]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-arm.c
Add note about adding ChangeLog.git to src-release.sh
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
d87bef3a 2 Copyright (C) 1998-2023 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
00a97672 25#include "libiberty.h"
7f266840
DJ
26#include "libbfd.h"
27#include "elf-bfd.h"
b38cadfb 28#include "elf-nacl.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
f37164d7
AM
31#include "elf32-arm.h"
32#include "cpu-arm.h"
7f266840 33
00a97672
RS
34/* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36#define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39/* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41#define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46/* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48#define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53/* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55#define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
f3185997 60#define elf_info_to_howto NULL
07d6d2b8 61#define elf_info_to_howto_rel elf32_arm_info_to_howto
7f266840
DJ
62
63#define ARM_ELF_ABI_VERSION 0
64#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
79f08007
YZ
66/* The Adjusted Place, as defined by AAELF. */
67#define Pa(X) ((X) & 0xfffffffc)
68
0a1b45a2
AM
69static bool elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
3e6b1042 73
7f266840
DJ
74/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
c19d1205 78static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 79{
8029a119 80 /* No relocation. */
7f266840
DJ
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
c94cb026 83 0, /* size */
7f266840 84 0, /* bitsize */
0a1b45a2 85 false, /* pc_relative */
7f266840
DJ
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
0a1b45a2 90 false, /* partial_inplace */
7f266840
DJ
91 0, /* src_mask */
92 0, /* dst_mask */
0a1b45a2 93 false), /* pcrel_offset */
7f266840
DJ
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
c94cb026 97 4, /* size */
7f266840 98 24, /* bitsize */
0a1b45a2 99 true, /* pc_relative */
7f266840
DJ
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
0a1b45a2 104 false, /* partial_inplace */
7f266840
DJ
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
0a1b45a2 107 true), /* pcrel_offset */
7f266840
DJ
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
c94cb026 112 4, /* size */
7f266840 113 32, /* bitsize */
0a1b45a2 114 false, /* pc_relative */
7f266840
DJ
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
0a1b45a2 119 false, /* partial_inplace */
7f266840
DJ
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
0a1b45a2 122 false), /* pcrel_offset */
7f266840
DJ
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
c94cb026 127 4, /* size */
7f266840 128 32, /* bitsize */
0a1b45a2 129 true, /* pc_relative */
7f266840
DJ
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
0a1b45a2 134 false, /* partial_inplace */
7f266840
DJ
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
0a1b45a2 137 true), /* pcrel_offset */
7f266840 138
c19d1205 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 140 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840 141 0, /* rightshift */
c94cb026 142 1, /* size */
4962c51a 143 32, /* bitsize */
0a1b45a2 144 true, /* pc_relative */
7f266840 145 0, /* bitpos */
4962c51a 146 complain_overflow_dont,/* complain_on_overflow */
7f266840 147 bfd_elf_generic_reloc, /* special_function */
4962c51a 148 "R_ARM_LDR_PC_G0", /* name */
0a1b45a2 149 false, /* partial_inplace */
4962c51a
MS
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
0a1b45a2 152 true), /* pcrel_offset */
7f266840
DJ
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
c94cb026 157 2, /* size */
7f266840 158 16, /* bitsize */
0a1b45a2 159 false, /* pc_relative */
7f266840
DJ
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
0a1b45a2 164 false, /* partial_inplace */
7f266840
DJ
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
0a1b45a2 167 false), /* pcrel_offset */
7f266840
DJ
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
c94cb026 172 4, /* size */
7f266840 173 12, /* bitsize */
0a1b45a2 174 false, /* pc_relative */
7f266840
DJ
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
0a1b45a2 179 false, /* partial_inplace */
00a97672
RS
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
0a1b45a2 182 false), /* pcrel_offset */
7f266840
DJ
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
c94cb026 186 2, /* size */
7f266840 187 5, /* bitsize */
0a1b45a2 188 false, /* pc_relative */
7f266840
DJ
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
0a1b45a2 193 false, /* partial_inplace */
7f266840
DJ
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
0a1b45a2 196 false), /* pcrel_offset */
7f266840
DJ
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
c94cb026 201 1, /* size */
7f266840 202 8, /* bitsize */
0a1b45a2 203 false, /* pc_relative */
7f266840
DJ
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
0a1b45a2 208 false, /* partial_inplace */
7f266840
DJ
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
0a1b45a2 211 false), /* pcrel_offset */
7f266840
DJ
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
c94cb026 215 4, /* size */
7f266840 216 32, /* bitsize */
0a1b45a2 217 false, /* pc_relative */
7f266840
DJ
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
0a1b45a2 222 false, /* partial_inplace */
7f266840
DJ
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
0a1b45a2 225 false), /* pcrel_offset */
7f266840 226
c19d1205 227 HOWTO (R_ARM_THM_CALL, /* type */
7f266840 228 1, /* rightshift */
c94cb026 229 4, /* size */
f6ebfac0 230 24, /* bitsize */
0a1b45a2 231 true, /* pc_relative */
7f266840
DJ
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
c19d1205 235 "R_ARM_THM_CALL", /* name */
0a1b45a2 236 false, /* partial_inplace */
7f6ab9f8
AM
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
0a1b45a2 239 true), /* pcrel_offset */
7f266840 240
07d6d2b8 241 HOWTO (R_ARM_THM_PC8, /* type */
7f266840 242 1, /* rightshift */
c94cb026 243 2, /* size */
7f266840 244 8, /* bitsize */
0a1b45a2 245 true, /* pc_relative */
7f266840
DJ
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
0a1b45a2 250 false, /* partial_inplace */
7f266840
DJ
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
0a1b45a2 253 true), /* pcrel_offset */
7f266840 254
c19d1205 255 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840 256 1, /* rightshift */
c94cb026 257 2, /* size */
c19d1205 258 32, /* bitsize */
0a1b45a2 259 false, /* pc_relative */
7f266840
DJ
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
c19d1205 263 "R_ARM_BREL_ADJ", /* name */
0a1b45a2 264 false, /* partial_inplace */
c19d1205
ZW
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
0a1b45a2 267 false), /* pcrel_offset */
7f266840 268
0855e32b 269 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 270 0, /* rightshift */
c94cb026 271 4, /* size */
0855e32b 272 32, /* bitsize */
0a1b45a2 273 false, /* pc_relative */
7f266840 274 0, /* bitpos */
0855e32b 275 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 276 bfd_elf_generic_reloc, /* special_function */
0855e32b 277 "R_ARM_TLS_DESC", /* name */
0a1b45a2 278 false, /* partial_inplace */
0855e32b
NS
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
0a1b45a2 281 false), /* pcrel_offset */
7f266840
DJ
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
5d0feb98 285 0, /* size */
7f266840 286 0, /* bitsize */
0a1b45a2 287 false, /* pc_relative */
7f266840
DJ
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
0a1b45a2 292 false, /* partial_inplace */
7f266840
DJ
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
0a1b45a2 295 false), /* pcrel_offset */
7f266840
DJ
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
c94cb026 300 4, /* size */
7f6ab9f8 301 24, /* bitsize */
0a1b45a2 302 true, /* pc_relative */
7f266840
DJ
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
0a1b45a2 307 false, /* partial_inplace */
7f266840
DJ
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
0a1b45a2 310 true), /* pcrel_offset */
7f266840
DJ
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
c94cb026 315 4, /* size */
7f6ab9f8 316 24, /* bitsize */
0a1b45a2 317 true, /* pc_relative */
7f266840
DJ
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
0a1b45a2 322 false, /* partial_inplace */
7f6ab9f8
AM
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
0a1b45a2 325 true), /* pcrel_offset */
7f266840 326
ba93b8ac 327 /* Dynamic TLS relocations. */
7f266840 328
ba93b8ac 329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
07d6d2b8 330 0, /* rightshift */
c94cb026 331 4, /* size */
07d6d2b8 332 32, /* bitsize */
0a1b45a2 333 false, /* pc_relative */
07d6d2b8 334 0, /* bitpos */
99059e56
RM
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
0a1b45a2 338 true, /* partial_inplace */
99059e56
RM
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
0a1b45a2 341 false), /* pcrel_offset */
7f266840 342
ba93b8ac 343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
07d6d2b8 344 0, /* rightshift */
c94cb026 345 4, /* size */
07d6d2b8 346 32, /* bitsize */
0a1b45a2 347 false, /* pc_relative */
07d6d2b8 348 0, /* bitpos */
99059e56
RM
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
0a1b45a2 352 true, /* partial_inplace */
99059e56
RM
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
0a1b45a2 355 false), /* pcrel_offset */
7f266840 356
ba93b8ac 357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
07d6d2b8 358 0, /* rightshift */
c94cb026 359 4, /* size */
07d6d2b8 360 32, /* bitsize */
0a1b45a2 361 false, /* pc_relative */
07d6d2b8 362 0, /* bitpos */
99059e56
RM
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
0a1b45a2 366 true, /* partial_inplace */
99059e56
RM
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
0a1b45a2 369 false), /* pcrel_offset */
7f266840
DJ
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
07d6d2b8 374 0, /* rightshift */
c94cb026 375 4, /* size */
07d6d2b8 376 32, /* bitsize */
0a1b45a2 377 false, /* pc_relative */
07d6d2b8 378 0, /* bitpos */
99059e56
RM
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
0a1b45a2 382 true, /* partial_inplace */
99059e56
RM
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
0a1b45a2 385 false), /* pcrel_offset */
7f266840
DJ
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
07d6d2b8 388 0, /* rightshift */
c94cb026 389 4, /* size */
07d6d2b8 390 32, /* bitsize */
0a1b45a2 391 false, /* pc_relative */
07d6d2b8 392 0, /* bitpos */
99059e56
RM
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
0a1b45a2 396 true, /* partial_inplace */
99059e56
RM
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
0a1b45a2 399 false), /* pcrel_offset */
7f266840
DJ
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
07d6d2b8 402 0, /* rightshift */
c94cb026 403 4, /* size */
07d6d2b8 404 32, /* bitsize */
0a1b45a2 405 false, /* pc_relative */
07d6d2b8 406 0, /* bitpos */
99059e56
RM
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
0a1b45a2 410 true, /* partial_inplace */
99059e56
RM
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
0a1b45a2 413 false), /* pcrel_offset */
7f266840
DJ
414
415 HOWTO (R_ARM_RELATIVE, /* type */
07d6d2b8 416 0, /* rightshift */
c94cb026 417 4, /* size */
07d6d2b8 418 32, /* bitsize */
0a1b45a2 419 false, /* pc_relative */
07d6d2b8 420 0, /* bitpos */
99059e56
RM
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
0a1b45a2 424 true, /* partial_inplace */
99059e56
RM
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
0a1b45a2 427 false), /* pcrel_offset */
7f266840 428
c19d1205 429 HOWTO (R_ARM_GOTOFF32, /* type */
07d6d2b8 430 0, /* rightshift */
c94cb026 431 4, /* size */
07d6d2b8 432 32, /* bitsize */
0a1b45a2 433 false, /* pc_relative */
07d6d2b8 434 0, /* bitpos */
99059e56
RM
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
0a1b45a2 438 true, /* partial_inplace */
99059e56
RM
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
0a1b45a2 441 false), /* pcrel_offset */
7f266840
DJ
442
443 HOWTO (R_ARM_GOTPC, /* type */
07d6d2b8 444 0, /* rightshift */
c94cb026 445 4, /* size */
07d6d2b8 446 32, /* bitsize */
0a1b45a2 447 true, /* pc_relative */
07d6d2b8 448 0, /* bitpos */
99059e56
RM
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
0a1b45a2 452 true, /* partial_inplace */
99059e56
RM
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
0a1b45a2 455 true), /* pcrel_offset */
7f266840
DJ
456
457 HOWTO (R_ARM_GOT32, /* type */
07d6d2b8 458 0, /* rightshift */
c94cb026 459 4, /* size */
07d6d2b8 460 32, /* bitsize */
0a1b45a2 461 false, /* pc_relative */
07d6d2b8 462 0, /* bitpos */
99059e56
RM
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
0a1b45a2 466 true, /* partial_inplace */
99059e56
RM
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
0a1b45a2 469 false), /* pcrel_offset */
7f266840
DJ
470
471 HOWTO (R_ARM_PLT32, /* type */
07d6d2b8 472 2, /* rightshift */
c94cb026 473 4, /* size */
07d6d2b8 474 24, /* bitsize */
0a1b45a2 475 true, /* pc_relative */
07d6d2b8 476 0, /* bitpos */
99059e56
RM
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
0a1b45a2 480 false, /* partial_inplace */
99059e56
RM
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
0a1b45a2 483 true), /* pcrel_offset */
7f266840
DJ
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
c94cb026 487 4, /* size */
7f266840 488 24, /* bitsize */
0a1b45a2 489 true, /* pc_relative */
7f266840
DJ
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
0a1b45a2 494 false, /* partial_inplace */
7f266840
DJ
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
0a1b45a2 497 true), /* pcrel_offset */
7f266840
DJ
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
c94cb026 501 4, /* size */
7f266840 502 24, /* bitsize */
0a1b45a2 503 true, /* pc_relative */
7f266840
DJ
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
0a1b45a2 508 false, /* partial_inplace */
7f266840
DJ
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
0a1b45a2 511 true), /* pcrel_offset */
7f266840 512
c19d1205
ZW
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
c94cb026 515 4, /* size */
c19d1205 516 24, /* bitsize */
0a1b45a2 517 true, /* pc_relative */
7f266840 518 0, /* bitpos */
c19d1205 519 complain_overflow_signed,/* complain_on_overflow */
7f266840 520 bfd_elf_generic_reloc, /* special_function */
c19d1205 521 "R_ARM_THM_JUMP24", /* name */
0a1b45a2 522 false, /* partial_inplace */
c19d1205
ZW
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
0a1b45a2 525 true), /* pcrel_offset */
7f266840 526
c19d1205 527 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 528 0, /* rightshift */
c94cb026 529 4, /* size */
c19d1205 530 32, /* bitsize */
0a1b45a2 531 false, /* pc_relative */
7f266840
DJ
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
c19d1205 535 "R_ARM_BASE_ABS", /* name */
0a1b45a2 536 false, /* partial_inplace */
c19d1205
ZW
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
0a1b45a2 539 false), /* pcrel_offset */
7f266840
DJ
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
c94cb026 543 4, /* size */
7f266840 544 12, /* bitsize */
0a1b45a2 545 true, /* pc_relative */
7f266840
DJ
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
0a1b45a2 550 false, /* partial_inplace */
7f266840
DJ
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
0a1b45a2 553 true), /* pcrel_offset */
7f266840
DJ
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
c94cb026 557 4, /* size */
7f266840 558 12, /* bitsize */
0a1b45a2 559 true, /* pc_relative */
7f266840
DJ
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
0a1b45a2 564 false, /* partial_inplace */
7f266840
DJ
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
0a1b45a2 567 true), /* pcrel_offset */
7f266840
DJ
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
c94cb026 571 4, /* size */
7f266840 572 12, /* bitsize */
0a1b45a2 573 true, /* pc_relative */
7f266840
DJ
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
0a1b45a2 578 false, /* partial_inplace */
7f266840
DJ
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
0a1b45a2 581 true), /* pcrel_offset */
7f266840
DJ
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
c94cb026 585 4, /* size */
7f266840 586 12, /* bitsize */
0a1b45a2 587 false, /* pc_relative */
7f266840
DJ
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
0a1b45a2 592 false, /* partial_inplace */
7f266840
DJ
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
0a1b45a2 595 false), /* pcrel_offset */
7f266840
DJ
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
c94cb026 599 4, /* size */
7f266840 600 8, /* bitsize */
0a1b45a2 601 false, /* pc_relative */
7f266840
DJ
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
0a1b45a2 606 false, /* partial_inplace */
7f266840
DJ
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
0a1b45a2 609 false), /* pcrel_offset */
7f266840
DJ
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
c94cb026 613 4, /* size */
7f266840 614 8, /* bitsize */
0a1b45a2 615 false, /* pc_relative */
7f266840
DJ
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
0a1b45a2 620 false, /* partial_inplace */
7f266840
DJ
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
0a1b45a2 623 false), /* pcrel_offset */
7f266840
DJ
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
c94cb026 627 4, /* size */
7f266840 628 32, /* bitsize */
0a1b45a2 629 false, /* pc_relative */
7f266840
DJ
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
0a1b45a2 634 false, /* partial_inplace */
7f266840
DJ
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
0a1b45a2 637 false), /* pcrel_offset */
7f266840
DJ
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
c94cb026 641 4, /* size */
7f266840 642 32, /* bitsize */
0a1b45a2 643 false, /* pc_relative */
7f266840
DJ
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
0a1b45a2 648 false, /* partial_inplace */
7f266840
DJ
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
0a1b45a2 651 false), /* pcrel_offset */
7f266840
DJ
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
c94cb026 655 4, /* size */
7f266840 656 32, /* bitsize */
0a1b45a2 657 false, /* pc_relative */
7f266840
DJ
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
0a1b45a2 662 false, /* partial_inplace */
7f266840
DJ
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
0a1b45a2 665 false), /* pcrel_offset */
7f266840
DJ
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
c94cb026 669 4, /* size */
7f266840 670 32, /* bitsize */
0a1b45a2 671 false, /* pc_relative */
7f266840
DJ
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
0a1b45a2 676 false, /* partial_inplace */
7f266840
DJ
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
0a1b45a2 679 true), /* pcrel_offset */
7f266840
DJ
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
c94cb026 683 4, /* size */
7f266840 684 31, /* bitsize */
0a1b45a2 685 true, /* pc_relative */
7f266840
DJ
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
0a1b45a2 690 false, /* partial_inplace */
7f266840
DJ
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
0a1b45a2 693 true), /* pcrel_offset */
c19d1205
ZW
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
c94cb026 697 4, /* size */
c19d1205 698 16, /* bitsize */
0a1b45a2 699 false, /* pc_relative */
c19d1205
ZW
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
0a1b45a2 704 false, /* partial_inplace */
39623e12
PB
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
0a1b45a2 707 false), /* pcrel_offset */
c19d1205
ZW
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
c94cb026 711 4, /* size */
c19d1205 712 16, /* bitsize */
0a1b45a2 713 false, /* pc_relative */
c19d1205
ZW
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
0a1b45a2 718 false, /* partial_inplace */
39623e12
PB
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
0a1b45a2 721 false), /* pcrel_offset */
c19d1205
ZW
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
c94cb026 725 4, /* size */
c19d1205 726 16, /* bitsize */
0a1b45a2 727 true, /* pc_relative */
c19d1205
ZW
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
0a1b45a2 732 false, /* partial_inplace */
39623e12
PB
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
0a1b45a2 735 true), /* pcrel_offset */
c19d1205
ZW
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
c94cb026 739 4, /* size */
c19d1205 740 16, /* bitsize */
0a1b45a2 741 true, /* pc_relative */
c19d1205
ZW
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
0a1b45a2 746 false, /* partial_inplace */
39623e12
PB
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
0a1b45a2 749 true), /* pcrel_offset */
c19d1205
ZW
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
c94cb026 753 4, /* size */
c19d1205 754 16, /* bitsize */
0a1b45a2 755 false, /* pc_relative */
c19d1205
ZW
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
0a1b45a2 760 false, /* partial_inplace */
c19d1205
ZW
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
0a1b45a2 763 false), /* pcrel_offset */
c19d1205
ZW
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
c94cb026 767 4, /* size */
c19d1205 768 16, /* bitsize */
0a1b45a2 769 false, /* pc_relative */
c19d1205
ZW
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
0a1b45a2 774 false, /* partial_inplace */
c19d1205
ZW
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
0a1b45a2 777 false), /* pcrel_offset */
c19d1205
ZW
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
c94cb026 781 4, /* size */
c19d1205 782 16, /* bitsize */
0a1b45a2 783 true, /* pc_relative */
c19d1205
ZW
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
0a1b45a2 788 false, /* partial_inplace */
c19d1205
ZW
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
0a1b45a2 791 true), /* pcrel_offset */
c19d1205
ZW
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
c94cb026 795 4, /* size */
c19d1205 796 16, /* bitsize */
0a1b45a2 797 true, /* pc_relative */
c19d1205
ZW
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
0a1b45a2 802 false, /* partial_inplace */
c19d1205
ZW
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
0a1b45a2 805 true), /* pcrel_offset */
c19d1205
ZW
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
c94cb026 809 4, /* size */
c19d1205 810 19, /* bitsize */
0a1b45a2 811 true, /* pc_relative */
c19d1205
ZW
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
0a1b45a2 816 false, /* partial_inplace */
c19d1205
ZW
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
0a1b45a2 819 true), /* pcrel_offset */
c19d1205
ZW
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
c94cb026 823 2, /* size */
c19d1205 824 6, /* bitsize */
0a1b45a2 825 true, /* pc_relative */
c19d1205
ZW
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
0a1b45a2 830 false, /* partial_inplace */
c19d1205
ZW
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
0a1b45a2 833 true), /* pcrel_offset */
c19d1205
ZW
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
c94cb026 840 4, /* size */
c19d1205 841 13, /* bitsize */
0a1b45a2 842 true, /* pc_relative */
c19d1205 843 0, /* bitpos */
2cab6cc3 844 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
0a1b45a2 847 false, /* partial_inplace */
2cab6cc3
MS
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
0a1b45a2 850 true), /* pcrel_offset */
c19d1205
ZW
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
c94cb026 854 4, /* size */
c19d1205 855 13, /* bitsize */
0a1b45a2 856 true, /* pc_relative */
c19d1205 857 0, /* bitpos */
2cab6cc3 858 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
0a1b45a2 861 false, /* partial_inplace */
2cab6cc3
MS
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
0a1b45a2 864 true), /* pcrel_offset */
c19d1205
ZW
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
c94cb026 868 4, /* size */
c19d1205 869 32, /* bitsize */
0a1b45a2 870 false, /* pc_relative */
c19d1205
ZW
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
0a1b45a2 875 false, /* partial_inplace */
c19d1205
ZW
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
0a1b45a2 878 false), /* pcrel_offset */
c19d1205
ZW
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
c94cb026 882 4, /* size */
c19d1205 883 32, /* bitsize */
0a1b45a2 884 true, /* pc_relative */
c19d1205
ZW
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
0a1b45a2 889 false, /* partial_inplace */
c19d1205
ZW
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
0a1b45a2 892 false), /* pcrel_offset */
7f266840 893
4962c51a
MS
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
c94cb026 898 4, /* size */
4962c51a 899 32, /* bitsize */
0a1b45a2 900 true, /* pc_relative */
4962c51a
MS
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
0a1b45a2 905 false, /* partial_inplace */
4962c51a
MS
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
0a1b45a2 908 true), /* pcrel_offset */
4962c51a 909
07d6d2b8 910 HOWTO (R_ARM_ALU_PC_G0, /* type */
4962c51a 911 0, /* rightshift */
c94cb026 912 4, /* size */
4962c51a 913 32, /* bitsize */
0a1b45a2 914 true, /* pc_relative */
4962c51a
MS
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 918 "R_ARM_ALU_PC_G0", /* name */
0a1b45a2 919 false, /* partial_inplace */
4962c51a
MS
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
0a1b45a2 922 true), /* pcrel_offset */
4962c51a
MS
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
c94cb026 926 4, /* size */
4962c51a 927 32, /* bitsize */
0a1b45a2 928 true, /* pc_relative */
4962c51a
MS
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
0a1b45a2 933 false, /* partial_inplace */
4962c51a
MS
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
0a1b45a2 936 true), /* pcrel_offset */
4962c51a 937
07d6d2b8 938 HOWTO (R_ARM_ALU_PC_G1, /* type */
4962c51a 939 0, /* rightshift */
c94cb026 940 4, /* size */
4962c51a 941 32, /* bitsize */
0a1b45a2 942 true, /* pc_relative */
4962c51a
MS
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 946 "R_ARM_ALU_PC_G1", /* name */
0a1b45a2 947 false, /* partial_inplace */
4962c51a
MS
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
0a1b45a2 950 true), /* pcrel_offset */
4962c51a 951
07d6d2b8 952 HOWTO (R_ARM_ALU_PC_G2, /* type */
4962c51a 953 0, /* rightshift */
c94cb026 954 4, /* size */
4962c51a 955 32, /* bitsize */
0a1b45a2 956 true, /* pc_relative */
4962c51a
MS
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 960 "R_ARM_ALU_PC_G2", /* name */
0a1b45a2 961 false, /* partial_inplace */
4962c51a
MS
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
0a1b45a2 964 true), /* pcrel_offset */
4962c51a 965
07d6d2b8 966 HOWTO (R_ARM_LDR_PC_G1, /* type */
4962c51a 967 0, /* rightshift */
c94cb026 968 4, /* size */
4962c51a 969 32, /* bitsize */
0a1b45a2 970 true, /* pc_relative */
4962c51a
MS
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 974 "R_ARM_LDR_PC_G1", /* name */
0a1b45a2 975 false, /* partial_inplace */
4962c51a
MS
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
0a1b45a2 978 true), /* pcrel_offset */
4962c51a 979
07d6d2b8 980 HOWTO (R_ARM_LDR_PC_G2, /* type */
4962c51a 981 0, /* rightshift */
c94cb026 982 4, /* size */
4962c51a 983 32, /* bitsize */
0a1b45a2 984 true, /* pc_relative */
4962c51a
MS
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 988 "R_ARM_LDR_PC_G2", /* name */
0a1b45a2 989 false, /* partial_inplace */
4962c51a
MS
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
0a1b45a2 992 true), /* pcrel_offset */
4962c51a 993
07d6d2b8 994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
4962c51a 995 0, /* rightshift */
c94cb026 996 4, /* size */
4962c51a 997 32, /* bitsize */
0a1b45a2 998 true, /* pc_relative */
4962c51a
MS
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1002 "R_ARM_LDRS_PC_G0", /* name */
0a1b45a2 1003 false, /* partial_inplace */
4962c51a
MS
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
0a1b45a2 1006 true), /* pcrel_offset */
4962c51a 1007
07d6d2b8 1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
4962c51a 1009 0, /* rightshift */
c94cb026 1010 4, /* size */
4962c51a 1011 32, /* bitsize */
0a1b45a2 1012 true, /* pc_relative */
4962c51a
MS
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1016 "R_ARM_LDRS_PC_G1", /* name */
0a1b45a2 1017 false, /* partial_inplace */
4962c51a
MS
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
0a1b45a2 1020 true), /* pcrel_offset */
4962c51a 1021
07d6d2b8 1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
4962c51a 1023 0, /* rightshift */
c94cb026 1024 4, /* size */
4962c51a 1025 32, /* bitsize */
0a1b45a2 1026 true, /* pc_relative */
4962c51a
MS
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1030 "R_ARM_LDRS_PC_G2", /* name */
0a1b45a2 1031 false, /* partial_inplace */
4962c51a
MS
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
0a1b45a2 1034 true), /* pcrel_offset */
4962c51a 1035
07d6d2b8 1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
4962c51a 1037 0, /* rightshift */
c94cb026 1038 4, /* size */
4962c51a 1039 32, /* bitsize */
0a1b45a2 1040 true, /* pc_relative */
4962c51a
MS
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1044 "R_ARM_LDC_PC_G0", /* name */
0a1b45a2 1045 false, /* partial_inplace */
4962c51a
MS
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
0a1b45a2 1048 true), /* pcrel_offset */
4962c51a 1049
07d6d2b8 1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
4962c51a 1051 0, /* rightshift */
c94cb026 1052 4, /* size */
4962c51a 1053 32, /* bitsize */
0a1b45a2 1054 true, /* pc_relative */
4962c51a
MS
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1058 "R_ARM_LDC_PC_G1", /* name */
0a1b45a2 1059 false, /* partial_inplace */
4962c51a
MS
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
0a1b45a2 1062 true), /* pcrel_offset */
4962c51a 1063
07d6d2b8 1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
4962c51a 1065 0, /* rightshift */
c94cb026 1066 4, /* size */
4962c51a 1067 32, /* bitsize */
0a1b45a2 1068 true, /* pc_relative */
4962c51a
MS
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1072 "R_ARM_LDC_PC_G2", /* name */
0a1b45a2 1073 false, /* partial_inplace */
4962c51a
MS
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
0a1b45a2 1076 true), /* pcrel_offset */
4962c51a 1077
07d6d2b8 1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
4962c51a 1079 0, /* rightshift */
c94cb026 1080 4, /* size */
4962c51a 1081 32, /* bitsize */
0a1b45a2 1082 true, /* pc_relative */
4962c51a
MS
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1086 "R_ARM_ALU_SB_G0_NC", /* name */
0a1b45a2 1087 false, /* partial_inplace */
4962c51a
MS
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
0a1b45a2 1090 true), /* pcrel_offset */
4962c51a 1091
07d6d2b8 1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
4962c51a 1093 0, /* rightshift */
c94cb026 1094 4, /* size */
4962c51a 1095 32, /* bitsize */
0a1b45a2 1096 true, /* pc_relative */
4962c51a
MS
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1100 "R_ARM_ALU_SB_G0", /* name */
0a1b45a2 1101 false, /* partial_inplace */
4962c51a
MS
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
0a1b45a2 1104 true), /* pcrel_offset */
4962c51a 1105
07d6d2b8 1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
4962c51a 1107 0, /* rightshift */
c94cb026 1108 4, /* size */
4962c51a 1109 32, /* bitsize */
0a1b45a2 1110 true, /* pc_relative */
4962c51a
MS
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1114 "R_ARM_ALU_SB_G1_NC", /* name */
0a1b45a2 1115 false, /* partial_inplace */
4962c51a
MS
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
0a1b45a2 1118 true), /* pcrel_offset */
4962c51a 1119
07d6d2b8 1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
4962c51a 1121 0, /* rightshift */
c94cb026 1122 4, /* size */
4962c51a 1123 32, /* bitsize */
0a1b45a2 1124 true, /* pc_relative */
4962c51a
MS
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1128 "R_ARM_ALU_SB_G1", /* name */
0a1b45a2 1129 false, /* partial_inplace */
4962c51a
MS
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
0a1b45a2 1132 true), /* pcrel_offset */
4962c51a 1133
07d6d2b8 1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
4962c51a 1135 0, /* rightshift */
c94cb026 1136 4, /* size */
4962c51a 1137 32, /* bitsize */
0a1b45a2 1138 true, /* pc_relative */
4962c51a
MS
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1142 "R_ARM_ALU_SB_G2", /* name */
0a1b45a2 1143 false, /* partial_inplace */
4962c51a
MS
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
0a1b45a2 1146 true), /* pcrel_offset */
4962c51a 1147
07d6d2b8 1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
4962c51a 1149 0, /* rightshift */
c94cb026 1150 4, /* size */
4962c51a 1151 32, /* bitsize */
0a1b45a2 1152 true, /* pc_relative */
4962c51a
MS
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1156 "R_ARM_LDR_SB_G0", /* name */
0a1b45a2 1157 false, /* partial_inplace */
4962c51a
MS
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
0a1b45a2 1160 true), /* pcrel_offset */
4962c51a 1161
07d6d2b8 1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
4962c51a 1163 0, /* rightshift */
c94cb026 1164 4, /* size */
4962c51a 1165 32, /* bitsize */
0a1b45a2 1166 true, /* pc_relative */
4962c51a
MS
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1170 "R_ARM_LDR_SB_G1", /* name */
0a1b45a2 1171 false, /* partial_inplace */
4962c51a
MS
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
0a1b45a2 1174 true), /* pcrel_offset */
4962c51a 1175
07d6d2b8 1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
4962c51a 1177 0, /* rightshift */
c94cb026 1178 4, /* size */
4962c51a 1179 32, /* bitsize */
0a1b45a2 1180 true, /* pc_relative */
4962c51a
MS
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1184 "R_ARM_LDR_SB_G2", /* name */
0a1b45a2 1185 false, /* partial_inplace */
4962c51a
MS
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
0a1b45a2 1188 true), /* pcrel_offset */
4962c51a 1189
07d6d2b8 1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
4962c51a 1191 0, /* rightshift */
c94cb026 1192 4, /* size */
4962c51a 1193 32, /* bitsize */
0a1b45a2 1194 true, /* pc_relative */
4962c51a
MS
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1198 "R_ARM_LDRS_SB_G0", /* name */
0a1b45a2 1199 false, /* partial_inplace */
4962c51a
MS
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
0a1b45a2 1202 true), /* pcrel_offset */
4962c51a 1203
07d6d2b8 1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
4962c51a 1205 0, /* rightshift */
c94cb026 1206 4, /* size */
4962c51a 1207 32, /* bitsize */
0a1b45a2 1208 true, /* pc_relative */
4962c51a
MS
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1212 "R_ARM_LDRS_SB_G1", /* name */
0a1b45a2 1213 false, /* partial_inplace */
4962c51a
MS
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
0a1b45a2 1216 true), /* pcrel_offset */
4962c51a 1217
07d6d2b8 1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
4962c51a 1219 0, /* rightshift */
c94cb026 1220 4, /* size */
4962c51a 1221 32, /* bitsize */
0a1b45a2 1222 true, /* pc_relative */
4962c51a
MS
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1226 "R_ARM_LDRS_SB_G2", /* name */
0a1b45a2 1227 false, /* partial_inplace */
4962c51a
MS
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
0a1b45a2 1230 true), /* pcrel_offset */
4962c51a 1231
07d6d2b8 1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
4962c51a 1233 0, /* rightshift */
c94cb026 1234 4, /* size */
4962c51a 1235 32, /* bitsize */
0a1b45a2 1236 true, /* pc_relative */
4962c51a
MS
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1240 "R_ARM_LDC_SB_G0", /* name */
0a1b45a2 1241 false, /* partial_inplace */
4962c51a
MS
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
0a1b45a2 1244 true), /* pcrel_offset */
4962c51a 1245
07d6d2b8 1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
4962c51a 1247 0, /* rightshift */
c94cb026 1248 4, /* size */
4962c51a 1249 32, /* bitsize */
0a1b45a2 1250 true, /* pc_relative */
4962c51a
MS
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1254 "R_ARM_LDC_SB_G1", /* name */
0a1b45a2 1255 false, /* partial_inplace */
4962c51a
MS
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
0a1b45a2 1258 true), /* pcrel_offset */
4962c51a 1259
07d6d2b8 1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
4962c51a 1261 0, /* rightshift */
c94cb026 1262 4, /* size */
4962c51a 1263 32, /* bitsize */
0a1b45a2 1264 true, /* pc_relative */
4962c51a
MS
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1268 "R_ARM_LDC_SB_G2", /* name */
0a1b45a2 1269 false, /* partial_inplace */
4962c51a
MS
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
0a1b45a2 1272 true), /* pcrel_offset */
4962c51a
MS
1273
1274 /* End of group relocations. */
c19d1205 1275
c19d1205
ZW
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
c94cb026 1278 4, /* size */
c19d1205 1279 16, /* bitsize */
0a1b45a2 1280 false, /* pc_relative */
c19d1205
ZW
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
0a1b45a2 1285 false, /* partial_inplace */
c19d1205
ZW
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
0a1b45a2 1288 false), /* pcrel_offset */
c19d1205
ZW
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
c94cb026 1292 4, /* size */
c19d1205 1293 16, /* bitsize */
0a1b45a2 1294 false, /* pc_relative */
c19d1205
ZW
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
0a1b45a2 1299 false, /* partial_inplace */
c19d1205
ZW
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
0a1b45a2 1302 false), /* pcrel_offset */
c19d1205
ZW
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
c94cb026 1306 4, /* size */
c19d1205 1307 16, /* bitsize */
0a1b45a2 1308 false, /* pc_relative */
c19d1205
ZW
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
0a1b45a2 1313 false, /* partial_inplace */
c19d1205
ZW
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
0a1b45a2 1316 false), /* pcrel_offset */
c19d1205
ZW
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
c94cb026 1320 4, /* size */
c19d1205 1321 16, /* bitsize */
0a1b45a2 1322 false, /* pc_relative */
c19d1205
ZW
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
0a1b45a2 1327 false, /* partial_inplace */
c19d1205
ZW
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
0a1b45a2 1330 false), /* pcrel_offset */
c19d1205
ZW
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
c94cb026 1334 4, /* size */
c19d1205 1335 16, /* bitsize */
0a1b45a2 1336 false, /* pc_relative */
c19d1205
ZW
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
0a1b45a2 1341 false, /* partial_inplace */
c19d1205
ZW
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
0a1b45a2 1344 false), /* pcrel_offset */
c19d1205
ZW
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
c94cb026 1348 4, /* size */
c19d1205 1349 16, /* bitsize */
0a1b45a2 1350 false, /* pc_relative */
c19d1205
ZW
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
0a1b45a2 1355 false, /* partial_inplace */
c19d1205
ZW
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
0a1b45a2 1358 false), /* pcrel_offset */
c19d1205 1359
0855e32b
NS
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
c94cb026 1362 4, /* size */
0855e32b 1363 32, /* bitsize */
0a1b45a2 1364 false, /* pc_relative */
0855e32b
NS
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
0a1b45a2 1369 true, /* partial_inplace */
0855e32b
NS
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
0a1b45a2 1372 false), /* pcrel_offset */
0855e32b
NS
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
c94cb026 1376 4, /* size */
0855e32b 1377 24, /* bitsize */
0a1b45a2 1378 false, /* pc_relative */
0855e32b
NS
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
0a1b45a2 1383 false, /* partial_inplace */
0855e32b
NS
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
0a1b45a2 1386 false), /* pcrel_offset */
0855e32b
NS
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
c94cb026 1390 4, /* size */
0855e32b 1391 0, /* bitsize */
0a1b45a2 1392 false, /* pc_relative */
0855e32b 1393 0, /* bitpos */
821e059c 1394 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
0a1b45a2 1397 false, /* partial_inplace */
0855e32b
NS
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
0a1b45a2 1400 false), /* pcrel_offset */
0855e32b
NS
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
c94cb026 1404 4, /* size */
0855e32b 1405 24, /* bitsize */
0a1b45a2 1406 false, /* pc_relative */
0855e32b
NS
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
0a1b45a2 1411 false, /* partial_inplace */
0855e32b
NS
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
0a1b45a2 1414 false), /* pcrel_offset */
c19d1205
ZW
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
c94cb026 1418 4, /* size */
c19d1205 1419 32, /* bitsize */
0a1b45a2 1420 false, /* pc_relative */
c19d1205
ZW
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
0a1b45a2 1425 false, /* partial_inplace */
c19d1205
ZW
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
0a1b45a2 1428 false), /* pcrel_offset */
c19d1205
ZW
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
c94cb026 1432 4, /* size */
c19d1205 1433 32, /* bitsize */
0a1b45a2 1434 false, /* pc_relative */
c19d1205
ZW
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
0a1b45a2 1439 false, /* partial_inplace */
c19d1205
ZW
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
0a1b45a2 1442 false), /* pcrel_offset */
c19d1205
ZW
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
c94cb026 1446 4, /* size */
c19d1205 1447 32, /* bitsize */
0a1b45a2 1448 true, /* pc_relative */
c19d1205
ZW
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
0a1b45a2 1453 false, /* partial_inplace */
c19d1205
ZW
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
0a1b45a2 1456 true), /* pcrel_offset */
c19d1205
ZW
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
c94cb026 1460 4, /* size */
c19d1205 1461 12, /* bitsize */
0a1b45a2 1462 false, /* pc_relative */
c19d1205
ZW
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
0a1b45a2 1467 false, /* partial_inplace */
c19d1205
ZW
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
0a1b45a2 1470 false), /* pcrel_offset */
c19d1205
ZW
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
c94cb026 1474 4, /* size */
c19d1205 1475 12, /* bitsize */
0a1b45a2 1476 false, /* pc_relative */
c19d1205
ZW
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
0a1b45a2 1481 false, /* partial_inplace */
c19d1205
ZW
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
0a1b45a2 1484 false), /* pcrel_offset */
c19d1205 1485
07d6d2b8 1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
c19d1205
ZW
1487
1488 /* GNU extension to record C++ vtable member usage */
07d6d2b8
AM
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
c94cb026 1491 4, /* size */
07d6d2b8 1492 0, /* bitsize */
0a1b45a2 1493 false, /* pc_relative */
07d6d2b8 1494 0, /* bitpos */
99059e56 1495 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8
AM
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
0a1b45a2 1498 false, /* partial_inplace */
07d6d2b8
AM
1499 0, /* src_mask */
1500 0, /* dst_mask */
0a1b45a2 1501 false), /* pcrel_offset */
c19d1205
ZW
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
07d6d2b8 1505 0, /* rightshift */
c94cb026 1506 4, /* size */
07d6d2b8 1507 0, /* bitsize */
0a1b45a2 1508 false, /* pc_relative */
07d6d2b8 1509 0, /* bitpos */
99059e56 1510 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8 1511 NULL, /* special_function */
99059e56 1512 "R_ARM_GNU_VTINHERIT", /* name */
0a1b45a2 1513 false, /* partial_inplace */
07d6d2b8
AM
1514 0, /* src_mask */
1515 0, /* dst_mask */
0a1b45a2 1516 false), /* pcrel_offset */
c19d1205
ZW
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
c94cb026 1520 2, /* size */
c19d1205 1521 11, /* bitsize */
0a1b45a2 1522 true, /* pc_relative */
c19d1205
ZW
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
0a1b45a2 1527 false, /* partial_inplace */
c19d1205
ZW
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
0a1b45a2 1530 true), /* pcrel_offset */
c19d1205
ZW
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
c94cb026 1534 2, /* size */
c19d1205 1535 8, /* bitsize */
0a1b45a2 1536 true, /* pc_relative */
c19d1205
ZW
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
0a1b45a2 1541 false, /* partial_inplace */
c19d1205
ZW
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
0a1b45a2 1544 true), /* pcrel_offset */
ba93b8ac 1545
c19d1205
ZW
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
07d6d2b8 1548 0, /* rightshift */
c94cb026 1549 4, /* size */
07d6d2b8 1550 32, /* bitsize */
0a1b45a2 1551 false, /* pc_relative */
07d6d2b8 1552 0, /* bitpos */
99059e56
RM
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
0a1b45a2 1556 true, /* partial_inplace */
99059e56
RM
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
0a1b45a2 1559 false), /* pcrel_offset */
ba93b8ac 1560
ba93b8ac 1561 HOWTO (R_ARM_TLS_LDM32, /* type */
07d6d2b8 1562 0, /* rightshift */
c94cb026 1563 4, /* size */
07d6d2b8 1564 32, /* bitsize */
0a1b45a2 1565 false, /* pc_relative */
07d6d2b8 1566 0, /* bitpos */
99059e56
RM
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
0a1b45a2 1570 true, /* partial_inplace */
99059e56
RM
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
0a1b45a2 1573 false), /* pcrel_offset */
ba93b8ac 1574
c19d1205 1575 HOWTO (R_ARM_TLS_LDO32, /* type */
07d6d2b8 1576 0, /* rightshift */
c94cb026 1577 4, /* size */
07d6d2b8 1578 32, /* bitsize */
0a1b45a2 1579 false, /* pc_relative */
07d6d2b8 1580 0, /* bitpos */
99059e56
RM
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
0a1b45a2 1584 true, /* partial_inplace */
99059e56
RM
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
0a1b45a2 1587 false), /* pcrel_offset */
ba93b8ac 1588
ba93b8ac 1589 HOWTO (R_ARM_TLS_IE32, /* type */
07d6d2b8 1590 0, /* rightshift */
c94cb026 1591 4, /* size */
07d6d2b8 1592 32, /* bitsize */
0a1b45a2 1593 false, /* pc_relative */
07d6d2b8 1594 0, /* bitpos */
99059e56
RM
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
0a1b45a2 1598 true, /* partial_inplace */
99059e56
RM
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
0a1b45a2 1601 false), /* pcrel_offset */
7f266840 1602
c19d1205 1603 HOWTO (R_ARM_TLS_LE32, /* type */
07d6d2b8 1604 0, /* rightshift */
c94cb026 1605 4, /* size */
07d6d2b8 1606 32, /* bitsize */
0a1b45a2 1607 false, /* pc_relative */
07d6d2b8 1608 0, /* bitpos */
99059e56 1609 complain_overflow_bitfield,/* complain_on_overflow */
07d6d2b8 1610 NULL, /* special_function */
99059e56 1611 "R_ARM_TLS_LE32", /* name */
0a1b45a2 1612 true, /* partial_inplace */
99059e56
RM
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
0a1b45a2 1615 false), /* pcrel_offset */
7f266840 1616
c19d1205
ZW
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
c94cb026 1619 4, /* size */
c19d1205 1620 12, /* bitsize */
0a1b45a2 1621 false, /* pc_relative */
7f266840 1622 0, /* bitpos */
c19d1205 1623 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1624 bfd_elf_generic_reloc, /* special_function */
c19d1205 1625 "R_ARM_TLS_LDO12", /* name */
0a1b45a2 1626 false, /* partial_inplace */
c19d1205
ZW
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
0a1b45a2 1629 false), /* pcrel_offset */
7f266840 1630
c19d1205
ZW
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
c94cb026 1633 4, /* size */
c19d1205 1634 12, /* bitsize */
0a1b45a2 1635 false, /* pc_relative */
7f266840 1636 0, /* bitpos */
c19d1205 1637 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1638 bfd_elf_generic_reloc, /* special_function */
c19d1205 1639 "R_ARM_TLS_LE12", /* name */
0a1b45a2 1640 false, /* partial_inplace */
c19d1205
ZW
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
0a1b45a2 1643 false), /* pcrel_offset */
7f266840 1644
c19d1205 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840 1646 0, /* rightshift */
c94cb026 1647 4, /* size */
c19d1205 1648 12, /* bitsize */
0a1b45a2 1649 false, /* pc_relative */
7f266840 1650 0, /* bitpos */
c19d1205 1651 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1652 bfd_elf_generic_reloc, /* special_function */
c19d1205 1653 "R_ARM_TLS_IE12GP", /* name */
0a1b45a2 1654 false, /* partial_inplace */
c19d1205
ZW
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
0a1b45a2 1657 false), /* pcrel_offset */
0855e32b 1658
34e77a92 1659 /* 112-127 private relocations. */
0855e32b
NS
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
34e77a92
RS
1676
1677 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
c94cb026 1682 2, /* size */
0855e32b 1683 0, /* bitsize */
0a1b45a2 1684 false, /* pc_relative */
0855e32b 1685 0, /* bitpos */
821e059c 1686 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
0a1b45a2 1689 false, /* partial_inplace */
0855e32b
NS
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
0a1b45a2 1692 false), /* pcrel_offset */
72d98d16
MG
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
c94cb026 1697 2, /* size. */
72d98d16 1698 16, /* bitsize. */
0a1b45a2 1699 false, /* pc_relative. */
72d98d16
MG
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
0a1b45a2 1704 false, /* partial_inplace. */
72d98d16
MG
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
0a1b45a2 1707 false), /* pcrel_offset. */
72d98d16
MG
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
c94cb026 1710 2, /* size. */
72d98d16 1711 16, /* bitsize. */
0a1b45a2 1712 false, /* pc_relative. */
72d98d16
MG
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
0a1b45a2 1717 false, /* partial_inplace. */
72d98d16
MG
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
0a1b45a2 1720 false), /* pcrel_offset. */
72d98d16
MG
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
c94cb026 1723 2, /* size. */
72d98d16 1724 16, /* bitsize. */
0a1b45a2 1725 false, /* pc_relative. */
72d98d16
MG
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
0a1b45a2 1730 false, /* partial_inplace. */
72d98d16
MG
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
0a1b45a2 1733 false), /* pcrel_offset. */
72d98d16
MG
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
c94cb026 1736 2, /* size. */
72d98d16 1737 16, /* bitsize. */
0a1b45a2 1738 false, /* pc_relative. */
72d98d16
MG
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
0a1b45a2 1743 false, /* partial_inplace. */
72d98d16
MG
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
0a1b45a2 1746 false), /* pcrel_offset. */
e5d6e09e
AV
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
c94cb026 1750 2, /* size. */
e5d6e09e 1751 16, /* bitsize. */
0a1b45a2 1752 true, /* pc_relative. */
e5d6e09e
AV
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
0a1b45a2 1757 false, /* partial_inplace. */
e5d6e09e
AV
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
0a1b45a2 1760 true), /* pcrel_offset. */
1889da70
AV
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
c94cb026 1763 2, /* size. */
1889da70 1764 12, /* bitsize. */
0a1b45a2 1765 true, /* pc_relative. */
1889da70
AV
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
0a1b45a2 1770 false, /* partial_inplace. */
1889da70
AV
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
0a1b45a2 1773 true), /* pcrel_offset. */
1caf72a5
AV
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
c94cb026 1776 2, /* size. */
1caf72a5 1777 18, /* bitsize. */
0a1b45a2 1778 true, /* pc_relative. */
1caf72a5
AV
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
0a1b45a2 1783 false, /* partial_inplace. */
1caf72a5
AV
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
0a1b45a2 1786 true), /* pcrel_offset. */
c19d1205
ZW
1787};
1788
34e77a92 1789/* 160 onwards: */
5c5a4843 1790static reloc_howto_type elf32_arm_howto_table_2[8] =
34e77a92
RS
1791{
1792 HOWTO (R_ARM_IRELATIVE, /* type */
07d6d2b8 1793 0, /* rightshift */
c94cb026 1794 4, /* size */
07d6d2b8 1795 32, /* bitsize */
0a1b45a2 1796 false, /* pc_relative */
07d6d2b8 1797 0, /* bitpos */
99059e56
RM
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
0a1b45a2 1801 true, /* partial_inplace */
99059e56
RM
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
0a1b45a2 1804 false), /* pcrel_offset */
188fd7ae
CL
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
c94cb026 1807 4, /* size */
188fd7ae 1808 32, /* bitsize */
0a1b45a2 1809 false, /* pc_relative */
188fd7ae
CL
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
0a1b45a2 1814 false, /* partial_inplace */
188fd7ae
CL
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
0a1b45a2 1817 false), /* pcrel_offset */
188fd7ae
CL
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
c94cb026 1820 4, /* size */
188fd7ae 1821 32, /* bitsize */
0a1b45a2 1822 false, /* pc_relative */
188fd7ae
CL
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
0a1b45a2 1827 false, /* partial_inplace */
188fd7ae
CL
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
0a1b45a2 1830 false), /* pcrel_offset */
188fd7ae
CL
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
c94cb026 1833 4, /* size */
188fd7ae 1834 32, /* bitsize */
0a1b45a2 1835 false, /* pc_relative */
188fd7ae
CL
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
0a1b45a2 1840 false, /* partial_inplace */
188fd7ae
CL
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
0a1b45a2 1843 false), /* pcrel_offset */
188fd7ae
CL
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
c94cb026 1846 4, /* size */
188fd7ae 1847 64, /* bitsize */
0a1b45a2 1848 false, /* pc_relative */
188fd7ae
CL
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
0a1b45a2 1853 false, /* partial_inplace */
188fd7ae
CL
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
0a1b45a2 1856 false), /* pcrel_offset */
5c5a4843
CL
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
c94cb026 1859 4, /* size */
5c5a4843 1860 32, /* bitsize */
0a1b45a2 1861 false, /* pc_relative */
5c5a4843
CL
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
0a1b45a2 1866 false, /* partial_inplace */
5c5a4843
CL
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
0a1b45a2 1869 false), /* pcrel_offset */
5c5a4843
CL
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
c94cb026 1872 4, /* size */
5c5a4843 1873 32, /* bitsize */
0a1b45a2 1874 false, /* pc_relative */
5c5a4843
CL
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
0a1b45a2 1879 false, /* partial_inplace */
5c5a4843
CL
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
0a1b45a2 1882 false), /* pcrel_offset */
5c5a4843
CL
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
c94cb026 1885 4, /* size */
5c5a4843 1886 32, /* bitsize */
0a1b45a2 1887 false, /* pc_relative */
5c5a4843
CL
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
0a1b45a2 1892 false, /* partial_inplace */
5c5a4843
CL
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
0a1b45a2 1895 false), /* pcrel_offset */
34e77a92 1896};
c19d1205 1897
34e77a92
RS
1898/* 249-255 extended, currently unused, relocations: */
1899static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1900{
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
5d0feb98 1903 0, /* size */
7f266840 1904 0, /* bitsize */
0a1b45a2 1905 false, /* pc_relative */
7f266840
DJ
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
0a1b45a2 1910 false, /* partial_inplace */
7f266840
DJ
1911 0, /* src_mask */
1912 0, /* dst_mask */
0a1b45a2 1913 false), /* pcrel_offset */
7f266840
DJ
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
5d0feb98 1917 0, /* size */
7f266840 1918 0, /* bitsize */
0a1b45a2 1919 false, /* pc_relative */
7f266840
DJ
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
0a1b45a2 1924 false, /* partial_inplace */
7f266840
DJ
1925 0, /* src_mask */
1926 0, /* dst_mask */
0a1b45a2 1927 false), /* pcrel_offset */
7f266840
DJ
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
5d0feb98 1931 0, /* size */
7f266840 1932 0, /* bitsize */
0a1b45a2 1933 false, /* pc_relative */
7f266840
DJ
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
0a1b45a2 1938 false, /* partial_inplace */
7f266840
DJ
1939 0, /* src_mask */
1940 0, /* dst_mask */
0a1b45a2 1941 false), /* pcrel_offset */
7f266840
DJ
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
5d0feb98 1945 0, /* size */
7f266840 1946 0, /* bitsize */
0a1b45a2 1947 false, /* pc_relative */
7f266840
DJ
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
0a1b45a2 1952 false, /* partial_inplace */
7f266840
DJ
1953 0, /* src_mask */
1954 0, /* dst_mask */
0a1b45a2 1955 false) /* pcrel_offset */
7f266840
DJ
1956};
1957
1958static reloc_howto_type *
1959elf32_arm_howto_from_type (unsigned int r_type)
1960{
906e58ca 1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1962 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1963
188fd7ae
CL
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
34e77a92
RS
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
c19d1205 1968 if (r_type >= R_ARM_RREL32
34e77a92
RS
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1971
c19d1205 1972 return NULL;
7f266840
DJ
1973}
1974
0a1b45a2 1975static bool
f3185997 1976elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
7f266840
DJ
1977 Elf_Internal_Rela * elf_reloc)
1978{
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
f3185997
NC
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
0a1b45a2 1988 return false;
f3185997 1989 }
0a1b45a2 1990 return true;
7f266840
DJ
1991}
1992
1993struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
07d6d2b8 1996 unsigned char elf_reloc_val;
7f266840
DJ
1997 };
1998
1999/* All entries in this list must also be present in elf32_arm_howto_table. */
2000static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
07d6d2b8 2002 {BFD_RELOC_NONE, R_ARM_NONE},
7f266840 2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
07d6d2b8
AM
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
7f266840 2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
07d6d2b8
AM
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
7f266840
DJ
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac 2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
07d6d2b8
AM
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
0855e32b 2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
07d6d2b8 2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
0855e32b 2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
07d6d2b8 2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
07d6d2b8
AM
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
188fd7ae
CL
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
5c5a4843
CL
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
c19d1205
ZW
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
e5d6e09e 2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
1caf72a5 2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
1889da70 2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
1caf72a5 2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
7f266840
DJ
2102 };
2103
2104static reloc_howto_type *
f1c71a59
ZW
2105elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
7f266840
DJ
2107{
2108 unsigned int i;
8029a119 2109
906e58ca 2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 2113
c19d1205 2114 return NULL;
7f266840
DJ
2115}
2116
157090f7
AM
2117static reloc_howto_type *
2118elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120{
2121 unsigned int i;
2122
906e58ca 2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
906e58ca 2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
34e77a92
RS
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
157090f7
AM
2138 return NULL;
2139}
2140
906e58ca
NC
2141/* Support for core dump NOTE sections. */
2142
0a1b45a2 2143static bool
f1c71a59 2144elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2145{
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
0a1b45a2 2152 return false;
7f266840 2153
8029a119 2154 case 148: /* Linux/ARM 32-bit. */
7f266840 2155 /* pr_cursig */
228e534f 2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2157
2158 /* pr_pid */
228e534f 2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171}
2172
0a1b45a2 2173static bool
f1c71a59 2174elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2175{
2176 switch (note->descsz)
2177 {
2178 default:
0a1b45a2 2179 return false;
7f266840 2180
8029a119 2181 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2182 elf_tdata (abfd)->core->pid
4395ee08 2183 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2184 elf_tdata (abfd)->core->program
7f266840 2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2186 elf_tdata (abfd)->core->command
7f266840
DJ
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
7f266840 2193 {
228e534f 2194 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
0a1b45a2 2201 return true;
7f266840
DJ
2202}
2203
1f20dca5
UW
2204static char *
2205elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207{
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
602f1657 2215 char data[124] ATTRIBUTE_NONSTRING;
1f20dca5
UW
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
be3e27bb 2221#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2222 DIAGNOSTIC_PUSH;
be3e27bb 2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
95da9854
L
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
95da9854
L
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228#endif
1f20dca5 2229 strncpy (data + 44, va_arg (ap, const char *), 80);
be3e27bb 2230#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2231 DIAGNOSTIC_POP;
fe75810f 2232#endif
1f20dca5
UW
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261}
2262
07d6d2b8
AM
2263#define TARGET_LITTLE_SYM arm_elf32_le_vec
2264#define TARGET_LITTLE_NAME "elf32-littlearm"
2265#define TARGET_BIG_SYM arm_elf32_be_vec
2266#define TARGET_BIG_NAME "elf32-bigarm"
7f266840
DJ
2267
2268#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2270#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2271
252b5132
RH
2272typedef unsigned long int insn32;
2273typedef unsigned short int insn16;
2274
3a4a14e9
PB
2275/* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
57e8b36a 2277#define INTERWORK_FLAG(abfd) \
3a4a14e9 2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2281
252b5132
RH
2282/* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
9b485d32 2285 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2286#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
c7b8f16e
JB
2292#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
a504d23a
LA
2295#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
845b51d6
PB
2298#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
7413f23f
DJ
2301#define STUB_ENTRY_NAME "__%s_veneer"
2302
4ba2ef8f
TP
2303#define CMSE_PREFIX "__acle_se_"
2304
4d83e8d9
CL
2305#define CMSE_STUB_NAME ".gnu.sgstubs"
2306
252b5132
RH
2307/* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
cb10292c
CL
2311/* FDPIC default stack size. */
2312#define DEFAULT_STACK_SIZE 0x8000
2313
0855e32b 2314static const unsigned long tls_trampoline [] =
b38cadfb
NC
2315{
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319};
0855e32b
NS
2320
2321static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2322{
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2330 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332};
0855e32b 2333
b4e87f2c
TC
2334/* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
7801f98f
CL
2339/* ARM FDPIC PLT entry. */
2340/* The last 5 words contain PLT lazy fragment code and data. */
2341static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
59029f57
CL
2355/* Thumb FDPIC PLT entry. */
2356/* The last 5 words contain PLT lazy fragment code and data. */
2357static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
5e681ec4
PB
2371#ifdef FOUR_WORD_PLT
2372
252b5132
RH
2373/* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
59f2c4e7 2375 called before the relocation has been set up calls the dynamic
9b485d32 2376 linker first. */
e5a52504 2377static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2378{
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383};
5e681ec4
PB
2384
2385/* Subsequent entries in a procedure linkage table look like
2386 this. */
e5a52504 2387static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2388{
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393};
5e681ec4 2394
eed94f8f 2395#else /* not FOUR_WORD_PLT */
5e681ec4 2396
5e681ec4
PB
2397/* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
e5a52504 2401static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb 2402{
07d6d2b8
AM
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
b38cadfb 2408};
252b5132 2409
1db37fe6
YG
2410/* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2413{
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417};
5e681ec4 2418
1db37fe6
YG
2419/* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421static const bfd_vma elf32_arm_plt_entry_long [] =
2422{
07d6d2b8
AM
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
1db37fe6
YG
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427};
2428
0a1b45a2 2429static bool elf32_arm_use_long_plt_entry = false;
1db37fe6 2430
eed94f8f
NC
2431#endif /* not FOUR_WORD_PLT */
2432
2433/* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436static const bfd_vma elf32_thumb2_plt0_entry [] =
2437{
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
eed94f8f 2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
07d6d2b8 2444 0x00000000, /* &GOT[0] - . */
eed94f8f
NC
2445};
2446
2447/* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449static const bfd_vma elf32_thumb2_plt_entry [] =
2450{
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
15ccbdd7
TC
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
eed94f8f 2458};
252b5132 2459
00a97672
RS
2460/* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb 2463{
07d6d2b8
AM
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
b38cadfb 2468};
00a97672
RS
2469
2470/* The format of subsequent entries in a VxWorks executable. */
2471static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb 2472{
07d6d2b8
AM
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2479};
00a97672
RS
2480
2481/* The format of entries in a VxWorks shared library. */
2482static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb 2483{
07d6d2b8
AM
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2490};
00a97672 2491
b7693d02
DJ
2492/* An initial stub used if the PLT entry is referenced from Thumb code. */
2493#define PLT_THUMB_STUB_SIZE 4
2494static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2495{
2496 0x4778, /* bx pc */
b4e87f2c 2497 0xe7fd /* b .-2 */
b38cadfb 2498};
b7693d02 2499
b38cadfb
NC
2500/* The first entry in a procedure linkage table looks like
2501 this. It is set up so that any shared library function that is
2502 called before the relocation has been set up calls the dynamic
2503 linker first. */
2504static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2505{
2506 /* First bundle: */
2507 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2508 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2509 0xe08cc00f, /* add ip, ip, pc */
2510 0xe52dc008, /* str ip, [sp, #-8]! */
2511 /* Second bundle: */
edccdf7c
RM
2512 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2513 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2514 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2515 0xe12fff1c, /* bx ip */
b38cadfb 2516 /* Third bundle: */
edccdf7c
RM
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2519 0xe320f000, /* nop */
b38cadfb
NC
2520 /* .Lplt_tail: */
2521 0xe50dc004, /* str ip, [sp, #-4] */
2522 /* Fourth bundle: */
edccdf7c
RM
2523 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2524 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2525 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2526 0xe12fff1c, /* bx ip */
b38cadfb
NC
2527};
2528#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2529
2530/* Subsequent entries in a procedure linkage table look like this. */
2531static const bfd_vma elf32_arm_nacl_plt_entry [] =
2532{
2533 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2534 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2535 0xe08cc00f, /* add ip, ip, pc */
2536 0xea000000, /* b .Lplt_tail */
2537};
e5a52504 2538
a747a286
VP
2539/* PR 28924:
2540 There was a bug due to too high values of THM_MAX_FWD_BRANCH_OFFSET and
2541 THM2_MAX_FWD_BRANCH_OFFSET. The first macro concerns the case when Thumb-2
2542 is not available, and second macro when Thumb-2 is available. Among other
2543 things, they affect the range of branches represented as BLX instructions
2544 in Encoding T2 defined in Section A8.8.25 of the ARM Architecture
2545 Reference Manual ARMv7-A and ARMv7-R edition issue C.d. Such branches are
2546 specified there to have a maximum forward offset that is a multiple of 4.
2547 Previously, the respective values defined here were multiples of 2 but not
2548 4 and they are included in comments for reference. */
906e58ca 2549#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
a747a286
VP
2550#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2551#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 4 + 4)
2552/* #def THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 2 + 4) */
906e58ca 2553#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
a747a286
VP
2554#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 4) + 4)
2555/* #def THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) */
906e58ca 2556#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2557#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2558#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2559
461a49ca 2560enum stub_insn_type
b38cadfb
NC
2561{
2562 THUMB16_TYPE = 1,
2563 THUMB32_TYPE,
2564 ARM_TYPE,
2565 DATA_TYPE
2566};
461a49ca 2567
48229727
JB
2568#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2569/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2570 is inserted in arm_build_one_stub(). */
2571#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2572#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2573#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2574#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2575#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2576#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2577#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2578#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2579
2580typedef struct
2581{
07d6d2b8 2582 bfd_vma data;
b38cadfb 2583 enum stub_insn_type type;
07d6d2b8
AM
2584 unsigned int r_type;
2585 int reloc_addend;
461a49ca
DJ
2586} insn_sequence;
2587
b4e87f2c
TC
2588/* See note [Thumb nop sequence] when adding a veneer. */
2589
fea2b4d6
CL
2590/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2591 to reach the stub if necessary. */
461a49ca 2592static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb 2593{
07d6d2b8 2594 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2595 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2596};
906e58ca 2597
fea2b4d6
CL
2598/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2599 available. */
461a49ca 2600static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb 2601{
07d6d2b8
AM
2602 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2603 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2604 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2605};
906e58ca 2606
d3626fb0 2607/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2608static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb 2609{
07d6d2b8
AM
2610 THUMB16_INSN (0xb401), /* push {r0} */
2611 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2612 THUMB16_INSN (0x4684), /* mov ip, r0 */
2613 THUMB16_INSN (0xbc01), /* pop {r0} */
2614 THUMB16_INSN (0x4760), /* bx ip */
2615 THUMB16_INSN (0xbf00), /* nop */
b38cadfb
NC
2616 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2617};
906e58ca 2618
80c135e5
TP
2619/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2620static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2621{
07d6d2b8 2622 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
80c135e5
TP
2623 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2624};
2625
d5a67c02
AV
2626/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2627 M-profile architectures. */
2628static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2629{
2630 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2631 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
07d6d2b8 2632 THUMB16_INSN (0x4760), /* bx ip */
d5a67c02
AV
2633};
2634
d3626fb0
CL
2635/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2636 allowed. */
2637static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb 2638{
07d6d2b8 2639 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2640 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2641 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2642 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2643 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2644};
d3626fb0 2645
fea2b4d6
CL
2646/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2647 available. */
461a49ca 2648static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb 2649{
07d6d2b8 2650 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2651 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8 2652 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2653 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2654};
906e58ca 2655
fea2b4d6
CL
2656/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2657 one, when the destination is close enough. */
461a49ca 2658static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb 2659{
07d6d2b8 2660 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2661 THUMB16_INSN (0xe7fd), /* b .-2 */
b38cadfb
NC
2662 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2663};
c820be07 2664
cf3eccff 2665/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2666 blx to reach the stub if necessary. */
cf3eccff 2667static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb 2668{
07d6d2b8
AM
2669 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2670 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
b38cadfb
NC
2671 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2672};
906e58ca 2673
cf3eccff
DJ
2674/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2675 blx to reach the stub if necessary. We can not add into pc;
2676 it is not guaranteed to mode switch (different in ARMv6 and
2677 ARMv7). */
2678static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb 2679{
07d6d2b8
AM
2680 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2681 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2682 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2683 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2684};
cf3eccff 2685
ebe24dd4
CL
2686/* V4T ARM -> ARM long branch stub, PIC. */
2687static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb 2688{
07d6d2b8
AM
2689 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2690 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2691 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2692 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2693};
ebe24dd4
CL
2694
2695/* V4T Thumb -> ARM long branch stub, PIC. */
2696static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb 2697{
07d6d2b8 2698 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2699 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2700 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2701 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
b38cadfb
NC
2702 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2703};
ebe24dd4 2704
d3626fb0
CL
2705/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2706 architectures. */
ebe24dd4 2707static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb 2708{
07d6d2b8
AM
2709 THUMB16_INSN (0xb401), /* push {r0} */
2710 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2711 THUMB16_INSN (0x46fc), /* mov ip, pc */
2712 THUMB16_INSN (0x4484), /* add ip, r0 */
2713 THUMB16_INSN (0xbc01), /* pop {r0} */
2714 THUMB16_INSN (0x4760), /* bx ip */
b38cadfb
NC
2715 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2716};
ebe24dd4 2717
d3626fb0
CL
2718/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2719 allowed. */
2720static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb 2721{
07d6d2b8 2722 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2723 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2724 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2725 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2726 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2727 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2728};
d3626fb0 2729
0855e32b
NS
2730/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2731 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2732static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2733{
07d6d2b8
AM
2734 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2735 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
b38cadfb 2736 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2737};
2738
2739/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2740 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2741static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2742{
07d6d2b8 2743 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2744 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2745 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2746 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
b38cadfb 2747 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2748};
2749
7a89b94e
NC
2750/* NaCl ARM -> ARM long branch stub. */
2751static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2752{
2753 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2754 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2755 ARM_INSN (0xe12fff1c), /* bx ip */
2756 ARM_INSN (0xe320f000), /* nop */
2757 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2758 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2759 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2760 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2761};
2762
2763/* NaCl ARM -> ARM long branch stub, PIC. */
2764static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2765{
2766 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
07d6d2b8 2767 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
7a89b94e 2768 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2769 ARM_INSN (0xe12fff1c), /* bx ip */
2770 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2771 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2772 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2773 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2774};
2775
4ba2ef8f
TP
2776/* Stub used for transition to secure state (aka SG veneer). */
2777static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2778{
2779 THUMB32_INSN (0xe97fe97f), /* sg. */
2780 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2781};
2782
7a89b94e 2783
48229727
JB
2784/* Cortex-A8 erratum-workaround stubs. */
2785
2786/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2787 can't use a conditional branch to reach this stub). */
2788
2789static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb 2790{
07d6d2b8 2791 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
b38cadfb
NC
2792 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2793 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2794};
48229727
JB
2795
2796/* Stub used for b.w and bl.w instructions. */
2797
2798static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2799{
2800 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2801};
48229727
JB
2802
2803static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2804{
2805 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2806};
48229727
JB
2807
2808/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2809 instruction (which switches to ARM mode) to point to this stub. Jump to the
2810 real destination using an ARM-mode branch. */
2811
2812static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2813{
2814 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2815};
48229727 2816
9553db3c
NC
2817/* For each section group there can be a specially created linker section
2818 to hold the stubs for that group. The name of the stub section is based
2819 upon the name of another section within that group with the suffix below
2820 applied.
2821
2822 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2823 create what appeared to be a linker stub section when it actually
2824 contained user code/data. For example, consider this fragment:
b38cadfb 2825
9553db3c
NC
2826 const char * stubborn_problems[] = { "np" };
2827
2828 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2829 section called:
2830
2831 .data.rel.local.stubborn_problems
2832
2833 This then causes problems in arm32_arm_build_stubs() as it triggers:
2834
2835 // Ignore non-stub sections.
2836 if (!strstr (stub_sec->name, STUB_SUFFIX))
2837 continue;
2838
2839 And so the section would be ignored instead of being processed. Hence
2840 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2841 C identifier. */
2842#define STUB_SUFFIX ".__stub"
906e58ca 2843
738a79f6
CL
2844/* One entry per long/short branch stub defined above. */
2845#define DEF_STUBS \
cc850f74
NC
2846 DEF_STUB (long_branch_any_any) \
2847 DEF_STUB (long_branch_v4t_arm_thumb) \
2848 DEF_STUB (long_branch_thumb_only) \
2849 DEF_STUB (long_branch_v4t_thumb_thumb) \
2850 DEF_STUB (long_branch_v4t_thumb_arm) \
2851 DEF_STUB (short_branch_v4t_thumb_arm) \
2852 DEF_STUB (long_branch_any_arm_pic) \
2853 DEF_STUB (long_branch_any_thumb_pic) \
2854 DEF_STUB (long_branch_v4t_thumb_thumb_pic) \
2855 DEF_STUB (long_branch_v4t_arm_thumb_pic) \
2856 DEF_STUB (long_branch_v4t_thumb_arm_pic) \
2857 DEF_STUB (long_branch_thumb_only_pic) \
2858 DEF_STUB (long_branch_any_tls_pic) \
2859 DEF_STUB (long_branch_v4t_thumb_tls_pic) \
2860 DEF_STUB (long_branch_arm_nacl) \
2861 DEF_STUB (long_branch_arm_nacl_pic) \
2862 DEF_STUB (cmse_branch_thumb_only) \
2863 DEF_STUB (a8_veneer_b_cond) \
2864 DEF_STUB (a8_veneer_b) \
2865 DEF_STUB (a8_veneer_bl) \
2866 DEF_STUB (a8_veneer_blx) \
2867 DEF_STUB (long_branch_thumb2_only) \
2868 DEF_STUB (long_branch_thumb2_only_pure)
738a79f6
CL
2869
2870#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2871enum elf32_arm_stub_type
2872{
906e58ca 2873 arm_stub_none,
738a79f6 2874 DEF_STUBS
4f4faa4d 2875 max_stub_type
738a79f6
CL
2876};
2877#undef DEF_STUB
2878
8d9d9490
TP
2879/* Note the first a8_veneer type. */
2880const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2881
738a79f6
CL
2882typedef struct
2883{
d3ce72d0 2884 const insn_sequence* template_sequence;
738a79f6
CL
2885 int template_size;
2886} stub_def;
2887
2888#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2889static const stub_def stub_definitions[] =
2890{
738a79f6
CL
2891 {NULL, 0},
2892 DEF_STUBS
906e58ca
NC
2893};
2894
2895struct elf32_arm_stub_hash_entry
2896{
2897 /* Base hash table entry structure. */
2898 struct bfd_hash_entry root;
2899
2900 /* The stub section. */
2901 asection *stub_sec;
2902
2903 /* Offset within stub_sec of the beginning of this stub. */
2904 bfd_vma stub_offset;
2905
2906 /* Given the symbol's value and its section we can determine its final
2907 value when building the stubs (so the stub knows where to jump). */
2908 bfd_vma target_value;
2909 asection *target_section;
2910
8d9d9490
TP
2911 /* Same as above but for the source of the branch to the stub. Used for
2912 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2913 such, source section does not need to be recorded since Cortex-A8 erratum
2914 workaround stubs are only generated when both source and target are in the
2915 same section. */
2916 bfd_vma source_value;
48229727
JB
2917
2918 /* The instruction which caused this stub to be generated (only valid for
2919 Cortex-A8 erratum workaround stubs at present). */
2920 unsigned long orig_insn;
2921
461a49ca 2922 /* The stub type. */
906e58ca 2923 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2924 /* Its encoding size in bytes. */
2925 int stub_size;
2926 /* Its template. */
2927 const insn_sequence *stub_template;
2928 /* The size of the template (number of entries). */
2929 int stub_template_size;
906e58ca
NC
2930
2931 /* The symbol table entry, if any, that this was derived from. */
2932 struct elf32_arm_link_hash_entry *h;
2933
35fc36a8
RS
2934 /* Type of branch. */
2935 enum arm_st_branch_type branch_type;
906e58ca
NC
2936
2937 /* Where this stub is being called from, or, in the case of combined
2938 stub sections, the first input section in the group. */
2939 asection *id_sec;
7413f23f
DJ
2940
2941 /* The name for the local symbol at the start of this stub. The
2942 stub name in the hash table has to be unique; this does not, so
2943 it can be friendlier. */
2944 char *output_name;
906e58ca
NC
2945};
2946
e489d0ae
PB
2947/* Used to build a map of a section. This is required for mixed-endian
2948 code/data. */
2949
2950typedef struct elf32_elf_section_map
2951{
2952 bfd_vma vma;
2953 char type;
2954}
2955elf32_arm_section_map;
2956
c7b8f16e
JB
2957/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2958
2959typedef enum
2960{
2961 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2962 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2963 VFP11_ERRATUM_ARM_VENEER,
2964 VFP11_ERRATUM_THUMB_VENEER
2965}
2966elf32_vfp11_erratum_type;
2967
2968typedef struct elf32_vfp11_erratum_list
2969{
2970 struct elf32_vfp11_erratum_list *next;
2971 bfd_vma vma;
2972 union
2973 {
2974 struct
2975 {
2976 struct elf32_vfp11_erratum_list *veneer;
2977 unsigned int vfp_insn;
2978 } b;
2979 struct
2980 {
2981 struct elf32_vfp11_erratum_list *branch;
2982 unsigned int id;
2983 } v;
2984 } u;
2985 elf32_vfp11_erratum_type type;
2986}
2987elf32_vfp11_erratum_list;
2988
a504d23a
LA
2989/* Information about a STM32L4XX erratum veneer, or a branch to such a
2990 veneer. */
2991typedef enum
2992{
2993 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2994 STM32L4XX_ERRATUM_VENEER
2995}
2996elf32_stm32l4xx_erratum_type;
2997
2998typedef struct elf32_stm32l4xx_erratum_list
2999{
3000 struct elf32_stm32l4xx_erratum_list *next;
3001 bfd_vma vma;
3002 union
3003 {
3004 struct
3005 {
3006 struct elf32_stm32l4xx_erratum_list *veneer;
3007 unsigned int insn;
3008 } b;
3009 struct
3010 {
3011 struct elf32_stm32l4xx_erratum_list *branch;
3012 unsigned int id;
3013 } v;
3014 } u;
3015 elf32_stm32l4xx_erratum_type type;
3016}
3017elf32_stm32l4xx_erratum_list;
3018
2468f9c9
PB
3019typedef enum
3020{
3021 DELETE_EXIDX_ENTRY,
3022 INSERT_EXIDX_CANTUNWIND_AT_END
3023}
3024arm_unwind_edit_type;
3025
3026/* A (sorted) list of edits to apply to an unwind table. */
3027typedef struct arm_unwind_table_edit
3028{
3029 arm_unwind_edit_type type;
3030 /* Note: we sometimes want to insert an unwind entry corresponding to a
3031 section different from the one we're currently writing out, so record the
3032 (text) section this edit relates to here. */
3033 asection *linked_section;
3034 unsigned int index;
3035 struct arm_unwind_table_edit *next;
3036}
3037arm_unwind_table_edit;
3038
8e3de13a 3039typedef struct _arm_elf_section_data
e489d0ae 3040{
2468f9c9 3041 /* Information about mapping symbols. */
e489d0ae 3042 struct bfd_elf_section_data elf;
8e3de13a 3043 unsigned int mapcount;
c7b8f16e 3044 unsigned int mapsize;
e489d0ae 3045 elf32_arm_section_map *map;
2468f9c9 3046 /* Information about CPU errata. */
c7b8f16e
JB
3047 unsigned int erratumcount;
3048 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
3049 unsigned int stm32l4xx_erratumcount;
3050 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 3051 unsigned int additional_reloc_count;
2468f9c9
PB
3052 /* Information about unwind tables. */
3053 union
3054 {
3055 /* Unwind info attached to a text section. */
3056 struct
3057 {
3058 asection *arm_exidx_sec;
3059 } text;
3060
3061 /* Unwind info attached to an .ARM.exidx section. */
3062 struct
3063 {
3064 arm_unwind_table_edit *unwind_edit_list;
3065 arm_unwind_table_edit *unwind_edit_tail;
3066 } exidx;
3067 } u;
8e3de13a
NC
3068}
3069_arm_elf_section_data;
e489d0ae
PB
3070
3071#define elf32_arm_section_data(sec) \
8e3de13a 3072 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 3073
48229727
JB
3074/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3075 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3076 so may be created multiple times: we use an array of these entries whilst
3077 relaxing which we can refresh easily, then create stubs for each potentially
3078 erratum-triggering instruction once we've settled on a solution. */
3079
b38cadfb
NC
3080struct a8_erratum_fix
3081{
48229727
JB
3082 bfd *input_bfd;
3083 asection *section;
3084 bfd_vma offset;
8d9d9490 3085 bfd_vma target_offset;
48229727
JB
3086 unsigned long orig_insn;
3087 char *stub_name;
3088 enum elf32_arm_stub_type stub_type;
35fc36a8 3089 enum arm_st_branch_type branch_type;
48229727
JB
3090};
3091
3092/* A table of relocs applied to branches which might trigger Cortex-A8
3093 erratum. */
3094
b38cadfb
NC
3095struct a8_erratum_reloc
3096{
48229727
JB
3097 bfd_vma from;
3098 bfd_vma destination;
92750f34
DJ
3099 struct elf32_arm_link_hash_entry *hash;
3100 const char *sym_name;
48229727 3101 unsigned int r_type;
35fc36a8 3102 enum arm_st_branch_type branch_type;
0a1b45a2 3103 bool non_a8_stub;
48229727
JB
3104};
3105
ba93b8ac
DJ
3106/* The size of the thread control block. */
3107#define TCB_SIZE 8
3108
34e77a92
RS
3109/* ARM-specific information about a PLT entry, over and above the usual
3110 gotplt_union. */
b38cadfb
NC
3111struct arm_plt_info
3112{
34e77a92
RS
3113 /* We reference count Thumb references to a PLT entry separately,
3114 so that we can emit the Thumb trampoline only if needed. */
3115 bfd_signed_vma thumb_refcount;
3116
3117 /* Some references from Thumb code may be eliminated by BL->BLX
3118 conversion, so record them separately. */
3119 bfd_signed_vma maybe_thumb_refcount;
3120
3121 /* How many of the recorded PLT accesses were from non-call relocations.
3122 This information is useful when deciding whether anything takes the
3123 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3124 non-call references to the function should resolve directly to the
3125 real runtime target. */
3126 unsigned int noncall_refcount;
3127
3128 /* Since PLT entries have variable size if the Thumb prologue is
3129 used, we need to record the index into .got.plt instead of
3130 recomputing it from the PLT offset. */
3131 bfd_signed_vma got_offset;
3132};
3133
3134/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
3135struct arm_local_iplt_info
3136{
34e77a92
RS
3137 /* The information that is usually found in the generic ELF part of
3138 the hash table entry. */
3139 union gotplt_union root;
3140
3141 /* The information that is usually found in the ARM-specific part of
3142 the hash table entry. */
3143 struct arm_plt_info arm;
3144
3145 /* A list of all potential dynamic relocations against this symbol. */
3146 struct elf_dyn_relocs *dyn_relocs;
3147};
3148
e8b09b87 3149/* Structure to handle FDPIC support for local functions. */
cc850f74
NC
3150struct fdpic_local
3151{
e8b09b87
CL
3152 unsigned int funcdesc_cnt;
3153 unsigned int gotofffuncdesc_cnt;
3154 int funcdesc_offset;
3155};
3156
0ffa91dd 3157struct elf_arm_obj_tdata
ba93b8ac
DJ
3158{
3159 struct elf_obj_tdata root;
3160
cc850f74
NC
3161 /* Zero to warn when linking objects with incompatible enum sizes. */
3162 int no_enum_size_warning;
3163
3164 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3165 int no_wchar_size_warning;
3166
74fd118f
NC
3167 /* The number of entries in each of the arrays in this strcuture.
