]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-arm.c
Add x86 XML target description files.
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
e44a2c9c 2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
f6ebfac0 3 2008, 2009, 2010 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
6e6718a3 22#include "sysdep.h"
2468f9c9
PB
23#include <limits.h>
24
3db64b00 25#include "bfd.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
7f266840 31
00a97672
RS
32/* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34#define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37/* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39#define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44/* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46#define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51/* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53#define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
7f266840
DJ
58#define elf_info_to_howto 0
59#define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61#define ARM_ELF_ABI_VERSION 0
62#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
3e6b1042
DJ
64static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
68
7f266840
DJ
69/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
72
c19d1205 73static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 74{
8029a119 75 /* No relocation. */
7f266840
DJ
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
89
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
103
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
118
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
133
c19d1205 134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 135 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
138 32, /* bitsize */
139 TRUE, /* pc_relative */
7f266840 140 0, /* bitpos */
4962c51a 141 complain_overflow_dont,/* complain_on_overflow */
7f266840 142 bfd_elf_generic_reloc, /* special_function */
4962c51a 143 "R_ARM_LDR_PC_G0", /* name */
7f266840 144 FALSE, /* partial_inplace */
4962c51a
MS
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
7f266840
DJ
148
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
163
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
00a97672
RS
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
7f266840
DJ
177 FALSE), /* pcrel_offset */
178
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
192
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
207
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
c19d1205 222 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 225 24, /* bitsize */
7f266840
DJ
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
c19d1205 230 "R_ARM_THM_CALL", /* name */
7f266840
DJ
231 FALSE, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE), /* pcrel_offset */
235
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
249
c19d1205 250 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
253 32, /* bitsize */
254 FALSE, /* pc_relative */
7f266840
DJ
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
c19d1205 258 "R_ARM_BREL_ADJ", /* name */
7f266840 259 FALSE, /* partial_inplace */
c19d1205
ZW
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
7f266840
DJ
263
264 HOWTO (R_ARM_SWI24, /* type */
265 0, /* rightshift */
266 0, /* size (0 = byte, 1 = short, 2 = long) */
267 0, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_signed,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_SWI24", /* name */
273 FALSE, /* partial_inplace */
274 0x00000000, /* src_mask */
275 0x00000000, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 25, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
306
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 22, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE), /* pcrel_offset */
321
ba93b8ac 322 /* Dynamic TLS relocations. */
7f266840 323
ba93b8ac
DJ
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
7f266840 337
ba93b8ac
DJ
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
7f266840 351
ba93b8ac
DJ
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
7f266840
DJ
365
366 /* Relocs used in ARM Linux */
367
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
381
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
423
c19d1205 424 HOWTO (R_ARM_GOTOFF32, /* type */
7f266840
DJ
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
c19d1205 432 "R_ARM_GOTOFF32", /* name */
7f266840
DJ
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
437
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
451
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
ce490eda 469 24, /* bitsize */
7f266840
DJ
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
ce490eda 475 FALSE, /* partial_inplace */
7f266840
DJ
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
479
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
493
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
507
c19d1205
ZW
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
7f266840 513 0, /* bitpos */
c19d1205 514 complain_overflow_signed,/* complain_on_overflow */
7f266840 515 bfd_elf_generic_reloc, /* special_function */
c19d1205 516 "R_ARM_THM_JUMP24", /* name */
7f266840 517 FALSE, /* partial_inplace */
c19d1205
ZW
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
7f266840 521
c19d1205 522 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 523 0, /* rightshift */
c19d1205
ZW
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
7f266840
DJ
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
c19d1205 530 "R_ARM_BASE_ABS", /* name */
7f266840 531 FALSE, /* partial_inplace */
c19d1205
ZW
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
7f266840
DJ
534 FALSE), /* pcrel_offset */
535
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
549
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
563
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
577
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
605
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
647
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
661
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
c19d1205
ZW
689
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
39623e12
PB
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
c19d1205
ZW
702 FALSE), /* pcrel_offset */
703
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
39623e12
PB
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
c19d1205
ZW
716 FALSE), /* pcrel_offset */
717
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
39623e12
PB
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
c19d1205
ZW
730 TRUE), /* pcrel_offset */
731
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
39623e12
PB
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
c19d1205
ZW
744 TRUE), /* pcrel_offset */
745
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
759
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
787
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
801
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
815
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
829
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
2cab6cc3 839 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
2cab6cc3
MS
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
c19d1205
ZW
845 TRUE), /* pcrel_offset */
846
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
2cab6cc3 853 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
2cab6cc3
MS
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
c19d1205
ZW
859 TRUE), /* pcrel_offset */
860
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
7f266840 888
4962c51a
MS
889 /* Group relocations. */
890
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
904
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
932
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
946
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
960
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1016
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1030
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1044
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1058
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1072
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1086
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1100
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1114
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1128
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1142
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1156
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1170
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1184
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1198
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1212
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1226
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1240
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1254
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1268
1269 /* End of group relocations. */
c19d1205 1270
c19d1205
ZW
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1284
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1298
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
8029a119 1355 EMPTY_HOWTO (90), /* Unallocated. */
c19d1205
ZW
1356 EMPTY_HOWTO (91),
1357 EMPTY_HOWTO (92),
1358 EMPTY_HOWTO (93),
1359
1360 HOWTO (R_ARM_PLT32_ABS, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_dont,/* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 "R_ARM_PLT32_ABS", /* name */
1369 FALSE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_GOT_ABS, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 32, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_GOT_ABS", /* name */
1383 FALSE, /* partial_inplace */
1384 0xffffffff, /* src_mask */
1385 0xffffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_GOT_PREL, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 32, /* bitsize */
1392 TRUE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_dont, /* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_GOT_PREL", /* name */
1397 FALSE, /* partial_inplace */
1398 0xffffffff, /* src_mask */
1399 0xffffffff, /* dst_mask */
1400 TRUE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_GOT_BREL12, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 12, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_bitfield,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_GOT_BREL12", /* name */
1411 FALSE, /* partial_inplace */
1412 0x00000fff, /* src_mask */
1413 0x00000fff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1415
1416 HOWTO (R_ARM_GOTOFF12, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 12, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_bitfield,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_GOTOFF12", /* name */
1425 FALSE, /* partial_inplace */
1426 0x00000fff, /* src_mask */
1427 0x00000fff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1431
1432 /* GNU extension to record C++ vtable member usage */
1433 HOWTO (R_ARM_GNU_VTENTRY, /* type */
ba93b8ac
DJ
1434 0, /* rightshift */
1435 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1436 0, /* bitsize */
ba93b8ac
DJ
1437 FALSE, /* pc_relative */
1438 0, /* bitpos */
c19d1205
ZW
1439 complain_overflow_dont, /* complain_on_overflow */
1440 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1441 "R_ARM_GNU_VTENTRY", /* name */
1442 FALSE, /* partial_inplace */
1443 0, /* src_mask */
1444 0, /* dst_mask */
1445 FALSE), /* pcrel_offset */
1446
1447 /* GNU extension to record C++ vtable hierarchy */
1448 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1449 0, /* rightshift */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1451 0, /* bitsize */
1452 FALSE, /* pc_relative */
1453 0, /* bitpos */
1454 complain_overflow_dont, /* complain_on_overflow */
1455 NULL, /* special_function */
1456 "R_ARM_GNU_VTINHERIT", /* name */
1457 FALSE, /* partial_inplace */
1458 0, /* src_mask */
1459 0, /* dst_mask */
1460 FALSE), /* pcrel_offset */
1461
1462 HOWTO (R_ARM_THM_JUMP11, /* type */
1463 1, /* rightshift */
1464 1, /* size (0 = byte, 1 = short, 2 = long) */
1465 11, /* bitsize */
1466 TRUE, /* pc_relative */
1467 0, /* bitpos */
1468 complain_overflow_signed, /* complain_on_overflow */
1469 bfd_elf_generic_reloc, /* special_function */
1470 "R_ARM_THM_JUMP11", /* name */
1471 FALSE, /* partial_inplace */
1472 0x000007ff, /* src_mask */
1473 0x000007ff, /* dst_mask */
1474 TRUE), /* pcrel_offset */
1475
1476 HOWTO (R_ARM_THM_JUMP8, /* type */
1477 1, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 8, /* bitsize */
1480 TRUE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_signed, /* complain_on_overflow */
1483 bfd_elf_generic_reloc, /* special_function */
1484 "R_ARM_THM_JUMP8", /* name */
1485 FALSE, /* partial_inplace */
1486 0x000000ff, /* src_mask */
1487 0x000000ff, /* dst_mask */
1488 TRUE), /* pcrel_offset */
ba93b8ac 1489
c19d1205
ZW
1490 /* TLS relocations */
1491 HOWTO (R_ARM_TLS_GD32, /* type */
ba93b8ac
DJ
1492 0, /* rightshift */
1493 2, /* size (0 = byte, 1 = short, 2 = long) */
1494 32, /* bitsize */
1495 FALSE, /* pc_relative */
1496 0, /* bitpos */
1497 complain_overflow_bitfield,/* complain_on_overflow */
c19d1205
ZW
1498 NULL, /* special_function */
1499 "R_ARM_TLS_GD32", /* name */
ba93b8ac
DJ
1500 TRUE, /* partial_inplace */
1501 0xffffffff, /* src_mask */
1502 0xffffffff, /* dst_mask */
c19d1205 1503 FALSE), /* pcrel_offset */
ba93b8ac 1504
ba93b8ac
DJ
1505 HOWTO (R_ARM_TLS_LDM32, /* type */
1506 0, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 32, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_bitfield,/* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 "R_ARM_TLS_LDM32", /* name */
1514 TRUE, /* partial_inplace */
1515 0xffffffff, /* src_mask */
1516 0xffffffff, /* dst_mask */
c19d1205 1517 FALSE), /* pcrel_offset */
ba93b8ac 1518
c19d1205 1519 HOWTO (R_ARM_TLS_LDO32, /* type */
ba93b8ac
DJ
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 32, /* bitsize */
1523 FALSE, /* pc_relative */
1524 0, /* bitpos */
1525 complain_overflow_bitfield,/* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
c19d1205 1527 "R_ARM_TLS_LDO32", /* name */
ba93b8ac
DJ
1528 TRUE, /* partial_inplace */
1529 0xffffffff, /* src_mask */
1530 0xffffffff, /* dst_mask */
c19d1205 1531 FALSE), /* pcrel_offset */
ba93b8ac 1532
ba93b8ac
DJ
1533 HOWTO (R_ARM_TLS_IE32, /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 32, /* bitsize */
1537 FALSE, /* pc_relative */
1538 0, /* bitpos */
1539 complain_overflow_bitfield,/* complain_on_overflow */
1540 NULL, /* special_function */
1541 "R_ARM_TLS_IE32", /* name */
1542 TRUE, /* partial_inplace */
1543 0xffffffff, /* src_mask */
1544 0xffffffff, /* dst_mask */
c19d1205 1545 FALSE), /* pcrel_offset */
7f266840 1546
c19d1205 1547 HOWTO (R_ARM_TLS_LE32, /* type */
7f266840
DJ
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1550 32, /* bitsize */
7f266840
DJ
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
c19d1205
ZW
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 bfd_elf_generic_reloc, /* special_function */
1555 "R_ARM_TLS_LE32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
7f266840 1560
c19d1205
ZW
1561 HOWTO (R_ARM_TLS_LDO12, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 12, /* bitsize */
1565 FALSE, /* pc_relative */
7f266840 1566 0, /* bitpos */
c19d1205 1567 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1568 bfd_elf_generic_reloc, /* special_function */
c19d1205 1569 "R_ARM_TLS_LDO12", /* name */
7f266840 1570 FALSE, /* partial_inplace */
c19d1205
ZW
1571 0x00000fff, /* src_mask */
1572 0x00000fff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
7f266840 1574
c19d1205
ZW
1575 HOWTO (R_ARM_TLS_LE12, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
7f266840 1580 0, /* bitpos */
c19d1205 1581 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1582 bfd_elf_generic_reloc, /* special_function */
c19d1205 1583 "R_ARM_TLS_LE12", /* name */
7f266840 1584 FALSE, /* partial_inplace */
c19d1205
ZW
1585 0x00000fff, /* src_mask */
1586 0x00000fff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
7f266840 1588
c19d1205 1589 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1592 12, /* bitsize */
1593 FALSE, /* pc_relative */
7f266840 1594 0, /* bitpos */
c19d1205 1595 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1596 bfd_elf_generic_reloc, /* special_function */
c19d1205 1597 "R_ARM_TLS_IE12GP", /* name */
7f266840 1598 FALSE, /* partial_inplace */
c19d1205
ZW
1599 0x00000fff, /* src_mask */
1600 0x00000fff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602};
1603
1604/* 112-127 private relocations
1605 128 R_ARM_ME_TOO, obsolete
1606 129-255 unallocated in AAELF.
7f266840 1607
c19d1205
ZW
1608 249-255 extended, currently unused, relocations: */
1609
4962c51a 1610static reloc_howto_type elf32_arm_howto_table_2[4] =
7f266840
DJ
1611{
1612 HOWTO (R_ARM_RREL32, /* type */
1613 0, /* rightshift */
1614 0, /* size (0 = byte, 1 = short, 2 = long) */
1615 0, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_RREL32", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 HOWTO (R_ARM_RABS32, /* type */
1627 0, /* rightshift */
1628 0, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_RABS32", /* name */
1635 FALSE, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1639
1640 HOWTO (R_ARM_RPC24, /* type */
1641 0, /* rightshift */
1642 0, /* size (0 = byte, 1 = short, 2 = long) */
1643 0, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_RPC24", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 HOWTO (R_ARM_RBASE, /* type */
1655 0, /* rightshift */
1656 0, /* size (0 = byte, 1 = short, 2 = long) */
1657 0, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_dont,/* complain_on_overflow */
1661 bfd_elf_generic_reloc, /* special_function */
1662 "R_ARM_RBASE", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0, /* dst_mask */
1666 FALSE) /* pcrel_offset */
1667};
1668
1669static reloc_howto_type *
1670elf32_arm_howto_from_type (unsigned int r_type)
1671{
906e58ca 1672 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1673 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1674
c19d1205 1675 if (r_type >= R_ARM_RREL32
906e58ca 1676 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
4962c51a 1677 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
7f266840 1678
c19d1205 1679 return NULL;
7f266840
DJ
1680}
1681
1682static void
1683elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1684 Elf_Internal_Rela * elf_reloc)
1685{
1686 unsigned int r_type;
1687
1688 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1689 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1690}
1691
1692struct elf32_arm_reloc_map
1693 {
1694 bfd_reloc_code_real_type bfd_reloc_val;
1695 unsigned char elf_reloc_val;
1696 };
1697
1698/* All entries in this list must also be present in elf32_arm_howto_table. */
1699static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1700 {
1701 {BFD_RELOC_NONE, R_ARM_NONE},
1702 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1703 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1704 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1705 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1706 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1707 {BFD_RELOC_32, R_ARM_ABS32},
1708 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1709 {BFD_RELOC_8, R_ARM_ABS8},
1710 {BFD_RELOC_16, R_ARM_ABS16},
1711 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1712 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1713 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1719 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1720 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1721 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1722 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840
DJ
1723 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1724 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1725 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1726 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1727 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1728 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1729 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1730 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1731 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1732 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1733 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1734 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1735 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1736 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1737 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1738 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1739 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
c19d1205
ZW
1740 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1741 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1742 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1743 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1744 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1745 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1746 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1747 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1748 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1749 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1750 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1751 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1752 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1753 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1754 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1755 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1756 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1757 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1758 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1759 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1760 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1761 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1762 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1763 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1764 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1765 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1766 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1767 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1768 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1769 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1770 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1771 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1772 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1773 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1774 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1775 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1776 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1777 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1778 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1779 };
1780
1781static reloc_howto_type *
f1c71a59
ZW
1782elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1783 bfd_reloc_code_real_type code)
7f266840
DJ
1784{
1785 unsigned int i;
8029a119 1786
906e58ca 1787 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1788 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1789 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1790
c19d1205 1791 return NULL;
7f266840
DJ
1792}
1793
157090f7
AM
1794static reloc_howto_type *
1795elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1796 const char *r_name)
1797{
1798 unsigned int i;
1799
906e58ca 1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1801 if (elf32_arm_howto_table_1[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_1[i];
1804
906e58ca 1805 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1806 if (elf32_arm_howto_table_2[i].name != NULL
1807 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1808 return &elf32_arm_howto_table_2[i];
1809
1810 return NULL;
1811}
1812
906e58ca
NC
1813/* Support for core dump NOTE sections. */
1814
7f266840 1815static bfd_boolean
f1c71a59 1816elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1817{
1818 int offset;
1819 size_t size;
1820
1821 switch (note->descsz)
1822 {
1823 default:
1824 return FALSE;
1825
8029a119 1826 case 148: /* Linux/ARM 32-bit. */
7f266840
DJ
1827 /* pr_cursig */
1828 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1829
1830 /* pr_pid */
1831 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1832
1833 /* pr_reg */
1834 offset = 72;
1835 size = 72;
1836
1837 break;
1838 }
1839
1840 /* Make a ".reg/999" section. */
1841 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1842 size, note->descpos + offset);
1843}
1844
1845static bfd_boolean
f1c71a59 1846elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1847{
1848 switch (note->descsz)
1849 {
1850 default:
1851 return FALSE;
1852
8029a119 1853 case 124: /* Linux/ARM elf_prpsinfo. */
7f266840
DJ
1854 elf_tdata (abfd)->core_program
1855 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1856 elf_tdata (abfd)->core_command
1857 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1858 }
1859
1860 /* Note that for some reason, a spurious space is tacked
1861 onto the end of the args in some (at least one anyway)
1862 implementations, so strip it off if it exists. */
7f266840
DJ
1863 {
1864 char *command = elf_tdata (abfd)->core_command;
1865 int n = strlen (command);
1866
1867 if (0 < n && command[n - 1] == ' ')
1868 command[n - 1] = '\0';
1869 }
1870
1871 return TRUE;
1872}
1873
1874#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1875#define TARGET_LITTLE_NAME "elf32-littlearm"
1876#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1877#define TARGET_BIG_NAME "elf32-bigarm"
1878
1879#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1880#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1881
252b5132
RH
1882typedef unsigned long int insn32;
1883typedef unsigned short int insn16;
1884
3a4a14e9
PB
1885/* In lieu of proper flags, assume all EABIv4 or later objects are
1886 interworkable. */
57e8b36a 1887#define INTERWORK_FLAG(abfd) \
3a4a14e9 1888 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
1889 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1890 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 1891
252b5132
RH
1892/* The linker script knows the section names for placement.
1893 The entry_names are used to do simple name mangling on the stubs.
1894 Given a function name, and its type, the stub can be found. The
9b485d32 1895 name can be changed. The only requirement is the %s be present. */
252b5132
RH
1896#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1897#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1898
1899#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1900#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1901
c7b8f16e
JB
1902#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1903#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1904
845b51d6
PB
1905#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1906#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1907
7413f23f
DJ
1908#define STUB_ENTRY_NAME "__%s_veneer"
1909
252b5132
RH
1910/* The name of the dynamic interpreter. This is put in the .interp
1911 section. */
1912#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1913
5e681ec4
PB
1914#ifdef FOUR_WORD_PLT
1915
252b5132
RH
1916/* The first entry in a procedure linkage table looks like
1917 this. It is set up so that any shared library function that is
59f2c4e7 1918 called before the relocation has been set up calls the dynamic
9b485d32 1919 linker first. */
e5a52504 1920static const bfd_vma elf32_arm_plt0_entry [] =
5e681ec4
PB
1921 {
1922 0xe52de004, /* str lr, [sp, #-4]! */
1923 0xe59fe010, /* ldr lr, [pc, #16] */
1924 0xe08fe00e, /* add lr, pc, lr */
1925 0xe5bef008, /* ldr pc, [lr, #8]! */
1926 };
1927
1928/* Subsequent entries in a procedure linkage table look like
1929 this. */
e5a52504 1930static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1931 {
1932 0xe28fc600, /* add ip, pc, #NN */
1933 0xe28cca00, /* add ip, ip, #NN */
1934 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1935 0x00000000, /* unused */
1936 };
1937
1938#else
1939
5e681ec4
PB
1940/* The first entry in a procedure linkage table looks like
1941 this. It is set up so that any shared library function that is
1942 called before the relocation has been set up calls the dynamic
1943 linker first. */
e5a52504 1944static const bfd_vma elf32_arm_plt0_entry [] =
917583ad 1945 {
5e681ec4
PB
1946 0xe52de004, /* str lr, [sp, #-4]! */
1947 0xe59fe004, /* ldr lr, [pc, #4] */
1948 0xe08fe00e, /* add lr, pc, lr */
1949 0xe5bef008, /* ldr pc, [lr, #8]! */
1950 0x00000000, /* &GOT[0] - . */
917583ad 1951 };
252b5132
RH
1952
1953/* Subsequent entries in a procedure linkage table look like
1954 this. */
e5a52504 1955static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1956 {
1957 0xe28fc600, /* add ip, pc, #0xNN00000 */
1958 0xe28cca00, /* add ip, ip, #0xNN000 */
1959 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1960 };
1961
1962#endif
252b5132 1963
00a97672
RS
1964/* The format of the first entry in the procedure linkage table
1965 for a VxWorks executable. */
1966static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1967 {
1968 0xe52dc008, /* str ip,[sp,#-8]! */
1969 0xe59fc000, /* ldr ip,[pc] */
1970 0xe59cf008, /* ldr pc,[ip,#8] */
1971 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1972 };
1973
1974/* The format of subsequent entries in a VxWorks executable. */
1975static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1976 {
1977 0xe59fc000, /* ldr ip,[pc] */
1978 0xe59cf000, /* ldr pc,[ip] */
1979 0x00000000, /* .long @got */
1980 0xe59fc000, /* ldr ip,[pc] */
1981 0xea000000, /* b _PLT */
1982 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1983 };
1984
1985/* The format of entries in a VxWorks shared library. */
1986static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1987 {
1988 0xe59fc000, /* ldr ip,[pc] */
1989 0xe79cf009, /* ldr pc,[ip,r9] */
1990 0x00000000, /* .long @got */
1991 0xe59fc000, /* ldr ip,[pc] */
1992 0xe599f008, /* ldr pc,[r9,#8] */
1993 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1994 };
1995
b7693d02
DJ
1996/* An initial stub used if the PLT entry is referenced from Thumb code. */
1997#define PLT_THUMB_STUB_SIZE 4
1998static const bfd_vma elf32_arm_plt_thumb_stub [] =
1999 {
2000 0x4778, /* bx pc */
2001 0x46c0 /* nop */
2002 };
2003
e5a52504
MM
2004/* The entries in a PLT when using a DLL-based target with multiple
2005 address spaces. */
906e58ca 2006static const bfd_vma elf32_arm_symbian_plt_entry [] =
e5a52504 2007 {
83a358aa 2008 0xe51ff004, /* ldr pc, [pc, #-4] */
e5a52504
MM
2009 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2010 };
2011
906e58ca
NC
2012#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2013#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2014#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2015#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2016#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2017#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2018
461a49ca
DJ
2019enum stub_insn_type
2020 {
2021 THUMB16_TYPE = 1,
2022 THUMB32_TYPE,
2023 ARM_TYPE,
2024 DATA_TYPE
2025 };
2026
48229727
JB
2027#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2028/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2029 is inserted in arm_build_one_stub(). */
2030#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2031#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2032#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2033#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2034#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2035#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2036
2037typedef struct
2038{
2039 bfd_vma data;
2040 enum stub_insn_type type;
ebe24dd4 2041 unsigned int r_type;
461a49ca
DJ
2042 int reloc_addend;
2043} insn_sequence;
2044
fea2b4d6
CL
2045/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2046 to reach the stub if necessary. */
461a49ca 2047static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
906e58ca 2048 {
461a49ca
DJ
2049 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2050 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2051 };
2052
fea2b4d6
CL
2053/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2054 available. */
461a49ca 2055static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
906e58ca 2056 {
461a49ca
DJ
2057 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2058 ARM_INSN(0xe12fff1c), /* bx ip */
2059 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2060 };
2061
d3626fb0 2062/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2063static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
906e58ca 2064 {
461a49ca
DJ
2065 THUMB16_INSN(0xb401), /* push {r0} */
2066 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2067 THUMB16_INSN(0x4684), /* mov ip, r0 */
2068 THUMB16_INSN(0xbc01), /* pop {r0} */
2069 THUMB16_INSN(0x4760), /* bx ip */
2070 THUMB16_INSN(0xbf00), /* nop */
2071 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2072 };
2073
d3626fb0
CL
2074/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2075 allowed. */
2076static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2077 {
2078 THUMB16_INSN(0x4778), /* bx pc */
2079 THUMB16_INSN(0x46c0), /* nop */
2080 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2081 ARM_INSN(0xe12fff1c), /* bx ip */
2082 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2083 };
2084
fea2b4d6
CL
2085/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2086 available. */
461a49ca 2087static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
906e58ca 2088 {
461a49ca
DJ
2089 THUMB16_INSN(0x4778), /* bx pc */
2090 THUMB16_INSN(0x46c0), /* nop */
2091 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2092 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2093 };
2094
fea2b4d6
CL
2095/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2096 one, when the destination is close enough. */
461a49ca 2097static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
c820be07 2098 {
461a49ca
DJ
2099 THUMB16_INSN(0x4778), /* bx pc */
2100 THUMB16_INSN(0x46c0), /* nop */
2101 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
c820be07
NC
2102 };
2103
cf3eccff 2104/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2105 blx to reach the stub if necessary. */
cf3eccff 2106static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
906e58ca 2107 {
461a49ca
DJ
2108 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2109 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2110 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
906e58ca
NC
2111 };
2112
cf3eccff
DJ
2113/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2114 blx to reach the stub if necessary. We can not add into pc;
2115 it is not guaranteed to mode switch (different in ARMv6 and
2116 ARMv7). */
2117static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2118 {
2119 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2120 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2121 ARM_INSN(0xe12fff1c), /* bx ip */
2122 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2123 };
2124
ebe24dd4
CL
2125/* V4T ARM -> ARM long branch stub, PIC. */
2126static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2127 {
2128 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2129 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2130 ARM_INSN(0xe12fff1c), /* bx ip */
2131 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2132 };
2133
2134/* V4T Thumb -> ARM long branch stub, PIC. */
2135static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2136 {
2137 THUMB16_INSN(0x4778), /* bx pc */
2138 THUMB16_INSN(0x46c0), /* nop */
2139 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2140 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2141 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2142 };
2143
d3626fb0
CL
2144/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2145 architectures. */
ebe24dd4
CL
2146static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2147 {
2148 THUMB16_INSN(0xb401), /* push {r0} */
2149 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2150 THUMB16_INSN(0x46fc), /* mov ip, pc */
2151 THUMB16_INSN(0x4484), /* add ip, r0 */
2152 THUMB16_INSN(0xbc01), /* pop {r0} */
2153 THUMB16_INSN(0x4760), /* bx ip */
2154 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2155 };
2156
d3626fb0
CL
2157/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2158 allowed. */
2159static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2160 {
2161 THUMB16_INSN(0x4778), /* bx pc */
2162 THUMB16_INSN(0x46c0), /* nop */
2163 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2164 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2165 ARM_INSN(0xe12fff1c), /* bx ip */
2166 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2167 };
2168
48229727
JB
2169/* Cortex-A8 erratum-workaround stubs. */
2170
2171/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2172 can't use a conditional branch to reach this stub). */
2173
2174static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2175 {
2176 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2177 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2178 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2179 };
2180
2181/* Stub used for b.w and bl.w instructions. */
2182
2183static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2184 {
2185 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2186 };
2187
2188static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2189 {
2190 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2191 };
2192
2193/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2194 instruction (which switches to ARM mode) to point to this stub. Jump to the
2195 real destination using an ARM-mode branch. */
2196
2197static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2198 {
2199 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2200 };
2201
906e58ca
NC
2202/* Section name for stubs is the associated section name plus this
2203 string. */
2204#define STUB_SUFFIX ".stub"
2205
738a79f6
CL
2206/* One entry per long/short branch stub defined above. */
2207#define DEF_STUBS \
2208 DEF_STUB(long_branch_any_any) \
2209 DEF_STUB(long_branch_v4t_arm_thumb) \
2210 DEF_STUB(long_branch_thumb_only) \
2211 DEF_STUB(long_branch_v4t_thumb_thumb) \
2212 DEF_STUB(long_branch_v4t_thumb_arm) \
2213 DEF_STUB(short_branch_v4t_thumb_arm) \
2214 DEF_STUB(long_branch_any_arm_pic) \
2215 DEF_STUB(long_branch_any_thumb_pic) \
2216 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2217 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727
JB
2219 DEF_STUB(long_branch_thumb_only_pic) \
2220 DEF_STUB(a8_veneer_b_cond) \
2221 DEF_STUB(a8_veneer_b) \
2222 DEF_STUB(a8_veneer_bl) \
2223 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2224
2225#define DEF_STUB(x) arm_stub_##x,
2226enum elf32_arm_stub_type {
906e58ca 2227 arm_stub_none,
738a79f6 2228 DEF_STUBS
eb7c4339
NS
2229 /* Note the first a8_veneer type */
2230 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2231};
2232#undef DEF_STUB
2233
2234typedef struct
2235{
d3ce72d0 2236 const insn_sequence* template_sequence;
738a79f6
CL
2237 int template_size;
2238} stub_def;
2239
2240#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2241static const stub_def stub_definitions[] = {
2242 {NULL, 0},
2243 DEF_STUBS
906e58ca
NC
2244};
2245
2246struct elf32_arm_stub_hash_entry
2247{
2248 /* Base hash table entry structure. */
2249 struct bfd_hash_entry root;
2250
2251 /* The stub section. */
2252 asection *stub_sec;
2253
2254 /* Offset within stub_sec of the beginning of this stub. */
2255 bfd_vma stub_offset;
2256
2257 /* Given the symbol's value and its section we can determine its final
2258 value when building the stubs (so the stub knows where to jump). */
2259 bfd_vma target_value;
2260 asection *target_section;
2261
48229727
JB
2262 /* Offset to apply to relocation referencing target_value. */
2263 bfd_vma target_addend;
2264
2265 /* The instruction which caused this stub to be generated (only valid for
2266 Cortex-A8 erratum workaround stubs at present). */
2267 unsigned long orig_insn;
2268
461a49ca 2269 /* The stub type. */
906e58ca 2270 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2271 /* Its encoding size in bytes. */
2272 int stub_size;
2273 /* Its template. */
2274 const insn_sequence *stub_template;
2275 /* The size of the template (number of entries). */
2276 int stub_template_size;
906e58ca
NC
2277
2278 /* The symbol table entry, if any, that this was derived from. */
2279 struct elf32_arm_link_hash_entry *h;
2280
2281 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2282 unsigned char st_type;
2283
2284 /* Where this stub is being called from, or, in the case of combined
2285 stub sections, the first input section in the group. */
2286 asection *id_sec;
7413f23f
DJ
2287
2288 /* The name for the local symbol at the start of this stub. The
2289 stub name in the hash table has to be unique; this does not, so
2290 it can be friendlier. */
2291 char *output_name;
906e58ca
NC
2292};
2293
e489d0ae
PB
2294/* Used to build a map of a section. This is required for mixed-endian
2295 code/data. */
2296
2297typedef struct elf32_elf_section_map
2298{
2299 bfd_vma vma;
2300 char type;
2301}
2302elf32_arm_section_map;
2303
c7b8f16e
JB
2304/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2305
2306typedef enum
2307{
2308 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2309 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2310 VFP11_ERRATUM_ARM_VENEER,
2311 VFP11_ERRATUM_THUMB_VENEER
2312}
2313elf32_vfp11_erratum_type;
2314
2315typedef struct elf32_vfp11_erratum_list
2316{
2317 struct elf32_vfp11_erratum_list *next;
2318 bfd_vma vma;
2319 union
2320 {
2321 struct
2322 {
2323 struct elf32_vfp11_erratum_list *veneer;
2324 unsigned int vfp_insn;
2325 } b;
2326 struct
2327 {
2328 struct elf32_vfp11_erratum_list *branch;
2329 unsigned int id;
2330 } v;
2331 } u;
2332 elf32_vfp11_erratum_type type;
2333}
2334elf32_vfp11_erratum_list;
2335
2468f9c9
PB
2336typedef enum
2337{
2338 DELETE_EXIDX_ENTRY,
2339 INSERT_EXIDX_CANTUNWIND_AT_END
2340}
2341arm_unwind_edit_type;
2342
2343/* A (sorted) list of edits to apply to an unwind table. */
2344typedef struct arm_unwind_table_edit
2345{
2346 arm_unwind_edit_type type;
2347 /* Note: we sometimes want to insert an unwind entry corresponding to a
2348 section different from the one we're currently writing out, so record the
2349 (text) section this edit relates to here. */
2350 asection *linked_section;
2351 unsigned int index;
2352 struct arm_unwind_table_edit *next;
2353}
2354arm_unwind_table_edit;
2355
8e3de13a 2356typedef struct _arm_elf_section_data
e489d0ae 2357{
2468f9c9 2358 /* Information about mapping symbols. */
e489d0ae 2359 struct bfd_elf_section_data elf;
8e3de13a 2360 unsigned int mapcount;
c7b8f16e 2361 unsigned int mapsize;
e489d0ae 2362 elf32_arm_section_map *map;
2468f9c9 2363 /* Information about CPU errata. */
c7b8f16e
JB
2364 unsigned int erratumcount;
2365 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2366 /* Information about unwind tables. */
2367 union
2368 {
2369 /* Unwind info attached to a text section. */
2370 struct
2371 {
2372 asection *arm_exidx_sec;
2373 } text;
2374
2375 /* Unwind info attached to an .ARM.exidx section. */
2376 struct
2377 {
2378 arm_unwind_table_edit *unwind_edit_list;
2379 arm_unwind_table_edit *unwind_edit_tail;
2380 } exidx;
2381 } u;
8e3de13a
NC
2382}
2383_arm_elf_section_data;
e489d0ae
PB
2384
2385#define elf32_arm_section_data(sec) \
8e3de13a 2386 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2387
48229727
JB
2388/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2389 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2390 so may be created multiple times: we use an array of these entries whilst
2391 relaxing which we can refresh easily, then create stubs for each potentially
2392 erratum-triggering instruction once we've settled on a solution. */
2393
2394struct a8_erratum_fix {
2395 bfd *input_bfd;
2396 asection *section;
2397 bfd_vma offset;
2398 bfd_vma addend;
2399 unsigned long orig_insn;
2400 char *stub_name;
2401 enum elf32_arm_stub_type stub_type;
2402};
2403
2404/* A table of relocs applied to branches which might trigger Cortex-A8
2405 erratum. */
2406
2407struct a8_erratum_reloc {
2408 bfd_vma from;
2409 bfd_vma destination;
2410 unsigned int r_type;
2411 unsigned char st_type;
2412 const char *sym_name;
2413 bfd_boolean non_a8_stub;
2414};
2415
ba93b8ac
DJ
2416/* The size of the thread control block. */
2417#define TCB_SIZE 8
2418
0ffa91dd 2419struct elf_arm_obj_tdata
ba93b8ac
DJ
2420{
2421 struct elf_obj_tdata root;
2422
2423 /* tls_type for each local got entry. */
2424 char *local_got_tls_type;
ee065d83 2425
bf21ed78
MS
2426 /* Zero to warn when linking objects with incompatible enum sizes. */
2427 int no_enum_size_warning;
a9dc9481
JM
2428
2429 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2430 int no_wchar_size_warning;
ba93b8ac
DJ
2431};
2432
0ffa91dd
NC
2433#define elf_arm_tdata(bfd) \
2434 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2435
0ffa91dd
NC
2436#define elf32_arm_local_got_tls_type(bfd) \
2437 (elf_arm_tdata (bfd)->local_got_tls_type)
2438
2439#define is_arm_elf(bfd) \
2440 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2441 && elf_tdata (bfd) != NULL \
4dfe6ac6 2442 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2443
2444static bfd_boolean
2445elf32_arm_mkobject (bfd *abfd)
2446{
0ffa91dd 2447 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2448 ARM_ELF_DATA);
ba93b8ac
DJ
2449}
2450
252b5132
RH
2451/* The ARM linker needs to keep track of the number of relocs that it
2452 decides to copy in check_relocs for each symbol. This is so that
2453 it can discard PC relative relocs if it doesn't need them when
2454 linking with -Bsymbolic. We store the information in a field
2455 extending the regular ELF linker hash table. */
2456
ba93b8ac
DJ
2457/* This structure keeps track of the number of relocs we have copied
2458 for a given symbol. */
5e681ec4 2459struct elf32_arm_relocs_copied
917583ad
NC
2460 {
2461 /* Next section. */
5e681ec4 2462 struct elf32_arm_relocs_copied * next;
917583ad
NC
2463 /* A section in dynobj. */
2464 asection * section;
2465 /* Number of relocs copied in this section. */
2466 bfd_size_type count;
ba93b8ac
DJ
2467 /* Number of PC-relative relocs copied in this section. */
2468 bfd_size_type pc_count;
917583ad 2469 };
252b5132 2470
ba93b8ac
DJ
2471#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2472
ba96a88f 2473/* Arm ELF linker hash entry. */
252b5132 2474struct elf32_arm_link_hash_entry
917583ad
NC
2475 {
2476 struct elf_link_hash_entry root;
252b5132 2477
917583ad 2478 /* Number of PC relative relocs copied for this symbol. */
5e681ec4 2479 struct elf32_arm_relocs_copied * relocs_copied;
b7693d02
DJ
2480
2481 /* We reference count Thumb references to a PLT entry separately,
2482 so that we can emit the Thumb trampoline only if needed. */
2483 bfd_signed_vma plt_thumb_refcount;
2484
bd97cb95
DJ
2485 /* Some references from Thumb code may be eliminated by BL->BLX
2486 conversion, so record them separately. */
2487 bfd_signed_vma plt_maybe_thumb_refcount;
2488
b7693d02
DJ
2489 /* Since PLT entries have variable size if the Thumb prologue is
2490 used, we need to record the index into .got.plt instead of
2491 recomputing it from the PLT offset. */
2492 bfd_signed_vma plt_got_offset;
ba93b8ac
DJ
2493
2494#define GOT_UNKNOWN 0
2495#define GOT_NORMAL 1
2496#define GOT_TLS_GD 2
2497#define GOT_TLS_IE 4
2498 unsigned char tls_type;
a4fd1a8e
PB
2499
2500 /* The symbol marking the real symbol location for exported thumb
2501 symbols with Arm stubs. */
2502 struct elf_link_hash_entry *export_glue;
906e58ca 2503
da5938a2 2504 /* A pointer to the most recently used stub hash entry against this
8029a119 2505 symbol. */
da5938a2 2506 struct elf32_arm_stub_hash_entry *stub_cache;
917583ad 2507 };
252b5132 2508
252b5132 2509/* Traverse an arm ELF linker hash table. */
252b5132
RH
2510#define elf32_arm_link_hash_traverse(table, func, info) \
2511 (elf_link_hash_traverse \
2512 (&(table)->root, \
b7693d02 2513 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2514 (info)))
2515
2516/* Get the ARM elf linker hash table from a link_info structure. */
2517#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
2518 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2519 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 2520
906e58ca
NC
2521#define arm_stub_hash_lookup(table, string, create, copy) \
2522 ((struct elf32_arm_stub_hash_entry *) \
2523 bfd_hash_lookup ((table), (string), (create), (copy)))
2524
21d799b5
NC
2525/* Array to keep track of which stub sections have been created, and
2526 information on stub grouping. */
2527struct map_stub
2528{
2529 /* This is the section to which stubs in the group will be
2530 attached. */
2531 asection *link_sec;
2532 /* The stub section. */
2533 asection *stub_sec;
2534};
2535
9b485d32 2536/* ARM ELF linker hash table. */
252b5132 2537struct elf32_arm_link_hash_table
906e58ca
NC
2538{
2539 /* The main hash table. */
2540 struct elf_link_hash_table root;
252b5132 2541
906e58ca
NC
2542 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2543 bfd_size_type thumb_glue_size;
252b5132 2544
906e58ca
NC
2545 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2546 bfd_size_type arm_glue_size;
252b5132 2547
906e58ca
NC
2548 /* The size in bytes of section containing the ARMv4 BX veneers. */
2549 bfd_size_type bx_glue_size;
845b51d6 2550
906e58ca
NC
2551 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2552 veneer has been populated. */
2553 bfd_vma bx_glue_offset[15];
845b51d6 2554
906e58ca
NC
2555 /* The size in bytes of the section containing glue for VFP11 erratum
2556 veneers. */
2557 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2558
48229727
JB
2559 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2560 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2561 elf32_arm_write_section(). */
2562 struct a8_erratum_fix *a8_erratum_fixes;
2563 unsigned int num_a8_erratum_fixes;
2564
906e58ca
NC
2565 /* An arbitrary input BFD chosen to hold the glue sections. */
2566 bfd * bfd_of_glue_owner;
ba96a88f 2567
906e58ca
NC
2568 /* Nonzero to output a BE8 image. */
2569 int byteswap_code;
e489d0ae 2570
906e58ca
NC
2571 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2572 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2573 int target1_is_rel;
9c504268 2574
906e58ca
NC
2575 /* The relocation to use for R_ARM_TARGET2 relocations. */
2576 int target2_reloc;
eb043451 2577
906e58ca
NC
2578 /* 0 = Ignore R_ARM_V4BX.
