]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
* win32-low.c: Commit leftover changes from 2007-03-29.
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c 22
34e8f22d
RE
23#include <ctype.h> /* XXX for isupper () */
24
c906108c
SS
25#include "defs.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
c906108c 30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
34e8f22d
RE
46
47#include "arm-tdep.h"
26216b98 48#include "gdb/sim-arm.h"
34e8f22d 49
082fc60d
RE
50#include "elf-bfd.h"
51#include "coff/internal.h"
97e03143 52#include "elf/arm.h"
c906108c 53
26216b98
AC
54#include "gdb_assert.h"
55
6529d2dd
AC
56static int arm_debug;
57
082fc60d
RE
58/* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 60 is used for this purpose.
082fc60d
RE
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
64
65#define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69#define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
afd7eef0
RE
72/* The list of available "set arm ..." and "show arm ..." commands. */
73static struct cmd_list_element *setarmcmdlist = NULL;
74static struct cmd_list_element *showarmcmdlist = NULL;
75
fd50bc42
RE
76/* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78static const char *fp_model_strings[] =
79{
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
28e97307
DJ
84 "vfp",
85 NULL
fd50bc42
RE
86};
87
88/* A variable that can be configured by the user. */
89static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90static const char *current_fp_model = "auto";
91
28e97307
DJ
92/* The ABI to use. Keep this in sync with arm_abi_kind. */
93static const char *arm_abi_strings[] =
94{
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99};
100
101/* A variable that can be configured by the user. */
102static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103static const char *arm_abi_string = "auto";
104
94c30b78 105/* Number of different reg name sets (options). */
afd7eef0 106static int num_disassembly_options;
bc90b915 107
123dc839
DJ
108/* The standard register names, and all the valid aliases for them. */
109static const struct
110{
111 const char *name;
112 int regnum;
113} arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157};
bc90b915 158
123dc839 159static const char *const arm_register_names[] =
da59e081
JM
160{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 166 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 167
afd7eef0
RE
168/* Valid register name styles. */
169static const char **valid_disassembly_styles;
ed9a39eb 170
afd7eef0
RE
171/* Disassembly style to use. Default to "std" register names. */
172static const char *disassembly_style;
96baa820 173
ed9a39eb 174/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
175 style. */
176static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 177 struct cmd_list_element *);
afd7eef0 178static void set_disassembly_style (void);
ed9a39eb 179
b508a996
RE
180static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
ed9a39eb 184
9b8d791a 185struct arm_prologue_cache
c3b4394c 186{
eb5492fa
DJ
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
c3b4394c
RE
197 int framesize;
198 int frameoffset;
eb5492fa
DJ
199
200 /* The register used to hold the frame pointer for this frame. */
c3b4394c 201 int framereg;
eb5492fa
DJ
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
c3b4394c 205};
ed9a39eb 206
bc90b915
FN
207/* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209#define IS_THUMB_ADDR(addr) ((addr) & 1)
210#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
94c30b78 213/* Set to true if the 32-bit mode is in use. */
c906108c
SS
214
215int arm_apcs_32 = 1;
216
ed9a39eb
JM
217/* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
c906108c 219
34e8f22d 220int
2a451106 221arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 222{
c5aa993b 223 struct minimal_symbol *sym;
c906108c 224
ed9a39eb 225 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
ed9a39eb 229 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
c5aa993b 233 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
234 }
235 else
ed9a39eb
JM
236 {
237 return 0;
238 }
c906108c
SS
239}
240
181c1381 241/* Remove useless bits from addresses in a running program. */
34e8f22d 242static CORE_ADDR
ed9a39eb 243arm_addr_bits_remove (CORE_ADDR val)
c906108c 244{
a3a2ee65
JT
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 247 else
a3a2ee65 248 return (val & 0x03fffffc);
c906108c
SS
249}
250
181c1381
RE
251/* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
34e8f22d 253static CORE_ADDR
181c1381
RE
254arm_smash_text_address (CORE_ADDR val)
255{
256 return val & ~1;
257}
258
29d73ae4
DJ
259/* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
262
263static CORE_ADDR
29d73ae4
DJ
264thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
c906108c 267{
29d73ae4
DJ
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
da3c6d4a 273
29d73ae4
DJ
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
c906108c 288 {
29d73ae4
DJ
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
c906108c 292
94c30b78 293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 294 {
29d73ae4
DJ
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
da59e081 320 }
da3c6d4a
MS
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
da59e081 323 {
29d73ae4
DJ
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
da59e081 328 else
29d73ae4
DJ
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
da59e081
JM
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 336 {
29d73ae4
DJ
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
da59e081 340 }
29d73ae4 341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 342 {
29d73ae4
DJ
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 356 }
29d73ae4 357 else
3d74b771 358 {
29d73ae4
DJ
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
da3c6d4a 363 break;
3d74b771 364 }
29d73ae4
DJ
365
366 start += 2;
c906108c
SS
367 }
368
29d73ae4
DJ
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
c906108c
SS
409}
410
da3c6d4a
MS
411/* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
34e8f22d
RE
413
414 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 415 prologue:
c906108c 416
c5aa993b
JM
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 425
34e8f22d 426static CORE_ADDR
ed9a39eb 427arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
428{
429 unsigned long inst;
430 CORE_ADDR skip_pc;
b8d5e71d 431 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 432 char *func_name;
c906108c
SS
433 struct symtab_and_line sal;
434
848cfffb 435 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 436 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
437 return pc;
438
96baa820 439 /* See what the symbol table says. */
ed9a39eb 440
50f6fb4b 441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 442 {
50f6fb4b
CV
443 struct symbol *sym;
444
445 /* Found a function. */
176620f1 446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
94c30b78 449 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
c906108c
SS
454 }
455
c906108c 456 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 457 by disassembling the instructions. */
c906108c 458
b8d5e71d
MS
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
c906108c 462
29d73ae4
DJ
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
b8d5e71d 467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 468 {
1c5bada0 469 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 470
b8d5e71d
MS
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
c906108c 474
28cd8767
JG
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
b8d5e71d
MS
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
c906108c 484
b8d5e71d
MS
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
c906108c 487
b8d5e71d
MS
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
11d3b27d 490
b8d5e71d
MS
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
f43845b3 494
b8d5e71d
MS
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
f43845b3 522 }
c906108c 523
b8d5e71d 524 return skip_pc; /* End of prologue */
c906108c 525}
94c30b78 526
c5aa993b 527/* *INDENT-OFF* */
c906108c
SS
528/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
c906108c 534
da59e081
JM
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
c906108c
SS
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
543 12 bytes. The frame register is R7.
544
da3c6d4a
MS
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
c5aa993b
JM
547/* *INDENT-ON* */
548
c906108c 549static void
eb5492fa 550thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
551{
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
94c30b78 555 /* Which register has been copied to register n? */
da3c6d4a
MS
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
c5aa993b 563 int i;
c906108c 564
eb5492fa 565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
94c30b78 569 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 570 prologue_end = prev_pc;
c906108c 571 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 572 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
573 }
574 else
f7060f85
DJ
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
c906108c 578
eb5492fa 579 prologue_end = min (prologue_end, prev_pc);
c906108c 580
29d73ae4
DJ
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
c906108c
SS
583}
584
ed9a39eb 585/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
c906108c
SS
590 This information is stored in the "extra" fields of the frame_info.
591
96baa820
JM
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
ed9a39eb
JM
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
96baa820 599
c906108c 600 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
c906108c 608 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
ed9a39eb 615
96baa820
JM
616 A variable argument function call will look like:
617
ed9a39eb
JM
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
96baa820 623 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
96baa820
JM
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
ed9a39eb
JM
649
650 */
c906108c
SS
651
652static void
eb5492fa 653arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 654{
28cd8767 655 int regno, sp_offset, fp_offset, ip_offset;
c906108c 656 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 658
c906108c 659 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
c906108c
SS
663
664 /* Check for Thumb prologue. */
eb5492fa 665 if (arm_pc_is_thumb (prev_pc))
c906108c 666 {
eb5492fa 667 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 674 {
2a451106
KB
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
eb5492fa 681 prologue_end = prev_pc;
2a451106
KB
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
94c30b78 705 the scheduler. */
2a451106
KB
706
707 if (prologue_end > prologue_start + 64)
708 {
94c30b78 709 prologue_end = prologue_start + 64; /* See above. */
2a451106 710 }
c906108c
SS
711 }
712 else
713 {
eb5492fa
DJ
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
724 return;
725 else
726 {
727 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 728 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 729 }
c906108c
SS
730 }
731
eb5492fa
DJ
732 if (prev_pc < prologue_end)
733 prologue_end = prev_pc;
734
c906108c 735 /* Now search the prologue looking for instructions that set up the
96baa820 736 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 737
96baa820
JM
738 Be careful, however, and if it doesn't look like a prologue,
739 don't try to scan it. If, for instance, a frameless function
740 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 741 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
742 and other operations that rely on a knowledge of the stack
743 traceback.
744
745 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 746 if we don't see this as the first insn, we will stop.
