]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
2003-03-30 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
dfe01d39 28#include "objfiles.h"
c906108c
SS
29#include "target.h"
30#include "floatformat.h"
c0d1d883 31#include "symfile.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbcmd.h"
34#include "command.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
d16aafd8 37#include "doublest.h"
fd0407d6 38#include "value.h"
3d261580 39#include "gdb_assert.h"
38c968cf 40#include "reggroups.h"
5a4d6ff4 41#include "dummy-frame.h"
4be87837 42#include "osabi.h"
3d261580 43
d2a7c97a 44#include "i386-tdep.h"
61113f8b 45#include "i387-tdep.h"
d2a7c97a 46
fc633446
MK
47/* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49static char *i386_register_names[] =
50{
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62};
63
28fc6740
AC
64/* MMX registers. */
65
66static char *i386_mmx_names[] =
67{
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70};
71static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73#define MM0_REGNUM (NUM_REGS)
74
75static int
23a34459 76i386_mmx_regnum_p (int reg)
28fc6740
AC
77{
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79}
80
23a34459
AC
81/* FP register? */
82
83int
84i386_fp_regnum_p (int regnum)
85{
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88}
89
90int
91i386_fpc_regnum_p (int regnum)
92{
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95}
96
97/* SSE register? */
98
99int
100i386_sse_regnum_p (int regnum)
101{
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104}
105
106int
107i386_mxcsr_regnum_p (int regnum)
108{
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111}
112
fc633446
MK
113/* Return the name of register REG. */
114
fa88f677 115const char *
fc633446
MK
116i386_register_name (int reg)
117{
118 if (reg < 0)
119 return NULL;
23a34459 120 if (i386_mmx_regnum_p (reg))
28fc6740 121 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126}
127
85540d8c
MK
128/* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
8201327c 131static int
85540d8c
MK
132i386_stab_reg_to_regnum (int reg)
133{
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
7d12f766 153 return reg - 29 + MM0_REGNUM;
85540d8c
MK
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158}
159
8201327c 160/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
161 number used by GDB. */
162
8201327c 163static int
85540d8c
MK
164i386_dwarf_reg_to_regnum (int reg)
165{
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186}
fc338970 187\f
917317f4 188
fc338970
MK
189/* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
53904c9e
AC
191static const char att_flavor[] = "att";
192static const char intel_flavor[] = "intel";
193static const char *valid_flavors[] =
c5aa993b 194{
c906108c
SS
195 att_flavor,
196 intel_flavor,
197 NULL
198};
53904c9e 199static const char *disassembly_flavor = att_flavor;
c906108c 200
fc338970
MK
201/* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
220static CORE_ADDR codestream_next_addr;
221static CORE_ADDR codestream_addr;
222static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223static int codestream_off;
224static int codestream_cnt;
225
226#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
227#define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230#define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 233
c5aa993b 234static unsigned char
fba45db2 235codestream_fill (int peek_flag)
c906108c
SS
236{
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 242
c906108c 243 if (peek_flag)
c5aa993b 244 return (codestream_peek ());
c906108c 245 else
c5aa993b 246 return (codestream_get ());
c906108c
SS
247}
248
249static void
fba45db2 250codestream_seek (CORE_ADDR place)
c906108c
SS
251{
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
c5aa993b 256 while (codestream_tell () != place)
c906108c
SS
257 codestream_get ();
258}
259
260static void
fba45db2 261codestream_read (unsigned char *buf, int count)
c906108c
SS
262{
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268}
fc338970 269\f
c906108c 270
fc338970 271/* If the next instruction is a jump, move to its target. */
c906108c
SS
272
273static void
fba45db2 274i386_follow_jump (void)
c906108c
SS
275{
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
fc338970 294 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
fc338970
MK
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
c5aa993b 302 pos += delta + 4;
c906108c
SS
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
fc338970 313 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322}
323
fc338970
MK
324/* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
c906108c
SS
329
330static long
fba45db2 331i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
332{
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
fc338970
MK
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
c906108c
SS
354 int pos;
355 unsigned char buf[4];
fc338970
MK
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
c906108c
SS
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
fc338970 367 op = codestream_get (); /* Update next opcode. */
c906108c
SS
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
fc338970
MK
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
c906108c
SS
383 int pos;
384 unsigned char buf[8];
385
fc338970 386 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
fc338970
MK
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
fc338970 401 op = codestream_get (); /* Update next opcode. */
c906108c
SS
402 }
403
404 if (op == 0x55) /* pushl %ebp */
c5aa993b 405 {
fc338970 406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
fc338970 411 return -1;
c906108c
SS
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
fc338970 415 return -1;
c906108c
SS
416 break;
417 default:
fc338970 418 return -1;
c906108c 419 }
fc338970
MK
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
fc338970 429 /* `subl' with 8 bit immediate. */
c906108c
SS
430 codestream_get ();
431 if (codestream_get () != 0xec)
fc338970 432 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
fc338970
MK
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
c5aa993b 439 return (codestream_get ());
c906108c
SS
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
fc338970 444 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 445 codestream_get ();
c906108c 446 if (codestream_get () != 0xec)
fc338970 447 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
fc338970 452 /* It is `subl' with a 32 bit immediate. */
c5aa993b 453 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