3168 Used to avoid buffer overruns. */
3169 bfd_size_type num_entries;
3170
ba93b8ac
DJ
3171 /* tls_type for each local got entry. */
3172 char *local_got_tls_type;
ee065d83 3173
0855e32b
NS
3174 /* GOTPLT entries for TLS descriptors. */
3175 bfd_vma *local_tlsdesc_gotent;
3176
34e77a92
RS
3177 /* Information for local symbols that need entries in .iplt. */
3178 struct arm_local_iplt_info **local_iplt;
3179
e8b09b87
CL
3180 /* Maintains FDPIC counters and funcdesc info. */
3181 struct fdpic_local *local_fdpic_cnts;
ba93b8ac
DJ
3182};
3183
0ffa91dd
NC
3184#define elf_arm_tdata(bfd) \
3185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 3186
74fd118f
NC
3187#define elf32_arm_num_entries(bfd) \
3188 (elf_arm_tdata (bfd)->num_entries)
3189
0ffa91dd
NC
3190#define elf32_arm_local_got_tls_type(bfd) \
3191 (elf_arm_tdata (bfd)->local_got_tls_type)
3192
0855e32b
NS
3193#define elf32_arm_local_tlsdesc_gotent(bfd) \
3194 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3195
34e77a92
RS
3196#define elf32_arm_local_iplt(bfd) \
3197 (elf_arm_tdata (bfd)->local_iplt)
3198
e8b09b87
CL
3199#define elf32_arm_local_fdpic_cnts(bfd) \
3200 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3201
0ffa91dd
NC
3202#define is_arm_elf(bfd) \
3203 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3204 && elf_tdata (bfd) != NULL \
4dfe6ac6 3205 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac 3206
0a1b45a2 3207static bool
ba93b8ac
DJ
3208elf32_arm_mkobject (bfd *abfd)
3209{
0ffa91dd 3210 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 3211 ARM_ELF_DATA);
ba93b8ac
DJ
3212}
3213
ba93b8ac
DJ
3214#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3215
e8b09b87
CL
3216/* Structure to handle FDPIC support for extern functions. */
3217struct fdpic_global {
3218 unsigned int gotofffuncdesc_cnt;
3219 unsigned int gotfuncdesc_cnt;
3220 unsigned int funcdesc_cnt;
3221 int funcdesc_offset;
3222 int gotfuncdesc_offset;
3223};
3224
ba96a88f 3225/* Arm ELF linker hash entry. */
252b5132 3226struct elf32_arm_link_hash_entry
b38cadfb
NC
3227{
3228 struct elf_link_hash_entry root;
252b5132 3229
b38cadfb
NC
3230 /* ARM-specific PLT information. */
3231 struct arm_plt_info plt;
ba93b8ac
DJ
3232
3233#define GOT_UNKNOWN 0
3234#define GOT_NORMAL 1
3235#define GOT_TLS_GD 2
3236#define GOT_TLS_IE 4
0855e32b
NS
3237#define GOT_TLS_GDESC 8
3238#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3239 unsigned int tls_type : 8;
34e77a92 3240
b38cadfb
NC
3241 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3242 unsigned int is_iplt : 1;
34e77a92 3243
b38cadfb 3244 unsigned int unused : 23;
a4fd1a8e 3245
b38cadfb
NC
3246 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3247 starting at the end of the jump table. */
3248 bfd_vma tlsdesc_got;
0855e32b 3249
b38cadfb
NC
3250 /* The symbol marking the real symbol location for exported thumb
3251 symbols with Arm stubs. */
3252 struct elf_link_hash_entry *export_glue;
906e58ca 3253
b38cadfb 3254 /* A pointer to the most recently used stub hash entry against this
8029a119 3255 symbol. */
b38cadfb 3256 struct elf32_arm_stub_hash_entry *stub_cache;
e8b09b87
CL
3257
3258 /* Counter for FDPIC relocations against this symbol. */
3259 struct fdpic_global fdpic_cnts;
b38cadfb 3260};
252b5132 3261
252b5132 3262/* Traverse an arm ELF linker hash table. */
252b5132
RH
3263#define elf32_arm_link_hash_traverse(table, func, info) \
3264 (elf_link_hash_traverse \
3265 (&(table)->root, \
0a1b45a2 3266 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3267 (info)))
3268
3269/* Get the ARM elf linker hash table from a link_info structure. */
0f55320b
AM
3270#define elf32_arm_hash_table(p) \
3271 ((is_elf_hash_table ((p)->hash) \
3272 && elf_hash_table_id (elf_hash_table (p)) == ARM_ELF_DATA) \
3273 ? (struct elf32_arm_link_hash_table *) (p)->hash : NULL)
252b5132 3274
906e58ca
NC
3275#define arm_stub_hash_lookup(table, string, create, copy) \
3276 ((struct elf32_arm_stub_hash_entry *) \
3277 bfd_hash_lookup ((table), (string), (create), (copy)))
3278
21d799b5
NC
3279/* Array to keep track of which stub sections have been created, and
3280 information on stub grouping. */
3281struct map_stub
3282{
3283 /* This is the section to which stubs in the group will be
3284 attached. */
3285 asection *link_sec;
3286 /* The stub section. */
3287 asection *stub_sec;
3288};
3289
0855e32b
NS
3290#define elf32_arm_compute_jump_table_size(htab) \
3291 ((htab)->next_tls_desc_index * 4)
3292
9b485d32 3293/* ARM ELF linker hash table. */
252b5132 3294struct elf32_arm_link_hash_table
906e58ca
NC
3295{
3296 /* The main hash table. */
3297 struct elf_link_hash_table root;
252b5132 3298
906e58ca
NC
3299 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3300 bfd_size_type thumb_glue_size;
252b5132 3301
906e58ca
NC
3302 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3303 bfd_size_type arm_glue_size;
252b5132 3304
906e58ca
NC
3305 /* The size in bytes of section containing the ARMv4 BX veneers. */
3306 bfd_size_type bx_glue_size;
845b51d6 3307
906e58ca
NC
3308 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3309 veneer has been populated. */
3310 bfd_vma bx_glue_offset[15];
845b51d6 3311
906e58ca
NC
3312 /* The size in bytes of the section containing glue for VFP11 erratum
3313 veneers. */
3314 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3315
a504d23a
LA
3316 /* The size in bytes of the section containing glue for STM32L4XX erratum
3317 veneers. */
3318 bfd_size_type stm32l4xx_erratum_glue_size;
3319
48229727
JB
3320 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3321 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3322 elf32_arm_write_section(). */
3323 struct a8_erratum_fix *a8_erratum_fixes;
3324 unsigned int num_a8_erratum_fixes;
3325
906e58ca
NC
3326 /* An arbitrary input BFD chosen to hold the glue sections. */
3327 bfd * bfd_of_glue_owner;
ba96a88f 3328
906e58ca
NC
3329 /* Nonzero to output a BE8 image. */
3330 int byteswap_code;
e489d0ae 3331
906e58ca
NC
3332 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3333 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3334 int target1_is_rel;
9c504268 3335
906e58ca
NC
3336 /* The relocation to use for R_ARM_TARGET2 relocations. */
3337 int target2_reloc;
eb043451 3338
906e58ca
NC
3339 /* 0 = Ignore R_ARM_V4BX.
3340 1 = Convert BX to MOV PC.
3341 2 = Generate v4 interworing stubs. */
3342 int fix_v4bx;
319850b4 3343
48229727
JB
3344 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3345 int fix_cortex_a8;
3346
2de70689
MGD
3347 /* Whether we should fix the ARM1176 BLX immediate issue. */
3348 int fix_arm1176;
3349
906e58ca
NC
3350 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3351 int use_blx;
33bfe774 3352
906e58ca
NC
3353 /* What sort of code sequences we should look for which may trigger the
3354 VFP11 denorm erratum. */
3355 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3356
906e58ca
NC
3357 /* Global counter for the number of fixes we have emitted. */
3358 int num_vfp11_fixes;
c7b8f16e 3359
a504d23a
LA
3360 /* What sort of code sequences we should look for which may trigger the
3361 STM32L4XX erratum. */
3362 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3363
3364 /* Global counter for the number of fixes we have emitted. */
3365 int num_stm32l4xx_fixes;
3366
906e58ca
NC
3367 /* Nonzero to force PIC branch veneers. */
3368 int pic_veneer;
27e55c4d 3369
906e58ca
NC
3370 /* The number of bytes in the initial entry in the PLT. */
3371 bfd_size_type plt_header_size;
e5a52504 3372
906e58ca
NC
3373 /* The number of bytes in the subsequent PLT etries. */
3374 bfd_size_type plt_entry_size;
e5a52504 3375
906e58ca 3376 /* True if the target uses REL relocations. */
0a1b45a2 3377 bool use_rel;
4e7fd91e 3378
54ddd295
TP
3379 /* Nonzero if import library must be a secure gateway import library
3380 as per ARMv8-M Security Extensions. */
3381 int cmse_implib;
3382
0955507f
TP
3383 /* The import library whose symbols' address must remain stable in
3384 the import library generated. */
3385 bfd *in_implib_bfd;
3386
0855e32b
NS
3387 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3388 bfd_vma next_tls_desc_index;
3389
3390 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3391 bfd_vma num_tls_desc;
3392
906e58ca
NC
3393 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3394 asection *srelplt2;
00a97672 3395
0855e32b
NS
3396 /* Offset in .plt section of tls_arm_trampoline. */
3397 bfd_vma tls_trampoline;
3398
5c5a4843 3399 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
906e58ca
NC
3400 union
3401 {
3402 bfd_signed_vma refcount;
3403 bfd_vma offset;
3404 } tls_ldm_got;
b7693d02 3405
906e58ca
NC
3406 /* For convenience in allocate_dynrelocs. */
3407 bfd * obfd;
3408
0855e32b
NS
3409 /* The amount of space used by the reserved portion of the sgotplt
3410 section, plus whatever space is used by the jump slots. */
3411 bfd_vma sgotplt_jump_table_size;
3412
906e58ca
NC
3413 /* The stub hash table. */
3414 struct bfd_hash_table stub_hash_table;
3415
3416 /* Linker stub bfd. */
3417 bfd *stub_bfd;
3418
3419 /* Linker call-backs. */
6bde4c52
TP
3420 asection * (*add_stub_section) (const char *, asection *, asection *,
3421 unsigned int);
906e58ca
NC
3422 void (*layout_sections_again) (void);
3423
3424 /* Array to keep track of which stub sections have been created, and
3425 information on stub grouping. */
21d799b5 3426 struct map_stub *stub_group;
906e58ca 3427
4ba2ef8f
TP
3428 /* Input stub section holding secure gateway veneers. */
3429 asection *cmse_stub_sec;
3430
0955507f
TP
3431 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3432 start to be allocated. */
3433 bfd_vma new_cmse_stub_offset;
3434
fe33d2fa 3435 /* Number of elements in stub_group. */
7292b3ac 3436 unsigned int top_id;
fe33d2fa 3437
906e58ca
NC
3438 /* Assorted information used by elf32_arm_size_stubs. */
3439 unsigned int bfd_count;
7292b3ac 3440 unsigned int top_index;
906e58ca 3441 asection **input_list;
617a5ada
CL
3442
3443 /* True if the target system uses FDPIC. */
3444 int fdpic_p;
e8b09b87
CL
3445
3446 /* Fixup section. Used for FDPIC. */
3447 asection *srofixup;
906e58ca 3448};
252b5132 3449
e8b09b87
CL
3450/* Add an FDPIC read-only fixup. */
3451static void
3452arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3453{
3454 bfd_vma fixup_offset;
3455
3456 fixup_offset = srofixup->reloc_count++ * 4;
3457 BFD_ASSERT (fixup_offset < srofixup->size);
3458 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3459}
3460
a504d23a
LA
3461static inline int
3462ctz (unsigned int mask)
3463{
3464#if GCC_VERSION >= 3004
3465 return __builtin_ctz (mask);
3466#else
3467 unsigned int i;
3468
3469 for (i = 0; i < 8 * sizeof (mask); i++)
3470 {
3471 if (mask & 0x1)
3472 break;
3473 mask = (mask >> 1);
3474 }
3475 return i;
3476#endif
3477}
3478
3479static inline int
b25e998d 3480elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3481{
3482#if GCC_VERSION >= 3004
3483 return __builtin_popcount (mask);
3484#else
b25e998d
CG
3485 unsigned int i;
3486 int sum = 0;
a504d23a
LA
3487
3488 for (i = 0; i < 8 * sizeof (mask); i++)
3489 {
3490 if (mask & 0x1)
3491 sum++;
3492 mask = (mask >> 1);
3493 }
3494 return sum;
3495#endif
3496}
3497
e8b09b87
CL
3498static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3499 asection *sreloc, Elf_Internal_Rela *rel);
3500
3501static void
cc850f74
NC
3502arm_elf_fill_funcdesc (bfd *output_bfd,
3503 struct bfd_link_info *info,
3504 int *funcdesc_offset,
3505 int dynindx,
3506 int offset,
3507 bfd_vma addr,
3508 bfd_vma dynreloc_value,
3509 bfd_vma seg)
e8b09b87
CL
3510{
3511 if ((*funcdesc_offset & 1) == 0)
3512 {
3513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3514 asection *sgot = globals->root.sgot;
3515
cc850f74 3516 if (bfd_link_pic (info))
e8b09b87
CL
3517 {
3518 asection *srelgot = globals->root.srelgot;
3519 Elf_Internal_Rela outrel;
3520
3521 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3522 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3523 outrel.r_addend = 0;
3524
3525 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3526 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3527 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3528 }
3529 else
3530 {
3531 struct elf_link_hash_entry *hgot = globals->root.hgot;
3532 bfd_vma got_value = hgot->root.u.def.value
3533 + hgot->root.u.def.section->output_section->vma
3534 + hgot->root.u.def.section->output_offset;
3535
cc850f74
NC
3536 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3537 sgot->output_section->vma + sgot->output_offset
3538 + offset);
3539 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3540 sgot->output_section->vma + sgot->output_offset
3541 + offset + 4);
e8b09b87
CL
3542 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3543 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3544 }
3545 *funcdesc_offset |= 1;
3546 }
3547}
3548
780a67af
NC
3549/* Create an entry in an ARM ELF linker hash table. */
3550
3551static struct bfd_hash_entry *
57e8b36a 3552elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3553 struct bfd_hash_table * table,
3554 const char * string)
780a67af
NC
3555{
3556 struct elf32_arm_link_hash_entry * ret =
3557 (struct elf32_arm_link_hash_entry *) entry;
3558
3559 /* Allocate the structure if it has not already been allocated by a
3560 subclass. */
906e58ca 3561 if (ret == NULL)
21d799b5 3562 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3563 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3564 if (ret == NULL)
780a67af
NC
3565 return (struct bfd_hash_entry *) ret;
3566
3567 /* Call the allocation method of the superclass. */
3568 ret = ((struct elf32_arm_link_hash_entry *)
3569 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3570 table, string));
57e8b36a 3571 if (ret != NULL)
b7693d02 3572 {
ba93b8ac 3573 ret->tls_type = GOT_UNKNOWN;
0855e32b 3574 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3575 ret->plt.thumb_refcount = 0;
3576 ret->plt.maybe_thumb_refcount = 0;
3577 ret->plt.noncall_refcount = 0;
3578 ret->plt.got_offset = -1;
0a1b45a2 3579 ret->is_iplt = false;
a4fd1a8e 3580 ret->export_glue = NULL;
906e58ca
NC
3581
3582 ret->stub_cache = NULL;
e8b09b87
CL
3583
3584 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3585 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3586 ret->fdpic_cnts.funcdesc_cnt = 0;
3587 ret->fdpic_cnts.funcdesc_offset = -1;
3588 ret->fdpic_cnts.gotfuncdesc_offset = -1;
b7693d02 3589 }
780a67af
NC
3590
3591 return (struct bfd_hash_entry *) ret;
3592}
3593
34e77a92
RS
3594/* Ensure that we have allocated bookkeeping structures for ABFD's local
3595 symbols. */
3596
0a1b45a2 3597static bool
34e77a92
RS
3598elf32_arm_allocate_local_sym_info (bfd *abfd)
3599{
3600 if (elf_local_got_refcounts (abfd) == NULL)
3601 {
3602 bfd_size_type num_syms;
74fd118f
NC
3603
3604 elf32_arm_num_entries (abfd) = 0;
3605
3606 /* Whilst it might be tempting to allocate a single block of memory and
3607 then divide it up amoungst the arrays in the elf_arm_obj_tdata
3608 structure, this interferes with the work of memory checkers looking
3609 for buffer overruns. So allocate each array individually. */
34e77a92
RS
3610
3611 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
74fd118f
NC
3612
3613 elf_local_got_refcounts (abfd) = bfd_zalloc
3614 (abfd, num_syms * sizeof (* elf_local_got_refcounts (abfd)));
3615
3616 if (elf_local_got_refcounts (abfd) == NULL)
0a1b45a2 3617 return false;
34e77a92 3618
74fd118f
NC
3619 elf32_arm_local_tlsdesc_gotent (abfd) = bfd_zalloc
3620 (abfd, num_syms * sizeof (* elf32_arm_local_tlsdesc_gotent (abfd)));
34e77a92 3621
74fd118f
NC
3622 if (elf32_arm_local_tlsdesc_gotent (abfd) == NULL)
3623 return false;
f911bb22 3624
74fd118f
NC
3625 elf32_arm_local_iplt (abfd) = bfd_zalloc
3626 (abfd, num_syms * sizeof (* elf32_arm_local_iplt (abfd)));
34e77a92 3627
74fd118f
NC
3628 if (elf32_arm_local_iplt (abfd) == NULL)
3629 return false;
3630
3631 elf32_arm_local_fdpic_cnts (abfd) = bfd_zalloc
3632 (abfd, num_syms * sizeof (* elf32_arm_local_fdpic_cnts (abfd)));
3633
3634 if (elf32_arm_local_fdpic_cnts (abfd) == NULL)
3635 return false;
3636
3637 elf32_arm_local_got_tls_type (abfd) = bfd_zalloc
3638 (abfd, num_syms * sizeof (* elf32_arm_local_got_tls_type (abfd)));
3639
3640 if (elf32_arm_local_got_tls_type (abfd) == NULL)
3641 return false;
3642
3643 elf32_arm_num_entries (abfd) = num_syms;
34e77a92 3644
f911bb22
AM
3645#if GCC_VERSION >= 3000
3646 BFD_ASSERT (__alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd))
3647 <= __alignof__ (*elf_local_got_refcounts (abfd)));
3648 BFD_ASSERT (__alignof__ (*elf32_arm_local_iplt (abfd))
3649 <= __alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd)));
3650 BFD_ASSERT (__alignof__ (*elf32_arm_local_fdpic_cnts (abfd))
3651 <= __alignof__ (*elf32_arm_local_iplt (abfd)));
3652 BFD_ASSERT (__alignof__ (*elf32_arm_local_got_tls_type (abfd))
3653 <= __alignof__ (*elf32_arm_local_fdpic_cnts (abfd)));
3654#endif
34e77a92 3655 }
0a1b45a2 3656 return true;
34e77a92
RS
3657}
3658
3659/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3660 to input bfd ABFD. Create the information if it doesn't already exist.
3661 Return null if an allocation fails. */
3662
3663static struct arm_local_iplt_info *
3664elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3665{
3666 struct arm_local_iplt_info **ptr;
3667
3668 if (!elf32_arm_allocate_local_sym_info (abfd))
3669 return NULL;
3670
3671 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
74fd118f 3672 BFD_ASSERT (r_symndx < elf32_arm_num_entries (abfd));
34e77a92
RS
3673 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3674 if (*ptr == NULL)
3675 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3676 return *ptr;
3677}
3678
3679/* Try to obtain PLT information for the symbol with index R_SYMNDX
3680 in ABFD's symbol table. If the symbol is global, H points to its
3681 hash table entry, otherwise H is null.
3682
3683 Return true if the symbol does have PLT information. When returning
3684 true, point *ROOT_PLT at the target-independent reference count/offset
3685 union and *ARM_PLT at the ARM-specific information. */
3686
0a1b45a2 3687static bool
4ba2ef8f
TP
3688elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3689 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3690 unsigned long r_symndx, union gotplt_union **root_plt,
3691 struct arm_plt_info **arm_plt)
3692{
3693 struct arm_local_iplt_info *local_iplt;
3694
4ba2ef8f 3695 if (globals->root.splt == NULL && globals->root.iplt == NULL)
0a1b45a2 3696 return false;
4ba2ef8f 3697
34e77a92
RS
3698 if (h != NULL)
3699 {
3700 *root_plt = &h->root.plt;
3701 *arm_plt = &h->plt;
0a1b45a2 3702 return true;
34e77a92
RS
3703 }
3704
3705 if (elf32_arm_local_iplt (abfd) == NULL)
0a1b45a2 3706 return false;
34e77a92 3707
74fd118f
NC
3708 if (r_symndx >= elf32_arm_num_entries (abfd))
3709 return false;
3710
34e77a92
RS
3711 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3712 if (local_iplt == NULL)
0a1b45a2 3713 return false;
34e77a92
RS
3714
3715 *root_plt = &local_iplt->root;
3716 *arm_plt = &local_iplt->arm;
0a1b45a2 3717 return true;
34e77a92
RS
3718}
3719
0a1b45a2 3720static bool using_thumb_only (struct elf32_arm_link_hash_table *globals);
59029f57 3721
34e77a92
RS
3722/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3723 before it. */
3724
0a1b45a2 3725static bool
34e77a92
RS
3726elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3727 struct arm_plt_info *arm_plt)
3728{
3729 struct elf32_arm_link_hash_table *htab;
3730
3731 htab = elf32_arm_hash_table (info);
59029f57 3732
cc850f74 3733 return (!using_thumb_only (htab) && (arm_plt->thumb_refcount != 0
59029f57 3734 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
34e77a92
RS
3735}
3736
3737/* Return a pointer to the head of the dynamic reloc list that should
3738 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3739 ABFD's symbol table. Return null if an error occurs. */
3740
3741static struct elf_dyn_relocs **
3742elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3743 Elf_Internal_Sym *isym)
3744{
3745 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3746 {
3747 struct arm_local_iplt_info *local_iplt;
3748
3749 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3750 if (local_iplt == NULL)
3751 return NULL;
3752 return &local_iplt->dyn_relocs;
3753 }
3754 else
3755 {
3756 /* Track dynamic relocs needed for local syms too.
3757 We really need local syms available to do this
3758 easily. Oh well. */
3759 asection *s;
3760 void *vpp;
3761
3762 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3763 if (s == NULL)
cc850f74 3764 return NULL;
34e77a92
RS
3765
3766 vpp = &elf_section_data (s)->local_dynrel;
3767 return (struct elf_dyn_relocs **) vpp;
3768 }
3769}
3770
906e58ca
NC
3771/* Initialize an entry in the stub hash table. */
3772
3773static struct bfd_hash_entry *
3774stub_hash_newfunc (struct bfd_hash_entry *entry,
3775 struct bfd_hash_table *table,
3776 const char *string)
3777{
3778 /* Allocate the structure if it has not already been allocated by a
3779 subclass. */
3780 if (entry == NULL)
3781 {
21d799b5 3782 entry = (struct bfd_hash_entry *)
99059e56 3783 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3784 if (entry == NULL)
3785 return entry;
3786 }
3787
3788 /* Call the allocation method of the superclass. */
3789 entry = bfd_hash_newfunc (entry, table, string);
3790 if (entry != NULL)
3791 {
3792 struct elf32_arm_stub_hash_entry *eh;
3793
3794 /* Initialize the local fields. */
3795 eh = (struct elf32_arm_stub_hash_entry *) entry;
3796 eh->stub_sec = NULL;
0955507f 3797 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3798 eh->source_value = 0;
906e58ca
NC
3799 eh->target_value = 0;
3800 eh->target_section = NULL;
cedfb179 3801 eh->orig_insn = 0;
906e58ca 3802 eh->stub_type = arm_stub_none;
461a49ca
DJ
3803 eh->stub_size = 0;
3804 eh->stub_template = NULL;
0955507f 3805 eh->stub_template_size = -1;
906e58ca
NC
3806 eh->h = NULL;
3807 eh->id_sec = NULL;
d8d2f433 3808 eh->output_name = NULL;
906e58ca
NC
3809 }
3810
3811 return entry;
3812}
3813
00a97672 3814/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3815 shortcuts to them in our hash table. */
3816
0a1b45a2 3817static bool
57e8b36a 3818create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3819{
3820 struct elf32_arm_link_hash_table *htab;
3821
e5a52504 3822 htab = elf32_arm_hash_table (info);
4dfe6ac6 3823 if (htab == NULL)
0a1b45a2 3824 return false;
4dfe6ac6 3825
5e681ec4 3826 if (! _bfd_elf_create_got_section (dynobj, info))
0a1b45a2 3827 return false;
5e681ec4 3828
e8b09b87
CL
3829 /* Also create .rofixup. */
3830 if (htab->fdpic_p)
3831 {
3832 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3833 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
fd361982
AM
3835 if (htab->srofixup == NULL
3836 || !bfd_set_section_alignment (htab->srofixup, 2))
0a1b45a2 3837 return false;
e8b09b87
CL
3838 }
3839
0a1b45a2 3840 return true;
5e681ec4
PB
3841}
3842
34e77a92
RS
3843/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3844
0a1b45a2 3845static bool
34e77a92
RS
3846create_ifunc_sections (struct bfd_link_info *info)
3847{
3848 struct elf32_arm_link_hash_table *htab;
3849 const struct elf_backend_data *bed;
3850 bfd *dynobj;
3851 asection *s;
3852 flagword flags;
b38cadfb 3853
34e77a92
RS
3854 htab = elf32_arm_hash_table (info);
3855 dynobj = htab->root.dynobj;
3856 bed = get_elf_backend_data (dynobj);
3857 flags = bed->dynamic_sec_flags;
3858
3859 if (htab->root.iplt == NULL)
3860 {
3d4d4302
AM
3861 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3862 flags | SEC_READONLY | SEC_CODE);
34e77a92 3863 if (s == NULL
fd361982 3864 || !bfd_set_section_alignment (s, bed->plt_alignment))
0a1b45a2 3865 return false;
34e77a92
RS
3866 htab->root.iplt = s;
3867 }
3868
3869 if (htab->root.irelplt == NULL)
3870 {
3d4d4302
AM
3871 s = bfd_make_section_anyway_with_flags (dynobj,
3872 RELOC_SECTION (htab, ".iplt"),
3873 flags | SEC_READONLY);
34e77a92 3874 if (s == NULL
fd361982 3875 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3876 return false;
34e77a92
RS
3877 htab->root.irelplt = s;
3878 }
3879
3880 if (htab->root.igotplt == NULL)
3881 {
3d4d4302 3882 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92 3883 if (s == NULL
fd361982 3884 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3885 return false;
34e77a92
RS
3886 htab->root.igotplt = s;
3887 }
0a1b45a2 3888 return true;
34e77a92
RS
3889}
3890
eed94f8f
NC
3891/* Determine if we're dealing with a Thumb only architecture. */
3892
0a1b45a2 3893static bool
eed94f8f
NC
3894using_thumb_only (struct elf32_arm_link_hash_table *globals)
3895{
2fd158eb
TP
3896 int arch;
3897 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3898 Tag_CPU_arch_profile);
eed94f8f 3899
2fd158eb
TP
3900 if (profile)
3901 return profile == 'M';
eed94f8f 3902
2fd158eb 3903 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3904
60a019a0 3905 /* Force return logic to be reviewed for each new architecture. */
031254f2 3906 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0 3907
2fd158eb
TP
3908 if (arch == TAG_CPU_ARCH_V6_M
3909 || arch == TAG_CPU_ARCH_V6S_M
3910 || arch == TAG_CPU_ARCH_V7E_M
3911 || arch == TAG_CPU_ARCH_V8M_BASE
031254f2
AV
3912 || arch == TAG_CPU_ARCH_V8M_MAIN
3913 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
0a1b45a2 3914 return true;
eed94f8f 3915
0a1b45a2 3916 return false;
eed94f8f
NC
3917}
3918
3919/* Determine if we're dealing with a Thumb-2 object. */
3920
0a1b45a2 3921static bool
eed94f8f
NC
3922using_thumb2 (struct elf32_arm_link_hash_table *globals)
3923{
60a019a0
TP
3924 int arch;
3925 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3926 Tag_THUMB_ISA_use);
3927
d8147d70
RE
3928 /* No use of thumb permitted, or a legacy thumb-1/2 definition. */
3929 if (thumb_isa < 3)
60a019a0
TP
3930 return thumb_isa == 2;
3931
d8147d70 3932 /* Variant of thumb is described by the architecture tag. */
60a019a0
TP
3933 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3934
3935 /* Force return logic to be reviewed for each new architecture. */
031254f2 3936 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
3937
3938 return (arch == TAG_CPU_ARCH_V6T2
3939 || arch == TAG_CPU_ARCH_V7
3940 || arch == TAG_CPU_ARCH_V7E_M
3941 || arch == TAG_CPU_ARCH_V8
bff0500d 3942 || arch == TAG_CPU_ARCH_V8R
031254f2
AV
3943 || arch == TAG_CPU_ARCH_V8M_MAIN
3944 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
eed94f8f
NC
3945}
3946
5e866f5a
TP
3947/* Determine whether Thumb-2 BL instruction is available. */
3948
0a1b45a2 3949static bool
5e866f5a
TP
3950using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3951{
3952 int arch =
3953 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3954
3955 /* Force return logic to be reviewed for each new architecture. */
3197e593 3956 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
5e866f5a
TP
3957
3958 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3959 return (arch == TAG_CPU_ARCH_V6T2
3960 || arch >= TAG_CPU_ARCH_V7);
3961}
3962
00a97672
RS
3963/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3964 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3965 hash table. */
3966
0a1b45a2 3967static bool
57e8b36a 3968elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3969{
3970 struct elf32_arm_link_hash_table *htab;
3971
3972 htab = elf32_arm_hash_table (info);
4dfe6ac6 3973 if (htab == NULL)
0a1b45a2 3974 return false;
4dfe6ac6 3975
362d30a1 3976 if (!htab->root.sgot && !create_got_section (dynobj, info))
0a1b45a2 3977 return false;
5e681ec4
PB
3978
3979 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
0a1b45a2 3980 return false;
5e681ec4 3981
90c14f0c 3982 if (htab->root.target_os == is_vxworks)
00a97672
RS
3983 {
3984 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
0a1b45a2 3985 return false;
00a97672 3986
0e1862bb 3987 if (bfd_link_pic (info))
00a97672
RS
3988 {
3989 htab->plt_header_size = 0;
3990 htab->plt_entry_size
3991 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3992 }
3993 else
3994 {
3995 htab->plt_header_size
3996 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3997 htab->plt_entry_size
3998 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3999 }
aebf9be7
NC
4000
4001 if (elf_elfheader (dynobj))
4002 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 4003 }
eed94f8f
NC
4004 else
4005 {
4006 /* PR ld/16017
4007 Test for thumb only architectures. Note - we cannot just call
4008 using_thumb_only() as the attributes in the output bfd have not been
4009 initialised at this point, so instead we use the input bfd. */
4010 bfd * saved_obfd = htab->obfd;
4011
4012 htab->obfd = dynobj;
4013 if (using_thumb_only (htab))
4014 {
4015 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
4016 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
4017 }
4018 htab->obfd = saved_obfd;
4019 }
5e681ec4 4020
7801f98f
CL
4021 if (htab->fdpic_p) {
4022 htab->plt_header_size = 0;
4023 if (info->flags & DF_BIND_NOW)
cc850f74 4024 htab->plt_entry_size = 4 * (ARRAY_SIZE (elf32_arm_fdpic_plt_entry) - 5);
7801f98f 4025 else
cc850f74 4026 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry);
7801f98f
CL
4027 }
4028
362d30a1
RS
4029 if (!htab->root.splt
4030 || !htab->root.srelplt
9d19e4fd
AM
4031 || !htab->root.sdynbss
4032 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
4033 abort ();
4034
0a1b45a2 4035 return true;
5e681ec4
PB
4036}
4037
906e58ca
NC
4038/* Copy the extra info we tack onto an elf_link_hash_entry. */
4039
4040static void
4041elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4042 struct elf_link_hash_entry *dir,
4043 struct elf_link_hash_entry *ind)
4044{
4045 struct elf32_arm_link_hash_entry *edir, *eind;
4046
4047 edir = (struct elf32_arm_link_hash_entry *) dir;
4048 eind = (struct elf32_arm_link_hash_entry *) ind;
4049
906e58ca
NC
4050 if (ind->root.type == bfd_link_hash_indirect)
4051 {
4052 /* Copy over PLT info. */
34e77a92
RS
4053 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4054 eind->plt.thumb_refcount = 0;
4055 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4056 eind->plt.maybe_thumb_refcount = 0;
4057 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4058 eind->plt.noncall_refcount = 0;
4059
e8b09b87
CL
4060 /* Copy FDPIC counters. */
4061 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4062 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4063 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4064
34e77a92
RS
4065 /* We should only allocate a function to .iplt once the final
4066 symbol information is known. */
4067 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
4068
4069 if (dir->got.refcount <= 0)
4070 {
4071 edir->tls_type = eind->tls_type;
4072 eind->tls_type = GOT_UNKNOWN;
4073 }
4074 }
4075
4076 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4077}
4078
68faa637
AM
4079/* Destroy an ARM elf linker hash table. */
4080
4081static void
d495ab0d 4082elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
4083{
4084 struct elf32_arm_link_hash_table *ret
d495ab0d 4085 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
4086
4087 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 4088 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
4089}
4090
906e58ca
NC
4091/* Create an ARM elf linker hash table. */
4092
4093static struct bfd_link_hash_table *
4094elf32_arm_link_hash_table_create (bfd *abfd)
4095{
4096 struct elf32_arm_link_hash_table *ret;
986f0783 4097 size_t amt = sizeof (struct elf32_arm_link_hash_table);
906e58ca 4098
7bf52ea2 4099 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
4100 if (ret == NULL)
4101 return NULL;
4102
4103 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4104 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
4105 sizeof (struct elf32_arm_link_hash_entry),
4106 ARM_ELF_DATA))
906e58ca
NC
4107 {
4108 free (ret);
4109 return NULL;
4110 }
4111
906e58ca 4112 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 4113 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
4114#ifdef FOUR_WORD_PLT
4115 ret->plt_header_size = 16;
4116 ret->plt_entry_size = 16;
4117#else
4118 ret->plt_header_size = 20;
1db37fe6 4119 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 4120#endif
0a1b45a2 4121 ret->use_rel = true;
906e58ca 4122 ret->obfd = abfd;
617a5ada 4123 ret->fdpic_p = 0;
906e58ca
NC
4124
4125 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4126 sizeof (struct elf32_arm_stub_hash_entry)))
4127 {
d495ab0d 4128 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
4129 return NULL;
4130 }
d495ab0d 4131 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
4132
4133 return &ret->root.root;
4134}
4135
cd1dac3d
DG
4136/* Determine what kind of NOPs are available. */
4137
0a1b45a2 4138static bool
cd1dac3d
DG
4139arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4140{
4141 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4142 Tag_CPU_arch);
cd1dac3d 4143
60a019a0 4144 /* Force return logic to be reviewed for each new architecture. */
3197e593 4145 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
60a019a0
TP
4146
4147 return (arch == TAG_CPU_ARCH_V6T2
4148 || arch == TAG_CPU_ARCH_V6K
4149 || arch == TAG_CPU_ARCH_V7
bff0500d 4150 || arch == TAG_CPU_ARCH_V8
3197e593
PW
4151 || arch == TAG_CPU_ARCH_V8R
4152 || arch == TAG_CPU_ARCH_V9);
cd1dac3d
DG
4153}
4154
0a1b45a2 4155static bool
f4ac8484
DJ
4156arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4157{
4158 switch (stub_type)
4159 {
fea2b4d6 4160 case arm_stub_long_branch_thumb_only:
80c135e5 4161 case arm_stub_long_branch_thumb2_only:
d5a67c02 4162 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
4163 case arm_stub_long_branch_v4t_thumb_arm:
4164 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 4165 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 4166 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 4167 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 4168 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4169 return true;
f4ac8484
DJ
4170 case arm_stub_none:
4171 BFD_FAIL ();
0a1b45a2 4172 return false;
f4ac8484
DJ
4173 break;
4174 default:
0a1b45a2 4175 return false;
f4ac8484
DJ
4176 }
4177}
4178
906e58ca
NC
4179/* Determine the type of stub needed, if any, for a call. */
4180
4181static enum elf32_arm_stub_type
4182arm_type_of_stub (struct bfd_link_info *info,
4183 asection *input_sec,
4184 const Elf_Internal_Rela *rel,
34e77a92 4185 unsigned char st_type,
35fc36a8 4186 enum arm_st_branch_type *actual_branch_type,
906e58ca 4187 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
4188 bfd_vma destination,
4189 asection *sym_sec,
4190 bfd *input_bfd,
4191 const char *name)
906e58ca
NC
4192{
4193 bfd_vma location;
4194 bfd_signed_vma branch_offset;
4195 unsigned int r_type;
4196 struct elf32_arm_link_hash_table * globals;
0a1b45a2 4197 bool thumb2, thumb2_bl, thumb_only;
906e58ca 4198 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 4199 int use_plt = 0;
35fc36a8 4200 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
4201 union gotplt_union *root_plt;
4202 struct arm_plt_info *arm_plt;
d5a67c02
AV
4203 int arch;
4204 int thumb2_movw;
906e58ca 4205
35fc36a8 4206 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
4207 return stub_type;
4208
906e58ca 4209 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4210 if (globals == NULL)
4211 return stub_type;
906e58ca
NC
4212
4213 thumb_only = using_thumb_only (globals);
906e58ca 4214 thumb2 = using_thumb2 (globals);
5e866f5a 4215 thumb2_bl = using_thumb2_bl (globals);
906e58ca 4216
d5a67c02
AV
4217 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4218
4219 /* True for architectures that implement the thumb2 movw instruction. */
4220 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4221
906e58ca
NC
4222 /* Determine where the call point is. */
4223 location = (input_sec->output_offset
4224 + input_sec->output_section->vma
4225 + rel->r_offset);
4226
906e58ca
NC
4227 r_type = ELF32_R_TYPE (rel->r_info);
4228
39f21624
NC
4229 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4230 are considering a function call relocation. */
c5423981 4231 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
07d6d2b8 4232 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
4233 && branch_type == ST_BRANCH_TO_ARM)
4234 branch_type = ST_BRANCH_TO_THUMB;
4235
34e77a92
RS
4236 /* For TLS call relocs, it is the caller's responsibility to provide
4237 the address of the appropriate trampoline. */
4238 if (r_type != R_ARM_TLS_CALL
4239 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
4240 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4241 ELF32_R_SYM (rel->r_info), &root_plt,
4242 &arm_plt)
34e77a92 4243 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 4244 {
34e77a92 4245 asection *splt;
fe33d2fa 4246
34e77a92
RS
4247 if (hash == NULL || hash->is_iplt)
4248 splt = globals->root.iplt;
4249 else
4250 splt = globals->root.splt;
4251 if (splt != NULL)
b38cadfb 4252 {
34e77a92
RS
4253 use_plt = 1;
4254
4255 /* Note when dealing with PLT entries: the main PLT stub is in
4256 ARM mode, so if the branch is in Thumb mode, another
4257 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
4258 PLT stub. If a long branch stub is needed, we'll add a
4259 Thumb->Arm one and branch directly to the ARM PLT entry.
4260 Here, we have to check if a pre-PLT Thumb->ARM stub
4261 is needed and if it will be close enough. */
34e77a92
RS
4262
4263 destination = (splt->output_section->vma
4264 + splt->output_offset
4265 + root_plt->offset);
4266 st_type = STT_FUNC;
2df2751d
CL
4267
4268 /* Thumb branch/call to PLT: it can become a branch to ARM
4269 or to Thumb. We must perform the same checks and
4270 corrections as in elf32_arm_final_link_relocate. */
4271 if ((r_type == R_ARM_THM_CALL)
4272 || (r_type == R_ARM_THM_JUMP24))
4273 {
4274 if (globals->use_blx
4275 && r_type == R_ARM_THM_CALL
4276 && !thumb_only)
4277 {
4278 /* If the Thumb BLX instruction is available, convert
4279 the BL to a BLX instruction to call the ARM-mode
4280 PLT entry. */
4281 branch_type = ST_BRANCH_TO_ARM;
4282 }
4283 else
4284 {
4285 if (!thumb_only)
4286 /* Target the Thumb stub before the ARM PLT entry. */
4287 destination -= PLT_THUMB_STUB_SIZE;
4288 branch_type = ST_BRANCH_TO_THUMB;
4289 }
4290 }
4291 else
4292 {
4293 branch_type = ST_BRANCH_TO_ARM;
4294 }
34e77a92 4295 }
5fa9e92f 4296 }
34e77a92
RS
4297 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4298 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 4299
fe33d2fa
CL
4300 branch_offset = (bfd_signed_vma)(destination - location);
4301
0855e32b 4302 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 4303 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 4304 {
5fa9e92f
CL
4305 /* Handle cases where:
4306 - this call goes too far (different Thumb/Thumb2 max
99059e56 4307 distance)
155d87d7 4308 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
4309 Thumb->Arm branch (not bl). A stub is needed in this case,
4310 but only if this call is not through a PLT entry. Indeed,
695344c0 4311 PLT stubs handle mode switching already. */
5e866f5a 4312 if ((!thumb2_bl
906e58ca
NC
4313 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4314 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4315 || (thumb2_bl
906e58ca
NC
4316 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4318 || (thumb2
4319 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4320 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4321 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4322 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4323 && (((r_type == R_ARM_THM_CALL
4324 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981 4325 || (r_type == R_ARM_THM_JUMP24)
07d6d2b8 4326 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4327 && !use_plt))
906e58ca 4328 {
2df2751d
CL
4329 /* If we need to insert a Thumb-Thumb long branch stub to a
4330 PLT, use one that branches directly to the ARM PLT
4331 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4332 stub, undo this now. */
695344c0
NC
4333 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4334 {
4335 branch_type = ST_BRANCH_TO_ARM;
4336 branch_offset += PLT_THUMB_STUB_SIZE;
4337 }
2df2751d 4338
35fc36a8 4339 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4340 {
4341 /* Thumb to thumb. */
4342 if (!thumb_only)
4343 {
d5a67c02 4344 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4345 _bfd_error_handler
871b3ab2 4346 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4347 " section with SHF_ARM_PURECODE section"
4348 " attribute is only supported for M-profile"
90b6238f 4349 " targets that implement the movw instruction"),
10463f39 4350 input_bfd, input_sec);
d5a67c02 4351
0e1862bb 4352 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4353 /* PIC stubs. */
155d87d7 4354 ? ((globals->use_blx
9553db3c 4355 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4356 /* V5T and above. Stub starts with ARM code, so
4357 we must be able to switch mode before
4358 reaching it, which is only possible for 'bl'
4359 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4360 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4361 /* On V4T, use Thumb code only. */
d3626fb0 4362 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4363
4364 /* non-PIC stubs. */
155d87d7 4365 : ((globals->use_blx
9553db3c 4366 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4367 /* V5T and above. */
4368 ? arm_stub_long_branch_any_any
4369 /* V4T. */
d3626fb0 4370 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4371 }
4372 else
4373 {
d5a67c02
AV
4374 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4375 stub_type = arm_stub_long_branch_thumb2_only_pure;
4376 else
4377 {
4378 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4379 _bfd_error_handler
871b3ab2 4380 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4381 " section with SHF_ARM_PURECODE section"
4382 " attribute is only supported for M-profile"
90b6238f 4383 " targets that implement the movw instruction"),
10463f39 4384 input_bfd, input_sec);
d5a67c02
AV
4385
4386 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4387 /* PIC stub. */
4388 ? arm_stub_long_branch_thumb_only_pic
4389 /* non-PIC stub. */
4390 : (thumb2 ? arm_stub_long_branch_thumb2_only
4391 : arm_stub_long_branch_thumb_only);
4392 }
906e58ca
NC
4393 }
4394 }
4395 else
4396 {
d5a67c02 4397 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4398 _bfd_error_handler
871b3ab2 4399 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4400 " section with SHF_ARM_PURECODE section"
4401 " attribute is only supported" " for M-profile"
90b6238f 4402 " targets that implement the movw instruction"),
10463f39 4403 input_bfd, input_sec);
d5a67c02 4404
906e58ca 4405 /* Thumb to arm. */
c820be07
NC
4406 if (sym_sec != NULL
4407 && sym_sec->owner != NULL
4408 && !INTERWORK_FLAG (sym_sec->owner))
4409 {
4eca0228 4410 _bfd_error_handler
90b6238f
AM
4411 (_("%pB(%s): warning: interworking not enabled;"
4412 " first occurrence: %pB: %s call to %s"),
4413 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
c820be07
NC
4414 }
4415
0855e32b 4416 stub_type =
0e1862bb 4417 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4418 /* PIC stubs. */
0855e32b 4419 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4420 /* TLS PIC stubs. */
0855e32b
NS
4421 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4422 : arm_stub_long_branch_v4t_thumb_tls_pic)
4423 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4424 /* V5T PIC and above. */
4425 ? arm_stub_long_branch_any_arm_pic
4426 /* V4T PIC stub. */
4427 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4428
4429 /* non-PIC stubs. */
0855e32b 4430 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4431 /* V5T and above. */
4432 ? arm_stub_long_branch_any_any
4433 /* V4T. */
4434 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4435
4436 /* Handle v4t short branches. */
fea2b4d6 4437 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4438 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4439 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4440 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4441 }
4442 }
4443 }
fe33d2fa
CL
4444 else if (r_type == R_ARM_CALL
4445 || r_type == R_ARM_JUMP24
0855e32b
NS
4446 || r_type == R_ARM_PLT32
4447 || r_type == R_ARM_TLS_CALL)
906e58ca 4448 {
d5a67c02 4449 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4450 _bfd_error_handler
871b3ab2 4451 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4452 " section with SHF_ARM_PURECODE section"
4453 " attribute is only supported for M-profile"
90b6238f 4454 " targets that implement the movw instruction"),
10463f39 4455 input_bfd, input_sec);
35fc36a8 4456 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4457 {
4458 /* Arm to thumb. */
c820be07
NC
4459
4460 if (sym_sec != NULL
4461 && sym_sec->owner != NULL
4462 && !INTERWORK_FLAG (sym_sec->owner))
4463 {
4eca0228 4464 _bfd_error_handler
90b6238f
AM
4465 (_("%pB(%s): warning: interworking not enabled;"
4466 " first occurrence: %pB: %s call to %s"),
4467 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
c820be07
NC
4468 }
4469
4470 /* We have an extra 2-bytes reach because of
4471 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4472 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4473 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4474 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4475 || (r_type == R_ARM_JUMP24)
4476 || (r_type == R_ARM_PLT32))
906e58ca 4477 {
0e1862bb 4478 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4479 /* PIC stubs. */
ebe24dd4
CL
4480 ? ((globals->use_blx)
4481 /* V5T and above. */
4482 ? arm_stub_long_branch_any_thumb_pic
4483 /* V4T stub. */
4484 : arm_stub_long_branch_v4t_arm_thumb_pic)
4485
c2b4a39d
CL
4486 /* non-PIC stubs. */
4487 : ((globals->use_blx)
4488 /* V5T and above. */
4489 ? arm_stub_long_branch_any_any
4490 /* V4T. */
4491 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4492 }
4493 }
4494 else
4495 {
4496 /* Arm to arm. */
4497 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4498 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4499 {
0855e32b 4500 stub_type =
0e1862bb 4501 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4502 /* PIC stubs. */
0855e32b 4503 ? (r_type == R_ARM_TLS_CALL
6a631e86 4504 /* TLS PIC Stub. */
0855e32b 4505 ? arm_stub_long_branch_any_tls_pic
90c14f0c 4506 : (globals->root.target_os == is_nacl
7a89b94e
NC
4507 ? arm_stub_long_branch_arm_nacl_pic
4508 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4509 /* non-PIC stubs. */
90c14f0c 4510 : (globals->root.target_os == is_nacl
7a89b94e
NC
4511 ? arm_stub_long_branch_arm_nacl
4512 : arm_stub_long_branch_any_any);
906e58ca
NC
4513 }
4514 }
4515 }
4516
fe33d2fa
CL
4517 /* If a stub is needed, record the actual destination type. */
4518 if (stub_type != arm_stub_none)
35fc36a8 4519 *actual_branch_type = branch_type;
fe33d2fa 4520
906e58ca
NC
4521 return stub_type;
4522}
4523
4524/* Build a name for an entry in the stub hash table. */
4525
4526static char *
4527elf32_arm_stub_name (const asection *input_section,
4528 const asection *sym_sec,
4529 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4530 const Elf_Internal_Rela *rel,
4531 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4532{
4533 char *stub_name;
4534 bfd_size_type len;
4535
4536 if (hash)
4537 {
fe33d2fa 4538 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4539 stub_name = (char *) bfd_malloc (len);
906e58ca 4540 if (stub_name != NULL)
fe33d2fa 4541 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4542 input_section->id & 0xffffffff,
4543 hash->root.root.root.string,
fe33d2fa
CL
4544 (int) rel->r_addend & 0xffffffff,
4545 (int) stub_type);
906e58ca
NC
4546 }
4547 else
4548 {
fe33d2fa 4549 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4550 stub_name = (char *) bfd_malloc (len);
906e58ca 4551 if (stub_name != NULL)
fe33d2fa 4552 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4553 input_section->id & 0xffffffff,
4554 sym_sec->id & 0xffffffff,
0855e32b
NS
4555 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4556 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4557 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4558 (int) rel->r_addend & 0xffffffff,
4559 (int) stub_type);
906e58ca
NC
4560 }
4561
4562 return stub_name;
4563}
4564
4565/* Look up an entry in the stub hash. Stub entries are cached because
4566 creating the stub name takes a bit of time. */
4567
4568static struct elf32_arm_stub_hash_entry *
4569elf32_arm_get_stub_entry (const asection *input_section,
4570 const asection *sym_sec,
4571 struct elf_link_hash_entry *hash,
4572 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4573 struct elf32_arm_link_hash_table *htab,
4574 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4575{
4576 struct elf32_arm_stub_hash_entry *stub_entry;
4577 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4578 const asection *id_sec;
4579
4580 if ((input_section->flags & SEC_CODE) == 0)
4581 return NULL;
4582
4d83e8d9
CL
4583 /* If the input section is the CMSE stubs one and it needs a long
4584 branch stub to reach it's final destination, give up with an
4585 error message: this is not supported. See PR ld/24709. */
cc850f74 4586 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen (CMSE_STUB_NAME)))
4d83e8d9
CL
4587 {
4588 bfd *output_bfd = htab->obfd;
4589 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4590
4591 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4592 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4593 CMSE_STUB_NAME,
4594 (uint64_t)out_sec->output_section->vma
4595 + out_sec->output_offset,
4596 (uint64_t)sym_sec->output_section->vma
4597 + sym_sec->output_offset
4598 + h->root.root.u.def.value);
4599 /* Exit, rather than leave incompletely processed
4600 relocations. */
cc850f74 4601 xexit (1);
4d83e8d9
CL
4602 }
4603
906e58ca
NC
4604 /* If this input section is part of a group of sections sharing one
4605 stub section, then use the id of the first section in the group.
4606 Stub names need to include a section id, as there may well be
4607 more than one stub used to reach say, printf, and we need to
4608 distinguish between them. */
c2abbbeb 4609 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4610 id_sec = htab->stub_group[input_section->id].link_sec;
4611
4612 if (h != NULL && h->stub_cache != NULL
4613 && h->stub_cache->h == h
fe33d2fa
CL
4614 && h->stub_cache->id_sec == id_sec
4615 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4616 {
4617 stub_entry = h->stub_cache;
4618 }
4619 else
4620 {
4621 char *stub_name;
4622
fe33d2fa 4623 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4624 if (stub_name == NULL)
4625 return NULL;
4626
4627 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
0a1b45a2 4628 stub_name, false, false);
906e58ca
NC
4629 if (h != NULL)
4630 h->stub_cache = stub_entry;
4631
4632 free (stub_name);
4633 }
4634
4635 return stub_entry;
4636}
4637
daa4adae
TP
4638/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4639 section. */
4640
0a1b45a2 4641static bool
daa4adae
TP
4642arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4643{
4644 if (stub_type >= max_stub_type)
4645 abort (); /* Should be unreachable. */
4646
4ba2ef8f
TP
4647 switch (stub_type)
4648 {
4649 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4650 return true;
4ba2ef8f
TP
4651
4652 default:
0a1b45a2 4653 return false;
4ba2ef8f
TP
4654 }
4655
4656 abort (); /* Should be unreachable. */
daa4adae
TP
4657}
4658
4659/* Required alignment (as a power of 2) for the dedicated section holding
4660 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4661 with input sections. */
4662
4663static int
4664arm_dedicated_stub_output_section_required_alignment
4665 (enum elf32_arm_stub_type stub_type)
4666{
4667 if (stub_type >= max_stub_type)
4668 abort (); /* Should be unreachable. */
4669
4ba2ef8f
TP
4670 switch (stub_type)
4671 {
4672 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4673 boundary. */
4674 case arm_stub_cmse_branch_thumb_only:
4675 return 5;
4676
4677 default:
4678 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4679 return 0;
4680 }
4681
4682 abort (); /* Should be unreachable. */
daa4adae
TP
4683}
4684
4685/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4686 NULL if veneers of this type are interspersed with input sections. */
4687
4688static const char *
4689arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4690{
4691 if (stub_type >= max_stub_type)
4692 abort (); /* Should be unreachable. */
4693
4ba2ef8f
TP
4694 switch (stub_type)
4695 {
4696 case arm_stub_cmse_branch_thumb_only:
4d83e8d9 4697 return CMSE_STUB_NAME;
4ba2ef8f
TP
4698
4699 default:
4700 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4701 return NULL;
4702 }
4703
4704 abort (); /* Should be unreachable. */
daa4adae
TP
4705}
4706
4707/* If veneers of type STUB_TYPE should go in a dedicated output section,
4708 returns the address of the hash table field in HTAB holding a pointer to the
4709 corresponding input section. Otherwise, returns NULL. */
4710
4711static asection **
4ba2ef8f
TP
4712arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4713 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4714{
4715 if (stub_type >= max_stub_type)
4716 abort (); /* Should be unreachable. */
4717
4ba2ef8f
TP
4718 switch (stub_type)
4719 {
4720 case arm_stub_cmse_branch_thumb_only:
4721 return &htab->cmse_stub_sec;
4722
4723 default:
4724 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4725 return NULL;
4726 }
4727
4728 abort (); /* Should be unreachable. */
daa4adae
TP
4729}
4730
4731/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4732 is the section that branch into veneer and can be NULL if stub should go in
4733 a dedicated output section. Returns a pointer to the stub section, and the
4734 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4735 LINK_SEC_P may be NULL. */
906e58ca 4736
48229727
JB
4737static asection *
4738elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4739 struct elf32_arm_link_hash_table *htab,
4740 enum elf32_arm_stub_type stub_type)
906e58ca 4741{
daa4adae
TP
4742 asection *link_sec, *out_sec, **stub_sec_p;
4743 const char *stub_sec_prefix;
0a1b45a2 4744 bool dedicated_output_section =
daa4adae
TP
4745 arm_dedicated_stub_output_section_required (stub_type);
4746 int align;
906e58ca 4747
daa4adae 4748 if (dedicated_output_section)
906e58ca 4749 {
daa4adae
TP
4750 bfd *output_bfd = htab->obfd;
4751 const char *out_sec_name =
4752 arm_dedicated_stub_output_section_name (stub_type);
4753 link_sec = NULL;
4754 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4755 stub_sec_prefix = out_sec_name;
4756 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4757 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4758 if (out_sec == NULL)
906e58ca 4759 {
90b6238f 4760 _bfd_error_handler (_("no address assigned to the veneers output "
4eca0228 4761 "section %s"), out_sec_name);
daa4adae 4762 return NULL;
906e58ca 4763 }
daa4adae
TP
4764 }
4765 else
4766 {
c2abbbeb 4767 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4768 link_sec = htab->stub_group[section->id].link_sec;
4769 BFD_ASSERT (link_sec != NULL);
4770 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4771 if (*stub_sec_p == NULL)
4772 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4773 stub_sec_prefix = link_sec->name;
4774 out_sec = link_sec->output_section;
90c14f0c 4775 align = htab->root.target_os == is_nacl ? 4 : 3;
906e58ca 4776 }
b38cadfb 4777
daa4adae
TP
4778 if (*stub_sec_p == NULL)
4779 {
4780 size_t namelen;
4781 bfd_size_type len;
4782 char *s_name;
4783
4784 namelen = strlen (stub_sec_prefix);
4785 len = namelen + sizeof (STUB_SUFFIX);
4786 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4787 if (s_name == NULL)
4788 return NULL;
4789
4790 memcpy (s_name, stub_sec_prefix, namelen);
4791 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4792 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4793 align);
4794 if (*stub_sec_p == NULL)
4795 return NULL;
4796
4797 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4798 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4799 | SEC_KEEP;
4800 }
4801
4802 if (!dedicated_output_section)
4803 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4804
48229727
JB
4805 if (link_sec_p)
4806 *link_sec_p = link_sec;
b38cadfb 4807
daa4adae 4808 return *stub_sec_p;
48229727
JB
4809}
4810
4811/* Add a new stub entry to the stub hash. Not all fields of the new
4812 stub entry are initialised. */
4813
4814static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4815elf32_arm_add_stub (const char *stub_name, asection *section,
4816 struct elf32_arm_link_hash_table *htab,
4817 enum elf32_arm_stub_type stub_type)
48229727
JB
4818{
4819 asection *link_sec;
4820 asection *stub_sec;
4821 struct elf32_arm_stub_hash_entry *stub_entry;
4822
daa4adae
TP
4823 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4824 stub_type);
48229727
JB
4825 if (stub_sec == NULL)
4826 return NULL;
906e58ca
NC
4827
4828 /* Enter this entry into the linker stub hash table. */
4829 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 4830 true, false);
906e58ca
NC
4831 if (stub_entry == NULL)
4832 {
6bde4c52
TP
4833 if (section == NULL)
4834 section = stub_sec;
871b3ab2 4835 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 4836 section->owner, stub_name);
906e58ca
NC
4837 return NULL;
4838 }
4839
4840 stub_entry->stub_sec = stub_sec;
0955507f 4841 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4842 stub_entry->id_sec = link_sec;
4843
906e58ca
NC
4844 return stub_entry;
4845}
4846
4847/* Store an Arm insn into an output section not processed by
4848 elf32_arm_write_section. */
4849
4850static void
8029a119
NC
4851put_arm_insn (struct elf32_arm_link_hash_table * htab,
4852 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4853{
4854 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4855 bfd_putl32 (val, ptr);
4856 else
4857 bfd_putb32 (val, ptr);
4858}
4859
4860/* Store a 16-bit Thumb insn into an output section not processed by
4861 elf32_arm_write_section. */
4862
4863static void
8029a119
NC
4864put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4865 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4866{
4867 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4868 bfd_putl16 (val, ptr);
4869 else
4870 bfd_putb16 (val, ptr);
4871}
4872
a504d23a
LA
4873/* Store a Thumb2 insn into an output section not processed by
4874 elf32_arm_write_section. */
4875
4876static void
4877put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4878 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4879{
4880 /* T2 instructions are 16-bit streamed. */
4881 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4882 {
4883 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4884 bfd_putl16 ((val & 0xffff), ptr + 2);
4885 }
4886 else
4887 {
4888 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4889 bfd_putb16 ((val & 0xffff), ptr + 2);
4890 }
4891}
4892
0855e32b
NS
4893/* If it's possible to change R_TYPE to a more efficient access
4894 model, return the new reloc type. */
4895
4896static unsigned
b38cadfb 4897elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4898 struct elf_link_hash_entry *h)
4899{
4900 int is_local = (h == NULL);
4901
9cb09e33 4902 if (bfd_link_dll (info)
0e1862bb 4903 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4904 return r_type;
4905
b38cadfb 4906 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4907 switch (r_type)
4908 {
4909 case R_ARM_TLS_GOTDESC:
4910 case R_ARM_TLS_CALL:
4911 case R_ARM_THM_TLS_CALL:
4912 case R_ARM_TLS_DESCSEQ:
4913 case R_ARM_THM_TLS_DESCSEQ:
4914 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4915 }
4916
4917 return r_type;
4918}
4919
48229727
JB
4920static bfd_reloc_status_type elf32_arm_final_link_relocate
4921 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4922 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92 4923 const char *, unsigned char, enum arm_st_branch_type,
0a1b45a2 4924 struct elf_link_hash_entry *, bool *, char **);
48229727 4925
4563a860
JB
4926static unsigned int
4927arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4928{
4929 switch (stub_type)
4930 {
4931 case arm_stub_a8_veneer_b_cond:
4932 case arm_stub_a8_veneer_b:
4933 case arm_stub_a8_veneer_bl:
4934 return 2;
4935
4936 case arm_stub_long_branch_any_any:
4937 case arm_stub_long_branch_v4t_arm_thumb:
4938 case arm_stub_long_branch_thumb_only:
80c135e5 4939 case arm_stub_long_branch_thumb2_only:
d5a67c02 4940 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4941 case arm_stub_long_branch_v4t_thumb_thumb:
4942 case arm_stub_long_branch_v4t_thumb_arm:
4943 case arm_stub_short_branch_v4t_thumb_arm:
4944 case arm_stub_long_branch_any_arm_pic:
4945 case arm_stub_long_branch_any_thumb_pic:
4946 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4947 case arm_stub_long_branch_v4t_arm_thumb_pic:
4948 case arm_stub_long_branch_v4t_thumb_arm_pic:
4949 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4950 case arm_stub_long_branch_any_tls_pic:
4951 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4952 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4953 case arm_stub_a8_veneer_blx:
4954 return 4;
b38cadfb 4955
7a89b94e
NC
4956 case arm_stub_long_branch_arm_nacl:
4957 case arm_stub_long_branch_arm_nacl_pic:
4958 return 16;
4959
4563a860
JB
4960 default:
4961 abort (); /* Should be unreachable. */
4962 }
4963}
4964
4f4faa4d
TP
4965/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4966 veneering (TRUE) or have their own symbol (FALSE). */
4967
0a1b45a2 4968static bool
4f4faa4d
TP
4969arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4970{
4971 if (stub_type >= max_stub_type)
4972 abort (); /* Should be unreachable. */
4973
4ba2ef8f
TP
4974 switch (stub_type)
4975 {
4976 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4977 return true;
4ba2ef8f
TP
4978
4979 default:
0a1b45a2 4980 return false;
4ba2ef8f
TP
4981 }
4982
4983 abort (); /* Should be unreachable. */
4f4faa4d
TP
4984}
4985
d7c5bd02
TP
4986/* Returns the padding needed for the dedicated section used stubs of type
4987 STUB_TYPE. */
4988
4989static int
4990arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4991{
4992 if (stub_type >= max_stub_type)
4993 abort (); /* Should be unreachable. */
4994
4ba2ef8f
TP
4995 switch (stub_type)
4996 {
4997 case arm_stub_cmse_branch_thumb_only:
4998 return 32;
4999
5000 default:
5001 return 0;
5002 }
5003
5004 abort (); /* Should be unreachable. */
d7c5bd02
TP
5005}
5006
0955507f
TP
5007/* If veneers of type STUB_TYPE should go in a dedicated output section,
5008 returns the address of the hash table field in HTAB holding the offset at
5009 which new veneers should be layed out in the stub section. */
5010
5011static bfd_vma*
5012arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5013 enum elf32_arm_stub_type stub_type)
5014{
5015 switch (stub_type)
5016 {
5017 case arm_stub_cmse_branch_thumb_only:
5018 return &htab->new_cmse_stub_offset;
5019
5020 default:
5021 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5022 return NULL;
5023 }
5024}
5025
0a1b45a2 5026static bool
906e58ca
NC
5027arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5028 void * in_arg)
5029{
7a89b94e 5030#define MAXRELOCS 3
0a1b45a2 5031 bool removed_sg_veneer;
906e58ca 5032 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 5033 struct elf32_arm_link_hash_table *globals;
906e58ca 5034 struct bfd_link_info *info;
906e58ca
NC
5035 asection *stub_sec;
5036 bfd *stub_bfd;
906e58ca
NC
5037 bfd_byte *loc;
5038 bfd_vma sym_value;
5039 int template_size;
5040 int size;
d3ce72d0 5041 const insn_sequence *template_sequence;
906e58ca 5042 int i;
48229727
JB
5043 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5044 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5045 int nrelocs = 0;
0955507f 5046 int just_allocated = 0;
906e58ca
NC
5047
5048 /* Massage our args to the form they really have. */
5049 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5050 info = (struct bfd_link_info *) in_arg;
5051
abf874aa
CL
5052 /* Fail if the target section could not be assigned to an output
5053 section. The user should fix his linker script. */
5054 if (stub_entry->target_section->output_section == NULL
5055 && info->non_contiguous_regions)
c63d4862 5056 info->callbacks->einfo (_("%F%P: Could not assign `%pA' to an output section. "
53215f21
CL
5057 "Retry without --enable-non-contiguous-regions.\n"),
5058 stub_entry->target_section);
abf874aa 5059
906e58ca 5060 globals = elf32_arm_hash_table (info);
4dfe6ac6 5061 if (globals == NULL)
0a1b45a2 5062 return false;
906e58ca 5063
906e58ca
NC
5064 stub_sec = stub_entry->stub_sec;
5065
4dfe6ac6 5066 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
5067 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5068 /* We have to do less-strictly-aligned fixes last. */
0a1b45a2 5069 return true;
fe33d2fa 5070
0955507f
TP
5071 /* Assign a slot at the end of section if none assigned yet. */
5072 if (stub_entry->stub_offset == (bfd_vma) -1)
5073 {
5074 stub_entry->stub_offset = stub_sec->size;
5075 just_allocated = 1;
5076 }
906e58ca
NC
5077 loc = stub_sec->contents + stub_entry->stub_offset;
5078
5079 stub_bfd = stub_sec->owner;
5080
906e58ca
NC
5081 /* This is the address of the stub destination. */
5082 sym_value = (stub_entry->target_value
5083 + stub_entry->target_section->output_offset
5084 + stub_entry->target_section->output_section->vma);
5085
d3ce72d0 5086 template_sequence = stub_entry->stub_template;
461a49ca 5087 template_size = stub_entry->stub_template_size;
906e58ca
NC
5088
5089 size = 0;
461a49ca 5090 for (i = 0; i < template_size; i++)
906e58ca 5091 {
d3ce72d0 5092 switch (template_sequence[i].type)
461a49ca
DJ
5093 {
5094 case THUMB16_TYPE:
48229727 5095 {
d3ce72d0
NC
5096 bfd_vma data = (bfd_vma) template_sequence[i].data;
5097 if (template_sequence[i].reloc_addend != 0)
48229727 5098 {
99059e56
RM
5099 /* We've borrowed the reloc_addend field to mean we should
5100 insert a condition code into this (Thumb-1 branch)
5101 instruction. See THUMB16_BCOND_INSN. */
5102 BFD_ASSERT ((data & 0xff00) == 0xd000);
5103 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 5104 }
fe33d2fa 5105 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
5106 size += 2;
5107 }
461a49ca 5108 break;
906e58ca 5109
48229727 5110 case THUMB32_TYPE:
fe33d2fa
CL
5111 bfd_put_16 (stub_bfd,
5112 (template_sequence[i].data >> 16) & 0xffff,
5113 loc + size);
5114 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5115 loc + size + 2);
99059e56
RM
5116 if (template_sequence[i].r_type != R_ARM_NONE)
5117 {
5118 stub_reloc_idx[nrelocs] = i;
5119 stub_reloc_offset[nrelocs++] = size;
5120 }
5121 size += 4;
5122 break;
48229727 5123
461a49ca 5124 case ARM_TYPE:
fe33d2fa
CL
5125 bfd_put_32 (stub_bfd, template_sequence[i].data,
5126 loc + size);
461a49ca
DJ
5127 /* Handle cases where the target is encoded within the
5128 instruction. */
d3ce72d0 5129 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 5130 {
48229727
JB
5131 stub_reloc_idx[nrelocs] = i;
5132 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5133 }
5134 size += 4;
5135 break;
5136
5137 case DATA_TYPE:
d3ce72d0 5138 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
5139 stub_reloc_idx[nrelocs] = i;
5140 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5141 size += 4;
5142 break;
5143
5144 default:
5145 BFD_FAIL ();
0a1b45a2 5146 return false;
461a49ca 5147 }
906e58ca 5148 }
461a49ca 5149
0955507f
TP
5150 if (just_allocated)
5151 stub_sec->size += size;
906e58ca 5152
461a49ca
DJ
5153 /* Stub size has already been computed in arm_size_one_stub. Check
5154 consistency. */
5155 BFD_ASSERT (size == stub_entry->stub_size);
5156
906e58ca 5157 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 5158 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
5159 sym_value |= 1;
5160
0955507f
TP
5161 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5162 to relocate in each stub. */
5163 removed_sg_veneer =
5164 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5165 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 5166
48229727 5167 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
5168 {
5169 Elf_Internal_Rela rel;
0a1b45a2 5170 bool unresolved_reloc;
8d9d9490
TP
5171 char *error_message;
5172 bfd_vma points_to =
5173 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5174
5175 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5176 rel.r_info = ELF32_R_INFO (0,
5177 template_sequence[stub_reloc_idx[i]].r_type);
5178 rel.r_addend = 0;
5179
5180 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5181 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5182 template should refer back to the instruction after the original
5183 branch. We use target_section as Cortex-A8 erratum workaround stubs
5184 are only generated when both source and target are in the same
5185 section. */
5186 points_to = stub_entry->target_section->output_section->vma
5187 + stub_entry->target_section->output_offset
5188 + stub_entry->source_value;
5189
5190 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5191 (template_sequence[stub_reloc_idx[i]].r_type),
5192 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5193 points_to, info, stub_entry->target_section, "", STT_FUNC,
5194 stub_entry->branch_type,
5195 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5196 &error_message);
5197 }
906e58ca 5198
0a1b45a2 5199 return true;
48229727 5200#undef MAXRELOCS
906e58ca
NC
5201}
5202
48229727
JB
5203/* Calculate the template, template size and instruction size for a stub.
5204 Return value is the instruction size. */
906e58ca 5205
48229727
JB
5206static unsigned int
5207find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5208 const insn_sequence **stub_template,
5209 int *stub_template_size)
906e58ca 5210{
d3ce72d0 5211 const insn_sequence *template_sequence = NULL;
48229727
JB
5212 int template_size = 0, i;
5213 unsigned int size;
906e58ca 5214
d3ce72d0 5215 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
5216 if (stub_template)
5217 *stub_template = template_sequence;
5218
48229727 5219 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
5220 if (stub_template_size)
5221 *stub_template_size = template_size;
906e58ca
NC
5222
5223 size = 0;
461a49ca
DJ
5224 for (i = 0; i < template_size; i++)
5225 {
d3ce72d0 5226 switch (template_sequence[i].type)
461a49ca
DJ
5227 {
5228 case THUMB16_TYPE:
5229 size += 2;
5230 break;
5231
5232 case ARM_TYPE:
48229727 5233 case THUMB32_TYPE:
461a49ca
DJ
5234 case DATA_TYPE:
5235 size += 4;
5236 break;
5237
5238 default:
5239 BFD_FAIL ();
2a229407 5240 return 0;
461a49ca
DJ
5241 }
5242 }
5243
48229727
JB
5244 return size;
5245}
5246
5247/* As above, but don't actually build the stub. Just bump offset so
5248 we know stub section sizes. */
5249
0a1b45a2 5250static bool
48229727 5251arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 5252 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
5253{
5254 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 5255 const insn_sequence *template_sequence;
48229727
JB
5256 int template_size, size;
5257
5258 /* Massage our args to the form they really have. */
5259 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727 5260
cc850f74
NC
5261 BFD_ASSERT ((stub_entry->stub_type > arm_stub_none)
5262 && stub_entry->stub_type < ARRAY_SIZE (stub_definitions));
48229727 5263
d3ce72d0 5264 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
5265 &template_size);
5266
0955507f
TP
5267 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5268 if (stub_entry->stub_template_size)
5269 {
5270 stub_entry->stub_size = size;
5271 stub_entry->stub_template = template_sequence;
5272 stub_entry->stub_template_size = template_size;
5273 }
5274
5275 /* Already accounted for. */
5276 if (stub_entry->stub_offset != (bfd_vma) -1)
0a1b45a2 5277 return true;
461a49ca 5278
906e58ca
NC
5279 size = (size + 7) & ~7;
5280 stub_entry->stub_sec->size += size;
461a49ca 5281
0a1b45a2 5282 return true;
906e58ca
NC
5283}
5284
5285/* External entry points for sizing and building linker stubs. */
5286
5287/* Set up various things so that we can make a list of input sections
5288 for each output section included in the link. Returns -1 on error,
5289 0 when no stubs will be needed, and 1 on success. */
5290
5291int
5292elf32_arm_setup_section_lists (bfd *output_bfd,
5293 struct bfd_link_info *info)
5294{
5295 bfd *input_bfd;
5296 unsigned int bfd_count;
7292b3ac 5297 unsigned int top_id, top_index;
906e58ca
NC
5298 asection *section;
5299 asection **input_list, **list;
986f0783 5300 size_t amt;
906e58ca
NC
5301 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5302
4dfe6ac6
NC
5303 if (htab == NULL)
5304 return 0;
906e58ca
NC
5305
5306 /* Count the number of input BFDs and find the top input section id. */
5307 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5308 input_bfd != NULL;
c72f2fb2 5309 input_bfd = input_bfd->link.next)
906e58ca
NC
5310 {
5311 bfd_count += 1;
5312 for (section = input_bfd->sections;
5313 section != NULL;
5314 section = section->next)
5315 {
5316 if (top_id < section->id)
5317 top_id = section->id;
5318 }
5319 }
5320 htab->bfd_count = bfd_count;
5321
5322 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 5323 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
5324 if (htab->stub_group == NULL)
5325 return -1;
fe33d2fa 5326 htab->top_id = top_id;
906e58ca
NC
5327
5328 /* We can't use output_bfd->section_count here to find the top output
5329 section index as some sections may have been removed, and
5330 _bfd_strip_section_from_output doesn't renumber the indices. */
5331 for (section = output_bfd->sections, top_index = 0;
5332 section != NULL;
5333 section = section->next)
5334 {
5335 if (top_index < section->index)
5336 top_index = section->index;
5337 }
5338
5339 htab->top_index = top_index;
5340 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5341 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5342 htab->input_list = input_list;
5343 if (input_list == NULL)
5344 return -1;
5345
5346 /* For sections we aren't interested in, mark their entries with a
5347 value we can check later. */
5348 list = input_list + top_index;
5349 do
5350 *list = bfd_abs_section_ptr;
5351 while (list-- != input_list);
5352
5353 for (section = output_bfd->sections;
5354 section != NULL;
5355 section = section->next)
5356 {
5357 if ((section->flags & SEC_CODE) != 0)
5358 input_list[section->index] = NULL;
5359 }
5360
5361 return 1;
5362}
5363
5364/* The linker repeatedly calls this function for each input section,
5365 in the order that input sections are linked into output sections.
5366 Build lists of input sections to determine groupings between which
5367 we may insert linker stubs. */
5368
5369void
5370elf32_arm_next_input_section (struct bfd_link_info *info,
5371 asection *isec)
5372{
5373 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5374
4dfe6ac6
NC
5375 if (htab == NULL)
5376 return;
5377
906e58ca
NC
5378 if (isec->output_section->index <= htab->top_index)
5379 {
5380 asection **list = htab->input_list + isec->output_section->index;
5381
a7470592 5382 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5383 {
5384 /* Steal the link_sec pointer for our list. */
5385#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5386 /* This happens to make the list in reverse order,
07d72278 5387 which we reverse later. */
906e58ca
NC
5388 PREV_SEC (isec) = *list;
5389 *list = isec;
5390 }
5391 }
5392}
5393
5394/* See whether we can group stub sections together. Grouping stub
5395 sections may result in fewer stubs. More importantly, we need to
07d72278 5396 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5397 .fini output sections respectively, because glibc splits the
5398 _init and _fini functions into multiple parts. Putting a stub in
5399 the middle of a function is not a good idea. */
5400
5401static void
5402group_sections (struct elf32_arm_link_hash_table *htab,
5403 bfd_size_type stub_group_size,
0a1b45a2 5404 bool stubs_always_after_branch)
906e58ca 5405{
07d72278 5406 asection **list = htab->input_list;
906e58ca
NC
5407
5408 do
5409 {
5410 asection *tail = *list;
07d72278 5411 asection *head;
906e58ca
NC
5412
5413 if (tail == bfd_abs_section_ptr)
5414 continue;
5415
07d72278
DJ
5416 /* Reverse the list: we must avoid placing stubs at the
5417 beginning of the section because the beginning of the text
5418 section may be required for an interrupt vector in bare metal
5419 code. */
5420#define NEXT_SEC PREV_SEC
e780aef2
CL
5421 head = NULL;
5422 while (tail != NULL)
99059e56
RM
5423 {
5424 /* Pop from tail. */
5425 asection *item = tail;
5426 tail = PREV_SEC (item);
e780aef2 5427
99059e56
RM
5428 /* Push on head. */
5429 NEXT_SEC (item) = head;
5430 head = item;
5431 }
07d72278
DJ
5432
5433 while (head != NULL)
906e58ca
NC
5434 {
5435 asection *curr;
07d72278 5436 asection *next;
e780aef2
CL
5437 bfd_vma stub_group_start = head->output_offset;
5438 bfd_vma end_of_next;
906e58ca 5439
07d72278 5440 curr = head;
e780aef2 5441 while (NEXT_SEC (curr) != NULL)
8cd931b7 5442 {
e780aef2
CL
5443 next = NEXT_SEC (curr);
5444 end_of_next = next->output_offset + next->size;
5445 if (end_of_next - stub_group_start >= stub_group_size)
5446 /* End of NEXT is too far from start, so stop. */
8cd931b7 5447 break;
e780aef2
CL
5448 /* Add NEXT to the group. */
5449 curr = next;
8cd931b7 5450 }
906e58ca 5451
07d72278 5452 /* OK, the size from the start to the start of CURR is less
906e58ca 5453 than stub_group_size and thus can be handled by one stub
07d72278 5454 section. (Or the head section is itself larger than
906e58ca
NC
5455 stub_group_size, in which case we may be toast.)
5456 We should really be keeping track of the total size of
5457 stubs added here, as stubs contribute to the final output
7fb9f789 5458 section size. */
906e58ca
NC
5459 do
5460 {
07d72278 5461 next = NEXT_SEC (head);
906e58ca 5462 /* Set up this stub group. */
07d72278 5463 htab->stub_group[head->id].link_sec = curr;
906e58ca 5464 }
07d72278 5465 while (head != curr && (head = next) != NULL);
906e58ca
NC
5466
5467 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5468 bytes after the stub section can be handled by it too. */
5469 if (!stubs_always_after_branch)
906e58ca 5470 {
e780aef2
CL
5471 stub_group_start = curr->output_offset + curr->size;
5472
8cd931b7 5473 while (next != NULL)
906e58ca 5474 {
e780aef2
CL
5475 end_of_next = next->output_offset + next->size;
5476 if (end_of_next - stub_group_start >= stub_group_size)
5477 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5478 break;
e780aef2 5479 /* Add NEXT to the stub group. */
07d72278
DJ
5480 head = next;
5481 next = NEXT_SEC (head);
5482 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5483 }
5484 }
07d72278 5485 head = next;
906e58ca
NC
5486 }
5487 }
07d72278 5488 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5489
5490 free (htab->input_list);
5491#undef PREV_SEC
07d72278 5492#undef NEXT_SEC
906e58ca
NC
5493}
5494
48229727
JB
5495/* Comparison function for sorting/searching relocations relating to Cortex-A8
5496 erratum fix. */
5497
5498static int
5499a8_reloc_compare (const void *a, const void *b)
5500{
21d799b5
NC
5501 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5502 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5503
5504 if (ra->from < rb->from)
5505 return -1;
5506 else if (ra->from > rb->from)
5507 return 1;
5508 else
5509 return 0;
5510}
5511
5512static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5513 const char *, char **);
5514
5515/* Helper function to scan code for sequences which might trigger the Cortex-A8
5516 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5517 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5518 otherwise. */
5519
0a1b45a2 5520static bool
81694485
NC
5521cortex_a8_erratum_scan (bfd *input_bfd,
5522 struct bfd_link_info *info,
48229727
JB
5523 struct a8_erratum_fix **a8_fixes_p,
5524 unsigned int *num_a8_fixes_p,
5525 unsigned int *a8_fix_table_size_p,
5526 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5527 unsigned int num_a8_relocs,
5528 unsigned prev_num_a8_fixes,
0a1b45a2 5529 bool *stub_changed_p)
48229727
JB
5530{
5531 asection *section;
5532 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5533 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5534 unsigned int num_a8_fixes = *num_a8_fixes_p;
5535 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5536
4dfe6ac6 5537 if (htab == NULL)
0a1b45a2 5538 return false;
4dfe6ac6 5539
48229727
JB
5540 for (section = input_bfd->sections;
5541 section != NULL;
5542 section = section->next)
5543 {
5544 bfd_byte *contents = NULL;
5545 struct _arm_elf_section_data *sec_data;
5546 unsigned int span;
5547 bfd_vma base_vma;
5548
5549 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5550 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5551 || (section->flags & SEC_EXCLUDE) != 0
5552 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5553 || (section->output_section == bfd_abs_section_ptr))
5554 continue;
48229727
JB
5555
5556 base_vma = section->output_section->vma + section->output_offset;
5557
5558 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5559 contents = elf_section_data (section)->this_hdr.contents;
48229727 5560 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
0a1b45a2 5561 return true;
48229727
JB
5562
5563 sec_data = elf32_arm_section_data (section);
5564
5565 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5566 {
5567 unsigned int span_start = sec_data->map[span].vma;
5568 unsigned int span_end = (span == sec_data->mapcount - 1)
5569 ? section->size : sec_data->map[span + 1].vma;
5570 unsigned int i;
5571 char span_type = sec_data->map[span].type;
0a1b45a2 5572 bool last_was_32bit = false, last_was_branch = false;
99059e56
RM
5573
5574 if (span_type != 't')
5575 continue;
5576
5577 /* Span is entirely within a single 4KB region: skip scanning. */
5578 if (((base_vma + span_start) & ~0xfff)
48229727 5579 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5580 continue;
5581
5582 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5583
5584 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5585 * The branch target is in the same 4KB region as the
5586 first half of the branch.
5587 * The instruction before the branch is a 32-bit
5588 length non-branch instruction. */
5589 for (i = span_start; i < span_end;)
5590 {
5591 unsigned int insn = bfd_getl16 (&contents[i]);
0a1b45a2
AM
5592 bool insn_32bit = false, is_blx = false, is_b = false;
5593 bool is_bl = false, is_bcc = false, is_32bit_branch;
48229727 5594
99059e56 5595 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 5596 insn_32bit = true;
48229727
JB
5597
5598 if (insn_32bit)
99059e56
RM
5599 {
5600 /* Load the rest of the insn (in manual-friendly order). */
5601 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5602
5603 /* Encoding T4: B<c>.W. */
5604 is_b = (insn & 0xf800d000) == 0xf0009000;
5605 /* Encoding T1: BL<c>.W. */
5606 is_bl = (insn & 0xf800d000) == 0xf000d000;
5607 /* Encoding T2: BLX<c>.W. */
5608 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5609 /* Encoding T3: B<c>.W (not permitted in IT block). */
5610 is_bcc = (insn & 0xf800d000) == 0xf0008000
5611 && (insn & 0x07f00000) != 0x03800000;
5612 }
5613
5614 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5615
99059e56 5616 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5617 && insn_32bit
5618 && is_32bit_branch
5619 && last_was_32bit
5620 && ! last_was_branch)
99059e56
RM
5621 {
5622 bfd_signed_vma offset = 0;
0a1b45a2
AM
5623 bool force_target_arm = false;
5624 bool force_target_thumb = false;
99059e56
RM
5625 bfd_vma target;
5626 enum elf32_arm_stub_type stub_type = arm_stub_none;
5627 struct a8_erratum_reloc key, *found;
0a1b45a2 5628 bool use_plt = false;
48229727 5629
99059e56
RM
5630 key.from = base_vma + i;
5631 found = (struct a8_erratum_reloc *)
5632 bsearch (&key, a8_relocs, num_a8_relocs,
5633 sizeof (struct a8_erratum_reloc),
5634 &a8_reloc_compare);
48229727
JB
5635
5636 if (found)
5637 {
5638 char *error_message = NULL;
5639 struct elf_link_hash_entry *entry;
5640
5641 /* We don't care about the error returned from this
99059e56 5642 function, only if there is glue or not. */
48229727
JB
5643 entry = find_thumb_glue (info, found->sym_name,
5644 &error_message);
5645
5646 if (entry)
0a1b45a2 5647 found->non_a8_stub = true;
48229727 5648
92750f34 5649 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5650 if (htab->root.splt != NULL && found->hash != NULL
92750f34 5651 && found->hash->root.plt.offset != (bfd_vma) -1)
0a1b45a2 5652 use_plt = true;
92750f34
DJ
5653
5654 if (found->r_type == R_ARM_THM_CALL)
5655 {
35fc36a8
RS
5656 if (found->branch_type == ST_BRANCH_TO_ARM
5657 || use_plt)
0a1b45a2 5658 force_target_arm = true;
92750f34 5659 else
0a1b45a2 5660 force_target_thumb = true;
92750f34 5661 }
48229727
JB
5662 }
5663
99059e56 5664 /* Check if we have an offending branch instruction. */
48229727
JB
5665
5666 if (found && found->non_a8_stub)
5667 /* We've already made a stub for this instruction, e.g.
5668 it's a long branch or a Thumb->ARM stub. Assume that
5669 stub will suffice to work around the A8 erratum (see
5670 setting of always_after_branch above). */
5671 ;
99059e56
RM
5672 else if (is_bcc)
5673 {
5674 offset = (insn & 0x7ff) << 1;
5675 offset |= (insn & 0x3f0000) >> 4;
5676 offset |= (insn & 0x2000) ? 0x40000 : 0;
5677 offset |= (insn & 0x800) ? 0x80000 : 0;
5678 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5679 if (offset & 0x100000)
5680 offset |= ~ ((bfd_signed_vma) 0xfffff);
5681 stub_type = arm_stub_a8_veneer_b_cond;
5682 }
5683 else if (is_b || is_bl || is_blx)
5684 {
5685 int s = (insn & 0x4000000) != 0;
5686 int j1 = (insn & 0x2000) != 0;
5687 int j2 = (insn & 0x800) != 0;
5688 int i1 = !(j1 ^ s);
5689 int i2 = !(j2 ^ s);
5690
5691 offset = (insn & 0x7ff) << 1;
5692 offset |= (insn & 0x3ff0000) >> 4;
5693 offset |= i2 << 22;
5694 offset |= i1 << 23;
5695 offset |= s << 24;
5696 if (offset & 0x1000000)
5697 offset |= ~ ((bfd_signed_vma) 0xffffff);
5698
5699 if (is_blx)
5700 offset &= ~ ((bfd_signed_vma) 3);
5701
5702 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5703 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5704 }
5705
5706 if (stub_type != arm_stub_none)
5707 {
5708 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5709
5710 /* The original instruction is a BL, but the target is
99059e56 5711 an ARM instruction. If we were not making a stub,
48229727
JB
5712 the BL would have been converted to a BLX. Use the
5713 BLX stub instead in that case. */
5714 if (htab->use_blx && force_target_arm
5715 && stub_type == arm_stub_a8_veneer_bl)
5716 {
5717 stub_type = arm_stub_a8_veneer_blx;
0a1b45a2
AM
5718 is_blx = true;
5719 is_bl = false;
48229727
JB
5720 }
5721 /* Conversely, if the original instruction was
5722 BLX but the target is Thumb mode, use the BL
5723 stub. */
5724 else if (force_target_thumb
5725 && stub_type == arm_stub_a8_veneer_blx)
5726 {
5727 stub_type = arm_stub_a8_veneer_bl;
0a1b45a2
AM
5728 is_blx = false;
5729 is_bl = true;
48229727
JB
5730 }
5731
99059e56
RM
5732 if (is_blx)
5733 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5734
99059e56
RM
5735 /* If we found a relocation, use the proper destination,
5736 not the offset in the (unrelocated) instruction.
