352 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4353 int h = msymbol_hash (name) % HASH_SIZE;
4354 struct cache_entry **e;
4355
ee01b665 4356 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4357 {
fe978cb0 4358 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4359 return e;
3d9434b5
JB
4360 }
4361 return NULL;
4362}
4363
fe978cb0 4364/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4365 Return 1 if found, 0 otherwise.
4366
4367 If an entry was found and SYM is not NULL, set *SYM to the entry's
4368 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4369
96d887e8 4370static int
fe978cb0 4371lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4372 struct symbol **sym, const struct block **block)
96d887e8 4373{
fe978cb0 4374 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4375
4376 if (e == NULL)
4377 return 0;
4378 if (sym != NULL)
4379 *sym = (*e)->sym;
4380 if (block != NULL)
4381 *block = (*e)->block;
4382 return 1;
96d887e8
PH
4383}
4384
3d9434b5 4385/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4386 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4387
96d887e8 4388static void
fe978cb0 4389cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4390 const struct block *block)
96d887e8 4391{
ee01b665
JB
4392 struct ada_symbol_cache *sym_cache
4393 = ada_get_symbol_cache (current_program_space);
3d9434b5 4394 int h;
3d9434b5
JB
4395 struct cache_entry *e;
4396
1994afbf
DE
4397 /* Symbols for builtin types don't have a block.
4398 For now don't cache such symbols. */
4399 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4400 return;
4401
3d9434b5
JB
4402 /* If the symbol is a local symbol, then do not cache it, as a search
4403 for that symbol depends on the context. To determine whether
4404 the symbol is local or not, we check the block where we found it
4405 against the global and static blocks of its associated symtab. */
4406 if (sym
08be3fe3 4407 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4408 GLOBAL_BLOCK) != block
08be3fe3 4409 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4410 STATIC_BLOCK) != block)
3d9434b5
JB
4411 return;
4412
4413 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4414 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4415 e->next = sym_cache->root[h];
4416 sym_cache->root[h] = e;
2ef5453b 4417 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4418 e->sym = sym;
fe978cb0 4419 e->domain = domain;
3d9434b5 4420 e->block = block;
96d887e8 4421}
4c4b4cd2 4422\f
dda83cd7 4423 /* Symbol Lookup */
4c4b4cd2 4424
b5ec771e
PA
4425/* Return the symbol name match type that should be used used when
4426 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4427
4428 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4429 for Ada lookups. */
c0431670 4430
b5ec771e
PA
4431static symbol_name_match_type
4432name_match_type_from_name (const char *lookup_name)
c0431670 4433{
b5ec771e
PA
4434 return (strstr (lookup_name, "__") == NULL
4435 ? symbol_name_match_type::WILD
4436 : symbol_name_match_type::FULL);
c0431670
JB
4437}
4438
4c4b4cd2
PH
4439/* Return the result of a standard (literal, C-like) lookup of NAME in
4440 given DOMAIN, visible from lexical block BLOCK. */
4441
4442static struct symbol *
4443standard_lookup (const char *name, const struct block *block,
dda83cd7 4444 domain_enum domain)
4c4b4cd2 4445{
acbd605d 4446 /* Initialize it just to avoid a GCC false warning. */
6640a367 4447 struct block_symbol sym = {};
4c4b4cd2 4448
d12307c1
PMR
4449 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4450 return sym.symbol;
a2cd4f14 4451 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4452 cache_symbol (name, domain, sym.symbol, sym.block);
4453 return sym.symbol;
4c4b4cd2
PH
4454}
4455
4456
4457/* Non-zero iff there is at least one non-function/non-enumeral symbol
1bfa81ac 4458 in the symbol fields of SYMS. We treat enumerals as functions,
4c4b4cd2
PH
4459 since they contend in overloading in the same way. */
4460static int
d1183b06 4461is_nonfunction (const std::vector<struct block_symbol> &syms)
4c4b4cd2 4462{
d1183b06
TT
4463 for (const block_symbol &sym : syms)
4464 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4465 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4466 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
14f9c5c9
AS
4467 return 1;
4468
4469 return 0;
4470}
4471
4472/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4473 struct types. Otherwise, they may not. */
14f9c5c9
AS
4474
4475static int
d2e4a39e 4476equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4477{
d2e4a39e 4478 if (type0 == type1)
14f9c5c9 4479 return 1;
d2e4a39e 4480 if (type0 == NULL || type1 == NULL
78134374 4481 || type0->code () != type1->code ())
14f9c5c9 4482 return 0;
78134374
SM
4483 if ((type0->code () == TYPE_CODE_STRUCT
4484 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4485 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4486 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4487 return 1;
d2e4a39e 4488
14f9c5c9
AS
4489 return 0;
4490}
4491
4492/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4493 no more defined than that of SYM1. */
14f9c5c9
AS
4494
4495static int
d2e4a39e 4496lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4497{
4498 if (sym0 == sym1)
4499 return 1;
176620f1 4500 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4501 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4502 return 0;
4503
d2e4a39e 4504 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4505 {
4506 case LOC_UNDEF:
4507 return 1;
4508 case LOC_TYPEDEF:
4509 {
dda83cd7
SM
4510 struct type *type0 = SYMBOL_TYPE (sym0);
4511 struct type *type1 = SYMBOL_TYPE (sym1);
4512 const char *name0 = sym0->linkage_name ();
4513 const char *name1 = sym1->linkage_name ();
4514 int len0 = strlen (name0);
4515
4516 return
4517 type0->code () == type1->code ()
4518 && (equiv_types (type0, type1)
4519 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4520 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4521 }
4522 case LOC_CONST:
4523 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
dda83cd7 4524 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4525
4526 case LOC_STATIC:
4527 {
dda83cd7
SM
4528 const char *name0 = sym0->linkage_name ();
4529 const char *name1 = sym1->linkage_name ();
4530 return (strcmp (name0, name1) == 0
4531 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4532 }
4533
d2e4a39e
AS
4534 default:
4535 return 0;
14f9c5c9
AS
4536 }
4537}
4538
d1183b06
TT
4539/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4540 records in RESULT. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4541
4542static void
d1183b06 4543add_defn_to_vec (std::vector<struct block_symbol> &result,
dda83cd7
SM
4544 struct symbol *sym,
4545 const struct block *block)
14f9c5c9 4546{
529cad9c
PH
4547 /* Do not try to complete stub types, as the debugger is probably
4548 already scanning all symbols matching a certain name at the
4549 time when this function is called. Trying to replace the stub
4550 type by its associated full type will cause us to restart a scan
4551 which may lead to an infinite recursion. Instead, the client
4552 collecting the matching symbols will end up collecting several
4553 matches, with at least one of them complete. It can then filter
4554 out the stub ones if needed. */
4555
d1183b06 4556 for (int i = result.size () - 1; i >= 0; i -= 1)
4c4b4cd2 4557 {
d1183b06 4558 if (lesseq_defined_than (sym, result[i].symbol))
dda83cd7 4559 return;
d1183b06 4560 else if (lesseq_defined_than (result[i].symbol, sym))
dda83cd7 4561 {
d1183b06
TT
4562 result[i].symbol = sym;
4563 result[i].block = block;
dda83cd7
SM
4564 return;
4565 }
4c4b4cd2
PH
4566 }
4567
d1183b06
TT
4568 struct block_symbol info;
4569 info.symbol = sym;
4570 info.block = block;
4571 result.push_back (info);
4c4b4cd2
PH
4572}
4573
7c7b6655
TT
4574/* Return a bound minimal symbol matching NAME according to Ada
4575 decoding rules. Returns an invalid symbol if there is no such
4576 minimal symbol. Names prefixed with "standard__" are handled
4577 specially: "standard__" is first stripped off, and only static and
4578 global symbols are searched. */
4c4b4cd2 4579
7c7b6655 4580struct bound_minimal_symbol
96d887e8 4581ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4582{
7c7b6655 4583 struct bound_minimal_symbol result;
4c4b4cd2 4584
7c7b6655
TT
4585 memset (&result, 0, sizeof (result));
4586
b5ec771e
PA
4587 symbol_name_match_type match_type = name_match_type_from_name (name);
4588 lookup_name_info lookup_name (name, match_type);
4589
4590 symbol_name_matcher_ftype *match_name
4591 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4592
2030c079 4593 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4594 {
7932255d 4595 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4596 {
c9d95fa3 4597 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4598 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4599 {
4600 result.minsym = msymbol;
4601 result.objfile = objfile;
4602 break;
4603 }
4604 }
4605 }
4c4b4cd2 4606
7c7b6655 4607 return result;
96d887e8 4608}
4c4b4cd2 4609
96d887e8
PH
4610/* True if TYPE is definitely an artificial type supplied to a symbol
4611 for which no debugging information was given in the symbol file. */
14f9c5c9 4612
96d887e8
PH
4613static int
4614is_nondebugging_type (struct type *type)
4615{
0d5cff50 4616 const char *name = ada_type_name (type);
5b4ee69b 4617
96d887e8
PH
4618 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4619}
4c4b4cd2 4620
8f17729f
JB
4621/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4622 that are deemed "identical" for practical purposes.
4623
4624 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4625 types and that their number of enumerals is identical (in other
1f704f76 4626 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4627
4628static int
4629ada_identical_enum_types_p (struct type *type1, struct type *type2)
4630{
4631 int i;
4632
4633 /* The heuristic we use here is fairly conservative. We consider
4634 that 2 enumerate types are identical if they have the same
4635 number of enumerals and that all enumerals have the same
4636 underlying value and name. */
4637
4638 /* All enums in the type should have an identical underlying value. */
1f704f76 4639 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4640 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4641 return 0;
4642
4643 /* All enumerals should also have the same name (modulo any numerical
4644 suffix). */
1f704f76 4645 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4646 {
0d5cff50
DE
4647 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4648 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4649 int len_1 = strlen (name_1);
4650 int len_2 = strlen (name_2);
4651
4652 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4653 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4654 if (len_1 != len_2
dda83cd7 4655 || strncmp (TYPE_FIELD_NAME (type1, i),
8f17729f
JB
4656 TYPE_FIELD_NAME (type2, i),
4657 len_1) != 0)
4658 return 0;
4659 }
4660
4661 return 1;
4662}
4663
4664/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4665 that are deemed "identical" for practical purposes. Sometimes,
4666 enumerals are not strictly identical, but their types are so similar
4667 that they can be considered identical.
4668
4669 For instance, consider the following code:
4670
4671 type Color is (Black, Red, Green, Blue, White);
4672 type RGB_Color is new Color range Red .. Blue;
4673
4674 Type RGB_Color is a subrange of an implicit type which is a copy
4675 of type Color. If we call that implicit type RGB_ColorB ("B" is
4676 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4677 As a result, when an expression references any of the enumeral
4678 by name (Eg. "print green"), the expression is technically
4679 ambiguous and the user should be asked to disambiguate. But
4680 doing so would only hinder the user, since it wouldn't matter
4681 what choice he makes, the outcome would always be the same.
4682 So, for practical purposes, we consider them as the same. */
4683
4684static int
54d343a2 4685symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4686{
4687 int i;
4688
4689 /* Before performing a thorough comparison check of each type,
4690 we perform a series of inexpensive checks. We expect that these
4691 checks will quickly fail in the vast majority of cases, and thus
4692 help prevent the unnecessary use of a more expensive comparison.
4693 Said comparison also expects us to make some of these checks
4694 (see ada_identical_enum_types_p). */
4695
4696 /* Quick check: All symbols should have an enum type. */
54d343a2 4697 for (i = 0; i < syms.size (); i++)
78134374 4698 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4699 return 0;
4700
4701 /* Quick check: They should all have the same value. */
54d343a2 4702 for (i = 1; i < syms.size (); i++)
d12307c1 4703 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4704 return 0;
4705
4706 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4707 for (i = 1; i < syms.size (); i++)
1f704f76 4708 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
dda83cd7 4709 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4710 return 0;
4711
4712 /* All the sanity checks passed, so we might have a set of
4713 identical enumeration types. Perform a more complete
4714 comparison of the type of each symbol. */
54d343a2 4715 for (i = 1; i < syms.size (); i++)
d12307c1 4716 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
dda83cd7 4717 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4718 return 0;
4719
4720 return 1;
4721}
4722
54d343a2 4723/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4724 duplicate other symbols in the list (The only case I know of where
4725 this happens is when object files containing stabs-in-ecoff are
4726 linked with files containing ordinary ecoff debugging symbols (or no
1bfa81ac 4727 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4c4b4cd2 4728
d1183b06 4729static void
54d343a2 4730remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4731{
4732 int i, j;
4c4b4cd2 4733
8f17729f
JB
4734 /* We should never be called with less than 2 symbols, as there
4735 cannot be any extra symbol in that case. But it's easy to
4736 handle, since we have nothing to do in that case. */
54d343a2 4737 if (syms->size () < 2)
d1183b06 4738 return;
8f17729f 4739
96d887e8 4740 i = 0;
54d343a2 4741 while (i < syms->size ())
96d887e8 4742 {
a35ddb44 4743 int remove_p = 0;
339c13b6
JB
4744
4745 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 4746 the get rid of the stub. */
339c13b6 4747
e46d3488 4748 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
dda83cd7
SM
4749 && (*syms)[i].symbol->linkage_name () != NULL)
4750 {
4751 for (j = 0; j < syms->size (); j++)
4752 {
4753 if (j != i
4754 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4755 && (*syms)[j].symbol->linkage_name () != NULL
4756 && strcmp ((*syms)[i].symbol->linkage_name (),
4757 (*syms)[j].symbol->linkage_name ()) == 0)
4758 remove_p = 1;
4759 }
4760 }
339c13b6
JB
4761
4762 /* Two symbols with the same name, same class and same address
dda83cd7 4763 should be identical. */
339c13b6 4764
987012b8 4765 else if ((*syms)[i].symbol->linkage_name () != NULL
dda83cd7
SM
4766 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4767 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4768 {
4769 for (j = 0; j < syms->size (); j += 1)
4770 {
4771 if (i != j
4772 && (*syms)[j].symbol->linkage_name () != NULL
4773 && strcmp ((*syms)[i].symbol->linkage_name (),
4774 (*syms)[j].symbol->linkage_name ()) == 0
4775 && SYMBOL_CLASS ((*syms)[i].symbol)
54d343a2 4776 == SYMBOL_CLASS ((*syms)[j].symbol)
dda83cd7
SM
4777 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4778 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4779 remove_p = 1;
4780 }
4781 }
339c13b6 4782
a35ddb44 4783 if (remove_p)
54d343a2 4784 syms->erase (syms->begin () + i);
1b788fb6
TT
4785 else
4786 i += 1;
14f9c5c9 4787 }
8f17729f
JB
4788
4789 /* If all the remaining symbols are identical enumerals, then
4790 just keep the first one and discard the rest.
4791
4792 Unlike what we did previously, we do not discard any entry
4793 unless they are ALL identical. This is because the symbol
4794 comparison is not a strict comparison, but rather a practical
4795 comparison. If all symbols are considered identical, then
4796 we can just go ahead and use the first one and discard the rest.
4797 But if we cannot reduce the list to a single element, we have
4798 to ask the user to disambiguate anyways. And if we have to
4799 present a multiple-choice menu, it's less confusing if the list
4800 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
4801 if (symbols_are_identical_enums (*syms))
4802 syms->resize (1);
14f9c5c9
AS
4803}
4804
96d887e8
PH
4805/* Given a type that corresponds to a renaming entity, use the type name
4806 to extract the scope (package name or function name, fully qualified,
4807 and following the GNAT encoding convention) where this renaming has been
49d83361 4808 defined. */
4c4b4cd2 4809
49d83361 4810static std::string
96d887e8 4811xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4812{
96d887e8 4813 /* The renaming types adhere to the following convention:
0963b4bd 4814 <scope>__<rename>___<XR extension>.
96d887e8
PH
4815 So, to extract the scope, we search for the "___XR" extension,
4816 and then backtrack until we find the first "__". */
76a01679 4817
7d93a1e0 4818 const char *name = renaming_type->name ();
108d56a4
SM
4819 const char *suffix = strstr (name, "___XR");
4820 const char *last;
14f9c5c9 4821
96d887e8
PH
4822 /* Now, backtrack a bit until we find the first "__". Start looking
4823 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4824
96d887e8
PH
4825 for (last = suffix - 3; last > name; last--)
4826 if (last[0] == '_' && last[1] == '_')
4827 break;
76a01679 4828
96d887e8 4829 /* Make a copy of scope and return it. */
49d83361 4830 return std::string (name, last);
4c4b4cd2
PH
4831}
4832
96d887e8 4833/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4834
96d887e8
PH
4835static int
4836is_package_name (const char *name)
4c4b4cd2 4837{
96d887e8
PH
4838 /* Here, We take advantage of the fact that no symbols are generated
4839 for packages, while symbols are generated for each function.
4840 So the condition for NAME represent a package becomes equivalent
4841 to NAME not existing in our list of symbols. There is only one
4842 small complication with library-level functions (see below). */
4c4b4cd2 4843
96d887e8
PH
4844 /* If it is a function that has not been defined at library level,
4845 then we should be able to look it up in the symbols. */
4846 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4847 return 0;
14f9c5c9 4848
96d887e8
PH
4849 /* Library-level function names start with "_ada_". See if function
4850 "_ada_" followed by NAME can be found. */
14f9c5c9 4851
96d887e8 4852 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4853 functions names cannot contain "__" in them. */
96d887e8
PH
4854 if (strstr (name, "__") != NULL)
4855 return 0;
4c4b4cd2 4856
528e1572 4857 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 4858
528e1572 4859 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 4860}
14f9c5c9 4861
96d887e8 4862/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4863 not visible from FUNCTION_NAME. */
14f9c5c9 4864
96d887e8 4865static int
0d5cff50 4866old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4867{
aeb5907d
JB
4868 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4869 return 0;
4870
49d83361 4871 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 4872
96d887e8 4873 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
4874 if (is_package_name (scope.c_str ()))
4875 return 0;
14f9c5c9 4876
96d887e8
PH
4877 /* Check that the rename is in the current function scope by checking
4878 that its name starts with SCOPE. */
76a01679 4879
96d887e8
PH
4880 /* If the function name starts with "_ada_", it means that it is
4881 a library-level function. Strip this prefix before doing the
4882 comparison, as the encoding for the renaming does not contain
4883 this prefix. */
61012eef 4884 if (startswith (function_name, "_ada_"))
96d887e8 4885 function_name += 5;
f26caa11 4886
49d83361 4887 return !startswith (function_name, scope.c_str ());
f26caa11
PH
4888}
4889
aeb5907d
JB
4890/* Remove entries from SYMS that corresponds to a renaming entity that
4891 is not visible from the function associated with CURRENT_BLOCK or
4892 that is superfluous due to the presence of more specific renaming
4893 information. Places surviving symbols in the initial entries of
d1183b06
TT
4894 SYMS.
4895
96d887e8 4896 Rationale:
aeb5907d
JB
4897 First, in cases where an object renaming is implemented as a
4898 reference variable, GNAT may produce both the actual reference
4899 variable and the renaming encoding. In this case, we discard the
4900 latter.
4901
4902 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4903 entity. Unfortunately, STABS currently does not support the definition
4904 of types that are local to a given lexical block, so all renamings types
4905 are emitted at library level. As a consequence, if an application
4906 contains two renaming entities using the same name, and a user tries to
4907 print the value of one of these entities, the result of the ada symbol
4908 lookup will also contain the wrong renaming type.
f26caa11 4909
96d887e8
PH
4910 This function partially covers for this limitation by attempting to
4911 remove from the SYMS list renaming symbols that should be visible
4912 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4913 method with the current information available. The implementation
4914 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4915
4916 - When the user tries to print a rename in a function while there
dda83cd7
SM
4917 is another rename entity defined in a package: Normally, the
4918 rename in the function has precedence over the rename in the
4919 package, so the latter should be removed from the list. This is
4920 currently not the case.
4921
96d887e8 4922 - This function will incorrectly remove valid renames if
dda83cd7
SM
4923 the CURRENT_BLOCK corresponds to a function which symbol name
4924 has been changed by an "Export" pragma. As a consequence,
4925 the user will be unable to print such rename entities. */
4c4b4cd2 4926
d1183b06 4927static void
54d343a2
TT
4928remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4929 const struct block *current_block)
4c4b4cd2
PH
4930{
4931 struct symbol *current_function;
0d5cff50 4932 const char *current_function_name;
4c4b4cd2 4933 int i;
aeb5907d
JB
4934 int is_new_style_renaming;
4935
4936 /* If there is both a renaming foo___XR... encoded as a variable and
4937 a simple variable foo in the same block, discard the latter.
0963b4bd 4938 First, zero out such symbols, then compress. */
aeb5907d 4939 is_new_style_renaming = 0;
54d343a2 4940 for (i = 0; i < syms->size (); i += 1)
aeb5907d 4941 {
54d343a2
TT
4942 struct symbol *sym = (*syms)[i].symbol;
4943 const struct block *block = (*syms)[i].block;
aeb5907d
JB
4944 const char *name;
4945 const char *suffix;
4946
4947 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4948 continue;
987012b8 4949 name = sym->linkage_name ();
aeb5907d
JB
4950 suffix = strstr (name, "___XR");
4951
4952 if (suffix != NULL)
4953 {
4954 int name_len = suffix - name;
4955 int j;
5b4ee69b 4956
aeb5907d 4957 is_new_style_renaming = 1;
54d343a2
TT
4958 for (j = 0; j < syms->size (); j += 1)
4959 if (i != j && (*syms)[j].symbol != NULL
987012b8 4960 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 4961 name_len) == 0
54d343a2
TT
4962 && block == (*syms)[j].block)
4963 (*syms)[j].symbol = NULL;
aeb5907d
JB
4964 }
4965 }
4966 if (is_new_style_renaming)
4967 {
4968 int j, k;
4969
54d343a2
TT
4970 for (j = k = 0; j < syms->size (); j += 1)
4971 if ((*syms)[j].symbol != NULL)
aeb5907d 4972 {
54d343a2 4973 (*syms)[k] = (*syms)[j];
aeb5907d
JB
4974 k += 1;
4975 }
d1183b06
TT
4976 syms->resize (k);
4977 return;
aeb5907d 4978 }
4c4b4cd2
PH
4979
4980 /* Extract the function name associated to CURRENT_BLOCK.
4981 Abort if unable to do so. */
76a01679 4982
4c4b4cd2 4983 if (current_block == NULL)
d1183b06 4984 return;
76a01679 4985
7f0df278 4986 current_function = block_linkage_function (current_block);
4c4b4cd2 4987 if (current_function == NULL)
d1183b06 4988 return;
4c4b4cd2 4989
987012b8 4990 current_function_name = current_function->linkage_name ();
4c4b4cd2 4991 if (current_function_name == NULL)
d1183b06 4992 return;
4c4b4cd2
PH
4993
4994 /* Check each of the symbols, and remove it from the list if it is
4995 a type corresponding to a renaming that is out of the scope of
4996 the current block. */
4997
4998 i = 0;
54d343a2 4999 while (i < syms->size ())
4c4b4cd2 5000 {
54d343a2 5001 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5002 == ADA_OBJECT_RENAMING
5003 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5004 current_function_name))
5005 syms->erase (syms->begin () + i);
4c4b4cd2 5006 else
dda83cd7 5007 i += 1;
4c4b4cd2 5008 }
4c4b4cd2
PH
5009}
5010
d1183b06 5011/* Add to RESULT all symbols from BLOCK (and its super-blocks)
cd458349 5012 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
339c13b6 5013
cd458349 5014 Note: This function assumes that RESULT is empty. */
339c13b6
JB
5015
5016static void
d1183b06 5017ada_add_local_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5018 const lookup_name_info &lookup_name,
5019 const struct block *block, domain_enum domain)
339c13b6 5020{
339c13b6
JB
5021 while (block != NULL)
5022 {
d1183b06 5023 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
339c13b6 5024
ba8694b6
TT
5025 /* If we found a non-function match, assume that's the one. We
5026 only check this when finding a function boundary, so that we
5027 can accumulate all results from intervening blocks first. */
5028 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
dda83cd7 5029 return;
339c13b6
JB
5030
5031 block = BLOCK_SUPERBLOCK (block);
5032 }
339c13b6
JB
5033}
5034
2315bb2d 5035/* An object of this type is used as the callback argument when
40658b94 5036 calling the map_matching_symbols method. */
ccefe4c4 5037
40658b94 5038struct match_data
ccefe4c4 5039{
1bfa81ac
TT
5040 explicit match_data (std::vector<struct block_symbol> *rp)
5041 : resultp (rp)
5042 {
5043 }
5044 DISABLE_COPY_AND_ASSIGN (match_data);
5045
2315bb2d
TT
5046 bool operator() (struct block_symbol *bsym);
5047
1bfa81ac 5048 struct objfile *objfile = nullptr;
d1183b06 5049 std::vector<struct block_symbol> *resultp;
1bfa81ac 5050 struct symbol *arg_sym = nullptr;
1178743e 5051 bool found_sym = false;
ccefe4c4
TT
5052};
5053
2315bb2d
TT
5054/* A callback for add_nonlocal_symbols that adds symbol, found in
5055 BSYM, to a list of symbols. */
ccefe4c4 5056
2315bb2d
TT
5057bool
5058match_data::operator() (struct block_symbol *bsym)
ccefe4c4 5059{
199b4314
TT
5060 const struct block *block = bsym->block;
5061 struct symbol *sym = bsym->symbol;
5062
40658b94
PH
5063 if (sym == NULL)
5064 {
2315bb2d
TT
5065 if (!found_sym && arg_sym != NULL)
5066 add_defn_to_vec (*resultp,
5067 fixup_symbol_section (arg_sym, objfile),
40658b94 5068 block);
2315bb2d
TT
5069 found_sym = false;
5070 arg_sym = NULL;
40658b94
PH
5071 }
5072 else
5073 {
5074 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5075 return true;
40658b94 5076 else if (SYMBOL_IS_ARGUMENT (sym))
2315bb2d 5077 arg_sym = sym;
40658b94
PH
5078 else
5079 {
2315bb2d
TT
5080 found_sym = true;
5081 add_defn_to_vec (*resultp,
5082 fixup_symbol_section (sym, objfile),
40658b94
PH
5083 block);
5084 }
5085 }
199b4314 5086 return true;
40658b94
PH
5087}
5088
b5ec771e
PA
5089/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5090 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
1bfa81ac 5091 symbols to RESULT. Return whether we found such symbols. */
22cee43f
PMR
5092
5093static int
d1183b06 5094ada_add_block_renamings (std::vector<struct block_symbol> &result,
22cee43f 5095 const struct block *block,
b5ec771e
PA
5096 const lookup_name_info &lookup_name,
5097 domain_enum domain)
22cee43f
PMR
5098{
5099 struct using_direct *renaming;
d1183b06 5100 int defns_mark = result.size ();
22cee43f 5101
b5ec771e
PA
5102 symbol_name_matcher_ftype *name_match
5103 = ada_get_symbol_name_matcher (lookup_name);
5104
22cee43f
PMR
5105 for (renaming = block_using (block);
5106 renaming != NULL;
5107 renaming = renaming->next)
5108 {
5109 const char *r_name;
22cee43f
PMR
5110
5111 /* Avoid infinite recursions: skip this renaming if we are actually
5112 already traversing it.
5113
5114 Currently, symbol lookup in Ada don't use the namespace machinery from
5115 C++/Fortran support: skip namespace imports that use them. */
5116 if (renaming->searched
5117 || (renaming->import_src != NULL
5118 && renaming->import_src[0] != '\0')
5119 || (renaming->import_dest != NULL
5120 && renaming->import_dest[0] != '\0'))
5121 continue;
5122 renaming->searched = 1;
5123
5124 /* TODO: here, we perform another name-based symbol lookup, which can
5125 pull its own multiple overloads. In theory, we should be able to do
5126 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5127 not a simple name. But in order to do this, we would need to enhance
5128 the DWARF reader to associate a symbol to this renaming, instead of a
5129 name. So, for now, we do something simpler: re-use the C++/Fortran
5130 namespace machinery. */
5131 r_name = (renaming->alias != NULL
5132 ? renaming->alias
5133 : renaming->declaration);
b5ec771e
PA
5134 if (name_match (r_name, lookup_name, NULL))
5135 {
5136 lookup_name_info decl_lookup_name (renaming->declaration,
5137 lookup_name.match_type ());
d1183b06 5138 ada_add_all_symbols (result, block, decl_lookup_name, domain,
b5ec771e
PA
5139 1, NULL);
5140 }
22cee43f
PMR
5141 renaming->searched = 0;
5142 }
d1183b06 5143 return result.size () != defns_mark;
22cee43f
PMR
5144}
5145
db230ce3
JB
5146/* Implements compare_names, but only applying the comparision using
5147 the given CASING. */
5b4ee69b 5148
40658b94 5149static int
db230ce3
JB
5150compare_names_with_case (const char *string1, const char *string2,
5151 enum case_sensitivity casing)
40658b94
PH
5152{
5153 while (*string1 != '\0' && *string2 != '\0')
5154 {
db230ce3
JB
5155 char c1, c2;
5156
40658b94
PH
5157 if (isspace (*string1) || isspace (*string2))
5158 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5159
5160 if (casing == case_sensitive_off)
5161 {
5162 c1 = tolower (*string1);
5163 c2 = tolower (*string2);
5164 }
5165 else
5166 {
5167 c1 = *string1;
5168 c2 = *string2;
5169 }
5170 if (c1 != c2)
40658b94 5171 break;
db230ce3 5172
40658b94
PH
5173 string1 += 1;
5174 string2 += 1;
5175 }
db230ce3 5176
40658b94
PH
5177 switch (*string1)
5178 {
5179 case '(':
5180 return strcmp_iw_ordered (string1, string2);
5181 case '_':
5182 if (*string2 == '\0')
5183 {
052874e8 5184 if (is_name_suffix (string1))
40658b94
PH
5185 return 0;
5186 else
1a1d5513 5187 return 1;
40658b94 5188 }
dbb8534f 5189 /* FALLTHROUGH */
40658b94
PH
5190 default:
5191 if (*string2 == '(')
5192 return strcmp_iw_ordered (string1, string2);
5193 else
db230ce3
JB
5194 {
5195 if (casing == case_sensitive_off)
5196 return tolower (*string1) - tolower (*string2);
5197 else
5198 return *string1 - *string2;
5199 }
40658b94 5200 }
ccefe4c4
TT
5201}
5202
db230ce3
JB
5203/* Compare STRING1 to STRING2, with results as for strcmp.
5204 Compatible with strcmp_iw_ordered in that...
5205
5206 strcmp_iw_ordered (STRING1, STRING2) <= 0
5207
5208 ... implies...
5209
5210 compare_names (STRING1, STRING2) <= 0
5211
5212 (they may differ as to what symbols compare equal). */
5213
5214static int
5215compare_names (const char *string1, const char *string2)
5216{
5217 int result;
5218
5219 /* Similar to what strcmp_iw_ordered does, we need to perform
5220 a case-insensitive comparison first, and only resort to
5221 a second, case-sensitive, comparison if the first one was
5222 not sufficient to differentiate the two strings. */
5223
5224 result = compare_names_with_case (string1, string2, case_sensitive_off);
5225 if (result == 0)
5226 result = compare_names_with_case (string1, string2, case_sensitive_on);
5227
5228 return result;
5229}
5230
b5ec771e
PA
5231/* Convenience function to get at the Ada encoded lookup name for
5232 LOOKUP_NAME, as a C string. */
5233
5234static const char *
5235ada_lookup_name (const lookup_name_info &lookup_name)
5236{
5237 return lookup_name.ada ().lookup_name ().c_str ();
5238}
5239
0b7b2c2a
TT
5240/* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5241 for OBJFILE, then walk the objfile's symtabs and update the
5242 results. */
5243
5244static void
5245map_matching_symbols (struct objfile *objfile,
5246 const lookup_name_info &lookup_name,
5247 bool is_wild_match,
5248 domain_enum domain,
5249 int global,
5250 match_data &data)
5251{
5252 data.objfile = objfile;
5253 objfile->expand_matching_symbols (lookup_name, domain, global,
5254 is_wild_match ? nullptr : compare_names);
5255
5256 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5257 for (compunit_symtab *symtab : objfile->compunits ())
5258 {
5259 const struct block *block
5260 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5261 if (!iterate_over_symbols_terminated (block, lookup_name,
5262 domain, data))
5263 break;
5264 }
5265}
5266
1bfa81ac 5267/* Add to RESULT all non-local symbols whose name and domain match
b5ec771e
PA
5268 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5269 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5270 symbols otherwise. */
339c13b6
JB
5271
5272static void
d1183b06 5273add_nonlocal_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5274 const lookup_name_info &lookup_name,
5275 domain_enum domain, int global)
339c13b6 5276{
1bfa81ac 5277 struct match_data data (&result);
339c13b6 5278
b5ec771e
PA
5279 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5280
2030c079 5281 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5282 {
0b7b2c2a
TT
5283 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5284 global, data);
22cee43f 5285
b669c953 5286 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5287 {
5288 const struct block *global_block
5289 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5290
d1183b06 5291 if (ada_add_block_renamings (result, global_block, lookup_name,
b5ec771e 5292 domain))
1178743e 5293 data.found_sym = true;
22cee43f 5294 }
40658b94
PH
5295 }
5296
d1183b06 5297 if (result.empty () && global && !is_wild_match)
40658b94 5298 {
b5ec771e 5299 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5300 std::string bracket_name = std::string ("<_ada_") + name + '>';
5301 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5302
2030c079 5303 for (objfile *objfile : current_program_space->objfiles ())
0b7b2c2a
TT
5304 map_matching_symbols (objfile, name1, false, domain, global, data);
5305 }
339c13b6
JB
5306}
5307
b5ec771e
PA
5308/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5309 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
1bfa81ac 5310 returning the number of matches. Add these to RESULT.
4eeaa230 5311
22cee43f
PMR
5312 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5313 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5314 is the one match returned (no other matches in that or
d9680e73 5315 enclosing blocks is returned). If there are any matches in or
22cee43f 5316 surrounding BLOCK, then these alone are returned.
4eeaa230 5317
b5ec771e
PA
5318 Names prefixed with "standard__" are handled specially:
5319 "standard__" is first stripped off (by the lookup_name
5320 constructor), and only static and global symbols are searched.
14f9c5c9 5321
22cee43f
PMR
5322 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5323 to lookup global symbols. */
5324
5325static void
d1183b06 5326ada_add_all_symbols (std::vector<struct block_symbol> &result,
22cee43f 5327 const struct block *block,
b5ec771e 5328 const lookup_name_info &lookup_name,
22cee43f
PMR
5329 domain_enum domain,
5330 int full_search,
5331 int *made_global_lookup_p)
14f9c5c9
AS
5332{
5333 struct symbol *sym;
14f9c5c9 5334
22cee43f
PMR
5335 if (made_global_lookup_p)
5336 *made_global_lookup_p = 0;
339c13b6
JB
5337
5338 /* Special case: If the user specifies a symbol name inside package
5339 Standard, do a non-wild matching of the symbol name without
5340 the "standard__" prefix. This was primarily introduced in order
5341 to allow the user to specifically access the standard exceptions
5342 using, for instance, Standard.Constraint_Error when Constraint_Error
5343 is ambiguous (due to the user defining its own Constraint_Error
5344 entity inside its program). */
b5ec771e
PA
5345 if (lookup_name.ada ().standard_p ())
5346 block = NULL;
4c4b4cd2 5347
339c13b6 5348 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5349
4eeaa230
DE
5350 if (block != NULL)
5351 {
5352 if (full_search)
d1183b06 5353 ada_add_local_symbols (result, lookup_name, block, domain);
4eeaa230
DE
5354 else
5355 {
5356 /* In the !full_search case we're are being called by
4009ee92 5357 iterate_over_symbols, and we don't want to search
4eeaa230 5358 superblocks. */
d1183b06 5359 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4eeaa230 5360 }
d1183b06 5361 if (!result.empty () || !full_search)
22cee43f 5362 return;
4eeaa230 5363 }
d2e4a39e 5364
339c13b6
JB
5365 /* No non-global symbols found. Check our cache to see if we have
5366 already performed this search before. If we have, then return
5367 the same result. */
5368
b5ec771e
PA
5369 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5370 domain, &sym, &block))
4c4b4cd2
PH
5371 {
5372 if (sym != NULL)
d1183b06 5373 add_defn_to_vec (result, sym, block);
22cee43f 5374 return;
4c4b4cd2 5375 }
14f9c5c9 5376
22cee43f
PMR
5377 if (made_global_lookup_p)
5378 *made_global_lookup_p = 1;
b1eedac9 5379
339c13b6
JB
5380 /* Search symbols from all global blocks. */
5381
d1183b06 5382 add_nonlocal_symbols (result, lookup_name, domain, 1);
d2e4a39e 5383
4c4b4cd2 5384 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5385 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5386
d1183b06
TT
5387 if (result.empty ())
5388 add_nonlocal_symbols (result, lookup_name, domain, 0);
22cee43f
PMR
5389}
5390
b5ec771e 5391/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
d1183b06
TT
5392 is non-zero, enclosing scope and in global scopes.
5393
5394 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5395 blocks and symbol tables (if any) in which they were found.
22cee43f
PMR
5396
5397 When full_search is non-zero, any non-function/non-enumeral
5398 symbol match within the nest of blocks whose innermost member is BLOCK,
5399 is the one match returned (no other matches in that or
5400 enclosing blocks is returned). If there are any matches in or
5401 surrounding BLOCK, then these alone are returned.
