]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
197e01b6 3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
25224166
MK
4 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c 23
34e8f22d
RE
24#include <ctype.h> /* XXX for isupper () */
25
c906108c
SS
26#include "defs.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
c906108c 31#include "gdb_string.h"
afd7eef0 32#include "dis-asm.h" /* For register styles. */
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
34e8f22d 36#include "arch-utils.h"
4be87837 37#include "osabi.h"
eb5492fa
DJ
38#include "frame-unwind.h"
39#include "frame-base.h"
40#include "trad-frame.h"
842e1f1e
DJ
41#include "objfiles.h"
42#include "dwarf2-frame.h"
34e8f22d
RE
43
44#include "arm-tdep.h"
26216b98 45#include "gdb/sim-arm.h"
34e8f22d 46
082fc60d
RE
47#include "elf-bfd.h"
48#include "coff/internal.h"
97e03143 49#include "elf/arm.h"
c906108c 50
26216b98
AC
51#include "gdb_assert.h"
52
6529d2dd
AC
53static int arm_debug;
54
082fc60d
RE
55/* Macros for setting and testing a bit in a minimal symbol that marks
56 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 57 is used for this purpose.
082fc60d
RE
58
59 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 60 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
61
62#define MSYMBOL_SET_SPECIAL(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66#define MSYMBOL_IS_SPECIAL(msym) \
67 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
68
afd7eef0
RE
69/* The list of available "set arm ..." and "show arm ..." commands. */
70static struct cmd_list_element *setarmcmdlist = NULL;
71static struct cmd_list_element *showarmcmdlist = NULL;
72
fd50bc42
RE
73/* The type of floating-point to use. Keep this in sync with enum
74 arm_float_model, and the help string in _initialize_arm_tdep. */
75static const char *fp_model_strings[] =
76{
77 "auto",
78 "softfpa",
79 "fpa",
80 "softvfp",
28e97307
DJ
81 "vfp",
82 NULL
fd50bc42
RE
83};
84
85/* A variable that can be configured by the user. */
86static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
87static const char *current_fp_model = "auto";
88
28e97307
DJ
89/* The ABI to use. Keep this in sync with arm_abi_kind. */
90static const char *arm_abi_strings[] =
91{
92 "auto",
93 "APCS",
94 "AAPCS",
95 NULL
96};
97
98/* A variable that can be configured by the user. */
99static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
100static const char *arm_abi_string = "auto";
101
94c30b78 102/* Number of different reg name sets (options). */
afd7eef0 103static int num_disassembly_options;
bc90b915
FN
104
105/* We have more registers than the disassembler as gdb can print the value
106 of special registers as well.
107 The general register names are overwritten by whatever is being used by
94c30b78 108 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 109
94c30b78 110/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 111static char * arm_register_name_strings[] =
da59e081
JM
112{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
113 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
114 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
115 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
116 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
117 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 118 "fps", "cpsr" }; /* 24 25 */
966fbf70 119static char **arm_register_names = arm_register_name_strings;
ed9a39eb 120
afd7eef0
RE
121/* Valid register name styles. */
122static const char **valid_disassembly_styles;
ed9a39eb 123
afd7eef0
RE
124/* Disassembly style to use. Default to "std" register names. */
125static const char *disassembly_style;
94c30b78 126/* Index to that option in the opcodes table. */
da3c6d4a 127static int current_option;
96baa820 128
ed9a39eb 129/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
130 style. */
131static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 132 struct cmd_list_element *);
afd7eef0 133static void set_disassembly_style (void);
ed9a39eb 134
b508a996
RE
135static void convert_from_extended (const struct floatformat *, const void *,
136 void *);
137static void convert_to_extended (const struct floatformat *, void *,
138 const void *);
ed9a39eb 139
9b8d791a 140struct arm_prologue_cache
c3b4394c 141{
eb5492fa
DJ
142 /* The stack pointer at the time this frame was created; i.e. the
143 caller's stack pointer when this function was called. It is used
144 to identify this frame. */
145 CORE_ADDR prev_sp;
146
147 /* The frame base for this frame is just prev_sp + frame offset -
148 frame size. FRAMESIZE is the size of this stack frame, and
149 FRAMEOFFSET if the initial offset from the stack pointer (this
150 frame's stack pointer, not PREV_SP) to the frame base. */
151
c3b4394c
RE
152 int framesize;
153 int frameoffset;
eb5492fa
DJ
154
155 /* The register used to hold the frame pointer for this frame. */
c3b4394c 156 int framereg;
eb5492fa
DJ
157
158 /* Saved register offsets. */
159 struct trad_frame_saved_reg *saved_regs;
c3b4394c 160};
ed9a39eb 161
bc90b915
FN
162/* Addresses for calling Thumb functions have the bit 0 set.
163 Here are some macros to test, set, or clear bit 0 of addresses. */
164#define IS_THUMB_ADDR(addr) ((addr) & 1)
165#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
166#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
167
94c30b78 168/* Set to true if the 32-bit mode is in use. */
c906108c
SS
169
170int arm_apcs_32 = 1;
171
ed9a39eb
JM
172/* Determine if the program counter specified in MEMADDR is in a Thumb
173 function. */
c906108c 174
34e8f22d 175int
2a451106 176arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 177{
c5aa993b 178 struct minimal_symbol *sym;
c906108c 179
ed9a39eb 180 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
181 if (IS_THUMB_ADDR (memaddr))
182 return 1;
183
ed9a39eb 184 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
185 sym = lookup_minimal_symbol_by_pc (memaddr);
186 if (sym)
187 {
c5aa993b 188 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
189 }
190 else
ed9a39eb
JM
191 {
192 return 0;
193 }
c906108c
SS
194}
195
181c1381 196/* Remove useless bits from addresses in a running program. */
34e8f22d 197static CORE_ADDR
ed9a39eb 198arm_addr_bits_remove (CORE_ADDR val)
c906108c 199{
a3a2ee65
JT
200 if (arm_apcs_32)
201 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 202 else
a3a2ee65 203 return (val & 0x03fffffc);
c906108c
SS
204}
205
181c1381
RE
206/* When reading symbols, we need to zap the low bit of the address,
207 which may be set to 1 for Thumb functions. */
34e8f22d 208static CORE_ADDR
181c1381
RE
209arm_smash_text_address (CORE_ADDR val)
210{
211 return val & ~1;
212}
213
34e8f22d
RE
214/* Immediately after a function call, return the saved pc. Can't
215 always go through the frames for this because on some machines the
216 new frame is not set up until the new function executes some
217 instructions. */
218
219static CORE_ADDR
ed9a39eb 220arm_saved_pc_after_call (struct frame_info *frame)
c906108c 221{
34e8f22d 222 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
223}
224
225/* A typical Thumb prologue looks like this:
c5aa993b
JM
226 push {r7, lr}
227 add sp, sp, #-28
228 add r7, sp, #12
c906108c 229 Sometimes the latter instruction may be replaced by:
da59e081
JM
230 mov r7, sp
231
232 or like this:
233 push {r7, lr}
234 mov r7, sp
235 sub sp, #12
236
237 or, on tpcs, like this:
238 sub sp,#16
239 push {r7, lr}
240 (many instructions)
241 mov r7, sp
242 sub sp, #12
243
244 There is always one instruction of three classes:
245 1 - push
246 2 - setting of r7
247 3 - adjusting of sp
248
249 When we have found at least one of each class we are done with the prolog.
250 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 251 */
c906108c
SS
252
253static CORE_ADDR
c7885828 254thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
255{
256 CORE_ADDR current_pc;
da3c6d4a
MS
257 /* findmask:
258 bit 0 - push { rlist }
259 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
260 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
261 */
262 int findmask = 0;
263
94c30b78
MS
264 for (current_pc = pc;
265 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 266 current_pc += 2)
c906108c
SS
267 {
268 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
269
94c30b78 270 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 271 {
94c30b78 272 findmask |= 1; /* push found */
da59e081 273 }
da3c6d4a
MS
274 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
275 sub sp, #simm */
da59e081 276 {
94c30b78 277 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
278 continue;
279 else
94c30b78 280 findmask |= 4; /* add/sub sp found */
da59e081
JM
281 }
282 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
283 {
94c30b78 284 findmask |= 2; /* setting of r7 found */
da59e081
JM
285 }
286 else if (insn == 0x466f) /* mov r7, sp */
287 {
94c30b78 288 findmask |= 2; /* setting of r7 found */
da59e081 289 }
3d74b771
FF
290 else if (findmask == (4+2+1))
291 {
da3c6d4a
MS
292 /* We have found one of each type of prologue instruction */
293 break;
3d74b771 294 }
da59e081 295 else
94c30b78 296 /* Something in the prolog that we don't care about or some
da3c6d4a 297 instruction from outside the prolog scheduled here for
94c30b78 298 optimization. */
da3c6d4a 299 continue;
c906108c
SS
300 }
301
302 return current_pc;
303}
304
da3c6d4a
MS
305/* Advance the PC across any function entry prologue instructions to
306 reach some "real" code.
34e8f22d
RE
307
308 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 309 prologue:
c906108c 310
c5aa993b
JM
311 mov ip, sp
312 [stmfd sp!, {a1,a2,a3,a4}]
313 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
314 [stfe f7, [sp, #-12]!]
315 [stfe f6, [sp, #-12]!]
316 [stfe f5, [sp, #-12]!]
317 [stfe f4, [sp, #-12]!]
318 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 319
34e8f22d 320static CORE_ADDR
ed9a39eb 321arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
322{
323 unsigned long inst;
324 CORE_ADDR skip_pc;
b8d5e71d 325 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 326 char *func_name;
c906108c
SS
327 struct symtab_and_line sal;
328
848cfffb 329 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 330 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
331 return pc;
332
96baa820 333 /* See what the symbol table says. */
ed9a39eb 334
50f6fb4b 335 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 336 {
50f6fb4b
CV
337 struct symbol *sym;
338
339 /* Found a function. */
176620f1 340 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
341 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
342 {
94c30b78 343 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
344 sal = find_pc_line (func_addr, 0);
345 if ((sal.line != 0) && (sal.end < func_end))
346 return sal.end;
347 }
c906108c
SS
348 }
349
350 /* Check if this is Thumb code. */
351 if (arm_pc_is_thumb (pc))
c7885828 352 return thumb_skip_prologue (pc, func_end);
c906108c
SS
353
354 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 355 by disassembling the instructions. */
c906108c 356
b8d5e71d
MS
357 /* Like arm_scan_prologue, stop no later than pc + 64. */
358 if (func_end == 0 || func_end > pc + 64)
359 func_end = pc + 64;
c906108c 360
b8d5e71d 361 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 362 {
1c5bada0 363 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 364
b8d5e71d
MS
365 /* "mov ip, sp" is no longer a required part of the prologue. */
366 if (inst == 0xe1a0c00d) /* mov ip, sp */
367 continue;
c906108c 368
28cd8767
JG
369 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
370 continue;
371
372 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
373 continue;
374
b8d5e71d
MS
375 /* Some prologues begin with "str lr, [sp, #-4]!". */
376 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
377 continue;
c906108c 378
b8d5e71d
MS
379 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
380 continue;
c906108c 381
b8d5e71d
MS
382 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
383 continue;
11d3b27d 384
b8d5e71d
MS
385 /* Any insns after this point may float into the code, if it makes
386 for better instruction scheduling, so we skip them only if we
387 find them, but still consider the function to be frame-ful. */
f43845b3 388
b8d5e71d
MS
389 /* We may have either one sfmfd instruction here, or several stfe
390 insns, depending on the version of floating point code we
391 support. */
392 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
393 continue;
394
395 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
396 continue;
397
398 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
399 continue;
400
401 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
402 continue;
403
404 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
405 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
406 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
407 continue;
408
409 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
410 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
411 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
412 continue;
413
414 /* Un-recognized instruction; stop scanning. */
415 break;
f43845b3 416 }
c906108c 417
b8d5e71d 418 return skip_pc; /* End of prologue */
c906108c 419}
94c30b78 420
c5aa993b 421/* *INDENT-OFF* */
c906108c
SS
422/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
423 This function decodes a Thumb function prologue to determine:
424 1) the size of the stack frame
425 2) which registers are saved on it
426 3) the offsets of saved regs
427 4) the offset from the stack pointer to the frame pointer
c906108c 428
da59e081
JM
429 A typical Thumb function prologue would create this stack frame
430 (offsets relative to FP)
c906108c
SS
431 old SP -> 24 stack parameters
432 20 LR
433 16 R7
434 R7 -> 0 local variables (16 bytes)
435 SP -> -12 additional stack space (12 bytes)
436 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
437 12 bytes. The frame register is R7.
