]>
Commit | Line | Data |
---|---|---|
da6d8c04 | 1 | /* Low level interface to ptrace, for the remote server for GDB. |
545587ee | 2 | Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, |
6aba47ca | 3 | 2006, 2007 Free Software Foundation, Inc. |
da6d8c04 DJ |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
6f0f660e EZ |
19 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
20 | Boston, MA 02110-1301, USA. */ | |
da6d8c04 DJ |
21 | |
22 | #include "server.h" | |
58caa3dc | 23 | #include "linux-low.h" |
da6d8c04 | 24 | |
58caa3dc | 25 | #include <sys/wait.h> |
da6d8c04 DJ |
26 | #include <stdio.h> |
27 | #include <sys/param.h> | |
28 | #include <sys/dir.h> | |
29 | #include <sys/ptrace.h> | |
30 | #include <sys/user.h> | |
31 | #include <signal.h> | |
32 | #include <sys/ioctl.h> | |
33 | #include <fcntl.h> | |
d07c63e7 | 34 | #include <string.h> |
0a30fbc4 DJ |
35 | #include <stdlib.h> |
36 | #include <unistd.h> | |
fa6a77dc | 37 | #include <errno.h> |
fd500816 | 38 | #include <sys/syscall.h> |
da6d8c04 | 39 | |
32ca6d61 DJ |
40 | #ifndef PTRACE_GETSIGINFO |
41 | # define PTRACE_GETSIGINFO 0x4202 | |
42 | # define PTRACE_SETSIGINFO 0x4203 | |
43 | #endif | |
44 | ||
42c81e2a DJ |
45 | #ifdef __UCLIBC__ |
46 | #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__)) | |
47 | #define HAS_NOMMU | |
48 | #endif | |
49 | #endif | |
50 | ||
0d62e5e8 DJ |
51 | /* ``all_threads'' is keyed by the LWP ID - it should be the thread ID instead, |
52 | however. This requires changing the ID in place when we go from !using_threads | |
53 | to using_threads, immediately. | |
611cb4a5 | 54 | |
0d62e5e8 DJ |
55 | ``all_processes'' is keyed by the process ID - which on Linux is (presently) |
56 | the same as the LWP ID. */ | |
57 | ||
58 | struct inferior_list all_processes; | |
59 | ||
60 | /* FIXME this is a bit of a hack, and could be removed. */ | |
61 | int stopping_threads; | |
62 | ||
63 | /* FIXME make into a target method? */ | |
64 | int using_threads; | |
65 | ||
66 | static void linux_resume_one_process (struct inferior_list_entry *entry, | |
32ca6d61 | 67 | int step, int signal, siginfo_t *info); |
64386c31 | 68 | static void linux_resume (struct thread_resume *resume_info); |
0d62e5e8 DJ |
69 | static void stop_all_processes (void); |
70 | static int linux_wait_for_event (struct thread_info *child); | |
71 | ||
72 | struct pending_signals | |
73 | { | |
74 | int signal; | |
32ca6d61 | 75 | siginfo_t info; |
0d62e5e8 DJ |
76 | struct pending_signals *prev; |
77 | }; | |
611cb4a5 | 78 | |
d844cde6 | 79 | #define PTRACE_ARG3_TYPE long |
c6ecbae5 | 80 | #define PTRACE_XFER_TYPE long |
da6d8c04 | 81 | |
58caa3dc DJ |
82 | #ifdef HAVE_LINUX_REGSETS |
83 | static int use_regsets_p = 1; | |
84 | #endif | |
85 | ||
0d62e5e8 DJ |
86 | #define pid_of(proc) ((proc)->head.id) |
87 | ||
88 | /* FIXME: Delete eventually. */ | |
89 | #define inferior_pid (pid_of (get_thread_process (current_inferior))) | |
90 | ||
91 | /* This function should only be called if the process got a SIGTRAP. | |
92 | The SIGTRAP could mean several things. | |
93 | ||
94 | On i386, where decr_pc_after_break is non-zero: | |
95 | If we were single-stepping this process using PTRACE_SINGLESTEP, | |
96 | we will get only the one SIGTRAP (even if the instruction we | |
97 | stepped over was a breakpoint). The value of $eip will be the | |
98 | next instruction. | |
99 | If we continue the process using PTRACE_CONT, we will get a | |
100 | SIGTRAP when we hit a breakpoint. The value of $eip will be | |
101 | the instruction after the breakpoint (i.e. needs to be | |
102 | decremented). If we report the SIGTRAP to GDB, we must also | |
103 | report the undecremented PC. If we cancel the SIGTRAP, we | |
104 | must resume at the decremented PC. | |
105 | ||
106 | (Presumably, not yet tested) On a non-decr_pc_after_break machine | |
107 | with hardware or kernel single-step: | |
108 | If we single-step over a breakpoint instruction, our PC will | |
109 | point at the following instruction. If we continue and hit a | |
110 | breakpoint instruction, our PC will point at the breakpoint | |
111 | instruction. */ | |
112 | ||
113 | static CORE_ADDR | |
114 | get_stop_pc (void) | |
115 | { | |
116 | CORE_ADDR stop_pc = (*the_low_target.get_pc) (); | |
117 | ||
118 | if (get_thread_process (current_inferior)->stepping) | |
119 | return stop_pc; | |
120 | else | |
121 | return stop_pc - the_low_target.decr_pc_after_break; | |
122 | } | |
ce3a066d | 123 | |
0d62e5e8 | 124 | static void * |
a1928bad | 125 | add_process (unsigned long pid) |
611cb4a5 | 126 | { |
0d62e5e8 DJ |
127 | struct process_info *process; |
128 | ||
129 | process = (struct process_info *) malloc (sizeof (*process)); | |
130 | memset (process, 0, sizeof (*process)); | |
131 | ||
132 | process->head.id = pid; | |
133 | ||
134 | /* Default to tid == lwpid == pid. */ | |
135 | process->tid = pid; | |
136 | process->lwpid = pid; | |
137 | ||
138 | add_inferior_to_list (&all_processes, &process->head); | |
139 | ||
140 | return process; | |
141 | } | |
611cb4a5 | 142 | |
da6d8c04 DJ |
143 | /* Start an inferior process and returns its pid. |
144 | ALLARGS is a vector of program-name and args. */ | |
145 | ||
ce3a066d DJ |
146 | static int |
147 | linux_create_inferior (char *program, char **allargs) | |
da6d8c04 | 148 | { |
0d62e5e8 | 149 | void *new_process; |
da6d8c04 DJ |
150 | int pid; |
151 | ||
42c81e2a | 152 | #if defined(__UCLIBC__) && defined(HAS_NOMMU) |
52fb6437 NS |
153 | pid = vfork (); |
154 | #else | |
da6d8c04 | 155 | pid = fork (); |
52fb6437 | 156 | #endif |
da6d8c04 DJ |
157 | if (pid < 0) |
158 | perror_with_name ("fork"); | |
159 | ||
160 | if (pid == 0) | |
161 | { | |
162 | ptrace (PTRACE_TRACEME, 0, 0, 0); | |
163 | ||
254787d4 | 164 | signal (__SIGRTMIN + 1, SIG_DFL); |
0d62e5e8 | 165 | |
a9fa9f7d DJ |
166 | setpgid (0, 0); |
167 | ||
7a245884 | 168 | execvp (program, allargs); |
da6d8c04 DJ |
169 | |
170 | fprintf (stderr, "Cannot exec %s: %s.\n", program, | |
d07c63e7 | 171 | strerror (errno)); |
da6d8c04 DJ |
172 | fflush (stderr); |
173 | _exit (0177); | |
174 | } | |
175 | ||
0d62e5e8 | 176 | new_process = add_process (pid); |
a06660f7 | 177 | add_thread (pid, new_process, pid); |
611cb4a5 | 178 | |
a9fa9f7d | 179 | return pid; |
da6d8c04 DJ |
180 | } |
181 | ||
182 | /* Attach to an inferior process. */ | |
183 | ||
0d62e5e8 | 184 | void |
a1928bad | 185 | linux_attach_lwp (unsigned long pid, unsigned long tid) |
da6d8c04 | 186 | { |
0d62e5e8 | 187 | struct process_info *new_process; |
611cb4a5 | 188 | |
da6d8c04 DJ |
189 | if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0) |
190 | { | |
a1928bad | 191 | fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid, |
43d5792c | 192 | strerror (errno), errno); |
da6d8c04 | 193 | fflush (stderr); |
0d62e5e8 DJ |
194 | |
195 | /* If we fail to attach to an LWP, just return. */ | |
196 | if (!using_threads) | |
197 | _exit (0177); | |
198 | return; | |
da6d8c04 DJ |
199 | } |
200 | ||
0d62e5e8 | 201 | new_process = (struct process_info *) add_process (pid); |
a06660f7 | 202 | add_thread (tid, new_process, pid); |
0d62e5e8 DJ |
203 | |
204 | /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH | |
205 | brings it to a halt. We should ignore that SIGSTOP and resume the process | |
206 | (unless this is the first process, in which case the flag will be cleared | |
207 | in linux_attach). | |
208 | ||
209 | On the other hand, if we are currently trying to stop all threads, we | |
210 | should treat the new thread as if we had sent it a SIGSTOP. This works | |
211 | because we are guaranteed that add_process added us to the end of the | |
212 | list, and so the new thread has not yet reached wait_for_sigstop (but | |
213 | will). */ | |
214 | if (! stopping_threads) | |
215 | new_process->stop_expected = 1; | |
216 | } | |
217 | ||
218 | int | |
a1928bad | 219 | linux_attach (unsigned long pid) |
0d62e5e8 DJ |
220 | { |
221 | struct process_info *process; | |