c906108c 747
f43845b3
MS
748 [Note: This doesn't seem to be true any longer, so it's now an
749 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 750
f43845b3
MS
751 [Note further: The "mov ip,sp" only seems to be missing in
752 frameless functions at optimization level "-O2" or above,
753 in which case it is often (but not always) replaced by
b8d5e71d 754 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 755
28cd8767 756 sp_offset = fp_offset = ip_offset = 0;
f43845b3 757
94c30b78
MS
758 for (current_pc = prologue_start;
759 current_pc < prologue_end;
f43845b3 760 current_pc += 4)
96baa820 761 {
d4473757
KB
762 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
763
94c30b78 764 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 765 {
28cd8767
JG
766 ip_offset = 0;
767 continue;
768 }
769 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
770 {
771 unsigned imm = insn & 0xff; /* immediate value */
772 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
773 imm = (imm >> rot) | (imm << (32 - rot));
774 ip_offset = imm;
775 continue;
776 }
777 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
778 {
779 unsigned imm = insn & 0xff; /* immediate value */
780 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
781 imm = (imm >> rot) | (imm << (32 - rot));
782 ip_offset = -imm;
f43845b3
MS
783 continue;
784 }
94c30b78 785 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 786 {
e28a332c
JG
787 sp_offset -= 4;
788 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
c906108c 795 {
d4473757 796 int mask = insn & 0xffff;
ed9a39eb 797
94c30b78 798 /* Calculate offsets of saved registers. */
34e8f22d 799 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
800 if (mask & (1 << regno))
801 {
802 sp_offset -= 4;
eb5492fa 803 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
804 }
805 }
b8d5e71d
MS
806 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
807 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
808 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
809 {
810 /* No need to add this to saved_regs -- it's just an arg reg. */
811 continue;
812 }
813 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
814 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
815 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
816 {
817 /* No need to add this to saved_regs -- it's just an arg reg. */
818 continue;
819 }
d4473757
KB
820 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
821 {
94c30b78
MS
822 unsigned imm = insn & 0xff; /* immediate value */
823 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 824 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 825 fp_offset = -imm + ip_offset;
9b8d791a 826 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
827 }
828 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
829 {
94c30b78
MS
830 unsigned imm = insn & 0xff; /* immediate value */
831 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
832 imm = (imm >> rot) | (imm << (32 - rot));
833 sp_offset -= imm;
834 }
ff6f572f
DJ
835 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
836 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
837 {
838 sp_offset -= 12;
34e8f22d 839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 840 cache->saved_regs[regno].addr = sp_offset;
d4473757 841 }
ff6f572f
DJ
842 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
843 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
844 {
845 int n_saved_fp_regs;
846 unsigned int fp_start_reg, fp_bound_reg;
847
94c30b78 848 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 849 {
d4473757
KB
850 if ((insn & 0x40000) == 0x40000) /* N1 is set */
851 n_saved_fp_regs = 3;
852 else
853 n_saved_fp_regs = 1;
96baa820 854 }
d4473757 855 else
96baa820 856 {
d4473757
KB
857 if ((insn & 0x40000) == 0x40000) /* N1 is set */
858 n_saved_fp_regs = 2;
859 else
860 n_saved_fp_regs = 4;
96baa820 861 }
d4473757 862
34e8f22d 863 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
864 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
865 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
866 {
867 sp_offset -= 12;
eb5492fa 868 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 869 }
c906108c 870 }
d4473757 871 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 872 break; /* Condition not true, exit early */
b8d5e71d 873 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 874 break; /* Don't scan past a block load */
d4473757
KB
875 else
876 /* The optimizer might shove anything into the prologue,
94c30b78 877 so we just skip what we don't recognize. */
d4473757 878 continue;
c906108c
SS
879 }
880
94c30b78
MS
881 /* The frame size is just the negative of the offset (from the
882 original SP) of the last thing thing we pushed on the stack.
883 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
884 cache->framesize = -sp_offset;
885 if (cache->framereg == ARM_FP_REGNUM)
886 cache->frameoffset = fp_offset - sp_offset;
d4473757 887 else
9b8d791a 888 cache->frameoffset = 0;
c906108c
SS
889}
890
eb5492fa
DJ
891static struct arm_prologue_cache *
892arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 893{
eb5492fa
DJ
894 int reg;
895 struct arm_prologue_cache *cache;
896 CORE_ADDR unwound_fp;
c5aa993b 897
35d5d4ee 898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 899 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 900
eb5492fa 901 arm_scan_prologue (next_frame, cache);
848cfffb 902
eb5492fa
DJ
903 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
904 if (unwound_fp == 0)
905 return cache;
c906108c 906
eb5492fa 907 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 908
eb5492fa
DJ
909 /* Calculate actual addresses of saved registers using offsets
910 determined by arm_scan_prologue. */
911 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 912 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
913 cache->saved_regs[reg].addr += cache->prev_sp;
914
915 return cache;
c906108c
SS
916}
917
eb5492fa
DJ
918/* Our frame ID for a normal frame is the current function's starting PC
919 and the caller's SP when we were called. */
c906108c 920
148754e5 921static void
eb5492fa
DJ
922arm_prologue_this_id (struct frame_info *next_frame,
923 void **this_cache,
924 struct frame_id *this_id)
c906108c 925{
eb5492fa
DJ
926 struct arm_prologue_cache *cache;
927 struct frame_id id;
928 CORE_ADDR func;
f079148d 929
eb5492fa
DJ
930 if (*this_cache == NULL)
931 *this_cache = arm_make_prologue_cache (next_frame);
932 cache = *this_cache;
2a451106 933
93d42b30 934 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2a451106 935
eb5492fa
DJ
936 /* This is meant to halt the backtrace at "_start". Make sure we
937 don't halt it at a generic dummy frame. */
9e815ec2 938 if (func <= LOWEST_PC)
eb5492fa 939 return;
5a203e44 940
eb5492fa
DJ
941 /* If we've hit a wall, stop. */
942 if (cache->prev_sp == 0)
943 return;
24de872b 944
eb5492fa 945 id = frame_id_build (cache->prev_sp, func);
eb5492fa 946 *this_id = id;
c906108c
SS
947}
948
eb5492fa
DJ
949static void
950arm_prologue_prev_register (struct frame_info *next_frame,
951 void **this_cache,
952 int prev_regnum,
953 int *optimized,
954 enum lval_type *lvalp,
955 CORE_ADDR *addrp,
956 int *realnump,
9af75ef6 957 gdb_byte *valuep)
24de872b
DJ
958{
959 struct arm_prologue_cache *cache;
960
eb5492fa
DJ
961 if (*this_cache == NULL)
962 *this_cache = arm_make_prologue_cache (next_frame);
963 cache = *this_cache;
24de872b 964
eb5492fa
DJ
965 /* If we are asked to unwind the PC, then we need to return the LR
966 instead. The saved value of PC points into this frame's
967 prologue, not the next frame's resume location. */
968 if (prev_regnum == ARM_PC_REGNUM)
969 prev_regnum = ARM_LR_REGNUM;
24de872b 970
eb5492fa
DJ
971 /* SP is generally not saved to the stack, but this frame is
972 identified by NEXT_FRAME's stack pointer at the time of the call.
973 The value was already reconstructed into PREV_SP. */
974 if (prev_regnum == ARM_SP_REGNUM)
975 {
976 *lvalp = not_lval;
977 if (valuep)
978 store_unsigned_integer (valuep, 4, cache->prev_sp);
979 return;
980 }
981
1f67027d
AC
982 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
983 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
984}
985
986struct frame_unwind arm_prologue_unwind = {
987 NORMAL_FRAME,
988 arm_prologue_this_id,
989 arm_prologue_prev_register
990};
991
992static const struct frame_unwind *
993arm_prologue_unwind_sniffer (struct frame_info *next_frame)
994{
995 return &arm_prologue_unwind;
24de872b
DJ
996}
997
909cf6ea
DJ
998static struct arm_prologue_cache *
999arm_make_stub_cache (struct frame_info *next_frame)
1000{
1001 int reg;
1002 struct arm_prologue_cache *cache;
1003 CORE_ADDR unwound_fp;
1004
35d5d4ee 1005 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1006 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1007
1008 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1009
1010 return cache;
1011}
1012
1013/* Our frame ID for a stub frame is the current SP and LR. */
1014
1015static void
1016arm_stub_this_id (struct frame_info *next_frame,
1017 void **this_cache,
1018 struct frame_id *this_id)
1019{
1020 struct arm_prologue_cache *cache;
1021
1022 if (*this_cache == NULL)
1023 *this_cache = arm_make_stub_cache (next_frame);
1024 cache = *this_cache;
1025
1026 *this_id = frame_id_build (cache->prev_sp,
1027 frame_pc_unwind (next_frame));
1028}
1029
1030struct frame_unwind arm_stub_unwind = {
1031 NORMAL_FRAME,
1032 arm_stub_this_id,
1033 arm_prologue_prev_register
1034};
1035
1036static const struct frame_unwind *
1037arm_stub_unwind_sniffer (struct frame_info *next_frame)
1038{
93d42b30 1039 CORE_ADDR addr_in_block;
909cf6ea
DJ
1040 char dummy[4];
1041
93d42b30
DJ
1042 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1043 if (in_plt_section (addr_in_block, NULL)
909cf6ea
DJ
1044 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1045 return &arm_stub_unwind;
1046
1047 return NULL;
1048}
1049
24de872b 1050static CORE_ADDR
eb5492fa 1051arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1052{
1053 struct arm_prologue_cache *cache;
1054
eb5492fa
DJ
1055 if (*this_cache == NULL)
1056 *this_cache = arm_make_prologue_cache (next_frame);
1057 cache = *this_cache;
1058
1059 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1060}
1061
eb5492fa
DJ
1062struct frame_base arm_normal_base = {
1063 &arm_prologue_unwind,
1064 arm_normal_frame_base,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base
1067};
1068
eb5492fa
DJ
1069/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1070 dummy frame. The frame ID's base needs to match the TOS value
1071 saved by save_dummy_frame_tos() and returned from
1072 arm_push_dummy_call, and the PC needs to match the dummy frame's
1073 breakpoint. */
c906108c 1074
eb5492fa
DJ
1075static struct frame_id
1076arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1077{
eb5492fa
DJ
1078 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1079 frame_pc_unwind (next_frame));
1080}
c3b4394c 1081
eb5492fa
DJ
1082/* Given THIS_FRAME, find the previous frame's resume PC (which will
1083 be used to construct the previous frame's ID, after looking up the
1084 containing function). */
c3b4394c 1085
eb5492fa
DJ
1086static CORE_ADDR
1087arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1088{
1089 CORE_ADDR pc;
1090 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1091 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1092}
1093
1094static CORE_ADDR
1095arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1096{
1097 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1098}
1099
2dd604e7
RE
1100/* When arguments must be pushed onto the stack, they go on in reverse
1101 order. The code below implements a FILO (stack) to do this. */
1102
1103struct stack_item
1104{
1105 int len;
1106 struct stack_item *prev;
1107 void *data;
1108};
1109
1110static struct stack_item *
1111push_stack_item (struct stack_item *prev, void *contents, int len)