438
da3c6d4a
MS
439 The comments for thumb_skip_prolog() describe the algorithm we use
440 to detect the end of the prolog. */
c5aa993b
JM
441/* *INDENT-ON* */
442
c906108c 443static void
eb5492fa 444thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
445{
446 CORE_ADDR prologue_start;
447 CORE_ADDR prologue_end;
448 CORE_ADDR current_pc;
94c30b78 449 /* Which register has been copied to register n? */
da3c6d4a
MS
450 int saved_reg[16];
451 /* findmask:
452 bit 0 - push { rlist }
453 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
454 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
455 */
456 int findmask = 0;
c5aa993b 457 int i;
c906108c 458
eb5492fa 459 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
460 {
461 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
462
94c30b78 463 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 464 prologue_end = prev_pc;
c906108c 465 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 466 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
467 }
468 else
f7060f85
DJ
469 /* We're in the boondocks: we have no idea where the start of the
470 function is. */
471 return;
c906108c 472
eb5492fa 473 prologue_end = min (prologue_end, prev_pc);
c906108c
SS
474
475 /* Initialize the saved register map. When register H is copied to
476 register L, we will put H in saved_reg[L]. */
477 for (i = 0; i < 16; i++)
478 saved_reg[i] = i;
479
480 /* Search the prologue looking for instructions that set up the
da59e081
JM
481 frame pointer, adjust the stack pointer, and save registers.
482 Do this until all basic prolog instructions are found. */
c906108c 483
9b8d791a 484 cache->framesize = 0;
da59e081
JM
485 for (current_pc = prologue_start;
486 (current_pc < prologue_end) && ((findmask & 7) != 7);
487 current_pc += 2)
c906108c
SS
488 {
489 unsigned short insn;
490 int regno;
491 int offset;
492
493 insn = read_memory_unsigned_integer (current_pc, 2);
494
c5aa993b 495 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 496 {
da59e081 497 int mask;
94c30b78 498 findmask |= 1; /* push found */
c906108c
SS
499 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
500 whether to save LR (R14). */
da59e081 501 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 502
b8d5e71d 503 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 504 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 505 if (mask & (1 << regno))
c5aa993b 506 {
9b8d791a 507 cache->framesize += 4;
eb5492fa 508 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
da3c6d4a
MS
509 /* Reset saved register map. */
510 saved_reg[regno] = regno;
c906108c
SS
511 }
512 }
da3c6d4a
MS
513 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
514 sub sp, #simm */
c906108c 515 {
b8d5e71d 516 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
517 continue;
518 else
94c30b78 519 findmask |= 4; /* add/sub sp found */
da59e081 520
94c30b78
MS
521 offset = (insn & 0x7f) << 2; /* get scaled offset */
522 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 523 {
9b8d791a 524 cache->frameoffset += offset;
da59e081
JM
525 offset = -offset;
526 }
9b8d791a 527 cache->framesize -= offset;
c906108c
SS
528 }
529 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
530 {
94c30b78 531 findmask |= 2; /* setting of r7 found */
9b8d791a 532 cache->framereg = THUMB_FP_REGNUM;
c3b4394c 533 /* get scaled offset */
9b8d791a 534 cache->frameoffset = (insn & 0xff) << 2;
c906108c 535 }
da59e081 536 else if (insn == 0x466f) /* mov r7, sp */
c906108c 537 {
94c30b78 538 findmask |= 2; /* setting of r7 found */
9b8d791a
DJ
539 cache->framereg = THUMB_FP_REGNUM;
540 cache->frameoffset = 0;
34e8f22d 541 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
542 }
543 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
544 {
da3c6d4a 545 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 546 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 547 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
548 }
549 else
da3c6d4a
MS
550 /* Something in the prolog that we don't care about or some
551 instruction from outside the prolog scheduled here for
552 optimization. */
553 continue;
c906108c
SS
554 }
555}
556
ed9a39eb 557/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
558 1) the size of the stack frame
559 2) which registers are saved on it
560 3) the offsets of saved regs
561 4) the offset from the stack pointer to the frame pointer
c906108c
SS
562 This information is stored in the "extra" fields of the frame_info.
563
96baa820
JM
564 There are two basic forms for the ARM prologue. The fixed argument
565 function call will look like:
ed9a39eb
JM
566
567 mov ip, sp
568 stmfd sp!, {fp, ip, lr, pc}
569 sub fp, ip, #4
570 [sub sp, sp, #4]
96baa820 571
c906108c 572 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
573 IP -> 4 (caller's stack)
574 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
575 -4 LR (return address in caller)
576 -8 IP (copy of caller's SP)
577 -12 FP (caller's FP)
578 SP -> -28 Local variables
579
c906108c 580 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
581 28 bytes. The stmfd call can also save any of the vN registers it
582 plans to use, which increases the frame size accordingly.
583
584 Note: The stored PC is 8 off of the STMFD instruction that stored it
585 because the ARM Store instructions always store PC + 8 when you read
586 the PC register.
ed9a39eb 587
96baa820
JM
588 A variable argument function call will look like:
589
ed9a39eb
JM
590 mov ip, sp
591 stmfd sp!, {a1, a2, a3, a4}
592 stmfd sp!, {fp, ip, lr, pc}
593 sub fp, ip, #20
594
96baa820 595 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
596 IP -> 20 (caller's stack)
597 16 A4
598 12 A3
599 8 A2
600 4 A1
601 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
602 -4 LR (return address in caller)
603 -8 IP (copy of caller's SP)
604 -12 FP (caller's FP)
605 SP -> -28 Local variables
96baa820
JM
606
607 The frame size would thus be 48 bytes, and the frame offset would be
608 28 bytes.
609
610 There is another potential complication, which is that the optimizer
611 will try to separate the store of fp in the "stmfd" instruction from
612 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
613 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
614
615 Also, note, the original version of the ARM toolchain claimed that there
616 should be an
617
618 instruction at the end of the prologue. I have never seen GCC produce
619 this, and the ARM docs don't mention it. We still test for it below in
620 case it happens...
ed9a39eb
JM
621
622 */
c906108c
SS
623
624static void
eb5492fa 625arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 626{
28cd8767 627 int regno, sp_offset, fp_offset, ip_offset;
c906108c 628 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 629 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 630
c906108c 631 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
632 cache->framereg = ARM_SP_REGNUM;
633 cache->framesize = 0;
634 cache->frameoffset = 0;
c906108c
SS
635
636 /* Check for Thumb prologue. */
eb5492fa 637 if (arm_pc_is_thumb (prev_pc))
c906108c 638 {
eb5492fa 639 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
640 return;
641 }
642
643 /* Find the function prologue. If we can't find the function in
644 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 645 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 646 {
2a451106
KB
647 /* One way to find the end of the prologue (which works well
648 for unoptimized code) is to do the following:
649
650 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
651
652 if (sal.line == 0)
eb5492fa 653 prologue_end = prev_pc;
2a451106
KB
654 else if (sal.end < prologue_end)
655 prologue_end = sal.end;
656
657 This mechanism is very accurate so long as the optimizer
658 doesn't move any instructions from the function body into the
659 prologue. If this happens, sal.end will be the last
660 instruction in the first hunk of prologue code just before
661 the first instruction that the scheduler has moved from
662 the body to the prologue.
663
664 In order to make sure that we scan all of the prologue
665 instructions, we use a slightly less accurate mechanism which
666 may scan more than necessary. To help compensate for this
667 lack of accuracy, the prologue scanning loop below contains
668 several clauses which'll cause the loop to terminate early if
669 an implausible prologue instruction is encountered.
670
671 The expression
672
673 prologue_start + 64
674
675 is a suitable endpoint since it accounts for the largest
676 possible prologue plus up to five instructions inserted by
94c30b78 677 the scheduler. */
2a451106
KB
678
679 if (prologue_end > prologue_start + 64)
680 {
94c30b78 681 prologue_end = prologue_start + 64; /* See above. */
2a451106 682 }
c906108c
SS
683 }
684 else
685 {
eb5492fa
DJ
686 /* We have no symbol information. Our only option is to assume this
687 function has a standard stack frame and the normal frame register.
688 Then, we can find the value of our frame pointer on entrance to
689 the callee (or at the present moment if this is the innermost frame).
690 The value stored there should be the address of the stmfd + 8. */
691 CORE_ADDR frame_loc;
692 LONGEST return_value;
693
694 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
695 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
696 return;
697 else
698 {
699 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 700 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 701 }
c906108c
SS
702 }
703
eb5492fa
DJ
704 if (prev_pc < prologue_end)
705 prologue_end = prev_pc;
706
c906108c 707 /* Now search the prologue looking for instructions that set up the
96baa820 708 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 709
96baa820
JM
710 Be careful, however, and if it doesn't look like a prologue,
711 don't try to scan it. If, for instance, a frameless function
712 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 713 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
714 and other operations that rely on a knowledge of the stack
715 traceback.