fc338970 458 return 0;
c906108c
SS
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
fc338970 464 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 465 codestream_read ((unsigned char *) buf, 2);
fc338970 466 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470}
471
6bff26de
MK
472/* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
5a203e44
AC
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
6bff26de
MK
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
5a203e44
AC
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
6bff26de
MK
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
6bff26de
MK
495
496/* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
5512c44a 499int
6bff26de
MK
500i386_frameless_signal_p (struct frame_info *frame)
501{
11c02a10
AC
502 return (get_next_frame (frame)
503 && get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME
c0d1d883 504 && (frameless_look_for_prologue (frame)
50abf9e5 505 || get_frame_pc (frame) == get_pc_function_start (get_frame_pc (frame))));
6bff26de
MK
506}
507
c833a37e
MK
508/* Return the chain-pointer for FRAME. In the case of the i386, the
509 frame's nominal address is the address of a 4-byte word containing
510 the calling frame's address. */
511
8201327c 512static CORE_ADDR
c833a37e
MK
513i386_frame_chain (struct frame_info *frame)
514{
50abf9e5 515 if (pc_in_dummy_frame (get_frame_pc (frame)))
1e2330ba 516 return get_frame_base (frame);
c0d1d883 517
5a203e44 518 if (get_frame_type (frame) == SIGTRAMP_FRAME
6bff26de 519 || i386_frameless_signal_p (frame))
1e2330ba 520 return get_frame_base (frame);
c833a37e 521
50abf9e5 522 if (! inside_entry_file (get_frame_pc (frame)))
1e2330ba 523 return read_memory_unsigned_integer (get_frame_base (frame), 4);
c833a37e
MK
524
525 return 0;
526}
527
539ffe0b
MK
528/* Determine whether the function invocation represented by FRAME does
529 not have a from on the stack associated with it. If it does not,
530 return non-zero, otherwise return zero. */
531
3a1e71e3 532static int
539ffe0b
MK
533i386_frameless_function_invocation (struct frame_info *frame)
534{
5a203e44 535 if (get_frame_type (frame) == SIGTRAMP_FRAME)
539ffe0b
MK
536 return 0;
537
538 return frameless_look_for_prologue (frame);
539}
540
21d0e8a4
MK
541/* Assuming FRAME is for a sigtramp routine, return the saved program
542 counter. */
543
544static CORE_ADDR
545i386_sigtramp_saved_pc (struct frame_info *frame)
546{
547 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
548 CORE_ADDR addr;
549
550 addr = tdep->sigcontext_addr (frame);
551 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
552}
553
6bff26de
MK
554/* Assuming FRAME is for a sigtramp routine, return the saved stack
555 pointer. */
556
557static CORE_ADDR
558i386_sigtramp_saved_sp (struct frame_info *frame)
559{
560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
561 CORE_ADDR addr;
562
563 addr = tdep->sigcontext_addr (frame);
564 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
565}
566
0d17c81d
MK
567/* Return the saved program counter for FRAME. */
568
8201327c 569static CORE_ADDR
0d17c81d
MK
570i386_frame_saved_pc (struct frame_info *frame)
571{
50abf9e5 572 if (pc_in_dummy_frame (get_frame_pc (frame)))
267bf4bb
MK
573 {
574 ULONGEST pc;
575
576 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
577 return pc;
578 }
c0d1d883 579
5a203e44 580 if (get_frame_type (frame) == SIGTRAMP_FRAME)
21d0e8a4 581 return i386_sigtramp_saved_pc (frame);
0d17c81d 582
6bff26de
MK
583 if (i386_frameless_signal_p (frame))
584 {
11c02a10 585 CORE_ADDR sp = i386_sigtramp_saved_sp (get_next_frame (frame));
6bff26de
MK
586 return read_memory_unsigned_integer (sp, 4);
587 }
588
1e2330ba 589 return read_memory_unsigned_integer (get_frame_base (frame) + 4, 4);
22797942
AC
590}
591
ed84f6c1
MK
592/* Immediately after a function call, return the saved pc. */
593
8201327c 594static CORE_ADDR
ed84f6c1
MK
595i386_saved_pc_after_call (struct frame_info *frame)
596{
5a203e44 597 if (get_frame_type (frame) == SIGTRAMP_FRAME)
6bff26de
MK
598 return i386_sigtramp_saved_pc (frame);
599
ed84f6c1
MK
600 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
601}
602
c906108c
SS
603/* Return number of args passed to a frame.
604 Can return -1, meaning no way to tell. */
605
3a1e71e3 606static int
fba45db2 607i386_frame_num_args (struct frame_info *fi)
c906108c
SS
608{
609#if 1
610 return -1;
611#else
612 /* This loses because not only might the compiler not be popping the
fc338970
MK
613 args right after the function call, it might be popping args from
614 both this call and a previous one, and we would say there are
615 more args than there really are. */
c906108c 616
c5aa993b
JM
617 int retpc;
618 unsigned char op;
c906108c
SS
619 struct frame_info *pfi;
620
fc338970 621 /* On the i386, the instruction following the call could be:
c906108c
SS
622 popl %ecx - one arg
623 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 624 anything else - zero args. */
c906108c
SS
625
626 int frameless;
627
392a587b 628 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 629 if (frameless)
fc338970
MK
630 /* In the absence of a frame pointer, GDB doesn't get correct
631 values for nameless arguments. Return -1, so it doesn't print
632 any nameless arguments. */
c906108c
SS
633 return -1;
634
c5aa993b 635 pfi = get_prev_frame (fi);
c906108c
SS
636 if (pfi == 0)
637 {
fc338970 638 /* NOTE: This can happen if we are looking at the frame for
618ce49f
AC
639 main, because DEPRECATED_FRAME_CHAIN_VALID won't let us go
640 into start. If we have debugging symbols, that's not really
641 a big deal; it just means it will only show as many arguments
642 to main as are declared. */
c906108c
SS
643 return -1;
644 }
645 else
646 {
c5aa993b
JM
647 retpc = pfi->pc;
648 op = read_memory_integer (retpc, 1);
fc338970 649 if (op == 0x59) /* pop %ecx */
c5aa993b 650 return 1;
c906108c
SS
651 else if (op == 0x83)
652 {
c5aa993b
JM
653 op = read_memory_integer (retpc + 1, 1);
654 if (op == 0xc4)
655 /* addl $<signed imm 8 bits>, %esp */
656 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
657 else
658 return 0;
659 }
fc338970
MK
660 else if (op == 0x81) /* `add' with 32 bit immediate. */
661 {
c5aa993b
JM
662 op = read_memory_integer (retpc + 1, 1);
663 if (op == 0xc4)
664 /* addl $<imm 32>, %esp */
665 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
666 else
667 return 0;
668 }
669 else
670 {
671 return 0;
672 }
673 }
674#endif
675}
676
fc338970
MK
677/* Parse the first few instructions the function to see what registers
678 were stored.