5402
5403 Names prefixed with "standard__" are handled specially: "standard__"
5404 is first stripped off, and only static and global symbols are searched. */
5405
d1183b06 5406static std::vector<struct block_symbol>
b5ec771e
PA
5407ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5408 const struct block *block,
22cee43f 5409 domain_enum domain,
22cee43f
PMR
5410 int full_search)
5411{
22cee43f 5412 int syms_from_global_search;
d1183b06 5413 std::vector<struct block_symbol> results;
22cee43f 5414
d1183b06 5415 ada_add_all_symbols (results, block, lookup_name,
b5ec771e 5416 domain, full_search, &syms_from_global_search);
14f9c5c9 5417
d1183b06 5418 remove_extra_symbols (&results);
4c4b4cd2 5419
d1183b06 5420 if (results.empty () && full_search && syms_from_global_search)
b5ec771e 5421 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5422
d1183b06 5423 if (results.size () == 1 && full_search && syms_from_global_search)
b5ec771e 5424 cache_symbol (ada_lookup_name (lookup_name), domain,
d1183b06 5425 results[0].symbol, results[0].block);
ec6a20c2 5426
d1183b06
TT
5427 remove_irrelevant_renamings (&results, block);
5428 return results;
14f9c5c9
AS
5429}
5430
b5ec771e 5431/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
d1183b06 5432 in global scopes, returning (SYM,BLOCK) tuples.
ec6a20c2 5433
4eeaa230
DE
5434 See ada_lookup_symbol_list_worker for further details. */
5435
d1183b06 5436std::vector<struct block_symbol>
b5ec771e 5437ada_lookup_symbol_list (const char *name, const struct block *block,
d1183b06 5438 domain_enum domain)
4eeaa230 5439{
b5ec771e
PA
5440 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5441 lookup_name_info lookup_name (name, name_match_type);
5442
d1183b06 5443 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
4eeaa230
DE
5444}
5445
4e5c77fe
JB
5446/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5447 to 1, but choosing the first symbol found if there are multiple
5448 choices.
5449
5e2336be
JB
5450 The result is stored in *INFO, which must be non-NULL.
5451 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5452
5453void
5454ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5455 domain_enum domain,
d12307c1 5456 struct block_symbol *info)
14f9c5c9 5457{
b5ec771e
PA
5458 /* Since we already have an encoded name, wrap it in '<>' to force a
5459 verbatim match. Otherwise, if the name happens to not look like
5460 an encoded name (because it doesn't include a "__"),
5461 ada_lookup_name_info would re-encode/fold it again, and that
5462 would e.g., incorrectly lowercase object renaming names like
5463 "R28b" -> "r28b". */
12932e2c 5464 std::string verbatim = add_angle_brackets (name);
b5ec771e 5465
5e2336be 5466 gdb_assert (info != NULL);
65392b3e 5467 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5468}
aeb5907d
JB
5469
5470/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5471 scope and in global scopes, or NULL if none. NAME is folded and
5472 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5473 choosing the first symbol if there are multiple choices. */
4e5c77fe 5474
d12307c1 5475struct block_symbol
aeb5907d 5476ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5477 domain_enum domain)
aeb5907d 5478{
d1183b06
TT
5479 std::vector<struct block_symbol> candidates
5480 = ada_lookup_symbol_list (name, block0, domain);
f98fc17b 5481
d1183b06 5482 if (candidates.empty ())
54d343a2 5483 return {};
f98fc17b
PA
5484
5485 block_symbol info = candidates[0];
5486 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5487 return info;
4c4b4cd2 5488}
14f9c5c9 5489
14f9c5c9 5490
4c4b4cd2
PH
5491/* True iff STR is a possible encoded suffix of a normal Ada name
5492 that is to be ignored for matching purposes. Suffixes of parallel
5493 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5494 are given by any of the regular expressions:
4c4b4cd2 5495
babe1480
JB
5496 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5497 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5498 TKB [subprogram suffix for task bodies]
babe1480 5499 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5500 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5501
5502 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5503 match is performed. This sequence is used to differentiate homonyms,
5504 is an optional part of a valid name suffix. */
4c4b4cd2 5505
14f9c5c9 5506static int
d2e4a39e 5507is_name_suffix (const char *str)
14f9c5c9
AS
5508{
5509 int k;
4c4b4cd2
PH
5510 const char *matching;
5511 const int len = strlen (str);
5512
babe1480
JB
5513 /* Skip optional leading __[0-9]+. */
5514
4c4b4cd2
PH
5515 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5516 {
babe1480
JB
5517 str += 3;
5518 while (isdigit (str[0]))
dda83cd7 5519 str += 1;
4c4b4cd2 5520 }
babe1480
JB
5521
5522 /* [.$][0-9]+ */
4c4b4cd2 5523
babe1480 5524 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5525 {
babe1480 5526 matching = str + 1;
4c4b4cd2 5527 while (isdigit (matching[0]))
dda83cd7 5528 matching += 1;
4c4b4cd2 5529 if (matching[0] == '\0')
dda83cd7 5530 return 1;
4c4b4cd2
PH
5531 }
5532
5533 /* ___[0-9]+ */
babe1480 5534
4c4b4cd2
PH
5535 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5536 {
5537 matching = str + 3;
5538 while (isdigit (matching[0]))
dda83cd7 5539 matching += 1;
4c4b4cd2 5540 if (matching[0] == '\0')
dda83cd7 5541 return 1;
4c4b4cd2
PH
5542 }
5543
9ac7f98e
JB
5544 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5545
5546 if (strcmp (str, "TKB") == 0)
5547 return 1;
5548
529cad9c
PH
5549#if 0
5550 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5551 with a N at the end. Unfortunately, the compiler uses the same
5552 convention for other internal types it creates. So treating
529cad9c 5553 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5554 some regressions. For instance, consider the case of an enumerated
5555 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5556 name ends with N.
5557 Having a single character like this as a suffix carrying some
0963b4bd 5558 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5559 to be something like "_N" instead. In the meantime, do not do
5560 the following check. */
5561 /* Protected Object Subprograms */
5562 if (len == 1 && str [0] == 'N')
5563 return 1;
5564#endif
5565
5566 /* _E[0-9]+[bs]$ */
5567 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5568 {
5569 matching = str + 3;
5570 while (isdigit (matching[0]))
dda83cd7 5571 matching += 1;
529cad9c 5572 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5573 && matching [1] == '\0')
5574 return 1;
529cad9c
PH
5575 }
5576
4c4b4cd2
PH
5577 /* ??? We should not modify STR directly, as we are doing below. This
5578 is fine in this case, but may become problematic later if we find
5579 that this alternative did not work, and want to try matching
5580 another one from the begining of STR. Since we modified it, we
5581 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5582 if (str[0] == 'X')
5583 {
5584 str += 1;
d2e4a39e 5585 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5586 {
5587 if (str[0] != 'n' && str[0] != 'b')
5588 return 0;
5589 str += 1;
5590 }
14f9c5c9 5591 }
babe1480 5592
14f9c5c9
AS
5593 if (str[0] == '\000')
5594 return 1;
babe1480 5595
d2e4a39e 5596 if (str[0] == '_')
14f9c5c9
AS
5597 {
5598 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5599 return 0;
d2e4a39e 5600 if (str[2] == '_')
dda83cd7
SM
5601 {
5602 if (strcmp (str + 3, "JM") == 0)
5603 return 1;
5604 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5605 the LJM suffix in favor of the JM one. But we will
5606 still accept LJM as a valid suffix for a reasonable
5607 amount of time, just to allow ourselves to debug programs
5608 compiled using an older version of GNAT. */
5609 if (strcmp (str + 3, "LJM") == 0)
5610 return 1;
5611 if (str[3] != 'X')
5612 return 0;
5613 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5614 || str[4] == 'U' || str[4] == 'P')
5615 return 1;
5616 if (str[4] == 'R' && str[5] != 'T')
5617 return 1;
5618 return 0;
5619 }
4c4b4cd2 5620 if (!isdigit (str[2]))
dda83cd7 5621 return 0;
4c4b4cd2 5622 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5623 if (!isdigit (str[k]) && str[k] != '_')
5624 return 0;
14f9c5c9
AS
5625 return 1;
5626 }
4c4b4cd2 5627 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5628 {
4c4b4cd2 5629 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5630 if (!isdigit (str[k]) && str[k] != '_')
5631 return 0;
14f9c5c9
AS
5632 return 1;
5633 }
5634 return 0;
5635}
d2e4a39e 5636
aeb5907d
JB
5637/* Return non-zero if the string starting at NAME and ending before
5638 NAME_END contains no capital letters. */
529cad9c
PH
5639
5640static int
5641is_valid_name_for_wild_match (const char *name0)
5642{
f945dedf 5643 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5644 int i;
5645
5823c3ef
JB
5646 /* If the decoded name starts with an angle bracket, it means that
5647 NAME0 does not follow the GNAT encoding format. It should then
5648 not be allowed as a possible wild match. */
5649 if (decoded_name[0] == '<')
5650 return 0;
5651
529cad9c
PH
5652 for (i=0; decoded_name[i] != '\0'; i++)
5653 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5654 return 0;
5655
5656 return 1;
5657}
5658
59c8a30b
JB
5659/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5660 character which could start a simple name. Assumes that *NAMEP points
5661 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5662
14f9c5c9 5663static int
59c8a30b 5664advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5665{
73589123 5666 const char *name = *namep;
5b4ee69b 5667
5823c3ef 5668 while (1)
14f9c5c9 5669 {
59c8a30b 5670 char t0, t1;
73589123
PH
5671
5672 t0 = *name;
5673 if (t0 == '_')
5674 {
5675 t1 = name[1];
5676 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5677 {
5678 name += 1;
61012eef 5679 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5680 break;
5681 else
5682 name += 1;
5683 }
aa27d0b3
JB
5684 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5685 || name[2] == target0))
73589123
PH
5686 {
5687 name += 2;
5688 break;
5689 }
86b44259
TT
5690 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5691 {
5692 /* Names like "pkg__B_N__name", where N is a number, are
5693 block-local. We can handle these by simply skipping
5694 the "B_" here. */
5695 name += 4;
5696 }
73589123
PH
5697 else
5698 return 0;
5699 }
5700 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5701 name += 1;
5702 else
5823c3ef 5703 return 0;
73589123
PH
5704 }
5705
5706 *namep = name;
5707 return 1;
5708}
5709
b5ec771e
PA
5710/* Return true iff NAME encodes a name of the form prefix.PATN.
5711 Ignores any informational suffixes of NAME (i.e., for which
5712 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5713 simple name. */
73589123 5714
b5ec771e 5715static bool
73589123
PH
5716wild_match (const char *name, const char *patn)
5717{
22e048c9 5718 const char *p;
73589123
PH
5719 const char *name0 = name;
5720
5721 while (1)
5722 {
5723 const char *match = name;
5724
5725 if (*name == *patn)
5726 {
5727 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5728 if (*p != *name)
5729 break;
5730 if (*p == '\0' && is_name_suffix (name))
b5ec771e 5731 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
5732
5733 if (name[-1] == '_')
5734 name -= 1;
5735 }
5736 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 5737 return false;
96d887e8 5738 }
96d887e8
PH
5739}
5740
d1183b06 5741/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
b5ec771e 5742 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
5743
5744static void
d1183b06 5745ada_add_block_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5746 const struct block *block,
5747 const lookup_name_info &lookup_name,
5748 domain_enum domain, struct objfile *objfile)
96d887e8 5749{
8157b174 5750 struct block_iterator iter;
96d887e8
PH
5751 /* A matching argument symbol, if any. */
5752 struct symbol *arg_sym;
5753 /* Set true when we find a matching non-argument symbol. */
1178743e 5754 bool found_sym;
96d887e8
PH
5755 struct symbol *sym;
5756
5757 arg_sym = NULL;
1178743e 5758 found_sym = false;
b5ec771e
PA
5759 for (sym = block_iter_match_first (block, lookup_name, &iter);
5760 sym != NULL;
5761 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 5762 {
c1b5c1eb 5763 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
5764 {
5765 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5766 {
5767 if (SYMBOL_IS_ARGUMENT (sym))
5768 arg_sym = sym;
5769 else
5770 {
1178743e 5771 found_sym = true;
d1183b06 5772 add_defn_to_vec (result,
b5ec771e
PA
5773 fixup_symbol_section (sym, objfile),
5774 block);
5775 }
5776 }
5777 }
96d887e8
PH
5778 }
5779
22cee43f
PMR
5780 /* Handle renamings. */
5781
d1183b06 5782 if (ada_add_block_renamings (result, block, lookup_name, domain))
1178743e 5783 found_sym = true;
22cee43f 5784
96d887e8
PH
5785 if (!found_sym && arg_sym != NULL)
5786 {
d1183b06 5787 add_defn_to_vec (result,
dda83cd7
SM
5788 fixup_symbol_section (arg_sym, objfile),
5789 block);
96d887e8
PH
5790 }
5791
b5ec771e 5792 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
5793 {
5794 arg_sym = NULL;
1178743e 5795 found_sym = false;
b5ec771e
PA
5796 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5797 const char *name = ada_lookup_name.c_str ();
5798 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
5799
5800 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5801 {
dda83cd7
SM
5802 if (symbol_matches_domain (sym->language (),
5803 SYMBOL_DOMAIN (sym), domain))
5804 {
5805 int cmp;
5806
5807 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5808 if (cmp == 0)
5809 {
5810 cmp = !startswith (sym->linkage_name (), "_ada_");
5811 if (cmp == 0)
5812 cmp = strncmp (name, sym->linkage_name () + 5,
5813 name_len);
5814 }
5815
5816 if (cmp == 0
5817 && is_name_suffix (sym->linkage_name () + name_len + 5))
5818 {
2a2d4dc3
AS
5819 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5820 {
5821 if (SYMBOL_IS_ARGUMENT (sym))
5822 arg_sym = sym;
5823 else
5824 {
1178743e 5825 found_sym = true;
d1183b06 5826 add_defn_to_vec (result,
2a2d4dc3
AS
5827 fixup_symbol_section (sym, objfile),
5828 block);
5829 }
5830 }
dda83cd7
SM
5831 }
5832 }
76a01679 5833 }
96d887e8
PH
5834
5835 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 5836 They aren't parameters, right? */
96d887e8 5837 if (!found_sym && arg_sym != NULL)
dda83cd7 5838 {
d1183b06 5839 add_defn_to_vec (result,
dda83cd7
SM
5840 fixup_symbol_section (arg_sym, objfile),
5841 block);
5842 }
96d887e8
PH
5843 }
5844}
5845\f
41d27058 5846
dda83cd7 5847 /* Symbol Completion */
41d27058 5848
b5ec771e 5849/* See symtab.h. */
41d27058 5850
b5ec771e
PA
5851bool
5852ada_lookup_name_info::matches
5853 (const char *sym_name,
5854 symbol_name_match_type match_type,
a207cff2 5855 completion_match_result *comp_match_res) const
41d27058 5856{
b5ec771e
PA
5857 bool match = false;
5858 const char *text = m_encoded_name.c_str ();
5859 size_t text_len = m_encoded_name.size ();
41d27058
JB
5860
5861 /* First, test against the fully qualified name of the symbol. */
5862
5863 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5864 match = true;
41d27058 5865
f945dedf 5866 std::string decoded_name = ada_decode (sym_name);
b5ec771e 5867 if (match && !m_encoded_p)
41d27058
JB
5868 {
5869 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
5870 that iff we are doing a verbatim match, the decoded version
5871 of the symbol name starts with '<'. Otherwise, this symbol name
5872 is not a suitable completion. */
41d27058 5873
f945dedf 5874 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 5875 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
5876 }
5877
b5ec771e 5878 if (match && !m_verbatim_p)
41d27058
JB
5879 {
5880 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
5881 be done is to verify that the potentially matching symbol name
5882 does not include capital letters, because the ada-mode would
5883 not be able to understand these symbol names without the
5884 angle bracket notation. */
41d27058
JB
5885 const char *tmp;
5886
5887 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5888 if (*tmp != '\0')
b5ec771e 5889 match = false;
41d27058
JB
5890 }
5891
5892 /* Second: Try wild matching... */
5893
b5ec771e 5894 if (!match && m_wild_match_p)
41d27058
JB
5895 {
5896 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
5897 may represent an unqualified symbol name. We therefore must
5898 also compare TEXT against the unqualified name of the symbol. */
f945dedf 5899 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
5900
5901 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5902 match = true;
41d27058
JB
5903 }
5904
b5ec771e 5905 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
5906
5907 if (!match)
b5ec771e 5908 return false;
41d27058 5909
a207cff2 5910 if (comp_match_res != NULL)
b5ec771e 5911 {
a207cff2 5912 std::string &match_str = comp_match_res->match.storage ();
41d27058 5913
b5ec771e 5914 if (!m_encoded_p)
a207cff2 5915 match_str = ada_decode (sym_name);
b5ec771e
PA
5916 else
5917 {
5918 if (m_verbatim_p)
5919 match_str = add_angle_brackets (sym_name);
5920 else
5921 match_str = sym_name;
41d27058 5922
b5ec771e 5923 }
a207cff2
PA
5924
5925 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
5926 }
5927
b5ec771e 5928 return true;
41d27058
JB
5929}
5930
dda83cd7 5931 /* Field Access */
96d887e8 5932
73fb9985
JB
5933/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5934 for tagged types. */
5935
5936static int
5937ada_is_dispatch_table_ptr_type (struct type *type)
5938{
0d5cff50 5939 const char *name;
73fb9985 5940
78134374 5941 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
5942 return 0;
5943
7d93a1e0 5944 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
5945 if (name == NULL)
5946 return 0;
5947
5948 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5949}
5950
ac4a2da4
JG
5951/* Return non-zero if TYPE is an interface tag. */
5952
5953static int
5954ada_is_interface_tag (struct type *type)
5955{
7d93a1e0 5956 const char *name = type->name ();
ac4a2da4
JG
5957
5958 if (name == NULL)
5959 return 0;
5960
5961 return (strcmp (name, "ada__tags__interface_tag") == 0);
5962}
5963
963a6417
PH
5964/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5965 to be invisible to users. */
96d887e8 5966
963a6417
PH
5967int
5968ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5969{
1f704f76 5970 if (field_num < 0 || field_num > type->num_fields ())
963a6417 5971 return 1;
ffde82bf 5972
73fb9985
JB
5973 /* Check the name of that field. */
5974 {
5975 const char *name = TYPE_FIELD_NAME (type, field_num);
5976
5977 /* Anonymous field names should not be printed.
5978 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 5979 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
5980 if (name == NULL)
5981 return 1;
5982
ffde82bf
JB
5983 /* Normally, fields whose name start with an underscore ("_")
5984 are fields that have been internally generated by the compiler,
5985 and thus should not be printed. The "_parent" field is special,
5986 however: This is a field internally generated by the compiler
5987 for tagged types, and it contains the components inherited from
5988 the parent type. This field should not be printed as is, but
5989 should not be ignored either. */
61012eef 5990 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
5991 return 1;
5992 }
5993
ac4a2da4
JG
5994 /* If this is the dispatch table of a tagged type or an interface tag,
5995 then ignore. */
73fb9985 5996 if (ada_is_tagged_type (type, 1)
940da03e
SM
5997 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5998 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
5999 return 1;
6000
6001 /* Not a special field, so it should not be ignored. */
6002 return 0;
963a6417 6003}
96d887e8 6004
963a6417 6005/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6006 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6007
963a6417
PH
6008int
6009ada_is_tagged_type (struct type *type, int refok)
6010{
988f6b3d 6011 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6012}
96d887e8 6013
963a6417 6014/* True iff TYPE represents the type of X'Tag */
96d887e8 6015
963a6417
PH
6016int
6017ada_is_tag_type (struct type *type)
6018{
460efde1
JB
6019 type = ada_check_typedef (type);
6020
78134374 6021 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6022 return 0;
6023 else
96d887e8 6024 {
963a6417 6025 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6026
963a6417 6027 return (name != NULL
dda83cd7 6028 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6029 }
96d887e8
PH
6030}
6031
963a6417 6032/* The type of the tag on VAL. */
76a01679 6033
de93309a 6034static struct type *
963a6417 6035ada_tag_type (struct value *val)
96d887e8 6036{
988f6b3d 6037 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6038}
96d887e8 6039
b50d69b5
JG
6040/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6041 retired at Ada 05). */
6042
6043static int
6044is_ada95_tag (struct value *tag)
6045{
6046 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6047}
6048
963a6417 6049/* The value of the tag on VAL. */
96d887e8 6050
de93309a 6051static struct value *
963a6417
PH
6052ada_value_tag (struct value *val)
6053{
03ee6b2e 6054 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6055}
6056
963a6417
PH
6057/* The value of the tag on the object of type TYPE whose contents are
6058 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6059 ADDRESS. */
96d887e8 6060
963a6417 6061static struct value *
10a2c479 6062value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6063 const gdb_byte *valaddr,
dda83cd7 6064 CORE_ADDR address)
96d887e8 6065{
b5385fc0 6066 int tag_byte_offset;
963a6417 6067 struct type *tag_type;
5b4ee69b 6068
963a6417 6069 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6070 NULL, NULL, NULL))
96d887e8 6071 {
fc1a4b47 6072 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6073 ? NULL
6074 : valaddr + tag_byte_offset);
963a6417 6075 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6076
963a6417 6077 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6078 }
963a6417
PH
6079 return NULL;
6080}
96d887e8 6081
963a6417
PH
6082static struct type *
6083type_from_tag (struct value *tag)
6084{
f5272a3b 6085 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6086
963a6417 6087 if (type_name != NULL)
5c4258f4 6088 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6089 return NULL;
6090}
96d887e8 6091
b50d69b5
JG
6092/* Given a value OBJ of a tagged type, return a value of this
6093 type at the base address of the object. The base address, as
6094 defined in Ada.Tags, it is the address of the primary tag of
6095 the object, and therefore where the field values of its full
6096 view can be fetched. */
6097
6098struct value *
6099ada_tag_value_at_base_address (struct value *obj)
6100{
b50d69b5
JG
6101 struct value *val;
6102 LONGEST offset_to_top = 0;
6103 struct type *ptr_type, *obj_type;
6104 struct value *tag;
6105 CORE_ADDR base_address;
6106
6107 obj_type = value_type (obj);
6108
6109 /* It is the responsability of the caller to deref pointers. */
6110
78134374 6111 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6112 return obj;
6113
6114 tag = ada_value_tag (obj);
6115 if (!tag)
6116 return obj;
6117
6118 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6119
6120 if (is_ada95_tag (tag))
6121 return obj;
6122
08f49010
XR
6123 ptr_type = language_lookup_primitive_type
6124 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6125 ptr_type = lookup_pointer_type (ptr_type);
6126 val = value_cast (ptr_type, tag);
6127 if (!val)
6128 return obj;
6129
6130 /* It is perfectly possible that an exception be raised while
6131 trying to determine the base address, just like for the tag;
6132 see ada_tag_name for more details. We do not print the error
6133 message for the same reason. */
6134
a70b8144 6135 try
b50d69b5
JG
6136 {
6137 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6138 }
6139
230d2906 6140 catch (const gdb_exception_error &e)
492d29ea
PA
6141 {
6142 return obj;
6143 }
b50d69b5
JG
6144
6145 /* If offset is null, nothing to do. */
6146
6147 if (offset_to_top == 0)
6148 return obj;
6149
6150 /* -1 is a special case in Ada.Tags; however, what should be done
6151 is not quite clear from the documentation. So do nothing for
6152 now. */
6153
6154 if (offset_to_top == -1)
6155 return obj;
6156
08f49010
XR
6157 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6158 from the base address. This was however incompatible with
6159 C++ dispatch table: C++ uses a *negative* value to *add*
6160 to the base address. Ada's convention has therefore been
6161 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6162 use the same convention. Here, we support both cases by
6163 checking the sign of OFFSET_TO_TOP. */
6164
6165 if (offset_to_top > 0)
6166 offset_to_top = -offset_to_top;
6167
6168 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6169 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6170
6171 /* Make sure that we have a proper tag at the new address.
6172 Otherwise, offset_to_top is bogus (which can happen when
6173 the object is not initialized yet). */
6174
6175 if (!tag)
6176 return obj;
6177
6178 obj_type = type_from_tag (tag);
6179
6180 if (!obj_type)
6181 return obj;
6182
6183 return value_from_contents_and_address (obj_type, NULL, base_address);
6184}
6185
1b611343
JB
6186/* Return the "ada__tags__type_specific_data" type. */
6187
6188static struct type *
6189ada_get_tsd_type (struct inferior *inf)
963a6417 6190{
1b611343 6191 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6192
1b611343
JB
6193 if (data->tsd_type == 0)
6194 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6195 return data->tsd_type;
6196}
529cad9c 6197
1b611343
JB
6198/* Return the TSD (type-specific data) associated to the given TAG.
6199 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6200
1b611343 6201 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6202
1b611343
JB
6203static struct value *
6204ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6205{
4c4b4cd2 6206 struct value *val;
1b611343 6207 struct type *type;
5b4ee69b 6208
1b611343
JB
6209 /* First option: The TSD is simply stored as a field of our TAG.
6210 Only older versions of GNAT would use this format, but we have
6211 to test it first, because there are no visible markers for
6212 the current approach except the absence of that field. */
529cad9c 6213
1b611343
JB
6214 val = ada_value_struct_elt (tag, "tsd", 1);
6215 if (val)
6216 return val;
e802dbe0 6217
1b611343
JB
6218 /* Try the second representation for the dispatch table (in which
6219 there is no explicit 'tsd' field in the referent of the tag pointer,
6220 and instead the tsd pointer is stored just before the dispatch
6221 table. */
e802dbe0 6222
1b611343
JB
6223 type = ada_get_tsd_type (current_inferior());
6224 if (type == NULL)
6225 return NULL;
6226 type = lookup_pointer_type (lookup_pointer_type (type));
6227 val = value_cast (type, tag);
6228 if (val == NULL)
6229 return NULL;
6230 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6231}
6232
1b611343
JB
6233/* Given the TSD of a tag (type-specific data), return a string
6234 containing the name of the associated type.
6235
f5272a3b 6236 May return NULL if we are unable to determine the tag name. */
1b611343 6237
f5272a3b 6238static gdb::unique_xmalloc_ptr<char>
1b611343 6239ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6240{
529cad9c 6241 char *p;
1b611343 6242 struct value *val;
529cad9c 6243
1b611343 6244 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6245 if (val == NULL)
1b611343 6246 return NULL;
66920317
TT
6247 gdb::unique_xmalloc_ptr<char> buffer
6248 = target_read_string (value_as_address (val), INT_MAX);
6249 if (buffer == nullptr)
f5272a3b
TT
6250 return nullptr;
6251
6252 for (p = buffer.get (); *p != '\0'; ++p)
6253 {
6254 if (isalpha (*p))
6255 *p = tolower (*p);
6256 }
6257
6258 return buffer;
4c4b4cd2
PH
6259}
6260
6261/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6262 a C string.
6263
6264 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6265 determine the name of that tag. */
4c4b4cd2 6266
f5272a3b 6267gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6268ada_tag_name (struct value *tag)
6269{
f5272a3b 6270 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6271
df407dfe 6272 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6273 return NULL;
1b611343
JB
6274
6275 /* It is perfectly possible that an exception be raised while trying
6276 to determine the TAG's name, even under normal circumstances:
6277 The associated variable may be uninitialized or corrupted, for
6278 instance. We do not let any exception propagate past this point.
6279 instead we return NULL.
6280
6281 We also do not print the error message either (which often is very
6282 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6283 the caller print a more meaningful message if necessary. */
a70b8144 6284 try
1b611343
JB
6285 {
6286 struct value *tsd = ada_get_tsd_from_tag (tag);
6287
6288 if (tsd != NULL)
6289 name = ada_tag_name_from_tsd (tsd);
6290 }
230d2906 6291 catch (const gdb_exception_error &e)
492d29ea
PA
6292 {
6293 }
1b611343
JB
6294
6295 return name;
4c4b4cd2
PH
6296}
6297
6298/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6299
d2e4a39e 6300struct type *
ebf56fd3 6301ada_parent_type (struct type *type)
14f9c5c9
AS
6302{
6303 int i;
6304
61ee279c 6305 type = ada_check_typedef (type);
14f9c5c9 6306
78134374 6307 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6308 return NULL;
6309
1f704f76 6310 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6311 if (ada_is_parent_field (type, i))
0c1f74cf 6312 {
dda83cd7 6313 struct type *parent_type = type->field (i).type ();
0c1f74cf 6314
dda83cd7
SM
6315 /* If the _parent field is a pointer, then dereference it. */
6316 if (parent_type->code () == TYPE_CODE_PTR)
6317 parent_type = TYPE_TARGET_TYPE (parent_type);
6318 /* If there is a parallel XVS type, get the actual base type. */
6319 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6320
dda83cd7 6321 return ada_check_typedef (parent_type);
0c1f74cf 6322 }
14f9c5c9
AS
6323
6324 return NULL;
6325}
6326
4c4b4cd2
PH
6327/* True iff field number FIELD_NUM of structure type TYPE contains the
6328 parent-type (inherited) fields of a derived type. Assumes TYPE is
6329 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6330
6331int
ebf56fd3 6332ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6333{
61ee279c 6334 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6335
4c4b4cd2 6336 return (name != NULL
dda83cd7
SM
6337 && (startswith (name, "PARENT")
6338 || startswith (name, "_parent")));
14f9c5c9
AS
6339}
6340
4c4b4cd2 6341/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6342 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6343 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6344 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6345 structures. */
14f9c5c9
AS
6346
6347int
ebf56fd3 6348ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6349{
d2e4a39e 6350 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6351
dddc0e16
JB
6352 if (name != NULL && strcmp (name, "RETVAL") == 0)
6353 {
6354 /* This happens in functions with "out" or "in out" parameters
6355 which are passed by copy. For such functions, GNAT describes
6356 the function's return type as being a struct where the return
6357 value is in a field called RETVAL, and where the other "out"
6358 or "in out" parameters are fields of that struct. This is not
6359 a wrapper. */
6360 return 0;
6361 }
6362
d2e4a39e 6363 return (name != NULL
dda83cd7
SM
6364 && (startswith (name, "PARENT")
6365 || strcmp (name, "REP") == 0
6366 || startswith (name, "_parent")
6367 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6368}
6369
4c4b4cd2
PH
6370/* True iff field number FIELD_NUM of structure or union type TYPE
6371 is a variant wrapper. Assumes TYPE is a structure type with at least
6372 FIELD_NUM+1 fields. */
14f9c5c9
AS
6373
6374int
ebf56fd3 6375ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6376{
8ecb59f8
TT
6377 /* Only Ada types are eligible. */
6378 if (!ADA_TYPE_P (type))
6379 return 0;
6380
940da03e 6381 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6382
78134374
SM
6383 return (field_type->code () == TYPE_CODE_UNION
6384 || (is_dynamic_field (type, field_num)
6385 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6386 == TYPE_CODE_UNION)));
14f9c5c9
AS
6387}
6388
6389/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6390 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6391 returns the type of the controlling discriminant for the variant.
6392 May return NULL if the type could not be found. */
14f9c5c9 6393
d2e4a39e 6394struct type *
ebf56fd3 6395ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6396{
a121b7c1 6397 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6398
988f6b3d 6399 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6400}
6401
4c4b4cd2 6402/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6403 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6404 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6405
de93309a 6406static int
ebf56fd3 6407ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6408{
d2e4a39e 6409 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6410
14f9c5c9
AS
6411 return (name != NULL && name[0] == 'O');
6412}
6413
6414/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6415 returns the name of the discriminant controlling the variant.
6416 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6417
a121b7c1 6418const char *
ebf56fd3 6419ada_variant_discrim_name (struct type *type0)
14f9c5c9 6420{
5f9febe0 6421 static std::string result;
d2e4a39e
AS
6422 struct type *type;
6423 const char *name;
6424 const char *discrim_end;
6425 const char *discrim_start;
14f9c5c9 6426
78134374 6427 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6428 type = TYPE_TARGET_TYPE (type0);
6429 else
6430 type = type0;
6431
6432 name = ada_type_name (type);
6433
6434 if (name == NULL || name[0] == '\000')
6435 return "";
6436
6437 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6438 discrim_end -= 1)
6439 {
61012eef 6440 if (startswith (discrim_end, "___XVN"))
dda83cd7 6441 break;
14f9c5c9
AS
6442 }
6443 if (discrim_end == name)
6444 return "";
6445
d2e4a39e 6446 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6447 discrim_start -= 1)
6448 {
d2e4a39e 6449 if (discrim_start == name + 1)
dda83cd7 6450 return "";
76a01679 6451 if ((discrim_start > name + 3
dda83cd7
SM
6452 && startswith (discrim_start - 3, "___"))
6453 || discrim_start[-1] == '.')
6454 break;
14f9c5c9
AS
6455 }
6456
5f9febe0
TT
6457 result = std::string (discrim_start, discrim_end - discrim_start);
6458 return result.c_str ();
14f9c5c9
AS
6459}
6460
4c4b4cd2
PH
6461/* Scan STR for a subtype-encoded number, beginning at position K.
6462 Put the position of the character just past the number scanned in
6463 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6464 Return 1 if there was a valid number at the given position, and 0
6465 otherwise. A "subtype-encoded" number consists of the absolute value
6466 in decimal, followed by the letter 'm' to indicate a negative number.
6467 Assumes 0m does not occur. */
14f9c5c9
AS
6468
6469int
d2e4a39e 6470ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6471{
6472 ULONGEST RU;
6473
d2e4a39e 6474 if (!isdigit (str[k]))
14f9c5c9
AS
6475 return 0;
6476
4c4b4cd2 6477 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6478 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6479 LONGEST. */
14f9c5c9
AS
6480 RU = 0;
6481 while (isdigit (str[k]))
6482 {
d2e4a39e 6483 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6484 k += 1;
6485 }
6486
d2e4a39e 6487 if (str[k] == 'm')
14f9c5c9
AS
6488 {
6489 if (R != NULL)
dda83cd7 6490 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6491 k += 1;
6492 }
6493 else if (R != NULL)
6494 *R = (LONGEST) RU;
6495
4c4b4cd2 6496 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6497 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6498 number representable as a LONGEST (although either would probably work
6499 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6500 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6501
6502 if (new_k != NULL)
6503 *new_k = k;
6504 return 1;
6505}
6506
4c4b4cd2
PH
6507/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6508 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6509 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6510
de93309a 6511static int
ebf56fd3 6512ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6513{
d2e4a39e 6514 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6515 int p;
6516
6517 p = 0;
6518 while (1)
6519 {
d2e4a39e 6520 switch (name[p])
dda83cd7
SM
6521 {
6522 case '\0':
6523 return 0;
6524 case 'S':
6525 {
6526 LONGEST W;
6527
6528 if (!ada_scan_number (name, p + 1, &W, &p))
6529 return 0;
6530 if (val == W)
6531 return 1;
6532 break;
6533 }
6534 case 'R':
6535 {
6536 LONGEST L, U;
6537
6538 if (!ada_scan_number (name, p + 1, &L, &p)
6539 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6540 return 0;
6541 if (val >= L && val <= U)
6542 return 1;
6543 break;
6544 }
6545 case 'O':
6546 return 1;
6547 default:
6548 return 0;
6549 }
4c4b4cd2
PH
6550 }
6551}
6552
0963b4bd 6553/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6554
6555/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6556 ARG_TYPE, extract and return the value of one of its (non-static)
6557 fields. FIELDNO says which field. Differs from value_primitive_field
6558 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6559
5eb68a39 6560struct value *
d2e4a39e 6561ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6562 struct type *arg_type)
14f9c5c9 6563{
14f9c5c9
AS
6564 struct type *type;
6565
61ee279c 6566 arg_type = ada_check_typedef (arg_type);
940da03e 6567 type = arg_type->field (fieldno).type ();
14f9c5c9 6568
4504bbde
TT
6569 /* Handle packed fields. It might be that the field is not packed
6570 relative to its containing structure, but the structure itself is
6571 packed; in this case we must take the bit-field path. */
6572 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6573 {
6574 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6575 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6576
0fd88904 6577 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
dda83cd7
SM
6578 offset + bit_pos / 8,
6579 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6580 }
6581 else
6582 return value_primitive_field (arg1, offset, fieldno, arg_type);
6583}
6584
52ce6436
PH
6585/* Find field with name NAME in object of type TYPE. If found,
6586 set the following for each argument that is non-null:
6587 - *FIELD_TYPE_P to the field's type;
6588 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6589 an object of that type;
6590 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6591 - *BIT_SIZE_P to its size in bits if the field is packed, and
6592 0 otherwise;
6593 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6594 fields up to but not including the desired field, or by the total
6595 number of fields if not found. A NULL value of NAME never
6596 matches; the function just counts visible fields in this case.
6597
828d5846
XR
6598 Notice that we need to handle when a tagged record hierarchy
6599 has some components with the same name, like in this scenario:
6600
6601 type Top_T is tagged record
dda83cd7
SM
6602 N : Integer := 1;
6603 U : Integer := 974;
6604 A : Integer := 48;
828d5846
XR
6605 end record;
6606
6607 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6608 N : Character := 'a';
6609 C : Integer := 3;
828d5846
XR
6610 end record;
6611
6612 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6613 N : Float := 4.0;
6614 C : Character := '5';
6615 X : Integer := 6;
6616 A : Character := 'J';
828d5846
XR
6617 end record;
6618
6619 Let's say we now have a variable declared and initialized as follow:
6620
6621 TC : Top_A := new Bottom_T;
6622
6623 And then we use this variable to call this function
6624
6625 procedure Assign (Obj: in out Top_T; TV : Integer);
6626
6627 as follow:
6628
6629 Assign (Top_T (B), 12);
6630
6631 Now, we're in the debugger, and we're inside that procedure
6632 then and we want to print the value of obj.c:
6633
6634 Usually, the tagged record or one of the parent type owns the
6635 component to print and there's no issue but in this particular
6636 case, what does it mean to ask for Obj.C? Since the actual
6637 type for object is type Bottom_T, it could mean two things: type
6638 component C from the Middle_T view, but also component C from
6639 Bottom_T. So in that "undefined" case, when the component is
6640 not found in the non-resolved type (which includes all the
6641 components of the parent type), then resolve it and see if we
6642 get better luck once expanded.
6643
6644 In the case of homonyms in the derived tagged type, we don't
6645 guaranty anything, and pick the one that's easiest for us
6646 to program.