716
717 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 718 if we don't see this as the first insn, we will stop.
c906108c 719
f43845b3
MS
720 [Note: This doesn't seem to be true any longer, so it's now an
721 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 722
f43845b3
MS
723 [Note further: The "mov ip,sp" only seems to be missing in
724 frameless functions at optimization level "-O2" or above,
725 in which case it is often (but not always) replaced by
b8d5e71d 726 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 727
28cd8767 728 sp_offset = fp_offset = ip_offset = 0;
f43845b3 729
94c30b78
MS
730 for (current_pc = prologue_start;
731 current_pc < prologue_end;
f43845b3 732 current_pc += 4)
96baa820 733 {
d4473757
KB
734 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
735
94c30b78 736 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 737 {
28cd8767
JG
738 ip_offset = 0;
739 continue;
740 }
741 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
742 {
743 unsigned imm = insn & 0xff; /* immediate value */
744 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
745 imm = (imm >> rot) | (imm << (32 - rot));
746 ip_offset = imm;
747 continue;
748 }
749 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
750 {
751 unsigned imm = insn & 0xff; /* immediate value */
752 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
753 imm = (imm >> rot) | (imm << (32 - rot));
754 ip_offset = -imm;
f43845b3
MS
755 continue;
756 }
94c30b78 757 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 758 {
e28a332c
JG
759 sp_offset -= 4;
760 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
761 continue;
762 }
763 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
764 /* stmfd sp!, {..., fp, ip, lr, pc}
765 or
766 stmfd sp!, {a1, a2, a3, a4} */
c906108c 767 {
d4473757 768 int mask = insn & 0xffff;
ed9a39eb 769
94c30b78 770 /* Calculate offsets of saved registers. */
34e8f22d 771 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
772 if (mask & (1 << regno))
773 {
774 sp_offset -= 4;
eb5492fa 775 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
776 }
777 }
b8d5e71d
MS
778 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
779 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
780 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
781 {
782 /* No need to add this to saved_regs -- it's just an arg reg. */
783 continue;
784 }
785 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
786 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
787 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
788 {
789 /* No need to add this to saved_regs -- it's just an arg reg. */
790 continue;
791 }
d4473757
KB
792 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
793 {
94c30b78
MS
794 unsigned imm = insn & 0xff; /* immediate value */
795 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 796 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 797 fp_offset = -imm + ip_offset;
9b8d791a 798 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
799 }
800 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
801 {
94c30b78
MS
802 unsigned imm = insn & 0xff; /* immediate value */
803 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
804 imm = (imm >> rot) | (imm << (32 - rot));
805 sp_offset -= imm;
806 }
807 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
808 {
809 sp_offset -= 12;
34e8f22d 810 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 811 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
812 }
813 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
814 {
815 int n_saved_fp_regs;
816 unsigned int fp_start_reg, fp_bound_reg;
817
94c30b78 818 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 819 {
d4473757
KB
820 if ((insn & 0x40000) == 0x40000) /* N1 is set */
821 n_saved_fp_regs = 3;
822 else
823 n_saved_fp_regs = 1;
96baa820 824 }
d4473757 825 else
96baa820 826 {
d4473757
KB
827 if ((insn & 0x40000) == 0x40000) /* N1 is set */
828 n_saved_fp_regs = 2;
829 else
830 n_saved_fp_regs = 4;
96baa820 831 }
d4473757 832
34e8f22d 833 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
834 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
835 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
836 {
837 sp_offset -= 12;
eb5492fa 838 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 839 }
c906108c 840 }
d4473757 841 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 842 break; /* Condition not true, exit early */
b8d5e71d 843 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 844 break; /* Don't scan past a block load */
d4473757
KB
845 else
846 /* The optimizer might shove anything into the prologue,
94c30b78 847 so we just skip what we don't recognize. */
d4473757 848 continue;
c906108c
SS
849 }
850
94c30b78
MS
851 /* The frame size is just the negative of the offset (from the
852 original SP) of the last thing thing we pushed on the stack.
853 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
854 cache->framesize = -sp_offset;
855 if (cache->framereg == ARM_FP_REGNUM)
856 cache->frameoffset = fp_offset - sp_offset;
d4473757 857 else
9b8d791a 858 cache->frameoffset = 0;
c906108c
SS
859}
860
eb5492fa
DJ
861static struct arm_prologue_cache *
862arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 863{
eb5492fa
DJ
864 int reg;
865 struct arm_prologue_cache *cache;
866 CORE_ADDR unwound_fp;
c5aa993b 867
eb5492fa
DJ
868 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
869 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 870
eb5492fa 871 arm_scan_prologue (next_frame, cache);
848cfffb 872
eb5492fa
DJ
873 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
874 if (unwound_fp == 0)
875 return cache;
c906108c 876
eb5492fa 877 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 878
eb5492fa
DJ
879 /* Calculate actual addresses of saved registers using offsets
880 determined by arm_scan_prologue. */
881 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 882 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
883 cache->saved_regs[reg].addr += cache->prev_sp;
884
885 return cache;
c906108c
SS
886}
887
eb5492fa
DJ
888/* Our frame ID for a normal frame is the current function's starting PC
889 and the caller's SP when we were called. */
c906108c 890
148754e5 891static void
eb5492fa
DJ
892arm_prologue_this_id (struct frame_info *next_frame,
893 void **this_cache,
894 struct frame_id *this_id)
c906108c 895{
eb5492fa
DJ
896 struct arm_prologue_cache *cache;
897 struct frame_id id;
898 CORE_ADDR func;
f079148d 899
eb5492fa
DJ
900 if (*this_cache == NULL)
901 *this_cache = arm_make_prologue_cache (next_frame);
902 cache = *this_cache;
2a451106 903
eb5492fa 904 func = frame_func_unwind (next_frame);
2a451106 905
eb5492fa
DJ
906 /* This is meant to halt the backtrace at "_start". Make sure we
907 don't halt it at a generic dummy frame. */
9e815ec2 908 if (func <= LOWEST_PC)
eb5492fa 909 return;
5a203e44 910
eb5492fa
DJ
911 /* If we've hit a wall, stop. */
912 if (cache->prev_sp == 0)
913 return;
24de872b 914
eb5492fa 915 id = frame_id_build (cache->prev_sp, func);
eb5492fa 916 *this_id = id;
c906108c
SS
917}
918
eb5492fa
DJ
919static void
920arm_prologue_prev_register (struct frame_info *next_frame,
921 void **this_cache,
922 int prev_regnum,
923 int *optimized,
924 enum lval_type *lvalp,
925 CORE_ADDR *addrp,
926 int *realnump,
9af75ef6 927 gdb_byte *valuep)
24de872b
DJ
928{
929 struct arm_prologue_cache *cache;
930
eb5492fa
DJ
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
24de872b 934
eb5492fa
DJ
935 /* If we are asked to unwind the PC, then we need to return the LR
936 instead. The saved value of PC points into this frame's
937 prologue, not the next frame's resume location. */
938 if (prev_regnum == ARM_PC_REGNUM)
939 prev_regnum = ARM_LR_REGNUM;
24de872b 940
eb5492fa
DJ
941 /* SP is generally not saved to the stack, but this frame is
942 identified by NEXT_FRAME's stack pointer at the time of the call.
943 The value was already reconstructed into PREV_SP. */
944 if (prev_regnum == ARM_SP_REGNUM)
945 {
946 *lvalp = not_lval;
947 if (valuep)
948 store_unsigned_integer (valuep, 4, cache->prev_sp);
949 return;
950 }
951
1f67027d
AC
952 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
953 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
954}
955
956struct frame_unwind arm_prologue_unwind = {
957 NORMAL_FRAME,
958 arm_prologue_this_id,
959 arm_prologue_prev_register
960};
961
962static const struct frame_unwind *
963arm_prologue_unwind_sniffer (struct frame_info *next_frame)
964{
965 return &arm_prologue_unwind;
24de872b
DJ
966}
967
909cf6ea
DJ
968static struct arm_prologue_cache *
969arm_make_stub_cache (struct frame_info *next_frame)
970{
971 int reg;
972 struct arm_prologue_cache *cache;
973 CORE_ADDR unwound_fp;
974
975 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
976 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
977
978 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
979
980 return cache;
981}
982
983/* Our frame ID for a stub frame is the current SP and LR. */
984
985static void
986arm_stub_this_id (struct frame_info *next_frame,
987 void **this_cache,
988 struct frame_id *this_id)
989{
990 struct arm_prologue_cache *cache;
991
992 if (*this_cache == NULL)
993 *this_cache = arm_make_stub_cache (next_frame);
994 cache = *this_cache;
995
996 *this_id = frame_id_build (cache->prev_sp,
997 frame_pc_unwind (next_frame));
998}
999
1000struct frame_unwind arm_stub_unwind = {
1001 NORMAL_FRAME,
1002 arm_stub_this_id,
1003 arm_prologue_prev_register
1004};
1005
1006static const struct frame_unwind *
1007arm_stub_unwind_sniffer (struct frame_info *next_frame)
1008{
1009 char dummy[4];
1010
1011 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1012 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1013 return &arm_stub_unwind;
1014
1015 return NULL;
1016}
1017
24de872b 1018static CORE_ADDR
eb5492fa 1019arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1020{
1021 struct arm_prologue_cache *cache;
1022
eb5492fa
DJ
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_prologue_cache (next_frame);
1025 cache = *this_cache;
1026
1027 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1028}
1029
eb5492fa
DJ
1030struct frame_base arm_normal_base = {
1031 &arm_prologue_unwind,
1032 arm_normal_frame_base,
1033 arm_normal_frame_base,
1034 arm_normal_frame_base
1035};
1036
eb5492fa
DJ
1037/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1038 dummy frame. The frame ID's base needs to match the TOS value
1039 saved by save_dummy_frame_tos() and returned from
1040 arm_push_dummy_call, and the PC needs to match the dummy frame's
1041 breakpoint. */
c906108c 1042
eb5492fa
DJ
1043static struct frame_id
1044arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1045{
eb5492fa
DJ
1046 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1047 frame_pc_unwind (next_frame));
1048}
c3b4394c 1049
eb5492fa
DJ
1050/* Given THIS_FRAME, find the previous frame's resume PC (which will
1051 be used to construct the previous frame's ID, after looking up the
1052 containing function). */
c3b4394c 1053
eb5492fa
DJ
1054static CORE_ADDR
1055arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1056{
1057 CORE_ADDR pc;
1058 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1059 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1060}
1061
1062static CORE_ADDR
1063arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1064{
1065 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1066}
1067
2dd604e7
RE
1068/* When arguments must be pushed onto the stack, they go on in reverse
1069 order. The code below implements a FILO (stack) to do this. */
1070
1071struct stack_item
1072{
1073 int len;
1074 struct stack_item *prev;
1075 void *data;
1076};
1077
1078static struct stack_item *
1079push_stack_item (struct stack_item *prev, void *contents, int len)
1080{
1081 struct stack_item *si;
1082 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1083 si->data = xmalloc (len);
2dd604e7
RE
1084 si->len = len;