1112{
1113 struct stack_item *si;
1114 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1115 si->data = xmalloc (len);
2dd604e7
RE
1116 si->len = len;
1117 si->prev = prev;
1118 memcpy (si->data, contents, len);
1119 return si;
1120}
1121
1122static struct stack_item *
1123pop_stack_item (struct stack_item *si)
1124{
1125 struct stack_item *dead = si;
1126 si = si->prev;
1127 xfree (dead->data);
1128 xfree (dead);
1129 return si;
1130}
1131
2af48f68
PB
1132
1133/* Return the alignment (in bytes) of the given type. */
1134
1135static int
1136arm_type_align (struct type *t)
1137{
1138 int n;
1139 int align;
1140 int falign;
1141
1142 t = check_typedef (t);
1143 switch (TYPE_CODE (t))
1144 {
1145 default:
1146 /* Should never happen. */
1147 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1148 return 4;
1149
1150 case TYPE_CODE_PTR:
1151 case TYPE_CODE_ENUM:
1152 case TYPE_CODE_INT:
1153 case TYPE_CODE_FLT:
1154 case TYPE_CODE_SET:
1155 case TYPE_CODE_RANGE:
1156 case TYPE_CODE_BITSTRING:
1157 case TYPE_CODE_REF:
1158 case TYPE_CODE_CHAR:
1159 case TYPE_CODE_BOOL:
1160 return TYPE_LENGTH (t);
1161
1162 case TYPE_CODE_ARRAY:
1163 case TYPE_CODE_COMPLEX:
1164 /* TODO: What about vector types? */
1165 return arm_type_align (TYPE_TARGET_TYPE (t));
1166
1167 case TYPE_CODE_STRUCT:
1168 case TYPE_CODE_UNION:
1169 align = 1;
1170 for (n = 0; n < TYPE_NFIELDS (t); n++)
1171 {
1172 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1173 if (falign > align)
1174 align = falign;
1175 }
1176 return align;
1177 }
1178}
1179
2dd604e7
RE
1180/* We currently only support passing parameters in integer registers. This
1181 conforms with GCC's default model. Several other variants exist and
1182 we should probably support some of them based on the selected ABI. */
1183
1184static CORE_ADDR
7d9b040b 1185arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1186 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1187 struct value **args, CORE_ADDR sp, int struct_return,
1188 CORE_ADDR struct_addr)
2dd604e7
RE
1189{
1190 int argnum;
1191 int argreg;
1192 int nstack;
1193 struct stack_item *si = NULL;
1194
6a65450a
AC
1195 /* Set the return address. For the ARM, the return breakpoint is
1196 always at BP_ADDR. */
2dd604e7 1197 /* XXX Fix for Thumb. */
6a65450a 1198 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1199
1200 /* Walk through the list of args and determine how large a temporary
1201 stack is required. Need to take care here as structs may be
1202 passed on the stack, and we have to to push them. */
1203 nstack = 0;
1204
1205 argreg = ARM_A1_REGNUM;
1206 nstack = 0;
1207
2dd604e7
RE
1208 /* The struct_return pointer occupies the first parameter
1209 passing register. */
1210 if (struct_return)
1211 {
1212 if (arm_debug)
1213 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1214 REGISTER_NAME (argreg), paddr (struct_addr));
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1216 argreg++;
1217 }
1218
1219 for (argnum = 0; argnum < nargs; argnum++)
1220 {
1221 int len;
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
0fd88904 1225 bfd_byte *val;
2af48f68 1226 int align;
2dd604e7 1227
df407dfe 1228 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1229 len = TYPE_LENGTH (arg_type);
1230 target_type = TYPE_TARGET_TYPE (arg_type);
1231 typecode = TYPE_CODE (arg_type);
0fd88904 1232 val = value_contents_writeable (args[argnum]);
2dd604e7 1233
2af48f68
PB
1234 align = arm_type_align (arg_type);
1235 /* Round alignment up to a whole number of words. */
1236 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1237 /* Different ABIs have different maximum alignments. */
1238 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1239 {
1240 /* The APCS ABI only requires word alignment. */
1241 align = INT_REGISTER_SIZE;
1242 }
1243 else
1244 {
1245 /* The AAPCS requires at most doubleword alignment. */
1246 if (align > INT_REGISTER_SIZE * 2)
1247 align = INT_REGISTER_SIZE * 2;
1248 }
1249
1250 /* Push stack padding for dowubleword alignment. */
1251 if (nstack & (align - 1))
1252 {
1253 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1254 nstack += INT_REGISTER_SIZE;
1255 }
1256
1257 /* Doubleword aligned quantities must go in even register pairs. */
1258 if (argreg <= ARM_LAST_ARG_REGNUM
1259 && align > INT_REGISTER_SIZE
1260 && argreg & 1)
1261 argreg++;
1262
2dd604e7
RE
1263 /* If the argument is a pointer to a function, and it is a
1264 Thumb function, create a LOCAL copy of the value and set
1265 the THUMB bit in it. */
1266 if (TYPE_CODE_PTR == typecode
1267 && target_type != NULL
1268 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1269 {
7c0b4a20 1270 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1271 if (arm_pc_is_thumb (regval))
1272 {
1273 val = alloca (len);
fbd9dcd3 1274 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1275 }
1276 }
1277
1278 /* Copy the argument to general registers or the stack in
1279 register-sized pieces. Large arguments are split between
1280 registers and stack. */
1281 while (len > 0)
1282 {
b1e29e33 1283 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1284
1285 if (argreg <= ARM_LAST_ARG_REGNUM)
1286 {
1287 /* The argument is being passed in a general purpose
1288 register. */
7c0b4a20 1289 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1290 if (arm_debug)
1291 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1292 argnum, REGISTER_NAME (argreg),
b1e29e33 1293 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1294 regcache_cooked_write_unsigned (regcache, argreg, regval);
1295 argreg++;
1296 }
1297 else
1298 {
1299 /* Push the arguments onto the stack. */
1300 if (arm_debug)
1301 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1302 argnum, nstack);
b1e29e33
AC
1303 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1304 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1305 }
1306
1307 len -= partial_len;
1308 val += partial_len;
1309 }
1310 }
1311 /* If we have an odd number of words to push, then decrement the stack
1312 by one word now, so first stack argument will be dword aligned. */
1313 if (nstack & 4)
1314 sp -= 4;
1315
1316 while (si)
1317 {
1318 sp -= si->len;
1319 write_memory (sp, si->data, si->len);
1320 si = pop_stack_item (si);
1321 }
1322
1323 /* Finally, update teh SP register. */
1324 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1325
1326 return sp;
1327}
1328
f53f0d0b
PB
1329
1330/* Always align the frame to an 8-byte boundary. This is required on
1331 some platforms and harmless on the rest. */
1332
1333static CORE_ADDR
1334arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1335{
1336 /* Align the stack to eight bytes. */
1337 return sp & ~ (CORE_ADDR) 7;
1338}
1339
c906108c 1340static void
ed9a39eb 1341print_fpu_flags (int flags)
c906108c 1342{
c5aa993b
JM
1343 if (flags & (1 << 0))
1344 fputs ("IVO ", stdout);
1345 if (flags & (1 << 1))
1346 fputs ("DVZ ", stdout);
1347 if (flags & (1 << 2))
1348 fputs ("OFL ", stdout);
1349 if (flags & (1 << 3))
1350 fputs ("UFL ", stdout);
1351 if (flags & (1 << 4))
1352 fputs ("INX ", stdout);
1353 putchar ('\n');
c906108c
SS
1354}
1355
5e74b15c
RE
1356/* Print interesting information about the floating point processor
1357 (if present) or emulator. */
34e8f22d 1358static void
d855c300 1359arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1360 struct frame_info *frame, const char *args)
c906108c 1361{
52f0bd74 1362 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1363 int type;
1364
1365 type = (status >> 24) & 127;
edefbb7c
AC
1366 if (status & (1 << 31))
1367 printf (_("Hardware FPU type %d\n"), type);
1368 else
1369 printf (_("Software FPU type %d\n"), type);
1370 /* i18n: [floating point unit] mask */
1371 fputs (_("mask: "), stdout);
c5aa993b 1372 print_fpu_flags (status >> 16);
edefbb7c
AC
1373 /* i18n: [floating point unit] flags */
1374 fputs (_("flags: "), stdout);
c5aa993b 1375 print_fpu_flags (status);
c906108c
SS
1376}
1377
34e8f22d
RE
1378/* Return the GDB type object for the "standard" data type of data in
1379 register N. */
1380
1381static struct type *
7a5ea0d4 1382arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1383{
34e8f22d 1384 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1385 return builtin_type_arm_ext;
e4c16157
DJ
1386 else if (regnum == ARM_SP_REGNUM)
1387 return builtin_type_void_data_ptr;
1388 else if (regnum == ARM_PC_REGNUM)
1389 return builtin_type_void_func_ptr;
ff6f572f
DJ
1390 else if (regnum >= ARRAY_SIZE (arm_register_names))
1391 /* These registers are only supported on targets which supply
1392 an XML description. */
1393 return builtin_type_int0;
032758dc 1394 else
e4c16157 1395 return builtin_type_uint32;
032758dc
AC
1396}
1397
ff6f572f
DJ
1398/* Map a DWARF register REGNUM onto the appropriate GDB register
1399 number. */
1400
1401static int
1402arm_dwarf_reg_to_regnum (int reg)
1403{
1404 /* Core integer regs. */
1405 if (reg >= 0 && reg <= 15)
1406 return reg;
1407
1408 /* Legacy FPA encoding. These were once used in a way which
1409 overlapped with VFP register numbering, so their use is
1410 discouraged, but GDB doesn't support the ARM toolchain
1411 which used them for VFP. */
1412 if (reg >= 16 && reg <= 23)
1413 return ARM_F0_REGNUM + reg - 16;
1414
1415 /* New assignments for the FPA registers. */
1416 if (reg >= 96 && reg <= 103)
1417 return ARM_F0_REGNUM + reg - 96;
1418
1419 /* WMMX register assignments. */
1420 if (reg >= 104 && reg <= 111)
1421 return ARM_WCGR0_REGNUM + reg - 104;
1422
1423 if (reg >= 112 && reg <= 127)
1424 return ARM_WR0_REGNUM + reg - 112;
1425
1426 if (reg >= 192 && reg <= 199)
1427 return ARM_WC0_REGNUM + reg - 192;
1428
1429 return -1;
1430}
1431
26216b98
AC
1432/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1433static int
1434arm_register_sim_regno (int regnum)
1435{
1436 int reg = regnum;
1437 gdb_assert (reg >= 0 && reg < NUM_REGS);
1438
ff6f572f
DJ
1439 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1440 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1441
1442 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1443 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1444
1445 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1446 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1447
26216b98
AC
1448 if (reg < NUM_GREGS)
1449 return SIM_ARM_R0_REGNUM + reg;
1450 reg -= NUM_GREGS;
1451
1452 if (reg < NUM_FREGS)
1453 return SIM_ARM_FP0_REGNUM + reg;
1454 reg -= NUM_FREGS;
1455
1456 if (reg < NUM_SREGS)
1457 return SIM_ARM_FPS_REGNUM + reg;
1458 reg -= NUM_SREGS;
1459
edefbb7c 1460 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1461}
34e8f22d 1462
a37b3cc0
AC
1463/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1464 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1465 It is thought that this is is the floating-point register format on
1466 little-endian systems. */
c906108c 1467
ed9a39eb 1468static void
b508a996
RE
1469convert_from_extended (const struct floatformat *fmt, const void *ptr,
1470 void *dbl)
c906108c 1471{
a37b3cc0 1472 DOUBLEST d;
d7449b42 1473 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1474 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1475 else
1476 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1477 ptr, &d);
b508a996 1478 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1479}
1480
34e8f22d 1481static void
b508a996 1482convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1483{
a37b3cc0 1484 DOUBLEST d;
b508a996 1485 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1486 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1487 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1488 else
1489 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1490 &d, dbl);
c906108c 1491}
ed9a39eb 1492
c906108c 1493static int
ed9a39eb 1494condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1495{
1496 if (cond == INST_AL || cond == INST_NV)
1497 return 1;
1498
1499 switch (cond)