222 | ||
223 | linux_attach_lwp (pid, pid); | |
224 | ||
225 | /* Don't ignore the initial SIGSTOP if we just attached to this process. */ | |
226 | process = (struct process_info *) find_inferior_id (&all_processes, pid); | |
227 | process->stop_expected = 0; | |
228 | ||
da6d8c04 DJ |
229 | return 0; |
230 | } | |
231 | ||
232 | /* Kill the inferior process. Make us have no inferior. */ | |
233 | ||
ce3a066d | 234 | static void |
0d62e5e8 | 235 | linux_kill_one_process (struct inferior_list_entry *entry) |
da6d8c04 | 236 | { |
0d62e5e8 DJ |
237 | struct thread_info *thread = (struct thread_info *) entry; |
238 | struct process_info *process = get_thread_process (thread); | |
239 | int wstat; | |
240 | ||
fd500816 DJ |
241 | /* We avoid killing the first thread here, because of a Linux kernel (at |
242 | least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before | |
243 | the children get a chance to be reaped, it will remain a zombie | |
244 | forever. */ | |
245 | if (entry == all_threads.head) | |
246 | return; | |
247 | ||
0d62e5e8 DJ |
248 | do |
249 | { | |
250 | ptrace (PTRACE_KILL, pid_of (process), 0, 0); | |
251 | ||
252 | /* Make sure it died. The loop is most likely unnecessary. */ | |
253 | wstat = linux_wait_for_event (thread); | |
254 | } while (WIFSTOPPED (wstat)); | |
da6d8c04 DJ |
255 | } |
256 | ||
0d62e5e8 DJ |
257 | static void |
258 | linux_kill (void) | |
259 | { | |
fd500816 | 260 | struct thread_info *thread = (struct thread_info *) all_threads.head; |
9d606399 | 261 | struct process_info *process; |
fd500816 DJ |
262 | int wstat; |
263 | ||
9d606399 DJ |
264 | if (thread == NULL) |
265 | return; | |
266 | ||
0d62e5e8 | 267 | for_each_inferior (&all_threads, linux_kill_one_process); |
fd500816 DJ |
268 | |
269 | /* See the comment in linux_kill_one_process. We did not kill the first | |
270 | thread in the list, so do so now. */ | |
9d606399 | 271 | process = get_thread_process (thread); |
fd500816 DJ |
272 | do |
273 | { | |
274 | ptrace (PTRACE_KILL, pid_of (process), 0, 0); | |
275 | ||
276 | /* Make sure it died. The loop is most likely unnecessary. */ | |
277 | wstat = linux_wait_for_event (thread); | |
278 | } while (WIFSTOPPED (wstat)); | |
0d62e5e8 DJ |
279 | } |
280 | ||
6ad8ae5c DJ |
281 | static void |
282 | linux_detach_one_process (struct inferior_list_entry *entry) | |
283 | { | |
284 | struct thread_info *thread = (struct thread_info *) entry; | |
285 | struct process_info *process = get_thread_process (thread); | |
286 | ||
287 | ptrace (PTRACE_DETACH, pid_of (process), 0, 0); | |
288 | } | |
289 | ||
dd6953e1 | 290 | static int |
6ad8ae5c DJ |
291 | linux_detach (void) |
292 | { | |
293 | for_each_inferior (&all_threads, linux_detach_one_process); | |
dd6953e1 | 294 | return 0; |
6ad8ae5c DJ |
295 | } |
296 | ||
444d6139 PA |
297 | static void |
298 | linux_join (void) | |
299 | { | |
300 | extern unsigned long signal_pid; | |
301 | int status, ret; | |
302 | ||
303 | do { | |
304 | ret = waitpid (signal_pid, &status, 0); | |
305 | if (WIFEXITED (status) || WIFSIGNALED (status)) | |
306 | break; | |
307 | } while (ret != -1 || errno != ECHILD); | |
308 | } | |
309 | ||
6ad8ae5c | 310 | /* Return nonzero if the given thread is still alive. */ |
0d62e5e8 | 311 | static int |
a1928bad | 312 | linux_thread_alive (unsigned long tid) |
0d62e5e8 DJ |
313 | { |
314 | if (find_inferior_id (&all_threads, tid) != NULL) | |
315 | return 1; | |
316 | else | |
317 | return 0; | |
318 | } | |
319 | ||
320 | /* Return nonzero if this process stopped at a breakpoint which | |
321 | no longer appears to be inserted. Also adjust the PC | |
322 | appropriately to resume where the breakpoint used to be. */ | |
ce3a066d | 323 | static int |
0d62e5e8 | 324 | check_removed_breakpoint (struct process_info *event_child) |
da6d8c04 | 325 | { |
0d62e5e8 DJ |
326 | CORE_ADDR stop_pc; |
327 | struct thread_info *saved_inferior; | |
328 | ||
329 | if (event_child->pending_is_breakpoint == 0) | |
330 | return 0; | |
331 | ||
332 | if (debug_threads) | |
333 | fprintf (stderr, "Checking for breakpoint.\n"); | |
334 | ||
335 | saved_inferior = current_inferior; | |
336 | current_inferior = get_process_thread (event_child); | |
337 | ||
338 | stop_pc = get_stop_pc (); | |
339 | ||
340 | /* If the PC has changed since we stopped, then we shouldn't do | |
341 | anything. This happens if, for instance, GDB handled the | |
342 | decr_pc_after_break subtraction itself. */ | |
343 | if (stop_pc != event_child->pending_stop_pc) | |
344 | { | |
345 | if (debug_threads) | |
346 | fprintf (stderr, "Ignoring, PC was changed.\n"); | |
347 | ||
348 | event_child->pending_is_breakpoint = 0; | |
349 | current_inferior = saved_inferior; | |
350 | return 0; | |
351 | } | |
352 | ||
353 | /* If the breakpoint is still there, we will report hitting it. */ | |
354 | if ((*the_low_target.breakpoint_at) (stop_pc)) | |
355 | { | |
356 | if (debug_threads) | |
357 | fprintf (stderr, "Ignoring, breakpoint is still present.\n"); | |
358 | current_inferior = saved_inferior; | |
359 | return 0; | |
360 | } | |
361 | ||
362 | if (debug_threads) | |
363 | fprintf (stderr, "Removed breakpoint.\n"); | |
364 | ||
365 | /* For decr_pc_after_break targets, here is where we perform the | |
366 | decrement. We go immediately from this function to resuming, | |
367 | and can not safely call get_stop_pc () again. */ | |
368 | if (the_low_target.set_pc != NULL) | |
369 | (*the_low_target.set_pc) (stop_pc); | |
370 | ||
371 | /* We consumed the pending SIGTRAP. */ | |
5544ad89 | 372 | event_child->pending_is_breakpoint = 0; |
0d62e5e8 DJ |
373 | event_child->status_pending_p = 0; |
374 | event_child->status_pending = 0; | |
375 | ||
376 | current_inferior = saved_inferior; | |
da6d8c04 DJ |
377 | return 1; |
378 | } | |
379 | ||
0d62e5e8 DJ |
380 | /* Return 1 if this process has an interesting status pending. This function |
381 | may silently resume an inferior process. */ | |
611cb4a5 | 382 | static int |
0d62e5e8 DJ |
383 | status_pending_p (struct inferior_list_entry *entry, void *dummy) |
384 | { | |
385 | struct process_info *process = (struct process_info *) entry; | |
386 | ||
387 | if (process->status_pending_p) | |
388 | if (check_removed_breakpoint (process)) | |
389 | { | |
390 | /* This thread was stopped at a breakpoint, and the breakpoint | |
391 | is now gone. We were told to continue (or step...) all threads, | |
392 | so GDB isn't trying to single-step past this breakpoint. | |
393 | So instead of reporting the old SIGTRAP, pretend we got to | |
394 | the breakpoint just after it was removed instead of just | |
395 | before; resume the process. */ | |
32ca6d61 | 396 | linux_resume_one_process (&process->head, 0, 0, NULL); |
0d62e5e8 DJ |
397 | return 0; |
398 | } | |
399 | ||
400 | return process->status_pending_p; | |
401 | } | |
402 | ||
403 | static void | |
404 | linux_wait_for_process (struct process_info **childp, int *wstatp) | |
611cb4a5 | 405 | { |
0d62e5e8 DJ |
406 | int ret; |
407 | int to_wait_for = -1; | |
408 | ||
409 | if (*childp != NULL) | |
410 | to_wait_for = (*childp)->lwpid; | |
611cb4a5 DJ |
411 | |
412 | while (1) | |
413 | { | |
0d62e5e8 DJ |
414 | ret = waitpid (to_wait_for, wstatp, WNOHANG); |
415 | ||
416 | if (ret == -1) | |
417 | { | |
418 | if (errno != ECHILD) | |
419 | perror_with_name ("waitpid"); | |
420 | } | |
421 | else if (ret > 0) | |
422 | break; | |
423 | ||
424 | ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE); | |
425 | ||
426 | if (ret == -1) | |
427 | { | |
428 | if (errno != ECHILD) | |
429 | perror_with_name ("waitpid (WCLONE)"); | |
430 | } | |
431 | else if (ret > 0) | |
432 | break; | |
433 | ||
434 | usleep (1000); | |
435 | } | |
436 | ||
437 | if (debug_threads | |
438 | && (!WIFSTOPPED (*wstatp) | |
439 | || (WSTOPSIG (*wstatp) != 32 | |
440 | && WSTOPSIG (*wstatp) != 33))) | |
441 | fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp); | |
442 | ||
443 | if (to_wait_for == -1) | |