1085 si->prev = prev;
1086 memcpy (si->data, contents, len);
1087 return si;
1088}
1089
1090static struct stack_item *
1091pop_stack_item (struct stack_item *si)
1092{
1093 struct stack_item *dead = si;
1094 si = si->prev;
1095 xfree (dead->data);
1096 xfree (dead);
1097 return si;
1098}
1099
2af48f68
PB
1100
1101/* Return the alignment (in bytes) of the given type. */
1102
1103static int
1104arm_type_align (struct type *t)
1105{
1106 int n;
1107 int align;
1108 int falign;
1109
1110 t = check_typedef (t);
1111 switch (TYPE_CODE (t))
1112 {
1113 default:
1114 /* Should never happen. */
1115 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1116 return 4;
1117
1118 case TYPE_CODE_PTR:
1119 case TYPE_CODE_ENUM:
1120 case TYPE_CODE_INT:
1121 case TYPE_CODE_FLT:
1122 case TYPE_CODE_SET:
1123 case TYPE_CODE_RANGE:
1124 case TYPE_CODE_BITSTRING:
1125 case TYPE_CODE_REF:
1126 case TYPE_CODE_CHAR:
1127 case TYPE_CODE_BOOL:
1128 return TYPE_LENGTH (t);
1129
1130 case TYPE_CODE_ARRAY:
1131 case TYPE_CODE_COMPLEX:
1132 /* TODO: What about vector types? */
1133 return arm_type_align (TYPE_TARGET_TYPE (t));
1134
1135 case TYPE_CODE_STRUCT:
1136 case TYPE_CODE_UNION:
1137 align = 1;
1138 for (n = 0; n < TYPE_NFIELDS (t); n++)
1139 {
1140 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1141 if (falign > align)
1142 align = falign;
1143 }
1144 return align;
1145 }
1146}
1147
2dd604e7
RE
1148/* We currently only support passing parameters in integer registers. This
1149 conforms with GCC's default model. Several other variants exist and
1150 we should probably support some of them based on the selected ABI. */
1151
1152static CORE_ADDR
7d9b040b 1153arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1154 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1155 struct value **args, CORE_ADDR sp, int struct_return,
1156 CORE_ADDR struct_addr)
2dd604e7
RE
1157{
1158 int argnum;
1159 int argreg;
1160 int nstack;
1161 struct stack_item *si = NULL;
1162
6a65450a
AC
1163 /* Set the return address. For the ARM, the return breakpoint is
1164 always at BP_ADDR. */
2dd604e7 1165 /* XXX Fix for Thumb. */
6a65450a 1166 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1167
1168 /* Walk through the list of args and determine how large a temporary
1169 stack is required. Need to take care here as structs may be
1170 passed on the stack, and we have to to push them. */
1171 nstack = 0;
1172
1173 argreg = ARM_A1_REGNUM;
1174 nstack = 0;
1175
2dd604e7
RE
1176 /* The struct_return pointer occupies the first parameter
1177 passing register. */
1178 if (struct_return)
1179 {
1180 if (arm_debug)
1181 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1182 REGISTER_NAME (argreg), paddr (struct_addr));
1183 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1184 argreg++;
1185 }
1186
1187 for (argnum = 0; argnum < nargs; argnum++)
1188 {
1189 int len;
1190 struct type *arg_type;
1191 struct type *target_type;
1192 enum type_code typecode;
0fd88904 1193 bfd_byte *val;
2af48f68 1194 int align;
2dd604e7 1195
df407dfe 1196 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1197 len = TYPE_LENGTH (arg_type);
1198 target_type = TYPE_TARGET_TYPE (arg_type);
1199 typecode = TYPE_CODE (arg_type);
0fd88904 1200 val = value_contents_writeable (args[argnum]);
2dd604e7 1201
2af48f68
PB
1202 align = arm_type_align (arg_type);
1203 /* Round alignment up to a whole number of words. */
1204 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1205 /* Different ABIs have different maximum alignments. */
1206 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1207 {
1208 /* The APCS ABI only requires word alignment. */
1209 align = INT_REGISTER_SIZE;
1210 }
1211 else
1212 {
1213 /* The AAPCS requires at most doubleword alignment. */
1214 if (align > INT_REGISTER_SIZE * 2)
1215 align = INT_REGISTER_SIZE * 2;
1216 }
1217
1218 /* Push stack padding for dowubleword alignment. */
1219 if (nstack & (align - 1))
1220 {
1221 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1222 nstack += INT_REGISTER_SIZE;
1223 }
1224
1225 /* Doubleword aligned quantities must go in even register pairs. */
1226 if (argreg <= ARM_LAST_ARG_REGNUM
1227 && align > INT_REGISTER_SIZE
1228 && argreg & 1)
1229 argreg++;
1230
2dd604e7
RE
1231 /* If the argument is a pointer to a function, and it is a
1232 Thumb function, create a LOCAL copy of the value and set
1233 the THUMB bit in it. */
1234 if (TYPE_CODE_PTR == typecode
1235 && target_type != NULL
1236 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1237 {
7c0b4a20 1238 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1239 if (arm_pc_is_thumb (regval))
1240 {
1241 val = alloca (len);
fbd9dcd3 1242 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1243 }
1244 }
1245
1246 /* Copy the argument to general registers or the stack in
1247 register-sized pieces. Large arguments are split between
1248 registers and stack. */
1249 while (len > 0)
1250 {
b1e29e33 1251 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1252
1253 if (argreg <= ARM_LAST_ARG_REGNUM)
1254 {
1255 /* The argument is being passed in a general purpose
1256 register. */
7c0b4a20 1257 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1258 if (arm_debug)
1259 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1260 argnum, REGISTER_NAME (argreg),
b1e29e33 1261 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1262 regcache_cooked_write_unsigned (regcache, argreg, regval);
1263 argreg++;
1264 }
1265 else
1266 {
1267 /* Push the arguments onto the stack. */
1268 if (arm_debug)
1269 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1270 argnum, nstack);
b1e29e33
AC
1271 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1272 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1273 }
1274
1275 len -= partial_len;
1276 val += partial_len;
1277 }
1278 }
1279 /* If we have an odd number of words to push, then decrement the stack
1280 by one word now, so first stack argument will be dword aligned. */
1281 if (nstack & 4)
1282 sp -= 4;
1283
1284 while (si)
1285 {
1286 sp -= si->len;
1287 write_memory (sp, si->data, si->len);
1288 si = pop_stack_item (si);
1289 }
1290
1291 /* Finally, update teh SP register. */
1292 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1293
1294 return sp;
1295}
1296
f53f0d0b
PB
1297
1298/* Always align the frame to an 8-byte boundary. This is required on
1299 some platforms and harmless on the rest. */
1300
1301static CORE_ADDR
1302arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1303{
1304 /* Align the stack to eight bytes. */
1305 return sp & ~ (CORE_ADDR) 7;
1306}
1307
c906108c 1308static void
ed9a39eb 1309print_fpu_flags (int flags)
c906108c 1310{
c5aa993b
JM
1311 if (flags & (1 << 0))
1312 fputs ("IVO ", stdout);
1313 if (flags & (1 << 1))
1314 fputs ("DVZ ", stdout);
1315 if (flags & (1 << 2))
1316 fputs ("OFL ", stdout);
1317 if (flags & (1 << 3))
1318 fputs ("UFL ", stdout);
1319 if (flags & (1 << 4))
1320 fputs ("INX ", stdout);
1321 putchar ('\n');
c906108c
SS
1322}
1323
5e74b15c
RE
1324/* Print interesting information about the floating point processor
1325 (if present) or emulator. */
34e8f22d 1326static void
d855c300 1327arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1328 struct frame_info *frame, const char *args)
c906108c 1329{
52f0bd74 1330 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1331 int type;
1332
1333 type = (status >> 24) & 127;
edefbb7c
AC
1334 if (status & (1 << 31))
1335 printf (_("Hardware FPU type %d\n"), type);
1336 else
1337 printf (_("Software FPU type %d\n"), type);
1338 /* i18n: [floating point unit] mask */
1339 fputs (_("mask: "), stdout);
c5aa993b 1340 print_fpu_flags (status >> 16);
edefbb7c
AC
1341 /* i18n: [floating point unit] flags */
1342 fputs (_("flags: "), stdout);
c5aa993b 1343 print_fpu_flags (status);
c906108c
SS
1344}
1345
34e8f22d
RE
1346/* Return the GDB type object for the "standard" data type of data in
1347 register N. */
1348
1349static struct type *
7a5ea0d4 1350arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1351{
34e8f22d 1352 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1353 {
d7449b42 1354 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1355 return builtin_type_arm_ext_big;
1356 else
1357 return builtin_type_arm_ext_littlebyte_bigword;
1358 }
1359 else
1360 return builtin_type_int32;
1361}
1362
34e8f22d
RE
1363/* Index within `registers' of the first byte of the space for
1364 register N. */
1365
1366static int
1367arm_register_byte (int regnum)
1368{
1369 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1370 return regnum * INT_REGISTER_SIZE;
34e8f22d 1371 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1372 return (NUM_GREGS * INT_REGISTER_SIZE
1373 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1374 else
7a5ea0d4
DJ
1375 return (NUM_GREGS * INT_REGISTER_SIZE
1376 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1377 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1378}
1379
26216b98
AC
1380/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1381static int
1382arm_register_sim_regno (int regnum)
1383{
1384 int reg = regnum;
1385 gdb_assert (reg >= 0 && reg < NUM_REGS);
1386
1387 if (reg < NUM_GREGS)
1388 return SIM_ARM_R0_REGNUM + reg;
1389 reg -= NUM_GREGS;
1390
1391 if (reg < NUM_FREGS)
1392 return SIM_ARM_FP0_REGNUM + reg;
1393 reg -= NUM_FREGS;
1394
1395 if (reg < NUM_SREGS)
1396 return SIM_ARM_FPS_REGNUM + reg;
1397 reg -= NUM_SREGS;
1398
edefbb7c 1399 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1400}
34e8f22d 1401
a37b3cc0
AC
1402/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1403 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1404 It is thought that this is is the floating-point register format on
1405 little-endian systems. */
c906108c 1406
ed9a39eb 1407static void
b508a996
RE
1408convert_from_extended (const struct floatformat *fmt, const void *ptr,
1409 void *dbl)
c906108c 1410{
a37b3cc0 1411 DOUBLEST d;
d7449b42 1412 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1413 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1414 else
1415 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1416 ptr, &d);
b508a996 1417 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1418}
1419
34e8f22d 1420static void
b508a996 1421convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1422{
a37b3cc0 1423 DOUBLEST d;
b508a996 1424 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1425 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1426 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1427 else
1428 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1429 &d, dbl);
c906108c 1430}
ed9a39eb 1431
c906108c 1432static int
ed9a39eb 1433condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1434{
1435 if (cond == INST_AL || cond == INST_NV)
1436 return 1;
1437
1438 switch (cond)
1439 {
1440 case INST_EQ:
1441 return ((status_reg & FLAG_Z) != 0);
1442 case INST_NE:
1443 return ((status_reg & FLAG_Z) == 0);
1444 case INST_CS:
1445 return ((status_reg & FLAG_C) != 0);
1446 case INST_CC:
1447 return ((status_reg & FLAG_C) == 0);
1448 case INST_MI:
1449 return ((status_reg & FLAG_N) != 0);
1450 case INST_PL:
1451 return ((status_reg & FLAG_N) == 0);
1452 case INST_VS:
1453 return ((status_reg & FLAG_V) != 0);
1454 case INST_VC:
1455 return ((status_reg & FLAG_V) == 0);
1456 case INST_HI:
1457 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1458 case INST_LS:
1459 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1460 case INST_GE:
1461 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1462 case INST_LT:
1463 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1464 case INST_GT:
1465 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1466 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1467 case INST_LE:
1468 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1469 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1470 }
1471 return 1;
1472}
1473