6647
0963b4bd 6648 Returns 1 if found, 0 otherwise. */
52ce6436 6649
4c4b4cd2 6650static int
0d5cff50 6651find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
6652 struct type **field_type_p,
6653 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 6654 int *index_p)
4c4b4cd2
PH
6655{
6656 int i;
828d5846 6657 int parent_offset = -1;
4c4b4cd2 6658
61ee279c 6659 type = ada_check_typedef (type);
76a01679 6660
52ce6436
PH
6661 if (field_type_p != NULL)
6662 *field_type_p = NULL;
6663 if (byte_offset_p != NULL)
d5d6fca5 6664 *byte_offset_p = 0;
52ce6436
PH
6665 if (bit_offset_p != NULL)
6666 *bit_offset_p = 0;
6667 if (bit_size_p != NULL)
6668 *bit_size_p = 0;
6669
1f704f76 6670 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
6671 {
6672 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6673 int fld_offset = offset + bit_pos / 8;
0d5cff50 6674 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6675
4c4b4cd2 6676 if (t_field_name == NULL)
dda83cd7 6677 continue;
4c4b4cd2 6678
828d5846 6679 else if (ada_is_parent_field (type, i))
dda83cd7 6680 {
828d5846
XR
6681 /* This is a field pointing us to the parent type of a tagged
6682 type. As hinted in this function's documentation, we give
6683 preference to fields in the current record first, so what
6684 we do here is just record the index of this field before
6685 we skip it. If it turns out we couldn't find our field
6686 in the current record, then we'll get back to it and search
6687 inside it whether the field might exist in the parent. */
6688
dda83cd7
SM
6689 parent_offset = i;
6690 continue;
6691 }
828d5846 6692
52ce6436 6693 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
6694 {
6695 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6696
52ce6436 6697 if (field_type_p != NULL)
940da03e 6698 *field_type_p = type->field (i).type ();
52ce6436
PH
6699 if (byte_offset_p != NULL)
6700 *byte_offset_p = fld_offset;
6701 if (bit_offset_p != NULL)
6702 *bit_offset_p = bit_pos % 8;
6703 if (bit_size_p != NULL)
6704 *bit_size_p = bit_size;
dda83cd7
SM
6705 return 1;
6706 }
4c4b4cd2 6707 else if (ada_is_wrapper_field (type, i))
dda83cd7 6708 {
940da03e 6709 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
6710 field_type_p, byte_offset_p, bit_offset_p,
6711 bit_size_p, index_p))
dda83cd7
SM
6712 return 1;
6713 }
4c4b4cd2 6714 else if (ada_is_variant_part (type, i))
dda83cd7 6715 {
52ce6436
PH
6716 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6717 fixed type?? */
dda83cd7
SM
6718 int j;
6719 struct type *field_type
940da03e 6720 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 6721
dda83cd7
SM
6722 for (j = 0; j < field_type->num_fields (); j += 1)
6723 {
6724 if (find_struct_field (name, field_type->field (j).type (),
6725 fld_offset
6726 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6727 field_type_p, byte_offset_p,
6728 bit_offset_p, bit_size_p, index_p))
6729 return 1;
6730 }
6731 }
52ce6436
PH
6732 else if (index_p != NULL)
6733 *index_p += 1;
4c4b4cd2 6734 }
828d5846
XR
6735
6736 /* Field not found so far. If this is a tagged type which
6737 has a parent, try finding that field in the parent now. */
6738
6739 if (parent_offset != -1)
6740 {
6741 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6742 int fld_offset = offset + bit_pos / 8;
6743
940da03e 6744 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
6745 fld_offset, field_type_p, byte_offset_p,
6746 bit_offset_p, bit_size_p, index_p))
6747 return 1;
828d5846
XR
6748 }
6749
4c4b4cd2
PH
6750 return 0;
6751}
6752
0963b4bd 6753/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6754
52ce6436
PH
6755static int
6756num_visible_fields (struct type *type)
6757{
6758 int n;
5b4ee69b 6759
52ce6436
PH
6760 n = 0;
6761 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6762 return n;
6763}
14f9c5c9 6764
4c4b4cd2 6765/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6766 and search in it assuming it has (class) type TYPE.
6767 If found, return value, else return NULL.
6768
828d5846
XR
6769 Searches recursively through wrapper fields (e.g., '_parent').
6770
6771 In the case of homonyms in the tagged types, please refer to the
6772 long explanation in find_struct_field's function documentation. */
14f9c5c9 6773
4c4b4cd2 6774static struct value *
108d56a4 6775ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 6776 struct type *type)
14f9c5c9
AS
6777{
6778 int i;
828d5846 6779 int parent_offset = -1;
14f9c5c9 6780
5b4ee69b 6781 type = ada_check_typedef (type);
1f704f76 6782 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6783 {
0d5cff50 6784 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6785
6786 if (t_field_name == NULL)
dda83cd7 6787 continue;
14f9c5c9 6788
828d5846 6789 else if (ada_is_parent_field (type, i))
dda83cd7 6790 {
828d5846
XR
6791 /* This is a field pointing us to the parent type of a tagged
6792 type. As hinted in this function's documentation, we give
6793 preference to fields in the current record first, so what
6794 we do here is just record the index of this field before
6795 we skip it. If it turns out we couldn't find our field
6796 in the current record, then we'll get back to it and search
6797 inside it whether the field might exist in the parent. */
6798
dda83cd7
SM
6799 parent_offset = i;
6800 continue;
6801 }
828d5846 6802
14f9c5c9 6803 else if (field_name_match (t_field_name, name))
dda83cd7 6804 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6805
6806 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6807 {
6808 struct value *v = /* Do not let indent join lines here. */
6809 ada_search_struct_field (name, arg,
6810 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6811 type->field (i).type ());
5b4ee69b 6812
dda83cd7
SM
6813 if (v != NULL)
6814 return v;
6815 }
14f9c5c9
AS
6816
6817 else if (ada_is_variant_part (type, i))
dda83cd7 6818 {
0963b4bd 6819 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
6820 int j;
6821 struct type *field_type = ada_check_typedef (type->field (i).type ());
6822 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
4c4b4cd2 6823
dda83cd7
SM
6824 for (j = 0; j < field_type->num_fields (); j += 1)
6825 {
6826 struct value *v = ada_search_struct_field /* Force line
0963b4bd 6827 break. */
dda83cd7
SM
6828 (name, arg,
6829 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6830 field_type->field (j).type ());
5b4ee69b 6831
dda83cd7
SM
6832 if (v != NULL)
6833 return v;
6834 }
6835 }
14f9c5c9 6836 }
828d5846
XR
6837
6838 /* Field not found so far. If this is a tagged type which
6839 has a parent, try finding that field in the parent now. */
6840
6841 if (parent_offset != -1)
6842 {
6843 struct value *v = ada_search_struct_field (
6844 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 6845 type->field (parent_offset).type ());
828d5846
XR
6846
6847 if (v != NULL)
dda83cd7 6848 return v;
828d5846
XR
6849 }
6850
14f9c5c9
AS
6851 return NULL;
6852}
d2e4a39e 6853
52ce6436
PH
6854static struct value *ada_index_struct_field_1 (int *, struct value *,
6855 int, struct type *);
6856
6857
6858/* Return field #INDEX in ARG, where the index is that returned by
6859 * find_struct_field through its INDEX_P argument. Adjust the address
6860 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6861 * If found, return value, else return NULL. */
52ce6436
PH
6862
6863static struct value *
6864ada_index_struct_field (int index, struct value *arg, int offset,
6865 struct type *type)
6866{
6867 return ada_index_struct_field_1 (&index, arg, offset, type);
6868}
6869
6870
6871/* Auxiliary function for ada_index_struct_field. Like
6872 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6873 * *INDEX_P. */
52ce6436
PH
6874
6875static struct value *
6876ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6877 struct type *type)
6878{
6879 int i;
6880 type = ada_check_typedef (type);
6881
1f704f76 6882 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
6883 {
6884 if (TYPE_FIELD_NAME (type, i) == NULL)
dda83cd7 6885 continue;
52ce6436 6886 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6887 {
6888 struct value *v = /* Do not let indent join lines here. */
6889 ada_index_struct_field_1 (index_p, arg,
52ce6436 6890 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 6891 type->field (i).type ());
5b4ee69b 6892
dda83cd7
SM
6893 if (v != NULL)
6894 return v;
6895 }
52ce6436
PH
6896
6897 else if (ada_is_variant_part (type, i))
dda83cd7 6898 {
52ce6436 6899 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6900 find_struct_field. */
52ce6436 6901 error (_("Cannot assign this kind of variant record"));
dda83cd7 6902 }
52ce6436 6903 else if (*index_p == 0)
dda83cd7 6904 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
6905 else
6906 *index_p -= 1;
6907 }
6908 return NULL;
6909}
6910
3b4de39c 6911/* Return a string representation of type TYPE. */
99bbb428 6912
3b4de39c 6913static std::string
99bbb428
PA
6914type_as_string (struct type *type)
6915{
d7e74731 6916 string_file tmp_stream;
99bbb428 6917
d7e74731 6918 type_print (type, "", &tmp_stream, -1);
99bbb428 6919
d7e74731 6920 return std::move (tmp_stream.string ());
99bbb428
PA
6921}
6922
14f9c5c9 6923/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6924 If DISPP is non-null, add its byte displacement from the beginning of a
6925 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6926 work for packed fields).
6927
6928 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6929 followed by "___".
14f9c5c9 6930
0963b4bd 6931 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6932 be a (pointer or reference)+ to a struct or union, and the
6933 ultimate target type will be searched.
14f9c5c9
AS
6934
6935 Looks recursively into variant clauses and parent types.
6936
828d5846
XR
6937 In the case of homonyms in the tagged types, please refer to the
6938 long explanation in find_struct_field's function documentation.
6939
4c4b4cd2
PH
6940 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6941 TYPE is not a type of the right kind. */
14f9c5c9 6942
4c4b4cd2 6943static struct type *
a121b7c1 6944ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 6945 int noerr)
14f9c5c9
AS
6946{
6947 int i;
828d5846 6948 int parent_offset = -1;
14f9c5c9
AS
6949
6950 if (name == NULL)
6951 goto BadName;
6952
76a01679 6953 if (refok && type != NULL)
4c4b4cd2
PH
6954 while (1)
6955 {
dda83cd7
SM
6956 type = ada_check_typedef (type);
6957 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6958 break;
6959 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6960 }
14f9c5c9 6961
76a01679 6962 if (type == NULL
78134374
SM
6963 || (type->code () != TYPE_CODE_STRUCT
6964 && type->code () != TYPE_CODE_UNION))
14f9c5c9 6965 {
4c4b4cd2 6966 if (noerr)
dda83cd7 6967 return NULL;
99bbb428 6968
3b4de39c
PA
6969 error (_("Type %s is not a structure or union type"),
6970 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
6971 }
6972
6973 type = to_static_fixed_type (type);
6974
1f704f76 6975 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6976 {
0d5cff50 6977 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 6978 struct type *t;
d2e4a39e 6979
14f9c5c9 6980 if (t_field_name == NULL)
dda83cd7 6981 continue;
14f9c5c9 6982
828d5846 6983 else if (ada_is_parent_field (type, i))
dda83cd7 6984 {
828d5846
XR
6985 /* This is a field pointing us to the parent type of a tagged
6986 type. As hinted in this function's documentation, we give
6987 preference to fields in the current record first, so what
6988 we do here is just record the index of this field before
6989 we skip it. If it turns out we couldn't find our field
6990 in the current record, then we'll get back to it and search
6991 inside it whether the field might exist in the parent. */
6992
dda83cd7
SM
6993 parent_offset = i;
6994 continue;
6995 }
828d5846 6996
14f9c5c9 6997 else if (field_name_match (t_field_name, name))
940da03e 6998 return type->field (i).type ();
14f9c5c9
AS
6999
7000 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7001 {
7002 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7003 0, 1);
7004 if (t != NULL)
988f6b3d 7005 return t;
dda83cd7 7006 }
14f9c5c9
AS
7007
7008 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7009 {
7010 int j;
7011 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7012
dda83cd7
SM
7013 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7014 {
b1f33ddd 7015 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7016 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7017 generates these for unchecked variant types. Revisit
dda83cd7 7018 if the compiler changes this practice. */
0d5cff50 7019 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7020
b1f33ddd
JB
7021 if (v_field_name != NULL
7022 && field_name_match (v_field_name, name))
940da03e 7023 t = field_type->field (j).type ();
b1f33ddd 7024 else
940da03e 7025 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7026 name, 0, 1);
b1f33ddd 7027
dda83cd7 7028 if (t != NULL)
988f6b3d 7029 return t;
dda83cd7
SM
7030 }
7031 }
14f9c5c9
AS
7032
7033 }
7034
828d5846
XR
7035 /* Field not found so far. If this is a tagged type which
7036 has a parent, try finding that field in the parent now. */
7037
7038 if (parent_offset != -1)
7039 {
dda83cd7 7040 struct type *t;
828d5846 7041
dda83cd7
SM
7042 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7043 name, 0, 1);
7044 if (t != NULL)
828d5846
XR
7045 return t;
7046 }
7047
14f9c5c9 7048BadName:
d2e4a39e 7049 if (!noerr)
14f9c5c9 7050 {
2b2798cc 7051 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7052
7053 error (_("Type %s has no component named %s"),
3b4de39c 7054 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7055 }
7056
7057 return NULL;
7058}
7059
b1f33ddd
JB
7060/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7061 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7062 represents an unchecked union (that is, the variant part of a
0963b4bd 7063 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7064
7065static int
7066is_unchecked_variant (struct type *var_type, struct type *outer_type)
7067{
a121b7c1 7068 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7069
988f6b3d 7070 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7071}
7072
7073
14f9c5c9 7074/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7075 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7076 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7077
d2e4a39e 7078int
d8af9068 7079ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7080{
7081 int others_clause;
7082 int i;
a121b7c1 7083 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7084 struct value *discrim;
14f9c5c9
AS
7085 LONGEST discrim_val;
7086
012370f6
TT
7087 /* Using plain value_from_contents_and_address here causes problems
7088 because we will end up trying to resolve a type that is currently
7089 being constructed. */
0c281816
JB
7090 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7091 if (discrim == NULL)
14f9c5c9 7092 return -1;
0c281816 7093 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7094
7095 others_clause = -1;
1f704f76 7096 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7097 {
7098 if (ada_is_others_clause (var_type, i))
dda83cd7 7099 others_clause = i;
14f9c5c9 7100 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7101 return i;
14f9c5c9
AS
7102 }
7103
7104 return others_clause;
7105}
d2e4a39e 7106\f
14f9c5c9
AS
7107
7108
dda83cd7 7109 /* Dynamic-Sized Records */
14f9c5c9
AS
7110
7111/* Strategy: The type ostensibly attached to a value with dynamic size
7112 (i.e., a size that is not statically recorded in the debugging
7113 data) does not accurately reflect the size or layout of the value.
7114 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7115 conventional types that are constructed on the fly. */
14f9c5c9
AS
7116
7117/* There is a subtle and tricky problem here. In general, we cannot
7118 determine the size of dynamic records without its data. However,
7119 the 'struct value' data structure, which GDB uses to represent
7120 quantities in the inferior process (the target), requires the size
7121 of the type at the time of its allocation in order to reserve space
7122 for GDB's internal copy of the data. That's why the
7123 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7124 rather than struct value*s.
14f9c5c9
AS
7125
7126 However, GDB's internal history variables ($1, $2, etc.) are
7127 struct value*s containing internal copies of the data that are not, in
7128 general, the same as the data at their corresponding addresses in
7129 the target. Fortunately, the types we give to these values are all
7130 conventional, fixed-size types (as per the strategy described
7131 above), so that we don't usually have to perform the
7132 'to_fixed_xxx_type' conversions to look at their values.
7133 Unfortunately, there is one exception: if one of the internal
7134 history variables is an array whose elements are unconstrained
7135 records, then we will need to create distinct fixed types for each
7136 element selected. */
7137
7138/* The upshot of all of this is that many routines take a (type, host
7139 address, target address) triple as arguments to represent a value.
7140 The host address, if non-null, is supposed to contain an internal
7141 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7142 target at the target address. */
14f9c5c9
AS
7143
7144/* Assuming that VAL0 represents a pointer value, the result of
7145 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7146 dynamic-sized types. */
14f9c5c9 7147
d2e4a39e
AS
7148struct value *
7149ada_value_ind (struct value *val0)
14f9c5c9 7150{
c48db5ca 7151 struct value *val = value_ind (val0);
5b4ee69b 7152
b50d69b5
JG
7153 if (ada_is_tagged_type (value_type (val), 0))
7154 val = ada_tag_value_at_base_address (val);
7155
4c4b4cd2 7156 return ada_to_fixed_value (val);
14f9c5c9
AS
7157}
7158
7159/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7160 qualifiers on VAL0. */
7161
d2e4a39e
AS
7162static struct value *
7163ada_coerce_ref (struct value *val0)
7164{
78134374 7165 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7166 {
7167 struct value *val = val0;
5b4ee69b 7168
994b9211 7169 val = coerce_ref (val);
b50d69b5
JG
7170
7171 if (ada_is_tagged_type (value_type (val), 0))
7172 val = ada_tag_value_at_base_address (val);
7173
4c4b4cd2 7174 return ada_to_fixed_value (val);
d2e4a39e
AS
7175 }
7176 else
14f9c5c9
AS
7177 return val0;
7178}
7179
4c4b4cd2 7180/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7181
7182static unsigned int
ebf56fd3 7183field_alignment (struct type *type, int f)
14f9c5c9 7184{
d2e4a39e 7185 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7186 int len;
14f9c5c9
AS
7187 int align_offset;
7188
64a1bf19
JB
7189 /* The field name should never be null, unless the debugging information
7190 is somehow malformed. In this case, we assume the field does not
7191 require any alignment. */
7192 if (name == NULL)
7193 return 1;
7194
7195 len = strlen (name);
7196
4c4b4cd2
PH
7197 if (!isdigit (name[len - 1]))
7198 return 1;
14f9c5c9 7199
d2e4a39e 7200 if (isdigit (name[len - 2]))
14f9c5c9
AS
7201 align_offset = len - 2;
7202 else
7203 align_offset = len - 1;
7204
61012eef 7205 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7206 return TARGET_CHAR_BIT;
7207
4c4b4cd2
PH
7208 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7209}
7210
852dff6c 7211/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7212
852dff6c
JB
7213static struct symbol *
7214ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7215{
7216 struct symbol *sym;
7217
7218 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7219 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7220 return sym;
7221
4186eb54
KS
7222 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7223 return sym;
14f9c5c9
AS
7224}
7225
dddfab26
UW
7226/* Find a type named NAME. Ignores ambiguity. This routine will look
7227 solely for types defined by debug info, it will not search the GDB
7228 primitive types. */
4c4b4cd2 7229
852dff6c 7230static struct type *
ebf56fd3 7231ada_find_any_type (const char *name)
14f9c5c9 7232{
852dff6c 7233 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7234
14f9c5c9 7235 if (sym != NULL)
dddfab26 7236 return SYMBOL_TYPE (sym);
14f9c5c9 7237
dddfab26 7238 return NULL;
14f9c5c9
AS
7239}
7240
739593e0
JB
7241/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7242 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7243 symbol, in which case it is returned. Otherwise, this looks for
7244 symbols whose name is that of NAME_SYM suffixed with "___XR".
7245 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7246
c0e70c62
TT
7247static bool
7248ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7249{
987012b8 7250 const char *name = name_sym->linkage_name ();
c0e70c62 7251 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7252}
7253
14f9c5c9 7254/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7255 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7256 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7257 otherwise return 0. */
7258
14f9c5c9 7259int
d2e4a39e 7260ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7261{
7262 if (type1 == NULL)
7263 return 1;
7264 else if (type0 == NULL)
7265 return 0;
78134374 7266 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7267 return 1;
78134374 7268 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7269 return 0;
7d93a1e0 7270 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7271 return 1;
ad82864c 7272 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7273 return 1;
4c4b4cd2 7274 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7275 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7276 return 1;
aeb5907d
JB
7277 else
7278 {
7d93a1e0
SM
7279 const char *type0_name = type0->name ();
7280 const char *type1_name = type1->name ();
aeb5907d
JB
7281
7282 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7283 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7284 return 1;
7285 }
14f9c5c9
AS
7286 return 0;
7287}
7288
e86ca25f
TT
7289/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7290 null. */
4c4b4cd2 7291
0d5cff50 7292const char *
d2e4a39e 7293ada_type_name (struct type *type)
14f9c5c9 7294{
d2e4a39e 7295 if (type == NULL)
14f9c5c9 7296 return NULL;
7d93a1e0 7297 return type->name ();
14f9c5c9
AS
7298}
7299
b4ba55a1
JB
7300/* Search the list of "descriptive" types associated to TYPE for a type
7301 whose name is NAME. */
7302
7303static struct type *
7304find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7305{
931e5bc3 7306 struct type *result, *tmp;
b4ba55a1 7307
c6044dd1
JB
7308 if (ada_ignore_descriptive_types_p)
7309 return NULL;
7310
b4ba55a1
JB
7311 /* If there no descriptive-type info, then there is no parallel type
7312 to be found. */
7313 if (!HAVE_GNAT_AUX_INFO (type))
7314 return NULL;
7315
7316 result = TYPE_DESCRIPTIVE_TYPE (type);
7317 while (result != NULL)
7318 {
0d5cff50 7319 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7320
7321 if (result_name == NULL)
dda83cd7
SM
7322 {
7323 warning (_("unexpected null name on descriptive type"));
7324 return NULL;
7325 }
b4ba55a1
JB
7326
7327 /* If the names match, stop. */
7328 if (strcmp (result_name, name) == 0)
7329 break;
7330
7331 /* Otherwise, look at the next item on the list, if any. */
7332 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7333 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7334 else
7335 tmp = NULL;
7336
7337 /* If not found either, try after having resolved the typedef. */
7338 if (tmp != NULL)
7339 result = tmp;
b4ba55a1 7340 else
931e5bc3 7341 {
f168693b 7342 result = check_typedef (result);
931e5bc3
JG
7343 if (HAVE_GNAT_AUX_INFO (result))
7344 result = TYPE_DESCRIPTIVE_TYPE (result);
7345 else
7346 result = NULL;
7347 }
b4ba55a1
JB
7348 }
7349
7350 /* If we didn't find a match, see whether this is a packed array. With
7351 older compilers, the descriptive type information is either absent or
7352 irrelevant when it comes to packed arrays so the above lookup fails.
7353 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7354 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7355 return ada_find_any_type (name);
7356
7357 return result;
7358}
7359
7360/* Find a parallel type to TYPE with the specified NAME, using the
7361 descriptive type taken from the debugging information, if available,
7362 and otherwise using the (slower) name-based method. */
7363
7364static struct type *
7365ada_find_parallel_type_with_name (struct type *type, const char *name)
7366{
7367 struct type *result = NULL;
7368
7369 if (HAVE_GNAT_AUX_INFO (type))
7370 result = find_parallel_type_by_descriptive_type (type, name);
7371 else
7372 result = ada_find_any_type (name);
7373
7374 return result;
7375}
7376
7377/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7378 SUFFIX to the name of TYPE. */
14f9c5c9 7379
d2e4a39e 7380struct type *
ebf56fd3 7381ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7382{
0d5cff50 7383 char *name;
fe978cb0 7384 const char *type_name = ada_type_name (type);
14f9c5c9 7385 int len;
d2e4a39e 7386
fe978cb0 7387 if (type_name == NULL)
14f9c5c9
AS
7388 return NULL;
7389
fe978cb0 7390 len = strlen (type_name);
14f9c5c9 7391
b4ba55a1 7392 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7393
fe978cb0 7394 strcpy (name, type_name);
14f9c5c9
AS
7395 strcpy (name + len, suffix);
7396
b4ba55a1 7397 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7398}
7399
14f9c5c9 7400/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7401 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7402
d2e4a39e
AS
7403static struct type *
7404dynamic_template_type (struct type *type)
14f9c5c9 7405{
61ee279c 7406 type = ada_check_typedef (type);
14f9c5c9 7407
78134374 7408 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7409 || ada_type_name (type) == NULL)
14f9c5c9 7410 return NULL;
d2e4a39e 7411 else
14f9c5c9
AS
7412 {
7413 int len = strlen (ada_type_name (type));
5b4ee69b 7414
4c4b4cd2 7415 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7416 return type;
14f9c5c9 7417 else
dda83cd7 7418 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7419 }
7420}
7421
7422/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7423 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7424
d2e4a39e
AS
7425static int
7426is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7427{
7428 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7429
d2e4a39e 7430 return name != NULL
940da03e 7431 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7432 && strstr (name, "___XVL") != NULL;
7433}
7434
4c4b4cd2
PH
7435/* The index of the variant field of TYPE, or -1 if TYPE does not
7436 represent a variant record type. */
14f9c5c9 7437
d2e4a39e 7438static int
4c4b4cd2 7439variant_field_index (struct type *type)
14f9c5c9
AS
7440{
7441 int f;
7442
78134374 7443 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7444 return -1;
7445
1f704f76 7446 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7447 {
7448 if (ada_is_variant_part (type, f))
dda83cd7 7449 return f;
4c4b4cd2
PH
7450 }
7451 return -1;
14f9c5c9
AS
7452}
7453
4c4b4cd2
PH
7454/* A record type with no fields. */
7455
d2e4a39e 7456static struct type *
fe978cb0 7457empty_record (struct type *templ)
14f9c5c9 7458{
fe978cb0 7459 struct type *type = alloc_type_copy (templ);
5b4ee69b 7460
67607e24 7461 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7462 INIT_NONE_SPECIFIC (type);
d0e39ea2 7463 type->set_name ("<empty>");
14f9c5c9
AS
7464 TYPE_LENGTH (type) = 0;
7465 return type;
7466}
7467
7468/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7469 the value of type TYPE at VALADDR or ADDRESS (see comments at
7470 the beginning of this section) VAL according to GNAT conventions.
7471 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7472 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7473 an outer-level type (i.e., as opposed to a branch of a variant.) A
7474 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7475 of the variant.
14f9c5c9 7476
4c4b4cd2
PH
7477 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7478 length are not statically known are discarded. As a consequence,
7479 VALADDR, ADDRESS and DVAL0 are ignored.
7480
7481 NOTE: Limitations: For now, we assume that dynamic fields and
7482 variants occupy whole numbers of bytes. However, they need not be
7483 byte-aligned. */
7484
7485struct type *
10a2c479 7486ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7487 const gdb_byte *valaddr,
dda83cd7
SM
7488 CORE_ADDR address, struct value *dval0,
7489 int keep_dynamic_fields)
14f9c5c9 7490{
d2e4a39e
AS
7491 struct value *mark = value_mark ();
7492 struct value *dval;
7493 struct type *rtype;
14f9c5c9 7494 int nfields, bit_len;
4c4b4cd2 7495 int variant_field;
14f9c5c9 7496 long off;
d94e4f4f 7497 int fld_bit_len;
14f9c5c9
AS
7498 int f;
7499
4c4b4cd2
PH
7500 /* Compute the number of fields in this record type that are going
7501 to be processed: unless keep_dynamic_fields, this includes only
7502 fields whose position and length are static will be processed. */
7503 if (keep_dynamic_fields)
1f704f76 7504 nfields = type->num_fields ();
4c4b4cd2
PH
7505 else
7506 {
7507 nfields = 0;
1f704f76 7508 while (nfields < type->num_fields ()
dda83cd7
SM
7509 && !ada_is_variant_part (type, nfields)
7510 && !is_dynamic_field (type, nfields))
7511 nfields++;
4c4b4cd2
PH
7512 }
7513
e9bb382b 7514 rtype = alloc_type_copy (type);
67607e24 7515 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7516 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7517 rtype->set_num_fields (nfields);
3cabb6b0
SM
7518 rtype->set_fields
7519 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7520 rtype->set_name (ada_type_name (type));
9cdd0d12 7521 rtype->set_is_fixed_instance (true);
14f9c5c9 7522
d2e4a39e
AS
7523 off = 0;
7524 bit_len = 0;
4c4b4cd2
PH
7525 variant_field = -1;
7526
14f9c5c9
AS
7527 for (f = 0; f < nfields; f += 1)
7528 {
a89febbd 7529 off = align_up (off, field_alignment (type, f))
6c038f32 7530 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7531 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7532 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7533
d2e4a39e 7534 if (ada_is_variant_part (type, f))
dda83cd7
SM
7535 {
7536 variant_field = f;
7537 fld_bit_len = 0;
7538 }
14f9c5c9 7539 else if (is_dynamic_field (type, f))
dda83cd7 7540 {
284614f0
JB
7541 const gdb_byte *field_valaddr = valaddr;
7542 CORE_ADDR field_address = address;
7543 struct type *field_type =
940da03e 7544 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7545
dda83cd7 7546 if (dval0 == NULL)
b5304971
JG
7547 {
7548 /* rtype's length is computed based on the run-time
7549 value of discriminants. If the discriminants are not
7550 initialized, the type size may be completely bogus and
0963b4bd 7551 GDB may fail to allocate a value for it. So check the
b5304971 7552 size first before creating the value. */
c1b5a1a6 7553 ada_ensure_varsize_limit (rtype);
012370f6
TT
7554 /* Using plain value_from_contents_and_address here
7555 causes problems because we will end up trying to
7556 resolve a type that is currently being
7557 constructed. */
7558 dval = value_from_contents_and_address_unresolved (rtype,
7559 valaddr,
7560 address);
9f1f738a 7561 rtype = value_type (dval);
b5304971 7562 }
dda83cd7
SM
7563 else
7564 dval = dval0;
4c4b4cd2 7565
284614f0
JB
7566 /* If the type referenced by this field is an aligner type, we need
7567 to unwrap that aligner type, because its size might not be set.
7568 Keeping the aligner type would cause us to compute the wrong
7569 size for this field, impacting the offset of the all the fields
7570 that follow this one. */
7571 if (ada_is_aligner_type (field_type))
7572 {
7573 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7574
7575 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7576 field_address = cond_offset_target (field_address, field_offset);
7577 field_type = ada_aligned_type (field_type);
7578 }
7579
7580 field_valaddr = cond_offset_host (field_valaddr,
7581 off / TARGET_CHAR_BIT);
7582 field_address = cond_offset_target (field_address,
7583 off / TARGET_CHAR_BIT);
7584
7585 /* Get the fixed type of the field. Note that, in this case,
7586 we do not want to get the real type out of the tag: if
7587 the current field is the parent part of a tagged record,
7588 we will get the tag of the object. Clearly wrong: the real
7589 type of the parent is not the real type of the child. We
7590 would end up in an infinite loop. */
7591 field_type = ada_get_base_type (field_type);
7592 field_type = ada_to_fixed_type (field_type, field_valaddr,
7593 field_address, dval, 0);
27f2a97b
JB
7594 /* If the field size is already larger than the maximum
7595 object size, then the record itself will necessarily
7596 be larger than the maximum object size. We need to make
7597 this check now, because the size might be so ridiculously
7598 large (due to an uninitialized variable in the inferior)
7599 that it would cause an overflow when adding it to the
7600 record size. */
c1b5a1a6 7601 ada_ensure_varsize_limit (field_type);
284614f0 7602
5d14b6e5 7603 rtype->field (f).set_type (field_type);
dda83cd7 7604 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7605 /* The multiplication can potentially overflow. But because
7606 the field length has been size-checked just above, and
7607 assuming that the maximum size is a reasonable value,
7608 an overflow should not happen in practice. So rather than
7609 adding overflow recovery code to this already complex code,
7610 we just assume that it's not going to happen. */
dda83cd7
SM
7611 fld_bit_len =
7612 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7613 }
14f9c5c9 7614 else
dda83cd7 7615 {
5ded5331
JB
7616 /* Note: If this field's type is a typedef, it is important
7617 to preserve the typedef layer.
7618
7619 Otherwise, we might be transforming a typedef to a fat
7620 pointer (encoding a pointer to an unconstrained array),
7621 into a basic fat pointer (encoding an unconstrained
7622 array). As both types are implemented using the same
7623 structure, the typedef is the only clue which allows us
7624 to distinguish between the two options. Stripping it
7625 would prevent us from printing this field appropriately. */
dda83cd7
SM
7626 rtype->field (f).set_type (type->field (f).type ());
7627 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7628 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7629 fld_bit_len =
7630 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7631 else
5ded5331 7632 {
940da03e 7633 struct type *field_type = type->field (f).type ();
5ded5331
JB
7634
7635 /* We need to be careful of typedefs when computing
7636 the length of our field. If this is a typedef,
7637 get the length of the target type, not the length
7638 of the typedef. */
78134374 7639 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7640 field_type = ada_typedef_target_type (field_type);
7641
dda83cd7
SM
7642 fld_bit_len =
7643 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 7644 }
dda83cd7 7645 }
14f9c5c9 7646 if (off + fld_bit_len > bit_len)
dda83cd7 7647 bit_len = off + fld_bit_len;
d94e4f4f 7648 off += fld_bit_len;
4c4b4cd2 7649 TYPE_LENGTH (rtype) =
dda83cd7 7650 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7651 }
4c4b4cd2
PH
7652
7653 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7654 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7655 the record. This can happen in the presence of representation
7656 clauses. */
7657 if (variant_field >= 0)
7658 {
7659 struct type *branch_type;
7660
7661 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7662
7663 if (dval0 == NULL)
9f1f738a 7664 {
012370f6
TT
7665 /* Using plain value_from_contents_and_address here causes
7666 problems because we will end up trying to resolve a type
7667 that is currently being constructed. */
7668 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7669 address);
9f1f738a
SA
7670 rtype = value_type (dval);
7671 }
4c4b4cd2 7672 else
dda83cd7 7673 dval = dval0;
4c4b4cd2
PH
7674
7675 branch_type =
dda83cd7
SM
7676 to_fixed_variant_branch_type
7677 (type->field (variant_field).type (),
7678 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7679 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 7680 if (branch_type == NULL)
dda83cd7
SM
7681 {
7682 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7683 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7684 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 7685 }
4c4b4cd2 7686 else
dda83cd7
SM
7687 {
7688 rtype->field (variant_field).set_type (branch_type);
7689 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7690 fld_bit_len =
7691 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7692 TARGET_CHAR_BIT;
7693 if (off + fld_bit_len > bit_len)
7694 bit_len = off + fld_bit_len;
7695 TYPE_LENGTH (rtype) =
7696 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7697 }
4c4b4cd2
PH
7698 }
7699
714e53ab
PH
7700 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7701 should contain the alignment of that record, which should be a strictly
7702 positive value. If null or negative, then something is wrong, most
7703 probably in the debug info. In that case, we don't round up the size
0963b4bd 7704 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7705 the current RTYPE length might be good enough for our purposes. */
7706 if (TYPE_LENGTH (type) <= 0)
7707 {
7d93a1e0 7708 if (rtype->name ())
cc1defb1 7709 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 7710 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 7711 else
cc1defb1
KS
7712 warning (_("Invalid type size for <unnamed> detected: %s."),
7713 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
7714 }
7715 else
7716 {
a89febbd
TT
7717 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7718 TYPE_LENGTH (type));
714e53ab 7719 }
14f9c5c9
AS
7720
7721 value_free_to_mark (mark);
d2e4a39e 7722 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7723 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7724 return rtype;
7725}
7726
4c4b4cd2
PH
7727/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7728 of 1. */
14f9c5c9 7729
d2e4a39e 7730static struct type *
fc1a4b47 7731template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 7732 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
7733{
7734 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 7735 address, dval0, 1);
4c4b4cd2
PH
7736}
7737
7738/* An ordinary record type in which ___XVL-convention fields and
7739 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7740 static approximations, containing all possible fields. Uses
7741 no runtime values. Useless for use in values, but that's OK,
7742 since the results are used only for type determinations. Works on both
7743 structs and unions. Representation note: to save space, we memorize
7744 the result of this function in the TYPE_TARGET_TYPE of the
7745 template type. */
7746
7747static struct type *
7748template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7749{
7750 struct type *type;
7751 int nfields;
7752 int f;
7753
9e195661 7754 /* No need no do anything if the input type is already fixed. */
22c4c60c 7755 if (type0->is_fixed_instance ())
9e195661
PMR
7756 return type0;
7757
7758 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
7759 if (TYPE_TARGET_TYPE (type0) != NULL)
7760 return TYPE_TARGET_TYPE (type0);
7761
9e195661 7762 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 7763 type = type0;
1f704f76 7764 nfields = type0->num_fields ();
9e195661
PMR
7765
7766 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7767 recompute all over next time. */
7768 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
7769
7770 for (f = 0; f < nfields; f += 1)
7771 {
940da03e 7772 struct type *field_type = type0->field (f).type ();
4c4b4cd2 7773 struct type *new_type;
14f9c5c9 7774
4c4b4cd2 7775 if (is_dynamic_field (type0, f))
460efde1
JB
7776 {
7777 field_type = ada_check_typedef (field_type);
dda83cd7 7778 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 7779 }
14f9c5c9 7780 else
dda83cd7 7781 new_type = static_unwrap_type (field_type);
9e195661
PMR
7782
7783 if (new_type != field_type)
7784 {
7785 /* Clone TYPE0 only the first time we get a new field type. */
7786 if (type == type0)
7787 {
7788 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 7789 type->set_code (type0->code ());
8ecb59f8 7790 INIT_NONE_SPECIFIC (type);
5e33d5f4 7791 type->set_num_fields (nfields);
3cabb6b0
SM
7792
7793 field *fields =
7794 ((struct field *)
7795 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 7796 memcpy (fields, type0->fields (),
9e195661 7797 sizeof (struct field) * nfields);
3cabb6b0
SM
7798 type->set_fields (fields);
7799
d0e39ea2 7800 type->set_name (ada_type_name (type0));
9cdd0d12 7801 type->set_is_fixed_instance (true);
9e195661
PMR
7802 TYPE_LENGTH (type) = 0;
7803 }
5d14b6e5 7804 type->field (f).set_type (new_type);
9e195661
PMR
7805 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7806 }
14f9c5c9 7807 }
9e195661 7808
14f9c5c9
AS
7809 return type;
7810}
7811
4c4b4cd2 7812/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7813 whose address in memory is ADDRESS, returns a revision of TYPE,
7814 which should be a non-dynamic-sized record, in which the variant
7815 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7816 for discriminant values in DVAL0, which can be NULL if the record
7817 contains the necessary discriminant values. */
7818
d2e4a39e 7819static struct type *
fc1a4b47 7820to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 7821 CORE_ADDR address, struct value *dval0)
14f9c5c9 7822{
d2e4a39e 7823 struct value *mark = value_mark ();
4c4b4cd2 7824 struct value *dval;
d2e4a39e 7825 struct type *rtype;
14f9c5c9 7826 struct type *branch_type;
1f704f76 7827 int nfields = type->num_fields ();
4c4b4cd2 7828 int variant_field = variant_field_index (type);
14f9c5c9 7829
4c4b4cd2 7830 if (variant_field == -1)
14f9c5c9
AS
7831 return type;
7832
4c4b4cd2 7833 if (dval0 == NULL)
9f1f738a
SA
7834 {
7835 dval = value_from_contents_and_address (type, valaddr, address);
7836 type = value_type (dval);
7837 }
4c4b4cd2
PH
7838 else
7839 dval = dval0;
7840
e9bb382b 7841 rtype = alloc_type_copy (type);
67607e24 7842 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7843 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7844 rtype->set_num_fields (nfields);
3cabb6b0
SM
7845
7846 field *fields =
d2e4a39e 7847 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 7848 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
7849 rtype->set_fields (fields);
7850
d0e39ea2 7851 rtype->set_name (ada_type_name (type));
9cdd0d12 7852 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
7853 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7854
4c4b4cd2 7855 branch_type = to_fixed_variant_branch_type
940da03e 7856 (type->field (variant_field).type (),
d2e4a39e 7857 cond_offset_host (valaddr,
dda83cd7
SM
7858 TYPE_FIELD_BITPOS (type, variant_field)
7859 / TARGET_CHAR_BIT),
d2e4a39e 7860 cond_offset_target (address,
dda83cd7
SM
7861 TYPE_FIELD_BITPOS (type, variant_field)
7862 / TARGET_CHAR_BIT), dval);
d2e4a39e 7863 if (branch_type == NULL)
14f9c5c9 7864 {
4c4b4cd2 7865 int f;
5b4ee69b 7866
4c4b4cd2 7867 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 7868 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7869 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
7870 }
7871 else
7872 {
5d14b6e5 7873 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
7874 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7875 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7876 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7877 }
940da03e 7878 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 7879
4c4b4cd2 7880 value_free_to_mark (mark);
14f9c5c9
AS
7881 return rtype;
7882}
7883
7884/* An ordinary record type (with fixed-length fields) that describes
7885 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7886 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7887 should be in DVAL, a record value; it may be NULL if the object
7888 at ADDR itself contains any necessary discriminant values.