2579 1 = Convert BX to MOV PC.
2580 2 = Generate v4 interworing stubs. */
2581 int fix_v4bx;
319850b4 2582
48229727
JB
2583 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2584 int fix_cortex_a8;
2585
906e58ca
NC
2586 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2587 int use_blx;
33bfe774 2588
906e58ca
NC
2589 /* What sort of code sequences we should look for which may trigger the
2590 VFP11 denorm erratum. */
2591 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2592
906e58ca
NC
2593 /* Global counter for the number of fixes we have emitted. */
2594 int num_vfp11_fixes;
c7b8f16e 2595
906e58ca
NC
2596 /* Nonzero to force PIC branch veneers. */
2597 int pic_veneer;
27e55c4d 2598
906e58ca
NC
2599 /* The number of bytes in the initial entry in the PLT. */
2600 bfd_size_type plt_header_size;
e5a52504 2601
906e58ca
NC
2602 /* The number of bytes in the subsequent PLT etries. */
2603 bfd_size_type plt_entry_size;
e5a52504 2604
906e58ca
NC
2605 /* True if the target system is VxWorks. */
2606 int vxworks_p;
00a97672 2607
906e58ca
NC
2608 /* True if the target system is Symbian OS. */
2609 int symbian_p;
e5a52504 2610
906e58ca
NC
2611 /* True if the target uses REL relocations. */
2612 int use_rel;
4e7fd91e 2613
906e58ca
NC
2614 /* Short-cuts to get to dynamic linker sections. */
2615 asection *sgot;
2616 asection *sgotplt;
2617 asection *srelgot;
2618 asection *splt;
2619 asection *srelplt;
2620 asection *sdynbss;
2621 asection *srelbss;
5e681ec4 2622
906e58ca
NC
2623 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2624 asection *srelplt2;
00a97672 2625
906e58ca
NC
2626 /* Data for R_ARM_TLS_LDM32 relocations. */
2627 union
2628 {
2629 bfd_signed_vma refcount;
2630 bfd_vma offset;
2631 } tls_ldm_got;
b7693d02 2632
87d72d41
AM
2633 /* Small local sym cache. */
2634 struct sym_cache sym_cache;
906e58ca
NC
2635
2636 /* For convenience in allocate_dynrelocs. */
2637 bfd * obfd;
2638
2639 /* The stub hash table. */
2640 struct bfd_hash_table stub_hash_table;
2641
2642 /* Linker stub bfd. */
2643 bfd *stub_bfd;
2644
2645 /* Linker call-backs. */
2646 asection * (*add_stub_section) (const char *, asection *);
2647 void (*layout_sections_again) (void);
2648
2649 /* Array to keep track of which stub sections have been created, and
2650 information on stub grouping. */
21d799b5 2651 struct map_stub *stub_group;
906e58ca
NC
2652
2653 /* Assorted information used by elf32_arm_size_stubs. */
2654 unsigned int bfd_count;
2655 int top_index;
2656 asection **input_list;
2657};
252b5132 2658
780a67af
NC
2659/* Create an entry in an ARM ELF linker hash table. */
2660
2661static struct bfd_hash_entry *
57e8b36a
NC
2662elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2663 struct bfd_hash_table * table,
2664 const char * string)
780a67af
NC
2665{
2666 struct elf32_arm_link_hash_entry * ret =
2667 (struct elf32_arm_link_hash_entry *) entry;
2668
2669 /* Allocate the structure if it has not already been allocated by a
2670 subclass. */
906e58ca 2671 if (ret == NULL)
21d799b5
NC
2672 ret = (struct elf32_arm_link_hash_entry *)
2673 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 2674 if (ret == NULL)
780a67af
NC
2675 return (struct bfd_hash_entry *) ret;
2676
2677 /* Call the allocation method of the superclass. */
2678 ret = ((struct elf32_arm_link_hash_entry *)
2679 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2680 table, string));
57e8b36a 2681 if (ret != NULL)
b7693d02
DJ
2682 {
2683 ret->relocs_copied = NULL;
ba93b8ac 2684 ret->tls_type = GOT_UNKNOWN;
b7693d02 2685 ret->plt_thumb_refcount = 0;
bd97cb95 2686 ret->plt_maybe_thumb_refcount = 0;
b7693d02 2687 ret->plt_got_offset = -1;
a4fd1a8e 2688 ret->export_glue = NULL;
906e58ca
NC
2689
2690 ret->stub_cache = NULL;
b7693d02 2691 }
780a67af
NC
2692
2693 return (struct bfd_hash_entry *) ret;
2694}
2695
906e58ca
NC
2696/* Initialize an entry in the stub hash table. */
2697
2698static struct bfd_hash_entry *
2699stub_hash_newfunc (struct bfd_hash_entry *entry,
2700 struct bfd_hash_table *table,
2701 const char *string)
2702{
2703 /* Allocate the structure if it has not already been allocated by a
2704 subclass. */
2705 if (entry == NULL)
2706 {
21d799b5
NC
2707 entry = (struct bfd_hash_entry *)
2708 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
2709 if (entry == NULL)
2710 return entry;
2711 }
2712
2713 /* Call the allocation method of the superclass. */
2714 entry = bfd_hash_newfunc (entry, table, string);
2715 if (entry != NULL)
2716 {
2717 struct elf32_arm_stub_hash_entry *eh;
2718
2719 /* Initialize the local fields. */
2720 eh = (struct elf32_arm_stub_hash_entry *) entry;
2721 eh->stub_sec = NULL;
2722 eh->stub_offset = 0;
2723 eh->target_value = 0;
2724 eh->target_section = NULL;
cedfb179
DK
2725 eh->target_addend = 0;
2726 eh->orig_insn = 0;
906e58ca 2727 eh->stub_type = arm_stub_none;
461a49ca
DJ
2728 eh->stub_size = 0;
2729 eh->stub_template = NULL;
2730 eh->stub_template_size = 0;
906e58ca
NC
2731 eh->h = NULL;
2732 eh->id_sec = NULL;
d8d2f433 2733 eh->output_name = NULL;
906e58ca
NC
2734 }
2735
2736 return entry;
2737}
2738
00a97672 2739/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
2740 shortcuts to them in our hash table. */
2741
2742static bfd_boolean
57e8b36a 2743create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2744{
2745 struct elf32_arm_link_hash_table *htab;
2746
e5a52504 2747 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
2748 if (htab == NULL)
2749 return FALSE;
2750
e5a52504
MM
2751 /* BPABI objects never have a GOT, or associated sections. */
2752 if (htab->symbian_p)
2753 return TRUE;
2754
5e681ec4
PB
2755 if (! _bfd_elf_create_got_section (dynobj, info))
2756 return FALSE;
2757
5e681ec4
PB
2758 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2759 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2760 if (!htab->sgot || !htab->sgotplt)
2761 abort ();
2762
64e77c6d
L
2763 htab->srelgot = bfd_get_section_by_name (dynobj,
2764 RELOC_SECTION (htab, ".got"));
2765 if (htab->srelgot == NULL)
5e681ec4
PB
2766 return FALSE;
2767 return TRUE;
2768}
2769
00a97672
RS
2770/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2771 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
2772 hash table. */
2773
2774static bfd_boolean
57e8b36a 2775elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2776{
2777 struct elf32_arm_link_hash_table *htab;
2778
2779 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
2780 if (htab == NULL)
2781 return FALSE;
2782
5e681ec4
PB
2783 if (!htab->sgot && !create_got_section (dynobj, info))
2784 return FALSE;
2785
2786 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2787 return FALSE;
2788
2789 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672
RS
2790 htab->srelplt = bfd_get_section_by_name (dynobj,
2791 RELOC_SECTION (htab, ".plt"));
5e681ec4
PB
2792 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2793 if (!info->shared)
00a97672
RS
2794 htab->srelbss = bfd_get_section_by_name (dynobj,
2795 RELOC_SECTION (htab, ".bss"));
2796
2797 if (htab->vxworks_p)
2798 {
2799 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2800 return FALSE;
2801
2802 if (info->shared)
2803 {
2804 htab->plt_header_size = 0;
2805 htab->plt_entry_size
2806 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2807 }
2808 else
2809 {
2810 htab->plt_header_size
2811 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2812 htab->plt_entry_size
2813 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2814 }
2815 }
5e681ec4 2816
906e58ca 2817 if (!htab->splt
e5a52504
MM
2818 || !htab->srelplt
2819 || !htab->sdynbss
5e681ec4
PB
2820 || (!info->shared && !htab->srelbss))
2821 abort ();
2822
2823 return TRUE;
2824}
2825
906e58ca
NC
2826/* Copy the extra info we tack onto an elf_link_hash_entry. */
2827
2828static void
2829elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2830 struct elf_link_hash_entry *dir,
2831 struct elf_link_hash_entry *ind)
2832{
2833 struct elf32_arm_link_hash_entry *edir, *eind;
2834
2835 edir = (struct elf32_arm_link_hash_entry *) dir;
2836 eind = (struct elf32_arm_link_hash_entry *) ind;
2837
2838 if (eind->relocs_copied != NULL)
2839 {
2840 if (edir->relocs_copied != NULL)
2841 {
2842 struct elf32_arm_relocs_copied **pp;
2843 struct elf32_arm_relocs_copied *p;
2844
2845 /* Add reloc counts against the indirect sym to the direct sym
2846 list. Merge any entries against the same section. */
2847 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2848 {
2849 struct elf32_arm_relocs_copied *q;
2850
2851 for (q = edir->relocs_copied; q != NULL; q = q->next)
2852 if (q->section == p->section)
2853 {
2854 q->pc_count += p->pc_count;
2855 q->count += p->count;
2856 *pp = p->next;
2857 break;
2858 }
2859 if (q == NULL)
2860 pp = &p->next;
2861 }
2862 *pp = edir->relocs_copied;
2863 }
2864
2865 edir->relocs_copied = eind->relocs_copied;
2866 eind->relocs_copied = NULL;
2867 }
2868
2869 if (ind->root.type == bfd_link_hash_indirect)
2870 {
2871 /* Copy over PLT info. */
2872 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2873 eind->plt_thumb_refcount = 0;
2874 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2875 eind->plt_maybe_thumb_refcount = 0;
2876
2877 if (dir->got.refcount <= 0)
2878 {
2879 edir->tls_type = eind->tls_type;
2880 eind->tls_type = GOT_UNKNOWN;
2881 }
2882 }
2883
2884 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2885}
2886
2887/* Create an ARM elf linker hash table. */
2888
2889static struct bfd_link_hash_table *
2890elf32_arm_link_hash_table_create (bfd *abfd)
2891{
2892 struct elf32_arm_link_hash_table *ret;
2893 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2894
21d799b5 2895 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
906e58ca
NC
2896 if (ret == NULL)
2897 return NULL;
2898
2899 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2900 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
2901 sizeof (struct elf32_arm_link_hash_entry),
2902 ARM_ELF_DATA))
906e58ca
NC
2903 {
2904 free (ret);
2905 return NULL;
2906 }
2907
2908 ret->sgot = NULL;
2909 ret->sgotplt = NULL;
2910 ret->srelgot = NULL;
2911 ret->splt = NULL;
2912 ret->srelplt = NULL;
2913 ret->sdynbss = NULL;
2914 ret->srelbss = NULL;
2915 ret->srelplt2 = NULL;
2916 ret->thumb_glue_size = 0;
2917 ret->arm_glue_size = 0;
2918 ret->bx_glue_size = 0;
2919 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2920 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2921 ret->vfp11_erratum_glue_size = 0;
2922 ret->num_vfp11_fixes = 0;
48229727 2923 ret->fix_cortex_a8 = 0;
906e58ca
NC
2924 ret->bfd_of_glue_owner = NULL;
2925 ret->byteswap_code = 0;
2926 ret->target1_is_rel = 0;
2927 ret->target2_reloc = R_ARM_NONE;
2928#ifdef FOUR_WORD_PLT
2929 ret->plt_header_size = 16;
2930 ret->plt_entry_size = 16;
2931#else
2932 ret->plt_header_size = 20;
2933 ret->plt_entry_size = 12;
2934#endif
2935 ret->fix_v4bx = 0;
2936 ret->use_blx = 0;
2937 ret->vxworks_p = 0;
2938 ret->symbian_p = 0;
2939 ret->use_rel = 1;
87d72d41 2940 ret->sym_cache.abfd = NULL;
906e58ca
NC
2941 ret->obfd = abfd;
2942 ret->tls_ldm_got.refcount = 0;
6cee0a6f
L
2943 ret->stub_bfd = NULL;
2944 ret->add_stub_section = NULL;
2945 ret->layout_sections_again = NULL;
2946 ret->stub_group = NULL;
2947 ret->bfd_count = 0;
2948 ret->top_index = 0;
2949 ret->input_list = NULL;
906e58ca
NC
2950
2951 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2952 sizeof (struct elf32_arm_stub_hash_entry)))
2953 {
2954 free (ret);
2955 return NULL;
2956 }
2957
2958 return &ret->root.root;
2959}
2960
2961/* Free the derived linker hash table. */
2962
2963static void
2964elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2965{
2966 struct elf32_arm_link_hash_table *ret
2967 = (struct elf32_arm_link_hash_table *) hash;
2968
2969 bfd_hash_table_free (&ret->stub_hash_table);
2970 _bfd_generic_link_hash_table_free (hash);
2971}
2972
2973/* Determine if we're dealing with a Thumb only architecture. */
2974
2975static bfd_boolean
2976using_thumb_only (struct elf32_arm_link_hash_table *globals)
2977{
2978 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2979 Tag_CPU_arch);
2980 int profile;
2981
9e3c6df6 2982 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
906e58ca
NC
2983 return FALSE;
2984
2985 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2986 Tag_CPU_arch_profile);
2987
2988 return profile == 'M';
2989}
2990
2991/* Determine if we're dealing with a Thumb-2 object. */
2992
2993static bfd_boolean
2994using_thumb2 (struct elf32_arm_link_hash_table *globals)
2995{
2996 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2997 Tag_CPU_arch);
2998 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2999}
3000
cd1dac3d
DG
3001/* Determine what kind of NOPs are available. */
3002
3003static bfd_boolean
3004arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3005{
3006 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3007 Tag_CPU_arch);
3008 return arch == TAG_CPU_ARCH_V6T2
3009 || arch == TAG_CPU_ARCH_V6K
9e3c6df6
PB
3010 || arch == TAG_CPU_ARCH_V7
3011 || arch == TAG_CPU_ARCH_V7E_M;
cd1dac3d
DG
3012}
3013
3014static bfd_boolean
3015arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3016{
3017 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3018 Tag_CPU_arch);
9e3c6df6
PB
3019 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3020 || arch == TAG_CPU_ARCH_V7E_M);
cd1dac3d
DG
3021}
3022
f4ac8484
DJ
3023static bfd_boolean
3024arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3025{
3026 switch (stub_type)
3027 {
fea2b4d6
CL
3028 case arm_stub_long_branch_thumb_only:
3029 case arm_stub_long_branch_v4t_thumb_arm:
3030 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4
CL
3031 case arm_stub_long_branch_v4t_thumb_arm_pic:
3032 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3033 return TRUE;
3034 case arm_stub_none:
3035 BFD_FAIL ();
3036 return FALSE;
3037 break;
3038 default:
3039 return FALSE;
3040 }
3041}
3042
906e58ca
NC
3043/* Determine the type of stub needed, if any, for a call. */
3044
3045static enum elf32_arm_stub_type
3046arm_type_of_stub (struct bfd_link_info *info,
3047 asection *input_sec,
3048 const Elf_Internal_Rela *rel,
3049 unsigned char st_type,
3050 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3051 bfd_vma destination,
3052 asection *sym_sec,
3053 bfd *input_bfd,
3054 const char *name)
906e58ca
NC
3055{
3056 bfd_vma location;
3057 bfd_signed_vma branch_offset;
3058 unsigned int r_type;
3059 struct elf32_arm_link_hash_table * globals;
3060 int thumb2;
3061 int thumb_only;
3062 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3063 int use_plt = 0;
906e58ca 3064
da5938a2 3065 /* We don't know the actual type of destination in case it is of
8029a119 3066 type STT_SECTION: give up. */
da5938a2
NC
3067 if (st_type == STT_SECTION)
3068 return stub_type;
3069
906e58ca 3070 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3071 if (globals == NULL)
3072 return stub_type;
906e58ca
NC
3073
3074 thumb_only = using_thumb_only (globals);
3075
3076 thumb2 = using_thumb2 (globals);
3077
3078 /* Determine where the call point is. */
3079 location = (input_sec->output_offset
3080 + input_sec->output_section->vma
3081 + rel->r_offset);
3082
3083 branch_offset = (bfd_signed_vma)(destination - location);
3084
3085 r_type = ELF32_R_TYPE (rel->r_info);
3086
5fa9e92f 3087 /* Keep a simpler condition, for the sake of clarity. */
329dcd78 3088 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
5fa9e92f
CL
3089 {
3090 use_plt = 1;
3091 /* Note when dealing with PLT entries: the main PLT stub is in
3092 ARM mode, so if the branch is in Thumb mode, another
3093 Thumb->ARM stub will be inserted later just before the ARM
3094 PLT stub. We don't take this extra distance into account
3095 here, because if a long branch stub is needed, we'll add a
3096 Thumb->Arm one and branch directly to the ARM PLT entry
3097 because it avoids spreading offset corrections in several
3098 places. */
3099 }
906e58ca 3100
155d87d7 3101 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca 3102 {
5fa9e92f
CL
3103 /* Handle cases where:
3104 - this call goes too far (different Thumb/Thumb2 max
3105 distance)
155d87d7
CL
3106 - it's a Thumb->Arm call and blx is not available, or it's a
3107 Thumb->Arm branch (not bl). A stub is needed in this case,
3108 but only if this call is not through a PLT entry. Indeed,
3109 PLT stubs handle mode switching already.
5fa9e92f 3110 */
906e58ca
NC
3111 if ((!thumb2
3112 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3113 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3114 || (thumb2
3115 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3116 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
5fa9e92f 3117 || ((st_type != STT_ARM_TFUNC)
155d87d7
CL
3118 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3119 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3120 && !use_plt))
906e58ca
NC
3121 {
3122 if (st_type == STT_ARM_TFUNC)
3123 {
3124 /* Thumb to thumb. */
3125 if (!thumb_only)
3126 {
3127 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3128 /* PIC stubs. */
155d87d7
CL
3129 ? ((globals->use_blx
3130 && (r_type ==R_ARM_THM_CALL))
3131 /* V5T and above. Stub starts with ARM code, so
3132 we must be able to switch mode before
3133 reaching it, which is only possible for 'bl'
3134 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3135 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3136 /* On V4T, use Thumb code only. */
d3626fb0 3137 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3138
3139 /* non-PIC stubs. */
155d87d7
CL
3140 : ((globals->use_blx
3141 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3142 /* V5T and above. */
3143 ? arm_stub_long_branch_any_any
3144 /* V4T. */
d3626fb0 3145 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3146 }
3147 else
3148 {
3149 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3150 /* PIC stub. */
3151 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3152 /* non-PIC stub. */
3153 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3154 }
3155 }
3156 else
3157 {
3158 /* Thumb to arm. */
c820be07
NC
3159 if (sym_sec != NULL
3160 && sym_sec->owner != NULL
3161 && !INTERWORK_FLAG (sym_sec->owner))
3162 {
3163 (*_bfd_error_handler)
3164 (_("%B(%s): warning: interworking not enabled.\n"
3165 " first occurrence: %B: Thumb call to ARM"),
3166 sym_sec->owner, input_bfd, name);
3167 }
3168
906e58ca 3169 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3170 /* PIC stubs. */
155d87d7
CL
3171 ? ((globals->use_blx
3172 && (r_type ==R_ARM_THM_CALL))
c2b4a39d 3173 /* V5T and above. */
cf3eccff 3174 ? arm_stub_long_branch_any_arm_pic
ebe24dd4
CL
3175 /* V4T PIC stub. */
3176 : arm_stub_long_branch_v4t_thumb_arm_pic)
c2b4a39d
CL
3177
3178 /* non-PIC stubs. */
155d87d7
CL
3179 : ((globals->use_blx
3180 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3181 /* V5T and above. */
3182 ? arm_stub_long_branch_any_any
3183 /* V4T. */
3184 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3185
3186 /* Handle v4t short branches. */
fea2b4d6 3187 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3188 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3189 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3190 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3191 }
3192 }
3193 }
155d87d7 3194 else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32)
906e58ca
NC
3195 {
3196 if (st_type == STT_ARM_TFUNC)
3197 {
3198 /* Arm to thumb. */
c820be07
NC
3199
3200 if (sym_sec != NULL
3201 && sym_sec->owner != NULL
3202 && !INTERWORK_FLAG (sym_sec->owner))
3203 {
3204 (*_bfd_error_handler)
3205 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3206 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3207 sym_sec->owner, input_bfd, name);
3208 }
3209
3210 /* We have an extra 2-bytes reach because of
3211 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3212 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3213 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3214 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3215 || (r_type == R_ARM_JUMP24)
3216 || (r_type == R_ARM_PLT32))
906e58ca
NC
3217 {
3218 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3219 /* PIC stubs. */
ebe24dd4
CL
3220 ? ((globals->use_blx)
3221 /* V5T and above. */
3222 ? arm_stub_long_branch_any_thumb_pic
3223 /* V4T stub. */
3224 : arm_stub_long_branch_v4t_arm_thumb_pic)
3225
c2b4a39d
CL
3226 /* non-PIC stubs. */
3227 : ((globals->use_blx)
3228 /* V5T and above. */
3229 ? arm_stub_long_branch_any_any
3230 /* V4T. */
3231 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3232 }
3233 }
3234 else
3235 {
3236 /* Arm to arm. */
3237 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3238 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3239 {
3240 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3241 /* PIC stubs. */
cf3eccff 3242 ? arm_stub_long_branch_any_arm_pic
c2b4a39d 3243 /* non-PIC stubs. */
fea2b4d6 3244 : arm_stub_long_branch_any_any;
906e58ca
NC
3245 }
3246 }
3247 }
3248
3249 return stub_type;
3250}
3251
3252/* Build a name for an entry in the stub hash table. */
3253
3254static char *
3255elf32_arm_stub_name (const asection *input_section,
3256 const asection *sym_sec,
3257 const struct elf32_arm_link_hash_entry *hash,
3258 const Elf_Internal_Rela *rel)
3259{
3260 char *stub_name;
3261 bfd_size_type len;
3262
3263 if (hash)
3264 {
3265 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
21d799b5 3266 stub_name = (char *) bfd_malloc (len);
906e58ca
NC
3267 if (stub_name != NULL)
3268 sprintf (stub_name, "%08x_%s+%x",
3269 input_section->id & 0xffffffff,
3270 hash->root.root.root.string,
3271 (int) rel->r_addend & 0xffffffff);
3272 }
3273 else
3274 {
3275 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
21d799b5 3276 stub_name = (char *) bfd_malloc (len);
906e58ca
NC
3277 if (stub_name != NULL)
3278 sprintf (stub_name, "%08x_%x:%x+%x",
3279 input_section->id & 0xffffffff,
3280 sym_sec->id & 0xffffffff,
3281 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3282 (int) rel->r_addend & 0xffffffff);
3283 }
3284
3285 return stub_name;
3286}
3287
3288/* Look up an entry in the stub hash. Stub entries are cached because
3289 creating the stub name takes a bit of time. */
3290
3291static struct elf32_arm_stub_hash_entry *
3292elf32_arm_get_stub_entry (const asection *input_section,
3293 const asection *sym_sec,
3294 struct elf_link_hash_entry *hash,
3295 const Elf_Internal_Rela *rel,
3296 struct elf32_arm_link_hash_table *htab)
3297{
3298 struct elf32_arm_stub_hash_entry *stub_entry;
3299 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3300 const asection *id_sec;
3301
3302 if ((input_section->flags & SEC_CODE) == 0)
3303 return NULL;
3304
3305 /* If this input section is part of a group of sections sharing one
3306 stub section, then use the id of the first section in the group.
3307 Stub names need to include a section id, as there may well be
3308 more than one stub used to reach say, printf, and we need to
3309 distinguish between them. */
3310 id_sec = htab->stub_group[input_section->id].link_sec;
3311
3312 if (h != NULL && h->stub_cache != NULL
3313 && h->stub_cache->h == h
3314 && h->stub_cache->id_sec == id_sec)
3315 {
3316 stub_entry = h->stub_cache;
3317 }
3318 else
3319 {
3320 char *stub_name;
3321
3322 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3323 if (stub_name == NULL)
3324 return NULL;
3325
3326 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3327 stub_name, FALSE, FALSE);
3328 if (h != NULL)
3329 h->stub_cache = stub_entry;
3330
3331 free (stub_name);
3332 }
3333
3334 return stub_entry;
3335}
3336
48229727
JB
3337/* Find or create a stub section. Returns a pointer to the stub section, and
3338 the section to which the stub section will be attached (in *LINK_SEC_P).
3339 LINK_SEC_P may be NULL. */
906e58ca 3340
48229727
JB
3341static asection *
3342elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3343 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3344{
3345 asection *link_sec;
3346 asection *stub_sec;
906e58ca
NC
3347
3348 link_sec = htab->stub_group[section->id].link_sec;
3349 stub_sec = htab->stub_group[section->id].stub_sec;
3350 if (stub_sec == NULL)
3351 {
3352 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3353 if (stub_sec == NULL)
3354 {
3355 size_t namelen;
3356 bfd_size_type len;
3357 char *s_name;
3358
3359 namelen = strlen (link_sec->name);
3360 len = namelen + sizeof (STUB_SUFFIX);
21d799b5 3361 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
906e58ca
NC
3362 if (s_name == NULL)
3363 return NULL;
3364
3365 memcpy (s_name, link_sec->name, namelen);
3366 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3367 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3368 if (stub_sec == NULL)
3369 return NULL;
3370 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3371 }
3372 htab->stub_group[section->id].stub_sec = stub_sec;
3373 }
48229727
JB
3374
3375 if (link_sec_p)
3376 *link_sec_p = link_sec;
3377
3378 return stub_sec;
3379}
3380
3381/* Add a new stub entry to the stub hash. Not all fields of the new
3382 stub entry are initialised. */
3383
3384static struct elf32_arm_stub_hash_entry *
3385elf32_arm_add_stub (const char *stub_name,
3386 asection *section,
3387 struct elf32_arm_link_hash_table *htab)
3388{
3389 asection *link_sec;
3390 asection *stub_sec;
3391 struct elf32_arm_stub_hash_entry *stub_entry;
3392
3393 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3394 if (stub_sec == NULL)
3395 return NULL;
906e58ca
NC
3396
3397 /* Enter this entry into the linker stub hash table. */
3398 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3399 TRUE, FALSE);
3400 if (stub_entry == NULL)
3401 {
3402 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3403 section->owner,
3404 stub_name);
3405 return NULL;
3406 }
3407
3408 stub_entry->stub_sec = stub_sec;
3409 stub_entry->stub_offset = 0;
3410 stub_entry->id_sec = link_sec;
3411
906e58ca
NC
3412 return stub_entry;
3413}
3414
3415/* Store an Arm insn into an output section not processed by
3416 elf32_arm_write_section. */
3417
3418static void
8029a119
NC
3419put_arm_insn (struct elf32_arm_link_hash_table * htab,
3420 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3421{
3422 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3423 bfd_putl32 (val, ptr);
3424 else
3425 bfd_putb32 (val, ptr);
3426}
3427
3428/* Store a 16-bit Thumb insn into an output section not processed by
3429 elf32_arm_write_section. */
3430
3431static void
8029a119
NC
3432put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3433 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3434{
3435 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3436 bfd_putl16 (val, ptr);
3437 else
3438 bfd_putb16 (val, ptr);
3439}
3440
48229727
JB
3441static bfd_reloc_status_type elf32_arm_final_link_relocate
3442 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3443 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3444 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3445
906e58ca
NC
3446static bfd_boolean
3447arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3448 void * in_arg)
3449{
48229727 3450#define MAXRELOCS 2
906e58ca 3451 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 3452 struct elf32_arm_link_hash_table *globals;
906e58ca 3453 struct bfd_link_info *info;
906e58ca
NC
3454 asection *stub_sec;
3455 bfd *stub_bfd;
3456 bfd_vma stub_addr;
3457 bfd_byte *loc;
3458 bfd_vma sym_value;
3459 int template_size;
3460 int size;
d3ce72d0 3461 const insn_sequence *template_sequence;
906e58ca 3462 int i;
48229727
JB
3463 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3464 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3465 int nrelocs = 0;
906e58ca
NC
3466
3467 /* Massage our args to the form they really have. */
3468 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3469 info = (struct bfd_link_info *) in_arg;
3470
3471 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3472 if (globals == NULL)
3473 return FALSE;
906e58ca 3474
906e58ca
NC
3475 stub_sec = stub_entry->stub_sec;
3476
4dfe6ac6 3477 if ((globals->fix_cortex_a8 < 0)
eb7c4339
NS
3478 != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3479 /* We have to do the a8 fixes last, as they are less aligned than
3480 the other veneers. */
3481 return TRUE;
3482
906e58ca
NC
3483 /* Make a note of the offset within the stubs for this entry. */
3484 stub_entry->stub_offset = stub_sec->size;
3485 loc = stub_sec->contents + stub_entry->stub_offset;
3486
3487 stub_bfd = stub_sec->owner;
3488
3489 /* This is the address of the start of the stub. */
3490 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3491 + stub_entry->stub_offset;
3492
3493 /* This is the address of the stub destination. */
3494 sym_value = (stub_entry->target_value
3495 + stub_entry->target_section->output_offset
3496 + stub_entry->target_section->output_section->vma);
3497
d3ce72d0 3498 template_sequence = stub_entry->stub_template;
461a49ca 3499 template_size = stub_entry->stub_template_size;
906e58ca
NC
3500
3501 size = 0;
461a49ca 3502 for (i = 0; i < template_size; i++)
906e58ca 3503 {
d3ce72d0 3504 switch (template_sequence[i].type)
461a49ca
DJ
3505 {
3506 case THUMB16_TYPE:
48229727 3507 {
d3ce72d0
NC
3508 bfd_vma data = (bfd_vma) template_sequence[i].data;
3509 if (template_sequence[i].reloc_addend != 0)
48229727
JB
3510 {
3511 /* We've borrowed the reloc_addend field to mean we should
3512 insert a condition code into this (Thumb-1 branch)
3513 instruction. See THUMB16_BCOND_INSN. */
3514 BFD_ASSERT ((data & 0xff00) == 0xd000);
3515 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3516 }
3517 put_thumb_insn (globals, stub_bfd, data, loc + size);
3518 size += 2;
3519 }
461a49ca 3520 break;
906e58ca 3521
48229727 3522 case THUMB32_TYPE:
d3ce72d0
NC
3523 put_thumb_insn (globals, stub_bfd,
3524 (template_sequence[i].data >> 16) & 0xffff,
48229727 3525 loc + size);
d3ce72d0 3526 put_thumb_insn (globals, stub_bfd, template_sequence[i].data & 0xffff,
48229727 3527 loc + size + 2);
d3ce72d0 3528 if (template_sequence[i].r_type != R_ARM_NONE)
48229727
JB
3529 {
3530 stub_reloc_idx[nrelocs] = i;
3531 stub_reloc_offset[nrelocs++] = size;
3532 }
3533 size += 4;
3534 break;
3535
461a49ca 3536 case ARM_TYPE:
d3ce72d0
NC
3537 put_arm_insn (globals, stub_bfd, template_sequence[i].data,
3538 loc + size);
461a49ca
DJ
3539 /* Handle cases where the target is encoded within the
3540 instruction. */
d3ce72d0 3541 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 3542 {
48229727
JB
3543 stub_reloc_idx[nrelocs] = i;
3544 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3545 }
3546 size += 4;
3547 break;
3548
3549 case DATA_TYPE:
d3ce72d0 3550 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
3551 stub_reloc_idx[nrelocs] = i;
3552 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3553 size += 4;
3554 break;
3555
3556 default:
3557 BFD_FAIL ();
3558 return FALSE;
3559 }
906e58ca 3560 }
461a49ca 3561
906e58ca
NC
3562 stub_sec->size += size;
3563
461a49ca
DJ
3564 /* Stub size has already been computed in arm_size_one_stub. Check
3565 consistency. */
3566 BFD_ASSERT (size == stub_entry->stub_size);
3567
906e58ca
NC
3568 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3569 if (stub_entry->st_type == STT_ARM_TFUNC)
3570 sym_value |= 1;
3571
48229727
JB
3572 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3573 in each stub. */
3574 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 3575
48229727 3576 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
3577 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3578 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3579 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3580 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
3581 {
3582 Elf_Internal_Rela rel;
3583 bfd_boolean unresolved_reloc;
3584 char *error_message;
3585 int sym_flags
d3ce72d0 3586 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
48229727
JB
3587 ? STT_ARM_TFUNC : 0;
3588 bfd_vma points_to = sym_value + stub_entry->target_addend;
3589
3590 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0
NC
3591 rel.r_info = ELF32_R_INFO (0,
3592 template_sequence[stub_reloc_idx[i]].r_type);
3593 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
3594
3595 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3596 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3597 template should refer back to the instruction after the original
3598 branch. */
3599 points_to = sym_value;
3600
33c6a8fc
JB
3601 /* There may be unintended consequences if this is not true. */
3602 BFD_ASSERT (stub_entry->h == NULL);
3603
48229727
JB
3604 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3605 properly. We should probably use this function unconditionally,
3606 rather than only for certain relocations listed in the enclosing
3607 conditional, for the sake of consistency. */
3608 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 3609 (template_sequence[stub_reloc_idx[i]].r_type),
48229727
JB
3610 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3611 points_to, info, stub_entry->target_section, "", sym_flags,
33c6a8fc 3612 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
48229727
JB
3613 &error_message);
3614 }
3615 else
3616 {
3617 _bfd_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 3618 (template_sequence[stub_reloc_idx[i]].r_type), stub_bfd, stub_sec,
48229727
JB
3619 stub_sec->contents, stub_entry->stub_offset + stub_reloc_offset[i],
3620 sym_value + stub_entry->target_addend,
d3ce72d0 3621 template_sequence[stub_reloc_idx[i]].reloc_addend);
48229727 3622 }
906e58ca
NC
3623
3624 return TRUE;
48229727 3625#undef MAXRELOCS
906e58ca
NC
3626}
3627
48229727
JB
3628/* Calculate the template, template size and instruction size for a stub.