48229727
JB
5737 Note this is always done if we switched the stub type
5738 above. */
99059e56
RM
5739 if (found)
5740 offset =
81694485 5741 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5742
99059e56
RM
5743 /* If the stub will use a Thumb-mode branch to a
5744 PLT target, redirect it to the preceding Thumb
5745 entry point. */
5746 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5747 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5748
99059e56 5749 target = pc_for_insn + offset;
48229727 5750
99059e56
RM
5751 /* The BLX stub is ARM-mode code. Adjust the offset to
5752 take the different PC value (+8 instead of +4) into
48229727 5753 account. */
99059e56
RM
5754 if (stub_type == arm_stub_a8_veneer_blx)
5755 offset += 4;
5756
5757 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5758 {
5759 char *stub_name = NULL;
5760
5761 if (num_a8_fixes == a8_fix_table_size)
5762 {
5763 a8_fix_table_size *= 2;
5764 a8_fixes = (struct a8_erratum_fix *)
5765 bfd_realloc (a8_fixes,
5766 sizeof (struct a8_erratum_fix)
5767 * a8_fix_table_size);
5768 }
48229727 5769
eb7c4339
NS
5770 if (num_a8_fixes < prev_num_a8_fixes)
5771 {
5772 /* If we're doing a subsequent scan,
5773 check if we've found the same fix as
5774 before, and try and reuse the stub
5775 name. */
5776 stub_name = a8_fixes[num_a8_fixes].stub_name;
5777 if ((a8_fixes[num_a8_fixes].section != section)
5778 || (a8_fixes[num_a8_fixes].offset != i))
5779 {
5780 free (stub_name);
5781 stub_name = NULL;
0a1b45a2 5782 *stub_changed_p = true;
eb7c4339
NS
5783 }
5784 }
5785
5786 if (!stub_name)
5787 {
21d799b5 5788 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5789 if (stub_name != NULL)
5790 sprintf (stub_name, "%x:%x", section->id, i);
5791 }
48229727 5792
99059e56
RM
5793 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5794 a8_fixes[num_a8_fixes].section = section;
5795 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5796 a8_fixes[num_a8_fixes].target_offset =
5797 target - base_vma;
99059e56
RM
5798 a8_fixes[num_a8_fixes].orig_insn = insn;
5799 a8_fixes[num_a8_fixes].stub_name = stub_name;
5800 a8_fixes[num_a8_fixes].stub_type = stub_type;
5801 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5802 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5803
99059e56
RM
5804 num_a8_fixes++;
5805 }
5806 }
5807 }
48229727 5808
99059e56
RM
5809 i += insn_32bit ? 4 : 2;
5810 last_was_32bit = insn_32bit;
48229727 5811 last_was_branch = is_32bit_branch;
99059e56
RM
5812 }
5813 }
48229727
JB
5814
5815 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5816 free (contents);
48229727 5817 }
fe33d2fa 5818
48229727
JB
5819 *a8_fixes_p = a8_fixes;
5820 *num_a8_fixes_p = num_a8_fixes;
5821 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5822
0a1b45a2 5823 return false;
48229727
JB
5824}
5825
b715f643
TP
5826/* Create or update a stub entry depending on whether the stub can already be
5827 found in HTAB. The stub is identified by:
5828 - its type STUB_TYPE
5829 - its source branch (note that several can share the same stub) whose
5830 section and relocation (if any) are given by SECTION and IRELA
5831 respectively
5832 - its target symbol whose input section, hash, name, value and branch type
5833 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5834 respectively
5835
5836 If found, the value of the stub's target symbol is updated from SYM_VALUE
5837 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5838 TRUE and the stub entry is initialized.
5839
0955507f
TP
5840 Returns the stub that was created or updated, or NULL if an error
5841 occurred. */
b715f643 5842
0955507f 5843static struct elf32_arm_stub_hash_entry *
b715f643
TP
5844elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5845 enum elf32_arm_stub_type stub_type, asection *section,
5846 Elf_Internal_Rela *irela, asection *sym_sec,
5847 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5848 bfd_vma sym_value, enum arm_st_branch_type branch_type,
0a1b45a2 5849 bool *new_stub)
b715f643
TP
5850{
5851 const asection *id_sec;
5852 char *stub_name;
5853 struct elf32_arm_stub_hash_entry *stub_entry;
5854 unsigned int r_type;
0a1b45a2 5855 bool sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5856
5857 BFD_ASSERT (stub_type != arm_stub_none);
0a1b45a2 5858 *new_stub = false;
b715f643 5859
4f4faa4d
TP
5860 if (sym_claimed)
5861 stub_name = sym_name;
5862 else
5863 {
5864 BFD_ASSERT (irela);
5865 BFD_ASSERT (section);
c2abbbeb 5866 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5867
4f4faa4d
TP
5868 /* Support for grouping stub sections. */
5869 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5870
4f4faa4d
TP
5871 /* Get the name of this stub. */
5872 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5873 stub_type);
5874 if (!stub_name)
0955507f 5875 return NULL;
4f4faa4d 5876 }
b715f643 5877
0a1b45a2
AM
5878 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, false,
5879 false);
b715f643
TP
5880 /* The proper stub has already been created, just update its value. */
5881 if (stub_entry != NULL)
5882 {
4f4faa4d
TP
5883 if (!sym_claimed)
5884 free (stub_name);
b715f643 5885 stub_entry->target_value = sym_value;
0955507f 5886 return stub_entry;
b715f643
TP
5887 }
5888
daa4adae 5889 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5890 if (stub_entry == NULL)
5891 {
4f4faa4d
TP
5892 if (!sym_claimed)
5893 free (stub_name);
0955507f 5894 return NULL;
b715f643
TP
5895 }
5896
5897 stub_entry->target_value = sym_value;
5898 stub_entry->target_section = sym_sec;
5899 stub_entry->stub_type = stub_type;
5900 stub_entry->h = hash;
5901 stub_entry->branch_type = branch_type;
5902
4f4faa4d
TP
5903 if (sym_claimed)
5904 stub_entry->output_name = sym_name;
5905 else
b715f643 5906 {
4f4faa4d
TP
5907 if (sym_name == NULL)
5908 sym_name = "unnamed";
5909 stub_entry->output_name = (char *)
5910 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5911 + strlen (sym_name));
5912 if (stub_entry->output_name == NULL)
5913 {
5914 free (stub_name);
0955507f 5915 return NULL;
4f4faa4d 5916 }
b715f643 5917
4f4faa4d
TP
5918 /* For historical reasons, use the existing names for ARM-to-Thumb and
5919 Thumb-to-ARM stubs. */
5920 r_type = ELF32_R_TYPE (irela->r_info);
5921 if ((r_type == (unsigned int) R_ARM_THM_CALL
5922 || r_type == (unsigned int) R_ARM_THM_JUMP24
5923 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5924 && branch_type == ST_BRANCH_TO_ARM)
5925 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5926 else if ((r_type == (unsigned int) R_ARM_CALL
5927 || r_type == (unsigned int) R_ARM_JUMP24)
5928 && branch_type == ST_BRANCH_TO_THUMB)
5929 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5930 else
5931 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5932 }
b715f643 5933
0a1b45a2 5934 *new_stub = true;
0955507f 5935 return stub_entry;
b715f643
TP
5936}
5937
4ba2ef8f
TP
5938/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5939 gateway veneer to transition from non secure to secure state and create them
5940 accordingly.
5941
5942 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5943 defines the conditions that govern Secure Gateway veneer creation for a
5944 given symbol <SYM> as follows:
5945 - it has function type
5946 - it has non local binding
5947 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5948 same type, binding and value as <SYM> (called normal symbol).
5949 An entry function can handle secure state transition itself in which case
5950 its special symbol would have a different value from the normal symbol.
5951
5952 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5953 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5954 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5955 created.
4ba2ef8f 5956
0955507f 5957 The return value gives whether a stub failed to be allocated. */
4ba2ef8f 5958
0a1b45a2 5959static bool
4ba2ef8f
TP
5960cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5961 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5962 int *cmse_stub_created)
4ba2ef8f
TP
5963{
5964 const struct elf_backend_data *bed;
5965 Elf_Internal_Shdr *symtab_hdr;
5966 unsigned i, j, sym_count, ext_start;
5967 Elf_Internal_Sym *cmse_sym, *local_syms;
5968 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5969 enum arm_st_branch_type branch_type;
5970 char *sym_name, *lsym_name;
5971 bfd_vma sym_value;
5972 asection *section;
0955507f 5973 struct elf32_arm_stub_hash_entry *stub_entry;
0a1b45a2 5974 bool is_v8m, new_stub, cmse_invalid, ret = true;
4ba2ef8f
TP
5975
5976 bed = get_elf_backend_data (input_bfd);
5977 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5978 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5979 ext_start = symtab_hdr->sh_info;
5980 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5981 && out_attr[Tag_CPU_arch_profile].i == 'M');
5982
5983 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5984 if (local_syms == NULL)
5985 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5986 symtab_hdr->sh_info, 0, NULL, NULL,
5987 NULL);
5988 if (symtab_hdr->sh_info && local_syms == NULL)
0a1b45a2 5989 return false;
4ba2ef8f
TP
5990
5991 /* Scan symbols. */
5992 for (i = 0; i < sym_count; i++)
5993 {
0a1b45a2 5994 cmse_invalid = false;
4ba2ef8f
TP
5995
5996 if (i < ext_start)
5997 {
5998 cmse_sym = &local_syms[i];
4ba2ef8f
TP
5999 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6000 symtab_hdr->sh_link,
6001 cmse_sym->st_name);
08dedd66 6002 if (!sym_name || !startswith (sym_name, CMSE_PREFIX))
baf46cd7
AM
6003 continue;
6004
4ba2ef8f 6005 /* Special symbol with local binding. */
0a1b45a2 6006 cmse_invalid = true;
4ba2ef8f
TP
6007 }
6008 else
6009 {
6010 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
6011 if (cmse_hash == NULL)
6012 continue;
6013
4ba2ef8f 6014 sym_name = (char *) cmse_hash->root.root.root.string;
08dedd66 6015 if (!startswith (sym_name, CMSE_PREFIX))
4ba2ef8f
TP
6016 continue;
6017
6018 /* Special symbol has incorrect binding or type. */
6019 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6020 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6021 || cmse_hash->root.type != STT_FUNC)
0a1b45a2 6022 cmse_invalid = true;
4ba2ef8f
TP
6023 }
6024
6025 if (!is_v8m)
6026 {
90b6238f
AM
6027 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6028 "ARMv8-M architecture or later"),
4eca0228 6029 input_bfd, sym_name);
0a1b45a2
AM
6030 is_v8m = true; /* Avoid multiple warning. */
6031 ret = false;
4ba2ef8f
TP
6032 }
6033
6034 if (cmse_invalid)
6035 {
90b6238f
AM
6036 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6037 " a global or weak function symbol"),
4eca0228 6038 input_bfd, sym_name);
0a1b45a2 6039 ret = false;
4ba2ef8f
TP
6040 if (i < ext_start)
6041 continue;
6042 }
6043
6044 sym_name += strlen (CMSE_PREFIX);
6045 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6046 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
4ba2ef8f
TP
6047
6048 /* No associated normal symbol or it is neither global nor weak. */
6049 if (!hash
6050 || (hash->root.root.type != bfd_link_hash_defined
6051 && hash->root.root.type != bfd_link_hash_defweak)
6052 || hash->root.type != STT_FUNC)
6053 {
6054 /* Initialize here to avoid warning about use of possibly
6055 uninitialized variable. */
6056 j = 0;
6057
6058 if (!hash)
6059 {
6060 /* Searching for a normal symbol with local binding. */
6061 for (; j < ext_start; j++)
6062 {
6063 lsym_name =
6064 bfd_elf_string_from_elf_section (input_bfd,
6065 symtab_hdr->sh_link,
6066 local_syms[j].st_name);
6067 if (!strcmp (sym_name, lsym_name))
6068 break;
6069 }
6070 }
6071
6072 if (hash || j < ext_start)
6073 {
4eca0228 6074 _bfd_error_handler
90b6238f
AM
6075 (_("%pB: invalid standard symbol `%s'; it must be "
6076 "a global or weak function symbol"),
6077 input_bfd, sym_name);
4ba2ef8f
TP
6078 }
6079 else
4eca0228 6080 _bfd_error_handler
90b6238f 6081 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
0a1b45a2 6082 ret = false;
4ba2ef8f
TP
6083 if (!hash)
6084 continue;
6085 }
6086
6087 sym_value = hash->root.root.u.def.value;
6088 section = hash->root.root.u.def.section;
6089
6090 if (cmse_hash->root.root.u.def.section != section)
6091 {
4eca0228 6092 _bfd_error_handler
90b6238f 6093 (_("%pB: `%s' and its special symbol are in different sections"),
4ba2ef8f 6094 input_bfd, sym_name);
0a1b45a2 6095 ret = false;
4ba2ef8f
TP
6096 }
6097 if (cmse_hash->root.root.u.def.value != sym_value)
6098 continue; /* Ignore: could be an entry function starting with SG. */
6099
6100 /* If this section is a link-once section that will be discarded, then
6101 don't create any stubs. */
6102 if (section->output_section == NULL)
6103 {
4eca0228 6104 _bfd_error_handler
90b6238f 6105 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
4ba2ef8f
TP
6106 continue;
6107 }
6108
6109 if (hash->root.size == 0)
6110 {
4eca0228 6111 _bfd_error_handler
90b6238f 6112 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
0a1b45a2 6113 ret = false;
4ba2ef8f
TP
6114 }
6115
6116 if (!ret)
6117 continue;
6118 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 6119 stub_entry
4ba2ef8f
TP
6120 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6121 NULL, NULL, section, hash, sym_name,
6122 sym_value, branch_type, &new_stub);
6123
0955507f 6124 if (stub_entry == NULL)
0a1b45a2 6125 ret = false;
4ba2ef8f
TP
6126 else
6127 {
6128 BFD_ASSERT (new_stub);
0955507f 6129 (*cmse_stub_created)++;
4ba2ef8f
TP
6130 }
6131 }
6132
6133 if (!symtab_hdr->contents)
6134 free (local_syms);
6135 return ret;
6136}
6137
0955507f
TP
6138/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6139 code entry function, ie can be called from non secure code without using a
6140 veneer. */
6141
0a1b45a2 6142static bool
0955507f
TP
6143cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6144{
42484486 6145 bfd_byte contents[4];
0955507f
TP
6146 uint32_t first_insn;
6147 asection *section;
6148 file_ptr offset;
6149 bfd *abfd;
6150
6151 /* Defined symbol of function type. */
6152 if (hash->root.root.type != bfd_link_hash_defined
6153 && hash->root.root.type != bfd_link_hash_defweak)
0a1b45a2 6154 return false;
0955507f 6155 if (hash->root.type != STT_FUNC)
0a1b45a2 6156 return false;
0955507f
TP
6157
6158 /* Read first instruction. */
6159 section = hash->root.root.u.def.section;
6160 abfd = section->owner;
6161 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
6162 if (!bfd_get_section_contents (abfd, section, contents, offset,
6163 sizeof (contents)))
0a1b45a2 6164 return false;
0955507f 6165
42484486
TP
6166 first_insn = bfd_get_32 (abfd, contents);
6167
6168 /* Starts by SG instruction. */
0955507f
TP
6169 return first_insn == 0xe97fe97f;
6170}
6171
6172/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6173 secure gateway veneers (ie. the veneers was not in the input import library)
6174 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6175
0a1b45a2 6176static bool
0955507f
TP
6177arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6178{
6179 struct elf32_arm_stub_hash_entry *stub_entry;
6180 struct bfd_link_info *info;
6181
6182 /* Massage our args to the form they really have. */
6183 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6184 info = (struct bfd_link_info *) gen_info;
6185
6186 if (info->out_implib_bfd)
0a1b45a2 6187 return true;
0955507f
TP
6188
6189 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
0a1b45a2 6190 return true;
0955507f
TP
6191
6192 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 6193 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f 6194
0a1b45a2 6195 return true;
0955507f
TP
6196}
6197
6198/* Set offset of each secure gateway veneers so that its address remain
6199 identical to the one in the input import library referred by
6200 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6201 (present in input import library but absent from the executable being
6202 linked) or if new veneers appeared and there is no output import library
6203 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6204 number of secure gateway veneers found in the input import library.
6205
6206 The function returns whether an error occurred. If no error occurred,
6207 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6208 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6209 veneer observed set for new veneers to be layed out after. */
6210
0a1b45a2 6211static bool
0955507f
TP
6212set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6213 struct elf32_arm_link_hash_table *htab,
6214 int *cmse_stub_created)
6215{
6216 long symsize;
6217 char *sym_name;
6218 flagword flags;
6219 long i, symcount;
6220 bfd *in_implib_bfd;
6221 asection *stub_out_sec;
0a1b45a2 6222 bool ret = true;
0955507f
TP
6223 Elf_Internal_Sym *intsym;
6224 const char *out_sec_name;
6225 bfd_size_type cmse_stub_size;
6226 asymbol **sympp = NULL, *sym;
6227 struct elf32_arm_link_hash_entry *hash;
6228 const insn_sequence *cmse_stub_template;
6229 struct elf32_arm_stub_hash_entry *stub_entry;
6230 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6231 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6232 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6233
6234 /* No input secure gateway import library. */
6235 if (!htab->in_implib_bfd)
0a1b45a2 6236 return true;
0955507f
TP
6237
6238 in_implib_bfd = htab->in_implib_bfd;
6239 if (!htab->cmse_implib)
6240 {
871b3ab2 6241 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
90b6238f 6242 "Gateway import libraries"), in_implib_bfd);
0a1b45a2 6243 return false;
0955507f
TP
6244 }
6245
6246 /* Get symbol table size. */
6247 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6248 if (symsize < 0)
0a1b45a2 6249 return false;
0955507f
TP
6250
6251 /* Read in the input secure gateway import library's symbol table. */
9a733151
AM
6252 sympp = (asymbol **) bfd_malloc (symsize);
6253 if (sympp == NULL)
0a1b45a2 6254 return false;
9a733151 6255
0955507f
TP
6256 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6257 if (symcount < 0)
6258 {
0a1b45a2 6259 ret = false;
0955507f
TP
6260 goto free_sym_buf;
6261 }
6262
6263 htab->new_cmse_stub_offset = 0;
6264 cmse_stub_size =
6265 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6266 &cmse_stub_template,
6267 &cmse_stub_template_size);
6268 out_sec_name =
6269 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6270 stub_out_sec =
6271 bfd_get_section_by_name (htab->obfd, out_sec_name);
6272 if (stub_out_sec != NULL)
6273 cmse_stub_sec_vma = stub_out_sec->vma;
6274
6275 /* Set addresses of veneers mentionned in input secure gateway import
6276 library's symbol table. */
6277 for (i = 0; i < symcount; i++)
6278 {
6279 sym = sympp[i];
6280 flags = sym->flags;
6281 sym_name = (char *) bfd_asymbol_name (sym);
6282 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6283
6284 if (sym->section != bfd_abs_section_ptr
6285 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6286 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6287 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6288 != ST_BRANCH_TO_THUMB))
6289 {
90b6238f
AM
6290 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6291 "symbol should be absolute, global and "
6292 "refer to Thumb functions"),
4eca0228 6293 in_implib_bfd, sym_name);
0a1b45a2 6294 ret = false;
0955507f
TP
6295 continue;
6296 }
6297
6298 veneer_value = bfd_asymbol_value (sym);
6299 stub_offset = veneer_value - cmse_stub_sec_vma;
6300 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
0a1b45a2 6301 false, false);
0955507f 6302 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6303 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
0955507f
TP
6304
6305 /* Stub entry should have been created by cmse_scan or the symbol be of
6306 a secure function callable from non secure code. */
6307 if (!stub_entry && !hash)
6308 {
0a1b45a2 6309 bool new_stub;
0955507f 6310
4eca0228 6311 _bfd_error_handler
90b6238f 6312 (_("entry function `%s' disappeared from secure code"), sym_name);
0955507f 6313 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6314 elf_link_hash_lookup (&(htab)->root, sym_name, true, true, true);
0955507f
TP
6315 stub_entry
6316 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6317 NULL, NULL, bfd_abs_section_ptr, hash,
6318 sym_name, veneer_value,
6319 ST_BRANCH_TO_THUMB, &new_stub);
6320 if (stub_entry == NULL)
0a1b45a2 6321 ret = false;
0955507f
TP
6322 else
6323 {
6324 BFD_ASSERT (new_stub);
6325 new_cmse_stubs_created++;
6326 (*cmse_stub_created)++;
6327 }
6328 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6329 stub_entry->stub_offset = stub_offset;
6330 }
6331 /* Symbol found is not callable from non secure code. */
6332 else if (!stub_entry)
6333 {
6334 if (!cmse_entry_fct_p (hash))
6335 {
90b6238f 6336 _bfd_error_handler (_("`%s' refers to a non entry function"),
4eca0228 6337 sym_name);
0a1b45a2 6338 ret = false;
0955507f
TP
6339 }
6340 continue;
6341 }
6342 else
6343 {
6344 /* Only stubs for SG veneers should have been created. */
6345 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6346
6347 /* Check visibility hasn't changed. */
6348 if (!!(flags & BSF_GLOBAL)
6349 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6350 _bfd_error_handler
90b6238f 6351 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
0955507f
TP
6352 sym_name);
6353
6354 stub_entry->stub_offset = stub_offset;
6355 }
6356
6357 /* Size should match that of a SG veneer. */
6358 if (intsym->st_size != cmse_stub_size)
6359 {
90b6238f 6360 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
4eca0228 6361 in_implib_bfd, sym_name);
0a1b45a2 6362 ret = false;
0955507f
TP
6363 }
6364
6365 /* Previous veneer address is before current SG veneer section. */
6366 if (veneer_value < cmse_stub_sec_vma)
6367 {
6368 /* Avoid offset underflow. */
6369 if (stub_entry)
6370 stub_entry->stub_offset = 0;
6371 stub_offset = 0;
0a1b45a2 6372 ret = false;
0955507f
TP
6373 }
6374
6375 /* Complain if stub offset not a multiple of stub size. */
6376 if (stub_offset % cmse_stub_size)
6377 {
4eca0228 6378 _bfd_error_handler
90b6238f
AM
6379 (_("offset of veneer for entry function `%s' not a multiple of "
6380 "its size"), sym_name);
0a1b45a2 6381 ret = false;
0955507f
TP
6382 }
6383
6384 if (!ret)
6385 continue;
6386
6387 new_cmse_stubs_created--;
6388 if (veneer_value < cmse_stub_array_start)
6389 cmse_stub_array_start = veneer_value;
6390 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6391 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6392 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6393 }
6394
6395 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6396 {
6397 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6398 _bfd_error_handler
0955507f
TP
6399 (_("new entry function(s) introduced but no output import library "
6400 "specified:"));
6401 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6402 }
6403
6404 if (cmse_stub_array_start != cmse_stub_sec_vma)
6405 {
4eca0228 6406 _bfd_error_handler
90b6238f 6407 (_("start address of `%s' is different from previous link"),
0955507f 6408 out_sec_name);
0a1b45a2 6409 ret = false;
0955507f
TP
6410 }
6411
dc1e8a47 6412 free_sym_buf:
0955507f
TP
6413 free (sympp);
6414 return ret;
6415}
6416
906e58ca
NC
6417/* Determine and set the size of the stub section for a final link.
6418
6419 The basic idea here is to examine all the relocations looking for
6420 PC-relative calls to a target that is unreachable with a "bl"
6421 instruction. */
6422
0a1b45a2 6423bool
906e58ca
NC
6424elf32_arm_size_stubs (bfd *output_bfd,
6425 bfd *stub_bfd,
6426 struct bfd_link_info *info,
6427 bfd_signed_vma group_size,
7a89b94e 6428 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6429 asection *,
7a89b94e 6430 unsigned int),
906e58ca
NC
6431 void (*layout_sections_again) (void))
6432{
0a1b45a2 6433 bool ret = true;
4ba2ef8f 6434 obj_attribute *out_attr;
0955507f 6435 int cmse_stub_created = 0;
906e58ca 6436 bfd_size_type stub_group_size;
0a1b45a2 6437 bool m_profile, stubs_always_after_branch, first_veneer_scan = true;
906e58ca 6438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6439 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6440 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6441 struct a8_erratum_reloc *a8_relocs = NULL;
6442 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6443
4dfe6ac6 6444 if (htab == NULL)
0a1b45a2 6445 return false;
4dfe6ac6 6446
48229727
JB
6447 if (htab->fix_cortex_a8)
6448 {
21d799b5 6449 a8_fixes = (struct a8_erratum_fix *)
99059e56 6450 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6451 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6452 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6453 }
906e58ca
NC
6454
6455 /* Propagate mach to stub bfd, because it may not have been
6456 finalized when we created stub_bfd. */
6457 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6458 bfd_get_mach (output_bfd));
6459
6460 /* Stash our params away. */
6461 htab->stub_bfd = stub_bfd;
6462 htab->add_stub_section = add_stub_section;
6463 htab->layout_sections_again = layout_sections_again;
07d72278 6464 stubs_always_after_branch = group_size < 0;
48229727 6465
4ba2ef8f
TP
6466 out_attr = elf_known_obj_attributes_proc (output_bfd);
6467 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6468
48229727
JB
6469 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6470 as the first half of a 32-bit branch straddling two 4K pages. This is a
6471 crude way of enforcing that. */
6472 if (htab->fix_cortex_a8)
6473 stubs_always_after_branch = 1;
6474
906e58ca
NC
6475 if (group_size < 0)
6476 stub_group_size = -group_size;
6477 else
6478 stub_group_size = group_size;
6479
6480 if (stub_group_size == 1)
6481 {
6482 /* Default values. */
6483 /* Thumb branch range is +-4MB has to be used as the default
6484 maximum size (a given section can contain both ARM and Thumb
6485 code, so the worst case has to be taken into account).
6486
6487 This value is 24K less than that, which allows for 2025
6488 12-byte stubs. If we exceed that, then we will fail to link.
6489 The user will have to relink with an explicit group size
6490 option. */
6491 stub_group_size = 4170000;
6492 }
6493
07d72278 6494 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6495
3ae046cc
NS
6496 /* If we're applying the cortex A8 fix, we need to determine the
6497 program header size now, because we cannot change it later --
6498 that could alter section placements. Notice the A8 erratum fix
6499 ends up requiring the section addresses to remain unchanged
6500 modulo the page size. That's something we cannot represent
6501 inside BFD, and we don't want to force the section alignment to
6502 be the page size. */
6503 if (htab->fix_cortex_a8)
6504 (*htab->layout_sections_again) ();
6505
906e58ca
NC
6506 while (1)
6507 {
6508 bfd *input_bfd;
6509 unsigned int bfd_indx;
6510 asection *stub_sec;
d7c5bd02 6511 enum elf32_arm_stub_type stub_type;
0a1b45a2 6512 bool stub_changed = false;
eb7c4339 6513 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6514
48229727 6515 num_a8_fixes = 0;
906e58ca
NC
6516 for (input_bfd = info->input_bfds, bfd_indx = 0;
6517 input_bfd != NULL;
c72f2fb2 6518 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6519 {
6520 Elf_Internal_Shdr *symtab_hdr;
6521 asection *section;
6522 Elf_Internal_Sym *local_syms = NULL;
6523
73d5efd7
AM
6524 if (!is_arm_elf (input_bfd))
6525 continue;
6526 if ((input_bfd->flags & DYNAMIC) != 0
6527 && (elf_sym_hashes (input_bfd) == NULL
6528 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
99059e56 6529 continue;
adbcc655 6530
48229727
JB
6531 num_a8_relocs = 0;
6532
906e58ca
NC
6533 /* We'll need the symbol table in a second. */
6534 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6535 if (symtab_hdr->sh_info == 0)
6536 continue;
6537
4ba2ef8f
TP
6538 /* Limit scan of symbols to object file whose profile is
6539 Microcontroller to not hinder performance in the general case. */
6540 if (m_profile && first_veneer_scan)
6541 {
6542 struct elf_link_hash_entry **sym_hashes;
6543
6544 sym_hashes = elf_sym_hashes (input_bfd);
6545 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6546 &cmse_stub_created))
4ba2ef8f 6547 goto error_ret_free_local;
0955507f
TP
6548
6549 if (cmse_stub_created != 0)
0a1b45a2 6550 stub_changed = true;
4ba2ef8f
TP
6551 }
6552
906e58ca
NC
6553 /* Walk over each section attached to the input bfd. */
6554 for (section = input_bfd->sections;
6555 section != NULL;
6556 section = section->next)
6557 {
6558 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6559
6560 /* If there aren't any relocs, then there's nothing more
6561 to do. */
6562 if ((section->flags & SEC_RELOC) == 0
6563 || section->reloc_count == 0
6564 || (section->flags & SEC_CODE) == 0)
6565 continue;
6566
6567 /* If this section is a link-once section that will be
6568 discarded, then don't create any stubs. */
6569 if (section->output_section == NULL
6570 || section->output_section->owner != output_bfd)
6571 continue;
6572
6573 /* Get the relocs. */
6574 internal_relocs
6575 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6576 NULL, info->keep_memory);
6577 if (internal_relocs == NULL)
6578 goto error_ret_free_local;
6579
6580 /* Now examine each relocation. */
6581 irela = internal_relocs;
6582 irelaend = irela + section->reloc_count;
6583 for (; irela < irelaend; irela++)
6584 {
6585 unsigned int r_type, r_indx;
906e58ca
NC
6586 asection *sym_sec;
6587 bfd_vma sym_value;
6588 bfd_vma destination;
6589 struct elf32_arm_link_hash_entry *hash;
7413f23f 6590 const char *sym_name;
34e77a92 6591 unsigned char st_type;
35fc36a8 6592 enum arm_st_branch_type branch_type;
0a1b45a2 6593 bool created_stub = false;
906e58ca
NC
6594
6595 r_type = ELF32_R_TYPE (irela->r_info);
6596 r_indx = ELF32_R_SYM (irela->r_info);
6597
6598 if (r_type >= (unsigned int) R_ARM_max)
6599 {
6600 bfd_set_error (bfd_error_bad_value);
6601 error_ret_free_internal:
6602 if (elf_section_data (section)->relocs == NULL)
6603 free (internal_relocs);
15dd01b1
TP
6604 /* Fall through. */
6605 error_ret_free_local:
c9594989 6606 if (symtab_hdr->contents != (unsigned char *) local_syms)
15dd01b1 6607 free (local_syms);
0a1b45a2 6608 return false;
906e58ca 6609 }
b38cadfb 6610
0855e32b
NS
6611 hash = NULL;
6612 if (r_indx >= symtab_hdr->sh_info)
6613 hash = elf32_arm_hash_entry
6614 (elf_sym_hashes (input_bfd)
6615 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6616
0855e32b
NS
6617 /* Only look for stubs on branch instructions, or
6618 non-relaxed TLSCALL */
906e58ca 6619 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6620 && (r_type != (unsigned int) R_ARM_THM_CALL)
6621 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6622 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6623 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6624 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6625 && (r_type != (unsigned int) R_ARM_PLT32)
6626 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6627 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
c9f9a78d
AM
6628 && r_type == (elf32_arm_tls_transition
6629 (info, r_type,
6630 (struct elf_link_hash_entry *) hash))
0855e32b
NS
6631 && ((hash ? hash->tls_type
6632 : (elf32_arm_local_got_tls_type
6633 (input_bfd)[r_indx]))
6634 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6635 continue;
6636
6637 /* Now determine the call target, its name, value,
6638 section. */
6639 sym_sec = NULL;
6640 sym_value = 0;
6641 destination = 0;
7413f23f 6642 sym_name = NULL;
b38cadfb 6643
0855e32b
NS
6644 if (r_type == (unsigned int) R_ARM_TLS_CALL
6645 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6646 {
6647 /* A non-relaxed TLS call. The target is the
6648 plt-resident trampoline and nothing to do
6649 with the symbol. */
6650 BFD_ASSERT (htab->tls_trampoline > 0);
6651 sym_sec = htab->root.splt;
6652 sym_value = htab->tls_trampoline;
6653 hash = 0;
34e77a92 6654 st_type = STT_FUNC;
35fc36a8 6655 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6656 }
6657 else if (!hash)
906e58ca
NC
6658 {
6659 /* It's a local symbol. */
6660 Elf_Internal_Sym *sym;
906e58ca
NC
6661
6662 if (local_syms == NULL)
6663 {
6664 local_syms
6665 = (Elf_Internal_Sym *) symtab_hdr->contents;
6666 if (local_syms == NULL)
6667 local_syms
6668 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6669 symtab_hdr->sh_info, 0,
6670 NULL, NULL, NULL);
6671 if (local_syms == NULL)
6672 goto error_ret_free_internal;
6673 }
6674
6675 sym = local_syms + r_indx;
f6d250ce
TS
6676 if (sym->st_shndx == SHN_UNDEF)
6677 sym_sec = bfd_und_section_ptr;
6678 else if (sym->st_shndx == SHN_ABS)
6679 sym_sec = bfd_abs_section_ptr;
6680 else if (sym->st_shndx == SHN_COMMON)
6681 sym_sec = bfd_com_section_ptr;
6682 else
6683 sym_sec =
6684 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6685
ffcb4889
NS
6686 if (!sym_sec)
6687 /* This is an undefined symbol. It can never
6a631e86 6688 be resolved. */
ffcb4889 6689 continue;
fe33d2fa 6690
906e58ca
NC
6691 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6692 sym_value = sym->st_value;
6693 destination = (sym_value + irela->r_addend
6694 + sym_sec->output_offset
6695 + sym_sec->output_section->vma);
34e77a92 6696 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6697 branch_type =
6698 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6699 sym_name
6700 = bfd_elf_string_from_elf_section (input_bfd,
6701 symtab_hdr->sh_link,
6702 sym->st_name);
906e58ca
NC
6703 }
6704 else
6705 {
6706 /* It's an external symbol. */
906e58ca
NC
6707 while (hash->root.root.type == bfd_link_hash_indirect
6708 || hash->root.root.type == bfd_link_hash_warning)
6709 hash = ((struct elf32_arm_link_hash_entry *)
6710 hash->root.root.u.i.link);
6711
6712 if (hash->root.root.type == bfd_link_hash_defined
6713 || hash->root.root.type == bfd_link_hash_defweak)
6714 {
6715 sym_sec = hash->root.root.u.def.section;
6716 sym_value = hash->root.root.u.def.value;
022f8312
CL
6717
6718 struct elf32_arm_link_hash_table *globals =
6719 elf32_arm_hash_table (info);
6720
6721 /* For a destination in a shared library,
6722 use the PLT stub as target address to
6723 decide whether a branch stub is
6724 needed. */
4dfe6ac6 6725 if (globals != NULL
362d30a1 6726 && globals->root.splt != NULL
4dfe6ac6 6727 && hash != NULL
022f8312
CL
6728 && hash->root.plt.offset != (bfd_vma) -1)
6729 {
362d30a1 6730 sym_sec = globals->root.splt;
022f8312
CL
6731 sym_value = hash->root.plt.offset;
6732 if (sym_sec->output_section != NULL)
6733 destination = (sym_value
6734 + sym_sec->output_offset
6735 + sym_sec->output_section->vma);
6736 }
6737 else if (sym_sec->output_section != NULL)
906e58ca
NC
6738 destination = (sym_value + irela->r_addend
6739 + sym_sec->output_offset
6740 + sym_sec->output_section->vma);
6741 }
69c5861e
CL
6742 else if ((hash->root.root.type == bfd_link_hash_undefined)
6743 || (hash->root.root.type == bfd_link_hash_undefweak))
6744 {
6745 /* For a shared library, use the PLT stub as
6746 target address to decide whether a long
6747 branch stub is needed.
6748 For absolute code, they cannot be handled. */
6749 struct elf32_arm_link_hash_table *globals =
6750 elf32_arm_hash_table (info);
6751
4dfe6ac6 6752 if (globals != NULL
362d30a1 6753 && globals->root.splt != NULL
4dfe6ac6 6754 && hash != NULL
69c5861e
CL
6755 && hash->root.plt.offset != (bfd_vma) -1)
6756 {
362d30a1 6757 sym_sec = globals->root.splt;
69c5861e
CL
6758 sym_value = hash->root.plt.offset;
6759 if (sym_sec->output_section != NULL)
6760 destination = (sym_value
6761 + sym_sec->output_offset
6762 + sym_sec->output_section->vma);
6763 }
6764 else
6765 continue;
6766 }
906e58ca
NC
6767 else
6768 {
6769 bfd_set_error (bfd_error_bad_value);
6770 goto error_ret_free_internal;
6771 }
34e77a92 6772 st_type = hash->root.type;
39d911fc
TP
6773 branch_type =
6774 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6775 sym_name = hash->root.root.root.string;
906e58ca
NC
6776 }
6777
48229727 6778 do
7413f23f 6779 {
0a1b45a2 6780 bool new_stub;
0955507f 6781 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6782
48229727
JB
6783 /* Determine what (if any) linker stub is needed. */
6784 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6785 st_type, &branch_type,
6786 hash, destination, sym_sec,
48229727
JB
6787 input_bfd, sym_name);
6788 if (stub_type == arm_stub_none)
6789 break;
6790
48229727
JB
6791 /* We've either created a stub for this reloc already,
6792 or we are about to. */
0955507f 6793 stub_entry =
b715f643
TP
6794 elf32_arm_create_stub (htab, stub_type, section, irela,
6795 sym_sec, hash,
6796 (char *) sym_name, sym_value,
6797 branch_type, &new_stub);
7413f23f 6798
0955507f 6799 created_stub = stub_entry != NULL;
b715f643
TP
6800 if (!created_stub)
6801 goto error_ret_free_internal;
6802 else if (!new_stub)
6803 break;
99059e56 6804 else
0a1b45a2 6805 stub_changed = true;
99059e56
RM
6806 }
6807 while (0);
6808
6809 /* Look for relocations which might trigger Cortex-A8
6810 erratum. */
6811 if (htab->fix_cortex_a8
6812 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6813 || r_type == (unsigned int) R_ARM_THM_JUMP19
6814 || r_type == (unsigned int) R_ARM_THM_CALL
6815 || r_type == (unsigned int) R_ARM_THM_XPC22))
6816 {
6817 bfd_vma from = section->output_section->vma
6818 + section->output_offset
6819 + irela->r_offset;
6820
6821 if ((from & 0xfff) == 0xffe)
6822 {
6823 /* Found a candidate. Note we haven't checked the
6824 destination is within 4K here: if we do so (and
6825 don't create an entry in a8_relocs) we can't tell
6826 that a branch should have been relocated when
6827 scanning later. */
6828 if (num_a8_relocs == a8_reloc_table_size)
6829 {
6830 a8_reloc_table_size *= 2;
6831 a8_relocs = (struct a8_erratum_reloc *)
6832 bfd_realloc (a8_relocs,
6833 sizeof (struct a8_erratum_reloc)
6834 * a8_reloc_table_size);
6835 }
6836
6837 a8_relocs[num_a8_relocs].from = from;
6838 a8_relocs[num_a8_relocs].destination = destination;
6839 a8_relocs[num_a8_relocs].r_type = r_type;
6840 a8_relocs[num_a8_relocs].branch_type = branch_type;
6841 a8_relocs[num_a8_relocs].sym_name = sym_name;
6842 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6843 a8_relocs[num_a8_relocs].hash = hash;
6844
6845 num_a8_relocs++;
6846 }
6847 }
906e58ca
NC
6848 }
6849
99059e56
RM
6850 /* We're done with the internal relocs, free them. */
6851 if (elf_section_data (section)->relocs == NULL)
6852 free (internal_relocs);
6853 }
48229727 6854
99059e56 6855 if (htab->fix_cortex_a8)
48229727 6856 {
99059e56
RM
6857 /* Sort relocs which might apply to Cortex-A8 erratum. */
6858 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6859 sizeof (struct a8_erratum_reloc),
99059e56 6860 &a8_reloc_compare);
48229727 6861
99059e56
RM
6862 /* Scan for branches which might trigger Cortex-A8 erratum. */
6863 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6864 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6865 a8_relocs, num_a8_relocs,
6866 prev_num_a8_fixes, &stub_changed)
6867 != 0)
48229727 6868 goto error_ret_free_local;
5e681ec4 6869 }
7f991970
AM
6870
6871 if (local_syms != NULL
6872 && symtab_hdr->contents != (unsigned char *) local_syms)
6873 {
6874 if (!info->keep_memory)
6875 free (local_syms);
6876 else
6877 symtab_hdr->contents = (unsigned char *) local_syms;
6878 }
5e681ec4
PB
6879 }
6880
0955507f
TP
6881 if (first_veneer_scan
6882 && !set_cmse_veneer_addr_from_implib (info, htab,
6883 &cmse_stub_created))
0a1b45a2 6884 ret = false;
0955507f 6885
eb7c4339 6886 if (prev_num_a8_fixes != num_a8_fixes)
0a1b45a2 6887 stub_changed = true;
48229727 6888
906e58ca
NC
6889 if (!stub_changed)
6890 break;
5e681ec4 6891
906e58ca
NC
6892 /* OK, we've added some stubs. Find out the new size of the
6893 stub sections. */
6894 for (stub_sec = htab->stub_bfd->sections;
6895 stub_sec != NULL;
6896 stub_sec = stub_sec->next)
3e6b1042
DJ
6897 {
6898 /* Ignore non-stub sections. */
6899 if (!strstr (stub_sec->name, STUB_SUFFIX))
6900 continue;
6901
6902 stub_sec->size = 0;
6903 }
b34b2d70 6904
0955507f
TP
6905 /* Add new SG veneers after those already in the input import
6906 library. */
6907 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6908 stub_type++)
6909 {
6910 bfd_vma *start_offset_p;
6911 asection **stub_sec_p;
6912
6913 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6914 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6915 if (start_offset_p == NULL)
6916 continue;
6917
6918 BFD_ASSERT (stub_sec_p != NULL);
6919 if (*stub_sec_p != NULL)
6920 (*stub_sec_p)->size = *start_offset_p;
6921 }
6922
d7c5bd02 6923 /* Compute stub section size, considering padding. */
906e58ca 6924 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6925 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6926 stub_type++)
6927 {
6928 int size, padding;
6929 asection **stub_sec_p;
6930
6931 padding = arm_dedicated_stub_section_padding (stub_type);
6932 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6933 /* Skip if no stub input section or no stub section padding
6934 required. */
6935 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6936 continue;
6937 /* Stub section padding required but no dedicated section. */
6938 BFD_ASSERT (stub_sec_p);
6939
6940 size = (*stub_sec_p)->size;
6941 size = (size + padding - 1) & ~(padding - 1);
6942 (*stub_sec_p)->size = size;
6943 }
906e58ca 6944
48229727
JB
6945 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6946 if (htab->fix_cortex_a8)
99059e56
RM
6947 for (i = 0; i < num_a8_fixes; i++)
6948 {
48229727 6949 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6950 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6951
6952 if (stub_sec == NULL)
0a1b45a2 6953 return false;
48229727 6954
99059e56
RM
6955 stub_sec->size
6956 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6957 NULL);
6958 }
48229727
JB
6959
6960
906e58ca
NC
6961 /* Ask the linker to do its stuff. */
6962 (*htab->layout_sections_again) ();
0a1b45a2 6963 first_veneer_scan = false;
ba93b8ac
DJ
6964 }
6965
48229727
JB
6966 /* Add stubs for Cortex-A8 erratum fixes now. */
6967 if (htab->fix_cortex_a8)
6968 {
6969 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6970 {
6971 struct elf32_arm_stub_hash_entry *stub_entry;
6972 char *stub_name = a8_fixes[i].stub_name;
6973 asection *section = a8_fixes[i].section;
6974 unsigned int section_id = a8_fixes[i].section->id;
6975 asection *link_sec = htab->stub_group[section_id].link_sec;
6976 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6977 const insn_sequence *template_sequence;
6978 int template_size, size = 0;
6979
6980 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 6981 true, false);
99059e56
RM
6982 if (stub_entry == NULL)
6983 {
871b3ab2 6984 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 6985 section->owner, stub_name);
0a1b45a2 6986 return false;
99059e56
RM
6987 }
6988
6989 stub_entry->stub_sec = stub_sec;
0955507f 6990 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6991 stub_entry->id_sec = link_sec;
6992 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6993 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6994 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6995 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6996 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6997 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6998
99059e56
RM
6999 size = find_stub_size_and_template (a8_fixes[i].stub_type,
7000 &template_sequence,
7001 &template_size);
48229727 7002
99059e56
RM
7003 stub_entry->stub_size = size;
7004 stub_entry->stub_template = template_sequence;
7005 stub_entry->stub_template_size = template_size;
7006 }
48229727
JB
7007
7008 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 7009 elf32_arm_write_section(). */
48229727
JB
7010 htab->a8_erratum_fixes = a8_fixes;
7011 htab->num_a8_erratum_fixes = num_a8_fixes;
7012 }
7013 else
7014 {
7015 htab->a8_erratum_fixes = NULL;
7016 htab->num_a8_erratum_fixes = 0;
7017 }
0955507f 7018 return ret;
5e681ec4
PB
7019}
7020
906e58ca
NC
7021/* Build all the stubs associated with the current output file. The
7022 stubs are kept in a hash table attached to the main linker hash
7023 table. We also set up the .plt entries for statically linked PIC
7024 functions here. This function is called via arm_elf_finish in the
7025 linker. */
252b5132 7026
0a1b45a2 7027bool
906e58ca 7028elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 7029{
906e58ca
NC
7030 asection *stub_sec;
7031 struct bfd_hash_table *table;
0955507f 7032 enum elf32_arm_stub_type stub_type;
906e58ca 7033 struct elf32_arm_link_hash_table *htab;
252b5132 7034
906e58ca 7035 htab = elf32_arm_hash_table (info);
4dfe6ac6 7036 if (htab == NULL)
0a1b45a2 7037 return false;
252b5132 7038
906e58ca
NC
7039 for (stub_sec = htab->stub_bfd->sections;
7040 stub_sec != NULL;
7041 stub_sec = stub_sec->next)
252b5132 7042 {
906e58ca
NC
7043 bfd_size_type size;
7044
8029a119 7045 /* Ignore non-stub sections. */
906e58ca
NC
7046 if (!strstr (stub_sec->name, STUB_SUFFIX))
7047 continue;
7048
d7c5bd02 7049 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
7050 must at least be done for stub section requiring padding and for SG
7051 veneers to ensure that a non secure code branching to a removed SG
7052 veneer causes an error. */
906e58ca 7053 size = stub_sec->size;
21d799b5 7054 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca 7055 if (stub_sec->contents == NULL && size != 0)
0a1b45a2 7056 return false;
0955507f 7057
906e58ca 7058 stub_sec->size = 0;
252b5132
RH
7059 }
7060
0955507f
TP
7061 /* Add new SG veneers after those already in the input import library. */
7062 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7063 {
7064 bfd_vma *start_offset_p;
7065 asection **stub_sec_p;
7066
7067 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7068 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7069 if (start_offset_p == NULL)
7070 continue;
7071
7072 BFD_ASSERT (stub_sec_p != NULL);
7073 if (*stub_sec_p != NULL)
7074 (*stub_sec_p)->size = *start_offset_p;
7075 }
7076
906e58ca
NC
7077 /* Build the stubs as directed by the stub hash table. */
7078 table = &htab->stub_hash_table;
7079 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
7080 if (htab->fix_cortex_a8)
7081 {
7082 /* Place the cortex a8 stubs last. */
7083 htab->fix_cortex_a8 = -1;
7084 bfd_hash_traverse (table, arm_build_one_stub, info);
7085 }
252b5132 7086
0a1b45a2 7087 return true;
252b5132
RH
7088}
7089
9b485d32
NC
7090/* Locate the Thumb encoded calling stub for NAME. */
7091
252b5132 7092static struct elf_link_hash_entry *
57e8b36a
NC
7093find_thumb_glue (struct bfd_link_info *link_info,
7094 const char *name,
f2a9dd69 7095 char **error_message)
252b5132
RH
7096{
7097 char *tmp_name;
7098 struct elf_link_hash_entry *hash;
7099 struct elf32_arm_link_hash_table *hash_table;
7100
7101 /* We need a pointer to the armelf specific hash table. */
7102 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7103 if (hash_table == NULL)
7104 return NULL;
252b5132 7105
21d799b5 7106 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7108
7109 BFD_ASSERT (tmp_name);
7110
7111 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7112
7113 hash = elf_link_hash_lookup
0a1b45a2 7114 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7115
6f860418
AM
7116 if (hash == NULL)
7117 {
7118 *error_message = bfd_asprintf (_("unable to find %s glue '%s' for '%s'"),
7119 "Thumb", tmp_name, name);
7120 if (*error_message == NULL)
7121 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7122 }
252b5132
RH
7123
7124 free (tmp_name);
7125
7126 return hash;
7127}
7128
9b485d32
NC
7129/* Locate the ARM encoded calling stub for NAME. */
7130
252b5132 7131static struct elf_link_hash_entry *
57e8b36a
NC
7132find_arm_glue (struct bfd_link_info *link_info,
7133 const char *name,
f2a9dd69 7134 char **error_message)
252b5132
RH
7135{
7136 char *tmp_name;
7137 struct elf_link_hash_entry *myh;
7138 struct elf32_arm_link_hash_table *hash_table;
7139
7140 /* We need a pointer to the elfarm specific hash table. */
7141 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7142 if (hash_table == NULL)
7143 return NULL;
252b5132 7144
21d799b5 7145 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7146 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7147 BFD_ASSERT (tmp_name);
7148
7149 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7150
7151 myh = elf_link_hash_lookup
0a1b45a2 7152 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7153
6f860418
AM
7154 if (myh == NULL)
7155 {
7156 *error_message = bfd_asprintf (_("unable to find %s glue '%s' for '%s'"),
7157 "ARM", tmp_name, name);
7158 if (*error_message == NULL)
7159 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7160 }
252b5132
RH
7161 free (tmp_name);
7162
7163 return myh;
7164}
7165
8f6277f5 7166/* ARM->Thumb glue (static images):
252b5132
RH
7167
7168 .arm
7169 __func_from_arm:
7170 ldr r12, __func_addr
7171 bx r12
7172 __func_addr:
906e58ca 7173 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 7174
26079076
PB
7175 (v5t static images)
7176 .arm
7177 __func_from_arm:
7178 ldr pc, __func_addr
7179 __func_addr:
906e58ca 7180 .word func @ behave as if you saw a ARM_32 reloc.
26079076 7181
8f6277f5
PB
7182 (relocatable images)
7183 .arm
7184 __func_from_arm:
7185 ldr r12, __func_offset
7186 add r12, r12, pc
7187 bx r12
7188 __func_offset:
8029a119 7189 .word func - . */
8f6277f5
PB
7190
7191#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
7192static const insn32 a2t1_ldr_insn = 0xe59fc000;
7193static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7194static const insn32 a2t3_func_addr_insn = 0x00000001;
7195
26079076
PB
7196#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7197static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7198static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7199
8f6277f5
PB
7200#define ARM2THUMB_PIC_GLUE_SIZE 16
7201static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7202static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7203static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7204
07d6d2b8 7205/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 7206
07d6d2b8
AM
7207 .thumb .thumb
7208 .align 2 .align 2
7209 __func_from_thumb: __func_from_thumb:
7210 bx pc push {r6, lr}
7211 nop ldr r6, __func_addr
7212 .arm mov lr, pc
7213 b func bx r6
99059e56
RM
7214 .arm
7215 ;; back_to_thumb
7216 ldmia r13! {r6, lr}
7217 bx lr
7218 __func_addr:
07d6d2b8 7219 .word func */
252b5132
RH
7220
7221#define THUMB2ARM_GLUE_SIZE 8
7222static const insn16 t2a1_bx_pc_insn = 0x4778;
7223static const insn16 t2a2_noop_insn = 0x46c0;
7224static const insn32 t2a3_b_insn = 0xea000000;
7225
c7b8f16e 7226#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
7227#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7228#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 7229
845b51d6
PB
7230#define ARM_BX_VENEER_SIZE 12
7231static const insn32 armbx1_tst_insn = 0xe3100001;
7232static const insn32 armbx2_moveq_insn = 0x01a0f000;
7233static const insn32 armbx3_bx_insn = 0xe12fff10;
7234
7e392df6 7235#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
7236static void
7237arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
7238{
7239 asection * s;
8029a119 7240 bfd_byte * contents;
252b5132 7241
8029a119 7242 if (size == 0)
3e6b1042
DJ
7243 {
7244 /* Do not include empty glue sections in the output. */
7245 if (abfd != NULL)
7246 {
3d4d4302 7247 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
7248 if (s != NULL)
7249 s->flags |= SEC_EXCLUDE;
7250 }
7251 return;
7252 }
252b5132 7253
8029a119 7254 BFD_ASSERT (abfd != NULL);
252b5132 7255
3d4d4302 7256 s = bfd_get_linker_section (abfd, name);
8029a119 7257 BFD_ASSERT (s != NULL);
252b5132 7258
b0f4fbf8 7259 contents = (bfd_byte *) bfd_zalloc (abfd, size);
252b5132 7260
8029a119
NC
7261 BFD_ASSERT (s->size == size);
7262 s->contents = contents;
7263}
906e58ca 7264
0a1b45a2 7265bool
8029a119
NC
7266bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7267{
7268 struct elf32_arm_link_hash_table * globals;
906e58ca 7269
8029a119
NC
7270 globals = elf32_arm_hash_table (info);
7271 BFD_ASSERT (globals != NULL);
906e58ca 7272
8029a119
NC
7273 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7274 globals->arm_glue_size,
7275 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 7276
8029a119
NC
7277 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7278 globals->thumb_glue_size,
7279 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 7280
8029a119
NC
7281 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7282 globals->vfp11_erratum_glue_size,
7283 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 7284
a504d23a
LA
7285 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7286 globals->stm32l4xx_erratum_glue_size,
7287 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7288
8029a119
NC
7289 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7290 globals->bx_glue_size,
845b51d6
PB
7291 ARM_BX_GLUE_SECTION_NAME);
7292
0a1b45a2 7293 return true;
252b5132
RH
7294}
7295
a4fd1a8e 7296/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
7297 returns the symbol identifying the stub. */
7298
a4fd1a8e 7299static struct elf_link_hash_entry *
57e8b36a
NC
7300record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7301 struct elf_link_hash_entry * h)
252b5132
RH
7302{
7303 const char * name = h->root.root.string;
63b0f745 7304 asection * s;
252b5132
RH
7305 char * tmp_name;
7306 struct elf_link_hash_entry * myh;
14a793b2 7307 struct bfd_link_hash_entry * bh;
252b5132 7308 struct elf32_arm_link_hash_table * globals;
dc810e39 7309 bfd_vma val;
2f475487 7310 bfd_size_type size;
252b5132
RH
7311
7312 globals = elf32_arm_hash_table (link_info);
252b5132
RH
7313 BFD_ASSERT (globals != NULL);
7314 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7315
3d4d4302 7316 s = bfd_get_linker_section
252b5132
RH
7317 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7318
252b5132
RH
7319 BFD_ASSERT (s != NULL);
7320
21d799b5 7321 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7322 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7323 BFD_ASSERT (tmp_name);
7324
7325 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7326
7327 myh = elf_link_hash_lookup
0a1b45a2 7328 (&(globals)->root, tmp_name, false, false, true);
252b5132
RH
7329
7330 if (myh != NULL)
7331 {
9b485d32 7332 /* We've already seen this guy. */
252b5132 7333 free (tmp_name);
a4fd1a8e 7334 return myh;
252b5132
RH
7335 }
7336
57e8b36a
NC
7337 /* The only trick here is using hash_table->arm_glue_size as the value.
7338 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
7339 putting it. The +1 on the value marks that the stub has not been
7340 output yet - not that it is a Thumb function. */
14a793b2 7341 bh = NULL;
dc810e39
AM
7342 val = globals->arm_glue_size + 1;
7343 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7344 tmp_name, BSF_GLOBAL, s, val,
0a1b45a2 7345 NULL, true, false, &bh);
252b5132 7346
b7693d02
DJ
7347 myh = (struct elf_link_hash_entry *) bh;
7348 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7349 myh->forced_local = 1;
7350
252b5132
RH
7351 free (tmp_name);
7352
0e1862bb
L
7353 if (bfd_link_pic (link_info)
7354 || globals->root.is_relocatable_executable
27e55c4d 7355 || globals->pic_veneer)
2f475487 7356 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7357 else if (globals->use_blx)
7358 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7359 else
2f475487
AM
7360 size = ARM2THUMB_STATIC_GLUE_SIZE;
7361
7362 s->size += size;
7363 globals->arm_glue_size += size;
252b5132 7364
a4fd1a8e 7365 return myh;
252b5132
RH
7366}
7367
845b51d6
PB
7368/* Allocate space for ARMv4 BX veneers. */
7369
7370static void
7371record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7372{
7373 asection * s;
7374 struct elf32_arm_link_hash_table *globals;
7375 char *tmp_name;
7376 struct elf_link_hash_entry *myh;
7377 struct bfd_link_hash_entry *bh;
7378 bfd_vma val;
7379
7380 /* BX PC does not need a veneer. */
7381 if (reg == 15)
7382 return;
7383
7384 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7385 BFD_ASSERT (globals != NULL);
7386 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7387
7388 /* Check if this veneer has already been allocated. */
7389 if (globals->bx_glue_offset[reg])
7390 return;
7391
3d4d4302 7392 s = bfd_get_linker_section
845b51d6
PB
7393 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7394
7395 BFD_ASSERT (s != NULL);
7396
7397 /* Add symbol for veneer. */
21d799b5
NC
7398 tmp_name = (char *)
7399 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
845b51d6 7400 BFD_ASSERT (tmp_name);
906e58ca 7401
845b51d6 7402 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7403
845b51d6 7404 myh = elf_link_hash_lookup
0a1b45a2 7405 (&(globals)->root, tmp_name, false, false, false);
906e58ca 7406
845b51d6 7407 BFD_ASSERT (myh == NULL);
906e58ca 7408
845b51d6
PB
7409 bh = NULL;
7410 val = globals->bx_glue_size;
7411 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56 7412 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7413 NULL, true, false, &bh);
845b51d6
PB
7414
7415 myh = (struct elf_link_hash_entry *) bh;
7416 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7417 myh->forced_local = 1;
7418
7419 s->size += ARM_BX_VENEER_SIZE;
7420 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7421 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7422}
7423
7424
c7b8f16e
JB
7425/* Add an entry to the code/data map for section SEC. */
7426
7427static void
7428elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7429{
7430 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7431 unsigned int newidx;
906e58ca 7432
c7b8f16e
JB
7433 if (sec_data->map == NULL)
7434 {
21d799b5 7435 sec_data->map = (elf32_arm_section_map *)
99059e56 7436 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7437 sec_data->mapcount = 0;
7438 sec_data->mapsize = 1;
7439 }
906e58ca 7440
c7b8f16e 7441 newidx = sec_data->mapcount++;
906e58ca 7442
c7b8f16e
JB
7443 if (sec_data->mapcount > sec_data->mapsize)
7444 {
7445 sec_data->mapsize *= 2;
21d799b5 7446 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7447 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7448 * sizeof (elf32_arm_section_map));
515ef31d
NC
7449 }
7450
7451 if (sec_data->map)
7452 {
7453 sec_data->map[newidx].vma = vma;
7454 sec_data->map[newidx].type = type;
c7b8f16e 7455 }
c7b8f16e
JB
7456}
7457
7458
7459/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7460 veneers are handled for now. */
7461
7462static bfd_vma
7463record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7464 elf32_vfp11_erratum_list *branch,
7465 bfd *branch_bfd,
7466 asection *branch_sec,
7467 unsigned int offset)
c7b8f16e
JB
7468{
7469 asection *s;
7470 struct elf32_arm_link_hash_table *hash_table;
7471 char *tmp_name;
7472 struct elf_link_hash_entry *myh;
7473 struct bfd_link_hash_entry *bh;
7474 bfd_vma val;
7475 struct _arm_elf_section_data *sec_data;
c7b8f16e 7476 elf32_vfp11_erratum_list *newerr;
906e58ca 7477
c7b8f16e 7478 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7479 BFD_ASSERT (hash_table != NULL);
7480 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7481
3d4d4302 7482 s = bfd_get_linker_section
c7b8f16e 7483 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7484
c7b8f16e 7485 sec_data = elf32_arm_section_data (s);
906e58ca 7486
c7b8f16e 7487 BFD_ASSERT (s != NULL);
906e58ca 7488
21d799b5 7489 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7490 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e 7491 BFD_ASSERT (tmp_name);
906e58ca 7492
c7b8f16e
JB
7493 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7494 hash_table->num_vfp11_fixes);
906e58ca 7495
c7b8f16e 7496 myh = elf_link_hash_lookup
0a1b45a2 7497 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7498
c7b8f16e 7499 BFD_ASSERT (myh == NULL);
906e58ca 7500
c7b8f16e
JB
7501 bh = NULL;
7502 val = hash_table->vfp11_erratum_glue_size;
7503 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56 7504 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7505 NULL, true, false, &bh);
c7b8f16e
JB
7506
7507 myh = (struct elf_link_hash_entry *) bh;
7508 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7509 myh->forced_local = 1;
7510
7511 /* Link veneer back to calling location. */
c7e2358a 7512 sec_data->erratumcount += 1;
21d799b5
NC
7513 newerr = (elf32_vfp11_erratum_list *)
7514 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7515
c7b8f16e
JB
7516 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7517 newerr->vma = -1;
7518 newerr->u.v.branch = branch;
7519 newerr->u.v.id = hash_table->num_vfp11_fixes;
7520 branch->u.b.veneer = newerr;
7521
7522 newerr->next = sec_data->erratumlist;
7523 sec_data->erratumlist = newerr;
7524
7525 /* A symbol for the return from the veneer. */
7526 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7527 hash_table->num_vfp11_fixes);
7528
7529 myh = elf_link_hash_lookup
0a1b45a2 7530 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7531
c7b8f16e
JB
7532 if (myh != NULL)
7533 abort ();
7534
7535 bh = NULL;
7536 val = offset + 4;
7537 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7538 branch_sec, val, NULL, true, false, &bh);
906e58ca 7539
c7b8f16e
JB
7540 myh = (struct elf_link_hash_entry *) bh;
7541 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7542 myh->forced_local = 1;
7543
7544 free (tmp_name);
906e58ca 7545
c7b8f16e
JB
7546 /* Generate a mapping symbol for the veneer section, and explicitly add an
7547 entry for that symbol to the code/data map for the section. */
7548 if (hash_table->vfp11_erratum_glue_size == 0)
7549 {
7550 bh = NULL;
7551 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7552 ever requires this erratum fix. */
c7b8f16e
JB
7553 _bfd_generic_link_add_one_symbol (link_info,
7554 hash_table->bfd_of_glue_owner, "$a",
7555 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7556 true, false, &bh);
c7b8f16e
JB
7557
7558 myh = (struct elf_link_hash_entry *) bh;
7559 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7560 myh->forced_local = 1;
906e58ca 7561
c7b8f16e 7562 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7563 BFDs. We must make a note of this generated mapping symbol
7564 ourselves so that code byteswapping works properly in
7565 elf32_arm_write_section. */
c7b8f16e
JB
7566 elf32_arm_section_map_add (s, 'a', 0);
7567 }
906e58ca 7568
c7b8f16e
JB
7569 s->size += VFP11_ERRATUM_VENEER_SIZE;
7570 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7571 hash_table->num_vfp11_fixes++;
906e58ca 7572
c7b8f16e
JB
7573 /* The offset of the veneer. */
7574 return val;
7575}
7576
a504d23a
LA
7577/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7578 veneers need to be handled because used only in Cortex-M. */
7579
7580static bfd_vma
7581record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7582 elf32_stm32l4xx_erratum_list *branch,
7583 bfd *branch_bfd,
7584 asection *branch_sec,
7585 unsigned int offset,
7586 bfd_size_type veneer_size)
7587{
7588 asection *s;
7589 struct elf32_arm_link_hash_table *hash_table;
7590 char *tmp_name;
7591 struct elf_link_hash_entry *myh;
7592 struct bfd_link_hash_entry *bh;
7593 bfd_vma val;
7594 struct _arm_elf_section_data *sec_data;
7595 elf32_stm32l4xx_erratum_list *newerr;
7596
7597 hash_table = elf32_arm_hash_table (link_info);
7598 BFD_ASSERT (hash_table != NULL);
7599 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7600
7601 s = bfd_get_linker_section
7602 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7603
7604 BFD_ASSERT (s != NULL);
7605
7606 sec_data = elf32_arm_section_data (s);
7607
7608 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7609 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
a504d23a
LA
7610 BFD_ASSERT (tmp_name);
7611
7612 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7613 hash_table->num_stm32l4xx_fixes);
7614
7615 myh = elf_link_hash_lookup
0a1b45a2 7616 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7617
7618 BFD_ASSERT (myh == NULL);
7619
7620 bh = NULL;
7621 val = hash_table->stm32l4xx_erratum_glue_size;
7622 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7623 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7624 NULL, true, false, &bh);
a504d23a
LA
7625
7626 myh = (struct elf_link_hash_entry *) bh;
7627 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7628 myh->forced_local = 1;
7629
7630 /* Link veneer back to calling location. */
7631 sec_data->stm32l4xx_erratumcount += 1;
7632 newerr = (elf32_stm32l4xx_erratum_list *)
7633 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7634
7635 newerr->type = STM32L4XX_ERRATUM_VENEER;
7636 newerr->vma = -1;
7637 newerr->u.v.branch = branch;
7638 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7639 branch->u.b.veneer = newerr;
7640
7641 newerr->next = sec_data->stm32l4xx_erratumlist;
7642 sec_data->stm32l4xx_erratumlist = newerr;
7643
7644 /* A symbol for the return from the veneer. */
7645 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7646 hash_table->num_stm32l4xx_fixes);
7647
7648 myh = elf_link_hash_lookup
0a1b45a2 7649 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7650
7651 if (myh != NULL)
7652 abort ();
7653
7654 bh = NULL;
7655 val = offset + 4;
7656 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7657 branch_sec, val, NULL, true, false, &bh);
a504d23a
LA
7658
7659 myh = (struct elf_link_hash_entry *) bh;
7660 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7661 myh->forced_local = 1;
7662
7663 free (tmp_name);
7664
7665 /* Generate a mapping symbol for the veneer section, and explicitly add an
7666 entry for that symbol to the code/data map for the section. */
7667 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7668 {
7669 bh = NULL;
7670 /* Creates a THUMB symbol since there is no other choice. */
7671 _bfd_generic_link_add_one_symbol (link_info,
7672 hash_table->bfd_of_glue_owner, "$t",
7673 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7674 true, false, &bh);
a504d23a
LA
7675
7676 myh = (struct elf_link_hash_entry *) bh;
7677 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7678 myh->forced_local = 1;
7679
7680 /* The elf32_arm_init_maps function only cares about symbols from input
7681 BFDs. We must make a note of this generated mapping symbol
7682 ourselves so that code byteswapping works properly in
7683 elf32_arm_write_section. */
7684 elf32_arm_section_map_add (s, 't', 0);
7685 }
7686
7687 s->size += veneer_size;
7688 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7689 hash_table->num_stm32l4xx_fixes++;
7690
7691 /* The offset of the veneer. */
7692 return val;
7693}
7694
8029a119 7695#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7696 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7697 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7698
7699/* Create a fake section for use by the ARM backend of the linker. */
7700
0a1b45a2 7701static bool
8029a119
NC
7702arm_make_glue_section (bfd * abfd, const char * name)
7703{
7704 asection * sec;
7705
3d4d4302 7706 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7707 if (sec != NULL)
7708 /* Already made. */
0a1b45a2 7709 return true;
8029a119 7710
3d4d4302 7711 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7712
7713 if (sec == NULL
fd361982 7714 || !bfd_set_section_alignment (sec, 2))
0a1b45a2 7715 return false;
8029a119
NC
7716
7717 /* Set the gc mark to prevent the section from being removed by garbage
7718 collection, despite the fact that no relocs refer to this section. */
7719 sec->gc_mark = 1;
7720
0a1b45a2 7721 return true;
8029a119
NC
7722}
7723
1db37fe6
YG
7724/* Set size of .plt entries. This function is called from the
7725 linker scripts in ld/emultempl/{armelf}.em. */
7726
7727void
7728bfd_elf32_arm_use_long_plt (void)
7729{
0a1b45a2 7730 elf32_arm_use_long_plt_entry = true;
1db37fe6
YG
7731}
7732
8afb0e02
NC
7733/* Add the glue sections to ABFD. This function is called from the
7734 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7735
0a1b45a2 7736bool
57e8b36a
NC
7737bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7738 struct bfd_link_info *info)
252b5132 7739{
a504d23a 7740 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
0a1b45a2 7741 bool dostm32l4xx = globals
a504d23a 7742 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
0a1b45a2 7743 bool addglue;
a504d23a 7744
8afb0e02
NC
7745 /* If we are only performing a partial
7746 link do not bother adding the glue. */
0e1862bb 7747 if (bfd_link_relocatable (info))
0a1b45a2 7748 return true;
252b5132 7749
a504d23a 7750 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7751 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7752 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7753 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7754
7755 if (!dostm32l4xx)
7756 return addglue;
7757
7758 return addglue
7759 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7760}
7761
daa4adae
TP
7762/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7763 ensures they are not marked for deletion by
7764 strip_excluded_output_sections () when veneers are going to be created
7765 later. Not doing so would trigger assert on empty section size in
7766 lang_size_sections_1 (). */
7767
7768void
7769bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7770{
7771 enum elf32_arm_stub_type stub_type;
7772
7773 /* If we are only performing a partial
7774 link do not bother adding the glue. */
7775 if (bfd_link_relocatable (info))
7776 return;
7777
7778 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7779 {
7780 asection *out_sec;
7781 const char *out_sec_name;
7782
7783 if (!arm_dedicated_stub_output_section_required (stub_type))
7784 continue;
7785
7786 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7787 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7788 if (out_sec != NULL)
7789 out_sec->flags |= SEC_KEEP;
7790 }
7791}
7792
8afb0e02
NC
7793/* Select a BFD to be used to hold the sections used by the glue code.
7794 This function is called from the linker scripts in ld/emultempl/
8029a119 7795 {armelf/pe}.em. */
8afb0e02 7796
0a1b45a2 7797bool
57e8b36a 7798bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7799{
7800 struct elf32_arm_link_hash_table *globals;
7801
7802 /* If we are only performing a partial link
7803 do not bother getting a bfd to hold the glue. */
0e1862bb 7804 if (bfd_link_relocatable (info))
0a1b45a2 7805 return true;
8afb0e02 7806
b7693d02
DJ
7807 /* Make sure we don't attach the glue sections to a dynamic object. */
7808 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7809
8afb0e02 7810 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7811 BFD_ASSERT (globals != NULL);
7812
7813 if (globals->bfd_of_glue_owner != NULL)
0a1b45a2 7814 return true;
8afb0e02 7815
252b5132
RH
7816 /* Save the bfd for later use. */
7817 globals->bfd_of_glue_owner = abfd;
cedb70c5 7818
0a1b45a2 7819 return true;
252b5132
RH
7820}
7821
906e58ca
NC
7822static void
7823check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7824{
2de70689
MGD
7825 int cpu_arch;
7826
b38cadfb 7827 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7828 Tag_CPU_arch);
7829
7830 if (globals->fix_arm1176)
7831 {
7832 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7833 globals->use_blx = 1;
7834 }
7835 else
7836 {
7837 if (cpu_arch > TAG_CPU_ARCH_V4T)
7838 globals->use_blx = 1;
7839 }
39b41c9c
PB
7840}
7841
0a1b45a2 7842bool
57e8b36a 7843bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7844 struct bfd_link_info *link_info)
252b5132
RH
7845{
7846 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7847 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7848 Elf_Internal_Rela *irel, *irelend;
7849 bfd_byte *contents = NULL;
252b5132
RH
7850
7851 asection *sec;
7852 struct elf32_arm_link_hash_table *globals;
7853
7854 /* If we are only performing a partial link do not bother
7855 to construct any glue. */
0e1862bb 7856 if (bfd_link_relocatable (link_info))
0a1b45a2 7857 return true;
252b5132 7858
39ce1a6a
NC
7859 /* Here we have a bfd that is to be included on the link. We have a
7860 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7861 globals = elf32_arm_hash_table (link_info);
252b5132 7862 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7863
7864 check_use_blx (globals);
252b5132 7865
d504ffc8 7866 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7867 {
90b6238f 7868 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
d003868e 7869 abfd);
0a1b45a2 7870 return false;
e489d0ae 7871 }
f21f3fe0 7872
39ce1a6a
NC
7873 /* PR 5398: If we have not decided to include any loadable sections in
7874 the output then we will not have a glue owner bfd. This is OK, it
7875 just means that there is nothing else for us to do here. */
7876 if (globals->bfd_of_glue_owner == NULL)
0a1b45a2 7877 return true;
39ce1a6a 7878
252b5132
RH
7879 /* Rummage around all the relocs and map the glue vectors. */
7880 sec = abfd->sections;
7881
7882 if (sec == NULL)
0a1b45a2 7883 return true;
252b5132
RH
7884
7885 for (; sec != NULL; sec = sec->next)
7886 {
7887 if (sec->reloc_count == 0)
7888 continue;
7889
81ff113f
AM
7890 if ((sec->flags & SEC_EXCLUDE) != 0
7891 || (sec->flags & SEC_HAS_CONTENTS) == 0)
2f475487
AM
7892 continue;
7893
0ffa91dd 7894 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7895
9b485d32 7896 /* Load the relocs. */
6cdc0ccc 7897 internal_relocs
0a1b45a2 7898 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, false);
252b5132 7899
6cdc0ccc
AM
7900 if (internal_relocs == NULL)
7901 goto error_return;
252b5132 7902
6cdc0ccc
AM
7903 irelend = internal_relocs + sec->reloc_count;
7904 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7905 {
7906 long r_type;
7907 unsigned long r_index;
252b5132
RH
7908
7909 struct elf_link_hash_entry *h;
7910
7911 r_type = ELF32_R_TYPE (irel->r_info);
7912 r_index = ELF32_R_SYM (irel->r_info);
7913
9b485d32 7914 /* These are the only relocation types we care about. */
ba96a88f 7915 if ( r_type != R_ARM_PC24
845b51d6 7916 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7917 continue;
7918
7919 /* Get the section contents if we haven't done so already. */
7920 if (contents == NULL)
7921 {
7922 /* Get cached copy if it exists. */
7923 if (elf_section_data (sec)->this_hdr.contents != NULL)
7924 contents = elf_section_data (sec)->this_hdr.contents;
7925 else
7926 {
7927 /* Go get them off disk. */
57e8b36a 7928 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7929 goto error_return;
7930 }
7931 }
7932
845b51d6
PB
7933 if (r_type == R_ARM_V4BX)
7934 {
7935 int reg;
7936
7937 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7938 record_arm_bx_glue (link_info, reg);
7939 continue;
7940 }
7941
a7c10850 7942 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7943 h = NULL;
7944
9b485d32 7945 /* We don't care about local symbols. */
252b5132
RH
7946 if (r_index < symtab_hdr->sh_info)
7947 continue;
7948
9b485d32 7949 /* This is an external symbol. */
252b5132
RH
7950 r_index -= symtab_hdr->sh_info;
7951 h = (struct elf_link_hash_entry *)
7952 elf_sym_hashes (abfd)[r_index];
7953
7954 /* If the relocation is against a static symbol it must be within
7955 the current section and so cannot be a cross ARM/Thumb relocation. */
7956 if (h == NULL)
7957 continue;
7958
d504ffc8
DJ
7959 /* If the call will go through a PLT entry then we do not need
7960 glue. */
362d30a1 7961 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7962 continue;
7963
252b5132
RH
7964 switch (r_type)
7965 {
7966 case R_ARM_PC24:
7967 /* This one is a call from arm code. We need to look up
99059e56
RM
7968 the target of the call. If it is a thumb target, we
7969 insert glue. */
39d911fc
TP
7970 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7971 == ST_BRANCH_TO_THUMB)
252b5132
RH
7972 record_arm_to_thumb_glue (link_info, h);
7973 break;
7974
252b5132 7975 default:
c6596c5e 7976 abort ();
252b5132
RH
7977 }
7978 }
6cdc0ccc 7979
c9594989 7980 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc
AM
7981 free (contents);
7982 contents = NULL;
7983
c9594989 7984 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc
AM
7985 free (internal_relocs);
7986 internal_relocs = NULL;
252b5132
RH
7987 }
7988
0a1b45a2 7989 return true;
9a5aca8c 7990
dc1e8a47 7991 error_return:
c9594989 7992 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc 7993 free (contents);
c9594989 7994 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc 7995 free (internal_relocs);
9a5aca8c 7996
0a1b45a2 7997 return false;
252b5132 7998}
7e392df6 7999#endif
252b5132 8000
eb043451 8001
c7b8f16e
JB
8002/* Initialise maps of ARM/Thumb/data for input BFDs. */
8003
8004void
8005bfd_elf32_arm_init_maps (bfd *abfd)
8006{
8007 Elf_Internal_Sym *isymbuf;
8008 Elf_Internal_Shdr *hdr;
8009 unsigned int i, localsyms;
8010
af1f4419
NC
8011 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8012 if (! is_arm_elf (abfd))
8013 return;
8014
c7b8f16e
JB
8015 if ((abfd->flags & DYNAMIC) != 0)
8016 return;
8017
0ffa91dd 8018 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
8019 localsyms = hdr->sh_info;
8020
8021 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8022 should contain the number of local symbols, which should come before any
8023 global symbols. Mapping symbols are always local. */
8024 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8025 NULL);
8026
8027 /* No internal symbols read? Skip this BFD. */
8028 if (isymbuf == NULL)
8029 return;
8030
8031 for (i = 0; i < localsyms; i++)
8032 {
8033 Elf_Internal_Sym *isym = &isymbuf[i];
8034 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8035 const char *name;
906e58ca 8036
c7b8f16e 8037 if (sec != NULL
99059e56
RM
8038 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8039 {
8040 name = bfd_elf_string_from_elf_section (abfd,
8041 hdr->sh_link, isym->st_name);
906e58ca 8042
99059e56 8043 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 8044 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
8045 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8046 }
c7b8f16e
JB
8047 }
8048}
8049
8050
48229727
JB
8051/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8052 say what they wanted. */
8053
8054void
8055bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8056{
8057 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8058 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8059
4dfe6ac6
NC
8060 if (globals == NULL)
8061 return;
8062
48229727
JB
8063 if (globals->fix_cortex_a8 == -1)
8064 {
8065 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8066 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8067 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8068 || out_attr[Tag_CPU_arch_profile].i == 0))
8069 globals->fix_cortex_a8 = 1;
8070 else
8071 globals->fix_cortex_a8 = 0;
8072 }
8073}
8074
8075
c7b8f16e
JB
8076void
8077bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8078{
8079 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 8080 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 8081
4dfe6ac6
NC
8082 if (globals == NULL)
8083 return;
c7b8f16e
JB
8084 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8085 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8086 {
8087 switch (globals->vfp11_fix)
99059e56
RM
8088 {
8089 case BFD_ARM_VFP11_FIX_DEFAULT:
8090 case BFD_ARM_VFP11_FIX_NONE:
8091 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8092 break;
8093
8094 default:
8095 /* Give a warning, but do as the user requests anyway. */
871b3ab2 8096 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
99059e56
RM
8097 "workaround is not necessary for target architecture"), obfd);
8098 }
c7b8f16e
JB
8099 }
8100 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8101 /* For earlier architectures, we might need the workaround, but do not
8102 enable it by default. If users is running with broken hardware, they
8103 must enable the erratum fix explicitly. */
8104 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8105}
8106
a504d23a
LA
8107void
8108bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8109{
8110 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8111 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8112
8113 if (globals == NULL)
8114 return;
8115
8116 /* We assume only Cortex-M4 may require the fix. */
8117 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8118 || out_attr[Tag_CPU_arch_profile].i != 'M')
8119 {
8120 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8121 /* Give a warning, but do as the user requests anyway. */
4eca0228 8122 _bfd_error_handler
871b3ab2 8123 (_("%pB: warning: selected STM32L4XX erratum "
a504d23a
LA
8124 "workaround is not necessary for target architecture"), obfd);
8125 }
8126}
c7b8f16e 8127
906e58ca
NC
8128enum bfd_arm_vfp11_pipe
8129{
c7b8f16e
JB
8130 VFP11_FMAC,
8131 VFP11_LS,
8132 VFP11_DS,
8133 VFP11_BAD
8134};
8135
8136/* Return a VFP register number. This is encoded as RX:X for single-precision
8137 registers, or X:RX for double-precision registers, where RX is the group of
8138 four bits in the instruction encoding and X is the single extension bit.
8139 RX and X fields are specified using their lowest (starting) bit. The return
8140 value is:
8141
8142 0...31: single-precision registers s0...s31
8143 32...63: double-precision registers d0...d31.
906e58ca 8144
c7b8f16e
JB
8145 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8146 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 8147
c7b8f16e 8148static unsigned int
0a1b45a2 8149bfd_arm_vfp11_regno (unsigned int insn, bool is_double, unsigned int rx,
99059e56 8150 unsigned int x)
c7b8f16e
JB
8151{
8152 if (is_double)
8153 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8154 else
8155 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8156}
8157
8158/* Set bits in *WMASK according to a register number REG as encoded by
8159 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8160
8161static void
8162bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8163{
8164 if (reg < 32)
8165 *wmask |= 1 << reg;
8166 else if (reg < 48)
8167 *wmask |= 3 << ((reg - 32) * 2);
8168}
8169
8170/* Return TRUE if WMASK overwrites anything in REGS. */
8171
0a1b45a2 8172static bool
c7b8f16e
JB
8173bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8174{
8175 int i;
906e58ca 8176
c7b8f16e
JB
8177 for (i = 0; i < numregs; i++)
8178 {
8179 unsigned int reg = regs[i];
8180
8181 if (reg < 32 && (wmask & (1 << reg)) != 0)
0a1b45a2 8182 return true;
906e58ca 8183
c7b8f16e
JB
8184 reg -= 32;
8185
8186 if (reg >= 16)
99059e56 8187 continue;
906e58ca 8188
c7b8f16e 8189 if ((wmask & (3 << (reg * 2))) != 0)
0a1b45a2 8190 return true;
c7b8f16e 8191 }
906e58ca 8192
0a1b45a2 8193 return false;
c7b8f16e
JB
8194}
8195
8196/* In this function, we're interested in two things: finding input registers
8197 for VFP data-processing instructions, and finding the set of registers which
8198 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8199 hold the written set, so FLDM etc. are easy to deal with (we're only
8200 interested in 32 SP registers or 16 dp registers, due to the VFP version
8201 implemented by the chip in question). DP registers are marked by setting
8202 both SP registers in the write mask). */
8203
8204static enum bfd_arm_vfp11_pipe
8205bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 8206 int *numregs)
c7b8f16e 8207{
91d6fa6a 8208 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
0a1b45a2 8209 bool is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
c7b8f16e
JB
8210
8211 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8212 {
8213 unsigned int pqrs;
8214 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8215 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8216
8217 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
8218 | ((insn & 0x00300000) >> 19)
8219 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
8220
8221 switch (pqrs)
99059e56
RM
8222 {
8223 case 0: /* fmac[sd]. */
8224 case 1: /* fnmac[sd]. */
8225 case 2: /* fmsc[sd]. */
8226 case 3: /* fnmsc[sd]. */
8227 vpipe = VFP11_FMAC;
8228 bfd_arm_vfp11_write_mask (destmask, fd);
8229 regs[0] = fd;
8230 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8231 regs[2] = fm;
8232 *numregs = 3;
8233 break;
8234
8235 case 4: /* fmul[sd]. */
8236 case 5: /* fnmul[sd]. */
8237 case 6: /* fadd[sd]. */
8238 case 7: /* fsub[sd]. */
8239 vpipe = VFP11_FMAC;
8240 goto vfp_binop;
8241
8242 case 8: /* fdiv[sd]. */
8243 vpipe = VFP11_DS;
8244 vfp_binop:
8245 bfd_arm_vfp11_write_mask (destmask, fd);
8246 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8247 regs[1] = fm;
8248 *numregs = 2;
8249 break;
8250
8251 case 15: /* extended opcode. */
8252 {
8253 unsigned int extn = ((insn >> 15) & 0x1e)
8254 | ((insn >> 7) & 1);
8255
8256 switch (extn)
8257 {
8258 case 0: /* fcpy[sd]. */
8259 case 1: /* fabs[sd]. */
8260 case 2: /* fneg[sd]. */
8261 case 8: /* fcmp[sd]. */
8262 case 9: /* fcmpe[sd]. */
8263 case 10: /* fcmpz[sd]. */
8264 case 11: /* fcmpez[sd]. */
8265 case 16: /* fuito[sd]. */
8266 case 17: /* fsito[sd]. */
8267 case 24: /* ftoui[sd]. */
8268 case 25: /* ftouiz[sd]. */
8269 case 26: /* ftosi[sd]. */
8270 case 27: /* ftosiz[sd]. */
8271 /* These instructions will not bounce due to underflow. */
8272 *numregs = 0;
8273 vpipe = VFP11_FMAC;
8274 break;
8275
8276 case 3: /* fsqrt[sd]. */
8277 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8278 registers to cause the erratum in previous instructions. */
8279 bfd_arm_vfp11_write_mask (destmask, fd);
8280 vpipe = VFP11_DS;
8281 break;
8282
8283 case 15: /* fcvt{ds,sd}. */
8284 {
8285 int rnum = 0;
8286
8287 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
8288
8289 /* Only FCVTSD can underflow. */
99059e56
RM
8290 if ((insn & 0x100) != 0)
8291 regs[rnum++] = fm;
c7b8f16e 8292
99059e56 8293 *numregs = rnum;
c7b8f16e 8294
99059e56
RM
8295 vpipe = VFP11_FMAC;
8296 }
8297 break;
c7b8f16e 8298
99059e56
RM
8299 default:
8300 return VFP11_BAD;
8301 }
8302 }
8303 break;
c7b8f16e 8304
99059e56
RM
8305 default:
8306 return VFP11_BAD;
8307 }
c7b8f16e
JB
8308 }
8309 /* Two-register transfer. */
8310 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8311 {
8312 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 8313
c7b8f16e
JB
8314 if ((insn & 0x100000) == 0)
8315 {
99059e56
RM
8316 if (is_double)
8317 bfd_arm_vfp11_write_mask (destmask, fm);
8318 else
8319 {
8320 bfd_arm_vfp11_write_mask (destmask, fm);
8321 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8322 }
c7b8f16e
JB
8323 }
8324
91d6fa6a 8325 vpipe = VFP11_LS;
c7b8f16e
JB
8326 }
8327 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8328 {
8329 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8330 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 8331
c7b8f16e 8332 switch (puw)
99059e56
RM
8333 {
8334 case 0: /* Two-reg transfer. We should catch these above. */
8335 abort ();
906e58ca 8336
99059e56
RM
8337 case 2: /* fldm[sdx]. */
8338 case 3:
8339 case 5:
8340 {
8341 unsigned int i, offset = insn & 0xff;
c7b8f16e 8342
99059e56
RM
8343 if (is_double)
8344 offset >>= 1;
c7b8f16e 8345
99059e56
RM
8346 for (i = fd; i < fd + offset; i++)
8347 bfd_arm_vfp11_write_mask (destmask, i);
8348 }
8349 break;
906e58ca 8350
99059e56
RM
8351 case 4: /* fld[sd]. */
8352 case 6:
8353 bfd_arm_vfp11_write_mask (destmask, fd);
8354 break;
906e58ca 8355
99059e56
RM
8356 default:
8357 return VFP11_BAD;
8358 }
c7b8f16e 8359
91d6fa6a 8360 vpipe = VFP11_LS;
c7b8f16e
JB
8361 }
8362 /* Single-register transfer. Note L==0. */
8363 else if ((insn & 0x0f100e10) == 0x0e000a10)
8364 {
8365 unsigned int opcode = (insn >> 21) & 7;
8366 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8367
8368 switch (opcode)
99059e56
RM
8369 {
8370 case 0: /* fmsr/fmdlr. */
8371 case 1: /* fmdhr. */
8372 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8373 destination register. I don't know if this is exactly right,
8374 but it is the conservative choice. */
8375 bfd_arm_vfp11_write_mask (destmask, fn);
8376 break;
8377
8378 case 7: /* fmxr. */
8379 break;
8380 }
c7b8f16e 8381
91d6fa6a 8382 vpipe = VFP11_LS;
c7b8f16e
JB
8383 }
8384
91d6fa6a 8385 return vpipe;
c7b8f16e
JB
8386}
8387
8388
8389static int elf32_arm_compare_mapping (const void * a, const void * b);
8390
8391
8392/* Look for potentially-troublesome code sequences which might trigger the
8393 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8394 (available from ARM) for details of the erratum. A short version is
8395 described in ld.texinfo. */
8396
0a1b45a2 8397bool
c7b8f16e
JB
8398bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8399{
8400 asection *sec;
8401 bfd_byte *contents = NULL;
8402 int state = 0;
8403 int regs[3], numregs = 0;
8404 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8405 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8406
4dfe6ac6 8407 if (globals == NULL)
0a1b45a2 8408 return false;
4dfe6ac6 8409
c7b8f16e
JB
8410 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8411 The states transition as follows:
906e58ca 8412
c7b8f16e 8413 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8414 A VFP FMAC-pipeline instruction has been seen. Fill
8415 regs[0]..regs[numregs-1] with its input operands. Remember this
8416 instruction in 'first_fmac'.
c7b8f16e
JB
8417
8418 1 -> 2
99059e56
RM
8419 Any instruction, except for a VFP instruction which overwrites
8420 regs[*].