1500 {
1501 case INST_EQ:
1502 return ((status_reg & FLAG_Z) != 0);
1503 case INST_NE:
1504 return ((status_reg & FLAG_Z) == 0);
1505 case INST_CS:
1506 return ((status_reg & FLAG_C) != 0);
1507 case INST_CC:
1508 return ((status_reg & FLAG_C) == 0);
1509 case INST_MI:
1510 return ((status_reg & FLAG_N) != 0);
1511 case INST_PL:
1512 return ((status_reg & FLAG_N) == 0);
1513 case INST_VS:
1514 return ((status_reg & FLAG_V) != 0);
1515 case INST_VC:
1516 return ((status_reg & FLAG_V) == 0);
1517 case INST_HI:
1518 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1519 case INST_LS:
1520 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1521 case INST_GE:
1522 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1523 case INST_LT:
1524 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1525 case INST_GT:
1526 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1527 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1528 case INST_LE:
1529 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1530 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1531 }
1532 return 1;
1533}
1534
9512d7fd 1535/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1536#define submask(x) ((1L << ((x) + 1)) - 1)
1537#define bit(obj,st) (((obj) >> (st)) & 1)
1538#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1539#define sbits(obj,st,fn) \
1540 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1541#define BranchDest(addr,instr) \
1542 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1543#define ARM_PC_32 1
1544
1545static unsigned long
ed9a39eb
JM
1546shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1547 unsigned long status_reg)
c906108c
SS
1548{
1549 unsigned long res, shift;
1550 int rm = bits (inst, 0, 3);
1551 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1552
1553 if (bit (inst, 4))
c906108c
SS
1554 {
1555 int rs = bits (inst, 8, 11);
1556 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1557 }
1558 else
1559 shift = bits (inst, 7, 11);
c5aa993b
JM
1560
1561 res = (rm == 15
c906108c 1562 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1563 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1564 : read_register (rm));
1565
1566 switch (shifttype)
1567 {
c5aa993b 1568 case 0: /* LSL */
c906108c
SS
1569 res = shift >= 32 ? 0 : res << shift;
1570 break;
c5aa993b
JM
1571
1572 case 1: /* LSR */
c906108c
SS
1573 res = shift >= 32 ? 0 : res >> shift;
1574 break;
1575
c5aa993b
JM
1576 case 2: /* ASR */
1577 if (shift >= 32)
1578 shift = 31;
c906108c
SS
1579 res = ((res & 0x80000000L)
1580 ? ~((~res) >> shift) : res >> shift);
1581 break;
1582
c5aa993b 1583 case 3: /* ROR/RRX */
c906108c
SS
1584 shift &= 31;
1585 if (shift == 0)
1586 res = (res >> 1) | (carry ? 0x80000000L : 0);
1587 else
c5aa993b 1588 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1589 break;
1590 }
1591
1592 return res & 0xffffffff;
1593}
1594
c906108c
SS
1595/* Return number of 1-bits in VAL. */
1596
1597static int
ed9a39eb 1598bitcount (unsigned long val)
c906108c
SS
1599{
1600 int nbits;
1601 for (nbits = 0; val != 0; nbits++)
c5aa993b 1602 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1603 return nbits;
1604}
1605
34e8f22d 1606CORE_ADDR
ed9a39eb 1607thumb_get_next_pc (CORE_ADDR pc)
c906108c 1608{
c5aa993b 1609 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1610 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1611 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1612 unsigned long offset;
1613
1614 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1615 {
1616 CORE_ADDR sp;
1617
1618 /* Fetch the saved PC from the stack. It's stored above
1619 all of the other registers. */
b1e29e33 1620 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1621 sp = read_register (ARM_SP_REGNUM);
1c5bada0 1622 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
c906108c
SS
1623 nextpc = ADDR_BITS_REMOVE (nextpc);
1624 if (nextpc == pc)
edefbb7c 1625 error (_("Infinite loop detected"));
c906108c
SS
1626 }
1627 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1628 {
34e8f22d 1629 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1630 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1631 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1632 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1633 }
1634 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1635 {
1636 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1637 }
aa17d93e 1638 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1639 {
1c5bada0 1640 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1641 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1642 nextpc = pc_val + offset;
aa17d93e
DJ
1643 /* For BLX make sure to clear the low bits. */
1644 if (bits (inst2, 11, 12) == 1)
1645 nextpc = nextpc & 0xfffffffc;
c906108c 1646 }
aa17d93e 1647 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1648 {
1649 if (bits (inst1, 3, 6) == 0x0f)
1650 nextpc = pc_val;
1651 else
1652 nextpc = read_register (bits (inst1, 3, 6));
1653
1654 nextpc = ADDR_BITS_REMOVE (nextpc);
1655 if (nextpc == pc)
edefbb7c 1656 error (_("Infinite loop detected"));
9498281f 1657 }
c906108c
SS
1658
1659 return nextpc;
1660}
1661
34e8f22d 1662CORE_ADDR
ed9a39eb 1663arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1664{
1665 unsigned long pc_val;
1666 unsigned long this_instr;
1667 unsigned long status;
1668 CORE_ADDR nextpc;
1669
1670 if (arm_pc_is_thumb (pc))
1671 return thumb_get_next_pc (pc);
1672
1673 pc_val = (unsigned long) pc;
1c5bada0 1674 this_instr = read_memory_unsigned_integer (pc, 4);
34e8f22d 1675 status = read_register (ARM_PS_REGNUM);
c5aa993b 1676 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1677
1678 if (condition_true (bits (this_instr, 28, 31), status))
1679 {
1680 switch (bits (this_instr, 24, 27))
1681 {
c5aa993b 1682 case 0x0:
94c30b78 1683 case 0x1: /* data processing */
c5aa993b
JM
1684 case 0x2:
1685 case 0x3:
c906108c
SS
1686 {
1687 unsigned long operand1, operand2, result = 0;
1688 unsigned long rn;
1689 int c;
c5aa993b 1690
c906108c
SS
1691 if (bits (this_instr, 12, 15) != 15)
1692 break;
1693
1694 if (bits (this_instr, 22, 25) == 0
c5aa993b 1695 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1696 error (_("Invalid update to pc in instruction"));
c906108c 1697
9498281f 1698 /* BX <reg>, BLX <reg> */
e150acc7
PB
1699 if (bits (this_instr, 4, 27) == 0x12fff1
1700 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1701 {
1702 rn = bits (this_instr, 0, 3);
1703 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1704 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1705
1706 if (nextpc == pc)
edefbb7c 1707 error (_("Infinite loop detected"));
9498281f
DJ
1708
1709 return nextpc;
1710 }
1711
c906108c
SS
1712 /* Multiply into PC */
1713 c = (status & FLAG_C) ? 1 : 0;
1714 rn = bits (this_instr, 16, 19);
1715 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1716
c906108c
SS
1717 if (bit (this_instr, 25))
1718 {
1719 unsigned long immval = bits (this_instr, 0, 7);
1720 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1721 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1722 & 0xffffffff;
c906108c 1723 }
c5aa993b 1724 else /* operand 2 is a shifted register */
c906108c 1725 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1726
c906108c
SS
1727 switch (bits (this_instr, 21, 24))
1728 {
c5aa993b 1729 case 0x0: /*and */
c906108c
SS
1730 result = operand1 & operand2;
1731 break;
1732
c5aa993b 1733 case 0x1: /*eor */
c906108c
SS
1734 result = operand1 ^ operand2;
1735 break;
1736
c5aa993b 1737 case 0x2: /*sub */
c906108c
SS
1738 result = operand1 - operand2;
1739 break;
1740
c5aa993b 1741 case 0x3: /*rsb */
c906108c
SS
1742 result = operand2 - operand1;
1743 break;
1744
c5aa993b 1745 case 0x4: /*add */
c906108c
SS
1746 result = operand1 + operand2;
1747 break;
1748
c5aa993b 1749 case 0x5: /*adc */
c906108c
SS
1750 result = operand1 + operand2 + c;
1751 break;
1752
c5aa993b 1753 case 0x6: /*sbc */
c906108c
SS
1754 result = operand1 - operand2 + c;
1755 break;
1756
c5aa993b 1757 case 0x7: /*rsc */
c906108c
SS
1758 result = operand2 - operand1 + c;
1759 break;
1760
c5aa993b
JM
1761 case 0x8:
1762 case 0x9:
1763 case 0xa:
1764 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1765 result = (unsigned long) nextpc;
1766 break;
1767
c5aa993b 1768 case 0xc: /*orr */
c906108c
SS
1769 result = operand1 | operand2;
1770 break;
1771
c5aa993b 1772 case 0xd: /*mov */
c906108c
SS
1773 /* Always step into a function. */
1774 result = operand2;
c5aa993b 1775 break;
c906108c 1776
c5aa993b 1777 case 0xe: /*bic */
c906108c
SS
1778 result = operand1 & ~operand2;
1779 break;
1780
c5aa993b 1781 case 0xf: /*mvn */
c906108c
SS
1782 result = ~operand2;
1783 break;
1784 }
1785 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1786
1787 if (nextpc == pc)
edefbb7c 1788 error (_("Infinite loop detected"));
c906108c
SS
1789 break;
1790 }
c5aa993b
JM
1791
1792 case 0x4:
1793 case 0x5: /* data transfer */
1794 case 0x6:
1795 case 0x7:
c906108c
SS
1796 if (bit (this_instr, 20))
1797 {
1798 /* load */
1799 if (bits (this_instr, 12, 15) == 15)
1800 {
1801 /* rd == pc */
c5aa993b 1802 unsigned long rn;
c906108c 1803 unsigned long base;
c5aa993b 1804
c906108c 1805 if (bit (this_instr, 22))
edefbb7c 1806 error (_("Invalid update to pc in instruction"));
c906108c
SS
1807
1808 /* byte write to PC */
1809 rn = bits (this_instr, 16, 19);
1810 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1811 if (bit (this_instr, 24))
1812 {
1813 /* pre-indexed */
1814 int c = (status & FLAG_C) ? 1 : 0;
1815 unsigned long offset =
c5aa993b 1816 (bit (this_instr, 25)
ed9a39eb 1817 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1818 : bits (this_instr, 0, 11));
c906108c
SS
1819
1820 if (bit (this_instr, 23))
1821 base += offset;
1822 else
1823 base -= offset;
1824 }
c5aa993b 1825 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1826 4);
c5aa993b 1827
c906108c
SS
1828 nextpc = ADDR_BITS_REMOVE (nextpc);
1829
1830 if (nextpc == pc)
edefbb7c 1831 error (_("Infinite loop detected"));
c906108c
SS
1832 }
1833 }
1834 break;
c5aa993b
JM
1835
1836 case 0x8:
1837 case 0x9: /* block transfer */
c906108c
SS
1838 if (bit (this_instr, 20))
1839 {
1840 /* LDM */
1841 if (bit (this_instr, 15))
1842 {
1843 /* loading pc */
1844 int offset = 0;
1845
1846 if (bit (this_instr, 23))
1847 {
1848 /* up */
1849 unsigned long reglist = bits (this_instr, 0, 14);
1850 offset = bitcount (reglist) * 4;
c5aa993b 1851 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1852 offset += 4;
1853 }
1854 else if (bit (this_instr, 24))
1855 offset = -4;
c5aa993b 1856
c906108c 1857 {
c5aa993b
JM
1858 unsigned long rn_val =
1859 read_register (bits (this_instr, 16, 19));
c906108c
SS
1860 nextpc =
1861 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1862 + offset),
c906108c
SS
1863 4);
1864 }
1865 nextpc = ADDR_BITS_REMOVE (nextpc);
1866 if (nextpc == pc)
edefbb7c 1867 error (_("Infinite loop detected"));
c906108c
SS
1868 }
1869 }
1870 break;
c5aa993b
JM
1871
1872 case 0xb: /* branch & link */
1873 case 0xa: /* branch */
c906108c
SS
1874 {
1875 nextpc = BranchDest (pc, this_instr);
1876
9498281f
DJ
1877 /* BLX */
1878 if (bits (this_instr, 28, 31) == INST_NV)
1879 nextpc |= bit (this_instr, 24) << 1;
1880
c906108c
SS
1881 nextpc = ADDR_BITS_REMOVE (nextpc);
1882 if (nextpc == pc)
edefbb7c 1883 error (_("Infinite loop detected"));
c906108c
SS
1884 break;
1885 }
c5aa993b
JM
1886
1887 case 0xc:
1888 case 0xd:
1889 case 0xe: /* coproc ops */
1890 case 0xf: /* SWI */
c906108c
SS
1891 break;
1892
1893 default:
edefbb7c 1894 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1895 return (pc);
1896 }
1897 }
1898
1899 return nextpc;
1900}
1901
9512d7fd
FN
1902/* single_step() is called just before we want to resume the inferior,
1903 if we want to single-step it but there is no hardware or kernel
1904 single-step support. We find the target of the coming instruction
1905 and breakpoint it.