3629 Return value is the instruction size. */
906e58ca 3630
48229727
JB
3631static unsigned int
3632find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3633 const insn_sequence **stub_template,
3634 int *stub_template_size)
906e58ca 3635{
d3ce72d0 3636 const insn_sequence *template_sequence = NULL;
48229727
JB
3637 int template_size = 0, i;
3638 unsigned int size;
906e58ca 3639
d3ce72d0 3640 template_sequence = stub_definitions[stub_type].template_sequence;
48229727 3641 template_size = stub_definitions[stub_type].template_size;
906e58ca
NC
3642
3643 size = 0;
461a49ca
DJ
3644 for (i = 0; i < template_size; i++)
3645 {
d3ce72d0 3646 switch (template_sequence[i].type)
461a49ca
DJ
3647 {
3648 case THUMB16_TYPE:
3649 size += 2;
3650 break;
3651
3652 case ARM_TYPE:
48229727 3653 case THUMB32_TYPE:
461a49ca
DJ
3654 case DATA_TYPE:
3655 size += 4;
3656 break;
3657
3658 default:
3659 BFD_FAIL ();
3660 return FALSE;
3661 }
3662 }
3663
48229727 3664 if (stub_template)
d3ce72d0 3665 *stub_template = template_sequence;
48229727
JB
3666
3667 if (stub_template_size)
3668 *stub_template_size = template_size;
3669
3670 return size;
3671}
3672
3673/* As above, but don't actually build the stub. Just bump offset so
3674 we know stub section sizes. */
3675
3676static bfd_boolean
3677arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3678 void * in_arg)
3679{
3680 struct elf32_arm_stub_hash_entry *stub_entry;
3681 struct elf32_arm_link_hash_table *htab;
d3ce72d0 3682 const insn_sequence *template_sequence;
48229727
JB
3683 int template_size, size;
3684
3685 /* Massage our args to the form they really have. */
3686 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3687 htab = (struct elf32_arm_link_hash_table *) in_arg;
3688
3689 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3690 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3691
d3ce72d0 3692 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
3693 &template_size);
3694
461a49ca 3695 stub_entry->stub_size = size;
d3ce72d0 3696 stub_entry->stub_template = template_sequence;
461a49ca
DJ
3697 stub_entry->stub_template_size = template_size;
3698
906e58ca
NC
3699 size = (size + 7) & ~7;
3700 stub_entry->stub_sec->size += size;
461a49ca 3701
906e58ca
NC
3702 return TRUE;
3703}
3704
3705/* External entry points for sizing and building linker stubs. */
3706
3707/* Set up various things so that we can make a list of input sections
3708 for each output section included in the link. Returns -1 on error,
3709 0 when no stubs will be needed, and 1 on success. */
3710
3711int
3712elf32_arm_setup_section_lists (bfd *output_bfd,
3713 struct bfd_link_info *info)
3714{
3715 bfd *input_bfd;
3716 unsigned int bfd_count;
3717 int top_id, top_index;
3718 asection *section;
3719 asection **input_list, **list;
3720 bfd_size_type amt;
3721 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3722
4dfe6ac6
NC
3723 if (htab == NULL)
3724 return 0;
906e58ca
NC
3725 if (! is_elf_hash_table (htab))
3726 return 0;
3727
3728 /* Count the number of input BFDs and find the top input section id. */
3729 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3730 input_bfd != NULL;
3731 input_bfd = input_bfd->link_next)
3732 {
3733 bfd_count += 1;
3734 for (section = input_bfd->sections;
3735 section != NULL;
3736 section = section->next)
3737 {
3738 if (top_id < section->id)
3739 top_id = section->id;
3740 }
3741 }
3742 htab->bfd_count = bfd_count;
3743
3744 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 3745 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
3746 if (htab->stub_group == NULL)
3747 return -1;
3748
3749 /* We can't use output_bfd->section_count here to find the top output
3750 section index as some sections may have been removed, and
3751 _bfd_strip_section_from_output doesn't renumber the indices. */
3752 for (section = output_bfd->sections, top_index = 0;
3753 section != NULL;
3754 section = section->next)
3755 {
3756 if (top_index < section->index)
3757 top_index = section->index;
3758 }
3759
3760 htab->top_index = top_index;
3761 amt = sizeof (asection *) * (top_index + 1);
21d799b5 3762 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
3763 htab->input_list = input_list;
3764 if (input_list == NULL)
3765 return -1;
3766
3767 /* For sections we aren't interested in, mark their entries with a
3768 value we can check later. */
3769 list = input_list + top_index;
3770 do
3771 *list = bfd_abs_section_ptr;
3772 while (list-- != input_list);
3773
3774 for (section = output_bfd->sections;
3775 section != NULL;
3776 section = section->next)
3777 {
3778 if ((section->flags & SEC_CODE) != 0)
3779 input_list[section->index] = NULL;
3780 }
3781
3782 return 1;
3783}
3784
3785/* The linker repeatedly calls this function for each input section,
3786 in the order that input sections are linked into output sections.
3787 Build lists of input sections to determine groupings between which
3788 we may insert linker stubs. */
3789
3790void
3791elf32_arm_next_input_section (struct bfd_link_info *info,
3792 asection *isec)
3793{
3794 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3795
4dfe6ac6
NC
3796 if (htab == NULL)
3797 return;
3798
906e58ca
NC
3799 if (isec->output_section->index <= htab->top_index)
3800 {
3801 asection **list = htab->input_list + isec->output_section->index;
3802
a7470592 3803 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
3804 {
3805 /* Steal the link_sec pointer for our list. */
3806#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3807 /* This happens to make the list in reverse order,
07d72278 3808 which we reverse later. */
906e58ca
NC
3809 PREV_SEC (isec) = *list;
3810 *list = isec;
3811 }
3812 }
3813}
3814
3815/* See whether we can group stub sections together. Grouping stub
3816 sections may result in fewer stubs. More importantly, we need to
07d72278 3817 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
3818 .fini output sections respectively, because glibc splits the
3819 _init and _fini functions into multiple parts. Putting a stub in
3820 the middle of a function is not a good idea. */
3821
3822static void
3823group_sections (struct elf32_arm_link_hash_table *htab,
3824 bfd_size_type stub_group_size,
07d72278 3825 bfd_boolean stubs_always_after_branch)
906e58ca 3826{
07d72278 3827 asection **list = htab->input_list;
906e58ca
NC
3828
3829 do
3830 {
3831 asection *tail = *list;
07d72278 3832 asection *head;
906e58ca
NC
3833
3834 if (tail == bfd_abs_section_ptr)
3835 continue;
3836
07d72278
DJ
3837 /* Reverse the list: we must avoid placing stubs at the
3838 beginning of the section because the beginning of the text
3839 section may be required for an interrupt vector in bare metal
3840 code. */
3841#define NEXT_SEC PREV_SEC
e780aef2
CL
3842 head = NULL;
3843 while (tail != NULL)
3844 {
3845 /* Pop from tail. */
3846 asection *item = tail;
3847 tail = PREV_SEC (item);
3848
3849 /* Push on head. */
3850 NEXT_SEC (item) = head;
3851 head = item;
3852 }
07d72278
DJ
3853
3854 while (head != NULL)
906e58ca
NC
3855 {
3856 asection *curr;
07d72278 3857 asection *next;
e780aef2
CL
3858 bfd_vma stub_group_start = head->output_offset;
3859 bfd_vma end_of_next;
906e58ca 3860
07d72278 3861 curr = head;
e780aef2 3862 while (NEXT_SEC (curr) != NULL)
8cd931b7 3863 {
e780aef2
CL
3864 next = NEXT_SEC (curr);
3865 end_of_next = next->output_offset + next->size;
3866 if (end_of_next - stub_group_start >= stub_group_size)
3867 /* End of NEXT is too far from start, so stop. */
8cd931b7 3868 break;
e780aef2
CL
3869 /* Add NEXT to the group. */
3870 curr = next;
8cd931b7 3871 }
906e58ca 3872
07d72278 3873 /* OK, the size from the start to the start of CURR is less
906e58ca 3874 than stub_group_size and thus can be handled by one stub
07d72278 3875 section. (Or the head section is itself larger than
906e58ca
NC
3876 stub_group_size, in which case we may be toast.)
3877 We should really be keeping track of the total size of
3878 stubs added here, as stubs contribute to the final output
7fb9f789 3879 section size. */
906e58ca
NC
3880 do
3881 {
07d72278 3882 next = NEXT_SEC (head);
906e58ca 3883 /* Set up this stub group. */
07d72278 3884 htab->stub_group[head->id].link_sec = curr;
906e58ca 3885 }
07d72278 3886 while (head != curr && (head = next) != NULL);
906e58ca
NC
3887
3888 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
3889 bytes after the stub section can be handled by it too. */
3890 if (!stubs_always_after_branch)
906e58ca 3891 {
e780aef2
CL
3892 stub_group_start = curr->output_offset + curr->size;
3893
8cd931b7 3894 while (next != NULL)
906e58ca 3895 {
e780aef2
CL
3896 end_of_next = next->output_offset + next->size;
3897 if (end_of_next - stub_group_start >= stub_group_size)
3898 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 3899 break;
e780aef2 3900 /* Add NEXT to the stub group. */
07d72278
DJ
3901 head = next;
3902 next = NEXT_SEC (head);
3903 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
3904 }
3905 }
07d72278 3906 head = next;
906e58ca
NC
3907 }
3908 }
07d72278 3909 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
3910
3911 free (htab->input_list);
3912#undef PREV_SEC
07d72278 3913#undef NEXT_SEC
906e58ca
NC
3914}
3915
48229727
JB
3916/* Comparison function for sorting/searching relocations relating to Cortex-A8
3917 erratum fix. */
3918
3919static int
3920a8_reloc_compare (const void *a, const void *b)
3921{
21d799b5
NC
3922 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
3923 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
3924
3925 if (ra->from < rb->from)
3926 return -1;
3927 else if (ra->from > rb->from)
3928 return 1;
3929 else
3930 return 0;
3931}
3932
3933static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3934 const char *, char **);
3935
3936/* Helper function to scan code for sequences which might trigger the Cortex-A8
3937 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 3938 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
3939 otherwise. */
3940
81694485
NC
3941static bfd_boolean
3942cortex_a8_erratum_scan (bfd *input_bfd,
3943 struct bfd_link_info *info,
48229727
JB
3944 struct a8_erratum_fix **a8_fixes_p,
3945 unsigned int *num_a8_fixes_p,
3946 unsigned int *a8_fix_table_size_p,
3947 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
3948 unsigned int num_a8_relocs,
3949 unsigned prev_num_a8_fixes,
3950 bfd_boolean *stub_changed_p)
48229727
JB
3951{
3952 asection *section;
3953 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3954 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3955 unsigned int num_a8_fixes = *num_a8_fixes_p;
3956 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
3957
4dfe6ac6
NC
3958 if (htab == NULL)
3959 return FALSE;
3960
48229727
JB
3961 for (section = input_bfd->sections;
3962 section != NULL;
3963 section = section->next)
3964 {
3965 bfd_byte *contents = NULL;
3966 struct _arm_elf_section_data *sec_data;
3967 unsigned int span;
3968 bfd_vma base_vma;
3969
3970 if (elf_section_type (section) != SHT_PROGBITS
3971 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3972 || (section->flags & SEC_EXCLUDE) != 0
3973 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3974 || (section->output_section == bfd_abs_section_ptr))
3975 continue;
3976
3977 base_vma = section->output_section->vma + section->output_offset;
3978
3979 if (elf_section_data (section)->this_hdr.contents != NULL)
3980 contents = elf_section_data (section)->this_hdr.contents;
3981 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
81694485 3982 return TRUE;
48229727
JB
3983
3984 sec_data = elf32_arm_section_data (section);
3985
3986 for (span = 0; span < sec_data->mapcount; span++)
3987 {
3988 unsigned int span_start = sec_data->map[span].vma;
3989 unsigned int span_end = (span == sec_data->mapcount - 1)
3990 ? section->size : sec_data->map[span + 1].vma;
3991 unsigned int i;
3992 char span_type = sec_data->map[span].type;
3993 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
3994
3995 if (span_type != 't')
3996 continue;
3997
3998 /* Span is entirely within a single 4KB region: skip scanning. */
3999 if (((base_vma + span_start) & ~0xfff)
4000 == ((base_vma + span_end) & ~0xfff))
4001 continue;
4002
4003 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4004
4005 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4006 * The branch target is in the same 4KB region as the
4007 first half of the branch.
4008 * The instruction before the branch is a 32-bit
81694485 4009 length non-branch instruction. */
48229727
JB
4010 for (i = span_start; i < span_end;)
4011 {
4012 unsigned int insn = bfd_getl16 (&contents[i]);
4013 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4014 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4015
4016 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4017 insn_32bit = TRUE;
4018
4019 if (insn_32bit)
4020 {
4021 /* Load the rest of the insn (in manual-friendly order). */
4022 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4023
4024 /* Encoding T4: B<c>.W. */
4025 is_b = (insn & 0xf800d000) == 0xf0009000;
4026 /* Encoding T1: BL<c>.W. */
4027 is_bl = (insn & 0xf800d000) == 0xf000d000;
4028 /* Encoding T2: BLX<c>.W. */
4029 is_blx = (insn & 0xf800d000) == 0xf000c000;
4030 /* Encoding T3: B<c>.W (not permitted in IT block). */
4031 is_bcc = (insn & 0xf800d000) == 0xf0008000
4032 && (insn & 0x07f00000) != 0x03800000;
4033 }
4034
4035 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4036
81694485
NC
4037 if (((base_vma + i) & 0xfff) == 0xffe
4038 && insn_32bit
4039 && is_32bit_branch
4040 && last_was_32bit
4041 && ! last_was_branch)
48229727 4042 {
81694485 4043 bfd_signed_vma offset;
48229727
JB
4044 bfd_boolean force_target_arm = FALSE;
4045 bfd_boolean force_target_thumb = FALSE;
4046 bfd_vma target;
4047 enum elf32_arm_stub_type stub_type = arm_stub_none;
4048 struct a8_erratum_reloc key, *found;
4049
4050 key.from = base_vma + i;
21d799b5
NC
4051 found = (struct a8_erratum_reloc *)
4052 bsearch (&key, a8_relocs, num_a8_relocs,
4053 sizeof (struct a8_erratum_reloc),
4054 &a8_reloc_compare);
48229727
JB
4055
4056 if (found)
4057 {
4058 char *error_message = NULL;
4059 struct elf_link_hash_entry *entry;
4060
4061 /* We don't care about the error returned from this
4062 function, only if there is glue or not. */
4063 entry = find_thumb_glue (info, found->sym_name,
4064 &error_message);
4065
4066 if (entry)
4067 found->non_a8_stub = TRUE;
4068
4069 if (found->r_type == R_ARM_THM_CALL
4070 && found->st_type != STT_ARM_TFUNC)
4071 force_target_arm = TRUE;
4072 else if (found->r_type == R_ARM_THM_CALL
4073 && found->st_type == STT_ARM_TFUNC)
4074 force_target_thumb = TRUE;
4075 }
4076
4077 /* Check if we have an offending branch instruction. */
4078
4079 if (found && found->non_a8_stub)
4080 /* We've already made a stub for this instruction, e.g.
4081 it's a long branch or a Thumb->ARM stub. Assume that
4082 stub will suffice to work around the A8 erratum (see
4083 setting of always_after_branch above). */
4084 ;
4085 else if (is_bcc)
4086 {
4087 offset = (insn & 0x7ff) << 1;
4088 offset |= (insn & 0x3f0000) >> 4;
4089 offset |= (insn & 0x2000) ? 0x40000 : 0;
4090 offset |= (insn & 0x800) ? 0x80000 : 0;
4091 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4092 if (offset & 0x100000)
81694485 4093 offset |= ~ ((bfd_signed_vma) 0xfffff);
48229727
JB
4094 stub_type = arm_stub_a8_veneer_b_cond;
4095 }
4096 else if (is_b || is_bl || is_blx)
4097 {
4098 int s = (insn & 0x4000000) != 0;
4099 int j1 = (insn & 0x2000) != 0;
4100 int j2 = (insn & 0x800) != 0;
4101 int i1 = !(j1 ^ s);
4102 int i2 = !(j2 ^ s);
4103
4104 offset = (insn & 0x7ff) << 1;
4105 offset |= (insn & 0x3ff0000) >> 4;
4106 offset |= i2 << 22;
4107 offset |= i1 << 23;
4108 offset |= s << 24;
4109 if (offset & 0x1000000)
81694485 4110 offset |= ~ ((bfd_signed_vma) 0xffffff);
48229727
JB
4111
4112 if (is_blx)
81694485 4113 offset &= ~ ((bfd_signed_vma) 3);
48229727
JB
4114
4115 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4116 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4117 }
4118
4119 if (stub_type != arm_stub_none)
4120 {
4121 bfd_vma pc_for_insn = base_vma + i + 4;
4122
4123 /* The original instruction is a BL, but the target is
4124 an ARM instruction. If we were not making a stub,
4125 the BL would have been converted to a BLX. Use the
4126 BLX stub instead in that case. */
4127 if (htab->use_blx && force_target_arm
4128 && stub_type == arm_stub_a8_veneer_bl)
4129 {
4130 stub_type = arm_stub_a8_veneer_blx;
4131 is_blx = TRUE;
4132 is_bl = FALSE;
4133 }
4134 /* Conversely, if the original instruction was
4135 BLX but the target is Thumb mode, use the BL
4136 stub. */
4137 else if (force_target_thumb
4138 && stub_type == arm_stub_a8_veneer_blx)
4139 {
4140 stub_type = arm_stub_a8_veneer_bl;
4141 is_blx = FALSE;
4142 is_bl = TRUE;
4143 }
4144
4145 if (is_blx)
81694485 4146 pc_for_insn &= ~ ((bfd_vma) 3);
48229727
JB
4147
4148 /* If we found a relocation, use the proper destination,
4149 not the offset in the (unrelocated) instruction.
4150 Note this is always done if we switched the stub type
4151 above. */
4152 if (found)
81694485
NC
4153 offset =
4154 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727
JB
4155
4156 target = pc_for_insn + offset;
4157
4158 /* The BLX stub is ARM-mode code. Adjust the offset to
4159 take the different PC value (+8 instead of +4) into
4160 account. */
4161 if (stub_type == arm_stub_a8_veneer_blx)
4162 offset += 4;
4163
4164 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4165 {
eb7c4339 4166 char *stub_name = NULL;
48229727
JB
4167
4168 if (num_a8_fixes == a8_fix_table_size)
4169 {
4170 a8_fix_table_size *= 2;
21d799b5
NC
4171 a8_fixes = (struct a8_erratum_fix *)
4172 bfd_realloc (a8_fixes,
4173 sizeof (struct a8_erratum_fix)
4174 * a8_fix_table_size);
48229727
JB
4175 }
4176
eb7c4339
NS
4177 if (num_a8_fixes < prev_num_a8_fixes)
4178 {
4179 /* If we're doing a subsequent scan,
4180 check if we've found the same fix as
4181 before, and try and reuse the stub
4182 name. */
4183 stub_name = a8_fixes[num_a8_fixes].stub_name;
4184 if ((a8_fixes[num_a8_fixes].section != section)
4185 || (a8_fixes[num_a8_fixes].offset != i))
4186 {
4187 free (stub_name);
4188 stub_name = NULL;
4189 *stub_changed_p = TRUE;
4190 }
4191 }
4192
4193 if (!stub_name)
4194 {
21d799b5 4195 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
4196 if (stub_name != NULL)
4197 sprintf (stub_name, "%x:%x", section->id, i);
4198 }
48229727
JB
4199
4200 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4201 a8_fixes[num_a8_fixes].section = section;
4202 a8_fixes[num_a8_fixes].offset = i;
4203 a8_fixes[num_a8_fixes].addend = offset;
4204 a8_fixes[num_a8_fixes].orig_insn = insn;
4205 a8_fixes[num_a8_fixes].stub_name = stub_name;
4206 a8_fixes[num_a8_fixes].stub_type = stub_type;
4207
4208 num_a8_fixes++;
4209 }
4210 }
4211 }
4212
4213 i += insn_32bit ? 4 : 2;
4214 last_was_32bit = insn_32bit;
4215 last_was_branch = is_32bit_branch;
4216 }
4217 }
4218
4219 if (elf_section_data (section)->this_hdr.contents == NULL)
4220 free (contents);
4221 }
4222
4223 *a8_fixes_p = a8_fixes;
4224 *num_a8_fixes_p = num_a8_fixes;
4225 *a8_fix_table_size_p = a8_fix_table_size;
4226
81694485 4227 return FALSE;
48229727
JB
4228}
4229
906e58ca
NC
4230/* Determine and set the size of the stub section for a final link.
4231
4232 The basic idea here is to examine all the relocations looking for
4233 PC-relative calls to a target that is unreachable with a "bl"
4234 instruction. */
4235
4236bfd_boolean
4237elf32_arm_size_stubs (bfd *output_bfd,
4238 bfd *stub_bfd,
4239 struct bfd_link_info *info,
4240 bfd_signed_vma group_size,
4241 asection * (*add_stub_section) (const char *, asection *),
4242 void (*layout_sections_again) (void))
4243{
4244 bfd_size_type stub_group_size;
07d72278 4245 bfd_boolean stubs_always_after_branch;
906e58ca 4246 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4247 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4248 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4249 struct a8_erratum_reloc *a8_relocs = NULL;
4250 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4251
4dfe6ac6
NC
4252 if (htab == NULL)
4253 return FALSE;
4254
48229727
JB
4255 if (htab->fix_cortex_a8)
4256 {
21d799b5
NC
4257 a8_fixes = (struct a8_erratum_fix *)
4258 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4259 a8_relocs = (struct a8_erratum_reloc *)
4260 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 4261 }
906e58ca
NC
4262
4263 /* Propagate mach to stub bfd, because it may not have been
4264 finalized when we created stub_bfd. */
4265 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4266 bfd_get_mach (output_bfd));
4267
4268 /* Stash our params away. */
4269 htab->stub_bfd = stub_bfd;
4270 htab->add_stub_section = add_stub_section;
4271 htab->layout_sections_again = layout_sections_again;
07d72278 4272 stubs_always_after_branch = group_size < 0;
48229727
JB
4273
4274 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4275 as the first half of a 32-bit branch straddling two 4K pages. This is a
4276 crude way of enforcing that. */
4277 if (htab->fix_cortex_a8)
4278 stubs_always_after_branch = 1;
4279
906e58ca
NC
4280 if (group_size < 0)
4281 stub_group_size = -group_size;
4282 else
4283 stub_group_size = group_size;
4284
4285 if (stub_group_size == 1)
4286 {
4287 /* Default values. */
4288 /* Thumb branch range is +-4MB has to be used as the default
4289 maximum size (a given section can contain both ARM and Thumb
4290 code, so the worst case has to be taken into account).
4291
4292 This value is 24K less than that, which allows for 2025
4293 12-byte stubs. If we exceed that, then we will fail to link.
4294 The user will have to relink with an explicit group size
4295 option. */
4296 stub_group_size = 4170000;
4297 }
4298
07d72278 4299 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 4300
3ae046cc
NS
4301 /* If we're applying the cortex A8 fix, we need to determine the
4302 program header size now, because we cannot change it later --
4303 that could alter section placements. Notice the A8 erratum fix
4304 ends up requiring the section addresses to remain unchanged
4305 modulo the page size. That's something we cannot represent
4306 inside BFD, and we don't want to force the section alignment to
4307 be the page size. */
4308 if (htab->fix_cortex_a8)
4309 (*htab->layout_sections_again) ();
4310
906e58ca
NC
4311 while (1)
4312 {
4313 bfd *input_bfd;
4314 unsigned int bfd_indx;
4315 asection *stub_sec;
eb7c4339
NS
4316 bfd_boolean stub_changed = FALSE;
4317 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 4318
48229727 4319 num_a8_fixes = 0;
906e58ca
NC
4320 for (input_bfd = info->input_bfds, bfd_indx = 0;
4321 input_bfd != NULL;
4322 input_bfd = input_bfd->link_next, bfd_indx++)
4323 {
4324 Elf_Internal_Shdr *symtab_hdr;
4325 asection *section;
4326 Elf_Internal_Sym *local_syms = NULL;
4327
48229727
JB
4328 num_a8_relocs = 0;
4329
906e58ca
NC
4330 /* We'll need the symbol table in a second. */
4331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4332 if (symtab_hdr->sh_info == 0)
4333 continue;
4334
4335 /* Walk over each section attached to the input bfd. */
4336 for (section = input_bfd->sections;
4337 section != NULL;
4338 section = section->next)
4339 {
4340 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4341
4342 /* If there aren't any relocs, then there's nothing more
4343 to do. */
4344 if ((section->flags & SEC_RELOC) == 0
4345 || section->reloc_count == 0
4346 || (section->flags & SEC_CODE) == 0)
4347 continue;
4348
4349 /* If this section is a link-once section that will be
4350 discarded, then don't create any stubs. */
4351 if (section->output_section == NULL
4352 || section->output_section->owner != output_bfd)
4353 continue;
4354
4355 /* Get the relocs. */
4356 internal_relocs
4357 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4358 NULL, info->keep_memory);
4359 if (internal_relocs == NULL)
4360 goto error_ret_free_local;
4361
4362 /* Now examine each relocation. */
4363 irela = internal_relocs;
4364 irelaend = irela + section->reloc_count;
4365 for (; irela < irelaend; irela++)
4366 {
4367 unsigned int r_type, r_indx;
4368 enum elf32_arm_stub_type stub_type;
4369 struct elf32_arm_stub_hash_entry *stub_entry;
4370 asection *sym_sec;
4371 bfd_vma sym_value;
4372 bfd_vma destination;
4373 struct elf32_arm_link_hash_entry *hash;
7413f23f 4374 const char *sym_name;
906e58ca
NC
4375 char *stub_name;
4376 const asection *id_sec;
4377 unsigned char st_type;
48229727 4378 bfd_boolean created_stub = FALSE;
906e58ca
NC
4379
4380 r_type = ELF32_R_TYPE (irela->r_info);
4381 r_indx = ELF32_R_SYM (irela->r_info);
4382
4383 if (r_type >= (unsigned int) R_ARM_max)
4384 {
4385 bfd_set_error (bfd_error_bad_value);
4386 error_ret_free_internal:
4387 if (elf_section_data (section)->relocs == NULL)
4388 free (internal_relocs);
4389 goto error_ret_free_local;
4390 }
4391
155d87d7 4392 /* Only look for stubs on branch instructions. */
906e58ca 4393 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
4394 && (r_type != (unsigned int) R_ARM_THM_CALL)
4395 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
4396 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4397 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7
CL
4398 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4399 && (r_type != (unsigned int) R_ARM_PLT32))
906e58ca
NC
4400 continue;
4401
4402 /* Now determine the call target, its name, value,
4403 section. */
4404 sym_sec = NULL;
4405 sym_value = 0;
4406 destination = 0;
4407 hash = NULL;
7413f23f 4408 sym_name = NULL;
906e58ca
NC
4409 if (r_indx < symtab_hdr->sh_info)
4410 {
4411 /* It's a local symbol. */
4412 Elf_Internal_Sym *sym;
4413 Elf_Internal_Shdr *hdr;
4414
4415 if (local_syms == NULL)
4416 {
4417 local_syms
4418 = (Elf_Internal_Sym *) symtab_hdr->contents;
4419 if (local_syms == NULL)
4420 local_syms
4421 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4422 symtab_hdr->sh_info, 0,
4423 NULL, NULL, NULL);
4424 if (local_syms == NULL)
4425 goto error_ret_free_internal;
4426 }
4427
4428 sym = local_syms + r_indx;
4429 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4430 sym_sec = hdr->bfd_section;
ffcb4889
NS
4431 if (!sym_sec)
4432 /* This is an undefined symbol. It can never
4433 be resolved. */
4434 continue;
4435
906e58ca
NC
4436 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4437 sym_value = sym->st_value;
4438 destination = (sym_value + irela->r_addend
4439 + sym_sec->output_offset
4440 + sym_sec->output_section->vma);
4441 st_type = ELF_ST_TYPE (sym->st_info);
7413f23f
DJ
4442 sym_name
4443 = bfd_elf_string_from_elf_section (input_bfd,
4444 symtab_hdr->sh_link,
4445 sym->st_name);
906e58ca
NC
4446 }
4447 else
4448 {
4449 /* It's an external symbol. */
4450 int e_indx;
4451
4452 e_indx = r_indx - symtab_hdr->sh_info;
4453 hash = ((struct elf32_arm_link_hash_entry *)
4454 elf_sym_hashes (input_bfd)[e_indx]);
4455
4456 while (hash->root.root.type == bfd_link_hash_indirect
4457 || hash->root.root.type == bfd_link_hash_warning)
4458 hash = ((struct elf32_arm_link_hash_entry *)
4459 hash->root.root.u.i.link);
4460
4461 if (hash->root.root.type == bfd_link_hash_defined
4462 || hash->root.root.type == bfd_link_hash_defweak)
4463 {
4464 sym_sec = hash->root.root.u.def.section;
4465 sym_value = hash->root.root.u.def.value;
022f8312
CL
4466
4467 struct elf32_arm_link_hash_table *globals =
4468 elf32_arm_hash_table (info);
4469
4470 /* For a destination in a shared library,
4471 use the PLT stub as target address to
4472 decide whether a branch stub is
4473 needed. */
4dfe6ac6
NC
4474 if (globals != NULL
4475 && globals->splt != NULL
4476 && hash != NULL
022f8312
CL
4477 && hash->root.plt.offset != (bfd_vma) -1)
4478 {
4479 sym_sec = globals->splt;
4480 sym_value = hash->root.plt.offset;
4481 if (sym_sec->output_section != NULL)
4482 destination = (sym_value
4483 + sym_sec->output_offset
4484 + sym_sec->output_section->vma);
4485 }
4486 else if (sym_sec->output_section != NULL)
906e58ca
NC
4487 destination = (sym_value + irela->r_addend
4488 + sym_sec->output_offset
4489 + sym_sec->output_section->vma);
4490 }
69c5861e
CL
4491 else if ((hash->root.root.type == bfd_link_hash_undefined)
4492 || (hash->root.root.type == bfd_link_hash_undefweak))
4493 {
4494 /* For a shared library, use the PLT stub as
4495 target address to decide whether a long
4496 branch stub is needed.