444 | *childp = (struct process_info *) find_inferior_id (&all_processes, ret); | |
445 | ||
446 | (*childp)->stopped = 1; | |
447 | (*childp)->pending_is_breakpoint = 0; | |
448 | ||
32ca6d61 DJ |
449 | (*childp)->last_status = *wstatp; |
450 | ||
0d62e5e8 DJ |
451 | if (debug_threads |
452 | && WIFSTOPPED (*wstatp)) | |
453 | { | |
454 | current_inferior = (struct thread_info *) | |
455 | find_inferior_id (&all_threads, (*childp)->tid); | |
456 | /* For testing only; i386_stop_pc prints out a diagnostic. */ | |
457 | if (the_low_target.get_pc != NULL) | |
458 | get_stop_pc (); | |
459 | } | |
460 | } | |
611cb4a5 | 461 | |
0d62e5e8 DJ |
462 | static int |
463 | linux_wait_for_event (struct thread_info *child) | |
464 | { | |
465 | CORE_ADDR stop_pc; | |
466 | struct process_info *event_child; | |
467 | int wstat; | |
468 | ||
469 | /* Check for a process with a pending status. */ | |
470 | /* It is possible that the user changed the pending task's registers since | |
471 | it stopped. We correctly handle the change of PC if we hit a breakpoint | |
e5379b03 | 472 | (in check_removed_breakpoint); signals should be reported anyway. */ |
0d62e5e8 DJ |
473 | if (child == NULL) |
474 | { | |
475 | event_child = (struct process_info *) | |
476 | find_inferior (&all_processes, status_pending_p, NULL); | |
477 | if (debug_threads && event_child) | |
a1928bad | 478 | fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid); |
0d62e5e8 DJ |
479 | } |
480 | else | |
481 | { | |
482 | event_child = get_thread_process (child); | |
483 | if (event_child->status_pending_p | |
484 | && check_removed_breakpoint (event_child)) | |
485 | event_child = NULL; | |
486 | } | |
611cb4a5 | 487 | |
0d62e5e8 DJ |
488 | if (event_child != NULL) |
489 | { | |
490 | if (event_child->status_pending_p) | |
611cb4a5 | 491 | { |
0d62e5e8 | 492 | if (debug_threads) |
a1928bad | 493 | fprintf (stderr, "Got an event from pending child %ld (%04x)\n", |
0d62e5e8 DJ |
494 | event_child->lwpid, event_child->status_pending); |
495 | wstat = event_child->status_pending; | |
496 | event_child->status_pending_p = 0; | |
497 | event_child->status_pending = 0; | |
498 | current_inferior = get_process_thread (event_child); | |
499 | return wstat; | |
500 | } | |
501 | } | |
502 | ||
503 | /* We only enter this loop if no process has a pending wait status. Thus | |
504 | any action taken in response to a wait status inside this loop is | |
505 | responding as soon as we detect the status, not after any pending | |
506 | events. */ | |
507 | while (1) | |
508 | { | |
509 | if (child == NULL) | |
510 | event_child = NULL; | |
511 | else | |
512 | event_child = get_thread_process (child); | |
513 | ||
514 | linux_wait_for_process (&event_child, &wstat); | |
515 | ||
516 | if (event_child == NULL) | |
517 | error ("event from unknown child"); | |
611cb4a5 | 518 | |
0d62e5e8 DJ |
519 | current_inferior = (struct thread_info *) |
520 | find_inferior_id (&all_threads, event_child->tid); | |
521 | ||
89be2091 DJ |
522 | /* Check for thread exit. */ |
523 | if (using_threads && ! WIFSTOPPED (wstat)) | |
0d62e5e8 | 524 | { |
89be2091 DJ |
525 | if (debug_threads) |
526 | fprintf (stderr, "Thread %ld (LWP %ld) exiting\n", | |
527 | event_child->tid, event_child->head.id); | |
528 | ||
529 | /* If the last thread is exiting, just return. */ | |
530 | if (all_threads.head == all_threads.tail) | |
531 | return wstat; | |
532 | ||
533 | dead_thread_notify (event_child->tid); | |
534 | ||
535 | remove_inferior (&all_processes, &event_child->head); | |
536 | free (event_child); | |
537 | remove_thread (current_inferior); | |
538 | current_inferior = (struct thread_info *) all_threads.head; | |
539 | ||
540 | /* If we were waiting for this particular child to do something... | |
541 | well, it did something. */ | |
542 | if (child != NULL) | |
543 | return wstat; | |
544 | ||
545 | /* Wait for a more interesting event. */ | |
546 | continue; | |
547 | } | |
548 | ||
549 | if (using_threads | |
550 | && WIFSTOPPED (wstat) | |
551 | && WSTOPSIG (wstat) == SIGSTOP | |
552 | && event_child->stop_expected) | |
553 | { | |
554 | if (debug_threads) | |
555 | fprintf (stderr, "Expected stop.\n"); | |
556 | event_child->stop_expected = 0; | |
557 | linux_resume_one_process (&event_child->head, | |
558 | event_child->stepping, 0, NULL); | |
559 | continue; | |
560 | } | |
561 | ||
562 | /* If GDB is not interested in this signal, don't stop other | |
563 | threads, and don't report it to GDB. Just resume the | |
564 | inferior right away. We do this for threading-related | |
565 | signals as well as any that GDB specifically requested | |
566 | we ignore. But never ignore SIGSTOP if we sent it | |
567 | ourselves. */ | |
568 | /* FIXME drow/2002-06-09: Get signal numbers from the inferior's | |
569 | thread library? */ | |
570 | if (WIFSTOPPED (wstat) | |
571 | && ((using_threads && (WSTOPSIG (wstat) == __SIGRTMIN | |
572 | || WSTOPSIG (wstat) == __SIGRTMIN + 1)) | |
573 | || (pass_signals[target_signal_from_host (WSTOPSIG (wstat))] | |
574 | && (WSTOPSIG (wstat) != SIGSTOP | |
575 | || !event_child->sigstop_sent)))) | |
576 | { | |
577 | siginfo_t info, *info_p; | |
578 | ||
579 | if (debug_threads) | |
580 | fprintf (stderr, "Ignored signal %d for %ld (LWP %ld).\n", | |
581 | WSTOPSIG (wstat), event_child->tid, | |
582 | event_child->head.id); | |
583 | ||
584 | if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0) | |
585 | info_p = &info; | |
586 | else | |
587 | info_p = NULL; | |
588 | linux_resume_one_process (&event_child->head, | |
589 | event_child->stepping, | |
590 | WSTOPSIG (wstat), info_p); | |
591 | continue; | |
0d62e5e8 | 592 | } |
611cb4a5 | 593 | |
0d62e5e8 DJ |
594 | /* If this event was not handled above, and is not a SIGTRAP, report |
595 | it. */ | |
596 | if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP) | |
597 | return wstat; | |
611cb4a5 | 598 | |
0d62e5e8 DJ |
599 | /* If this target does not support breakpoints, we simply report the |
600 | SIGTRAP; it's of no concern to us. */ | |
601 | if (the_low_target.get_pc == NULL) | |
602 | return wstat; | |
603 | ||
604 | stop_pc = get_stop_pc (); | |
605 | ||
606 | /* bp_reinsert will only be set if we were single-stepping. | |
607 | Notice that we will resume the process after hitting | |
608 | a gdbserver breakpoint; single-stepping to/over one | |
609 | is not supported (yet). */ | |
610 | if (event_child->bp_reinsert != 0) | |
611 | { | |
612 | if (debug_threads) | |
613 | fprintf (stderr, "Reinserted breakpoint.\n"); | |
614 | reinsert_breakpoint (event_child->bp_reinsert); | |
615 | event_child->bp_reinsert = 0; | |
616 | ||
617 | /* Clear the single-stepping flag and SIGTRAP as we resume. */ | |
32ca6d61 | 618 | linux_resume_one_process (&event_child->head, 0, 0, NULL); |
0d62e5e8 DJ |
619 | continue; |
620 | } | |
621 | ||
622 | if (debug_threads) | |
623 | fprintf (stderr, "Hit a (non-reinsert) breakpoint.\n"); | |
624 | ||
625 | if (check_breakpoints (stop_pc) != 0) | |
626 | { | |
627 | /* We hit one of our own breakpoints. We mark it as a pending | |
e5379b03 | 628 | breakpoint, so that check_removed_breakpoint () will do the PC |
0d62e5e8 DJ |
629 | adjustment for us at the appropriate time. */ |
630 | event_child->pending_is_breakpoint = 1; | |
631 | event_child->pending_stop_pc = stop_pc; | |
632 | ||
633 | /* Now we need to put the breakpoint back. We continue in the event | |
634 | loop instead of simply replacing the breakpoint right away, | |
635 | in order to not lose signals sent to the thread that hit the | |
636 | breakpoint. Unfortunately this increases the window where another | |
637 | thread could sneak past the removed breakpoint. For the current | |
638 | use of server-side breakpoints (thread creation) this is | |
639 | acceptable; but it needs to be considered before this breakpoint | |
640 | mechanism can be used in more general ways. For some breakpoints | |
641 | it may be necessary to stop all other threads, but that should | |