679
680 We handle these cases:
681
682 The startup sequence can be at the start of the function, or the
683 function can start with a branch to startup code at the end.
684
685 %ebp can be set up with either the 'enter' instruction, or "pushl
686 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
687 once used in the System V compiler).
688
689 Local space is allocated just below the saved %ebp by either the
690 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
691 bit unsigned argument for space to allocate, and the 'addl'
692 instruction could have either a signed byte, or 32 bit immediate.
693
694 Next, the registers used by this function are pushed. With the
695 System V compiler they will always be in the order: %edi, %esi,
696 %ebx (and sometimes a harmless bug causes it to also save but not
697 restore %eax); however, the code below is willing to see the pushes
698 in any order, and will handle up to 8 of them.
699
700 If the setup sequence is at the end of the function, then the next
701 instruction will be a branch back to the start. */
c906108c 702
3a1e71e3 703static void
fba45db2 704i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
705{
706 long locals = -1;
707 unsigned char op;
fc338970 708 CORE_ADDR addr;
c906108c
SS
709 CORE_ADDR pc;
710 int i;
c5aa993b 711
b2fb4676 712 if (get_frame_saved_regs (fip))
1211c4e4
AC
713 return;
714
715 frame_saved_regs_zalloc (fip);
c5aa993b 716
50abf9e5 717 pc = get_pc_function_start (get_frame_pc (fip));
c906108c
SS
718 if (pc != 0)
719 locals = i386_get_frame_setup (pc);
c5aa993b
JM
720
721 if (locals >= 0)
c906108c 722 {
1e2330ba 723 addr = get_frame_base (fip) - 4 - locals;
c5aa993b 724 for (i = 0; i < 8; i++)
c906108c
SS
725 {
726 op = codestream_get ();
727 if (op < 0x50 || op > 0x57)
728 break;
729#ifdef I386_REGNO_TO_SYMMETRY
730 /* Dynix uses different internal numbering. Ick. */
b2fb4676 731 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 732#else
b2fb4676 733 get_frame_saved_regs (fip)[op - 0x50] = addr;
c906108c 734#endif
fc338970 735 addr -= 4;
c906108c
SS
736 }
737 }
c5aa993b 738
1e2330ba
AC
739 get_frame_saved_regs (fip)[PC_REGNUM] = get_frame_base (fip) + 4;
740 get_frame_saved_regs (fip)[FP_REGNUM] = get_frame_base (fip);
c906108c
SS
741}
742
fc338970 743/* Return PC of first real instruction. */
c906108c 744
3a1e71e3 745static CORE_ADDR
93924b6b 746i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
747{
748 unsigned char op;
749 int i;
c5aa993b 750 static unsigned char pic_pat[6] =
fc338970
MK
751 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
752 0x5b, /* popl %ebx */
c5aa993b 753 };
c906108c 754 CORE_ADDR pos;
c5aa993b 755
c906108c
SS
756 if (i386_get_frame_setup (pc) < 0)
757 return (pc);
c5aa993b 758
fc338970
MK
759 /* Found valid frame setup -- codestream now points to start of push
760 instructions for saving registers. */
c5aa993b 761
fc338970 762 /* Skip over register saves. */
c906108c
SS
763 for (i = 0; i < 8; i++)
764 {
765 op = codestream_peek ();
fc338970 766 /* Break if not `pushl' instrunction. */
c5aa993b 767 if (op < 0x50 || op > 0x57)
c906108c
SS
768 break;
769 codestream_get ();
770 }
771
fc338970
MK
772 /* The native cc on SVR4 in -K PIC mode inserts the following code
773 to get the address of the global offset table (GOT) into register
774 %ebx
775
776 call 0x0
777 popl %ebx
778 movl %ebx,x(%ebp) (optional)
779 addl y,%ebx
780
c906108c
SS
781 This code is with the rest of the prologue (at the end of the
782 function), so we have to skip it to get to the first real
783 instruction at the start of the function. */
c5aa993b 784
c906108c
SS
785 pos = codestream_tell ();
786 for (i = 0; i < 6; i++)
787 {
788 op = codestream_get ();
c5aa993b 789 if (pic_pat[i] != op)
c906108c
SS
790 break;
791 }
792 if (i == 6)
793 {
794 unsigned char buf[4];
795 long delta = 6;
796
797 op = codestream_get ();
c5aa993b 798 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
799 {
800 op = codestream_get ();
fc338970 801 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
802 {
803 delta += 3;
804 codestream_read (buf, 1);
805 }
fc338970 806 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
807 {
808 delta += 6;
809 codestream_read (buf, 4);
810 }
fc338970 811 else /* Unexpected instruction. */
c5aa993b
JM
812 delta = -1;
813 op = codestream_get ();
c906108c 814 }
c5aa993b
JM
815 /* addl y,%ebx */
816 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 817 {
c5aa993b 818 pos += delta + 6;
c906108c
SS
819 }
820 }
821 codestream_seek (pos);
c5aa993b 822
c906108c 823 i386_follow_jump ();
c5aa993b 824
c906108c
SS
825 return (codestream_tell ());
826}
827
93924b6b
MK
828/* Use the program counter to determine the contents and size of a
829 breakpoint instruction. Return a pointer to a string of bytes that
830 encode a breakpoint instruction, store the length of the string in
831 *LEN and optionally adjust *PC to point to the correct memory
832 location for inserting the breakpoint.