9512d7fd 1474/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1475#define submask(x) ((1L << ((x) + 1)) - 1)
1476#define bit(obj,st) (((obj) >> (st)) & 1)
1477#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1478#define sbits(obj,st,fn) \
1479 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1480#define BranchDest(addr,instr) \
1481 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1482#define ARM_PC_32 1
1483
1484static unsigned long
ed9a39eb
JM
1485shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1486 unsigned long status_reg)
c906108c
SS
1487{
1488 unsigned long res, shift;
1489 int rm = bits (inst, 0, 3);
1490 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1491
1492 if (bit (inst, 4))
c906108c
SS
1493 {
1494 int rs = bits (inst, 8, 11);
1495 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1496 }
1497 else
1498 shift = bits (inst, 7, 11);
c5aa993b
JM
1499
1500 res = (rm == 15
c906108c 1501 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1502 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1503 : read_register (rm));
1504
1505 switch (shifttype)
1506 {
c5aa993b 1507 case 0: /* LSL */
c906108c
SS
1508 res = shift >= 32 ? 0 : res << shift;
1509 break;
c5aa993b
JM
1510
1511 case 1: /* LSR */
c906108c
SS
1512 res = shift >= 32 ? 0 : res >> shift;
1513 break;
1514
c5aa993b
JM
1515 case 2: /* ASR */
1516 if (shift >= 32)
1517 shift = 31;
c906108c
SS
1518 res = ((res & 0x80000000L)
1519 ? ~((~res) >> shift) : res >> shift);
1520 break;
1521
c5aa993b 1522 case 3: /* ROR/RRX */
c906108c
SS
1523 shift &= 31;
1524 if (shift == 0)
1525 res = (res >> 1) | (carry ? 0x80000000L : 0);
1526 else
c5aa993b 1527 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1528 break;
1529 }
1530
1531 return res & 0xffffffff;
1532}
1533
c906108c
SS
1534/* Return number of 1-bits in VAL. */
1535
1536static int
ed9a39eb 1537bitcount (unsigned long val)
c906108c
SS
1538{
1539 int nbits;
1540 for (nbits = 0; val != 0; nbits++)
c5aa993b 1541 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1542 return nbits;
1543}
1544
34e8f22d 1545CORE_ADDR
ed9a39eb 1546thumb_get_next_pc (CORE_ADDR pc)
c906108c 1547{
c5aa993b 1548 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1549 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1550 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1551 unsigned long offset;
1552
1553 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1554 {
1555 CORE_ADDR sp;
1556
1557 /* Fetch the saved PC from the stack. It's stored above
1558 all of the other registers. */
b1e29e33 1559 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1560 sp = read_register (ARM_SP_REGNUM);
1c5bada0 1561 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
c906108c
SS
1562 nextpc = ADDR_BITS_REMOVE (nextpc);
1563 if (nextpc == pc)
edefbb7c 1564 error (_("Infinite loop detected"));
c906108c
SS
1565 }
1566 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1567 {
34e8f22d 1568 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1569 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1570 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1571 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1572 }
1573 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1574 {
1575 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1576 }
aa17d93e 1577 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1578 {
1c5bada0 1579 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1580 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1581 nextpc = pc_val + offset;
aa17d93e
DJ
1582 /* For BLX make sure to clear the low bits. */
1583 if (bits (inst2, 11, 12) == 1)
1584 nextpc = nextpc & 0xfffffffc;
c906108c 1585 }
aa17d93e 1586 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1587 {
1588 if (bits (inst1, 3, 6) == 0x0f)
1589 nextpc = pc_val;
1590 else
1591 nextpc = read_register (bits (inst1, 3, 6));
1592
1593 nextpc = ADDR_BITS_REMOVE (nextpc);
1594 if (nextpc == pc)
edefbb7c 1595 error (_("Infinite loop detected"));
9498281f 1596 }
c906108c
SS
1597
1598 return nextpc;
1599}
1600
34e8f22d 1601CORE_ADDR
ed9a39eb 1602arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1603{
1604 unsigned long pc_val;
1605 unsigned long this_instr;
1606 unsigned long status;
1607 CORE_ADDR nextpc;
1608
1609 if (arm_pc_is_thumb (pc))
1610 return thumb_get_next_pc (pc);
1611
1612 pc_val = (unsigned long) pc;
1c5bada0 1613 this_instr = read_memory_unsigned_integer (pc, 4);
34e8f22d 1614 status = read_register (ARM_PS_REGNUM);
c5aa993b 1615 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1616
1617 if (condition_true (bits (this_instr, 28, 31), status))
1618 {
1619 switch (bits (this_instr, 24, 27))
1620 {
c5aa993b 1621 case 0x0:
94c30b78 1622 case 0x1: /* data processing */
c5aa993b
JM
1623 case 0x2:
1624 case 0x3:
c906108c
SS
1625 {
1626 unsigned long operand1, operand2, result = 0;
1627 unsigned long rn;
1628 int c;
c5aa993b 1629
c906108c
SS
1630 if (bits (this_instr, 12, 15) != 15)
1631 break;
1632
1633 if (bits (this_instr, 22, 25) == 0
c5aa993b 1634 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1635 error (_("Invalid update to pc in instruction"));
c906108c 1636
9498281f
DJ
1637 /* BX <reg>, BLX <reg> */
1638 if (bits (this_instr, 4, 28) == 0x12fff1
1639 || bits (this_instr, 4, 28) == 0x12fff3)
1640 {
1641 rn = bits (this_instr, 0, 3);
1642 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1643 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1644
1645 if (nextpc == pc)
edefbb7c 1646 error (_("Infinite loop detected"));
9498281f
DJ
1647
1648 return nextpc;
1649 }
1650
c906108c
SS
1651 /* Multiply into PC */
1652 c = (status & FLAG_C) ? 1 : 0;
1653 rn = bits (this_instr, 16, 19);
1654 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1655
c906108c
SS
1656 if (bit (this_instr, 25))
1657 {
1658 unsigned long immval = bits (this_instr, 0, 7);
1659 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1660 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1661 & 0xffffffff;
c906108c 1662 }
c5aa993b 1663 else /* operand 2 is a shifted register */
c906108c 1664 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1665
c906108c
SS
1666 switch (bits (this_instr, 21, 24))
1667 {
c5aa993b 1668 case 0x0: /*and */
c906108c
SS
1669 result = operand1 & operand2;
1670 break;
1671
c5aa993b 1672 case 0x1: /*eor */
c906108c
SS
1673 result = operand1 ^ operand2;
1674 break;
1675
c5aa993b 1676 case 0x2: /*sub */
c906108c
SS
1677 result = operand1 - operand2;
1678 break;
1679
c5aa993b 1680 case 0x3: /*rsb */
c906108c
SS
1681 result = operand2 - operand1;
1682 break;
1683
c5aa993b 1684 case 0x4: /*add */
c906108c
SS
1685 result = operand1 + operand2;
1686 break;
1687
c5aa993b 1688 case 0x5: /*adc */
c906108c
SS
1689 result = operand1 + operand2 + c;
1690 break;
1691
c5aa993b 1692 case 0x6: /*sbc */
c906108c
SS
1693 result = operand1 - operand2 + c;
1694 break;
1695
c5aa993b 1696 case 0x7: /*rsc */
c906108c
SS
1697 result = operand2 - operand1 + c;
1698 break;
1699
c5aa993b
JM
1700 case 0x8:
1701 case 0x9:
1702 case 0xa:
1703 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1704 result = (unsigned long) nextpc;
1705 break;
1706
c5aa993b 1707 case 0xc: /*orr */
c906108c
SS
1708 result = operand1 | operand2;
1709 break;
1710
c5aa993b 1711 case 0xd: /*mov */
c906108c
SS
1712 /* Always step into a function. */
1713 result = operand2;
c5aa993b 1714 break;
c906108c 1715
c5aa993b 1716 case 0xe: /*bic */
c906108c
SS
1717 result = operand1 & ~operand2;
1718 break;
1719
c5aa993b 1720 case 0xf: /*mvn */
c906108c
SS
1721 result = ~operand2;
1722 break;
1723 }
1724 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1725
1726 if (nextpc == pc)
edefbb7c 1727 error (_("Infinite loop detected"));
c906108c
SS
1728 break;
1729 }
c5aa993b
JM
1730
1731 case 0x4:
1732 case 0x5: /* data transfer */
1733 case 0x6:
1734 case 0x7:
c906108c
SS
1735 if (bit (this_instr, 20))
1736 {
1737 /* load */
1738 if (bits (this_instr, 12, 15) == 15)
1739 {
1740 /* rd == pc */
c5aa993b 1741 unsigned long rn;
c906108c 1742 unsigned long base;
c5aa993b 1743
c906108c 1744 if (bit (this_instr, 22))
edefbb7c 1745 error (_("Invalid update to pc in instruction"));
c906108c
SS
1746
1747 /* byte write to PC */
1748 rn = bits (this_instr, 16, 19);
1749 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1750 if (bit (this_instr, 24))
1751 {
1752 /* pre-indexed */
1753 int c = (status & FLAG_C) ? 1 : 0;
1754 unsigned long offset =
c5aa993b 1755 (bit (this_instr, 25)
ed9a39eb 1756 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1757 : bits (this_instr, 0, 11));
c906108c
SS
1758
1759 if (bit (this_instr, 23))
1760 base += offset;
1761 else
1762 base -= offset;
1763 }
c5aa993b 1764 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1765 4);
c5aa993b 1766
c906108c
SS
1767 nextpc = ADDR_BITS_REMOVE (nextpc);
1768
1769 if (nextpc == pc)
edefbb7c 1770 error (_("Infinite loop detected"));
c906108c
SS
1771 }
1772 }
1773 break;
c5aa993b
JM
1774
1775 case 0x8:
1776 case 0x9: /* block transfer */
c906108c
SS
1777 if (bit (this_instr, 20))
1778 {
1779 /* LDM */
1780 if (bit (this_instr, 15))
1781 {
1782 /* loading pc */
1783 int offset = 0;
1784
1785 if (bit (this_instr, 23))
1786 {
1787 /* up */
1788 unsigned long reglist = bits (this_instr, 0, 14);
1789 offset = bitcount (reglist) * 4;
c5aa993b 1790 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1791 offset += 4;
1792 }
1793 else if (bit (this_instr, 24))
1794 offset = -4;
c5aa993b 1795
c906108c 1796 {
c5aa993b
JM
1797 unsigned long rn_val =
1798 read_register (bits (this_instr, 16, 19));
c906108c
SS
1799 nextpc =
1800 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1801 + offset),
c906108c
SS
1802 4);
1803 }
1804 nextpc = ADDR_BITS_REMOVE (nextpc);
1805 if (nextpc == pc)
edefbb7c 1806 error (_("Infinite loop detected"));
c906108c
SS
1807 }
1808 }
1809 break;
c5aa993b
JM
1810
1811 case 0xb: /* branch & link */
1812 case 0xa: /* branch */
c906108c
SS
1813 {
1814 nextpc = BranchDest (pc, this_instr);
1815
9498281f
DJ
1816 /* BLX */
1817 if (bits (this_instr, 28, 31) == INST_NV)
1818 nextpc |= bit (this_instr, 24) << 1;
1819
c906108c
SS
1820 nextpc = ADDR_BITS_REMOVE (nextpc);
1821 if (nextpc == pc)
edefbb7c 1822 error (_("Infinite loop detected"));
c906108c
SS
1823 break;
1824 }
c5aa993b
JM
1825
1826 case 0xc:
1827 case 0xd:
1828 case 0xe: /* coproc ops */
1829 case 0xf: /* SWI */
c906108c
SS
1830 break;
1831
1832 default:
edefbb7c 1833 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1834 return (pc);
1835 }
1836 }
1837
1838 return nextpc;
1839}
1840
9512d7fd
FN
1841/* single_step() is called just before we want to resume the inferior,
1842 if we want to single-step it but there is no hardware or kernel
1843 single-step support. We find the target of the coming instruction
1844 and breakpoint it.
1845
94c30b78
MS
1846 single_step() is also called just after the inferior stops. If we
1847 had set up a simulated single-step, we undo our damage. */
9512d7fd 1848
34e8f22d
RE
1849static void
1850arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1851{
8181d85f
DJ
1852 /* NOTE: This may insert the wrong breakpoint instruction when
1853 single-stepping over a mode-changing instruction, if the
1854 CPSR heuristics are used. */
9512d7fd
FN
1855
1856 if (insert_bpt)
1857 {
8181d85f
DJ
1858 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1859
1860 insert_single_step_breakpoint (next_pc);
9512d7fd
FN
1861 }
1862 else
8181d85f 1863 remove_single_step_breakpoints ();
9512d7fd 1864}
9512d7fd 1865
c906108c
SS
1866#include "bfd-in2.h"
1867#include "libcoff.h"
1868
1869static int
ed9a39eb 1870gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1871{
1872 if (arm_pc_is_thumb (memaddr))
1873 {
c5aa993b
JM
1874 static asymbol *asym;
1875 static combined_entry_type ce;
1876 static struct coff_symbol_struct csym;
27cddce2 1877 static struct bfd fake_bfd;
c5aa993b 1878 static bfd_target fake_target;
c906108c
SS
1879
1880 if (csym.native == NULL)
1881 {
da3c6d4a
MS
1882 /* Create a fake symbol vector containing a Thumb symbol.