7889 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7890 values from the record are needed. Except in the case that DVAL,
7891 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7892 unchecked) is replaced by a particular branch of the variant.
7893
7894 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7895 is questionable and may be removed. It can arise during the
7896 processing of an unconstrained-array-of-record type where all the
7897 variant branches have exactly the same size. This is because in
7898 such cases, the compiler does not bother to use the XVS convention
7899 when encoding the record. I am currently dubious of this
7900 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7901
d2e4a39e 7902static struct type *
fc1a4b47 7903to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 7904 CORE_ADDR address, struct value *dval)
14f9c5c9 7905{
d2e4a39e 7906 struct type *templ_type;
14f9c5c9 7907
22c4c60c 7908 if (type0->is_fixed_instance ())
4c4b4cd2
PH
7909 return type0;
7910
d2e4a39e 7911 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7912
7913 if (templ_type != NULL)
7914 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7915 else if (variant_field_index (type0) >= 0)
7916 {
7917 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 7918 return type0;
4c4b4cd2 7919 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 7920 dval);
4c4b4cd2 7921 }
14f9c5c9
AS
7922 else
7923 {
9cdd0d12 7924 type0->set_is_fixed_instance (true);
14f9c5c9
AS
7925 return type0;
7926 }
7927
7928}
7929
7930/* An ordinary record type (with fixed-length fields) that describes
7931 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7932 union type. Any necessary discriminants' values should be in DVAL,
7933 a record value. That is, this routine selects the appropriate
7934 branch of the union at ADDR according to the discriminant value
b1f33ddd 7935 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7936 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7937
d2e4a39e 7938static struct type *
fc1a4b47 7939to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 7940 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7941{
7942 int which;
d2e4a39e
AS
7943 struct type *templ_type;
7944 struct type *var_type;
14f9c5c9 7945
78134374 7946 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 7947 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7948 else
14f9c5c9
AS
7949 var_type = var_type0;
7950
7951 templ_type = ada_find_parallel_type (var_type, "___XVU");
7952
7953 if (templ_type != NULL)
7954 var_type = templ_type;
7955
b1f33ddd
JB
7956 if (is_unchecked_variant (var_type, value_type (dval)))
7957 return var_type0;
d8af9068 7958 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
7959
7960 if (which < 0)
e9bb382b 7961 return empty_record (var_type);
14f9c5c9 7962 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7963 return to_fixed_record_type
940da03e 7964 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 7965 valaddr, address, dval);
940da03e 7966 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
7967 return
7968 to_fixed_record_type
940da03e 7969 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 7970 else
940da03e 7971 return var_type->field (which).type ();
14f9c5c9
AS
7972}
7973
8908fca5
JB
7974/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7975 ENCODING_TYPE, a type following the GNAT conventions for discrete
7976 type encodings, only carries redundant information. */
7977
7978static int
7979ada_is_redundant_range_encoding (struct type *range_type,
7980 struct type *encoding_type)
7981{
108d56a4 7982 const char *bounds_str;
8908fca5
JB
7983 int n;
7984 LONGEST lo, hi;
7985
78134374 7986 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 7987
78134374
SM
7988 if (get_base_type (range_type)->code ()
7989 != get_base_type (encoding_type)->code ())
005e2509
JB
7990 {
7991 /* The compiler probably used a simple base type to describe
7992 the range type instead of the range's actual base type,
7993 expecting us to get the real base type from the encoding
7994 anyway. In this situation, the encoding cannot be ignored
7995 as redundant. */
7996 return 0;
7997 }
7998
8908fca5
JB
7999 if (is_dynamic_type (range_type))
8000 return 0;
8001
7d93a1e0 8002 if (encoding_type->name () == NULL)
8908fca5
JB
8003 return 0;
8004
7d93a1e0 8005 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8006 if (bounds_str == NULL)
8007 return 0;
8008
8009 n = 8; /* Skip "___XDLU_". */
8010 if (!ada_scan_number (bounds_str, n, &lo, &n))
8011 return 0;
5537ddd0 8012 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8013 return 0;
8014
8015 n += 2; /* Skip the "__" separator between the two bounds. */
8016 if (!ada_scan_number (bounds_str, n, &hi, &n))
8017 return 0;
5537ddd0 8018 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8019 return 0;
8020
8021 return 1;
8022}
8023
8024/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8025 a type following the GNAT encoding for describing array type
8026 indices, only carries redundant information. */
8027
8028static int
8029ada_is_redundant_index_type_desc (struct type *array_type,
8030 struct type *desc_type)
8031{
8032 struct type *this_layer = check_typedef (array_type);
8033 int i;
8034
1f704f76 8035 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8036 {
3d967001 8037 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8038 desc_type->field (i).type ()))
8908fca5
JB
8039 return 0;
8040 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8041 }
8042
8043 return 1;
8044}
8045
14f9c5c9
AS
8046/* Assuming that TYPE0 is an array type describing the type of a value
8047 at ADDR, and that DVAL describes a record containing any
8048 discriminants used in TYPE0, returns a type for the value that
8049 contains no dynamic components (that is, no components whose sizes
8050 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8051 true, gives an error message if the resulting type's size is over
4c4b4cd2 8052 varsize_limit. */
14f9c5c9 8053
d2e4a39e
AS
8054static struct type *
8055to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8056 int ignore_too_big)
14f9c5c9 8057{
d2e4a39e
AS
8058 struct type *index_type_desc;
8059 struct type *result;
ad82864c 8060 int constrained_packed_array_p;
931e5bc3 8061 static const char *xa_suffix = "___XA";
14f9c5c9 8062
b0dd7688 8063 type0 = ada_check_typedef (type0);
22c4c60c 8064 if (type0->is_fixed_instance ())
4c4b4cd2 8065 return type0;
14f9c5c9 8066
ad82864c
JB
8067 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8068 if (constrained_packed_array_p)
75fd6a26
TT
8069 {
8070 type0 = decode_constrained_packed_array_type (type0);
8071 if (type0 == nullptr)
8072 error (_("could not decode constrained packed array type"));
8073 }
284614f0 8074
931e5bc3
JG
8075 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8076
8077 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8078 encoding suffixed with 'P' may still be generated. If so,
8079 it should be used to find the XA type. */
8080
8081 if (index_type_desc == NULL)
8082 {
1da0522e 8083 const char *type_name = ada_type_name (type0);
931e5bc3 8084
1da0522e 8085 if (type_name != NULL)
931e5bc3 8086 {
1da0522e 8087 const int len = strlen (type_name);
931e5bc3
JG
8088 char *name = (char *) alloca (len + strlen (xa_suffix));
8089
1da0522e 8090 if (type_name[len - 1] == 'P')
931e5bc3 8091 {
1da0522e 8092 strcpy (name, type_name);
931e5bc3
JG
8093 strcpy (name + len - 1, xa_suffix);
8094 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8095 }
8096 }
8097 }
8098
28c85d6c 8099 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8100 if (index_type_desc != NULL
8101 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8102 {
8103 /* Ignore this ___XA parallel type, as it does not bring any
8104 useful information. This allows us to avoid creating fixed
8105 versions of the array's index types, which would be identical
8106 to the original ones. This, in turn, can also help avoid
8107 the creation of fixed versions of the array itself. */
8108 index_type_desc = NULL;
8109 }
8110
14f9c5c9
AS
8111 if (index_type_desc == NULL)
8112 {
61ee279c 8113 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8114
14f9c5c9 8115 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8116 depend on the contents of the array in properly constructed
8117 debugging data. */
529cad9c 8118 /* Create a fixed version of the array element type.
dda83cd7
SM
8119 We're not providing the address of an element here,
8120 and thus the actual object value cannot be inspected to do
8121 the conversion. This should not be a problem, since arrays of
8122 unconstrained objects are not allowed. In particular, all
8123 the elements of an array of a tagged type should all be of
8124 the same type specified in the debugging info. No need to
8125 consult the object tag. */
1ed6ede0 8126 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8127
284614f0
JB
8128 /* Make sure we always create a new array type when dealing with
8129 packed array types, since we're going to fix-up the array
8130 type length and element bitsize a little further down. */
ad82864c 8131 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8132 result = type0;
14f9c5c9 8133 else
dda83cd7
SM
8134 result = create_array_type (alloc_type_copy (type0),
8135 elt_type, type0->index_type ());
14f9c5c9
AS
8136 }
8137 else
8138 {
8139 int i;
8140 struct type *elt_type0;
8141
8142 elt_type0 = type0;
1f704f76 8143 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8144 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8145
8146 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8147 depend on the contents of the array in properly constructed
8148 debugging data. */
529cad9c 8149 /* Create a fixed version of the array element type.
dda83cd7
SM
8150 We're not providing the address of an element here,
8151 and thus the actual object value cannot be inspected to do
8152 the conversion. This should not be a problem, since arrays of
8153 unconstrained objects are not allowed. In particular, all
8154 the elements of an array of a tagged type should all be of
8155 the same type specified in the debugging info. No need to
8156 consult the object tag. */
1ed6ede0 8157 result =
dda83cd7 8158 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8159
8160 elt_type0 = type0;
1f704f76 8161 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8162 {
8163 struct type *range_type =
8164 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8165
dda83cd7
SM
8166 result = create_array_type (alloc_type_copy (elt_type0),
8167 result, range_type);
1ce677a4 8168 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8169 }
d2e4a39e 8170 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
dda83cd7 8171 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8172 }
8173
2e6fda7d
JB
8174 /* We want to preserve the type name. This can be useful when
8175 trying to get the type name of a value that has already been
8176 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8177 result->set_name (type0->name ());
2e6fda7d 8178
ad82864c 8179 if (constrained_packed_array_p)
284614f0
JB
8180 {
8181 /* So far, the resulting type has been created as if the original
8182 type was a regular (non-packed) array type. As a result, the
8183 bitsize of the array elements needs to be set again, and the array
8184 length needs to be recomputed based on that bitsize. */
8185 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8186 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8187
8188 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8189 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8190 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8191 TYPE_LENGTH (result)++;
284614f0
JB
8192 }
8193
9cdd0d12 8194 result->set_is_fixed_instance (true);
14f9c5c9 8195 return result;
d2e4a39e 8196}
14f9c5c9
AS
8197
8198
8199/* A standard type (containing no dynamically sized components)
8200 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8201 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8202 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8203 ADDRESS or in VALADDR contains these discriminants.
8204
1ed6ede0
JB
8205 If CHECK_TAG is not null, in the case of tagged types, this function
8206 attempts to locate the object's tag and use it to compute the actual
8207 type. However, when ADDRESS is null, we cannot use it to determine the
8208 location of the tag, and therefore compute the tagged type's actual type.
8209 So we return the tagged type without consulting the tag. */
529cad9c 8210
f192137b
JB
8211static struct type *
8212ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8213 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8214{
61ee279c 8215 type = ada_check_typedef (type);
8ecb59f8
TT
8216
8217 /* Only un-fixed types need to be handled here. */
8218 if (!HAVE_GNAT_AUX_INFO (type))
8219 return type;
8220
78134374 8221 switch (type->code ())
d2e4a39e
AS
8222 {
8223 default:
14f9c5c9 8224 return type;
d2e4a39e 8225 case TYPE_CODE_STRUCT:
4c4b4cd2 8226 {
dda83cd7
SM
8227 struct type *static_type = to_static_fixed_type (type);
8228 struct type *fixed_record_type =
8229 to_fixed_record_type (type, valaddr, address, NULL);
8230
8231 /* If STATIC_TYPE is a tagged type and we know the object's address,
8232 then we can determine its tag, and compute the object's actual
8233 type from there. Note that we have to use the fixed record
8234 type (the parent part of the record may have dynamic fields
8235 and the way the location of _tag is expressed may depend on
8236 them). */
8237
8238 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8239 {
b50d69b5
JG
8240 struct value *tag =
8241 value_tag_from_contents_and_address
8242 (fixed_record_type,
8243 valaddr,
8244 address);
8245 struct type *real_type = type_from_tag (tag);
8246 struct value *obj =
8247 value_from_contents_and_address (fixed_record_type,
8248 valaddr,
8249 address);
dda83cd7
SM
8250 fixed_record_type = value_type (obj);
8251 if (real_type != NULL)
8252 return to_fixed_record_type
b50d69b5
JG
8253 (real_type, NULL,
8254 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8255 }
8256
8257 /* Check to see if there is a parallel ___XVZ variable.
8258 If there is, then it provides the actual size of our type. */
8259 else if (ada_type_name (fixed_record_type) != NULL)
8260 {
8261 const char *name = ada_type_name (fixed_record_type);
8262 char *xvz_name
224c3ddb 8263 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8264 bool xvz_found = false;
dda83cd7 8265 LONGEST size;
4af88198 8266
dda83cd7 8267 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8268 try
eccab96d
JB
8269 {
8270 xvz_found = get_int_var_value (xvz_name, size);
8271 }
230d2906 8272 catch (const gdb_exception_error &except)
eccab96d
JB
8273 {
8274 /* We found the variable, but somehow failed to read
8275 its value. Rethrow the same error, but with a little
8276 bit more information, to help the user understand
8277 what went wrong (Eg: the variable might have been
8278 optimized out). */
8279 throw_error (except.error,
8280 _("unable to read value of %s (%s)"),
3d6e9d23 8281 xvz_name, except.what ());
eccab96d 8282 }
eccab96d 8283
dda83cd7
SM
8284 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8285 {
8286 fixed_record_type = copy_type (fixed_record_type);
8287 TYPE_LENGTH (fixed_record_type) = size;
8288
8289 /* The FIXED_RECORD_TYPE may have be a stub. We have
8290 observed this when the debugging info is STABS, and
8291 apparently it is something that is hard to fix.
8292
8293 In practice, we don't need the actual type definition
8294 at all, because the presence of the XVZ variable allows us
8295 to assume that there must be a XVS type as well, which we
8296 should be able to use later, when we need the actual type
8297 definition.
8298
8299 In the meantime, pretend that the "fixed" type we are
8300 returning is NOT a stub, because this can cause trouble
8301 when using this type to create new types targeting it.
8302 Indeed, the associated creation routines often check
8303 whether the target type is a stub and will try to replace
8304 it, thus using a type with the wrong size. This, in turn,
8305 might cause the new type to have the wrong size too.
8306 Consider the case of an array, for instance, where the size
8307 of the array is computed from the number of elements in
8308 our array multiplied by the size of its element. */
b4b73759 8309 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8310 }
8311 }
8312 return fixed_record_type;
4c4b4cd2 8313 }
d2e4a39e 8314 case TYPE_CODE_ARRAY:
4c4b4cd2 8315 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8316 case TYPE_CODE_UNION:
8317 if (dval == NULL)
dda83cd7 8318 return type;
d2e4a39e 8319 else
dda83cd7 8320 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8321 }
14f9c5c9
AS
8322}
8323
f192137b
JB
8324/* The same as ada_to_fixed_type_1, except that it preserves the type
8325 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8326
8327 The typedef layer needs be preserved in order to differentiate between
8328 arrays and array pointers when both types are implemented using the same
8329 fat pointer. In the array pointer case, the pointer is encoded as
8330 a typedef of the pointer type. For instance, considering:
8331
8332 type String_Access is access String;
8333 S1 : String_Access := null;
8334
8335 To the debugger, S1 is defined as a typedef of type String. But
8336 to the user, it is a pointer. So if the user tries to print S1,
8337 we should not dereference the array, but print the array address
8338 instead.
8339
8340 If we didn't preserve the typedef layer, we would lose the fact that
8341 the type is to be presented as a pointer (needs de-reference before
8342 being printed). And we would also use the source-level type name. */
f192137b
JB
8343
8344struct type *
8345ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8346 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8347
8348{
8349 struct type *fixed_type =
8350 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8351
96dbd2c1
JB
8352 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8353 then preserve the typedef layer.
8354
8355 Implementation note: We can only check the main-type portion of
8356 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8357 from TYPE now returns a type that has the same instance flags
8358 as TYPE. For instance, if TYPE is a "typedef const", and its
8359 target type is a "struct", then the typedef elimination will return
8360 a "const" version of the target type. See check_typedef for more
8361 details about how the typedef layer elimination is done.
8362
8363 brobecker/2010-11-19: It seems to me that the only case where it is
8364 useful to preserve the typedef layer is when dealing with fat pointers.
8365 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8366 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8367 because we call check_typedef/ada_check_typedef pretty much everywhere.
8368 */
78134374 8369 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8370 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8371 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8372 return type;
8373
8374 return fixed_type;
8375}
8376
14f9c5c9 8377/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8378 TYPE0, but based on no runtime data. */
14f9c5c9 8379
d2e4a39e
AS
8380static struct type *
8381to_static_fixed_type (struct type *type0)
14f9c5c9 8382{
d2e4a39e 8383 struct type *type;
14f9c5c9
AS
8384
8385 if (type0 == NULL)
8386 return NULL;
8387
22c4c60c 8388 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8389 return type0;
8390
61ee279c 8391 type0 = ada_check_typedef (type0);
d2e4a39e 8392
78134374 8393 switch (type0->code ())
14f9c5c9
AS
8394 {
8395 default:
8396 return type0;
8397 case TYPE_CODE_STRUCT:
8398 type = dynamic_template_type (type0);
d2e4a39e 8399 if (type != NULL)
dda83cd7 8400 return template_to_static_fixed_type (type);
4c4b4cd2 8401 else
dda83cd7 8402 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8403 case TYPE_CODE_UNION:
8404 type = ada_find_parallel_type (type0, "___XVU");
8405 if (type != NULL)
dda83cd7 8406 return template_to_static_fixed_type (type);
4c4b4cd2 8407 else
dda83cd7 8408 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8409 }
8410}
8411
4c4b4cd2
PH
8412/* A static approximation of TYPE with all type wrappers removed. */
8413
d2e4a39e
AS
8414static struct type *
8415static_unwrap_type (struct type *type)
14f9c5c9
AS
8416{
8417 if (ada_is_aligner_type (type))
8418 {
940da03e 8419 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8420 if (ada_type_name (type1) == NULL)
d0e39ea2 8421 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8422
8423 return static_unwrap_type (type1);
8424 }
d2e4a39e 8425 else
14f9c5c9 8426 {
d2e4a39e 8427 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8428
d2e4a39e 8429 if (raw_real_type == type)
dda83cd7 8430 return type;
14f9c5c9 8431 else
dda83cd7 8432 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8433 }
8434}
8435
8436/* In some cases, incomplete and private types require
4c4b4cd2 8437 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8438 type Foo;
8439 type FooP is access Foo;
8440 V: FooP;
8441 type Foo is array ...;
4c4b4cd2 8442 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8443 cross-references to such types, we instead substitute for FooP a
8444 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8445 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8446
8447/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8448 exists, otherwise TYPE. */
8449
d2e4a39e 8450struct type *
61ee279c 8451ada_check_typedef (struct type *type)
14f9c5c9 8452{
727e3d2e
JB
8453 if (type == NULL)
8454 return NULL;
8455
736ade86
XR
8456 /* If our type is an access to an unconstrained array, which is encoded
8457 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8458 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8459 what allows us to distinguish between fat pointers that represent
8460 array types, and fat pointers that represent array access types
8461 (in both cases, the compiler implements them as fat pointers). */
736ade86 8462 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8463 return type;
8464
f168693b 8465 type = check_typedef (type);
78134374 8466 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8467 || !type->is_stub ()
7d93a1e0 8468 || type->name () == NULL)
14f9c5c9 8469 return type;
d2e4a39e 8470 else
14f9c5c9 8471 {
7d93a1e0 8472 const char *name = type->name ();
d2e4a39e 8473 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8474
05e522ef 8475 if (type1 == NULL)
dda83cd7 8476 return type;
05e522ef
JB
8477
8478 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8479 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8480 types, only for the typedef-to-array types). If that's the case,
8481 strip the typedef layer. */
78134374 8482 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8483 type1 = ada_check_typedef (type1);
8484
8485 return type1;
14f9c5c9
AS
8486 }
8487}
8488
8489/* A value representing the data at VALADDR/ADDRESS as described by
8490 type TYPE0, but with a standard (static-sized) type that correctly
8491 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8492 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8493 creation of struct values]. */
14f9c5c9 8494
4c4b4cd2
PH
8495static struct value *
8496ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8497 struct value *val0)
14f9c5c9 8498{
1ed6ede0 8499 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8500
14f9c5c9
AS
8501 if (type == type0 && val0 != NULL)
8502 return val0;
cc0e770c
JB
8503
8504 if (VALUE_LVAL (val0) != lval_memory)
8505 {
8506 /* Our value does not live in memory; it could be a convenience
8507 variable, for instance. Create a not_lval value using val0's
8508 contents. */
8509 return value_from_contents (type, value_contents (val0));
8510 }
8511
8512 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8513}
8514
8515/* A value representing VAL, but with a standard (static-sized) type
8516 that correctly describes it. Does not necessarily create a new
8517 value. */
8518
0c3acc09 8519struct value *
4c4b4cd2
PH
8520ada_to_fixed_value (struct value *val)
8521{
c48db5ca 8522 val = unwrap_value (val);
d8ce9127 8523 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8524 return val;
14f9c5c9 8525}
d2e4a39e 8526\f
14f9c5c9 8527
14f9c5c9
AS
8528/* Attributes */
8529
4c4b4cd2
PH
8530/* Table mapping attribute numbers to names.
8531 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8532
27087b7f 8533static const char * const attribute_names[] = {
14f9c5c9
AS
8534 "<?>",
8535
d2e4a39e 8536 "first",
14f9c5c9
AS
8537 "last",
8538 "length",
8539 "image",
14f9c5c9
AS
8540 "max",
8541 "min",
4c4b4cd2
PH
8542 "modulus",
8543 "pos",
8544 "size",
8545 "tag",
14f9c5c9 8546 "val",
14f9c5c9
AS
8547 0
8548};
8549
de93309a 8550static const char *
4c4b4cd2 8551ada_attribute_name (enum exp_opcode n)
14f9c5c9 8552{
4c4b4cd2
PH
8553 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8554 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8555 else
8556 return attribute_names[0];
8557}
8558
4c4b4cd2 8559/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8560
4c4b4cd2
PH
8561static LONGEST
8562pos_atr (struct value *arg)
14f9c5c9 8563{
24209737
PH
8564 struct value *val = coerce_ref (arg);
8565 struct type *type = value_type (val);
14f9c5c9 8566
d2e4a39e 8567 if (!discrete_type_p (type))
323e0a4a 8568 error (_("'POS only defined on discrete types"));
14f9c5c9 8569
6244c119
SM
8570 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8571 if (!result.has_value ())
aa715135 8572 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8573
6244c119 8574 return *result;
4c4b4cd2
PH
8575}
8576
7631cf6c 8577struct value *
7992accc
TT
8578ada_pos_atr (struct type *expect_type,
8579 struct expression *exp,
8580 enum noside noside, enum exp_opcode op,
8581 struct value *arg)
4c4b4cd2 8582{
7992accc
TT
8583 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8585 return value_zero (type, not_lval);
3cb382c9 8586 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8587}
8588
4c4b4cd2 8589/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8590
d2e4a39e 8591static struct value *
53a47a3e 8592val_atr (struct type *type, LONGEST val)
14f9c5c9 8593{
53a47a3e 8594 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8595 if (type->code () == TYPE_CODE_RANGE)
8596 type = TYPE_TARGET_TYPE (type);
78134374 8597 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8598 {
53a47a3e 8599 if (val < 0 || val >= type->num_fields ())
dda83cd7 8600 error (_("argument to 'VAL out of range"));
53a47a3e 8601 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8602 }
53a47a3e
TT
8603 return value_from_longest (type, val);
8604}
8605
9e99f48f 8606struct value *
3848abd6 8607ada_val_atr (enum noside noside, struct type *type, struct value *arg)
53a47a3e 8608{
3848abd6
TT
8609 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8610 return value_zero (type, not_lval);
8611
53a47a3e
TT
8612 if (!discrete_type_p (type))
8613 error (_("'VAL only defined on discrete types"));
8614 if (!integer_type_p (value_type (arg)))
8615 error (_("'VAL requires integral argument"));
8616
8617 return val_atr (type, value_as_long (arg));
14f9c5c9 8618}
14f9c5c9 8619\f
d2e4a39e 8620
dda83cd7 8621 /* Evaluation */
14f9c5c9 8622
4c4b4cd2
PH
8623/* True if TYPE appears to be an Ada character type.
8624 [At the moment, this is true only for Character and Wide_Character;
8625 It is a heuristic test that could stand improvement]. */
14f9c5c9 8626
fc913e53 8627bool
d2e4a39e 8628ada_is_character_type (struct type *type)
14f9c5c9 8629{
7b9f71f2
JB
8630 const char *name;
8631
8632 /* If the type code says it's a character, then assume it really is,
8633 and don't check any further. */
78134374 8634 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8635 return true;
7b9f71f2
JB
8636
8637 /* Otherwise, assume it's a character type iff it is a discrete type
8638 with a known character type name. */
8639 name = ada_type_name (type);
8640 return (name != NULL
dda83cd7
SM
8641 && (type->code () == TYPE_CODE_INT
8642 || type->code () == TYPE_CODE_RANGE)
8643 && (strcmp (name, "character") == 0
8644 || strcmp (name, "wide_character") == 0
8645 || strcmp (name, "wide_wide_character") == 0
8646 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8647}
8648
4c4b4cd2 8649/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8650
fc913e53 8651bool
ebf56fd3 8652ada_is_string_type (struct type *type)
14f9c5c9 8653{
61ee279c 8654 type = ada_check_typedef (type);
d2e4a39e 8655 if (type != NULL
78134374 8656 && type->code () != TYPE_CODE_PTR
76a01679 8657 && (ada_is_simple_array_type (type)
dda83cd7 8658 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8659 && ada_array_arity (type) == 1)
8660 {
8661 struct type *elttype = ada_array_element_type (type, 1);
8662
8663 return ada_is_character_type (elttype);
8664 }
d2e4a39e 8665 else
fc913e53 8666 return false;
14f9c5c9
AS
8667}
8668
5bf03f13
JB
8669/* The compiler sometimes provides a parallel XVS type for a given
8670 PAD type. Normally, it is safe to follow the PAD type directly,
8671 but older versions of the compiler have a bug that causes the offset
8672 of its "F" field to be wrong. Following that field in that case
8673 would lead to incorrect results, but this can be worked around
8674 by ignoring the PAD type and using the associated XVS type instead.
8675
8676 Set to True if the debugger should trust the contents of PAD types.
8677 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 8678static bool trust_pad_over_xvs = true;
14f9c5c9
AS
8679
8680/* True if TYPE is a struct type introduced by the compiler to force the
8681 alignment of a value. Such types have a single field with a
4c4b4cd2 8682 distinctive name. */
14f9c5c9
AS
8683
8684int
ebf56fd3 8685ada_is_aligner_type (struct type *type)
14f9c5c9 8686{
61ee279c 8687 type = ada_check_typedef (type);
714e53ab 8688
5bf03f13 8689 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8690 return 0;
8691
78134374 8692 return (type->code () == TYPE_CODE_STRUCT
dda83cd7
SM
8693 && type->num_fields () == 1
8694 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8695}
8696
8697/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8698 the parallel type. */
14f9c5c9 8699
d2e4a39e
AS
8700struct type *
8701ada_get_base_type (struct type *raw_type)
14f9c5c9 8702{
d2e4a39e
AS
8703 struct type *real_type_namer;
8704 struct type *raw_real_type;
14f9c5c9 8705
78134374 8706 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
8707 return raw_type;
8708
284614f0
JB
8709 if (ada_is_aligner_type (raw_type))
8710 /* The encoding specifies that we should always use the aligner type.
8711 So, even if this aligner type has an associated XVS type, we should
8712 simply ignore it.
8713
8714 According to the compiler gurus, an XVS type parallel to an aligner
8715 type may exist because of a stabs limitation. In stabs, aligner
8716 types are empty because the field has a variable-sized type, and
8717 thus cannot actually be used as an aligner type. As a result,
8718 we need the associated parallel XVS type to decode the type.
8719 Since the policy in the compiler is to not change the internal
8720 representation based on the debugging info format, we sometimes
8721 end up having a redundant XVS type parallel to the aligner type. */
8722 return raw_type;
8723
14f9c5c9 8724 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8725 if (real_type_namer == NULL
78134374 8726 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 8727 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
8728 return raw_type;
8729
940da03e 8730 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
8731 {
8732 /* This is an older encoding form where the base type needs to be
85102364 8733 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
8734 more efficient. */
8735 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8736 if (raw_real_type == NULL)
8737 return raw_type;
8738 else
8739 return raw_real_type;
8740 }
8741
8742 /* The field in our XVS type is a reference to the base type. */
940da03e 8743 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 8744}
14f9c5c9 8745
4c4b4cd2 8746/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8747
d2e4a39e
AS
8748struct type *
8749ada_aligned_type (struct type *type)
14f9c5c9
AS
8750{
8751 if (ada_is_aligner_type (type))
940da03e 8752 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
8753 else
8754 return ada_get_base_type (type);
8755}
8756
8757
8758/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8759 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8760
fc1a4b47
AC
8761const gdb_byte *
8762ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8763{
d2e4a39e 8764 if (ada_is_aligner_type (type))
940da03e 8765 return ada_aligned_value_addr (type->field (0).type (),
dda83cd7
SM
8766 valaddr +
8767 TYPE_FIELD_BITPOS (type,
8768 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8769 else
8770 return valaddr;
8771}
8772
4c4b4cd2
PH
8773
8774
14f9c5c9 8775/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8776 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8777const char *
8778ada_enum_name (const char *name)
14f9c5c9 8779{
5f9febe0 8780 static std::string storage;
e6a959d6 8781 const char *tmp;
14f9c5c9 8782
4c4b4cd2
PH
8783 /* First, unqualify the enumeration name:
8784 1. Search for the last '.' character. If we find one, then skip
177b42fe 8785 all the preceding characters, the unqualified name starts
76a01679 8786 right after that dot.