906e58ca 8421
c7b8f16e
JB
8422 1 -> 3 [ -> 0 ] or
8423 2 -> 3 [ -> 0 ]
99059e56
RM
8424 A VFP instruction has been seen which overwrites any of regs[*].
8425 We must make a veneer! Reset state to 0 before examining next
8426 instruction.
906e58ca 8427
c7b8f16e 8428 2 -> 0
99059e56
RM
8429 If we fail to match anything in state 2, reset to state 0 and reset
8430 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8431
8432 If the VFP11 vector mode is in use, there must be at least two unrelated
8433 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8434 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8435
8436 /* If we are only performing a partial link do not bother
8437 to construct any glue. */
0e1862bb 8438 if (bfd_link_relocatable (link_info))
0a1b45a2 8439 return true;
c7b8f16e 8440
0ffa91dd
NC
8441 /* Skip if this bfd does not correspond to an ELF image. */
8442 if (! is_arm_elf (abfd))
0a1b45a2 8443 return true;
906e58ca 8444
c7b8f16e
JB
8445 /* We should have chosen a fix type by the time we get here. */
8446 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8447
8448 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
0a1b45a2 8449 return true;
2e6030b9 8450
33a7ffc2
JM
8451 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8452 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8453 return true;
33a7ffc2 8454
c7b8f16e
JB
8455 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8456 {
8457 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8458 struct _arm_elf_section_data *sec_data;
8459
8460 /* If we don't have executable progbits, we're not interested in this
99059e56 8461 section. Also skip if section is to be excluded. */
c7b8f16e 8462 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8463 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8464 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8465 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8466 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8467 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8468 continue;
c7b8f16e
JB
8469
8470 sec_data = elf32_arm_section_data (sec);
906e58ca 8471
c7b8f16e 8472 if (sec_data->mapcount == 0)
99059e56 8473 continue;
906e58ca 8474
c7b8f16e
JB
8475 if (elf_section_data (sec)->this_hdr.contents != NULL)
8476 contents = elf_section_data (sec)->this_hdr.contents;
8477 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8478 goto error_return;
8479
8480 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8481 elf32_arm_compare_mapping);
8482
8483 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8484 {
8485 unsigned int span_start = sec_data->map[span].vma;
8486 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8487 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8488 char span_type = sec_data->map[span].type;
8489
8490 /* FIXME: Only ARM mode is supported at present. We may need to
8491 support Thumb-2 mode also at some point. */
8492 if (span_type != 'a')
8493 continue;
8494
8495 for (i = span_start; i < span_end;)
8496 {
8497 unsigned int next_i = i + 4;
8498 unsigned int insn = bfd_big_endian (abfd)
13c9c485
AM
8499 ? (((unsigned) contents[i] << 24)
8500 | (contents[i + 1] << 16)
8501 | (contents[i + 2] << 8)
8502 | contents[i + 3])
8503 : (((unsigned) contents[i + 3] << 24)
8504 | (contents[i + 2] << 16)
8505 | (contents[i + 1] << 8)
8506 | contents[i]);
99059e56
RM
8507 unsigned int writemask = 0;
8508 enum bfd_arm_vfp11_pipe vpipe;
8509
8510 switch (state)
8511 {
8512 case 0:
8513 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8514 &numregs);
8515 /* I'm assuming the VFP11 erratum can trigger with denorm
8516 operands on either the FMAC or the DS pipeline. This might
8517 lead to slightly overenthusiastic veneer insertion. */
8518 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8519 {
8520 state = use_vector ? 1 : 2;
8521 first_fmac = i;
8522 veneer_of_insn = insn;
8523 }
8524 break;
8525
8526 case 1:
8527 {
8528 int other_regs[3], other_numregs;
8529 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8530 other_regs,
99059e56
RM
8531 &other_numregs);
8532 if (vpipe != VFP11_BAD
8533 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8534 numregs))
99059e56
RM
8535 state = 3;
8536 else
8537 state = 2;
8538 }
8539 break;
8540
8541 case 2:
8542 {
8543 int other_regs[3], other_numregs;
8544 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8545 other_regs,
99059e56
RM
8546 &other_numregs);
8547 if (vpipe != VFP11_BAD
8548 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8549 numregs))
99059e56
RM
8550 state = 3;
8551 else
8552 {
8553 state = 0;
8554 next_i = first_fmac + 4;
8555 }
8556 }
8557 break;
8558
8559 case 3:
8560 abort (); /* Should be unreachable. */
8561 }
8562
8563 if (state == 3)
8564 {
8565 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8566 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8567
8568 elf32_arm_section_data (sec)->erratumcount += 1;
8569
8570 newerr->u.b.vfp_insn = veneer_of_insn;
8571
8572 switch (span_type)
8573 {
8574 case 'a':
8575 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8576 break;
8577
8578 default:
8579 abort ();
8580 }
8581
8582 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8583 first_fmac);
8584
99059e56 8585 newerr->vma = -1;
c7b8f16e 8586
99059e56
RM
8587 newerr->next = sec_data->erratumlist;
8588 sec_data->erratumlist = newerr;
c7b8f16e 8589
99059e56
RM
8590 state = 0;
8591 }
c7b8f16e 8592
99059e56
RM
8593 i = next_i;
8594 }
8595 }
906e58ca 8596
c9594989 8597 if (elf_section_data (sec)->this_hdr.contents != contents)
99059e56 8598 free (contents);
c7b8f16e
JB
8599 contents = NULL;
8600 }
8601
0a1b45a2 8602 return true;
c7b8f16e 8603
dc1e8a47 8604 error_return:
c9594989 8605 if (elf_section_data (sec)->this_hdr.contents != contents)
c7b8f16e 8606 free (contents);
906e58ca 8607
0a1b45a2 8608 return false;
c7b8f16e
JB
8609}
8610
8611/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8612 after sections have been laid out, using specially-named symbols. */
8613
8614void
8615bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8616 struct bfd_link_info *link_info)
8617{
8618 asection *sec;
8619 struct elf32_arm_link_hash_table *globals;
8620 char *tmp_name;
906e58ca 8621
0e1862bb 8622 if (bfd_link_relocatable (link_info))
c7b8f16e 8623 return;
2e6030b9
MS
8624
8625 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8626 if (! is_arm_elf (abfd))
2e6030b9
MS
8627 return;
8628
c7b8f16e 8629 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8630 if (globals == NULL)
8631 return;
906e58ca 8632
21d799b5 8633 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8634 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8635 BFD_ASSERT (tmp_name);
c7b8f16e
JB
8636
8637 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8638 {
8639 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8640 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8641
c7b8f16e 8642 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8643 {
8644 struct elf_link_hash_entry *myh;
8645 bfd_vma vma;
8646
8647 switch (errnode->type)
8648 {
8649 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8650 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8651 /* Find veneer symbol. */
8652 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8653 errnode->u.b.veneer->u.v.id);
8654
99059e56 8655 myh = elf_link_hash_lookup
0a1b45a2 8656 (&(globals)->root, tmp_name, false, false, true);
c7b8f16e 8657
a504d23a 8658 if (myh == NULL)
90b6238f
AM
8659 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8660 abfd, "VFP11", tmp_name);
a504d23a
LA
8661
8662 vma = myh->root.u.def.section->output_section->vma
8663 + myh->root.u.def.section->output_offset
8664 + myh->root.u.def.value;
8665
8666 errnode->u.b.veneer->vma = vma;
8667 break;
8668
8669 case VFP11_ERRATUM_ARM_VENEER:
8670 case VFP11_ERRATUM_THUMB_VENEER:
8671 /* Find return location. */
8672 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8673 errnode->u.v.id);
8674
8675 myh = elf_link_hash_lookup
0a1b45a2 8676 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8677
8678 if (myh == NULL)
90b6238f
AM
8679 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8680 abfd, "VFP11", tmp_name);
a504d23a
LA
8681
8682 vma = myh->root.u.def.section->output_section->vma
8683 + myh->root.u.def.section->output_offset
8684 + myh->root.u.def.value;
8685
8686 errnode->u.v.branch->vma = vma;
8687 break;
8688
8689 default:
8690 abort ();
8691 }
8692 }
8693 }
8694
8695 free (tmp_name);
8696}
8697
8698/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8699 return locations after sections have been laid out, using
8700 specially-named symbols. */
8701
8702void
8703bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8704 struct bfd_link_info *link_info)
8705{
8706 asection *sec;
8707 struct elf32_arm_link_hash_table *globals;
8708 char *tmp_name;
8709
8710 if (bfd_link_relocatable (link_info))
8711 return;
8712
8713 /* Skip if this bfd does not correspond to an ELF image. */
8714 if (! is_arm_elf (abfd))
8715 return;
8716
8717 globals = elf32_arm_hash_table (link_info);
8718 if (globals == NULL)
8719 return;
8720
8721 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8722 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8723 BFD_ASSERT (tmp_name);
a504d23a
LA
8724
8725 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8726 {
8727 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8728 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8729
8730 for (; errnode != NULL; errnode = errnode->next)
8731 {
8732 struct elf_link_hash_entry *myh;
8733 bfd_vma vma;
8734
8735 switch (errnode->type)
8736 {
8737 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8738 /* Find veneer symbol. */
8739 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8740 errnode->u.b.veneer->u.v.id);
8741
8742 myh = elf_link_hash_lookup
0a1b45a2 8743 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8744
8745 if (myh == NULL)
90b6238f
AM
8746 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8747 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8748
8749 vma = myh->root.u.def.section->output_section->vma
8750 + myh->root.u.def.section->output_offset
8751 + myh->root.u.def.value;
8752
8753 errnode->u.b.veneer->vma = vma;
8754 break;
8755
8756 case STM32L4XX_ERRATUM_VENEER:
8757 /* Find return location. */
8758 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8759 errnode->u.v.id);
8760
8761 myh = elf_link_hash_lookup
0a1b45a2 8762 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8763
8764 if (myh == NULL)
90b6238f
AM
8765 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8766 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8767
8768 vma = myh->root.u.def.section->output_section->vma
8769 + myh->root.u.def.section->output_offset
8770 + myh->root.u.def.value;
8771
8772 errnode->u.v.branch->vma = vma;
8773 break;
8774
8775 default:
8776 abort ();
8777 }
8778 }
8779 }
8780
8781 free (tmp_name);
8782}
8783
0a1b45a2 8784static inline bool
a504d23a
LA
8785is_thumb2_ldmia (const insn32 insn)
8786{
8787 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8788 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8789 return (insn & 0xffd02000) == 0xe8900000;
8790}
8791
0a1b45a2 8792static inline bool
a504d23a
LA
8793is_thumb2_ldmdb (const insn32 insn)
8794{
8795 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8796 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8797 return (insn & 0xffd02000) == 0xe9100000;
8798}
8799
0a1b45a2 8800static inline bool
a504d23a
LA
8801is_thumb2_vldm (const insn32 insn)
8802{
8803 /* A6.5 Extension register load or store instruction
8804 A7.7.229
9239bbd3
CM
8805 We look for SP 32-bit and DP 64-bit registers.
8806 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8807 <list> is consecutive 64-bit registers
8808 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8809 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8810 <list> is consecutive 32-bit registers
8811 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8812 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8813 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8814 return
9239bbd3
CM
8815 (((insn & 0xfe100f00) == 0xec100b00) ||
8816 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8817 && /* (IA without !). */
8818 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8819 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8820 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8821 /* (DB with !). */
8822 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8823}
8824
8825/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8826 VLDM opcode and:
8827 - computes the number and the mode of memory accesses
8828 - decides if the replacement should be done:
8829 . replaces only if > 8-word accesses
8830 . or (testing purposes only) replaces all accesses. */
8831
0a1b45a2 8832static bool
a504d23a
LA
8833stm32l4xx_need_create_replacing_stub (const insn32 insn,
8834 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8835{
9239bbd3 8836 int nb_words = 0;
a504d23a
LA
8837
8838 /* The field encoding the register list is the same for both LDMIA
8839 and LDMDB encodings. */
8840 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8841 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8842 else if (is_thumb2_vldm (insn))
9239bbd3 8843 nb_words = (insn & 0xff);
a504d23a
LA
8844
8845 /* DEFAULT mode accounts for the real bug condition situation,
8846 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
63b4cc53
AM
8847 return (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT
8848 ? nb_words > 8
8849 : stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL);
a504d23a
LA
8850}
8851
8852/* Look for potentially-troublesome code sequences which might trigger
8853 the STM STM32L4XX erratum. */
8854
0a1b45a2 8855bool
a504d23a
LA
8856bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8857 struct bfd_link_info *link_info)
8858{
8859 asection *sec;
8860 bfd_byte *contents = NULL;
8861 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8862
8863 if (globals == NULL)
0a1b45a2 8864 return false;
a504d23a
LA
8865
8866 /* If we are only performing a partial link do not bother
8867 to construct any glue. */
8868 if (bfd_link_relocatable (link_info))
0a1b45a2 8869 return true;
a504d23a
LA
8870
8871 /* Skip if this bfd does not correspond to an ELF image. */
8872 if (! is_arm_elf (abfd))
0a1b45a2 8873 return true;
a504d23a
LA
8874
8875 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
0a1b45a2 8876 return true;
a504d23a
LA
8877
8878 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8879 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8880 return true;
a504d23a
LA
8881
8882 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8883 {
8884 unsigned int i, span;
8885 struct _arm_elf_section_data *sec_data;
8886
8887 /* If we don't have executable progbits, we're not interested in this
8888 section. Also skip if section is to be excluded. */
8889 if (elf_section_type (sec) != SHT_PROGBITS
8890 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8891 || (sec->flags & SEC_EXCLUDE) != 0
8892 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8893 || sec->output_section == bfd_abs_section_ptr
8894 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8895 continue;
8896
8897 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8898
a504d23a
LA
8899 if (sec_data->mapcount == 0)
8900 continue;
c7b8f16e 8901
a504d23a
LA
8902 if (elf_section_data (sec)->this_hdr.contents != NULL)
8903 contents = elf_section_data (sec)->this_hdr.contents;
8904 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8905 goto error_return;
c7b8f16e 8906
a504d23a
LA
8907 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8908 elf32_arm_compare_mapping);
c7b8f16e 8909
a504d23a
LA
8910 for (span = 0; span < sec_data->mapcount; span++)
8911 {
8912 unsigned int span_start = sec_data->map[span].vma;
8913 unsigned int span_end = (span == sec_data->mapcount - 1)
8914 ? sec->size : sec_data->map[span + 1].vma;
8915 char span_type = sec_data->map[span].type;
8916 int itblock_current_pos = 0;
c7b8f16e 8917
a504d23a
LA
8918 /* Only Thumb2 mode need be supported with this CM4 specific
8919 code, we should not encounter any arm mode eg span_type
8920 != 'a'. */
8921 if (span_type != 't')
8922 continue;
c7b8f16e 8923
a504d23a
LA
8924 for (i = span_start; i < span_end;)
8925 {
8926 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
0a1b45a2
AM
8927 bool insn_32bit = false;
8928 bool is_ldm = false;
8929 bool is_vldm = false;
8930 bool is_not_last_in_it_block = false;
a504d23a
LA
8931
8932 /* The first 16-bits of all 32-bit thumb2 instructions start
8933 with opcode[15..13]=0b111 and the encoded op1 can be anything
8934 except opcode[12..11]!=0b00.
8935 See 32-bit Thumb instruction encoding. */
8936 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 8937 insn_32bit = true;
c7b8f16e 8938
a504d23a
LA
8939 /* Compute the predicate that tells if the instruction
8940 is concerned by the IT block
8941 - Creates an error if there is a ldm that is not
8942 last in the IT block thus cannot be replaced
8943 - Otherwise we can create a branch at the end of the
8944 IT block, it will be controlled naturally by IT
8945 with the proper pseudo-predicate
8946 - So the only interesting predicate is the one that
8947 tells that we are not on the last item of an IT
8948 block. */
8949 if (itblock_current_pos != 0)
8950 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8951
a504d23a
LA
8952 if (insn_32bit)
8953 {
8954 /* Load the rest of the insn (in manual-friendly order). */
8955 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8956 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8957 is_vldm = is_thumb2_vldm (insn);
8958
8959 /* Veneers are created for (v)ldm depending on
8960 option flags and memory accesses conditions; but
8961 if the instruction is not the last instruction of
8962 an IT block, we cannot create a jump there, so we
8963 bail out. */
5025eb7c
AO
8964 if ((is_ldm || is_vldm)
8965 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8966 (insn, globals->stm32l4xx_fix))
8967 {
8968 if (is_not_last_in_it_block)
8969 {
4eca0228 8970 _bfd_error_handler
695344c0 8971 /* xgettext:c-format */
871b3ab2 8972 (_("%pB(%pA+%#x): error: multiple load detected"
90b6238f
AM
8973 " in non-last IT block instruction:"
8974 " STM32L4XX veneer cannot be generated; "
8975 "use gcc option -mrestrict-it to generate"
8976 " only one instruction per IT block"),
d42c267e 8977 abfd, sec, i);
a504d23a
LA
8978 }
8979 else
8980 {
8981 elf32_stm32l4xx_erratum_list *newerr =
8982 (elf32_stm32l4xx_erratum_list *)
8983 bfd_zmalloc
8984 (sizeof (elf32_stm32l4xx_erratum_list));
8985
8986 elf32_arm_section_data (sec)
8987 ->stm32l4xx_erratumcount += 1;
8988 newerr->u.b.insn = insn;
8989 /* We create only thumb branches. */
8990 newerr->type =
8991 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8992 record_stm32l4xx_erratum_veneer
8993 (link_info, newerr, abfd, sec,
8994 i,
8995 is_ldm ?
8996 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8997 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8998 newerr->vma = -1;
8999 newerr->next = sec_data->stm32l4xx_erratumlist;
9000 sec_data->stm32l4xx_erratumlist = newerr;
9001 }
9002 }
9003 }
9004 else
9005 {
9006 /* A7.7.37 IT p208
9007 IT blocks are only encoded in T1
9008 Encoding T1: IT{x{y{z}}} <firstcond>
9009 1 0 1 1 - 1 1 1 1 - firstcond - mask
9010 if mask = '0000' then see 'related encodings'
9011 We don't deal with UNPREDICTABLE, just ignore these.
9012 There can be no nested IT blocks so an IT block
9013 is naturally a new one for which it is worth
9014 computing its size. */
0a1b45a2 9015 bool is_newitblock = ((insn & 0xff00) == 0xbf00)
5025eb7c 9016 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
9017 /* If we have a new IT block we compute its size. */
9018 if (is_newitblock)
9019 {
9020 /* Compute the number of instructions controlled
9021 by the IT block, it will be used to decide
9022 whether we are inside an IT block or not. */
9023 unsigned int mask = insn & 0x000f;
9024 itblock_current_pos = 4 - ctz (mask);
9025 }
9026 }
9027
9028 i += insn_32bit ? 4 : 2;
99059e56
RM
9029 }
9030 }
a504d23a 9031
c9594989 9032 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a
LA
9033 free (contents);
9034 contents = NULL;
c7b8f16e 9035 }
906e58ca 9036
0a1b45a2 9037 return true;
a504d23a 9038
dc1e8a47 9039 error_return:
c9594989 9040 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a 9041 free (contents);
c7b8f16e 9042
0a1b45a2 9043 return false;
a504d23a 9044}
c7b8f16e 9045
eb043451
PB
9046/* Set target relocation values needed during linking. */
9047
9048void
68c39892 9049bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 9050 struct bfd_link_info *link_info,
68c39892 9051 struct elf32_arm_params *params)
eb043451
PB
9052{
9053 struct elf32_arm_link_hash_table *globals;
9054
9055 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9056 if (globals == NULL)
9057 return;
eb043451 9058
68c39892 9059 globals->target1_is_rel = params->target1_is_rel;
29e9b073
CL
9060 if (globals->fdpic_p)
9061 globals->target2_reloc = R_ARM_GOT32;
9062 else if (strcmp (params->target2_type, "rel") == 0)
eb043451 9063 globals->target2_reloc = R_ARM_REL32;
68c39892 9064 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 9065 globals->target2_reloc = R_ARM_ABS32;
68c39892 9066 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
9067 globals->target2_reloc = R_ARM_GOT_PREL;
9068 else
9069 {
90b6238f 9070 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
68c39892 9071 params->target2_type);
eb043451 9072 }
68c39892
TP
9073 globals->fix_v4bx = params->fix_v4bx;
9074 globals->use_blx |= params->use_blx;
9075 globals->vfp11_fix = params->vfp11_denorm_fix;
9076 globals->stm32l4xx_fix = params->stm32l4xx_fix;
e8b09b87
CL
9077 if (globals->fdpic_p)
9078 globals->pic_veneer = 1;
9079 else
9080 globals->pic_veneer = params->pic_veneer;
68c39892
TP
9081 globals->fix_cortex_a8 = params->fix_cortex_a8;
9082 globals->fix_arm1176 = params->fix_arm1176;
9083 globals->cmse_implib = params->cmse_implib;
9084 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 9085
0ffa91dd 9086 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
9087 elf_arm_tdata (output_bfd)->no_enum_size_warning
9088 = params->no_enum_size_warning;
9089 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9090 = params->no_wchar_size_warning;
eb043451 9091}
eb043451 9092
12a0a0fd 9093/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 9094
12a0a0fd
PB
9095static void
9096insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9097{
9098 bfd_vma upper;
9099 bfd_vma lower;
9100 int reloc_sign;
9101
9102 BFD_ASSERT ((offset & 1) == 0);
9103
9104 upper = bfd_get_16 (abfd, insn);
9105 lower = bfd_get_16 (abfd, insn + 2);
9106 reloc_sign = (offset < 0) ? 1 : 0;
9107 upper = (upper & ~(bfd_vma) 0x7ff)
9108 | ((offset >> 12) & 0x3ff)
9109 | (reloc_sign << 10);
906e58ca 9110 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
9111 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9112 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9113 | ((offset >> 1) & 0x7ff);
9114 bfd_put_16 (abfd, upper, insn);
9115 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
9116}
9117
9b485d32
NC
9118/* Thumb code calling an ARM function. */
9119
252b5132 9120static int
57e8b36a 9121elf32_thumb_to_arm_stub (struct bfd_link_info * info,
07d6d2b8
AM
9122 const char * name,
9123 bfd * input_bfd,
9124 bfd * output_bfd,
9125 asection * input_section,
9126 bfd_byte * hit_data,
9127 asection * sym_sec,
9128 bfd_vma offset,
9129 bfd_signed_vma addend,
9130 bfd_vma val,
f2a9dd69 9131 char **error_message)
252b5132 9132{
bcbdc74c 9133 asection * s = 0;
dc810e39 9134 bfd_vma my_offset;
252b5132 9135 long int ret_offset;
bcbdc74c
NC
9136 struct elf_link_hash_entry * myh;
9137 struct elf32_arm_link_hash_table * globals;
252b5132 9138
f2a9dd69 9139 myh = find_thumb_glue (info, name, error_message);
252b5132 9140 if (myh == NULL)
0a1b45a2 9141 return false;
252b5132
RH
9142
9143 globals = elf32_arm_hash_table (info);
252b5132
RH
9144 BFD_ASSERT (globals != NULL);
9145 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9146
9147 my_offset = myh->root.u.def.value;
9148
3d4d4302
AM
9149 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9150 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
9151
9152 BFD_ASSERT (s != NULL);
9153 BFD_ASSERT (s->contents != NULL);
9154 BFD_ASSERT (s->output_section != NULL);
9155
9156 if ((my_offset & 0x01) == 0x01)
9157 {
9158 if (sym_sec != NULL
9159 && sym_sec->owner != NULL
9160 && !INTERWORK_FLAG (sym_sec->owner))
9161 {
4eca0228 9162 _bfd_error_handler
90b6238f
AM
9163 (_("%pB(%s): warning: interworking not enabled;"
9164 " first occurrence: %pB: %s call to %s"),
9165 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
252b5132 9166
0a1b45a2 9167 return false;
252b5132
RH
9168 }
9169
9170 --my_offset;
9171 myh->root.u.def.value = my_offset;
9172
52ab56c2
PB
9173 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9174 s->contents + my_offset);
252b5132 9175
52ab56c2
PB
9176 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9177 s->contents + my_offset + 2);
252b5132
RH
9178
9179 ret_offset =
9b485d32
NC
9180 /* Address of destination of the stub. */
9181 ((bfd_signed_vma) val)
252b5132 9182 - ((bfd_signed_vma)
57e8b36a
NC
9183 /* Offset from the start of the current section
9184 to the start of the stubs. */
9b485d32
NC
9185 (s->output_offset
9186 /* Offset of the start of this stub from the start of the stubs. */
9187 + my_offset
9188 /* Address of the start of the current section. */
9189 + s->output_section->vma)
9190 /* The branch instruction is 4 bytes into the stub. */
9191 + 4
9192 /* ARM branches work from the pc of the instruction + 8. */
9193 + 8);
252b5132 9194
52ab56c2
PB
9195 put_arm_insn (globals, output_bfd,
9196 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9197 s->contents + my_offset + 4);
252b5132
RH
9198 }
9199
9200 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9201
427bfd90
NC
9202 /* Now go back and fix up the original BL insn to point to here. */
9203 ret_offset =
9204 /* Address of where the stub is located. */
9205 (s->output_section->vma + s->output_offset + my_offset)
9206 /* Address of where the BL is located. */
57e8b36a
NC
9207 - (input_section->output_section->vma + input_section->output_offset
9208 + offset)
427bfd90
NC
9209 /* Addend in the relocation. */
9210 - addend
9211 /* Biassing for PC-relative addressing. */
9212 - 8;
252b5132 9213
12a0a0fd 9214 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 9215
0a1b45a2 9216 return true;
252b5132
RH
9217}
9218
a4fd1a8e 9219/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 9220
a4fd1a8e
PB
9221static struct elf_link_hash_entry *
9222elf32_arm_create_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9223 const char * name,
9224 bfd * input_bfd,
9225 bfd * output_bfd,
9226 asection * sym_sec,
9227 bfd_vma val,
9228 asection * s,
9229 char ** error_message)
252b5132 9230{
dc810e39 9231 bfd_vma my_offset;
252b5132 9232 long int ret_offset;
bcbdc74c
NC
9233 struct elf_link_hash_entry * myh;
9234 struct elf32_arm_link_hash_table * globals;
252b5132 9235
f2a9dd69 9236 myh = find_arm_glue (info, name, error_message);
252b5132 9237 if (myh == NULL)
a4fd1a8e 9238 return NULL;
252b5132
RH
9239
9240 globals = elf32_arm_hash_table (info);
252b5132
RH
9241 BFD_ASSERT (globals != NULL);
9242 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9243
9244 my_offset = myh->root.u.def.value;
252b5132
RH
9245
9246 if ((my_offset & 0x01) == 0x01)
9247 {
9248 if (sym_sec != NULL
9249 && sym_sec->owner != NULL
9250 && !INTERWORK_FLAG (sym_sec->owner))
9251 {
4eca0228 9252 _bfd_error_handler
90b6238f
AM
9253 (_("%pB(%s): warning: interworking not enabled;"
9254 " first occurrence: %pB: %s call to %s"),
9255 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
252b5132 9256 }
9b485d32 9257
252b5132
RH
9258 --my_offset;
9259 myh->root.u.def.value = my_offset;
9260
0e1862bb
L
9261 if (bfd_link_pic (info)
9262 || globals->root.is_relocatable_executable
27e55c4d 9263 || globals->pic_veneer)
8f6277f5
PB
9264 {
9265 /* For relocatable objects we can't use absolute addresses,
9266 so construct the address from a relative offset. */
9267 /* TODO: If the offset is small it's probably worth
9268 constructing the address with adds. */
52ab56c2
PB
9269 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9270 s->contents + my_offset);
9271 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9272 s->contents + my_offset + 4);
9273 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9274 s->contents + my_offset + 8);
8f6277f5
PB
9275 /* Adjust the offset by 4 for the position of the add,
9276 and 8 for the pipeline offset. */
9277 ret_offset = (val - (s->output_offset
9278 + s->output_section->vma
9279 + my_offset + 12))
9280 | 1;
9281 bfd_put_32 (output_bfd, ret_offset,
9282 s->contents + my_offset + 12);
9283 }
26079076
PB
9284 else if (globals->use_blx)
9285 {
9286 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9287 s->contents + my_offset);
9288
9289 /* It's a thumb address. Add the low order bit. */
9290 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9291 s->contents + my_offset + 4);
9292 }
8f6277f5
PB
9293 else
9294 {
52ab56c2
PB
9295 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9296 s->contents + my_offset);
252b5132 9297
52ab56c2
PB
9298 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9299 s->contents + my_offset + 4);
252b5132 9300
8f6277f5
PB
9301 /* It's a thumb address. Add the low order bit. */
9302 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9303 s->contents + my_offset + 8);
8029a119
NC
9304
9305 my_offset += 12;
8f6277f5 9306 }
252b5132
RH
9307 }
9308
9309 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9310
a4fd1a8e
PB
9311 return myh;
9312}
9313
9314/* Arm code calling a Thumb function. */
9315
9316static int
9317elf32_arm_to_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9318 const char * name,
9319 bfd * input_bfd,
9320 bfd * output_bfd,
9321 asection * input_section,
9322 bfd_byte * hit_data,
9323 asection * sym_sec,
9324 bfd_vma offset,
9325 bfd_signed_vma addend,
9326 bfd_vma val,
f2a9dd69 9327 char **error_message)
a4fd1a8e
PB
9328{
9329 unsigned long int tmp;
9330 bfd_vma my_offset;
9331 asection * s;
9332 long int ret_offset;
9333 struct elf_link_hash_entry * myh;
9334 struct elf32_arm_link_hash_table * globals;
9335
9336 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9337 BFD_ASSERT (globals != NULL);
9338 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9339
3d4d4302
AM
9340 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9341 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9342 BFD_ASSERT (s != NULL);
9343 BFD_ASSERT (s->contents != NULL);
9344 BFD_ASSERT (s->output_section != NULL);
9345
9346 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9347 sym_sec, val, s, error_message);
a4fd1a8e 9348 if (!myh)
0a1b45a2 9349 return false;
a4fd1a8e
PB
9350
9351 my_offset = myh->root.u.def.value;
252b5132
RH
9352 tmp = bfd_get_32 (input_bfd, hit_data);
9353 tmp = tmp & 0xFF000000;
9354
9b485d32 9355 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9356 ret_offset = (s->output_offset
9357 + my_offset
9358 + s->output_section->vma
9359 - (input_section->output_offset
9360 + input_section->output_section->vma
9361 + offset + addend)
9362 - 8);
9a5aca8c 9363
252b5132
RH
9364 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9365
dc810e39 9366 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9367
0a1b45a2 9368 return true;
252b5132
RH
9369}
9370
a4fd1a8e
PB
9371/* Populate Arm stub for an exported Thumb function. */
9372
0a1b45a2 9373static bool
a4fd1a8e
PB
9374elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9375{
9376 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9377 asection * s;
9378 struct elf_link_hash_entry * myh;
9379 struct elf32_arm_link_hash_entry *eh;
9380 struct elf32_arm_link_hash_table * globals;
9381 asection *sec;
9382 bfd_vma val;
f2a9dd69 9383 char *error_message;
a4fd1a8e 9384
906e58ca 9385 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9386 /* Allocate stubs for exported Thumb functions on v4t. */
9387 if (eh->export_glue == NULL)
0a1b45a2 9388 return true;
a4fd1a8e
PB
9389
9390 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9391 BFD_ASSERT (globals != NULL);
9392 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9393
3d4d4302
AM
9394 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9395 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9396 BFD_ASSERT (s != NULL);
9397 BFD_ASSERT (s->contents != NULL);
9398 BFD_ASSERT (s->output_section != NULL);
9399
9400 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9401
9402 BFD_ASSERT (sec->output_section != NULL);
9403
a4fd1a8e
PB
9404 val = eh->export_glue->root.u.def.value + sec->output_offset
9405 + sec->output_section->vma;
8029a119 9406
a4fd1a8e
PB
9407 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9408 h->root.u.def.section->owner,
f2a9dd69
DJ
9409 globals->obfd, sec, val, s,
9410 &error_message);
a4fd1a8e 9411 BFD_ASSERT (myh);
0a1b45a2 9412 return true;
a4fd1a8e
PB
9413}
9414
845b51d6
PB
9415/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9416
9417static bfd_vma
9418elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9419{
9420 bfd_byte *p;
9421 bfd_vma glue_addr;
9422 asection *s;
9423 struct elf32_arm_link_hash_table *globals;
9424
9425 globals = elf32_arm_hash_table (info);
845b51d6
PB
9426 BFD_ASSERT (globals != NULL);
9427 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9428
3d4d4302
AM
9429 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9430 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9431 BFD_ASSERT (s != NULL);
9432 BFD_ASSERT (s->contents != NULL);
9433 BFD_ASSERT (s->output_section != NULL);
9434
9435 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9436
9437 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9438
9439 if ((globals->bx_glue_offset[reg] & 1) == 0)
9440 {
9441 p = s->contents + glue_addr;
9442 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9443 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9444 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9445 globals->bx_glue_offset[reg] |= 1;
9446 }
9447
9448 return glue_addr + s->output_section->vma + s->output_offset;
9449}
9450
a4fd1a8e
PB
9451/* Generate Arm stubs for exported Thumb symbols. */
9452static void
906e58ca 9453elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9454 struct bfd_link_info *link_info)
9455{
9456 struct elf32_arm_link_hash_table * globals;
9457
8029a119
NC
9458 if (link_info == NULL)
9459 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9460 return;
9461
9462 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9463 if (globals == NULL)
9464 return;
9465
84c08195
PB
9466 /* If blx is available then exported Thumb symbols are OK and there is
9467 nothing to do. */
a4fd1a8e
PB
9468 if (globals->use_blx)
9469 return;
9470
9471 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9472 link_info);
9473}
9474
47beaa6a
RS
9475/* Reserve space for COUNT dynamic relocations in relocation selection
9476 SRELOC. */
9477
9478static void
9479elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9480 bfd_size_type count)
9481{
9482 struct elf32_arm_link_hash_table *htab;
9483
9484 htab = elf32_arm_hash_table (info);
9485 BFD_ASSERT (htab->root.dynamic_sections_created);
9486 if (sreloc == NULL)
9487 abort ();
9488 sreloc->size += RELOC_SIZE (htab) * count;
9489}
9490
34e77a92
RS
9491/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9492 dynamic, the relocations should go in SRELOC, otherwise they should
9493 go in the special .rel.iplt section. */
9494
9495static void
9496elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9497 bfd_size_type count)
9498{
9499 struct elf32_arm_link_hash_table *htab;
9500
9501 htab = elf32_arm_hash_table (info);
9502 if (!htab->root.dynamic_sections_created)
9503 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9504 else
9505 {
9506 BFD_ASSERT (sreloc != NULL);
9507 sreloc->size += RELOC_SIZE (htab) * count;
9508 }
9509}
9510
47beaa6a
RS
9511/* Add relocation REL to the end of relocation section SRELOC. */
9512
9513static void
9514elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9515 asection *sreloc, Elf_Internal_Rela *rel)
9516{
9517 bfd_byte *loc;
9518 struct elf32_arm_link_hash_table *htab;
9519
9520 htab = elf32_arm_hash_table (info);
34e77a92
RS
9521 if (!htab->root.dynamic_sections_created
9522 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9523 sreloc = htab->root.irelplt;
47beaa6a
RS
9524 if (sreloc == NULL)
9525 abort ();
9526 loc = sreloc->contents;
9527 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9528 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9529 abort ();
9530 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9531}
9532
34e77a92
RS
9533/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9534 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9535 to .plt. */
9536
9537static void
9538elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
0a1b45a2 9539 bool is_iplt_entry,
34e77a92
RS
9540 union gotplt_union *root_plt,
9541 struct arm_plt_info *arm_plt)
9542{
9543 struct elf32_arm_link_hash_table *htab;
9544 asection *splt;
9545 asection *sgotplt;
9546
9547 htab = elf32_arm_hash_table (info);
9548
9549 if (is_iplt_entry)
9550 {
9551 splt = htab->root.iplt;
9552 sgotplt = htab->root.igotplt;
9553
99059e56 9554 /* NaCl uses a special first entry in .iplt too. */
90c14f0c 9555 if (htab->root.target_os == is_nacl && splt->size == 0)
99059e56
RM
9556 splt->size += htab->plt_header_size;
9557
34e77a92
RS
9558 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9559 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9560 }
9561 else
9562 {
9563 splt = htab->root.splt;
9564 sgotplt = htab->root.sgotplt;
9565
7801f98f
CL
9566 if (htab->fdpic_p)
9567 {
9568 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9569 /* For lazy binding, relocations will be put into .rel.plt, in
9570 .rel.got otherwise. */
9571 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9572 if (info->flags & DF_BIND_NOW)
9573 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9574 else
9575 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9576 }
9577 else
9578 {
9579 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9580 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9581 }
34e77a92
RS
9582
9583 /* If this is the first .plt entry, make room for the special
9584 first entry. */
9585 if (splt->size == 0)
9586 splt->size += htab->plt_header_size;
9f19ab6d
WN
9587
9588 htab->next_tls_desc_index++;
34e77a92
RS
9589 }
9590
9591 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9592 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9593 splt->size += PLT_THUMB_STUB_SIZE;
9594 root_plt->offset = splt->size;
9595 splt->size += htab->plt_entry_size;
9596
a57d1773
AM
9597 /* We also need to make an entry in the .got.plt section, which
9598 will be placed in the .got section by the linker script. */
9599 if (is_iplt_entry)
9600 arm_plt->got_offset = sgotplt->size;
9601 else
9602 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9603 if (htab->fdpic_p)
9604 /* Function descriptor takes 64 bits in GOT. */
9605 sgotplt->size += 8;
9606 else
9607 sgotplt->size += 4;
34e77a92
RS
9608}
9609
b38cadfb
NC
9610static bfd_vma
9611arm_movw_immediate (bfd_vma value)
9612{
9613 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9614}
9615
9616static bfd_vma
9617arm_movt_immediate (bfd_vma value)
9618{
9619 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9620}
9621
34e77a92
RS
9622/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9623 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9624 Otherwise, DYNINDX is the index of the symbol in the dynamic
9625 symbol table and SYM_VALUE is undefined.
9626
9627 ROOT_PLT points to the offset of the PLT entry from the start of its
9628 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9629 bookkeeping information.
34e77a92 9630
57460bcf
NC
9631 Returns FALSE if there was a problem. */
9632
0a1b45a2 9633static bool
34e77a92
RS
9634elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9635 union gotplt_union *root_plt,
9636 struct arm_plt_info *arm_plt,
9637 int dynindx, bfd_vma sym_value)
9638{
9639 struct elf32_arm_link_hash_table *htab;
9640 asection *sgot;
9641 asection *splt;
9642 asection *srel;
9643 bfd_byte *loc;
9644 bfd_vma plt_index;
9645 Elf_Internal_Rela rel;
34e77a92
RS
9646 bfd_vma got_header_size;
9647
9648 htab = elf32_arm_hash_table (info);
9649
9650 /* Pick the appropriate sections and sizes. */
9651 if (dynindx == -1)
9652 {
9653 splt = htab->root.iplt;
9654 sgot = htab->root.igotplt;
9655 srel = htab->root.irelplt;
9656
9657 /* There are no reserved entries in .igot.plt, and no special
9658 first entry in .iplt. */
9659 got_header_size = 0;
34e77a92
RS
9660 }
9661 else
9662 {
9663 splt = htab->root.splt;
9664 sgot = htab->root.sgotplt;
9665 srel = htab->root.srelplt;
9666
9667 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
34e77a92
RS
9668 }
9669 BFD_ASSERT (splt != NULL && srel != NULL);
9670
a57d1773
AM
9671 bfd_vma got_offset, got_address, plt_address;
9672 bfd_vma got_displacement, initial_got_entry;
9673 bfd_byte * ptr;
9674
9675 BFD_ASSERT (sgot != NULL);
9676
9677 /* Get the offset into the .(i)got.plt table of the entry that
9678 corresponds to this function. */
9679 got_offset = (arm_plt->got_offset & -2);
9680
9681 /* Get the index in the procedure linkage table which
9682 corresponds to this symbol. This is the index of this symbol
9683 in all the symbols for which we are making plt entries.
9684 After the reserved .got.plt entries, all symbols appear in
9685 the same order as in .plt. */
9686 if (htab->fdpic_p)
9687 /* Function descriptor takes 8 bytes. */
9688 plt_index = (got_offset - got_header_size) / 8;
9689 else
9690 plt_index = (got_offset - got_header_size) / 4;
9691
9692 /* Calculate the address of the GOT entry. */
9693 got_address = (sgot->output_section->vma
9694 + sgot->output_offset
9695 + got_offset);
9696
9697 /* ...and the address of the PLT entry. */
9698 plt_address = (splt->output_section->vma
9699 + splt->output_offset
9700 + root_plt->offset);
9701
9702 ptr = splt->contents + root_plt->offset;
9703 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
34e77a92 9704 {
a57d1773
AM
9705 unsigned int i;
9706 bfd_vma val;
9707
9708 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9709 {
9710 val = elf32_arm_vxworks_shared_plt_entry[i];
9711 if (i == 2)
9712 val |= got_address - sgot->output_section->vma;
9713 if (i == 5)
9714 val |= plt_index * RELOC_SIZE (htab);
9715 if (i == 2 || i == 5)
9716 bfd_put_32 (output_bfd, val, ptr);
9717 else
9718 put_arm_insn (htab, output_bfd, val, ptr);
9719 }
34e77a92 9720 }
a57d1773 9721 else if (htab->root.target_os == is_vxworks)
34e77a92 9722 {
a57d1773
AM
9723 unsigned int i;
9724 bfd_vma val;
34e77a92 9725
a57d1773
AM
9726 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9727 {
9728 val = elf32_arm_vxworks_exec_plt_entry[i];
9729 if (i == 2)
9730 val |= got_address;
9731 if (i == 4)
9732 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9733 if (i == 5)
9734 val |= plt_index * RELOC_SIZE (htab);
9735 if (i == 2 || i == 5)
9736 bfd_put_32 (output_bfd, val, ptr);
9737 else
9738 put_arm_insn (htab, output_bfd, val, ptr);
9739 }
34e77a92 9740
a57d1773
AM
9741 loc = (htab->srelplt2->contents
9742 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
34e77a92 9743
a57d1773
AM
9744 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9745 referencing the GOT for this PLT entry. */
9746 rel.r_offset = plt_address + 8;
9747 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9748 rel.r_addend = got_offset;
9749 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9750 loc += RELOC_SIZE (htab);
34e77a92 9751
a57d1773
AM
9752 /* Create the R_ARM_ABS32 relocation referencing the
9753 beginning of the PLT for this GOT entry. */
9754 rel.r_offset = got_address;
9755 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9756 rel.r_addend = 0;
9757 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9758 }
9759 else if (htab->root.target_os == is_nacl)
9760 {
9761 /* Calculate the displacement between the PLT slot and the
9762 common tail that's part of the special initial PLT slot. */
9763 int32_t tail_displacement
9764 = ((splt->output_section->vma + splt->output_offset
9765 + ARM_NACL_PLT_TAIL_OFFSET)
9766 - (plt_address + htab->plt_entry_size + 4));
9767 BFD_ASSERT ((tail_displacement & 3) == 0);
9768 tail_displacement >>= 2;
34e77a92 9769
a57d1773
AM
9770 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9771 || (-tail_displacement & 0xff000000) == 0);
34e77a92 9772
a57d1773
AM
9773 /* Calculate the displacement between the PLT slot and the entry
9774 in the GOT. The offset accounts for the value produced by
9775 adding to pc in the penultimate instruction of the PLT stub. */
9776 got_displacement = (got_address
9777 - (plt_address + htab->plt_entry_size));
34e77a92 9778
a57d1773
AM
9779 /* NaCl does not support interworking at all. */
9780 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9781
9782 put_arm_insn (htab, output_bfd,
9783 elf32_arm_nacl_plt_entry[0]
9784 | arm_movw_immediate (got_displacement),
9785 ptr + 0);
9786 put_arm_insn (htab, output_bfd,
9787 elf32_arm_nacl_plt_entry[1]
9788 | arm_movt_immediate (got_displacement),
9789 ptr + 4);
9790 put_arm_insn (htab, output_bfd,
9791 elf32_arm_nacl_plt_entry[2],
9792 ptr + 8);
9793 put_arm_insn (htab, output_bfd,
9794 elf32_arm_nacl_plt_entry[3]
9795 | (tail_displacement & 0x00ffffff),
9796 ptr + 12);
9797 }
9798 else if (htab->fdpic_p)
9799 {
cc850f74 9800 const bfd_vma *plt_entry = using_thumb_only (htab)
a57d1773
AM
9801 ? elf32_arm_fdpic_thumb_plt_entry
9802 : elf32_arm_fdpic_plt_entry;
9803
9804 /* Fill-up Thumb stub if needed. */
9805 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9806 {
9807 put_thumb_insn (htab, output_bfd,
9808 elf32_arm_plt_thumb_stub[0], ptr - 4);
9809 put_thumb_insn (htab, output_bfd,
9810 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9811 }
a57d1773
AM
9812 /* As we are using 32 bit instructions even for the Thumb
9813 version, we have to use 'put_arm_insn' instead of
9814 'put_thumb_insn'. */
cc850f74
NC
9815 put_arm_insn (htab, output_bfd, plt_entry[0], ptr + 0);
9816 put_arm_insn (htab, output_bfd, plt_entry[1], ptr + 4);
9817 put_arm_insn (htab, output_bfd, plt_entry[2], ptr + 8);
9818 put_arm_insn (htab, output_bfd, plt_entry[3], ptr + 12);
a57d1773
AM
9819 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9820
9821 if (!(info->flags & DF_BIND_NOW))
34e77a92 9822 {
a57d1773
AM
9823 /* funcdesc_value_reloc_offset. */
9824 bfd_put_32 (output_bfd,
9825 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9826 ptr + 20);
cc850f74
NC
9827 put_arm_insn (htab, output_bfd, plt_entry[6], ptr + 24);
9828 put_arm_insn (htab, output_bfd, plt_entry[7], ptr + 28);
9829 put_arm_insn (htab, output_bfd, plt_entry[8], ptr + 32);
9830 put_arm_insn (htab, output_bfd, plt_entry[9], ptr + 36);
a57d1773
AM
9831 }
9832 }
9833 else if (using_thumb_only (htab))
9834 {
9835 /* PR ld/16017: Generate thumb only PLT entries. */
9836 if (!using_thumb2 (htab))
9837 {
9838 /* FIXME: We ought to be able to generate thumb-1 PLT
9839 instructions... */
9840 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9841 output_bfd);
0a1b45a2 9842 return false;
a57d1773 9843 }
34e77a92 9844
a57d1773
AM
9845 /* Calculate the displacement between the PLT slot and the entry in
9846 the GOT. The 12-byte offset accounts for the value produced by
9847 adding to pc in the 3rd instruction of the PLT stub. */
9848 got_displacement = got_address - (plt_address + 12);
34e77a92 9849
a57d1773
AM
9850 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9851 instead of 'put_thumb_insn'. */
9852 put_arm_insn (htab, output_bfd,
9853 elf32_thumb2_plt_entry[0]
9854 | ((got_displacement & 0x000000ff) << 16)
9855 | ((got_displacement & 0x00000700) << 20)
9856 | ((got_displacement & 0x00000800) >> 1)
9857 | ((got_displacement & 0x0000f000) >> 12),
9858 ptr + 0);
9859 put_arm_insn (htab, output_bfd,
9860 elf32_thumb2_plt_entry[1]
9861 | ((got_displacement & 0x00ff0000) )
9862 | ((got_displacement & 0x07000000) << 4)
9863 | ((got_displacement & 0x08000000) >> 17)
9864 | ((got_displacement & 0xf0000000) >> 28),
9865 ptr + 4);
9866 put_arm_insn (htab, output_bfd,
9867 elf32_thumb2_plt_entry[2],
9868 ptr + 8);
9869 put_arm_insn (htab, output_bfd,
9870 elf32_thumb2_plt_entry[3],
9871 ptr + 12);
9872 }
9873 else
9874 {
9875 /* Calculate the displacement between the PLT slot and the
9876 entry in the GOT. The eight-byte offset accounts for the
9877 value produced by adding to pc in the first instruction
9878 of the PLT stub. */
9879 got_displacement = got_address - (plt_address + 8);
34e77a92 9880
a57d1773
AM
9881 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9882 {
9883 put_thumb_insn (htab, output_bfd,
9884 elf32_arm_plt_thumb_stub[0], ptr - 4);
9885 put_thumb_insn (htab, output_bfd,
9886 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9887 }
a57d1773
AM
9888
9889 if (!elf32_arm_use_long_plt_entry)
b38cadfb 9890 {
a57d1773 9891 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
b38cadfb
NC
9892
9893 put_arm_insn (htab, output_bfd,
a57d1773
AM
9894 elf32_arm_plt_entry_short[0]
9895 | ((got_displacement & 0x0ff00000) >> 20),
b38cadfb
NC
9896 ptr + 0);
9897 put_arm_insn (htab, output_bfd,
a57d1773
AM
9898 elf32_arm_plt_entry_short[1]
9899 | ((got_displacement & 0x000ff000) >> 12),
9900 ptr+ 4);
b38cadfb 9901 put_arm_insn (htab, output_bfd,
a57d1773
AM
9902 elf32_arm_plt_entry_short[2]
9903 | (got_displacement & 0x00000fff),
b38cadfb 9904 ptr + 8);
a57d1773
AM
9905#ifdef FOUR_WORD_PLT
9906 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9907#endif
7801f98f 9908 }
a57d1773 9909 else
57460bcf 9910 {
eed94f8f 9911 put_arm_insn (htab, output_bfd,
a57d1773
AM
9912 elf32_arm_plt_entry_long[0]
9913 | ((got_displacement & 0xf0000000) >> 28),
eed94f8f
NC
9914 ptr + 0);
9915 put_arm_insn (htab, output_bfd,
a57d1773
AM
9916 elf32_arm_plt_entry_long[1]
9917 | ((got_displacement & 0x0ff00000) >> 20),
eed94f8f
NC
9918 ptr + 4);
9919 put_arm_insn (htab, output_bfd,
a57d1773
AM
9920 elf32_arm_plt_entry_long[2]
9921 | ((got_displacement & 0x000ff000) >> 12),
9922 ptr+ 8);
eed94f8f 9923 put_arm_insn (htab, output_bfd,
a57d1773
AM
9924 elf32_arm_plt_entry_long[3]
9925 | (got_displacement & 0x00000fff),
eed94f8f 9926 ptr + 12);
57460bcf 9927 }
a57d1773 9928 }
34e77a92 9929
a57d1773
AM
9930 /* Fill in the entry in the .rel(a).(i)plt section. */
9931 rel.r_offset = got_address;
9932 rel.r_addend = 0;
9933 if (dynindx == -1)
9934 {
9935 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9936 The dynamic linker or static executable then calls SYM_VALUE
9937 to determine the correct run-time value of the .igot.plt entry. */
9938 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9939 initial_got_entry = sym_value;
9940 }
9941 else
9942 {
9943 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9944 used by PLT entry. */
9945 if (htab->fdpic_p)
34e77a92 9946 {
a57d1773
AM
9947 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9948 initial_got_entry = 0;
34e77a92
RS
9949 }
9950 else
9951 {
a57d1773
AM
9952 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9953 initial_got_entry = (splt->output_section->vma
9954 + splt->output_offset);
9955
9956 /* PR ld/16017
9957 When thumb only we need to set the LSB for any address that
9958 will be used with an interworking branch instruction. */
9959 if (using_thumb_only (htab))
9960 initial_got_entry |= 1;
34e77a92 9961 }
a57d1773 9962 }
34e77a92 9963
a57d1773
AM
9964 /* Fill in the entry in the global offset table. */
9965 bfd_put_32 (output_bfd, initial_got_entry,
9966 sgot->contents + got_offset);
9967
9968 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9969 {
9970 /* Setup initial funcdesc value. */
9971 /* FIXME: we don't support lazy binding because there is a
9972 race condition between both words getting written and
9973 some other thread attempting to read them. The ARM
9974 architecture does not have an atomic 64 bit load/store
9975 instruction that could be used to prevent it; it is
9976 recommended that threaded FDPIC applications run with the
9977 LD_BIND_NOW environment variable set. */
cc850f74
NC
9978 bfd_put_32 (output_bfd, plt_address + 0x18,
9979 sgot->contents + got_offset);
9980 bfd_put_32 (output_bfd, -1 /*TODO*/,
9981 sgot->contents + got_offset + 4);
34e77a92
RS
9982 }
9983
aba8c3de
WN
9984 if (dynindx == -1)
9985 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9986 else
9987 {
7801f98f
CL
9988 if (htab->fdpic_p)
9989 {
9990 /* For FDPIC we put PLT relocationss into .rel.got when not
9991 lazy binding otherwise we put them in .rel.plt. For now,
9992 we don't support lazy binding so put it in .rel.got. */
9993 if (info->flags & DF_BIND_NOW)
cc850f74 9994 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelgot, &rel);
7801f98f 9995 else
cc850f74 9996 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelplt, &rel);
7801f98f
CL
9997 }
9998 else
9999 {
10000 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10001 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10002 }
aba8c3de 10003 }
57460bcf 10004
0a1b45a2 10005 return true;
34e77a92
RS
10006}
10007
eb043451
PB
10008/* Some relocations map to different relocations depending on the
10009 target. Return the real relocation. */
8029a119 10010
eb043451
PB
10011static int
10012arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10013 int r_type)
10014{
10015 switch (r_type)
10016 {
10017 case R_ARM_TARGET1:
10018 if (globals->target1_is_rel)
10019 return R_ARM_REL32;
10020 else
10021 return R_ARM_ABS32;
10022
10023 case R_ARM_TARGET2:
10024 return globals->target2_reloc;
10025
10026 default:
10027 return r_type;
10028 }
10029}
eb043451 10030
ba93b8ac
DJ
10031/* Return the base VMA address which should be subtracted from real addresses
10032 when resolving @dtpoff relocation.
10033 This is PT_TLS segment p_vaddr. */
10034
10035static bfd_vma
10036dtpoff_base (struct bfd_link_info *info)
10037{
10038 /* If tls_sec is NULL, we should have signalled an error already. */
10039 if (elf_hash_table (info)->tls_sec == NULL)
10040 return 0;
10041 return elf_hash_table (info)->tls_sec->vma;
10042}
10043
10044/* Return the relocation value for @tpoff relocation
10045 if STT_TLS virtual address is ADDRESS. */
10046
10047static bfd_vma
10048tpoff (struct bfd_link_info *info, bfd_vma address)
10049{
10050 struct elf_link_hash_table *htab = elf_hash_table (info);
10051 bfd_vma base;
10052
10053 /* If tls_sec is NULL, we should have signalled an error already. */
10054 if (htab->tls_sec == NULL)
10055 return 0;
10056 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10057 return address - htab->tls_sec->vma + base;
10058}
10059
00a97672
RS
10060/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10061 VALUE is the relocation value. */
10062
10063static bfd_reloc_status_type
10064elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10065{
10066 if (value > 0xfff)
10067 return bfd_reloc_overflow;
10068
10069 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10070 bfd_put_32 (abfd, value, data);
10071 return bfd_reloc_ok;
10072}
10073
0855e32b
NS
10074/* Handle TLS relaxations. Relaxing is possible for symbols that use
10075 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10076 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10077
10078 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10079 is to then call final_link_relocate. Return other values in the
62672b10
NS
10080 case of error.
10081
10082 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10083 the pre-relaxed code. It would be nice if the relocs were updated
10084 to match the optimization. */
0855e32b 10085
b38cadfb 10086static bfd_reloc_status_type
0855e32b 10087elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 10088 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
10089 Elf_Internal_Rela *rel, unsigned long is_local)
10090{
10091 unsigned long insn;
b38cadfb 10092
0855e32b
NS
10093 switch (ELF32_R_TYPE (rel->r_info))
10094 {
10095 default:
10096 return bfd_reloc_notsupported;
b38cadfb 10097
0855e32b
NS
10098 case R_ARM_TLS_GOTDESC:
10099 if (is_local)
10100 insn = 0;
10101 else
10102 {
10103 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10104 if (insn & 1)
10105 insn -= 5; /* THUMB */
10106 else
10107 insn -= 8; /* ARM */
10108 }
10109 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10110 return bfd_reloc_continue;
10111
10112 case R_ARM_THM_TLS_DESCSEQ:
10113 /* Thumb insn. */
10114 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10115 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10116 {
10117 if (is_local)
10118 /* nop */
10119 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10120 }
10121 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10122 {
10123 if (is_local)
10124 /* nop */
10125 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10126 else
10127 /* ldr rx,[ry] */
10128 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10129 }
10130 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10131 {
10132 if (is_local)
10133 /* nop */
10134 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10135 else
10136 /* mov r0, rx */
10137 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10138 contents + rel->r_offset);
10139 }
10140 else
10141 {
10142 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10143 /* It's a 32 bit instruction, fetch the rest of it for
10144 error generation. */
10145 insn = (insn << 16)
10146 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 10147 _bfd_error_handler
695344c0 10148 /* xgettext:c-format */
2dcf00ce 10149 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10150 "unexpected %s instruction '%#lx' in TLS trampoline"),
10151 input_bfd, input_sec, (uint64_t) rel->r_offset,
10152 "Thumb", insn);
0855e32b
NS
10153 return bfd_reloc_notsupported;
10154 }
10155 break;
b38cadfb 10156
0855e32b
NS
10157 case R_ARM_TLS_DESCSEQ:
10158 /* arm insn. */
10159 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10160 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10161 {
10162 if (is_local)
10163 /* mov rx, ry */
10164 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10165 contents + rel->r_offset);
10166 }
10167 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10168 {
10169 if (is_local)
10170 /* nop */
10171 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10172 else
10173 /* ldr rx,[ry] */
10174 bfd_put_32 (input_bfd, insn & 0xfffff000,
10175 contents + rel->r_offset);
10176 }
10177 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10178 {
10179 if (is_local)
10180 /* nop */
10181 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10182 else
10183 /* mov r0, rx */
10184 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10185 contents + rel->r_offset);
10186 }
10187 else
10188 {
4eca0228 10189 _bfd_error_handler
695344c0 10190 /* xgettext:c-format */
2dcf00ce 10191 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10192 "unexpected %s instruction '%#lx' in TLS trampoline"),
10193 input_bfd, input_sec, (uint64_t) rel->r_offset,
10194 "ARM", insn);
0855e32b
NS
10195 return bfd_reloc_notsupported;
10196 }
10197 break;
10198
10199 case R_ARM_TLS_CALL:
10200 /* GD->IE relaxation, turn the instruction into 'nop' or
10201 'ldr r0, [pc,r0]' */
10202 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10203 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10204 break;
b38cadfb 10205
0855e32b 10206 case R_ARM_THM_TLS_CALL:
6a631e86 10207 /* GD->IE relaxation. */
0855e32b
NS
10208 if (!is_local)
10209 /* add r0,pc; ldr r0, [r0] */
10210 insn = 0x44786800;
60a019a0 10211 else if (using_thumb2 (globals))
0855e32b
NS
10212 /* nop.w */
10213 insn = 0xf3af8000;
10214 else
10215 /* nop; nop */
10216 insn = 0xbf00bf00;
b38cadfb 10217
0855e32b
NS
10218 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10219 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10220 break;
10221 }
10222 return bfd_reloc_ok;
10223}
10224
4962c51a
MS
10225/* For a given value of n, calculate the value of G_n as required to
10226 deal with group relocations. We return it in the form of an
10227 encoded constant-and-rotation, together with the final residual. If n is
10228 specified as less than zero, then final_residual is filled with the
10229 input value and no further action is performed. */
10230
10231static bfd_vma
10232calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10233{
10234 int current_n;
10235 bfd_vma g_n;
10236 bfd_vma encoded_g_n = 0;
10237 bfd_vma residual = value; /* Also known as Y_n. */
10238
10239 for (current_n = 0; current_n <= n; current_n++)
10240 {
10241 int shift;
10242
10243 /* Calculate which part of the value to mask. */
10244 if (residual == 0)
99059e56 10245 shift = 0;
4962c51a 10246 else
99059e56
RM
10247 {
10248 int msb;
10249
10250 /* Determine the most significant bit in the residual and
10251 align the resulting value to a 2-bit boundary. */
10252 for (msb = 30; msb >= 0; msb -= 2)
00c91124 10253 if (residual & (3u << msb))
99059e56
RM
10254 break;
10255
10256 /* The desired shift is now (msb - 6), or zero, whichever
10257 is the greater. */
10258 shift = msb - 6;
10259 if (shift < 0)
10260 shift = 0;
10261 }
4962c51a
MS
10262
10263 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10264 g_n = residual & (0xff << shift);
10265 encoded_g_n = (g_n >> shift)
99059e56 10266 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
10267
10268 /* Calculate the residual for the next time around. */
10269 residual &= ~g_n;
10270 }
10271
10272 *final_residual = residual;
10273
10274 return encoded_g_n;
10275}
10276
10277/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10278 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 10279
4962c51a 10280static int
906e58ca 10281identify_add_or_sub (bfd_vma insn)
4962c51a
MS
10282{
10283 int opcode = insn & 0x1e00000;
10284
10285 if (opcode == 1 << 23) /* ADD */
10286 return 1;
10287
10288 if (opcode == 1 << 22) /* SUB */
10289 return -1;
10290
10291 return 0;
10292}
10293
252b5132 10294/* Perform a relocation as part of a final link. */
9b485d32 10295
252b5132 10296static bfd_reloc_status_type
07d6d2b8
AM
10297elf32_arm_final_link_relocate (reloc_howto_type * howto,
10298 bfd * input_bfd,
10299 bfd * output_bfd,
10300 asection * input_section,
10301 bfd_byte * contents,
10302 Elf_Internal_Rela * rel,
10303 bfd_vma value,
10304 struct bfd_link_info * info,
10305 asection * sym_sec,
10306 const char * sym_name,
10307 unsigned char st_type,
10308 enum arm_st_branch_type branch_type,
0945cdfd 10309 struct elf_link_hash_entry * h,
0a1b45a2 10310 bool * unresolved_reloc_p,
07d6d2b8
AM
10311 char ** error_message)
10312{
10313 unsigned long r_type = howto->type;
10314 unsigned long r_symndx;
10315 bfd_byte * hit_data = contents + rel->r_offset;
10316 bfd_vma * local_got_offsets;
10317 bfd_vma * local_tlsdesc_gotents;
10318 asection * sgot;
10319 asection * splt;
10320 asection * sreloc = NULL;
10321 asection * srelgot;
10322 bfd_vma addend;
10323 bfd_signed_vma signed_addend;
10324 unsigned char dynreloc_st_type;
10325 bfd_vma dynreloc_value;
ba96a88f 10326 struct elf32_arm_link_hash_table * globals;
34e77a92 10327 struct elf32_arm_link_hash_entry *eh;
07d6d2b8
AM
10328 union gotplt_union *root_plt;
10329 struct arm_plt_info *arm_plt;
10330 bfd_vma plt_offset;
10331 bfd_vma gotplt_offset;
0a1b45a2
AM
10332 bool has_iplt_entry;
10333 bool resolved_to_zero;
f21f3fe0 10334
9c504268 10335 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10336 if (globals == NULL)
10337 return bfd_reloc_notsupported;
9c504268 10338
0ffa91dd 10339 BFD_ASSERT (is_arm_elf (input_bfd));
47aeb64c 10340 BFD_ASSERT (howto != NULL);
0ffa91dd
NC
10341
10342 /* Some relocation types map to different relocations depending on the
9c504268 10343 target. We pick the right one here. */
eb043451 10344 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
10345
10346 /* It is possible to have linker relaxations on some TLS access
10347 models. Update our information here. */
10348 r_type = elf32_arm_tls_transition (info, r_type, h);
10349
eb043451
PB
10350 if (r_type != howto->type)
10351 howto = elf32_arm_howto_from_type (r_type);
9c504268 10352
34e77a92 10353 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 10354 sgot = globals->root.sgot;
252b5132 10355 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
10356 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10357
34e77a92
RS
10358 if (globals->root.dynamic_sections_created)
10359 srelgot = globals->root.srelgot;
10360 else
10361 srelgot = NULL;
10362
252b5132
RH
10363 r_symndx = ELF32_R_SYM (rel->r_info);
10364
4e7fd91e 10365 if (globals->use_rel)
ba96a88f 10366 {
d2327e47 10367 bfd_vma sign;
4e7fd91e 10368
57698478 10369 switch (bfd_get_reloc_size (howto))
4e7fd91e 10370 {
57698478
AM
10371 case 1: addend = bfd_get_8 (input_bfd, hit_data); break;
10372 case 2: addend = bfd_get_16 (input_bfd, hit_data); break;
10373 case 4: addend = bfd_get_32 (input_bfd, hit_data); break;
d2327e47 10374 default: addend = 0; break;
4e7fd91e 10375 }
d2327e47
AM
10376 /* Note: the addend and signed_addend calculated here are
10377 incorrect for any split field. */
10378 addend &= howto->src_mask;
10379 sign = howto->src_mask & ~(howto->src_mask >> 1);
10380 signed_addend = (addend ^ sign) - sign;
10381 signed_addend = (bfd_vma) signed_addend << howto->rightshift;
10382 addend <<= howto->rightshift;
ba96a88f
NC
10383 }
10384 else
4e7fd91e 10385 addend = signed_addend = rel->r_addend;
f21f3fe0 10386
39f21624
NC
10387 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10388 are resolving a function call relocation. */
10389 if (using_thumb_only (globals)
10390 && (r_type == R_ARM_THM_CALL
10391 || r_type == R_ARM_THM_JUMP24)
10392 && branch_type == ST_BRANCH_TO_ARM)
10393 branch_type = ST_BRANCH_TO_THUMB;
10394
34e77a92
RS
10395 /* Record the symbol information that should be used in dynamic
10396 relocations. */
10397 dynreloc_st_type = st_type;
10398 dynreloc_value = value;
10399 if (branch_type == ST_BRANCH_TO_THUMB)
10400 dynreloc_value |= 1;
10401
10402 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10403 VALUE appropriately for relocations that we resolve at link time. */
0a1b45a2 10404 has_iplt_entry = false;
4ba2ef8f
TP
10405 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10406 &arm_plt)
34e77a92
RS
10407 && root_plt->offset != (bfd_vma) -1)
10408 {
10409 plt_offset = root_plt->offset;
10410 gotplt_offset = arm_plt->got_offset;
10411
10412 if (h == NULL || eh->is_iplt)
10413 {
0a1b45a2 10414 has_iplt_entry = true;
34e77a92
RS
10415 splt = globals->root.iplt;
10416
10417 /* Populate .iplt entries here, because not all of them will
10418 be seen by finish_dynamic_symbol. The lower bit is set if
10419 we have already populated the entry. */
10420 if (plt_offset & 1)
10421 plt_offset--;
10422 else
10423 {
57460bcf
NC
10424 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10425 -1, dynreloc_value))
10426 root_plt->offset |= 1;
10427 else
10428 return bfd_reloc_notsupported;
34e77a92
RS
10429 }
10430
10431 /* Static relocations always resolve to the .iplt entry. */
10432 st_type = STT_FUNC;
10433 value = (splt->output_section->vma
10434 + splt->output_offset
10435 + plt_offset);
10436 branch_type = ST_BRANCH_TO_ARM;
10437
10438 /* If there are non-call relocations that resolve to the .iplt
10439 entry, then all dynamic ones must too. */
10440 if (arm_plt->noncall_refcount != 0)
10441 {
10442 dynreloc_st_type = st_type;
10443 dynreloc_value = value;
10444 }
10445 }
10446 else
10447 /* We populate the .plt entry in finish_dynamic_symbol. */
10448 splt = globals->root.splt;
10449 }
10450 else
10451 {
10452 splt = NULL;
10453 plt_offset = (bfd_vma) -1;
10454 gotplt_offset = (bfd_vma) -1;
10455 }
10456
95b03e4a
L
10457 resolved_to_zero = (h != NULL
10458 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10459
252b5132
RH
10460 switch (r_type)
10461 {
10462 case R_ARM_NONE:
28a094c2
DJ
10463 /* We don't need to find a value for this symbol. It's just a
10464 marker. */
0a1b45a2 10465 *unresolved_reloc_p = false;
252b5132
RH
10466 return bfd_reloc_ok;
10467
00a97672 10468 case R_ARM_ABS12:
90c14f0c 10469 if (globals->root.target_os != is_vxworks)
00a97672 10470 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10471 /* Fall through. */
00a97672 10472
252b5132
RH
10473 case R_ARM_PC24:
10474 case R_ARM_ABS32:
bb224fc3 10475 case R_ARM_ABS32_NOI:
252b5132 10476 case R_ARM_REL32:
bb224fc3 10477 case R_ARM_REL32_NOI:
5b5bb741
PB
10478 case R_ARM_CALL:
10479 case R_ARM_JUMP24:
dfc5f959 10480 case R_ARM_XPC25:
eb043451 10481 case R_ARM_PREL31:
7359ea65 10482 case R_ARM_PLT32:
7359ea65
DJ
10483 /* Handle relocations which should use the PLT entry. ABS32/REL32
10484 will use the symbol's value, which may point to a PLT entry, but we
10485 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10486 branches in this object should go to it, except if the PLT is too
10487 far away, in which case a long branch stub should be inserted. */
bb224fc3 10488 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10489 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10490 && r_type != R_ARM_CALL
10491 && r_type != R_ARM_JUMP24
10492 && r_type != R_ARM_PLT32)
34e77a92 10493 && plt_offset != (bfd_vma) -1)
7359ea65 10494 {
34e77a92
RS
10495 /* If we've created a .plt section, and assigned a PLT entry
10496 to this function, it must either be a STT_GNU_IFUNC reference
10497 or not be known to bind locally. In other cases, we should
10498 have cleared the PLT entry by now. */
10499 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10500
10501 value = (splt->output_section->vma
10502 + splt->output_offset
34e77a92 10503 + plt_offset);
0a1b45a2 10504 *unresolved_reloc_p = false;
7359ea65
DJ
10505 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10506 contents, rel->r_offset, value,
00a97672 10507 rel->r_addend);
7359ea65
DJ
10508 }
10509
67687978
PB
10510 /* When generating a shared object or relocatable executable, these
10511 relocations are copied into the output file to be resolved at
10512 run time. */
0e1862bb 10513 if ((bfd_link_pic (info)
e8b09b87
CL
10514 || globals->root.is_relocatable_executable
10515 || globals->fdpic_p)
7359ea65 10516 && (input_section->flags & SEC_ALLOC)
90c14f0c 10517 && !(globals->root.target_os == is_vxworks
3348747a
NS
10518 && strcmp (input_section->output_section->name,
10519 ".tls_vars") == 0)
bb224fc3 10520 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10521 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10522 && !(input_bfd == globals->stub_bfd
10523 && strstr (input_section->name, STUB_SUFFIX))
7359ea65 10524 && (h == NULL
95b03e4a
L
10525 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10526 && !resolved_to_zero)
7359ea65
DJ
10527 || h->root.type != bfd_link_hash_undefweak)
10528 && r_type != R_ARM_PC24
5b5bb741
PB
10529 && r_type != R_ARM_CALL
10530 && r_type != R_ARM_JUMP24
ee06dc07 10531 && r_type != R_ARM_PREL31
7359ea65 10532 && r_type != R_ARM_PLT32)
252b5132 10533 {
947216bf 10534 Elf_Internal_Rela outrel;
0a1b45a2 10535 bool skip, relocate;
e8b09b87 10536 int isrofixup = 0;
f21f3fe0 10537
52db4ec2
JW
10538 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10539 && !h->def_regular)
10540 {
10541 char *v = _("shared object");
10542
0e1862bb 10543 if (bfd_link_executable (info))
52db4ec2
JW
10544 v = _("PIE executable");
10545
4eca0228 10546 _bfd_error_handler
871b3ab2 10547 (_("%pB: relocation %s against external or undefined symbol `%s'"
52db4ec2
JW
10548 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10549 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10550 return bfd_reloc_notsupported;
10551 }
10552
0a1b45a2 10553 *unresolved_reloc_p = false;
0945cdfd 10554
34e77a92 10555 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10556 {
83bac4b0
NC
10557 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10558 ! globals->use_rel);
f21f3fe0 10559
83bac4b0 10560 if (sreloc == NULL)
252b5132 10561 return bfd_reloc_notsupported;
252b5132 10562 }
f21f3fe0 10563
0a1b45a2
AM
10564 skip = false;
10565 relocate = false;
f21f3fe0 10566
00a97672 10567 outrel.r_addend = addend;
c629eae0
JJ
10568 outrel.r_offset =
10569 _bfd_elf_section_offset (output_bfd, info, input_section,
10570 rel->r_offset);
10571 if (outrel.r_offset == (bfd_vma) -1)
0a1b45a2 10572 skip = true;
0bb2d96a 10573 else if (outrel.r_offset == (bfd_vma) -2)
0a1b45a2 10574 skip = true, relocate = true;
252b5132
RH
10575 outrel.r_offset += (input_section->output_section->vma
10576 + input_section->output_offset);
f21f3fe0 10577
252b5132 10578 if (skip)
0bb2d96a 10579 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10580 else if (h != NULL
10581 && h->dynindx != -1
0e1862bb 10582 && (!bfd_link_pic (info)
1dcb9720
JW
10583 || !(bfd_link_pie (info)
10584 || SYMBOLIC_BIND (info, h))
f5385ebf 10585 || !h->def_regular))
5e681ec4 10586 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10587 else
10588 {
a16385dc
MM
10589 int symbol;
10590
5e681ec4 10591 /* This symbol is local, or marked to become local. */
e8b09b87 10592 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
cc850f74 10593 || (globals->fdpic_p && !bfd_link_pic (info)));
a57d1773
AM
10594 /* On SVR4-ish systems, the dynamic loader cannot
10595 relocate the text and data segments independently,
10596 so the symbol does not matter. */
10597 symbol = 0;
34e77a92
RS
10598 if (dynreloc_st_type == STT_GNU_IFUNC)
10599 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10600 to the .iplt entry. Instead, every non-call reference
10601 must use an R_ARM_IRELATIVE relocation to obtain the
10602 correct run-time address. */
10603 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
cc850f74 10604 else if (globals->fdpic_p && !bfd_link_pic (info))
e8b09b87 10605 isrofixup = 1;
34e77a92
RS
10606 else
10607 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672 10608 if (globals->use_rel)
0a1b45a2 10609 relocate = true;
00a97672 10610 else
34e77a92 10611 outrel.r_addend += dynreloc_value;
252b5132 10612 }
f21f3fe0 10613
e8b09b87 10614 if (isrofixup)
cc850f74 10615 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
10616 else
10617 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10618
f21f3fe0 10619 /* If this reloc is against an external symbol, we do not want to
252b5132 10620 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10621 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10622 if (! relocate)
10623 return bfd_reloc_ok;
9a5aca8c 10624
f21f3fe0 10625 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10626 contents, rel->r_offset,
10627 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10628 }
10629 else switch (r_type)
10630 {
00a97672
RS
10631 case R_ARM_ABS12:
10632 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10633
dfc5f959 10634 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10635 case R_ARM_CALL:
10636 case R_ARM_JUMP24:
8029a119 10637 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10638 case R_ARM_PLT32:
906e58ca 10639 {
906e58ca
NC
10640 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10641
dfc5f959 10642 if (r_type == R_ARM_XPC25)
252b5132 10643 {
dfc5f959
NC
10644 /* Check for Arm calling Arm function. */
10645 /* FIXME: Should we translate the instruction into a BL
10646 instruction instead ? */
35fc36a8 10647 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10648 _bfd_error_handler
90b6238f
AM
10649 (_("\%pB: warning: %s BLX instruction targets"
10650 " %s function '%s'"),
10651 input_bfd, "ARM",
10652 "ARM", h ? h->root.root.string : "(local)");
dfc5f959 10653 }
155d87d7 10654 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10655 {
10656 /* Check for Arm calling Thumb function. */
35fc36a8 10657 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10658 {
f2a9dd69
DJ
10659 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10660 output_bfd, input_section,
10661 hit_data, sym_sec, rel->r_offset,
10662 signed_addend, value,
10663 error_message))
10664 return bfd_reloc_ok;
10665 else
10666 return bfd_reloc_dangerous;
dfc5f959 10667 }
252b5132 10668 }
ba96a88f 10669
906e58ca 10670 /* Check if a stub has to be inserted because the
8029a119 10671 destination is too far or we are changing mode. */
155d87d7
CL
10672 if ( r_type == R_ARM_CALL
10673 || r_type == R_ARM_JUMP24
10674 || r_type == R_ARM_PLT32)
906e58ca 10675 {
fe33d2fa
CL
10676 enum elf32_arm_stub_type stub_type = arm_stub_none;
10677 struct elf32_arm_link_hash_entry *hash;
10678
10679 hash = (struct elf32_arm_link_hash_entry *) h;
10680 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10681 st_type, &branch_type,
10682 hash, value, sym_sec,
fe33d2fa 10683 input_bfd, sym_name);
5fa9e92f 10684
fe33d2fa 10685 if (stub_type != arm_stub_none)
906e58ca
NC
10686 {
10687 /* The target is out of reach, so redirect the
10688 branch to the local stub for this function. */
906e58ca
NC
10689 stub_entry = elf32_arm_get_stub_entry (input_section,
10690 sym_sec, h,
fe33d2fa
CL
10691 rel, globals,
10692 stub_type);
9cd3e4e5
NC
10693 {
10694 if (stub_entry != NULL)
10695 value = (stub_entry->stub_offset
10696 + stub_entry->stub_sec->output_offset
10697 + stub_entry->stub_sec->output_section->vma);
10698
10699 if (plt_offset != (bfd_vma) -1)
0a1b45a2 10700 *unresolved_reloc_p = false;
9cd3e4e5 10701 }
906e58ca 10702 }
fe33d2fa
CL
10703 else
10704 {
10705 /* If the call goes through a PLT entry, make sure to
10706 check distance to the right destination address. */
34e77a92 10707 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10708 {
10709 value = (splt->output_section->vma
10710 + splt->output_offset
34e77a92 10711 + plt_offset);
0a1b45a2 10712 *unresolved_reloc_p = false;
fe33d2fa
CL
10713 /* The PLT entry is in ARM mode, regardless of the
10714 target function. */
35fc36a8 10715 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10716 }
10717 }
906e58ca
NC
10718 }
10719
dea514f5
PB
10720 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10721 where:
10722 S is the address of the symbol in the relocation.
10723 P is address of the instruction being relocated.
10724 A is the addend (extracted from the instruction) in bytes.
10725
10726 S is held in 'value'.
10727 P is the base address of the section containing the
10728 instruction plus the offset of the reloc into that
10729 section, ie:
10730 (input_section->output_section->vma +
10731 input_section->output_offset +
10732 rel->r_offset).
10733 A is the addend, converted into bytes, ie:
10734 (signed_addend * 4)
10735
10736 Note: None of these operations have knowledge of the pipeline
10737 size of the processor, thus it is up to the assembler to
10738 encode this information into the addend. */
10739 value -= (input_section->output_section->vma
10740 + input_section->output_offset);
10741 value -= rel->r_offset;
d2327e47 10742 value += signed_addend;
23080146 10743
dcb5e6e6
NC
10744 signed_addend = value;
10745 signed_addend >>= howto->rightshift;
9a5aca8c 10746
5ab79981 10747 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10748 the next instruction unless a PLT entry will be created.