833
834 On the i386 we have a single breakpoint that fits in a single byte
835 and can be inserted anywhere. */
836
837static const unsigned char *
838i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
839{
840 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
841
842 *len = sizeof (break_insn);
843 return break_insn;
844}
845
c0d1d883
MK
846/* Push the return address (pointing to the call dummy) onto the stack
847 and return the new value for the stack pointer. */
c5aa993b 848
c0d1d883
MK
849static CORE_ADDR
850i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 851{
c0d1d883 852 char buf[4];
a7769679 853
c0d1d883
MK
854 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
855 write_memory (sp - 4, buf, 4);
856 return sp - 4;
a7769679
MK
857}
858
3a1e71e3 859static void
c0d1d883 860i386_do_pop_frame (struct frame_info *frame)
c906108c 861{
c906108c
SS
862 CORE_ADDR fp;
863 int regnum;
00f8375e 864 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 865
c193f6ac 866 fp = get_frame_base (frame);
1211c4e4
AC
867 i386_frame_init_saved_regs (frame);
868
c5aa993b 869 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 870 {
fc338970 871 CORE_ADDR addr;
b2fb4676 872 addr = get_frame_saved_regs (frame)[regnum];
fc338970 873 if (addr)
c906108c 874 {
fc338970 875 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
4caf0990 876 deprecated_write_register_gen (regnum, regbuf);
c906108c
SS
877 }
878 }
879 write_register (FP_REGNUM, read_memory_integer (fp, 4));
880 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
881 write_register (SP_REGNUM, fp + 8);
882 flush_cached_frames ();
883}
c0d1d883
MK
884
885static void
886i386_pop_frame (void)
887{
888 generic_pop_current_frame (i386_do_pop_frame);
889}
fc338970 890\f
c906108c 891
fc338970
MK
892/* Figure out where the longjmp will land. Slurp the args out of the
893 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 894 structure from which we extract the address that we will land at.
28bcfd30 895 This address is copied into PC. This routine returns non-zero on
fc338970 896 success. */
c906108c 897
8201327c
MK
898static int
899i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 900{
28bcfd30 901 char buf[8];
c906108c 902 CORE_ADDR sp, jb_addr;
8201327c 903 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
28bcfd30 904 int len = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c 905
8201327c
MK
906 /* If JB_PC_OFFSET is -1, we have no way to find out where the
907 longjmp will land. */
908 if (jb_pc_offset == -1)
c906108c
SS
909 return 0;
910
8201327c 911 sp = read_register (SP_REGNUM);
28bcfd30 912 if (target_read_memory (sp + len, buf, len))
c906108c
SS
913 return 0;
914
28bcfd30
MK
915 jb_addr = extract_address (buf, len);
916 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 917 return 0;
c906108c 918
28bcfd30 919 *pc = extract_address (buf, len);
c906108c
SS
920 return 1;
921}
fc338970 922\f
c906108c 923
3a1e71e3 924static CORE_ADDR
ea7c478f 925i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
926 int struct_return, CORE_ADDR struct_addr)
927{
b81774d8 928 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
22f8ba57
MK
929
930 if (struct_return)
931 {
932 char buf[4];
933
934 sp -= 4;
935 store_address (buf, 4, struct_addr);
936 write_memory (sp, buf, 4);
937 }
938
939 return sp;
940}
941
3a1e71e3 942static void
22f8ba57
MK
943i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
944{
945 /* Do nothing. Everything was already done by i386_push_arguments. */
946}
947
1a309862
MK
948/* These registers are used for returning integers (and on some
949 targets also for returning `struct' and `union' values when their
ef9dff19 950 size and alignment match an integer type). */
1a309862
MK
951#define LOW_RETURN_REGNUM 0 /* %eax */
952#define HIGH_RETURN_REGNUM 2 /* %edx */
953
954/* Extract from an array REGBUF containing the (raw) register state, a
955 function return value of TYPE, and copy that, in virtual format,
956 into VALBUF. */
957
3a1e71e3 958static void
00f8375e 959i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 960 void *dst)
c906108c 961{
ebba8386 962 bfd_byte *valbuf = dst;
1a309862 963 int len = TYPE_LENGTH (type);
00f8375e 964 char buf[I386_MAX_REGISTER_SIZE];
1a309862 965
1e8d0a7b
MK
966 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
967 && TYPE_NFIELDS (type) == 1)
3df1b9b4 968 {
00f8375e 969 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
970 return;
971 }
1e8d0a7b
MK
972
973 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 974 {
356a6b3e 975 if (FP0_REGNUM == 0)
1a309862
MK
976 {
977 warning ("Cannot find floating-point return value.");
978 memset (valbuf, 0, len);
ef9dff19 979 return;
1a309862
MK
980 }
981
c6ba6f0d
MK
982 /* Floating-point return values can be found in %st(0). Convert
983 its contents to the desired type. This is probably not
984 exactly how it would happen on the target itself, but it is
985 the best we can do. */
0818c12a 986 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 987 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
988 }
989 else
c5aa993b 990 {
d4f3574e
SS
991 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
992 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
993
994 if (len <= low_size)
00f8375e 995 {
0818c12a 996 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
997 memcpy (valbuf, buf, len);
998 }
d4f3574e
SS
999 else if (len <= (low_size + high_size))
1000 {
0818c12a 1001 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1002 memcpy (valbuf, buf, low_size);
0818c12a 1003 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 1004 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1005 }
1006 else
8e65ff28
AC
1007 internal_error (__FILE__, __LINE__,
1008 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1009 }
1010}
1011
ef9dff19
MK
1012/* Write into the appropriate registers a function return value stored
1013 in VALBUF of type TYPE, given in virtual format. */
1014
3a1e71e3 1015static void
3d7f4f49
MK
1016i386_store_return_value (struct type *type, struct regcache *regcache,
1017 const void *valbuf)
ef9dff19
MK
1018{
1019 int len = TYPE_LENGTH (type);
1020
1e8d0a7b
MK
1021 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1022 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1023 {