4497 For absolute code, they cannot be handled. */
4498 struct elf32_arm_link_hash_table *globals =
4499 elf32_arm_hash_table (info);
4500
4dfe6ac6
NC
4501 if (globals != NULL
4502 && globals->splt != NULL
4503 && hash != NULL
69c5861e
CL
4504 && hash->root.plt.offset != (bfd_vma) -1)
4505 {
4506 sym_sec = globals->splt;
4507 sym_value = hash->root.plt.offset;
4508 if (sym_sec->output_section != NULL)
4509 destination = (sym_value
4510 + sym_sec->output_offset
4511 + sym_sec->output_section->vma);
4512 }
4513 else
4514 continue;
4515 }
906e58ca
NC
4516 else
4517 {
4518 bfd_set_error (bfd_error_bad_value);
4519 goto error_ret_free_internal;
4520 }
4521 st_type = ELF_ST_TYPE (hash->root.type);
7413f23f 4522 sym_name = hash->root.root.root.string;
906e58ca
NC
4523 }
4524
48229727 4525 do
7413f23f 4526 {
48229727
JB
4527 /* Determine what (if any) linker stub is needed. */
4528 stub_type = arm_type_of_stub (info, section, irela,
4529 st_type, hash,
4530 destination, sym_sec,
4531 input_bfd, sym_name);
4532 if (stub_type == arm_stub_none)
4533 break;
4534
4535 /* Support for grouping stub sections. */
4536 id_sec = htab->stub_group[section->id].link_sec;
4537
4538 /* Get the name of this stub. */
4539 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4540 irela);
4541 if (!stub_name)
4542 goto error_ret_free_internal;
4543
4544 /* We've either created a stub for this reloc already,
4545 or we are about to. */
4546 created_stub = TRUE;
4547
4548 stub_entry = arm_stub_hash_lookup
4549 (&htab->stub_hash_table, stub_name,
4550 FALSE, FALSE);
4551 if (stub_entry != NULL)
4552 {
4553 /* The proper stub has already been created. */
4554 free (stub_name);
eb7c4339 4555 stub_entry->target_value = sym_value;
48229727
JB
4556 break;
4557 }
7413f23f 4558
48229727
JB
4559 stub_entry = elf32_arm_add_stub (stub_name, section,
4560 htab);
4561 if (stub_entry == NULL)
4562 {
4563 free (stub_name);
4564 goto error_ret_free_internal;
4565 }
7413f23f 4566
48229727
JB
4567 stub_entry->target_value = sym_value;
4568 stub_entry->target_section = sym_sec;
4569 stub_entry->stub_type = stub_type;
4570 stub_entry->h = hash;
4571 stub_entry->st_type = st_type;
4572
4573 if (sym_name == NULL)
4574 sym_name = "unnamed";
21d799b5
NC
4575 stub_entry->output_name = (char *)
4576 bfd_alloc (htab->stub_bfd,
48229727
JB
4577 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4578 + strlen (sym_name));
4579 if (stub_entry->output_name == NULL)
4580 {
4581 free (stub_name);
4582 goto error_ret_free_internal;
4583 }
4584
4585 /* For historical reasons, use the existing names for
4586 ARM-to-Thumb and Thumb-to-ARM stubs. */
4587 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4588 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4589 && st_type != STT_ARM_TFUNC)
4590 sprintf (stub_entry->output_name,
4591 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4592 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4593 || (r_type == (unsigned int) R_ARM_JUMP24))
4594 && st_type == STT_ARM_TFUNC)
4595 sprintf (stub_entry->output_name,
4596 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4597 else
4598 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4599 sym_name);
4600
4601 stub_changed = TRUE;
4602 }
4603 while (0);
4604
4605 /* Look for relocations which might trigger Cortex-A8
4606 erratum. */
4607 if (htab->fix_cortex_a8
4608 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4609 || r_type == (unsigned int) R_ARM_THM_JUMP19
4610 || r_type == (unsigned int) R_ARM_THM_CALL
4611 || r_type == (unsigned int) R_ARM_THM_XPC22))
4612 {
4613 bfd_vma from = section->output_section->vma
4614 + section->output_offset
4615 + irela->r_offset;
4616
4617 if ((from & 0xfff) == 0xffe)
4618 {
4619 /* Found a candidate. Note we haven't checked the
4620 destination is within 4K here: if we do so (and
4621 don't create an entry in a8_relocs) we can't tell
4622 that a branch should have been relocated when
4623 scanning later. */
4624 if (num_a8_relocs == a8_reloc_table_size)
4625 {
4626 a8_reloc_table_size *= 2;
21d799b5
NC
4627 a8_relocs = (struct a8_erratum_reloc *)
4628 bfd_realloc (a8_relocs,
4629 sizeof (struct a8_erratum_reloc)
4630 * a8_reloc_table_size);
48229727
JB
4631 }
4632
4633 a8_relocs[num_a8_relocs].from = from;
4634 a8_relocs[num_a8_relocs].destination = destination;
4635 a8_relocs[num_a8_relocs].r_type = r_type;
4636 a8_relocs[num_a8_relocs].st_type = st_type;
4637 a8_relocs[num_a8_relocs].sym_name = sym_name;
4638 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4639
4640 num_a8_relocs++;
4641 }
4642 }
906e58ca
NC
4643 }
4644
48229727
JB
4645 /* We're done with the internal relocs, free them. */
4646 if (elf_section_data (section)->relocs == NULL)
4647 free (internal_relocs);
4648 }
4649
4650 if (htab->fix_cortex_a8)
4651 {
4652 /* Sort relocs which might apply to Cortex-A8 erratum. */
eb7c4339
NS
4653 qsort (a8_relocs, num_a8_relocs,
4654 sizeof (struct a8_erratum_reloc),
48229727
JB
4655 &a8_reloc_compare);
4656
4657 /* Scan for branches which might trigger Cortex-A8 erratum. */
4658 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4659 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
4660 a8_relocs, num_a8_relocs,
4661 prev_num_a8_fixes, &stub_changed)
4662 != 0)
48229727 4663 goto error_ret_free_local;
5e681ec4 4664 }
5e681ec4
PB
4665 }
4666
eb7c4339 4667 if (prev_num_a8_fixes != num_a8_fixes)
48229727
JB
4668 stub_changed = TRUE;
4669
906e58ca
NC
4670 if (!stub_changed)
4671 break;
5e681ec4 4672
906e58ca
NC
4673 /* OK, we've added some stubs. Find out the new size of the
4674 stub sections. */
4675 for (stub_sec = htab->stub_bfd->sections;
4676 stub_sec != NULL;
4677 stub_sec = stub_sec->next)
3e6b1042
DJ
4678 {
4679 /* Ignore non-stub sections. */
4680 if (!strstr (stub_sec->name, STUB_SUFFIX))
4681 continue;
4682
4683 stub_sec->size = 0;
4684 }
b34b2d70 4685
906e58ca
NC
4686 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4687
48229727
JB
4688 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4689 if (htab->fix_cortex_a8)
4690 for (i = 0; i < num_a8_fixes; i++)
4691 {
4692 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4693 a8_fixes[i].section, htab);
4694
4695 if (stub_sec == NULL)
4696 goto error_ret_free_local;
4697
4698 stub_sec->size
4699 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4700 NULL);
4701 }
4702
4703
906e58ca
NC
4704 /* Ask the linker to do its stuff. */
4705 (*htab->layout_sections_again) ();
ba93b8ac
DJ
4706 }
4707
48229727
JB
4708 /* Add stubs for Cortex-A8 erratum fixes now. */
4709 if (htab->fix_cortex_a8)
4710 {
4711 for (i = 0; i < num_a8_fixes; i++)
4712 {
4713 struct elf32_arm_stub_hash_entry *stub_entry;
4714 char *stub_name = a8_fixes[i].stub_name;
4715 asection *section = a8_fixes[i].section;
4716 unsigned int section_id = a8_fixes[i].section->id;
4717 asection *link_sec = htab->stub_group[section_id].link_sec;
4718 asection *stub_sec = htab->stub_group[section_id].stub_sec;
d3ce72d0 4719 const insn_sequence *template_sequence;
48229727
JB
4720 int template_size, size = 0;
4721
4722 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4723 TRUE, FALSE);
4724 if (stub_entry == NULL)
4725 {
4726 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4727 section->owner,
4728 stub_name);
4729 return FALSE;
4730 }
4731
4732 stub_entry->stub_sec = stub_sec;
4733 stub_entry->stub_offset = 0;
4734 stub_entry->id_sec = link_sec;
4735 stub_entry->stub_type = a8_fixes[i].stub_type;
4736 stub_entry->target_section = a8_fixes[i].section;
4737 stub_entry->target_value = a8_fixes[i].offset;
4738 stub_entry->target_addend = a8_fixes[i].addend;
4739 stub_entry->orig_insn = a8_fixes[i].orig_insn;
4740 stub_entry->st_type = STT_ARM_TFUNC;
4741
d3ce72d0
NC
4742 size = find_stub_size_and_template (a8_fixes[i].stub_type,
4743 &template_sequence,
48229727
JB
4744 &template_size);
4745
4746 stub_entry->stub_size = size;
d3ce72d0 4747 stub_entry->stub_template = template_sequence;
48229727
JB
4748 stub_entry->stub_template_size = template_size;
4749 }
4750
4751 /* Stash the Cortex-A8 erratum fix array for use later in
4752 elf32_arm_write_section(). */
4753 htab->a8_erratum_fixes = a8_fixes;
4754 htab->num_a8_erratum_fixes = num_a8_fixes;
4755 }
4756 else
4757 {
4758 htab->a8_erratum_fixes = NULL;
4759 htab->num_a8_erratum_fixes = 0;
4760 }
906e58ca
NC
4761 return TRUE;
4762
4763 error_ret_free_local:
4764 return FALSE;
5e681ec4
PB
4765}
4766
906e58ca
NC
4767/* Build all the stubs associated with the current output file. The
4768 stubs are kept in a hash table attached to the main linker hash
4769 table. We also set up the .plt entries for statically linked PIC
4770 functions here. This function is called via arm_elf_finish in the
4771 linker. */
252b5132 4772
906e58ca
NC
4773bfd_boolean
4774elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 4775{
906e58ca
NC
4776 asection *stub_sec;
4777 struct bfd_hash_table *table;
4778 struct elf32_arm_link_hash_table *htab;
252b5132 4779
906e58ca 4780 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
4781 if (htab == NULL)
4782 return FALSE;
252b5132 4783
906e58ca
NC
4784 for (stub_sec = htab->stub_bfd->sections;
4785 stub_sec != NULL;
4786 stub_sec = stub_sec->next)
252b5132 4787 {
906e58ca
NC
4788 bfd_size_type size;
4789
8029a119 4790 /* Ignore non-stub sections. */
906e58ca
NC
4791 if (!strstr (stub_sec->name, STUB_SUFFIX))
4792 continue;
4793
4794 /* Allocate memory to hold the linker stubs. */
4795 size = stub_sec->size;
21d799b5 4796 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
4797 if (stub_sec->contents == NULL && size != 0)
4798 return FALSE;
4799 stub_sec->size = 0;
252b5132
RH
4800 }
4801
906e58ca
NC
4802 /* Build the stubs as directed by the stub hash table. */
4803 table = &htab->stub_hash_table;
4804 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
4805 if (htab->fix_cortex_a8)
4806 {
4807 /* Place the cortex a8 stubs last. */
4808 htab->fix_cortex_a8 = -1;
4809 bfd_hash_traverse (table, arm_build_one_stub, info);
4810 }
252b5132 4811
906e58ca 4812 return TRUE;
252b5132
RH
4813}
4814
9b485d32
NC
4815/* Locate the Thumb encoded calling stub for NAME. */
4816
252b5132 4817static struct elf_link_hash_entry *
57e8b36a
NC
4818find_thumb_glue (struct bfd_link_info *link_info,
4819 const char *name,
f2a9dd69 4820 char **error_message)
252b5132
RH
4821{
4822 char *tmp_name;
4823 struct elf_link_hash_entry *hash;
4824 struct elf32_arm_link_hash_table *hash_table;
4825
4826 /* We need a pointer to the armelf specific hash table. */
4827 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
4828 if (hash_table == NULL)
4829 return NULL;
252b5132 4830
21d799b5
NC
4831 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4832 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4833
4834 BFD_ASSERT (tmp_name);
4835
4836 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4837
4838 hash = elf_link_hash_lookup
b34976b6 4839 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4840
b1657152
AM
4841 if (hash == NULL
4842 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4843 tmp_name, name) == -1)
4844 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4845
4846 free (tmp_name);
4847
4848 return hash;
4849}
4850
9b485d32
NC
4851/* Locate the ARM encoded calling stub for NAME. */
4852
252b5132 4853static struct elf_link_hash_entry *
57e8b36a
NC
4854find_arm_glue (struct bfd_link_info *link_info,
4855 const char *name,
f2a9dd69 4856 char **error_message)
252b5132
RH
4857{
4858 char *tmp_name;
4859 struct elf_link_hash_entry *myh;
4860 struct elf32_arm_link_hash_table *hash_table;
4861
4862 /* We need a pointer to the elfarm specific hash table. */
4863 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
4864 if (hash_table == NULL)
4865 return NULL;
252b5132 4866
21d799b5
NC
4867 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4868 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4869
4870 BFD_ASSERT (tmp_name);
4871
4872 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4873
4874 myh = elf_link_hash_lookup
b34976b6 4875 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4876
b1657152
AM
4877 if (myh == NULL
4878 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4879 tmp_name, name) == -1)
4880 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4881
4882 free (tmp_name);
4883
4884 return myh;
4885}
4886
8f6277f5 4887/* ARM->Thumb glue (static images):
252b5132
RH
4888
4889 .arm
4890 __func_from_arm:
4891 ldr r12, __func_addr
4892 bx r12
4893 __func_addr:
906e58ca 4894 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 4895
26079076
PB
4896 (v5t static images)
4897 .arm
4898 __func_from_arm:
4899 ldr pc, __func_addr
4900 __func_addr:
906e58ca 4901 .word func @ behave as if you saw a ARM_32 reloc.
26079076 4902
8f6277f5
PB
4903 (relocatable images)
4904 .arm
4905 __func_from_arm:
4906 ldr r12, __func_offset
4907 add r12, r12, pc
4908 bx r12
4909 __func_offset:
8029a119 4910 .word func - . */
8f6277f5
PB
4911
4912#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
4913static const insn32 a2t1_ldr_insn = 0xe59fc000;
4914static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4915static const insn32 a2t3_func_addr_insn = 0x00000001;
4916
26079076
PB
4917#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4918static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4919static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4920
8f6277f5
PB
4921#define ARM2THUMB_PIC_GLUE_SIZE 16
4922static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4923static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4924static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4925
9b485d32 4926/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 4927
8029a119
NC
4928 .thumb .thumb
4929 .align 2 .align 2
4930 __func_from_thumb: __func_from_thumb:
4931 bx pc push {r6, lr}
4932 nop ldr r6, __func_addr
4933 .arm mov lr, pc
4934 b func bx r6
fcef9eb7
NC
4935 .arm
4936 ;; back_to_thumb
4937 ldmia r13! {r6, lr}
4938 bx lr
8029a119
NC
4939 __func_addr:
4940 .word func */
252b5132
RH
4941
4942#define THUMB2ARM_GLUE_SIZE 8
4943static const insn16 t2a1_bx_pc_insn = 0x4778;
4944static const insn16 t2a2_noop_insn = 0x46c0;
4945static const insn32 t2a3_b_insn = 0xea000000;
4946
c7b8f16e
JB
4947#define VFP11_ERRATUM_VENEER_SIZE 8
4948
845b51d6
PB
4949#define ARM_BX_VENEER_SIZE 12
4950static const insn32 armbx1_tst_insn = 0xe3100001;
4951static const insn32 armbx2_moveq_insn = 0x01a0f000;
4952static const insn32 armbx3_bx_insn = 0xe12fff10;
4953
7e392df6 4954#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
4955static void
4956arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
4957{
4958 asection * s;
8029a119 4959 bfd_byte * contents;
252b5132 4960
8029a119 4961 if (size == 0)
3e6b1042
DJ
4962 {
4963 /* Do not include empty glue sections in the output. */
4964 if (abfd != NULL)
4965 {
4966 s = bfd_get_section_by_name (abfd, name);
4967 if (s != NULL)
4968 s->flags |= SEC_EXCLUDE;
4969 }
4970 return;
4971 }
252b5132 4972
8029a119 4973 BFD_ASSERT (abfd != NULL);
252b5132 4974
8029a119
NC
4975 s = bfd_get_section_by_name (abfd, name);
4976 BFD_ASSERT (s != NULL);
252b5132 4977
21d799b5 4978 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 4979
8029a119
NC
4980 BFD_ASSERT (s->size == size);
4981 s->contents = contents;
4982}
906e58ca 4983
8029a119
NC
4984bfd_boolean
4985bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4986{
4987 struct elf32_arm_link_hash_table * globals;
906e58ca 4988
8029a119
NC
4989 globals = elf32_arm_hash_table (info);
4990 BFD_ASSERT (globals != NULL);
906e58ca 4991
8029a119
NC
4992 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4993 globals->arm_glue_size,
4994 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 4995
8029a119
NC
4996 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4997 globals->thumb_glue_size,
4998 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 4999
8029a119
NC
5000 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5001 globals->vfp11_erratum_glue_size,
5002 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 5003
8029a119
NC
5004 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5005 globals->bx_glue_size,
845b51d6
PB
5006 ARM_BX_GLUE_SECTION_NAME);
5007
b34976b6 5008 return TRUE;
252b5132
RH
5009}
5010
a4fd1a8e 5011/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
5012 returns the symbol identifying the stub. */
5013
a4fd1a8e 5014static struct elf_link_hash_entry *
57e8b36a
NC
5015record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5016 struct elf_link_hash_entry * h)
252b5132
RH
5017{
5018 const char * name = h->root.root.string;
63b0f745 5019 asection * s;
252b5132
RH
5020 char * tmp_name;
5021 struct elf_link_hash_entry * myh;
14a793b2 5022 struct bfd_link_hash_entry * bh;
252b5132 5023 struct elf32_arm_link_hash_table * globals;
dc810e39 5024 bfd_vma val;
2f475487 5025 bfd_size_type size;
252b5132
RH
5026
5027 globals = elf32_arm_hash_table (link_info);
252b5132
RH
5028 BFD_ASSERT (globals != NULL);
5029 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5030
5031 s = bfd_get_section_by_name
5032 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5033
252b5132
RH
5034 BFD_ASSERT (s != NULL);
5035
21d799b5
NC
5036 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5037 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5038
5039 BFD_ASSERT (tmp_name);
5040
5041 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5042
5043 myh = elf_link_hash_lookup
b34976b6 5044 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5045
5046 if (myh != NULL)
5047 {
9b485d32 5048 /* We've already seen this guy. */
252b5132 5049 free (tmp_name);
a4fd1a8e 5050 return myh;
252b5132
RH
5051 }
5052
57e8b36a
NC
5053 /* The only trick here is using hash_table->arm_glue_size as the value.
5054 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5055 putting it. The +1 on the value marks that the stub has not been
5056 output yet - not that it is a Thumb function. */
14a793b2 5057 bh = NULL;
dc810e39
AM
5058 val = globals->arm_glue_size + 1;
5059 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5060 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5061 NULL, TRUE, FALSE, &bh);
252b5132 5062
b7693d02
DJ
5063 myh = (struct elf_link_hash_entry *) bh;
5064 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5065 myh->forced_local = 1;
5066
252b5132
RH
5067 free (tmp_name);
5068
27e55c4d
PB
5069 if (link_info->shared || globals->root.is_relocatable_executable
5070 || globals->pic_veneer)
2f475487 5071 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5072 else if (globals->use_blx)
5073 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5074 else
2f475487
AM
5075 size = ARM2THUMB_STATIC_GLUE_SIZE;
5076
5077 s->size += size;
5078 globals->arm_glue_size += size;
252b5132 5079
a4fd1a8e 5080 return myh;
252b5132
RH
5081}
5082
845b51d6
PB
5083/* Allocate space for ARMv4 BX veneers. */
5084
5085static void
5086record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5087{
5088 asection * s;
5089 struct elf32_arm_link_hash_table *globals;
5090 char *tmp_name;
5091 struct elf_link_hash_entry *myh;
5092 struct bfd_link_hash_entry *bh;
5093 bfd_vma val;
5094
5095 /* BX PC does not need a veneer. */
5096 if (reg == 15)
5097 return;
5098
5099 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
5100 BFD_ASSERT (globals != NULL);
5101 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5102
5103 /* Check if this veneer has already been allocated. */
5104 if (globals->bx_glue_offset[reg])
5105 return;
5106
5107 s = bfd_get_section_by_name
5108 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5109
5110 BFD_ASSERT (s != NULL);
5111
5112 /* Add symbol for veneer. */
21d799b5
NC
5113 tmp_name = (char *)
5114 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5115
845b51d6 5116 BFD_ASSERT (tmp_name);
906e58ca 5117
845b51d6 5118 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5119
845b51d6
PB
5120 myh = elf_link_hash_lookup
5121 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5122
845b51d6 5123 BFD_ASSERT (myh == NULL);
906e58ca 5124
845b51d6
PB
5125 bh = NULL;
5126 val = globals->bx_glue_size;
5127 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5128 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5129 NULL, TRUE, FALSE, &bh);
5130
5131 myh = (struct elf_link_hash_entry *) bh;
5132 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5133 myh->forced_local = 1;
5134
5135 s->size += ARM_BX_VENEER_SIZE;
5136 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5137 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5138}
5139
5140
c7b8f16e
JB
5141/* Add an entry to the code/data map for section SEC. */
5142
5143static void
5144elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5145{
5146 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5147 unsigned int newidx;
906e58ca 5148
c7b8f16e
JB
5149 if (sec_data->map == NULL)
5150 {
21d799b5
NC
5151 sec_data->map = (elf32_arm_section_map *)
5152 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
5153 sec_data->mapcount = 0;
5154 sec_data->mapsize = 1;
5155 }
906e58ca 5156
c7b8f16e 5157 newidx = sec_data->mapcount++;
906e58ca 5158
c7b8f16e
JB
5159 if (sec_data->mapcount > sec_data->mapsize)
5160 {
5161 sec_data->mapsize *= 2;
21d799b5
NC
5162 sec_data->map = (elf32_arm_section_map *)
5163 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5164 * sizeof (elf32_arm_section_map));
515ef31d
NC
5165 }
5166
5167 if (sec_data->map)
5168 {
5169 sec_data->map[newidx].vma = vma;
5170 sec_data->map[newidx].type = type;
c7b8f16e 5171 }
c7b8f16e
JB
5172}
5173
5174
5175/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5176 veneers are handled for now. */
5177
5178static bfd_vma
5179record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5180 elf32_vfp11_erratum_list *branch,
5181 bfd *branch_bfd,
5182 asection *branch_sec,
5183 unsigned int offset)
5184{
5185 asection *s;
5186 struct elf32_arm_link_hash_table *hash_table;
5187 char *tmp_name;
5188 struct elf_link_hash_entry *myh;
5189 struct bfd_link_hash_entry *bh;
5190 bfd_vma val;
5191 struct _arm_elf_section_data *sec_data;
5192 int errcount;
5193 elf32_vfp11_erratum_list *newerr;
906e58ca 5194
c7b8f16e 5195 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
5196 BFD_ASSERT (hash_table != NULL);
5197 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5198
c7b8f16e
JB
5199 s = bfd_get_section_by_name
5200 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5201
c7b8f16e 5202 sec_data = elf32_arm_section_data (s);
906e58ca 5203
c7b8f16e 5204 BFD_ASSERT (s != NULL);
906e58ca 5205
21d799b5
NC
5206 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5207 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5208
c7b8f16e 5209 BFD_ASSERT (tmp_name);
906e58ca 5210
c7b8f16e
JB
5211 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5212 hash_table->num_vfp11_fixes);
906e58ca 5213
c7b8f16e
JB
5214 myh = elf_link_hash_lookup
5215 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5216
c7b8f16e 5217 BFD_ASSERT (myh == NULL);
906e58ca 5218
c7b8f16e
JB
5219 bh = NULL;
5220 val = hash_table->vfp11_erratum_glue_size;
5221 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5222 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5223 NULL, TRUE, FALSE, &bh);
5224
5225 myh = (struct elf_link_hash_entry *) bh;
5226 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5227 myh->forced_local = 1;
5228
5229 /* Link veneer back to calling location. */
5230 errcount = ++(sec_data->erratumcount);
21d799b5
NC
5231 newerr = (elf32_vfp11_erratum_list *)
5232 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 5233
c7b8f16e
JB
5234 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5235 newerr->vma = -1;
5236 newerr->u.v.branch = branch;
5237 newerr->u.v.id = hash_table->num_vfp11_fixes;
5238 branch->u.b.veneer = newerr;
5239
5240 newerr->next = sec_data->erratumlist;
5241 sec_data->erratumlist = newerr;
5242
5243 /* A symbol for the return from the veneer. */
5244 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5245 hash_table->num_vfp11_fixes);
5246
5247 myh = elf_link_hash_lookup
5248 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5249
c7b8f16e
JB
5250 if (myh != NULL)
5251 abort ();
5252
5253 bh = NULL;
5254 val = offset + 4;
5255 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5256 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 5257
c7b8f16e
JB
5258 myh = (struct elf_link_hash_entry *) bh;
5259 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5260 myh->forced_local = 1;
5261
5262 free (tmp_name);
906e58ca 5263
c7b8f16e
JB
5264 /* Generate a mapping symbol for the veneer section, and explicitly add an
5265 entry for that symbol to the code/data map for the section. */
5266 if (hash_table->vfp11_erratum_glue_size == 0)
5267 {
5268 bh = NULL;
5269 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5270 ever requires this erratum fix. */
5271 _bfd_generic_link_add_one_symbol (link_info,
5272 hash_table->bfd_of_glue_owner, "$a",
5273 BSF_LOCAL, s, 0, NULL,
5274 TRUE, FALSE, &bh);
5275
5276 myh = (struct elf_link_hash_entry *) bh;
5277 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5278 myh->forced_local = 1;
906e58ca 5279
c7b8f16e
JB
5280 /* The elf32_arm_init_maps function only cares about symbols from input
5281 BFDs. We must make a note of this generated mapping symbol
5282 ourselves so that code byteswapping works properly in
5283 elf32_arm_write_section. */
5284 elf32_arm_section_map_add (s, 'a', 0);
5285 }
906e58ca 5286
c7b8f16e
JB
5287 s->size += VFP11_ERRATUM_VENEER_SIZE;
5288 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5289 hash_table->num_vfp11_fixes++;
906e58ca 5290
c7b8f16e
JB
5291 /* The offset of the veneer. */
5292 return val;
5293}
5294
8029a119 5295#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
5296 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5297 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
5298
5299/* Create a fake section for use by the ARM backend of the linker. */
5300
5301static bfd_boolean
5302arm_make_glue_section (bfd * abfd, const char * name)
5303{
5304 asection * sec;
5305
5306 sec = bfd_get_section_by_name (abfd, name);
5307 if (sec != NULL)
5308 /* Already made. */
5309 return TRUE;
5310
5311 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5312
5313 if (sec == NULL
5314 || !bfd_set_section_alignment (abfd, sec, 2))
5315 return FALSE;
5316
5317 /* Set the gc mark to prevent the section from being removed by garbage
5318 collection, despite the fact that no relocs refer to this section. */
5319 sec->gc_mark = 1;
5320
5321 return TRUE;
5322}
5323
8afb0e02
NC
5324/* Add the glue sections to ABFD. This function is called from the
5325 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 5326
b34976b6 5327bfd_boolean
57e8b36a
NC
5328bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5329 struct bfd_link_info *info)
252b5132 5330{
8afb0e02
NC
5331 /* If we are only performing a partial
5332 link do not bother adding the glue. */
1049f94e 5333 if (info->relocatable)
b34976b6 5334 return TRUE;
252b5132 5335
8029a119
NC
5336 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5337 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5338 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5339 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
5340}
5341
5342/* Select a BFD to be used to hold the sections used by the glue code.
5343 This function is called from the linker scripts in ld/emultempl/
8029a119 5344 {armelf/pe}.em. */
8afb0e02 5345
b34976b6 5346bfd_boolean
57e8b36a 5347bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
5348{
5349 struct elf32_arm_link_hash_table *globals;
5350
5351 /* If we are only performing a partial link
5352 do not bother getting a bfd to hold the glue. */
1049f94e 5353 if (info->relocatable)
b34976b6 5354 return TRUE;
8afb0e02 5355
b7693d02
DJ
5356 /* Make sure we don't attach the glue sections to a dynamic object. */
5357 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5358
8afb0e02 5359 globals = elf32_arm_hash_table (info);
8afb0e02
NC
5360 BFD_ASSERT (globals != NULL);
5361
5362 if (globals->bfd_of_glue_owner != NULL)
b34976b6 5363 return TRUE;
8afb0e02 5364
252b5132
RH
5365 /* Save the bfd for later use. */
5366 globals->bfd_of_glue_owner = abfd;
cedb70c5 5367
b34976b6 5368 return TRUE;
252b5132
RH
5369}
5370
906e58ca
NC
5371static void
5372check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 5373{
104d59d1
JM
5374 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5375 Tag_CPU_arch) > 2)
39b41c9c
PB
5376 globals->use_blx = 1;
5377}
5378
b34976b6 5379bfd_boolean
57e8b36a 5380bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 5381 struct bfd_link_info *link_info)
252b5132
RH
5382{
5383 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 5384 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
5385 Elf_Internal_Rela *irel, *irelend;
5386 bfd_byte *contents = NULL;
252b5132
RH
5387
5388 asection *sec;
5389 struct elf32_arm_link_hash_table *globals;
5390
5391 /* If we are only performing a partial link do not bother
5392 to construct any glue. */
1049f94e 5393 if (link_info->relocatable)
b34976b6 5394 return TRUE;
252b5132 5395
39ce1a6a
NC
5396 /* Here we have a bfd that is to be included on the link. We have a
5397 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 5398 globals = elf32_arm_hash_table (link_info);
252b5132 5399 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
5400
5401 check_use_blx (globals);
252b5132 5402
d504ffc8 5403 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 5404 {
d003868e
AM
5405 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5406 abfd);
e489d0ae
PB
5407 return FALSE;
5408 }
f21f3fe0 5409
39ce1a6a
NC
5410 /* PR 5398: If we have not decided to include any loadable sections in
5411 the output then we will not have a glue owner bfd. This is OK, it
5412 just means that there is nothing else for us to do here. */
5413 if (globals->bfd_of_glue_owner == NULL)
5414 return TRUE;
5415
252b5132
RH
5416 /* Rummage around all the relocs and map the glue vectors. */
5417 sec = abfd->sections;
5418
5419 if (sec == NULL)
b34976b6 5420 return TRUE;
252b5132
RH
5421
5422 for (; sec != NULL; sec = sec->next)
5423 {
5424 if (sec->reloc_count == 0)
5425 continue;
5426
2f475487
AM
5427 if ((sec->flags & SEC_EXCLUDE) != 0)
5428 continue;
5429
0ffa91dd 5430 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 5431
9b485d32 5432 /* Load the relocs. */
6cdc0ccc 5433 internal_relocs
906e58ca 5434 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 5435
6cdc0ccc
AM
5436 if (internal_relocs == NULL)
5437 goto error_return;
252b5132 5438
6cdc0ccc
AM
5439 irelend = internal_relocs + sec->reloc_count;
5440 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
5441 {
5442 long r_type;
5443 unsigned long r_index;
252b5132
RH
5444
5445 struct elf_link_hash_entry *h;
5446
5447 r_type = ELF32_R_TYPE (irel->r_info);
5448 r_index = ELF32_R_SYM (irel->r_info);
5449
9b485d32 5450 /* These are the only relocation types we care about. */
ba96a88f 5451 if ( r_type != R_ARM_PC24
845b51d6 5452 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
5453 continue;
5454
5455 /* Get the section contents if we haven't done so already. */
5456 if (contents == NULL)
5457 {
5458 /* Get cached copy if it exists. */
5459 if (elf_section_data (sec)->this_hdr.contents != NULL)
5460 contents = elf_section_data (sec)->this_hdr.contents;
5461 else
5462 {
5463 /* Go get them off disk. */
57e8b36a 5464 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
5465 goto error_return;
5466 }
5467 }
5468
845b51d6
PB
5469 if (r_type == R_ARM_V4BX)
5470 {
5471 int reg;
5472
5473 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5474 record_arm_bx_glue (link_info, reg);
5475 continue;
5476 }
5477
a7c10850 5478 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
5479 h = NULL;
5480
9b485d32 5481 /* We don't care about local symbols. */
252b5132
RH
5482 if (r_index < symtab_hdr->sh_info)
5483 continue;
5484
9b485d32 5485 /* This is an external symbol. */
252b5132
RH
5486 r_index -= symtab_hdr->sh_info;
5487 h = (struct elf_link_hash_entry *)
5488 elf_sym_hashes (abfd)[r_index];
5489
5490 /* If the relocation is against a static symbol it must be within
5491 the current section and so cannot be a cross ARM/Thumb relocation. */
5492 if (h == NULL)
5493 continue;
5494
d504ffc8
DJ
5495 /* If the call will go through a PLT entry then we do not need
5496 glue. */
5497 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
5498 continue;
5499
252b5132
RH
5500 switch (r_type)
5501 {
5502 case R_ARM_PC24:
5503 /* This one is a call from arm code. We need to look up
2f0ca46a 5504 the target of the call. If it is a thumb target, we
252b5132 5505 insert glue. */
ebe24dd4 5506 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
252b5132
RH
5507 record_arm_to_thumb_glue (link_info, h);
5508 break;
5509
252b5132 5510 default:
c6596c5e 5511 abort ();
252b5132
RH
5512 }
5513 }
6cdc0ccc
AM
5514
5515 if (contents != NULL
5516 && elf_section_data (sec)->this_hdr.contents != contents)
5517 free (contents);
5518 contents = NULL;
5519
5520 if (internal_relocs != NULL
5521 && elf_section_data (sec)->relocs != internal_relocs)
5522 free (internal_relocs);
5523 internal_relocs = NULL;
252b5132
RH
5524 }
5525
b34976b6 5526 return TRUE;
9a5aca8c 5527
252b5132 5528error_return:
6cdc0ccc
AM
5529 if (contents != NULL
5530 && elf_section_data (sec)->this_hdr.contents != contents)
5531 free (contents);
5532 if (internal_relocs != NULL
5533 && elf_section_data (sec)->relocs != internal_relocs)
5534 free (internal_relocs);
9a5aca8c 5535
b34976b6 5536 return FALSE;
252b5132 5537}
7e392df6 5538#endif
252b5132 5539
eb043451 5540
c7b8f16e
JB
5541/* Initialise maps of ARM/Thumb/data for input BFDs. */
5542
5543void
5544bfd_elf32_arm_init_maps (bfd *abfd)
5545{
5546 Elf_Internal_Sym *isymbuf;
5547 Elf_Internal_Shdr *hdr;
5548 unsigned int i, localsyms;
5549
af1f4419
NC
5550 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5551 if (! is_arm_elf (abfd))
5552 return;
5553
c7b8f16e
JB
5554 if ((abfd->flags & DYNAMIC) != 0)
5555 return;
5556
0ffa91dd 5557 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
5558 localsyms = hdr->sh_info;
5559
5560 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5561 should contain the number of local symbols, which should come before any
5562 global symbols. Mapping symbols are always local. */
5563 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5564 NULL);
5565
5566 /* No internal symbols read? Skip this BFD. */
5567 if (isymbuf == NULL)
5568 return;
5569
5570 for (i = 0; i < localsyms; i++)
5571 {
5572 Elf_Internal_Sym *isym = &isymbuf[i];
5573 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5574 const char *name;
906e58ca 5575
c7b8f16e
JB
5576 if (sec != NULL
5577 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5578 {
5579 name = bfd_elf_string_from_elf_section (abfd,
5580 hdr->sh_link, isym->st_name);
906e58ca 5581
c7b8f16e
JB
5582 if (bfd_is_arm_special_symbol_name (name,
5583 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5584 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5585 }
5586 }
5587}
5588
5589
48229727
JB
5590/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5591 say what they wanted. */
5592
5593void
5594bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5595{
5596 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5597 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5598
4dfe6ac6
NC
5599 if (globals == NULL)
5600 return;
5601
48229727
JB
5602 if (globals->fix_cortex_a8 == -1)
5603 {
5604 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5605 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5606 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5607 || out_attr[Tag_CPU_arch_profile].i == 0))
5608 globals->fix_cortex_a8 = 1;
5609 else
5610 globals->fix_cortex_a8 = 0;
5611 }
5612}
5613
5614
c7b8f16e
JB
5615void
5616bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5617{
5618 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 5619 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 5620
4dfe6ac6
NC
5621 if (globals == NULL)
5622 return;
c7b8f16e
JB
5623 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5624 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5625 {
5626 switch (globals->vfp11_fix)
5627 {
5628 case BFD_ARM_VFP11_FIX_DEFAULT:
5629 case BFD_ARM_VFP11_FIX_NONE:
5630 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5631 break;
906e58ca 5632
c7b8f16e
JB
5633 default:
5634 /* Give a warning, but do as the user requests anyway. */
5635 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5636 "workaround is not necessary for target architecture"), obfd);
5637 }
5638 }
5639 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5640 /* For earlier architectures, we might need the workaround, but do not
5641 enable it by default. If users is running with broken hardware, they
5642 must enable the erratum fix explicitly. */
5643 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5644}
5645
5646
906e58ca
NC
5647enum bfd_arm_vfp11_pipe
5648{
c7b8f16e
JB
5649 VFP11_FMAC,
5650 VFP11_LS,
5651 VFP11_DS,
5652 VFP11_BAD
5653};
5654
5655/* Return a VFP register number. This is encoded as RX:X for single-precision
5656 registers, or X:RX for double-precision registers, where RX is the group of
5657 four bits in the instruction encoding and X is the single extension bit.