77b4f08f 10749 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10750 The jump to the next instruction is optimized as a NOP depending
10751 on the architecture. */
ffcb4889 10752 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10753 && plt_offset == (bfd_vma) -1)
77b4f08f 10754 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10755 {
cd1dac3d
DG
10756 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10757
10758 if (arch_has_arm_nop (globals))
10759 value |= 0x0320f000;
10760 else
10761 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10762 }
10763 else
59f2c4e7 10764 {
9b485d32 10765 /* Perform a signed range check. */
dcb5e6e6 10766 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10767 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10768 return bfd_reloc_overflow;
9a5aca8c 10769
5ab79981 10770 addend = (value & 2);
39b41c9c 10771
5ab79981
PB
10772 value = (signed_addend & howto->dst_mask)
10773 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10774
5ab79981
PB
10775 if (r_type == R_ARM_CALL)
10776 {
155d87d7 10777 /* Set the H bit in the BLX instruction. */
35fc36a8 10778 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10779 {
10780 if (addend)
10781 value |= (1 << 24);
10782 else
10783 value &= ~(bfd_vma)(1 << 24);
10784 }
10785
5ab79981 10786 /* Select the correct instruction (BL or BLX). */
906e58ca 10787 /* Only if we are not handling a BL to a stub. In this
8029a119 10788 case, mode switching is performed by the stub. */
35fc36a8 10789 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10790 value |= (1 << 28);
63e1a0fc 10791 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10792 {
10793 value &= ~(bfd_vma)(1 << 28);
10794 value |= (1 << 24);
10795 }
39b41c9c
PB
10796 }
10797 }
906e58ca 10798 }
252b5132 10799 break;
f21f3fe0 10800
252b5132
RH
10801 case R_ARM_ABS32:
10802 value += addend;
35fc36a8 10803 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10804 value |= 1;
10805 break;
f21f3fe0 10806
bb224fc3
MS
10807 case R_ARM_ABS32_NOI:
10808 value += addend;
10809 break;
10810
252b5132 10811 case R_ARM_REL32:
a8bc6c78 10812 value += addend;
35fc36a8 10813 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10814 value |= 1;
252b5132 10815 value -= (input_section->output_section->vma
62efb346 10816 + input_section->output_offset + rel->r_offset);
252b5132 10817 break;
eb043451 10818
bb224fc3
MS
10819 case R_ARM_REL32_NOI:
10820 value += addend;
10821 value -= (input_section->output_section->vma
10822 + input_section->output_offset + rel->r_offset);
10823 break;
10824
eb043451
PB
10825 case R_ARM_PREL31:
10826 value -= (input_section->output_section->vma
10827 + input_section->output_offset + rel->r_offset);
10828 value += signed_addend;
10829 if (! h || h->root.type != bfd_link_hash_undefweak)
10830 {
8029a119 10831 /* Check for overflow. */
eb043451
PB
10832 if ((value ^ (value >> 1)) & (1 << 30))
10833 return bfd_reloc_overflow;
10834 }
10835 value &= 0x7fffffff;
10836 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10837 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10838 value |= 1;
10839 break;
252b5132 10840 }
f21f3fe0 10841
252b5132
RH
10842 bfd_put_32 (input_bfd, value, hit_data);
10843 return bfd_reloc_ok;
10844
10845 case R_ARM_ABS8:
10846 value += addend;
4e67d4ca
DG
10847
10848 /* There is no way to tell whether the user intended to use a signed or
10849 unsigned addend. When checking for overflow we accept either,
10850 as specified by the AAELF. */
10851 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10852 return bfd_reloc_overflow;
10853
10854 bfd_put_8 (input_bfd, value, hit_data);
10855 return bfd_reloc_ok;
10856
10857 case R_ARM_ABS16:
10858 value += addend;
10859
4e67d4ca
DG
10860 /* See comment for R_ARM_ABS8. */
10861 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10862 return bfd_reloc_overflow;
10863
10864 bfd_put_16 (input_bfd, value, hit_data);
10865 return bfd_reloc_ok;
10866
252b5132 10867 case R_ARM_THM_ABS5:
9b485d32 10868 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10869 if (globals->use_rel)
10870 {
10871 /* Need to refetch addend. */
10872 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10873 /* ??? Need to determine shift amount from operand size. */
10874 addend >>= howto->rightshift;
10875 }
252b5132
RH
10876 value += addend;
10877
10878 /* ??? Isn't value unsigned? */
10879 if ((long) value > 0x1f || (long) value < -0x10)
10880 return bfd_reloc_overflow;
10881
10882 /* ??? Value needs to be properly shifted into place first. */
10883 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10884 bfd_put_16 (input_bfd, value, hit_data);
10885 return bfd_reloc_ok;
10886
2cab6cc3
MS
10887 case R_ARM_THM_ALU_PREL_11_0:
10888 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10889 {
10890 bfd_vma insn;
10891 bfd_signed_vma relocation;
10892
10893 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10894 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10895
99059e56
RM
10896 if (globals->use_rel)
10897 {
10898 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10899 | ((insn & (1 << 26)) >> 15);
10900 if (insn & 0xf00000)
10901 signed_addend = -signed_addend;
10902 }
2cab6cc3
MS
10903
10904 relocation = value + signed_addend;
79f08007 10905 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10906 + input_section->output_offset
10907 + rel->r_offset);
2cab6cc3 10908
8c65b54f
CS
10909 /* PR 21523: Use an absolute value. The user of this reloc will
10910 have already selected an ADD or SUB insn appropriately. */
453f8e1e 10911 value = llabs (relocation);
2cab6cc3 10912
99059e56
RM
10913 if (value >= 0x1000)
10914 return bfd_reloc_overflow;
2cab6cc3 10915
e645cf40
AG
10916 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10917 if (branch_type == ST_BRANCH_TO_THUMB)
10918 value |= 1;
10919
2cab6cc3 10920 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10921 | ((value & 0x700) << 4)
10922 | ((value & 0x800) << 15);
10923 if (relocation < 0)
10924 insn |= 0xa00000;
2cab6cc3
MS
10925
10926 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10927 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10928
99059e56 10929 return bfd_reloc_ok;
2cab6cc3
MS
10930 }
10931
e1ec24c6
NC
10932 case R_ARM_THM_PC8:
10933 /* PR 10073: This reloc is not generated by the GNU toolchain,
10934 but it is supported for compatibility with third party libraries
10935 generated by other compilers, specifically the ARM/IAR. */
10936 {
10937 bfd_vma insn;
10938 bfd_signed_vma relocation;
10939
10940 insn = bfd_get_16 (input_bfd, hit_data);
10941
99059e56 10942 if (globals->use_rel)
79f08007 10943 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10944
10945 relocation = value + addend;
79f08007 10946 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10947 + input_section->output_offset
10948 + rel->r_offset);
e1ec24c6 10949
b6518b38 10950 value = relocation;
e1ec24c6
NC
10951
10952 /* We do not check for overflow of this reloc. Although strictly
10953 speaking this is incorrect, it appears to be necessary in order
10954 to work with IAR generated relocs. Since GCC and GAS do not
10955 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10956 a problem for them. */
10957 value &= 0x3fc;
10958
10959 insn = (insn & 0xff00) | (value >> 2);
10960
10961 bfd_put_16 (input_bfd, insn, hit_data);
10962
99059e56 10963 return bfd_reloc_ok;
e1ec24c6
NC
10964 }
10965
2cab6cc3
MS
10966 case R_ARM_THM_PC12:
10967 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10968 {
10969 bfd_vma insn;
10970 bfd_signed_vma relocation;
10971
10972 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10973 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10974
99059e56
RM
10975 if (globals->use_rel)
10976 {
10977 signed_addend = insn & 0xfff;
10978 if (!(insn & (1 << 23)))
10979 signed_addend = -signed_addend;
10980 }
2cab6cc3
MS
10981
10982 relocation = value + signed_addend;
79f08007 10983 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10984 + input_section->output_offset
10985 + rel->r_offset);
2cab6cc3 10986
b6518b38 10987 value = relocation;
2cab6cc3 10988
99059e56
RM
10989 if (value >= 0x1000)
10990 return bfd_reloc_overflow;
2cab6cc3
MS
10991
10992 insn = (insn & 0xff7ff000) | value;
99059e56
RM
10993 if (relocation >= 0)
10994 insn |= (1 << 23);
2cab6cc3
MS
10995
10996 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10997 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10998
99059e56 10999 return bfd_reloc_ok;
2cab6cc3
MS
11000 }
11001
dfc5f959 11002 case R_ARM_THM_XPC22:
c19d1205 11003 case R_ARM_THM_CALL:
bd97cb95 11004 case R_ARM_THM_JUMP24:
dfc5f959 11005 /* Thumb BL (branch long instruction). */
252b5132 11006 {
b34976b6 11007 bfd_vma relocation;
99059e56 11008 bfd_vma reloc_sign;
0a1b45a2 11009 bool overflow = false;
b34976b6
AM
11010 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11011 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
11012 bfd_signed_vma reloc_signed_max;
11013 bfd_signed_vma reloc_signed_min;
b34976b6 11014 bfd_vma check;
252b5132 11015 bfd_signed_vma signed_check;
e95de063 11016 int bitsize;
cd1dac3d 11017 const int thumb2 = using_thumb2 (globals);
5e866f5a 11018 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 11019
5ab79981 11020 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
11021 the next instruction unless a PLT entry will be created.
11022 The jump to the next instruction is optimized as a NOP.W for
11023 Thumb-2 enabled architectures. */
19540007 11024 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 11025 && plt_offset == (bfd_vma) -1)
5ab79981 11026 {
60a019a0 11027 if (thumb2)
cd1dac3d
DG
11028 {
11029 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11030 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11031 }
11032 else
11033 {
11034 bfd_put_16 (input_bfd, 0xe000, hit_data);
11035 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11036 }
5ab79981
PB
11037 return bfd_reloc_ok;
11038 }
11039
e95de063 11040 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 11041 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
11042 if (globals->use_rel)
11043 {
99059e56
RM
11044 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11045 bfd_vma upper = upper_insn & 0x3ff;
11046 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
11047 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11048 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
11049 bfd_vma i1 = j1 ^ s ? 0 : 1;
11050 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 11051
99059e56
RM
11052 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11053 /* Sign extend. */
11054 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 11055
4e7fd91e
PB
11056 signed_addend = addend;
11057 }
cb1afa5c 11058
dfc5f959
NC
11059 if (r_type == R_ARM_THM_XPC22)
11060 {
11061 /* Check for Thumb to Thumb call. */
11062 /* FIXME: Should we translate the instruction into a BL
11063 instruction instead ? */
35fc36a8 11064 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 11065 _bfd_error_handler
90b6238f
AM
11066 (_("%pB: warning: %s BLX instruction targets"
11067 " %s function '%s'"),
11068 input_bfd, "Thumb",
11069 "Thumb", h ? h->root.root.string : "(local)");
dfc5f959
NC
11070 }
11071 else
252b5132 11072 {
dfc5f959
NC
11073 /* If it is not a call to Thumb, assume call to Arm.
11074 If it is a call relative to a section name, then it is not a
b7693d02
DJ
11075 function call at all, but rather a long jump. Calls through
11076 the PLT do not require stubs. */
34e77a92 11077 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 11078 {
bd97cb95 11079 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11080 {
11081 /* Convert BL to BLX. */
11082 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11083 }
155d87d7
CL
11084 else if (( r_type != R_ARM_THM_CALL)
11085 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
11086 {
11087 if (elf32_thumb_to_arm_stub
11088 (info, sym_name, input_bfd, output_bfd, input_section,
11089 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11090 error_message))
11091 return bfd_reloc_ok;
11092 else
11093 return bfd_reloc_dangerous;
11094 }
da5938a2 11095 }
35fc36a8
RS
11096 else if (branch_type == ST_BRANCH_TO_THUMB
11097 && globals->use_blx
bd97cb95 11098 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11099 {
11100 /* Make sure this is a BL. */
11101 lower_insn |= 0x1800;
11102 }
252b5132 11103 }
f21f3fe0 11104
fe33d2fa 11105 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 11106 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
11107 {
11108 /* Check if a stub has to be inserted because the destination
8029a119 11109 is too far. */
fe33d2fa
CL
11110 struct elf32_arm_stub_hash_entry *stub_entry;
11111 struct elf32_arm_link_hash_entry *hash;
11112
11113 hash = (struct elf32_arm_link_hash_entry *) h;
11114
11115 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
11116 st_type, &branch_type,
11117 hash, value, sym_sec,
fe33d2fa
CL
11118 input_bfd, sym_name);
11119
11120 if (stub_type != arm_stub_none)
906e58ca
NC
11121 {
11122 /* The target is out of reach or we are changing modes, so
11123 redirect the branch to the local stub for this
11124 function. */
11125 stub_entry = elf32_arm_get_stub_entry (input_section,
11126 sym_sec, h,
fe33d2fa
CL
11127 rel, globals,
11128 stub_type);
906e58ca 11129 if (stub_entry != NULL)
9cd3e4e5
NC
11130 {
11131 value = (stub_entry->stub_offset
11132 + stub_entry->stub_sec->output_offset
11133 + stub_entry->stub_sec->output_section->vma);
11134
11135 if (plt_offset != (bfd_vma) -1)
0a1b45a2 11136 *unresolved_reloc_p = false;
9cd3e4e5 11137 }
906e58ca 11138
f4ac8484 11139 /* If this call becomes a call to Arm, force BLX. */
155d87d7 11140 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
11141 {
11142 if ((stub_entry
11143 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 11144 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
11145 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11146 }
906e58ca
NC
11147 }
11148 }
11149
fe33d2fa 11150 /* Handle calls via the PLT. */
34e77a92 11151 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
11152 {
11153 value = (splt->output_section->vma
11154 + splt->output_offset
34e77a92 11155 + plt_offset);
fe33d2fa 11156
eed94f8f
NC
11157 if (globals->use_blx
11158 && r_type == R_ARM_THM_CALL
11159 && ! using_thumb_only (globals))
fe33d2fa
CL
11160 {
11161 /* If the Thumb BLX instruction is available, convert
11162 the BL to a BLX instruction to call the ARM-mode
11163 PLT entry. */
11164 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 11165 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
11166 }
11167 else
11168 {
eed94f8f
NC
11169 if (! using_thumb_only (globals))
11170 /* Target the Thumb stub before the ARM PLT entry. */
11171 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 11172 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa 11173 }
0a1b45a2 11174 *unresolved_reloc_p = false;
fe33d2fa
CL
11175 }
11176
ba96a88f 11177 relocation = value + signed_addend;
f21f3fe0 11178
252b5132 11179 relocation -= (input_section->output_section->vma
ba96a88f
NC
11180 + input_section->output_offset
11181 + rel->r_offset);
9a5aca8c 11182
252b5132
RH
11183 check = relocation >> howto->rightshift;
11184
11185 /* If this is a signed value, the rightshift just dropped
11186 leading 1 bits (assuming twos complement). */
11187 if ((bfd_signed_vma) relocation >= 0)
11188 signed_check = check;
11189 else
11190 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11191
e95de063
MS
11192 /* Calculate the permissable maximum and minimum values for
11193 this relocation according to whether we're relocating for
11194 Thumb-2 or not. */
11195 bitsize = howto->bitsize;
5e866f5a 11196 if (!thumb2_bl)
e95de063 11197 bitsize -= 2;
f6ebfac0 11198 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
11199 reloc_signed_min = ~reloc_signed_max;
11200
252b5132 11201 /* Assumes two's complement. */
ba96a88f 11202 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11203 overflow = true;
252b5132 11204
bd97cb95 11205 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
11206 /* For a BLX instruction, make sure that the relocation is rounded up
11207 to a word boundary. This follows the semantics of the instruction
11208 which specifies that bit 1 of the target address will come from bit
11209 1 of the base address. */
11210 relocation = (relocation + 2) & ~ 3;
cb1afa5c 11211
e95de063
MS
11212 /* Put RELOCATION back into the insn. Assumes two's complement.
11213 We use the Thumb-2 encoding, which is safe even if dealing with
11214 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 11215 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 11216 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
11217 | ((relocation >> 12) & 0x3ff)
11218 | (reloc_sign << 10);
906e58ca 11219 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
11220 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11221 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11222 | ((relocation >> 1) & 0x7ff);
c62e1cc3 11223
252b5132
RH
11224 /* Put the relocated value back in the object file: */
11225 bfd_put_16 (input_bfd, upper_insn, hit_data);
11226 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11227
11228 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11229 }
11230 break;
11231
c19d1205
ZW
11232 case R_ARM_THM_JUMP19:
11233 /* Thumb32 conditional branch instruction. */
11234 {
11235 bfd_vma relocation;
0a1b45a2 11236 bool overflow = false;
c19d1205
ZW
11237 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11238 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
11239 bfd_signed_vma reloc_signed_max = 0xffffe;
11240 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 11241 bfd_signed_vma signed_check;
07d6d2b8 11242 enum elf32_arm_stub_type stub_type = arm_stub_none;
c5423981
TG
11243 struct elf32_arm_stub_hash_entry *stub_entry;
11244 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
11245
11246 /* Need to refetch the addend, reconstruct the top three bits,
11247 and squish the two 11 bit pieces together. */
11248 if (globals->use_rel)
11249 {
11250 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 11251 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
11252 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11253 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11254 bfd_vma lower = (lower_insn & 0x07ff);
11255
a00a1f35
MS
11256 upper |= J1 << 6;
11257 upper |= J2 << 7;
11258 upper |= (!S) << 8;
c19d1205
ZW
11259 upper -= 0x0100; /* Sign extend. */
11260
11261 addend = (upper << 12) | (lower << 1);
11262 signed_addend = addend;
11263 }
11264
bd97cb95 11265 /* Handle calls via the PLT. */
34e77a92 11266 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
11267 {
11268 value = (splt->output_section->vma
11269 + splt->output_offset
34e77a92 11270 + plt_offset);
bd97cb95
DJ
11271 /* Target the Thumb stub before the ARM PLT entry. */
11272 value -= PLT_THUMB_STUB_SIZE;
0a1b45a2 11273 *unresolved_reloc_p = false;
bd97cb95
DJ
11274 }
11275
c5423981
TG
11276 hash = (struct elf32_arm_link_hash_entry *)h;
11277
11278 stub_type = arm_type_of_stub (info, input_section, rel,
07d6d2b8
AM
11279 st_type, &branch_type,
11280 hash, value, sym_sec,
11281 input_bfd, sym_name);
c5423981
TG
11282 if (stub_type != arm_stub_none)
11283 {
11284 stub_entry = elf32_arm_get_stub_entry (input_section,
07d6d2b8
AM
11285 sym_sec, h,
11286 rel, globals,
11287 stub_type);
c5423981
TG
11288 if (stub_entry != NULL)
11289 {
07d6d2b8
AM
11290 value = (stub_entry->stub_offset
11291 + stub_entry->stub_sec->output_offset
11292 + stub_entry->stub_sec->output_section->vma);
c5423981
TG
11293 }
11294 }
c19d1205 11295
99059e56 11296 relocation = value + signed_addend;
c19d1205
ZW
11297 relocation -= (input_section->output_section->vma
11298 + input_section->output_offset
11299 + rel->r_offset);
a00a1f35 11300 signed_check = (bfd_signed_vma) relocation;
c19d1205 11301
c19d1205 11302 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11303 overflow = true;
c19d1205
ZW
11304
11305 /* Put RELOCATION back into the insn. */
11306 {
11307 bfd_vma S = (relocation & 0x00100000) >> 20;
11308 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11309 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11310 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11311 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11312
a00a1f35 11313 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
11314 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11315 }
11316
11317 /* Put the relocated value back in the object file: */
11318 bfd_put_16 (input_bfd, upper_insn, hit_data);
11319 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11320
11321 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11322 }
11323
11324 case R_ARM_THM_JUMP11:
11325 case R_ARM_THM_JUMP8:
11326 case R_ARM_THM_JUMP6:
51c5503b
NC
11327 /* Thumb B (branch) instruction). */
11328 {
6cf9e9fe 11329 bfd_signed_vma relocation;
51c5503b
NC
11330 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11331 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
11332 bfd_signed_vma signed_check;
11333
c19d1205
ZW
11334 /* CZB cannot jump backward. */
11335 if (r_type == R_ARM_THM_JUMP6)
6cf9e9fe 11336 {
d2327e47
AM
11337 reloc_signed_min = 0;
11338 if (globals->use_rel)
11339 signed_addend = ((addend & 0x200) >> 3) | ((addend & 0xf8) >> 2);
6cf9e9fe 11340 }
d2327e47 11341
6cf9e9fe 11342 relocation = value + signed_addend;
51c5503b
NC
11343
11344 relocation -= (input_section->output_section->vma
11345 + input_section->output_offset
11346 + rel->r_offset);
11347
6cf9e9fe
NC
11348 relocation >>= howto->rightshift;
11349 signed_check = relocation;
c19d1205
ZW
11350
11351 if (r_type == R_ARM_THM_JUMP6)
11352 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11353 else
11354 relocation &= howto->dst_mask;
51c5503b 11355 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 11356
51c5503b
NC
11357 bfd_put_16 (input_bfd, relocation, hit_data);
11358
11359 /* Assumes two's complement. */
11360 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11361 return bfd_reloc_overflow;
11362
11363 return bfd_reloc_ok;
11364 }
cedb70c5 11365
8375c36b
PB
11366 case R_ARM_ALU_PCREL7_0:
11367 case R_ARM_ALU_PCREL15_8:
11368 case R_ARM_ALU_PCREL23_15:
11369 {
11370 bfd_vma insn;
11371 bfd_vma relocation;
11372
11373 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
11374 if (globals->use_rel)
11375 {
11376 /* Extract the addend. */
11377 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11378 signed_addend = addend;
11379 }
8375c36b
PB
11380 relocation = value + signed_addend;
11381
11382 relocation -= (input_section->output_section->vma
11383 + input_section->output_offset
11384 + rel->r_offset);
11385 insn = (insn & ~0xfff)
11386 | ((howto->bitpos << 7) & 0xf00)
11387 | ((relocation >> howto->bitpos) & 0xff);
11388 bfd_put_32 (input_bfd, value, hit_data);
11389 }
11390 return bfd_reloc_ok;
11391
252b5132
RH
11392 case R_ARM_GNU_VTINHERIT:
11393 case R_ARM_GNU_VTENTRY:
11394 return bfd_reloc_ok;
11395
c19d1205 11396 case R_ARM_GOTOFF32:
252b5132 11397 /* Relocation is relative to the start of the
99059e56 11398 global offset table. */
252b5132
RH
11399
11400 BFD_ASSERT (sgot != NULL);
11401 if (sgot == NULL)
99059e56 11402 return bfd_reloc_notsupported;
9a5aca8c 11403
cedb70c5 11404 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11405 address by one, so that attempts to call the function pointer will
11406 correctly interpret it as Thumb code. */
35fc36a8 11407 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11408 value += 1;
11409
252b5132 11410 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11411 calculation. We always want the start of .got. If we
11412 define _GLOBAL_OFFSET_TABLE in a different way, as is
11413 permitted by the ABI, we might have to change this
11414 calculation. */
252b5132 11415 value -= sgot->output_section->vma;
f21f3fe0 11416 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11417 contents, rel->r_offset, value,
00a97672 11418 rel->r_addend);
252b5132
RH
11419
11420 case R_ARM_GOTPC:
a7c10850 11421 /* Use global offset table as symbol value. */
252b5132 11422 BFD_ASSERT (sgot != NULL);
f21f3fe0 11423
252b5132 11424 if (sgot == NULL)
99059e56 11425 return bfd_reloc_notsupported;
252b5132 11426
0a1b45a2 11427 *unresolved_reloc_p = false;
252b5132 11428 value = sgot->output_section->vma;
f21f3fe0 11429 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11430 contents, rel->r_offset, value,
00a97672 11431 rel->r_addend);
f21f3fe0 11432
252b5132 11433 case R_ARM_GOT32:
eb043451 11434 case R_ARM_GOT_PREL:
252b5132 11435 /* Relocation is to the entry for this symbol in the
99059e56 11436 global offset table. */
252b5132
RH
11437 if (sgot == NULL)
11438 return bfd_reloc_notsupported;
f21f3fe0 11439
34e77a92
RS
11440 if (dynreloc_st_type == STT_GNU_IFUNC
11441 && plt_offset != (bfd_vma) -1
11442 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11443 {
11444 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11445 symbol, and the relocation resolves directly to the runtime
11446 target rather than to the .iplt entry. This means that any
11447 .got entry would be the same value as the .igot.plt entry,
11448 so there's no point creating both. */
11449 sgot = globals->root.igotplt;
11450 value = sgot->output_offset + gotplt_offset;
11451 }
11452 else if (h != NULL)
252b5132
RH
11453 {
11454 bfd_vma off;
f21f3fe0 11455
252b5132
RH
11456 off = h->got.offset;
11457 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11458 if ((off & 1) != 0)
252b5132 11459 {
b436d854
RS
11460 /* We have already processsed one GOT relocation against
11461 this symbol. */
11462 off &= ~1;
11463 if (globals->root.dynamic_sections_created
11464 && !SYMBOL_REFERENCES_LOCAL (info, h))
0a1b45a2 11465 *unresolved_reloc_p = false;
b436d854
RS
11466 }
11467 else
11468 {
11469 Elf_Internal_Rela outrel;
e8b09b87 11470 int isrofixup = 0;
b436d854 11471
e8b09b87
CL
11472 if (((h->dynindx != -1) || globals->fdpic_p)
11473 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11474 {
11475 /* If the symbol doesn't resolve locally in a static
11476 object, we have an undefined reference. If the
11477 symbol doesn't resolve locally in a dynamic object,
11478 it should be resolved by the dynamic linker. */
11479 if (globals->root.dynamic_sections_created)
11480 {
11481 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
0a1b45a2 11482 *unresolved_reloc_p = false;
b436d854
RS
11483 }
11484 else
11485 outrel.r_info = 0;
11486 outrel.r_addend = 0;
11487 }
252b5132
RH
11488 else
11489 {
34e77a92 11490 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11491 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c 11492 else if (bfd_link_pic (info)
7f026732 11493 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
99059e56
RM
11494 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11495 else
2376f038
EB
11496 {
11497 outrel.r_info = 0;
11498 if (globals->fdpic_p)
11499 isrofixup = 1;
11500 }
34e77a92 11501 outrel.r_addend = dynreloc_value;
b436d854 11502 }
ee29b9fb 11503
b436d854
RS
11504 /* The GOT entry is initialized to zero by default.
11505 See if we should install a different value. */
11506 if (outrel.r_addend != 0
2376f038 11507 && (globals->use_rel || outrel.r_info == 0))
b436d854
RS
11508 {
11509 bfd_put_32 (output_bfd, outrel.r_addend,
11510 sgot->contents + off);
11511 outrel.r_addend = 0;
252b5132 11512 }
f21f3fe0 11513
2376f038
EB
11514 if (isrofixup)
11515 arm_elf_add_rofixup (output_bfd,
cc850f74 11516 elf32_arm_hash_table (info)->srofixup,
2376f038
EB
11517 sgot->output_section->vma
11518 + sgot->output_offset + off);
11519
11520 else if (outrel.r_info != 0)
b436d854
RS
11521 {
11522 outrel.r_offset = (sgot->output_section->vma
11523 + sgot->output_offset
11524 + off);
11525 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11526 }
2376f038 11527
b436d854
RS
11528 h->got.offset |= 1;
11529 }
252b5132
RH
11530 value = sgot->output_offset + off;
11531 }
11532 else
11533 {
11534 bfd_vma off;
f21f3fe0 11535
5025eb7c
AO
11536 BFD_ASSERT (local_got_offsets != NULL
11537 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11538
252b5132 11539 off = local_got_offsets[r_symndx];
f21f3fe0 11540
252b5132
RH
11541 /* The offset must always be a multiple of 4. We use the
11542 least significant bit to record whether we have already
9b485d32 11543 generated the necessary reloc. */
252b5132
RH
11544 if ((off & 1) != 0)
11545 off &= ~1;
11546 else
11547 {
2376f038
EB
11548 Elf_Internal_Rela outrel;
11549 int isrofixup = 0;
f21f3fe0 11550
2376f038
EB
11551 if (dynreloc_st_type == STT_GNU_IFUNC)
11552 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11553 else if (bfd_link_pic (info))
11554 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11555 else
252b5132 11556 {
2376f038
EB
11557 outrel.r_info = 0;
11558 if (globals->fdpic_p)
11559 isrofixup = 1;
11560 }
11561
11562 /* The GOT entry is initialized to zero by default.
11563 See if we should install a different value. */
11564 if (globals->use_rel || outrel.r_info == 0)
11565 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11566
11567 if (isrofixup)
11568 arm_elf_add_rofixup (output_bfd,
11569 globals->srofixup,
11570 sgot->output_section->vma
11571 + sgot->output_offset + off);
f21f3fe0 11572
2376f038
EB
11573 else if (outrel.r_info != 0)
11574 {
34e77a92 11575 outrel.r_addend = addend + dynreloc_value;
252b5132 11576 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11577 + sgot->output_offset
252b5132 11578 + off);
47beaa6a 11579 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11580 }
f21f3fe0 11581
252b5132
RH
11582 local_got_offsets[r_symndx] |= 1;
11583 }
f21f3fe0 11584
252b5132
RH
11585 value = sgot->output_offset + off;
11586 }
eb043451
PB
11587 if (r_type != R_ARM_GOT32)
11588 value += sgot->output_section->vma;
9a5aca8c 11589
f21f3fe0 11590 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11591 contents, rel->r_offset, value,
00a97672 11592 rel->r_addend);
f21f3fe0 11593
ba93b8ac
DJ
11594 case R_ARM_TLS_LDO32:
11595 value = value - dtpoff_base (info);
11596
11597 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11598 contents, rel->r_offset, value,
11599 rel->r_addend);
ba93b8ac
DJ
11600
11601 case R_ARM_TLS_LDM32:
5c5a4843 11602 case R_ARM_TLS_LDM32_FDPIC:
ba93b8ac
DJ
11603 {
11604 bfd_vma off;
11605
362d30a1 11606 if (sgot == NULL)
ba93b8ac
DJ
11607 abort ();
11608
11609 off = globals->tls_ldm_got.offset;
11610
11611 if ((off & 1) != 0)
11612 off &= ~1;
11613 else
11614 {
11615 /* If we don't know the module number, create a relocation
11616 for it. */
9cb09e33 11617 if (bfd_link_dll (info))
ba93b8ac
DJ
11618 {
11619 Elf_Internal_Rela outrel;
ba93b8ac 11620
362d30a1 11621 if (srelgot == NULL)
ba93b8ac
DJ
11622 abort ();
11623
00a97672 11624 outrel.r_addend = 0;
362d30a1
RS
11625 outrel.r_offset = (sgot->output_section->vma
11626 + sgot->output_offset + off);
ba93b8ac
DJ
11627 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11628
00a97672
RS
11629 if (globals->use_rel)
11630 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11631 sgot->contents + off);
ba93b8ac 11632
47beaa6a 11633 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11634 }
11635 else
362d30a1 11636 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11637
11638 globals->tls_ldm_got.offset |= 1;
11639 }
11640
5c5a4843 11641 if (r_type == R_ARM_TLS_LDM32_FDPIC)
e8b09b87 11642 {
cc850f74
NC
11643 bfd_put_32 (output_bfd,
11644 globals->root.sgot->output_offset + off,
11645 contents + rel->r_offset);
e8b09b87
CL
11646
11647 return bfd_reloc_ok;
11648 }
11649 else
11650 {
11651 value = sgot->output_section->vma + sgot->output_offset + off
11652 - (input_section->output_section->vma
11653 + input_section->output_offset + rel->r_offset);
ba93b8ac 11654
e8b09b87
CL
11655 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11656 contents, rel->r_offset, value,
11657 rel->r_addend);
11658 }
ba93b8ac
DJ
11659 }
11660
0855e32b
NS
11661 case R_ARM_TLS_CALL:
11662 case R_ARM_THM_TLS_CALL:
ba93b8ac 11663 case R_ARM_TLS_GD32:
5c5a4843 11664 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 11665 case R_ARM_TLS_IE32:
5c5a4843 11666 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
11667 case R_ARM_TLS_GOTDESC:
11668 case R_ARM_TLS_DESCSEQ:
11669 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11670 {
0855e32b
NS
11671 bfd_vma off, offplt;
11672 int indx = 0;
ba93b8ac
DJ
11673 char tls_type;
11674
0855e32b 11675 BFD_ASSERT (sgot != NULL);
ba93b8ac 11676
ba93b8ac
DJ
11677 if (h != NULL)
11678 {
0a1b45a2 11679 bool dyn;
ba93b8ac 11680 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11681 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11682 bfd_link_pic (info),
11683 h)
11684 && (!bfd_link_pic (info)
ba93b8ac
DJ
11685 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11686 {
0a1b45a2 11687 *unresolved_reloc_p = false;
ba93b8ac
DJ
11688 indx = h->dynindx;
11689 }
11690 off = h->got.offset;
0855e32b 11691 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11692 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11693 }
11694 else
11695 {
0855e32b 11696 BFD_ASSERT (local_got_offsets != NULL);
cc850f74 11697
74fd118f
NC
11698 if (r_symndx >= elf32_arm_num_entries (input_bfd))
11699 {
11700 _bfd_error_handler (_("\
11701%pB: expected symbol index in range 0..%lu but found local symbol with index %lu"),
11702 input_bfd,
11703 (unsigned long) elf32_arm_num_entries (input_bfd),
11704 r_symndx);
11705 return false;
11706 }
ba93b8ac 11707 off = local_got_offsets[r_symndx];
0855e32b 11708 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11709 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11710 }
11711
0855e32b 11712 /* Linker relaxations happens from one of the
b38cadfb 11713 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
cc850f74 11714 if (ELF32_R_TYPE (rel->r_info) != r_type)
b38cadfb 11715 tls_type = GOT_TLS_IE;
0855e32b
NS
11716
11717 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11718
11719 if ((off & 1) != 0)
11720 off &= ~1;
11721 else
11722 {
0a1b45a2 11723 bool need_relocs = false;
ba93b8ac 11724 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11725 int cur_off = off;
11726
11727 /* The GOT entries have not been initialized yet. Do it
11728 now, and emit any relocations. If both an IE GOT and a
11729 GD GOT are necessary, we emit the GD first. */
11730
9cb09e33 11731 if ((bfd_link_dll (info) || indx != 0)
ba93b8ac 11732 && (h == NULL
95b03e4a
L
11733 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11734 && !resolved_to_zero)
ba93b8ac
DJ
11735 || h->root.type != bfd_link_hash_undefweak))
11736 {
0a1b45a2 11737 need_relocs = true;
0855e32b 11738 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11739 }
11740
0855e32b
NS
11741 if (tls_type & GOT_TLS_GDESC)
11742 {
47beaa6a
RS
11743 bfd_byte *loc;
11744
0855e32b
NS
11745 /* We should have relaxed, unless this is an undefined
11746 weak symbol. */
11747 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9cb09e33 11748 || bfd_link_dll (info));
0855e32b 11749 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11750 <= globals->root.sgotplt->size);
0855e32b
NS
11751
11752 outrel.r_addend = 0;
11753 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11754 + globals->root.sgotplt->output_offset
11755 + offplt
11756 + globals->sgotplt_jump_table_size);
b38cadfb 11757
0855e32b
NS
11758 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11759 sreloc = globals->root.srelplt;
11760 loc = sreloc->contents;
11761 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11762 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11763 <= sreloc->contents + sreloc->size);
0855e32b
NS
11764
11765 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11766
11767 /* For globals, the first word in the relocation gets
11768 the relocation index and the top bit set, or zero,
11769 if we're binding now. For locals, it gets the
11770 symbol's offset in the tls section. */
99059e56 11771 bfd_put_32 (output_bfd,
0855e32b
NS
11772 !h ? value - elf_hash_table (info)->tls_sec->vma
11773 : info->flags & DF_BIND_NOW ? 0
11774 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11775 globals->root.sgotplt->contents + offplt
11776 + globals->sgotplt_jump_table_size);
11777
0855e32b 11778 /* Second word in the relocation is always zero. */
99059e56 11779 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11780 globals->root.sgotplt->contents + offplt
11781 + globals->sgotplt_jump_table_size + 4);
0855e32b 11782 }
ba93b8ac
DJ
11783 if (tls_type & GOT_TLS_GD)
11784 {
11785 if (need_relocs)
11786 {
00a97672 11787 outrel.r_addend = 0;
362d30a1
RS
11788 outrel.r_offset = (sgot->output_section->vma
11789 + sgot->output_offset
00a97672 11790 + cur_off);
ba93b8ac 11791 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11792
00a97672
RS
11793 if (globals->use_rel)
11794 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11795 sgot->contents + cur_off);
00a97672 11796
47beaa6a 11797 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11798
11799 if (indx == 0)
11800 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11801 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11802 else
11803 {
00a97672 11804 outrel.r_addend = 0;
ba93b8ac
DJ
11805 outrel.r_info = ELF32_R_INFO (indx,
11806 R_ARM_TLS_DTPOFF32);
11807 outrel.r_offset += 4;
00a97672
RS
11808
11809 if (globals->use_rel)
11810 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11811 sgot->contents + cur_off + 4);
00a97672 11812
47beaa6a
RS
11813 elf32_arm_add_dynreloc (output_bfd, info,
11814 srelgot, &outrel);
ba93b8ac
DJ
11815 }
11816 }
11817 else
11818 {
11819 /* If we are not emitting relocations for a
11820 general dynamic reference, then we must be in a
11821 static link or an executable link with the
11822 symbol binding locally. Mark it as belonging
11823 to module 1, the executable. */
11824 bfd_put_32 (output_bfd, 1,
362d30a1 11825 sgot->contents + cur_off);
ba93b8ac 11826 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11827 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11828 }
11829
11830 cur_off += 8;
11831 }
11832
11833 if (tls_type & GOT_TLS_IE)
11834 {
11835 if (need_relocs)
11836 {
00a97672
RS
11837 if (indx == 0)
11838 outrel.r_addend = value - dtpoff_base (info);
11839 else
11840 outrel.r_addend = 0;
362d30a1
RS
11841 outrel.r_offset = (sgot->output_section->vma
11842 + sgot->output_offset
ba93b8ac
DJ
11843 + cur_off);
11844 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11845
00a97672
RS
11846 if (globals->use_rel)
11847 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11848 sgot->contents + cur_off);
ba93b8ac 11849
47beaa6a 11850 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11851 }
11852 else
11853 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11854 sgot->contents + cur_off);
ba93b8ac
DJ
11855 cur_off += 4;
11856 }
11857
11858 if (h != NULL)
11859 h->got.offset |= 1;
11860 else
11861 local_got_offsets[r_symndx] |= 1;
11862 }
11863
5c5a4843 11864 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
ba93b8ac 11865 off += 8;
0855e32b
NS
11866 else if (tls_type & GOT_TLS_GDESC)
11867 off = offplt;
11868
cc850f74
NC
11869 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
11870 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL)
0855e32b
NS
11871 {
11872 bfd_signed_vma offset;
12352d3f
PB
11873 /* TLS stubs are arm mode. The original symbol is a
11874 data object, so branch_type is bogus. */
11875 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11876 enum elf32_arm_stub_type stub_type
34e77a92
RS
11877 = arm_type_of_stub (info, input_section, rel,
11878 st_type, &branch_type,
0855e32b
NS
11879 (struct elf32_arm_link_hash_entry *)h,
11880 globals->tls_trampoline, globals->root.splt,
11881 input_bfd, sym_name);
11882
11883 if (stub_type != arm_stub_none)
11884 {
11885 struct elf32_arm_stub_hash_entry *stub_entry
11886 = elf32_arm_get_stub_entry
11887 (input_section, globals->root.splt, 0, rel,
11888 globals, stub_type);
11889 offset = (stub_entry->stub_offset
11890 + stub_entry->stub_sec->output_offset
11891 + stub_entry->stub_sec->output_section->vma);
11892 }
11893 else
11894 offset = (globals->root.splt->output_section->vma
11895 + globals->root.splt->output_offset
11896 + globals->tls_trampoline);
11897
cc850f74 11898 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL)
0855e32b
NS
11899 {
11900 unsigned long inst;
b38cadfb
NC
11901
11902 offset -= (input_section->output_section->vma
11903 + input_section->output_offset
11904 + rel->r_offset + 8);
0855e32b
NS
11905
11906 inst = offset >> 2;
11907 inst &= 0x00ffffff;
11908 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11909 }
11910 else
11911 {
11912 /* Thumb blx encodes the offset in a complicated
11913 fashion. */
11914 unsigned upper_insn, lower_insn;
11915 unsigned neg;
11916
b38cadfb
NC
11917 offset -= (input_section->output_section->vma
11918 + input_section->output_offset
0855e32b 11919 + rel->r_offset + 4);
b38cadfb 11920
12352d3f
PB
11921 if (stub_type != arm_stub_none
11922 && arm_stub_is_thumb (stub_type))
11923 {
11924 lower_insn = 0xd000;
11925 }
11926 else
11927 {
11928 lower_insn = 0xc000;
6a631e86 11929 /* Round up the offset to a word boundary. */
12352d3f
PB
11930 offset = (offset + 2) & ~2;
11931 }
11932
0855e32b
NS
11933 neg = offset < 0;
11934 upper_insn = (0xf000
11935 | ((offset >> 12) & 0x3ff)
11936 | (neg << 10));
12352d3f 11937 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11938 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11939 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11940 bfd_put_16 (input_bfd, upper_insn, hit_data);
11941 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11942 return bfd_reloc_ok;
11943 }
11944 }
11945 /* These relocations needs special care, as besides the fact
11946 they point somewhere in .gotplt, the addend must be
11947 adjusted accordingly depending on the type of instruction
6a631e86 11948 we refer to. */
0855e32b
NS
11949 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11950 {
11951 unsigned long data, insn;
11952 unsigned thumb;
b38cadfb 11953
b627f562 11954 data = bfd_get_signed_32 (input_bfd, hit_data);
0855e32b 11955 thumb = data & 1;
b627f562 11956 data &= ~1ul;
b38cadfb 11957
0855e32b
NS
11958 if (thumb)
11959 {
11960 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11961 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11962 insn = (insn << 16)
11963 | bfd_get_16 (input_bfd,
11964 contents + rel->r_offset - data + 2);
11965 if ((insn & 0xf800c000) == 0xf000c000)
11966 /* bl/blx */
11967 value = -6;
11968 else if ((insn & 0xffffff00) == 0x4400)
11969 /* add */
11970 value = -5;
11971 else
11972 {
4eca0228 11973 _bfd_error_handler
695344c0 11974 /* xgettext:c-format */
2dcf00ce 11975 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 11976 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
11977 "referenced by TLS_GOTDESC"),
11978 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 11979 "Thumb", insn);
0855e32b
NS
11980 return bfd_reloc_notsupported;
11981 }
11982 }
11983 else
11984 {
11985 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11986
11987 switch (insn >> 24)
11988 {
11989 case 0xeb: /* bl */
11990 case 0xfa: /* blx */
11991 value = -4;
11992 break;
11993
11994 case 0xe0: /* add */
11995 value = -8;
11996 break;
b38cadfb 11997
0855e32b 11998 default:
4eca0228 11999 _bfd_error_handler
695344c0 12000 /* xgettext:c-format */
2dcf00ce 12001 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 12002 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
12003 "referenced by TLS_GOTDESC"),
12004 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 12005 "ARM", insn);
0855e32b
NS
12006 return bfd_reloc_notsupported;
12007 }
12008 }
b38cadfb 12009
0855e32b
NS
12010 value += ((globals->root.sgotplt->output_section->vma
12011 + globals->root.sgotplt->output_offset + off)
12012 - (input_section->output_section->vma
12013 + input_section->output_offset
12014 + rel->r_offset)
12015 + globals->sgotplt_jump_table_size);
12016 }
12017 else
12018 value = ((globals->root.sgot->output_section->vma
12019 + globals->root.sgot->output_offset + off)
12020 - (input_section->output_section->vma
12021 + input_section->output_offset + rel->r_offset));
ba93b8ac 12022
5c5a4843
CL
12023 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12024 r_type == R_ARM_TLS_IE32_FDPIC))
e8b09b87
CL
12025 {
12026 /* For FDPIC relocations, resolve to the offset of the GOT
12027 entry from the start of GOT. */
cc850f74
NC
12028 bfd_put_32 (output_bfd,
12029 globals->root.sgot->output_offset + off,
12030 contents + rel->r_offset);
e8b09b87
CL
12031
12032 return bfd_reloc_ok;
12033 }
12034 else
12035 {
12036 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12037 contents, rel->r_offset, value,
12038 rel->r_addend);
12039 }
ba93b8ac
DJ
12040 }
12041
12042 case R_ARM_TLS_LE32:
3cbc1e5e 12043 if (bfd_link_dll (info))
ba93b8ac 12044 {
4eca0228 12045 _bfd_error_handler
695344c0 12046 /* xgettext:c-format */
2dcf00ce
AM
12047 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12048 "in shared object"),
12049 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
46691134 12050 return bfd_reloc_notsupported;
ba93b8ac
DJ
12051 }
12052 else
12053 value = tpoff (info, value);
906e58ca 12054
ba93b8ac 12055 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
12056 contents, rel->r_offset, value,
12057 rel->r_addend);
ba93b8ac 12058
319850b4
JB
12059 case R_ARM_V4BX:
12060 if (globals->fix_v4bx)
845b51d6
PB
12061 {
12062 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 12063
845b51d6
PB
12064 /* Ensure that we have a BX instruction. */
12065 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 12066
845b51d6
PB
12067 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12068 {
12069 /* Branch to veneer. */
12070 bfd_vma glue_addr;
12071 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12072 glue_addr -= input_section->output_section->vma
12073 + input_section->output_offset
12074 + rel->r_offset + 8;
12075 insn = (insn & 0xf0000000) | 0x0a000000
12076 | ((glue_addr >> 2) & 0x00ffffff);
12077 }
12078 else
12079 {
12080 /* Preserve Rm (lowest four bits) and the condition code
12081 (highest four bits). Other bits encode MOV PC,Rm. */
12082 insn = (insn & 0xf000000f) | 0x01a0f000;
12083 }
319850b4 12084
845b51d6
PB
12085 bfd_put_32 (input_bfd, insn, hit_data);
12086 }
319850b4
JB
12087 return bfd_reloc_ok;
12088
b6895b4f
PB
12089 case R_ARM_MOVW_ABS_NC:
12090 case R_ARM_MOVT_ABS:
12091 case R_ARM_MOVW_PREL_NC:
12092 case R_ARM_MOVT_PREL:
92f5d02b
MS
12093 /* Until we properly support segment-base-relative addressing then
12094 we assume the segment base to be zero, as for the group relocations.
12095 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12096 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12097 case R_ARM_MOVW_BREL_NC:
12098 case R_ARM_MOVW_BREL:
12099 case R_ARM_MOVT_BREL:
b6895b4f
PB
12100 {
12101 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12102
12103 if (globals->use_rel)
12104 {
12105 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 12106 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12107 }
92f5d02b 12108
b6895b4f 12109 value += signed_addend;
b6895b4f
PB
12110
12111 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12112 value -= (input_section->output_section->vma
12113 + input_section->output_offset + rel->r_offset);
12114
92f5d02b 12115 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 12116 return bfd_reloc_overflow;
92f5d02b 12117
35fc36a8 12118 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12119 value |= 1;
12120
12121 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 12122 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
12123 value >>= 16;
12124
12125 insn &= 0xfff0f000;
12126 insn |= value & 0xfff;
12127 insn |= (value & 0xf000) << 4;
12128 bfd_put_32 (input_bfd, insn, hit_data);
12129 }
12130 return bfd_reloc_ok;
12131
12132 case R_ARM_THM_MOVW_ABS_NC:
12133 case R_ARM_THM_MOVT_ABS:
12134 case R_ARM_THM_MOVW_PREL_NC:
12135 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
12136 /* Until we properly support segment-base-relative addressing then
12137 we assume the segment base to be zero, as for the above relocations.
12138 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12139 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12140 as R_ARM_THM_MOVT_ABS. */
12141 case R_ARM_THM_MOVW_BREL_NC:
12142 case R_ARM_THM_MOVW_BREL:
12143 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
12144 {
12145 bfd_vma insn;
906e58ca 12146
b6895b4f
PB
12147 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12148 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12149
12150 if (globals->use_rel)
12151 {
12152 addend = ((insn >> 4) & 0xf000)
12153 | ((insn >> 15) & 0x0800)
12154 | ((insn >> 4) & 0x0700)
07d6d2b8 12155 | (insn & 0x00ff);
39623e12 12156 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12157 }
92f5d02b 12158
b6895b4f 12159 value += signed_addend;
b6895b4f
PB
12160
12161 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12162 value -= (input_section->output_section->vma
12163 + input_section->output_offset + rel->r_offset);
12164
92f5d02b 12165 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 12166 return bfd_reloc_overflow;
92f5d02b 12167
35fc36a8 12168 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12169 value |= 1;
12170
12171 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 12172 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
12173 value >>= 16;
12174
12175 insn &= 0xfbf08f00;
12176 insn |= (value & 0xf000) << 4;
12177 insn |= (value & 0x0800) << 15;
12178 insn |= (value & 0x0700) << 4;
12179 insn |= (value & 0x00ff);
12180
12181 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12182 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12183 }
12184 return bfd_reloc_ok;
12185
4962c51a
MS
12186 case R_ARM_ALU_PC_G0_NC:
12187 case R_ARM_ALU_PC_G1_NC:
12188 case R_ARM_ALU_PC_G0:
12189 case R_ARM_ALU_PC_G1:
12190 case R_ARM_ALU_PC_G2:
12191 case R_ARM_ALU_SB_G0_NC:
12192 case R_ARM_ALU_SB_G1_NC:
12193 case R_ARM_ALU_SB_G0:
12194 case R_ARM_ALU_SB_G1:
12195 case R_ARM_ALU_SB_G2:
12196 {
12197 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12198 bfd_vma pc = input_section->output_section->vma
4962c51a 12199 + input_section->output_offset + rel->r_offset;
31a91d61 12200 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12201 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
12202 bfd_vma residual;
12203 bfd_vma g_n;
4962c51a 12204 bfd_signed_vma signed_value;
99059e56
RM
12205 int group = 0;
12206
12207 /* Determine which group of bits to select. */
12208 switch (r_type)
12209 {
12210 case R_ARM_ALU_PC_G0_NC:
12211 case R_ARM_ALU_PC_G0:
12212 case R_ARM_ALU_SB_G0_NC:
12213 case R_ARM_ALU_SB_G0:
12214 group = 0;
12215 break;
12216
12217 case R_ARM_ALU_PC_G1_NC:
12218 case R_ARM_ALU_PC_G1:
12219 case R_ARM_ALU_SB_G1_NC:
12220 case R_ARM_ALU_SB_G1:
12221 group = 1;
12222 break;
12223
12224 case R_ARM_ALU_PC_G2:
12225 case R_ARM_ALU_SB_G2:
12226 group = 2;
12227 break;
12228
12229 default:
12230 abort ();
12231 }
12232
12233 /* If REL, extract the addend from the insn. If RELA, it will
12234 have already been fetched for us. */
4962c51a 12235 if (globals->use_rel)
99059e56
RM
12236 {
12237 int negative;
12238 bfd_vma constant = insn & 0xff;
12239 bfd_vma rotation = (insn & 0xf00) >> 8;
12240
12241 if (rotation == 0)
12242 signed_addend = constant;
12243 else
12244 {
12245 /* Compensate for the fact that in the instruction, the
12246 rotation is stored in multiples of 2 bits. */
12247 rotation *= 2;
12248
12249 /* Rotate "constant" right by "rotation" bits. */
12250 signed_addend = (constant >> rotation) |
12251 (constant << (8 * sizeof (bfd_vma) - rotation));
12252 }
12253
12254 /* Determine if the instruction is an ADD or a SUB.
12255 (For REL, this determines the sign of the addend.) */
12256 negative = identify_add_or_sub (insn);
12257 if (negative == 0)
12258 {
4eca0228 12259 _bfd_error_handler
695344c0 12260 /* xgettext:c-format */
90b6238f 12261 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
2dcf00ce
AM
12262 "are allowed for ALU group relocations"),
12263 input_bfd, input_section, (uint64_t) rel->r_offset);
99059e56
RM
12264 return bfd_reloc_overflow;
12265 }
12266
12267 signed_addend *= negative;
12268 }
4962c51a
MS
12269
12270 /* Compute the value (X) to go in the place. */
99059e56
RM
12271 if (r_type == R_ARM_ALU_PC_G0_NC
12272 || r_type == R_ARM_ALU_PC_G1_NC
12273 || r_type == R_ARM_ALU_PC_G0
12274 || r_type == R_ARM_ALU_PC_G1
12275 || r_type == R_ARM_ALU_PC_G2)
12276 /* PC relative. */
12277 signed_value = value - pc + signed_addend;
12278 else
12279 /* Section base relative. */
12280 signed_value = value - sb + signed_addend;
12281
12282 /* If the target symbol is a Thumb function, then set the
12283 Thumb bit in the address. */
35fc36a8 12284 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
12285 signed_value |= 1;
12286
99059e56
RM
12287 /* Calculate the value of the relevant G_n, in encoded
12288 constant-with-rotation format. */
b6518b38
NC
12289 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12290 group, &residual);
99059e56
RM
12291
12292 /* Check for overflow if required. */
12293 if ((r_type == R_ARM_ALU_PC_G0
12294 || r_type == R_ARM_ALU_PC_G1
12295 || r_type == R_ARM_ALU_PC_G2
12296 || r_type == R_ARM_ALU_SB_G0
12297 || r_type == R_ARM_ALU_SB_G1
12298 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12299 {
4eca0228 12300 _bfd_error_handler
695344c0 12301 /* xgettext:c-format */
90b6238f 12302 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12303 "splitting %#" PRIx64 " for group relocation %s"),
12304 input_bfd, input_section, (uint64_t) rel->r_offset,
12305 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12306 howto->name);
99059e56
RM
12307 return bfd_reloc_overflow;
12308 }
12309
12310 /* Mask out the value and the ADD/SUB part of the opcode; take care
12311 not to destroy the S bit. */
12312 insn &= 0xff1ff000;
12313
12314 /* Set the opcode according to whether the value to go in the
12315 place is negative. */
12316 if (signed_value < 0)
12317 insn |= 1 << 22;
12318 else
12319 insn |= 1 << 23;
12320
12321 /* Encode the offset. */
12322 insn |= g_n;
4962c51a
MS
12323
12324 bfd_put_32 (input_bfd, insn, hit_data);
12325 }
12326 return bfd_reloc_ok;
12327
12328 case R_ARM_LDR_PC_G0:
12329 case R_ARM_LDR_PC_G1:
12330 case R_ARM_LDR_PC_G2:
12331 case R_ARM_LDR_SB_G0:
12332 case R_ARM_LDR_SB_G1:
12333 case R_ARM_LDR_SB_G2:
12334 {
12335 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12336 bfd_vma pc = input_section->output_section->vma
4962c51a 12337 + input_section->output_offset + rel->r_offset;
31a91d61 12338 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12339 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12340 bfd_vma residual;
4962c51a 12341 bfd_signed_vma signed_value;
99059e56
RM
12342 int group = 0;
12343
12344 /* Determine which groups of bits to calculate. */
12345 switch (r_type)
12346 {
12347 case R_ARM_LDR_PC_G0:
12348 case R_ARM_LDR_SB_G0:
12349 group = 0;
12350 break;
12351
12352 case R_ARM_LDR_PC_G1:
12353 case R_ARM_LDR_SB_G1:
12354 group = 1;
12355 break;
12356
12357 case R_ARM_LDR_PC_G2:
12358 case R_ARM_LDR_SB_G2:
12359 group = 2;
12360 break;
12361
12362 default:
12363 abort ();
12364 }
12365
12366 /* If REL, extract the addend from the insn. If RELA, it will
12367 have already been fetched for us. */
4962c51a 12368 if (globals->use_rel)
99059e56
RM
12369 {
12370 int negative = (insn & (1 << 23)) ? 1 : -1;
12371 signed_addend = negative * (insn & 0xfff);
12372 }
4962c51a
MS
12373
12374 /* Compute the value (X) to go in the place. */
99059e56
RM
12375 if (r_type == R_ARM_LDR_PC_G0
12376 || r_type == R_ARM_LDR_PC_G1
12377 || r_type == R_ARM_LDR_PC_G2)
12378 /* PC relative. */
12379 signed_value = value - pc + signed_addend;
12380 else
12381 /* Section base relative. */
12382 signed_value = value - sb + signed_addend;
12383
12384 /* Calculate the value of the relevant G_{n-1} to obtain
12385 the residual at that stage. */
b6518b38
NC
12386 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12387 group - 1, &residual);
99059e56
RM
12388
12389 /* Check for overflow. */
12390 if (residual >= 0x1000)
12391 {
4eca0228 12392 _bfd_error_handler
695344c0 12393 /* xgettext:c-format */
90b6238f 12394 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12395 "splitting %#" PRIx64 " for group relocation %s"),
12396 input_bfd, input_section, (uint64_t) rel->r_offset,
12397 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12398 howto->name);
99059e56
RM
12399 return bfd_reloc_overflow;
12400 }
12401
12402 /* Mask out the value and U bit. */
12403 insn &= 0xff7ff000;
12404
12405 /* Set the U bit if the value to go in the place is non-negative. */
12406 if (signed_value >= 0)
12407 insn |= 1 << 23;
12408
12409 /* Encode the offset. */
12410 insn |= residual;
4962c51a
MS
12411
12412 bfd_put_32 (input_bfd, insn, hit_data);
12413 }
12414 return bfd_reloc_ok;
12415
12416 case R_ARM_LDRS_PC_G0:
12417 case R_ARM_LDRS_PC_G1:
12418 case R_ARM_LDRS_PC_G2:
12419 case R_ARM_LDRS_SB_G0:
12420 case R_ARM_LDRS_SB_G1:
12421 case R_ARM_LDRS_SB_G2:
12422 {
12423 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12424 bfd_vma pc = input_section->output_section->vma
4962c51a 12425 + input_section->output_offset + rel->r_offset;
31a91d61 12426 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12427 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12428 bfd_vma residual;
4962c51a 12429 bfd_signed_vma signed_value;
99059e56
RM
12430 int group = 0;
12431
12432 /* Determine which groups of bits to calculate. */
12433 switch (r_type)
12434 {
12435 case R_ARM_LDRS_PC_G0:
12436 case R_ARM_LDRS_SB_G0:
12437 group = 0;
12438 break;
12439
12440 case R_ARM_LDRS_PC_G1:
12441 case R_ARM_LDRS_SB_G1:
12442 group = 1;
12443 break;
12444
12445 case R_ARM_LDRS_PC_G2:
12446 case R_ARM_LDRS_SB_G2:
12447 group = 2;
12448 break;
12449
12450 default:
12451 abort ();
12452 }
12453
12454 /* If REL, extract the addend from the insn. If RELA, it will
12455 have already been fetched for us. */
4962c51a 12456 if (globals->use_rel)
99059e56
RM
12457 {
12458 int negative = (insn & (1 << 23)) ? 1 : -1;
12459 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12460 }
4962c51a
MS
12461
12462 /* Compute the value (X) to go in the place. */
99059e56
RM
12463 if (r_type == R_ARM_LDRS_PC_G0
12464 || r_type == R_ARM_LDRS_PC_G1
12465 || r_type == R_ARM_LDRS_PC_G2)
12466 /* PC relative. */
12467 signed_value = value - pc + signed_addend;
12468 else
12469 /* Section base relative. */
12470 signed_value = value - sb + signed_addend;
12471
12472 /* Calculate the value of the relevant G_{n-1} to obtain
12473 the residual at that stage. */
b6518b38
NC
12474 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12475 group - 1, &residual);
99059e56
RM
12476
12477 /* Check for overflow. */
12478 if (residual >= 0x100)
12479 {
4eca0228 12480 _bfd_error_handler
695344c0 12481 /* xgettext:c-format */
90b6238f 12482 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12483 "splitting %#" PRIx64 " for group relocation %s"),
12484 input_bfd, input_section, (uint64_t) rel->r_offset,
12485 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12486 howto->name);
99059e56
RM
12487 return bfd_reloc_overflow;
12488 }
12489
12490 /* Mask out the value and U bit. */
12491 insn &= 0xff7ff0f0;
12492
12493 /* Set the U bit if the value to go in the place is non-negative. */
12494 if (signed_value >= 0)
12495 insn |= 1 << 23;
12496
12497 /* Encode the offset. */
12498 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12499
12500 bfd_put_32 (input_bfd, insn, hit_data);
12501 }
12502 return bfd_reloc_ok;
12503
12504 case R_ARM_LDC_PC_G0:
12505 case R_ARM_LDC_PC_G1:
12506 case R_ARM_LDC_PC_G2:
12507 case R_ARM_LDC_SB_G0:
12508 case R_ARM_LDC_SB_G1:
12509 case R_ARM_LDC_SB_G2:
12510 {
12511 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12512 bfd_vma pc = input_section->output_section->vma
4962c51a 12513 + input_section->output_offset + rel->r_offset;
31a91d61 12514 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12515 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12516 bfd_vma residual;
4962c51a 12517 bfd_signed_vma signed_value;
99059e56
RM
12518 int group = 0;
12519
12520 /* Determine which groups of bits to calculate. */
12521 switch (r_type)
12522 {
12523 case R_ARM_LDC_PC_G0:
12524 case R_ARM_LDC_SB_G0:
12525 group = 0;
12526 break;
12527
12528 case R_ARM_LDC_PC_G1:
12529 case R_ARM_LDC_SB_G1:
12530 group = 1;
12531 break;
12532
12533 case R_ARM_LDC_PC_G2:
12534 case R_ARM_LDC_SB_G2:
12535 group = 2;
12536 break;
12537
12538 default:
12539 abort ();
12540 }
12541
12542 /* If REL, extract the addend from the insn. If RELA, it will
12543 have already been fetched for us. */
4962c51a 12544 if (globals->use_rel)
99059e56
RM
12545 {
12546 int negative = (insn & (1 << 23)) ? 1 : -1;
12547 signed_addend = negative * ((insn & 0xff) << 2);
12548 }
4962c51a
MS
12549
12550 /* Compute the value (X) to go in the place. */
99059e56
RM
12551 if (r_type == R_ARM_LDC_PC_G0
12552 || r_type == R_ARM_LDC_PC_G1
12553 || r_type == R_ARM_LDC_PC_G2)
12554 /* PC relative. */
12555 signed_value = value - pc + signed_addend;
12556 else
12557 /* Section base relative. */
12558 signed_value = value - sb + signed_addend;
12559
12560 /* Calculate the value of the relevant G_{n-1} to obtain
12561 the residual at that stage. */
b6518b38
NC
12562 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12563 group - 1, &residual);
99059e56
RM
12564
12565 /* Check for overflow. (The absolute value to go in the place must be
12566 divisible by four and, after having been divided by four, must
12567 fit in eight bits.) */
12568 if ((residual & 0x3) != 0 || residual >= 0x400)
12569 {
4eca0228 12570 _bfd_error_handler
695344c0 12571 /* xgettext:c-format */
90b6238f 12572 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12573 "splitting %#" PRIx64 " for group relocation %s"),
12574 input_bfd, input_section, (uint64_t) rel->r_offset,
12575 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12576 howto->name);
99059e56
RM
12577 return bfd_reloc_overflow;
12578 }
12579
12580 /* Mask out the value and U bit. */
12581 insn &= 0xff7fff00;
12582
12583 /* Set the U bit if the value to go in the place is non-negative. */
12584 if (signed_value >= 0)
12585 insn |= 1 << 23;
12586
12587 /* Encode the offset. */
12588 insn |= residual >> 2;
4962c51a
MS
12589
12590 bfd_put_32 (input_bfd, insn, hit_data);
12591 }
12592 return bfd_reloc_ok;
12593
72d98d16
MG
12594 case R_ARM_THM_ALU_ABS_G0_NC:
12595 case R_ARM_THM_ALU_ABS_G1_NC:
12596 case R_ARM_THM_ALU_ABS_G2_NC:
12597 case R_ARM_THM_ALU_ABS_G3_NC:
12598 {
12599 const int shift_array[4] = {0, 8, 16, 24};
12600 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12601 bfd_vma addr = value;
12602 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12603
12604 /* Compute address. */
12605 if (globals->use_rel)
12606 signed_addend = insn & 0xff;
12607 addr += signed_addend;
12608 if (branch_type == ST_BRANCH_TO_THUMB)
12609 addr |= 1;
12610 /* Clean imm8 insn. */
12611 insn &= 0xff00;
12612 /* And update with correct part of address. */
12613 insn |= (addr >> shift) & 0xff;
12614 /* Update insn. */
12615 bfd_put_16 (input_bfd, insn, hit_data);
12616 }
12617
0a1b45a2 12618 *unresolved_reloc_p = false;
72d98d16
MG
12619 return bfd_reloc_ok;
12620
e8b09b87
CL
12621 case R_ARM_GOTOFFFUNCDESC:
12622 {
4b24dd1a 12623 if (h == NULL)
e8b09b87 12624 {
cc850f74 12625 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87 12626 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12627
12628 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12629 {
12630 * error_message = _("local symbol index too big");
12631 return bfd_reloc_dangerous;
12632 }
12633
e8b09b87
CL
12634 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12635 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12636 bfd_vma seg = -1;
12637
cc850f74
NC
12638 if (bfd_link_pic (info) && dynindx == 0)
12639 {
12640 * error_message = _("no dynamic index information available");
12641 return bfd_reloc_dangerous;
12642 }
e8b09b87
CL
12643
12644 /* Resolve relocation. */
cc850f74 12645 bfd_put_32 (output_bfd, (offset + sgot->output_offset)
e8b09b87
CL
12646 , contents + rel->r_offset);
12647 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12648 not done yet. */
cc850f74
NC
12649 arm_elf_fill_funcdesc (output_bfd, info,
12650 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12651 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12652 }
12653 else
12654 {
12655 int dynindx;
12656 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12657 bfd_vma addr;
12658 bfd_vma seg = -1;
12659
12660 /* For static binaries, sym_sec can be null. */
12661 if (sym_sec)
12662 {
12663 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12664 addr = dynreloc_value - sym_sec->output_section->vma;
12665 }
12666 else
12667 {
12668 dynindx = 0;
12669 addr = 0;
12670 }
12671
cc850f74
NC
12672 if (bfd_link_pic (info) && dynindx == 0)
12673 {
12674 * error_message = _("no dynamic index information available");
12675 return bfd_reloc_dangerous;
12676 }
e8b09b87
CL
12677
12678 /* This case cannot occur since funcdesc is allocated by
12679 the dynamic loader so we cannot resolve the relocation. */
12680 if (h->dynindx != -1)
cc850f74
NC
12681 {
12682 * error_message = _("invalid dynamic index");
12683 return bfd_reloc_dangerous;
12684 }
e8b09b87
CL
12685
12686 /* Resolve relocation. */
cc850f74
NC
12687 bfd_put_32 (output_bfd, (offset + sgot->output_offset),
12688 contents + rel->r_offset);
e8b09b87 12689 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12690 arm_elf_fill_funcdesc (output_bfd, info,
12691 &eh->fdpic_cnts.funcdesc_offset,
12692 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12693 }
12694 }
0a1b45a2 12695 *unresolved_reloc_p = false;
e8b09b87
CL
12696 return bfd_reloc_ok;
12697
12698 case R_ARM_GOTFUNCDESC:
12699 {
4b24dd1a 12700 if (h != NULL)
e8b09b87
CL
12701 {
12702 Elf_Internal_Rela outrel;
12703
12704 /* Resolve relocation. */
cc850f74
NC
12705 bfd_put_32 (output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12706 + sgot->output_offset),
12707 contents + rel->r_offset);
e8b09b87 12708 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
cc850f74 12709 if (h->dynindx == -1)
e8b09b87
CL
12710 {
12711 int dynindx;
12712 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12713 bfd_vma addr;
12714 bfd_vma seg = -1;
12715
12716 /* For static binaries sym_sec can be null. */
12717 if (sym_sec)
12718 {
12719 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12720 addr = dynreloc_value - sym_sec->output_section->vma;
12721 }
12722 else
12723 {
12724 dynindx = 0;
12725 addr = 0;
12726 }
12727
12728 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12729 arm_elf_fill_funcdesc (output_bfd, info,
12730 &eh->fdpic_cnts.funcdesc_offset,
12731 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12732 }
12733
12734 /* Add a dynamic relocation on GOT entry if not already done. */
12735 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12736 {
12737 if (h->dynindx == -1)
12738 {
12739 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12740 if (h->root.type == bfd_link_hash_undefweak)
cc850f74
NC
12741 bfd_put_32 (output_bfd, 0, sgot->contents
12742 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87 12743 else
cc850f74
NC
12744 bfd_put_32 (output_bfd, sgot->output_section->vma
12745 + sgot->output_offset
12746 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12747 sgot->contents
12748 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87
CL
12749 }
12750 else
12751 {
12752 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12753 }
12754 outrel.r_offset = sgot->output_section->vma
12755 + sgot->output_offset
12756 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12757 outrel.r_addend = 0;
cc850f74 12758 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87 12759 if (h->root.type == bfd_link_hash_undefweak)
cc850f74 12760 arm_elf_add_rofixup (output_bfd, globals->srofixup, -1);
e8b09b87 12761 else
cc850f74
NC
12762 arm_elf_add_rofixup (output_bfd, globals->srofixup,
12763 outrel.r_offset);
e8b09b87
CL
12764 else
12765 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12766 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12767 }
12768 }
12769 else
12770 {
12771 /* Such relocation on static function should not have been
12772 emitted by the compiler. */
cc850f74 12773 return bfd_reloc_notsupported;
e8b09b87
CL
12774 }
12775 }
0a1b45a2 12776 *unresolved_reloc_p = false;
e8b09b87
CL
12777 return bfd_reloc_ok;
12778
12779 case R_ARM_FUNCDESC:
12780 {
4b24dd1a 12781 if (h == NULL)
e8b09b87 12782 {
cc850f74 12783 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87
CL
12784 Elf_Internal_Rela outrel;
12785 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12786
12787 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12788 {
12789 * error_message = _("local symbol index too big");
12790 return bfd_reloc_dangerous;
12791 }
12792
e8b09b87
CL
12793 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12794 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12795 bfd_vma seg = -1;
12796
cc850f74
NC
12797 if (bfd_link_pic (info) && dynindx == 0)
12798 {
12799 * error_message = _("dynamic index information not available");
12800 return bfd_reloc_dangerous;
12801 }
e8b09b87
CL
12802
12803 /* Replace static FUNCDESC relocation with a
12804 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12805 executable. */
12806 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12807 outrel.r_offset = input_section->output_section->vma
12808 + input_section->output_offset + rel->r_offset;
12809 outrel.r_addend = 0;
cc850f74 12810 if (bfd_link_pic (info))
e8b09b87
CL
12811 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12812 else
cc850f74 12813 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12814
12815 bfd_put_32 (input_bfd, sgot->output_section->vma
12816 + sgot->output_offset + offset, hit_data);
12817
12818 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12819 arm_elf_fill_funcdesc (output_bfd, info,
12820 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12821 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12822 }
12823 else
12824 {
12825 if (h->dynindx == -1)
12826 {
12827 int dynindx;
12828 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12829 bfd_vma addr;
12830 bfd_vma seg = -1;
12831 Elf_Internal_Rela outrel;
12832
12833 /* For static binaries sym_sec can be null. */
12834 if (sym_sec)
12835 {
12836 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12837 addr = dynreloc_value - sym_sec->output_section->vma;
12838 }
12839 else
12840 {
12841 dynindx = 0;
12842 addr = 0;
12843 }
12844
cc850f74
NC
12845 if (bfd_link_pic (info) && dynindx == 0)
12846 abort ();
e8b09b87
CL
12847
12848 /* Replace static FUNCDESC relocation with a
12849 R_ARM_RELATIVE dynamic relocation. */
12850 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12851 outrel.r_offset = input_section->output_section->vma
12852 + input_section->output_offset + rel->r_offset;
12853 outrel.r_addend = 0;
cc850f74 12854 if (bfd_link_pic (info))
e8b09b87
CL
12855 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12856 else
cc850f74 12857 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12858
12859 bfd_put_32 (input_bfd, sgot->output_section->vma
12860 + sgot->output_offset + offset, hit_data);
12861
12862 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12863 arm_elf_fill_funcdesc (output_bfd, info,
12864 &eh->fdpic_cnts.funcdesc_offset,
12865 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12866 }
12867 else
12868 {
12869 Elf_Internal_Rela outrel;
12870
12871 /* Add a dynamic relocation. */
12872 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12873 outrel.r_offset = input_section->output_section->vma
12874 + input_section->output_offset + rel->r_offset;
12875 outrel.r_addend = 0;
12876 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12877 }
12878 }
12879 }
0a1b45a2 12880 *unresolved_reloc_p = false;
e8b09b87
CL
12881 return bfd_reloc_ok;
12882
e5d6e09e
AV
12883 case R_ARM_THM_BF16:
12884 {
12885 bfd_vma relocation;
12886 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12887 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12888
12889 if (globals->use_rel)
12890 {
12891 bfd_vma immA = (upper_insn & 0x001f);
12892 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12893 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12894 addend = (immA << 12);
12895 addend |= (immB << 2);
12896 addend |= (immC << 1);
12897 addend |= 1;
12898 /* Sign extend. */
e6f65e75 12899 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
e5d6e09e
AV
12900 }
12901
e6f65e75 12902 relocation = value + signed_addend;
e5d6e09e
AV
12903 relocation -= (input_section->output_section->vma
12904 + input_section->output_offset
12905 + rel->r_offset);
12906
12907 /* Put RELOCATION back into the insn. */
12908 {
12909 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12910 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12911 bfd_vma immC = (relocation & 0x00000002) >> 1;
12912
12913 upper_insn = (upper_insn & 0xffe0) | immA;
12914 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12915 }
12916
12917 /* Put the relocated value back in the object file: */
12918 bfd_put_16 (input_bfd, upper_insn, hit_data);
12919 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12920
12921 return bfd_reloc_ok;
12922 }
12923
1889da70
AV
12924 case R_ARM_THM_BF12:
12925 {
12926 bfd_vma relocation;
12927 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12928 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12929
12930 if (globals->use_rel)
12931 {
12932 bfd_vma immA = (upper_insn & 0x0001);
12933 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12934 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12935 addend = (immA << 12);
12936 addend |= (immB << 2);
12937 addend |= (immC << 1);
12938 addend |= 1;
12939 /* Sign extend. */
12940 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
e6f65e75 12941 signed_addend = addend;
1889da70
AV
12942 }
12943
e6f65e75 12944 relocation = value + signed_addend;
1889da70
AV
12945 relocation -= (input_section->output_section->vma
12946 + input_section->output_offset
12947 + rel->r_offset);
12948
12949 /* Put RELOCATION back into the insn. */
12950 {
12951 bfd_vma immA = (relocation & 0x00001000) >> 12;
12952 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12953 bfd_vma immC = (relocation & 0x00000002) >> 1;
12954
12955 upper_insn = (upper_insn & 0xfffe) | immA;
12956 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12957 }
12958
12959 /* Put the relocated value back in the object file: */
12960 bfd_put_16 (input_bfd, upper_insn, hit_data);
12961 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12962
12963 return bfd_reloc_ok;
12964 }
12965
1caf72a5
AV
12966 case R_ARM_THM_BF18:
12967 {
12968 bfd_vma relocation;
12969 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12970 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12971
12972 if (globals->use_rel)
12973 {
12974 bfd_vma immA = (upper_insn & 0x007f);
12975 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12976 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12977 addend = (immA << 12);
12978 addend |= (immB << 2);
12979 addend |= (immC << 1);
12980 addend |= 1;
12981 /* Sign extend. */
12982 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
e6f65e75 12983 signed_addend = addend;
1caf72a5
AV
12984 }
12985
e6f65e75 12986 relocation = value + signed_addend;
1caf72a5
AV
12987 relocation -= (input_section->output_section->vma
12988 + input_section->output_offset
12989 + rel->r_offset);
12990
12991 /* Put RELOCATION back into the insn. */
12992 {
12993 bfd_vma immA = (relocation & 0x0007f000) >> 12;
12994 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12995 bfd_vma immC = (relocation & 0x00000002) >> 1;
12996
12997 upper_insn = (upper_insn & 0xff80) | immA;
12998 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12999 }
13000
13001 /* Put the relocated value back in the object file: */
13002 bfd_put_16 (input_bfd, upper_insn, hit_data);
13003 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13004
13005 return bfd_reloc_ok;
13006 }
13007
252b5132
RH
13008 default:
13009 return bfd_reloc_notsupported;
13010 }
13011}
13012
98c1d4aa
NC
13013/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13014static void
07d6d2b8
AM
13015arm_add_to_rel (bfd * abfd,
13016 bfd_byte * address,
57e8b36a 13017 reloc_howto_type * howto,
07d6d2b8 13018 bfd_signed_vma increment)
98c1d4aa 13019{
98c1d4aa
NC
13020 bfd_signed_vma addend;
13021
bd97cb95
DJ
13022 if (howto->type == R_ARM_THM_CALL
13023 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 13024 {
9a5aca8c
AM
13025 int upper_insn, lower_insn;
13026 int upper, lower;
98c1d4aa 13027
9a5aca8c
AM
13028 upper_insn = bfd_get_16 (abfd, address);
13029 lower_insn = bfd_get_16 (abfd, address + 2);
13030 upper = upper_insn & 0x7ff;
13031 lower = lower_insn & 0x7ff;
13032
13033 addend = (upper << 12) | (lower << 1);
ddda4409 13034 addend += increment;
9a5aca8c 13035 addend >>= 1;
98c1d4aa 13036
9a5aca8c
AM
13037 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13038 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13039
dc810e39
AM
13040 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13041 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
13042 }
13043 else
13044 {
07d6d2b8 13045 bfd_vma contents;
9a5aca8c
AM
13046
13047 contents = bfd_get_32 (abfd, address);
13048
13049 /* Get the (signed) value from the instruction. */
13050 addend = contents & howto->src_mask;
13051 if (addend & ((howto->src_mask + 1) >> 1))
13052 {
13053 bfd_signed_vma mask;
13054
13055 mask = -1;
13056 mask &= ~ howto->src_mask;
13057 addend |= mask;
13058 }
13059
13060 /* Add in the increment, (which is a byte value). */
13061 switch (howto->type)
13062 {
13063 default:
13064 addend += increment;
13065 break;
13066
13067 case R_ARM_PC24:
c6596c5e 13068 case R_ARM_PLT32:
5b5bb741
PB
13069 case R_ARM_CALL:
13070 case R_ARM_JUMP24:
57698478 13071 addend *= bfd_get_reloc_size (howto);
dc810e39 13072 addend += increment;
9a5aca8c
AM
13073
13074 /* Should we check for overflow here ? */
13075
13076 /* Drop any undesired bits. */
13077 addend >>= howto->rightshift;
13078 break;
13079 }
13080
13081 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13082
13083 bfd_put_32 (abfd, contents, address);
ddda4409 13084 }
98c1d4aa 13085}
252b5132 13086
ba93b8ac
DJ
13087#define IS_ARM_TLS_RELOC(R_TYPE) \
13088 ((R_TYPE) == R_ARM_TLS_GD32 \
5c5a4843 13089 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
ba93b8ac
DJ
13090 || (R_TYPE) == R_ARM_TLS_LDO32 \
13091 || (R_TYPE) == R_ARM_TLS_LDM32 \
5c5a4843 13092 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
ba93b8ac
DJ
13093 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13094 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13095 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13096 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b 13097 || (R_TYPE) == R_ARM_TLS_IE32 \
5c5a4843 13098 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
0855e32b
NS
13099 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13100
13101/* Specific set of relocations for the gnu tls dialect. */
13102#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13103 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13104 || (R_TYPE) == R_ARM_TLS_CALL \
13105 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13106 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13107 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 13108
252b5132 13109/* Relocate an ARM ELF section. */
906e58ca 13110
0f684201 13111static int
07d6d2b8 13112elf32_arm_relocate_section (bfd * output_bfd,
57e8b36a 13113 struct bfd_link_info * info,
07d6d2b8
AM
13114 bfd * input_bfd,
13115 asection * input_section,
13116 bfd_byte * contents,
13117 Elf_Internal_Rela * relocs,
13118 Elf_Internal_Sym * local_syms,
13119 asection ** local_sections)
252b5132 13120{
b34976b6
AM
13121 Elf_Internal_Shdr *symtab_hdr;
13122 struct elf_link_hash_entry **sym_hashes;
13123 Elf_Internal_Rela *rel;
13124 Elf_Internal_Rela *relend;
13125 const char *name;
b32d3aa2 13126 struct elf32_arm_link_hash_table * globals;
252b5132 13127
4e7fd91e 13128 globals = elf32_arm_hash_table (info);
4dfe6ac6 13129 if (globals == NULL)
0a1b45a2 13130 return false;
b491616a 13131
0ffa91dd 13132 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
13133 sym_hashes = elf_sym_hashes (input_bfd);
13134
13135 rel = relocs;
13136 relend = relocs + input_section->reloc_count;
13137 for (; rel < relend; rel++)
13138 {
07d6d2b8
AM
13139 int r_type;
13140 reloc_howto_type * howto;
13141 unsigned long r_symndx;
13142 Elf_Internal_Sym * sym;
13143 asection * sec;
252b5132 13144 struct elf_link_hash_entry * h;
07d6d2b8
AM
13145 bfd_vma relocation;
13146 bfd_reloc_status_type r;
13147 arelent bfd_reloc;
13148 char sym_type;
0a1b45a2 13149 bool unresolved_reloc = false;
f2a9dd69 13150 char *error_message = NULL;
f21f3fe0 13151
252b5132 13152 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 13153 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 13154 r_type = arm_real_reloc_type (globals, r_type);
252b5132 13155
ba96a88f 13156 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
13157 || r_type == R_ARM_GNU_VTINHERIT)
13158 continue;
252b5132 13159
47aeb64c
NC
13160 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13161
13162 if (howto == NULL)
13163 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
252b5132 13164
252b5132
RH
13165 h = NULL;
13166 sym = NULL;
13167 sec = NULL;
9b485d32 13168
252b5132
RH
13169 if (r_symndx < symtab_hdr->sh_info)
13170 {
13171 sym = local_syms + r_symndx;
ba93b8ac 13172 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 13173 sec = local_sections[r_symndx];
ffcb4889
NS
13174
13175 /* An object file might have a reference to a local
13176 undefined symbol. This is a daft object file, but we
13177 should at least do something about it. V4BX & NONE
13178 relocations do not use the symbol and are explicitly
77b4f08f
TS
13179 allowed to use the undefined symbol, so allow those.