4c4b4cd2 8787 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8788 translates dots into "__". Search forward for double underscores,
8789 but stop searching when we hit an overloading suffix, which is
8790 of the form "__" followed by digits. */
4c4b4cd2 8791
c3e5cd34
PH
8792 tmp = strrchr (name, '.');
8793 if (tmp != NULL)
4c4b4cd2
PH
8794 name = tmp + 1;
8795 else
14f9c5c9 8796 {
4c4b4cd2 8797 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
8798 {
8799 if (isdigit (tmp[2]))
8800 break;
8801 else
8802 name = tmp + 2;
8803 }
14f9c5c9
AS
8804 }
8805
8806 if (name[0] == 'Q')
8807 {
14f9c5c9 8808 int v;
5b4ee69b 8809
14f9c5c9 8810 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
8811 {
8812 if (sscanf (name + 2, "%x", &v) != 1)
8813 return name;
8814 }
272560b5
TT
8815 else if (((name[1] >= '0' && name[1] <= '9')
8816 || (name[1] >= 'a' && name[1] <= 'z'))
8817 && name[2] == '\0')
8818 {
5f9febe0
TT
8819 storage = string_printf ("'%c'", name[1]);
8820 return storage.c_str ();
272560b5 8821 }
14f9c5c9 8822 else
dda83cd7 8823 return name;
14f9c5c9
AS
8824
8825 if (isascii (v) && isprint (v))
5f9febe0 8826 storage = string_printf ("'%c'", v);
14f9c5c9 8827 else if (name[1] == 'U')
5f9febe0 8828 storage = string_printf ("[\"%02x\"]", v);
14f9c5c9 8829 else
5f9febe0 8830 storage = string_printf ("[\"%04x\"]", v);
14f9c5c9 8831
5f9febe0 8832 return storage.c_str ();
14f9c5c9 8833 }
d2e4a39e 8834 else
4c4b4cd2 8835 {
c3e5cd34
PH
8836 tmp = strstr (name, "__");
8837 if (tmp == NULL)
8838 tmp = strstr (name, "$");
8839 if (tmp != NULL)
dda83cd7 8840 {
5f9febe0
TT
8841 storage = std::string (name, tmp - name);
8842 return storage.c_str ();
dda83cd7 8843 }
4c4b4cd2
PH
8844
8845 return name;
8846 }
14f9c5c9
AS
8847}
8848
14f9c5c9 8849/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8850 value it wraps. */
14f9c5c9 8851
d2e4a39e
AS
8852static struct value *
8853unwrap_value (struct value *val)
14f9c5c9 8854{
df407dfe 8855 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8856
14f9c5c9
AS
8857 if (ada_is_aligner_type (type))
8858 {
de4d072f 8859 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8860 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8861
14f9c5c9 8862 if (ada_type_name (val_type) == NULL)
d0e39ea2 8863 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
8864
8865 return unwrap_value (v);
8866 }
d2e4a39e 8867 else
14f9c5c9 8868 {
d2e4a39e 8869 struct type *raw_real_type =
dda83cd7 8870 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8871
5bf03f13
JB
8872 /* If there is no parallel XVS or XVE type, then the value is
8873 already unwrapped. Return it without further modification. */
8874 if ((type == raw_real_type)
8875 && ada_find_parallel_type (type, "___XVE") == NULL)
8876 return val;
14f9c5c9 8877
d2e4a39e 8878 return
dda83cd7
SM
8879 coerce_unspec_val_to_type
8880 (val, ada_to_fixed_type (raw_real_type, 0,
8881 value_address (val),
8882 NULL, 1));
14f9c5c9
AS
8883 }
8884}
d2e4a39e 8885
d99dcf51
JB
8886/* Given two array types T1 and T2, return nonzero iff both arrays
8887 contain the same number of elements. */
8888
8889static int
8890ada_same_array_size_p (struct type *t1, struct type *t2)
8891{
8892 LONGEST lo1, hi1, lo2, hi2;
8893
8894 /* Get the array bounds in order to verify that the size of
8895 the two arrays match. */
8896 if (!get_array_bounds (t1, &lo1, &hi1)
8897 || !get_array_bounds (t2, &lo2, &hi2))
8898 error (_("unable to determine array bounds"));
8899
8900 /* To make things easier for size comparison, normalize a bit
8901 the case of empty arrays by making sure that the difference
8902 between upper bound and lower bound is always -1. */
8903 if (lo1 > hi1)
8904 hi1 = lo1 - 1;
8905 if (lo2 > hi2)
8906 hi2 = lo2 - 1;
8907
8908 return (hi1 - lo1 == hi2 - lo2);
8909}
8910
8911/* Assuming that VAL is an array of integrals, and TYPE represents
8912 an array with the same number of elements, but with wider integral
8913 elements, return an array "casted" to TYPE. In practice, this
8914 means that the returned array is built by casting each element
8915 of the original array into TYPE's (wider) element type. */
8916
8917static struct value *
8918ada_promote_array_of_integrals (struct type *type, struct value *val)
8919{
8920 struct type *elt_type = TYPE_TARGET_TYPE (type);
8921 LONGEST lo, hi;
8922 struct value *res;
8923 LONGEST i;
8924
8925 /* Verify that both val and type are arrays of scalars, and
8926 that the size of val's elements is smaller than the size
8927 of type's element. */
78134374 8928 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 8929 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 8930 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
8931 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8932 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8933 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8934
8935 if (!get_array_bounds (type, &lo, &hi))
8936 error (_("unable to determine array bounds"));
8937
8938 res = allocate_value (type);
8939
8940 /* Promote each array element. */
8941 for (i = 0; i < hi - lo + 1; i++)
8942 {
8943 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8944
8945 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8946 value_contents_all (elt), TYPE_LENGTH (elt_type));
8947 }
8948
8949 return res;
8950}
8951
4c4b4cd2
PH
8952/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8953 return the converted value. */
8954
d2e4a39e
AS
8955static struct value *
8956coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8957{
df407dfe 8958 struct type *type2 = value_type (val);
5b4ee69b 8959
14f9c5c9
AS
8960 if (type == type2)
8961 return val;
8962
61ee279c
PH
8963 type2 = ada_check_typedef (type2);
8964 type = ada_check_typedef (type);
14f9c5c9 8965
78134374
SM
8966 if (type2->code () == TYPE_CODE_PTR
8967 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
8968 {
8969 val = ada_value_ind (val);
df407dfe 8970 type2 = value_type (val);
14f9c5c9
AS
8971 }
8972
78134374
SM
8973 if (type2->code () == TYPE_CODE_ARRAY
8974 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 8975 {
d99dcf51
JB
8976 if (!ada_same_array_size_p (type, type2))
8977 error (_("cannot assign arrays of different length"));
8978
8979 if (is_integral_type (TYPE_TARGET_TYPE (type))
8980 && is_integral_type (TYPE_TARGET_TYPE (type2))
8981 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8982 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8983 {
8984 /* Allow implicit promotion of the array elements to
8985 a wider type. */
8986 return ada_promote_array_of_integrals (type, val);
8987 }
8988
8989 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
8990 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8991 error (_("Incompatible types in assignment"));
04624583 8992 deprecated_set_value_type (val, type);
14f9c5c9 8993 }
d2e4a39e 8994 return val;
14f9c5c9
AS
8995}
8996
4c4b4cd2
PH
8997static struct value *
8998ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8999{
9000 struct value *val;
9001 struct type *type1, *type2;
9002 LONGEST v, v1, v2;
9003
994b9211
AC
9004 arg1 = coerce_ref (arg1);
9005 arg2 = coerce_ref (arg2);
18af8284
JB
9006 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9007 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9008
78134374
SM
9009 if (type1->code () != TYPE_CODE_INT
9010 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9011 return value_binop (arg1, arg2, op);
9012
76a01679 9013 switch (op)
4c4b4cd2
PH
9014 {
9015 case BINOP_MOD:
9016 case BINOP_DIV:
9017 case BINOP_REM:
9018 break;
9019 default:
9020 return value_binop (arg1, arg2, op);
9021 }
9022
9023 v2 = value_as_long (arg2);
9024 if (v2 == 0)
b0f9164c
TT
9025 {
9026 const char *name;
9027 if (op == BINOP_MOD)
9028 name = "mod";
9029 else if (op == BINOP_DIV)
9030 name = "/";
9031 else
9032 {
9033 gdb_assert (op == BINOP_REM);
9034 name = "rem";
9035 }
9036
9037 error (_("second operand of %s must not be zero."), name);
9038 }
4c4b4cd2 9039
c6d940a9 9040 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9041 return value_binop (arg1, arg2, op);
9042
9043 v1 = value_as_long (arg1);
9044 switch (op)
9045 {
9046 case BINOP_DIV:
9047 v = v1 / v2;
76a01679 9048 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9049 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9050 break;
9051 case BINOP_REM:
9052 v = v1 % v2;
76a01679 9053 if (v * v1 < 0)
dda83cd7 9054 v -= v2;
4c4b4cd2
PH
9055 break;
9056 default:
9057 /* Should not reach this point. */
9058 v = 0;
9059 }
9060
9061 val = allocate_value (type1);
990a07ab 9062 store_unsigned_integer (value_contents_raw (val),
dda83cd7 9063 TYPE_LENGTH (value_type (val)),
34877895 9064 type_byte_order (type1), v);
4c4b4cd2
PH
9065 return val;
9066}
9067
9068static int
9069ada_value_equal (struct value *arg1, struct value *arg2)
9070{
df407dfe
AC
9071 if (ada_is_direct_array_type (value_type (arg1))
9072 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9073 {
79e8fcaa
JB
9074 struct type *arg1_type, *arg2_type;
9075
f58b38bf 9076 /* Automatically dereference any array reference before
dda83cd7 9077 we attempt to perform the comparison. */
f58b38bf
JB
9078 arg1 = ada_coerce_ref (arg1);
9079 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9080
4c4b4cd2
PH
9081 arg1 = ada_coerce_to_simple_array (arg1);
9082 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9083
9084 arg1_type = ada_check_typedef (value_type (arg1));
9085 arg2_type = ada_check_typedef (value_type (arg2));
9086
78134374 9087 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9088 || arg2_type->code () != TYPE_CODE_ARRAY)
9089 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9090 /* FIXME: The following works only for types whose
dda83cd7
SM
9091 representations use all bits (no padding or undefined bits)
9092 and do not have user-defined equality. */
79e8fcaa
JB
9093 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9094 && memcmp (value_contents (arg1), value_contents (arg2),
9095 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9096 }
9097 return value_equal (arg1, arg2);
9098}
9099
d3c54a1c
TT
9100namespace expr
9101{
9102
9103bool
9104check_objfile (const std::unique_ptr<ada_component> &comp,
9105 struct objfile *objfile)
9106{
9107 return comp->uses_objfile (objfile);
9108}
9109
9110/* Assign the result of evaluating ARG starting at *POS to the INDEXth
9111 component of LHS (a simple array or a record). Does not modify the
9112 inferior's memory, nor does it modify LHS (unless LHS ==
9113 CONTAINER). */
52ce6436
PH
9114
9115static void
9116assign_component (struct value *container, struct value *lhs, LONGEST index,
d3c54a1c 9117 struct expression *exp, operation_up &arg)
52ce6436 9118{
d3c54a1c
TT
9119 scoped_value_mark mark;
9120
52ce6436 9121 struct value *elt;
0e2da9f0 9122 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9123
78134374 9124 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9125 {
22601c15
UW
9126 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9127 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9128
52ce6436
PH
9129 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9130 }
9131 else
9132 {
9133 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9134 elt = ada_to_fixed_value (elt);
52ce6436
PH
9135 }
9136
d3c54a1c
TT
9137 ada_aggregate_operation *ag_op
9138 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9139 if (ag_op != nullptr)
9140 ag_op->assign_aggregate (container, elt, exp);
52ce6436 9141 else
d3c54a1c
TT
9142 value_assign_to_component (container, elt,
9143 arg->evaluate (nullptr, exp,
9144 EVAL_NORMAL));
9145}
52ce6436 9146
d3c54a1c
TT
9147bool
9148ada_aggregate_component::uses_objfile (struct objfile *objfile)
9149{
9150 for (const auto &item : m_components)
9151 if (item->uses_objfile (objfile))
9152 return true;
9153 return false;
9154}
9155
9156void
9157ada_aggregate_component::dump (ui_file *stream, int depth)
9158{
9159 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9160 for (const auto &item : m_components)
9161 item->dump (stream, depth + 1);
9162}
9163
9164void
9165ada_aggregate_component::assign (struct value *container,
9166 struct value *lhs, struct expression *exp,
9167 std::vector<LONGEST> &indices,
9168 LONGEST low, LONGEST high)
9169{
9170 for (auto &item : m_components)
9171 item->assign (container, lhs, exp, indices, low, high);
52ce6436
PH
9172}
9173
207582c0 9174/* See ada-exp.h. */
52ce6436 9175
207582c0 9176value *
d3c54a1c
TT
9177ada_aggregate_operation::assign_aggregate (struct value *container,
9178 struct value *lhs,
9179 struct expression *exp)
52ce6436
PH
9180{
9181 struct type *lhs_type;
52ce6436 9182 LONGEST low_index, high_index;
52ce6436
PH
9183
9184 container = ada_coerce_ref (container);
9185 if (ada_is_direct_array_type (value_type (container)))
9186 container = ada_coerce_to_simple_array (container);
9187 lhs = ada_coerce_ref (lhs);
9188 if (!deprecated_value_modifiable (lhs))
9189 error (_("Left operand of assignment is not a modifiable lvalue."));
9190
0e2da9f0 9191 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9192 if (ada_is_direct_array_type (lhs_type))
9193 {
9194 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9195 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9196 low_index = lhs_type->bounds ()->low.const_val ();
9197 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9198 }
78134374 9199 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9200 {
9201 low_index = 0;
9202 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9203 }
9204 else
9205 error (_("Left-hand side must be array or record."));
9206
cf608cc4 9207 std::vector<LONGEST> indices (4);
52ce6436
PH
9208 indices[0] = indices[1] = low_index - 1;
9209 indices[2] = indices[3] = high_index + 1;
52ce6436 9210
d3c54a1c
TT
9211 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9212 low_index, high_index);
207582c0
TT
9213
9214 return container;
d3c54a1c
TT
9215}
9216
9217bool
9218ada_positional_component::uses_objfile (struct objfile *objfile)
9219{
9220 return m_op->uses_objfile (objfile);
9221}
52ce6436 9222
d3c54a1c
TT
9223void
9224ada_positional_component::dump (ui_file *stream, int depth)
9225{
9226 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9227 depth, "", m_index);
9228 m_op->dump (stream, depth + 1);
52ce6436 9229}
d3c54a1c 9230
52ce6436 9231/* Assign into the component of LHS indexed by the OP_POSITIONAL
d3c54a1c
TT
9232 construct, given that the positions are relative to lower bound
9233 LOW, where HIGH is the upper bound. Record the position in
9234 INDICES. CONTAINER is as for assign_aggregate. */
9235void
9236ada_positional_component::assign (struct value *container,
9237 struct value *lhs, struct expression *exp,
9238 std::vector<LONGEST> &indices,
9239 LONGEST low, LONGEST high)
52ce6436 9240{
d3c54a1c
TT
9241 LONGEST ind = m_index + low;
9242
52ce6436 9243 if (ind - 1 == high)
e1d5a0d2 9244 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9245 if (ind <= high)
9246 {
cf608cc4 9247 add_component_interval (ind, ind, indices);
d3c54a1c 9248 assign_component (container, lhs, ind, exp, m_op);
52ce6436 9249 }
52ce6436
PH
9250}
9251
d3c54a1c
TT
9252bool
9253ada_discrete_range_association::uses_objfile (struct objfile *objfile)
a88c4354
TT
9254{
9255 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9256}
9257
9258void
9259ada_discrete_range_association::dump (ui_file *stream, int depth)
9260{
9261 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9262 m_low->dump (stream, depth + 1);
9263 m_high->dump (stream, depth + 1);
9264}
9265
9266void
9267ada_discrete_range_association::assign (struct value *container,
9268 struct value *lhs,
9269 struct expression *exp,
9270 std::vector<LONGEST> &indices,
9271 LONGEST low, LONGEST high,
9272 operation_up &op)
9273{
9274 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9275 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9276
9277 if (lower <= upper && (lower < low || upper > high))
9278 error (_("Index in component association out of bounds."));
9279
9280 add_component_interval (lower, upper, indices);
9281 while (lower <= upper)
9282 {
9283 assign_component (container, lhs, lower, exp, op);
9284 lower += 1;
9285 }
9286}
9287
9288bool
9289ada_name_association::uses_objfile (struct objfile *objfile)
9290{
9291 return m_val->uses_objfile (objfile);
9292}
9293
9294void
9295ada_name_association::dump (ui_file *stream, int depth)
9296{
9297 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9298 m_val->dump (stream, depth + 1);
9299}
9300
9301void
9302ada_name_association::assign (struct value *container,
9303 struct value *lhs,
9304 struct expression *exp,
9305 std::vector<LONGEST> &indices,
9306 LONGEST low, LONGEST high,
9307 operation_up &op)
9308{
9309 int index;
9310
9311 if (ada_is_direct_array_type (value_type (lhs)))
9312 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9313 EVAL_NORMAL)));
9314 else
9315 {
9316 ada_string_operation *strop
9317 = dynamic_cast<ada_string_operation *> (m_val.get ());
9318
9319 const char *name;
9320 if (strop != nullptr)
9321 name = strop->get_name ();
9322 else
9323 {
9324 ada_var_value_operation *vvo
9325 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9326 if (vvo != nullptr)
9327 error (_("Invalid record component association."));
9328 name = vvo->get_symbol ()->natural_name ();
9329 }
9330
9331 index = 0;
9332 if (! find_struct_field (name, value_type (lhs), 0,
9333 NULL, NULL, NULL, NULL, &index))
9334 error (_("Unknown component name: %s."), name);
9335 }
9336
9337 add_component_interval (index, index, indices);
9338 assign_component (container, lhs, index, exp, op);
9339}
9340
9341bool
9342ada_choices_component::uses_objfile (struct objfile *objfile)
9343{
9344 if (m_op->uses_objfile (objfile))
9345 return true;
9346 for (const auto &item : m_assocs)
9347 if (item->uses_objfile (objfile))
9348 return true;
9349 return false;
9350}
9351
9352void
9353ada_choices_component::dump (ui_file *stream, int depth)
9354{
9355 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9356 m_op->dump (stream, depth + 1);
9357 for (const auto &item : m_assocs)
9358 item->dump (stream, depth + 1);
9359}
9360
9361/* Assign into the components of LHS indexed by the OP_CHOICES
9362 construct at *POS, updating *POS past the construct, given that
9363 the allowable indices are LOW..HIGH. Record the indices assigned
9364 to in INDICES. CONTAINER is as for assign_aggregate. */
9365void
9366ada_choices_component::assign (struct value *container,
9367 struct value *lhs, struct expression *exp,
9368 std::vector<LONGEST> &indices,
9369 LONGEST low, LONGEST high)
9370{
9371 for (auto &item : m_assocs)
9372 item->assign (container, lhs, exp, indices, low, high, m_op);
9373}
9374
9375bool
9376ada_others_component::uses_objfile (struct objfile *objfile)
9377{
9378 return m_op->uses_objfile (objfile);
9379}
9380
9381void
9382ada_others_component::dump (ui_file *stream, int depth)
9383{
9384 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9385 m_op->dump (stream, depth + 1);
9386}
9387
9388/* Assign the value of the expression in the OP_OTHERS construct in
9389 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9390 have not been previously assigned. The index intervals already assigned
9391 are in INDICES. CONTAINER is as for assign_aggregate. */
9392void
9393ada_others_component::assign (struct value *container,
9394 struct value *lhs, struct expression *exp,
9395 std::vector<LONGEST> &indices,
9396 LONGEST low, LONGEST high)
9397{
9398 int num_indices = indices.size ();
9399 for (int i = 0; i < num_indices - 2; i += 2)
9400 {
9401 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9402 assign_component (container, lhs, ind, exp, m_op);
9403 }
9404}
9405
9406struct value *
9407ada_assign_operation::evaluate (struct type *expect_type,
9408 struct expression *exp,
9409 enum noside noside)
9410{
9411 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9412
9413 ada_aggregate_operation *ag_op
9414 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9415 if (ag_op != nullptr)
9416 {
9417 if (noside != EVAL_NORMAL)
9418 return arg1;
9419
207582c0 9420 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
a88c4354
TT
9421 return ada_value_assign (arg1, arg1);
9422 }
9423 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9424 except if the lhs of our assignment is a convenience variable.
9425 In the case of assigning to a convenience variable, the lhs
9426 should be exactly the result of the evaluation of the rhs. */
9427 struct type *type = value_type (arg1);
9428 if (VALUE_LVAL (arg1) == lval_internalvar)
9429 type = NULL;
9430 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
0b2b0b82 9431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
a88c4354
TT
9432 return arg1;
9433 if (VALUE_LVAL (arg1) == lval_internalvar)
9434 {
9435 /* Nothing. */
9436 }
9437 else
9438 arg2 = coerce_for_assign (value_type (arg1), arg2);
9439 return ada_value_assign (arg1, arg2);
9440}
9441
9442} /* namespace expr */
9443
cf608cc4
TT
9444/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9445 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9446 overlap. */
52ce6436
PH
9447static void
9448add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9449 std::vector<LONGEST> &indices)
52ce6436
PH
9450{
9451 int i, j;
5b4ee69b 9452
cf608cc4
TT
9453 int size = indices.size ();
9454 for (i = 0; i < size; i += 2) {
52ce6436
PH
9455 if (high >= indices[i] && low <= indices[i + 1])
9456 {
9457 int kh;
5b4ee69b 9458
cf608cc4 9459 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9460 if (high < indices[kh])
9461 break;
9462 if (low < indices[i])
9463 indices[i] = low;
9464 indices[i + 1] = indices[kh - 1];
9465 if (high > indices[i + 1])
9466 indices[i + 1] = high;
cf608cc4
TT
9467 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9468 indices.resize (kh - i - 2);
52ce6436
PH
9469 return;
9470 }
9471 else if (high < indices[i])
9472 break;
9473 }
9474
cf608cc4 9475 indices.resize (indices.size () + 2);
d4813f10 9476 for (j = indices.size () - 1; j >= i + 2; j -= 1)
52ce6436
PH
9477 indices[j] = indices[j - 2];
9478 indices[i] = low;
9479 indices[i + 1] = high;
9480}
9481
6e48bd2c
JB
9482/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9483 is different. */
9484
9485static struct value *
b7e22850 9486ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9487{
9488 if (type == ada_check_typedef (value_type (arg2)))
9489 return arg2;
9490
6e48bd2c
JB
9491 return value_cast (type, arg2);
9492}
9493
284614f0
JB
9494/* Evaluating Ada expressions, and printing their result.
9495 ------------------------------------------------------
9496
21649b50
JB
9497 1. Introduction:
9498 ----------------
9499
284614f0
JB
9500 We usually evaluate an Ada expression in order to print its value.
9501 We also evaluate an expression in order to print its type, which
9502 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9503 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9504 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9505 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9506 similar.
9507
9508 Evaluating expressions is a little more complicated for Ada entities
9509 than it is for entities in languages such as C. The main reason for
9510 this is that Ada provides types whose definition might be dynamic.
9511 One example of such types is variant records. Or another example
9512 would be an array whose bounds can only be known at run time.
9513
9514 The following description is a general guide as to what should be
9515 done (and what should NOT be done) in order to evaluate an expression
9516 involving such types, and when. This does not cover how the semantic
9517 information is encoded by GNAT as this is covered separatly. For the
9518 document used as the reference for the GNAT encoding, see exp_dbug.ads
9519 in the GNAT sources.
9520
9521 Ideally, we should embed each part of this description next to its
9522 associated code. Unfortunately, the amount of code is so vast right
9523 now that it's hard to see whether the code handling a particular
9524 situation might be duplicated or not. One day, when the code is
9525 cleaned up, this guide might become redundant with the comments
9526 inserted in the code, and we might want to remove it.
9527
21649b50
JB
9528 2. ``Fixing'' an Entity, the Simple Case:
9529 -----------------------------------------
9530
284614f0
JB
9531 When evaluating Ada expressions, the tricky issue is that they may
9532 reference entities whose type contents and size are not statically
9533 known. Consider for instance a variant record:
9534
9535 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9536 case Empty is
9537 when True => null;
9538 when False => Value : Integer;
9539 end case;
284614f0
JB
9540 end record;
9541 Yes : Rec := (Empty => False, Value => 1);
9542 No : Rec := (empty => True);
9543
9544 The size and contents of that record depends on the value of the
9545 descriminant (Rec.Empty). At this point, neither the debugging
9546 information nor the associated type structure in GDB are able to
9547 express such dynamic types. So what the debugger does is to create
9548 "fixed" versions of the type that applies to the specific object.
30baf67b 9549 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9550 which means creating its associated fixed type.
9551
9552 Example: when printing the value of variable "Yes" above, its fixed
9553 type would look like this:
9554
9555 type Rec is record
dda83cd7
SM
9556 Empty : Boolean;
9557 Value : Integer;
284614f0
JB
9558 end record;
9559
9560 On the other hand, if we printed the value of "No", its fixed type
9561 would become:
9562
9563 type Rec is record
dda83cd7 9564 Empty : Boolean;
284614f0
JB
9565 end record;
9566
9567 Things become a little more complicated when trying to fix an entity
9568 with a dynamic type that directly contains another dynamic type,
9569 such as an array of variant records, for instance. There are
9570 two possible cases: Arrays, and records.
9571
21649b50
JB
9572 3. ``Fixing'' Arrays:
9573 ---------------------
9574
9575 The type structure in GDB describes an array in terms of its bounds,
9576 and the type of its elements. By design, all elements in the array
9577 have the same type and we cannot represent an array of variant elements
9578 using the current type structure in GDB. When fixing an array,
9579 we cannot fix the array element, as we would potentially need one
9580 fixed type per element of the array. As a result, the best we can do
9581 when fixing an array is to produce an array whose bounds and size
9582 are correct (allowing us to read it from memory), but without having
9583 touched its element type. Fixing each element will be done later,
9584 when (if) necessary.
9585
9586 Arrays are a little simpler to handle than records, because the same
9587 amount of memory is allocated for each element of the array, even if
1b536f04 9588 the amount of space actually used by each element differs from element
21649b50 9589 to element. Consider for instance the following array of type Rec:
284614f0
JB
9590
9591 type Rec_Array is array (1 .. 2) of Rec;
9592
1b536f04
JB
9593 The actual amount of memory occupied by each element might be different
9594 from element to element, depending on the value of their discriminant.
21649b50 9595 But the amount of space reserved for each element in the array remains
1b536f04 9596 fixed regardless. So we simply need to compute that size using
21649b50
JB
9597 the debugging information available, from which we can then determine
9598 the array size (we multiply the number of elements of the array by
9599 the size of each element).
9600
9601 The simplest case is when we have an array of a constrained element
9602 type. For instance, consider the following type declarations:
9603
dda83cd7
SM
9604 type Bounded_String (Max_Size : Integer) is
9605 Length : Integer;
9606 Buffer : String (1 .. Max_Size);
9607 end record;
9608 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9609
9610 In this case, the compiler describes the array as an array of
9611 variable-size elements (identified by its XVS suffix) for which
9612 the size can be read in the parallel XVZ variable.
9613
9614 In the case of an array of an unconstrained element type, the compiler
9615 wraps the array element inside a private PAD type. This type should not
9616 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9617 that we also use the adjective "aligner" in our code to designate
9618 these wrapper types.
9619
1b536f04 9620 In some cases, the size allocated for each element is statically
21649b50
JB
9621 known. In that case, the PAD type already has the correct size,
9622 and the array element should remain unfixed.
9623
9624 But there are cases when this size is not statically known.
9625 For instance, assuming that "Five" is an integer variable:
284614f0 9626
dda83cd7
SM
9627 type Dynamic is array (1 .. Five) of Integer;
9628 type Wrapper (Has_Length : Boolean := False) is record
9629 Data : Dynamic;
9630 case Has_Length is
9631 when True => Length : Integer;
9632 when False => null;
9633 end case;
9634 end record;
9635 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9636
dda83cd7
SM
9637 Hello : Wrapper_Array := (others => (Has_Length => True,
9638 Data => (others => 17),
9639 Length => 1));
284614f0
JB
9640
9641
9642 The debugging info would describe variable Hello as being an
9643 array of a PAD type. The size of that PAD type is not statically
9644 known, but can be determined using a parallel XVZ variable.
9645 In that case, a copy of the PAD type with the correct size should
9646 be used for the fixed array.
9647
21649b50
JB
9648 3. ``Fixing'' record type objects:
9649 ----------------------------------
9650
9651 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9652 record types. In this case, in order to compute the associated
9653 fixed type, we need to determine the size and offset of each of
9654 its components. This, in turn, requires us to compute the fixed
9655 type of each of these components.
9656
9657 Consider for instance the example:
9658
dda83cd7
SM
9659 type Bounded_String (Max_Size : Natural) is record
9660 Str : String (1 .. Max_Size);
9661 Length : Natural;
9662 end record;
9663 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
9664
9665 In that case, the position of field "Length" depends on the size
9666 of field Str, which itself depends on the value of the Max_Size
21649b50 9667 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9668 we need to fix the type of field Str. Therefore, fixing a variant
9669 record requires us to fix each of its components.
9670
9671 However, if a component does not have a dynamic size, the component
9672 should not be fixed. In particular, fields that use a PAD type
9673 should not fixed. Here is an example where this might happen
9674 (assuming type Rec above):
9675
9676 type Container (Big : Boolean) is record
dda83cd7
SM
9677 First : Rec;
9678 After : Integer;
9679 case Big is
9680 when True => Another : Integer;
9681 when False => null;
9682 end case;
284614f0
JB
9683 end record;
9684 My_Container : Container := (Big => False,
dda83cd7
SM
9685 First => (Empty => True),
9686 After => 42);
284614f0
JB
9687
9688 In that example, the compiler creates a PAD type for component First,
9689 whose size is constant, and then positions the component After just
9690 right after it. The offset of component After is therefore constant
9691 in this case.
9692
9693 The debugger computes the position of each field based on an algorithm
9694 that uses, among other things, the actual position and size of the field
21649b50
JB
9695 preceding it. Let's now imagine that the user is trying to print
9696 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9697 end up computing the offset of field After based on the size of the
9698 fixed version of field First. And since in our example First has
9699 only one actual field, the size of the fixed type is actually smaller
9700 than the amount of space allocated to that field, and thus we would
9701 compute the wrong offset of field After.
9702
21649b50
JB
9703 To make things more complicated, we need to watch out for dynamic
9704 components of variant records (identified by the ___XVL suffix in
9705 the component name). Even if the target type is a PAD type, the size
9706 of that type might not be statically known. So the PAD type needs
9707 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9708 we might end up with the wrong size for our component. This can be
9709 observed with the following type declarations:
284614f0 9710
dda83cd7
SM
9711 type Octal is new Integer range 0 .. 7;
9712 type Octal_Array is array (Positive range <>) of Octal;
9713 pragma Pack (Octal_Array);
284614f0 9714
dda83cd7
SM
9715 type Octal_Buffer (Size : Positive) is record
9716 Buffer : Octal_Array (1 .. Size);
9717 Length : Integer;
9718 end record;
284614f0
JB
9719
9720 In that case, Buffer is a PAD type whose size is unset and needs
9721 to be computed by fixing the unwrapped type.
9722
21649b50
JB
9723 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9724 ----------------------------------------------------------
9725
9726 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9727 thus far, be actually fixed?
9728
9729 The answer is: Only when referencing that element. For instance
9730 when selecting one component of a record, this specific component
9731 should be fixed at that point in time. Or when printing the value
9732 of a record, each component should be fixed before its value gets
9733 printed. Similarly for arrays, the element of the array should be
9734 fixed when printing each element of the array, or when extracting
9735 one element out of that array. On the other hand, fixing should
9736 not be performed on the elements when taking a slice of an array!
9737
31432a67 9738 Note that one of the side effects of miscomputing the offset and
284614f0
JB
9739 size of each field is that we end up also miscomputing the size
9740 of the containing type. This can have adverse results when computing
9741 the value of an entity. GDB fetches the value of an entity based
9742 on the size of its type, and thus a wrong size causes GDB to fetch
9743 the wrong amount of memory. In the case where the computed size is
9744 too small, GDB fetches too little data to print the value of our
31432a67 9745 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
9746 past the buffer containing the data =:-o. */
9747
62d4bd94
TT
9748/* A helper function for TERNOP_IN_RANGE. */
9749
9750static value *
9751eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9752 enum noside noside,
9753 value *arg1, value *arg2, value *arg3)
9754{
62d4bd94
TT
9755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9757 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9758 return
9759 value_from_longest (type,
9760 (value_less (arg1, arg3)
9761 || value_equal (arg1, arg3))
9762 && (value_less (arg2, arg1)
9763 || value_equal (arg2, arg1)));
9764}
9765
82390ab8
TT
9766/* A helper function for UNOP_NEG. */
9767
7c15d377 9768value *
82390ab8
TT
9769ada_unop_neg (struct type *expect_type,
9770 struct expression *exp,
9771 enum noside noside, enum exp_opcode op,
9772 struct value *arg1)
9773{
82390ab8
TT
9774 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9775 return value_neg (arg1);
9776}
9777
7efc87ff
TT
9778/* A helper function for UNOP_IN_RANGE. */
9779
95d49dfb 9780value *
7efc87ff
TT
9781ada_unop_in_range (struct type *expect_type,
9782 struct expression *exp,
9783 enum noside noside, enum exp_opcode op,
9784 struct value *arg1, struct type *type)
9785{
7efc87ff
TT
9786 struct value *arg2, *arg3;
9787 switch (type->code ())
9788 {
9789 default:
9790 lim_warning (_("Membership test incompletely implemented; "
9791 "always returns true"));
9792 type = language_bool_type (exp->language_defn, exp->gdbarch);
9793 return value_from_longest (type, (LONGEST) 1);
9794
9795 case TYPE_CODE_RANGE:
9796 arg2 = value_from_longest (type,
9797 type->bounds ()->low.const_val ());
9798 arg3 = value_from_longest (type,
9799 type->bounds ()->high.const_val ());
9800 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9802 type = language_bool_type (exp->language_defn, exp->gdbarch);
9803 return
9804 value_from_longest (type,
9805 (value_less (arg1, arg3)
9806 || value_equal (arg1, arg3))
9807 && (value_less (arg2, arg1)
9808 || value_equal (arg2, arg1)));
9809 }
9810}
9811
020dbabe
TT
9812/* A helper function for OP_ATR_TAG. */
9813
7c15d377 9814value *
020dbabe
TT
9815ada_atr_tag (struct type *expect_type,
9816 struct expression *exp,
9817 enum noside noside, enum exp_opcode op,
9818 struct value *arg1)
9819{
9820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9821 return value_zero (ada_tag_type (arg1), not_lval);
9822
9823 return ada_value_tag (arg1);
9824}
9825
68c75735
TT
9826/* A helper function for OP_ATR_SIZE. */
9827
7c15d377 9828value *
68c75735
TT
9829ada_atr_size (struct type *expect_type,
9830 struct expression *exp,
9831 enum noside noside, enum exp_opcode op,
9832 struct value *arg1)
9833{
9834 struct type *type = value_type (arg1);
9835
9836 /* If the argument is a reference, then dereference its type, since
9837 the user is really asking for the size of the actual object,
9838 not the size of the pointer. */
9839 if (type->code () == TYPE_CODE_REF)
9840 type = TYPE_TARGET_TYPE (type);
9841
0b2b0b82 9842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
68c75735
TT
9843 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9844 else
9845 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9846 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9847}
9848
d05e24e6
TT
9849/* A helper function for UNOP_ABS. */
9850
7c15d377 9851value *
d05e24e6
TT
9852ada_abs (struct type *expect_type,
9853 struct expression *exp,
9854 enum noside noside, enum exp_opcode op,
9855 struct value *arg1)
9856{
9857 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9858 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9859 return value_neg (arg1);
9860 else
9861 return arg1;
9862}
9863
faa1dfd7
TT
9864/* A helper function for BINOP_MUL. */
9865
d9e7db06 9866value *
faa1dfd7
TT
9867ada_mult_binop (struct type *expect_type,
9868 struct expression *exp,
9869 enum noside noside, enum exp_opcode op,
9870 struct value *arg1, struct value *arg2)
9871{
9872 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9873 {
9874 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9875 return value_zero (value_type (arg1), not_lval);
9876 }
9877 else
9878 {
9879 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9880 return ada_value_binop (arg1, arg2, op);
9881 }
9882}
9883
214b13ac
TT
9884/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9885
6e8fb7b7 9886value *
214b13ac
TT
9887ada_equal_binop (struct type *expect_type,
9888 struct expression *exp,
9889 enum noside noside, enum exp_opcode op,
9890 struct value *arg1, struct value *arg2)
9891{
9892 int tem;
9893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9894 tem = 0;
9895 else
9896 {
9897 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9898 tem = ada_value_equal (arg1, arg2);
9899 }
9900 if (op == BINOP_NOTEQUAL)
9901 tem = !tem;
9902 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9903 return value_from_longest (type, (LONGEST) tem);
9904}
9905
5ce19db8
TT
9906/* A helper function for TERNOP_SLICE. */
9907
1b1ebfab 9908value *
5ce19db8
TT
9909ada_ternop_slice (struct expression *exp,
9910 enum noside noside,
9911 struct value *array, struct value *low_bound_val,
9912 struct value *high_bound_val)
9913{
9914 LONGEST low_bound;
9915 LONGEST high_bound;
9916
9917 low_bound_val = coerce_ref (low_bound_val);
9918 high_bound_val = coerce_ref (high_bound_val);
9919 low_bound = value_as_long (low_bound_val);
9920 high_bound = value_as_long (high_bound_val);
9921
9922 /* If this is a reference to an aligner type, then remove all
9923 the aligners. */
9924 if (value_type (array)->code () == TYPE_CODE_REF
9925 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9926 TYPE_TARGET_TYPE (value_type (array)) =
9927 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9928
9929 if (ada_is_any_packed_array_type (value_type (array)))
9930 error (_("cannot slice a packed array"));
9931
9932 /* If this is a reference to an array or an array lvalue,
9933 convert to a pointer. */
9934 if (value_type (array)->code () == TYPE_CODE_REF
9935 || (value_type (array)->code () == TYPE_CODE_ARRAY
9936 && VALUE_LVAL (array) == lval_memory))
9937 array = value_addr (array);
9938
9939 if (noside == EVAL_AVOID_SIDE_EFFECTS
9940 && ada_is_array_descriptor_type (ada_check_typedef
9941 (value_type (array))))
9942 return empty_array (ada_type_of_array (array, 0), low_bound,
9943 high_bound);
9944
9945 array = ada_coerce_to_simple_array_ptr (array);
9946
9947 /* If we have more than one level of pointer indirection,
9948 dereference the value until we get only one level. */
9949 while (value_type (array)->code () == TYPE_CODE_PTR
9950 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9951 == TYPE_CODE_PTR))
9952 array = value_ind (array);
9953
9954 /* Make sure we really do have an array type before going further,
9955 to avoid a SEGV when trying to get the index type or the target
9956 type later down the road if the debug info generated by
9957 the compiler is incorrect or incomplete. */
9958 if (!ada_is_simple_array_type (value_type (array)))
9959 error (_("cannot take slice of non-array"));
9960
9961 if (ada_check_typedef (value_type (array))->code ()
9962 == TYPE_CODE_PTR)
9963 {
9964 struct type *type0 = ada_check_typedef (value_type (array));
9965
9966 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9967 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9968 else
9969 {
9970 struct type *arr_type0 =
9971 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9972
9973 return ada_value_slice_from_ptr (array, arr_type0,
9974 longest_to_int (low_bound),
9975 longest_to_int (high_bound));
9976 }
9977 }
9978 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9979 return array;
9980 else if (high_bound < low_bound)
9981 return empty_array (value_type (array), low_bound, high_bound);
9982 else
9983 return ada_value_slice (array, longest_to_int (low_bound),
9984 longest_to_int (high_bound));
9985}
9986
b467efaa
TT
9987/* A helper function for BINOP_IN_BOUNDS. */
9988
82c3886e 9989value *
b467efaa
TT
9990ada_binop_in_bounds (struct expression *exp, enum noside noside,
9991 struct value *arg1, struct value *arg2, int n)
9992{
9993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9994 {
9995 struct type *type = language_bool_type (exp->language_defn,
9996 exp->gdbarch);
9997 return value_zero (type, not_lval);
9998 }
9999
10000 struct type *type = ada_index_type (value_type (arg2), n, "range");
10001 if (!type)
10002 type = value_type (arg1);
10003
10004 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10005 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10006
10007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10009 type = language_bool_type (exp->language_defn, exp->gdbarch);
10010 return value_from_longest (type,
10011 (value_less (arg1, arg3)
10012 || value_equal (arg1, arg3))
10013 && (value_less (arg2, arg1)
10014 || value_equal (arg2, arg1)));
10015}
10016
b84564fc
TT
10017/* A helper function for some attribute operations. */
10018
10019static value *
10020ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10021 struct value *arg1, struct type *type_arg, int tem)
10022{
10023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10024 {
10025 if (type_arg == NULL)
10026 type_arg = value_type (arg1);
10027
10028 if (ada_is_constrained_packed_array_type (type_arg))
10029 type_arg = decode_constrained_packed_array_type (type_arg);
10030
10031 if (!discrete_type_p (type_arg))
10032 {
10033 switch (op)
10034 {
10035 default: /* Should never happen. */
10036 error (_("unexpected attribute encountered"));
10037 case OP_ATR_FIRST:
10038 case OP_ATR_LAST:
10039 type_arg = ada_index_type (type_arg, tem,
10040 ada_attribute_name (op));
10041 break;
10042 case OP_ATR_LENGTH:
10043 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10044 break;
10045 }
10046 }
10047
10048 return value_zero (type_arg, not_lval);
10049 }
10050 else if (type_arg == NULL)
10051 {
10052 arg1 = ada_coerce_ref (arg1);
10053
10054 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10055 arg1 = ada_coerce_to_simple_array (arg1);
10056
10057 struct type *type;
10058 if (op == OP_ATR_LENGTH)
10059 type = builtin_type (exp->gdbarch)->builtin_int;
10060 else
10061 {
10062 type = ada_index_type (value_type (arg1), tem,
10063 ada_attribute_name (op));
10064 if (type == NULL)
10065 type = builtin_type (exp->gdbarch)->builtin_int;
10066 }
10067
10068 switch (op)
10069 {
10070 default: /* Should never happen. */
10071 error (_("unexpected attribute encountered"));
10072 case OP_ATR_FIRST:
10073 return value_from_longest
10074 (type, ada_array_bound (arg1, tem, 0));
10075 case OP_ATR_LAST:
10076 return value_from_longest
10077 (type, ada_array_bound (arg1, tem, 1));
10078 case OP_ATR_LENGTH:
10079 return value_from_longest
10080 (type, ada_array_length (arg1, tem));
10081 }
10082 }
10083 else if (discrete_type_p (type_arg))
10084 {
10085 struct type *range_type;
10086 const char *name = ada_type_name (type_arg);
10087
10088 range_type = NULL;
10089 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10090 range_type = to_fixed_range_type (type_arg, NULL);
10091 if (range_type == NULL)
10092 range_type = type_arg;
10093 switch (op)
10094 {
10095 default:
10096 error (_("unexpected attribute encountered"));
10097 case OP_ATR_FIRST:
10098 return value_from_longest
10099 (range_type, ada_discrete_type_low_bound (range_type));
10100 case OP_ATR_LAST:
10101 return value_from_longest
10102 (range_type, ada_discrete_type_high_bound (range_type));
10103 case OP_ATR_LENGTH:
10104 error (_("the 'length attribute applies only to array types"));
10105 }
10106 }
10107 else if (type_arg->code () == TYPE_CODE_FLT)
10108 error (_("unimplemented type attribute"));
10109 else
10110 {
10111 LONGEST low, high;
10112
10113 if (ada_is_constrained_packed_array_type (type_arg))
10114 type_arg = decode_constrained_packed_array_type (type_arg);
10115
10116 struct type *type;
10117 if (op == OP_ATR_LENGTH)
10118 type = builtin_type (exp->gdbarch)->builtin_int;
10119 else
10120 {
10121 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10122 if (type == NULL)
10123 type = builtin_type (exp->gdbarch)->builtin_int;
10124 }
10125
10126 switch (op)
10127 {
10128 default:
10129 error (_("unexpected attribute encountered"));
10130 case OP_ATR_FIRST:
10131 low = ada_array_bound_from_type (type_arg, tem, 0);
10132 return value_from_longest (type, low);
10133 case OP_ATR_LAST:
10134 high = ada_array_bound_from_type (type_arg, tem, 1);
10135 return value_from_longest (type, high);
10136 case OP_ATR_LENGTH:
10137 low = ada_array_bound_from_type (type_arg, tem, 0);
10138 high = ada_array_bound_from_type (type_arg, tem, 1);
10139 return value_from_longest (type, high - low + 1);
10140 }
10141 }
10142}
10143
38dc70cf
TT
10144/* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10145
6ad3b8bf 10146struct value *
38dc70cf
TT
10147ada_binop_minmax (struct type *expect_type,
10148 struct expression *exp,
10149 enum noside noside, enum exp_opcode op,
10150 struct value *arg1, struct value *arg2)
10151{
10152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10153 return value_zero (value_type (arg1), not_lval);
10154 else
10155 {
10156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
0922dc84 10157 return value_binop (arg1, arg2, op);
38dc70cf
TT
10158 }
10159}
10160
dd5fd283
TT
10161/* A helper function for BINOP_EXP. */
10162
065ec826 10163struct value *
dd5fd283
TT
10164ada_binop_exp (struct type *expect_type,
10165 struct expression *exp,
10166 enum noside noside, enum exp_opcode op,
10167 struct value *arg1, struct value *arg2)
10168{
10169 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10170 return value_zero (value_type (arg1), not_lval);
10171 else
10172 {
10173 /* For integer exponentiation operations,
10174 only promote the first argument. */
10175 if (is_integral_type (value_type (arg2)))
10176 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10177 else
10178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10179
10180 return value_binop (arg1, arg2, op);
10181 }
10182}
10183
03070ee9
TT
10184namespace expr
10185{
10186
8b12db26
TT
10187/* See ada-exp.h. */
10188
10189operation_up
10190ada_resolvable::replace (operation_up &&owner,
10191 struct expression *exp,
10192 bool deprocedure_p,
10193 bool parse_completion,
10194 innermost_block_tracker *tracker,
10195 struct type *context_type)
10196{
10197 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10198 return (make_operation<ada_funcall_operation>
10199 (std::move (owner),
10200 std::vector<operation_up> ()));
10201 return std::move (owner);
10202}
10203
03adb248
TT
10204/* Convert the character literal whose ASCII value would be VAL to the
10205 appropriate value of type TYPE, if there is a translation.