5658 RX and X fields are specified using their lowest (starting) bit. The return
5659 value is:
5660
5661 0...31: single-precision registers s0...s31
5662 32...63: double-precision registers d0...d31.
906e58ca 5663
c7b8f16e
JB
5664 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5665 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 5666
c7b8f16e
JB
5667static unsigned int
5668bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5669 unsigned int x)
5670{
5671 if (is_double)
5672 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5673 else
5674 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5675}
5676
5677/* Set bits in *WMASK according to a register number REG as encoded by
5678 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5679
5680static void
5681bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5682{
5683 if (reg < 32)
5684 *wmask |= 1 << reg;
5685 else if (reg < 48)
5686 *wmask |= 3 << ((reg - 32) * 2);
5687}
5688
5689/* Return TRUE if WMASK overwrites anything in REGS. */
5690
5691static bfd_boolean
5692bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5693{
5694 int i;
906e58ca 5695
c7b8f16e
JB
5696 for (i = 0; i < numregs; i++)
5697 {
5698 unsigned int reg = regs[i];
5699
5700 if (reg < 32 && (wmask & (1 << reg)) != 0)
5701 return TRUE;
906e58ca 5702
c7b8f16e
JB
5703 reg -= 32;
5704
5705 if (reg >= 16)
5706 continue;
906e58ca 5707
c7b8f16e
JB
5708 if ((wmask & (3 << (reg * 2))) != 0)
5709 return TRUE;
5710 }
906e58ca 5711
c7b8f16e
JB
5712 return FALSE;
5713}
5714
5715/* In this function, we're interested in two things: finding input registers
5716 for VFP data-processing instructions, and finding the set of registers which
5717 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5718 hold the written set, so FLDM etc. are easy to deal with (we're only
5719 interested in 32 SP registers or 16 dp registers, due to the VFP version
5720 implemented by the chip in question). DP registers are marked by setting
5721 both SP registers in the write mask). */
5722
5723static enum bfd_arm_vfp11_pipe
5724bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5725 int *numregs)
5726{
91d6fa6a 5727 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
5728 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5729
5730 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5731 {
5732 unsigned int pqrs;
5733 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5734 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5735
5736 pqrs = ((insn & 0x00800000) >> 20)
5737 | ((insn & 0x00300000) >> 19)
5738 | ((insn & 0x00000040) >> 6);
5739
5740 switch (pqrs)
5741 {
5742 case 0: /* fmac[sd]. */
5743 case 1: /* fnmac[sd]. */
5744 case 2: /* fmsc[sd]. */
5745 case 3: /* fnmsc[sd]. */
91d6fa6a 5746 vpipe = VFP11_FMAC;
c7b8f16e
JB
5747 bfd_arm_vfp11_write_mask (destmask, fd);
5748 regs[0] = fd;
5749 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5750 regs[2] = fm;
5751 *numregs = 3;
5752 break;
5753
5754 case 4: /* fmul[sd]. */
5755 case 5: /* fnmul[sd]. */
5756 case 6: /* fadd[sd]. */
5757 case 7: /* fsub[sd]. */
91d6fa6a 5758 vpipe = VFP11_FMAC;
c7b8f16e
JB
5759 goto vfp_binop;
5760
5761 case 8: /* fdiv[sd]. */
91d6fa6a 5762 vpipe = VFP11_DS;
c7b8f16e
JB
5763 vfp_binop:
5764 bfd_arm_vfp11_write_mask (destmask, fd);
5765 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5766 regs[1] = fm;
5767 *numregs = 2;
5768 break;
5769
5770 case 15: /* extended opcode. */
5771 {
5772 unsigned int extn = ((insn >> 15) & 0x1e)
5773 | ((insn >> 7) & 1);
5774
5775 switch (extn)
5776 {
5777 case 0: /* fcpy[sd]. */
5778 case 1: /* fabs[sd]. */
5779 case 2: /* fneg[sd]. */
5780 case 8: /* fcmp[sd]. */
5781 case 9: /* fcmpe[sd]. */
5782 case 10: /* fcmpz[sd]. */
5783 case 11: /* fcmpez[sd]. */
5784 case 16: /* fuito[sd]. */
5785 case 17: /* fsito[sd]. */
5786 case 24: /* ftoui[sd]. */
5787 case 25: /* ftouiz[sd]. */
5788 case 26: /* ftosi[sd]. */
5789 case 27: /* ftosiz[sd]. */
5790 /* These instructions will not bounce due to underflow. */
5791 *numregs = 0;
91d6fa6a 5792 vpipe = VFP11_FMAC;
c7b8f16e
JB
5793 break;
5794
5795 case 3: /* fsqrt[sd]. */
5796 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5797 registers to cause the erratum in previous instructions. */
5798 bfd_arm_vfp11_write_mask (destmask, fd);
91d6fa6a 5799 vpipe = VFP11_DS;
c7b8f16e
JB
5800 break;
5801
5802 case 15: /* fcvt{ds,sd}. */
5803 {
5804 int rnum = 0;
5805
5806 bfd_arm_vfp11_write_mask (destmask, fd);
5807
5808 /* Only FCVTSD can underflow. */
5809 if ((insn & 0x100) != 0)
5810 regs[rnum++] = fm;
5811
5812 *numregs = rnum;
5813
91d6fa6a 5814 vpipe = VFP11_FMAC;
c7b8f16e
JB
5815 }
5816 break;
5817
5818 default:
5819 return VFP11_BAD;
5820 }
5821 }
5822 break;
5823
5824 default:
5825 return VFP11_BAD;
5826 }
5827 }
5828 /* Two-register transfer. */
5829 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5830 {
5831 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 5832
c7b8f16e
JB
5833 if ((insn & 0x100000) == 0)
5834 {
5835 if (is_double)
5836 bfd_arm_vfp11_write_mask (destmask, fm);
5837 else
5838 {
5839 bfd_arm_vfp11_write_mask (destmask, fm);
5840 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5841 }
5842 }
5843
91d6fa6a 5844 vpipe = VFP11_LS;
c7b8f16e
JB
5845 }
5846 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5847 {
5848 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5849 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 5850
c7b8f16e
JB
5851 switch (puw)
5852 {
5853 case 0: /* Two-reg transfer. We should catch these above. */
5854 abort ();
906e58ca 5855
c7b8f16e
JB
5856 case 2: /* fldm[sdx]. */
5857 case 3:
5858 case 5:
5859 {
5860 unsigned int i, offset = insn & 0xff;
5861
5862 if (is_double)
5863 offset >>= 1;
5864
5865 for (i = fd; i < fd + offset; i++)
5866 bfd_arm_vfp11_write_mask (destmask, i);
5867 }
5868 break;
906e58ca 5869
c7b8f16e
JB
5870 case 4: /* fld[sd]. */
5871 case 6:
5872 bfd_arm_vfp11_write_mask (destmask, fd);
5873 break;
906e58ca 5874
c7b8f16e
JB
5875 default:
5876 return VFP11_BAD;
5877 }
5878
91d6fa6a 5879 vpipe = VFP11_LS;
c7b8f16e
JB
5880 }
5881 /* Single-register transfer. Note L==0. */
5882 else if ((insn & 0x0f100e10) == 0x0e000a10)
5883 {
5884 unsigned int opcode = (insn >> 21) & 7;
5885 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5886
5887 switch (opcode)
5888 {
5889 case 0: /* fmsr/fmdlr. */
5890 case 1: /* fmdhr. */
5891 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5892 destination register. I don't know if this is exactly right,
5893 but it is the conservative choice. */
5894 bfd_arm_vfp11_write_mask (destmask, fn);
5895 break;
5896
5897 case 7: /* fmxr. */
5898 break;
5899 }
5900
91d6fa6a 5901 vpipe = VFP11_LS;
c7b8f16e
JB
5902 }
5903
91d6fa6a 5904 return vpipe;
c7b8f16e
JB
5905}
5906
5907
5908static int elf32_arm_compare_mapping (const void * a, const void * b);
5909
5910
5911/* Look for potentially-troublesome code sequences which might trigger the
5912 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5913 (available from ARM) for details of the erratum. A short version is
5914 described in ld.texinfo. */
5915
5916bfd_boolean
5917bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5918{
5919 asection *sec;
5920 bfd_byte *contents = NULL;
5921 int state = 0;
5922 int regs[3], numregs = 0;
5923 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5924 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 5925
4dfe6ac6
NC
5926 if (globals == NULL)
5927 return FALSE;
5928
c7b8f16e
JB
5929 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5930 The states transition as follows:
906e58ca 5931
c7b8f16e
JB
5932 0 -> 1 (vector) or 0 -> 2 (scalar)
5933 A VFP FMAC-pipeline instruction has been seen. Fill
5934 regs[0]..regs[numregs-1] with its input operands. Remember this
5935 instruction in 'first_fmac'.
5936
5937 1 -> 2
5938 Any instruction, except for a VFP instruction which overwrites
5939 regs[*].
906e58ca 5940
c7b8f16e
JB
5941 1 -> 3 [ -> 0 ] or
5942 2 -> 3 [ -> 0 ]
5943 A VFP instruction has been seen which overwrites any of regs[*].
5944 We must make a veneer! Reset state to 0 before examining next
5945 instruction.
906e58ca 5946
c7b8f16e
JB
5947 2 -> 0
5948 If we fail to match anything in state 2, reset to state 0 and reset
5949 the instruction pointer to the instruction after 'first_fmac'.
5950
5951 If the VFP11 vector mode is in use, there must be at least two unrelated
5952 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 5953 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
5954
5955 /* If we are only performing a partial link do not bother
5956 to construct any glue. */
5957 if (link_info->relocatable)
5958 return TRUE;
5959
0ffa91dd
NC
5960 /* Skip if this bfd does not correspond to an ELF image. */
5961 if (! is_arm_elf (abfd))
5962 return TRUE;
906e58ca 5963
c7b8f16e
JB
5964 /* We should have chosen a fix type by the time we get here. */
5965 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5966
5967 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5968 return TRUE;
2e6030b9 5969
33a7ffc2
JM
5970 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5971 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5972 return TRUE;
5973
c7b8f16e
JB
5974 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5975 {
5976 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5977 struct _arm_elf_section_data *sec_data;
5978
5979 /* If we don't have executable progbits, we're not interested in this
5980 section. Also skip if section is to be excluded. */
5981 if (elf_section_type (sec) != SHT_PROGBITS
5982 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5983 || (sec->flags & SEC_EXCLUDE) != 0
33a7ffc2
JM
5984 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5985 || sec->output_section == bfd_abs_section_ptr
c7b8f16e
JB
5986 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5987 continue;
5988
5989 sec_data = elf32_arm_section_data (sec);
906e58ca 5990
c7b8f16e
JB
5991 if (sec_data->mapcount == 0)
5992 continue;
906e58ca 5993
c7b8f16e
JB
5994 if (elf_section_data (sec)->this_hdr.contents != NULL)
5995 contents = elf_section_data (sec)->this_hdr.contents;
5996 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5997 goto error_return;
5998
5999 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6000 elf32_arm_compare_mapping);
6001
6002 for (span = 0; span < sec_data->mapcount; span++)
6003 {
6004 unsigned int span_start = sec_data->map[span].vma;
6005 unsigned int span_end = (span == sec_data->mapcount - 1)
6006 ? sec->size : sec_data->map[span + 1].vma;
6007 char span_type = sec_data->map[span].type;
906e58ca 6008
c7b8f16e
JB
6009 /* FIXME: Only ARM mode is supported at present. We may need to
6010 support Thumb-2 mode also at some point. */
6011 if (span_type != 'a')
6012 continue;
6013
6014 for (i = span_start; i < span_end;)
6015 {
6016 unsigned int next_i = i + 4;
6017 unsigned int insn = bfd_big_endian (abfd)
6018 ? (contents[i] << 24)
6019 | (contents[i + 1] << 16)
6020 | (contents[i + 2] << 8)
6021 | contents[i + 3]
6022 : (contents[i + 3] << 24)
6023 | (contents[i + 2] << 16)
6024 | (contents[i + 1] << 8)
6025 | contents[i];
6026 unsigned int writemask = 0;
91d6fa6a 6027 enum bfd_arm_vfp11_pipe vpipe;
c7b8f16e
JB
6028
6029 switch (state)
6030 {
6031 case 0:
91d6fa6a 6032 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
c7b8f16e
JB
6033 &numregs);
6034 /* I'm assuming the VFP11 erratum can trigger with denorm
6035 operands on either the FMAC or the DS pipeline. This might
6036 lead to slightly overenthusiastic veneer insertion. */
91d6fa6a 6037 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
c7b8f16e
JB
6038 {
6039 state = use_vector ? 1 : 2;
6040 first_fmac = i;
6041 veneer_of_insn = insn;
6042 }
6043 break;
6044
6045 case 1:
6046 {
6047 int other_regs[3], other_numregs;
91d6fa6a 6048 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e
JB
6049 other_regs,
6050 &other_numregs);
91d6fa6a 6051 if (vpipe != VFP11_BAD
c7b8f16e
JB
6052 && bfd_arm_vfp11_antidependency (writemask, regs,
6053 numregs))
6054 state = 3;
6055 else
6056 state = 2;
6057 }
6058 break;
6059
6060 case 2:
6061 {
6062 int other_regs[3], other_numregs;
91d6fa6a 6063 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e
JB
6064 other_regs,
6065 &other_numregs);
91d6fa6a 6066 if (vpipe != VFP11_BAD
c7b8f16e
JB
6067 && bfd_arm_vfp11_antidependency (writemask, regs,
6068 numregs))
6069 state = 3;
6070 else
6071 {
6072 state = 0;
6073 next_i = first_fmac + 4;
6074 }
6075 }
6076 break;
6077
6078 case 3:
6079 abort (); /* Should be unreachable. */
6080 }
6081
6082 if (state == 3)
6083 {
21d799b5
NC
6084 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6085 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
c7b8f16e
JB
6086 int errcount;
6087
6088 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
6089
6090 newerr->u.b.vfp_insn = veneer_of_insn;
6091
6092 switch (span_type)
6093 {
6094 case 'a':
6095 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6096 break;
906e58ca 6097
c7b8f16e
JB
6098 default:
6099 abort ();
6100 }
6101
6102 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6103 first_fmac);
6104
6105 newerr->vma = -1;
6106
6107 newerr->next = sec_data->erratumlist;
6108 sec_data->erratumlist = newerr;
6109
6110 state = 0;
6111 }
6112
6113 i = next_i;
6114 }
6115 }
906e58ca 6116
c7b8f16e
JB
6117 if (contents != NULL
6118 && elf_section_data (sec)->this_hdr.contents != contents)
6119 free (contents);
6120 contents = NULL;
6121 }
6122
6123 return TRUE;
6124
6125error_return:
6126 if (contents != NULL
6127 && elf_section_data (sec)->this_hdr.contents != contents)
6128 free (contents);
906e58ca 6129
c7b8f16e
JB
6130 return FALSE;
6131}
6132
6133/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6134 after sections have been laid out, using specially-named symbols. */
6135
6136void
6137bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6138 struct bfd_link_info *link_info)
6139{
6140 asection *sec;
6141 struct elf32_arm_link_hash_table *globals;
6142 char *tmp_name;
906e58ca 6143
c7b8f16e
JB
6144 if (link_info->relocatable)
6145 return;
2e6030b9
MS
6146
6147 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6148 if (! is_arm_elf (abfd))
2e6030b9
MS
6149 return;
6150
c7b8f16e 6151 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6152 if (globals == NULL)
6153 return;
906e58ca 6154
21d799b5
NC
6155 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6156 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
6157
6158 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6159 {
6160 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6161 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6162
c7b8f16e
JB
6163 for (; errnode != NULL; errnode = errnode->next)
6164 {
6165 struct elf_link_hash_entry *myh;
6166 bfd_vma vma;
6167
6168 switch (errnode->type)
6169 {
6170 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6171 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6172 /* Find veneer symbol. */
6173 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6174 errnode->u.b.veneer->u.v.id);
6175
6176 myh = elf_link_hash_lookup
6177 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6178
6179 if (myh == NULL)
6180 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6181 "`%s'"), abfd, tmp_name);
6182
6183 vma = myh->root.u.def.section->output_section->vma
6184 + myh->root.u.def.section->output_offset
6185 + myh->root.u.def.value;
6186
6187 errnode->u.b.veneer->vma = vma;
6188 break;
6189
6190 case VFP11_ERRATUM_ARM_VENEER:
6191 case VFP11_ERRATUM_THUMB_VENEER:
6192 /* Find return location. */
6193 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6194 errnode->u.v.id);
6195
6196 myh = elf_link_hash_lookup
6197 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6198
6199 if (myh == NULL)
6200 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6201 "`%s'"), abfd, tmp_name);
6202
6203 vma = myh->root.u.def.section->output_section->vma
6204 + myh->root.u.def.section->output_offset
6205 + myh->root.u.def.value;
6206
6207 errnode->u.v.branch->vma = vma;
6208 break;
906e58ca 6209
c7b8f16e
JB
6210 default:
6211 abort ();
6212 }
6213 }
6214 }
906e58ca 6215
c7b8f16e
JB
6216 free (tmp_name);
6217}
6218
6219
eb043451
PB
6220/* Set target relocation values needed during linking. */
6221
6222void
bf21ed78
MS
6223bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6224 struct bfd_link_info *link_info,
eb043451 6225 int target1_is_rel,
319850b4 6226 char * target2_type,
33bfe774 6227 int fix_v4bx,
c7b8f16e 6228 int use_blx,
bf21ed78 6229 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 6230 int no_enum_warn, int no_wchar_warn,
48229727 6231 int pic_veneer, int fix_cortex_a8)
eb043451
PB
6232{
6233 struct elf32_arm_link_hash_table *globals;
6234
6235 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6236 if (globals == NULL)
6237 return;
eb043451
PB
6238
6239 globals->target1_is_rel = target1_is_rel;
6240 if (strcmp (target2_type, "rel") == 0)
6241 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
6242 else if (strcmp (target2_type, "abs") == 0)
6243 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
6244 else if (strcmp (target2_type, "got-rel") == 0)
6245 globals->target2_reloc = R_ARM_GOT_PREL;
6246 else
6247 {
6248 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6249 target2_type);
6250 }
319850b4 6251 globals->fix_v4bx = fix_v4bx;
33bfe774 6252 globals->use_blx |= use_blx;
c7b8f16e 6253 globals->vfp11_fix = vfp11_fix;
27e55c4d 6254 globals->pic_veneer = pic_veneer;
48229727 6255 globals->fix_cortex_a8 = fix_cortex_a8;
bf21ed78 6256
0ffa91dd
NC
6257 BFD_ASSERT (is_arm_elf (output_bfd));
6258 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 6259 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 6260}
eb043451 6261
12a0a0fd 6262/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 6263
12a0a0fd
PB
6264static void
6265insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6266{
6267 bfd_vma upper;
6268 bfd_vma lower;
6269 int reloc_sign;
6270
6271 BFD_ASSERT ((offset & 1) == 0);
6272
6273 upper = bfd_get_16 (abfd, insn);
6274 lower = bfd_get_16 (abfd, insn + 2);
6275 reloc_sign = (offset < 0) ? 1 : 0;
6276 upper = (upper & ~(bfd_vma) 0x7ff)
6277 | ((offset >> 12) & 0x3ff)
6278 | (reloc_sign << 10);
906e58ca 6279 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
6280 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6281 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6282 | ((offset >> 1) & 0x7ff);
6283 bfd_put_16 (abfd, upper, insn);
6284 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
6285}
6286
9b485d32
NC
6287/* Thumb code calling an ARM function. */
6288
252b5132 6289static int
57e8b36a
NC
6290elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6291 const char * name,
6292 bfd * input_bfd,
6293 bfd * output_bfd,
6294 asection * input_section,
6295 bfd_byte * hit_data,
6296 asection * sym_sec,
6297 bfd_vma offset,
6298 bfd_signed_vma addend,
f2a9dd69
DJ
6299 bfd_vma val,
6300 char **error_message)
252b5132 6301{
bcbdc74c 6302 asection * s = 0;
dc810e39 6303 bfd_vma my_offset;
252b5132 6304 long int ret_offset;
bcbdc74c
NC
6305 struct elf_link_hash_entry * myh;
6306 struct elf32_arm_link_hash_table * globals;
252b5132 6307
f2a9dd69 6308 myh = find_thumb_glue (info, name, error_message);
252b5132 6309 if (myh == NULL)
b34976b6 6310 return FALSE;
252b5132
RH
6311
6312 globals = elf32_arm_hash_table (info);
252b5132
RH
6313 BFD_ASSERT (globals != NULL);
6314 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6315
6316 my_offset = myh->root.u.def.value;
6317
6318 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6319 THUMB2ARM_GLUE_SECTION_NAME);
6320
6321 BFD_ASSERT (s != NULL);
6322 BFD_ASSERT (s->contents != NULL);
6323 BFD_ASSERT (s->output_section != NULL);
6324
6325 if ((my_offset & 0x01) == 0x01)
6326 {
6327 if (sym_sec != NULL
6328 && sym_sec->owner != NULL
6329 && !INTERWORK_FLAG (sym_sec->owner))
6330 {
8f615d07 6331 (*_bfd_error_handler)
d003868e
AM
6332 (_("%B(%s): warning: interworking not enabled.\n"
6333 " first occurrence: %B: thumb call to arm"),
6334 sym_sec->owner, input_bfd, name);
252b5132 6335
b34976b6 6336 return FALSE;
252b5132
RH
6337 }
6338
6339 --my_offset;
6340 myh->root.u.def.value = my_offset;
6341
52ab56c2
PB
6342 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6343 s->contents + my_offset);
252b5132 6344
52ab56c2
PB
6345 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6346 s->contents + my_offset + 2);
252b5132
RH
6347
6348 ret_offset =
9b485d32
NC
6349 /* Address of destination of the stub. */
6350 ((bfd_signed_vma) val)
252b5132 6351 - ((bfd_signed_vma)
57e8b36a
NC
6352 /* Offset from the start of the current section
6353 to the start of the stubs. */
9b485d32
NC
6354 (s->output_offset
6355 /* Offset of the start of this stub from the start of the stubs. */
6356 + my_offset
6357 /* Address of the start of the current section. */
6358 + s->output_section->vma)
6359 /* The branch instruction is 4 bytes into the stub. */
6360 + 4
6361 /* ARM branches work from the pc of the instruction + 8. */
6362 + 8);
252b5132 6363
52ab56c2
PB
6364 put_arm_insn (globals, output_bfd,
6365 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6366 s->contents + my_offset + 4);
252b5132
RH
6367 }
6368
6369 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6370
427bfd90
NC
6371 /* Now go back and fix up the original BL insn to point to here. */
6372 ret_offset =
6373 /* Address of where the stub is located. */
6374 (s->output_section->vma + s->output_offset + my_offset)
6375 /* Address of where the BL is located. */
57e8b36a
NC
6376 - (input_section->output_section->vma + input_section->output_offset
6377 + offset)
427bfd90
NC
6378 /* Addend in the relocation. */
6379 - addend
6380 /* Biassing for PC-relative addressing. */
6381 - 8;
252b5132 6382
12a0a0fd 6383 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 6384
b34976b6 6385 return TRUE;
252b5132
RH
6386}
6387
a4fd1a8e 6388/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 6389
a4fd1a8e
PB
6390static struct elf_link_hash_entry *
6391elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6392 const char * name,
6393 bfd * input_bfd,
6394 bfd * output_bfd,
6395 asection * sym_sec,
6396 bfd_vma val,
8029a119
NC
6397 asection * s,
6398 char ** error_message)
252b5132 6399{
dc810e39 6400 bfd_vma my_offset;
252b5132 6401 long int ret_offset;
bcbdc74c
NC
6402 struct elf_link_hash_entry * myh;
6403 struct elf32_arm_link_hash_table * globals;
252b5132 6404
f2a9dd69 6405 myh = find_arm_glue (info, name, error_message);
252b5132 6406 if (myh == NULL)
a4fd1a8e 6407 return NULL;
252b5132
RH
6408
6409 globals = elf32_arm_hash_table (info);
252b5132
RH
6410 BFD_ASSERT (globals != NULL);
6411 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6412
6413 my_offset = myh->root.u.def.value;
252b5132
RH
6414
6415 if ((my_offset & 0x01) == 0x01)
6416 {
6417 if (sym_sec != NULL
6418 && sym_sec->owner != NULL
6419 && !INTERWORK_FLAG (sym_sec->owner))
6420 {
8f615d07 6421 (*_bfd_error_handler)
d003868e
AM
6422 (_("%B(%s): warning: interworking not enabled.\n"
6423 " first occurrence: %B: arm call to thumb"),
6424 sym_sec->owner, input_bfd, name);
252b5132 6425 }
9b485d32 6426
252b5132
RH
6427 --my_offset;
6428 myh->root.u.def.value = my_offset;
6429
27e55c4d
PB
6430 if (info->shared || globals->root.is_relocatable_executable
6431 || globals->pic_veneer)
8f6277f5
PB
6432 {
6433 /* For relocatable objects we can't use absolute addresses,
6434 so construct the address from a relative offset. */
6435 /* TODO: If the offset is small it's probably worth
6436 constructing the address with adds. */
52ab56c2
PB
6437 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6438 s->contents + my_offset);
6439 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6440 s->contents + my_offset + 4);
6441 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6442 s->contents + my_offset + 8);
8f6277f5
PB
6443 /* Adjust the offset by 4 for the position of the add,
6444 and 8 for the pipeline offset. */
6445 ret_offset = (val - (s->output_offset
6446 + s->output_section->vma
6447 + my_offset + 12))
6448 | 1;
6449 bfd_put_32 (output_bfd, ret_offset,
6450 s->contents + my_offset + 12);
6451 }
26079076
PB
6452 else if (globals->use_blx)
6453 {
6454 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6455 s->contents + my_offset);
6456
6457 /* It's a thumb address. Add the low order bit. */
6458 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6459 s->contents + my_offset + 4);
6460 }
8f6277f5
PB
6461 else
6462 {
52ab56c2
PB
6463 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6464 s->contents + my_offset);
252b5132 6465
52ab56c2
PB
6466 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6467 s->contents + my_offset + 4);
252b5132 6468
8f6277f5
PB
6469 /* It's a thumb address. Add the low order bit. */
6470 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6471 s->contents + my_offset + 8);
8029a119
NC
6472
6473 my_offset += 12;
8f6277f5 6474 }
252b5132
RH
6475 }
6476
6477 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6478
a4fd1a8e
PB
6479 return myh;
6480}
6481
6482/* Arm code calling a Thumb function. */
6483
6484static int
6485elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6486 const char * name,
6487 bfd * input_bfd,
6488 bfd * output_bfd,
6489 asection * input_section,
6490 bfd_byte * hit_data,
6491 asection * sym_sec,
6492 bfd_vma offset,
6493 bfd_signed_vma addend,
f2a9dd69
DJ
6494 bfd_vma val,
6495 char **error_message)
a4fd1a8e
PB
6496{
6497 unsigned long int tmp;
6498 bfd_vma my_offset;
6499 asection * s;
6500 long int ret_offset;
6501 struct elf_link_hash_entry * myh;
6502 struct elf32_arm_link_hash_table * globals;
6503
6504 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
6505 BFD_ASSERT (globals != NULL);
6506 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6507
6508 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6509 ARM2THUMB_GLUE_SECTION_NAME);
6510 BFD_ASSERT (s != NULL);
6511 BFD_ASSERT (s->contents != NULL);
6512 BFD_ASSERT (s->output_section != NULL);
6513
6514 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 6515 sym_sec, val, s, error_message);
a4fd1a8e
PB
6516 if (!myh)
6517 return FALSE;
6518
6519 my_offset = myh->root.u.def.value;
252b5132
RH
6520 tmp = bfd_get_32 (input_bfd, hit_data);
6521 tmp = tmp & 0xFF000000;
6522
9b485d32 6523 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
6524 ret_offset = (s->output_offset
6525 + my_offset
6526 + s->output_section->vma
6527 - (input_section->output_offset
6528 + input_section->output_section->vma
6529 + offset + addend)
6530 - 8);
9a5aca8c 6531
252b5132
RH
6532 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6533
dc810e39 6534 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 6535
b34976b6 6536 return TRUE;
252b5132
RH
6537}
6538
a4fd1a8e
PB
6539/* Populate Arm stub for an exported Thumb function. */
6540
6541static bfd_boolean
6542elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6543{
6544 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6545 asection * s;
6546 struct elf_link_hash_entry * myh;
6547 struct elf32_arm_link_hash_entry *eh;
6548 struct elf32_arm_link_hash_table * globals;
6549 asection *sec;
6550 bfd_vma val;
f2a9dd69 6551 char *error_message;
a4fd1a8e 6552
906e58ca 6553 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
6554 /* Allocate stubs for exported Thumb functions on v4t. */
6555 if (eh->export_glue == NULL)
6556 return TRUE;
6557
6558 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
6559 BFD_ASSERT (globals != NULL);
6560 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6561
6562 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6563 ARM2THUMB_GLUE_SECTION_NAME);
6564 BFD_ASSERT (s != NULL);
6565 BFD_ASSERT (s->contents != NULL);
6566 BFD_ASSERT (s->output_section != NULL);
6567
6568 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
6569
6570 BFD_ASSERT (sec->output_section != NULL);
6571
a4fd1a8e
PB
6572 val = eh->export_glue->root.u.def.value + sec->output_offset
6573 + sec->output_section->vma;
8029a119 6574
a4fd1a8e
PB
6575 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6576 h->root.u.def.section->owner,
f2a9dd69
DJ
6577 globals->obfd, sec, val, s,
6578 &error_message);
a4fd1a8e
PB
6579 BFD_ASSERT (myh);
6580 return TRUE;
6581}
6582
845b51d6
PB
6583/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6584
6585static bfd_vma
6586elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6587{
6588 bfd_byte *p;
6589 bfd_vma glue_addr;
6590 asection *s;
6591 struct elf32_arm_link_hash_table *globals;
6592
6593 globals = elf32_arm_hash_table (info);
845b51d6
PB
6594 BFD_ASSERT (globals != NULL);
6595 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6596
6597 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6598 ARM_BX_GLUE_SECTION_NAME);
6599 BFD_ASSERT (s != NULL);
6600 BFD_ASSERT (s->contents != NULL);
6601 BFD_ASSERT (s->output_section != NULL);
6602
6603 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6604
6605 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6606
6607 if ((globals->bx_glue_offset[reg] & 1) == 0)
6608 {
6609 p = s->contents + glue_addr;
6610 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6611 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6612 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6613 globals->bx_glue_offset[reg] |= 1;
6614 }
6615
6616 return glue_addr + s->output_section->vma + s->output_offset;
6617}
6618
a4fd1a8e
PB
6619/* Generate Arm stubs for exported Thumb symbols. */
6620static void
906e58ca 6621elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
6622 struct bfd_link_info *link_info)
6623{
6624 struct elf32_arm_link_hash_table * globals;
6625
8029a119
NC
6626 if (link_info == NULL)
6627 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
6628 return;
6629
6630 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6631 if (globals == NULL)
6632 return;
6633
84c08195
PB
6634 /* If blx is available then exported Thumb symbols are OK and there is
6635 nothing to do. */
a4fd1a8e
PB
6636 if (globals->use_blx)
6637 return;
6638
6639 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6640 link_info);
6641}
6642
eb043451
PB
6643/* Some relocations map to different relocations depending on the
6644 target. Return the real relocation. */
8029a119 6645
eb043451
PB
6646static int
6647arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6648 int r_type)
6649{
6650 switch (r_type)
6651 {
6652 case R_ARM_TARGET1:
6653 if (globals->target1_is_rel)
6654 return R_ARM_REL32;
6655 else
6656 return R_ARM_ABS32;
6657
6658 case R_ARM_TARGET2:
6659 return globals->target2_reloc;
6660
6661 default:
6662 return r_type;
6663 }
6664}
eb043451 6665
ba93b8ac
DJ
6666/* Return the base VMA address which should be subtracted from real addresses
6667 when resolving @dtpoff relocation.
6668 This is PT_TLS segment p_vaddr. */
6669
6670static bfd_vma
6671dtpoff_base (struct bfd_link_info *info)
6672{
6673 /* If tls_sec is NULL, we should have signalled an error already. */
6674 if (elf_hash_table (info)->tls_sec == NULL)
6675 return 0;
6676 return elf_hash_table (info)->tls_sec->vma;
6677}
6678
6679/* Return the relocation value for @tpoff relocation
6680 if STT_TLS virtual address is ADDRESS. */
6681
6682static bfd_vma
6683tpoff (struct bfd_link_info *info, bfd_vma address)
6684{
6685 struct elf_link_hash_table *htab = elf_hash_table (info);
6686 bfd_vma base;
6687
6688 /* If tls_sec is NULL, we should have signalled an error already. */
6689 if (htab->tls_sec == NULL)
6690 return 0;
6691 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6692 return address - htab->tls_sec->vma + base;
6693}
6694
00a97672
RS
6695/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6696 VALUE is the relocation value. */
6697
6698static bfd_reloc_status_type
6699elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6700{
6701 if (value > 0xfff)
6702 return bfd_reloc_overflow;
6703
6704 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6705 bfd_put_32 (abfd, value, data);
6706 return bfd_reloc_ok;
6707}
6708
4962c51a
MS
6709/* For a given value of n, calculate the value of G_n as required to
6710 deal with group relocations. We return it in the form of an
6711 encoded constant-and-rotation, together with the final residual. If n is
6712 specified as less than zero, then final_residual is filled with the
6713 input value and no further action is performed. */
6714
6715static bfd_vma
6716calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6717{
6718 int current_n;
6719 bfd_vma g_n;
6720 bfd_vma encoded_g_n = 0;
6721 bfd_vma residual = value; /* Also known as Y_n. */
6722
6723 for (current_n = 0; current_n <= n; current_n++)
6724 {
6725 int shift;
6726
6727 /* Calculate which part of the value to mask. */
6728 if (residual == 0)
6729 shift = 0;
6730 else
6731 {
6732 int msb;
6733
6734 /* Determine the most significant bit in the residual and
6735 align the resulting value to a 2-bit boundary. */
6736 for (msb = 30; msb >= 0; msb -= 2)
6737 if (residual & (3 << msb))
6738 break;
6739
6740 /* The desired shift is now (msb - 6), or zero, whichever
6741 is the greater. */
6742 shift = msb - 6;
6743 if (shift < 0)
6744 shift = 0;
6745 }
6746
6747 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6748 g_n = residual & (0xff << shift);
6749 encoded_g_n = (g_n >> shift)
6750 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6751
6752 /* Calculate the residual for the next time around. */
6753 residual &= ~g_n;
6754 }
6755
6756 *final_residual = residual;
6757
6758 return encoded_g_n;
6759}
6760
6761/* Given an ARM instruction, determine whether it is an ADD or a SUB.
6762 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 6763
4962c51a 6764static int
906e58ca 6765identify_add_or_sub (bfd_vma insn)
4962c51a
MS
6766{
6767 int opcode = insn & 0x1e00000;
6768
6769 if (opcode == 1 << 23) /* ADD */
6770 return 1;
6771
6772 if (opcode == 1 << 22) /* SUB */
6773 return -1;
6774
6775 return 0;
6776}
6777
252b5132 6778/* Perform a relocation as part of a final link. */
9b485d32 6779
252b5132 6780static bfd_reloc_status_type
57e8b36a
NC
6781elf32_arm_final_link_relocate (reloc_howto_type * howto,
6782 bfd * input_bfd,
6783 bfd * output_bfd,
6784 asection * input_section,
6785 bfd_byte * contents,
6786 Elf_Internal_Rela * rel,
6787 bfd_vma value,
6788 struct bfd_link_info * info,
6789 asection * sym_sec,
6790 const char * sym_name,
6791 int sym_flags,
0945cdfd 6792 struct elf_link_hash_entry * h,
f2a9dd69 6793 bfd_boolean * unresolved_reloc_p,
8029a119 6794 char ** error_message)
252b5132
RH
6795{
6796 unsigned long r_type = howto->type;
6797 unsigned long r_symndx;
6798 bfd_byte * hit_data = contents + rel->r_offset;
6799 bfd * dynobj = NULL;
6800 Elf_Internal_Shdr * symtab_hdr;
6801 struct elf_link_hash_entry ** sym_hashes;
6802 bfd_vma * local_got_offsets;
6803 asection * sgot = NULL;
6804 asection * splt = NULL;
6805 asection * sreloc = NULL;
252b5132 6806 bfd_vma addend;
ba96a88f
NC
6807 bfd_signed_vma signed_addend;
6808 struct elf32_arm_link_hash_table * globals;
f21f3fe0 6809
9c504268 6810 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
6811 if (globals == NULL)
6812 return bfd_reloc_notsupported;
9c504268 6813
0ffa91dd
NC
6814 BFD_ASSERT (is_arm_elf (input_bfd));
6815
6816 /* Some relocation types map to different relocations depending on the
9c504268 6817 target. We pick the right one here. */
eb043451
PB
6818 r_type = arm_real_reloc_type (globals, r_type);
6819 if (r_type != howto->type)
6820 howto = elf32_arm_howto_from_type (r_type);
9c504268 6821
cac15327
NC
6822 /* If the start address has been set, then set the EF_ARM_HASENTRY
6823 flag. Setting this more than once is redundant, but the cost is
6824 not too high, and it keeps the code simple.