642 | be avoided where possible. | |
643 | ||
644 | If breakpoint_reinsert_addr is NULL, that means that we can | |
645 | use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint, | |
646 | mark it for reinsertion, and single-step. | |
647 | ||
648 | Otherwise, call the target function to figure out where we need | |
649 | our temporary breakpoint, create it, and continue executing this | |
650 | process. */ | |
651 | if (the_low_target.breakpoint_reinsert_addr == NULL) | |
652 | { | |
653 | event_child->bp_reinsert = stop_pc; | |
654 | uninsert_breakpoint (stop_pc); | |
32ca6d61 | 655 | linux_resume_one_process (&event_child->head, 1, 0, NULL); |
0d62e5e8 DJ |
656 | } |
657 | else | |
658 | { | |
659 | reinsert_breakpoint_by_bp | |
660 | (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ()); | |
32ca6d61 | 661 | linux_resume_one_process (&event_child->head, 0, 0, NULL); |
611cb4a5 | 662 | } |
0d62e5e8 DJ |
663 | |
664 | continue; | |
665 | } | |
666 | ||
667 | /* If we were single-stepping, we definitely want to report the | |
668 | SIGTRAP. The single-step operation has completed, so also | |
aa691b87 | 669 | clear the stepping flag; in general this does not matter, |
0d62e5e8 DJ |
670 | because the SIGTRAP will be reported to the client, which |
671 | will give us a new action for this thread, but clear it for | |
672 | consistency anyway. It's safe to clear the stepping flag | |
673 | because the only consumer of get_stop_pc () after this point | |
e5379b03 | 674 | is check_removed_breakpoint, and pending_is_breakpoint is not |
0d62e5e8 DJ |
675 | set. It might be wiser to use a step_completed flag instead. */ |
676 | if (event_child->stepping) | |
677 | { | |
678 | event_child->stepping = 0; | |
679 | return wstat; | |
680 | } | |
681 | ||
682 | /* A SIGTRAP that we can't explain. It may have been a breakpoint. | |
683 | Check if it is a breakpoint, and if so mark the process information | |
684 | accordingly. This will handle both the necessary fiddling with the | |
685 | PC on decr_pc_after_break targets and suppressing extra threads | |
686 | hitting a breakpoint if two hit it at once and then GDB removes it | |
687 | after the first is reported. Arguably it would be better to report | |
688 | multiple threads hitting breakpoints simultaneously, but the current | |
689 | remote protocol does not allow this. */ | |
690 | if ((*the_low_target.breakpoint_at) (stop_pc)) | |
691 | { | |
692 | event_child->pending_is_breakpoint = 1; | |
693 | event_child->pending_stop_pc = stop_pc; | |
611cb4a5 DJ |
694 | } |
695 | ||
696 | return wstat; | |
697 | } | |
0d62e5e8 | 698 | |
611cb4a5 DJ |
699 | /* NOTREACHED */ |
700 | return 0; | |
701 | } | |
702 | ||
0d62e5e8 | 703 | /* Wait for process, returns status. */ |
da6d8c04 | 704 | |
ce3a066d DJ |
705 | static unsigned char |
706 | linux_wait (char *status) | |
da6d8c04 | 707 | { |
e5f1222d | 708 | int w; |
0d62e5e8 DJ |
709 | struct thread_info *child = NULL; |
710 | ||
711 | retry: | |
712 | /* If we were only supposed to resume one thread, only wait for | |
713 | that thread - if it's still alive. If it died, however - which | |
714 | can happen if we're coming from the thread death case below - | |
715 | then we need to make sure we restart the other threads. We could | |
716 | pick a thread at random or restart all; restarting all is less | |
717 | arbitrary. */ | |
d592fa2f | 718 | if (cont_thread != 0 && cont_thread != -1) |
0d62e5e8 DJ |
719 | { |
720 | child = (struct thread_info *) find_inferior_id (&all_threads, | |
721 | cont_thread); | |
722 | ||
723 | /* No stepping, no signal - unless one is pending already, of course. */ | |
724 | if (child == NULL) | |
64386c31 DJ |
725 | { |
726 | struct thread_resume resume_info; | |
727 | resume_info.thread = -1; | |
728 | resume_info.step = resume_info.sig = resume_info.leave_stopped = 0; | |
729 | linux_resume (&resume_info); | |
730 | } | |
0d62e5e8 | 731 | } |
da6d8c04 DJ |
732 | |
733 | enable_async_io (); | |
62ea82f5 | 734 | unblock_async_io (); |
0d62e5e8 DJ |
735 | w = linux_wait_for_event (child); |
736 | stop_all_processes (); | |
da6d8c04 | 737 | disable_async_io (); |
da6d8c04 | 738 | |
0d62e5e8 DJ |
739 | /* If we are waiting for a particular child, and it exited, |
740 | linux_wait_for_event will return its exit status. Similarly if | |
741 | the last child exited. If this is not the last child, however, | |
742 | do not report it as exited until there is a 'thread exited' response | |
743 | available in the remote protocol. Instead, just wait for another event. | |
744 | This should be safe, because if the thread crashed we will already | |
745 | have reported the termination signal to GDB; that should stop any | |
746 | in-progress stepping operations, etc. | |
747 | ||
748 | Report the exit status of the last thread to exit. This matches | |
749 | LinuxThreads' behavior. */ | |
750 | ||
751 | if (all_threads.head == all_threads.tail) | |
da6d8c04 | 752 | { |
0d62e5e8 DJ |
753 | if (WIFEXITED (w)) |
754 | { | |
755 | fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w)); | |
756 | *status = 'W'; | |
757 | clear_inferiors (); | |
075b3282 DJ |
758 | free (all_processes.head); |
759 | all_processes.head = all_processes.tail = NULL; | |
b80864fb | 760 | return WEXITSTATUS (w); |
0d62e5e8 DJ |
761 | } |
762 | else if (!WIFSTOPPED (w)) | |
763 | { | |
764 | fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w)); | |
0d62e5e8 | 765 | *status = 'X'; |
075b3282 DJ |
766 | clear_inferiors (); |
767 | free (all_processes.head); | |
768 | all_processes.head = all_processes.tail = NULL; | |
b80864fb | 769 | return target_signal_from_host (WTERMSIG (w)); |
0d62e5e8 | 770 | } |
da6d8c04 | 771 | } |
0d62e5e8 | 772 | else |
da6d8c04 | 773 | { |
0d62e5e8 DJ |
774 | if (!WIFSTOPPED (w)) |
775 | goto retry; | |
da6d8c04 DJ |
776 | } |
777 | ||
da6d8c04 | 778 | *status = 'T'; |
b80864fb | 779 | return target_signal_from_host (WSTOPSIG (w)); |
da6d8c04 DJ |
780 | } |
781 | ||
fd500816 DJ |
782 | /* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if |
783 | thread groups are in use, we need to use tkill. */ | |
784 | ||
785 | static int | |
a1928bad | 786 | kill_lwp (unsigned long lwpid, int signo) |
fd500816 DJ |
787 | { |
788 | static int tkill_failed; | |
789 | ||
790 | errno = 0; | |
791 | ||
792 | #ifdef SYS_tkill | |
793 | if (!tkill_failed) | |
794 | { | |
795 | int ret = syscall (SYS_tkill, lwpid, signo); | |
796 | if (errno != ENOSYS) | |
797 | return ret; | |
798 | errno = 0; | |
799 | tkill_failed = 1; | |
800 | } | |
801 | #endif | |
802 | ||
803 | return kill (lwpid, signo); | |
804 | } | |
805 | ||
0d62e5e8 DJ |
806 | static void |
807 | send_sigstop (struct inferior_list_entry *entry) | |
808 | { | |
809 | struct process_info *process = (struct process_info *) entry; | |
810 | ||
811 | if (process->stopped) | |
812 | return; | |
813 | ||
814 | /* If we already have a pending stop signal for this process, don't | |
815 | send another. */ | |
816 | if (process->stop_expected) | |
817 | { | |
818 | process->stop_expected = 0; | |
819 | return; | |
820 | } | |
821 | ||
822 | if (debug_threads) | |
a1928bad | 823 | fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id); |
0d62e5e8 | 824 | |
fd500816 | 825 | kill_lwp (process->head.id, SIGSTOP); |
0d62e5e8 DJ |
826 | process->sigstop_sent = 1; |
827 | } | |
828 | ||
829 | static void | |
830 | wait_for_sigstop (struct inferior_list_entry *entry) | |
831 | { | |
832 | struct process_info *process = (struct process_info *) entry; | |
833 | struct thread_info *saved_inferior, *thread; | |
a1928bad DJ |
834 | int wstat; |
835 | unsigned long saved_tid; | |
0d62e5e8 DJ |
836 | |
837 | if (process->stopped) | |
838 | return; | |
839 | ||
840 | saved_inferior = current_inferior; | |
841 | saved_tid = ((struct inferior_list_entry *) saved_inferior)->id; | |
842 | thread = (struct thread_info *) find_inferior_id (&all_threads, | |
843 | process->tid); | |