3d7f4f49 1024 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1025 return;
1026 }
1e8d0a7b
MK
1027
1028 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1029 {
3d7f4f49 1030 ULONGEST fstat;
c6ba6f0d 1031 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1032
356a6b3e 1033 if (FP0_REGNUM == 0)
ef9dff19
MK
1034 {
1035 warning ("Cannot set floating-point return value.");
1036 return;
1037 }
1038
635b0cc1
MK
1039 /* Returning floating-point values is a bit tricky. Apart from
1040 storing the return value in %st(0), we have to simulate the
1041 state of the FPU at function return point. */
1042
c6ba6f0d
MK
1043 /* Convert the value found in VALBUF to the extended
1044 floating-point format used by the FPU. This is probably
1045 not exactly how it would happen on the target itself, but
1046 it is the best we can do. */
1047 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
3d7f4f49 1048 regcache_raw_write (regcache, FP0_REGNUM, buf);
ccb945b8 1049
635b0cc1
MK
1050 /* Set the top of the floating-point register stack to 7. The
1051 actual value doesn't really matter, but 7 is what a normal
1052 function return would end up with if the program started out
1053 with a freshly initialized FPU. */
3d7f4f49 1054 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1055 fstat |= (7 << 11);
3d7f4f49 1056 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1057
635b0cc1
MK
1058 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1059 the floating-point register stack to 7, the appropriate value
1060 for the tag word is 0x3fff. */
3d7f4f49 1061 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1062 }
1063 else
1064 {
1065 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1066 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1067
1068 if (len <= low_size)
3d7f4f49 1069 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1070 else if (len <= (low_size + high_size))
1071 {
3d7f4f49
MK
1072 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1073 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1074 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1075 }
1076 else
8e65ff28
AC
1077 internal_error (__FILE__, __LINE__,
1078 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1079 }
1080}
f7af9647 1081
751f1375
MK
1082/* Extract from REGCACHE, which contains the (raw) register state, the
1083 address in which a function should return its structure value, as a
1084 CORE_ADDR. */
f7af9647 1085
3a1e71e3 1086static CORE_ADDR
00f8375e 1087i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1088{
751f1375
MK
1089 ULONGEST addr;
1090
1091 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1092 return addr;
f7af9647 1093}
fc338970 1094\f
ef9dff19 1095
8201327c
MK
1096/* This is the variable that is set with "set struct-convention", and
1097 its legitimate values. */
1098static const char default_struct_convention[] = "default";
1099static const char pcc_struct_convention[] = "pcc";
1100static const char reg_struct_convention[] = "reg";
1101static const char *valid_conventions[] =
1102{
1103 default_struct_convention,
1104 pcc_struct_convention,
1105 reg_struct_convention,
1106 NULL
1107};
1108static const char *struct_convention = default_struct_convention;
1109
1110static int
1111i386_use_struct_convention (int gcc_p, struct type *type)
1112{
1113 enum struct_return struct_return;
1114
1115 if (struct_convention == default_struct_convention)
1116 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1117 else if (struct_convention == pcc_struct_convention)
1118 struct_return = pcc_struct_return;
1119 else
1120 struct_return = reg_struct_return;
1121
1122 return generic_use_struct_convention (struct_return == reg_struct_return,
1123 type);
1124}
1125\f
1126
d7a0d72c
MK
1127/* Return the GDB type object for the "standard" data type of data in
1128 register REGNUM. Perhaps %esi and %edi should go here, but
1129 potentially they could be used for things other than address. */
1130
3a1e71e3 1131static struct type *
4e259f09 1132i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c
MK
1133{
1134 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1135 return lookup_pointer_type (builtin_type_void);
1136
23a34459 1137 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1138 return builtin_type_i387_ext;
d7a0d72c 1139
23a34459 1140 if (i386_sse_regnum_p (regnum))
3139facc 1141 return builtin_type_vec128i;
d7a0d72c 1142
23a34459 1143 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1144 return builtin_type_vec64i;
1145
d7a0d72c
MK
1146 return builtin_type_int;
1147}
1148
28fc6740
AC
1149/* Map a cooked register onto a raw register or memory. For the i386,
1150 the MMX registers need to be mapped onto floating point registers. */
1151
1152static int
1153mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1154{
1155 int mmxi;
1156 ULONGEST fstat;
1157 int tos;
1158 int fpi;
1159 mmxi = regnum - MM0_REGNUM;
1160 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1161 tos = (fstat >> 11) & 0x7;
1162 fpi = (mmxi + tos) % 8;
1163 return (FP0_REGNUM + fpi);
1164}
1165
1166static void
1167i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1168 int regnum, void *buf)
1169{
23a34459 1170 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1171 {
1172 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1173 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1174 regcache_raw_read (regcache, fpnum, mmx_buf);
1175 /* Extract (always little endian). */
1176 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1177 }
1178 else
1179 regcache_raw_read (regcache, regnum, buf);
1180}
1181
1182static void
1183i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1184 int regnum, const void *buf)
1185{
23a34459 1186 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1187 {
1188 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1189 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1190 /* Read ... */
1191 regcache_raw_read (regcache, fpnum, mmx_buf);
1192 /* ... Modify ... (always little endian). */
1193 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1194 /* ... Write. */
1195 regcache_raw_write (regcache, fpnum, mmx_buf);
1196 }
1197 else
1198 regcache_raw_write (regcache, regnum, buf);
1199}
1200
d7a0d72c
MK
1201/* Return true iff register REGNUM's virtual format is different from