99e4ae17 6825
cac15327
NC
6826 The test is done here, rather than somewhere else, because the
6827 start address is only set just before the final link commences.
6828
6829 Note - if the user deliberately sets a start address of 0, the
6830 flag will not be set. */
6831 if (bfd_get_start_address (output_bfd) != 0)
6832 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 6833
252b5132
RH
6834 dynobj = elf_hash_table (info)->dynobj;
6835 if (dynobj)
6836 {
6837 sgot = bfd_get_section_by_name (dynobj, ".got");
6838 splt = bfd_get_section_by_name (dynobj, ".plt");
6839 }
0ffa91dd 6840 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
6841 sym_hashes = elf_sym_hashes (input_bfd);
6842 local_got_offsets = elf_local_got_offsets (input_bfd);
6843 r_symndx = ELF32_R_SYM (rel->r_info);
6844
4e7fd91e 6845 if (globals->use_rel)
ba96a88f 6846 {
4e7fd91e
PB
6847 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6848
6849 if (addend & ((howto->src_mask + 1) >> 1))
6850 {
6851 signed_addend = -1;
6852 signed_addend &= ~ howto->src_mask;
6853 signed_addend |= addend;
6854 }
6855 else
6856 signed_addend = addend;
ba96a88f
NC
6857 }
6858 else
4e7fd91e 6859 addend = signed_addend = rel->r_addend;
f21f3fe0 6860
252b5132
RH
6861 switch (r_type)
6862 {
6863 case R_ARM_NONE:
28a094c2
DJ
6864 /* We don't need to find a value for this symbol. It's just a
6865 marker. */
6866 *unresolved_reloc_p = FALSE;
252b5132
RH
6867 return bfd_reloc_ok;
6868
00a97672
RS
6869 case R_ARM_ABS12:
6870 if (!globals->vxworks_p)
6871 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6872
252b5132
RH
6873 case R_ARM_PC24:
6874 case R_ARM_ABS32:
bb224fc3 6875 case R_ARM_ABS32_NOI:
252b5132 6876 case R_ARM_REL32:
bb224fc3 6877 case R_ARM_REL32_NOI:
5b5bb741
PB
6878 case R_ARM_CALL:
6879 case R_ARM_JUMP24:
dfc5f959 6880 case R_ARM_XPC25:
eb043451 6881 case R_ARM_PREL31:
7359ea65 6882 case R_ARM_PLT32:
7359ea65
DJ
6883 /* Handle relocations which should use the PLT entry. ABS32/REL32
6884 will use the symbol's value, which may point to a PLT entry, but we
6885 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
6886 branches in this object should go to it, except if the PLT is too
6887 far away, in which case a long branch stub should be inserted. */
bb224fc3 6888 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5fa9e92f 6889 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
6890 && r_type != R_ARM_CALL
6891 && r_type != R_ARM_JUMP24
6892 && r_type != R_ARM_PLT32)
7359ea65 6893 && h != NULL
c84cd8ee 6894 && splt != NULL
7359ea65
DJ
6895 && h->plt.offset != (bfd_vma) -1)
6896 {
c84cd8ee
DJ
6897 /* If we've created a .plt section, and assigned a PLT entry to
6898 this function, it should not be known to bind locally. If
6899 it were, we would have cleared the PLT entry. */
7359ea65
DJ
6900 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6901
6902 value = (splt->output_section->vma
6903 + splt->output_offset
6904 + h->plt.offset);
0945cdfd 6905 *unresolved_reloc_p = FALSE;
7359ea65
DJ
6906 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6907 contents, rel->r_offset, value,
00a97672 6908 rel->r_addend);
7359ea65
DJ
6909 }
6910
67687978
PB
6911 /* When generating a shared object or relocatable executable, these
6912 relocations are copied into the output file to be resolved at
6913 run time. */
6914 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 6915 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 6916 && !(globals->vxworks_p
3348747a
NS
6917 && strcmp (input_section->output_section->name,
6918 ".tls_vars") == 0)
bb224fc3 6919 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 6920 || !SYMBOL_CALLS_LOCAL (info, h))
7359ea65
DJ
6921 && (h == NULL
6922 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6923 || h->root.type != bfd_link_hash_undefweak)
6924 && r_type != R_ARM_PC24
5b5bb741
PB
6925 && r_type != R_ARM_CALL
6926 && r_type != R_ARM_JUMP24
ee06dc07 6927 && r_type != R_ARM_PREL31
7359ea65 6928 && r_type != R_ARM_PLT32)
252b5132 6929 {
947216bf
AM
6930 Elf_Internal_Rela outrel;
6931 bfd_byte *loc;
b34976b6 6932 bfd_boolean skip, relocate;
f21f3fe0 6933
0945cdfd
DJ
6934 *unresolved_reloc_p = FALSE;
6935
252b5132
RH
6936 if (sreloc == NULL)
6937 {
83bac4b0
NC
6938 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6939 ! globals->use_rel);
f21f3fe0 6940
83bac4b0 6941 if (sreloc == NULL)
252b5132 6942 return bfd_reloc_notsupported;
252b5132 6943 }
f21f3fe0 6944
b34976b6
AM
6945 skip = FALSE;
6946 relocate = FALSE;
f21f3fe0 6947
00a97672 6948 outrel.r_addend = addend;
c629eae0
JJ
6949 outrel.r_offset =
6950 _bfd_elf_section_offset (output_bfd, info, input_section,
6951 rel->r_offset);
6952 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 6953 skip = TRUE;
0bb2d96a 6954 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 6955 skip = TRUE, relocate = TRUE;
252b5132
RH
6956 outrel.r_offset += (input_section->output_section->vma
6957 + input_section->output_offset);
f21f3fe0 6958
252b5132 6959 if (skip)
0bb2d96a 6960 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
6961 else if (h != NULL
6962 && h->dynindx != -1
7359ea65 6963 && (!info->shared
5e681ec4 6964 || !info->symbolic
f5385ebf 6965 || !h->def_regular))
5e681ec4 6966 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
6967 else
6968 {
a16385dc
MM
6969 int symbol;
6970
5e681ec4 6971 /* This symbol is local, or marked to become local. */
b7693d02
DJ
6972 if (sym_flags == STT_ARM_TFUNC)
6973 value |= 1;
a16385dc 6974 if (globals->symbian_p)
6366ff1e 6975 {
74541ad4
AM
6976 asection *osec;
6977
6366ff1e
MM
6978 /* On Symbian OS, the data segment and text segement
6979 can be relocated independently. Therefore, we
6980 must indicate the segment to which this
6981 relocation is relative. The BPABI allows us to
6982 use any symbol in the right segment; we just use
6983 the section symbol as it is convenient. (We
6984 cannot use the symbol given by "h" directly as it
74541ad4
AM
6985 will not appear in the dynamic symbol table.)
6986
6987 Note that the dynamic linker ignores the section
6988 symbol value, so we don't subtract osec->vma
6989 from the emitted reloc addend. */
10dbd1f3 6990 if (sym_sec)
74541ad4 6991 osec = sym_sec->output_section;
10dbd1f3 6992 else
74541ad4
AM
6993 osec = input_section->output_section;
6994 symbol = elf_section_data (osec)->dynindx;
6995 if (symbol == 0)
6996 {
6997 struct elf_link_hash_table *htab = elf_hash_table (info);
6998
6999 if ((osec->flags & SEC_READONLY) == 0
7000 && htab->data_index_section != NULL)
7001 osec = htab->data_index_section;
7002 else
7003 osec = htab->text_index_section;
7004 symbol = elf_section_data (osec)->dynindx;
7005 }
6366ff1e
MM
7006 BFD_ASSERT (symbol != 0);
7007 }
a16385dc
MM
7008 else
7009 /* On SVR4-ish systems, the dynamic loader cannot
7010 relocate the text and data segments independently,
7011 so the symbol does not matter. */
7012 symbol = 0;
7013 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
7014 if (globals->use_rel)
7015 relocate = TRUE;
7016 else
7017 outrel.r_addend += value;
252b5132 7018 }
f21f3fe0 7019
947216bf 7020 loc = sreloc->contents;
00a97672
RS
7021 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
7022 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9a5aca8c 7023
f21f3fe0 7024 /* If this reloc is against an external symbol, we do not want to
252b5132 7025 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 7026 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
7027 if (! relocate)
7028 return bfd_reloc_ok;
9a5aca8c 7029
f21f3fe0 7030 return _bfd_final_link_relocate (howto, input_bfd, input_section,
252b5132
RH
7031 contents, rel->r_offset, value,
7032 (bfd_vma) 0);
7033 }
7034 else switch (r_type)
7035 {
00a97672
RS
7036 case R_ARM_ABS12:
7037 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7038
dfc5f959 7039 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
7040 case R_ARM_CALL:
7041 case R_ARM_JUMP24:
8029a119 7042 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 7043 case R_ARM_PLT32:
906e58ca 7044 {
906e58ca
NC
7045 bfd_signed_vma branch_offset;
7046 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7047
dfc5f959 7048 if (r_type == R_ARM_XPC25)
252b5132 7049 {
dfc5f959
NC
7050 /* Check for Arm calling Arm function. */
7051 /* FIXME: Should we translate the instruction into a BL
7052 instruction instead ? */
7053 if (sym_flags != STT_ARM_TFUNC)
d003868e
AM
7054 (*_bfd_error_handler)
7055 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7056 input_bfd,
7057 h ? h->root.root.string : "(local)");
dfc5f959 7058 }
155d87d7 7059 else if (r_type == R_ARM_PC24)
dfc5f959
NC
7060 {
7061 /* Check for Arm calling Thumb function. */
7062 if (sym_flags == STT_ARM_TFUNC)
7063 {
f2a9dd69
DJ
7064 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7065 output_bfd, input_section,
7066 hit_data, sym_sec, rel->r_offset,
7067 signed_addend, value,
7068 error_message))
7069 return bfd_reloc_ok;
7070 else
7071 return bfd_reloc_dangerous;
dfc5f959 7072 }
252b5132 7073 }
ba96a88f 7074
906e58ca 7075 /* Check if a stub has to be inserted because the
8029a119 7076 destination is too far or we are changing mode. */
155d87d7
CL
7077 if ( r_type == R_ARM_CALL
7078 || r_type == R_ARM_JUMP24
7079 || r_type == R_ARM_PLT32)
906e58ca 7080 {
ffcb4889
NS
7081 bfd_vma from;
7082
5fa9e92f
CL
7083 /* If the call goes through a PLT entry, make sure to
7084 check distance to the right destination address. */
7085 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7086 {
7087 value = (splt->output_section->vma
7088 + splt->output_offset
7089 + h->plt.offset);
7090 *unresolved_reloc_p = FALSE;
67d74e43
DJ
7091 /* The PLT entry is in ARM mode, regardless of the
7092 target function. */
7093 sym_flags = STT_FUNC;
5fa9e92f
CL
7094 }
7095
7096 from = (input_section->output_section->vma
7097 + input_section->output_offset
7098 + rel->r_offset);
7099 branch_offset = (bfd_signed_vma)(value - from);
7100
906e58ca
NC
7101 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
7102 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
155d87d7
CL
7103 || ((sym_flags == STT_ARM_TFUNC)
7104 && (((r_type == R_ARM_CALL) && !globals->use_blx)
7105 || (r_type == R_ARM_JUMP24)
7106 || (r_type == R_ARM_PLT32) ))
7107 )
906e58ca
NC
7108 {
7109 /* The target is out of reach, so redirect the
7110 branch to the local stub for this function. */
7111
7112 stub_entry = elf32_arm_get_stub_entry (input_section,
7113 sym_sec, h,
7114 rel, globals);
7115 if (stub_entry != NULL)
7116 value = (stub_entry->stub_offset
7117 + stub_entry->stub_sec->output_offset
7118 + stub_entry->stub_sec->output_section->vma);
7119 }
7120 }
7121
dea514f5
PB
7122 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7123 where:
7124 S is the address of the symbol in the relocation.
7125 P is address of the instruction being relocated.
7126 A is the addend (extracted from the instruction) in bytes.
7127
7128 S is held in 'value'.
7129 P is the base address of the section containing the
7130 instruction plus the offset of the reloc into that
7131 section, ie:
7132 (input_section->output_section->vma +
7133 input_section->output_offset +
7134 rel->r_offset).
7135 A is the addend, converted into bytes, ie:
7136 (signed_addend * 4)
7137
7138 Note: None of these operations have knowledge of the pipeline
7139 size of the processor, thus it is up to the assembler to
7140 encode this information into the addend. */
7141 value -= (input_section->output_section->vma
7142 + input_section->output_offset);
7143 value -= rel->r_offset;
4e7fd91e
PB
7144 if (globals->use_rel)
7145 value += (signed_addend << howto->size);
7146 else
7147 /* RELA addends do not have to be adjusted by howto->size. */
7148 value += signed_addend;
23080146 7149
dcb5e6e6
NC
7150 signed_addend = value;
7151 signed_addend >>= howto->rightshift;
9a5aca8c 7152
5ab79981 7153 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 7154 the next instruction unless a PLT entry will be created.
cd1dac3d
DG
7155 Do the same for local undefined symbols.
7156 The jump to the next instruction is optimized as a NOP depending
7157 on the architecture. */
ffcb4889
NS
7158 if (h ? (h->root.type == bfd_link_hash_undefweak
7159 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7160 : bfd_is_und_section (sym_sec))
5ab79981 7161 {
cd1dac3d
DG
7162 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7163
7164 if (arch_has_arm_nop (globals))
7165 value |= 0x0320f000;
7166 else
7167 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
7168 }
7169 else
59f2c4e7 7170 {
9b485d32 7171 /* Perform a signed range check. */
dcb5e6e6 7172 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
7173 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7174 return bfd_reloc_overflow;
9a5aca8c 7175
5ab79981 7176 addend = (value & 2);
39b41c9c 7177
5ab79981
PB
7178 value = (signed_addend & howto->dst_mask)
7179 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 7180
5ab79981
PB
7181 if (r_type == R_ARM_CALL)
7182 {
155d87d7
CL
7183 /* Set the H bit in the BLX instruction. */
7184 if (sym_flags == STT_ARM_TFUNC)
7185 {
7186 if (addend)
7187 value |= (1 << 24);
7188 else
7189 value &= ~(bfd_vma)(1 << 24);
7190 }
7191
5ab79981 7192 /* Select the correct instruction (BL or BLX). */
906e58ca 7193 /* Only if we are not handling a BL to a stub. In this
8029a119 7194 case, mode switching is performed by the stub. */
906e58ca 7195 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
5ab79981
PB
7196 value |= (1 << 28);
7197 else
7198 {
7199 value &= ~(bfd_vma)(1 << 28);
7200 value |= (1 << 24);
7201 }
39b41c9c
PB
7202 }
7203 }
906e58ca 7204 }
252b5132 7205 break;
f21f3fe0 7206
252b5132
RH
7207 case R_ARM_ABS32:
7208 value += addend;
7209 if (sym_flags == STT_ARM_TFUNC)
7210 value |= 1;
7211 break;
f21f3fe0 7212
bb224fc3
MS
7213 case R_ARM_ABS32_NOI:
7214 value += addend;
7215 break;
7216
252b5132 7217 case R_ARM_REL32:
a8bc6c78
PB
7218 value += addend;
7219 if (sym_flags == STT_ARM_TFUNC)
7220 value |= 1;
252b5132 7221 value -= (input_section->output_section->vma
62efb346 7222 + input_section->output_offset + rel->r_offset);
252b5132 7223 break;
eb043451 7224
bb224fc3
MS
7225 case R_ARM_REL32_NOI:
7226 value += addend;
7227 value -= (input_section->output_section->vma
7228 + input_section->output_offset + rel->r_offset);
7229 break;
7230
eb043451
PB
7231 case R_ARM_PREL31:
7232 value -= (input_section->output_section->vma
7233 + input_section->output_offset + rel->r_offset);
7234 value += signed_addend;
7235 if (! h || h->root.type != bfd_link_hash_undefweak)
7236 {
8029a119 7237 /* Check for overflow. */
eb043451
PB
7238 if ((value ^ (value >> 1)) & (1 << 30))
7239 return bfd_reloc_overflow;
7240 }
7241 value &= 0x7fffffff;
7242 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7243 if (sym_flags == STT_ARM_TFUNC)
7244 value |= 1;
7245 break;
252b5132 7246 }
f21f3fe0 7247
252b5132
RH
7248 bfd_put_32 (input_bfd, value, hit_data);
7249 return bfd_reloc_ok;
7250
7251 case R_ARM_ABS8:
7252 value += addend;
4e67d4ca
DG
7253
7254 /* There is no way to tell whether the user intended to use a signed or
7255 unsigned addend. When checking for overflow we accept either,
7256 as specified by the AAELF. */
7257 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
7258 return bfd_reloc_overflow;
7259
7260 bfd_put_8 (input_bfd, value, hit_data);
7261 return bfd_reloc_ok;
7262
7263 case R_ARM_ABS16:
7264 value += addend;
7265
4e67d4ca
DG
7266 /* See comment for R_ARM_ABS8. */
7267 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
7268 return bfd_reloc_overflow;
7269
7270 bfd_put_16 (input_bfd, value, hit_data);
7271 return bfd_reloc_ok;
7272
252b5132 7273 case R_ARM_THM_ABS5:
9b485d32 7274 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
7275 if (globals->use_rel)
7276 {
7277 /* Need to refetch addend. */
7278 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7279 /* ??? Need to determine shift amount from operand size. */
7280 addend >>= howto->rightshift;
7281 }
252b5132
RH
7282 value += addend;
7283
7284 /* ??? Isn't value unsigned? */
7285 if ((long) value > 0x1f || (long) value < -0x10)
7286 return bfd_reloc_overflow;
7287
7288 /* ??? Value needs to be properly shifted into place first. */
7289 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7290 bfd_put_16 (input_bfd, value, hit_data);
7291 return bfd_reloc_ok;
7292
2cab6cc3
MS
7293 case R_ARM_THM_ALU_PREL_11_0:
7294 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7295 {
7296 bfd_vma insn;
7297 bfd_signed_vma relocation;
7298
7299 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7300 | bfd_get_16 (input_bfd, hit_data + 2);
7301
7302 if (globals->use_rel)
7303 {
7304 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7305 | ((insn & (1 << 26)) >> 15);
7306 if (insn & 0xf00000)
7307 signed_addend = -signed_addend;
7308 }
7309
7310 relocation = value + signed_addend;
7311 relocation -= (input_section->output_section->vma
7312 + input_section->output_offset
7313 + rel->r_offset);
7314
7315 value = abs (relocation);
7316
7317 if (value >= 0x1000)
7318 return bfd_reloc_overflow;
7319
7320 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7321 | ((value & 0x700) << 4)
7322 | ((value & 0x800) << 15);
7323 if (relocation < 0)
7324 insn |= 0xa00000;
7325
7326 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7327 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7328
7329 return bfd_reloc_ok;
7330 }
7331
e1ec24c6
NC
7332 case R_ARM_THM_PC8:
7333 /* PR 10073: This reloc is not generated by the GNU toolchain,
7334 but it is supported for compatibility with third party libraries
7335 generated by other compilers, specifically the ARM/IAR. */
7336 {
7337 bfd_vma insn;
7338 bfd_signed_vma relocation;
7339
7340 insn = bfd_get_16 (input_bfd, hit_data);
7341
7342 if (globals->use_rel)
7343 addend = (insn & 0x00ff) << 2;
7344
7345 relocation = value + addend;
7346 relocation -= (input_section->output_section->vma
7347 + input_section->output_offset
7348 + rel->r_offset);
7349
7350 value = abs (relocation);
7351
7352 /* We do not check for overflow of this reloc. Although strictly
7353 speaking this is incorrect, it appears to be necessary in order
7354 to work with IAR generated relocs. Since GCC and GAS do not
7355 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7356 a problem for them. */
7357 value &= 0x3fc;
7358
7359 insn = (insn & 0xff00) | (value >> 2);
7360
7361 bfd_put_16 (input_bfd, insn, hit_data);
7362
7363 return bfd_reloc_ok;
7364 }
7365
2cab6cc3
MS
7366 case R_ARM_THM_PC12:
7367 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7368 {
7369 bfd_vma insn;
7370 bfd_signed_vma relocation;
7371
7372 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7373 | bfd_get_16 (input_bfd, hit_data + 2);
7374
7375 if (globals->use_rel)
7376 {
7377 signed_addend = insn & 0xfff;
7378 if (!(insn & (1 << 23)))
7379 signed_addend = -signed_addend;
7380 }
7381
7382 relocation = value + signed_addend;
7383 relocation -= (input_section->output_section->vma
7384 + input_section->output_offset
7385 + rel->r_offset);
7386
7387 value = abs (relocation);
7388
7389 if (value >= 0x1000)
7390 return bfd_reloc_overflow;
7391
7392 insn = (insn & 0xff7ff000) | value;
7393 if (relocation >= 0)
7394 insn |= (1 << 23);
7395
7396 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7397 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7398
7399 return bfd_reloc_ok;
7400 }
7401
dfc5f959 7402 case R_ARM_THM_XPC22:
c19d1205 7403 case R_ARM_THM_CALL:
bd97cb95 7404 case R_ARM_THM_JUMP24:
dfc5f959 7405 /* Thumb BL (branch long instruction). */
252b5132 7406 {
b34976b6 7407 bfd_vma relocation;
e95de063 7408 bfd_vma reloc_sign;
b34976b6
AM
7409 bfd_boolean overflow = FALSE;
7410 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7411 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
7412 bfd_signed_vma reloc_signed_max;
7413 bfd_signed_vma reloc_signed_min;
b34976b6 7414 bfd_vma check;
252b5132 7415 bfd_signed_vma signed_check;
e95de063 7416 int bitsize;
cd1dac3d 7417 const int thumb2 = using_thumb2 (globals);
252b5132 7418
5ab79981 7419 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
7420 the next instruction unless a PLT entry will be created.
7421 The jump to the next instruction is optimized as a NOP.W for
7422 Thumb-2 enabled architectures. */
19540007
JM
7423 if (h && h->root.type == bfd_link_hash_undefweak
7424 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
5ab79981 7425 {
cd1dac3d
DG
7426 if (arch_has_thumb2_nop (globals))
7427 {
7428 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7429 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7430 }
7431 else
7432 {
7433 bfd_put_16 (input_bfd, 0xe000, hit_data);
7434 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7435 }
5ab79981
PB
7436 return bfd_reloc_ok;
7437 }
7438
e95de063
MS
7439 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7440 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
7441 if (globals->use_rel)
7442 {
e95de063
MS
7443 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7444 bfd_vma upper = upper_insn & 0x3ff;
7445 bfd_vma lower = lower_insn & 0x7ff;
7446 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7447 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7448 bfd_vma i1 = j1 ^ s ? 0 : 1;
7449 bfd_vma i2 = j2 ^ s ? 0 : 1;
7450
7451 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7452 /* Sign extend. */
7453 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7454
4e7fd91e
PB
7455 signed_addend = addend;
7456 }
cb1afa5c 7457
dfc5f959
NC
7458 if (r_type == R_ARM_THM_XPC22)
7459 {
7460 /* Check for Thumb to Thumb call. */
7461 /* FIXME: Should we translate the instruction into a BL
7462 instruction instead ? */
7463 if (sym_flags == STT_ARM_TFUNC)
d003868e
AM
7464 (*_bfd_error_handler)
7465 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7466 input_bfd,
7467 h ? h->root.root.string : "(local)");
dfc5f959
NC
7468 }
7469 else
252b5132 7470 {
dfc5f959
NC
7471 /* If it is not a call to Thumb, assume call to Arm.
7472 If it is a call relative to a section name, then it is not a
b7693d02
DJ
7473 function call at all, but rather a long jump. Calls through
7474 the PLT do not require stubs. */
7475 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7476 && (h == NULL || splt == NULL
7477 || h->plt.offset == (bfd_vma) -1))
dfc5f959 7478 {
bd97cb95 7479 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7480 {
7481 /* Convert BL to BLX. */
7482 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7483 }
155d87d7
CL
7484 else if (( r_type != R_ARM_THM_CALL)
7485 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
7486 {
7487 if (elf32_thumb_to_arm_stub
7488 (info, sym_name, input_bfd, output_bfd, input_section,
7489 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7490 error_message))
7491 return bfd_reloc_ok;
7492 else
7493 return bfd_reloc_dangerous;
7494 }
da5938a2 7495 }
bd97cb95
DJ
7496 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7497 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7498 {
7499 /* Make sure this is a BL. */
7500 lower_insn |= 0x1800;
7501 }
252b5132 7502 }
f21f3fe0 7503
b7693d02
DJ
7504 /* Handle calls via the PLT. */
7505 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7506 {
7507 value = (splt->output_section->vma
7508 + splt->output_offset
7509 + h->plt.offset);
bd97cb95 7510 if (globals->use_blx && r_type == R_ARM_THM_CALL)
33bfe774
JB
7511 {
7512 /* If the Thumb BLX instruction is available, convert the
7513 BL to a BLX instruction to call the ARM-mode PLT entry. */
39b41c9c 7514 lower_insn = (lower_insn & ~0x1000) | 0x0800;
67d74e43 7515 sym_flags = STT_FUNC;
33bfe774
JB
7516 }
7517 else
67d74e43
DJ
7518 {
7519 /* Target the Thumb stub before the ARM PLT entry. */
7520 value -= PLT_THUMB_STUB_SIZE;
7521 sym_flags = STT_ARM_TFUNC;
7522 }
0945cdfd 7523 *unresolved_reloc_p = FALSE;
b7693d02
DJ
7524 }
7525
155d87d7 7526 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
7527 {
7528 /* Check if a stub has to be inserted because the destination
8029a119 7529 is too far. */
906e58ca
NC
7530 bfd_vma from;
7531 bfd_signed_vma branch_offset;
7532 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7533
7534 from = (input_section->output_section->vma
7535 + input_section->output_offset
7536 + rel->r_offset);
7537 branch_offset = (bfd_signed_vma)(value - from);
7538
7539 if ((!thumb2
7540 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
7541 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
7542 ||
7543 (thumb2
7544 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
f4ac8484 7545 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
155d87d7
CL
7546 || ((sym_flags != STT_ARM_TFUNC)
7547 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
7548 || r_type == R_ARM_THM_JUMP24)))
906e58ca
NC
7549 {
7550 /* The target is out of reach or we are changing modes, so
7551 redirect the branch to the local stub for this
7552 function. */
7553 stub_entry = elf32_arm_get_stub_entry (input_section,
7554 sym_sec, h,
7555 rel, globals);
7556 if (stub_entry != NULL)
7557 value = (stub_entry->stub_offset
7558 + stub_entry->stub_sec->output_offset
7559 + stub_entry->stub_sec->output_section->vma);
7560
f4ac8484 7561 /* If this call becomes a call to Arm, force BLX. */
155d87d7 7562 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
7563 {
7564 if ((stub_entry
7565 && !arm_stub_is_thumb (stub_entry->stub_type))
7566 || (sym_flags != STT_ARM_TFUNC))
7567 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7568 }
906e58ca
NC
7569 }
7570 }
7571
ba96a88f 7572 relocation = value + signed_addend;
f21f3fe0 7573
252b5132 7574 relocation -= (input_section->output_section->vma
ba96a88f
NC
7575 + input_section->output_offset
7576 + rel->r_offset);
9a5aca8c 7577
252b5132
RH
7578 check = relocation >> howto->rightshift;
7579
7580 /* If this is a signed value, the rightshift just dropped
7581 leading 1 bits (assuming twos complement). */
7582 if ((bfd_signed_vma) relocation >= 0)
7583 signed_check = check;
7584 else
7585 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7586
e95de063
MS
7587 /* Calculate the permissable maximum and minimum values for
7588 this relocation according to whether we're relocating for
7589 Thumb-2 or not. */
7590 bitsize = howto->bitsize;
7591 if (!thumb2)
7592 bitsize -= 2;
f6ebfac0 7593 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
7594 reloc_signed_min = ~reloc_signed_max;
7595
252b5132 7596 /* Assumes two's complement. */
ba96a88f 7597 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 7598 overflow = TRUE;
252b5132 7599
bd97cb95 7600 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
7601 /* For a BLX instruction, make sure that the relocation is rounded up
7602 to a word boundary. This follows the semantics of the instruction
7603 which specifies that bit 1 of the target address will come from bit
7604 1 of the base address. */
7605 relocation = (relocation + 2) & ~ 3;
cb1afa5c 7606
e95de063
MS
7607 /* Put RELOCATION back into the insn. Assumes two's complement.
7608 We use the Thumb-2 encoding, which is safe even if dealing with
7609 a Thumb-1 instruction by virtue of our overflow check above. */
7610 reloc_sign = (signed_check < 0) ? 1 : 0;
7611 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7612 | ((relocation >> 12) & 0x3ff)
7613 | (reloc_sign << 10);
906e58ca 7614 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
e95de063
MS
7615 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7616 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7617 | ((relocation >> 1) & 0x7ff);
c62e1cc3 7618
252b5132
RH
7619 /* Put the relocated value back in the object file: */
7620 bfd_put_16 (input_bfd, upper_insn, hit_data);
7621 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7622
7623 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7624 }
7625 break;
7626
c19d1205
ZW
7627 case R_ARM_THM_JUMP19:
7628 /* Thumb32 conditional branch instruction. */
7629 {
7630 bfd_vma relocation;
7631 bfd_boolean overflow = FALSE;
7632 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7633 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
7634 bfd_signed_vma reloc_signed_max = 0xffffe;
7635 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
7636 bfd_signed_vma signed_check;
7637
7638 /* Need to refetch the addend, reconstruct the top three bits,
7639 and squish the two 11 bit pieces together. */
7640 if (globals->use_rel)
7641 {
7642 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 7643 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
7644 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
7645 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
7646 bfd_vma lower = (lower_insn & 0x07ff);
7647
a00a1f35
MS
7648 upper |= J1 << 6;
7649 upper |= J2 << 7;
7650 upper |= (!S) << 8;
c19d1205
ZW
7651 upper -= 0x0100; /* Sign extend. */
7652
7653 addend = (upper << 12) | (lower << 1);
7654 signed_addend = addend;
7655 }
7656
bd97cb95
DJ
7657 /* Handle calls via the PLT. */
7658 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7659 {
7660 value = (splt->output_section->vma
7661 + splt->output_offset
7662 + h->plt.offset);
7663 /* Target the Thumb stub before the ARM PLT entry. */
7664 value -= PLT_THUMB_STUB_SIZE;
7665 *unresolved_reloc_p = FALSE;
7666 }
7667
c19d1205
ZW
7668 /* ??? Should handle interworking? GCC might someday try to
7669 use this for tail calls. */
7670
7671 relocation = value + signed_addend;
7672 relocation -= (input_section->output_section->vma
7673 + input_section->output_offset
7674 + rel->r_offset);
a00a1f35 7675 signed_check = (bfd_signed_vma) relocation;
c19d1205 7676
c19d1205
ZW
7677 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7678 overflow = TRUE;
7679
7680 /* Put RELOCATION back into the insn. */
7681 {
7682 bfd_vma S = (relocation & 0x00100000) >> 20;
7683 bfd_vma J2 = (relocation & 0x00080000) >> 19;
7684 bfd_vma J1 = (relocation & 0x00040000) >> 18;
7685 bfd_vma hi = (relocation & 0x0003f000) >> 12;
7686 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
7687
a00a1f35 7688 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
7689 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7690 }
7691
7692 /* Put the relocated value back in the object file: */
7693 bfd_put_16 (input_bfd, upper_insn, hit_data);
7694 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7695
7696 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7697 }
7698
7699 case R_ARM_THM_JUMP11:
7700 case R_ARM_THM_JUMP8:
7701 case R_ARM_THM_JUMP6:
51c5503b
NC
7702 /* Thumb B (branch) instruction). */
7703 {
6cf9e9fe 7704 bfd_signed_vma relocation;
51c5503b
NC
7705 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7706 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
7707 bfd_signed_vma signed_check;
7708
c19d1205
ZW
7709 /* CZB cannot jump backward. */
7710 if (r_type == R_ARM_THM_JUMP6)
7711 reloc_signed_min = 0;
7712
4e7fd91e 7713 if (globals->use_rel)
6cf9e9fe 7714 {
4e7fd91e
PB
7715 /* Need to refetch addend. */
7716 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7717 if (addend & ((howto->src_mask + 1) >> 1))
7718 {
7719 signed_addend = -1;
7720 signed_addend &= ~ howto->src_mask;
7721 signed_addend |= addend;
7722 }
7723 else
7724 signed_addend = addend;
7725 /* The value in the insn has been right shifted. We need to
7726 undo this, so that we can perform the address calculation
7727 in terms of bytes. */
7728 signed_addend <<= howto->rightshift;
6cf9e9fe 7729 }
6cf9e9fe 7730 relocation = value + signed_addend;
51c5503b
NC
7731
7732 relocation -= (input_section->output_section->vma
7733 + input_section->output_offset
7734 + rel->r_offset);
7735
6cf9e9fe
NC
7736 relocation >>= howto->rightshift;
7737 signed_check = relocation;
c19d1205
ZW
7738
7739 if (r_type == R_ARM_THM_JUMP6)
7740 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7741 else
7742 relocation &= howto->dst_mask;
51c5503b 7743 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 7744
51c5503b
NC
7745 bfd_put_16 (input_bfd, relocation, hit_data);
7746
7747 /* Assumes two's complement. */
7748 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7749 return bfd_reloc_overflow;
7750
7751 return bfd_reloc_ok;
7752 }
cedb70c5 7753
8375c36b
PB
7754 case R_ARM_ALU_PCREL7_0:
7755 case R_ARM_ALU_PCREL15_8:
7756 case R_ARM_ALU_PCREL23_15:
7757 {
7758 bfd_vma insn;
7759 bfd_vma relocation;
7760
7761 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
7762 if (globals->use_rel)
7763 {
7764 /* Extract the addend. */
7765 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7766 signed_addend = addend;
7767 }
8375c36b
PB
7768 relocation = value + signed_addend;
7769
7770 relocation -= (input_section->output_section->vma
7771 + input_section->output_offset
7772 + rel->r_offset);
7773 insn = (insn & ~0xfff)
7774 | ((howto->bitpos << 7) & 0xf00)
7775 | ((relocation >> howto->bitpos) & 0xff);
7776 bfd_put_32 (input_bfd, value, hit_data);
7777 }
7778 return bfd_reloc_ok;
7779
252b5132
RH
7780 case R_ARM_GNU_VTINHERIT:
7781 case R_ARM_GNU_VTENTRY:
7782 return bfd_reloc_ok;
7783
c19d1205 7784 case R_ARM_GOTOFF32:
252b5132
RH
7785 /* Relocation is relative to the start of the
7786 global offset table. */
7787
7788 BFD_ASSERT (sgot != NULL);
7789 if (sgot == NULL)
7790 return bfd_reloc_notsupported;
9a5aca8c 7791
cedb70c5 7792 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
7793 address by one, so that attempts to call the function pointer will
7794 correctly interpret it as Thumb code. */
7795 if (sym_flags == STT_ARM_TFUNC)
7796 value += 1;
7797
252b5132
RH
7798 /* Note that sgot->output_offset is not involved in this
7799 calculation. We always want the start of .got. If we
7800 define _GLOBAL_OFFSET_TABLE in a different way, as is
7801 permitted by the ABI, we might have to change this
9b485d32 7802 calculation. */
252b5132 7803 value -= sgot->output_section->vma;
f21f3fe0 7804 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7805 contents, rel->r_offset, value,
00a97672 7806 rel->r_addend);
252b5132
RH
7807
7808 case R_ARM_GOTPC:
a7c10850 7809 /* Use global offset table as symbol value. */
252b5132 7810 BFD_ASSERT (sgot != NULL);
f21f3fe0 7811
252b5132
RH
7812 if (sgot == NULL)
7813 return bfd_reloc_notsupported;
7814
0945cdfd 7815 *unresolved_reloc_p = FALSE;
252b5132 7816 value = sgot->output_section->vma;
f21f3fe0 7817 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7818 contents, rel->r_offset, value,
00a97672 7819 rel->r_addend);
f21f3fe0 7820
252b5132 7821 case R_ARM_GOT32:
eb043451 7822 case R_ARM_GOT_PREL:
252b5132 7823 /* Relocation is to the entry for this symbol in the
9b485d32 7824 global offset table. */
252b5132
RH
7825 if (sgot == NULL)
7826 return bfd_reloc_notsupported;
f21f3fe0 7827
252b5132
RH
7828 if (h != NULL)
7829 {
7830 bfd_vma off;
5e681ec4 7831 bfd_boolean dyn;
f21f3fe0 7832
252b5132
RH
7833 off = h->got.offset;
7834 BFD_ASSERT (off != (bfd_vma) -1);
5e681ec4 7835 dyn = globals->root.dynamic_sections_created;
f21f3fe0 7836
5e681ec4 7837 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
50d6c878 7838 || (info->shared
5e681ec4
PB
7839 && SYMBOL_REFERENCES_LOCAL (info, h))
7840 || (ELF_ST_VISIBILITY (h->other)
7841 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
7842 {
7843 /* This is actually a static link, or it is a -Bsymbolic link
7844 and the symbol is defined locally. We must initialize this
7845 entry in the global offset table. Since the offset must
7846 always be a multiple of 4, we use the least significant bit
7847 to record whether we have initialized it already.