844 | wstat = linux_wait_for_event (thread); | |
845 | ||
846 | /* If we stopped with a non-SIGSTOP signal, save it for later | |
847 | and record the pending SIGSTOP. If the process exited, just | |
848 | return. */ | |
849 | if (WIFSTOPPED (wstat) | |
850 | && WSTOPSIG (wstat) != SIGSTOP) | |
851 | { | |
852 | if (debug_threads) | |
853 | fprintf (stderr, "Stopped with non-sigstop signal\n"); | |
854 | process->status_pending_p = 1; | |
855 | process->status_pending = wstat; | |
856 | process->stop_expected = 1; | |
857 | } | |
858 | ||
859 | if (linux_thread_alive (saved_tid)) | |
860 | current_inferior = saved_inferior; | |
861 | else | |
862 | { | |
863 | if (debug_threads) | |
864 | fprintf (stderr, "Previously current thread died.\n"); | |
865 | ||
866 | /* Set a valid thread as current. */ | |
867 | set_desired_inferior (0); | |
868 | } | |
869 | } | |
870 | ||
871 | static void | |
872 | stop_all_processes (void) | |
873 | { | |
874 | stopping_threads = 1; | |
875 | for_each_inferior (&all_processes, send_sigstop); | |
876 | for_each_inferior (&all_processes, wait_for_sigstop); | |
877 | stopping_threads = 0; | |
878 | } | |
879 | ||
da6d8c04 DJ |
880 | /* Resume execution of the inferior process. |
881 | If STEP is nonzero, single-step it. | |
882 | If SIGNAL is nonzero, give it that signal. */ | |
883 | ||
ce3a066d | 884 | static void |
0d62e5e8 | 885 | linux_resume_one_process (struct inferior_list_entry *entry, |
32ca6d61 | 886 | int step, int signal, siginfo_t *info) |
da6d8c04 | 887 | { |
0d62e5e8 DJ |
888 | struct process_info *process = (struct process_info *) entry; |
889 | struct thread_info *saved_inferior; | |
890 | ||
891 | if (process->stopped == 0) | |
892 | return; | |
893 | ||
894 | /* If we have pending signals or status, and a new signal, enqueue the | |
895 | signal. Also enqueue the signal if we are waiting to reinsert a | |
896 | breakpoint; it will be picked up again below. */ | |
897 | if (signal != 0 | |
898 | && (process->status_pending_p || process->pending_signals != NULL | |
899 | || process->bp_reinsert != 0)) | |
900 | { | |
901 | struct pending_signals *p_sig; | |
902 | p_sig = malloc (sizeof (*p_sig)); | |
903 | p_sig->prev = process->pending_signals; | |
904 | p_sig->signal = signal; | |
32ca6d61 DJ |
905 | if (info == NULL) |
906 | memset (&p_sig->info, 0, sizeof (siginfo_t)); | |
907 | else | |
908 | memcpy (&p_sig->info, info, sizeof (siginfo_t)); | |
0d62e5e8 DJ |
909 | process->pending_signals = p_sig; |
910 | } | |
911 | ||
e5379b03 | 912 | if (process->status_pending_p && !check_removed_breakpoint (process)) |
0d62e5e8 DJ |
913 | return; |
914 | ||
915 | saved_inferior = current_inferior; | |
916 | current_inferior = get_process_thread (process); | |
917 | ||
918 | if (debug_threads) | |
a1928bad | 919 | fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid, |
0d62e5e8 DJ |
920 | step ? "step" : "continue", signal, |
921 | process->stop_expected ? "expected" : "not expected"); | |
922 | ||
923 | /* This bit needs some thinking about. If we get a signal that | |
924 | we must report while a single-step reinsert is still pending, | |
925 | we often end up resuming the thread. It might be better to | |
926 | (ew) allow a stack of pending events; then we could be sure that | |
927 | the reinsert happened right away and not lose any signals. | |
928 | ||
929 | Making this stack would also shrink the window in which breakpoints are | |
930 | uninserted (see comment in linux_wait_for_process) but not enough for | |
931 | complete correctness, so it won't solve that problem. It may be | |
932 | worthwhile just to solve this one, however. */ | |
933 | if (process->bp_reinsert != 0) | |
934 | { | |
935 | if (debug_threads) | |
936 | fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert); | |
937 | if (step == 0) | |
938 | fprintf (stderr, "BAD - reinserting but not stepping.\n"); | |
939 | step = 1; | |
940 | ||
941 | /* Postpone any pending signal. It was enqueued above. */ | |
942 | signal = 0; | |
943 | } | |
944 | ||
945 | check_removed_breakpoint (process); | |
946 | ||
aa691b87 | 947 | if (debug_threads && the_low_target.get_pc != NULL) |
0d62e5e8 DJ |
948 | { |
949 | fprintf (stderr, " "); | |
52fb6437 | 950 | (*the_low_target.get_pc) (); |
0d62e5e8 DJ |
951 | } |
952 | ||
953 | /* If we have pending signals, consume one unless we are trying to reinsert | |
954 | a breakpoint. */ | |
955 | if (process->pending_signals != NULL && process->bp_reinsert == 0) | |
956 | { | |
957 | struct pending_signals **p_sig; | |
958 | ||
959 | p_sig = &process->pending_signals; | |
960 | while ((*p_sig)->prev != NULL) | |
961 | p_sig = &(*p_sig)->prev; | |
962 | ||
963 | signal = (*p_sig)->signal; | |
32ca6d61 DJ |
964 | if ((*p_sig)->info.si_signo != 0) |
965 | ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info); | |
966 | ||
0d62e5e8 DJ |
967 | free (*p_sig); |
968 | *p_sig = NULL; | |
969 | } | |
970 | ||
971 | regcache_invalidate_one ((struct inferior_list_entry *) | |
972 | get_process_thread (process)); | |
da6d8c04 | 973 | errno = 0; |
0d62e5e8 DJ |
974 | process->stopped = 0; |
975 | process->stepping = step; | |
976 | ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal); | |
977 | ||
978 | current_inferior = saved_inferior; | |
da6d8c04 DJ |
979 | if (errno) |
980 | perror_with_name ("ptrace"); | |
981 | } | |
982 | ||
64386c31 DJ |
983 | static struct thread_resume *resume_ptr; |
984 | ||
985 | /* This function is called once per thread. We look up the thread | |
5544ad89 DJ |
986 | in RESUME_PTR, and mark the thread with a pointer to the appropriate |
987 | resume request. | |
988 | ||
989 | This algorithm is O(threads * resume elements), but resume elements | |
990 | is small (and will remain small at least until GDB supports thread | |
991 | suspension). */ | |
0d62e5e8 | 992 | static void |
5544ad89 | 993 | linux_set_resume_request (struct inferior_list_entry *entry) |
0d62e5e8 DJ |
994 | { |
995 | struct process_info *process; | |
64386c31 | 996 | struct thread_info *thread; |
5544ad89 | 997 | int ndx; |
64386c31 DJ |
998 | |
999 | thread = (struct thread_info *) entry; | |
1000 | process = get_thread_process (thread); | |
1001 | ||
1002 | ndx = 0; | |
1003 | while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id) | |
1004 | ndx++; | |
1005 | ||
5544ad89 DJ |
1006 | process->resume = &resume_ptr[ndx]; |
1007 | } | |
1008 | ||
1009 | /* This function is called once per thread. We check the thread's resume | |
1010 | request, which will tell us whether to resume, step, or leave the thread | |
1011 | stopped; and what signal, if any, it should be sent. For threads which | |
1012 | we aren't explicitly told otherwise, we preserve the stepping flag; this | |
1013 | is used for stepping over gdbserver-placed breakpoints. */ | |
1014 | ||
1015 | static void | |
1016 | linux_continue_one_thread (struct inferior_list_entry *entry) | |
1017 | { | |
1018 | struct process_info *process; | |
1019 | struct thread_info *thread; | |
1020 | int step; | |
1021 | ||
1022 | thread = (struct thread_info *) entry; | |
1023 | process = get_thread_process (thread); | |
1024 | ||
1025 | if (process->resume->leave_stopped) | |
64386c31 DJ |
1026 | return; |
1027 | ||
5544ad89 DJ |
1028 | if (process->resume->thread == -1) |
1029 | step = process->stepping || process->resume->step; | |
64386c31 | 1030 | else |
5544ad89 DJ |
1031 | step = process->resume->step; |
1032 | ||
32ca6d61 | 1033 | linux_resume_one_process (&process->head, step, process->resume->sig, NULL); |
c6ecbae5 | 1034 | |
5544ad89 DJ |
1035 | process->resume = NULL; |
1036 | } | |
1037 | ||
1038 | /* This function is called once per thread. We check the thread's resume | |
1039 | request, which will tell us whether to resume, step, or leave the thread | |
1040 | stopped; and what signal, if any, it should be sent. We queue any needed | |
1041 | signals, since we won't actually resume. We already have a pending event | |