1906
94c30b78
MS
1907 single_step() is also called just after the inferior stops. If we
1908 had set up a simulated single-step, we undo our damage. */
9512d7fd 1909
34e8f22d
RE
1910static void
1911arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1912{
8181d85f
DJ
1913 /* NOTE: This may insert the wrong breakpoint instruction when
1914 single-stepping over a mode-changing instruction, if the
1915 CPSR heuristics are used. */
9512d7fd
FN
1916
1917 if (insert_bpt)
1918 {
8181d85f
DJ
1919 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1920
1921 insert_single_step_breakpoint (next_pc);
9512d7fd
FN
1922 }
1923 else
8181d85f 1924 remove_single_step_breakpoints ();
9512d7fd 1925}
9512d7fd 1926
c906108c
SS
1927#include "bfd-in2.h"
1928#include "libcoff.h"
1929
1930static int
ed9a39eb 1931gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1932{
1933 if (arm_pc_is_thumb (memaddr))
1934 {
c5aa993b
JM
1935 static asymbol *asym;
1936 static combined_entry_type ce;
1937 static struct coff_symbol_struct csym;
27cddce2 1938 static struct bfd fake_bfd;
c5aa993b 1939 static bfd_target fake_target;
c906108c
SS
1940
1941 if (csym.native == NULL)
1942 {
da3c6d4a
MS
1943 /* Create a fake symbol vector containing a Thumb symbol.
1944 This is solely so that the code in print_insn_little_arm()
1945 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1946 the presence of a Thumb symbol and switch to decoding
1947 Thumb instructions. */
c5aa993b
JM
1948
1949 fake_target.flavour = bfd_target_coff_flavour;
1950 fake_bfd.xvec = &fake_target;
c906108c 1951 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1952 csym.native = &ce;
1953 csym.symbol.the_bfd = &fake_bfd;
1954 csym.symbol.name = "fake";
1955 asym = (asymbol *) & csym;
c906108c 1956 }
c5aa993b 1957
c906108c 1958 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1959 info->symbols = &asym;
c906108c
SS
1960 }
1961 else
1962 info->symbols = NULL;
c5aa993b 1963
d7449b42 1964 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1965 return print_insn_big_arm (memaddr, info);
1966 else
1967 return print_insn_little_arm (memaddr, info);
1968}
1969
66e810cd
RE
1970/* The following define instruction sequences that will cause ARM
1971 cpu's to take an undefined instruction trap. These are used to
1972 signal a breakpoint to GDB.
1973
1974 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1975 modes. A different instruction is required for each mode. The ARM
1976 cpu's can also be big or little endian. Thus four different
1977 instructions are needed to support all cases.
1978
1979 Note: ARMv4 defines several new instructions that will take the
1980 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1981 not in fact add the new instructions. The new undefined
1982 instructions in ARMv4 are all instructions that had no defined
1983 behaviour in earlier chips. There is no guarantee that they will
1984 raise an exception, but may be treated as NOP's. In practice, it
1985 may only safe to rely on instructions matching:
1986
1987 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1988 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1989 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1990
1991 Even this may only true if the condition predicate is true. The
1992 following use a condition predicate of ALWAYS so it is always TRUE.
1993
1994 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1995 and NetBSD all use a software interrupt rather than an undefined
1996 instruction to force a trap. This can be handled by by the
1997 abi-specific code during establishment of the gdbarch vector. */
1998
1999
d7b486e7
RE
2000/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2001 override these definitions. */
66e810cd
RE
2002#ifndef ARM_LE_BREAKPOINT
2003#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2004#endif
2005#ifndef ARM_BE_BREAKPOINT
2006#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2007#endif
2008#ifndef THUMB_LE_BREAKPOINT
2009#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2010#endif
2011#ifndef THUMB_BE_BREAKPOINT
2012#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2013#endif
2014
2015static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2016static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2017static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2018static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2019
34e8f22d
RE
2020/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2021 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2022 breakpoint should be used. It returns a pointer to a string of
2023 bytes that encode a breakpoint instruction, stores the length of
2024 the string to *lenptr, and adjusts the program counter (if
2025 necessary) to point to the actual memory location where the
c906108c
SS
2026 breakpoint should be inserted. */
2027
ab89facf 2028static const unsigned char *
ed9a39eb 2029arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2030{
66e810cd
RE
2031 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2032
4bf7064c 2033 if (arm_pc_is_thumb (*pcptr))
c906108c 2034 {
66e810cd
RE
2035 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2036 *lenptr = tdep->thumb_breakpoint_size;
2037 return tdep->thumb_breakpoint;
c906108c
SS
2038 }
2039 else
2040 {
66e810cd
RE
2041 *lenptr = tdep->arm_breakpoint_size;
2042 return tdep->arm_breakpoint;
c906108c
SS
2043 }
2044}
ed9a39eb
JM
2045
2046/* Extract from an array REGBUF containing the (raw) register state a
2047 function return value of type TYPE, and copy that, in virtual
2048 format, into VALBUF. */
2049
34e8f22d 2050static void
5238cf52
MK
2051arm_extract_return_value (struct type *type, struct regcache *regs,
2052 gdb_byte *valbuf)
ed9a39eb
JM
2053{
2054 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2055 {
28e97307 2056 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2057 {
2058 case ARM_FLOAT_FPA:
b508a996
RE
2059 {
2060 /* The value is in register F0 in internal format. We need to
2061 extract the raw value and then convert it to the desired
2062 internal type. */
7a5ea0d4 2063 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2064
2065 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2066 convert_from_extended (floatformat_from_type (type), tmpbuf,
2067 valbuf);
2068 }
08216dd7
RE
2069 break;
2070
fd50bc42 2071 case ARM_FLOAT_SOFT_FPA:
08216dd7 2072 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2073 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2074 if (TYPE_LENGTH (type) > 4)
2075 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2076 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2077 break;
2078
2079 default:
2080 internal_error
2081 (__FILE__, __LINE__,
edefbb7c 2082 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2083 break;
2084 }
2085 }
b508a996
RE
2086 else if (TYPE_CODE (type) == TYPE_CODE_INT
2087 || TYPE_CODE (type) == TYPE_CODE_CHAR
2088 || TYPE_CODE (type) == TYPE_CODE_BOOL
2089 || TYPE_CODE (type) == TYPE_CODE_PTR
2090 || TYPE_CODE (type) == TYPE_CODE_REF
2091 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2092 {
2093 /* If the the type is a plain integer, then the access is
2094 straight-forward. Otherwise we have to play around a bit more. */
2095 int len = TYPE_LENGTH (type);
2096 int regno = ARM_A1_REGNUM;
2097 ULONGEST tmp;
2098
2099 while (len > 0)
2100 {
2101 /* By using store_unsigned_integer we avoid having to do
2102 anything special for small big-endian values. */
2103 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2104 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2105 (len > INT_REGISTER_SIZE
2106 ? INT_REGISTER_SIZE : len),
b508a996 2107 tmp);
7a5ea0d4
DJ
2108 len -= INT_REGISTER_SIZE;
2109 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2110 }
2111 }
ed9a39eb 2112 else
b508a996
RE
2113 {
2114 /* For a structure or union the behaviour is as if the value had
2115 been stored to word-aligned memory and then loaded into
2116 registers with 32-bit load instruction(s). */
2117 int len = TYPE_LENGTH (type);
2118 int regno = ARM_A1_REGNUM;
7a5ea0d4 2119 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2120
2121 while (len > 0)
2122 {
2123 regcache_cooked_read (regs, regno++, tmpbuf);
2124 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2125 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2126 len -= INT_REGISTER_SIZE;
2127 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2128 }
2129 }
34e8f22d
RE
2130}
2131
67255d04
RE
2132
2133/* Will a function return an aggregate type in memory or in a
2134 register? Return 0 if an aggregate type can be returned in a
2135 register, 1 if it must be returned in memory. */
2136
2137static int
2af48f68 2138arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2139{
2140 int nRc;
52f0bd74 2141 enum type_code code;
67255d04 2142
44e1a9eb
DJ
2143 CHECK_TYPEDEF (type);
2144
67255d04
RE
2145 /* In the ARM ABI, "integer" like aggregate types are returned in
2146 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2147 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2148 offset of each addressable subfield must be zero. Note that bit
2149 fields are not addressable, and all addressable subfields of
2150 unions always start at offset zero.