13180 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
13181 if (r_type != R_ARM_V4BX
13182 && r_type != R_ARM_NONE
77b4f08f 13183 && r_symndx != STN_UNDEF
ffcb4889
NS
13184 && bfd_is_und_section (sec)
13185 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
13186 (*info->callbacks->undefined_symbol)
13187 (info, bfd_elf_string_from_elf_section
13188 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13189 input_bfd, input_section,
0a1b45a2 13190 rel->r_offset, true);
b38cadfb 13191
4e7fd91e 13192 if (globals->use_rel)
f8df10f4 13193 {
4e7fd91e
PB
13194 relocation = (sec->output_section->vma
13195 + sec->output_offset
13196 + sym->st_value);
0e1862bb 13197 if (!bfd_link_relocatable (info)
ab96bf03
AM
13198 && (sec->flags & SEC_MERGE)
13199 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 13200 {
4e7fd91e
PB
13201 asection *msec;
13202 bfd_vma addend, value;
13203
39623e12 13204 switch (r_type)
4e7fd91e 13205 {
39623e12
PB
13206 case R_ARM_MOVW_ABS_NC:
13207 case R_ARM_MOVT_ABS:
13208 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13209 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13210 addend = (addend ^ 0x8000) - 0x8000;
13211 break;
f8df10f4 13212
39623e12
PB
13213 case R_ARM_THM_MOVW_ABS_NC:
13214 case R_ARM_THM_MOVT_ABS:
13215 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13216 << 16;
13217 value |= bfd_get_16 (input_bfd,
13218 contents + rel->r_offset + 2);
13219 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13220 | ((value & 0x04000000) >> 15);
13221 addend = (addend ^ 0x8000) - 0x8000;
13222 break;
f8df10f4 13223
39623e12
PB
13224 default:
13225 if (howto->rightshift
13226 || (howto->src_mask & (howto->src_mask + 1)))
13227 {
4eca0228 13228 _bfd_error_handler
695344c0 13229 /* xgettext:c-format */
2dcf00ce
AM
13230 (_("%pB(%pA+%#" PRIx64 "): "
13231 "%s relocation against SEC_MERGE section"),
39623e12 13232 input_bfd, input_section,
2dcf00ce 13233 (uint64_t) rel->r_offset, howto->name);
0a1b45a2 13234 return false;
39623e12
PB
13235 }
13236
13237 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13238
13239 /* Get the (signed) value from the instruction. */
13240 addend = value & howto->src_mask;
13241 if (addend & ((howto->src_mask + 1) >> 1))
13242 {
13243 bfd_signed_vma mask;
13244
13245 mask = -1;
13246 mask &= ~ howto->src_mask;
13247 addend |= mask;
13248 }
13249 break;
4e7fd91e 13250 }
39623e12 13251
4e7fd91e
PB
13252 msec = sec;
13253 addend =
13254 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13255 - relocation;
13256 addend += msec->output_section->vma + msec->output_offset;
39623e12 13257
cc643b88 13258 /* Cases here must match those in the preceding
39623e12
PB
13259 switch statement. */
13260 switch (r_type)
13261 {
13262 case R_ARM_MOVW_ABS_NC:
13263 case R_ARM_MOVT_ABS:
13264 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13265 | (addend & 0xfff);
13266 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13267 break;
13268
13269 case R_ARM_THM_MOVW_ABS_NC:
13270 case R_ARM_THM_MOVT_ABS:
13271 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13272 | (addend & 0xff) | ((addend & 0x0800) << 15);
13273 bfd_put_16 (input_bfd, value >> 16,
13274 contents + rel->r_offset);
13275 bfd_put_16 (input_bfd, value,
13276 contents + rel->r_offset + 2);
13277 break;
13278
13279 default:
13280 value = (value & ~ howto->dst_mask)
13281 | (addend & howto->dst_mask);
13282 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13283 break;
13284 }
f8df10f4 13285 }
f8df10f4 13286 }
4e7fd91e
PB
13287 else
13288 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
13289 }
13290 else
13291 {
0a1b45a2 13292 bool warned, ignored;
560e09e9 13293
b2a8e766
AM
13294 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13295 r_symndx, symtab_hdr, sym_hashes,
13296 h, sec, relocation,
62d887d4 13297 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
13298
13299 sym_type = h->type;
252b5132
RH
13300 }
13301
dbaa2011 13302 if (sec != NULL && discarded_section (sec))
e4067dbb 13303 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 13304 rel, 1, relend, howto, 0, contents);
ab96bf03 13305
0e1862bb 13306 if (bfd_link_relocatable (info))
ab96bf03
AM
13307 {
13308 /* This is a relocatable link. We don't have to change
13309 anything, unless the reloc is against a section symbol,
13310 in which case we have to adjust according to where the
13311 section symbol winds up in the output section. */
13312 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13313 {
13314 if (globals->use_rel)
13315 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13316 howto, (bfd_signed_vma) sec->output_offset);
13317 else
13318 rel->r_addend += sec->output_offset;
13319 }
13320 continue;
13321 }
13322
252b5132
RH
13323 if (h != NULL)
13324 name = h->root.root.string;
13325 else
13326 {
13327 name = (bfd_elf_string_from_elf_section
13328 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13329 if (name == NULL || *name == '\0')
fd361982 13330 name = bfd_section_name (sec);
252b5132 13331 }
f21f3fe0 13332
cf35638d 13333 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
13334 && r_type != R_ARM_NONE
13335 && (h == NULL
13336 || h->root.type == bfd_link_hash_defined
13337 || h->root.type == bfd_link_hash_defweak)
13338 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13339 {
4eca0228 13340 _bfd_error_handler
ba93b8ac 13341 ((sym_type == STT_TLS
695344c0 13342 /* xgettext:c-format */
2dcf00ce 13343 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 13344 /* xgettext:c-format */
2dcf00ce 13345 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
ba93b8ac
DJ
13346 input_bfd,
13347 input_section,
2dcf00ce 13348 (uint64_t) rel->r_offset,
ba93b8ac
DJ
13349 howto->name,
13350 name);
13351 }
13352
0855e32b 13353 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
13354 done, i.e., the relaxation produced the final output we want,
13355 and we won't let anybody mess with it. Also, we have to do
13356 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 13357 both in relaxed and non-relaxed cases. */
39d911fc
TP
13358 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13359 || (IS_ARM_TLS_GNU_RELOC (r_type)
13360 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13361 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13362 & GOT_TLS_GDESC)))
13363 {
13364 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13365 contents, rel, h == NULL);
13366 /* This may have been marked unresolved because it came from
13367 a shared library. But we've just dealt with that. */
13368 unresolved_reloc = 0;
13369 }
13370 else
13371 r = bfd_reloc_continue;
b38cadfb 13372
39d911fc
TP
13373 if (r == bfd_reloc_continue)
13374 {
13375 unsigned char branch_type =
13376 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13377 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13378
13379 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13380 input_section, contents, rel,
13381 relocation, info, sec, name,
13382 sym_type, branch_type, h,
13383 &unresolved_reloc,
13384 &error_message);
13385 }
0945cdfd
DJ
13386
13387 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13388 because such sections are not SEC_ALLOC and thus ld.so will
13389 not process them. */
13390 if (unresolved_reloc
99059e56
RM
13391 && !((input_section->flags & SEC_DEBUGGING) != 0
13392 && h->def_dynamic)
1d5316ab
AM
13393 && _bfd_elf_section_offset (output_bfd, info, input_section,
13394 rel->r_offset) != (bfd_vma) -1)
0945cdfd 13395 {
4eca0228 13396 _bfd_error_handler
695344c0 13397 /* xgettext:c-format */
2dcf00ce
AM
13398 (_("%pB(%pA+%#" PRIx64 "): "
13399 "unresolvable %s relocation against symbol `%s'"),
843fe662
L
13400 input_bfd,
13401 input_section,
2dcf00ce 13402 (uint64_t) rel->r_offset,
843fe662
L
13403 howto->name,
13404 h->root.root.string);
0a1b45a2 13405 return false;
0945cdfd 13406 }
252b5132
RH
13407
13408 if (r != bfd_reloc_ok)
13409 {
252b5132
RH
13410 switch (r)
13411 {
13412 case bfd_reloc_overflow:
cf919dfd
PB
13413 /* If the overflowing reloc was to an undefined symbol,
13414 we have already printed one error message and there
13415 is no point complaining again. */
1a72702b
AM
13416 if (!h || h->root.type != bfd_link_hash_undefined)
13417 (*info->callbacks->reloc_overflow)
13418 (info, (h ? &h->root : NULL), name, howto->name,
13419 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
13420 break;
13421
13422 case bfd_reloc_undefined:
1a72702b 13423 (*info->callbacks->undefined_symbol)
0a1b45a2 13424 (info, name, input_bfd, input_section, rel->r_offset, true);
252b5132
RH
13425 break;
13426
13427 case bfd_reloc_outofrange:
f2a9dd69 13428 error_message = _("out of range");
252b5132
RH
13429 goto common_error;
13430
13431 case bfd_reloc_notsupported:
f2a9dd69 13432 error_message = _("unsupported relocation");
252b5132
RH
13433 goto common_error;
13434
13435 case bfd_reloc_dangerous:
f2a9dd69 13436 /* error_message should already be set. */
252b5132
RH
13437 goto common_error;
13438
13439 default:
f2a9dd69 13440 error_message = _("unknown error");
8029a119 13441 /* Fall through. */
252b5132
RH
13442
13443 common_error:
f2a9dd69 13444 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13445 (*info->callbacks->reloc_dangerous)
13446 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
13447 break;
13448 }
13449 }
13450 }
13451
0a1b45a2 13452 return true;
252b5132
RH
13453}
13454
91d6fa6a 13455/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 13456 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 13457 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
13458 maintaining that condition). */
13459
13460static void
13461add_unwind_table_edit (arm_unwind_table_edit **head,
13462 arm_unwind_table_edit **tail,
13463 arm_unwind_edit_type type,
13464 asection *linked_section,
91d6fa6a 13465 unsigned int tindex)
2468f9c9 13466{
21d799b5
NC
13467 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13468 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 13469
2468f9c9
PB
13470 new_edit->type = type;
13471 new_edit->linked_section = linked_section;
91d6fa6a 13472 new_edit->index = tindex;
b38cadfb 13473
91d6fa6a 13474 if (tindex > 0)
2468f9c9
PB
13475 {
13476 new_edit->next = NULL;
13477
13478 if (*tail)
13479 (*tail)->next = new_edit;
13480
13481 (*tail) = new_edit;
13482
13483 if (!*head)
13484 (*head) = new_edit;
13485 }
13486 else
13487 {
13488 new_edit->next = *head;
13489
13490 if (!*tail)
13491 *tail = new_edit;
13492
13493 *head = new_edit;
13494 }
13495}
13496
13497static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13498
13499/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
cc850f74 13500
2468f9c9 13501static void
cc850f74 13502adjust_exidx_size (asection *exidx_sec, int adjust)
2468f9c9
PB
13503{
13504 asection *out_sec;
13505
13506 if (!exidx_sec->rawsize)
13507 exidx_sec->rawsize = exidx_sec->size;
13508
fd361982 13509 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
2468f9c9
PB
13510 out_sec = exidx_sec->output_section;
13511 /* Adjust size of output section. */
cc850f74 13512 bfd_set_section_size (out_sec, out_sec->size + adjust);
2468f9c9
PB
13513}
13514
13515/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
cc850f74 13516
2468f9c9 13517static void
cc850f74 13518insert_cantunwind_after (asection *text_sec, asection *exidx_sec)
2468f9c9
PB
13519{
13520 struct _arm_elf_section_data *exidx_arm_data;
13521
13522 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
cc850f74
NC
13523 add_unwind_table_edit
13524 (&exidx_arm_data->u.exidx.unwind_edit_list,
13525 &exidx_arm_data->u.exidx.unwind_edit_tail,
13526 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
2468f9c9 13527
491d01d3
YU
13528 exidx_arm_data->additional_reloc_count++;
13529
cc850f74 13530 adjust_exidx_size (exidx_sec, 8);
2468f9c9
PB
13531}
13532
13533/* Scan .ARM.exidx tables, and create a list describing edits which should be
13534 made to those tables, such that:
b38cadfb 13535
2468f9c9
PB
13536 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13537 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 13538 codes which have been inlined into the index).
2468f9c9 13539
85fdf906
AH
13540 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13541
2468f9c9 13542 The edits are applied when the tables are written
b38cadfb 13543 (in elf32_arm_write_section). */
2468f9c9 13544
0a1b45a2 13545bool
2468f9c9
PB
13546elf32_arm_fix_exidx_coverage (asection **text_section_order,
13547 unsigned int num_text_sections,
85fdf906 13548 struct bfd_link_info *info,
0a1b45a2 13549 bool merge_exidx_entries)
2468f9c9
PB
13550{
13551 bfd *inp;
13552 unsigned int last_second_word = 0, i;
13553 asection *last_exidx_sec = NULL;
13554 asection *last_text_sec = NULL;
13555 int last_unwind_type = -1;
13556
13557 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13558 text sections. */
c72f2fb2 13559 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
13560 {
13561 asection *sec;
b38cadfb 13562
2468f9c9 13563 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 13564 {
2468f9c9
PB
13565 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13566 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 13567
dec9d5df 13568 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 13569 continue;
b38cadfb 13570
2468f9c9
PB
13571 if (elf_sec->linked_to)
13572 {
13573 Elf_Internal_Shdr *linked_hdr
99059e56 13574 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 13575 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 13576 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
13577
13578 if (linked_sec_arm_data == NULL)
99059e56 13579 continue;
2468f9c9
PB
13580
13581 /* Link this .ARM.exidx section back from the text section it
99059e56 13582 describes. */
2468f9c9
PB
13583 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13584 }
13585 }
13586 }
13587
13588 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13589 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 13590 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
13591
13592 for (i = 0; i < num_text_sections; i++)
13593 {
13594 asection *sec = text_section_order[i];
13595 asection *exidx_sec;
13596 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13597 struct _arm_elf_section_data *exidx_arm_data;
13598 bfd_byte *contents = NULL;
13599 int deleted_exidx_bytes = 0;
13600 bfd_vma j;
13601 arm_unwind_table_edit *unwind_edit_head = NULL;
13602 arm_unwind_table_edit *unwind_edit_tail = NULL;
13603 Elf_Internal_Shdr *hdr;
13604 bfd *ibfd;
13605
13606 if (arm_data == NULL)
99059e56 13607 continue;
2468f9c9
PB
13608
13609 exidx_sec = arm_data->u.text.arm_exidx_sec;
13610 if (exidx_sec == NULL)
13611 {
13612 /* Section has no unwind data. */
13613 if (last_unwind_type == 0 || !last_exidx_sec)
13614 continue;
13615
13616 /* Ignore zero sized sections. */
13617 if (sec->size == 0)
13618 continue;
13619
cc850f74 13620 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9
PB
13621 last_unwind_type = 0;
13622 continue;
13623 }
13624
22a8f80e
PB
13625 /* Skip /DISCARD/ sections. */
13626 if (bfd_is_abs_section (exidx_sec->output_section))
13627 continue;
13628
2468f9c9
PB
13629 hdr = &elf_section_data (exidx_sec)->this_hdr;
13630 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 13631 continue;
b38cadfb 13632
2468f9c9
PB
13633 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13634 if (exidx_arm_data == NULL)
99059e56 13635 continue;
b38cadfb 13636
2468f9c9 13637 ibfd = exidx_sec->owner;
b38cadfb 13638
2468f9c9
PB
13639 if (hdr->contents != NULL)
13640 contents = hdr->contents;
13641 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13642 /* An error? */
13643 continue;
13644
ac06903d
YU
13645 if (last_unwind_type > 0)
13646 {
13647 unsigned int first_word = bfd_get_32 (ibfd, contents);
13648 /* Add cantunwind if first unwind item does not match section
13649 start. */
13650 if (first_word != sec->vma)
13651 {
13652 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13653 last_unwind_type = 0;
13654 }
13655 }
13656
2468f9c9
PB
13657 for (j = 0; j < hdr->sh_size; j += 8)
13658 {
13659 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13660 int unwind_type;
13661 int elide = 0;
13662
13663 /* An EXIDX_CANTUNWIND entry. */
13664 if (second_word == 1)
13665 {
13666 if (last_unwind_type == 0)
13667 elide = 1;
13668 unwind_type = 0;
13669 }
13670 /* Inlined unwinding data. Merge if equal to previous. */
13671 else if ((second_word & 0x80000000) != 0)
13672 {
85fdf906
AH
13673 if (merge_exidx_entries
13674 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
13675 elide = 1;
13676 unwind_type = 1;
13677 last_second_word = second_word;
13678 }
13679 /* Normal table entry. In theory we could merge these too,
13680 but duplicate entries are likely to be much less common. */
13681 else
13682 unwind_type = 2;
13683
491d01d3 13684 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
13685 {
13686 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13687 DELETE_EXIDX_ENTRY, NULL, j / 8);
13688
13689 deleted_exidx_bytes += 8;
13690 }
13691
13692 last_unwind_type = unwind_type;
13693 }
13694
13695 /* Free contents if we allocated it ourselves. */
13696 if (contents != hdr->contents)
99059e56 13697 free (contents);
2468f9c9
PB
13698
13699 /* Record edits to be applied later (in elf32_arm_write_section). */
13700 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13701 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 13702
2468f9c9 13703 if (deleted_exidx_bytes > 0)
cc850f74 13704 adjust_exidx_size (exidx_sec, - deleted_exidx_bytes);
2468f9c9
PB
13705
13706 last_exidx_sec = exidx_sec;
13707 last_text_sec = sec;
13708 }
13709
13710 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
13711 if (!bfd_link_relocatable (info) && last_exidx_sec
13712 && last_unwind_type != 0)
cc850f74 13713 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9 13714
0a1b45a2 13715 return true;
2468f9c9
PB
13716}
13717
0a1b45a2 13718static bool
3e6b1042
DJ
13719elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13720 bfd *ibfd, const char *name)
13721{
13722 asection *sec, *osec;
13723
3d4d4302 13724 sec = bfd_get_linker_section (ibfd, name);
3e6b1042 13725 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
0a1b45a2 13726 return true;
3e6b1042
DJ
13727
13728 osec = sec->output_section;
13729 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
0a1b45a2 13730 return true;
3e6b1042
DJ
13731
13732 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13733 sec->output_offset, sec->size))
0a1b45a2 13734 return false;
3e6b1042 13735
0a1b45a2 13736 return true;
3e6b1042
DJ
13737}
13738
0a1b45a2 13739static bool
3e6b1042
DJ
13740elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13741{
13742 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 13743 asection *sec, *osec;
3e6b1042 13744
4dfe6ac6 13745 if (globals == NULL)
0a1b45a2 13746 return false;
4dfe6ac6 13747
3e6b1042
DJ
13748 /* Invoke the regular ELF backend linker to do all the work. */
13749 if (!bfd_elf_final_link (abfd, info))
0a1b45a2 13750 return false;
3e6b1042 13751
fe33d2fa
CL
13752 /* Process stub sections (eg BE8 encoding, ...). */
13753 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 13754 unsigned int i;
cdb21a0a
NS
13755 for (i=0; i<htab->top_id; i++)
13756 {
13757 sec = htab->stub_group[i].stub_sec;
13758 /* Only process it once, in its link_sec slot. */
13759 if (sec && i == htab->stub_group[i].link_sec->id)
13760 {
13761 osec = sec->output_section;
13762 elf32_arm_write_section (abfd, info, sec, sec->contents);
13763 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13764 sec->output_offset, sec->size))
0a1b45a2 13765 return false;
cdb21a0a 13766 }
fe33d2fa 13767 }
fe33d2fa 13768
3e6b1042
DJ
13769 /* Write out any glue sections now that we have created all the
13770 stubs. */
13771 if (globals->bfd_of_glue_owner != NULL)
13772 {
13773 if (! elf32_arm_output_glue_section (info, abfd,
13774 globals->bfd_of_glue_owner,
13775 ARM2THUMB_GLUE_SECTION_NAME))
0a1b45a2 13776 return false;
3e6b1042
DJ
13777
13778 if (! elf32_arm_output_glue_section (info, abfd,
13779 globals->bfd_of_glue_owner,
13780 THUMB2ARM_GLUE_SECTION_NAME))
0a1b45a2 13781 return false;
3e6b1042
DJ
13782
13783 if (! elf32_arm_output_glue_section (info, abfd,
13784 globals->bfd_of_glue_owner,
13785 VFP11_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13786 return false;
3e6b1042 13787
a504d23a
LA
13788 if (! elf32_arm_output_glue_section (info, abfd,
13789 globals->bfd_of_glue_owner,
13790 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13791 return false;
a504d23a 13792
3e6b1042
DJ
13793 if (! elf32_arm_output_glue_section (info, abfd,
13794 globals->bfd_of_glue_owner,
13795 ARM_BX_GLUE_SECTION_NAME))
0a1b45a2 13796 return false;
3e6b1042
DJ
13797 }
13798
0a1b45a2 13799 return true;
3e6b1042
DJ
13800}
13801
5968a7b8
NC
13802/* Return a best guess for the machine number based on the attributes. */
13803
13804static unsigned int
13805bfd_arm_get_mach_from_attributes (bfd * abfd)
13806{
13807 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13808
13809 switch (arch)
13810 {
c0c468d5 13811 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
5968a7b8
NC
13812 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13813 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13814 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13815
13816 case TAG_CPU_ARCH_V5TE:
13817 {
13818 char * name;
13819
13820 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13821 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13822
13823 if (name)
13824 {
13825 if (strcmp (name, "IWMMXT2") == 0)
13826 return bfd_mach_arm_iWMMXt2;
13827
13828 if (strcmp (name, "IWMMXT") == 0)
6034aab8 13829 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
13830
13831 if (strcmp (name, "XSCALE") == 0)
13832 {
13833 int wmmx;
13834
13835 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13836 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13837 switch (wmmx)
13838 {
13839 case 1: return bfd_mach_arm_iWMMXt;
13840 case 2: return bfd_mach_arm_iWMMXt2;
13841 default: return bfd_mach_arm_XScale;
13842 }
13843 }
5968a7b8
NC
13844 }
13845
13846 return bfd_mach_arm_5TE;
13847 }
13848
c0c468d5
TP
13849 case TAG_CPU_ARCH_V5TEJ:
13850 return bfd_mach_arm_5TEJ;
13851 case TAG_CPU_ARCH_V6:
13852 return bfd_mach_arm_6;
13853 case TAG_CPU_ARCH_V6KZ:
13854 return bfd_mach_arm_6KZ;
13855 case TAG_CPU_ARCH_V6T2:
13856 return bfd_mach_arm_6T2;
13857 case TAG_CPU_ARCH_V6K:
13858 return bfd_mach_arm_6K;
13859 case TAG_CPU_ARCH_V7:
13860 return bfd_mach_arm_7;
13861 case TAG_CPU_ARCH_V6_M:
13862 return bfd_mach_arm_6M;
13863 case TAG_CPU_ARCH_V6S_M:
13864 return bfd_mach_arm_6SM;
13865 case TAG_CPU_ARCH_V7E_M:
13866 return bfd_mach_arm_7EM;
13867 case TAG_CPU_ARCH_V8:
13868 return bfd_mach_arm_8;
13869 case TAG_CPU_ARCH_V8R:
13870 return bfd_mach_arm_8R;
13871 case TAG_CPU_ARCH_V8M_BASE:
13872 return bfd_mach_arm_8M_BASE;
13873 case TAG_CPU_ARCH_V8M_MAIN:
13874 return bfd_mach_arm_8M_MAIN;
031254f2
AV
13875 case TAG_CPU_ARCH_V8_1M_MAIN:
13876 return bfd_mach_arm_8_1M_MAIN;
3197e593
PW
13877 case TAG_CPU_ARCH_V9:
13878 return bfd_mach_arm_9;
c0c468d5 13879
5968a7b8 13880 default:
c0c468d5
TP
13881 /* Force entry to be added for any new known Tag_CPU_arch value. */
13882 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13883
13884 /* Unknown Tag_CPU_arch value. */
5968a7b8
NC
13885 return bfd_mach_arm_unknown;
13886 }
13887}
13888
c178919b
NC
13889/* Set the right machine number. */
13890
0a1b45a2 13891static bool
57e8b36a 13892elf32_arm_object_p (bfd *abfd)
c178919b 13893{
5a6c6817 13894 unsigned int mach;
57e8b36a 13895
5a6c6817 13896 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 13897
5968a7b8
NC
13898 if (mach == bfd_mach_arm_unknown)
13899 {
13900 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13901 mach = bfd_mach_arm_ep9312;
13902 else
13903 mach = bfd_arm_get_mach_from_attributes (abfd);
13904 }
c178919b 13905
5968a7b8 13906 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
0a1b45a2 13907 return true;
c178919b
NC
13908}
13909
fc830a83 13910/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13911
0a1b45a2 13912static bool
57e8b36a 13913elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13914{
13915 if (elf_flags_init (abfd)
13916 && elf_elfheader (abfd)->e_flags != flags)
13917 {
fc830a83
NC
13918 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13919 {
fd2ec330 13920 if (flags & EF_ARM_INTERWORK)
4eca0228 13921 _bfd_error_handler
90b6238f 13922 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
d003868e 13923 abfd);
fc830a83 13924 else
d003868e 13925 _bfd_error_handler
90b6238f 13926 (_("warning: clearing the interworking flag of %pB due to outside request"),
d003868e 13927 abfd);
fc830a83 13928 }
252b5132
RH
13929 }
13930 else
13931 {
13932 elf_elfheader (abfd)->e_flags = flags;
0a1b45a2 13933 elf_flags_init (abfd) = true;
252b5132
RH
13934 }
13935
0a1b45a2 13936 return true;
252b5132
RH
13937}
13938
fc830a83 13939/* Copy backend specific data from one object module to another. */
9b485d32 13940
0a1b45a2 13941static bool
57e8b36a 13942elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13943{
13944 flagword in_flags;
13945 flagword out_flags;
13946
0ffa91dd 13947 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 13948 return true;
252b5132 13949
fc830a83 13950 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13951 out_flags = elf_elfheader (obfd)->e_flags;
13952
fc830a83
NC
13953 if (elf_flags_init (obfd)
13954 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13955 && in_flags != out_flags)
252b5132 13956 {
252b5132 13957 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13958 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
0a1b45a2 13959 return false;
252b5132
RH
13960
13961 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13962 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
0a1b45a2 13963 return false;
252b5132
RH
13964
13965 /* If the src and dest have different interworking flags
99059e56 13966 then turn off the interworking bit. */
fd2ec330 13967 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13968 {
fd2ec330 13969 if (out_flags & EF_ARM_INTERWORK)
d003868e 13970 _bfd_error_handler
90b6238f 13971 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
d003868e 13972 obfd, ibfd);
252b5132 13973
fd2ec330 13974 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13975 }
1006ba19
PB
13976
13977 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13978 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13979 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13980 }
13981
13982 elf_elfheader (obfd)->e_flags = in_flags;
0a1b45a2 13983 elf_flags_init (obfd) = true;
252b5132 13984
e2349352 13985 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13986}
13987
13988/* Values for Tag_ABI_PCS_R9_use. */
13989enum
13990{
13991 AEABI_R9_V6,
13992 AEABI_R9_SB,
13993 AEABI_R9_TLS,
13994 AEABI_R9_unused
13995};
13996
13997/* Values for Tag_ABI_PCS_RW_data. */
13998enum
13999{
14000 AEABI_PCS_RW_data_absolute,
14001 AEABI_PCS_RW_data_PCrel,
14002 AEABI_PCS_RW_data_SBrel,
14003 AEABI_PCS_RW_data_unused
14004};
14005
14006/* Values for Tag_ABI_enum_size. */
14007enum
14008{
14009 AEABI_enum_unused,
14010 AEABI_enum_short,
14011 AEABI_enum_wide,
14012 AEABI_enum_forced_wide
14013};
14014
104d59d1
JM
14015/* Determine whether an object attribute tag takes an integer, a
14016 string or both. */
906e58ca 14017
104d59d1
JM
14018static int
14019elf32_arm_obj_attrs_arg_type (int tag)
14020{
14021 if (tag == Tag_compatibility)
3483fe2e 14022 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 14023 else if (tag == Tag_nodefaults)
3483fe2e
AS
14024 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14025 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14026 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 14027 else if (tag < 32)
3483fe2e 14028 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 14029 else
3483fe2e 14030 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
14031}
14032
5aa6ff7c
AS
14033/* The ABI defines that Tag_conformance should be emitted first, and that
14034 Tag_nodefaults should be second (if either is defined). This sets those
14035 two positions, and bumps up the position of all the remaining tags to
14036 compensate. */
14037static int
14038elf32_arm_obj_attrs_order (int num)
14039{
3de4a297 14040 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 14041 return Tag_conformance;
3de4a297 14042 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
14043 return Tag_nodefaults;
14044 if ((num - 2) < Tag_nodefaults)
14045 return num - 2;
14046 if ((num - 1) < Tag_conformance)
14047 return num - 1;
14048 return num;
14049}
14050
e8b36cd1 14051/* Attribute numbers >=64 (mod 128) can be safely ignored. */
0a1b45a2 14052static bool
e8b36cd1
JM
14053elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14054{
14055 if ((tag & 127) < 64)
14056 {
14057 _bfd_error_handler
90b6238f 14058 (_("%pB: unknown mandatory EABI object attribute %d"),
e8b36cd1
JM
14059 abfd, tag);
14060 bfd_set_error (bfd_error_bad_value);
0a1b45a2 14061 return false;
e8b36cd1
JM
14062 }
14063 else
14064 {
14065 _bfd_error_handler
90b6238f 14066 (_("warning: %pB: unknown EABI object attribute %d"),
e8b36cd1 14067 abfd, tag);
0a1b45a2 14068 return true;
e8b36cd1
JM
14069 }
14070}
14071
91e22acd
AS
14072/* Read the architecture from the Tag_also_compatible_with attribute, if any.
14073 Returns -1 if no architecture could be read. */
14074
14075static int
14076get_secondary_compatible_arch (bfd *abfd)
14077{
14078 obj_attribute *attr =
14079 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14080
14081 /* Note: the tag and its argument below are uleb128 values, though
14082 currently-defined values fit in one byte for each. */
14083 if (attr->s
14084 && attr->s[0] == Tag_CPU_arch
14085 && (attr->s[1] & 128) != 128
14086 && attr->s[2] == 0)
14087 return attr->s[1];
14088
14089 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14090 return -1;
14091}
14092
14093/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14094 The tag is removed if ARCH is -1. */
14095
8e79c3df 14096static void
91e22acd 14097set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 14098{
91e22acd
AS
14099 obj_attribute *attr =
14100 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 14101
91e22acd
AS
14102 if (arch == -1)
14103 {
14104 attr->s = NULL;
14105 return;
8e79c3df 14106 }
91e22acd
AS
14107
14108 /* Note: the tag and its argument below are uleb128 values, though
14109 currently-defined values fit in one byte for each. */
14110 if (!attr->s)
21d799b5 14111 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
14112 attr->s[0] = Tag_CPU_arch;
14113 attr->s[1] = arch;
14114 attr->s[2] = '\0';
8e79c3df
CM
14115}
14116
91e22acd
AS
14117/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14118 into account. */
14119
14120static int
14121tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14122 int newtag, int secondary_compat)
8e79c3df 14123{
91e22acd
AS
14124#define T(X) TAG_CPU_ARCH_##X
14125 int tagl, tagh, result;
14126 const int v6t2[] =
14127 {
14128 T(V6T2), /* PRE_V4. */
14129 T(V6T2), /* V4. */
14130 T(V6T2), /* V4T. */
14131 T(V6T2), /* V5T. */
14132 T(V6T2), /* V5TE. */
14133 T(V6T2), /* V5TEJ. */
14134 T(V6T2), /* V6. */
14135 T(V7), /* V6KZ. */
14136 T(V6T2) /* V6T2. */
14137 };
14138 const int v6k[] =
14139 {
14140 T(V6K), /* PRE_V4. */
14141 T(V6K), /* V4. */
14142 T(V6K), /* V4T. */
14143 T(V6K), /* V5T. */
14144 T(V6K), /* V5TE. */
14145 T(V6K), /* V5TEJ. */
14146 T(V6K), /* V6. */
14147 T(V6KZ), /* V6KZ. */
14148 T(V7), /* V6T2. */
14149 T(V6K) /* V6K. */
14150 };
14151 const int v7[] =
14152 {
14153 T(V7), /* PRE_V4. */
14154 T(V7), /* V4. */
14155 T(V7), /* V4T. */
14156 T(V7), /* V5T. */
14157 T(V7), /* V5TE. */
14158 T(V7), /* V5TEJ. */
14159 T(V7), /* V6. */
14160 T(V7), /* V6KZ. */
14161 T(V7), /* V6T2. */
14162 T(V7), /* V6K. */
14163 T(V7) /* V7. */
14164 };
14165 const int v6_m[] =
14166 {
07d6d2b8
AM
14167 -1, /* PRE_V4. */
14168 -1, /* V4. */
91e22acd
AS
14169 T(V6K), /* V4T. */
14170 T(V6K), /* V5T. */
14171 T(V6K), /* V5TE. */
14172 T(V6K), /* V5TEJ. */
14173 T(V6K), /* V6. */
14174 T(V6KZ), /* V6KZ. */
14175 T(V7), /* V6T2. */
14176 T(V6K), /* V6K. */
14177 T(V7), /* V7. */
14178 T(V6_M) /* V6_M. */
14179 };
14180 const int v6s_m[] =
14181 {
07d6d2b8
AM
14182 -1, /* PRE_V4. */
14183 -1, /* V4. */
91e22acd
AS
14184 T(V6K), /* V4T. */
14185 T(V6K), /* V5T. */
14186 T(V6K), /* V5TE. */
14187 T(V6K), /* V5TEJ. */
14188 T(V6K), /* V6. */
14189 T(V6KZ), /* V6KZ. */
14190 T(V7), /* V6T2. */
14191 T(V6K), /* V6K. */
14192 T(V7), /* V7. */
14193 T(V6S_M), /* V6_M. */
14194 T(V6S_M) /* V6S_M. */
14195 };
9e3c6df6
PB
14196 const int v7e_m[] =
14197 {
07d6d2b8
AM
14198 -1, /* PRE_V4. */
14199 -1, /* V4. */
9e3c6df6
PB
14200 T(V7E_M), /* V4T. */
14201 T(V7E_M), /* V5T. */
14202 T(V7E_M), /* V5TE. */
14203 T(V7E_M), /* V5TEJ. */
14204 T(V7E_M), /* V6. */
14205 T(V7E_M), /* V6KZ. */
14206 T(V7E_M), /* V6T2. */
14207 T(V7E_M), /* V6K. */
14208 T(V7E_M), /* V7. */
14209 T(V7E_M), /* V6_M. */
14210 T(V7E_M), /* V6S_M. */
14211 T(V7E_M) /* V7E_M. */
14212 };
bca38921
MGD
14213 const int v8[] =
14214 {
14215 T(V8), /* PRE_V4. */
14216 T(V8), /* V4. */
14217 T(V8), /* V4T. */
14218 T(V8), /* V5T. */
14219 T(V8), /* V5TE. */
14220 T(V8), /* V5TEJ. */
14221 T(V8), /* V6. */
14222 T(V8), /* V6KZ. */
14223 T(V8), /* V6T2. */
14224 T(V8), /* V6K. */
14225 T(V8), /* V7. */
14226 T(V8), /* V6_M. */
14227 T(V8), /* V6S_M. */
14228 T(V8), /* V7E_M. */
3197e593
PW
14229 T(V8), /* V8. */
14230 T(V8), /* V8-R. */
14231 T(V8), /* V8-M.BASE. */
14232 T(V8), /* V8-M.MAIN. */
14233 T(V8), /* V8.1. */
14234 T(V8), /* V8.2. */
14235 T(V8), /* V8.3. */
14236 T(V8), /* V8.1-M.MAIN. */
bca38921 14237 };
bff0500d
TP
14238 const int v8r[] =
14239 {
14240 T(V8R), /* PRE_V4. */
14241 T(V8R), /* V4. */
14242 T(V8R), /* V4T. */
14243 T(V8R), /* V5T. */
14244 T(V8R), /* V5TE. */
14245 T(V8R), /* V5TEJ. */
14246 T(V8R), /* V6. */
14247 T(V8R), /* V6KZ. */
14248 T(V8R), /* V6T2. */
14249 T(V8R), /* V6K. */
14250 T(V8R), /* V7. */
14251 T(V8R), /* V6_M. */
14252 T(V8R), /* V6S_M. */
14253 T(V8R), /* V7E_M. */
14254 T(V8), /* V8. */
14255 T(V8R), /* V8R. */
14256 };
2fd158eb
TP
14257 const int v8m_baseline[] =
14258 {
14259 -1, /* PRE_V4. */
14260 -1, /* V4. */
14261 -1, /* V4T. */
14262 -1, /* V5T. */
14263 -1, /* V5TE. */
14264 -1, /* V5TEJ. */
14265 -1, /* V6. */
14266 -1, /* V6KZ. */
14267 -1, /* V6T2. */
14268 -1, /* V6K. */
14269 -1, /* V7. */
14270 T(V8M_BASE), /* V6_M. */
14271 T(V8M_BASE), /* V6S_M. */
14272 -1, /* V7E_M. */
14273 -1, /* V8. */
bff0500d 14274 -1, /* V8R. */
2fd158eb
TP
14275 T(V8M_BASE) /* V8-M BASELINE. */
14276 };
14277 const int v8m_mainline[] =
14278 {
14279 -1, /* PRE_V4. */
14280 -1, /* V4. */
14281 -1, /* V4T. */
14282 -1, /* V5T. */
14283 -1, /* V5TE. */
14284 -1, /* V5TEJ. */
14285 -1, /* V6. */
14286 -1, /* V6KZ. */
14287 -1, /* V6T2. */
14288 -1, /* V6K. */
14289 T(V8M_MAIN), /* V7. */
14290 T(V8M_MAIN), /* V6_M. */
14291 T(V8M_MAIN), /* V6S_M. */
14292 T(V8M_MAIN), /* V7E_M. */
14293 -1, /* V8. */
bff0500d 14294 -1, /* V8R. */
2fd158eb
TP
14295 T(V8M_MAIN), /* V8-M BASELINE. */
14296 T(V8M_MAIN) /* V8-M MAINLINE. */
14297 };
031254f2
AV
14298 const int v8_1m_mainline[] =
14299 {
14300 -1, /* PRE_V4. */
14301 -1, /* V4. */
14302 -1, /* V4T. */
14303 -1, /* V5T. */
14304 -1, /* V5TE. */
14305 -1, /* V5TEJ. */
14306 -1, /* V6. */
14307 -1, /* V6KZ. */
14308 -1, /* V6T2. */
14309 -1, /* V6K. */
14310 T(V8_1M_MAIN), /* V7. */
14311 T(V8_1M_MAIN), /* V6_M. */
14312 T(V8_1M_MAIN), /* V6S_M. */
14313 T(V8_1M_MAIN), /* V7E_M. */
14314 -1, /* V8. */
14315 -1, /* V8R. */
14316 T(V8_1M_MAIN), /* V8-M BASELINE. */
14317 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14318 -1, /* Unused (18). */
14319 -1, /* Unused (19). */
14320 -1, /* Unused (20). */
14321 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14322 };
3197e593
PW
14323 const int v9[] =
14324 {
14325 T(V9), /* PRE_V4. */
14326 T(V9), /* V4. */
14327 T(V9), /* V4T. */
14328 T(V9), /* V5T. */
14329 T(V9), /* V5TE. */
14330 T(V9), /* V5TEJ. */
14331 T(V9), /* V6. */
14332 T(V9), /* V6KZ. */
14333 T(V9), /* V6T2. */
14334 T(V9), /* V6K. */
14335 T(V9), /* V7. */
14336 T(V9), /* V6_M. */
14337 T(V9), /* V6S_M. */
14338 T(V9), /* V7E_M. */
14339 T(V9), /* V8. */
14340 T(V9), /* V8-R. */
14341 T(V9), /* V8-M.BASE. */
14342 T(V9), /* V8-M.MAIN. */
14343 T(V9), /* V8.1. */
14344 T(V9), /* V8.2. */
14345 T(V9), /* V8.3. */
14346 T(V9), /* V8.1-M.MAIN. */
14347 T(V9), /* V9. */
14348 };
91e22acd
AS
14349 const int v4t_plus_v6_m[] =
14350 {
14351 -1, /* PRE_V4. */
14352 -1, /* V4. */
14353 T(V4T), /* V4T. */
14354 T(V5T), /* V5T. */
14355 T(V5TE), /* V5TE. */
14356 T(V5TEJ), /* V5TEJ. */
14357 T(V6), /* V6. */
14358 T(V6KZ), /* V6KZ. */
14359 T(V6T2), /* V6T2. */
14360 T(V6K), /* V6K. */
14361 T(V7), /* V7. */
14362 T(V6_M), /* V6_M. */
14363 T(V6S_M), /* V6S_M. */
9e3c6df6 14364 T(V7E_M), /* V7E_M. */
bca38921 14365 T(V8), /* V8. */
bff0500d 14366 -1, /* V8R. */
2fd158eb
TP
14367 T(V8M_BASE), /* V8-M BASELINE. */
14368 T(V8M_MAIN), /* V8-M MAINLINE. */
031254f2
AV
14369 -1, /* Unused (18). */
14370 -1, /* Unused (19). */
14371 -1, /* Unused (20). */
14372 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
3197e593 14373 T(V9), /* V9. */
91e22acd
AS
14374 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14375 };
14376 const int *comb[] =
14377 {
14378 v6t2,
14379 v6k,
14380 v7,
14381 v6_m,
14382 v6s_m,
9e3c6df6 14383 v7e_m,
bca38921 14384 v8,
bff0500d 14385 v8r,
2fd158eb
TP
14386 v8m_baseline,
14387 v8m_mainline,
031254f2
AV
14388 NULL,
14389 NULL,
14390 NULL,
14391 v8_1m_mainline,
3197e593 14392 v9,
91e22acd
AS
14393 /* Pseudo-architecture. */
14394 v4t_plus_v6_m
14395 };
14396
14397 /* Check we've not got a higher architecture than we know about. */
14398
9e3c6df6 14399 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 14400 {
90b6238f 14401 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
91e22acd
AS
14402 return -1;
14403 }
14404
14405 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14406
14407 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14408 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14409 oldtag = T(V4T_PLUS_V6_M);
14410
14411 /* And override the new tag if we have a Tag_also_compatible_with on the
14412 input. */
14413
14414 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14415 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14416 newtag = T(V4T_PLUS_V6_M);
14417
14418 tagl = (oldtag < newtag) ? oldtag : newtag;
14419 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14420
14421 /* Architectures before V6KZ add features monotonically. */
14422 if (tagh <= TAG_CPU_ARCH_V6KZ)
14423 return result;
14424
4ed7ed8d 14425 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
14426
14427 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14428 as the canonical version. */
14429 if (result == T(V4T_PLUS_V6_M))
14430 {
14431 result = T(V4T);
14432 *secondary_compat_out = T(V6_M);
14433 }
14434 else
14435 *secondary_compat_out = -1;
14436
14437 if (result == -1)
14438 {
90b6238f 14439 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
91e22acd
AS
14440 ibfd, oldtag, newtag);
14441 return -1;
14442 }
14443
14444 return result;
14445#undef T
8e79c3df
CM
14446}
14447
ac56ee8f
MGD
14448/* Query attributes object to see if integer divide instructions may be
14449 present in an object. */
0a1b45a2 14450static bool
ac56ee8f
MGD
14451elf32_arm_attributes_accept_div (const obj_attribute *attr)
14452{
14453 int arch = attr[Tag_CPU_arch].i;
14454 int profile = attr[Tag_CPU_arch_profile].i;
14455
14456 switch (attr[Tag_DIV_use].i)
14457 {
14458 case 0:
14459 /* Integer divide allowed if instruction contained in archetecture. */
14460 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
0a1b45a2 14461 return true;
ac56ee8f 14462 else if (arch >= TAG_CPU_ARCH_V7E_M)
0a1b45a2 14463 return true;
ac56ee8f 14464 else
0a1b45a2 14465 return false;
ac56ee8f
MGD
14466
14467 case 1:
14468 /* Integer divide explicitly prohibited. */
0a1b45a2 14469 return false;
ac56ee8f
MGD
14470
14471 default:
14472 /* Unrecognised case - treat as allowing divide everywhere. */
14473 case 2:
14474 /* Integer divide allowed in ARM state. */
0a1b45a2 14475 return true;
ac56ee8f
MGD
14476 }
14477}
14478
14479/* Query attributes object to see if integer divide instructions are
14480 forbidden to be in the object. This is not the inverse of
14481 elf32_arm_attributes_accept_div. */
0a1b45a2 14482static bool
ac56ee8f
MGD
14483elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14484{
14485 return attr[Tag_DIV_use].i == 1;
14486}
14487
ee065d83
PB
14488/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14489 are conflicting attributes. */
906e58ca 14490
0a1b45a2 14491static bool
50e03d47 14492elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 14493{
50e03d47 14494 bfd *obfd = info->output_bfd;
104d59d1
JM
14495 obj_attribute *in_attr;
14496 obj_attribute *out_attr;
ee065d83
PB
14497 /* Some tags have 0 = don't care, 1 = strong requirement,
14498 2 = weak requirement. */
91e22acd 14499 static const int order_021[3] = {0, 2, 1};
ee065d83 14500 int i;
0a1b45a2 14501 bool result = true;
9274e9de 14502 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 14503
3e6b1042
DJ
14504 /* Skip the linker stubs file. This preserves previous behavior
14505 of accepting unknown attributes in the first input file - but
14506 is that a bug? */
14507 if (ibfd->flags & BFD_LINKER_CREATED)
0a1b45a2 14508 return true;
3e6b1042 14509
9274e9de
TG
14510 /* Skip any input that hasn't attribute section.
14511 This enables to link object files without attribute section with
14512 any others. */
14513 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
0a1b45a2 14514 return true;
9274e9de 14515
104d59d1 14516 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
14517 {
14518 /* This is the first object. Copy the attributes. */
104d59d1 14519 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 14520
cd21e546
MGD
14521 out_attr = elf_known_obj_attributes_proc (obfd);
14522
004ae526
PB
14523 /* Use the Tag_null value to indicate the attributes have been
14524 initialized. */
cd21e546 14525 out_attr[0].i = 1;
004ae526 14526
cd21e546
MGD
14527 /* We do not output objects with Tag_MPextension_use_legacy - we move
14528 the attribute's value to Tag_MPextension_use. */
14529 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14530 {
14531 if (out_attr[Tag_MPextension_use].i != 0
14532 && out_attr[Tag_MPextension_use_legacy].i
99059e56 14533 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
14534 {
14535 _bfd_error_handler
871b3ab2 14536 (_("Error: %pB has both the current and legacy "
cd21e546 14537 "Tag_MPextension_use attributes"), ibfd);
0a1b45a2 14538 result = false;
cd21e546
MGD
14539 }
14540
14541 out_attr[Tag_MPextension_use] =
14542 out_attr[Tag_MPextension_use_legacy];
14543 out_attr[Tag_MPextension_use_legacy].type = 0;
14544 out_attr[Tag_MPextension_use_legacy].i = 0;
14545 }
14546
81c9e0f6
NC
14547 /* PR 28859 and 28848: Handle the case where the first input file,
14548 eg crti.o, has a Tag_ABI_HardFP_use of 3 but no Tag_FP_arch set.
14549 Using Tag_ABI_HardFP_use in this way is deprecated, so reset the
14550 attribute to zero.
14551 FIXME: Should we handle other non-zero values of Tag_ABI_HardFO_use ? */
14552 if (out_attr[Tag_ABI_HardFP_use].i == 3 && out_attr[Tag_FP_arch].i == 0)
14553 out_attr[Tag_ABI_HardFP_use].i = 0;
14554
cd21e546 14555 return result;
ee065d83
PB
14556 }
14557
104d59d1
JM
14558 in_attr = elf_known_obj_attributes_proc (ibfd);
14559 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
14560 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14561 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14562 {
5c294fee
TG
14563 /* Ignore mismatches if the object doesn't use floating point or is
14564 floating point ABI independent. */
14565 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14566 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14567 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 14568 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
14569 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14570 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
14571 {
14572 _bfd_error_handler
871b3ab2 14573 (_("error: %pB uses VFP register arguments, %pB does not"),
deddc40b
NS
14574 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14575 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
0a1b45a2 14576 result = false;
ee065d83
PB
14577 }
14578 }
14579
3de4a297 14580 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
14581 {
14582 /* Merge this attribute with existing attributes. */
14583 switch (i)
14584 {
14585 case Tag_CPU_raw_name:
14586 case Tag_CPU_name:
6a631e86 14587 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
14588 break;
14589
14590 case Tag_ABI_optimization_goals:
14591 case Tag_ABI_FP_optimization_goals:
14592 /* Use the first value seen. */
14593 break;
14594
14595 case Tag_CPU_arch:
91e22acd
AS
14596 {
14597 int secondary_compat = -1, secondary_compat_out = -1;
14598 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
14599 int arch_attr;
14600 static const char *name_table[] =
14601 {
91e22acd
AS
14602 /* These aren't real CPU names, but we can't guess
14603 that from the architecture version alone. */
14604 "Pre v4",
14605 "ARM v4",
14606 "ARM v4T",
14607 "ARM v5T",
14608 "ARM v5TE",
14609 "ARM v5TEJ",
14610 "ARM v6",
14611 "ARM v6KZ",
14612 "ARM v6T2",
14613 "ARM v6K",
14614 "ARM v7",
14615 "ARM v6-M",
bca38921 14616 "ARM v6S-M",
3197e593 14617 "ARM v7E-M",
2fd158eb 14618 "ARM v8",
3197e593 14619 "ARM v8-R",
2fd158eb
TP
14620 "ARM v8-M.baseline",
14621 "ARM v8-M.mainline",
3197e593
PW
14622 "ARM v8.1-A",
14623 "ARM v8.2-A",
14624 "ARM v8.3-A",
14625 "ARM v8.1-M.mainline",
14626 "ARM v9",
91e22acd
AS
14627 };
14628
14629 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14630 secondary_compat = get_secondary_compatible_arch (ibfd);
14631 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
14632 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14633 &secondary_compat_out,
14634 in_attr[i].i,
14635 secondary_compat);
14636
14637 /* Return with error if failed to merge. */
14638 if (arch_attr == -1)
0a1b45a2 14639 return false;
70e99720
TG
14640
14641 out_attr[i].i = arch_attr;
14642
91e22acd
AS
14643 set_secondary_compatible_arch (obfd, secondary_compat_out);
14644
14645 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14646 if (out_attr[i].i == saved_out_attr)
14647 ; /* Leave the names alone. */
14648 else if (out_attr[i].i == in_attr[i].i)
14649 {
14650 /* The output architecture has been changed to match the
14651 input architecture. Use the input names. */
14652 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14653 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14654 : NULL;
14655 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14656 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14657 : NULL;
14658 }
14659 else
14660 {
14661 out_attr[Tag_CPU_name].s = NULL;
14662 out_attr[Tag_CPU_raw_name].s = NULL;
14663 }
14664
14665 /* If we still don't have a value for Tag_CPU_name,
14666 make one up now. Tag_CPU_raw_name remains blank. */
14667 if (out_attr[Tag_CPU_name].s == NULL
14668 && out_attr[i].i < ARRAY_SIZE (name_table))
14669 out_attr[Tag_CPU_name].s =
14670 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14671 }
14672 break;
14673
ee065d83
PB
14674 case Tag_ARM_ISA_use:
14675 case Tag_THUMB_ISA_use:
ee065d83 14676 case Tag_WMMX_arch:
91e22acd
AS
14677 case Tag_Advanced_SIMD_arch:
14678 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 14679 case Tag_ABI_FP_rounding:
ee065d83
PB
14680 case Tag_ABI_FP_exceptions:
14681 case Tag_ABI_FP_user_exceptions:
14682 case Tag_ABI_FP_number_model:
75375b3e 14683 case Tag_FP_HP_extension:
91e22acd
AS
14684 case Tag_CPU_unaligned_access:
14685 case Tag_T2EE_use:
91e22acd 14686 case Tag_MPextension_use:
a7ad558c 14687 case Tag_MVE_arch:
99db83d0 14688 case Tag_PAC_extension:
4b535030 14689 case Tag_BTI_extension:
b81ee92f 14690 case Tag_BTI_use:
c9fed665 14691 case Tag_PACRET_use:
ee065d83
PB
14692 /* Use the largest value specified. */
14693 if (in_attr[i].i > out_attr[i].i)
14694 out_attr[i].i = in_attr[i].i;
14695 break;
14696
75375b3e 14697 case Tag_ABI_align_preserved:
91e22acd
AS
14698 case Tag_ABI_PCS_RO_data:
14699 /* Use the smallest value specified. */
14700 if (in_attr[i].i < out_attr[i].i)
14701 out_attr[i].i = in_attr[i].i;
14702 break;
14703
75375b3e 14704 case Tag_ABI_align_needed:
91e22acd 14705 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
14706 && (in_attr[Tag_ABI_align_preserved].i == 0
14707 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 14708 {
91e22acd
AS
14709 /* This error message should be enabled once all non-conformant
14710 binaries in the toolchain have had the attributes set
14711 properly.
ee065d83 14712 _bfd_error_handler
871b3ab2 14713 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
91e22acd 14714 obfd, ibfd);
0a1b45a2 14715 result = false; */
ee065d83 14716 }
91e22acd
AS
14717 /* Fall through. */
14718 case Tag_ABI_FP_denormal:
14719 case Tag_ABI_PCS_GOT_use:
14720 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14721 value if greater than 2 (for future-proofing). */
14722 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14723 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14724 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
14725 out_attr[i].i = in_attr[i].i;
14726 break;
91e22acd 14727
75375b3e
MGD
14728 case Tag_Virtualization_use:
14729 /* The virtualization tag effectively stores two bits of
14730 information: the intended use of TrustZone (in bit 0), and the
14731 intended use of Virtualization (in bit 1). */
14732 if (out_attr[i].i == 0)
14733 out_attr[i].i = in_attr[i].i;
14734 else if (in_attr[i].i != 0
14735 && in_attr[i].i != out_attr[i].i)
14736 {
14737 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14738 out_attr[i].i = 3;
14739 else
14740 {
14741 _bfd_error_handler
871b3ab2
AM
14742 (_("error: %pB: unable to merge virtualization attributes "
14743 "with %pB"),
75375b3e 14744 obfd, ibfd);
0a1b45a2 14745 result = false;
75375b3e
MGD
14746 }
14747 }
14748 break;
91e22acd
AS
14749
14750 case Tag_CPU_arch_profile:
14751 if (out_attr[i].i != in_attr[i].i)
14752 {
14753 /* 0 will merge with anything.
14754 'A' and 'S' merge to 'A'.
14755 'R' and 'S' merge to 'R'.
99059e56 14756 'M' and 'A|R|S' is an error. */
91e22acd
AS
14757 if (out_attr[i].i == 0
14758 || (out_attr[i].i == 'S'
14759 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14760 out_attr[i].i = in_attr[i].i;
14761 else if (in_attr[i].i == 0
14762 || (in_attr[i].i == 'S'
14763 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 14764 ; /* Do nothing. */
91e22acd
AS
14765 else
14766 {
14767 _bfd_error_handler
90b6238f 14768 (_("error: %pB: conflicting architecture profiles %c/%c"),
91e22acd
AS
14769 ibfd,
14770 in_attr[i].i ? in_attr[i].i : '0',
14771 out_attr[i].i ? out_attr[i].i : '0');
0a1b45a2 14772 result = false;
91e22acd
AS
14773 }
14774 }
14775 break;
15afaa63
TP
14776
14777 case Tag_DSP_extension:
14778 /* No need to change output value if any of:
14779 - pre (<=) ARMv5T input architecture (do not have DSP)
14780 - M input profile not ARMv7E-M and do not have DSP. */
14781 if (in_attr[Tag_CPU_arch].i <= 3
14782 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14783 && in_attr[Tag_CPU_arch].i != 13
14784 && in_attr[i].i == 0))
14785 ; /* Do nothing. */
14786 /* Output value should be 0 if DSP part of architecture, ie.
14787 - post (>=) ARMv5te architecture output
14788 - A, R or S profile output or ARMv7E-M output architecture. */
14789 else if (out_attr[Tag_CPU_arch].i >= 4
14790 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14791 || out_attr[Tag_CPU_arch_profile].i == 'R'
14792 || out_attr[Tag_CPU_arch_profile].i == 'S'
14793 || out_attr[Tag_CPU_arch].i == 13))
14794 out_attr[i].i = 0;
14795 /* Otherwise, DSP instructions are added and not part of output
14796 architecture. */
14797 else
14798 out_attr[i].i = 1;
14799 break;
14800
75375b3e 14801 case Tag_FP_arch:
62f3b8c8 14802 {
4547cb56
NC
14803 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14804 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14805 when it's 0. It might mean absence of FP hardware if
99654aaf 14806 Tag_FP_arch is zero. */
4547cb56 14807
a715796b 14808#define VFP_VERSION_COUNT 9
62f3b8c8
PB
14809 static const struct
14810 {
14811 int ver;
14812 int regs;
bca38921 14813 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
14814 {
14815 {0, 0},
14816 {1, 16},
14817 {2, 16},
14818 {3, 32},
14819 {3, 16},
14820 {4, 32},
bca38921 14821 {4, 16},
a715796b
TG
14822 {8, 32},
14823 {8, 16}
62f3b8c8
PB
14824 };
14825 int ver;
14826 int regs;
14827 int newval;
14828
4547cb56
NC
14829 /* If the output has no requirement about FP hardware,
14830 follow the requirement of the input. */
14831 if (out_attr[i].i == 0)
14832 {
4ec192e6
RE
14833 /* This assert is still reasonable, we shouldn't
14834 produce the suspicious build attribute
14835 combination (See below for in_attr). */
4547cb56
NC
14836 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14837 out_attr[i].i = in_attr[i].i;
14838 out_attr[Tag_ABI_HardFP_use].i
14839 = in_attr[Tag_ABI_HardFP_use].i;
14840 break;
14841 }
14842 /* If the input has no requirement about FP hardware, do
14843 nothing. */
14844 else if (in_attr[i].i == 0)
14845 {
4ec192e6
RE
14846 /* We used to assert that Tag_ABI_HardFP_use was
14847 zero here, but we should never assert when
14848 consuming an object file that has suspicious
14849 build attributes. The single precision variant
14850 of 'no FP architecture' is still 'no FP
14851 architecture', so we just ignore the tag in this
14852 case. */
4547cb56
NC
14853 break;
14854 }
14855
14856 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 14857 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
14858
14859 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14860 do nothing. */
14861 if (in_attr[Tag_ABI_HardFP_use].i == 0
14862 && out_attr[Tag_ABI_HardFP_use].i == 0)
14863 ;
14864 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 14865 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
14866 else if (in_attr[Tag_ABI_HardFP_use].i
14867 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 14868 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
14869
14870 /* Now we can handle Tag_FP_arch. */
14871
bca38921
MGD
14872 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14873 pick the biggest. */
14874 if (in_attr[i].i >= VFP_VERSION_COUNT
14875 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
14876 {
14877 out_attr[i] = in_attr[i];
14878 break;
14879 }
14880 /* The output uses the superset of input features
14881 (ISA version) and registers. */
14882 ver = vfp_versions[in_attr[i].i].ver;
14883 if (ver < vfp_versions[out_attr[i].i].ver)
14884 ver = vfp_versions[out_attr[i].i].ver;
14885 regs = vfp_versions[in_attr[i].i].regs;
14886 if (regs < vfp_versions[out_attr[i].i].regs)
14887 regs = vfp_versions[out_attr[i].i].regs;
14888 /* This assumes all possible supersets are also a valid
99059e56 14889 options. */
bca38921 14890 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
14891 {
14892 if (regs == vfp_versions[newval].regs
14893 && ver == vfp_versions[newval].ver)
14894 break;
14895 }
14896 out_attr[i].i = newval;
14897 }
b1cc4aeb 14898 break;
ee065d83
PB
14899 case Tag_PCS_config:
14900 if (out_attr[i].i == 0)
14901 out_attr[i].i = in_attr[i].i;
b6009aca 14902 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
14903 {
14904 /* It's sometimes ok to mix different configs, so this is only
99059e56 14905 a warning. */
ee065d83 14906 _bfd_error_handler
90b6238f 14907 (_("warning: %pB: conflicting platform configuration"), ibfd);
ee065d83
PB
14908 }
14909 break;
14910 case Tag_ABI_PCS_R9_use:
004ae526
PB
14911 if (in_attr[i].i != out_attr[i].i
14912 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
14913 && in_attr[i].i != AEABI_R9_unused)
14914 {
14915 _bfd_error_handler
90b6238f 14916 (_("error: %pB: conflicting use of R9"), ibfd);
0a1b45a2 14917 result = false;
ee065d83
PB
14918 }
14919 if (out_attr[i].i == AEABI_R9_unused)
14920 out_attr[i].i = in_attr[i].i;
14921 break;
14922 case Tag_ABI_PCS_RW_data:
14923 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14924 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14925 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14926 {
14927 _bfd_error_handler
871b3ab2 14928 (_("error: %pB: SB relative addressing conflicts with use of R9"),
ee065d83 14929 ibfd);
0a1b45a2 14930 result = false;
ee065d83
PB
14931 }
14932 /* Use the smallest value specified. */
14933 if (in_attr[i].i < out_attr[i].i)
14934 out_attr[i].i = in_attr[i].i;
14935 break;
ee065d83 14936 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
14937 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14938 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
14939 {
14940 _bfd_error_handler
871b3ab2 14941 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
a9dc9481 14942 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 14943 }
a9dc9481 14944 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
14945 out_attr[i].i = in_attr[i].i;
14946 break;
ee065d83
PB
14947 case Tag_ABI_enum_size:
14948 if (in_attr[i].i != AEABI_enum_unused)
14949 {
14950 if (out_attr[i].i == AEABI_enum_unused
14951 || out_attr[i].i == AEABI_enum_forced_wide)
14952 {
14953 /* The existing object is compatible with anything.
14954 Use whatever requirements the new object has. */
14955 out_attr[i].i = in_attr[i].i;
14956 }
14957 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 14958 && out_attr[i].i != in_attr[i].i
0ffa91dd 14959 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 14960 {
91e22acd 14961 static const char *aeabi_enum_names[] =
bf21ed78 14962 { "", "variable-size", "32-bit", "" };
91e22acd 14963 const char *in_name =
cc850f74 14964 in_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14965 ? aeabi_enum_names[in_attr[i].i]
14966 : "<unknown>";
14967 const char *out_name =
cc850f74 14968 out_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14969 ? aeabi_enum_names[out_attr[i].i]
14970 : "<unknown>";
ee065d83 14971 _bfd_error_handler
871b3ab2 14972 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 14973 ibfd, in_name, out_name);
ee065d83
PB
14974 }
14975 }
14976 break;
14977 case Tag_ABI_VFP_args:
14978 /* Aready done. */
14979 break;
14980 case Tag_ABI_WMMX_args:
14981 if (in_attr[i].i != out_attr[i].i)
14982 {
14983 _bfd_error_handler
871b3ab2 14984 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
ee065d83 14985 ibfd, obfd);
0a1b45a2 14986 result = false;
ee065d83
PB
14987 }
14988 break;
7b86a9fa
AS
14989 case Tag_compatibility:
14990 /* Merged in target-independent code. */
14991 break;
91e22acd 14992 case Tag_ABI_HardFP_use:
4547cb56 14993 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
14994 break;
14995 case Tag_ABI_FP_16bit_format:
14996 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14997 {
14998 if (in_attr[i].i != out_attr[i].i)
14999 {
15000 _bfd_error_handler
871b3ab2 15001 (_("error: fp16 format mismatch between %pB and %pB"),
91e22acd 15002 ibfd, obfd);
0a1b45a2 15003 result = false;
91e22acd
AS
15004 }
15005 }
15006 if (in_attr[i].i != 0)
15007 out_attr[i].i = in_attr[i].i;
15008 break;
7b86a9fa 15009
cd21e546 15010 case Tag_DIV_use:
ac56ee8f
MGD
15011 /* A value of zero on input means that the divide instruction may
15012 be used if available in the base architecture as specified via
15013 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15014 the user did not want divide instructions. A value of 2
15015 explicitly means that divide instructions were allowed in ARM
15016 and Thumb state. */
15017 if (in_attr[i].i == out_attr[i].i)
15018 /* Do nothing. */ ;
15019 else if (elf32_arm_attributes_forbid_div (in_attr)
15020 && !elf32_arm_attributes_accept_div (out_attr))
15021 out_attr[i].i = 1;
15022 else if (elf32_arm_attributes_forbid_div (out_attr)
15023 && elf32_arm_attributes_accept_div (in_attr))
15024 out_attr[i].i = in_attr[i].i;
15025 else if (in_attr[i].i == 2)
15026 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
15027 break;
15028
15029 case Tag_MPextension_use_legacy:
15030 /* We don't output objects with Tag_MPextension_use_legacy - we
15031 move the value to Tag_MPextension_use. */
15032 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15033 {
15034 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15035 {
15036 _bfd_error_handler
871b3ab2 15037 (_("%pB has both the current and legacy "
b38cadfb 15038 "Tag_MPextension_use attributes"),
cd21e546 15039 ibfd);
0a1b45a2 15040 result = false;
cd21e546
MGD
15041 }
15042 }
15043
15044 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15045 out_attr[Tag_MPextension_use] = in_attr[i];
15046
15047 break;
15048
91e22acd 15049 case Tag_nodefaults:
2d0bb761
AS
15050 /* This tag is set if it exists, but the value is unused (and is
15051 typically zero). We don't actually need to do anything here -
15052 the merge happens automatically when the type flags are merged
15053 below. */
91e22acd
AS
15054 break;
15055 case Tag_also_compatible_with:
15056 /* Already done in Tag_CPU_arch. */
15057 break;
15058 case Tag_conformance:
15059 /* Keep the attribute if it matches. Throw it away otherwise.
15060 No attribute means no claim to conform. */
15061 if (!in_attr[i].s || !out_attr[i].s
15062 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15063 out_attr[i].s = NULL;
15064 break;
3cfad14c 15065
91e22acd 15066 default:
e8b36cd1
JM
15067 result
15068 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
15069 }
15070
15071 /* If out_attr was copied from in_attr then it won't have a type yet. */
15072 if (in_attr[i].type && !out_attr[i].type)
15073 out_attr[i].type = in_attr[i].type;
ee065d83
PB
15074 }
15075
104d59d1 15076 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15077 if (!_bfd_elf_merge_object_attributes (ibfd, info))
0a1b45a2 15078 return false;
ee065d83 15079
104d59d1 15080 /* Check for any attributes not known on ARM. */
e8b36cd1 15081 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 15082
91e22acd 15083 return result;
252b5132
RH
15084}
15085
3a4a14e9
PB
15086
15087/* Return TRUE if the two EABI versions are incompatible. */
15088
0a1b45a2 15089static bool
3a4a14e9
PB
15090elf32_arm_versions_compatible (unsigned iver, unsigned over)
15091{
15092 /* v4 and v5 are the same spec before and after it was released,
15093 so allow mixing them. */
15094 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15095 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
0a1b45a2 15096 return true;
3a4a14e9
PB
15097
15098 return (iver == over);
15099}
15100
252b5132
RH
15101/* Merge backend specific data from an object file to the output
15102 object file when linking. */
9b485d32 15103
0a1b45a2 15104static bool
50e03d47 15105elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 15106
9b485d32
NC
15107/* Display the flags field. */
15108
0a1b45a2 15109static bool
57e8b36a 15110elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 15111{
fc830a83
NC
15112 FILE * file = (FILE *) ptr;
15113 unsigned long flags;
252b5132
RH
15114
15115 BFD_ASSERT (abfd != NULL && ptr != NULL);
15116
15117 /* Print normal ELF private data. */
15118 _bfd_elf_print_private_bfd_data (abfd, ptr);
15119
fc830a83 15120 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
15121 /* Ignore init flag - it may not be set, despite the flags field
15122 containing valid data. */
252b5132 15123
dbb078f6 15124 fprintf (file, _("private flags = 0x%lx:"), elf_elfheader (abfd)->e_flags);
252b5132 15125
fc830a83
NC
15126 switch (EF_ARM_EABI_VERSION (flags))
15127 {
15128 case EF_ARM_EABI_UNKNOWN:
4cc11e76 15129 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
15130 official ARM ELF extended ABI. Hence they are only decoded if
15131 the EABI version is not set. */
fd2ec330 15132 if (flags & EF_ARM_INTERWORK)
9b485d32 15133 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 15134
fd2ec330 15135 if (flags & EF_ARM_APCS_26)
6c571f00 15136 fprintf (file, " [APCS-26]");
fc830a83 15137 else
6c571f00 15138 fprintf (file, " [APCS-32]");
9a5aca8c 15139
96a846ea
RE
15140 if (flags & EF_ARM_VFP_FLOAT)
15141 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
15142 else if (flags & EF_ARM_MAVERICK_FLOAT)
15143 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
15144 else
15145 fprintf (file, _(" [FPA float format]"));
15146
fd2ec330 15147 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 15148 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 15149
fd2ec330 15150 if (flags & EF_ARM_PIC)
9b485d32 15151 fprintf (file, _(" [position independent]"));
fc830a83 15152
fd2ec330 15153 if (flags & EF_ARM_NEW_ABI)
9b485d32 15154 fprintf (file, _(" [new ABI]"));
9a5aca8c 15155
fd2ec330 15156 if (flags & EF_ARM_OLD_ABI)
9b485d32 15157 fprintf (file, _(" [old ABI]"));
9a5aca8c 15158
fd2ec330 15159 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 15160 fprintf (file, _(" [software FP]"));
9a5aca8c 15161
96a846ea
RE
15162 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15163 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
15164 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15165 | EF_ARM_MAVERICK_FLOAT);
fc830a83 15166 break;
9a5aca8c 15167
fc830a83 15168 case EF_ARM_EABI_VER1:
9b485d32 15169 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 15170
fc830a83 15171 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 15172 fprintf (file, _(" [sorted symbol table]"));
fc830a83 15173 else
9b485d32 15174 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 15175
fc830a83
NC
15176 flags &= ~ EF_ARM_SYMSARESORTED;
15177 break;
9a5aca8c 15178
fd2ec330
PB
15179 case EF_ARM_EABI_VER2:
15180 fprintf (file, _(" [Version2 EABI]"));
15181
15182 if (flags & EF_ARM_SYMSARESORTED)
15183 fprintf (file, _(" [sorted symbol table]"));
15184 else
15185 fprintf (file, _(" [unsorted symbol table]"));
15186
15187 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15188 fprintf (file, _(" [dynamic symbols use segment index]"));
15189
15190 if (flags & EF_ARM_MAPSYMSFIRST)
15191 fprintf (file, _(" [mapping symbols precede others]"));
15192
99e4ae17 15193 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
15194 | EF_ARM_MAPSYMSFIRST);
15195 break;
15196
d507cf36
PB
15197 case EF_ARM_EABI_VER3:
15198 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
15199 break;
15200
15201 case EF_ARM_EABI_VER4:
15202 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 15203 goto eabi;
d507cf36 15204
3a4a14e9
PB
15205 case EF_ARM_EABI_VER5:
15206 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
15207
15208 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15209 fprintf (file, _(" [soft-float ABI]"));
15210
15211 if (flags & EF_ARM_ABI_FLOAT_HARD)
15212 fprintf (file, _(" [hard-float ABI]"));
15213
15214 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15215
3a4a14e9 15216 eabi:
d507cf36
PB
15217 if (flags & EF_ARM_BE8)
15218 fprintf (file, _(" [BE8]"));
15219
15220 if (flags & EF_ARM_LE8)
15221 fprintf (file, _(" [LE8]"));
15222
15223 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15224 break;
15225
fc830a83 15226 default:
9b485d32 15227 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
15228 break;
15229 }
252b5132 15230
fc830a83 15231 flags &= ~ EF_ARM_EABIMASK;
252b5132 15232
fc830a83 15233 if (flags & EF_ARM_RELEXEC)
9b485d32 15234 fprintf (file, _(" [relocatable executable]"));
252b5132 15235
18a20338
CL
15236 if (flags & EF_ARM_PIC)
15237 fprintf (file, _(" [position independent]"));
15238
15239 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15240 fprintf (file, _(" [FDPIC ABI supplement]"));
15241
15242 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
fc830a83
NC
15243
15244 if (flags)
dbb078f6 15245 fprintf (file, _(" <Unrecognised flag bits set>"));
9a5aca8c 15246
252b5132
RH
15247 fputc ('\n', file);
15248
0a1b45a2 15249 return true;
252b5132
RH
15250}
15251
15252static int
57e8b36a 15253elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 15254{
2f0ca46a
NC
15255 switch (ELF_ST_TYPE (elf_sym->st_info))
15256 {
15257 case STT_ARM_TFUNC:
15258 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 15259
2f0ca46a
NC
15260 case STT_ARM_16BIT:
15261 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15262 This allows us to distinguish between data used by Thumb instructions
15263 and non-data (which is probably code) inside Thumb regions of an
15264 executable. */
1a0eb693 15265 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
15266 return ELF_ST_TYPE (elf_sym->st_info);
15267 break;
9a5aca8c 15268
ce855c42
NC
15269 default:
15270 break;
2f0ca46a
NC
15271 }
15272
15273 return type;
252b5132 15274}
f21f3fe0 15275
252b5132 15276static asection *
07adf181
AM
15277elf32_arm_gc_mark_hook (asection *sec,
15278 struct bfd_link_info *info,
15279 Elf_Internal_Rela *rel,
15280 struct elf_link_hash_entry *h,
15281 Elf_Internal_Sym *sym)
252b5132
RH
15282{
15283 if (h != NULL)
07adf181 15284 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
15285 {
15286 case R_ARM_GNU_VTINHERIT:
15287 case R_ARM_GNU_VTENTRY:
07adf181
AM
15288 return NULL;
15289 }
9ad5cbcf 15290
07adf181 15291 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
15292}
15293
780a67af
NC
15294/* Look through the relocs for a section during the first phase. */
15295
0a1b45a2 15296static bool
57e8b36a
NC
15297elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15298 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 15299{
b34976b6
AM
15300 Elf_Internal_Shdr *symtab_hdr;
15301 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
15302 const Elf_Internal_Rela *rel;
15303 const Elf_Internal_Rela *rel_end;
15304 bfd *dynobj;
5e681ec4 15305 asection *sreloc;
5e681ec4 15306 struct elf32_arm_link_hash_table *htab;
0a1b45a2
AM
15307 bool call_reloc_p;
15308 bool may_become_dynamic_p;
15309 bool may_need_local_target_p;
ce98a316 15310 unsigned long nsyms;
9a5aca8c 15311
0e1862bb 15312 if (bfd_link_relocatable (info))
0a1b45a2 15313 return true;
9a5aca8c 15314
0ffa91dd
NC
15315 BFD_ASSERT (is_arm_elf (abfd));
15316
5e681ec4 15317 htab = elf32_arm_hash_table (info);
4dfe6ac6 15318 if (htab == NULL)
0a1b45a2 15319 return false;
4dfe6ac6 15320
5e681ec4 15321 sreloc = NULL;
9a5aca8c 15322
67687978
PB
15323 /* Create dynamic sections for relocatable executables so that we can
15324 copy relocations. */
15325 if (htab->root.is_relocatable_executable
15326 && ! htab->root.dynamic_sections_created)
15327 {
15328 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
0a1b45a2 15329 return false;
67687978
PB
15330 }
15331
cbc704f3
RS
15332 if (htab->root.dynobj == NULL)
15333 htab->root.dynobj = abfd;
34e77a92 15334 if (!create_ifunc_sections (info))
0a1b45a2 15335 return false;
cbc704f3
RS
15336
15337 dynobj = htab->root.dynobj;
15338
0ffa91dd 15339 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 15340 sym_hashes = elf_sym_hashes (abfd);
ce98a316 15341 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 15342
252b5132
RH
15343 rel_end = relocs + sec->reloc_count;
15344 for (rel = relocs; rel < rel_end; rel++)
15345 {
34e77a92 15346 Elf_Internal_Sym *isym;
252b5132 15347 struct elf_link_hash_entry *h;
b7693d02 15348 struct elf32_arm_link_hash_entry *eh;
d42c267e 15349 unsigned int r_symndx;
eb043451 15350 int r_type;
9a5aca8c 15351
252b5132 15352 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 15353 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 15354 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 15355
ce98a316
NC
15356 if (r_symndx >= nsyms
15357 /* PR 9934: It is possible to have relocations that do not
15358 refer to symbols, thus it is also possible to have an
15359 object file containing relocations but no symbol table. */
cf35638d 15360 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 15361 {
871b3ab2 15362 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
4eca0228 15363 r_symndx);
0a1b45a2 15364 return false;
ba93b8ac
DJ
15365 }
15366
34e77a92
RS
15367 h = NULL;
15368 isym = NULL;
15369 if (nsyms > 0)
973a3492 15370 {
34e77a92
RS
15371 if (r_symndx < symtab_hdr->sh_info)
15372 {
15373 /* A local symbol. */
f1dfbfdb 15374 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache,
34e77a92
RS
15375 abfd, r_symndx);
15376 if (isym == NULL)
0a1b45a2 15377 return false;
34e77a92
RS
15378 }
15379 else
15380 {
15381 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15382 while (h->root.type == bfd_link_hash_indirect
15383 || h->root.type == bfd_link_hash_warning)
15384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15385 }
973a3492 15386 }
9a5aca8c 15387
b7693d02
DJ
15388 eh = (struct elf32_arm_link_hash_entry *) h;
15389
0a1b45a2
AM
15390 call_reloc_p = false;
15391 may_become_dynamic_p = false;
15392 may_need_local_target_p = false;
f6e32f6d 15393
0855e32b
NS
15394 /* Could be done earlier, if h were already available. */
15395 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 15396 switch (r_type)
99059e56 15397 {
e8b09b87
CL
15398 case R_ARM_GOTOFFFUNCDESC:
15399 {
15400 if (h == NULL)
15401 {
15402 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15403 return false;
74fd118f
NC
15404 if (r_symndx >= elf32_arm_num_entries (abfd))
15405 return false;
cc850f74
NC
15406 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].gotofffuncdesc_cnt += 1;
15407 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15408 }
15409 else
15410 {
15411 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15412 }
15413 }
15414 break;
15415
15416 case R_ARM_GOTFUNCDESC:
15417 {
15418 if (h == NULL)
15419 {
15420 /* Such a relocation is not supposed to be generated
cc850f74 15421 by gcc on a static function. */
e8b09b87 15422 /* Anyway if needed it could be handled. */
cc850f74 15423 return false;
e8b09b87
CL
15424 }
15425 else
15426 {
15427 eh->fdpic_cnts.gotfuncdesc_cnt++;
15428 }
15429 }
15430 break;
15431
15432 case R_ARM_FUNCDESC:
15433 {
15434 if (h == NULL)
15435 {
15436 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15437 return false;
74fd118f
NC
15438 if (r_symndx >= elf32_arm_num_entries (abfd))
15439 return false;
cc850f74
NC
15440 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_cnt += 1;
15441 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15442 }
15443 else
15444 {
15445 eh->fdpic_cnts.funcdesc_cnt++;
15446 }
15447 }
15448 break;
15449
5e681ec4 15450 case R_ARM_GOT32:
eb043451 15451 case R_ARM_GOT_PREL:
ba93b8ac 15452 case R_ARM_TLS_GD32:
5c5a4843 15453 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 15454 case R_ARM_TLS_IE32:
5c5a4843 15455 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
15456 case R_ARM_TLS_GOTDESC:
15457 case R_ARM_TLS_DESCSEQ:
15458 case R_ARM_THM_TLS_DESCSEQ:
15459 case R_ARM_TLS_CALL:
15460 case R_ARM_THM_TLS_CALL:
5e681ec4 15461 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
15462 {
15463 int tls_type, old_tls_type;
5e681ec4 15464
ba93b8ac
DJ
15465 switch (r_type)
15466 {
15467 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
5c5a4843 15468 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
b38cadfb 15469
ba93b8ac 15470 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
5c5a4843 15471 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
b38cadfb 15472
0855e32b
NS
15473 case R_ARM_TLS_GOTDESC:
15474 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15475 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15476 tls_type = GOT_TLS_GDESC; break;
b38cadfb 15477
ba93b8ac
DJ
15478 default: tls_type = GOT_NORMAL; break;
15479 }
252b5132 15480
0e1862bb 15481 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
15482 info->flags |= DF_STATIC_TLS;
15483
ba93b8ac
DJ
15484 if (h != NULL)
15485 {
15486 h->got.refcount++;
15487 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15488 }
15489 else
15490 {
ba93b8ac 15491 /* This is a global offset table entry for a local symbol. */
34e77a92 15492 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15493 return false;
74fd118f
NC
15494 if (r_symndx >= elf32_arm_num_entries (abfd))
15495 {
15496 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15497 r_symndx);
15498 return false;
15499 }
15500
34e77a92 15501 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
15502 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15503 }
15504
0855e32b 15505 /* If a variable is accessed with both tls methods, two
99059e56 15506 slots may be created. */
0855e32b
NS
15507 if (GOT_TLS_GD_ANY_P (old_tls_type)
15508 && GOT_TLS_GD_ANY_P (tls_type))
15509 tls_type |= old_tls_type;
15510
15511 /* We will already have issued an error message if there
15512 is a TLS/non-TLS mismatch, based on the symbol
15513 type. So just combine any TLS types needed. */
ba93b8ac
DJ
15514 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15515 && tls_type != GOT_NORMAL)
15516 tls_type |= old_tls_type;
15517
0855e32b 15518 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
15519 method, we're able to relax. Turn off the GDESC flag,
15520 without messing up with any other kind of tls types
6a631e86 15521 that may be involved. */
0855e32b
NS
15522 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15523 tls_type &= ~GOT_TLS_GDESC;
15524
ba93b8ac
DJ
15525 if (old_tls_type != tls_type)
15526 {
15527 if (h != NULL)
15528 elf32_arm_hash_entry (h)->tls_type = tls_type;
15529 else
15530 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15531 }
15532 }
8029a119 15533 /* Fall through. */
ba93b8ac
DJ
15534
15535 case R_ARM_TLS_LDM32:
5c5a4843
CL
15536 case R_ARM_TLS_LDM32_FDPIC:
15537 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
ba93b8ac 15538 htab->tls_ldm_got.refcount++;
8029a119 15539 /* Fall through. */
252b5132 15540
c19d1205 15541 case R_ARM_GOTOFF32:
5e681ec4 15542 case R_ARM_GOTPC:
cbc704f3
RS
15543 if (htab->root.sgot == NULL
15544 && !create_got_section (htab->root.dynobj, info))
0a1b45a2 15545 return false;
252b5132
RH
15546 break;
15547
252b5132 15548 case R_ARM_PC24:
7359ea65 15549 case R_ARM_PLT32:
5b5bb741
PB
15550 case R_ARM_CALL:
15551 case R_ARM_JUMP24:
eb043451 15552 case R_ARM_PREL31:
c19d1205 15553 case R_ARM_THM_CALL:
bd97cb95
DJ
15554 case R_ARM_THM_JUMP24:
15555 case R_ARM_THM_JUMP19:
0a1b45a2
AM
15556 call_reloc_p = true;
15557 may_need_local_target_p = true;
f6e32f6d
RS
15558 break;
15559
15560 case R_ARM_ABS12:
15561 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15562 ldr __GOTT_INDEX__ offsets. */
90c14f0c 15563 if (htab->root.target_os != is_vxworks)
f6e32f6d 15564 {
0a1b45a2 15565 may_need_local_target_p = true;
f6e32f6d
RS
15566 break;
15567 }
aebf9be7 15568 else goto jump_over;
9eaff861 15569
f6e32f6d 15570 /* Fall through. */
39623e12 15571
96c23d59
JM
15572 case R_ARM_MOVW_ABS_NC:
15573 case R_ARM_MOVT_ABS:
15574 case R_ARM_THM_MOVW_ABS_NC:
15575 case R_ARM_THM_MOVT_ABS:
0e1862bb 15576 if (bfd_link_pic (info))
96c23d59 15577 {
4eca0228 15578 _bfd_error_handler
871b3ab2 15579 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
96c23d59
JM
15580 abfd, elf32_arm_howto_table_1[r_type].name,
15581 (h) ? h->root.root.string : "a local symbol");
15582 bfd_set_error (bfd_error_bad_value);
0a1b45a2 15583 return false;
96c23d59
JM
15584 }
15585
15586 /* Fall through. */
39623e12
PB
15587 case R_ARM_ABS32:
15588 case R_ARM_ABS32_NOI:
aebf9be7 15589 jump_over:
0e1862bb 15590 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
15591 {
15592 h->pointer_equality_needed = 1;
15593 }
15594 /* Fall through. */
39623e12
PB
15595 case R_ARM_REL32:
15596 case R_ARM_REL32_NOI:
b6895b4f
PB
15597 case R_ARM_MOVW_PREL_NC:
15598 case R_ARM_MOVT_PREL:
b6895b4f
PB
15599 case R_ARM_THM_MOVW_PREL_NC:
15600 case R_ARM_THM_MOVT_PREL:
39623e12 15601
b7693d02 15602 /* Should the interworking branches be listed here? */
e8b09b87
CL
15603 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15604 || htab->fdpic_p)
34e77a92
RS
15605 && (sec->flags & SEC_ALLOC) != 0)
15606 {
15607 if (h == NULL
469a3493 15608 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
15609 {
15610 /* In shared libraries and relocatable executables,
15611 we treat local relative references as calls;
15612 see the related SYMBOL_CALLS_LOCAL code in
15613 allocate_dynrelocs. */
0a1b45a2
AM
15614 call_reloc_p = true;
15615 may_need_local_target_p = true;
34e77a92
RS
15616 }
15617 else
15618 /* We are creating a shared library or relocatable
15619 executable, and this is a reloc against a global symbol,
15620 or a non-PC-relative reloc against a local symbol.
15621 We may need to copy the reloc into the output. */
0a1b45a2 15622 may_become_dynamic_p = true;
34e77a92 15623 }
f6e32f6d 15624 else
0a1b45a2 15625 may_need_local_target_p = true;
252b5132
RH
15626 break;
15627
99059e56
RM
15628 /* This relocation describes the C++ object vtable hierarchy.
15629 Reconstruct it for later use during GC. */
15630 case R_ARM_GNU_VTINHERIT:
15631 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
0a1b45a2 15632 return false;
99059e56
RM
15633 break;
15634
15635 /* This relocation describes which C++ vtable entries are actually
15636 used. Record for later use during GC. */
15637 case R_ARM_GNU_VTENTRY:
a0ea3a14 15638 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
0a1b45a2 15639 return false;
99059e56
RM
15640 break;
15641 }
f6e32f6d
RS
15642
15643 if (h != NULL)
15644 {
15645 if (call_reloc_p)
15646 /* We may need a .plt entry if the function this reloc
15647 refers to is in a different object, regardless of the
15648 symbol's type. We can't tell for sure yet, because
15649 something later might force the symbol local. */
15650 h->needs_plt = 1;
15651 else if (may_need_local_target_p)
15652 /* If this reloc is in a read-only section, we might
15653 need a copy reloc. We can't check reliably at this
15654 stage whether the section is read-only, as input
15655 sections have not yet been mapped to output sections.