10206 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10207 the literal 'A' (VAL == 65), returns 0. */
10208
10209static LONGEST
10210convert_char_literal (struct type *type, LONGEST val)
10211{
10212 char name[7];
10213 int f;
10214
10215 if (type == NULL)
10216 return val;
10217 type = check_typedef (type);
10218 if (type->code () != TYPE_CODE_ENUM)
10219 return val;
10220
10221 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10222 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10223 else
10224 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10225 size_t len = strlen (name);
10226 for (f = 0; f < type->num_fields (); f += 1)
10227 {
10228 /* Check the suffix because an enum constant in a package will
10229 have a name like "pkg__QUxx". This is safe enough because we
10230 already have the correct type, and because mangling means
10231 there can't be clashes. */
10232 const char *ename = TYPE_FIELD_NAME (type, f);
10233 size_t elen = strlen (ename);
10234
10235 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10236 return TYPE_FIELD_ENUMVAL (type, f);
10237 }
10238 return val;
10239}
10240
10241/* See ada-exp.h. */
10242
10243operation_up
10244ada_char_operation::replace (operation_up &&owner,
10245 struct expression *exp,
10246 bool deprocedure_p,
10247 bool parse_completion,
10248 innermost_block_tracker *tracker,
10249 struct type *context_type)
10250{
10251 operation_up result = std::move (owner);
10252
10253 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10254 {
10255 gdb_assert (result.get () == this);
10256 std::get<0> (m_storage) = context_type;
10257 std::get<1> (m_storage)
10258 = convert_char_literal (context_type, std::get<1> (m_storage));
10259 }
10260
10261 return make_operation<ada_wrapped_operation> (std::move (result));
10262}
10263
03070ee9
TT
10264value *
10265ada_wrapped_operation::evaluate (struct type *expect_type,
10266 struct expression *exp,
10267 enum noside noside)
10268{
10269 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10270 if (noside == EVAL_NORMAL)
10271 result = unwrap_value (result);
10272
10273 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10274 then we need to perform the conversion manually, because
10275 evaluate_subexp_standard doesn't do it. This conversion is
10276 necessary in Ada because the different kinds of float/fixed
10277 types in Ada have different representations.
10278
10279 Similarly, we need to perform the conversion from OP_LONG
10280 ourselves. */
10281 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10282 result = ada_value_cast (expect_type, result);
10283
10284 return result;
10285}
10286
42fecb61
TT
10287value *
10288ada_string_operation::evaluate (struct type *expect_type,
10289 struct expression *exp,
10290 enum noside noside)
10291{
10292 value *result = string_operation::evaluate (expect_type, exp, noside);
10293 /* The result type will have code OP_STRING, bashed there from
10294 OP_ARRAY. Bash it back. */
10295 if (value_type (result)->code () == TYPE_CODE_STRING)
10296 value_type (result)->set_code (TYPE_CODE_ARRAY);
10297 return result;
10298}
10299
cc6bd32e
TT
10300value *
10301ada_qual_operation::evaluate (struct type *expect_type,
10302 struct expression *exp,
10303 enum noside noside)
10304{
10305 struct type *type = std::get<1> (m_storage);
10306 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10307}
10308
fc715eb2
TT
10309value *
10310ada_ternop_range_operation::evaluate (struct type *expect_type,
10311 struct expression *exp,
10312 enum noside noside)
10313{
10314 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10315 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10316 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10317 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10318}
10319
73796c73
TT
10320value *
10321ada_binop_addsub_operation::evaluate (struct type *expect_type,
10322 struct expression *exp,
10323 enum noside noside)
10324{
10325 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10326 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10327
10328 auto do_op = [=] (LONGEST x, LONGEST y)
10329 {
10330 if (std::get<0> (m_storage) == BINOP_ADD)
10331 return x + y;
10332 return x - y;
10333 };
10334
10335 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10336 return (value_from_longest
10337 (value_type (arg1),
10338 do_op (value_as_long (arg1), value_as_long (arg2))));
10339 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10340 return (value_from_longest
10341 (value_type (arg2),
10342 do_op (value_as_long (arg1), value_as_long (arg2))));
10343 /* Preserve the original type for use by the range case below.
10344 We cannot cast the result to a reference type, so if ARG1 is
10345 a reference type, find its underlying type. */
10346 struct type *type = value_type (arg1);
10347 while (type->code () == TYPE_CODE_REF)
10348 type = TYPE_TARGET_TYPE (type);
10349 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10350 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10351 /* We need to special-case the result with a range.
10352 This is done for the benefit of "ptype". gdb's Ada support
10353 historically used the LHS to set the result type here, so
10354 preserve this behavior. */
10355 if (type->code () == TYPE_CODE_RANGE)
10356 arg1 = value_cast (type, arg1);
10357 return arg1;
10358}
10359
60fa02ca
TT
10360value *
10361ada_unop_atr_operation::evaluate (struct type *expect_type,
10362 struct expression *exp,
10363 enum noside noside)
10364{
10365 struct type *type_arg = nullptr;
10366 value *val = nullptr;
10367
10368 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10369 {
10370 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10371 EVAL_AVOID_SIDE_EFFECTS);
10372 type_arg = value_type (tem);
10373 }
10374 else
10375 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10376
10377 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10378 val, type_arg, std::get<2> (m_storage));
10379}
10380
3f4a0053
TT
10381value *
10382ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10383 struct expression *exp,
10384 enum noside noside)
10385{
10386 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10387 return value_zero (expect_type, not_lval);
10388
9c79936b
TT
10389 const bound_minimal_symbol &b = std::get<0> (m_storage);
10390 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
3f4a0053
TT
10391
10392 val = ada_value_cast (expect_type, val);
10393
10394 /* Follow the Ada language semantics that do not allow taking
10395 an address of the result of a cast (view conversion in Ada). */
10396 if (VALUE_LVAL (val) == lval_memory)
10397 {
10398 if (value_lazy (val))
10399 value_fetch_lazy (val);
10400 VALUE_LVAL (val) = not_lval;
10401 }
10402 return val;
10403}
10404
99a3b1e7
TT
10405value *
10406ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10407 struct expression *exp,
10408 enum noside noside)
10409{
10410 value *val = evaluate_var_value (noside,
9e5e03df
TT
10411 std::get<0> (m_storage).block,
10412 std::get<0> (m_storage).symbol);
99a3b1e7
TT
10413
10414 val = ada_value_cast (expect_type, val);
10415
10416 /* Follow the Ada language semantics that do not allow taking
10417 an address of the result of a cast (view conversion in Ada). */
10418 if (VALUE_LVAL (val) == lval_memory)
10419 {
10420 if (value_lazy (val))
10421 value_fetch_lazy (val);
10422 VALUE_LVAL (val) = not_lval;
10423 }
10424 return val;
10425}
10426
10427value *
10428ada_var_value_operation::evaluate (struct type *expect_type,
10429 struct expression *exp,
10430 enum noside noside)
10431{
9e5e03df 10432 symbol *sym = std::get<0> (m_storage).symbol;
99a3b1e7
TT
10433
10434 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10435 /* Only encountered when an unresolved symbol occurs in a
10436 context other than a function call, in which case, it is
10437 invalid. */
10438 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10439 sym->print_name ());
10440
10441 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10442 {
10443 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10444 /* Check to see if this is a tagged type. We also need to handle
10445 the case where the type is a reference to a tagged type, but
10446 we have to be careful to exclude pointers to tagged types.
10447 The latter should be shown as usual (as a pointer), whereas
10448 a reference should mostly be transparent to the user. */
10449 if (ada_is_tagged_type (type, 0)
10450 || (type->code () == TYPE_CODE_REF
10451 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10452 {
10453 /* Tagged types are a little special in the fact that the real
10454 type is dynamic and can only be determined by inspecting the
10455 object's tag. This means that we need to get the object's
10456 value first (EVAL_NORMAL) and then extract the actual object
10457 type from its tag.
10458
10459 Note that we cannot skip the final step where we extract
10460 the object type from its tag, because the EVAL_NORMAL phase
10461 results in dynamic components being resolved into fixed ones.
10462 This can cause problems when trying to print the type
10463 description of tagged types whose parent has a dynamic size:
10464 We use the type name of the "_parent" component in order
10465 to print the name of the ancestor type in the type description.
10466 If that component had a dynamic size, the resolution into
10467 a fixed type would result in the loss of that type name,
10468 thus preventing us from printing the name of the ancestor
10469 type in the type description. */
9863c3b5 10470 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
99a3b1e7
TT
10471
10472 if (type->code () != TYPE_CODE_REF)
10473 {
10474 struct type *actual_type;
10475
10476 actual_type = type_from_tag (ada_value_tag (arg1));
10477 if (actual_type == NULL)
10478 /* If, for some reason, we were unable to determine
10479 the actual type from the tag, then use the static
10480 approximation that we just computed as a fallback.
10481 This can happen if the debugging information is
10482 incomplete, for instance. */
10483 actual_type = type;
10484 return value_zero (actual_type, not_lval);
10485 }
10486 else
10487 {
10488 /* In the case of a ref, ada_coerce_ref takes care
10489 of determining the actual type. But the evaluation
10490 should return a ref as it should be valid to ask
10491 for its address; so rebuild a ref after coerce. */
10492 arg1 = ada_coerce_ref (arg1);
10493 return value_ref (arg1, TYPE_CODE_REF);
10494 }
10495 }
10496
10497 /* Records and unions for which GNAT encodings have been
10498 generated need to be statically fixed as well.
10499 Otherwise, non-static fixing produces a type where
10500 all dynamic properties are removed, which prevents "ptype"
10501 from being able to completely describe the type.
10502 For instance, a case statement in a variant record would be
10503 replaced by the relevant components based on the actual
10504 value of the discriminants. */
10505 if ((type->code () == TYPE_CODE_STRUCT
10506 && dynamic_template_type (type) != NULL)
10507 || (type->code () == TYPE_CODE_UNION
10508 && ada_find_parallel_type (type, "___XVU") != NULL))
10509 return value_zero (to_static_fixed_type (type), not_lval);
10510 }
10511
10512 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10513 return ada_to_fixed_value (arg1);
10514}
10515
d8a4ed8a
TT
10516bool
10517ada_var_value_operation::resolve (struct expression *exp,
10518 bool deprocedure_p,
10519 bool parse_completion,
10520 innermost_block_tracker *tracker,
10521 struct type *context_type)
10522{
9e5e03df 10523 symbol *sym = std::get<0> (m_storage).symbol;
d8a4ed8a
TT
10524 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10525 {
10526 block_symbol resolved
9e5e03df 10527 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
d8a4ed8a
TT
10528 context_type, parse_completion,
10529 deprocedure_p, tracker);
9e5e03df 10530 std::get<0> (m_storage) = resolved;
d8a4ed8a
TT
10531 }
10532
10533 if (deprocedure_p
9e5e03df
TT
10534 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10535 == TYPE_CODE_FUNC))
d8a4ed8a
TT
10536 return true;
10537
10538 return false;
10539}
10540
9e99f48f
TT
10541value *
10542ada_atr_val_operation::evaluate (struct type *expect_type,
10543 struct expression *exp,
10544 enum noside noside)
10545{
10546 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10547 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10548}
10549
e8c33fa1
TT
10550value *
10551ada_unop_ind_operation::evaluate (struct type *expect_type,
10552 struct expression *exp,
10553 enum noside noside)
10554{
10555 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10556
10557 struct type *type = ada_check_typedef (value_type (arg1));
10558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10559 {
10560 if (ada_is_array_descriptor_type (type))
10561 /* GDB allows dereferencing GNAT array descriptors. */
10562 {
10563 struct type *arrType = ada_type_of_array (arg1, 0);
10564
10565 if (arrType == NULL)
10566 error (_("Attempt to dereference null array pointer."));
10567 return value_at_lazy (arrType, 0);
10568 }
10569 else if (type->code () == TYPE_CODE_PTR
10570 || type->code () == TYPE_CODE_REF
10571 /* In C you can dereference an array to get the 1st elt. */
10572 || type->code () == TYPE_CODE_ARRAY)
10573 {
10574 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10575 only be determined by inspecting the object's tag.
10576 This means that we need to evaluate completely the
10577 expression in order to get its type. */
10578
10579 if ((type->code () == TYPE_CODE_REF
10580 || type->code () == TYPE_CODE_PTR)
10581 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10582 {
10583 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10584 EVAL_NORMAL);
10585 type = value_type (ada_value_ind (arg1));
10586 }
10587 else
10588 {
10589 type = to_static_fixed_type
10590 (ada_aligned_type
10591 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10592 }
10593 ada_ensure_varsize_limit (type);
10594 return value_zero (type, lval_memory);
10595 }
10596 else if (type->code () == TYPE_CODE_INT)
10597 {
10598 /* GDB allows dereferencing an int. */
10599 if (expect_type == NULL)
10600 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10601 lval_memory);
10602 else
10603 {
10604 expect_type =
10605 to_static_fixed_type (ada_aligned_type (expect_type));
10606 return value_zero (expect_type, lval_memory);
10607 }
10608 }
10609 else
10610 error (_("Attempt to take contents of a non-pointer value."));
10611 }
10612 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10613 type = ada_check_typedef (value_type (arg1));
10614
10615 if (type->code () == TYPE_CODE_INT)
10616 /* GDB allows dereferencing an int. If we were given
10617 the expect_type, then use that as the target type.
10618 Otherwise, assume that the target type is an int. */
10619 {
10620 if (expect_type != NULL)
10621 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10622 arg1));
10623 else
10624 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10625 (CORE_ADDR) value_as_address (arg1));
10626 }
10627
3b5c4de0
TT
10628 struct type *target_type = (to_static_fixed_type
10629 (ada_aligned_type
10630 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10631 ada_ensure_varsize_limit (target_type);
10632
e8c33fa1
TT
10633 if (ada_is_array_descriptor_type (type))
10634 /* GDB allows dereferencing GNAT array descriptors. */
10635 return ada_coerce_to_simple_array (arg1);
10636 else
10637 return ada_value_ind (arg1);
10638}
10639
ebc06ad8
TT
10640value *
10641ada_structop_operation::evaluate (struct type *expect_type,
10642 struct expression *exp,
10643 enum noside noside)
10644{
10645 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10646 const char *str = std::get<1> (m_storage).c_str ();
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 {
10649 struct type *type;
10650 struct type *type1 = value_type (arg1);
10651
10652 if (ada_is_tagged_type (type1, 1))
10653 {
10654 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10655
10656 /* If the field is not found, check if it exists in the
10657 extension of this object's type. This means that we
10658 need to evaluate completely the expression. */
10659
10660 if (type == NULL)
10661 {
10662 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10663 EVAL_NORMAL);
10664 arg1 = ada_value_struct_elt (arg1, str, 0);
10665 arg1 = unwrap_value (arg1);
10666 type = value_type (ada_to_fixed_value (arg1));
10667 }
10668 }
10669 else
10670 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10671
10672 return value_zero (ada_aligned_type (type), lval_memory);
10673 }
10674 else
10675 {
10676 arg1 = ada_value_struct_elt (arg1, str, 0);
10677 arg1 = unwrap_value (arg1);
10678 return ada_to_fixed_value (arg1);
10679 }
10680}
10681
efe3af2f
TT
10682value *
10683ada_funcall_operation::evaluate (struct type *expect_type,
10684 struct expression *exp,
10685 enum noside noside)
10686{
10687 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10688 int nargs = args_up.size ();
10689 std::vector<value *> argvec (nargs);
10690 operation_up &callee_op = std::get<0> (m_storage);
10691
10692 ada_var_value_operation *avv
10693 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10694 if (avv != nullptr
10695 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10696 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10697 avv->get_symbol ()->print_name ());
10698
10699 value *callee = callee_op->evaluate (nullptr, exp, noside);
10700 for (int i = 0; i < args_up.size (); ++i)
10701 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10702
10703 if (ada_is_constrained_packed_array_type
10704 (desc_base_type (value_type (callee))))
10705 callee = ada_coerce_to_simple_array (callee);
10706 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10707 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10708 /* This is a packed array that has already been fixed, and
10709 therefore already coerced to a simple array. Nothing further
10710 to do. */
10711 ;
10712 else if (value_type (callee)->code () == TYPE_CODE_REF)
10713 {
10714 /* Make sure we dereference references so that all the code below
10715 feels like it's really handling the referenced value. Wrapping
10716 types (for alignment) may be there, so make sure we strip them as
10717 well. */
10718 callee = ada_to_fixed_value (coerce_ref (callee));
10719 }
10720 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10721 && VALUE_LVAL (callee) == lval_memory)
10722 callee = value_addr (callee);
10723
10724 struct type *type = ada_check_typedef (value_type (callee));
10725
10726 /* Ada allows us to implicitly dereference arrays when subscripting
10727 them. So, if this is an array typedef (encoding use for array
10728 access types encoded as fat pointers), strip it now. */
10729 if (type->code () == TYPE_CODE_TYPEDEF)
10730 type = ada_typedef_target_type (type);
10731
10732 if (type->code () == TYPE_CODE_PTR)
10733 {
10734 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10735 {
10736 case TYPE_CODE_FUNC:
10737 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10738 break;
10739 case TYPE_CODE_ARRAY:
10740 break;
10741 case TYPE_CODE_STRUCT:
10742 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10743 callee = ada_value_ind (callee);
10744 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10745 break;
10746 default:
10747 error (_("cannot subscript or call something of type `%s'"),
10748 ada_type_name (value_type (callee)));
10749 break;
10750 }
10751 }
10752
10753 switch (type->code ())
10754 {
10755 case TYPE_CODE_FUNC:
10756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10757 {
10758 if (TYPE_TARGET_TYPE (type) == NULL)
10759 error_call_unknown_return_type (NULL);
10760 return allocate_value (TYPE_TARGET_TYPE (type));
10761 }
10762 return call_function_by_hand (callee, NULL, argvec);
10763 case TYPE_CODE_INTERNAL_FUNCTION:
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 /* We don't know anything about what the internal
10766 function might return, but we have to return
10767 something. */
10768 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10769 not_lval);
10770 else
10771 return call_internal_function (exp->gdbarch, exp->language_defn,
10772 callee, nargs,
10773 argvec.data ());
10774
d3c54a1c
TT
10775 case TYPE_CODE_STRUCT:
10776 {
10777 int arity;
4c4b4cd2 10778
d3c54a1c
TT
10779 arity = ada_array_arity (type);
10780 type = ada_array_element_type (type, nargs);
10781 if (type == NULL)
10782 error (_("cannot subscript or call a record"));
10783 if (arity != nargs)
10784 error (_("wrong number of subscripts; expecting %d"), arity);
10785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10786 return value_zero (ada_aligned_type (type), lval_memory);
10787 return
10788 unwrap_value (ada_value_subscript
10789 (callee, nargs, argvec.data ()));
10790 }
10791 case TYPE_CODE_ARRAY:
14f9c5c9 10792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10793 {
d3c54a1c
TT
10794 type = ada_array_element_type (type, nargs);
10795 if (type == NULL)
10796 error (_("element type of array unknown"));
dda83cd7 10797 else
d3c54a1c 10798 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10799 }
d3c54a1c
TT
10800 return
10801 unwrap_value (ada_value_subscript
10802 (ada_coerce_to_simple_array (callee),
10803 nargs, argvec.data ()));
10804 case TYPE_CODE_PTR: /* Pointer to array */
10805 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10806 {
d3c54a1c
TT
10807 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10808 type = ada_array_element_type (type, nargs);
10809 if (type == NULL)
10810 error (_("element type of array unknown"));
96967637 10811 else
d3c54a1c 10812 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10813 }
d3c54a1c
TT
10814 return
10815 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10816 argvec.data ()));
6b0d7253 10817
d3c54a1c
TT
10818 default:
10819 error (_("Attempt to index or call something other than an "
10820 "array or function"));
10821 }
10822}
5b4ee69b 10823
d3c54a1c
TT
10824bool
10825ada_funcall_operation::resolve (struct expression *exp,
10826 bool deprocedure_p,
10827 bool parse_completion,
10828 innermost_block_tracker *tracker,
10829 struct type *context_type)
10830{
10831 operation_up &callee_op = std::get<0> (m_storage);
5ec18f2b 10832
d3c54a1c
TT
10833 ada_var_value_operation *avv
10834 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10835 if (avv == nullptr)
10836 return false;
5ec18f2b 10837
d3c54a1c
TT
10838 symbol *sym = avv->get_symbol ();
10839 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10840 return false;
dda83cd7 10841
d3c54a1c
TT
10842 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10843 int nargs = args_up.size ();
10844 std::vector<value *> argvec (nargs);
284614f0 10845
d3c54a1c
TT
10846 for (int i = 0; i < args_up.size (); ++i)
10847 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
52ce6436 10848
d3c54a1c
TT
10849 const block *block = avv->get_block ();
10850 block_symbol resolved
10851 = ada_resolve_funcall (sym, block,
10852 context_type, parse_completion,
10853 nargs, argvec.data (),
10854 tracker);
10855
10856 std::get<0> (m_storage)
9e5e03df 10857 = make_operation<ada_var_value_operation> (resolved);
d3c54a1c
TT
10858 return false;
10859}
10860
10861bool
10862ada_ternop_slice_operation::resolve (struct expression *exp,
10863 bool deprocedure_p,
10864 bool parse_completion,
10865 innermost_block_tracker *tracker,
10866 struct type *context_type)
10867{
10868 /* Historically this check was done during resolution, so we
10869 continue that here. */
10870 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10871 EVAL_AVOID_SIDE_EFFECTS);
10872 if (ada_is_any_packed_array_type (value_type (v)))
10873 error (_("cannot slice a packed array"));
10874 return false;
10875}
14f9c5c9 10876
14f9c5c9 10877}
d3c54a1c 10878
14f9c5c9 10879\f
d2e4a39e 10880
4c4b4cd2
PH
10881/* Return non-zero iff TYPE represents a System.Address type. */
10882
10883int
10884ada_is_system_address_type (struct type *type)
10885{
7d93a1e0 10886 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
10887}
10888
14f9c5c9 10889\f
d2e4a39e 10890
dda83cd7 10891 /* Range types */
14f9c5c9
AS
10892
10893/* Scan STR beginning at position K for a discriminant name, and
10894 return the value of that discriminant field of DVAL in *PX. If
10895 PNEW_K is not null, put the position of the character beyond the
10896 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10897 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10898
10899static int
108d56a4 10900scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 10901 int *pnew_k)
14f9c5c9 10902{
5f9febe0 10903 static std::string storage;
5da1a4d3 10904 const char *pstart, *pend, *bound;
d2e4a39e 10905 struct value *bound_val;
14f9c5c9
AS
10906
10907 if (dval == NULL || str == NULL || str[k] == '\0')
10908 return 0;
10909
5da1a4d3
SM
10910 pstart = str + k;
10911 pend = strstr (pstart, "__");
14f9c5c9
AS
10912 if (pend == NULL)
10913 {
5da1a4d3 10914 bound = pstart;
14f9c5c9
AS
10915 k += strlen (bound);
10916 }
d2e4a39e 10917 else
14f9c5c9 10918 {
5da1a4d3
SM
10919 int len = pend - pstart;
10920
10921 /* Strip __ and beyond. */
5f9febe0
TT
10922 storage = std::string (pstart, len);
10923 bound = storage.c_str ();
d2e4a39e 10924 k = pend - str;
14f9c5c9 10925 }
d2e4a39e 10926
df407dfe 10927 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10928 if (bound_val == NULL)
10929 return 0;
10930
10931 *px = value_as_long (bound_val);
10932 if (pnew_k != NULL)
10933 *pnew_k = k;
10934 return 1;
10935}
10936
25a1127b
TT
10937/* Value of variable named NAME. Only exact matches are considered.
10938 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10939 otherwise causes an error with message ERR_MSG. */
10940
d2e4a39e 10941static struct value *
edb0c9cb 10942get_var_value (const char *name, const char *err_msg)
14f9c5c9 10943{
25a1127b
TT
10944 std::string quoted_name = add_angle_brackets (name);
10945
10946 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 10947
d1183b06
TT
10948 std::vector<struct block_symbol> syms
10949 = ada_lookup_symbol_list_worker (lookup_name,
10950 get_selected_block (0),
10951 VAR_DOMAIN, 1);
14f9c5c9 10952
d1183b06 10953 if (syms.size () != 1)
14f9c5c9
AS
10954 {
10955 if (err_msg == NULL)
dda83cd7 10956 return 0;
14f9c5c9 10957 else
dda83cd7 10958 error (("%s"), err_msg);
14f9c5c9
AS
10959 }
10960
54d343a2 10961 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 10962}
d2e4a39e 10963
edb0c9cb
PA
10964/* Value of integer variable named NAME in the current environment.
10965 If no such variable is found, returns false. Otherwise, sets VALUE
10966 to the variable's value and returns true. */
4c4b4cd2 10967
edb0c9cb
PA
10968bool
10969get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 10970{
4c4b4cd2 10971 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10972
14f9c5c9 10973 if (var_val == 0)
edb0c9cb
PA
10974 return false;
10975
10976 value = value_as_long (var_val);
10977 return true;
14f9c5c9 10978}
d2e4a39e 10979
14f9c5c9
AS
10980
10981/* Return a range type whose base type is that of the range type named
10982 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10983 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10984 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10985 corresponding range type from debug information; fall back to using it
10986 if symbol lookup fails. If a new type must be created, allocate it
10987 like ORIG_TYPE was. The bounds information, in general, is encoded
10988 in NAME, the base type given in the named range type. */
14f9c5c9 10989
d2e4a39e 10990static struct type *
28c85d6c 10991to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10992{
0d5cff50 10993 const char *name;
14f9c5c9 10994 struct type *base_type;
108d56a4 10995 const char *subtype_info;
14f9c5c9 10996
28c85d6c 10997 gdb_assert (raw_type != NULL);
7d93a1e0 10998 gdb_assert (raw_type->name () != NULL);
dddfab26 10999
78134374 11000 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11001 base_type = TYPE_TARGET_TYPE (raw_type);
11002 else
11003 base_type = raw_type;
11004
7d93a1e0 11005 name = raw_type->name ();
14f9c5c9
AS
11006 subtype_info = strstr (name, "___XD");
11007 if (subtype_info == NULL)
690cc4eb 11008 {
43bbcdc2
PH
11009 LONGEST L = ada_discrete_type_low_bound (raw_type);
11010 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11011
690cc4eb
PH
11012 if (L < INT_MIN || U > INT_MAX)
11013 return raw_type;
11014 else
0c9c3474
SA
11015 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11016 L, U);
690cc4eb 11017 }
14f9c5c9
AS
11018 else
11019 {
14f9c5c9
AS
11020 int prefix_len = subtype_info - name;
11021 LONGEST L, U;
11022 struct type *type;
108d56a4 11023 const char *bounds_str;
14f9c5c9
AS
11024 int n;
11025
14f9c5c9
AS
11026 subtype_info += 5;
11027 bounds_str = strchr (subtype_info, '_');
11028 n = 1;
11029
d2e4a39e 11030 if (*subtype_info == 'L')
dda83cd7
SM
11031 {
11032 if (!ada_scan_number (bounds_str, n, &L, &n)
11033 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11034 return raw_type;
11035 if (bounds_str[n] == '_')
11036 n += 2;
11037 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11038 n += 1;
11039 subtype_info += 1;
11040 }
d2e4a39e 11041 else
dda83cd7 11042 {
5f9febe0
TT
11043 std::string name_buf = std::string (name, prefix_len) + "___L";
11044 if (!get_int_var_value (name_buf.c_str (), L))
dda83cd7
SM
11045 {
11046 lim_warning (_("Unknown lower bound, using 1."));
11047 L = 1;
11048 }
11049 }
14f9c5c9 11050
d2e4a39e 11051 if (*subtype_info == 'U')
dda83cd7
SM
11052 {
11053 if (!ada_scan_number (bounds_str, n, &U, &n)
11054 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11055 return raw_type;
11056 }
d2e4a39e 11057 else
dda83cd7 11058 {
5f9febe0
TT
11059 std::string name_buf = std::string (name, prefix_len) + "___U";
11060 if (!get_int_var_value (name_buf.c_str (), U))
dda83cd7
SM
11061 {
11062 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11063 U = L;
11064 }
11065 }
14f9c5c9 11066
0c9c3474
SA
11067 type = create_static_range_type (alloc_type_copy (raw_type),
11068 base_type, L, U);
f5a91472 11069 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11070 to match the size of the base_type, which is not what we want.
11071 Set it back to the original range type's length. */
f5a91472 11072 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11073 type->set_name (name);
14f9c5c9
AS
11074 return type;
11075 }
11076}
11077
4c4b4cd2
PH
11078/* True iff NAME is the name of a range type. */
11079
14f9c5c9 11080int
d2e4a39e 11081ada_is_range_type_name (const char *name)
14f9c5c9
AS
11082{
11083 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11084}
14f9c5c9 11085\f
d2e4a39e 11086
dda83cd7 11087 /* Modular types */
4c4b4cd2
PH
11088
11089/* True iff TYPE is an Ada modular type. */
14f9c5c9 11090
14f9c5c9 11091int
d2e4a39e 11092ada_is_modular_type (struct type *type)
14f9c5c9 11093{
18af8284 11094 struct type *subranged_type = get_base_type (type);
14f9c5c9 11095
78134374 11096 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11097 && subranged_type->code () == TYPE_CODE_INT
11098 && subranged_type->is_unsigned ());
14f9c5c9
AS
11099}
11100
4c4b4cd2
PH
11101/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11102
61ee279c 11103ULONGEST
0056e4d5 11104ada_modulus (struct type *type)
14f9c5c9 11105{
5e500d33
SM
11106 const dynamic_prop &high = type->bounds ()->high;
11107
11108 if (high.kind () == PROP_CONST)
11109 return (ULONGEST) high.const_val () + 1;
11110
11111 /* If TYPE is unresolved, the high bound might be a location list. Return
11112 0, for lack of a better value to return. */
11113 return 0;
14f9c5c9 11114}
d2e4a39e 11115\f
f7f9143b
JB
11116
11117/* Ada exception catchpoint support:
11118 ---------------------------------
11119
11120 We support 3 kinds of exception catchpoints:
11121 . catchpoints on Ada exceptions
11122 . catchpoints on unhandled Ada exceptions
11123 . catchpoints on failed assertions
11124
11125 Exceptions raised during failed assertions, or unhandled exceptions
11126 could perfectly be caught with the general catchpoint on Ada exceptions.
11127 However, we can easily differentiate these two special cases, and having
11128 the option to distinguish these two cases from the rest can be useful
11129 to zero-in on certain situations.
11130
11131 Exception catchpoints are a specialized form of breakpoint,
11132 since they rely on inserting breakpoints inside known routines
11133 of the GNAT runtime. The implementation therefore uses a standard
11134 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11135 of breakpoint_ops.
11136
0259addd
JB
11137 Support in the runtime for exception catchpoints have been changed
11138 a few times already, and these changes affect the implementation
11139 of these catchpoints. In order to be able to support several
11140 variants of the runtime, we use a sniffer that will determine
28010a5d 11141 the runtime variant used by the program being debugged. */
f7f9143b 11142
82eacd52
JB
11143/* Ada's standard exceptions.
11144
11145 The Ada 83 standard also defined Numeric_Error. But there so many
11146 situations where it was unclear from the Ada 83 Reference Manual
11147 (RM) whether Constraint_Error or Numeric_Error should be raised,
11148 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11149 Interpretation saying that anytime the RM says that Numeric_Error
11150 should be raised, the implementation may raise Constraint_Error.
11151 Ada 95 went one step further and pretty much removed Numeric_Error
11152 from the list of standard exceptions (it made it a renaming of
11153 Constraint_Error, to help preserve compatibility when compiling
11154 an Ada83 compiler). As such, we do not include Numeric_Error from
11155 this list of standard exceptions. */
3d0b0fa3 11156
27087b7f 11157static const char * const standard_exc[] = {
3d0b0fa3
JB
11158 "constraint_error",
11159 "program_error",
11160 "storage_error",
11161 "tasking_error"
11162};
11163
0259addd
JB
11164typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11165
11166/* A structure that describes how to support exception catchpoints
11167 for a given executable. */
11168
11169struct exception_support_info
11170{
11171 /* The name of the symbol to break on in order to insert
11172 a catchpoint on exceptions. */
11173 const char *catch_exception_sym;
11174
11175 /* The name of the symbol to break on in order to insert
11176 a catchpoint on unhandled exceptions. */
11177 const char *catch_exception_unhandled_sym;
11178
11179 /* The name of the symbol to break on in order to insert
11180 a catchpoint on failed assertions. */
11181 const char *catch_assert_sym;
11182
9f757bf7
XR
11183 /* The name of the symbol to break on in order to insert
11184 a catchpoint on exception handling. */
11185 const char *catch_handlers_sym;
11186
0259addd
JB
11187 /* Assuming that the inferior just triggered an unhandled exception
11188 catchpoint, this function is responsible for returning the address
11189 in inferior memory where the name of that exception is stored.
11190 Return zero if the address could not be computed. */
11191 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11192};
11193
11194static CORE_ADDR ada_unhandled_exception_name_addr (void);
11195static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11196
11197/* The following exception support info structure describes how to
11198 implement exception catchpoints with the latest version of the
ca683e3a 11199 Ada runtime (as of 2019-08-??). */
0259addd
JB
11200
11201static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11202{
11203 "__gnat_debug_raise_exception", /* catch_exception_sym */
11204 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11205 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11206 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11207 ada_unhandled_exception_name_addr
11208};
11209
11210/* The following exception support info structure describes how to
11211 implement exception catchpoints with an earlier version of the
11212 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11213
11214static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11215{
11216 "__gnat_debug_raise_exception", /* catch_exception_sym */
11217 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11218 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11219 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11220 ada_unhandled_exception_name_addr
11221};
11222
11223/* The following exception support info structure describes how to
11224 implement exception catchpoints with a slightly older version
11225 of the Ada runtime. */
11226
11227static const struct exception_support_info exception_support_info_fallback =
11228{
11229 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11230 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11231 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11232 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11233 ada_unhandled_exception_name_addr_from_raise
11234};
11235
f17011e0
JB
11236/* Return nonzero if we can detect the exception support routines
11237 described in EINFO.
11238
11239 This function errors out if an abnormal situation is detected
11240 (for instance, if we find the exception support routines, but
11241 that support is found to be incomplete). */
11242
11243static int
11244ada_has_this_exception_support (const struct exception_support_info *einfo)
11245{
11246 struct symbol *sym;
11247
11248 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11249 that should be compiled with debugging information. As a result, we
11250 expect to find that symbol in the symtabs. */
11251
11252 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11253 if (sym == NULL)
a6af7abe
JB
11254 {
11255 /* Perhaps we did not find our symbol because the Ada runtime was
11256 compiled without debugging info, or simply stripped of it.
11257 It happens on some GNU/Linux distributions for instance, where
11258 users have to install a separate debug package in order to get
11259 the runtime's debugging info. In that situation, let the user
11260 know why we cannot insert an Ada exception catchpoint.
11261
11262 Note: Just for the purpose of inserting our Ada exception
11263 catchpoint, we could rely purely on the associated minimal symbol.
11264 But we would be operating in degraded mode anyway, since we are
11265 still lacking the debugging info needed later on to extract
11266 the name of the exception being raised (this name is printed in
11267 the catchpoint message, and is also used when trying to catch
11268 a specific exception). We do not handle this case for now. */
3b7344d5 11269 struct bound_minimal_symbol msym
1c8e84b0
JB
11270 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11271
3b7344d5 11272 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11273 error (_("Your Ada runtime appears to be missing some debugging "
11274 "information.\nCannot insert Ada exception catchpoint "
11275 "in this configuration."));
11276
11277 return 0;
11278 }
f17011e0
JB
11279
11280 /* Make sure that the symbol we found corresponds to a function. */
11281
11282 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11283 {
11284 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11285 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11286 return 0;
11287 }
11288
11289 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11290 if (sym == NULL)
11291 {
11292 struct bound_minimal_symbol msym
11293 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11294
11295 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11296 error (_("Your Ada runtime appears to be missing some debugging "
11297 "information.\nCannot insert Ada exception catchpoint "
11298 "in this configuration."));
11299
11300 return 0;
11301 }
11302
11303 /* Make sure that the symbol we found corresponds to a function. */
11304
11305 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11306 {
11307 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11308 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11309 return 0;
11310 }
f17011e0
JB
11311
11312 return 1;
11313}
11314
0259addd
JB
11315/* Inspect the Ada runtime and determine which exception info structure
11316 should be used to provide support for exception catchpoints.