67255d04
RE
2151
2152 This function is based on the behaviour of GCC 2.95.1.
2153 See: gcc/arm.c: arm_return_in_memory() for details.
2154
2155 Note: All versions of GCC before GCC 2.95.2 do not set up the
2156 parameters correctly for a function returning the following
2157 structure: struct { float f;}; This should be returned in memory,
2158 not a register. Richard Earnshaw sent me a patch, but I do not
2159 know of any way to detect if a function like the above has been
2160 compiled with the correct calling convention. */
2161
2162 /* All aggregate types that won't fit in a register must be returned
2163 in memory. */
b1e29e33 2164 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2165 {
2166 return 1;
2167 }
2168
2af48f68
PB
2169 /* The AAPCS says all aggregates not larger than a word are returned
2170 in a register. */
2171 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2172 return 0;
2173
67255d04
RE
2174 /* The only aggregate types that can be returned in a register are
2175 structs and unions. Arrays must be returned in memory. */
2176 code = TYPE_CODE (type);
2177 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2178 {
2179 return 1;
2180 }
2181
2182 /* Assume all other aggregate types can be returned in a register.
2183 Run a check for structures, unions and arrays. */
2184 nRc = 0;
2185
2186 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2187 {
2188 int i;
2189 /* Need to check if this struct/union is "integer" like. For
2190 this to be true, its size must be less than or equal to
b1e29e33
AC
2191 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2192 subfield must be zero. Note that bit fields are not
2193 addressable, and unions always start at offset zero. If any
2194 of the subfields is a floating point type, the struct/union
2195 cannot be an integer type. */
67255d04
RE
2196
2197 /* For each field in the object, check:
2198 1) Is it FP? --> yes, nRc = 1;
2199 2) Is it addressable (bitpos != 0) and
2200 not packed (bitsize == 0)?
2201 --> yes, nRc = 1
2202 */
2203
2204 for (i = 0; i < TYPE_NFIELDS (type); i++)
2205 {
2206 enum type_code field_type_code;
44e1a9eb 2207 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2208
2209 /* Is it a floating point type field? */
2210 if (field_type_code == TYPE_CODE_FLT)
2211 {
2212 nRc = 1;
2213 break;
2214 }
2215
2216 /* If bitpos != 0, then we have to care about it. */
2217 if (TYPE_FIELD_BITPOS (type, i) != 0)
2218 {
2219 /* Bitfields are not addressable. If the field bitsize is
2220 zero, then the field is not packed. Hence it cannot be
2221 a bitfield or any other packed type. */
2222 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2223 {
2224 nRc = 1;
2225 break;
2226 }
2227 }
2228 }
2229 }
2230
2231 return nRc;
2232}
2233
34e8f22d
RE
2234/* Write into appropriate registers a function return value of type
2235 TYPE, given in virtual format. */
2236
2237static void
b508a996 2238arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2239 const gdb_byte *valbuf)
34e8f22d
RE
2240{
2241 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2242 {
7a5ea0d4 2243 char buf[MAX_REGISTER_SIZE];
34e8f22d 2244
28e97307 2245 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2246 {
2247 case ARM_FLOAT_FPA:
2248
b508a996
RE
2249 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2250 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2251 break;
2252
fd50bc42 2253 case ARM_FLOAT_SOFT_FPA:
08216dd7 2254 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2255 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2256 if (TYPE_LENGTH (type) > 4)
2257 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2258 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2259 break;
2260
2261 default:
2262 internal_error
2263 (__FILE__, __LINE__,
edefbb7c 2264 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2265 break;
2266 }
34e8f22d 2267 }
b508a996
RE
2268 else if (TYPE_CODE (type) == TYPE_CODE_INT
2269 || TYPE_CODE (type) == TYPE_CODE_CHAR
2270 || TYPE_CODE (type) == TYPE_CODE_BOOL
2271 || TYPE_CODE (type) == TYPE_CODE_PTR
2272 || TYPE_CODE (type) == TYPE_CODE_REF
2273 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2274 {
2275 if (TYPE_LENGTH (type) <= 4)
2276 {
2277 /* Values of one word or less are zero/sign-extended and
2278 returned in r0. */
7a5ea0d4 2279 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2280 LONGEST val = unpack_long (type, valbuf);
2281
7a5ea0d4 2282 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2283 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2284 }
2285 else
2286 {
2287 /* Integral values greater than one word are stored in consecutive
2288 registers starting with r0. This will always be a multiple of
2289 the regiser size. */
2290 int len = TYPE_LENGTH (type);
2291 int regno = ARM_A1_REGNUM;
2292
2293 while (len > 0)
2294 {
2295 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2296 len -= INT_REGISTER_SIZE;
2297 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2298 }
2299 }
2300 }
34e8f22d 2301 else
b508a996
RE
2302 {
2303 /* For a structure or union the behaviour is as if the value had
2304 been stored to word-aligned memory and then loaded into
2305 registers with 32-bit load instruction(s). */
2306 int len = TYPE_LENGTH (type);
2307 int regno = ARM_A1_REGNUM;
7a5ea0d4 2308 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2309
2310 while (len > 0)
2311 {
2312 memcpy (tmpbuf, valbuf,
7a5ea0d4 2313 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2314 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2315 len -= INT_REGISTER_SIZE;
2316 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2317 }
2318 }
34e8f22d
RE
2319}
2320
2af48f68
PB
2321
2322/* Handle function return values. */
2323
2324static enum return_value_convention
2325arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2326 struct regcache *regcache, gdb_byte *readbuf,
2327 const gdb_byte *writebuf)
2af48f68 2328{
7c00367c
MK
2329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2330
2af48f68
PB
2331 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2332 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2333 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2334 {
7c00367c
MK
2335 if (tdep->struct_return == pcc_struct_return
2336 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2337 return RETURN_VALUE_STRUCT_CONVENTION;
2338 }
2339
2340 if (writebuf)
2341 arm_store_return_value (valtype, regcache, writebuf);
2342
2343 if (readbuf)
2344 arm_extract_return_value (valtype, regcache, readbuf);
2345
2346 return RETURN_VALUE_REGISTER_CONVENTION;
2347}
2348
2349
9df628e0
RE
2350static int
2351arm_get_longjmp_target (CORE_ADDR *pc)
2352{
2353 CORE_ADDR jb_addr;
7a5ea0d4 2354 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2355 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2356
2357 jb_addr = read_register (ARM_A1_REGNUM);
2358
2359 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2360 INT_REGISTER_SIZE))
9df628e0
RE
2361 return 0;
2362
7a5ea0d4 2363 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2364 return 1;
2365}
2366
ed9a39eb 2367/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2368
2369int
ed9a39eb 2370arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2371{
2372 CORE_ADDR start_addr;
2373
ed9a39eb
JM
2374 /* Find the starting address of the function containing the PC. If
2375 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2376 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2377 &start_addr, NULL))
c906108c
SS
2378 return 0;
2379
2380 return strncmp (name, "_call_via_r", 11) == 0;
2381}
2382
ed9a39eb
JM
2383/* If PC is in a Thumb call or return stub, return the address of the
2384 target PC, which is in a register. The thunk functions are called
2385 _called_via_xx, where x is the register name. The possible names
2386 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2387
2388CORE_ADDR
ed9a39eb 2389arm_skip_stub (CORE_ADDR pc)
c906108c 2390{
c5aa993b 2391 char *name;
c906108c
SS
2392 CORE_ADDR start_addr;
2393
2394 /* Find the starting address and name of the function containing the PC. */
2395 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2396 return 0;
2397
2398 /* Call thunks always start with "_call_via_". */
2399 if (strncmp (name, "_call_via_", 10) == 0)
2400 {
ed9a39eb
JM
2401 /* Use the name suffix to determine which register contains the
2402 target PC. */
c5aa993b
JM
2403 static char *table[15] =
2404 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2405 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2406 };
c906108c
SS
2407 int regno;
2408
2409 for (regno = 0; regno <= 14; regno++)
2410 if (strcmp (&name[10], table[regno]) == 0)
2411 return read_register (regno);
2412 }
ed9a39eb 2413
c5aa993b 2414 return 0; /* not a stub */
c906108c
SS
2415}
2416
afd7eef0
RE
2417static void
2418set_arm_command (char *args, int from_tty)
2419{
edefbb7c
AC
2420 printf_unfiltered (_("\
2421\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2422 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2423}
2424
2425static void
2426show_arm_command (char *args, int from_tty)
2427{
26304000 2428 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2429}
2430
28e97307
DJ
2431static void
2432arm_update_current_architecture (void)
fd50bc42 2433{
28e97307 2434 struct gdbarch_info info;
fd50bc42 2435
28e97307
DJ
2436 /* If the current architecture is not ARM, we have nothing to do. */
2437 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2438 return;
fd50bc42 2439
28e97307
DJ
2440 /* Update the architecture. */
2441 gdbarch_info_init (&info);
fd50bc42 2442
28e97307
DJ
2443 if (!gdbarch_update_p (info))
2444 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2445}
2446
2447static void
2448set_fp_model_sfunc (char *args, int from_tty,
2449 struct cmd_list_element *c)
2450{
2451 enum arm_float_model fp_model;
2452
2453 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2454 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2455 {
2456 arm_fp_model = fp_model;
2457 break;
2458 }
2459
2460 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2461 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2462 current_fp_model);
2463
28e97307 2464 arm_update_current_architecture ();
fd50bc42
RE
2465}
2466
2467static void
08546159
AC
2468show_fp_model (struct ui_file *file, int from_tty,
2469 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2470{
2471 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2472
28e97307 2473 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2474 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2475 fprintf_filtered (file, _("\
2476The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2477 fp_model_strings[tdep->fp_model]);
2478 else
2479 fprintf_filtered (file, _("\
2480The current ARM floating point model is \"%s\".\n"),
2481 fp_model_strings[arm_fp_model]);
2482}
2483
2484static void
2485arm_set_abi (char *args, int from_tty,
2486 struct cmd_list_element *c)
2487{
2488 enum arm_abi_kind arm_abi;
2489
2490 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2491 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2492 {
2493 arm_abi_global = arm_abi;
2494 break;
2495 }
2496
2497 if (arm_abi == ARM_ABI_LAST)
2498 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2499 arm_abi_string);
2500
2501 arm_update_current_architecture ();
2502}
2503
2504static void
2505arm_show_abi (struct ui_file *file, int from_tty,
2506 struct cmd_list_element *c, const char *value)
2507{
2508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2509
2510 if (arm_abi_global == ARM_ABI_AUTO
2511 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2512 fprintf_filtered (file, _("\
2513The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2514 arm_abi_strings[tdep->arm_abi]);