1883 This is solely so that the code in print_insn_little_arm()
1884 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1885 the presence of a Thumb symbol and switch to decoding
1886 Thumb instructions. */
c5aa993b
JM
1887
1888 fake_target.flavour = bfd_target_coff_flavour;
1889 fake_bfd.xvec = &fake_target;
c906108c 1890 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1891 csym.native = &ce;
1892 csym.symbol.the_bfd = &fake_bfd;
1893 csym.symbol.name = "fake";
1894 asym = (asymbol *) & csym;
c906108c 1895 }
c5aa993b 1896
c906108c 1897 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1898 info->symbols = &asym;
c906108c
SS
1899 }
1900 else
1901 info->symbols = NULL;
c5aa993b 1902
d7449b42 1903 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1904 return print_insn_big_arm (memaddr, info);
1905 else
1906 return print_insn_little_arm (memaddr, info);
1907}
1908
66e810cd
RE
1909/* The following define instruction sequences that will cause ARM
1910 cpu's to take an undefined instruction trap. These are used to
1911 signal a breakpoint to GDB.
1912
1913 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1914 modes. A different instruction is required for each mode. The ARM
1915 cpu's can also be big or little endian. Thus four different
1916 instructions are needed to support all cases.
1917
1918 Note: ARMv4 defines several new instructions that will take the
1919 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1920 not in fact add the new instructions. The new undefined
1921 instructions in ARMv4 are all instructions that had no defined
1922 behaviour in earlier chips. There is no guarantee that they will
1923 raise an exception, but may be treated as NOP's. In practice, it
1924 may only safe to rely on instructions matching:
1925
1926 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1927 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1928 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1929
1930 Even this may only true if the condition predicate is true. The
1931 following use a condition predicate of ALWAYS so it is always TRUE.
1932
1933 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1934 and NetBSD all use a software interrupt rather than an undefined
1935 instruction to force a trap. This can be handled by by the
1936 abi-specific code during establishment of the gdbarch vector. */
1937
1938
d7b486e7
RE
1939/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1940 override these definitions. */
66e810cd
RE
1941#ifndef ARM_LE_BREAKPOINT
1942#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1943#endif
1944#ifndef ARM_BE_BREAKPOINT
1945#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1946#endif
1947#ifndef THUMB_LE_BREAKPOINT
1948#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1949#endif
1950#ifndef THUMB_BE_BREAKPOINT
1951#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1952#endif
1953
1954static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1955static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1956static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1957static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1958
34e8f22d
RE
1959/* Determine the type and size of breakpoint to insert at PCPTR. Uses
1960 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
1961 breakpoint should be used. It returns a pointer to a string of
1962 bytes that encode a breakpoint instruction, stores the length of
1963 the string to *lenptr, and adjusts the program counter (if
1964 necessary) to point to the actual memory location where the
c906108c
SS
1965 breakpoint should be inserted. */
1966
34e8f22d
RE
1967/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1968 breakpoints and storing their handles instread of what was in
1969 memory. It is nice that this is the same size as a handle -
94c30b78 1970 otherwise remote-rdp will have to change. */
34e8f22d 1971
ab89facf 1972static const unsigned char *
ed9a39eb 1973arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 1974{
66e810cd
RE
1975 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1976
4bf7064c 1977 if (arm_pc_is_thumb (*pcptr))
c906108c 1978 {
66e810cd
RE
1979 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1980 *lenptr = tdep->thumb_breakpoint_size;
1981 return tdep->thumb_breakpoint;
c906108c
SS
1982 }
1983 else
1984 {
66e810cd
RE
1985 *lenptr = tdep->arm_breakpoint_size;
1986 return tdep->arm_breakpoint;
c906108c
SS
1987 }
1988}
ed9a39eb
JM
1989
1990/* Extract from an array REGBUF containing the (raw) register state a
1991 function return value of type TYPE, and copy that, in virtual
1992 format, into VALBUF. */
1993
34e8f22d 1994static void
5238cf52
MK
1995arm_extract_return_value (struct type *type, struct regcache *regs,
1996 gdb_byte *valbuf)
ed9a39eb
JM
1997{
1998 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 1999 {
28e97307 2000 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2001 {
2002 case ARM_FLOAT_FPA:
b508a996
RE
2003 {
2004 /* The value is in register F0 in internal format. We need to
2005 extract the raw value and then convert it to the desired
2006 internal type. */
7a5ea0d4 2007 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2008
2009 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2010 convert_from_extended (floatformat_from_type (type), tmpbuf,
2011 valbuf);
2012 }
08216dd7
RE
2013 break;
2014
fd50bc42 2015 case ARM_FLOAT_SOFT_FPA:
08216dd7 2016 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2017 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2018 if (TYPE_LENGTH (type) > 4)
2019 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2020 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2021 break;
2022
2023 default:
2024 internal_error
2025 (__FILE__, __LINE__,
edefbb7c 2026 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2027 break;
2028 }
2029 }
b508a996
RE
2030 else if (TYPE_CODE (type) == TYPE_CODE_INT
2031 || TYPE_CODE (type) == TYPE_CODE_CHAR
2032 || TYPE_CODE (type) == TYPE_CODE_BOOL
2033 || TYPE_CODE (type) == TYPE_CODE_PTR
2034 || TYPE_CODE (type) == TYPE_CODE_REF
2035 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2036 {
2037 /* If the the type is a plain integer, then the access is
2038 straight-forward. Otherwise we have to play around a bit more. */
2039 int len = TYPE_LENGTH (type);
2040 int regno = ARM_A1_REGNUM;
2041 ULONGEST tmp;
2042
2043 while (len > 0)
2044 {
2045 /* By using store_unsigned_integer we avoid having to do
2046 anything special for small big-endian values. */
2047 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2048 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2049 (len > INT_REGISTER_SIZE
2050 ? INT_REGISTER_SIZE : len),
b508a996 2051 tmp);
7a5ea0d4
DJ
2052 len -= INT_REGISTER_SIZE;
2053 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2054 }
2055 }
ed9a39eb 2056 else
b508a996
RE
2057 {
2058 /* For a structure or union the behaviour is as if the value had
2059 been stored to word-aligned memory and then loaded into
2060 registers with 32-bit load instruction(s). */
2061 int len = TYPE_LENGTH (type);
2062 int regno = ARM_A1_REGNUM;
7a5ea0d4 2063 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2064
2065 while (len > 0)
2066 {
2067 regcache_cooked_read (regs, regno++, tmpbuf);
2068 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2069 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2070 len -= INT_REGISTER_SIZE;
2071 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2072 }
2073 }
34e8f22d
RE
2074}
2075
67255d04
RE
2076
2077/* Will a function return an aggregate type in memory or in a
2078 register? Return 0 if an aggregate type can be returned in a
2079 register, 1 if it must be returned in memory. */
2080
2081static int
2af48f68 2082arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2083{
2084 int nRc;
52f0bd74 2085 enum type_code code;
67255d04 2086
44e1a9eb
DJ
2087 CHECK_TYPEDEF (type);
2088
67255d04
RE
2089 /* In the ARM ABI, "integer" like aggregate types are returned in
2090 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2091 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2092 offset of each addressable subfield must be zero. Note that bit
2093 fields are not addressable, and all addressable subfields of
2094 unions always start at offset zero.
67255d04
RE
2095
2096 This function is based on the behaviour of GCC 2.95.1.
2097 See: gcc/arm.c: arm_return_in_memory() for details.
2098
2099 Note: All versions of GCC before GCC 2.95.2 do not set up the
2100 parameters correctly for a function returning the following
2101 structure: struct { float f;}; This should be returned in memory,
2102 not a register. Richard Earnshaw sent me a patch, but I do not
2103 know of any way to detect if a function like the above has been
2104 compiled with the correct calling convention. */
2105
2106 /* All aggregate types that won't fit in a register must be returned
2107 in memory. */
b1e29e33 2108 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2109 {
2110 return 1;
2111 }
2112
2af48f68
PB
2113 /* The AAPCS says all aggregates not larger than a word are returned
2114 in a register. */
2115 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2116 return 0;
2117
67255d04
RE
2118 /* The only aggregate types that can be returned in a register are
2119 structs and unions. Arrays must be returned in memory. */
2120 code = TYPE_CODE (type);
2121 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2122 {
2123 return 1;
2124 }
2125
2126 /* Assume all other aggregate types can be returned in a register.
2127 Run a check for structures, unions and arrays. */
2128 nRc = 0;
2129
2130 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2131 {
2132 int i;
2133 /* Need to check if this struct/union is "integer" like. For
2134 this to be true, its size must be less than or equal to
b1e29e33
AC
2135 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2136 subfield must be zero. Note that bit fields are not
2137 addressable, and unions always start at offset zero. If any
2138 of the subfields is a floating point type, the struct/union
2139 cannot be an integer type. */
67255d04
RE
2140
2141 /* For each field in the object, check:
2142 1) Is it FP? --> yes, nRc = 1;
2143 2) Is it addressable (bitpos != 0) and
2144 not packed (bitsize == 0)?