11317
3eecfa55
JB
11318 This function will always set the per-inferior exception_info,
11319 or raise an error. */
0259addd
JB
11320
11321static void
11322ada_exception_support_info_sniffer (void)
11323{
3eecfa55 11324 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11325
11326 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11327 if (data->exception_info != NULL)
0259addd
JB
11328 return;
11329
11330 /* Check the latest (default) exception support info. */
f17011e0 11331 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11332 {
3eecfa55 11333 data->exception_info = &default_exception_support_info;
0259addd
JB
11334 return;
11335 }
11336
ca683e3a
AO
11337 /* Try the v0 exception suport info. */
11338 if (ada_has_this_exception_support (&exception_support_info_v0))
11339 {
11340 data->exception_info = &exception_support_info_v0;
11341 return;
11342 }
11343
0259addd 11344 /* Try our fallback exception suport info. */
f17011e0 11345 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11346 {
3eecfa55 11347 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11348 return;
11349 }
11350
11351 /* Sometimes, it is normal for us to not be able to find the routine
11352 we are looking for. This happens when the program is linked with
11353 the shared version of the GNAT runtime, and the program has not been
11354 started yet. Inform the user of these two possible causes if
11355 applicable. */
11356
ccefe4c4 11357 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11358 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11359
11360 /* If the symbol does not exist, then check that the program is
11361 already started, to make sure that shared libraries have been
11362 loaded. If it is not started, this may mean that the symbol is
11363 in a shared library. */
11364
e99b03dc 11365 if (inferior_ptid.pid () == 0)
0259addd
JB
11366 error (_("Unable to insert catchpoint. Try to start the program first."));
11367
11368 /* At this point, we know that we are debugging an Ada program and
11369 that the inferior has been started, but we still are not able to
0963b4bd 11370 find the run-time symbols. That can mean that we are in
0259addd
JB
11371 configurable run time mode, or that a-except as been optimized
11372 out by the linker... In any case, at this point it is not worth
11373 supporting this feature. */
11374
7dda8cff 11375 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11376}
11377
f7f9143b
JB
11378/* True iff FRAME is very likely to be that of a function that is
11379 part of the runtime system. This is all very heuristic, but is
11380 intended to be used as advice as to what frames are uninteresting
11381 to most users. */
11382
11383static int
11384is_known_support_routine (struct frame_info *frame)
11385{
692465f1 11386 enum language func_lang;
f7f9143b 11387 int i;
f35a17b5 11388 const char *fullname;
f7f9143b 11389
4ed6b5be
JB
11390 /* If this code does not have any debugging information (no symtab),
11391 This cannot be any user code. */
f7f9143b 11392
51abb421 11393 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11394 if (sal.symtab == NULL)
11395 return 1;
11396
4ed6b5be
JB
11397 /* If there is a symtab, but the associated source file cannot be
11398 located, then assume this is not user code: Selecting a frame
11399 for which we cannot display the code would not be very helpful
11400 for the user. This should also take care of case such as VxWorks
11401 where the kernel has some debugging info provided for a few units. */
f7f9143b 11402
f35a17b5
JK
11403 fullname = symtab_to_fullname (sal.symtab);
11404 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11405 return 1;
11406
85102364 11407 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11408 We also check the name of the objfile against the name of some
11409 known system libraries that sometimes come with debugging info
11410 too. */
11411
f7f9143b
JB
11412 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11413 {
11414 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11415 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11416 return 1;
eb822aa6 11417 if (SYMTAB_OBJFILE (sal.symtab) != NULL
dda83cd7
SM
11418 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11419 return 1;
f7f9143b
JB
11420 }
11421
4ed6b5be 11422 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11423
c6dc63a1
TT
11424 gdb::unique_xmalloc_ptr<char> func_name
11425 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11426 if (func_name == NULL)
11427 return 1;
11428
11429 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11430 {
11431 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11432 if (re_exec (func_name.get ()))
11433 return 1;
f7f9143b
JB
11434 }
11435
11436 return 0;
11437}
11438
11439/* Find the first frame that contains debugging information and that is not
11440 part of the Ada run-time, starting from FI and moving upward. */
11441
0ef643c8 11442void
f7f9143b
JB
11443ada_find_printable_frame (struct frame_info *fi)
11444{
11445 for (; fi != NULL; fi = get_prev_frame (fi))
11446 {
11447 if (!is_known_support_routine (fi))
dda83cd7
SM
11448 {
11449 select_frame (fi);
11450 break;
11451 }
f7f9143b
JB
11452 }
11453
11454}
11455
11456/* Assuming that the inferior just triggered an unhandled exception
11457 catchpoint, return the address in inferior memory where the name
11458 of the exception is stored.
11459
11460 Return zero if the address could not be computed. */
11461
11462static CORE_ADDR
11463ada_unhandled_exception_name_addr (void)
0259addd
JB
11464{
11465 return parse_and_eval_address ("e.full_name");
11466}
11467
11468/* Same as ada_unhandled_exception_name_addr, except that this function
11469 should be used when the inferior uses an older version of the runtime,
11470 where the exception name needs to be extracted from a specific frame
11471 several frames up in the callstack. */
11472
11473static CORE_ADDR
11474ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11475{
11476 int frame_level;
11477 struct frame_info *fi;
3eecfa55 11478 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11479
11480 /* To determine the name of this exception, we need to select
11481 the frame corresponding to RAISE_SYM_NAME. This frame is
11482 at least 3 levels up, so we simply skip the first 3 frames
11483 without checking the name of their associated function. */
11484 fi = get_current_frame ();
11485 for (frame_level = 0; frame_level < 3; frame_level += 1)
11486 if (fi != NULL)
11487 fi = get_prev_frame (fi);
11488
11489 while (fi != NULL)
11490 {
692465f1
JB
11491 enum language func_lang;
11492
c6dc63a1
TT
11493 gdb::unique_xmalloc_ptr<char> func_name
11494 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11495 if (func_name != NULL)
11496 {
dda83cd7 11497 if (strcmp (func_name.get (),
55b87a52
KS
11498 data->exception_info->catch_exception_sym) == 0)
11499 break; /* We found the frame we were looking for... */
55b87a52 11500 }
fb44b1a7 11501 fi = get_prev_frame (fi);
f7f9143b
JB
11502 }
11503
11504 if (fi == NULL)
11505 return 0;
11506
11507 select_frame (fi);
11508 return parse_and_eval_address ("id.full_name");
11509}
11510
11511/* Assuming the inferior just triggered an Ada exception catchpoint
11512 (of any type), return the address in inferior memory where the name
11513 of the exception is stored, if applicable.
11514
45db7c09
PA
11515 Assumes the selected frame is the current frame.
11516
f7f9143b
JB
11517 Return zero if the address could not be computed, or if not relevant. */
11518
11519static CORE_ADDR
761269c8 11520ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11521 struct breakpoint *b)
f7f9143b 11522{
3eecfa55
JB
11523 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11524
f7f9143b
JB
11525 switch (ex)
11526 {
761269c8 11527 case ada_catch_exception:
dda83cd7
SM
11528 return (parse_and_eval_address ("e.full_name"));
11529 break;
f7f9143b 11530
761269c8 11531 case ada_catch_exception_unhandled:
dda83cd7
SM
11532 return data->exception_info->unhandled_exception_name_addr ();
11533 break;
9f757bf7
XR
11534
11535 case ada_catch_handlers:
dda83cd7 11536 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11537 name. */
dda83cd7 11538 break;
9f757bf7 11539
761269c8 11540 case ada_catch_assert:
dda83cd7
SM
11541 return 0; /* Exception name is not relevant in this case. */
11542 break;
f7f9143b
JB
11543
11544 default:
dda83cd7
SM
11545 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11546 break;
f7f9143b
JB
11547 }
11548
11549 return 0; /* Should never be reached. */
11550}
11551
e547c119
JB
11552/* Assuming the inferior is stopped at an exception catchpoint,
11553 return the message which was associated to the exception, if
11554 available. Return NULL if the message could not be retrieved.
11555
e547c119
JB
11556 Note: The exception message can be associated to an exception
11557 either through the use of the Raise_Exception function, or
11558 more simply (Ada 2005 and later), via:
11559
11560 raise Exception_Name with "exception message";
11561
11562 */
11563
6f46ac85 11564static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11565ada_exception_message_1 (void)
11566{
11567 struct value *e_msg_val;
e547c119 11568 int e_msg_len;
e547c119
JB
11569
11570 /* For runtimes that support this feature, the exception message
11571 is passed as an unbounded string argument called "message". */
11572 e_msg_val = parse_and_eval ("message");
11573 if (e_msg_val == NULL)
11574 return NULL; /* Exception message not supported. */
11575
11576 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11577 gdb_assert (e_msg_val != NULL);
11578 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11579
11580 /* If the message string is empty, then treat it as if there was
11581 no exception message. */
11582 if (e_msg_len <= 0)
11583 return NULL;
11584
15f3b077
TT
11585 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11586 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11587 e_msg_len);
11588 e_msg.get ()[e_msg_len] = '\0';
11589
11590 return e_msg;
e547c119
JB
11591}
11592
11593/* Same as ada_exception_message_1, except that all exceptions are
11594 contained here (returning NULL instead). */
11595
6f46ac85 11596static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11597ada_exception_message (void)
11598{
6f46ac85 11599 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11600
a70b8144 11601 try
e547c119
JB
11602 {
11603 e_msg = ada_exception_message_1 ();
11604 }
230d2906 11605 catch (const gdb_exception_error &e)
e547c119 11606 {
6f46ac85 11607 e_msg.reset (nullptr);
e547c119 11608 }
e547c119
JB
11609
11610 return e_msg;
11611}
11612
f7f9143b
JB
11613/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11614 any error that ada_exception_name_addr_1 might cause to be thrown.
11615 When an error is intercepted, a warning with the error message is printed,
11616 and zero is returned. */
11617
11618static CORE_ADDR
761269c8 11619ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 11620 struct breakpoint *b)
f7f9143b 11621{
f7f9143b
JB
11622 CORE_ADDR result = 0;
11623
a70b8144 11624 try
f7f9143b
JB
11625 {
11626 result = ada_exception_name_addr_1 (ex, b);
11627 }
11628
230d2906 11629 catch (const gdb_exception_error &e)
f7f9143b 11630 {
3d6e9d23 11631 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
11632 return 0;
11633 }
11634
11635 return result;
11636}
11637
cb7de75e 11638static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
11639 (const char *excep_string,
11640 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
11641
11642/* Ada catchpoints.
11643
11644 In the case of catchpoints on Ada exceptions, the catchpoint will
11645 stop the target on every exception the program throws. When a user
11646 specifies the name of a specific exception, we translate this
11647 request into a condition expression (in text form), and then parse
11648 it into an expression stored in each of the catchpoint's locations.
11649 We then use this condition to check whether the exception that was
11650 raised is the one the user is interested in. If not, then the
11651 target is resumed again. We store the name of the requested
11652 exception, in order to be able to re-set the condition expression
11653 when symbols change. */
11654
11655/* An instance of this type is used to represent an Ada catchpoint
5625a286 11656 breakpoint location. */
28010a5d 11657
5625a286 11658class ada_catchpoint_location : public bp_location
28010a5d 11659{
5625a286 11660public:
5f486660 11661 ada_catchpoint_location (breakpoint *owner)
f06f1252 11662 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 11663 {}
28010a5d
PA
11664
11665 /* The condition that checks whether the exception that was raised
11666 is the specific exception the user specified on catchpoint
11667 creation. */
4d01a485 11668 expression_up excep_cond_expr;
28010a5d
PA
11669};
11670
c1fc2657 11671/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 11672
c1fc2657 11673struct ada_catchpoint : public breakpoint
28010a5d 11674{
37f6a7f4
TT
11675 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11676 : m_kind (kind)
11677 {
11678 }
11679
28010a5d 11680 /* The name of the specific exception the user specified. */
bc18fbb5 11681 std::string excep_string;
37f6a7f4
TT
11682
11683 /* What kind of catchpoint this is. */
11684 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
11685};
11686
11687/* Parse the exception condition string in the context of each of the
11688 catchpoint's locations, and store them for later evaluation. */
11689
11690static void
9f757bf7 11691create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 11692 enum ada_exception_catchpoint_kind ex)
28010a5d 11693{
28010a5d 11694 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 11695 if (c->excep_string.empty ())
28010a5d
PA
11696 return;
11697
11698 /* Same if there are no locations... */
c1fc2657 11699 if (c->loc == NULL)
28010a5d
PA
11700 return;
11701
fccf9de1
TT
11702 /* Compute the condition expression in text form, from the specific
11703 expection we want to catch. */
11704 std::string cond_string
11705 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 11706
fccf9de1
TT
11707 /* Iterate over all the catchpoint's locations, and parse an
11708 expression for each. */
40cb8ca5 11709 for (bp_location *bl : c->locations ())
28010a5d
PA
11710 {
11711 struct ada_catchpoint_location *ada_loc
fccf9de1 11712 = (struct ada_catchpoint_location *) bl;
4d01a485 11713 expression_up exp;
28010a5d 11714
fccf9de1 11715 if (!bl->shlib_disabled)
28010a5d 11716 {
bbc13ae3 11717 const char *s;
28010a5d 11718
cb7de75e 11719 s = cond_string.c_str ();
a70b8144 11720 try
28010a5d 11721 {
fccf9de1
TT
11722 exp = parse_exp_1 (&s, bl->address,
11723 block_for_pc (bl->address),
036e657b 11724 0);
28010a5d 11725 }
230d2906 11726 catch (const gdb_exception_error &e)
849f2b52
JB
11727 {
11728 warning (_("failed to reevaluate internal exception condition "
11729 "for catchpoint %d: %s"),
3d6e9d23 11730 c->number, e.what ());
849f2b52 11731 }
28010a5d
PA
11732 }
11733
b22e99fd 11734 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 11735 }
28010a5d
PA
11736}
11737
28010a5d
PA
11738/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11739 structure for all exception catchpoint kinds. */
11740
11741static struct bp_location *
37f6a7f4 11742allocate_location_exception (struct breakpoint *self)
28010a5d 11743{
5f486660 11744 return new ada_catchpoint_location (self);
28010a5d
PA
11745}
11746
11747/* Implement the RE_SET method in the breakpoint_ops structure for all
11748 exception catchpoint kinds. */
11749
11750static void
37f6a7f4 11751re_set_exception (struct breakpoint *b)
28010a5d
PA
11752{
11753 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11754
11755 /* Call the base class's method. This updates the catchpoint's
11756 locations. */
2060206e 11757 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11758
11759 /* Reparse the exception conditional expressions. One for each
11760 location. */
37f6a7f4 11761 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
11762}
11763
11764/* Returns true if we should stop for this breakpoint hit. If the
11765 user specified a specific exception, we only want to cause a stop
11766 if the program thrown that exception. */
11767
7ebaa5f7 11768static bool
28010a5d
PA
11769should_stop_exception (const struct bp_location *bl)
11770{
11771 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11772 const struct ada_catchpoint_location *ada_loc
11773 = (const struct ada_catchpoint_location *) bl;
7ebaa5f7 11774 bool stop;
28010a5d 11775
37f6a7f4
TT
11776 struct internalvar *var = lookup_internalvar ("_ada_exception");
11777 if (c->m_kind == ada_catch_assert)
11778 clear_internalvar (var);
11779 else
11780 {
11781 try
11782 {
11783 const char *expr;
11784
11785 if (c->m_kind == ada_catch_handlers)
11786 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11787 ".all.occurrence.id");
11788 else
11789 expr = "e";
11790
11791 struct value *exc = parse_and_eval (expr);
11792 set_internalvar (var, exc);
11793 }
11794 catch (const gdb_exception_error &ex)
11795 {
11796 clear_internalvar (var);
11797 }
11798 }
11799
28010a5d 11800 /* With no specific exception, should always stop. */
bc18fbb5 11801 if (c->excep_string.empty ())
7ebaa5f7 11802 return true;
28010a5d
PA
11803
11804 if (ada_loc->excep_cond_expr == NULL)
11805 {
11806 /* We will have a NULL expression if back when we were creating
11807 the expressions, this location's had failed to parse. */
7ebaa5f7 11808 return true;
28010a5d
PA
11809 }
11810
7ebaa5f7 11811 stop = true;
a70b8144 11812 try
28010a5d
PA
11813 {
11814 struct value *mark;
11815
11816 mark = value_mark ();
4d01a485 11817 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
11818 value_free_to_mark (mark);
11819 }
230d2906 11820 catch (const gdb_exception &ex)
492d29ea
PA
11821 {
11822 exception_fprintf (gdb_stderr, ex,
11823 _("Error in testing exception condition:\n"));
11824 }
492d29ea 11825
28010a5d
PA
11826 return stop;
11827}
11828
11829/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11830 for all exception catchpoint kinds. */
11831
11832static void
37f6a7f4 11833check_status_exception (bpstat bs)
28010a5d 11834{
b6433ede 11835 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
11836}
11837
f7f9143b
JB
11838/* Implement the PRINT_IT method in the breakpoint_ops structure
11839 for all exception catchpoint kinds. */
11840
11841static enum print_stop_action
37f6a7f4 11842print_it_exception (bpstat bs)
f7f9143b 11843{
79a45e25 11844 struct ui_out *uiout = current_uiout;
348d480f
PA
11845 struct breakpoint *b = bs->breakpoint_at;
11846
956a9fb9 11847 annotate_catchpoint (b->number);
f7f9143b 11848
112e8700 11849 if (uiout->is_mi_like_p ())
f7f9143b 11850 {
112e8700 11851 uiout->field_string ("reason",
956a9fb9 11852 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 11853 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
11854 }
11855
112e8700
SM
11856 uiout->text (b->disposition == disp_del
11857 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 11858 uiout->field_signed ("bkptno", b->number);
112e8700 11859 uiout->text (", ");
f7f9143b 11860
45db7c09
PA
11861 /* ada_exception_name_addr relies on the selected frame being the
11862 current frame. Need to do this here because this function may be
11863 called more than once when printing a stop, and below, we'll
11864 select the first frame past the Ada run-time (see
11865 ada_find_printable_frame). */
11866 select_frame (get_current_frame ());
11867
37f6a7f4
TT
11868 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11869 switch (c->m_kind)
f7f9143b 11870 {
761269c8
JB
11871 case ada_catch_exception:
11872 case ada_catch_exception_unhandled:
9f757bf7 11873 case ada_catch_handlers:
956a9fb9 11874 {
37f6a7f4 11875 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
11876 char exception_name[256];
11877
11878 if (addr != 0)
11879 {
c714b426
PA
11880 read_memory (addr, (gdb_byte *) exception_name,
11881 sizeof (exception_name) - 1);
956a9fb9
JB
11882 exception_name [sizeof (exception_name) - 1] = '\0';
11883 }
11884 else
11885 {
11886 /* For some reason, we were unable to read the exception
11887 name. This could happen if the Runtime was compiled
11888 without debugging info, for instance. In that case,
11889 just replace the exception name by the generic string
11890 "exception" - it will read as "an exception" in the
11891 notification we are about to print. */
967cff16 11892 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11893 }
11894 /* In the case of unhandled exception breakpoints, we print
11895 the exception name as "unhandled EXCEPTION_NAME", to make
11896 it clearer to the user which kind of catchpoint just got
11897 hit. We used ui_out_text to make sure that this extra
11898 info does not pollute the exception name in the MI case. */
37f6a7f4 11899 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
11900 uiout->text ("unhandled ");
11901 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
11902 }
11903 break;
761269c8 11904 case ada_catch_assert:
956a9fb9
JB
11905 /* In this case, the name of the exception is not really
11906 important. Just print "failed assertion" to make it clearer
11907 that his program just hit an assertion-failure catchpoint.
11908 We used ui_out_text because this info does not belong in
11909 the MI output. */
112e8700 11910 uiout->text ("failed assertion");
956a9fb9 11911 break;
f7f9143b 11912 }
e547c119 11913
6f46ac85 11914 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
11915 if (exception_message != NULL)
11916 {
e547c119 11917 uiout->text (" (");
6f46ac85 11918 uiout->field_string ("exception-message", exception_message.get ());
e547c119 11919 uiout->text (")");
e547c119
JB
11920 }
11921
112e8700 11922 uiout->text (" at ");
956a9fb9 11923 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11924
11925 return PRINT_SRC_AND_LOC;
11926}
11927
11928/* Implement the PRINT_ONE method in the breakpoint_ops structure
11929 for all exception catchpoint kinds. */
11930
11931static void
37f6a7f4 11932print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11933{
79a45e25 11934 struct ui_out *uiout = current_uiout;
28010a5d 11935 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11936 struct value_print_options opts;
11937
11938 get_user_print_options (&opts);
f06f1252 11939
79a45b7d 11940 if (opts.addressprint)
f06f1252 11941 uiout->field_skip ("addr");
f7f9143b
JB
11942
11943 annotate_field (5);
37f6a7f4 11944 switch (c->m_kind)
f7f9143b 11945 {
761269c8 11946 case ada_catch_exception:
dda83cd7
SM
11947 if (!c->excep_string.empty ())
11948 {
bc18fbb5
TT
11949 std::string msg = string_printf (_("`%s' Ada exception"),
11950 c->excep_string.c_str ());
28010a5d 11951
dda83cd7
SM
11952 uiout->field_string ("what", msg);
11953 }
11954 else
11955 uiout->field_string ("what", "all Ada exceptions");
11956
11957 break;
f7f9143b 11958
761269c8 11959 case ada_catch_exception_unhandled:
dda83cd7
SM
11960 uiout->field_string ("what", "unhandled Ada exceptions");
11961 break;
f7f9143b 11962
9f757bf7 11963 case ada_catch_handlers:
dda83cd7
SM
11964 if (!c->excep_string.empty ())
11965 {
9f757bf7
XR
11966 uiout->field_fmt ("what",
11967 _("`%s' Ada exception handlers"),
bc18fbb5 11968 c->excep_string.c_str ());
dda83cd7
SM
11969 }
11970 else
9f757bf7 11971 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 11972 break;
9f757bf7 11973
761269c8 11974 case ada_catch_assert:
dda83cd7
SM
11975 uiout->field_string ("what", "failed Ada assertions");
11976 break;
f7f9143b
JB
11977
11978 default:
dda83cd7
SM
11979 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11980 break;
f7f9143b
JB
11981 }
11982}
11983
11984/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11985 for all exception catchpoint kinds. */
11986
11987static void
37f6a7f4 11988print_mention_exception (struct breakpoint *b)
f7f9143b 11989{
28010a5d 11990 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11991 struct ui_out *uiout = current_uiout;
28010a5d 11992
112e8700 11993 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 11994 : _("Catchpoint "));
381befee 11995 uiout->field_signed ("bkptno", b->number);
112e8700 11996 uiout->text (": ");
00eb2c4a 11997
37f6a7f4 11998 switch (c->m_kind)
f7f9143b 11999 {
761269c8 12000 case ada_catch_exception:
dda83cd7 12001 if (!c->excep_string.empty ())
00eb2c4a 12002 {
862d101a 12003 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12004 c->excep_string.c_str ());
4915bfdc 12005 uiout->text (info);
00eb2c4a 12006 }
dda83cd7
SM
12007 else
12008 uiout->text (_("all Ada exceptions"));
12009 break;
f7f9143b 12010
761269c8 12011 case ada_catch_exception_unhandled:
dda83cd7
SM
12012 uiout->text (_("unhandled Ada exceptions"));
12013 break;
9f757bf7
XR
12014
12015 case ada_catch_handlers:
dda83cd7 12016 if (!c->excep_string.empty ())
9f757bf7
XR
12017 {
12018 std::string info
12019 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12020 c->excep_string.c_str ());
4915bfdc 12021 uiout->text (info);
9f757bf7 12022 }
dda83cd7
SM
12023 else
12024 uiout->text (_("all Ada exceptions handlers"));
12025 break;
9f757bf7 12026
761269c8 12027 case ada_catch_assert:
dda83cd7
SM
12028 uiout->text (_("failed Ada assertions"));
12029 break;
f7f9143b
JB
12030
12031 default:
dda83cd7
SM
12032 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12033 break;
f7f9143b
JB
12034 }
12035}
12036
6149aea9
PA
12037/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12038 for all exception catchpoint kinds. */
12039
12040static void
37f6a7f4 12041print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12042{
28010a5d
PA
12043 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12044
37f6a7f4 12045 switch (c->m_kind)
6149aea9 12046 {
761269c8 12047 case ada_catch_exception:
6149aea9 12048 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12049 if (!c->excep_string.empty ())
12050 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12051 break;
12052
761269c8 12053 case ada_catch_exception_unhandled:
78076abc 12054 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12055 break;
12056
9f757bf7
XR
12057 case ada_catch_handlers:
12058 fprintf_filtered (fp, "catch handlers");
12059 break;
12060
761269c8 12061 case ada_catch_assert:
6149aea9
PA
12062 fprintf_filtered (fp, "catch assert");
12063 break;
12064
12065 default:
12066 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12067 }
d9b3f62e 12068 print_recreate_thread (b, fp);
6149aea9
PA
12069}
12070
37f6a7f4 12071/* Virtual tables for various breakpoint types. */
2060206e 12072static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12073static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12074static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12075static struct breakpoint_ops catch_handlers_breakpoint_ops;
12076
f06f1252
TT
12077/* See ada-lang.h. */
12078
12079bool
12080is_ada_exception_catchpoint (breakpoint *bp)
12081{
12082 return (bp->ops == &catch_exception_breakpoint_ops
12083 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12084 || bp->ops == &catch_assert_breakpoint_ops
12085 || bp->ops == &catch_handlers_breakpoint_ops);
12086}
12087
f7f9143b
JB
12088/* Split the arguments specified in a "catch exception" command.
12089 Set EX to the appropriate catchpoint type.
28010a5d 12090 Set EXCEP_STRING to the name of the specific exception if
5845583d 12091 specified by the user.
9f757bf7
XR
12092 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12093 "catch handlers" command. False otherwise.
5845583d
JB
12094 If a condition is found at the end of the arguments, the condition
12095 expression is stored in COND_STRING (memory must be deallocated
12096 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12097
12098static void
a121b7c1 12099catch_ada_exception_command_split (const char *args,
9f757bf7 12100 bool is_catch_handlers_cmd,
dda83cd7 12101 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12102 std::string *excep_string,
12103 std::string *cond_string)
f7f9143b 12104{
bc18fbb5 12105 std::string exception_name;
f7f9143b 12106
bc18fbb5
TT
12107 exception_name = extract_arg (&args);
12108 if (exception_name == "if")
5845583d
JB
12109 {
12110 /* This is not an exception name; this is the start of a condition
12111 expression for a catchpoint on all exceptions. So, "un-get"
12112 this token, and set exception_name to NULL. */
bc18fbb5 12113 exception_name.clear ();
5845583d
JB
12114 args -= 2;
12115 }
f7f9143b 12116
5845583d 12117 /* Check to see if we have a condition. */
f7f9143b 12118
f1735a53 12119 args = skip_spaces (args);
61012eef 12120 if (startswith (args, "if")
5845583d
JB
12121 && (isspace (args[2]) || args[2] == '\0'))
12122 {
12123 args += 2;
f1735a53 12124 args = skip_spaces (args);
5845583d
JB
12125
12126 if (args[0] == '\0')
dda83cd7 12127 error (_("Condition missing after `if' keyword"));
bc18fbb5 12128 *cond_string = args;
5845583d
JB
12129
12130 args += strlen (args);
12131 }
12132
12133 /* Check that we do not have any more arguments. Anything else
12134 is unexpected. */
f7f9143b
JB
12135
12136 if (args[0] != '\0')
12137 error (_("Junk at end of expression"));
12138
9f757bf7
XR
12139 if (is_catch_handlers_cmd)
12140 {
12141 /* Catch handling of exceptions. */
12142 *ex = ada_catch_handlers;
12143 *excep_string = exception_name;
12144 }
bc18fbb5 12145 else if (exception_name.empty ())
f7f9143b
JB
12146 {
12147 /* Catch all exceptions. */
761269c8 12148 *ex = ada_catch_exception;
bc18fbb5 12149 excep_string->clear ();
f7f9143b 12150 }
bc18fbb5 12151 else if (exception_name == "unhandled")
f7f9143b
JB
12152 {
12153 /* Catch unhandled exceptions. */
761269c8 12154 *ex = ada_catch_exception_unhandled;
bc18fbb5 12155 excep_string->clear ();
f7f9143b
JB
12156 }
12157 else
12158 {
12159 /* Catch a specific exception. */
761269c8 12160 *ex = ada_catch_exception;
28010a5d 12161 *excep_string = exception_name;
f7f9143b
JB
12162 }
12163}
12164
12165/* Return the name of the symbol on which we should break in order to
12166 implement a catchpoint of the EX kind. */
12167
12168static const char *
761269c8 12169ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12170{
3eecfa55
JB
12171 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12172
12173 gdb_assert (data->exception_info != NULL);
0259addd 12174
f7f9143b
JB
12175 switch (ex)
12176 {
761269c8 12177 case ada_catch_exception:
dda83cd7
SM
12178 return (data->exception_info->catch_exception_sym);
12179 break;
761269c8 12180 case ada_catch_exception_unhandled:
dda83cd7
SM
12181 return (data->exception_info->catch_exception_unhandled_sym);
12182 break;
761269c8 12183 case ada_catch_assert:
dda83cd7
SM
12184 return (data->exception_info->catch_assert_sym);
12185 break;
9f757bf7 12186 case ada_catch_handlers:
dda83cd7
SM
12187 return (data->exception_info->catch_handlers_sym);
12188 break;
f7f9143b 12189 default:
dda83cd7
SM
12190 internal_error (__FILE__, __LINE__,
12191 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12192 }
12193}
12194
12195/* Return the breakpoint ops "virtual table" used for catchpoints
12196 of the EX kind. */
12197
c0a91b2b 12198static const struct breakpoint_ops *
761269c8 12199ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12200{
12201 switch (ex)
12202 {
761269c8 12203 case ada_catch_exception:
dda83cd7
SM
12204 return (&catch_exception_breakpoint_ops);
12205 break;
761269c8 12206 case ada_catch_exception_unhandled:
dda83cd7
SM
12207 return (&catch_exception_unhandled_breakpoint_ops);
12208 break;
761269c8 12209 case ada_catch_assert:
dda83cd7
SM
12210 return (&catch_assert_breakpoint_ops);
12211 break;
9f757bf7 12212 case ada_catch_handlers:
dda83cd7
SM
12213 return (&catch_handlers_breakpoint_ops);
12214 break;
f7f9143b 12215 default:
dda83cd7
SM
12216 internal_error (__FILE__, __LINE__,
12217 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12218 }
12219}
12220
12221/* Return the condition that will be used to match the current exception
12222 being raised with the exception that the user wants to catch. This
12223 assumes that this condition is used when the inferior just triggered
12224 an exception catchpoint.
cb7de75e 12225 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12226
cb7de75e 12227static std::string
9f757bf7 12228ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12229 enum ada_exception_catchpoint_kind ex)
f7f9143b 12230{
3d0b0fa3 12231 int i;
fccf9de1 12232 bool is_standard_exc = false;
cb7de75e 12233 std::string result;
9f757bf7
XR
12234
12235 if (ex == ada_catch_handlers)
12236 {
12237 /* For exception handlers catchpoints, the condition string does
dda83cd7 12238 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12239 result = ("long_integer (GNAT_GCC_exception_Access"
12240 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12241 }
12242 else
fccf9de1 12243 result = "long_integer (e)";
3d0b0fa3 12244
0963b4bd 12245 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12246 runtime units that have been compiled without debugging info; if
28010a5d 12247 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12248 exception (e.g. "constraint_error") then, during the evaluation
12249 of the condition expression, the symbol lookup on this name would
0963b4bd 12250 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12251 may then be set only on user-defined exceptions which have the
12252 same not-fully-qualified name (e.g. my_package.constraint_error).
12253
12254 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12255 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12256 exception constraint_error" is rewritten into "catch exception
12257 standard.constraint_error".
12258
85102364 12259 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12260 the inferior program, then the only way to specify this exception as a
12261 breakpoint condition is to use its fully-qualified named:
fccf9de1 12262 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12263
12264 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12265 {
28010a5d 12266 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12267 {
fccf9de1 12268 is_standard_exc = true;
9f757bf7 12269 break;
3d0b0fa3
JB
12270 }
12271 }
9f757bf7 12272
fccf9de1
TT
12273 result += " = ";
12274
12275 if (is_standard_exc)
12276 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12277 else
12278 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12279
9f757bf7 12280 return result;
f7f9143b
JB
12281}
12282
12283/* Return the symtab_and_line that should be used to insert an exception
12284 catchpoint of the TYPE kind.
12285
28010a5d
PA
12286 ADDR_STRING returns the name of the function where the real
12287 breakpoint that implements the catchpoints is set, depending on the
12288 type of catchpoint we need to create. */
f7f9143b
JB
12289
12290static struct symtab_and_line
bc18fbb5 12291ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12292 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12293{
12294 const char *sym_name;
12295 struct symbol *sym;
f7f9143b 12296
0259addd
JB
12297 /* First, find out which exception support info to use. */
12298 ada_exception_support_info_sniffer ();
12299
12300 /* Then lookup the function on which we will break in order to catch
f7f9143b 12301 the Ada exceptions requested by the user. */
f7f9143b
JB
12302 sym_name = ada_exception_sym_name (ex);
12303 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12304
57aff202
JB
12305 if (sym == NULL)
12306 error (_("Catchpoint symbol not found: %s"), sym_name);
12307
12308 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12309 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12310
12311 /* Set ADDR_STRING. */
cc12f4a8 12312 *addr_string = sym_name;
f7f9143b 12313
f7f9143b 12314 /* Set OPS. */
4b9eee8c 12315 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12316
f17011e0 12317 return find_function_start_sal (sym, 1);
f7f9143b
JB
12318}
12319
b4a5b78b 12320/* Create an Ada exception catchpoint.
f7f9143b 12321
b4a5b78b 12322 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12323
bc18fbb5 12324 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12325 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12326 of the exception to which this catchpoint applies.
2df4d1d5 12327
bc18fbb5 12328 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12329
b4a5b78b
JB
12330 TEMPFLAG, if nonzero, means that the underlying breakpoint
12331 should be temporary.
28010a5d 12332
b4a5b78b 12333 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12334
349774ef 12335void
28010a5d 12336create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12337 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12338 const std::string &excep_string,
56ecd069 12339 const std::string &cond_string,
28010a5d 12340 int tempflag,
349774ef 12341 int disabled,
28010a5d
PA
12342 int from_tty)
12343{
cc12f4a8 12344 std::string addr_string;
b4a5b78b 12345 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12346 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12347
37f6a7f4 12348 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12349 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12350 ops, tempflag, disabled, from_tty);
28010a5d 12351 c->excep_string = excep_string;
9f757bf7 12352 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12353 if (!cond_string.empty ())
733d554a 12354 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12355 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12356}
12357
9ac4176b
PA
12358/* Implement the "catch exception" command. */
12359
12360static void
eb4c3f4a 12361catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12362 struct cmd_list_element *command)
12363{
a121b7c1 12364 const char *arg = arg_entry;
9ac4176b
PA
12365 struct gdbarch *gdbarch = get_current_arch ();
12366 int tempflag;
761269c8 12367 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12368 std::string excep_string;
56ecd069 12369 std::string cond_string;
9ac4176b 12370
0f8e2034 12371 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12372
12373 if (!arg)
12374 arg = "";
9f757bf7 12375 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12376 &cond_string);
9f757bf7
XR
12377 create_ada_exception_catchpoint (gdbarch, ex_kind,
12378 excep_string, cond_string,
12379 tempflag, 1 /* enabled */,
12380 from_tty);
12381}
12382
12383/* Implement the "catch handlers" command. */
12384
12385static void
12386catch_ada_handlers_command (const char *arg_entry, int from_tty,
12387 struct cmd_list_element *command)
12388{
12389 const char *arg = arg_entry;
12390 struct gdbarch *gdbarch = get_current_arch ();
12391 int tempflag;
12392 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12393 std::string excep_string;
56ecd069 12394 std::string cond_string;
9f757bf7 12395
0f8e2034 12396 tempflag = command->context () == CATCH_TEMPORARY;
9f757bf7
XR
12397
12398 if (!arg)
12399 arg = "";
12400 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12401 &cond_string);
b4a5b78b
JB
12402 create_ada_exception_catchpoint (gdbarch, ex_kind,
12403 excep_string, cond_string,
349774ef
JB
12404 tempflag, 1 /* enabled */,
12405 from_tty);
9ac4176b
PA
12406}
12407
71bed2db
TT
12408/* Completion function for the Ada "catch" commands. */
12409
12410static void
12411catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12412 const char *text, const char *word)
12413{
12414 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12415
12416 for (const ada_exc_info &info : exceptions)
12417 {
12418 if (startswith (info.name, word))
b02f78f9 12419 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12420 }
12421}
12422
b4a5b78b 12423/* Split the arguments specified in a "catch assert" command.
5845583d 12424
b4a5b78b
JB
12425 ARGS contains the command's arguments (or the empty string if
12426 no arguments were passed).
5845583d
JB
12427
12428 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12429 (the memory needs to be deallocated after use). */
5845583d 12430
b4a5b78b 12431static void
56ecd069 12432catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12433{
f1735a53 12434 args = skip_spaces (args);
f7f9143b 12435
5845583d 12436 /* Check whether a condition was provided. */
61012eef 12437 if (startswith (args, "if")
5845583d 12438 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12439 {
5845583d 12440 args += 2;
f1735a53 12441 args = skip_spaces (args);
5845583d 12442 if (args[0] == '\0')
dda83cd7 12443 error (_("condition missing after `if' keyword"));
56ecd069 12444 cond_string.assign (args);
f7f9143b
JB
12445 }
12446
5845583d
JB
12447 /* Otherwise, there should be no other argument at the end of
12448 the command. */
12449 else if (args[0] != '\0')
12450 error (_("Junk at end of arguments."));
f7f9143b
JB
12451}
12452
9ac4176b
PA
12453/* Implement the "catch assert" command. */
12454
12455static void
eb4c3f4a 12456catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12457 struct cmd_list_element *command)
12458{
a121b7c1 12459 const char *arg = arg_entry;
9ac4176b
PA
12460 struct gdbarch *gdbarch = get_current_arch ();
12461 int tempflag;
56ecd069 12462 std::string cond_string;
9ac4176b 12463
0f8e2034 12464 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12465
12466 if (!arg)
12467 arg = "";
56ecd069 12468 catch_ada_assert_command_split (arg, cond_string);
761269c8 12469 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12470 "", cond_string,
349774ef
JB
12471 tempflag, 1 /* enabled */,
12472 from_tty);
9ac4176b 12473}
778865d3
JB
12474
12475/* Return non-zero if the symbol SYM is an Ada exception object. */
12476
12477static int
12478ada_is_exception_sym (struct symbol *sym)
12479{
7d93a1e0 12480 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12481
12482 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
dda83cd7
SM
12483 && SYMBOL_CLASS (sym) != LOC_BLOCK
12484 && SYMBOL_CLASS (sym) != LOC_CONST
12485 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12486 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12487}
12488
12489/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12490 Ada exception object. This matches all exceptions except the ones
12491 defined by the Ada language. */
12492
12493static int
12494ada_is_non_standard_exception_sym (struct symbol *sym)
12495{
12496 int i;
12497
12498 if (!ada_is_exception_sym (sym))
12499 return 0;
12500
12501 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12502 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12503 return 0; /* A standard exception. */
12504
12505 /* Numeric_Error is also a standard exception, so exclude it.