f21f3fe0 7848
00a97672 7849 When doing a dynamic link, we create a .rel(a).got relocation
f21f3fe0 7850 entry to initialize the value. This is done in the
9b485d32 7851 finish_dynamic_symbol routine. */
252b5132
RH
7852 if ((off & 1) != 0)
7853 off &= ~1;
7854 else
7855 {
ee29b9fb
RE
7856 /* If we are addressing a Thumb function, we need to
7857 adjust the address by one, so that attempts to
7858 call the function pointer will correctly
7859 interpret it as Thumb code. */
7860 if (sym_flags == STT_ARM_TFUNC)
7861 value |= 1;
7862
252b5132
RH
7863 bfd_put_32 (output_bfd, value, sgot->contents + off);
7864 h->got.offset |= 1;
7865 }
7866 }
0945cdfd
DJ
7867 else
7868 *unresolved_reloc_p = FALSE;
f21f3fe0 7869
252b5132
RH
7870 value = sgot->output_offset + off;
7871 }
7872 else
7873 {
7874 bfd_vma off;
f21f3fe0 7875
252b5132
RH
7876 BFD_ASSERT (local_got_offsets != NULL &&
7877 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 7878
252b5132 7879 off = local_got_offsets[r_symndx];
f21f3fe0 7880
252b5132
RH
7881 /* The offset must always be a multiple of 4. We use the
7882 least significant bit to record whether we have already
9b485d32 7883 generated the necessary reloc. */
252b5132
RH
7884 if ((off & 1) != 0)
7885 off &= ~1;
7886 else
7887 {
b7693d02
DJ
7888 /* If we are addressing a Thumb function, we need to
7889 adjust the address by one, so that attempts to
7890 call the function pointer will correctly
7891 interpret it as Thumb code. */
7892 if (sym_flags == STT_ARM_TFUNC)
7893 value |= 1;
7894
00a97672
RS
7895 if (globals->use_rel)
7896 bfd_put_32 (output_bfd, value, sgot->contents + off);
f21f3fe0 7897
252b5132
RH
7898 if (info->shared)
7899 {
7900 asection * srelgot;
947216bf
AM
7901 Elf_Internal_Rela outrel;
7902 bfd_byte *loc;
f21f3fe0 7903
00a97672
RS
7904 srelgot = (bfd_get_section_by_name
7905 (dynobj, RELOC_SECTION (globals, ".got")));
252b5132 7906 BFD_ASSERT (srelgot != NULL);
f21f3fe0 7907
00a97672 7908 outrel.r_addend = addend + value;
252b5132 7909 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 7910 + sgot->output_offset
252b5132
RH
7911 + off);
7912 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
947216bf 7913 loc = srelgot->contents;
00a97672
RS
7914 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7915 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
252b5132 7916 }
f21f3fe0 7917
252b5132
RH
7918 local_got_offsets[r_symndx] |= 1;
7919 }
f21f3fe0 7920
252b5132
RH
7921 value = sgot->output_offset + off;
7922 }
eb043451
PB
7923 if (r_type != R_ARM_GOT32)
7924 value += sgot->output_section->vma;
9a5aca8c 7925
f21f3fe0 7926 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7927 contents, rel->r_offset, value,
00a97672 7928 rel->r_addend);
f21f3fe0 7929
ba93b8ac
DJ
7930 case R_ARM_TLS_LDO32:
7931 value = value - dtpoff_base (info);
7932
7933 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
7934 contents, rel->r_offset, value,
7935 rel->r_addend);
ba93b8ac
DJ
7936
7937 case R_ARM_TLS_LDM32:
7938 {
7939 bfd_vma off;
7940
7941 if (globals->sgot == NULL)
7942 abort ();
7943
7944 off = globals->tls_ldm_got.offset;
7945
7946 if ((off & 1) != 0)
7947 off &= ~1;
7948 else
7949 {
7950 /* If we don't know the module number, create a relocation
7951 for it. */
7952 if (info->shared)
7953 {
7954 Elf_Internal_Rela outrel;
7955 bfd_byte *loc;
7956
7957 if (globals->srelgot == NULL)
7958 abort ();
7959
00a97672 7960 outrel.r_addend = 0;
ba93b8ac
DJ
7961 outrel.r_offset = (globals->sgot->output_section->vma
7962 + globals->sgot->output_offset + off);
7963 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7964
00a97672
RS
7965 if (globals->use_rel)
7966 bfd_put_32 (output_bfd, outrel.r_addend,
7967 globals->sgot->contents + off);
ba93b8ac
DJ
7968
7969 loc = globals->srelgot->contents;
00a97672
RS
7970 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7971 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
7972 }
7973 else
7974 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7975
7976 globals->tls_ldm_got.offset |= 1;
7977 }
7978
906e58ca 7979 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
7980 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7981
7982 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7983 contents, rel->r_offset, value,
00a97672 7984 rel->r_addend);
ba93b8ac
DJ
7985 }
7986
7987 case R_ARM_TLS_GD32:
7988 case R_ARM_TLS_IE32:
7989 {
7990 bfd_vma off;
7991 int indx;
7992 char tls_type;
7993
7994 if (globals->sgot == NULL)
7995 abort ();
7996
7997 indx = 0;
7998 if (h != NULL)
7999 {
8000 bfd_boolean dyn;
8001 dyn = globals->root.dynamic_sections_created;
8002 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8003 && (!info->shared
8004 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8005 {
8006 *unresolved_reloc_p = FALSE;
8007 indx = h->dynindx;
8008 }
8009 off = h->got.offset;
8010 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
8011 }
8012 else
8013 {
8014 if (local_got_offsets == NULL)
8015 abort ();
8016 off = local_got_offsets[r_symndx];
8017 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
8018 }
8019
8020 if (tls_type == GOT_UNKNOWN)
8021 abort ();
8022
8023 if ((off & 1) != 0)
8024 off &= ~1;
8025 else
8026 {
8027 bfd_boolean need_relocs = FALSE;
8028 Elf_Internal_Rela outrel;
8029 bfd_byte *loc = NULL;
8030 int cur_off = off;
8031
8032 /* The GOT entries have not been initialized yet. Do it
8033 now, and emit any relocations. If both an IE GOT and a
8034 GD GOT are necessary, we emit the GD first. */
8035
8036 if ((info->shared || indx != 0)
8037 && (h == NULL
8038 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8039 || h->root.type != bfd_link_hash_undefweak))
8040 {
8041 need_relocs = TRUE;
8042 if (globals->srelgot == NULL)
8043 abort ();
8044 loc = globals->srelgot->contents;
00a97672 8045 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
ba93b8ac
DJ
8046 }
8047
8048 if (tls_type & GOT_TLS_GD)
8049 {
8050 if (need_relocs)
8051 {
00a97672 8052 outrel.r_addend = 0;
ba93b8ac 8053 outrel.r_offset = (globals->sgot->output_section->vma
00a97672
RS
8054 + globals->sgot->output_offset
8055 + cur_off);
ba93b8ac 8056 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 8057
00a97672
RS
8058 if (globals->use_rel)
8059 bfd_put_32 (output_bfd, outrel.r_addend,
8060 globals->sgot->contents + cur_off);
8061
8062 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8063 globals->srelgot->reloc_count++;
00a97672 8064 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8065
8066 if (indx == 0)
8067 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8068 globals->sgot->contents + cur_off + 4);
8069 else
8070 {
00a97672 8071 outrel.r_addend = 0;
ba93b8ac
DJ
8072 outrel.r_info = ELF32_R_INFO (indx,
8073 R_ARM_TLS_DTPOFF32);
8074 outrel.r_offset += 4;
00a97672
RS
8075
8076 if (globals->use_rel)
8077 bfd_put_32 (output_bfd, outrel.r_addend,
8078 globals->sgot->contents + cur_off + 4);
8079
8080
8081 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8082 globals->srelgot->reloc_count++;
00a97672 8083 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8084 }
8085 }
8086 else
8087 {
8088 /* If we are not emitting relocations for a
8089 general dynamic reference, then we must be in a
8090 static link or an executable link with the
8091 symbol binding locally. Mark it as belonging
8092 to module 1, the executable. */
8093 bfd_put_32 (output_bfd, 1,
8094 globals->sgot->contents + cur_off);
8095 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8096 globals->sgot->contents + cur_off + 4);
8097 }
8098
8099 cur_off += 8;
8100 }
8101
8102 if (tls_type & GOT_TLS_IE)
8103 {
8104 if (need_relocs)
8105 {
00a97672
RS
8106 if (indx == 0)
8107 outrel.r_addend = value - dtpoff_base (info);
8108 else
8109 outrel.r_addend = 0;
ba93b8ac
DJ
8110 outrel.r_offset = (globals->sgot->output_section->vma
8111 + globals->sgot->output_offset
8112 + cur_off);
8113 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8114
00a97672
RS
8115 if (globals->use_rel)
8116 bfd_put_32 (output_bfd, outrel.r_addend,
ba93b8ac
DJ
8117 globals->sgot->contents + cur_off);
8118
00a97672 8119 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8120 globals->srelgot->reloc_count++;
00a97672 8121 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8122 }
8123 else
8124 bfd_put_32 (output_bfd, tpoff (info, value),
8125 globals->sgot->contents + cur_off);
8126 cur_off += 4;
8127 }
8128
8129 if (h != NULL)
8130 h->got.offset |= 1;
8131 else
8132 local_got_offsets[r_symndx] |= 1;
8133 }
8134
8135 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8136 off += 8;
906e58ca 8137 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
8138 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8139
8140 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8141 contents, rel->r_offset, value,
00a97672 8142 rel->r_addend);
ba93b8ac
DJ
8143 }
8144
8145 case R_ARM_TLS_LE32:
8146 if (info->shared)
8147 {
8148 (*_bfd_error_handler)
8149 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8150 input_bfd, input_section,
8151 (long) rel->r_offset, howto->name);
21d799b5 8152 return (bfd_reloc_status_type) FALSE;
ba93b8ac
DJ
8153 }
8154 else
8155 value = tpoff (info, value);
906e58ca 8156
ba93b8ac 8157 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
8158 contents, rel->r_offset, value,
8159 rel->r_addend);
ba93b8ac 8160
319850b4
JB
8161 case R_ARM_V4BX:
8162 if (globals->fix_v4bx)
845b51d6
PB
8163 {
8164 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 8165
845b51d6
PB
8166 /* Ensure that we have a BX instruction. */
8167 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 8168
845b51d6
PB
8169 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8170 {
8171 /* Branch to veneer. */
8172 bfd_vma glue_addr;
8173 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8174 glue_addr -= input_section->output_section->vma
8175 + input_section->output_offset
8176 + rel->r_offset + 8;
8177 insn = (insn & 0xf0000000) | 0x0a000000
8178 | ((glue_addr >> 2) & 0x00ffffff);
8179 }
8180 else
8181 {
8182 /* Preserve Rm (lowest four bits) and the condition code
8183 (highest four bits). Other bits encode MOV PC,Rm. */
8184 insn = (insn & 0xf000000f) | 0x01a0f000;
8185 }
319850b4 8186
845b51d6
PB
8187 bfd_put_32 (input_bfd, insn, hit_data);
8188 }
319850b4
JB
8189 return bfd_reloc_ok;
8190
b6895b4f
PB
8191 case R_ARM_MOVW_ABS_NC:
8192 case R_ARM_MOVT_ABS:
8193 case R_ARM_MOVW_PREL_NC:
8194 case R_ARM_MOVT_PREL:
92f5d02b
MS
8195 /* Until we properly support segment-base-relative addressing then
8196 we assume the segment base to be zero, as for the group relocations.
8197 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8198 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8199 case R_ARM_MOVW_BREL_NC:
8200 case R_ARM_MOVW_BREL:
8201 case R_ARM_MOVT_BREL:
b6895b4f
PB
8202 {
8203 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8204
8205 if (globals->use_rel)
8206 {
8207 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 8208 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8209 }
92f5d02b 8210
b6895b4f 8211 value += signed_addend;
b6895b4f
PB
8212
8213 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8214 value -= (input_section->output_section->vma
8215 + input_section->output_offset + rel->r_offset);
8216
92f5d02b
MS
8217 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8218 return bfd_reloc_overflow;
8219
8220 if (sym_flags == STT_ARM_TFUNC)
8221 value |= 1;
8222
8223 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8224 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
8225 value >>= 16;
8226
8227 insn &= 0xfff0f000;
8228 insn |= value & 0xfff;
8229 insn |= (value & 0xf000) << 4;
8230 bfd_put_32 (input_bfd, insn, hit_data);
8231 }
8232 return bfd_reloc_ok;
8233
8234 case R_ARM_THM_MOVW_ABS_NC:
8235 case R_ARM_THM_MOVT_ABS:
8236 case R_ARM_THM_MOVW_PREL_NC:
8237 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
8238 /* Until we properly support segment-base-relative addressing then
8239 we assume the segment base to be zero, as for the above relocations.
8240 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8241 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8242 as R_ARM_THM_MOVT_ABS. */
8243 case R_ARM_THM_MOVW_BREL_NC:
8244 case R_ARM_THM_MOVW_BREL:
8245 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
8246 {
8247 bfd_vma insn;
906e58ca 8248
b6895b4f
PB
8249 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8250 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8251
8252 if (globals->use_rel)
8253 {
8254 addend = ((insn >> 4) & 0xf000)
8255 | ((insn >> 15) & 0x0800)
8256 | ((insn >> 4) & 0x0700)
8257 | (insn & 0x00ff);
39623e12 8258 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8259 }
92f5d02b 8260
b6895b4f 8261 value += signed_addend;
b6895b4f
PB
8262
8263 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8264 value -= (input_section->output_section->vma
8265 + input_section->output_offset + rel->r_offset);
8266
92f5d02b
MS
8267 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8268 return bfd_reloc_overflow;
8269
8270 if (sym_flags == STT_ARM_TFUNC)
8271 value |= 1;
8272
8273 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8274 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
8275 value >>= 16;
8276
8277 insn &= 0xfbf08f00;
8278 insn |= (value & 0xf000) << 4;
8279 insn |= (value & 0x0800) << 15;
8280 insn |= (value & 0x0700) << 4;
8281 insn |= (value & 0x00ff);
8282
8283 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8284 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8285 }
8286 return bfd_reloc_ok;
8287
4962c51a
MS
8288 case R_ARM_ALU_PC_G0_NC:
8289 case R_ARM_ALU_PC_G1_NC:
8290 case R_ARM_ALU_PC_G0:
8291 case R_ARM_ALU_PC_G1:
8292 case R_ARM_ALU_PC_G2:
8293 case R_ARM_ALU_SB_G0_NC:
8294 case R_ARM_ALU_SB_G1_NC:
8295 case R_ARM_ALU_SB_G0:
8296 case R_ARM_ALU_SB_G1:
8297 case R_ARM_ALU_SB_G2:
8298 {
8299 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8300 bfd_vma pc = input_section->output_section->vma
8301 + input_section->output_offset + rel->r_offset;
8302 /* sb should be the origin of the *segment* containing the symbol.
8303 It is not clear how to obtain this OS-dependent value, so we
8304 make an arbitrary choice of zero. */
8305 bfd_vma sb = 0;
8306 bfd_vma residual;
8307 bfd_vma g_n;
8308 bfd_signed_vma signed_value;
8309 int group = 0;
8310
8311 /* Determine which group of bits to select. */
8312 switch (r_type)
8313 {
8314 case R_ARM_ALU_PC_G0_NC:
8315 case R_ARM_ALU_PC_G0:
8316 case R_ARM_ALU_SB_G0_NC:
8317 case R_ARM_ALU_SB_G0:
8318 group = 0;
8319 break;
8320
8321 case R_ARM_ALU_PC_G1_NC:
8322 case R_ARM_ALU_PC_G1:
8323 case R_ARM_ALU_SB_G1_NC:
8324 case R_ARM_ALU_SB_G1:
8325 group = 1;
8326 break;
8327
8328 case R_ARM_ALU_PC_G2:
8329 case R_ARM_ALU_SB_G2:
8330 group = 2;
8331 break;
8332
8333 default:
906e58ca 8334 abort ();
4962c51a
MS
8335 }
8336
8337 /* If REL, extract the addend from the insn. If RELA, it will
8338 have already been fetched for us. */
8339 if (globals->use_rel)
8340 {
8341 int negative;
8342 bfd_vma constant = insn & 0xff;
8343 bfd_vma rotation = (insn & 0xf00) >> 8;
8344
8345 if (rotation == 0)
8346 signed_addend = constant;
8347 else
8348 {
8349 /* Compensate for the fact that in the instruction, the
8350 rotation is stored in multiples of 2 bits. */
8351 rotation *= 2;
8352
8353 /* Rotate "constant" right by "rotation" bits. */
8354 signed_addend = (constant >> rotation) |
8355 (constant << (8 * sizeof (bfd_vma) - rotation));
8356 }
8357
8358 /* Determine if the instruction is an ADD or a SUB.
8359 (For REL, this determines the sign of the addend.) */
8360 negative = identify_add_or_sub (insn);
8361 if (negative == 0)
8362 {
8363 (*_bfd_error_handler)
8364 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8365 input_bfd, input_section,
8366 (long) rel->r_offset, howto->name);
906e58ca 8367 return bfd_reloc_overflow;
4962c51a
MS
8368 }
8369
8370 signed_addend *= negative;
8371 }
8372
8373 /* Compute the value (X) to go in the place. */
8374 if (r_type == R_ARM_ALU_PC_G0_NC
8375 || r_type == R_ARM_ALU_PC_G1_NC
8376 || r_type == R_ARM_ALU_PC_G0
8377 || r_type == R_ARM_ALU_PC_G1
8378 || r_type == R_ARM_ALU_PC_G2)
8379 /* PC relative. */
8380 signed_value = value - pc + signed_addend;
8381 else
8382 /* Section base relative. */
8383 signed_value = value - sb + signed_addend;
8384
8385 /* If the target symbol is a Thumb function, then set the
8386 Thumb bit in the address. */
8387 if (sym_flags == STT_ARM_TFUNC)
8388 signed_value |= 1;
8389
8390 /* Calculate the value of the relevant G_n, in encoded
8391 constant-with-rotation format. */
8392 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8393 &residual);
8394
8395 /* Check for overflow if required. */
8396 if ((r_type == R_ARM_ALU_PC_G0
8397 || r_type == R_ARM_ALU_PC_G1
8398 || r_type == R_ARM_ALU_PC_G2
8399 || r_type == R_ARM_ALU_SB_G0
8400 || r_type == R_ARM_ALU_SB_G1
8401 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8402 {
8403 (*_bfd_error_handler)
8404 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8405 input_bfd, input_section,
8406 (long) rel->r_offset, abs (signed_value), howto->name);
8407 return bfd_reloc_overflow;
8408 }
8409
8410 /* Mask out the value and the ADD/SUB part of the opcode; take care
8411 not to destroy the S bit. */
8412 insn &= 0xff1ff000;
8413
8414 /* Set the opcode according to whether the value to go in the
8415 place is negative. */
8416 if (signed_value < 0)
8417 insn |= 1 << 22;
8418 else
8419 insn |= 1 << 23;
8420
8421 /* Encode the offset. */
8422 insn |= g_n;
8423
8424 bfd_put_32 (input_bfd, insn, hit_data);
8425 }
8426 return bfd_reloc_ok;
8427
8428 case R_ARM_LDR_PC_G0:
8429 case R_ARM_LDR_PC_G1:
8430 case R_ARM_LDR_PC_G2:
8431 case R_ARM_LDR_SB_G0:
8432 case R_ARM_LDR_SB_G1:
8433 case R_ARM_LDR_SB_G2:
8434 {
8435 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8436 bfd_vma pc = input_section->output_section->vma
8437 + input_section->output_offset + rel->r_offset;
8438 bfd_vma sb = 0; /* See note above. */
8439 bfd_vma residual;
8440 bfd_signed_vma signed_value;
8441 int group = 0;
8442
8443 /* Determine which groups of bits to calculate. */
8444 switch (r_type)
8445 {
8446 case R_ARM_LDR_PC_G0:
8447 case R_ARM_LDR_SB_G0:
8448 group = 0;
8449 break;
8450
8451 case R_ARM_LDR_PC_G1:
8452 case R_ARM_LDR_SB_G1:
8453 group = 1;
8454 break;
8455
8456 case R_ARM_LDR_PC_G2:
8457 case R_ARM_LDR_SB_G2:
8458 group = 2;
8459 break;
8460
8461 default:
906e58ca 8462 abort ();
4962c51a
MS
8463 }
8464
8465 /* If REL, extract the addend from the insn. If RELA, it will
8466 have already been fetched for us. */
8467 if (globals->use_rel)
8468 {
8469 int negative = (insn & (1 << 23)) ? 1 : -1;
8470 signed_addend = negative * (insn & 0xfff);
8471 }
8472
8473 /* Compute the value (X) to go in the place. */
8474 if (r_type == R_ARM_LDR_PC_G0
8475 || r_type == R_ARM_LDR_PC_G1
8476 || r_type == R_ARM_LDR_PC_G2)
8477 /* PC relative. */
8478 signed_value = value - pc + signed_addend;
8479 else
8480 /* Section base relative. */
8481 signed_value = value - sb + signed_addend;
8482
8483 /* Calculate the value of the relevant G_{n-1} to obtain
8484 the residual at that stage. */
8485 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8486
8487 /* Check for overflow. */
8488 if (residual >= 0x1000)
8489 {
8490 (*_bfd_error_handler)
8491 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8492 input_bfd, input_section,
8493 (long) rel->r_offset, abs (signed_value), howto->name);
8494 return bfd_reloc_overflow;
8495 }
8496
8497 /* Mask out the value and U bit. */
8498 insn &= 0xff7ff000;
8499
8500 /* Set the U bit if the value to go in the place is non-negative. */
8501 if (signed_value >= 0)
8502 insn |= 1 << 23;
8503
8504 /* Encode the offset. */
8505 insn |= residual;
8506
8507 bfd_put_32 (input_bfd, insn, hit_data);
8508 }
8509 return bfd_reloc_ok;
8510
8511 case R_ARM_LDRS_PC_G0:
8512 case R_ARM_LDRS_PC_G1:
8513 case R_ARM_LDRS_PC_G2:
8514 case R_ARM_LDRS_SB_G0:
8515 case R_ARM_LDRS_SB_G1:
8516 case R_ARM_LDRS_SB_G2:
8517 {
8518 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8519 bfd_vma pc = input_section->output_section->vma
8520 + input_section->output_offset + rel->r_offset;
8521 bfd_vma sb = 0; /* See note above. */
8522 bfd_vma residual;
8523 bfd_signed_vma signed_value;
8524 int group = 0;
8525
8526 /* Determine which groups of bits to calculate. */
8527 switch (r_type)
8528 {
8529 case R_ARM_LDRS_PC_G0:
8530 case R_ARM_LDRS_SB_G0:
8531 group = 0;
8532 break;
8533
8534 case R_ARM_LDRS_PC_G1:
8535 case R_ARM_LDRS_SB_G1:
8536 group = 1;
8537 break;
8538
8539 case R_ARM_LDRS_PC_G2:
8540 case R_ARM_LDRS_SB_G2:
8541 group = 2;
8542 break;
8543
8544 default:
906e58ca 8545 abort ();
4962c51a
MS
8546 }
8547
8548 /* If REL, extract the addend from the insn. If RELA, it will
8549 have already been fetched for us. */
8550 if (globals->use_rel)
8551 {
8552 int negative = (insn & (1 << 23)) ? 1 : -1;
8553 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8554 }
8555
8556 /* Compute the value (X) to go in the place. */
8557 if (r_type == R_ARM_LDRS_PC_G0
8558 || r_type == R_ARM_LDRS_PC_G1
8559 || r_type == R_ARM_LDRS_PC_G2)
8560 /* PC relative. */
8561 signed_value = value - pc + signed_addend;
8562 else
8563 /* Section base relative. */
8564 signed_value = value - sb + signed_addend;
8565
8566 /* Calculate the value of the relevant G_{n-1} to obtain
8567 the residual at that stage. */
8568 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8569
8570 /* Check for overflow. */
8571 if (residual >= 0x100)
8572 {
8573 (*_bfd_error_handler)
8574 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8575 input_bfd, input_section,
8576 (long) rel->r_offset, abs (signed_value), howto->name);
8577 return bfd_reloc_overflow;
8578 }
8579
8580 /* Mask out the value and U bit. */
8581 insn &= 0xff7ff0f0;
8582
8583 /* Set the U bit if the value to go in the place is non-negative. */
8584 if (signed_value >= 0)
8585 insn |= 1 << 23;
8586
8587 /* Encode the offset. */
8588 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8589
8590 bfd_put_32 (input_bfd, insn, hit_data);
8591 }
8592 return bfd_reloc_ok;
8593
8594 case R_ARM_LDC_PC_G0:
8595 case R_ARM_LDC_PC_G1:
8596 case R_ARM_LDC_PC_G2:
8597 case R_ARM_LDC_SB_G0:
8598 case R_ARM_LDC_SB_G1:
8599 case R_ARM_LDC_SB_G2:
8600 {
8601 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8602 bfd_vma pc = input_section->output_section->vma
8603 + input_section->output_offset + rel->r_offset;
8604 bfd_vma sb = 0; /* See note above. */
8605 bfd_vma residual;
8606 bfd_signed_vma signed_value;
8607 int group = 0;
8608
8609 /* Determine which groups of bits to calculate. */
8610 switch (r_type)
8611 {
8612 case R_ARM_LDC_PC_G0:
8613 case R_ARM_LDC_SB_G0:
8614 group = 0;
8615 break;
8616
8617 case R_ARM_LDC_PC_G1:
8618 case R_ARM_LDC_SB_G1:
8619 group = 1;
8620 break;
8621
8622 case R_ARM_LDC_PC_G2:
8623 case R_ARM_LDC_SB_G2:
8624 group = 2;
8625 break;
8626
8627 default:
906e58ca 8628 abort ();
4962c51a
MS
8629 }
8630
8631 /* If REL, extract the addend from the insn. If RELA, it will
8632 have already been fetched for us. */
8633 if (globals->use_rel)
8634 {
8635 int negative = (insn & (1 << 23)) ? 1 : -1;
8636 signed_addend = negative * ((insn & 0xff) << 2);
8637 }
8638
8639 /* Compute the value (X) to go in the place. */
8640 if (r_type == R_ARM_LDC_PC_G0
8641 || r_type == R_ARM_LDC_PC_G1
8642 || r_type == R_ARM_LDC_PC_G2)
8643 /* PC relative. */
8644 signed_value = value - pc + signed_addend;
8645 else
8646 /* Section base relative. */
8647 signed_value = value - sb + signed_addend;
8648
8649 /* Calculate the value of the relevant G_{n-1} to obtain
8650 the residual at that stage. */
8651 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8652
8653 /* Check for overflow. (The absolute value to go in the place must be
8654 divisible by four and, after having been divided by four, must
8655 fit in eight bits.) */
8656 if ((residual & 0x3) != 0 || residual >= 0x400)
8657 {
8658 (*_bfd_error_handler)
8659 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8660 input_bfd, input_section,
8661 (long) rel->r_offset, abs (signed_value), howto->name);
8662 return bfd_reloc_overflow;
8663 }
8664
8665 /* Mask out the value and U bit. */
8666 insn &= 0xff7fff00;
8667
8668 /* Set the U bit if the value to go in the place is non-negative. */
8669 if (signed_value >= 0)
8670 insn |= 1 << 23;
8671
8672 /* Encode the offset. */
8673 insn |= residual >> 2;
8674
8675 bfd_put_32 (input_bfd, insn, hit_data);
8676 }
8677 return bfd_reloc_ok;
8678
252b5132
RH
8679 default:
8680 return bfd_reloc_notsupported;
8681 }
8682}
8683
98c1d4aa
NC
8684/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8685static void
57e8b36a
NC
8686arm_add_to_rel (bfd * abfd,
8687 bfd_byte * address,
8688 reloc_howto_type * howto,
8689 bfd_signed_vma increment)
98c1d4aa 8690{
98c1d4aa
NC
8691 bfd_signed_vma addend;
8692
bd97cb95
DJ
8693 if (howto->type == R_ARM_THM_CALL
8694 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 8695 {
9a5aca8c
AM
8696 int upper_insn, lower_insn;
8697 int upper, lower;
98c1d4aa 8698
9a5aca8c
AM
8699 upper_insn = bfd_get_16 (abfd, address);
8700 lower_insn = bfd_get_16 (abfd, address + 2);
8701 upper = upper_insn & 0x7ff;
8702 lower = lower_insn & 0x7ff;
8703
8704 addend = (upper << 12) | (lower << 1);
ddda4409 8705 addend += increment;
9a5aca8c 8706 addend >>= 1;
98c1d4aa 8707
9a5aca8c
AM
8708 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8709 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8710
dc810e39
AM
8711 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8712 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
8713 }
8714 else
8715 {
8716 bfd_vma contents;
8717
8718 contents = bfd_get_32 (abfd, address);
8719
8720 /* Get the (signed) value from the instruction. */
8721 addend = contents & howto->src_mask;
8722 if (addend & ((howto->src_mask + 1) >> 1))
8723 {
8724 bfd_signed_vma mask;
8725
8726 mask = -1;
8727 mask &= ~ howto->src_mask;
8728 addend |= mask;
8729 }
8730
8731 /* Add in the increment, (which is a byte value). */
8732 switch (howto->type)
8733 {
8734 default:
8735 addend += increment;
8736 break;
8737
8738 case R_ARM_PC24:
c6596c5e 8739 case R_ARM_PLT32:
5b5bb741
PB
8740 case R_ARM_CALL:
8741 case R_ARM_JUMP24:
9a5aca8c 8742 addend <<= howto->size;
dc810e39 8743 addend += increment;
9a5aca8c
AM
8744
8745 /* Should we check for overflow here ? */
8746
8747 /* Drop any undesired bits. */
8748 addend >>= howto->rightshift;
8749 break;
8750 }
8751
8752 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8753
8754 bfd_put_32 (abfd, contents, address);
ddda4409 8755 }
98c1d4aa 8756}
252b5132 8757
ba93b8ac
DJ
8758#define IS_ARM_TLS_RELOC(R_TYPE) \
8759 ((R_TYPE) == R_ARM_TLS_GD32 \
8760 || (R_TYPE) == R_ARM_TLS_LDO32 \
8761 || (R_TYPE) == R_ARM_TLS_LDM32 \
8762 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8763 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8764 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8765 || (R_TYPE) == R_ARM_TLS_LE32 \
8766 || (R_TYPE) == R_ARM_TLS_IE32)
8767
252b5132 8768/* Relocate an ARM ELF section. */
906e58ca 8769
b34976b6 8770static bfd_boolean
57e8b36a
NC
8771elf32_arm_relocate_section (bfd * output_bfd,
8772 struct bfd_link_info * info,
8773 bfd * input_bfd,
8774 asection * input_section,
8775 bfd_byte * contents,
8776 Elf_Internal_Rela * relocs,
8777 Elf_Internal_Sym * local_syms,
8778 asection ** local_sections)
252b5132 8779{
b34976b6
AM
8780 Elf_Internal_Shdr *symtab_hdr;
8781 struct elf_link_hash_entry **sym_hashes;
8782 Elf_Internal_Rela *rel;
8783 Elf_Internal_Rela *relend;
8784 const char *name;
b32d3aa2 8785 struct elf32_arm_link_hash_table * globals;
252b5132 8786
4e7fd91e 8787 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
8788 if (globals == NULL)
8789 return FALSE;
b491616a 8790
0ffa91dd 8791 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
8792 sym_hashes = elf_sym_hashes (input_bfd);
8793
8794 rel = relocs;
8795 relend = relocs + input_section->reloc_count;
8796 for (; rel < relend; rel++)
8797 {
ba96a88f
NC
8798 int r_type;
8799 reloc_howto_type * howto;
8800 unsigned long r_symndx;
8801 Elf_Internal_Sym * sym;
8802 asection * sec;
252b5132 8803 struct elf_link_hash_entry * h;
ba96a88f
NC
8804 bfd_vma relocation;
8805 bfd_reloc_status_type r;
8806 arelent bfd_reloc;
ba93b8ac 8807 char sym_type;
0945cdfd 8808 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 8809 char *error_message = NULL;
f21f3fe0 8810
252b5132 8811 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 8812 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 8813 r_type = arm_real_reloc_type (globals, r_type);
252b5132 8814
ba96a88f
NC
8815 if ( r_type == R_ARM_GNU_VTENTRY
8816 || r_type == R_ARM_GNU_VTINHERIT)
252b5132
RH
8817 continue;
8818
b32d3aa2 8819 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 8820 howto = bfd_reloc.howto;
252b5132 8821
252b5132
RH
8822 h = NULL;
8823 sym = NULL;
8824 sec = NULL;
9b485d32 8825
252b5132
RH
8826 if (r_symndx < symtab_hdr->sh_info)
8827 {
8828 sym = local_syms + r_symndx;
ba93b8ac 8829 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 8830 sec = local_sections[r_symndx];
ffcb4889
NS
8831
8832 /* An object file might have a reference to a local
8833 undefined symbol. This is a daft object file, but we
8834 should at least do something about it. V4BX & NONE
8835 relocations do not use the symbol and are explicitly
8836 allowed to use the undefined symbol, so allow those. */
8837 if (r_type != R_ARM_V4BX
8838 && r_type != R_ARM_NONE
8839 && bfd_is_und_section (sec)
8840 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8841 {
8842 if (!info->callbacks->undefined_symbol
8843 (info, bfd_elf_string_from_elf_section
8844 (input_bfd, symtab_hdr->sh_link, sym->st_name),
8845 input_bfd, input_section,
8846 rel->r_offset, TRUE))
8847 return FALSE;
8848 }
8849
4e7fd91e 8850 if (globals->use_rel)
f8df10f4 8851 {
4e7fd91e
PB
8852 relocation = (sec->output_section->vma
8853 + sec->output_offset
8854 + sym->st_value);
ab96bf03
AM
8855 if (!info->relocatable
8856 && (sec->flags & SEC_MERGE)
8857 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 8858 {
4e7fd91e
PB
8859 asection *msec;
8860 bfd_vma addend, value;
8861
39623e12 8862 switch (r_type)
4e7fd91e 8863 {
39623e12
PB
8864 case R_ARM_MOVW_ABS_NC:
8865 case R_ARM_MOVT_ABS:
8866 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8867 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8868 addend = (addend ^ 0x8000) - 0x8000;
8869 break;
f8df10f4 8870
39623e12
PB
8871 case R_ARM_THM_MOVW_ABS_NC:
8872 case R_ARM_THM_MOVT_ABS:
8873 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8874 << 16;
8875 value |= bfd_get_16 (input_bfd,
8876 contents + rel->r_offset + 2);
8877 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8878 | ((value & 0x04000000) >> 15);
8879 addend = (addend ^ 0x8000) - 0x8000;
8880 break;
f8df10f4 8881
39623e12
PB
8882 default:
8883 if (howto->rightshift
8884 || (howto->src_mask & (howto->src_mask + 1)))
8885 {
8886 (*_bfd_error_handler)
8887 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8888 input_bfd, input_section,
8889 (long) rel->r_offset, howto->name);
8890 return FALSE;
8891 }
8892
8893 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8894
8895 /* Get the (signed) value from the instruction. */
8896 addend = value & howto->src_mask;
8897 if (addend & ((howto->src_mask + 1) >> 1))
8898 {
8899 bfd_signed_vma mask;
8900
8901 mask = -1;
8902 mask &= ~ howto->src_mask;
8903 addend |= mask;
8904 }
8905 break;
4e7fd91e 8906 }
39623e12 8907
4e7fd91e
PB
8908 msec = sec;
8909 addend =
8910 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8911 - relocation;
8912 addend += msec->output_section->vma + msec->output_offset;
39623e12
PB
8913
8914 /* Cases here must match those in the preceeding
8915 switch statement. */
8916 switch (r_type)
8917 {
8918 case R_ARM_MOVW_ABS_NC:
8919 case R_ARM_MOVT_ABS:
8920 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8921 | (addend & 0xfff);
8922 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8923 break;
8924
8925 case R_ARM_THM_MOVW_ABS_NC:
8926 case R_ARM_THM_MOVT_ABS:
8927 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8928 | (addend & 0xff) | ((addend & 0x0800) << 15);
8929 bfd_put_16 (input_bfd, value >> 16,
8930 contents + rel->r_offset);
8931 bfd_put_16 (input_bfd, value,
8932 contents + rel->r_offset + 2);
8933 break;
8934
8935 default:
8936 value = (value & ~ howto->dst_mask)
8937 | (addend & howto->dst_mask);
8938 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8939 break;
8940 }
f8df10f4 8941 }
f8df10f4 8942 }
4e7fd91e
PB
8943 else
8944 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
8945 }
8946 else
8947 {
560e09e9 8948 bfd_boolean warned;
560e09e9 8949
b2a8e766
AM
8950 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8951 r_symndx, symtab_hdr, sym_hashes,
8952 h, sec, relocation,
8953 unresolved_reloc, warned);
ba93b8ac
DJ
8954
8955 sym_type = h->type;
252b5132
RH
8956 }
8957
ab96bf03
AM
8958 if (sec != NULL && elf_discarded_section (sec))
8959 {
8960 /* For relocs against symbols from removed linkonce sections,
8961 or sections discarded by a linker script, we just want the
8962 section contents zeroed. Avoid any special processing. */
8963 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8964 rel->r_info = 0;
8965 rel->r_addend = 0;
8966 continue;
8967 }
8968
8969 if (info->relocatable)
8970 {
8971 /* This is a relocatable link. We don't have to change
8972 anything, unless the reloc is against a section symbol,
8973 in which case we have to adjust according to where the
8974 section symbol winds up in the output section. */
8975 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8976 {
8977 if (globals->use_rel)
8978 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8979 howto, (bfd_signed_vma) sec->output_offset);
8980 else
8981 rel->r_addend += sec->output_offset;
8982 }
8983 continue;
8984 }
8985
252b5132
RH
8986 if (h != NULL)
8987 name = h->root.root.string;
8988 else
8989 {
8990 name = (bfd_elf_string_from_elf_section
8991 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8992 if (name == NULL || *name == '\0')
8993 name = bfd_section_name (input_bfd, sec);
8994 }
f21f3fe0 8995
ba93b8ac
DJ
8996 if (r_symndx != 0
8997 && r_type != R_ARM_NONE
8998 && (h == NULL
8999 || h->root.type == bfd_link_hash_defined
9000 || h->root.type == bfd_link_hash_defweak)
9001 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9002 {
9003 (*_bfd_error_handler)
9004 ((sym_type == STT_TLS
9005 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9006 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
9007 input_bfd,
9008 input_section,
9009 (long) rel->r_offset,
9010 howto->name,
9011 name);
9012 }
9013
252b5132
RH
9014 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
9015 input_section, contents, rel,
9016 relocation, info, sec, name,
9017 (h ? ELF_ST_TYPE (h->type) :
0945cdfd 9018 ELF_ST_TYPE (sym->st_info)), h,
f2a9dd69 9019 &unresolved_reloc, &error_message);
0945cdfd
DJ
9020
9021 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9022 because such sections are not SEC_ALLOC and thus ld.so will
9023 not process them. */
9024 if (unresolved_reloc
9025 && !((input_section->flags & SEC_DEBUGGING) != 0
9026 && h->def_dynamic))
9027 {
9028 (*_bfd_error_handler)
843fe662
L
9029 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9030 input_bfd,
9031 input_section,
9032 (long) rel->r_offset,
9033 howto->name,
9034 h->root.root.string);
0945cdfd
DJ
9035 return FALSE;
9036 }
252b5132
RH
9037
9038 if (r != bfd_reloc_ok)
9039 {
252b5132
RH
9040 switch (r)
9041 {
9042 case bfd_reloc_overflow:
cf919dfd
PB
9043 /* If the overflowing reloc was to an undefined symbol,
9044 we have already printed one error message and there
9045 is no point complaining again. */
9046 if ((! h ||
9047 h->root.type != bfd_link_hash_undefined)
9048 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
9049 (info, (h ? &h->root : NULL), name, howto->name,
9050 (bfd_vma) 0, input_bfd, input_section,
9051 rel->r_offset))))
b34976b6 9052 return FALSE;
252b5132
RH
9053 break;
9054
9055 case bfd_reloc_undefined:
9056 if (!((*info->callbacks->undefined_symbol)
9057 (info, name, input_bfd, input_section,
b34976b6
AM
9058 rel->r_offset, TRUE)))
9059 return FALSE;
252b5132
RH
9060 break;
9061
9062 case bfd_reloc_outofrange:
f2a9dd69 9063 error_message = _("out of range");
252b5132
RH
9064 goto common_error;
9065
9066 case bfd_reloc_notsupported:
f2a9dd69 9067 error_message = _("unsupported relocation");
252b5132
RH
9068 goto common_error;
9069
9070 case bfd_reloc_dangerous:
f2a9dd69 9071 /* error_message should already be set. */
252b5132
RH
9072 goto common_error;
9073
9074 default:
f2a9dd69 9075 error_message = _("unknown error");
8029a119 9076 /* Fall through. */
252b5132
RH
9077
9078 common_error:
f2a9dd69
DJ
9079 BFD_ASSERT (error_message != NULL);
9080 if (!((*info->callbacks->reloc_dangerous)
9081 (info, error_message, input_bfd, input_section,
252b5132 9082 rel->r_offset)))
b34976b6 9083 return FALSE;
252b5132
RH
9084 break;
9085 }
9086 }
9087 }
9088
b34976b6 9089 return TRUE;
252b5132
RH
9090}
9091
91d6fa6a 9092/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 9093 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 9094 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
9095 maintaining that condition). */
9096
9097static void
9098add_unwind_table_edit (arm_unwind_table_edit **head,
9099 arm_unwind_table_edit **tail,
9100 arm_unwind_edit_type type,
9101 asection *linked_section,
91d6fa6a 9102 unsigned int tindex)
2468f9c9 9103{
21d799b5
NC
9104 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9105 xmalloc (sizeof (arm_unwind_table_edit));
2468f9c9
PB
9106
9107 new_edit->type = type;
9108 new_edit->linked_section = linked_section;
91d6fa6a 9109 new_edit->index = tindex;
2468f9c9 9110
91d6fa6a 9111 if (tindex > 0)
2468f9c9
PB
9112 {
9113 new_edit->next = NULL;
9114
9115 if (*tail)
9116 (*tail)->next = new_edit;
9117
9118 (*tail) = new_edit;
9119
9120 if (!*head)
9121 (*head) = new_edit;
9122 }
9123 else
9124 {
9125 new_edit->next = *head;
9126
9127 if (!*tail)
9128 *tail = new_edit;
9129
9130 *head = new_edit;
9131 }
9132}
9133
9134static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9135
9136/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9137static void
9138adjust_exidx_size(asection *exidx_sec, int adjust)
9139{
9140 asection *out_sec;
9141
9142 if (!exidx_sec->rawsize)
9143 exidx_sec->rawsize = exidx_sec->size;
9144
9145 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9146 out_sec = exidx_sec->output_section;
9147 /* Adjust size of output section. */
9148 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9149}
9150
9151/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9152static void
9153insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9154{
9155 struct _arm_elf_section_data *exidx_arm_data;
9156
9157 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9158 add_unwind_table_edit (
9159 &exidx_arm_data->u.exidx.unwind_edit_list,
9160 &exidx_arm_data->u.exidx.unwind_edit_tail,
9161 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9162
9163 adjust_exidx_size(exidx_sec, 8);
9164}
9165
9166/* Scan .ARM.exidx tables, and create a list describing edits which should be
9167 made to those tables, such that:
9168
9169 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9170 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9171 codes which have been inlined into the index).