2145 --> yes, nRc = 1
2146 */
2147
2148 for (i = 0; i < TYPE_NFIELDS (type); i++)
2149 {
2150 enum type_code field_type_code;
44e1a9eb 2151 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2152
2153 /* Is it a floating point type field? */
2154 if (field_type_code == TYPE_CODE_FLT)
2155 {
2156 nRc = 1;
2157 break;
2158 }
2159
2160 /* If bitpos != 0, then we have to care about it. */
2161 if (TYPE_FIELD_BITPOS (type, i) != 0)
2162 {
2163 /* Bitfields are not addressable. If the field bitsize is
2164 zero, then the field is not packed. Hence it cannot be
2165 a bitfield or any other packed type. */
2166 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2167 {
2168 nRc = 1;
2169 break;
2170 }
2171 }
2172 }
2173 }
2174
2175 return nRc;
2176}
2177
34e8f22d
RE
2178/* Write into appropriate registers a function return value of type
2179 TYPE, given in virtual format. */
2180
2181static void
b508a996 2182arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2183 const gdb_byte *valbuf)
34e8f22d
RE
2184{
2185 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2186 {
7a5ea0d4 2187 char buf[MAX_REGISTER_SIZE];
34e8f22d 2188
28e97307 2189 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2190 {
2191 case ARM_FLOAT_FPA:
2192
b508a996
RE
2193 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2194 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2195 break;
2196
fd50bc42 2197 case ARM_FLOAT_SOFT_FPA:
08216dd7 2198 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2199 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2200 if (TYPE_LENGTH (type) > 4)
2201 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2202 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2203 break;
2204
2205 default:
2206 internal_error
2207 (__FILE__, __LINE__,
edefbb7c 2208 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2209 break;
2210 }
34e8f22d 2211 }
b508a996
RE
2212 else if (TYPE_CODE (type) == TYPE_CODE_INT
2213 || TYPE_CODE (type) == TYPE_CODE_CHAR
2214 || TYPE_CODE (type) == TYPE_CODE_BOOL
2215 || TYPE_CODE (type) == TYPE_CODE_PTR
2216 || TYPE_CODE (type) == TYPE_CODE_REF
2217 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2218 {
2219 if (TYPE_LENGTH (type) <= 4)
2220 {
2221 /* Values of one word or less are zero/sign-extended and
2222 returned in r0. */
7a5ea0d4 2223 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2224 LONGEST val = unpack_long (type, valbuf);
2225
7a5ea0d4 2226 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2227 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2228 }
2229 else
2230 {
2231 /* Integral values greater than one word are stored in consecutive
2232 registers starting with r0. This will always be a multiple of
2233 the regiser size. */
2234 int len = TYPE_LENGTH (type);
2235 int regno = ARM_A1_REGNUM;
2236
2237 while (len > 0)
2238 {
2239 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2240 len -= INT_REGISTER_SIZE;
2241 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2242 }
2243 }
2244 }
34e8f22d 2245 else
b508a996
RE
2246 {
2247 /* For a structure or union the behaviour is as if the value had
2248 been stored to word-aligned memory and then loaded into
2249 registers with 32-bit load instruction(s). */
2250 int len = TYPE_LENGTH (type);
2251 int regno = ARM_A1_REGNUM;
7a5ea0d4 2252 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2253
2254 while (len > 0)
2255 {
2256 memcpy (tmpbuf, valbuf,
7a5ea0d4 2257 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2258 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2259 len -= INT_REGISTER_SIZE;
2260 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2261 }
2262 }
34e8f22d
RE
2263}
2264
2af48f68
PB
2265
2266/* Handle function return values. */
2267
2268static enum return_value_convention
2269arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2270 struct regcache *regcache, gdb_byte *readbuf,
2271 const gdb_byte *writebuf)
2af48f68
PB
2272{
2273 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2274 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2275 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2276 {
2277 if (arm_return_in_memory (gdbarch, valtype))
2278 return RETURN_VALUE_STRUCT_CONVENTION;
2279 }
2280
2281 if (writebuf)
2282 arm_store_return_value (valtype, regcache, writebuf);
2283
2284 if (readbuf)
2285 arm_extract_return_value (valtype, regcache, readbuf);
2286
2287 return RETURN_VALUE_REGISTER_CONVENTION;
2288}
2289
2290
9df628e0
RE
2291static int
2292arm_get_longjmp_target (CORE_ADDR *pc)
2293{
2294 CORE_ADDR jb_addr;
7a5ea0d4 2295 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2296 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2297
2298 jb_addr = read_register (ARM_A1_REGNUM);
2299
2300 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2301 INT_REGISTER_SIZE))
9df628e0
RE
2302 return 0;
2303
7a5ea0d4 2304 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2305 return 1;
2306}
2307
ed9a39eb 2308/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2309
2310int
ed9a39eb 2311arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2312{
2313 CORE_ADDR start_addr;
2314
ed9a39eb
JM
2315 /* Find the starting address of the function containing the PC. If
2316 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2317 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2318 &start_addr, NULL))
c906108c
SS
2319 return 0;
2320
2321 return strncmp (name, "_call_via_r", 11) == 0;
2322}
2323
ed9a39eb
JM
2324/* If PC is in a Thumb call or return stub, return the address of the
2325 target PC, which is in a register. The thunk functions are called
2326 _called_via_xx, where x is the register name. The possible names
2327 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2328
2329CORE_ADDR
ed9a39eb 2330arm_skip_stub (CORE_ADDR pc)
c906108c 2331{
c5aa993b 2332 char *name;
c906108c
SS
2333 CORE_ADDR start_addr;
2334
2335 /* Find the starting address and name of the function containing the PC. */
2336 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2337 return 0;
2338
2339 /* Call thunks always start with "_call_via_". */
2340 if (strncmp (name, "_call_via_", 10) == 0)
2341 {
ed9a39eb
JM
2342 /* Use the name suffix to determine which register contains the
2343 target PC. */
c5aa993b
JM
2344 static char *table[15] =
2345 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2346 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2347 };
c906108c
SS
2348 int regno;
2349
2350 for (regno = 0; regno <= 14; regno++)
2351 if (strcmp (&name[10], table[regno]) == 0)
2352 return read_register (regno);
2353 }
ed9a39eb 2354
c5aa993b 2355 return 0; /* not a stub */
c906108c
SS
2356}
2357
afd7eef0
RE
2358static void
2359set_arm_command (char *args, int from_tty)
2360{
edefbb7c
AC
2361 printf_unfiltered (_("\
2362\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2363 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2364}
2365
2366static void
2367show_arm_command (char *args, int from_tty)
2368{
26304000 2369 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2370}
2371
28e97307
DJ
2372static void
2373arm_update_current_architecture (void)
fd50bc42 2374{
28e97307 2375 struct gdbarch_info info;
fd50bc42 2376
28e97307
DJ
2377 /* If the current architecture is not ARM, we have nothing to do. */
2378 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2379 return;
fd50bc42 2380
28e97307
DJ
2381 /* Update the architecture. */
2382 gdbarch_info_init (&info);
fd50bc42 2383
28e97307
DJ
2384 if (!gdbarch_update_p (info))
2385 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2386}
2387
2388static void
2389set_fp_model_sfunc (char *args, int from_tty,
2390 struct cmd_list_element *c)
2391{
2392 enum arm_float_model fp_model;
2393
2394 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2395 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2396 {
2397 arm_fp_model = fp_model;
2398 break;
2399 }
2400
2401 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2402 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2403 current_fp_model);
2404
28e97307 2405 arm_update_current_architecture ();
fd50bc42
RE
2406}
2407
2408static void
08546159
AC
2409show_fp_model (struct ui_file *file, int from_tty,
2410 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2411{
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2413
28e97307 2414 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2415 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2416 fprintf_filtered (file, _("\
2417The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2418 fp_model_strings[tdep->fp_model]);
2419 else
2420 fprintf_filtered (file, _("\
2421The current ARM floating point model is \"%s\".\n"),
2422 fp_model_strings[arm_fp_model]);
2423}
2424
2425static void
2426arm_set_abi (char *args, int from_tty,
2427 struct cmd_list_element *c)
2428{
2429 enum arm_abi_kind arm_abi;
2430
2431 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2432 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2433 {
2434 arm_abi_global = arm_abi;
2435 break;
2436 }
2437
2438 if (arm_abi == ARM_ABI_LAST)
2439 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2440 arm_abi_string);
2441
2442 arm_update_current_architecture ();
2443}
2444
2445static void
2446arm_show_abi (struct ui_file *file, int from_tty,
2447 struct cmd_list_element *c, const char *value)
2448{
2449 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2450
2451 if (arm_abi_global == ARM_ABI_AUTO
2452 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2453 fprintf_filtered (file, _("\
2454The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2455 arm_abi_strings[tdep->arm_abi]);
2456 else
2457 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2458 arm_abi_string);
fd50bc42
RE
2459}
2460
afd7eef0
RE
2461/* If the user changes the register disassembly style used for info
2462 register and other commands, we have to also switch the style used
2463 in opcodes for disassembly output. This function is run in the "set
2464 arm disassembly" command, and does that. */
bc90b915
FN
2465
2466static void
afd7eef0 2467set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2468 struct cmd_list_element *c)
2469{
afd7eef0 2470 set_disassembly_style ();
bc90b915
FN
2471}
2472\f
966fbf70 2473/* Return the ARM register name corresponding to register I. */
a208b0cb 2474static const char *
34e8f22d 2475arm_register_name (int i)
966fbf70
RE
2476{
2477 return arm_register_names[i];
2478}
2479
bc90b915 2480static void
afd7eef0 2481set_disassembly_style (void)
bc90b915 2482{
4bd7b427 2483 const char *setname, *setdesc, *const *regnames;
bc90b915
FN
2484 int numregs, j;
2485
afd7eef0 2486 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2487 int current = 0;
2488 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2489 while ((disassembly_style != setname)
2490 && (current < num_disassembly_options))
bc90b915
FN
2491 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2492 current_option = current;
2493
94c30b78 2494 /* Fill our copy. */
bc90b915
FN
2495 for (j = 0; j < numregs; j++)
2496 arm_register_names[j] = (char *) regnames[j];
2497
94c30b78 2498 /* Adjust case. */
34e8f22d 2499 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2500 {
34e8f22d
RE
2501 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2502 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2503 }
2504 else
2505 {
34e8f22d
RE
2506 arm_register_names[ARM_FPS_REGNUM] = "fps";
2507 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2508 }
2509
94c30b78 2510 /* Synchronize the disassembler. */
bc90b915
FN
2511 set_arm_regname_option (current);
2512}
2513
082fc60d
RE
2514/* Test whether the coff symbol specific value corresponds to a Thumb
2515 function. */
2516
2517static int
2518coff_sym_is_thumb (int val)
2519{
2520 return (val == C_THUMBEXT ||
2521 val == C_THUMBSTAT ||
2522 val == C_THUMBEXTFUNC ||
2523 val == C_THUMBSTATFUNC ||
2524 val == C_THUMBLABEL);
2525}
2526
2527/* arm_coff_make_msymbol_special()
2528 arm_elf_make_msymbol_special()
2529
2530 These functions test whether the COFF or ELF symbol corresponds to
2531 an address in thumb code, and set a "special" bit in a minimal
2532 symbol to indicate that it does. */
2533
34e8f22d 2534static void
082fc60d
RE
2535arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2536{
2537 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2538 STT_ARM_TFUNC). */
2539 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2540 == STT_LOPROC)
2541 MSYMBOL_SET_SPECIAL (msym);
2542}
2543
34e8f22d 2544static void
082fc60d
RE
2545arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2546{
2547 if (coff_sym_is_thumb (val))
2548 MSYMBOL_SET_SPECIAL (msym);
2549}
2550
756fe439
DJ
2551static void
2552arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2553{
2554 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2555
2556 /* If necessary, set the T bit. */
2557 if (arm_apcs_32)
2558 {
2559 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2560 if (arm_pc_is_thumb (pc))
2561 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2562 else
2563 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2564 }
2565}
97e03143 2566\f
70f80edf
JT
2567static enum gdb_osabi
2568arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2569{
2af48f68 2570 unsigned int elfosabi;
70f80edf 2571 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2572
70f80edf 2573 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2574
28e97307
DJ
2575 if (elfosabi == ELFOSABI_ARM)
2576 /* GNU tools use this value. Check note sections in this case,
2577 as well. */
2578 bfd_map_over_sections (abfd,
2579 generic_elf_osabi_sniff_abi_tag_sections,
2580 &osabi);
97e03143 2581
28e97307 2582 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2583 return osabi;
97e03143
RE
2584}
2585
70f80edf 2586\f
da3c6d4a
MS
2587/* Initialize the current architecture based on INFO. If possible,
2588 re-use an architecture from ARCHES, which is a list of
2589 architectures already created during this debugging session.