2515 else
2516 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2517 arm_abi_string);
fd50bc42
RE
2518}
2519
afd7eef0
RE
2520/* If the user changes the register disassembly style used for info
2521 register and other commands, we have to also switch the style used
2522 in opcodes for disassembly output. This function is run in the "set
2523 arm disassembly" command, and does that. */
bc90b915
FN
2524
2525static void
afd7eef0 2526set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2527 struct cmd_list_element *c)
2528{
afd7eef0 2529 set_disassembly_style ();
bc90b915
FN
2530}
2531\f
966fbf70 2532/* Return the ARM register name corresponding to register I. */
a208b0cb 2533static const char *
34e8f22d 2534arm_register_name (int i)
966fbf70 2535{
ff6f572f
DJ
2536 if (i >= ARRAY_SIZE (arm_register_names))
2537 /* These registers are only supported on targets which supply
2538 an XML description. */
2539 return "";
2540
966fbf70
RE
2541 return arm_register_names[i];
2542}
2543
bc90b915 2544static void
afd7eef0 2545set_disassembly_style (void)
bc90b915 2546{
123dc839 2547 int current;
bc90b915 2548
123dc839
DJ
2549 /* Find the style that the user wants. */
2550 for (current = 0; current < num_disassembly_options; current++)
2551 if (disassembly_style == valid_disassembly_styles[current])
2552 break;
2553 gdb_assert (current < num_disassembly_options);
bc90b915 2554
94c30b78 2555 /* Synchronize the disassembler. */
bc90b915
FN
2556 set_arm_regname_option (current);
2557}
2558
082fc60d
RE
2559/* Test whether the coff symbol specific value corresponds to a Thumb
2560 function. */
2561
2562static int
2563coff_sym_is_thumb (int val)
2564{
2565 return (val == C_THUMBEXT ||
2566 val == C_THUMBSTAT ||
2567 val == C_THUMBEXTFUNC ||
2568 val == C_THUMBSTATFUNC ||
2569 val == C_THUMBLABEL);
2570}
2571
2572/* arm_coff_make_msymbol_special()
2573 arm_elf_make_msymbol_special()
2574
2575 These functions test whether the COFF or ELF symbol corresponds to
2576 an address in thumb code, and set a "special" bit in a minimal
2577 symbol to indicate that it does. */
2578
34e8f22d 2579static void
082fc60d
RE
2580arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2581{
2582 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2583 STT_ARM_TFUNC). */
2584 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2585 == STT_LOPROC)
2586 MSYMBOL_SET_SPECIAL (msym);
2587}
2588
34e8f22d 2589static void
082fc60d
RE
2590arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2591{
2592 if (coff_sym_is_thumb (val))
2593 MSYMBOL_SET_SPECIAL (msym);
2594}
2595
756fe439
DJ
2596static void
2597arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2598{
2599 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2600
2601 /* If necessary, set the T bit. */
2602 if (arm_apcs_32)
2603 {
2604 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2605 if (arm_pc_is_thumb (pc))
2606 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2607 else
2608 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2609 }
2610}
123dc839
DJ
2611
2612static struct value *
2613value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2614{
2615 const int *reg_p = baton;
2616 return value_of_register (*reg_p, frame);
2617}
97e03143 2618\f
70f80edf
JT
2619static enum gdb_osabi
2620arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2621{
2af48f68 2622 unsigned int elfosabi;
70f80edf 2623 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2624
70f80edf 2625 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2626
28e97307
DJ
2627 if (elfosabi == ELFOSABI_ARM)
2628 /* GNU tools use this value. Check note sections in this case,
2629 as well. */
2630 bfd_map_over_sections (abfd,
2631 generic_elf_osabi_sniff_abi_tag_sections,
2632 &osabi);
97e03143 2633
28e97307 2634 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2635 return osabi;
97e03143
RE
2636}
2637
70f80edf 2638\f
da3c6d4a
MS
2639/* Initialize the current architecture based on INFO. If possible,
2640 re-use an architecture from ARCHES, which is a list of
2641 architectures already created during this debugging session.
97e03143 2642
da3c6d4a
MS
2643 Called e.g. at program startup, when reading a core file, and when
2644 reading a binary file. */
97e03143 2645
39bbf761
RE
2646static struct gdbarch *
2647arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2648{
97e03143 2649 struct gdbarch_tdep *tdep;
39bbf761 2650 struct gdbarch *gdbarch;
28e97307
DJ
2651 struct gdbarch_list *best_arch;
2652 enum arm_abi_kind arm_abi = arm_abi_global;
2653 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2654 struct tdesc_arch_data *tdesc_data = NULL;
2655 int i;
ff6f572f 2656 int have_fpa_registers = 1;
123dc839
DJ
2657
2658 /* Check any target description for validity. */
2659 if (tdesc_has_registers (info.target_desc))
2660 {
2661 /* For most registers we require GDB's default names; but also allow
2662 the numeric names for sp / lr / pc, as a convenience. */
2663 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2664 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2665 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2666
2667 const struct tdesc_feature *feature;
2668 int i, valid_p;
2669
2670 feature = tdesc_find_feature (info.target_desc,
2671 "org.gnu.gdb.arm.core");
2672 if (feature == NULL)
2673 return NULL;
2674
2675 tdesc_data = tdesc_data_alloc ();
2676
2677 valid_p = 1;
2678 for (i = 0; i < ARM_SP_REGNUM; i++)
2679 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2680 arm_register_names[i]);
2681 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2682 ARM_SP_REGNUM,
2683 arm_sp_names);
2684 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2685 ARM_LR_REGNUM,
2686 arm_lr_names);
2687 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2688 ARM_PC_REGNUM,
2689 arm_pc_names);
2690 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2691 ARM_PS_REGNUM, "cpsr");
2692
2693 if (!valid_p)
2694 {
2695 tdesc_data_cleanup (tdesc_data);
2696 return NULL;
2697 }
2698
2699 feature = tdesc_find_feature (info.target_desc,
2700 "org.gnu.gdb.arm.fpa");
2701 if (feature != NULL)
2702 {
2703 valid_p = 1;
2704 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2705 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2706 arm_register_names[i]);
2707 if (!valid_p)
2708 {
2709 tdesc_data_cleanup (tdesc_data);
2710 return NULL;
2711 }
2712 }
ff6f572f
DJ
2713 else
2714 have_fpa_registers = 0;
2715
2716 feature = tdesc_find_feature (info.target_desc,
2717 "org.gnu.gdb.xscale.iwmmxt");
2718 if (feature != NULL)
2719 {
2720 static const char *const iwmmxt_names[] = {
2721 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2722 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2723 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2724 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2725 };
2726
2727 valid_p = 1;
2728 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2729 valid_p
2730 &= tdesc_numbered_register (feature, tdesc_data, i,
2731 iwmmxt_names[i - ARM_WR0_REGNUM]);
2732
2733 /* Check for the control registers, but do not fail if they
2734 are missing. */
2735 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2736 tdesc_numbered_register (feature, tdesc_data, i,
2737 iwmmxt_names[i - ARM_WR0_REGNUM]);
2738
2739 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2740 valid_p
2741 &= tdesc_numbered_register (feature, tdesc_data, i,
2742 iwmmxt_names[i - ARM_WR0_REGNUM]);
2743
2744 if (!valid_p)
2745 {
2746 tdesc_data_cleanup (tdesc_data);
2747 return NULL;
2748 }
2749 }
123dc839 2750 }
39bbf761 2751
28e97307
DJ
2752 /* If we have an object to base this architecture on, try to determine
2753 its ABI. */
39bbf761 2754
28e97307 2755 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2756 {
6b26d61a 2757 int ei_osabi, e_flags;
28e97307 2758
4be87837 2759 switch (bfd_get_flavour (info.abfd))
97e03143 2760 {
4be87837
DJ
2761 case bfd_target_aout_flavour:
2762 /* Assume it's an old APCS-style ABI. */
28e97307 2763 arm_abi = ARM_ABI_APCS;
4be87837 2764 break;
97e03143 2765
4be87837
DJ
2766 case bfd_target_coff_flavour:
2767 /* Assume it's an old APCS-style ABI. */
2768 /* XXX WinCE? */
28e97307
DJ
2769 arm_abi = ARM_ABI_APCS;
2770 break;
2771
2772 case bfd_target_elf_flavour:
2773 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2774 e_flags = elf_elfheader (info.abfd)->e_flags;
2775
28e97307
DJ
2776 if (ei_osabi == ELFOSABI_ARM)
2777 {
2778 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2779 objects. There's nowhere to tag an EABI version
2780 anyway, so assume APCS. */
28e97307
DJ
2781 arm_abi = ARM_ABI_APCS;
2782 }
2783 else if (ei_osabi == ELFOSABI_NONE)
2784 {
6b26d61a 2785 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2786
2787 switch (eabi_ver)
2788 {
2789 case EF_ARM_EABI_UNKNOWN:
2790 /* Assume GNU tools. */
2791 arm_abi = ARM_ABI_APCS;
2792 break;
2793
2794 case EF_ARM_EABI_VER4:
625b5003 2795 case EF_ARM_EABI_VER5:
28e97307 2796 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2797 /* EABI binaries default to VFP float ordering. */
2798 if (fp_model == ARM_FLOAT_AUTO)
2799 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2800 break;
2801
2802 default:
6b26d61a 2803 /* Leave it as "auto". */
28e97307 2804 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2805 break;
2806 }
2807 }
2808
2809 if (fp_model == ARM_FLOAT_AUTO)
2810 {
2811 int e_flags = elf_elfheader (info.abfd)->e_flags;
2812
2813 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2814 {
2815 case 0:
2816 /* Leave it as "auto". Strictly speaking this case
2817 means FPA, but almost nobody uses that now, and
2818 many toolchains fail to set the appropriate bits
2819 for the floating-point model they use. */
2820 break;
2821 case EF_ARM_SOFT_FLOAT:
2822 fp_model = ARM_FLOAT_SOFT_FPA;
2823 break;
2824 case EF_ARM_VFP_FLOAT:
2825 fp_model = ARM_FLOAT_VFP;
2826 break;
2827 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2828 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2829 break;
2830 }
2831 }
4be87837 2832 break;
97e03143 2833
4be87837 2834 default:
28e97307 2835 /* Leave it as "auto". */
50ceaba5 2836 break;
97e03143
RE
2837 }
2838 }
2839
28e97307
DJ
2840 /* Now that we have inferred any architecture settings that we
2841 can, try to inherit from the last ARM ABI. */
4be87837 2842 if (arches != NULL)
28e97307
DJ
2843 {
2844 if (arm_abi == ARM_ABI_AUTO)
2845 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2846
2847 if (fp_model == ARM_FLOAT_AUTO)
2848 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2849 }
2850 else
2851 {
2852 /* There was no prior ARM architecture; fill in default values. */
2853
2854 if (arm_abi == ARM_ABI_AUTO)
2855 arm_abi = ARM_ABI_APCS;
2856
2857 /* We used to default to FPA for generic ARM, but almost nobody
2858 uses that now, and we now provide a way for the user to force
2859 the model. So default to the most useful variant. */
2860 if (fp_model == ARM_FLOAT_AUTO)
2861 fp_model = ARM_FLOAT_SOFT_FPA;
2862 }
2863
2864 /* If there is already a candidate, use it. */
2865 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2866 best_arch != NULL;
2867 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2868 {
2869 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2870 continue;
2871
2872 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2873 continue;
2874
2875 /* Found a match. */
2876 break;
2877 }
97e03143 2878
28e97307 2879 if (best_arch != NULL)
123dc839
DJ
2880 {
2881 if (tdesc_data != NULL)
2882 tdesc_data_cleanup (tdesc_data);
2883 return best_arch->gdbarch;
2884 }
28e97307
DJ
2885
2886 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2887 gdbarch = gdbarch_alloc (&info, tdep);
2888
28e97307
DJ
2889 /* Record additional information about the architecture we are defining.