1202 its raw format. Note that this definition assumes that the host
1203 supports IEEE 32-bit floats, since it doesn't say that SSE
1204 registers need conversion. Even if we can't find a counterexample,
1205 this is still sloppy. */
1206
3a1e71e3 1207static int
d7a0d72c
MK
1208i386_register_convertible (int regnum)
1209{
23a34459 1210 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1211}
1212
ac27f131 1213/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1214 virtual format with type TYPE in buffer TO. */
ac27f131 1215
3a1e71e3 1216static void
ac27f131
MK
1217i386_register_convert_to_virtual (int regnum, struct type *type,
1218 char *from, char *to)
1219{
23a34459 1220 gdb_assert (i386_fp_regnum_p (regnum));
3d261580
MK
1221
1222 /* We only support floating-point values. */
8d7f6b4a
MK
1223 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1224 {
1225 warning ("Cannot convert floating-point register value "
1226 "to non-floating-point type.");
1227 memset (to, 0, TYPE_LENGTH (type));
1228 return;
1229 }
3d261580 1230
c6ba6f0d
MK
1231 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1232 the extended floating-point format used by the FPU. */
1233 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1234}
1235
1236/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1237 raw format for register REGNUM in buffer TO. */
ac27f131 1238
3a1e71e3 1239static void
ac27f131
MK
1240i386_register_convert_to_raw (struct type *type, int regnum,
1241 char *from, char *to)
1242{
23a34459 1243 gdb_assert (i386_fp_regnum_p (regnum));
c6ba6f0d
MK
1244
1245 /* We only support floating-point values. */
1246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1247 {
1248 warning ("Cannot convert non-floating-point type "
1249 "to floating-point register value.");
1250 memset (to, 0, TYPE_LENGTH (type));
1251 return;
1252 }
3d261580 1253
c6ba6f0d
MK
1254 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1255 to the extended floating-point format used by the FPU. */
1256 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1257}
ac27f131 1258\f
fc338970 1259
c906108c 1260#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1261/* SunPRO encodes the static variables. This is not related to C++
1262 mangling, it is done for C too. */
c906108c
SS
1263
1264char *
fba45db2 1265sunpro_static_transform_name (char *name)
c906108c
SS
1266{
1267 char *p;
1268 if (IS_STATIC_TRANSFORM_NAME (name))
1269 {
fc338970
MK
1270 /* For file-local statics there will be a period, a bunch of
1271 junk (the contents of which match a string given in the
c5aa993b
JM
1272 N_OPT), a period and the name. For function-local statics
1273 there will be a bunch of junk (which seems to change the
1274 second character from 'A' to 'B'), a period, the name of the
1275 function, and the name. So just skip everything before the
1276 last period. */
c906108c
SS
1277 p = strrchr (name, '.');
1278 if (p != NULL)
1279 name = p + 1;
1280 }
1281 return name;
1282}
1283#endif /* STATIC_TRANSFORM_NAME */
fc338970 1284\f
c906108c 1285
fc338970 1286/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1287
1288CORE_ADDR
1cce71eb 1289i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1290{
fc338970 1291 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1292 {
c5aa993b 1293 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1294 struct minimal_symbol *indsym =
fc338970 1295 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1296 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1297
c5aa993b 1298 if (symname)
c906108c 1299 {
c5aa993b
JM
1300 if (strncmp (symname, "__imp_", 6) == 0
1301 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1302 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1303 }
1304 }
fc338970 1305 return 0; /* Not a trampoline. */
c906108c 1306}
fc338970
MK
1307\f
1308
8201327c
MK
1309/* Return non-zero if PC and NAME show that we are in a signal
1310 trampoline. */
1311
1312static int
1313i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1314{
1315 return (name && strcmp ("_sigtramp", name) == 0);
1316}
1317\f
1318
fc338970
MK
1319/* We have two flavours of disassembly. The machinery on this page
1320 deals with switching between those. */
c906108c
SS
1321
1322static int
5e3397bb 1323i386_print_insn (bfd_vma pc, disassemble_info *info)
c906108c 1324{
5e3397bb
MK
1325 gdb_assert (disassembly_flavor == att_flavor
1326 || disassembly_flavor == intel_flavor);
1327
1328 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1329 constified, cast to prevent a compiler warning. */
1330 info->disassembler_options = (char *) disassembly_flavor;
1331 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1332
1333 return print_insn_i386 (pc, info);
7a292a7a 1334}
fc338970 1335\f
3ce1502b 1336
8201327c
MK
1337/* There are a few i386 architecture variants that differ only
1338 slightly from the generic i386 target. For now, we don't give them
1339 their own source file, but include them here. As a consequence,
1340 they'll always be included. */
3ce1502b 1341
8201327c 1342/* System V Release 4 (SVR4). */
3ce1502b 1343
8201327c
MK
1344static int
1345i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1346{
8201327c
MK
1347 return (name && (strcmp ("_sigreturn", name) == 0
1348 || strcmp ("_sigacthandler", name) == 0
1349 || strcmp ("sigvechandler", name) == 0));
1350}
d2a7c97a 1351
21d0e8a4
MK
1352/* Get address of the pushed ucontext (sigcontext) on the stack for
1353 all three variants of SVR4 sigtramps. */
3ce1502b 1354
3a1e71e3 1355static CORE_ADDR
21d0e8a4 1356i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1357{
21d0e8a4 1358 int sigcontext_offset = -1;
8201327c
MK
1359 char *name = NULL;
1360
50abf9e5 1361 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
8201327c 1362 if (name)
d2a7c97a 1363 {
8201327c 1364 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1365 sigcontext_offset = 132;
8201327c 1366 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1367 sigcontext_offset = 80;
8201327c 1368 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1369 sigcontext_offset = 120;
8201327c 1370 }
3ce1502b 1371
21d0e8a4
MK
1372 gdb_assert (sigcontext_offset != -1);
1373
11c02a10
AC
1374 if (get_next_frame (frame))
1375 return get_frame_base (get_next_frame (frame)) + sigcontext_offset;
21d0e8a4 1376 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1377}