15656 Tentatively set the flag for now, and correct in
15657 adjust_dynamic_symbol. */
15658 h->non_got_ref = 1;
15659 }
15660
34e77a92
RS
15661 if (may_need_local_target_p
15662 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 15663 {
34e77a92
RS
15664 union gotplt_union *root_plt;
15665 struct arm_plt_info *arm_plt;
15666 struct arm_local_iplt_info *local_iplt;
15667
15668 if (h != NULL)
15669 {
15670 root_plt = &h->plt;
15671 arm_plt = &eh->plt;
15672 }
15673 else
15674 {
15675 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15676 if (local_iplt == NULL)
0a1b45a2 15677 return false;
34e77a92
RS
15678 root_plt = &local_iplt->root;
15679 arm_plt = &local_iplt->arm;
15680 }
15681
f6e32f6d
RS
15682 /* If the symbol is a function that doesn't bind locally,
15683 this relocation will need a PLT entry. */
a8c887dd
NC
15684 if (root_plt->refcount != -1)
15685 root_plt->refcount += 1;
34e77a92
RS
15686
15687 if (!call_reloc_p)
15688 arm_plt->noncall_refcount++;
f6e32f6d
RS
15689
15690 /* It's too early to use htab->use_blx here, so we have to
15691 record possible blx references separately from
15692 relocs that definitely need a thumb stub. */
15693
15694 if (r_type == R_ARM_THM_CALL)
34e77a92 15695 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
15696
15697 if (r_type == R_ARM_THM_JUMP24
15698 || r_type == R_ARM_THM_JUMP19)
34e77a92 15699 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
15700 }
15701
15702 if (may_become_dynamic_p)
15703 {
15704 struct elf_dyn_relocs *p, **head;
15705
15706 /* Create a reloc section in dynobj. */
15707 if (sreloc == NULL)
15708 {
15709 sreloc = _bfd_elf_make_dynamic_reloc_section
15710 (sec, dynobj, 2, abfd, ! htab->use_rel);
15711
15712 if (sreloc == NULL)
0a1b45a2 15713 return false;
f6e32f6d
RS
15714 }
15715
15716 /* If this is a global symbol, count the number of
15717 relocations we need for this symbol. */
15718 if (h != NULL)
190eb1dd 15719 head = &h->dyn_relocs;
f6e32f6d
RS
15720 else
15721 {
34e77a92
RS
15722 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15723 if (head == NULL)
0a1b45a2 15724 return false;
f6e32f6d
RS
15725 }
15726
15727 p = *head;
15728 if (p == NULL || p->sec != sec)
15729 {
986f0783 15730 size_t amt = sizeof *p;
f6e32f6d
RS
15731
15732 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15733 if (p == NULL)
0a1b45a2 15734 return false;
f6e32f6d
RS
15735 p->next = *head;
15736 *head = p;
15737 p->sec = sec;
15738 p->count = 0;
15739 p->pc_count = 0;
15740 }
15741
469a3493 15742 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
15743 p->pc_count += 1;
15744 p->count += 1;
cc850f74
NC
15745 if (h == NULL && htab->fdpic_p && !bfd_link_pic (info)
15746 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI)
15747 {
15748 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15749 that will become rofixup. */
15750 /* This is due to the fact that we suppose all will become rofixup. */
15751 _bfd_error_handler
15752 (_("FDPIC does not yet support %s relocation"
15753 " to become dynamic for executable"),
15754 elf32_arm_howto_table_1[r_type].name);
15755 abort ();
15756 }
f6e32f6d 15757 }
252b5132 15758 }
f21f3fe0 15759
0a1b45a2 15760 return true;
252b5132
RH
15761}
15762
9eaff861
AO
15763static void
15764elf32_arm_update_relocs (asection *o,
15765 struct bfd_elf_section_reloc_data *reldata)
15766{
15767 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15768 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15769 const struct elf_backend_data *bed;
15770 _arm_elf_section_data *eado;
15771 struct bfd_link_order *p;
15772 bfd_byte *erela_head, *erela;
15773 Elf_Internal_Rela *irela_head, *irela;
15774 Elf_Internal_Shdr *rel_hdr;
15775 bfd *abfd;
15776 unsigned int count;
15777
15778 eado = get_arm_elf_section_data (o);
15779
15780 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15781 return;
15782
15783 abfd = o->owner;
15784 bed = get_elf_backend_data (abfd);
15785 rel_hdr = reldata->hdr;
15786
15787 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15788 {
15789 swap_in = bed->s->swap_reloc_in;
15790 swap_out = bed->s->swap_reloc_out;
15791 }
15792 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15793 {
15794 swap_in = bed->s->swap_reloca_in;
15795 swap_out = bed->s->swap_reloca_out;
15796 }
15797 else
15798 abort ();
15799
15800 erela_head = rel_hdr->contents;
15801 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15802 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15803
15804 erela = erela_head;
15805 irela = irela_head;
15806 count = 0;
15807
15808 for (p = o->map_head.link_order; p; p = p->next)
15809 {
15810 if (p->type == bfd_section_reloc_link_order
15811 || p->type == bfd_symbol_reloc_link_order)
15812 {
15813 (*swap_in) (abfd, erela, irela);
15814 erela += rel_hdr->sh_entsize;
15815 irela++;
15816 count++;
15817 }
15818 else if (p->type == bfd_indirect_link_order)
15819 {
15820 struct bfd_elf_section_reloc_data *input_reldata;
15821 arm_unwind_table_edit *edit_list, *edit_tail;
15822 _arm_elf_section_data *eadi;
15823 bfd_size_type j;
15824 bfd_vma offset;
15825 asection *i;
15826
15827 i = p->u.indirect.section;
15828
15829 eadi = get_arm_elf_section_data (i);
15830 edit_list = eadi->u.exidx.unwind_edit_list;
15831 edit_tail = eadi->u.exidx.unwind_edit_tail;
539300fb 15832 offset = i->output_offset;
9eaff861
AO
15833
15834 if (eadi->elf.rel.hdr &&
15835 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15836 input_reldata = &eadi->elf.rel;
15837 else if (eadi->elf.rela.hdr &&
15838 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15839 input_reldata = &eadi->elf.rela;
15840 else
15841 abort ();
15842
15843 if (edit_list)
15844 {
15845 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15846 {
15847 arm_unwind_table_edit *edit_node, *edit_next;
15848 bfd_vma bias;
c48182bf 15849 bfd_vma reloc_index;
9eaff861
AO
15850
15851 (*swap_in) (abfd, erela, irela);
c48182bf 15852 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
15853
15854 bias = 0;
15855 edit_node = edit_list;
15856 for (edit_next = edit_list;
c48182bf 15857 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
15858 edit_next = edit_node->next)
15859 {
15860 bias++;
15861 edit_node = edit_next;
15862 }
15863
15864 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 15865 || edit_node->index != reloc_index)
9eaff861
AO
15866 {
15867 irela->r_offset -= bias * 8;
15868 irela++;
15869 count++;
15870 }
15871
15872 erela += rel_hdr->sh_entsize;
15873 }
15874
15875 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15876 {
15877 /* New relocation entity. */
15878 asection *text_sec = edit_tail->linked_section;
15879 asection *text_out = text_sec->output_section;
15880 bfd_vma exidx_offset = offset + i->size - 8;
15881
15882 irela->r_addend = 0;
15883 irela->r_offset = exidx_offset;
15884 irela->r_info = ELF32_R_INFO
15885 (text_out->target_index, R_ARM_PREL31);
15886 irela++;
15887 count++;
15888 }
15889 }
15890 else
15891 {
15892 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15893 {
15894 (*swap_in) (abfd, erela, irela);
15895 erela += rel_hdr->sh_entsize;
15896 irela++;
15897 }
15898
15899 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15900 }
15901 }
15902 }
15903
15904 reldata->count = count;
15905 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15906
15907 erela = erela_head;
15908 irela = irela_head;
15909 while (count > 0)
15910 {
15911 (*swap_out) (abfd, irela, erela);
15912 erela += rel_hdr->sh_entsize;
15913 irela++;
15914 count--;
15915 }
15916
15917 free (irela_head);
15918
15919 /* Hashes are no longer valid. */
15920 free (reldata->hashes);
15921 reldata->hashes = NULL;
15922}
15923
6a5bb875 15924/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15925 required if the corresponding code section is marked. Similarly, ARMv8-M
15926 secure entry functions can only be referenced by SG veneers which are
15927 created after the GC process. They need to be marked in case they reside in
15928 their own section (as would be the case if code was compiled with
15929 -ffunction-sections). */
6a5bb875 15930
0a1b45a2 15931static bool
906e58ca
NC
15932elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15933 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15934{
15935 bfd *sub;
15936 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15937 asection *cmse_sec;
15938 obj_attribute *out_attr;
15939 Elf_Internal_Shdr *symtab_hdr;
15940 unsigned i, sym_count, ext_start;
15941 const struct elf_backend_data *bed;
15942 struct elf_link_hash_entry **sym_hashes;
15943 struct elf32_arm_link_hash_entry *cmse_hash;
0a1b45a2 15944 bool again, is_v8m, first_bfd_browse = true;
e4fbcd83 15945 bool extra_marks_added = false;
bb32413f 15946 asection *isec;
6a5bb875 15947
7f6ab9f8
AM
15948 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15949
4ba2ef8f
TP
15950 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15951 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15952 && out_attr[Tag_CPU_arch_profile].i == 'M';
15953
6a5bb875
PB
15954 /* Marking EH data may cause additional code sections to be marked,
15955 requiring multiple passes. */
0a1b45a2 15956 again = true;
6a5bb875
PB
15957 while (again)
15958 {
0a1b45a2 15959 again = false;
c72f2fb2 15960 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15961 {
15962 asection *o;
15963
0ffa91dd 15964 if (! is_arm_elf (sub))
6a5bb875
PB
15965 continue;
15966
15967 elf_shdrp = elf_elfsections (sub);
15968 for (o = sub->sections; o != NULL; o = o->next)
15969 {
15970 Elf_Internal_Shdr *hdr;
0ffa91dd 15971
6a5bb875 15972 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15973 if (hdr->sh_type == SHT_ARM_EXIDX
15974 && hdr->sh_link
15975 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15976 && !o->gc_mark
15977 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15978 {
0a1b45a2 15979 again = true;
6a5bb875 15980 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
0a1b45a2 15981 return false;
6a5bb875
PB
15982 }
15983 }
4ba2ef8f
TP
15984
15985 /* Mark section holding ARMv8-M secure entry functions. We mark all
15986 of them so no need for a second browsing. */
15987 if (is_v8m && first_bfd_browse)
15988 {
e4fbcd83
NC
15989 bool debug_sec_need_to_be_marked = false;
15990
4ba2ef8f
TP
15991 sym_hashes = elf_sym_hashes (sub);
15992 bed = get_elf_backend_data (sub);
15993 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15994 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15995 ext_start = symtab_hdr->sh_info;
15996
15997 /* Scan symbols. */
15998 for (i = ext_start; i < sym_count; i++)
15999 {
16000 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
16001 if (cmse_hash == NULL)
16002 continue;
4ba2ef8f
TP
16003
16004 /* Assume it is a special symbol. If not, cmse_scan will
16005 warn about it and user can do something about it. */
08dedd66 16006 if (startswith (cmse_hash->root.root.root.string,
e4fbcd83 16007 CMSE_PREFIX))
4ba2ef8f
TP
16008 {
16009 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
16010 if (!cmse_sec->gc_mark
16011 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
0a1b45a2 16012 return false;
bb32413f
SP
16013 /* The debug sections related to these secure entry
16014 functions are marked on enabling below flag. */
0a1b45a2 16015 debug_sec_need_to_be_marked = true;
4ba2ef8f
TP
16016 }
16017 }
bb32413f
SP
16018
16019 if (debug_sec_need_to_be_marked)
16020 {
16021 /* Looping over all the sections of the object file containing
16022 Armv8-M secure entry functions and marking all the debug
16023 sections. */
16024 for (isec = sub->sections; isec != NULL; isec = isec->next)
16025 {
16026 /* If not a debug sections, skip it. */
16027 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
e4fbcd83
NC
16028 {
16029 isec->gc_mark = 1;
16030 extra_marks_added = true;
16031 }
bb32413f 16032 }
0a1b45a2 16033 debug_sec_need_to_be_marked = false;
bb32413f 16034 }
4ba2ef8f 16035 }
6a5bb875 16036 }
e4fbcd83 16037
0a1b45a2 16038 first_bfd_browse = false;
6a5bb875
PB
16039 }
16040
e4fbcd83
NC
16041 /* PR 30354: If we have added extra marks then make sure that any
16042 dependencies of the newly marked sections are also marked. */
16043 if (extra_marks_added)
16044 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
16045
0a1b45a2 16046 return true;
6a5bb875
PB
16047}
16048
3c9458e9
NC
16049/* Treat mapping symbols as special target symbols. */
16050
0a1b45a2 16051static bool
3c9458e9
NC
16052elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16053{
b0796911
PB
16054 return bfd_is_arm_special_symbol_name (sym->name,
16055 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
16056}
16057
e7679060
AM
16058/* If the ELF symbol SYM might be a function in SEC, return the
16059 function size and set *CODE_OFF to the function's entry point,
16060 otherwise return zero. */
252b5132 16061
e7679060
AM
16062static bfd_size_type
16063elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
16064 bfd_vma *code_off)
16065{
16066 bfd_size_type size;
24aebc79 16067 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
252b5132 16068
e7679060
AM
16069 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16070 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16071 || sym->section != sec)
16072 return 0;
252b5132 16073
24aebc79
NC
16074 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
16075
e7679060 16076 if (!(sym->flags & BSF_SYNTHETIC))
24aebc79 16077 switch (ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info))
e7679060 16078 {
24aebc79
NC
16079 case STT_NOTYPE:
16080 /* Ignore symbols created by the annobin plugin for gcc and clang.
16081 These symbols are hidden, local, notype and have a size of 0. */
16082 if (size == 0
16083 && sym->flags & BSF_LOCAL
16084 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
16085 return 0;
16086 /* Fall through. */
252b5132
RH
16087 case STT_FUNC:
16088 case STT_ARM_TFUNC:
24aebc79 16089 /* FIXME: Allow STT_GNU_IFUNC as well ? */
252b5132 16090 break;
e7679060
AM
16091 default:
16092 return 0;
16093 }
cc850f74 16094
e7679060
AM
16095 if ((sym->flags & BSF_LOCAL)
16096 && bfd_is_arm_special_symbol_name (sym->name,
16097 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16098 return 0;
0367ecfb 16099
e7679060 16100 *code_off = sym->value;
24aebc79
NC
16101
16102 /* Do not return 0 for the function's size. */
16103 return size ? size : 1;
16104
252b5132
RH
16105}
16106
0a1b45a2 16107static bool
07d6d2b8 16108elf32_arm_find_inliner_info (bfd * abfd,
4ab527b0
FF
16109 const char ** filename_ptr,
16110 const char ** functionname_ptr,
16111 unsigned int * line_ptr)
16112{
0a1b45a2 16113 bool found;
4ab527b0
FF
16114 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16115 functionname_ptr, line_ptr,
16116 & elf_tdata (abfd)->dwarf2_find_line_info);
16117 return found;
16118}
16119
252b5132
RH
16120/* Adjust a symbol defined by a dynamic object and referenced by a
16121 regular object. The current definition is in some section of the
16122 dynamic object, but we're not including those sections. We have to
16123 change the definition to something the rest of the link can
16124 understand. */
16125
0a1b45a2 16126static bool
57e8b36a
NC
16127elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16128 struct elf_link_hash_entry * h)
252b5132
RH
16129{
16130 bfd * dynobj;
5474d94f 16131 asection *s, *srel;
b7693d02 16132 struct elf32_arm_link_hash_entry * eh;
67687978 16133 struct elf32_arm_link_hash_table *globals;
252b5132 16134
67687978 16135 globals = elf32_arm_hash_table (info);
4dfe6ac6 16136 if (globals == NULL)
0a1b45a2 16137 return false;
4dfe6ac6 16138
252b5132
RH
16139 dynobj = elf_hash_table (info)->dynobj;
16140
16141 /* Make sure we know what is going on here. */
16142 BFD_ASSERT (dynobj != NULL
f5385ebf 16143 && (h->needs_plt
34e77a92 16144 || h->type == STT_GNU_IFUNC
60d67dc8 16145 || h->is_weakalias
f5385ebf
AM
16146 || (h->def_dynamic
16147 && h->ref_regular
16148 && !h->def_regular)));
252b5132 16149
b7693d02
DJ
16150 eh = (struct elf32_arm_link_hash_entry *) h;
16151
252b5132
RH
16152 /* If this is a function, put it in the procedure linkage table. We
16153 will fill in the contents of the procedure linkage table later,
16154 when we know the address of the .got section. */
34e77a92 16155 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 16156 {
34e77a92
RS
16157 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16158 symbol binds locally. */
5e681ec4 16159 if (h->plt.refcount <= 0
34e77a92
RS
16160 || (h->type != STT_GNU_IFUNC
16161 && (SYMBOL_CALLS_LOCAL (info, h)
16162 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16163 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
16164 {
16165 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
16166 file, but the symbol was never referred to by a dynamic
16167 object, or if all references were garbage collected. In
16168 such a case, we don't actually need to build a procedure
16169 linkage table, and we can just do a PC24 reloc instead. */
16170 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16171 eh->plt.thumb_refcount = 0;
16172 eh->plt.maybe_thumb_refcount = 0;
16173 eh->plt.noncall_refcount = 0;
f5385ebf 16174 h->needs_plt = 0;
252b5132
RH
16175 }
16176
0a1b45a2 16177 return true;
252b5132 16178 }
5e681ec4 16179 else
b7693d02
DJ
16180 {
16181 /* It's possible that we incorrectly decided a .plt reloc was
16182 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16183 in check_relocs. We can't decide accurately between function
16184 and non-function syms in check-relocs; Objects loaded later in
16185 the link may change h->type. So fix it now. */
16186 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16187 eh->plt.thumb_refcount = 0;
16188 eh->plt.maybe_thumb_refcount = 0;
16189 eh->plt.noncall_refcount = 0;
b7693d02 16190 }
252b5132
RH
16191
16192 /* If this is a weak symbol, and there is a real definition, the
16193 processor independent code will have arranged for us to see the
16194 real definition first, and we can just use the same value. */
60d67dc8 16195 if (h->is_weakalias)
252b5132 16196 {
60d67dc8
AM
16197 struct elf_link_hash_entry *def = weakdef (h);
16198 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16199 h->root.u.def.section = def->root.u.def.section;
16200 h->root.u.def.value = def->root.u.def.value;
0a1b45a2 16201 return true;
252b5132
RH
16202 }
16203
ba93b8ac
DJ
16204 /* If there are no non-GOT references, we do not need a copy
16205 relocation. */
16206 if (!h->non_got_ref)
0a1b45a2 16207 return true;
ba93b8ac 16208
252b5132
RH
16209 /* This is a reference to a symbol defined by a dynamic object which
16210 is not a function. */
16211
16212 /* If we are creating a shared library, we must presume that the
16213 only references to the symbol are via the global offset table.
16214 For such cases we need not do anything here; the relocations will
67687978
PB
16215 be handled correctly by relocate_section. Relocatable executables
16216 can reference data in shared objects directly, so we don't need to
16217 do anything here. */
0e1862bb 16218 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
0a1b45a2 16219 return true;
252b5132
RH
16220
16221 /* We must allocate the symbol in our .dynbss section, which will
16222 become part of the .bss section of the executable. There will be
16223 an entry for this symbol in the .dynsym section. The dynamic
16224 object will contain position independent code, so all references
16225 from the dynamic object to this symbol will go through the global
16226 offset table. The dynamic linker will use the .dynsym entry to
16227 determine the address it must put in the global offset table, so
16228 both the dynamic object and the regular object will refer to the
16229 same memory location for the variable. */
5522f910
NC
16230 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16231 linker to copy the initial value out of the dynamic object and into
16232 the runtime process image. We need to remember the offset into the
00a97672 16233 .rel(a).bss section we are going to use. */
5474d94f
AM
16234 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16235 {
16236 s = globals->root.sdynrelro;
16237 srel = globals->root.sreldynrelro;
16238 }
16239 else
16240 {
16241 s = globals->root.sdynbss;
16242 srel = globals->root.srelbss;
16243 }
5522f910
NC
16244 if (info->nocopyreloc == 0
16245 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 16246 && h->size != 0)
252b5132 16247 {
47beaa6a 16248 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 16249 h->needs_copy = 1;
252b5132
RH
16250 }
16251
6cabe1ea 16252 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
16253}
16254
5e681ec4
PB
16255/* Allocate space in .plt, .got and associated reloc sections for
16256 dynamic relocs. */
16257
0a1b45a2 16258static bool
47beaa6a 16259allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
16260{
16261 struct bfd_link_info *info;
16262 struct elf32_arm_link_hash_table *htab;
16263 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 16264 struct elf_dyn_relocs *p;
5e681ec4
PB
16265
16266 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 16267 return true;
5e681ec4 16268
e6a6bb22
AM
16269 eh = (struct elf32_arm_link_hash_entry *) h;
16270
5e681ec4
PB
16271 info = (struct bfd_link_info *) inf;
16272 htab = elf32_arm_hash_table (info);
4dfe6ac6 16273 if (htab == NULL)
0a1b45a2 16274 return false;
5e681ec4 16275
34e77a92 16276 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
16277 && h->plt.refcount > 0)
16278 {
16279 /* Make sure this symbol is output as a dynamic symbol.
16280 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16281 if (h->dynindx == -1 && !h->forced_local
16282 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16283 {
c152c796 16284 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16285 return false;
5e681ec4
PB
16286 }
16287
34e77a92
RS
16288 /* If the call in the PLT entry binds locally, the associated
16289 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16290 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16291 than the .plt section. */
16292 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16293 {
16294 eh->is_iplt = 1;
16295 if (eh->plt.noncall_refcount == 0
16296 && SYMBOL_REFERENCES_LOCAL (info, h))
16297 /* All non-call references can be resolved directly.
16298 This means that they can (and in some cases, must)
16299 resolve directly to the run-time target, rather than
16300 to the PLT. That in turns means that any .got entry
16301 would be equal to the .igot.plt entry, so there's
16302 no point having both. */
16303 h->got.refcount = 0;
16304 }
16305
0e1862bb 16306 if (bfd_link_pic (info)
34e77a92 16307 || eh->is_iplt
7359ea65 16308 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 16309 {
34e77a92 16310 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 16311
5e681ec4
PB
16312 /* If this symbol is not defined in a regular file, and we are
16313 not generating a shared library, then set the symbol to this
16314 location in the .plt. This is required to make function
16315 pointers compare as equal between the normal executable and
16316 the shared library. */
0e1862bb 16317 if (! bfd_link_pic (info)
f5385ebf 16318 && !h->def_regular)
5e681ec4 16319 {
34e77a92 16320 h->root.u.def.section = htab->root.splt;
5e681ec4 16321 h->root.u.def.value = h->plt.offset;
5e681ec4 16322
67d74e43
DJ
16323 /* Make sure the function is not marked as Thumb, in case
16324 it is the target of an ABS32 relocation, which will
16325 point to the PLT entry. */
39d911fc 16326 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 16327 }
022f8312 16328
00a97672
RS
16329 /* VxWorks executables have a second set of relocations for
16330 each PLT entry. They go in a separate relocation section,
16331 which is processed by the kernel loader. */
90c14f0c 16332 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
00a97672
RS
16333 {
16334 /* There is a relocation for the initial PLT entry:
16335 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16336 if (h->plt.offset == htab->plt_header_size)
47beaa6a 16337 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
16338
16339 /* There are two extra relocations for each subsequent
16340 PLT entry: an R_ARM_32 relocation for the GOT entry,
16341 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 16342 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 16343 }
5e681ec4
PB
16344 }
16345 else
16346 {
16347 h->plt.offset = (bfd_vma) -1;
f5385ebf 16348 h->needs_plt = 0;
5e681ec4
PB
16349 }
16350 }
16351 else
16352 {
16353 h->plt.offset = (bfd_vma) -1;
f5385ebf 16354 h->needs_plt = 0;
5e681ec4
PB
16355 }
16356
0855e32b
NS
16357 eh = (struct elf32_arm_link_hash_entry *) h;
16358 eh->tlsdesc_got = (bfd_vma) -1;
16359
5e681ec4
PB
16360 if (h->got.refcount > 0)
16361 {
16362 asection *s;
0a1b45a2 16363 bool dyn;
ba93b8ac
DJ
16364 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16365 int indx;
5e681ec4
PB
16366
16367 /* Make sure this symbol is output as a dynamic symbol.
16368 Undefined weak syms won't yet be marked as dynamic. */
a57d1773
AM
16369 if (htab->root.dynamic_sections_created
16370 && h->dynindx == -1
16371 && !h->forced_local
6c699715 16372 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16373 {
c152c796 16374 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16375 return false;
5e681ec4
PB
16376 }
16377
a57d1773
AM
16378 s = htab->root.sgot;
16379 h->got.offset = s->size;
ba93b8ac 16380
a57d1773
AM
16381 if (tls_type == GOT_UNKNOWN)
16382 abort ();
ba93b8ac 16383
a57d1773
AM
16384 if (tls_type == GOT_NORMAL)
16385 /* Non-TLS symbols need one GOT slot. */
16386 s->size += 4;
16387 else
16388 {
16389 if (tls_type & GOT_TLS_GDESC)
ba93b8ac 16390 {
a57d1773
AM
16391 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16392 eh->tlsdesc_got
16393 = (htab->root.sgotplt->size
16394 - elf32_arm_compute_jump_table_size (htab));
16395 htab->root.sgotplt->size += 8;
16396 h->got.offset = (bfd_vma) -2;
16397 /* plt.got_offset needs to know there's a TLS_DESC
16398 reloc in the middle of .got.plt. */
16399 htab->num_tls_desc++;
16400 }
0855e32b 16401
a57d1773
AM
16402 if (tls_type & GOT_TLS_GD)
16403 {
16404 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16405 consecutive GOT slots. If the symbol is both GD
16406 and GDESC, got.offset may have been
16407 overwritten. */
16408 h->got.offset = s->size;
16409 s->size += 8;
ba93b8ac
DJ
16410 }
16411
a57d1773
AM
16412 if (tls_type & GOT_TLS_IE)
16413 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16414 slot. */
16415 s->size += 4;
16416 }
ba93b8ac 16417
a57d1773 16418 dyn = htab->root.dynamic_sections_created;
ba93b8ac 16419
a57d1773
AM
16420 indx = 0;
16421 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
16422 && (!bfd_link_pic (info)
16423 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16424 indx = h->dynindx;
ba93b8ac 16425
a57d1773
AM
16426 if (tls_type != GOT_NORMAL
16427 && (bfd_link_dll (info) || indx != 0)
16428 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16429 || h->root.type != bfd_link_hash_undefweak))
16430 {
16431 if (tls_type & GOT_TLS_IE)
16432 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16433
a57d1773
AM
16434 if (tls_type & GOT_TLS_GD)
16435 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
0855e32b 16436
a57d1773 16437 if (tls_type & GOT_TLS_GDESC)
b436d854 16438 {
a57d1773
AM
16439 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16440 /* GDESC needs a trampoline to jump to. */
16441 htab->tls_trampoline = -1;
b436d854 16442 }
a57d1773
AM
16443
16444 /* Only GD needs it. GDESC just emits one relocation per
16445 2 entries. */
16446 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 16447 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 16448 }
a57d1773
AM
16449 else if (((indx != -1) || htab->fdpic_p)
16450 && !SYMBOL_REFERENCES_LOCAL (info, h))
16451 {
16452 if (htab->root.dynamic_sections_created)
16453 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16454 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16455 }
16456 else if (h->type == STT_GNU_IFUNC
16457 && eh->plt.noncall_refcount == 0)
16458 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16459 they all resolve dynamically instead. Reserve room for the
16460 GOT entry's R_ARM_IRELATIVE relocation. */
16461 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16462 else if (bfd_link_pic (info)
16463 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16464 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16465 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16466 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16467 /* Reserve room for rofixup for FDPIC executable. */
16468 /* TLS relocs do not need space since they are completely
16469 resolved. */
16470 htab->srofixup->size += 4;
5e681ec4
PB
16471 }
16472 else
16473 h->got.offset = (bfd_vma) -1;
16474
e8b09b87
CL
16475 /* FDPIC support. */
16476 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16477 {
16478 /* Symbol musn't be exported. */
16479 if (h->dynindx != -1)
cc850f74 16480 abort ();
e8b09b87 16481
a57d1773
AM
16482 /* We only allocate one function descriptor with its associated
16483 relocation. */
e8b09b87
CL
16484 if (eh->fdpic_cnts.funcdesc_offset == -1)
16485 {
16486 asection *s = htab->root.sgot;
16487
16488 eh->fdpic_cnts.funcdesc_offset = s->size;
16489 s->size += 8;
16490 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16491 if (bfd_link_pic (info))
e8b09b87
CL
16492 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16493 else
16494 htab->srofixup->size += 8;
16495 }
16496 }
16497
16498 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16499 {
16500 asection *s = htab->root.sgot;
16501
16502 if (htab->root.dynamic_sections_created && h->dynindx == -1
16503 && !h->forced_local)
16504 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16505 return false;
e8b09b87
CL
16506
16507 if (h->dynindx == -1)
16508 {
a57d1773
AM
16509 /* We only allocate one function descriptor with its
16510 associated relocation. */
e8b09b87
CL
16511 if (eh->fdpic_cnts.funcdesc_offset == -1)
16512 {
16513
16514 eh->fdpic_cnts.funcdesc_offset = s->size;
16515 s->size += 8;
a57d1773
AM
16516 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16517 rofixups. */
cc850f74 16518 if (bfd_link_pic (info))
e8b09b87
CL
16519 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16520 else
16521 htab->srofixup->size += 8;
16522 }
16523 }
16524
16525 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16526 R_ARM_RELATIVE/rofixup relocation on it. */
16527 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16528 s->size += 4;
cc850f74 16529 if (h->dynindx == -1 && !bfd_link_pic (info))
4b24dd1a 16530 htab->srofixup->size += 4;
e8b09b87 16531 else
4b24dd1a 16532 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16533 }
16534
16535 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16536 {
16537 if (htab->root.dynamic_sections_created && h->dynindx == -1
16538 && !h->forced_local)
16539 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16540 return false;
e8b09b87
CL
16541
16542 if (h->dynindx == -1)
16543 {
a57d1773
AM
16544 /* We only allocate one function descriptor with its
16545 associated relocation. */
e8b09b87
CL
16546 if (eh->fdpic_cnts.funcdesc_offset == -1)
16547 {
16548 asection *s = htab->root.sgot;
16549
16550 eh->fdpic_cnts.funcdesc_offset = s->size;
16551 s->size += 8;
a57d1773
AM
16552 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16553 rofixups. */
cc850f74 16554 if (bfd_link_pic (info))
e8b09b87
CL
16555 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16556 else
16557 htab->srofixup->size += 8;
16558 }
16559 }
cc850f74 16560 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87
CL
16561 {
16562 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16563 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16564 }
16565 else
16566 {
16567 /* Will need one dynamic reloc per reference. will be either
16568 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16569 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16570 eh->fdpic_cnts.funcdesc_cnt);
16571 }
16572 }
16573
a4fd1a8e
PB
16574 /* Allocate stubs for exported Thumb functions on v4t. */
16575 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 16576 && h->def_regular
39d911fc 16577 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
16578 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16579 {
16580 struct elf_link_hash_entry * th;
16581 struct bfd_link_hash_entry * bh;
16582 struct elf_link_hash_entry * myh;
16583 char name[1024];
16584 asection *s;
16585 bh = NULL;
16586 /* Create a new symbol to regist the real location of the function. */
16587 s = h->root.u.def.section;
906e58ca 16588 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
16589 _bfd_generic_link_add_one_symbol (info, s->owner,
16590 name, BSF_GLOBAL, s,
16591 h->root.u.def.value,
0a1b45a2 16592 NULL, true, false, &bh);
a4fd1a8e
PB
16593
16594 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 16595 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 16596 myh->forced_local = 1;
39d911fc 16597 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
16598 eh->export_glue = myh;
16599 th = record_arm_to_thumb_glue (info, h);
16600 /* Point the symbol at the stub. */
16601 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 16602 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
16603 h->root.u.def.section = th->root.u.def.section;
16604 h->root.u.def.value = th->root.u.def.value & ~1;
16605 }
16606
190eb1dd 16607 if (h->dyn_relocs == NULL)
0a1b45a2 16608 return true;
5e681ec4
PB
16609
16610 /* In the shared -Bsymbolic case, discard space allocated for
16611 dynamic pc-relative relocs against symbols which turn out to be
16612 defined in regular objects. For the normal shared case, discard
16613 space for pc-relative relocs that have become local due to symbol
16614 visibility changes. */
16615
a57d1773
AM
16616 if (bfd_link_pic (info)
16617 || htab->root.is_relocatable_executable
16618 || htab->fdpic_p)
5e681ec4 16619 {
469a3493
RM
16620 /* Relocs that use pc_count are PC-relative forms, which will appear
16621 on something like ".long foo - ." or "movw REG, foo - .". We want
16622 calls to protected symbols to resolve directly to the function
16623 rather than going via the plt. If people want function pointer
16624 comparisons to work as expected then they should avoid writing
16625 assembly like ".long foo - .". */
ba93b8ac
DJ
16626 if (SYMBOL_CALLS_LOCAL (info, h))
16627 {
0bdcacaf 16628 struct elf_dyn_relocs **pp;
ba93b8ac 16629
190eb1dd 16630 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
16631 {
16632 p->count -= p->pc_count;
16633 p->pc_count = 0;
16634 if (p->count == 0)
16635 *pp = p->next;
16636 else
16637 pp = &p->next;
16638 }
16639 }
16640
90c14f0c 16641 if (htab->root.target_os == is_vxworks)
3348747a 16642 {
0bdcacaf 16643 struct elf_dyn_relocs **pp;
3348747a 16644
190eb1dd 16645 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
3348747a 16646 {
0bdcacaf 16647 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
16648 *pp = p->next;
16649 else
16650 pp = &p->next;
16651 }
16652 }
16653
ba93b8ac 16654 /* Also discard relocs on undefined weak syms with non-default
99059e56 16655 visibility. */
190eb1dd 16656 if (h->dyn_relocs != NULL
5e681ec4 16657 && h->root.type == bfd_link_hash_undefweak)
22d606e9 16658 {
95b03e4a
L
16659 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16660 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
190eb1dd 16661 h->dyn_relocs = NULL;
22d606e9
AM
16662
16663 /* Make sure undefined weak symbols are output as a dynamic
16664 symbol in PIEs. */
e8b09b87 16665 else if (htab->root.dynamic_sections_created && h->dynindx == -1
22d606e9
AM
16666 && !h->forced_local)
16667 {
16668 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16669 return false;
22d606e9
AM
16670 }
16671 }
16672
67687978
PB
16673 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16674 && h->root.type == bfd_link_hash_new)
16675 {
16676 /* Output absolute symbols so that we can create relocations
16677 against them. For normal symbols we output a relocation
16678 against the section that contains them. */
16679 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16680 return false;
67687978
PB
16681 }
16682
5e681ec4
PB
16683 }
16684 else
16685 {
16686 /* For the non-shared case, discard space for relocs against
16687 symbols which turn out to need copy relocs or are not
16688 dynamic. */
16689
f5385ebf
AM
16690 if (!h->non_got_ref
16691 && ((h->def_dynamic
16692 && !h->def_regular)
5e681ec4
PB
16693 || (htab->root.dynamic_sections_created
16694 && (h->root.type == bfd_link_hash_undefweak
16695 || h->root.type == bfd_link_hash_undefined))))
16696 {
16697 /* Make sure this symbol is output as a dynamic symbol.
16698 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16699 if (h->dynindx == -1 && !h->forced_local
16700 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16701 {
c152c796 16702 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16703 return false;
5e681ec4
PB
16704 }
16705
16706 /* If that succeeded, we know we'll be keeping all the
16707 relocs. */
16708 if (h->dynindx != -1)
16709 goto keep;
16710 }
16711
190eb1dd 16712 h->dyn_relocs = NULL;
5e681ec4
PB
16713
16714 keep: ;
16715 }
16716
16717 /* Finally, allocate space. */
190eb1dd 16718 for (p = h->dyn_relocs; p != NULL; p = p->next)
5e681ec4 16719 {
0bdcacaf 16720 asection *sreloc = elf_section_data (p->sec)->sreloc;
e8b09b87 16721
34e77a92
RS
16722 if (h->type == STT_GNU_IFUNC
16723 && eh->plt.noncall_refcount == 0
16724 && SYMBOL_REFERENCES_LOCAL (info, h))
16725 elf32_arm_allocate_irelocs (info, sreloc, p->count);
a57d1773 16726 else if (h->dynindx != -1
cc850f74 16727 && (!bfd_link_pic (info) || !info->symbolic || !h->def_regular))
e8b09b87 16728 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
cc850f74 16729 else if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87 16730 htab->srofixup->size += 4 * p->count;
34e77a92
RS
16731 else
16732 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
16733 }
16734
0a1b45a2 16735 return true;
5e681ec4
PB
16736}
16737
d504ffc8
DJ
16738void
16739bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16740 int byteswap_code)
16741{
16742 struct elf32_arm_link_hash_table *globals;
16743
16744 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16745 if (globals == NULL)
16746 return;
16747
d504ffc8
DJ
16748 globals->byteswap_code = byteswap_code;
16749}
16750
252b5132
RH
16751/* Set the sizes of the dynamic sections. */
16752
0a1b45a2 16753static bool
57e8b36a
NC
16754elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16755 struct bfd_link_info * info)
252b5132
RH
16756{
16757 bfd * dynobj;
16758 asection * s;
0a1b45a2 16759 bool relocs;
5e681ec4
PB
16760 bfd *ibfd;
16761 struct elf32_arm_link_hash_table *htab;
252b5132 16762
5e681ec4 16763 htab = elf32_arm_hash_table (info);
4dfe6ac6 16764 if (htab == NULL)
0a1b45a2 16765 return false;
4dfe6ac6 16766
252b5132
RH
16767 dynobj = elf_hash_table (info)->dynobj;
16768 BFD_ASSERT (dynobj != NULL);
39b41c9c 16769 check_use_blx (htab);
252b5132
RH
16770
16771 if (elf_hash_table (info)->dynamic_sections_created)
16772 {
16773 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 16774 if (bfd_link_executable (info) && !info->nointerp)
252b5132 16775 {
3d4d4302 16776 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 16777 BFD_ASSERT (s != NULL);
eea6121a 16778 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
16779 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16780 }
16781 }
5e681ec4
PB
16782
16783 /* Set up .got offsets for local syms, and space for local dynamic
16784 relocs. */
c72f2fb2 16785 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 16786 {
5e681ec4
PB
16787 bfd_signed_vma *local_got;
16788 bfd_signed_vma *end_local_got;
34e77a92 16789 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 16790 char *local_tls_type;
0855e32b 16791 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
16792 bfd_size_type locsymcount;
16793 Elf_Internal_Shdr *symtab_hdr;
16794 asection *srel;
34e77a92 16795 unsigned int symndx;
e8b09b87 16796 struct fdpic_local *local_fdpic_cnts;
5e681ec4 16797
0ffa91dd 16798 if (! is_arm_elf (ibfd))
5e681ec4
PB
16799 continue;
16800
16801 for (s = ibfd->sections; s != NULL; s = s->next)
16802 {
0bdcacaf 16803 struct elf_dyn_relocs *p;
5e681ec4 16804
0bdcacaf 16805 for (p = (struct elf_dyn_relocs *)
99059e56 16806 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 16807 {
0bdcacaf
RS
16808 if (!bfd_is_abs_section (p->sec)
16809 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
16810 {
16811 /* Input section has been discarded, either because
16812 it is a copy of a linkonce section or due to
16813 linker script /DISCARD/, so we'll be discarding
16814 the relocs too. */
16815 }
90c14f0c 16816 else if (htab->root.target_os == is_vxworks
0bdcacaf 16817 && strcmp (p->sec->output_section->name,
3348747a
NS
16818 ".tls_vars") == 0)
16819 {
16820 /* Relocations in vxworks .tls_vars sections are
16821 handled specially by the loader. */
16822 }
5e681ec4
PB
16823 else if (p->count != 0)
16824 {
0bdcacaf 16825 srel = elf_section_data (p->sec)->sreloc;
cc850f74 16826 if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87
CL
16827 htab->srofixup->size += 4 * p->count;
16828 else
16829 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 16830 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
16831 info->flags |= DF_TEXTREL;
16832 }
16833 }
16834 }
16835
16836 local_got = elf_local_got_refcounts (ibfd);
cc850f74 16837 if (local_got == NULL)
5e681ec4
PB
16838 continue;
16839
0ffa91dd 16840 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
16841 locsymcount = symtab_hdr->sh_info;
16842 end_local_got = local_got + locsymcount;
34e77a92 16843 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 16844 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 16845 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
e8b09b87 16846 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
34e77a92 16847 symndx = 0;
362d30a1
RS
16848 s = htab->root.sgot;
16849 srel = htab->root.srelgot;
0855e32b 16850 for (; local_got < end_local_got;
34e77a92 16851 ++local_got, ++local_iplt_ptr, ++local_tls_type,
e8b09b87 16852 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
5e681ec4 16853 {
74fd118f
NC
16854 if (symndx >= elf32_arm_num_entries (ibfd))
16855 return false;
16856
0855e32b 16857 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92 16858 local_iplt = *local_iplt_ptr;
e8b09b87
CL
16859
16860 /* FDPIC support. */
16861 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16862 {
16863 if (local_fdpic_cnts->funcdesc_offset == -1)
16864 {
16865 local_fdpic_cnts->funcdesc_offset = s->size;
16866 s->size += 8;
16867
16868 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16869 if (bfd_link_pic (info))
e8b09b87
CL
16870 elf32_arm_allocate_dynrelocs (info, srel, 1);
16871 else
16872 htab->srofixup->size += 8;
16873 }
16874 }
16875
16876 if (local_fdpic_cnts->funcdesc_cnt > 0)
16877 {
16878 if (local_fdpic_cnts->funcdesc_offset == -1)
16879 {
16880 local_fdpic_cnts->funcdesc_offset = s->size;
16881 s->size += 8;
16882
16883 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16884 if (bfd_link_pic (info))
e8b09b87
CL
16885 elf32_arm_allocate_dynrelocs (info, srel, 1);
16886 else
16887 htab->srofixup->size += 8;
16888 }
16889
16890 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
cc850f74 16891 if (bfd_link_pic (info))
e8b09b87
CL
16892 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16893 else
16894 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16895 }
16896
34e77a92
RS
16897 if (local_iplt != NULL)
16898 {
16899 struct elf_dyn_relocs *p;
16900
16901 if (local_iplt->root.refcount > 0)
16902 {
0a1b45a2 16903 elf32_arm_allocate_plt_entry (info, true,
34e77a92
RS
16904 &local_iplt->root,
16905 &local_iplt->arm);
16906 if (local_iplt->arm.noncall_refcount == 0)
16907 /* All references to the PLT are calls, so all
16908 non-call references can resolve directly to the
16909 run-time target. This means that the .got entry
16910 would be the same as the .igot.plt entry, so there's
16911 no point creating both. */
16912 *local_got = 0;
16913 }
16914 else
16915 {
16916 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16917 local_iplt->root.offset = (bfd_vma) -1;
16918 }
16919
16920 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16921 {
16922 asection *psrel;
16923
16924 psrel = elf_section_data (p->sec)->sreloc;
16925 if (local_iplt->arm.noncall_refcount == 0)
16926 elf32_arm_allocate_irelocs (info, psrel, p->count);
16927 else
16928 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16929 }
16930 }
5e681ec4
PB
16931 if (*local_got > 0)
16932 {
34e77a92
RS
16933 Elf_Internal_Sym *isym;
16934
eea6121a 16935 *local_got = s->size;
ba93b8ac
DJ
16936 if (*local_tls_type & GOT_TLS_GD)
16937 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16938 s->size += 8;
0855e32b
NS
16939 if (*local_tls_type & GOT_TLS_GDESC)
16940 {
16941 *local_tlsdesc_gotent = htab->root.sgotplt->size
16942 - elf32_arm_compute_jump_table_size (htab);
16943 htab->root.sgotplt->size += 8;
16944 *local_got = (bfd_vma) -2;
34e77a92 16945 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16946 reloc in the middle of .got.plt. */
99059e56 16947 htab->num_tls_desc++;
0855e32b 16948 }
ba93b8ac
DJ
16949 if (*local_tls_type & GOT_TLS_IE)
16950 s->size += 4;
ba93b8ac 16951
0855e32b
NS
16952 if (*local_tls_type & GOT_NORMAL)
16953 {
16954 /* If the symbol is both GD and GDESC, *local_got
16955 may have been overwritten. */
16956 *local_got = s->size;
16957 s->size += 4;
16958 }
16959
f1dfbfdb
L
16960 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ibfd,
16961 symndx);
34e77a92 16962 if (isym == NULL)
0a1b45a2 16963 return false;
34e77a92
RS
16964
16965 /* If all references to an STT_GNU_IFUNC PLT are calls,
16966 then all non-call references, including this GOT entry,
16967 resolve directly to the run-time target. */
16968 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16969 && (local_iplt == NULL
16970 || local_iplt->arm.noncall_refcount == 0))
16971 elf32_arm_allocate_irelocs (info, srel, 1);
e8b09b87 16972 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
0855e32b 16973 {
e8b09b87 16974 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
3064e1ff 16975 elf32_arm_allocate_dynrelocs (info, srel, 1);
e8b09b87
CL
16976 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16977 htab->srofixup->size += 4;
99059e56 16978
e8b09b87
CL
16979 if ((bfd_link_pic (info) || htab->fdpic_p)
16980 && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
16981 {
16982 elf32_arm_allocate_dynrelocs (info,
16983 htab->root.srelplt, 1);
16984 htab->tls_trampoline = -1;
16985 }
0855e32b 16986 }
5e681ec4
PB
16987 }
16988 else
16989 *local_got = (bfd_vma) -1;
16990 }
252b5132
RH
16991 }
16992
ba93b8ac
DJ
16993 if (htab->tls_ldm_got.refcount > 0)
16994 {
16995 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5c5a4843 16996 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
362d30a1
RS
16997 htab->tls_ldm_got.offset = htab->root.sgot->size;
16998 htab->root.sgot->size += 8;
0e1862bb 16999 if (bfd_link_pic (info))
47beaa6a 17000 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
17001 }
17002 else
17003 htab->tls_ldm_got.offset = -1;
17004
e8b09b87
CL
17005 /* At the very end of the .rofixup section is a pointer to the GOT,
17006 reserve space for it. */
17007 if (htab->fdpic_p && htab->srofixup != NULL)
17008 htab->srofixup->size += 4;
17009
5e681ec4
PB
17010 /* Allocate global sym .plt and .got entries, and space for global
17011 sym dynamic relocs. */
47beaa6a 17012 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 17013
d504ffc8 17014 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 17015 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 17016 {
0ffa91dd 17017 if (! is_arm_elf (ibfd))
e44a2c9c
AM
17018 continue;
17019
c7b8f16e
JB
17020 /* Initialise mapping tables for code/data. */
17021 bfd_elf32_arm_init_maps (ibfd);
906e58ca 17022
c7b8f16e 17023 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
17024 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17025 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
90b6238f 17026 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
c7b8f16e 17027 }
d504ffc8 17028
3e6b1042
DJ
17029 /* Allocate space for the glue sections now that we've sized them. */
17030 bfd_elf32_arm_allocate_interworking_sections (info);
17031
0855e32b
NS
17032 /* For every jump slot reserved in the sgotplt, reloc_count is
17033 incremented. However, when we reserve space for TLS descriptors,
17034 it's not incremented, so in order to compute the space reserved
17035 for them, it suffices to multiply the reloc count by the jump
17036 slot size. */
17037 if (htab->root.srelplt)
cc850f74 17038 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size (htab);
0855e32b
NS
17039
17040 if (htab->tls_trampoline)
17041 {
17042 if (htab->root.splt->size == 0)
17043 htab->root.splt->size += htab->plt_header_size;
b38cadfb 17044
0855e32b
NS
17045 htab->tls_trampoline = htab->root.splt->size;
17046 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 17047
0855e32b 17048 /* If we're not using lazy TLS relocations, don't generate the
99059e56 17049 PLT and GOT entries they require. */
9bcc30e4
L
17050 if ((info->flags & DF_BIND_NOW))
17051 htab->root.tlsdesc_plt = 0;
17052 else
0855e32b 17053 {
9bcc30e4 17054 htab->root.tlsdesc_got = htab->root.sgot->size;
0855e32b
NS
17055 htab->root.sgot->size += 4;
17056
9bcc30e4 17057 htab->root.tlsdesc_plt = htab->root.splt->size;
0855e32b
NS
17058 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17059 }
17060 }
17061
252b5132
RH
17062 /* The check_relocs and adjust_dynamic_symbol entry points have
17063 determined the sizes of the various dynamic sections. Allocate
17064 memory for them. */
0a1b45a2 17065 relocs = false;
252b5132
RH
17066 for (s = dynobj->sections; s != NULL; s = s->next)
17067 {
17068 const char * name;
252b5132
RH
17069
17070 if ((s->flags & SEC_LINKER_CREATED) == 0)
17071 continue;
17072
17073 /* It's OK to base decisions on the section name, because none
17074 of the dynobj section names depend upon the input files. */
fd361982 17075 name = bfd_section_name (s);
252b5132 17076
34e77a92 17077 if (s == htab->root.splt)
252b5132 17078 {
c456f082 17079 /* Remember whether there is a PLT. */
3084d7a2 17080 ;
252b5132 17081 }
08dedd66 17082 else if (startswith (name, ".rel"))
252b5132 17083 {
c456f082 17084 if (s->size != 0)
252b5132 17085 {
252b5132 17086 /* Remember whether there are any reloc sections other
00a97672 17087 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 17088 if (s != htab->root.srelplt && s != htab->srelplt2)
0a1b45a2 17089 relocs = true;
252b5132
RH
17090
17091 /* We use the reloc_count field as a counter if we need
17092 to copy relocs into the output file. */
17093 s->reloc_count = 0;
17094 }
17095 }
34e77a92
RS
17096 else if (s != htab->root.sgot
17097 && s != htab->root.sgotplt
17098 && s != htab->root.iplt
17099 && s != htab->root.igotplt
5474d94f 17100 && s != htab->root.sdynbss
e8b09b87
CL
17101 && s != htab->root.sdynrelro
17102 && s != htab->srofixup)
252b5132
RH
17103 {
17104 /* It's not one of our sections, so don't allocate space. */
17105 continue;
17106 }
17107
c456f082 17108 if (s->size == 0)
252b5132 17109 {
c456f082 17110 /* If we don't need this section, strip it from the
00a97672
RS
17111 output file. This is mostly to handle .rel(a).bss and
17112 .rel(a).plt. We must create both sections in
c456f082
AM
17113 create_dynamic_sections, because they must be created
17114 before the linker maps input sections to output
17115 sections. The linker does that before
17116 adjust_dynamic_symbol is called, and it is that
17117 function which decides whether anything needs to go
17118 into these sections. */
8423293d 17119 s->flags |= SEC_EXCLUDE;
252b5132
RH
17120 continue;
17121 }
17122
c456f082
AM
17123 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17124 continue;
17125
252b5132 17126 /* Allocate memory for the section contents. */
21d799b5 17127 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 17128 if (s->contents == NULL)
0a1b45a2 17129 return false;
252b5132
RH
17130 }
17131
3084d7a2
L
17132 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
17133 relocs);
252b5132
RH
17134}
17135
0855e32b
NS
17136/* Size sections even though they're not dynamic. We use it to setup
17137 _TLS_MODULE_BASE_, if needed. */
17138
0a1b45a2 17139static bool
0855e32b 17140elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 17141 struct bfd_link_info *info)
0855e32b
NS
17142{
17143 asection *tls_sec;
cb10292c
CL
17144 struct elf32_arm_link_hash_table *htab;
17145
17146 htab = elf32_arm_hash_table (info);
0855e32b 17147
0e1862bb 17148 if (bfd_link_relocatable (info))
0a1b45a2 17149 return true;
0855e32b
NS
17150
17151 tls_sec = elf_hash_table (info)->tls_sec;
17152
17153 if (tls_sec)
17154 {
17155 struct elf_link_hash_entry *tlsbase;
17156
17157 tlsbase = elf_link_hash_lookup
0a1b45a2 17158 (elf_hash_table (info), "_TLS_MODULE_BASE_", true, true, false);
0855e32b
NS
17159
17160 if (tlsbase)
99059e56
RM
17161 {
17162 struct bfd_link_hash_entry *bh = NULL;
0855e32b 17163 const struct elf_backend_data *bed
99059e56 17164 = get_elf_backend_data (output_bfd);
0855e32b 17165
99059e56 17166 if (!(_bfd_generic_link_add_one_symbol
0855e32b 17167 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
0a1b45a2 17168 tls_sec, 0, NULL, false,
0855e32b 17169 bed->collect, &bh)))
0a1b45a2 17170 return false;
b38cadfb 17171
99059e56
RM
17172 tlsbase->type = STT_TLS;
17173 tlsbase = (struct elf_link_hash_entry *)bh;
17174 tlsbase->def_regular = 1;
17175 tlsbase->other = STV_HIDDEN;
0a1b45a2 17176 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
0855e32b
NS
17177 }
17178 }
cb10292c
CL
17179
17180 if (htab->fdpic_p && !bfd_link_relocatable (info)
17181 && !bfd_elf_stack_segment_size (output_bfd, info,
17182 "__stacksize", DEFAULT_STACK_SIZE))
0a1b45a2 17183 return false;
cb10292c 17184
0a1b45a2 17185 return true;
0855e32b
NS
17186}
17187
252b5132
RH
17188/* Finish up dynamic symbol handling. We set the contents of various
17189 dynamic sections here. */
17190
0a1b45a2 17191static bool
906e58ca
NC
17192elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17193 struct bfd_link_info * info,
17194 struct elf_link_hash_entry * h,
17195 Elf_Internal_Sym * sym)
252b5132 17196{
e5a52504 17197 struct elf32_arm_link_hash_table *htab;
b7693d02 17198 struct elf32_arm_link_hash_entry *eh;
252b5132 17199
e5a52504 17200 htab = elf32_arm_hash_table (info);
4dfe6ac6 17201 if (htab == NULL)
0a1b45a2 17202 return false;
4dfe6ac6 17203
b7693d02 17204 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
17205
17206 if (h->plt.offset != (bfd_vma) -1)
17207 {
34e77a92 17208 if (!eh->is_iplt)
e5a52504 17209 {
34e77a92 17210 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
17211 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17212 h->dynindx, 0))
0a1b45a2 17213 return false;
e5a52504 17214 }
57e8b36a 17215
f5385ebf 17216 if (!h->def_regular)
252b5132
RH
17217 {
17218 /* Mark the symbol as undefined, rather than as defined in
3a635617 17219 the .plt section. */
252b5132 17220 sym->st_shndx = SHN_UNDEF;
3a635617 17221 /* If the symbol is weak we need to clear the value.
d982ba73
PB
17222 Otherwise, the PLT entry would provide a definition for
17223 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
17224 and so the symbol would never be NULL. Leave the value if
17225 there were any relocations where pointer equality matters
17226 (this is a clue for the dynamic linker, to make function
17227 pointer comparisons work between an application and shared
17228 library). */
97323ad1 17229 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 17230 sym->st_value = 0;
252b5132 17231 }
34e77a92
RS
17232 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17233 {
17234 /* At least one non-call relocation references this .iplt entry,
17235 so the .iplt entry is the function's canonical address. */
17236 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 17237 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
17238 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17239 (output_bfd, htab->root.iplt->output_section));
17240 sym->st_value = (h->plt.offset
17241 + htab->root.iplt->output_section->vma
17242 + htab->root.iplt->output_offset);
17243 }
252b5132
RH
17244 }
17245
f5385ebf 17246 if (h->needs_copy)
252b5132
RH
17247 {
17248 asection * s;
947216bf 17249 Elf_Internal_Rela rel;
252b5132
RH
17250
17251 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
17252 BFD_ASSERT (h->dynindx != -1
17253 && (h->root.type == bfd_link_hash_defined
17254 || h->root.type == bfd_link_hash_defweak));
17255
00a97672 17256 rel.r_addend = 0;
252b5132
RH
17257 rel.r_offset = (h->root.u.def.value
17258 + h->root.u.def.section->output_section->vma
17259 + h->root.u.def.section->output_offset);
17260 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 17261 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
17262 s = htab->root.sreldynrelro;
17263 else
17264 s = htab->root.srelbss;
47beaa6a 17265 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
17266 }
17267
00a97672 17268 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
fac7bd64
CL
17269 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17270 it is relative to the ".got" section. */
9637f6ef 17271 if (h == htab->root.hdynamic
90c14f0c
L
17272 || (!htab->fdpic_p
17273 && htab->root.target_os != is_vxworks
17274 && h == htab->root.hgot))
252b5132
RH
17275 sym->st_shndx = SHN_ABS;
17276
0a1b45a2 17277 return true;
252b5132
RH
17278}
17279
0855e32b
NS
17280static void
17281arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17282 void *contents,
17283 const unsigned long *template, unsigned count)
17284{
17285 unsigned ix;
b38cadfb 17286
0855e32b
NS
17287 for (ix = 0; ix != count; ix++)
17288 {
17289 unsigned long insn = template[ix];
17290
17291 /* Emit mov pc,rx if bx is not permitted. */
17292 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17293 insn = (insn & 0xf000000f) | 0x01a0f000;
17294 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17295 }
17296}
17297
99059e56
RM
17298/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17299 other variants, NaCl needs this entry in a static executable's
17300 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17301 zero. For .iplt really only the last bundle is useful, and .iplt
17302 could have a shorter first entry, with each individual PLT entry's
17303 relative branch calculated differently so it targets the last
17304 bundle instead of the instruction before it (labelled .Lplt_tail
17305 above). But it's simpler to keep the size and layout of PLT0
17306 consistent with the dynamic case, at the cost of some dead code at
17307 the start of .iplt and the one dead store to the stack at the start
17308 of .Lplt_tail. */
17309static void
17310arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17311 asection *plt, bfd_vma got_displacement)
17312{
17313 unsigned int i;
17314
17315 put_arm_insn (htab, output_bfd,
17316 elf32_arm_nacl_plt0_entry[0]
17317 | arm_movw_immediate (got_displacement),
17318 plt->contents + 0);
17319 put_arm_insn (htab, output_bfd,
17320 elf32_arm_nacl_plt0_entry[1]
17321 | arm_movt_immediate (got_displacement),
17322 plt->contents + 4);
17323
17324 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17325 put_arm_insn (htab, output_bfd,
17326 elf32_arm_nacl_plt0_entry[i],
17327 plt->contents + (i * 4));
17328}
17329
252b5132
RH
17330/* Finish up the dynamic sections. */
17331
0a1b45a2 17332static bool
57e8b36a 17333elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
17334{
17335 bfd * dynobj;
17336 asection * sgot;
17337 asection * sdyn;
4dfe6ac6
NC
17338 struct elf32_arm_link_hash_table *htab;
17339
17340 htab = elf32_arm_hash_table (info);
17341 if (htab == NULL)
0a1b45a2 17342 return false;
252b5132
RH
17343
17344 dynobj = elf_hash_table (info)->dynobj;
17345
362d30a1 17346 sgot = htab->root.sgotplt;
894891db
NC
17347 /* A broken linker script might have discarded the dynamic sections.
17348 Catch this here so that we do not seg-fault later on. */
17349 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
0a1b45a2 17350 return false;
3d4d4302 17351 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
17352
17353 if (elf_hash_table (info)->dynamic_sections_created)
17354 {
17355 asection *splt;
17356 Elf32_External_Dyn *dyncon, *dynconend;
17357
362d30a1 17358 splt = htab->root.splt;
24a1ba0f 17359 BFD_ASSERT (splt != NULL && sdyn != NULL);
a57d1773 17360 BFD_ASSERT (sgot != NULL);
252b5132
RH
17361
17362 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 17363 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 17364
252b5132
RH
17365 for (; dyncon < dynconend; dyncon++)
17366 {
17367 Elf_Internal_Dyn dyn;
17368 const char * name;
17369 asection * s;
17370
17371 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17372
17373 switch (dyn.d_tag)
17374 {
17375 default:
90c14f0c 17376 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
17377 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17378 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
17379 break;
17380
229fcec5 17381 case DT_HASH:
229fcec5 17382 case DT_STRTAB:
229fcec5 17383 case DT_SYMTAB:
c0042f5d 17384 case DT_VERSYM:
c0042f5d 17385 case DT_VERDEF:
c0042f5d 17386 case DT_VERNEED:
a57d1773 17387 break;
c0042f5d 17388
252b5132 17389 case DT_PLTGOT:
a57d1773 17390 name = ".got.plt";
252b5132
RH
17391 goto get_vma;
17392 case DT_JMPREL:
00a97672 17393 name = RELOC_SECTION (htab, ".plt");
252b5132 17394 get_vma:
4ade44b7 17395 s = bfd_get_linker_section (dynobj, name);
05456594
NC
17396 if (s == NULL)
17397 {
4eca0228 17398 _bfd_error_handler
4ade44b7 17399 (_("could not find section %s"), name);
05456594 17400 bfd_set_error (bfd_error_invalid_operation);
0a1b45a2 17401 return false;
05456594 17402 }
a57d1773 17403 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
252b5132
RH
17404 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17405 break;
17406
17407 case DT_PLTRELSZ:
362d30a1 17408 s = htab->root.srelplt;
252b5132 17409 BFD_ASSERT (s != NULL);
eea6121a 17410 dyn.d_un.d_val = s->size;
252b5132
RH
17411 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17412 break;
906e58ca 17413
252b5132 17414 case DT_RELSZ:
00a97672 17415 case DT_RELASZ:
229fcec5
MM
17416 case DT_REL:
17417 case DT_RELA:
252b5132 17418 break;
88f7bcd5 17419
0855e32b 17420 case DT_TLSDESC_PLT:
99059e56 17421 s = htab->root.splt;
0855e32b 17422 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17423 + htab->root.tlsdesc_plt);
0855e32b
NS
17424 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17425 break;
17426
17427 case DT_TLSDESC_GOT:
99059e56 17428 s = htab->root.sgot;
0855e32b 17429 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17430 + htab->root.tlsdesc_got);
0855e32b
NS
17431 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17432 break;
17433
88f7bcd5
NC
17434 /* Set the bottom bit of DT_INIT/FINI if the
17435 corresponding function is Thumb. */
17436 case DT_INIT:
17437 name = info->init_function;
17438 goto get_sym;
17439 case DT_FINI:
17440 name = info->fini_function;
17441 get_sym:
17442 /* If it wasn't set by elf_bfd_final_link
4cc11e76 17443 then there is nothing to adjust. */
88f7bcd5
NC
17444 if (dyn.d_un.d_val != 0)
17445 {
17446 struct elf_link_hash_entry * eh;
17447
17448 eh = elf_link_hash_lookup (elf_hash_table (info), name,
0a1b45a2 17449 false, false, true);
39d911fc
TP
17450 if (eh != NULL
17451 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17452 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
17453 {
17454 dyn.d_un.d_val |= 1;
b34976b6 17455 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
17456 }
17457 }
17458 break;
252b5132
RH
17459 }
17460 }
17461
24a1ba0f 17462 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 17463 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 17464 {
00a97672
RS
17465 const bfd_vma *plt0_entry;
17466 bfd_vma got_address, plt_address, got_displacement;
17467
17468 /* Calculate the addresses of the GOT and PLT. */
17469 got_address = sgot->output_section->vma + sgot->output_offset;
17470 plt_address = splt->output_section->vma + splt->output_offset;
17471
90c14f0c 17472 if (htab->root.target_os == is_vxworks)
00a97672
RS
17473 {
17474 /* The VxWorks GOT is relocated by the dynamic linker.
17475 Therefore, we must emit relocations rather than simply
17476 computing the values now. */
17477 Elf_Internal_Rela rel;
17478
17479 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
17480 put_arm_insn (htab, output_bfd, plt0_entry[0],
17481 splt->contents + 0);
17482 put_arm_insn (htab, output_bfd, plt0_entry[1],
17483 splt->contents + 4);
17484 put_arm_insn (htab, output_bfd, plt0_entry[2],
17485 splt->contents + 8);
00a97672
RS
17486 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17487
8029a119 17488 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
17489 rel.r_offset = plt_address + 12;
17490 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17491 rel.r_addend = 0;
17492 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17493 htab->srelplt2->contents);
17494 }
90c14f0c 17495 else if (htab->root.target_os == is_nacl)
99059e56
RM
17496 arm_nacl_put_plt0 (htab, output_bfd, splt,
17497 got_address + 8 - (plt_address + 16));
eed94f8f
NC
17498 else if (using_thumb_only (htab))
17499 {
17500 got_displacement = got_address - (plt_address + 12);
17501
17502 plt0_entry = elf32_thumb2_plt0_entry;
17503 put_arm_insn (htab, output_bfd, plt0_entry[0],
17504 splt->contents + 0);
17505 put_arm_insn (htab, output_bfd, plt0_entry[1],
17506 splt->contents + 4);
17507 put_arm_insn (htab, output_bfd, plt0_entry[2],
17508 splt->contents + 8);
17509
17510 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17511 }
00a97672
RS
17512 else
17513 {
17514 got_displacement = got_address - (plt_address + 16);
17515
17516 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
17517 put_arm_insn (htab, output_bfd, plt0_entry[0],
17518 splt->contents + 0);
17519 put_arm_insn (htab, output_bfd, plt0_entry[1],
17520 splt->contents + 4);
17521 put_arm_insn (htab, output_bfd, plt0_entry[2],
17522 splt->contents + 8);
17523 put_arm_insn (htab, output_bfd, plt0_entry[3],
17524 splt->contents + 12);
5e681ec4 17525
5e681ec4 17526#ifdef FOUR_WORD_PLT
00a97672
RS
17527 /* The displacement value goes in the otherwise-unused
17528 last word of the second entry. */
17529 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 17530#else
00a97672 17531 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 17532#endif
00a97672 17533 }
f7a74f8c 17534 }
252b5132
RH
17535
17536 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17537 really seem like the right value. */
74541ad4
AM
17538 if (splt->output_section->owner == output_bfd)
17539 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 17540
9bcc30e4 17541 if (htab->root.tlsdesc_plt)
0855e32b
NS
17542 {
17543 bfd_vma got_address
17544 = sgot->output_section->vma + sgot->output_offset;
17545 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17546 + htab->root.sgot->output_offset);
17547 bfd_vma plt_address
17548 = splt->output_section->vma + splt->output_offset;
17549
b38cadfb 17550 arm_put_trampoline (htab, output_bfd,
9bcc30e4 17551 splt->contents + htab->root.tlsdesc_plt,
0855e32b
NS
17552 dl_tlsdesc_lazy_trampoline, 6);
17553
17554 bfd_put_32 (output_bfd,
9bcc30e4
L
17555 gotplt_address + htab->root.tlsdesc_got
17556 - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17557 - dl_tlsdesc_lazy_trampoline[6],
9bcc30e4 17558 splt->contents + htab->root.tlsdesc_plt + 24);
0855e32b 17559 bfd_put_32 (output_bfd,
9bcc30e4 17560 got_address - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17561 - dl_tlsdesc_lazy_trampoline[7],
9bcc30e4 17562 splt->contents + htab->root.tlsdesc_plt + 24 + 4);
0855e32b
NS
17563 }
17564
17565 if (htab->tls_trampoline)
17566 {
b38cadfb 17567 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17568 splt->contents + htab->tls_trampoline,
17569 tls_trampoline, 3);
17570#ifdef FOUR_WORD_PLT
17571 bfd_put_32 (output_bfd, 0x00000000,
17572 splt->contents + htab->tls_trampoline + 12);
b38cadfb 17573#endif
0855e32b
NS
17574 }
17575
90c14f0c 17576 if (htab->root.target_os == is_vxworks
0e1862bb
L
17577 && !bfd_link_pic (info)
17578 && htab->root.splt->size > 0)
00a97672
RS
17579 {
17580 /* Correct the .rel(a).plt.unloaded relocations. They will have
17581 incorrect symbol indexes. */
17582 int num_plts;
eed62c48 17583 unsigned char *p;
00a97672 17584
362d30a1 17585 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
17586 / htab->plt_entry_size);
17587 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17588
17589 for (; num_plts; num_plts--)
17590 {
17591 Elf_Internal_Rela rel;
17592
17593 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17594 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17595 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17596 p += RELOC_SIZE (htab);
17597
17598 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17599 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17600 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17601 p += RELOC_SIZE (htab);
17602 }
17603 }
252b5132
RH
17604 }
17605
90c14f0c
L
17606 if (htab->root.target_os == is_nacl
17607 && htab->root.iplt != NULL
17608 && htab->root.iplt->size > 0)
99059e56
RM
17609 /* NaCl uses a special first entry in .iplt too. */
17610 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17611
252b5132 17612 /* Fill in the first three entries in the global offset table. */
229fcec5 17613 if (sgot)
252b5132 17614 {
229fcec5
MM
17615 if (sgot->size > 0)
17616 {
17617 if (sdyn == NULL)
17618 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17619 else
17620 bfd_put_32 (output_bfd,
17621 sdyn->output_section->vma + sdyn->output_offset,
17622 sgot->contents);
17623 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17624 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17625 }
252b5132 17626
229fcec5
MM
17627 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17628 }
252b5132 17629
e8b09b87
CL
17630 /* At the very end of the .rofixup section is a pointer to the GOT. */
17631 if (htab->fdpic_p && htab->srofixup != NULL)
17632 {
17633 struct elf_link_hash_entry *hgot = htab->root.hgot;
17634
17635 bfd_vma got_value = hgot->root.u.def.value
17636 + hgot->root.u.def.section->output_section->vma
17637 + hgot->root.u.def.section->output_offset;
17638
cc850f74 17639 arm_elf_add_rofixup (output_bfd, htab->srofixup, got_value);
e8b09b87
CL
17640
17641 /* Make sure we allocated and generated the same number of fixups. */
17642 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17643 }
17644
0a1b45a2 17645 return true;
252b5132
RH
17646}
17647
0a1b45a2 17648static bool
ed7e9d0b 17649elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
ba96a88f 17650{
9b485d32 17651 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 17652 struct elf32_arm_link_hash_table *globals;
ac4c9b04 17653 struct elf_segment_map *m;
ba96a88f 17654
ed7e9d0b 17655 if (!_bfd_elf_init_file_header (abfd, link_info))
0a1b45a2 17656 return false;
ed7e9d0b 17657
ba96a88f
NC
17658 i_ehdrp = elf_elfheader (abfd);
17659
94a3258f
PB
17660 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17661 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
ba96a88f 17662 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 17663
93204d3a
PB
17664 if (link_info)
17665 {
17666 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 17667 if (globals != NULL && globals->byteswap_code)
93204d3a 17668 i_ehdrp->e_flags |= EF_ARM_BE8;
18a20338
CL
17669
17670 if (globals->fdpic_p)
17671 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
93204d3a 17672 }
3bfcb652
NC
17673
17674 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17675 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17676 {
17677 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 17678 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
17679 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17680 else
17681 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17682 }
ac4c9b04
MG
17683
17684 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 17685 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
17686 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17687 {
17688 unsigned int j;
17689
17690 if (m->count == 0)
17691 continue;
17692 for (j = 0; j < m->count; j++)
17693 {
f0728ee3 17694 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
17695 break;
17696 }
17697 if (j == m->count)
17698 {
17699 m->p_flags = PF_X;
17700 m->p_flags_valid = 1;
17701 }
17702 }
0a1b45a2 17703 return true;
ba96a88f
NC
17704}
17705
99e4ae17 17706static enum elf_reloc_type_class
7e612e98
AM
17707elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17708 const asection *rel_sec ATTRIBUTE_UNUSED,
17709 const Elf_Internal_Rela *rela)
99e4ae17 17710{
2b70b1b8
CL
17711 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
17712
17713 if (htab->root.dynsym != NULL
17714 && htab->root.dynsym->contents != NULL)
17715 {
17716 /* Check relocation against STT_GNU_IFUNC symbol if there are
17717 dynamic symbols. */
17718 bfd *abfd = info->output_bfd;
17719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
17720 unsigned long r_symndx = ELF32_R_SYM (rela->r_info);
17721 if (r_symndx != STN_UNDEF)
17722 {
17723 Elf_Internal_Sym sym;
17724 if (!bed->s->swap_symbol_in (abfd,
17725 (htab->root.dynsym->contents
17726 + r_symndx * bed->s->sizeof_sym),
17727 0, &sym))
17728 {
17729 /* xgettext:c-format */
17730 _bfd_error_handler (_("%pB symbol number %lu references"
17731 " nonexistent SHT_SYMTAB_SHNDX section"),
17732 abfd, r_symndx);
17733 /* Ideally an error class should be returned here. */
17734 }
17735 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
17736 return reloc_class_ifunc;
17737 }
17738 }
17739
f51e552e 17740 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
17741 {
17742 case R_ARM_RELATIVE:
17743 return reloc_class_relative;
17744 case R_ARM_JUMP_SLOT:
17745 return reloc_class_plt;
17746 case R_ARM_COPY:
17747 return reloc_class_copy;
109575d7
JW
17748 case R_ARM_IRELATIVE:
17749 return reloc_class_ifunc;
99e4ae17
AJ
17750 default:
17751 return reloc_class_normal;
17752 }
17753}
17754
e489d0ae 17755static void
cc364be6 17756arm_final_write_processing (bfd *abfd)
e16bb312 17757{
5a6c6817 17758 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
17759}
17760
0a1b45a2 17761static bool
cc364be6 17762elf32_arm_final_write_processing (bfd *abfd)
06f44071 17763{
cc364be6
AM
17764 arm_final_write_processing (abfd);
17765 return _bfd_elf_final_write_processing (abfd);
06f44071
AM
17766}
17767
40a18ebd
NC
17768/* Return TRUE if this is an unwinding table entry. */
17769
0a1b45a2 17770static bool
40a18ebd
NC
17771is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17772{
08dedd66
ML
17773 return (startswith (name, ELF_STRING_ARM_unwind)
17774 || startswith (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
17775}
17776
17777
17778/* Set the type and flags for an ARM section. We do this by
17779 the section name, which is a hack, but ought to work. */
17780
0a1b45a2 17781static bool
40a18ebd
NC
17782elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17783{
17784 const char * name;
17785
fd361982 17786 name = bfd_section_name (sec);
40a18ebd
NC
17787
17788 if (is_arm_elf_unwind_section_name (abfd, name))
17789 {
17790 hdr->sh_type = SHT_ARM_EXIDX;
17791 hdr->sh_flags |= SHF_LINK_ORDER;
17792 }
ac4c9b04 17793
f0728ee3
AV
17794 if (sec->flags & SEC_ELF_PURECODE)
17795 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 17796
0a1b45a2 17797 return true;
40a18ebd
NC
17798}
17799
6dc132d9
L
17800/* Handle an ARM specific section when reading an object file. This is
17801 called when bfd_section_from_shdr finds a section with an unknown
17802 type. */
40a18ebd 17803
0a1b45a2 17804static bool
40a18ebd
NC
17805elf32_arm_section_from_shdr (bfd *abfd,
17806 Elf_Internal_Shdr * hdr,
6dc132d9
L
17807 const char *name,
17808 int shindex)
40a18ebd
NC
17809{
17810 /* There ought to be a place to keep ELF backend specific flags, but
17811 at the moment there isn't one. We just keep track of the
17812 sections by their name, instead. Fortunately, the ABI gives
17813 names for all the ARM specific sections, so we will probably get
17814 away with this. */
17815 switch (hdr->sh_type)
17816 {
17817 case SHT_ARM_EXIDX:
0951f019
RE
17818 case SHT_ARM_PREEMPTMAP:
17819 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
17820 break;
17821
17822 default:
0a1b45a2 17823 return false;
40a18ebd
NC
17824 }
17825
6dc132d9 17826 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
0a1b45a2 17827 return false;
40a18ebd 17828
0a1b45a2 17829 return true;
40a18ebd 17830}
e489d0ae 17831
44444f50
NC
17832static _arm_elf_section_data *
17833get_arm_elf_section_data (asection * sec)
17834{
47b2e99c
JZ
17835 if (sec && sec->owner && is_arm_elf (sec->owner))
17836 return elf32_arm_section_data (sec);
44444f50
NC
17837 else
17838 return NULL;
8e3de13a
NC
17839}
17840
4e617b1e
PB
17841typedef struct
17842{
57402f1e 17843 void *flaginfo;
4e617b1e 17844 struct bfd_link_info *info;
91a5743d
PB
17845 asection *sec;
17846 int sec_shndx;
6e0b88f1
AM
17847 int (*func) (void *, const char *, Elf_Internal_Sym *,
17848 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
17849} output_arch_syminfo;
17850
17851enum map_symbol_type
17852{
17853 ARM_MAP_ARM,
17854 ARM_MAP_THUMB,
17855 ARM_MAP_DATA
17856};
17857
17858
7413f23f 17859/* Output a single mapping symbol. */
4e617b1e 17860
0a1b45a2 17861static bool
7413f23f
DJ
17862elf32_arm_output_map_sym (output_arch_syminfo *osi,
17863 enum map_symbol_type type,
17864 bfd_vma offset)
4e617b1e
PB
17865{
17866 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
17867 Elf_Internal_Sym sym;
17868
91a5743d
PB
17869 sym.st_value = osi->sec->output_section->vma
17870 + osi->sec->output_offset
17871 + offset;
4e617b1e
PB
17872 sym.st_size = 0;
17873 sym.st_other = 0;
17874 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 17875 sym.st_shndx = osi->sec_shndx;
35fc36a8 17876 sym.st_target_internal = 0;
fe33d2fa 17877 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 17878 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
17879}
17880
34e77a92
RS
17881/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17882 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e 17883
0a1b45a2 17884static bool
34e77a92 17885elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
0a1b45a2 17886 bool is_iplt_entry_p,
34e77a92
RS
17887 union gotplt_union *root_plt,
17888 struct arm_plt_info *arm_plt)
4e617b1e 17889{
4e617b1e 17890 struct elf32_arm_link_hash_table *htab;
34e77a92 17891 bfd_vma addr, plt_header_size;
4e617b1e 17892
34e77a92 17893 if (root_plt->offset == (bfd_vma) -1)
0a1b45a2 17894 return true;
4e617b1e 17895
4dfe6ac6
NC
17896 htab = elf32_arm_hash_table (osi->info);
17897 if (htab == NULL)
0a1b45a2 17898 return false;
4dfe6ac6 17899
34e77a92
RS
17900 if (is_iplt_entry_p)
17901 {
17902 osi->sec = htab->root.iplt;
17903 plt_header_size = 0;
17904 }
17905 else
17906 {
17907 osi->sec = htab->root.splt;
17908 plt_header_size = htab->plt_header_size;
17909 }
17910 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17911 (osi->info->output_bfd, osi->sec->output_section));
17912
17913 addr = root_plt->offset & -2;
a57d1773 17914 if (htab->root.target_os == is_vxworks)
4e617b1e 17915 {
7413f23f 17916 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17917 return false;
7413f23f 17918 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
0a1b45a2 17919 return false;
7413f23f 17920 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
0a1b45a2 17921 return false;
7413f23f 17922 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
0a1b45a2 17923 return false;
4e617b1e 17924 }
90c14f0c 17925 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
17926 {
17927 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17928 return false;
b38cadfb 17929 }
7801f98f
CL
17930 else if (htab->fdpic_p)
17931 {
cc850f74 17932 enum map_symbol_type type = using_thumb_only (htab)
59029f57
CL
17933 ? ARM_MAP_THUMB
17934 : ARM_MAP_ARM;
17935
7801f98f 17936 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
4b24dd1a 17937 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17938 return false;
59029f57 17939 if (!elf32_arm_output_map_sym (osi, type, addr))
0a1b45a2 17940 return false;
7801f98f 17941 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
0a1b45a2 17942 return false;
cc850f74 17943 if (htab->plt_entry_size == 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry))
4b24dd1a 17944 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
0a1b45a2 17945 return false;
7801f98f 17946 }
eed94f8f
NC
17947 else if (using_thumb_only (htab))
17948 {
17949 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
0a1b45a2 17950 return false;
6a631e86 17951 }
4e617b1e
PB
17952 else
17953 {
0a1b45a2 17954 bool thumb_stub_p;
bd97cb95 17955
34e77a92
RS
17956 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17957 if (thumb_stub_p)
4e617b1e 17958 {
7413f23f 17959 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17960 return false;
4e617b1e
PB
17961 }
17962#ifdef FOUR_WORD_PLT
7413f23f 17963 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17964 return false;
7413f23f 17965 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
0a1b45a2 17966 return false;
4e617b1e 17967#else
906e58ca 17968 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17969 so only need to output a mapping symbol for the first PLT entry and
17970 entries with thumb thunks. */
34e77a92 17971 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17972 {
7413f23f 17973 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17974 return false;
4e617b1e
PB
17975 }
17976#endif
17977 }
17978
0a1b45a2 17979 return true;
4e617b1e
PB
17980}
17981
34e77a92
RS
17982/* Output mapping symbols for PLT entries associated with H. */
17983
0a1b45a2 17984static bool
34e77a92
RS
17985elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17986{
17987 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17988 struct elf32_arm_link_hash_entry *eh;
17989
17990 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 17991 return true;
34e77a92
RS
17992
17993 if (h->root.type == bfd_link_hash_warning)
17994 /* When warning symbols are created, they **replace** the "real"
17995 entry in the hash table, thus we never get to see the real
17996 symbol in a hash traversal. So look at it now. */
17997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17998
17999 eh = (struct elf32_arm_link_hash_entry *) h;
18000 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18001 &h->plt, &eh->plt);
18002}
18003
4f4faa4d
TP
18004/* Bind a veneered symbol to its veneer identified by its hash entry
18005 STUB_ENTRY. The veneered location thus loose its symbol. */
18006
18007static void
18008arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18009{
18010 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18011
18012 BFD_ASSERT (hash);
18013 hash->root.root.u.def.section = stub_entry->stub_sec;
18014 hash->root.root.u.def.value = stub_entry->stub_offset;
18015 hash->root.size = stub_entry->stub_size;
18016}
18017
7413f23f
DJ
18018/* Output a single local symbol for a generated stub. */
18019
0a1b45a2 18020static bool
7413f23f
DJ
18021elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18022 bfd_vma offset, bfd_vma size)
18023{
7413f23f
DJ
18024 Elf_Internal_Sym sym;
18025
7413f23f
DJ
18026 sym.st_value = osi->sec->output_section->vma
18027 + osi->sec->output_offset
18028 + offset;
18029 sym.st_size = size;
18030 sym.st_other = 0;
18031 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18032 sym.st_shndx = osi->sec_shndx;
35fc36a8 18033 sym.st_target_internal = 0;
57402f1e 18034 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 18035}
4e617b1e 18036
0a1b45a2 18037static bool
8029a119
NC
18038arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18039 void * in_arg)
da5938a2
NC
18040{
18041 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
18042 asection *stub_sec;
18043 bfd_vma addr;
7413f23f 18044 char *stub_name;
9a008db3 18045 output_arch_syminfo *osi;
d3ce72d0 18046 const insn_sequence *template_sequence;
461a49ca
DJ
18047 enum stub_insn_type prev_type;
18048 int size;
18049 int i;
18050 enum map_symbol_type sym_type;
da5938a2
NC
18051
18052 /* Massage our args to the form they really have. */
18053 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 18054 osi = (output_arch_syminfo *) in_arg;
da5938a2 18055
da5938a2
NC
18056 stub_sec = stub_entry->stub_sec;
18057
18058 /* Ensure this stub is attached to the current section being
7413f23f 18059 processed. */
da5938a2 18060 if (stub_sec != osi->sec)
0a1b45a2 18061 return true;
da5938a2 18062
7413f23f 18063 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 18064 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
18065
18066 if (arm_stub_sym_claimed (stub_entry->stub_type))
18067 arm_stub_claim_sym (stub_entry);
18068 else
7413f23f 18069 {
4f4faa4d
TP
18070 stub_name = stub_entry->output_name;
18071 switch (template_sequence[0].type)
18072 {
18073 case ARM_TYPE:
18074 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18075 stub_entry->stub_size))
0a1b45a2 18076 return false;
4f4faa4d
TP
18077 break;
18078 case THUMB16_TYPE:
18079 case THUMB32_TYPE:
18080 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18081 stub_entry->stub_size))
0a1b45a2 18082 return false;
4f4faa4d
TP
18083 break;
18084 default:
18085 BFD_FAIL ();
18086 return 0;
18087 }
7413f23f 18088 }
da5938a2 18089
461a49ca
DJ
18090 prev_type = DATA_TYPE;
18091 size = 0;
18092 for (i = 0; i < stub_entry->stub_template_size; i++)
18093 {
d3ce72d0 18094 switch (template_sequence[i].type)
461a49ca
DJ
18095 {
18096 case ARM_TYPE:
18097 sym_type = ARM_MAP_ARM;
18098 break;
18099
18100 case THUMB16_TYPE:
48229727 18101 case THUMB32_TYPE:
461a49ca
DJ
18102 sym_type = ARM_MAP_THUMB;
18103 break;
18104
18105 case DATA_TYPE:
18106 sym_type = ARM_MAP_DATA;
18107 break;
18108
18109 default:
18110 BFD_FAIL ();
0a1b45a2 18111 return false;
461a49ca
DJ
18112 }
18113
d3ce72d0 18114 if (template_sequence[i].type != prev_type)
461a49ca 18115 {
d3ce72d0 18116 prev_type = template_sequence[i].type;
461a49ca 18117 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
0a1b45a2 18118 return false;
461a49ca
DJ
18119 }
18120
d3ce72d0 18121 switch (template_sequence[i].type)
461a49ca
DJ
18122 {
18123 case ARM_TYPE:
48229727 18124 case THUMB32_TYPE:
461a49ca
DJ
18125 size += 4;
18126 break;
18127
18128 case THUMB16_TYPE:
18129 size += 2;
18130 break;
18131
18132 case DATA_TYPE:
18133 size += 4;
18134 break;
18135
18136 default:
18137 BFD_FAIL ();
0a1b45a2 18138 return false;
461a49ca
DJ
18139 }
18140 }
18141
0a1b45a2 18142 return true;
da5938a2
NC
18143}
18144
33811162
DG
18145/* Output mapping symbols for linker generated sections,
18146 and for those data-only sections that do not have a
18147 $d. */
4e617b1e 18148
0a1b45a2 18149static bool
4e617b1e 18150elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 18151 struct bfd_link_info *info,
57402f1e 18152 void *flaginfo,
6e0b88f1
AM
18153 int (*func) (void *, const char *,
18154 Elf_Internal_Sym *,
18155 asection *,
18156 struct elf_link_hash_entry *))
4e617b1e
PB
18157{
18158 output_arch_syminfo osi;
18159 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
18160 bfd_vma offset;
18161 bfd_size_type size;
33811162 18162 bfd *input_bfd;
4e617b1e 18163
25d17459
L
18164 if (info->strip == strip_all
18165 && !info->emitrelocations
18166 && !bfd_link_relocatable (info))
18167 return true;
18168
4e617b1e 18169 htab = elf32_arm_hash_table (info);
4dfe6ac6 18170 if (htab == NULL)
0a1b45a2 18171 return false;
4dfe6ac6 18172
906e58ca 18173 check_use_blx (htab);
91a5743d 18174
57402f1e 18175 osi.flaginfo = flaginfo;
4e617b1e
PB
18176 osi.info = info;
18177 osi.func = func;
906e58ca 18178
33811162
DG
18179 /* Add a $d mapping symbol to data-only sections that
18180 don't have any mapping symbol. This may result in (harmless) redundant
18181 mapping symbols. */
18182 for (input_bfd = info->input_bfds;
18183 input_bfd != NULL;
c72f2fb2 18184 input_bfd = input_bfd->link.next)
33811162
DG
18185 {
18186 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18187 for (osi.sec = input_bfd->sections;
18188 osi.sec != NULL;
18189 osi.sec = osi.sec->next)
18190 {
18191 if (osi.sec->output_section != NULL
f7dd8c79
DJ
18192 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18193 != 0)
33811162
DG
18194 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18195 == SEC_HAS_CONTENTS
18196 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 18197 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
18198 && osi.sec->size > 0
18199 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
18200 {
18201 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18202 (output_bfd, osi.sec->output_section);
18203 if (osi.sec_shndx != (int)SHN_BAD)
18204 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18205 }
18206 }
18207 }
18208
91a5743d
PB
18209 /* ARM->Thumb glue. */
18210 if (htab->arm_glue_size > 0)
18211 {
3d4d4302
AM
18212 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18213 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
18214
18215 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18216 (output_bfd, osi.sec->output_section);
0e1862bb 18217 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
18218 || htab->pic_veneer)
18219 size = ARM2THUMB_PIC_GLUE_SIZE;
18220 else if (htab->use_blx)
18221 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18222 else
18223 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 18224
91a5743d
PB
18225 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18226 {
7413f23f
DJ
18227 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18228 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
18229 }
18230 }
18231
18232 /* Thumb->ARM glue. */
18233 if (htab->thumb_glue_size > 0)
18234 {
3d4d4302
AM
18235 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18236 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
18237
18238 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18239 (output_bfd, osi.sec->output_section);
18240 size = THUMB2ARM_GLUE_SIZE;
18241
18242 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18243 {
7413f23f
DJ
18244 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18245 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
18246 }
18247 }
18248
845b51d6
PB
18249 /* ARMv4 BX veneers. */
18250 if (htab->bx_glue_size > 0)
18251 {
3d4d4302
AM
18252 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18253 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
18254
18255 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18256 (output_bfd, osi.sec->output_section);
18257
7413f23f 18258 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
18259 }
18260
8029a119
NC
18261 /* Long calls stubs. */
18262 if (htab->stub_bfd && htab->stub_bfd->sections)
18263 {
da5938a2 18264 asection* stub_sec;
8029a119 18265
da5938a2
NC
18266 for (stub_sec = htab->stub_bfd->sections;
18267 stub_sec != NULL;
8029a119
NC
18268 stub_sec = stub_sec->next)
18269 {
18270 /* Ignore non-stub sections. */
18271 if (!strstr (stub_sec->name, STUB_SUFFIX))
18272 continue;
da5938a2 18273
8029a119 18274 osi.sec = stub_sec;
da5938a2 18275
8029a119
NC
18276 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18277 (output_bfd, osi.sec->output_section);
da5938a2 18278
8029a119
NC
18279 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18280 }
18281 }
da5938a2 18282
91a5743d 18283 /* Finally, output mapping symbols for the PLT. */
34e77a92 18284 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 18285 {
34e77a92
RS
18286 osi.sec = htab->root.splt;
18287 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18288 (output_bfd, osi.sec->output_section));
18289
a57d1773 18290 /* Output mapping symbols for the plt header. */
90c14f0c 18291 if (htab->root.target_os == is_vxworks)
34e77a92
RS
18292 {
18293 /* VxWorks shared libraries have no PLT header. */
0e1862bb 18294 if (!bfd_link_pic (info))
34e77a92
RS
18295 {
18296 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18297 return false;
34e77a92 18298 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18299 return false;
34e77a92
RS
18300 }
18301 }
90c14f0c 18302 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
18303 {
18304 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18305 return false;
b38cadfb 18306 }
59029f57 18307 else if (using_thumb_only (htab) && !htab->fdpic_p)
eed94f8f
NC
18308 {
18309 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
0a1b45a2 18310 return false;
eed94f8f 18311 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18312 return false;
eed94f8f 18313 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
0a1b45a2 18314 return false;
eed94f8f 18315 }
a57d1773 18316 else if (!htab->fdpic_p)
4e617b1e 18317 {
7413f23f 18318 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18319 return false;
34e77a92
RS
18320#ifndef FOUR_WORD_PLT
18321 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
0a1b45a2 18322 return false;
34e77a92 18323#endif
4e617b1e
PB
18324 }
18325 }
90c14f0c
L
18326 if (htab->root.target_os == is_nacl
18327 && htab->root.iplt
18328 && htab->root.iplt->size > 0)
99059e56
RM
18329 {
18330 /* NaCl uses a special first entry in .iplt too. */
18331 osi.sec = htab->root.iplt;
18332 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18333 (output_bfd, osi.sec->output_section));
18334 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18335 return false;
99059e56 18336 }
34e77a92
RS
18337 if ((htab->root.splt && htab->root.splt->size > 0)
18338 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 18339 {
34e77a92
RS
18340 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18341 for (input_bfd = info->input_bfds;
18342 input_bfd != NULL;
c72f2fb2 18343 input_bfd = input_bfd->link.next)
34e77a92
RS
18344 {
18345 struct arm_local_iplt_info **local_iplt;
18346 unsigned int i, num_syms;
4e617b1e 18347
34e77a92
RS
18348 local_iplt = elf32_arm_local_iplt (input_bfd);
18349 if (local_iplt != NULL)
18350 {
18351 num_syms = elf_symtab_hdr (input_bfd).sh_info;
74fd118f
NC
18352 if (num_syms > elf32_arm_num_entries (input_bfd))
18353 {
18354 _bfd_error_handler (_("\
18355%pB: Number of symbols in input file has increased from %lu to %u\n"),
18356 input_bfd,
18357 (unsigned long) elf32_arm_num_entries (input_bfd),
18358 num_syms);
18359 return false;
18360 }
34e77a92
RS
18361 for (i = 0; i < num_syms; i++)
18362 if (local_iplt[i] != NULL
0a1b45a2 18363 && !elf32_arm_output_plt_map_1 (&osi, true,
34e77a92
RS
18364 &local_iplt[i]->root,
18365 &local_iplt[i]->arm))
0a1b45a2 18366 return false;
34e77a92
RS
18367 }
18368 }
18369 }
9bcc30e4 18370 if (htab->root.tlsdesc_plt != 0)
0855e32b
NS
18371 {
18372 /* Mapping symbols for the lazy tls trampoline. */
9bcc30e4
L
18373 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM,
18374 htab->root.tlsdesc_plt))
0a1b45a2 18375 return false;
b38cadfb 18376
0855e32b 18377 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
9bcc30e4 18378 htab->root.tlsdesc_plt + 24))
0a1b45a2 18379 return false;
0855e32b
NS
18380 }
18381 if (htab->tls_trampoline != 0)
18382 {
18383 /* Mapping symbols for the tls trampoline. */
18384 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
0a1b45a2 18385 return false;
0855e32b
NS
18386#ifdef FOUR_WORD_PLT
18387 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18388 htab->tls_trampoline + 12))
0a1b45a2 18389 return false;
b38cadfb 18390#endif
0855e32b 18391 }
b38cadfb 18392
0a1b45a2 18393 return true;
4e617b1e
PB
18394}
18395
54ddd295
TP
18396/* Filter normal symbols of CMSE entry functions of ABFD to include in
18397 the import library. All SYMCOUNT symbols of ABFD can be examined
18398 from their pointers in SYMS. Pointers of symbols to keep should be
18399 stored continuously at the beginning of that array.