2890 These are gdbarch discriminators, like the OSABI. */
2891 tdep->arm_abi = arm_abi;
2892 tdep->fp_model = fp_model;
ff6f572f 2893 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2894
2895 /* Breakpoints. */
67255d04
RE
2896 switch (info.byte_order)
2897 {
2898 case BFD_ENDIAN_BIG:
66e810cd
RE
2899 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2900 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2901 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2902 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2903
67255d04
RE
2904 break;
2905
2906 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2907 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2908 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2909 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2910 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2911
67255d04
RE
2912 break;
2913
2914 default:
2915 internal_error (__FILE__, __LINE__,
edefbb7c 2916 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2917 }
2918
d7b486e7
RE
2919 /* On ARM targets char defaults to unsigned. */
2920 set_gdbarch_char_signed (gdbarch, 0);
2921
9df628e0 2922 /* This should be low enough for everything. */
97e03143 2923 tdep->lowest_pc = 0x20;
94c30b78 2924 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2925
7c00367c
MK
2926 /* The default, for both APCS and AAPCS, is to return small
2927 structures in registers. */
2928 tdep->struct_return = reg_struct_return;
2929
2dd604e7 2930 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2931 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2932
756fe439
DJ
2933 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2934
148754e5 2935 /* Frame handling. */
eb5492fa
DJ
2936 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2937 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2938 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2939
eb5492fa 2940 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2941
34e8f22d
RE
2942 /* Address manipulation. */
2943 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2944 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2945
34e8f22d
RE
2946 /* Advance PC across function entry code. */
2947 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2948
34e8f22d
RE
2949 /* The stack grows downward. */
2950 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2951
2952 /* Breakpoint manipulation. */
2953 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2954
2955 /* Information about registers, etc. */
0ba6dca9 2956 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2957 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2958 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 2959 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 2960 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2961
ff6f572f
DJ
2962 /* This "info float" is FPA-specific. Use the generic version if we
2963 do not have FPA. */
2964 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2965 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2966
26216b98 2967 /* Internal <-> external register number maps. */
ff6f572f
DJ
2968 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2969 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
2970 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2971
34e8f22d 2972 /* Integer registers are 4 bytes. */
b1e29e33 2973 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2974 set_gdbarch_register_name (gdbarch, arm_register_name);
2975
2976 /* Returning results. */
2af48f68 2977 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d
RE
2978
2979 /* Single stepping. */
2980 /* XXX For an RDI target we should ask the target if it can single-step. */
2981 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2982
03d48a7d
RE
2983 /* Disassembly. */
2984 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2985
34e8f22d
RE
2986 /* Minsymbol frobbing. */
2987 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2988 set_gdbarch_coff_make_msymbol_special (gdbarch,
2989 arm_coff_make_msymbol_special);
2990
0d5de010
DJ
2991 /* Virtual tables. */
2992 set_gdbarch_vbit_in_delta (gdbarch, 1);
2993
97e03143 2994 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2995 gdbarch_init_osabi (info, gdbarch);
97e03143 2996
eb5492fa 2997 /* Add some default predicates. */
909cf6ea 2998 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 2999 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
3000 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3001
97e03143
RE
3002 /* Now we have tuned the configuration, set a few final things,
3003 based on what the OS ABI has told us. */
3004
9df628e0
RE
3005 if (tdep->jb_pc >= 0)
3006 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3007
08216dd7 3008 /* Floating point sizes and format. */
8da61cc4
DJ
3009 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3010 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
08216dd7 3011 {
8da61cc4
DJ
3012 set_gdbarch_double_format
3013 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3014 set_gdbarch_long_double_format
3015 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3016 }
3017 else
3018 {
3019 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3020 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3021 }
3022
123dc839
DJ
3023 if (tdesc_data)
3024 tdesc_use_registers (gdbarch, tdesc_data);
3025
3026 /* Add standard register aliases. We add aliases even for those
3027 nanes which are used by the current architecture - it's simpler,
3028 and does no harm, since nothing ever lists user registers. */
3029 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3030 user_reg_add (gdbarch, arm_register_aliases[i].name,
3031 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3032
39bbf761
RE
3033 return gdbarch;
3034}
3035
97e03143
RE
3036static void
3037arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3038{
3039 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3040
3041 if (tdep == NULL)
3042 return;
3043
edefbb7c 3044 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3045 (unsigned long) tdep->lowest_pc);
3046}
3047
a78f21af
AC
3048extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3049
c906108c 3050void
ed9a39eb 3051_initialize_arm_tdep (void)
c906108c 3052{
bc90b915
FN
3053 struct ui_file *stb;
3054 long length;
26304000 3055 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3056 const char *setname;
3057 const char *setdesc;
4bd7b427 3058 const char *const *regnames;
bc90b915
FN
3059 int numregs, i, j;
3060 static char *helptext;
edefbb7c
AC
3061 char regdesc[1024], *rdptr = regdesc;
3062 size_t rest = sizeof (regdesc);
085dd6e6 3063
42cf1509 3064 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3065
70f80edf
JT
3066 /* Register an ELF OS ABI sniffer for ARM binaries. */
3067 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3068 bfd_target_elf_flavour,
3069 arm_elf_osabi_sniffer);
3070
94c30b78 3071 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3072 num_disassembly_options = get_arm_regname_num_options ();
3073
3074 /* Add root prefix command for all "set arm"/"show arm" commands. */
3075 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3076 _("Various ARM-specific commands."),
afd7eef0
RE
3077 &setarmcmdlist, "set arm ", 0, &setlist);
3078
3079 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3080 _("Various ARM-specific commands."),
afd7eef0 3081 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3082
94c30b78 3083 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3084 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3085
eefe576e
AC
3086 /* Initialize the array that will be passed to
3087 add_setshow_enum_cmd(). */
afd7eef0
RE
3088 valid_disassembly_styles
3089 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3090 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3091 {
3092 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3093 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3094 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3095 rdptr += length;
3096 rest -= length;
123dc839
DJ
3097 /* When we find the default names, tell the disassembler to use
3098 them. */
bc90b915
FN
3099 if (!strcmp (setname, "std"))
3100 {
afd7eef0 3101 disassembly_style = setname;
bc90b915
FN
3102 set_arm_regname_option (i);
3103 }
3104 }
94c30b78 3105 /* Mark the end of valid options. */
afd7eef0 3106 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3107
edefbb7c
AC
3108 /* Create the help text. */
3109 stb = mem_fileopen ();
3110 fprintf_unfiltered (stb, "%s%s%s",
3111 _("The valid values are:\n"),
3112 regdesc,
3113 _("The default is \"std\"."));
bc90b915
FN
3114 helptext = ui_file_xstrdup (stb, &length);
3115 ui_file_delete (stb);
ed9a39eb 3116
edefbb7c
AC
3117 add_setshow_enum_cmd("disassembler", no_class,
3118 valid_disassembly_styles, &disassembly_style,
3119 _("Set the disassembly style."),
3120 _("Show the disassembly style."),
3121 helptext,
2c5b56ce 3122 set_disassembly_style_sfunc,
7915a72c 3123 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3124 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3125
3126 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3127 _("Set usage of ARM 32-bit mode."),
3128 _("Show usage of ARM 32-bit mode."),
3129 _("When off, a 26-bit PC will be used."),
2c5b56ce 3130 NULL,
7915a72c 3131 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3132 &setarmcmdlist, &showarmcmdlist);
c906108c 3133
fd50bc42 3134 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3135 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3136 _("Set the floating point type."),
3137 _("Show the floating point type."),
3138 _("auto - Determine the FP typefrom the OS-ABI.\n\
3139softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3140fpa - FPA co-processor (GCC compiled).\n\
3141softvfp - Software FP with pure-endian doubles.\n\
3142vfp - VFP co-processor."),
edefbb7c 3143 set_fp_model_sfunc, show_fp_model,
7376b4c2 3144 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3145
28e97307
DJ
3146 /* Add a command to allow the user to force the ABI. */
3147 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3148 _("Set the ABI."),
3149 _("Show the ABI."),
3150 NULL, arm_set_abi, arm_show_abi,
3151 &setarmcmdlist, &showarmcmdlist);
3152
6529d2dd 3153 /* Debugging flag. */
edefbb7c
AC
3154 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3155 _("Set ARM debugging."),
3156 _("Show ARM debugging."),
3157 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3158 NULL,
7915a72c 3159 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3160 &setdebuglist, &showdebuglist);
c906108c 3161}