1378\f
3ce1502b 1379
8201327c 1380/* DJGPP. */
d2a7c97a 1381
8201327c
MK
1382static int
1383i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1384{
1385 /* DJGPP doesn't have any special frames for signal handlers. */
1386 return 0;
1387}
1388\f
d2a7c97a 1389
8201327c 1390/* Generic ELF. */
d2a7c97a 1391
8201327c
MK
1392void
1393i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1394{
1395 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1396 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1397}
3ce1502b 1398
8201327c 1399/* System V Release 4 (SVR4). */
3ce1502b 1400
8201327c
MK
1401void
1402i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1403{
1404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1405
8201327c
MK
1406 /* System V Release 4 uses ELF. */
1407 i386_elf_init_abi (info, gdbarch);
3ce1502b 1408
dfe01d39
MK
1409 /* System V Release 4 has shared libraries. */
1410 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1411 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1412
8201327c 1413 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1414 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1415 tdep->sc_pc_offset = 14 * 4;
1416 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1417
8201327c 1418 tdep->jb_pc_offset = 20;
3ce1502b
MK
1419}
1420
8201327c 1421/* DJGPP. */
3ce1502b 1422
3a1e71e3 1423static void
8201327c 1424i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1425{
8201327c 1426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1427
8201327c 1428 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1429
8201327c 1430 tdep->jb_pc_offset = 36;
3ce1502b
MK
1431}
1432
8201327c 1433/* NetWare. */
3ce1502b 1434
3a1e71e3 1435static void
8201327c 1436i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1437{
8201327c 1438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1439
8201327c 1440 tdep->jb_pc_offset = 24;
d2a7c97a 1441}
8201327c 1442\f
2acceee2 1443
38c968cf
AC
1444/* i386 register groups. In addition to the normal groups, add "mmx"
1445 and "sse". */
1446
1447static struct reggroup *i386_sse_reggroup;
1448static struct reggroup *i386_mmx_reggroup;
1449
1450static void
1451i386_init_reggroups (void)
1452{
1453 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1454 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1455}
1456
1457static void
1458i386_add_reggroups (struct gdbarch *gdbarch)
1459{
1460 reggroup_add (gdbarch, i386_sse_reggroup);
1461 reggroup_add (gdbarch, i386_mmx_reggroup);
1462 reggroup_add (gdbarch, general_reggroup);
1463 reggroup_add (gdbarch, float_reggroup);
1464 reggroup_add (gdbarch, all_reggroup);
1465 reggroup_add (gdbarch, save_reggroup);
1466 reggroup_add (gdbarch, restore_reggroup);
1467 reggroup_add (gdbarch, vector_reggroup);
1468 reggroup_add (gdbarch, system_reggroup);
1469}
1470
1471int
1472i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1473 struct reggroup *group)
1474{
1475 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1476 || i386_mxcsr_regnum_p (regnum));
1477 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1478 || i386_fpc_regnum_p (regnum));
1479 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1480 if (group == i386_mmx_reggroup)
1481 return mmx_regnum_p;
1482 if (group == i386_sse_reggroup)
1483 return sse_regnum_p;
1484 if (group == vector_reggroup)
1485 return (mmx_regnum_p || sse_regnum_p);
1486 if (group == float_reggroup)
1487 return fp_regnum_p;
1488 if (group == general_reggroup)
1489 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1490 return default_register_reggroup_p (gdbarch, regnum, group);
1491}
1492
1493\f
3a1e71e3 1494static struct gdbarch *
a62cc96e
AC
1495i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1496{
cd3c07fc 1497 struct gdbarch_tdep *tdep;
a62cc96e
AC
1498 struct gdbarch *gdbarch;
1499
4be87837
DJ
1500 /* If there is already a candidate, use it. */
1501 arches = gdbarch_list_lookup_by_info (arches, &info);
1502 if (arches != NULL)
1503 return arches->gdbarch;
a62cc96e
AC
1504
1505 /* Allocate space for the new architecture. */
1506 tdep = XMALLOC (struct gdbarch_tdep);
1507 gdbarch = gdbarch_alloc (&info, tdep);
1508
a5afb99f
AC
1509 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1510 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1511 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1512
8201327c 1513 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1514 FIXME: kettenis/20020614: They do include the FPU registers for
1515 now, which probably is not quite right. */
8201327c 1516 tdep->num_xmm_regs = 0;
d2a7c97a 1517
8201327c
MK
1518 tdep->jb_pc_offset = -1;
1519 tdep->struct_return = pcc_struct_return;
8201327c
MK
1520 tdep->sigtramp_start = 0;
1521 tdep->sigtramp_end = 0;
21d0e8a4 1522 tdep->sigcontext_addr = NULL;
8201327c 1523 tdep->sc_pc_offset = -1;
21d0e8a4 1524 tdep->sc_sp_offset = -1;
8201327c 1525
896fb97d
MK
1526 /* The format used for `long double' on almost all i386 targets is
1527 the i387 extended floating-point format. In fact, of all targets
1528 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1529 on having a `long double' that's not `long' at all. */
1530 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1531
66da5fd8 1532 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1533 bits, a `long double' actually takes up 96, probably to enforce
1534 alignment. */
1535 set_gdbarch_long_double_bit (gdbarch, 96);
1536
356a6b3e
MK
1537 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1538 tm-symmetry.h currently override this. Sigh. */
1539 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1540
66da5fd8
MK
1541 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1542 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1543 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1544 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1545 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
356a6b3e
MK
1546
1547 /* Use the "default" register numbering scheme for stabs and COFF. */
1548 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1549 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1550
1551 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1552 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1553 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1554