97e03143 2590
da3c6d4a
MS
2591 Called e.g. at program startup, when reading a core file, and when
2592 reading a binary file. */
97e03143 2593
39bbf761
RE
2594static struct gdbarch *
2595arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2596{
97e03143 2597 struct gdbarch_tdep *tdep;
39bbf761 2598 struct gdbarch *gdbarch;
28e97307
DJ
2599 struct gdbarch_list *best_arch;
2600 enum arm_abi_kind arm_abi = arm_abi_global;
2601 enum arm_float_model fp_model = arm_fp_model;
39bbf761 2602
28e97307
DJ
2603 /* If we have an object to base this architecture on, try to determine
2604 its ABI. */
39bbf761 2605
28e97307 2606 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2607 {
28e97307
DJ
2608 int ei_osabi;
2609
4be87837 2610 switch (bfd_get_flavour (info.abfd))
97e03143 2611 {
4be87837
DJ
2612 case bfd_target_aout_flavour:
2613 /* Assume it's an old APCS-style ABI. */
28e97307 2614 arm_abi = ARM_ABI_APCS;
4be87837 2615 break;
97e03143 2616
4be87837
DJ
2617 case bfd_target_coff_flavour:
2618 /* Assume it's an old APCS-style ABI. */
2619 /* XXX WinCE? */
28e97307
DJ
2620 arm_abi = ARM_ABI_APCS;
2621 break;
2622
2623 case bfd_target_elf_flavour:
2624 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2625 if (ei_osabi == ELFOSABI_ARM)
2626 {
2627 /* GNU tools used to use this value, but do not for EABI
2628 objects. There's nowhere to tag an EABI version anyway,
2629 so assume APCS. */
2630 arm_abi = ARM_ABI_APCS;
2631 }
2632 else if (ei_osabi == ELFOSABI_NONE)
2633 {
2634 int e_flags, eabi_ver;
2635
2636 e_flags = elf_elfheader (info.abfd)->e_flags;
2637 eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2638
2639 switch (eabi_ver)
2640 {
2641 case EF_ARM_EABI_UNKNOWN:
2642 /* Assume GNU tools. */
2643 arm_abi = ARM_ABI_APCS;
2644 break;
2645
2646 case EF_ARM_EABI_VER4:
2647 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2648 /* EABI binaries default to VFP float ordering. */
2649 if (fp_model == ARM_FLOAT_AUTO)
2650 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2651 break;
2652
2653 default:
2654 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2655 arm_abi = ARM_ABI_APCS;
2656 break;
2657 }
2658 }
4be87837 2659 break;
97e03143 2660
4be87837 2661 default:
28e97307 2662 /* Leave it as "auto". */
50ceaba5 2663 break;
97e03143
RE
2664 }
2665 }
2666
28e97307
DJ
2667 /* Now that we have inferred any architecture settings that we
2668 can, try to inherit from the last ARM ABI. */
4be87837 2669 if (arches != NULL)
28e97307
DJ
2670 {
2671 if (arm_abi == ARM_ABI_AUTO)
2672 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2673
2674 if (fp_model == ARM_FLOAT_AUTO)
2675 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2676 }
2677 else
2678 {
2679 /* There was no prior ARM architecture; fill in default values. */
2680
2681 if (arm_abi == ARM_ABI_AUTO)
2682 arm_abi = ARM_ABI_APCS;
2683
2684 /* We used to default to FPA for generic ARM, but almost nobody
2685 uses that now, and we now provide a way for the user to force
2686 the model. So default to the most useful variant. */
2687 if (fp_model == ARM_FLOAT_AUTO)
2688 fp_model = ARM_FLOAT_SOFT_FPA;
2689 }
2690
2691 /* If there is already a candidate, use it. */
2692 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2693 best_arch != NULL;
2694 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2695 {
2696 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2697 continue;
2698
2699 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2700 continue;
2701
2702 /* Found a match. */
2703 break;
2704 }
97e03143 2705
28e97307
DJ
2706 if (best_arch != NULL)
2707 return best_arch->gdbarch;
2708
2709 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2710 gdbarch = gdbarch_alloc (&info, tdep);
2711
28e97307
DJ
2712 /* Record additional information about the architecture we are defining.
2713 These are gdbarch discriminators, like the OSABI. */
2714 tdep->arm_abi = arm_abi;
2715 tdep->fp_model = fp_model;
08216dd7
RE
2716
2717 /* Breakpoints. */
67255d04
RE
2718 switch (info.byte_order)
2719 {
2720 case BFD_ENDIAN_BIG:
66e810cd
RE
2721 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2722 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2723 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2724 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2725
67255d04
RE
2726 break;
2727
2728 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2729 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2730 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2731 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2732 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2733
67255d04
RE
2734 break;
2735
2736 default:
2737 internal_error (__FILE__, __LINE__,
edefbb7c 2738 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2739 }
2740
d7b486e7
RE
2741 /* On ARM targets char defaults to unsigned. */
2742 set_gdbarch_char_signed (gdbarch, 0);
2743
9df628e0 2744 /* This should be low enough for everything. */
97e03143 2745 tdep->lowest_pc = 0x20;
94c30b78 2746 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2747
2dd604e7 2748 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2749 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2750
756fe439
DJ
2751 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2752
148754e5 2753 /* Frame handling. */
eb5492fa
DJ
2754 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2755 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2756 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2757
eb5492fa 2758 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2759
34e8f22d
RE
2760 /* Address manipulation. */
2761 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2762 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2763
34e8f22d
RE
2764 /* Advance PC across function entry code. */
2765 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2766
2767 /* Get the PC when a frame might not be available. */
6913c89a 2768 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2769
2770 /* The stack grows downward. */
2771 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2772
2773 /* Breakpoint manipulation. */
2774 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2775
2776 /* Information about registers, etc. */
2777 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2778 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2779 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2780 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2781 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
34e8f22d 2782 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2783 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2784
26216b98
AC
2785 /* Internal <-> external register number maps. */
2786 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2787
34e8f22d 2788 /* Integer registers are 4 bytes. */
b1e29e33 2789 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2790 set_gdbarch_register_name (gdbarch, arm_register_name);
2791
2792 /* Returning results. */
2af48f68 2793 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d
RE
2794
2795 /* Single stepping. */
2796 /* XXX For an RDI target we should ask the target if it can single-step. */
2797 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2798
03d48a7d
RE
2799 /* Disassembly. */
2800 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2801
34e8f22d
RE
2802 /* Minsymbol frobbing. */
2803 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2804 set_gdbarch_coff_make_msymbol_special (gdbarch,
2805 arm_coff_make_msymbol_special);
2806
97e03143 2807 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2808 gdbarch_init_osabi (info, gdbarch);
97e03143 2809
eb5492fa 2810 /* Add some default predicates. */
909cf6ea 2811 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 2812 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
2813 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2814
97e03143
RE
2815 /* Now we have tuned the configuration, set a few final things,
2816 based on what the OS ABI has told us. */
2817
9df628e0
RE
2818 if (tdep->jb_pc >= 0)
2819 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2820
08216dd7
RE
2821 /* Floating point sizes and format. */
2822 switch (info.byte_order)
2823 {
2824 case BFD_ENDIAN_BIG:
2825 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2826 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2827 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
08216dd7
RE
2828 break;
2829
2830 case BFD_ENDIAN_LITTLE:
2831 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
28e97307
DJ
2832 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2833 {
2834 set_gdbarch_double_format
2835 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2836 set_gdbarch_long_double_format
2837 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2838 }
2839 else
2840 {
2841 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2842 set_gdbarch_long_double_format (gdbarch,
2843 &floatformat_ieee_double_little);
2844 }
08216dd7
RE
2845 break;
2846
2847 default:
2848 internal_error (__FILE__, __LINE__,
edefbb7c 2849 _("arm_gdbarch_init: bad byte order for float format"));
08216dd7
RE
2850 }
2851
39bbf761
RE
2852 return gdbarch;
2853}
2854
97e03143
RE
2855static void
2856arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2857{
2858 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2859
2860 if (tdep == NULL)
2861 return;
2862
edefbb7c 2863 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
2864 (unsigned long) tdep->lowest_pc);
2865}
2866
a78f21af
AC
2867extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2868
c906108c 2869void
ed9a39eb 2870_initialize_arm_tdep (void)
c906108c 2871{
bc90b915
FN
2872 struct ui_file *stb;
2873 long length;
26304000 2874 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2875 const char *setname;
2876 const char *setdesc;
4bd7b427 2877 const char *const *regnames;
bc90b915
FN
2878 int numregs, i, j;
2879 static char *helptext;
edefbb7c
AC
2880 char regdesc[1024], *rdptr = regdesc;
2881 size_t rest = sizeof (regdesc);
085dd6e6 2882
42cf1509 2883 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2884
70f80edf
JT
2885 /* Register an ELF OS ABI sniffer for ARM binaries. */
2886 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2887 bfd_target_elf_flavour,
2888 arm_elf_osabi_sniffer);
2889
94c30b78 2890 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2891 num_disassembly_options = get_arm_regname_num_options ();
2892
2893 /* Add root prefix command for all "set arm"/"show arm" commands. */
2894 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 2895 _("Various ARM-specific commands."),
afd7eef0
RE
2896 &setarmcmdlist, "set arm ", 0, &setlist);
2897
2898 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 2899 _("Various ARM-specific commands."),
afd7eef0 2900 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2901
94c30b78 2902 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2903 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2904
eefe576e
AC
2905 /* Initialize the array that will be passed to
2906 add_setshow_enum_cmd(). */
afd7eef0
RE
2907 valid_disassembly_styles
2908 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2909 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2910 {
2911 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2912 valid_disassembly_styles[i] = setname;
edefbb7c
AC
2913 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2914 rdptr += length;
2915 rest -= length;
94c30b78 2916 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2917 if (!strcmp (setname, "std"))
2918 {
afd7eef0 2919 disassembly_style = setname;
bc90b915
FN
2920 current_option = i;
2921 for (j = 0; j < numregs; j++)
2922 arm_register_names[j] = (char *) regnames[j];
2923 set_arm_regname_option (i);
2924 }
2925 }
94c30b78 2926 /* Mark the end of valid options. */
afd7eef0 2927 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2928
edefbb7c
AC
2929 /* Create the help text. */
2930 stb = mem_fileopen ();
2931 fprintf_unfiltered (stb, "%s%s%s",
2932 _("The valid values are:\n"),
2933 regdesc,
2934 _("The default is \"std\"."));
bc90b915
FN
2935 helptext = ui_file_xstrdup (stb, &length);
2936 ui_file_delete (stb);
ed9a39eb 2937
edefbb7c
AC
2938 add_setshow_enum_cmd("disassembler", no_class,
2939 valid_disassembly_styles, &disassembly_style,
2940 _("Set the disassembly style."),
2941 _("Show the disassembly style."),
2942 helptext,
2c5b56ce 2943 set_disassembly_style_sfunc,
7915a72c 2944 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 2945 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
2946
2947 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2948 _("Set usage of ARM 32-bit mode."),
2949 _("Show usage of ARM 32-bit mode."),
2950 _("When off, a 26-bit PC will be used."),
2c5b56ce 2951 NULL,
7915a72c 2952 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 2953 &setarmcmdlist, &showarmcmdlist);
c906108c 2954
fd50bc42 2955 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
2956 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2957 _("Set the floating point type."),
2958 _("Show the floating point type."),
2959 _("auto - Determine the FP typefrom the OS-ABI.\n\
2960softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2961fpa - FPA co-processor (GCC compiled).\n\
2962softvfp - Software FP with pure-endian doubles.\n\
2963vfp - VFP co-processor."),
edefbb7c 2964 set_fp_model_sfunc, show_fp_model,
7376b4c2 2965 &setarmcmdlist, &showarmcmdlist);
fd50bc42 2966
28e97307
DJ
2967 /* Add a command to allow the user to force the ABI. */
2968 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
2969 _("Set the ABI."),
2970 _("Show the ABI."),
2971 NULL, arm_set_abi, arm_show_abi,
2972 &setarmcmdlist, &showarmcmdlist);
2973
6529d2dd 2974 /* Debugging flag. */
edefbb7c
AC
2975 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2976 _("Set ARM debugging."),
2977 _("Show ARM debugging."),
2978 _("When on, arm-specific debugging is enabled."),
2c5b56ce 2979 NULL,
7915a72c 2980 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 2981 &setdebuglist, &showdebuglist);
c906108c 2982}