1042 | to report, so we don't need to preserve any step requests; they should | |
1043 | be re-issued if necessary. */ | |
1044 | ||
1045 | static void | |
1046 | linux_queue_one_thread (struct inferior_list_entry *entry) | |
1047 | { | |
1048 | struct process_info *process; | |
1049 | struct thread_info *thread; | |
1050 | ||
1051 | thread = (struct thread_info *) entry; | |
1052 | process = get_thread_process (thread); | |
1053 | ||
1054 | if (process->resume->leave_stopped) | |
1055 | return; | |
1056 | ||
1057 | /* If we have a new signal, enqueue the signal. */ | |
1058 | if (process->resume->sig != 0) | |
1059 | { | |
1060 | struct pending_signals *p_sig; | |
1061 | p_sig = malloc (sizeof (*p_sig)); | |
1062 | p_sig->prev = process->pending_signals; | |
1063 | p_sig->signal = process->resume->sig; | |
32ca6d61 DJ |
1064 | memset (&p_sig->info, 0, sizeof (siginfo_t)); |
1065 | ||
1066 | /* If this is the same signal we were previously stopped by, | |
1067 | make sure to queue its siginfo. We can ignore the return | |
1068 | value of ptrace; if it fails, we'll skip | |
1069 | PTRACE_SETSIGINFO. */ | |
1070 | if (WIFSTOPPED (process->last_status) | |
1071 | && WSTOPSIG (process->last_status) == process->resume->sig) | |
1072 | ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info); | |
1073 | ||
5544ad89 DJ |
1074 | process->pending_signals = p_sig; |
1075 | } | |
1076 | ||
1077 | process->resume = NULL; | |
1078 | } | |
1079 | ||
1080 | /* Set DUMMY if this process has an interesting status pending. */ | |
1081 | static int | |
1082 | resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p) | |
1083 | { | |
1084 | struct process_info *process = (struct process_info *) entry; | |
1085 | ||
1086 | /* Processes which will not be resumed are not interesting, because | |
1087 | we might not wait for them next time through linux_wait. */ | |
1088 | if (process->resume->leave_stopped) | |
1089 | return 0; | |
1090 | ||
1091 | /* If this thread has a removed breakpoint, we won't have any | |
1092 | events to report later, so check now. check_removed_breakpoint | |
1093 | may clear status_pending_p. We avoid calling check_removed_breakpoint | |
1094 | for any thread that we are not otherwise going to resume - this | |
1095 | lets us preserve stopped status when two threads hit a breakpoint. | |
1096 | GDB removes the breakpoint to single-step a particular thread | |
1097 | past it, then re-inserts it and resumes all threads. We want | |
1098 | to report the second thread without resuming it in the interim. */ | |
1099 | if (process->status_pending_p) | |
1100 | check_removed_breakpoint (process); | |
1101 | ||
1102 | if (process->status_pending_p) | |
1103 | * (int *) flag_p = 1; | |
1104 | ||
1105 | return 0; | |
0d62e5e8 DJ |
1106 | } |
1107 | ||
1108 | static void | |
64386c31 | 1109 | linux_resume (struct thread_resume *resume_info) |
0d62e5e8 | 1110 | { |
5544ad89 | 1111 | int pending_flag; |
c6ecbae5 | 1112 | |
5544ad89 | 1113 | /* Yes, the use of a global here is rather ugly. */ |
64386c31 | 1114 | resume_ptr = resume_info; |
5544ad89 DJ |
1115 | |
1116 | for_each_inferior (&all_threads, linux_set_resume_request); | |
1117 | ||
1118 | /* If there is a thread which would otherwise be resumed, which | |
1119 | has a pending status, then don't resume any threads - we can just | |
1120 | report the pending status. Make sure to queue any signals | |
1121 | that would otherwise be sent. */ | |
1122 | pending_flag = 0; | |
1123 | find_inferior (&all_processes, resume_status_pending_p, &pending_flag); | |
1124 | ||
1125 | if (debug_threads) | |
1126 | { | |
1127 | if (pending_flag) | |
1128 | fprintf (stderr, "Not resuming, pending status\n"); | |
1129 | else | |
1130 | fprintf (stderr, "Resuming, no pending status\n"); | |
1131 | } | |
1132 | ||
1133 | if (pending_flag) | |
1134 | for_each_inferior (&all_threads, linux_queue_one_thread); | |
1135 | else | |
62ea82f5 DJ |
1136 | { |
1137 | block_async_io (); | |
1138 | enable_async_io (); | |
1139 | for_each_inferior (&all_threads, linux_continue_one_thread); | |
1140 | } | |
0d62e5e8 DJ |
1141 | } |
1142 | ||
1143 | #ifdef HAVE_LINUX_USRREGS | |
da6d8c04 DJ |
1144 | |
1145 | int | |
0a30fbc4 | 1146 | register_addr (int regnum) |
da6d8c04 DJ |
1147 | { |
1148 | int addr; | |
1149 | ||
2ec06d2e | 1150 | if (regnum < 0 || regnum >= the_low_target.num_regs) |
da6d8c04 DJ |
1151 | error ("Invalid register number %d.", regnum); |
1152 | ||
2ec06d2e | 1153 | addr = the_low_target.regmap[regnum]; |
da6d8c04 DJ |
1154 | |
1155 | return addr; | |
1156 | } | |
1157 | ||
58caa3dc | 1158 | /* Fetch one register. */ |
da6d8c04 DJ |
1159 | static void |
1160 | fetch_register (int regno) | |
1161 | { | |
1162 | CORE_ADDR regaddr; | |
48d93c75 | 1163 | int i, size; |
0d62e5e8 | 1164 | char *buf; |
da6d8c04 | 1165 | |
2ec06d2e | 1166 | if (regno >= the_low_target.num_regs) |
0a30fbc4 | 1167 | return; |
2ec06d2e | 1168 | if ((*the_low_target.cannot_fetch_register) (regno)) |
0a30fbc4 | 1169 | return; |
da6d8c04 | 1170 | |
0a30fbc4 DJ |
1171 | regaddr = register_addr (regno); |
1172 | if (regaddr == -1) | |
1173 | return; | |
48d93c75 UW |
1174 | size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1) |
1175 | & - sizeof (PTRACE_XFER_TYPE); | |
1176 | buf = alloca (size); | |
1177 | for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE)) | |
da6d8c04 DJ |
1178 | { |
1179 | errno = 0; | |
0d62e5e8 | 1180 | *(PTRACE_XFER_TYPE *) (buf + i) = |
da6d8c04 DJ |
1181 | ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0); |
1182 | regaddr += sizeof (PTRACE_XFER_TYPE); | |
1183 | if (errno != 0) | |
1184 | { | |
1185 | /* Warning, not error, in case we are attached; sometimes the | |
1186 | kernel doesn't let us at the registers. */ | |
1187 | char *err = strerror (errno); | |
1188 | char *msg = alloca (strlen (err) + 128); | |
1189 | sprintf (msg, "reading register %d: %s", regno, err); | |
1190 | error (msg); | |
1191 | goto error_exit; | |
1192 | } | |
1193 | } | |
5a1f5858 DJ |
1194 | if (the_low_target.left_pad_xfer |
1195 | && register_size (regno) < sizeof (PTRACE_XFER_TYPE)) | |
1196 | supply_register (regno, (buf + sizeof (PTRACE_XFER_TYPE) | |
1197 | - register_size (regno))); | |
1198 | else | |
1199 | supply_register (regno, buf); | |
0d62e5e8 | 1200 | |
da6d8c04 DJ |
1201 | error_exit:; |
1202 | } | |
1203 | ||
1204 | /* Fetch all registers, or just one, from the child process. */ | |
58caa3dc DJ |
1205 | static void |
1206 | usr_fetch_inferior_registers (int regno) | |
da6d8c04 DJ |
1207 | { |
1208 | if (regno == -1 || regno == 0) | |
2ec06d2e | 1209 | for (regno = 0; regno < the_low_target.num_regs; regno++) |
da6d8c04 DJ |
1210 | fetch_register (regno); |
1211 | else | |
1212 | fetch_register (regno); | |
1213 | } | |
1214 | ||
1215 | /* Store our register values back into the inferior. | |
1216 | If REGNO is -1, do this for all registers. | |
1217 | Otherwise, REGNO specifies which register (so we can save time). */ | |
58caa3dc DJ |
1218 | static void |
1219 | usr_store_inferior_registers (int regno) | |
da6d8c04 DJ |
1220 | { |
1221 | CORE_ADDR regaddr; | |
48d93c75 | 1222 | int i, size; |
0d62e5e8 | 1223 | char *buf; |
da6d8c04 DJ |
1224 | |
1225 | if (regno >= 0) | |
1226 | { | |
2ec06d2e | 1227 | if (regno >= the_low_target.num_regs) |
0a30fbc4 DJ |
1228 | return; |
1229 | ||
bc1e36ca | 1230 | if ((*the_low_target.cannot_store_register) (regno) == 1) |
0a30fbc4 DJ |
1231 | return; |
1232 | ||
1233 | regaddr = register_addr (regno); | |
1234 | if (regaddr == -1) | |
da6d8c04 | 1235 | return; |
da6d8c04 | 1236 | errno = 0; |
48d93c75 UW |
1237 | size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1) |
1238 | & - sizeof (PTRACE_XFER_TYPE); | |
1239 | buf = alloca (size); | |
1240 | memset (buf, 0, size); | |
5a1f5858 DJ |
1241 | if (the_low_target.left_pad_xfer |
1242 | && register_size (regno) < sizeof (PTRACE_XFER_TYPE)) | |
1243 | collect_register (regno, (buf + sizeof (PTRACE_XFER_TYPE) | |
1244 | - register_size (regno))); | |