18400
18401 Returns the number of symbols to keep. */
18402
18403static unsigned int
18404elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18405 struct bfd_link_info *info,
18406 asymbol **syms, long symcount)
18407{
18408 size_t maxnamelen;
18409 char *cmse_name;
18410 long src_count, dst_count = 0;
18411 struct elf32_arm_link_hash_table *htab;
18412
18413 htab = elf32_arm_hash_table (info);
18414 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18415 symcount = 0;
18416
18417 maxnamelen = 128;
18418 cmse_name = (char *) bfd_malloc (maxnamelen);
7a0fb7be
NC
18419 BFD_ASSERT (cmse_name);
18420
54ddd295
TP
18421 for (src_count = 0; src_count < symcount; src_count++)
18422 {
18423 struct elf32_arm_link_hash_entry *cmse_hash;
18424 asymbol *sym;
18425 flagword flags;
18426 char *name;
18427 size_t namelen;
18428
18429 sym = syms[src_count];
18430 flags = sym->flags;
18431 name = (char *) bfd_asymbol_name (sym);
18432
18433 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18434 continue;
18435 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18436 continue;
18437
18438 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18439 if (namelen > maxnamelen)
18440 {
18441 cmse_name = (char *)
18442 bfd_realloc (cmse_name, namelen);
18443 maxnamelen = namelen;
18444 }
18445 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18446 cmse_hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 18447 elf_link_hash_lookup (&(htab)->root, cmse_name, false, false, true);
54ddd295
TP
18448
18449 if (!cmse_hash
18450 || (cmse_hash->root.root.type != bfd_link_hash_defined
18451 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18452 || cmse_hash->root.type != STT_FUNC)
18453 continue;
18454
54ddd295
TP
18455 syms[dst_count++] = sym;
18456 }
18457 free (cmse_name);
18458
18459 syms[dst_count] = NULL;
18460
18461 return dst_count;
18462}
18463
18464/* Filter symbols of ABFD to include in the import library. All
18465 SYMCOUNT symbols of ABFD can be examined from their pointers in
18466 SYMS. Pointers of symbols to keep should be stored continuously at
18467 the beginning of that array.
18468
18469 Returns the number of symbols to keep. */
18470
18471static unsigned int
18472elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18473 struct bfd_link_info *info,
18474 asymbol **syms, long symcount)
18475{
18476 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18477
046734ff
TP
18478 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18479 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18480 library to be a relocatable object file. */
18481 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
18482 if (globals->cmse_implib)
18483 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18484 else
18485 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18486}
18487
e489d0ae
PB
18488/* Allocate target specific section data. */
18489
0a1b45a2 18490static bool
e489d0ae
PB
18491elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18492{
f592407e
AM
18493 if (!sec->used_by_bfd)
18494 {
18495 _arm_elf_section_data *sdata;
986f0783 18496 size_t amt = sizeof (*sdata);
e489d0ae 18497
21d799b5 18498 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e 18499 if (sdata == NULL)
0a1b45a2 18500 return false;
f592407e
AM
18501 sec->used_by_bfd = sdata;
18502 }
e489d0ae
PB
18503
18504 return _bfd_elf_new_section_hook (abfd, sec);
18505}
18506
18507
18508/* Used to order a list of mapping symbols by address. */
18509
18510static int
18511elf32_arm_compare_mapping (const void * a, const void * b)
18512{
7f6a71ff
JM
18513 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18514 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18515
18516 if (amap->vma > bmap->vma)
18517 return 1;
18518 else if (amap->vma < bmap->vma)
18519 return -1;
18520 else if (amap->type > bmap->type)
18521 /* Ensure results do not depend on the host qsort for objects with
18522 multiple mapping symbols at the same address by sorting on type
18523 after vma. */
18524 return 1;
18525 else if (amap->type < bmap->type)
18526 return -1;
18527 else
18528 return 0;
e489d0ae
PB
18529}
18530
2468f9c9
PB
18531/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18532
18533static unsigned long
18534offset_prel31 (unsigned long addr, bfd_vma offset)
18535{
18536 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18537}
18538
18539/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18540 relocations. */
18541
18542static void
18543copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18544{
18545 unsigned long first_word = bfd_get_32 (output_bfd, from);
18546 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 18547
2468f9c9
PB
18548 /* High bit of first word is supposed to be zero. */
18549 if ((first_word & 0x80000000ul) == 0)
18550 first_word = offset_prel31 (first_word, offset);
b38cadfb 18551
2468f9c9
PB
18552 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18553 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18554 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18555 second_word = offset_prel31 (second_word, offset);
b38cadfb 18556
2468f9c9
PB
18557 bfd_put_32 (output_bfd, first_word, to);
18558 bfd_put_32 (output_bfd, second_word, to + 4);
18559}
e489d0ae 18560
48229727
JB
18561/* Data for make_branch_to_a8_stub(). */
18562
b38cadfb
NC
18563struct a8_branch_to_stub_data
18564{
48229727
JB
18565 asection *writing_section;
18566 bfd_byte *contents;
18567};
18568
18569
18570/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18571 places for a particular section. */
18572
0a1b45a2 18573static bool
48229727 18574make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 18575 void *in_arg)
48229727
JB
18576{
18577 struct elf32_arm_stub_hash_entry *stub_entry;
18578 struct a8_branch_to_stub_data *data;
18579 bfd_byte *contents;
18580 unsigned long branch_insn;
18581 bfd_vma veneered_insn_loc, veneer_entry_loc;
18582 bfd_signed_vma branch_offset;
18583 bfd *abfd;
8d9d9490 18584 unsigned int loc;
48229727
JB
18585
18586 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18587 data = (struct a8_branch_to_stub_data *) in_arg;
18588
18589 if (stub_entry->target_section != data->writing_section
4563a860 18590 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
0a1b45a2 18591 return true;
48229727
JB
18592
18593 contents = data->contents;
18594
8d9d9490
TP
18595 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18596 generated when both source and target are in the same section. */
48229727
JB
18597 veneered_insn_loc = stub_entry->target_section->output_section->vma
18598 + stub_entry->target_section->output_offset
8d9d9490 18599 + stub_entry->source_value;
48229727
JB
18600
18601 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18602 + stub_entry->stub_sec->output_offset
18603 + stub_entry->stub_offset;
18604
18605 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18606 veneered_insn_loc &= ~3u;
18607
18608 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18609
18610 abfd = stub_entry->target_section->owner;
8d9d9490 18611 loc = stub_entry->source_value;
48229727
JB
18612
18613 /* We attempt to avoid this condition by setting stubs_always_after_branch
18614 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18615 This check is just to be on the safe side... */
18616 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18617 {
871b3ab2 18618 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
4eca0228 18619 "allocated in unsafe location"), abfd);
0a1b45a2 18620 return false;
48229727
JB
18621 }
18622
18623 switch (stub_entry->stub_type)
18624 {
18625 case arm_stub_a8_veneer_b:
18626 case arm_stub_a8_veneer_b_cond:
18627 branch_insn = 0xf0009000;
18628 goto jump24;
18629
18630 case arm_stub_a8_veneer_blx:
18631 branch_insn = 0xf000e800;
18632 goto jump24;
18633
18634 case arm_stub_a8_veneer_bl:
18635 {
18636 unsigned int i1, j1, i2, j2, s;
18637
18638 branch_insn = 0xf000d000;
18639
18640 jump24:
18641 if (branch_offset < -16777216 || branch_offset > 16777214)
18642 {
18643 /* There's not much we can do apart from complain if this
18644 happens. */
871b3ab2 18645 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
4eca0228 18646 "of range (input file too large)"), abfd);
0a1b45a2 18647 return false;
48229727
JB
18648 }
18649
18650 /* i1 = not(j1 eor s), so:
18651 not i1 = j1 eor s
18652 j1 = (not i1) eor s. */
18653
18654 branch_insn |= (branch_offset >> 1) & 0x7ff;
18655 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18656 i2 = (branch_offset >> 22) & 1;
18657 i1 = (branch_offset >> 23) & 1;
18658 s = (branch_offset >> 24) & 1;
18659 j1 = (!i1) ^ s;
18660 j2 = (!i2) ^ s;
18661 branch_insn |= j2 << 11;
18662 branch_insn |= j1 << 13;
18663 branch_insn |= s << 26;
18664 }
18665 break;
18666
18667 default:
18668 BFD_FAIL ();
0a1b45a2 18669 return false;
48229727
JB
18670 }
18671
8d9d9490
TP
18672 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18673 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727 18674
0a1b45a2 18675 return true;
48229727
JB
18676}
18677
a504d23a
LA
18678/* Beginning of stm32l4xx work-around. */
18679
18680/* Functions encoding instructions necessary for the emission of the
18681 fix-stm32l4xx-629360.
18682 Encoding is extracted from the
18683 ARM (C) Architecture Reference Manual
18684 ARMv7-A and ARMv7-R edition
18685 ARM DDI 0406C.b (ID072512). */
18686
18687static inline bfd_vma
82188b29 18688create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
18689{
18690 /* A8.8.18 B (A8-334)
18691 B target_address (Encoding T4). */
18692 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18693 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18694 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18695
a504d23a
LA
18696 int s = ((branch_offset & 0x1000000) >> 24);
18697 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18698 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18699
18700 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18701 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18702
18703 bfd_vma patched_inst = 0xf0009000
18704 | s << 26 /* S. */
18705 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18706 | j1 << 13 /* J1. */
18707 | j2 << 11 /* J2. */
18708 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18709
18710 return patched_inst;
18711}
18712
18713static inline bfd_vma
18714create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18715{
18716 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18717 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18718 bfd_vma patched_inst = 0xe8900000
18719 | (/*W=*/wback << 21)
18720 | (base_reg << 16)
18721 | (reg_mask & 0x0000ffff);
18722
18723 return patched_inst;
18724}
18725
18726static inline bfd_vma
18727create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18728{
18729 /* A8.8.60 LDMDB/LDMEA (A8-402)
18730 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18731 bfd_vma patched_inst = 0xe9100000
18732 | (/*W=*/wback << 21)
18733 | (base_reg << 16)
18734 | (reg_mask & 0x0000ffff);
18735
18736 return patched_inst;
18737}
18738
18739static inline bfd_vma
18740create_instruction_mov (int target_reg, int source_reg)
18741{
18742 /* A8.8.103 MOV (register) (A8-486)
18743 MOV Rd, Rm (Encoding T1). */
18744 bfd_vma patched_inst = 0x4600
18745 | (target_reg & 0x7)
18746 | ((target_reg & 0x8) >> 3) << 7
18747 | (source_reg << 3);
18748
18749 return patched_inst;
18750}
18751
18752static inline bfd_vma
18753create_instruction_sub (int target_reg, int source_reg, int value)
18754{
18755 /* A8.8.221 SUB (immediate) (A8-708)
18756 SUB Rd, Rn, #value (Encoding T3). */
18757 bfd_vma patched_inst = 0xf1a00000
18758 | (target_reg << 8)
18759 | (source_reg << 16)
18760 | (/*S=*/0 << 20)
18761 | ((value & 0x800) >> 11) << 26
18762 | ((value & 0x700) >> 8) << 12
18763 | (value & 0x0ff);
18764
18765 return patched_inst;
18766}
18767
18768static inline bfd_vma
9239bbd3 18769create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
18770 int first_reg)
18771{
18772 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18773 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18774 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
18775 | (/*W=*/wback << 21)
18776 | (base_reg << 16)
9239bbd3
CM
18777 | (num_words & 0x000000ff)
18778 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
18779 | (first_reg & 0x00000001) << 22;
18780
18781 return patched_inst;
18782}
18783
18784static inline bfd_vma
9239bbd3
CM
18785create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18786 int first_reg)
a504d23a
LA
18787{
18788 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18789 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18790 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 18791 | (base_reg << 16)
9239bbd3
CM
18792 | (num_words & 0x000000ff)
18793 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
18794 | (first_reg & 0x00000001) << 22;
18795
18796 return patched_inst;
18797}
18798
18799static inline bfd_vma
18800create_instruction_udf_w (int value)
18801{
18802 /* A8.8.247 UDF (A8-758)
18803 Undefined (Encoding T2). */
18804 bfd_vma patched_inst = 0xf7f0a000
18805 | (value & 0x00000fff)
18806 | (value & 0x000f0000) << 16;
18807
18808 return patched_inst;
18809}
18810
18811static inline bfd_vma
18812create_instruction_udf (int value)
18813{
18814 /* A8.8.247 UDF (A8-758)
18815 Undefined (Encoding T1). */
18816 bfd_vma patched_inst = 0xde00
18817 | (value & 0xff);
18818
18819 return patched_inst;
18820}
18821
18822/* Functions writing an instruction in memory, returning the next
18823 memory position to write to. */
18824
18825static inline bfd_byte *
18826push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18827 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18828{
18829 put_thumb2_insn (htab, output_bfd, insn, pt);
18830 return pt + 4;
18831}
18832
18833static inline bfd_byte *
18834push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18835 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18836{
18837 put_thumb_insn (htab, output_bfd, insn, pt);
18838 return pt + 2;
18839}
18840
18841/* Function filling up a region in memory with T1 and T2 UDFs taking
18842 care of alignment. */
18843
18844static bfd_byte *
18845stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
07d6d2b8
AM
18846 bfd * output_bfd,
18847 const bfd_byte * const base_stub_contents,
18848 bfd_byte * const from_stub_contents,
18849 const bfd_byte * const end_stub_contents)
a504d23a
LA
18850{
18851 bfd_byte *current_stub_contents = from_stub_contents;
18852
18853 /* Fill the remaining of the stub with deterministic contents : UDF
18854 instructions.
18855 Check if realignment is needed on modulo 4 frontier using T1, to
18856 further use T2. */
18857 if ((current_stub_contents < end_stub_contents)
18858 && !((current_stub_contents - base_stub_contents) % 2)
18859 && ((current_stub_contents - base_stub_contents) % 4))
18860 current_stub_contents =
18861 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18862 create_instruction_udf (0));
18863
18864 for (; current_stub_contents < end_stub_contents;)
18865 current_stub_contents =
18866 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18867 create_instruction_udf_w (0));
18868
18869 return current_stub_contents;
18870}
18871
18872/* Functions writing the stream of instructions equivalent to the
18873 derived sequence for ldmia, ldmdb, vldm respectively. */
18874
18875static void
18876stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18877 bfd * output_bfd,
18878 const insn32 initial_insn,
18879 const bfd_byte *const initial_insn_addr,
18880 bfd_byte *const base_stub_contents)
18881{
18882 int wback = (initial_insn & 0x00200000) >> 21;
18883 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18884 int insn_all_registers = initial_insn & 0x0000ffff;
18885 int insn_low_registers, insn_high_registers;
18886 int usable_register_mask;
b25e998d 18887 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18888 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18889 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18890 bfd_byte *current_stub_contents = base_stub_contents;
18891
18892 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18893
18894 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18895 smaller than 8 registers load sequences that do not cause the
18896 hardware issue. */
18897 if (nb_registers <= 8)
18898 {
18899 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18900 current_stub_contents =
18901 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18902 initial_insn);
18903
18904 /* B initial_insn_addr+4. */
18905 if (!restore_pc)
18906 current_stub_contents =
18907 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18908 create_instruction_branch_absolute
82188b29 18909 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18910
18911 /* Fill the remaining of the stub with deterministic contents. */
18912 current_stub_contents =
18913 stm32l4xx_fill_stub_udf (htab, output_bfd,
18914 base_stub_contents, current_stub_contents,
18915 base_stub_contents +
18916 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18917
18918 return;
18919 }
18920
18921 /* - reg_list[13] == 0. */
18922 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18923
18924 /* - reg_list[14] & reg_list[15] != 1. */
18925 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18926
18927 /* - if (wback==1) reg_list[rn] == 0. */
18928 BFD_ASSERT (!wback || !restore_rn);
18929
18930 /* - nb_registers > 8. */
b25e998d 18931 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18932
18933 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18934
18935 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18936 - One with the 7 lowest registers (register mask 0x007F)
18937 This LDM will finally contain between 2 and 7 registers
18938 - One with the 7 highest registers (register mask 0xDF80)
18939 This ldm will finally contain between 2 and 7 registers. */
18940 insn_low_registers = insn_all_registers & 0x007F;
18941 insn_high_registers = insn_all_registers & 0xDF80;
18942
18943 /* A spare register may be needed during this veneer to temporarily
18944 handle the base register. This register will be restored with the
18945 last LDM operation.
18946 The usable register may be any general purpose register (that
18947 excludes PC, SP, LR : register mask is 0x1FFF). */
18948 usable_register_mask = 0x1FFF;
18949
18950 /* Generate the stub function. */
18951 if (wback)
18952 {
18953 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18954 current_stub_contents =
18955 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18956 create_instruction_ldmia
18957 (rn, /*wback=*/1, insn_low_registers));
18958
18959 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18960 current_stub_contents =
18961 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18962 create_instruction_ldmia
18963 (rn, /*wback=*/1, insn_high_registers));
18964 if (!restore_pc)
18965 {
18966 /* B initial_insn_addr+4. */
18967 current_stub_contents =
18968 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18969 create_instruction_branch_absolute
82188b29 18970 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18971 }
18972 }
18973 else /* if (!wback). */
18974 {
18975 ri = rn;
18976
18977 /* If Rn is not part of the high-register-list, move it there. */
18978 if (!(insn_high_registers & (1 << rn)))
18979 {
18980 /* Choose a Ri in the high-register-list that will be restored. */
18981 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18982
18983 /* MOV Ri, Rn. */
18984 current_stub_contents =
18985 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18986 create_instruction_mov (ri, rn));
18987 }
18988
18989 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18990 current_stub_contents =
18991 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18992 create_instruction_ldmia
18993 (ri, /*wback=*/1, insn_low_registers));
18994
18995 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18996 current_stub_contents =
18997 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18998 create_instruction_ldmia
18999 (ri, /*wback=*/0, insn_high_registers));
19000
19001 if (!restore_pc)
19002 {
19003 /* B initial_insn_addr+4. */
19004 current_stub_contents =
19005 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19006 create_instruction_branch_absolute
82188b29 19007 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19008 }
19009 }
19010
19011 /* Fill the remaining of the stub with deterministic contents. */
19012 current_stub_contents =
19013 stm32l4xx_fill_stub_udf (htab, output_bfd,
19014 base_stub_contents, current_stub_contents,
19015 base_stub_contents +
19016 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19017}
19018
19019static void
19020stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19021 bfd * output_bfd,
19022 const insn32 initial_insn,
19023 const bfd_byte *const initial_insn_addr,
19024 bfd_byte *const base_stub_contents)
19025{
19026 int wback = (initial_insn & 0x00200000) >> 21;
19027 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19028 int insn_all_registers = initial_insn & 0x0000ffff;
19029 int insn_low_registers, insn_high_registers;
19030 int usable_register_mask;
19031 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19032 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 19033 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
19034 bfd_byte *current_stub_contents = base_stub_contents;
19035
19036 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19037
19038 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19039 smaller than 8 registers load sequences that do not cause the
19040 hardware issue. */
19041 if (nb_registers <= 8)
19042 {
19043 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19044 current_stub_contents =
19045 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19046 initial_insn);
19047
19048 /* B initial_insn_addr+4. */
19049 current_stub_contents =
19050 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19051 create_instruction_branch_absolute
82188b29 19052 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19053
19054 /* Fill the remaining of the stub with deterministic contents. */
19055 current_stub_contents =
19056 stm32l4xx_fill_stub_udf (htab, output_bfd,
19057 base_stub_contents, current_stub_contents,
19058 base_stub_contents +
19059 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19060
19061 return;
19062 }
19063
19064 /* - reg_list[13] == 0. */
19065 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19066
19067 /* - reg_list[14] & reg_list[15] != 1. */
19068 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19069
19070 /* - if (wback==1) reg_list[rn] == 0. */
19071 BFD_ASSERT (!wback || !restore_rn);
19072
19073 /* - nb_registers > 8. */
b25e998d 19074 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
19075
19076 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19077
19078 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19079 - One with the 7 lowest registers (register mask 0x007F)
19080 This LDM will finally contain between 2 and 7 registers
19081 - One with the 7 highest registers (register mask 0xDF80)
19082 This ldm will finally contain between 2 and 7 registers. */
19083 insn_low_registers = insn_all_registers & 0x007F;
19084 insn_high_registers = insn_all_registers & 0xDF80;
19085
19086 /* A spare register may be needed during this veneer to temporarily
19087 handle the base register. This register will be restored with
19088 the last LDM operation.
19089 The usable register may be any general purpose register (that excludes
19090 PC, SP, LR : register mask is 0x1FFF). */
19091 usable_register_mask = 0x1FFF;
19092
19093 /* Generate the stub function. */
19094 if (!wback && !restore_pc && !restore_rn)
19095 {
19096 /* Choose a Ri in the low-register-list that will be restored. */
19097 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19098
19099 /* MOV Ri, Rn. */
19100 current_stub_contents =
19101 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19102 create_instruction_mov (ri, rn));
19103
19104 /* LDMDB Ri!, {R-high-register-list}. */
19105 current_stub_contents =
19106 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19107 create_instruction_ldmdb
19108 (ri, /*wback=*/1, insn_high_registers));
19109
19110 /* LDMDB Ri, {R-low-register-list}. */
19111 current_stub_contents =
19112 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19113 create_instruction_ldmdb
19114 (ri, /*wback=*/0, insn_low_registers));
19115
19116 /* B initial_insn_addr+4. */
19117 current_stub_contents =
19118 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19119 create_instruction_branch_absolute
82188b29 19120 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19121 }
19122 else if (wback && !restore_pc && !restore_rn)
19123 {
19124 /* LDMDB Rn!, {R-high-register-list}. */
19125 current_stub_contents =
19126 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19127 create_instruction_ldmdb
19128 (rn, /*wback=*/1, insn_high_registers));
19129
19130 /* LDMDB Rn!, {R-low-register-list}. */
19131 current_stub_contents =
19132 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19133 create_instruction_ldmdb
19134 (rn, /*wback=*/1, insn_low_registers));
19135
19136 /* B initial_insn_addr+4. */
19137 current_stub_contents =
19138 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19139 create_instruction_branch_absolute
82188b29 19140 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19141 }
19142 else if (!wback && restore_pc && !restore_rn)
19143 {
19144 /* Choose a Ri in the high-register-list that will be restored. */
19145 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19146
19147 /* SUB Ri, Rn, #(4*nb_registers). */
19148 current_stub_contents =
19149 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19150 create_instruction_sub (ri, rn, (4 * nb_registers)));
19151
19152 /* LDMIA Ri!, {R-low-register-list}. */
19153 current_stub_contents =
19154 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19155 create_instruction_ldmia
19156 (ri, /*wback=*/1, insn_low_registers));
19157
19158 /* LDMIA Ri, {R-high-register-list}. */
19159 current_stub_contents =
19160 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19161 create_instruction_ldmia
19162 (ri, /*wback=*/0, insn_high_registers));
19163 }
19164 else if (wback && restore_pc && !restore_rn)
19165 {
19166 /* Choose a Ri in the high-register-list that will be restored. */
19167 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19168
19169 /* SUB Rn, Rn, #(4*nb_registers) */
19170 current_stub_contents =
19171 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19172 create_instruction_sub (rn, rn, (4 * nb_registers)));
19173
19174 /* MOV Ri, Rn. */
19175 current_stub_contents =
19176 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19177 create_instruction_mov (ri, rn));
19178
19179 /* LDMIA Ri!, {R-low-register-list}. */
19180 current_stub_contents =
19181 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19182 create_instruction_ldmia
19183 (ri, /*wback=*/1, insn_low_registers));
19184
19185 /* LDMIA Ri, {R-high-register-list}. */
19186 current_stub_contents =
19187 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19188 create_instruction_ldmia
19189 (ri, /*wback=*/0, insn_high_registers));
19190 }
19191 else if (!wback && !restore_pc && restore_rn)
19192 {
19193 ri = rn;
19194 if (!(insn_low_registers & (1 << rn)))
19195 {
19196 /* Choose a Ri in the low-register-list that will be restored. */
19197 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19198
19199 /* MOV Ri, Rn. */
19200 current_stub_contents =
19201 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19202 create_instruction_mov (ri, rn));
19203 }
19204
19205 /* LDMDB Ri!, {R-high-register-list}. */
19206 current_stub_contents =
19207 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19208 create_instruction_ldmdb
19209 (ri, /*wback=*/1, insn_high_registers));
19210
19211 /* LDMDB Ri, {R-low-register-list}. */
19212 current_stub_contents =
19213 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19214 create_instruction_ldmdb
19215 (ri, /*wback=*/0, insn_low_registers));
19216
19217 /* B initial_insn_addr+4. */
19218 current_stub_contents =
19219 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19220 create_instruction_branch_absolute
82188b29 19221 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19222 }
19223 else if (!wback && restore_pc && restore_rn)
19224 {
19225 ri = rn;
19226 if (!(insn_high_registers & (1 << rn)))
19227 {
19228 /* Choose a Ri in the high-register-list that will be restored. */
19229 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19230 }
19231
19232 /* SUB Ri, Rn, #(4*nb_registers). */
19233 current_stub_contents =
19234 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19235 create_instruction_sub (ri, rn, (4 * nb_registers)));
19236
19237 /* LDMIA Ri!, {R-low-register-list}. */
19238 current_stub_contents =
19239 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19240 create_instruction_ldmia
19241 (ri, /*wback=*/1, insn_low_registers));
19242
19243 /* LDMIA Ri, {R-high-register-list}. */
19244 current_stub_contents =
19245 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19246 create_instruction_ldmia
19247 (ri, /*wback=*/0, insn_high_registers));
19248 }
19249 else if (wback && restore_rn)
19250 {
19251 /* The assembler should not have accepted to encode this. */
19252 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19253 "undefined behavior.\n");
19254 }
19255
19256 /* Fill the remaining of the stub with deterministic contents. */
19257 current_stub_contents =
19258 stm32l4xx_fill_stub_udf (htab, output_bfd,
19259 base_stub_contents, current_stub_contents,
19260 base_stub_contents +
19261 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19262
19263}
19264
19265static void
19266stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19267 bfd * output_bfd,
19268 const insn32 initial_insn,
19269 const bfd_byte *const initial_insn_addr,
19270 bfd_byte *const base_stub_contents)
19271{
13c9c485 19272 int num_words = initial_insn & 0xff;
a504d23a
LA
19273 bfd_byte *current_stub_contents = base_stub_contents;
19274
19275 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19276
19277 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 19278 smaller than 8 words load sequences that do not cause the
a504d23a 19279 hardware issue. */
9239bbd3 19280 if (num_words <= 8)
a504d23a
LA
19281 {
19282 /* Untouched instruction. */
19283 current_stub_contents =
19284 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19285 initial_insn);
19286
19287 /* B initial_insn_addr+4. */
19288 current_stub_contents =
19289 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19290 create_instruction_branch_absolute
82188b29 19291 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19292 }
19293 else
19294 {
0a1b45a2 19295 bool is_dp = /* DP encoding. */
9239bbd3 19296 (initial_insn & 0xfe100f00) == 0xec100b00;
0a1b45a2 19297 bool is_ia_nobang = /* (IA without !). */
a504d23a 19298 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
0a1b45a2 19299 bool is_ia_bang = /* (IA with !) - includes VPOP. */
a504d23a 19300 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
0a1b45a2 19301 bool is_db_bang = /* (DB with !). */
a504d23a 19302 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 19303 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 19304 /* d = UInt (Vd:D);. */
9239bbd3 19305 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
19306 | (((unsigned int)initial_insn << 9) >> 31);
19307
9239bbd3
CM
19308 /* Compute the number of 8-words chunks needed to split. */
19309 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
19310 int chunk;
19311
19312 /* The test coverage has been done assuming the following
19313 hypothesis that exactly one of the previous is_ predicates is
19314 true. */
9239bbd3
CM
19315 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19316 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 19317
9239bbd3 19318 /* We treat the cutting of the words in one pass for all
a504d23a
LA
19319 cases, then we emit the adjustments:
19320
19321 vldm rx, {...}
19322 -> vldm rx!, {8_words_or_less} for each needed 8_word
19323 -> sub rx, rx, #size (list)
19324
19325 vldm rx!, {...}
19326 -> vldm rx!, {8_words_or_less} for each needed 8_word
19327 This also handles vpop instruction (when rx is sp)
19328
19329 vldmd rx!, {...}
19330 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 19331 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 19332 {
9239bbd3
CM
19333 bfd_vma new_insn = 0;
19334
a504d23a
LA
19335 if (is_ia_nobang || is_ia_bang)
19336 {
9239bbd3
CM
19337 new_insn = create_instruction_vldmia
19338 (base_reg,
19339 is_dp,
19340 /*wback= . */1,
19341 chunks - (chunk + 1) ?
19342 8 : num_words - chunk * 8,
19343 first_reg + chunk * 8);
a504d23a
LA
19344 }
19345 else if (is_db_bang)
19346 {
9239bbd3
CM
19347 new_insn = create_instruction_vldmdb
19348 (base_reg,
19349 is_dp,
19350 chunks - (chunk + 1) ?
19351 8 : num_words - chunk * 8,
19352 first_reg + chunk * 8);
a504d23a 19353 }
9239bbd3
CM
19354
19355 if (new_insn)
19356 current_stub_contents =
19357 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19358 new_insn);
a504d23a
LA
19359 }
19360
19361 /* Only this case requires the base register compensation
19362 subtract. */
19363 if (is_ia_nobang)
19364 {
19365 current_stub_contents =
19366 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19367 create_instruction_sub
9239bbd3 19368 (base_reg, base_reg, 4*num_words));
a504d23a
LA
19369 }
19370
19371 /* B initial_insn_addr+4. */
19372 current_stub_contents =
19373 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19374 create_instruction_branch_absolute
82188b29 19375 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19376 }
19377
19378 /* Fill the remaining of the stub with deterministic contents. */
19379 current_stub_contents =
19380 stm32l4xx_fill_stub_udf (htab, output_bfd,
19381 base_stub_contents, current_stub_contents,
19382 base_stub_contents +
19383 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19384}
19385
19386static void
19387stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19388 bfd * output_bfd,
19389 const insn32 wrong_insn,
19390 const bfd_byte *const wrong_insn_addr,
19391 bfd_byte *const stub_contents)
19392{
19393 if (is_thumb2_ldmia (wrong_insn))
19394 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19395 wrong_insn, wrong_insn_addr,
19396 stub_contents);
19397 else if (is_thumb2_ldmdb (wrong_insn))
19398 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19399 wrong_insn, wrong_insn_addr,
19400 stub_contents);
19401 else if (is_thumb2_vldm (wrong_insn))
19402 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19403 wrong_insn, wrong_insn_addr,
19404 stub_contents);
19405}
19406
19407/* End of stm32l4xx work-around. */
19408
19409
e489d0ae
PB
19410/* Do code byteswapping. Return FALSE afterwards so that the section is
19411 written out as normal. */
19412
0a1b45a2 19413static bool
c7b8f16e 19414elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
19415 struct bfd_link_info *link_info,
19416 asection *sec,
e489d0ae
PB
19417 bfd_byte *contents)
19418{
48229727 19419 unsigned int mapcount, errcount;
8e3de13a 19420 _arm_elf_section_data *arm_data;
c7b8f16e 19421 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 19422 elf32_arm_section_map *map;
c7b8f16e 19423 elf32_vfp11_erratum_list *errnode;
a504d23a 19424 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
19425 bfd_vma ptr;
19426 bfd_vma end;
c7b8f16e 19427 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 19428 bfd_byte tmp;
48229727 19429 unsigned int i;
57e8b36a 19430
4dfe6ac6 19431 if (globals == NULL)
0a1b45a2 19432 return false;
4dfe6ac6 19433
8e3de13a
NC
19434 /* If this section has not been allocated an _arm_elf_section_data
19435 structure then we cannot record anything. */
19436 arm_data = get_arm_elf_section_data (sec);
19437 if (arm_data == NULL)
0a1b45a2 19438 return false;
8e3de13a
NC
19439
19440 mapcount = arm_data->mapcount;
19441 map = arm_data->map;
c7b8f16e
JB
19442 errcount = arm_data->erratumcount;
19443
19444 if (errcount != 0)
19445 {
19446 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19447
19448 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
19449 errnode = errnode->next)
19450 {
19451 bfd_vma target = errnode->vma - offset;
19452
19453 switch (errnode->type)
19454 {
19455 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19456 {
19457 bfd_vma branch_to_veneer;
19458 /* Original condition code of instruction, plus bit mask for
19459 ARM B instruction. */
19460 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19461 | 0x0a000000;
c7b8f16e
JB
19462
19463 /* The instruction is before the label. */
91d6fa6a 19464 target -= 4;
c7b8f16e
JB
19465
19466 /* Above offset included in -4 below. */
19467 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 19468 - errnode->vma - 4;
c7b8f16e
JB
19469
19470 if ((signed) branch_to_veneer < -(1 << 25)
19471 || (signed) branch_to_veneer >= (1 << 25))
871b3ab2 19472 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19473 "range"), output_bfd);
c7b8f16e 19474
99059e56
RM
19475 insn |= (branch_to_veneer >> 2) & 0xffffff;
19476 contents[endianflip ^ target] = insn & 0xff;
19477 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19478 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19479 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19480 }
19481 break;
c7b8f16e
JB
19482
19483 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
19484 {
19485 bfd_vma branch_from_veneer;
19486 unsigned int insn;
c7b8f16e 19487
99059e56
RM
19488 /* Take size of veneer into account. */
19489 branch_from_veneer = errnode->u.v.branch->vma
19490 - errnode->vma - 12;
c7b8f16e
JB
19491
19492 if ((signed) branch_from_veneer < -(1 << 25)
19493 || (signed) branch_from_veneer >= (1 << 25))
871b3ab2 19494 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19495 "range"), output_bfd);
c7b8f16e 19496
99059e56
RM
19497 /* Original instruction. */
19498 insn = errnode->u.v.branch->u.b.vfp_insn;
19499 contents[endianflip ^ target] = insn & 0xff;
19500 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19501 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19502 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19503
19504 /* Branch back to insn after original insn. */
19505 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19506 contents[endianflip ^ (target + 4)] = insn & 0xff;
19507 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19508 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19509 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19510 }
19511 break;
c7b8f16e 19512
99059e56
RM
19513 default:
19514 abort ();
19515 }
19516 }
c7b8f16e 19517 }
e489d0ae 19518
a504d23a
LA
19519 if (arm_data->stm32l4xx_erratumcount != 0)
19520 {
19521 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19522 stm32l4xx_errnode != 0;
19523 stm32l4xx_errnode = stm32l4xx_errnode->next)
19524 {
19525 bfd_vma target = stm32l4xx_errnode->vma - offset;
19526
19527 switch (stm32l4xx_errnode->type)
19528 {
19529 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19530 {
19531 unsigned int insn;
19532 bfd_vma branch_to_veneer =
19533 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19534
19535 if ((signed) branch_to_veneer < -(1 << 24)
19536 || (signed) branch_to_veneer >= (1 << 24))
19537 {
19538 bfd_vma out_of_range =
19539 ((signed) branch_to_veneer < -(1 << 24)) ?
19540 - branch_to_veneer - (1 << 24) :
19541 ((signed) branch_to_veneer >= (1 << 24)) ?
19542 branch_to_veneer - (1 << 24) : 0;
19543
4eca0228 19544 _bfd_error_handler
2dcf00ce 19545 (_("%pB(%#" PRIx64 "): error: "
90b6238f
AM
19546 "cannot create STM32L4XX veneer; "
19547 "jump out of range by %" PRId64 " bytes; "
19548 "cannot encode branch instruction"),
a504d23a 19549 output_bfd,
2dcf00ce
AM
19550 (uint64_t) (stm32l4xx_errnode->vma - 4),
19551 (int64_t) out_of_range);
a504d23a
LA
19552 continue;
19553 }
19554
19555 insn = create_instruction_branch_absolute
82188b29 19556 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a 19557
a2699ef2
AM
19558 /* The instruction is before the label. */
19559 target -= 4;
19560
a504d23a
LA
19561 put_thumb2_insn (globals, output_bfd,
19562 (bfd_vma) insn, contents + target);
19563 }
19564 break;
19565
19566 case STM32L4XX_ERRATUM_VENEER:
19567 {
82188b29
NC
19568 bfd_byte * veneer;
19569 bfd_byte * veneer_r;
a504d23a
LA
19570 unsigned int insn;
19571
82188b29
NC
19572 veneer = contents + target;
19573 veneer_r = veneer
19574 + stm32l4xx_errnode->u.b.veneer->vma
19575 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
19576
19577 if ((signed) (veneer_r - veneer -
19578 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19579 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19580 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19581 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19582 || (signed) (veneer_r - veneer) >= (1 << 24))
19583 {
90b6238f
AM
19584 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19585 "veneer"), output_bfd);
a504d23a
LA
19586 continue;
19587 }
19588
19589 /* Original instruction. */
19590 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19591
19592 stm32l4xx_create_replacing_stub
19593 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19594 }
19595 break;
19596
19597 default:
19598 abort ();
19599 }
19600 }
19601 }
19602
2468f9c9
PB
19603 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19604 {
19605 arm_unwind_table_edit *edit_node
99059e56 19606 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 19607 /* Now, sec->size is the size of the section we will write. The original
99059e56 19608 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
19609 markers) was sec->rawsize. (This isn't the case if we perform no
19610 edits, then rawsize will be zero and we should use size). */
21d799b5 19611 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
19612 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19613 unsigned int in_index, out_index;
19614 bfd_vma add_to_offsets = 0;
19615
7a0fb7be 19616 if (edited_contents == NULL)
0a1b45a2 19617 return false;
2468f9c9 19618 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 19619 {
2468f9c9
PB
19620 if (edit_node)
19621 {
19622 unsigned int edit_index = edit_node->index;
b38cadfb 19623
2468f9c9 19624 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 19625 {
2468f9c9
PB
19626 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19627 contents + in_index * 8, add_to_offsets);
19628 out_index++;
19629 in_index++;
19630 }
19631 else if (in_index == edit_index
19632 || (in_index * 8 >= input_size
19633 && edit_index == UINT_MAX))
99059e56 19634 {
2468f9c9
PB
19635 switch (edit_node->type)
19636 {
19637 case DELETE_EXIDX_ENTRY:
19638 in_index++;
19639 add_to_offsets += 8;
19640 break;
b38cadfb 19641
2468f9c9
PB
19642 case INSERT_EXIDX_CANTUNWIND_AT_END:
19643 {
99059e56 19644 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
19645 bfd_vma text_offset = text_sec->output_section->vma
19646 + text_sec->output_offset
19647 + text_sec->size;
19648 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 19649 unsigned long prel31_offset;
2468f9c9
PB
19650
19651 /* Note: this is meant to be equivalent to an
19652 R_ARM_PREL31 relocation. These synthetic
19653 EXIDX_CANTUNWIND markers are not relocated by the
19654 usual BFD method. */
19655 prel31_offset = (text_offset - exidx_offset)
19656 & 0x7ffffffful;
491d01d3
YU
19657 if (bfd_link_relocatable (link_info))
19658 {
19659 /* Here relocation for new EXIDX_CANTUNWIND is
19660 created, so there is no need to
19661 adjust offset by hand. */
19662 prel31_offset = text_sec->output_offset
19663 + text_sec->size;
491d01d3 19664 }
2468f9c9
PB
19665
19666 /* First address we can't unwind. */
19667 bfd_put_32 (output_bfd, prel31_offset,
19668 &edited_contents[out_index * 8]);
19669
19670 /* Code for EXIDX_CANTUNWIND. */
19671 bfd_put_32 (output_bfd, 0x1,
19672 &edited_contents[out_index * 8 + 4]);
19673
19674 out_index++;
19675 add_to_offsets -= 8;
19676 }
19677 break;
19678 }
b38cadfb 19679
2468f9c9
PB
19680 edit_node = edit_node->next;
19681 }
19682 }
19683 else
19684 {
19685 /* No more edits, copy remaining entries verbatim. */
19686 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19687 contents + in_index * 8, add_to_offsets);
19688 out_index++;
19689 in_index++;
19690 }
19691 }
19692
19693 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19694 bfd_set_section_contents (output_bfd, sec->output_section,
19695 edited_contents,
19696 (file_ptr) sec->output_offset, sec->size);
19697
0a1b45a2 19698 return true;
2468f9c9
PB
19699 }
19700
48229727
JB
19701 /* Fix code to point to Cortex-A8 erratum stubs. */
19702 if (globals->fix_cortex_a8)
19703 {
19704 struct a8_branch_to_stub_data data;
19705
19706 data.writing_section = sec;
19707 data.contents = contents;
19708
a504d23a
LA
19709 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19710 & data);
48229727
JB
19711 }
19712
e489d0ae 19713 if (mapcount == 0)
0a1b45a2 19714 return false;
e489d0ae 19715
c7b8f16e 19716 if (globals->byteswap_code)
e489d0ae 19717 {
c7b8f16e 19718 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 19719
c7b8f16e
JB
19720 ptr = map[0].vma;
19721 for (i = 0; i < mapcount; i++)
99059e56
RM
19722 {
19723 if (i == mapcount - 1)
c7b8f16e 19724 end = sec->size;
99059e56
RM
19725 else
19726 end = map[i + 1].vma;
e489d0ae 19727
99059e56 19728 switch (map[i].type)
e489d0ae 19729 {
c7b8f16e
JB
19730 case 'a':
19731 /* Byte swap code words. */
19732 while (ptr + 3 < end)
99059e56
RM
19733 {
19734 tmp = contents[ptr];
19735 contents[ptr] = contents[ptr + 3];
19736 contents[ptr + 3] = tmp;
19737 tmp = contents[ptr + 1];
19738 contents[ptr + 1] = contents[ptr + 2];
19739 contents[ptr + 2] = tmp;
19740 ptr += 4;
19741 }
c7b8f16e 19742 break;
e489d0ae 19743
c7b8f16e
JB
19744 case 't':
19745 /* Byte swap code halfwords. */
19746 while (ptr + 1 < end)
99059e56
RM
19747 {
19748 tmp = contents[ptr];
19749 contents[ptr] = contents[ptr + 1];
19750 contents[ptr + 1] = tmp;
19751 ptr += 2;
19752 }
c7b8f16e
JB
19753 break;
19754
19755 case 'd':
19756 /* Leave data alone. */
19757 break;
19758 }
99059e56
RM
19759 ptr = end;
19760 }
e489d0ae 19761 }
8e3de13a 19762
93204d3a 19763 free (map);
47b2e99c 19764 arm_data->mapcount = -1;
c7b8f16e 19765 arm_data->mapsize = 0;
8e3de13a 19766 arm_data->map = NULL;
8e3de13a 19767
0a1b45a2 19768 return false;
e489d0ae
PB
19769}
19770
0beaef2b
PB
19771/* Mangle thumb function symbols as we read them in. */
19772
0a1b45a2 19773static bool
0beaef2b
PB
19774elf32_arm_swap_symbol_in (bfd * abfd,
19775 const void *psrc,
19776 const void *pshn,
19777 Elf_Internal_Sym *dst)
19778{
8384fb8f 19779 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
0a1b45a2 19780 return false;
39d911fc 19781 dst->st_target_internal = 0;
0beaef2b
PB
19782
19783 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 19784 the address. */
63e1a0fc
PB
19785 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19786 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 19787 {
63e1a0fc
PB
19788 if (dst->st_value & 1)
19789 {
19790 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
19791 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19792 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
19793 }
19794 else
39d911fc 19795 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
19796 }
19797 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19798 {
19799 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 19800 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 19801 }
35fc36a8 19802 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 19803 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 19804 else
39d911fc 19805 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 19806
0a1b45a2 19807 return true;
0beaef2b
PB
19808}
19809
19810
19811/* Mangle thumb function symbols as we write them out. */
19812
19813static void
19814elf32_arm_swap_symbol_out (bfd *abfd,
19815 const Elf_Internal_Sym *src,
19816 void *cdst,
19817 void *shndx)
19818{
19819 Elf_Internal_Sym newsym;
19820
19821 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19822 of the address set, as per the new EABI. We do this unconditionally
19823 because objcopy does not set the elf header flags until after
19824 it writes out the symbol table. */
39d911fc 19825 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
19826 {
19827 newsym = *src;
34e77a92
RS
19828 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19829 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 19830 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
19831 {
19832 /* Do this only for defined symbols. At link type, the static
19833 linker will simulate the work of dynamic linker of resolving
19834 symbols and will carry over the thumbness of found symbols to
19835 the output symbol table. It's not clear how it happens, but
19836 the thumbness of undefined symbols can well be different at
19837 runtime, and writing '1' for them will be confusing for users
19838 and possibly for dynamic linker itself.
19839 */
19840 newsym.st_value |= 1;
19841 }
906e58ca 19842
0beaef2b
PB
19843 src = &newsym;
19844 }
19845 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19846}
19847
b294bdf8
MM
19848/* Add the PT_ARM_EXIDX program header. */
19849
0a1b45a2 19850static bool
906e58ca 19851elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
19852 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19853{
19854 struct elf_segment_map *m;
19855 asection *sec;
19856
19857 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19858 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19859 {
19860 /* If there is already a PT_ARM_EXIDX header, then we do not
19861 want to add another one. This situation arises when running
19862 "strip"; the input binary already has the header. */
12bd6957 19863 m = elf_seg_map (abfd);
b294bdf8
MM
19864 while (m && m->p_type != PT_ARM_EXIDX)
19865 m = m->next;
19866 if (!m)
19867 {
21d799b5 19868 m = (struct elf_segment_map *)
99059e56 19869 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8 19870 if (m == NULL)
0a1b45a2 19871 return false;
b294bdf8
MM
19872 m->p_type = PT_ARM_EXIDX;
19873 m->count = 1;
19874 m->sections[0] = sec;
19875
12bd6957
AM
19876 m->next = elf_seg_map (abfd);
19877 elf_seg_map (abfd) = m;
b294bdf8
MM
19878 }
19879 }
19880
0a1b45a2 19881 return true;
b294bdf8
MM
19882}
19883
19884/* We may add a PT_ARM_EXIDX program header. */
19885
19886static int
a6b96beb
AM
19887elf32_arm_additional_program_headers (bfd *abfd,
19888 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
19889{
19890 asection *sec;
19891
19892 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19893 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19894 return 1;
19895 else
19896 return 0;
19897}
19898
34e77a92
RS
19899/* Hook called by the linker routine which adds symbols from an object
19900 file. */
19901
0a1b45a2 19902static bool
34e77a92
RS
19903elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19904 Elf_Internal_Sym *sym, const char **namep,
19905 flagword *flagsp, asection **secp, bfd_vma *valp)
19906{
c792917c 19907 if (elf32_arm_hash_table (info) == NULL)
0a1b45a2 19908 return false;
c792917c 19909
90c14f0c 19910 if (elf32_arm_hash_table (info)->root.target_os == is_vxworks
34e77a92
RS
19911 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19912 flagsp, secp, valp))
0a1b45a2 19913 return false;
34e77a92 19914
0a1b45a2 19915 return true;
34e77a92
RS
19916}
19917
0beaef2b 19918/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
19919const struct elf_size_info elf32_arm_size_info =
19920{
0beaef2b
PB
19921 sizeof (Elf32_External_Ehdr),
19922 sizeof (Elf32_External_Phdr),
19923 sizeof (Elf32_External_Shdr),
19924 sizeof (Elf32_External_Rel),
19925 sizeof (Elf32_External_Rela),
19926 sizeof (Elf32_External_Sym),
19927 sizeof (Elf32_External_Dyn),
19928 sizeof (Elf_External_Note),
19929 4,
19930 1,
19931 32, 2,
19932 ELFCLASS32, EV_CURRENT,
19933 bfd_elf32_write_out_phdrs,
19934 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 19935 bfd_elf32_checksum_contents,
0beaef2b
PB
19936 bfd_elf32_write_relocs,
19937 elf32_arm_swap_symbol_in,
19938 elf32_arm_swap_symbol_out,
19939 bfd_elf32_slurp_reloc_table,
19940 bfd_elf32_slurp_symbol_table,
19941 bfd_elf32_swap_dyn_in,
19942 bfd_elf32_swap_dyn_out,
19943 bfd_elf32_swap_reloc_in,
19944 bfd_elf32_swap_reloc_out,
19945 bfd_elf32_swap_reloca_in,
19946 bfd_elf32_swap_reloca_out
19947};
19948
685e70ae
VK
19949static bfd_vma
19950read_code32 (const bfd *abfd, const bfd_byte *addr)
19951{
19952 /* V7 BE8 code is always little endian. */
19953 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19954 return bfd_getl32 (addr);
19955
19956 return bfd_get_32 (abfd, addr);
19957}
19958
19959static bfd_vma
19960read_code16 (const bfd *abfd, const bfd_byte *addr)
19961{
19962 /* V7 BE8 code is always little endian. */
19963 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19964 return bfd_getl16 (addr);
19965
19966 return bfd_get_16 (abfd, addr);
19967}
19968
6a631e86
YG
19969/* Return size of plt0 entry starting at ADDR
19970 or (bfd_vma) -1 if size can not be determined. */
19971
19972static bfd_vma
19973elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19974{
19975 bfd_vma first_word;
19976 bfd_vma plt0_size;
19977
685e70ae 19978 first_word = read_code32 (abfd, addr);
6a631e86
YG
19979
19980 if (first_word == elf32_arm_plt0_entry[0])
19981 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19982 else if (first_word == elf32_thumb2_plt0_entry[0])
19983 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19984 else
19985 /* We don't yet handle this PLT format. */
19986 return (bfd_vma) -1;
19987
19988 return plt0_size;
19989}
19990
19991/* Return size of plt entry starting at offset OFFSET
19992 of plt section located at address START
19993 or (bfd_vma) -1 if size can not be determined. */
19994
19995static bfd_vma
19996elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19997{
19998 bfd_vma first_insn;
19999 bfd_vma plt_size = 0;
20000 const bfd_byte *addr = start + offset;
20001
20002 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 20003 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
20004 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20005
20006 /* Respect Thumb stub if necessary. */
685e70ae 20007 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86 20008 {
cc850f74 20009 plt_size += 2 * ARRAY_SIZE (elf32_arm_plt_thumb_stub);
6a631e86
YG
20010 }
20011
20012 /* Strip immediate from first add. */
685e70ae 20013 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
20014
20015#ifdef FOUR_WORD_PLT
20016 if (first_insn == elf32_arm_plt_entry[0])
20017 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20018#else
20019 if (first_insn == elf32_arm_plt_entry_long[0])
20020 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20021 else if (first_insn == elf32_arm_plt_entry_short[0])
20022 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20023#endif
20024 else
20025 /* We don't yet handle this PLT format. */
20026 return (bfd_vma) -1;
20027
20028 return plt_size;
20029}
20030
20031/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20032
20033static long
20034elf32_arm_get_synthetic_symtab (bfd *abfd,
20035 long symcount ATTRIBUTE_UNUSED,
20036 asymbol **syms ATTRIBUTE_UNUSED,
20037 long dynsymcount,
20038 asymbol **dynsyms,
20039 asymbol **ret)
20040{
20041 asection *relplt;
20042 asymbol *s;
20043 arelent *p;
20044 long count, i, n;
20045 size_t size;
20046 Elf_Internal_Shdr *hdr;
20047 char *names;
20048 asection *plt;
20049 bfd_vma offset;
20050 bfd_byte *data;
20051
20052 *ret = NULL;
20053
20054 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20055 return 0;
20056
20057 if (dynsymcount <= 0)
20058 return 0;
20059
20060 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20061 if (relplt == NULL)
20062 return 0;
20063
20064 hdr = &elf_section_data (relplt)->this_hdr;
20065 if (hdr->sh_link != elf_dynsymtab (abfd)
20066 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20067 return 0;
20068
20069 plt = bfd_get_section_by_name (abfd, ".plt");
20070 if (plt == NULL)
20071 return 0;
20072
0a1b45a2 20073 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, true))
6a631e86
YG
20074 return -1;
20075
08edd976
AM
20076 data = NULL;
20077 if (!bfd_get_full_section_contents (abfd, plt, &data))
20078 return -1;
6a631e86 20079
93c6e8c3 20080 count = NUM_SHDR_ENTRIES (hdr);
6a631e86
YG
20081 size = count * sizeof (asymbol);
20082 p = relplt->relocation;
20083 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20084 {
20085 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20086 if (p->addend != 0)
20087 size += sizeof ("+0x") - 1 + 8;
20088 }
20089
6a631e86 20090 offset = elf32_arm_plt0_size (abfd, data);
08edd976
AM
20091 if (offset == (bfd_vma) -1
20092 || (s = *ret = (asymbol *) bfd_malloc (size)) == NULL)
20093 {
20094 free (data);
20095 return -1;
20096 }
6a631e86
YG
20097
20098 names = (char *) (s + count);
20099 p = relplt->relocation;
20100 n = 0;
20101 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20102 {
20103 size_t len;
20104
20105 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20106 if (plt_size == (bfd_vma) -1)
20107 break;
20108
20109 *s = **p->sym_ptr_ptr;
20110 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20111 we are defining a symbol, ensure one of them is set. */
20112 if ((s->flags & BSF_LOCAL) == 0)
20113 s->flags |= BSF_GLOBAL;
20114 s->flags |= BSF_SYNTHETIC;
20115 s->section = plt;
20116 s->value = offset;
20117 s->name = names;
20118 s->udata.p = NULL;
20119 len = strlen ((*p->sym_ptr_ptr)->name);
20120 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20121 names += len;
20122 if (p->addend != 0)
20123 {
20124 char buf[30], *a;
20125
20126 memcpy (names, "+0x", sizeof ("+0x") - 1);
20127 names += sizeof ("+0x") - 1;
20128 bfd_sprintf_vma (abfd, buf, p->addend);
20129 for (a = buf; *a == '0'; ++a)
20130 ;
20131 len = strlen (a);
20132 memcpy (names, a, len);
20133 names += len;
20134 }
20135 memcpy (names, "@plt", sizeof ("@plt"));
20136 names += sizeof ("@plt");
20137 ++s, ++n;
20138 offset += plt_size;
20139 }
20140
08edd976 20141 free (data);
6a631e86
YG
20142 return n;
20143}
20144
0a1b45a2 20145static bool
8c803a2d 20146elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
ac4c9b04 20147{
f0728ee3 20148 if (hdr->sh_flags & SHF_ARM_PURECODE)
8c803a2d 20149 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
0a1b45a2 20150 return true;
ac4c9b04
MG
20151}
20152
20153static flagword
20154elf32_arm_lookup_section_flags (char *flag_name)
20155{
f0728ee3
AV
20156 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20157 return SHF_ARM_PURECODE;
ac4c9b04
MG
20158
20159 return SEC_NO_FLAGS;
20160}
20161
491d01d3
YU
20162static unsigned int
20163elf32_arm_count_additional_relocs (asection *sec)
20164{
20165 struct _arm_elf_section_data *arm_data;
20166 arm_data = get_arm_elf_section_data (sec);
5025eb7c 20167
6342be70 20168 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
20169}
20170
5522f910 20171/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 20172 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
20173 FALSE otherwise. ISECTION is the best guess matching section from the
20174 input bfd IBFD, but it might be NULL. */
20175
0a1b45a2 20176static bool
5522f910
NC
20177elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20178 bfd *obfd ATTRIBUTE_UNUSED,
20179 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20180 Elf_Internal_Shdr *osection)
20181{
20182 switch (osection->sh_type)
20183 {
20184 case SHT_ARM_EXIDX:
20185 {
20186 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20187 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20188 unsigned i = 0;
20189
20190 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20191 osection->sh_info = 0;
20192
20193 /* The sh_link field must be set to the text section associated with
20194 this index section. Unfortunately the ARM EHABI does not specify
20195 exactly how to determine this association. Our caller does try
20196 to match up OSECTION with its corresponding input section however
20197 so that is a good first guess. */
20198 if (isection != NULL
20199 && osection->bfd_section != NULL
20200 && isection->bfd_section != NULL
20201 && isection->bfd_section->output_section != NULL
20202 && isection->bfd_section->output_section == osection->bfd_section
20203 && iheaders != NULL
20204 && isection->sh_link > 0
20205 && isection->sh_link < elf_numsections (ibfd)
20206 && iheaders[isection->sh_link]->bfd_section != NULL
20207 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20208 )
20209 {
20210 for (i = elf_numsections (obfd); i-- > 0;)
20211 if (oheaders[i]->bfd_section
20212 == iheaders[isection->sh_link]->bfd_section->output_section)
20213 break;
20214 }
9eaff861 20215
5522f910
NC
20216 if (i == 0)
20217 {
20218 /* Failing that we have to find a matching section ourselves. If
20219 we had the output section name available we could compare that
20220 with input section names. Unfortunately we don't. So instead
20221 we use a simple heuristic and look for the nearest executable
20222 section before this one. */
20223 for (i = elf_numsections (obfd); i-- > 0;)
20224 if (oheaders[i] == osection)
20225 break;
20226 if (i == 0)
20227 break;
20228
20229 while (i-- > 0)
20230 if (oheaders[i]->sh_type == SHT_PROGBITS
20231 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20232 == (SHF_ALLOC | SHF_EXECINSTR))
20233 break;
20234 }
20235
20236 if (i)
20237 {
20238 osection->sh_link = i;
20239 /* If the text section was part of a group
20240 then the index section should be too. */
20241 if (oheaders[i]->sh_flags & SHF_GROUP)
20242 osection->sh_flags |= SHF_GROUP;
0a1b45a2 20243 return true;
5522f910
NC
20244 }
20245 }
20246 break;
20247
20248 case SHT_ARM_PREEMPTMAP:
20249 osection->sh_flags = SHF_ALLOC;
20250 break;
20251
20252 case SHT_ARM_ATTRIBUTES:
20253 case SHT_ARM_DEBUGOVERLAY:
20254 case SHT_ARM_OVERLAYSECTION:
20255 default:
20256 break;
20257 }
20258
0a1b45a2 20259 return false;
5522f910
NC
20260}
20261
d691934d
NC
20262/* Returns TRUE if NAME is an ARM mapping symbol.
20263 Traditionally the symbols $a, $d and $t have been used.
20264 The ARM ELF standard also defines $x (for A64 code). It also allows a
20265 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20266 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20267 not support them here. $t.x indicates the start of ThumbEE instructions. */
20268
0a1b45a2 20269static bool
d691934d
NC
20270is_arm_mapping_symbol (const char * name)
20271{
20272 return name != NULL /* Paranoia. */
20273 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20274 the mapping symbols could have acquired a prefix.
20275 We do not support this here, since such symbols no
20276 longer conform to the ARM ELF ABI. */
20277 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20278 && (name[2] == 0 || name[2] == '.');
20279 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20280 any characters that follow the period are legal characters for the body
20281 of a symbol's name. For now we just assume that this is the case. */
20282}
20283
fca2a38f
NC
20284/* Make sure that mapping symbols in object files are not removed via the
20285 "strip --strip-unneeded" tool. These symbols are needed in order to
20286 correctly generate interworking veneers, and for byte swapping code
20287 regions. Once an object file has been linked, it is safe to remove the
20288 symbols as they will no longer be needed. */
20289
20290static void
20291elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20292{
20293 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 20294 && sym->section != bfd_abs_section_ptr
d691934d 20295 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
20296 sym->flags |= BSF_KEEP;
20297}
20298
5522f910
NC
20299#undef elf_backend_copy_special_section_fields
20300#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20301
252b5132 20302#define ELF_ARCH bfd_arch_arm
ae95ffa6 20303#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 20304#define ELF_MACHINE_CODE EM_ARM
d0facd1b 20305#define ELF_MAXPAGESIZE 0x1000
24718e3b 20306#define ELF_COMMONPAGESIZE 0x1000
252b5132 20307
07d6d2b8 20308#define bfd_elf32_mkobject elf32_arm_mkobject
ba93b8ac 20309
99e4ae17
AJ
20310#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20311#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
20312#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20313#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
07d6d2b8 20314#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 20315#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 20316#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
07d6d2b8 20317#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 20318#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 20319#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 20320#define bfd_elf32_bfd_final_link elf32_arm_final_link
07d6d2b8 20321#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132 20322
07d6d2b8 20323#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
e7679060 20324#define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
07d6d2b8 20325#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 20326#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
07d6d2b8 20327#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 20328#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 20329#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 20330#define elf_backend_write_section elf32_arm_write_section
252b5132 20331#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
07d6d2b8 20332#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
20333#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20334#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20335#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 20336#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 20337#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ed7e9d0b 20338#define elf_backend_init_file_header elf32_arm_init_file_header
99e4ae17 20339#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 20340#define elf_backend_object_p elf32_arm_object_p
07d6d2b8
AM
20341#define elf_backend_fake_sections elf32_arm_fake_sections
20342#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20343#define elf_backend_final_write_processing elf32_arm_final_write_processing
20344#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 20345#define elf_backend_size_info elf32_arm_size_info
b294bdf8 20346#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
07d6d2b8
AM
20347#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20348#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 20349#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
07d6d2b8 20350#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 20351#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 20352#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 20353#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
20354
20355#define elf_backend_can_refcount 1
20356#define elf_backend_can_gc_sections 1
20357#define elf_backend_plt_readonly 1
20358#define elf_backend_want_got_plt 1
20359#define elf_backend_want_plt_sym 0
5474d94f 20360#define elf_backend_want_dynrelro 1
906e58ca
NC
20361#define elf_backend_may_use_rel_p 1
20362#define elf_backend_may_use_rela_p 0
4e7fd91e 20363#define elf_backend_default_use_rela_p 0
64f52338 20364#define elf_backend_dtrel_excludes_plt 1
252b5132 20365
04f7c78d 20366#define elf_backend_got_header_size 12
af9bf9cb 20367#define elf_backend_extern_protected_data 0
04f7c78d 20368
07d6d2b8 20369#undef elf_backend_obj_attrs_vendor
906e58ca 20370#define elf_backend_obj_attrs_vendor "aeabi"
07d6d2b8 20371#undef elf_backend_obj_attrs_section
906e58ca 20372#define elf_backend_obj_attrs_section ".ARM.attributes"
07d6d2b8 20373#undef elf_backend_obj_attrs_arg_type
906e58ca 20374#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
07d6d2b8 20375#undef elf_backend_obj_attrs_section_type
104d59d1 20376#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb 20377#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
07d6d2b8 20378#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 20379
07d6d2b8 20380#undef elf_backend_section_flags
ac4c9b04 20381#define elf_backend_section_flags elf32_arm_section_flags
07d6d2b8
AM
20382#undef elf_backend_lookup_section_flags_hook
20383#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
ac4c9b04 20384
0a1b45a2 20385#define elf_backend_linux_prpsinfo32_ugid16 true
a2f63b2e 20386
252b5132 20387#include "elf32-target.h"
7f266840 20388
b38cadfb
NC
20389/* Native Client targets. */
20390
20391#undef TARGET_LITTLE_SYM
6d00b590 20392#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
20393#undef TARGET_LITTLE_NAME
20394#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20395#undef TARGET_BIG_SYM
6d00b590 20396#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
20397#undef TARGET_BIG_NAME
20398#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20399
20400/* Like elf32_arm_link_hash_table_create -- but overrides
20401 appropriately for NaCl. */
20402
20403static struct bfd_link_hash_table *
20404elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20405{
20406 struct bfd_link_hash_table *ret;
20407
20408 ret = elf32_arm_link_hash_table_create (abfd);
20409 if (ret)
20410 {
20411 struct elf32_arm_link_hash_table *htab
20412 = (struct elf32_arm_link_hash_table *) ret;
20413
b38cadfb
NC
20414 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20415 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20416 }
20417 return ret;
20418}
20419
20420/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20421 really need to use elf32_arm_modify_segment_map. But we do it
20422 anyway just to reduce gratuitous differences with the stock ARM backend. */
20423
0a1b45a2 20424static bool
b38cadfb
NC
20425elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20426{
20427 return (elf32_arm_modify_segment_map (abfd, info)
20428 && nacl_modify_segment_map (abfd, info));
20429}
20430
0a1b45a2 20431static bool
cc364be6 20432elf32_arm_nacl_final_write_processing (bfd *abfd)
887badb3 20433{
cc364be6
AM
20434 arm_final_write_processing (abfd);
20435 return nacl_final_write_processing (abfd);
887badb3
RM
20436}
20437
6a631e86
YG
20438static bfd_vma
20439elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20440 const arelent *rel ATTRIBUTE_UNUSED)
20441{
20442 return plt->vma
20443 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20444 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20445}
887badb3 20446
b38cadfb 20447#undef elf32_bed
6a631e86 20448#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
20449#undef bfd_elf32_bfd_link_hash_table_create
20450#define bfd_elf32_bfd_link_hash_table_create \
20451 elf32_arm_nacl_link_hash_table_create
20452#undef elf_backend_plt_alignment
6a631e86 20453#define elf_backend_plt_alignment 4
b38cadfb
NC
20454#undef elf_backend_modify_segment_map
20455#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
6d6c25c8
AM
20456#undef elf_backend_modify_headers
20457#define elf_backend_modify_headers nacl_modify_headers
887badb3
RM
20458#undef elf_backend_final_write_processing
20459#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
20460#undef bfd_elf32_get_synthetic_symtab
20461#undef elf_backend_plt_sym_val
20462#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 20463#undef elf_backend_copy_special_section_fields
b38cadfb 20464
887badb3
RM
20465#undef ELF_MINPAGESIZE
20466#undef ELF_COMMONPAGESIZE
20467
90c14f0c
L
20468#undef ELF_TARGET_OS
20469#define ELF_TARGET_OS is_nacl
b38cadfb
NC
20470
20471#include "elf32-target.h"
20472
20473/* Reset to defaults. */
20474#undef elf_backend_plt_alignment
20475#undef elf_backend_modify_segment_map
20476#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
6d6c25c8 20477#undef elf_backend_modify_headers
887badb3
RM
20478#undef elf_backend_final_write_processing
20479#define elf_backend_final_write_processing elf32_arm_final_write_processing
20480#undef ELF_MINPAGESIZE
887badb3
RM
20481#undef ELF_COMMONPAGESIZE
20482#define ELF_COMMONPAGESIZE 0x1000
20483
b38cadfb 20484
617a5ada
CL
20485/* FDPIC Targets. */
20486
20487#undef TARGET_LITTLE_SYM
20488#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20489#undef TARGET_LITTLE_NAME
20490#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20491#undef TARGET_BIG_SYM
20492#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20493#undef TARGET_BIG_NAME
20494#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20495#undef elf_match_priority
20496#define elf_match_priority 128
18a20338
CL
20497#undef ELF_OSABI
20498#define ELF_OSABI ELFOSABI_ARM_FDPIC
617a5ada
CL
20499
20500/* Like elf32_arm_link_hash_table_create -- but overrides
20501 appropriately for FDPIC. */
20502
20503static struct bfd_link_hash_table *
20504elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20505{
20506 struct bfd_link_hash_table *ret;
20507
20508 ret = elf32_arm_link_hash_table_create (abfd);
20509 if (ret)
20510 {
20511 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20512
20513 htab->fdpic_p = 1;
20514 }
20515 return ret;
20516}
20517
e8b09b87
CL
20518/* We need dynamic symbols for every section, since segments can
20519 relocate independently. */
0a1b45a2 20520static bool
e8b09b87
CL
20521elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20522 struct bfd_link_info *info
20523 ATTRIBUTE_UNUSED,
20524 asection *p ATTRIBUTE_UNUSED)
20525{
20526 switch (elf_section_data (p)->this_hdr.sh_type)
20527 {
20528 case SHT_PROGBITS:
20529 case SHT_NOBITS:
20530 /* If sh_type is yet undecided, assume it could be
20531 SHT_PROGBITS/SHT_NOBITS. */
20532 case SHT_NULL:
0a1b45a2 20533 return false;
e8b09b87
CL
20534
20535 /* There shouldn't be section relative relocations
20536 against any other section. */
20537 default:
0a1b45a2 20538 return true;
e8b09b87
CL
20539 }
20540}
20541
617a5ada
CL
20542#undef elf32_bed
20543#define elf32_bed elf32_arm_fdpic_bed
20544
20545#undef bfd_elf32_bfd_link_hash_table_create
4b24dd1a 20546#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
617a5ada 20547
e8b09b87
CL
20548#undef elf_backend_omit_section_dynsym
20549#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20550
90c14f0c
L
20551#undef ELF_TARGET_OS
20552
617a5ada 20553#include "elf32-target.h"
e8b09b87 20554
617a5ada 20555#undef elf_match_priority
18a20338 20556#undef ELF_OSABI
e8b09b87 20557#undef elf_backend_omit_section_dynsym
617a5ada 20558
906e58ca 20559/* VxWorks Targets. */
4e7fd91e 20560
07d6d2b8
AM
20561#undef TARGET_LITTLE_SYM
20562#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20563#undef TARGET_LITTLE_NAME
20564#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20565#undef TARGET_BIG_SYM
20566#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20567#undef TARGET_BIG_NAME
20568#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
4e7fd91e
PB
20569
20570/* Like elf32_arm_link_hash_table_create -- but overrides
20571 appropriately for VxWorks. */
906e58ca 20572
4e7fd91e
PB
20573static struct bfd_link_hash_table *
20574elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20575{
20576 struct bfd_link_hash_table *ret;
20577
20578 ret = elf32_arm_link_hash_table_create (abfd);
20579 if (ret)
20580 {
20581 struct elf32_arm_link_hash_table *htab
00a97672 20582 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e
PB
20583 htab->use_rel = 0;
20584 }
20585 return ret;
906e58ca 20586}
4e7fd91e 20587
0a1b45a2 20588static bool
cc364be6 20589elf32_arm_vxworks_final_write_processing (bfd *abfd)
00a97672 20590{
cc364be6
AM
20591 arm_final_write_processing (abfd);
20592 return elf_vxworks_final_write_processing (abfd);
00a97672
RS
20593}
20594
906e58ca 20595#undef elf32_bed
4e7fd91e
PB
20596#define elf32_bed elf32_arm_vxworks_bed
20597
906e58ca
NC
20598#undef bfd_elf32_bfd_link_hash_table_create
20599#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
20600#undef elf_backend_final_write_processing
20601#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20602#undef elf_backend_emit_relocs
9eaff861 20603#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 20604
906e58ca 20605#undef elf_backend_may_use_rel_p
00a97672 20606#define elf_backend_may_use_rel_p 0
906e58ca 20607#undef elf_backend_may_use_rela_p
00a97672 20608#define elf_backend_may_use_rela_p 1
906e58ca 20609#undef elf_backend_default_use_rela_p
00a97672 20610#define elf_backend_default_use_rela_p 1
906e58ca 20611#undef elf_backend_want_plt_sym
00a97672 20612#define elf_backend_want_plt_sym 1
906e58ca 20613#undef ELF_MAXPAGESIZE
00a97672 20614#define ELF_MAXPAGESIZE 0x1000
90c14f0c
L
20615#undef ELF_TARGET_OS
20616#define ELF_TARGET_OS is_vxworks
4e7fd91e
PB
20617
20618#include "elf32-target.h"
20619
20620
21d799b5
NC
20621/* Merge backend specific data from an object file to the output
20622 object file when linking. */
20623
0a1b45a2 20624static bool
50e03d47 20625elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 20626{
50e03d47 20627 bfd *obfd = info->output_bfd;
21d799b5
NC
20628 flagword out_flags;
20629 flagword in_flags;
0a1b45a2 20630 bool flags_compatible = true;
21d799b5
NC
20631 asection *sec;
20632
cc643b88 20633 /* Check if we have the same endianness. */
50e03d47 20634 if (! _bfd_generic_verify_endian_match (ibfd, info))
0a1b45a2 20635 return false;
21d799b5
NC
20636
20637 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 20638 return true;
21d799b5 20639
50e03d47 20640 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
0a1b45a2 20641 return false;
21d799b5
NC
20642
20643 /* The input BFD must have had its flags initialised. */
20644 /* The following seems bogus to me -- The flags are initialized in
20645 the assembler but I don't think an elf_flags_init field is
20646 written into the object. */
20647 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20648
20649 in_flags = elf_elfheader (ibfd)->e_flags;
20650 out_flags = elf_elfheader (obfd)->e_flags;
20651
20652 /* In theory there is no reason why we couldn't handle this. However
20653 in practice it isn't even close to working and there is no real
20654 reason to want it. */
20655 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20656 && !(ibfd->flags & DYNAMIC)
20657 && (in_flags & EF_ARM_BE8))
20658 {
871b3ab2 20659 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
21d799b5 20660 ibfd);
0a1b45a2 20661 return false;
21d799b5
NC
20662 }
20663
20664 if (!elf_flags_init (obfd))
20665 {
20666 /* If the input is the default architecture and had the default
20667 flags then do not bother setting the flags for the output
20668 architecture, instead allow future merges to do this. If no
20669 future merges ever set these flags then they will retain their
99059e56
RM
20670 uninitialised values, which surprise surprise, correspond
20671 to the default values. */
21d799b5
NC
20672 if (bfd_get_arch_info (ibfd)->the_default
20673 && elf_elfheader (ibfd)->e_flags == 0)
0a1b45a2 20674 return true;
21d799b5 20675
0a1b45a2 20676 elf_flags_init (obfd) = true;
21d799b5
NC
20677 elf_elfheader (obfd)->e_flags = in_flags;
20678
20679 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20680 && bfd_get_arch_info (obfd)->the_default)
20681 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20682
0a1b45a2 20683 return true;
21d799b5
NC
20684 }
20685
20686 /* Determine what should happen if the input ARM architecture
20687 does not match the output ARM architecture. */
20688 if (! bfd_arm_merge_machines (ibfd, obfd))
0a1b45a2 20689 return false;
21d799b5
NC
20690
20691 /* Identical flags must be compatible. */
20692 if (in_flags == out_flags)
0a1b45a2 20693 return true;
21d799b5
NC
20694
20695 /* Check to see if the input BFD actually contains any sections. If
20696 not, its flags may not have been initialised either, but it
20697 cannot actually cause any incompatiblity. Do not short-circuit
20698 dynamic objects; their section list may be emptied by
20699 elf_link_add_object_symbols.
20700
20701 Also check to see if there are no code sections in the input.
20702 In this case there is no need to check for code specific flags.
20703 XXX - do we need to worry about floating-point format compatability
20704 in data sections ? */
20705 if (!(ibfd->flags & DYNAMIC))
20706 {
0a1b45a2
AM
20707 bool null_input_bfd = true;
20708 bool only_data_sections = true;
21d799b5
NC
20709
20710 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20711 {
20712 /* Ignore synthetic glue sections. */
20713 if (strcmp (sec->name, ".glue_7")
20714 && strcmp (sec->name, ".glue_7t"))
20715 {
fd361982 20716 if ((bfd_section_flags (sec)
21d799b5
NC
20717 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20718 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
0a1b45a2 20719 only_data_sections = false;
21d799b5 20720
0a1b45a2 20721 null_input_bfd = false;
21d799b5
NC
20722 break;
20723 }
20724 }
20725
20726 if (null_input_bfd || only_data_sections)
0a1b45a2 20727 return true;
21d799b5
NC
20728 }
20729
20730 /* Complain about various flag mismatches. */
20731 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20732 EF_ARM_EABI_VERSION (out_flags)))
20733 {
20734 _bfd_error_handler
90b6238f 20735 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
c08bb8dd
AM
20736 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20737 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
0a1b45a2 20738 return false;
21d799b5
NC
20739 }
20740
20741 /* Not sure what needs to be checked for EABI versions >= 1. */
20742 /* VxWorks libraries do not use these flags. */
20743 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20744 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20745 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20746 {
20747 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20748 {
20749 _bfd_error_handler
871b3ab2 20750 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
c08bb8dd
AM
20751 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20752 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
0a1b45a2 20753 flags_compatible = false;
21d799b5
NC
20754 }
20755
20756 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20757 {
20758 if (in_flags & EF_ARM_APCS_FLOAT)
20759 _bfd_error_handler
871b3ab2 20760 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
21d799b5
NC
20761 ibfd, obfd);
20762 else
20763 _bfd_error_handler
871b3ab2 20764 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
21d799b5
NC
20765 ibfd, obfd);
20766
0a1b45a2 20767 flags_compatible = false;
21d799b5
NC
20768 }
20769
20770 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20771 {
20772 if (in_flags & EF_ARM_VFP_FLOAT)
20773 _bfd_error_handler
90b6238f
AM
20774 (_("error: %pB uses %s instructions, whereas %pB does not"),
20775 ibfd, "VFP", obfd);
21d799b5
NC
20776 else
20777 _bfd_error_handler
90b6238f
AM
20778 (_("error: %pB uses %s instructions, whereas %pB does not"),
20779 ibfd, "FPA", obfd);
21d799b5 20780
0a1b45a2 20781 flags_compatible = false;
21d799b5
NC
20782 }
20783
20784 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20785 {
20786 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20787 _bfd_error_handler
90b6238f
AM
20788 (_("error: %pB uses %s instructions, whereas %pB does not"),
20789 ibfd, "Maverick", obfd);
21d799b5
NC
20790 else
20791 _bfd_error_handler
90b6238f
AM
20792 (_("error: %pB does not use %s instructions, whereas %pB does"),
20793 ibfd, "Maverick", obfd);
21d799b5 20794
0a1b45a2 20795 flags_compatible = false;
21d799b5
NC
20796 }
20797
20798#ifdef EF_ARM_SOFT_FLOAT
20799 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20800 {
20801 /* We can allow interworking between code that is VFP format
20802 layout, and uses either soft float or integer regs for
20803 passing floating point arguments and results. We already
20804 know that the APCS_FLOAT flags match; similarly for VFP
20805 flags. */
20806 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20807 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20808 {
20809 if (in_flags & EF_ARM_SOFT_FLOAT)
20810 _bfd_error_handler
871b3ab2 20811 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
21d799b5
NC
20812 ibfd, obfd);
20813 else
20814 _bfd_error_handler
871b3ab2 20815 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
21d799b5
NC
20816 ibfd, obfd);
20817
0a1b45a2 20818 flags_compatible = false;
21d799b5
NC
20819 }
20820 }
20821#endif
20822
20823 /* Interworking mismatch is only a warning. */
20824 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20825 {
20826 if (in_flags & EF_ARM_INTERWORK)
20827 {
20828 _bfd_error_handler
90b6238f 20829 (_("warning: %pB supports interworking, whereas %pB does not"),
21d799b5
NC
20830 ibfd, obfd);
20831 }
20832 else
20833 {
20834 _bfd_error_handler
90b6238f 20835 (_("warning: %pB does not support interworking, whereas %pB does"),
21d799b5
NC
20836 ibfd, obfd);
20837 }
20838 }
20839 }
20840
20841 return flags_compatible;
20842}