1555 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1556 be in use on any of the supported i386 targets. */
1557
1558 set_gdbarch_register_name (gdbarch, i386_register_name);
1559 set_gdbarch_register_size (gdbarch, 4);
1560 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
4e259f09 1561 set_gdbarch_register_type (gdbarch, i386_register_type);
356a6b3e 1562
61113f8b
MK
1563 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1564
8201327c 1565 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1566
a62cc96e 1567 /* Call dummy code. */
c0d1d883 1568 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
8758dec1 1569 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1570 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
a62cc96e 1571 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
c0d1d883 1572 set_gdbarch_call_dummy_length (gdbarch, 0);
a62cc96e 1573 set_gdbarch_call_dummy_p (gdbarch, 1);
c0d1d883
MK
1574 set_gdbarch_call_dummy_words (gdbarch, NULL);
1575 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
c0d1d883 1576 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
a62cc96e 1577
b6197528
MK
1578 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1579 set_gdbarch_register_convert_to_virtual (gdbarch,
1580 i386_register_convert_to_virtual);
1581 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1582
8758dec1
MK
1583 /* "An argument's size is increased, if necessary, to make it a
1584 multiple of [32-bit] words. This may require tail padding,
1585 depending on the size of the argument" -- from the x86 ABI. */
1586 set_gdbarch_parm_boundary (gdbarch, 32);
1587
00f8375e 1588 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
b81774d8 1589 set_gdbarch_deprecated_push_arguments (gdbarch, i386_push_arguments);
28f617b3 1590 set_gdbarch_deprecated_push_return_address (gdbarch, i386_push_return_address);
749b82f6 1591 set_gdbarch_deprecated_pop_frame (gdbarch, i386_pop_frame);
4183d812 1592 set_gdbarch_deprecated_store_struct_return (gdbarch, i386_store_struct_return);
3d7f4f49 1593 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1594 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1595 i386_extract_struct_value_address);
8201327c
MK
1596 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1597
f30ee0bc 1598 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1599 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1600
1601 /* Stack grows downward. */
1602 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1603
1604 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1605 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1606 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1607
8201327c
MK
1608 /* The following redefines make backtracing through sigtramp work.
1609 They manufacture a fake sigtramp frame and obtain the saved pc in
1610 sigtramp from the sigcontext structure which is pushed by the
1611 kernel on the user stack, along with a pointer to it. */
1612
42fdc8df
MK
1613 set_gdbarch_frame_args_skip (gdbarch, 8);
1614 set_gdbarch_frameless_function_invocation (gdbarch,
1615 i386_frameless_function_invocation);
618ce49f 1616 set_gdbarch_deprecated_frame_chain (gdbarch, i386_frame_chain);
8bedc050 1617 set_gdbarch_deprecated_frame_saved_pc (gdbarch, i386_frame_saved_pc);
8201327c 1618 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1619 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1620 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1621
28fc6740
AC
1622 /* Wire in the MMX registers. */
1623 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1624 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1625 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1626
5e3397bb
MK
1627 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1628
38c968cf
AC
1629 /* Add the i386 register groups. */
1630 i386_add_reggroups (gdbarch);
1631 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1632
3ce1502b 1633 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1634 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1635
a62cc96e
AC
1636 return gdbarch;
1637}
1638
8201327c
MK
1639static enum gdb_osabi
1640i386_coff_osabi_sniffer (bfd *abfd)
1641{
762c5349
MK
1642 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1643 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1644 return GDB_OSABI_GO32;
1645
1646 return GDB_OSABI_UNKNOWN;
1647}
1648
1649static enum gdb_osabi
1650i386_nlm_osabi_sniffer (bfd *abfd)
1651{
1652 return GDB_OSABI_NETWARE;
1653}
1654\f
1655
28e9e0f0
MK
1656/* Provide a prototype to silence -Wmissing-prototypes. */
1657void _initialize_i386_tdep (void);
1658
c906108c 1659void
fba45db2 1660_initialize_i386_tdep (void)
c906108c 1661{
a62cc96e
AC
1662 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1663
fc338970 1664 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1665 {
1666 struct cmd_list_element *new_cmd;
7a292a7a 1667
917317f4
JM
1668 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1669 valid_flavors,
1ed2a135 1670 &disassembly_flavor,
fc338970
MK
1671 "\
1672Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1673and the default value is \"att\".",
917317f4 1674 &setlist);
917317f4
JM
1675 add_show_from_set (new_cmd, &showlist);
1676 }
8201327c
MK
1677
1678 /* Add the variable that controls the convention for returning
1679 structs. */
1680 {
1681 struct cmd_list_element *new_cmd;
1682
1683 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 1684 valid_conventions,
8201327c
MK
1685 &struct_convention, "\
1686Set the convention for returning small structs, valid values \
1687are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1688 &setlist);
1689 add_show_from_set (new_cmd, &showlist);
1690 }
1691
1692 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1693 i386_coff_osabi_sniffer);
1694 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1695 i386_nlm_osabi_sniffer);
1696
05816f70 1697 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 1698 i386_svr4_init_abi);
05816f70 1699 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 1700 i386_go32_init_abi);
05816f70 1701 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 1702 i386_nw_init_abi);
38c968cf
AC
1703
1704 /* Initialize the i386 specific register groups. */
1705 i386_init_reggroups ();
c906108c 1706}