1245 | else | |
1246 | collect_register (regno, buf); | |
48d93c75 | 1247 | for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE)) |
da6d8c04 | 1248 | { |
0a30fbc4 DJ |
1249 | errno = 0; |
1250 | ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
2ff29de4 | 1251 | *(PTRACE_XFER_TYPE *) (buf + i)); |
da6d8c04 DJ |
1252 | if (errno != 0) |
1253 | { | |
bc1e36ca DJ |
1254 | if ((*the_low_target.cannot_store_register) (regno) == 0) |
1255 | { | |
1256 | char *err = strerror (errno); | |
1257 | char *msg = alloca (strlen (err) + 128); | |
1258 | sprintf (msg, "writing register %d: %s", | |
1259 | regno, err); | |
1260 | error (msg); | |
1261 | return; | |
1262 | } | |
da6d8c04 | 1263 | } |
2ff29de4 | 1264 | regaddr += sizeof (PTRACE_XFER_TYPE); |
da6d8c04 | 1265 | } |
da6d8c04 DJ |
1266 | } |
1267 | else | |
2ec06d2e | 1268 | for (regno = 0; regno < the_low_target.num_regs; regno++) |
0d62e5e8 | 1269 | usr_store_inferior_registers (regno); |
da6d8c04 | 1270 | } |
58caa3dc DJ |
1271 | #endif /* HAVE_LINUX_USRREGS */ |
1272 | ||
1273 | ||
1274 | ||
1275 | #ifdef HAVE_LINUX_REGSETS | |
1276 | ||
1277 | static int | |
0d62e5e8 | 1278 | regsets_fetch_inferior_registers () |
58caa3dc DJ |
1279 | { |
1280 | struct regset_info *regset; | |
e9d25b98 | 1281 | int saw_general_regs = 0; |
58caa3dc DJ |
1282 | |
1283 | regset = target_regsets; | |
1284 | ||
1285 | while (regset->size >= 0) | |
1286 | { | |
1287 | void *buf; | |
1288 | int res; | |
1289 | ||
1290 | if (regset->size == 0) | |
1291 | { | |
1292 | regset ++; | |
1293 | continue; | |
1294 | } | |
1295 | ||
1296 | buf = malloc (regset->size); | |
d06f167a | 1297 | res = ptrace (regset->get_request, inferior_pid, 0, buf); |
58caa3dc DJ |
1298 | if (res < 0) |
1299 | { | |
1300 | if (errno == EIO) | |
1301 | { | |
1302 | /* If we get EIO on the first regset, do not try regsets again. | |
1303 | If we get EIO on a later regset, disable that regset. */ | |
1304 | if (regset == target_regsets) | |
1305 | { | |
1306 | use_regsets_p = 0; | |
1307 | return -1; | |
1308 | } | |
1309 | else | |
1310 | { | |
1311 | regset->size = 0; | |
1312 | continue; | |
1313 | } | |
1314 | } | |
1315 | else | |
1316 | { | |
0d62e5e8 | 1317 | char s[256]; |
a1928bad | 1318 | sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld", |
0d62e5e8 DJ |
1319 | inferior_pid); |
1320 | perror (s); | |
58caa3dc DJ |
1321 | } |
1322 | } | |
e9d25b98 DJ |
1323 | else if (regset->type == GENERAL_REGS) |
1324 | saw_general_regs = 1; | |
58caa3dc DJ |
1325 | regset->store_function (buf); |
1326 | regset ++; | |
1327 | } | |
e9d25b98 DJ |
1328 | if (saw_general_regs) |
1329 | return 0; | |
1330 | else | |
1331 | return 1; | |
58caa3dc DJ |
1332 | } |
1333 | ||
1334 | static int | |
0d62e5e8 | 1335 | regsets_store_inferior_registers () |
58caa3dc DJ |
1336 | { |
1337 | struct regset_info *regset; | |
e9d25b98 | 1338 | int saw_general_regs = 0; |
58caa3dc DJ |
1339 | |
1340 | regset = target_regsets; | |
1341 | ||
1342 | while (regset->size >= 0) | |
1343 | { | |
1344 | void *buf; | |
1345 | int res; | |
1346 | ||
1347 | if (regset->size == 0) | |
1348 | { | |
1349 | regset ++; | |
1350 | continue; | |
1351 | } | |
1352 | ||
1353 | buf = malloc (regset->size); | |
545587ee DJ |
1354 | |
1355 | /* First fill the buffer with the current register set contents, | |
1356 | in case there are any items in the kernel's regset that are | |
1357 | not in gdbserver's regcache. */ | |
1358 | res = ptrace (regset->get_request, inferior_pid, 0, buf); | |
1359 | ||
1360 | if (res == 0) | |
1361 | { | |
1362 | /* Then overlay our cached registers on that. */ | |
1363 | regset->fill_function (buf); | |
1364 | ||
1365 | /* Only now do we write the register set. */ | |
1366 | res = ptrace (regset->set_request, inferior_pid, 0, buf); | |
1367 | } | |
1368 | ||
58caa3dc DJ |
1369 | if (res < 0) |
1370 | { | |
1371 | if (errno == EIO) | |
1372 | { | |
1373 | /* If we get EIO on the first regset, do not try regsets again. | |
1374 | If we get EIO on a later regset, disable that regset. */ | |
1375 | if (regset == target_regsets) | |
1376 | { | |
1377 | use_regsets_p = 0; | |
1378 | return -1; | |
1379 | } | |
1380 | else | |
1381 | { | |
1382 | regset->size = 0; | |
1383 | continue; | |
1384 | } | |
1385 | } | |
1386 | else | |
1387 | { | |
ce3a066d | 1388 | perror ("Warning: ptrace(regsets_store_inferior_registers)"); |
58caa3dc DJ |
1389 | } |
1390 | } | |
e9d25b98 DJ |
1391 | else if (regset->type == GENERAL_REGS) |
1392 | saw_general_regs = 1; | |
58caa3dc | 1393 | regset ++; |
09ec9b38 | 1394 | free (buf); |
58caa3dc | 1395 | } |
e9d25b98 DJ |
1396 | if (saw_general_regs) |
1397 | return 0; | |
1398 | else | |
1399 | return 1; | |
ce3a066d | 1400 | return 0; |
58caa3dc DJ |
1401 | } |
1402 | ||
1403 | #endif /* HAVE_LINUX_REGSETS */ | |
1404 | ||
1405 | ||
1406 | void | |
ce3a066d | 1407 | linux_fetch_registers (int regno) |
58caa3dc DJ |
1408 | { |
1409 | #ifdef HAVE_LINUX_REGSETS | |
1410 | if (use_regsets_p) | |
1411 | { | |
1412 | if (regsets_fetch_inferior_registers () == 0) | |
1413 | return; | |
1414 | } | |
1415 | #endif | |
1416 | #ifdef HAVE_LINUX_USRREGS | |
1417 | usr_fetch_inferior_registers (regno); | |
1418 | #endif | |
1419 | } | |
1420 | ||
1421 | void | |
ce3a066d | 1422 | linux_store_registers (int regno) |
58caa3dc DJ |
1423 | { |
1424 | #ifdef HAVE_LINUX_REGSETS | |
1425 | if (use_regsets_p) | |
1426 | { | |
1427 | if (regsets_store_inferior_registers () == 0) | |
1428 | return; | |
1429 | } | |
1430 | #endif | |
1431 | #ifdef HAVE_LINUX_USRREGS | |
1432 | usr_store_inferior_registers (regno); | |
1433 | #endif | |
1434 | } | |
1435 | ||
da6d8c04 | 1436 | |
da6d8c04 DJ |
1437 | /* Copy LEN bytes from inferior's memory starting at MEMADDR |
1438 | to debugger memory starting at MYADDR. */ | |
1439 | ||
c3e735a6 | 1440 | static int |
f450004a | 1441 | linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len) |
da6d8c04 DJ |
1442 | { |
1443 | register int i; | |
1444 | /* Round starting address down to longword boundary. */ | |
1445 | register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE); | |
1446 | /* Round ending address up; get number of longwords that makes. */ | |
aa691b87 RM |
1447 | register int count |
1448 | = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) | |
da6d8c04 DJ |
1449 | / sizeof (PTRACE_XFER_TYPE); |
1450 | /* Allocate buffer of that many longwords. */ | |
aa691b87 | 1451 | register PTRACE_XFER_TYPE *buffer |
da6d8c04 DJ |
1452 | = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE)); |
1453 | ||
1454 | /* Read all the longwords */ | |
1455 | for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) | |
1456 | { | |
c3e735a6 | 1457 | errno = 0; |
d844cde6 | 1458 | buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); |
c3e735a6 DJ |
1459 | if (errno) |
1460 | return errno; | |
da6d8c04 DJ |
1461 | } |
1462 | ||
1463 | /* Copy appropriate bytes out of the buffer. */ | |
1464 | memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len); | |
c3e735a6 DJ |
1465 | |
1466 | return 0; | |
da6d8c04 DJ |
1467 | } |
1468 | ||
1469 | /* Copy LEN bytes of data from debugger memory at MYADDR | |
1470 | to inferior's memory at MEMADDR. | |
1471 | On failure (cannot write the inferior) | |
1472 | returns the value of errno. */ | |
1473 | ||
ce3a066d | 1474 | static int |
f450004a | 1475 | linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len) |
da6d8c04 DJ |
1476 | { |
1477 | register int i; | |
1478 | /* Round starting address down to longword boundary. */ | |
1479 | register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE); | |
1480 | /* Round ending address up; get number of longwords that makes. */ | |
1481 | register int count | |
1482 | = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE); | |
1483 | /* Allocate buffer of that many longwords. */ | |
1484 | register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE)); | |
1485 | extern int errno; | |
1486 | ||
0d62e5e8 DJ |