12506 See the STANDARD_EXC description for more details as to why
12507 this exception is not listed in that array. */
987012b8 12508 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12509 return 0;
12510
12511 return 1;
12512}
12513
ab816a27 12514/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12515 objects.
12516
12517 The comparison is determined first by exception name, and then
12518 by exception address. */
12519
ab816a27 12520bool
cc536b21 12521ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12522{
778865d3
JB
12523 int result;
12524
ab816a27
TT
12525 result = strcmp (name, other.name);
12526 if (result < 0)
12527 return true;
12528 if (result == 0 && addr < other.addr)
12529 return true;
12530 return false;
12531}
778865d3 12532
ab816a27 12533bool
cc536b21 12534ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12535{
12536 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12537}
12538
12539/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12540 routine, but keeping the first SKIP elements untouched.
12541
12542 All duplicates are also removed. */
12543
12544static void
ab816a27 12545sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12546 int skip)
12547{
ab816a27
TT
12548 std::sort (exceptions->begin () + skip, exceptions->end ());
12549 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12550 exceptions->end ());
778865d3
JB
12551}
12552
778865d3
JB
12553/* Add all exceptions defined by the Ada standard whose name match
12554 a regular expression.
12555
12556 If PREG is not NULL, then this regexp_t object is used to
12557 perform the symbol name matching. Otherwise, no name-based
12558 filtering is performed.
12559
12560 EXCEPTIONS is a vector of exceptions to which matching exceptions
12561 gets pushed. */
12562
12563static void
2d7cc5c7 12564ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12565 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12566{
12567 int i;
12568
12569 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12570 {
12571 if (preg == NULL
2d7cc5c7 12572 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12573 {
12574 struct bound_minimal_symbol msymbol
12575 = ada_lookup_simple_minsym (standard_exc[i]);
12576
12577 if (msymbol.minsym != NULL)
12578 {
12579 struct ada_exc_info info
77e371c0 12580 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12581
ab816a27 12582 exceptions->push_back (info);
778865d3
JB
12583 }
12584 }
12585 }
12586}
12587
12588/* Add all Ada exceptions defined locally and accessible from the given
12589 FRAME.
12590
12591 If PREG is not NULL, then this regexp_t object is used to
12592 perform the symbol name matching. Otherwise, no name-based
12593 filtering is performed.
12594
12595 EXCEPTIONS is a vector of exceptions to which matching exceptions
12596 gets pushed. */
12597
12598static void
2d7cc5c7
PA
12599ada_add_exceptions_from_frame (compiled_regex *preg,
12600 struct frame_info *frame,
ab816a27 12601 std::vector<ada_exc_info> *exceptions)
778865d3 12602{
3977b71f 12603 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12604
12605 while (block != 0)
12606 {
12607 struct block_iterator iter;
12608 struct symbol *sym;
12609
12610 ALL_BLOCK_SYMBOLS (block, iter, sym)
12611 {
12612 switch (SYMBOL_CLASS (sym))
12613 {
12614 case LOC_TYPEDEF:
12615 case LOC_BLOCK:
12616 case LOC_CONST:
12617 break;
12618 default:
12619 if (ada_is_exception_sym (sym))
12620 {
987012b8 12621 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
12622 SYMBOL_VALUE_ADDRESS (sym)};
12623
ab816a27 12624 exceptions->push_back (info);
778865d3
JB
12625 }
12626 }
12627 }
12628 if (BLOCK_FUNCTION (block) != NULL)
12629 break;
12630 block = BLOCK_SUPERBLOCK (block);
12631 }
12632}
12633
14bc53a8
PA
12634/* Return true if NAME matches PREG or if PREG is NULL. */
12635
12636static bool
2d7cc5c7 12637name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
12638{
12639 return (preg == NULL
f945dedf 12640 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
12641}
12642
778865d3
JB
12643/* Add all exceptions defined globally whose name name match
12644 a regular expression, excluding standard exceptions.
12645
12646 The reason we exclude standard exceptions is that they need
12647 to be handled separately: Standard exceptions are defined inside
12648 a runtime unit which is normally not compiled with debugging info,
12649 and thus usually do not show up in our symbol search. However,
12650 if the unit was in fact built with debugging info, we need to
12651 exclude them because they would duplicate the entry we found
12652 during the special loop that specifically searches for those
12653 standard exceptions.
12654
12655 If PREG is not NULL, then this regexp_t object is used to
12656 perform the symbol name matching. Otherwise, no name-based
12657 filtering is performed.
12658
12659 EXCEPTIONS is a vector of exceptions to which matching exceptions
12660 gets pushed. */
12661
12662static void
2d7cc5c7 12663ada_add_global_exceptions (compiled_regex *preg,
ab816a27 12664 std::vector<ada_exc_info> *exceptions)
778865d3 12665{
14bc53a8
PA
12666 /* In Ada, the symbol "search name" is a linkage name, whereas the
12667 regular expression used to do the matching refers to the natural
12668 name. So match against the decoded name. */
12669 expand_symtabs_matching (NULL,
b5ec771e 12670 lookup_name_info::match_any (),
14bc53a8
PA
12671 [&] (const char *search_name)
12672 {
f945dedf
CB
12673 std::string decoded = ada_decode (search_name);
12674 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
12675 },
12676 NULL,
03a8ea51 12677 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
14bc53a8 12678 VARIABLES_DOMAIN);
778865d3 12679
2030c079 12680 for (objfile *objfile : current_program_space->objfiles ())
778865d3 12681 {
b669c953 12682 for (compunit_symtab *s : objfile->compunits ())
778865d3 12683 {
d8aeb77f
TT
12684 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12685 int i;
778865d3 12686
d8aeb77f
TT
12687 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12688 {
582942f4 12689 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
12690 struct block_iterator iter;
12691 struct symbol *sym;
778865d3 12692
d8aeb77f
TT
12693 ALL_BLOCK_SYMBOLS (b, iter, sym)
12694 if (ada_is_non_standard_exception_sym (sym)
987012b8 12695 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
12696 {
12697 struct ada_exc_info info
987012b8 12698 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
12699
12700 exceptions->push_back (info);
12701 }
12702 }
778865d3
JB
12703 }
12704 }
12705}
12706
12707/* Implements ada_exceptions_list with the regular expression passed
12708 as a regex_t, rather than a string.
12709
12710 If not NULL, PREG is used to filter out exceptions whose names
12711 do not match. Otherwise, all exceptions are listed. */
12712
ab816a27 12713static std::vector<ada_exc_info>
2d7cc5c7 12714ada_exceptions_list_1 (compiled_regex *preg)
778865d3 12715{
ab816a27 12716 std::vector<ada_exc_info> result;
778865d3
JB
12717 int prev_len;
12718
12719 /* First, list the known standard exceptions. These exceptions
12720 need to be handled separately, as they are usually defined in
12721 runtime units that have been compiled without debugging info. */
12722
12723 ada_add_standard_exceptions (preg, &result);
12724
12725 /* Next, find all exceptions whose scope is local and accessible
12726 from the currently selected frame. */
12727
12728 if (has_stack_frames ())
12729 {
ab816a27 12730 prev_len = result.size ();
778865d3
JB
12731 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12732 &result);
ab816a27 12733 if (result.size () > prev_len)
778865d3
JB
12734 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12735 }
12736
12737 /* Add all exceptions whose scope is global. */
12738
ab816a27 12739 prev_len = result.size ();
778865d3 12740 ada_add_global_exceptions (preg, &result);
ab816a27 12741 if (result.size () > prev_len)
778865d3
JB
12742 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12743
778865d3
JB
12744 return result;
12745}
12746
12747/* Return a vector of ada_exc_info.
12748
12749 If REGEXP is NULL, all exceptions are included in the result.
12750 Otherwise, it should contain a valid regular expression,
12751 and only the exceptions whose names match that regular expression
12752 are included in the result.
12753
12754 The exceptions are sorted in the following order:
12755 - Standard exceptions (defined by the Ada language), in
12756 alphabetical order;
12757 - Exceptions only visible from the current frame, in
12758 alphabetical order;
12759 - Exceptions whose scope is global, in alphabetical order. */
12760
ab816a27 12761std::vector<ada_exc_info>
778865d3
JB
12762ada_exceptions_list (const char *regexp)
12763{
2d7cc5c7
PA
12764 if (regexp == NULL)
12765 return ada_exceptions_list_1 (NULL);
778865d3 12766
2d7cc5c7
PA
12767 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12768 return ada_exceptions_list_1 (&reg);
778865d3
JB
12769}
12770
12771/* Implement the "info exceptions" command. */
12772
12773static void
1d12d88f 12774info_exceptions_command (const char *regexp, int from_tty)
778865d3 12775{
778865d3 12776 struct gdbarch *gdbarch = get_current_arch ();
778865d3 12777
ab816a27 12778 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
12779
12780 if (regexp != NULL)
12781 printf_filtered
12782 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12783 else
12784 printf_filtered (_("All defined Ada exceptions:\n"));
12785
ab816a27
TT
12786 for (const ada_exc_info &info : exceptions)
12787 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
12788}
12789
6c038f32
PH
12790\f
12791 /* Language vector */
12792
b5ec771e
PA
12793/* symbol_name_matcher_ftype adapter for wild_match. */
12794
12795static bool
12796do_wild_match (const char *symbol_search_name,
12797 const lookup_name_info &lookup_name,
a207cff2 12798 completion_match_result *comp_match_res)
b5ec771e
PA
12799{
12800 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12801}
12802
12803/* symbol_name_matcher_ftype adapter for full_match. */
12804
12805static bool
12806do_full_match (const char *symbol_search_name,
12807 const lookup_name_info &lookup_name,
a207cff2 12808 completion_match_result *comp_match_res)
b5ec771e 12809{
959d6a67
TT
12810 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12811
12812 /* If both symbols start with "_ada_", just let the loop below
12813 handle the comparison. However, if only the symbol name starts
12814 with "_ada_", skip the prefix and let the match proceed as
12815 usual. */
12816 if (startswith (symbol_search_name, "_ada_")
12817 && !startswith (lname, "_ada"))
86b44259
TT
12818 symbol_search_name += 5;
12819
86b44259
TT
12820 int uscore_count = 0;
12821 while (*lname != '\0')
12822 {
12823 if (*symbol_search_name != *lname)
12824 {
12825 if (*symbol_search_name == 'B' && uscore_count == 2
12826 && symbol_search_name[1] == '_')
12827 {
12828 symbol_search_name += 2;
12829 while (isdigit (*symbol_search_name))
12830 ++symbol_search_name;
12831 if (symbol_search_name[0] == '_'
12832 && symbol_search_name[1] == '_')
12833 {
12834 symbol_search_name += 2;
12835 continue;
12836 }
12837 }
12838 return false;
12839 }
12840
12841 if (*symbol_search_name == '_')
12842 ++uscore_count;
12843 else
12844 uscore_count = 0;
12845
12846 ++symbol_search_name;
12847 ++lname;
12848 }
12849
12850 return is_name_suffix (symbol_search_name);
b5ec771e
PA
12851}
12852
a2cd4f14
JB
12853/* symbol_name_matcher_ftype for exact (verbatim) matches. */
12854
12855static bool
12856do_exact_match (const char *symbol_search_name,
12857 const lookup_name_info &lookup_name,
12858 completion_match_result *comp_match_res)
12859{
12860 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12861}
12862
b5ec771e
PA
12863/* Build the Ada lookup name for LOOKUP_NAME. */
12864
12865ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12866{
e0802d59 12867 gdb::string_view user_name = lookup_name.name ();
b5ec771e 12868
6a780b67 12869 if (!user_name.empty () && user_name[0] == '<')
b5ec771e
PA
12870 {
12871 if (user_name.back () == '>')
e0802d59 12872 m_encoded_name
5ac58899 12873 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 12874 else
e0802d59 12875 m_encoded_name
5ac58899 12876 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
12877 m_encoded_p = true;
12878 m_verbatim_p = true;
12879 m_wild_match_p = false;
12880 m_standard_p = false;
12881 }
12882 else
12883 {
12884 m_verbatim_p = false;
12885
e0802d59 12886 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
12887
12888 if (!m_encoded_p)
12889 {
e0802d59 12890 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
12891 m_encoded_name = ada_encode_1 (folded, false);
12892 if (m_encoded_name.empty ())
5ac58899 12893 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12894 }
12895 else
5ac58899 12896 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12897
12898 /* Handle the 'package Standard' special case. See description
12899 of m_standard_p. */
12900 if (startswith (m_encoded_name.c_str (), "standard__"))
12901 {
12902 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12903 m_standard_p = true;
12904 }
12905 else
12906 m_standard_p = false;
74ccd7f5 12907
b5ec771e
PA
12908 /* If the name contains a ".", then the user is entering a fully
12909 qualified entity name, and the match must not be done in wild
12910 mode. Similarly, if the user wants to complete what looks
12911 like an encoded name, the match must not be done in wild
12912 mode. Also, in the standard__ special case always do
12913 non-wild matching. */
12914 m_wild_match_p
12915 = (lookup_name.match_type () != symbol_name_match_type::FULL
12916 && !m_encoded_p
12917 && !m_standard_p
12918 && user_name.find ('.') == std::string::npos);
12919 }
12920}
12921
12922/* symbol_name_matcher_ftype method for Ada. This only handles
12923 completion mode. */
12924
12925static bool
12926ada_symbol_name_matches (const char *symbol_search_name,
12927 const lookup_name_info &lookup_name,
a207cff2 12928 completion_match_result *comp_match_res)
74ccd7f5 12929{
b5ec771e
PA
12930 return lookup_name.ada ().matches (symbol_search_name,
12931 lookup_name.match_type (),
a207cff2 12932 comp_match_res);
b5ec771e
PA
12933}
12934
de63c46b
PA
12935/* A name matcher that matches the symbol name exactly, with
12936 strcmp. */
12937
12938static bool
12939literal_symbol_name_matcher (const char *symbol_search_name,
12940 const lookup_name_info &lookup_name,
12941 completion_match_result *comp_match_res)
12942{
e0802d59 12943 gdb::string_view name_view = lookup_name.name ();
de63c46b 12944
e0802d59
TT
12945 if (lookup_name.completion_mode ()
12946 ? (strncmp (symbol_search_name, name_view.data (),
12947 name_view.size ()) == 0)
12948 : symbol_search_name == name_view)
de63c46b
PA
12949 {
12950 if (comp_match_res != NULL)
12951 comp_match_res->set_match (symbol_search_name);
12952 return true;
12953 }
12954 else
12955 return false;
12956}
12957
c9debfb9 12958/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
12959 Ada. */
12960
12961static symbol_name_matcher_ftype *
12962ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12963{
de63c46b
PA
12964 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12965 return literal_symbol_name_matcher;
12966
b5ec771e
PA
12967 if (lookup_name.completion_mode ())
12968 return ada_symbol_name_matches;
74ccd7f5 12969 else
b5ec771e
PA
12970 {
12971 if (lookup_name.ada ().wild_match_p ())
12972 return do_wild_match;
a2cd4f14
JB
12973 else if (lookup_name.ada ().verbatim_p ())
12974 return do_exact_match;
b5ec771e
PA
12975 else
12976 return do_full_match;
12977 }
74ccd7f5
JB
12978}
12979
0874fd07
AB
12980/* Class representing the Ada language. */
12981
12982class ada_language : public language_defn
12983{
12984public:
12985 ada_language ()
0e25e767 12986 : language_defn (language_ada)
0874fd07 12987 { /* Nothing. */ }
5bd40f2a 12988
6f7664a9
AB
12989 /* See language.h. */
12990
12991 const char *name () const override
12992 { return "ada"; }
12993
12994 /* See language.h. */
12995
12996 const char *natural_name () const override
12997 { return "Ada"; }
12998
e171d6f1
AB
12999 /* See language.h. */
13000
13001 const std::vector<const char *> &filename_extensions () const override
13002 {
13003 static const std::vector<const char *> extensions
13004 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13005 return extensions;
13006 }
13007
5bd40f2a
AB
13008 /* Print an array element index using the Ada syntax. */
13009
13010 void print_array_index (struct type *index_type,
13011 LONGEST index,
13012 struct ui_file *stream,
13013 const value_print_options *options) const override
13014 {
13015 struct value *index_value = val_atr (index_type, index);
13016
00c696a6 13017 value_print (index_value, stream, options);
5bd40f2a
AB
13018 fprintf_filtered (stream, " => ");
13019 }
15e5fd35
AB
13020
13021 /* Implement the "read_var_value" language_defn method for Ada. */
13022
13023 struct value *read_var_value (struct symbol *var,
13024 const struct block *var_block,
13025 struct frame_info *frame) const override
13026 {
13027 /* The only case where default_read_var_value is not sufficient
13028 is when VAR is a renaming... */
13029 if (frame != nullptr)
13030 {
13031 const struct block *frame_block = get_frame_block (frame, NULL);
13032 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13033 return ada_read_renaming_var_value (var, frame_block);
13034 }
13035
13036 /* This is a typical case where we expect the default_read_var_value
13037 function to work. */
13038 return language_defn::read_var_value (var, var_block, frame);
13039 }
1fb314aa 13040
2c71f639
TV
13041 /* See language.h. */
13042 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13043 {
13044 return symbol->artificial;
13045 }
13046
1fb314aa
AB
13047 /* See language.h. */
13048 void language_arch_info (struct gdbarch *gdbarch,
13049 struct language_arch_info *lai) const override
13050 {
13051 const struct builtin_type *builtin = builtin_type (gdbarch);
13052
7bea47f0
AB
13053 /* Helper function to allow shorter lines below. */
13054 auto add = [&] (struct type *t)
13055 {
13056 lai->add_primitive_type (t);
13057 };
13058
13059 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13060 0, "integer"));
13061 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13062 0, "long_integer"));
13063 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13064 0, "short_integer"));
13065 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13066 0, "character");
13067 lai->set_string_char_type (char_type);
13068 add (char_type);
13069 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13070 "float", gdbarch_float_format (gdbarch)));
13071 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13072 "long_float", gdbarch_double_format (gdbarch)));
13073 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13074 0, "long_long_integer"));
13075 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13076 "long_long_float",
13077 gdbarch_long_double_format (gdbarch)));
13078 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13079 0, "natural"));
13080 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13081 0, "positive"));
13082 add (builtin->builtin_void);
13083
13084 struct type *system_addr_ptr
1fb314aa
AB
13085 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13086 "void"));
7bea47f0
AB
13087 system_addr_ptr->set_name ("system__address");
13088 add (system_addr_ptr);
1fb314aa
AB
13089
13090 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13091 type. This is a signed integral type whose size is the same as
13092 the size of addresses. */
7bea47f0
AB
13093 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13094 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13095 "storage_offset"));
1fb314aa 13096
7bea47f0 13097 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 13098 }
4009ee92
AB
13099
13100 /* See language.h. */
13101
13102 bool iterate_over_symbols
13103 (const struct block *block, const lookup_name_info &name,
13104 domain_enum domain,
13105 gdb::function_view<symbol_found_callback_ftype> callback) const override
13106 {
d1183b06
TT
13107 std::vector<struct block_symbol> results
13108 = ada_lookup_symbol_list_worker (name, block, domain, 0);
4009ee92
AB
13109 for (block_symbol &sym : results)
13110 {
13111 if (!callback (&sym))
13112 return false;
13113 }
13114
13115 return true;
13116 }
6f827019
AB
13117
13118 /* See language.h. */
13119 bool sniff_from_mangled_name (const char *mangled,
13120 char **out) const override
13121 {
13122 std::string demangled = ada_decode (mangled);
13123
13124 *out = NULL;
13125
13126 if (demangled != mangled && demangled[0] != '<')
13127 {
13128 /* Set the gsymbol language to Ada, but still return 0.
13129 Two reasons for that:
13130
13131 1. For Ada, we prefer computing the symbol's decoded name
13132 on the fly rather than pre-compute it, in order to save
13133 memory (Ada projects are typically very large).
13134
13135 2. There are some areas in the definition of the GNAT
13136 encoding where, with a bit of bad luck, we might be able
13137 to decode a non-Ada symbol, generating an incorrect
13138 demangled name (Eg: names ending with "TB" for instance
13139 are identified as task bodies and so stripped from
13140 the decoded name returned).
13141
13142 Returning true, here, but not setting *DEMANGLED, helps us get
13143 a little bit of the best of both worlds. Because we're last,
13144 we should not affect any of the other languages that were
13145 able to demangle the symbol before us; we get to correctly
13146 tag Ada symbols as such; and even if we incorrectly tagged a
13147 non-Ada symbol, which should be rare, any routing through the
13148 Ada language should be transparent (Ada tries to behave much
13149 like C/C++ with non-Ada symbols). */
13150 return true;
13151 }
13152
13153 return false;
13154 }
fbfb0a46
AB
13155
13156 /* See language.h. */
13157
5399db93 13158 char *demangle_symbol (const char *mangled, int options) const override
0a50df5d
AB
13159 {
13160 return ada_la_decode (mangled, options);
13161 }
13162
13163 /* See language.h. */
13164
fbfb0a46
AB
13165 void print_type (struct type *type, const char *varstring,
13166 struct ui_file *stream, int show, int level,
13167 const struct type_print_options *flags) const override
13168 {
13169 ada_print_type (type, varstring, stream, show, level, flags);
13170 }
c9debfb9 13171
53fc67f8
AB
13172 /* See language.h. */
13173
13174 const char *word_break_characters (void) const override
13175 {
13176 return ada_completer_word_break_characters;
13177 }
13178
7e56227d
AB
13179 /* See language.h. */
13180
13181 void collect_symbol_completion_matches (completion_tracker &tracker,
13182 complete_symbol_mode mode,
13183 symbol_name_match_type name_match_type,
13184 const char *text, const char *word,
13185 enum type_code code) const override
13186 {
13187 struct symbol *sym;
13188 const struct block *b, *surrounding_static_block = 0;
13189 struct block_iterator iter;
13190
13191 gdb_assert (code == TYPE_CODE_UNDEF);
13192
13193 lookup_name_info lookup_name (text, name_match_type, true);
13194
13195 /* First, look at the partial symtab symbols. */
13196 expand_symtabs_matching (NULL,
13197 lookup_name,
13198 NULL,
13199 NULL,
03a8ea51 13200 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
7e56227d
AB
13201 ALL_DOMAIN);
13202
13203 /* At this point scan through the misc symbol vectors and add each
13204 symbol you find to the list. Eventually we want to ignore
13205 anything that isn't a text symbol (everything else will be
13206 handled by the psymtab code above). */
13207
13208 for (objfile *objfile : current_program_space->objfiles ())
13209 {
13210 for (minimal_symbol *msymbol : objfile->msymbols ())
13211 {
13212 QUIT;
13213
13214 if (completion_skip_symbol (mode, msymbol))
13215 continue;
13216
13217 language symbol_language = msymbol->language ();
13218
13219 /* Ada minimal symbols won't have their language set to Ada. If
13220 we let completion_list_add_name compare using the
13221 default/C-like matcher, then when completing e.g., symbols in a
13222 package named "pck", we'd match internal Ada symbols like
13223 "pckS", which are invalid in an Ada expression, unless you wrap
13224 them in '<' '>' to request a verbatim match.
13225
13226 Unfortunately, some Ada encoded names successfully demangle as
13227 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13228 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13229 with the wrong language set. Paper over that issue here. */
13230 if (symbol_language == language_auto
13231 || symbol_language == language_cplus)
13232 symbol_language = language_ada;
13233
13234 completion_list_add_name (tracker,
13235 symbol_language,
13236 msymbol->linkage_name (),
13237 lookup_name, text, word);
13238 }
13239 }
13240
13241 /* Search upwards from currently selected frame (so that we can
13242 complete on local vars. */
13243
13244 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13245 {
13246 if (!BLOCK_SUPERBLOCK (b))
13247 surrounding_static_block = b; /* For elmin of dups */
13248
13249 ALL_BLOCK_SYMBOLS (b, iter, sym)
13250 {
13251 if (completion_skip_symbol (mode, sym))
13252 continue;
13253
13254 completion_list_add_name (tracker,
13255 sym->language (),
13256 sym->linkage_name (),
13257 lookup_name, text, word);
13258 }
13259 }
13260
13261 /* Go through the symtabs and check the externs and statics for
13262 symbols which match. */
13263
13264 for (objfile *objfile : current_program_space->objfiles ())
13265 {
13266 for (compunit_symtab *s : objfile->compunits ())
13267 {
13268 QUIT;
13269 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13270 ALL_BLOCK_SYMBOLS (b, iter, sym)
13271 {
13272 if (completion_skip_symbol (mode, sym))
13273 continue;
13274
13275 completion_list_add_name (tracker,
13276 sym->language (),
13277 sym->linkage_name (),
13278 lookup_name, text, word);
13279 }
13280 }
13281 }
13282
13283 for (objfile *objfile : current_program_space->objfiles ())
13284 {
13285 for (compunit_symtab *s : objfile->compunits ())
13286 {
13287 QUIT;
13288 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13289 /* Don't do this block twice. */
13290 if (b == surrounding_static_block)
13291 continue;
13292 ALL_BLOCK_SYMBOLS (b, iter, sym)
13293 {
13294 if (completion_skip_symbol (mode, sym))
13295 continue;
13296
13297 completion_list_add_name (tracker,
13298 sym->language (),
13299 sym->linkage_name (),
13300 lookup_name, text, word);
13301 }
13302 }
13303 }
13304 }
13305
f16a9f57
AB
13306 /* See language.h. */
13307
13308 gdb::unique_xmalloc_ptr<char> watch_location_expression
13309 (struct type *type, CORE_ADDR addr) const override
13310 {
13311 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13312 std::string name = type_to_string (type);
13313 return gdb::unique_xmalloc_ptr<char>
13314 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13315 }
13316
a1d1fa3e
AB
13317 /* See language.h. */
13318
13319 void value_print (struct value *val, struct ui_file *stream,
13320 const struct value_print_options *options) const override
13321 {
13322 return ada_value_print (val, stream, options);
13323 }
13324
ebe2334e
AB
13325 /* See language.h. */
13326
13327 void value_print_inner
13328 (struct value *val, struct ui_file *stream, int recurse,
13329 const struct value_print_options *options) const override
13330 {
13331 return ada_value_print_inner (val, stream, recurse, options);
13332 }
13333
a78a19b1
AB
13334 /* See language.h. */
13335
13336 struct block_symbol lookup_symbol_nonlocal
13337 (const char *name, const struct block *block,
13338 const domain_enum domain) const override
13339 {
13340 struct block_symbol sym;
13341
13342 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13343 if (sym.symbol != NULL)
13344 return sym;
13345
13346 /* If we haven't found a match at this point, try the primitive
13347 types. In other languages, this search is performed before
13348 searching for global symbols in order to short-circuit that
13349 global-symbol search if it happens that the name corresponds
13350 to a primitive type. But we cannot do the same in Ada, because
13351 it is perfectly legitimate for a program to declare a type which
13352 has the same name as a standard type. If looking up a type in
13353 that situation, we have traditionally ignored the primitive type
13354 in favor of user-defined types. This is why, unlike most other
13355 languages, we search the primitive types this late and only after
13356 having searched the global symbols without success. */
13357
13358 if (domain == VAR_DOMAIN)
13359 {
13360 struct gdbarch *gdbarch;
13361
13362 if (block == NULL)
13363 gdbarch = target_gdbarch ();
13364 else
13365 gdbarch = block_gdbarch (block);
13366 sym.symbol
13367 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13368 if (sym.symbol != NULL)
13369 return sym;
13370 }
13371
13372 return {};
13373 }
13374
87afa652
AB
13375 /* See language.h. */
13376
13377 int parser (struct parser_state *ps) const override
13378 {
13379 warnings_issued = 0;
13380 return ada_parse (ps);
13381 }
13382
ec8cec5b
AB
13383 /* See language.h. */
13384
13385 void emitchar (int ch, struct type *chtype,
13386 struct ui_file *stream, int quoter) const override
13387 {
13388 ada_emit_char (ch, chtype, stream, quoter, 1);
13389 }
13390
52b50f2c
AB
13391 /* See language.h. */
13392
13393 void printchar (int ch, struct type *chtype,
13394 struct ui_file *stream) const override
13395 {
13396 ada_printchar (ch, chtype, stream);
13397 }
13398
d711ee67
AB
13399 /* See language.h. */
13400
13401 void printstr (struct ui_file *stream, struct type *elttype,
13402 const gdb_byte *string, unsigned int length,
13403 const char *encoding, int force_ellipses,
13404 const struct value_print_options *options) const override
13405 {
13406 ada_printstr (stream, elttype, string, length, encoding,
13407 force_ellipses, options);
13408 }
13409
4ffc13fb
AB
13410 /* See language.h. */
13411
13412 void print_typedef (struct type *type, struct symbol *new_symbol,
13413 struct ui_file *stream) const override
13414 {
13415 ada_print_typedef (type, new_symbol, stream);
13416 }
13417
39e7ecca
AB
13418 /* See language.h. */
13419
13420 bool is_string_type_p (struct type *type) const override
13421 {
13422 return ada_is_string_type (type);
13423 }
13424
22e3f3ed
AB
13425 /* See language.h. */
13426
13427 const char *struct_too_deep_ellipsis () const override
13428 { return "(...)"; }
39e7ecca 13429
67bd3fd5
AB
13430 /* See language.h. */
13431
13432 bool c_style_arrays_p () const override
13433 { return false; }
13434
d3355e4d
AB
13435 /* See language.h. */
13436
13437 bool store_sym_names_in_linkage_form_p () const override
13438 { return true; }
13439
b63a3f3f
AB
13440 /* See language.h. */
13441
13442 const struct lang_varobj_ops *varobj_ops () const override
13443 { return &ada_varobj_ops; }
13444
c9debfb9
AB
13445protected:
13446 /* See language.h. */
13447
13448 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13449 (const lookup_name_info &lookup_name) const override
13450 {
13451 return ada_get_symbol_name_matcher (lookup_name);
13452 }
0874fd07
AB
13453};
13454
13455/* Single instance of the Ada language class. */
13456
13457static ada_language ada_language_defn;
13458
5bf03f13
JB
13459/* Command-list for the "set/show ada" prefix command. */
13460static struct cmd_list_element *set_ada_list;
13461static struct cmd_list_element *show_ada_list;
13462
2060206e
PA
13463static void
13464initialize_ada_catchpoint_ops (void)
13465{
13466 struct breakpoint_ops *ops;
13467
13468 initialize_breakpoint_ops ();
13469
13470 ops = &catch_exception_breakpoint_ops;
13471 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13472 ops->allocate_location = allocate_location_exception;
13473 ops->re_set = re_set_exception;
13474 ops->check_status = check_status_exception;
13475 ops->print_it = print_it_exception;
13476 ops->print_one = print_one_exception;
13477 ops->print_mention = print_mention_exception;
13478 ops->print_recreate = print_recreate_exception;
2060206e
PA
13479
13480 ops = &catch_exception_unhandled_breakpoint_ops;
13481 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13482 ops->allocate_location = allocate_location_exception;
13483 ops->re_set = re_set_exception;
13484 ops->check_status = check_status_exception;
13485 ops->print_it = print_it_exception;
13486 ops->print_one = print_one_exception;
13487 ops->print_mention = print_mention_exception;
13488 ops->print_recreate = print_recreate_exception;
2060206e
PA
13489
13490 ops = &catch_assert_breakpoint_ops;
13491 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13492 ops->allocate_location = allocate_location_exception;
13493 ops->re_set = re_set_exception;
13494 ops->check_status = check_status_exception;
13495 ops->print_it = print_it_exception;
13496 ops->print_one = print_one_exception;
13497 ops->print_mention = print_mention_exception;
13498 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
13499
13500 ops = &catch_handlers_breakpoint_ops;
13501 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13502 ops->allocate_location = allocate_location_exception;
13503 ops->re_set = re_set_exception;
13504 ops->check_status = check_status_exception;
13505 ops->print_it = print_it_exception;
13506 ops->print_one = print_one_exception;
13507 ops->print_mention = print_mention_exception;
13508 ops->print_recreate = print_recreate_exception;
2060206e
PA
13509}
13510
3d9434b5
JB
13511/* This module's 'new_objfile' observer. */
13512
13513static void
13514ada_new_objfile_observer (struct objfile *objfile)
13515{
13516 ada_clear_symbol_cache ();
13517}
13518
13519/* This module's 'free_objfile' observer. */
13520
13521static void
13522ada_free_objfile_observer (struct objfile *objfile)
13523{
13524 ada_clear_symbol_cache ();
13525}
13526
6c265988 13527void _initialize_ada_language ();
d2e4a39e 13528void
6c265988 13529_initialize_ada_language ()
14f9c5c9 13530{
2060206e
PA
13531 initialize_ada_catchpoint_ops ();
13532
0743fc83
TT
13533 add_basic_prefix_cmd ("ada", no_class,
13534 _("Prefix command for changing Ada-specific settings."),
2f822da5 13535 &set_ada_list, 0, &setlist);
5bf03f13 13536
0743fc83
TT
13537 add_show_prefix_cmd ("ada", no_class,
13538 _("Generic command for showing Ada-specific settings."),
2f822da5 13539 &show_ada_list, 0, &showlist);
5bf03f13
JB
13540
13541 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 13542 &trust_pad_over_xvs, _("\
590042fc
PW
13543Enable or disable an optimization trusting PAD types over XVS types."), _("\
13544Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 13545 _("\
5bf03f13
JB
13546This is related to the encoding used by the GNAT compiler. The debugger\n\
13547should normally trust the contents of PAD types, but certain older versions\n\
13548of GNAT have a bug that sometimes causes the information in the PAD type\n\
13549to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13550work around this bug. It is always safe to turn this option \"off\", but\n\
13551this incurs a slight performance penalty, so it is recommended to NOT change\n\
13552this option to \"off\" unless necessary."),
dda83cd7 13553 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 13554
d72413e6
PMR
13555 add_setshow_boolean_cmd ("print-signatures", class_vars,
13556 &print_signatures, _("\
13557Enable or disable the output of formal and return types for functions in the \
590042fc 13558overloads selection menu."), _("\
d72413e6 13559Show whether the output of formal and return types for functions in the \
590042fc 13560overloads selection menu is activated."),
d72413e6
PMR
13561 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13562
9ac4176b
PA
13563 add_catch_command ("exception", _("\
13564Catch Ada exceptions, when raised.\n\
9bf7038b 13565Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
13566Without any argument, stop when any Ada exception is raised.\n\
13567If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13568being raised does not have a handler (and will therefore lead to the task's\n\
13569termination).\n\
13570Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
13571raised is the same as ARG.\n\
13572CONDITION is a boolean expression that is evaluated to see whether the\n\
13573exception should cause a stop."),
9ac4176b 13574 catch_ada_exception_command,
71bed2db 13575 catch_ada_completer,
9ac4176b
PA
13576 CATCH_PERMANENT,
13577 CATCH_TEMPORARY);
9f757bf7
XR
13578
13579 add_catch_command ("handlers", _("\
13580Catch Ada exceptions, when handled.\n\
9bf7038b
TT
13581Usage: catch handlers [ARG] [if CONDITION]\n\
13582Without any argument, stop when any Ada exception is handled.\n\
13583With an argument, catch only exceptions with the given name.\n\
13584CONDITION is a boolean expression that is evaluated to see whether the\n\
13585exception should cause a stop."),
9f757bf7 13586 catch_ada_handlers_command,
dda83cd7 13587 catch_ada_completer,
9f757bf7
XR
13588 CATCH_PERMANENT,
13589 CATCH_TEMPORARY);
9ac4176b
PA
13590 add_catch_command ("assert", _("\
13591Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
13592Usage: catch assert [if CONDITION]\n\
13593CONDITION is a boolean expression that is evaluated to see whether the\n\
13594exception should cause a stop."),
9ac4176b 13595 catch_assert_command,
dda83cd7 13596 NULL,
9ac4176b
PA
13597 CATCH_PERMANENT,
13598 CATCH_TEMPORARY);
13599
6c038f32 13600 varsize_limit = 65536;
3fcded8f
JB
13601 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13602 &varsize_limit, _("\
13603Set the maximum number of bytes allowed in a variable-size object."), _("\
13604Show the maximum number of bytes allowed in a variable-size object."), _("\
13605Attempts to access an object whose size is not a compile-time constant\n\
13606and exceeds this limit will cause an error."),
13607 NULL, NULL, &setlist, &showlist);
6c038f32 13608
778865d3
JB
13609 add_info ("exceptions", info_exceptions_command,
13610 _("\
13611List all Ada exception names.\n\
9bf7038b 13612Usage: info exceptions [REGEXP]\n\
778865d3
JB
13613If a regular expression is passed as an argument, only those matching\n\
13614the regular expression are listed."));
13615
0743fc83
TT
13616 add_basic_prefix_cmd ("ada", class_maintenance,
13617 _("Set Ada maintenance-related variables."),
2f822da5 13618 &maint_set_ada_cmdlist,
0743fc83 13619 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 13620
0743fc83
TT
13621 add_show_prefix_cmd ("ada", class_maintenance,
13622 _("Show Ada maintenance-related variables."),
2f822da5 13623 &maint_show_ada_cmdlist,
0743fc83 13624 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
13625
13626 add_setshow_boolean_cmd
13627 ("ignore-descriptive-types", class_maintenance,
13628 &ada_ignore_descriptive_types_p,
13629 _("Set whether descriptive types generated by GNAT should be ignored."),
13630 _("Show whether descriptive types generated by GNAT should be ignored."),
13631 _("\
13632When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13633DWARF attribute."),
13634 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13635
2698f5ea
TT
13636 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13637 htab_eq_string,
459a2e4c 13638 NULL, xcalloc, xfree);
6b69afc4 13639
3d9434b5 13640 /* The ada-lang observers. */
c90e7d63
SM
13641 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13642 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13643 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14f9c5c9 13644}