1487 | if (debug_threads) |
1488 | { | |
1489 | fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr); | |
1490 | } | |
1491 | ||
da6d8c04 DJ |
1492 | /* Fill start and end extra bytes of buffer with existing memory data. */ |
1493 | ||
d844cde6 DJ |
1494 | buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid, |
1495 | (PTRACE_ARG3_TYPE) addr, 0); | |
da6d8c04 DJ |
1496 | |
1497 | if (count > 1) | |
1498 | { | |
1499 | buffer[count - 1] | |
1500 | = ptrace (PTRACE_PEEKTEXT, inferior_pid, | |
d844cde6 DJ |
1501 | (PTRACE_ARG3_TYPE) (addr + (count - 1) |
1502 | * sizeof (PTRACE_XFER_TYPE)), | |
1503 | 0); | |
da6d8c04 DJ |
1504 | } |
1505 | ||
1506 | /* Copy data to be written over corresponding part of buffer */ | |
1507 | ||
1508 | memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len); | |
1509 | ||
1510 | /* Write the entire buffer. */ | |
1511 | ||
1512 | for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE)) | |
1513 | { | |
1514 | errno = 0; | |
d844cde6 | 1515 | ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]); |
da6d8c04 DJ |
1516 | if (errno) |
1517 | return errno; | |
1518 | } | |
1519 | ||
1520 | return 0; | |
1521 | } | |
2f2893d9 DJ |
1522 | |
1523 | static void | |
1524 | linux_look_up_symbols (void) | |
1525 | { | |
0d62e5e8 DJ |
1526 | #ifdef USE_THREAD_DB |
1527 | if (using_threads) | |
1528 | return; | |
1529 | ||
1530 | using_threads = thread_db_init (); | |
1531 | #endif | |
1532 | } | |
1533 | ||
e5379b03 | 1534 | static void |
ef57601b | 1535 | linux_request_interrupt (void) |
e5379b03 | 1536 | { |
a1928bad | 1537 | extern unsigned long signal_pid; |
e5379b03 | 1538 | |
d592fa2f | 1539 | if (cont_thread != 0 && cont_thread != -1) |
e5379b03 DJ |
1540 | { |
1541 | struct process_info *process; | |
1542 | ||
1543 | process = get_thread_process (current_inferior); | |
ef57601b | 1544 | kill_lwp (process->lwpid, SIGINT); |
e5379b03 DJ |
1545 | } |
1546 | else | |
ef57601b | 1547 | kill_lwp (signal_pid, SIGINT); |
e5379b03 DJ |
1548 | } |
1549 | ||
aa691b87 RM |
1550 | /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET |
1551 | to debugger memory starting at MYADDR. */ | |
1552 | ||
1553 | static int | |
f450004a | 1554 | linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len) |
aa691b87 RM |
1555 | { |
1556 | char filename[PATH_MAX]; | |
1557 | int fd, n; | |
1558 | ||
a1928bad | 1559 | snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid); |
aa691b87 RM |
1560 | |
1561 | fd = open (filename, O_RDONLY); | |
1562 | if (fd < 0) | |
1563 | return -1; | |
1564 | ||
1565 | if (offset != (CORE_ADDR) 0 | |
1566 | && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) | |
1567 | n = -1; | |
1568 | else | |
1569 | n = read (fd, myaddr, len); | |
1570 | ||
1571 | close (fd); | |
1572 | ||
1573 | return n; | |
1574 | } | |
1575 | ||
e013ee27 OF |
1576 | /* These watchpoint related wrapper functions simply pass on the function call |
1577 | if the target has registered a corresponding function. */ | |
1578 | ||
1579 | static int | |
1580 | linux_insert_watchpoint (char type, CORE_ADDR addr, int len) | |
1581 | { | |
1582 | if (the_low_target.insert_watchpoint != NULL) | |
1583 | return the_low_target.insert_watchpoint (type, addr, len); | |
1584 | else | |
1585 | /* Unsupported (see target.h). */ | |
1586 | return 1; | |
1587 | } | |
1588 | ||
1589 | static int | |
1590 | linux_remove_watchpoint (char type, CORE_ADDR addr, int len) | |
1591 | { | |
1592 | if (the_low_target.remove_watchpoint != NULL) | |
1593 | return the_low_target.remove_watchpoint (type, addr, len); | |
1594 | else | |
1595 | /* Unsupported (see target.h). */ | |
1596 | return 1; | |
1597 | } | |
1598 | ||
1599 | static int | |
1600 | linux_stopped_by_watchpoint (void) | |
1601 | { | |
1602 | if (the_low_target.stopped_by_watchpoint != NULL) | |
1603 | return the_low_target.stopped_by_watchpoint (); | |
1604 | else | |
1605 | return 0; | |
1606 | } | |
1607 | ||
1608 | static CORE_ADDR | |
1609 | linux_stopped_data_address (void) | |
1610 | { | |
1611 | if (the_low_target.stopped_data_address != NULL) | |
1612 | return the_low_target.stopped_data_address (); | |
1613 | else | |
1614 | return 0; | |
1615 | } | |
1616 | ||
42c81e2a | 1617 | #if defined(__UCLIBC__) && defined(HAS_NOMMU) |
52fb6437 NS |
1618 | #if defined(__mcoldfire__) |
1619 | /* These should really be defined in the kernel's ptrace.h header. */ | |
1620 | #define PT_TEXT_ADDR 49*4 | |
1621 | #define PT_DATA_ADDR 50*4 | |
1622 | #define PT_TEXT_END_ADDR 51*4 | |
1623 | #endif | |
1624 | ||
1625 | /* Under uClinux, programs are loaded at non-zero offsets, which we need | |
1626 | to tell gdb about. */ | |
1627 | ||
1628 | static int | |
1629 | linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p) | |
1630 | { | |
1631 | #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR) | |
1632 | unsigned long text, text_end, data; | |
1633 | int pid = get_thread_process (current_inferior)->head.id; | |
1634 | ||
1635 | errno = 0; | |
1636 | ||
1637 | text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0); | |
1638 | text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0); | |
1639 | data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0); | |
1640 | ||
1641 | if (errno == 0) | |
1642 | { | |
1643 | /* Both text and data offsets produced at compile-time (and so | |
1644 | used by gdb) are relative to the beginning of the program, | |
1645 | with the data segment immediately following the text segment. | |
1646 | However, the actual runtime layout in memory may put the data | |
1647 | somewhere else, so when we send gdb a data base-address, we | |
1648 | use the real data base address and subtract the compile-time | |
1649 | data base-address from it (which is just the length of the | |
1650 | text segment). BSS immediately follows data in both | |
1651 | cases. */ | |
1652 | *text_p = text; | |
1653 | *data_p = data - (text_end - text); | |
1654 | ||
1655 | return 1; | |
1656 | } | |
1657 | #endif | |
1658 | return 0; | |
1659 | } | |
1660 | #endif | |
1661 | ||
23181151 DJ |
1662 | static const char * |
1663 | linux_arch_string (void) | |
1664 | { | |
1665 | return the_low_target.arch_string; | |
1666 | } | |
1667 | ||
ce3a066d DJ |
1668 | static struct target_ops linux_target_ops = { |
1669 | linux_create_inferior, | |
1670 | linux_attach, | |
1671 | linux_kill, | |
6ad8ae5c | 1672 | linux_detach, |
444d6139 | 1673 | linux_join, |
ce3a066d DJ |
1674 | linux_thread_alive, |
1675 | linux_resume, | |
1676 | linux_wait, | |
1677 | linux_fetch_registers, | |
1678 | linux_store_registers, | |
1679 | linux_read_memory, | |
1680 | linux_write_memory, | |
2f2893d9 | 1681 | linux_look_up_symbols, |
ef57601b | 1682 | linux_request_interrupt, |
aa691b87 | 1683 | linux_read_auxv, |
e013ee27 OF |
1684 | linux_insert_watchpoint, |
1685 | linux_remove_watchpoint, | |
1686 | linux_stopped_by_watchpoint, | |
1687 | linux_stopped_data_address, | |
42c81e2a | 1688 | #if defined(__UCLIBC__) && defined(HAS_NOMMU) |
52fb6437 | 1689 | linux_read_offsets, |
dae5f5cf DJ |
1690 | #else |
1691 | NULL, | |
1692 | #endif | |
1693 | #ifdef USE_THREAD_DB | |
1694 | thread_db_get_tls_address, | |
1695 | #else | |
1696 | NULL, | |
52fb6437 | 1697 | #endif |
23181151 | 1698 | linux_arch_string, |
ce3a066d DJ |
1699 | }; |
1700 | ||
0d62e5e8 DJ |
1701 | static void |
1702 | linux_init_signals () | |
1703 | { | |
1704 | /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads | |
1705 | to find what the cancel signal actually is. */ | |
254787d4 | 1706 | signal (__SIGRTMIN+1, SIG_IGN); |
0d62e5e8 DJ |
1707 | } |
1708 | ||
da6d8c04 DJ |
1709 | void |
1710 | initialize_low (void) | |
1711 | { | |
0d62e5e8 | 1712 | using_threads = 0; |
ce3a066d | 1713 | set_target_ops (&linux_target_ops); |
611cb4a5 DJ |
1714 | set_breakpoint_data (the_low_target.breakpoint, |
1715 | the_low_target.breakpoint_len); | |
0a30fbc4 | 1716 | init_registers (); |
0d62e5e8 | 1717 | linux_init_signals (); |
da6d8c04 | 1718 | } |