9172
9173 The edits are applied when the tables are written
9174 (in elf32_arm_write_section).
9175*/
9176
9177bfd_boolean
9178elf32_arm_fix_exidx_coverage (asection **text_section_order,
9179 unsigned int num_text_sections,
9180 struct bfd_link_info *info)
9181{
9182 bfd *inp;
9183 unsigned int last_second_word = 0, i;
9184 asection *last_exidx_sec = NULL;
9185 asection *last_text_sec = NULL;
9186 int last_unwind_type = -1;
9187
9188 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9189 text sections. */
9190 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9191 {
9192 asection *sec;
9193
9194 for (sec = inp->sections; sec != NULL; sec = sec->next)
9195 {
9196 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9197 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9198
dec9d5df 9199 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9
PB
9200 continue;
9201
9202 if (elf_sec->linked_to)
9203 {
9204 Elf_Internal_Shdr *linked_hdr
9205 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9206 struct _arm_elf_section_data *linked_sec_arm_data
9207 = get_arm_elf_section_data (linked_hdr->bfd_section);
9208
9209 if (linked_sec_arm_data == NULL)
9210 continue;
9211
9212 /* Link this .ARM.exidx section back from the text section it
9213 describes. */
9214 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9215 }
9216 }
9217 }
9218
9219 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9220 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 9221 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
9222
9223 for (i = 0; i < num_text_sections; i++)
9224 {
9225 asection *sec = text_section_order[i];
9226 asection *exidx_sec;
9227 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9228 struct _arm_elf_section_data *exidx_arm_data;
9229 bfd_byte *contents = NULL;
9230 int deleted_exidx_bytes = 0;
9231 bfd_vma j;
9232 arm_unwind_table_edit *unwind_edit_head = NULL;
9233 arm_unwind_table_edit *unwind_edit_tail = NULL;
9234 Elf_Internal_Shdr *hdr;
9235 bfd *ibfd;
9236
9237 if (arm_data == NULL)
9238 continue;
9239
9240 exidx_sec = arm_data->u.text.arm_exidx_sec;
9241 if (exidx_sec == NULL)
9242 {
9243 /* Section has no unwind data. */
9244 if (last_unwind_type == 0 || !last_exidx_sec)
9245 continue;
9246
9247 /* Ignore zero sized sections. */
9248 if (sec->size == 0)
9249 continue;
9250
9251 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9252 last_unwind_type = 0;
9253 continue;
9254 }
9255
22a8f80e
PB
9256 /* Skip /DISCARD/ sections. */
9257 if (bfd_is_abs_section (exidx_sec->output_section))
9258 continue;
9259
2468f9c9
PB
9260 hdr = &elf_section_data (exidx_sec)->this_hdr;
9261 if (hdr->sh_type != SHT_ARM_EXIDX)
9262 continue;
9263
9264 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9265 if (exidx_arm_data == NULL)
9266 continue;
9267
9268 ibfd = exidx_sec->owner;
9269
9270 if (hdr->contents != NULL)
9271 contents = hdr->contents;
9272 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9273 /* An error? */
9274 continue;
9275
9276 for (j = 0; j < hdr->sh_size; j += 8)
9277 {
9278 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9279 int unwind_type;
9280 int elide = 0;
9281
9282 /* An EXIDX_CANTUNWIND entry. */
9283 if (second_word == 1)
9284 {
9285 if (last_unwind_type == 0)
9286 elide = 1;
9287 unwind_type = 0;
9288 }
9289 /* Inlined unwinding data. Merge if equal to previous. */
9290 else if ((second_word & 0x80000000) != 0)
9291 {
9292 if (last_second_word == second_word && last_unwind_type == 1)
9293 elide = 1;
9294 unwind_type = 1;
9295 last_second_word = second_word;
9296 }
9297 /* Normal table entry. In theory we could merge these too,
9298 but duplicate entries are likely to be much less common. */
9299 else
9300 unwind_type = 2;
9301
9302 if (elide)
9303 {
9304 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9305 DELETE_EXIDX_ENTRY, NULL, j / 8);
9306
9307 deleted_exidx_bytes += 8;
9308 }
9309
9310 last_unwind_type = unwind_type;
9311 }
9312
9313 /* Free contents if we allocated it ourselves. */
9314 if (contents != hdr->contents)
9315 free (contents);
9316
9317 /* Record edits to be applied later (in elf32_arm_write_section). */
9318 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9319 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9320
9321 if (deleted_exidx_bytes > 0)
9322 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9323
9324 last_exidx_sec = exidx_sec;
9325 last_text_sec = sec;
9326 }
9327
9328 /* Add terminating CANTUNWIND entry. */
9329 if (last_exidx_sec && last_unwind_type != 0)
9330 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9331
9332 return TRUE;
9333}
9334
3e6b1042
DJ
9335static bfd_boolean
9336elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9337 bfd *ibfd, const char *name)
9338{
9339 asection *sec, *osec;
9340
9341 sec = bfd_get_section_by_name (ibfd, name);
9342 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9343 return TRUE;
9344
9345 osec = sec->output_section;
9346 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9347 return TRUE;
9348
9349 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9350 sec->output_offset, sec->size))
9351 return FALSE;
9352
9353 return TRUE;
9354}
9355
9356static bfd_boolean
9357elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9358{
9359 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9360
4dfe6ac6
NC
9361 if (globals == NULL)
9362 return FALSE;
9363
3e6b1042
DJ
9364 /* Invoke the regular ELF backend linker to do all the work. */
9365 if (!bfd_elf_final_link (abfd, info))
9366 return FALSE;
9367
9368 /* Write out any glue sections now that we have created all the
9369 stubs. */
9370 if (globals->bfd_of_glue_owner != NULL)
9371 {
9372 if (! elf32_arm_output_glue_section (info, abfd,
9373 globals->bfd_of_glue_owner,
9374 ARM2THUMB_GLUE_SECTION_NAME))
9375 return FALSE;
9376
9377 if (! elf32_arm_output_glue_section (info, abfd,
9378 globals->bfd_of_glue_owner,
9379 THUMB2ARM_GLUE_SECTION_NAME))
9380 return FALSE;
9381
9382 if (! elf32_arm_output_glue_section (info, abfd,
9383 globals->bfd_of_glue_owner,
9384 VFP11_ERRATUM_VENEER_SECTION_NAME))
9385 return FALSE;
9386
9387 if (! elf32_arm_output_glue_section (info, abfd,
9388 globals->bfd_of_glue_owner,
9389 ARM_BX_GLUE_SECTION_NAME))
9390 return FALSE;
9391 }
9392
9393 return TRUE;
9394}
9395
c178919b
NC
9396/* Set the right machine number. */
9397
9398static bfd_boolean
57e8b36a 9399elf32_arm_object_p (bfd *abfd)
c178919b 9400{
5a6c6817 9401 unsigned int mach;
57e8b36a 9402
5a6c6817 9403 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 9404
5a6c6817
NC
9405 if (mach != bfd_mach_arm_unknown)
9406 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9407
9408 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9409 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
e16bb312 9410
e16bb312 9411 else
5a6c6817 9412 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
9413
9414 return TRUE;
9415}
9416
fc830a83 9417/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 9418
b34976b6 9419static bfd_boolean
57e8b36a 9420elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
9421{
9422 if (elf_flags_init (abfd)
9423 && elf_elfheader (abfd)->e_flags != flags)
9424 {
fc830a83
NC
9425 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9426 {
fd2ec330 9427 if (flags & EF_ARM_INTERWORK)
d003868e
AM
9428 (*_bfd_error_handler)
9429 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9430 abfd);
fc830a83 9431 else
d003868e
AM
9432 _bfd_error_handler
9433 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9434 abfd);
fc830a83 9435 }
252b5132
RH
9436 }
9437 else
9438 {
9439 elf_elfheader (abfd)->e_flags = flags;
b34976b6 9440 elf_flags_init (abfd) = TRUE;
252b5132
RH
9441 }
9442
b34976b6 9443 return TRUE;
252b5132
RH
9444}
9445
fc830a83 9446/* Copy backend specific data from one object module to another. */
9b485d32 9447
b34976b6 9448static bfd_boolean
57e8b36a 9449elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
9450{
9451 flagword in_flags;
9452 flagword out_flags;
9453
0ffa91dd 9454 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 9455 return TRUE;
252b5132 9456
fc830a83 9457 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
9458 out_flags = elf_elfheader (obfd)->e_flags;
9459
fc830a83
NC
9460 if (elf_flags_init (obfd)
9461 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9462 && in_flags != out_flags)
252b5132 9463 {
252b5132 9464 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 9465 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 9466 return FALSE;
252b5132
RH
9467
9468 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 9469 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 9470 return FALSE;
252b5132
RH
9471
9472 /* If the src and dest have different interworking flags
9473 then turn off the interworking bit. */
fd2ec330 9474 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 9475 {
fd2ec330 9476 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
9477 _bfd_error_handler
9478 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9479 obfd, ibfd);
252b5132 9480
fd2ec330 9481 in_flags &= ~EF_ARM_INTERWORK;
252b5132 9482 }
1006ba19
PB
9483
9484 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
9485 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9486 in_flags &= ~EF_ARM_PIC;
252b5132
RH
9487 }
9488
9489 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 9490 elf_flags_init (obfd) = TRUE;
252b5132 9491
94a3258f
PB
9492 /* Also copy the EI_OSABI field. */
9493 elf_elfheader (obfd)->e_ident[EI_OSABI] =
9494 elf_elfheader (ibfd)->e_ident[EI_OSABI];
9495
104d59d1
JM
9496 /* Copy object attributes. */
9497 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
9498
9499 return TRUE;
9500}
9501
9502/* Values for Tag_ABI_PCS_R9_use. */
9503enum
9504{
9505 AEABI_R9_V6,
9506 AEABI_R9_SB,
9507 AEABI_R9_TLS,
9508 AEABI_R9_unused
9509};
9510
9511/* Values for Tag_ABI_PCS_RW_data. */
9512enum
9513{
9514 AEABI_PCS_RW_data_absolute,
9515 AEABI_PCS_RW_data_PCrel,
9516 AEABI_PCS_RW_data_SBrel,
9517 AEABI_PCS_RW_data_unused
9518};
9519
9520/* Values for Tag_ABI_enum_size. */
9521enum
9522{
9523 AEABI_enum_unused,
9524 AEABI_enum_short,
9525 AEABI_enum_wide,
9526 AEABI_enum_forced_wide
9527};
9528
104d59d1
JM
9529/* Determine whether an object attribute tag takes an integer, a
9530 string or both. */
906e58ca 9531
104d59d1
JM
9532static int
9533elf32_arm_obj_attrs_arg_type (int tag)
9534{
9535 if (tag == Tag_compatibility)
3483fe2e 9536 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 9537 else if (tag == Tag_nodefaults)
3483fe2e
AS
9538 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9539 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9540 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 9541 else if (tag < 32)
3483fe2e 9542 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 9543 else
3483fe2e 9544 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
9545}
9546
5aa6ff7c
AS
9547/* The ABI defines that Tag_conformance should be emitted first, and that
9548 Tag_nodefaults should be second (if either is defined). This sets those
9549 two positions, and bumps up the position of all the remaining tags to
9550 compensate. */
9551static int
9552elf32_arm_obj_attrs_order (int num)
9553{
9554 if (num == 4)
9555 return Tag_conformance;
9556 if (num == 5)
9557 return Tag_nodefaults;
9558 if ((num - 2) < Tag_nodefaults)
9559 return num - 2;
9560 if ((num - 1) < Tag_conformance)
9561 return num - 1;
9562 return num;
9563}
9564
91e22acd
AS
9565/* Read the architecture from the Tag_also_compatible_with attribute, if any.
9566 Returns -1 if no architecture could be read. */
9567
9568static int
9569get_secondary_compatible_arch (bfd *abfd)
9570{
9571 obj_attribute *attr =
9572 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9573
9574 /* Note: the tag and its argument below are uleb128 values, though
9575 currently-defined values fit in one byte for each. */
9576 if (attr->s
9577 && attr->s[0] == Tag_CPU_arch
9578 && (attr->s[1] & 128) != 128
9579 && attr->s[2] == 0)
9580 return attr->s[1];
9581
9582 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9583 return -1;
9584}
9585
9586/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9587 The tag is removed if ARCH is -1. */
9588
8e79c3df 9589static void
91e22acd 9590set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 9591{
91e22acd
AS
9592 obj_attribute *attr =
9593 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 9594
91e22acd
AS
9595 if (arch == -1)
9596 {
9597 attr->s = NULL;
9598 return;
8e79c3df 9599 }
91e22acd
AS
9600
9601 /* Note: the tag and its argument below are uleb128 values, though
9602 currently-defined values fit in one byte for each. */
9603 if (!attr->s)
21d799b5 9604 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
9605 attr->s[0] = Tag_CPU_arch;
9606 attr->s[1] = arch;
9607 attr->s[2] = '\0';
8e79c3df
CM
9608}
9609
91e22acd
AS
9610/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9611 into account. */
9612
9613static int
9614tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9615 int newtag, int secondary_compat)
8e79c3df 9616{
91e22acd
AS
9617#define T(X) TAG_CPU_ARCH_##X
9618 int tagl, tagh, result;
9619 const int v6t2[] =
9620 {
9621 T(V6T2), /* PRE_V4. */
9622 T(V6T2), /* V4. */
9623 T(V6T2), /* V4T. */
9624 T(V6T2), /* V5T. */
9625 T(V6T2), /* V5TE. */
9626 T(V6T2), /* V5TEJ. */
9627 T(V6T2), /* V6. */
9628 T(V7), /* V6KZ. */
9629 T(V6T2) /* V6T2. */
9630 };
9631 const int v6k[] =
9632 {
9633 T(V6K), /* PRE_V4. */
9634 T(V6K), /* V4. */
9635 T(V6K), /* V4T. */
9636 T(V6K), /* V5T. */
9637 T(V6K), /* V5TE. */
9638 T(V6K), /* V5TEJ. */
9639 T(V6K), /* V6. */
9640 T(V6KZ), /* V6KZ. */
9641 T(V7), /* V6T2. */
9642 T(V6K) /* V6K. */
9643 };
9644 const int v7[] =
9645 {
9646 T(V7), /* PRE_V4. */
9647 T(V7), /* V4. */
9648 T(V7), /* V4T. */
9649 T(V7), /* V5T. */
9650 T(V7), /* V5TE. */
9651 T(V7), /* V5TEJ. */
9652 T(V7), /* V6. */
9653 T(V7), /* V6KZ. */
9654 T(V7), /* V6T2. */
9655 T(V7), /* V6K. */
9656 T(V7) /* V7. */
9657 };
9658 const int v6_m[] =
9659 {
9660 -1, /* PRE_V4. */
9661 -1, /* V4. */
9662 T(V6K), /* V4T. */
9663 T(V6K), /* V5T. */
9664 T(V6K), /* V5TE. */
9665 T(V6K), /* V5TEJ. */
9666 T(V6K), /* V6. */
9667 T(V6KZ), /* V6KZ. */
9668 T(V7), /* V6T2. */
9669 T(V6K), /* V6K. */
9670 T(V7), /* V7. */
9671 T(V6_M) /* V6_M. */
9672 };
9673 const int v6s_m[] =
9674 {
9675 -1, /* PRE_V4. */
9676 -1, /* V4. */
9677 T(V6K), /* V4T. */
9678 T(V6K), /* V5T. */
9679 T(V6K), /* V5TE. */
9680 T(V6K), /* V5TEJ. */
9681 T(V6K), /* V6. */
9682 T(V6KZ), /* V6KZ. */
9683 T(V7), /* V6T2. */
9684 T(V6K), /* V6K. */
9685 T(V7), /* V7. */
9686 T(V6S_M), /* V6_M. */
9687 T(V6S_M) /* V6S_M. */
9688 };
9e3c6df6
PB
9689 const int v7e_m[] =
9690 {
9691 -1, /* PRE_V4. */
9692 -1, /* V4. */
9693 T(V7E_M), /* V4T. */
9694 T(V7E_M), /* V5T. */
9695 T(V7E_M), /* V5TE. */
9696 T(V7E_M), /* V5TEJ. */
9697 T(V7E_M), /* V6. */
9698 T(V7E_M), /* V6KZ. */
9699 T(V7E_M), /* V6T2. */
9700 T(V7E_M), /* V6K. */
9701 T(V7E_M), /* V7. */
9702 T(V7E_M), /* V6_M. */
9703 T(V7E_M), /* V6S_M. */
9704 T(V7E_M) /* V7E_M. */
9705 };
91e22acd
AS
9706 const int v4t_plus_v6_m[] =
9707 {
9708 -1, /* PRE_V4. */
9709 -1, /* V4. */
9710 T(V4T), /* V4T. */
9711 T(V5T), /* V5T. */
9712 T(V5TE), /* V5TE. */
9713 T(V5TEJ), /* V5TEJ. */
9714 T(V6), /* V6. */
9715 T(V6KZ), /* V6KZ. */
9716 T(V6T2), /* V6T2. */
9717 T(V6K), /* V6K. */
9718 T(V7), /* V7. */
9719 T(V6_M), /* V6_M. */
9720 T(V6S_M), /* V6S_M. */
9e3c6df6 9721 T(V7E_M), /* V7E_M. */
91e22acd
AS
9722 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
9723 };
9724 const int *comb[] =
9725 {
9726 v6t2,
9727 v6k,
9728 v7,
9729 v6_m,
9730 v6s_m,
9e3c6df6 9731 v7e_m,
91e22acd
AS
9732 /* Pseudo-architecture. */
9733 v4t_plus_v6_m
9734 };
9735
9736 /* Check we've not got a higher architecture than we know about. */
9737
9e3c6df6 9738 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 9739 {
3895f852 9740 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
9741 return -1;
9742 }
9743
9744 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9745
9746 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9747 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9748 oldtag = T(V4T_PLUS_V6_M);
9749
9750 /* And override the new tag if we have a Tag_also_compatible_with on the
9751 input. */
9752
9753 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9754 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9755 newtag = T(V4T_PLUS_V6_M);
9756
9757 tagl = (oldtag < newtag) ? oldtag : newtag;
9758 result = tagh = (oldtag > newtag) ? oldtag : newtag;
9759
9760 /* Architectures before V6KZ add features monotonically. */
9761 if (tagh <= TAG_CPU_ARCH_V6KZ)
9762 return result;
9763
9764 result = comb[tagh - T(V6T2)][tagl];
9765
9766 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9767 as the canonical version. */
9768 if (result == T(V4T_PLUS_V6_M))
9769 {
9770 result = T(V4T);
9771 *secondary_compat_out = T(V6_M);
9772 }
9773 else
9774 *secondary_compat_out = -1;
9775
9776 if (result == -1)
9777 {
3895f852 9778 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
9779 ibfd, oldtag, newtag);
9780 return -1;
9781 }
9782
9783 return result;
9784#undef T
8e79c3df
CM
9785}
9786
ee065d83
PB
9787/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9788 are conflicting attributes. */
906e58ca 9789
ee065d83
PB
9790static bfd_boolean
9791elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9792{
104d59d1
JM
9793 obj_attribute *in_attr;
9794 obj_attribute *out_attr;
9795 obj_attribute_list *in_list;
8e79c3df 9796 obj_attribute_list *out_list;
91e22acd 9797 obj_attribute_list **out_listp;
ee065d83
PB
9798 /* Some tags have 0 = don't care, 1 = strong requirement,
9799 2 = weak requirement. */
91e22acd 9800 static const int order_021[3] = {0, 2, 1};
ee065d83 9801 int i;
91e22acd 9802 bfd_boolean result = TRUE;
ee065d83 9803
3e6b1042
DJ
9804 /* Skip the linker stubs file. This preserves previous behavior
9805 of accepting unknown attributes in the first input file - but
9806 is that a bug? */
9807 if (ibfd->flags & BFD_LINKER_CREATED)
9808 return TRUE;
9809
104d59d1 9810 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
9811 {
9812 /* This is the first object. Copy the attributes. */
104d59d1 9813 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526
PB
9814
9815 /* Use the Tag_null value to indicate the attributes have been
9816 initialized. */
104d59d1 9817 elf_known_obj_attributes_proc (obfd)[0].i = 1;
004ae526 9818
ee065d83
PB
9819 return TRUE;
9820 }
9821
104d59d1
JM
9822 in_attr = elf_known_obj_attributes_proc (ibfd);
9823 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
9824 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9825 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9826 {
8e79c3df 9827 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
9828 if (out_attr[Tag_ABI_FP_number_model].i == 0)
9829 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9830 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9831 {
9832 _bfd_error_handler
3895f852 9833 (_("error: %B uses VFP register arguments, %B does not"),
ee065d83 9834 ibfd, obfd);
91e22acd 9835 result = FALSE;
ee065d83
PB
9836 }
9837 }
9838
104d59d1 9839 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
9840 {
9841 /* Merge this attribute with existing attributes. */
9842 switch (i)
9843 {
9844 case Tag_CPU_raw_name:
9845 case Tag_CPU_name:
91e22acd 9846 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
9847 break;
9848
9849 case Tag_ABI_optimization_goals:
9850 case Tag_ABI_FP_optimization_goals:
9851 /* Use the first value seen. */
9852 break;
9853
9854 case Tag_CPU_arch:
91e22acd
AS
9855 {
9856 int secondary_compat = -1, secondary_compat_out = -1;
9857 unsigned int saved_out_attr = out_attr[i].i;
9858 static const char *name_table[] = {
9859 /* These aren't real CPU names, but we can't guess
9860 that from the architecture version alone. */
9861 "Pre v4",
9862 "ARM v4",
9863 "ARM v4T",
9864 "ARM v5T",
9865 "ARM v5TE",
9866 "ARM v5TEJ",
9867 "ARM v6",
9868 "ARM v6KZ",
9869 "ARM v6T2",
9870 "ARM v6K",
9871 "ARM v7",
9872 "ARM v6-M",
9873 "ARM v6S-M"
9874 };
9875
9876 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9877 secondary_compat = get_secondary_compatible_arch (ibfd);
9878 secondary_compat_out = get_secondary_compatible_arch (obfd);
9879 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9880 &secondary_compat_out,
9881 in_attr[i].i,
9882 secondary_compat);
9883 set_secondary_compatible_arch (obfd, secondary_compat_out);
9884
9885 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9886 if (out_attr[i].i == saved_out_attr)
9887 ; /* Leave the names alone. */
9888 else if (out_attr[i].i == in_attr[i].i)
9889 {
9890 /* The output architecture has been changed to match the
9891 input architecture. Use the input names. */
9892 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9893 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9894 : NULL;
9895 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9896 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9897 : NULL;
9898 }
9899 else
9900 {
9901 out_attr[Tag_CPU_name].s = NULL;
9902 out_attr[Tag_CPU_raw_name].s = NULL;
9903 }
9904
9905 /* If we still don't have a value for Tag_CPU_name,
9906 make one up now. Tag_CPU_raw_name remains blank. */
9907 if (out_attr[Tag_CPU_name].s == NULL
9908 && out_attr[i].i < ARRAY_SIZE (name_table))
9909 out_attr[Tag_CPU_name].s =
9910 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9911 }
9912 break;
9913
ee065d83
PB
9914 case Tag_ARM_ISA_use:
9915 case Tag_THUMB_ISA_use:
ee065d83 9916 case Tag_WMMX_arch:
91e22acd
AS
9917 case Tag_Advanced_SIMD_arch:
9918 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 9919 case Tag_ABI_FP_rounding:
ee065d83
PB
9920 case Tag_ABI_FP_exceptions:
9921 case Tag_ABI_FP_user_exceptions:
9922 case Tag_ABI_FP_number_model:
91e22acd
AS
9923 case Tag_VFP_HP_extension:
9924 case Tag_CPU_unaligned_access:
9925 case Tag_T2EE_use:
9926 case Tag_Virtualization_use:
9927 case Tag_MPextension_use:
ee065d83
PB
9928 /* Use the largest value specified. */
9929 if (in_attr[i].i > out_attr[i].i)
9930 out_attr[i].i = in_attr[i].i;
9931 break;
9932
91e22acd
AS
9933 case Tag_ABI_align8_preserved:
9934 case Tag_ABI_PCS_RO_data:
9935 /* Use the smallest value specified. */
9936 if (in_attr[i].i < out_attr[i].i)
9937 out_attr[i].i = in_attr[i].i;
9938 break;
9939
9940 case Tag_ABI_align8_needed:
9941 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
9942 && (in_attr[Tag_ABI_align8_preserved].i == 0
9943 || out_attr[Tag_ABI_align8_preserved].i == 0))
ee065d83 9944 {
91e22acd
AS
9945 /* This error message should be enabled once all non-conformant
9946 binaries in the toolchain have had the attributes set
9947 properly.
ee065d83 9948 _bfd_error_handler
3895f852 9949 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
9950 obfd, ibfd);
9951 result = FALSE; */
ee065d83 9952 }
91e22acd
AS
9953 /* Fall through. */
9954 case Tag_ABI_FP_denormal:
9955 case Tag_ABI_PCS_GOT_use:
9956 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9957 value if greater than 2 (for future-proofing). */
9958 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
9959 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
9960 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
9961 out_attr[i].i = in_attr[i].i;
9962 break;
91e22acd
AS
9963
9964
9965 case Tag_CPU_arch_profile:
9966 if (out_attr[i].i != in_attr[i].i)
9967 {
9968 /* 0 will merge with anything.
9969 'A' and 'S' merge to 'A'.
9970 'R' and 'S' merge to 'R'.
9971 'M' and 'A|R|S' is an error. */
9972 if (out_attr[i].i == 0
9973 || (out_attr[i].i == 'S'
9974 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
9975 out_attr[i].i = in_attr[i].i;
9976 else if (in_attr[i].i == 0
9977 || (in_attr[i].i == 'S'
9978 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
9979 ; /* Do nothing. */
9980 else
9981 {
9982 _bfd_error_handler
3895f852 9983 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
9984 ibfd,
9985 in_attr[i].i ? in_attr[i].i : '0',
9986 out_attr[i].i ? out_attr[i].i : '0');
9987 result = FALSE;
9988 }
9989 }
9990 break;
b1cc4aeb 9991 case Tag_VFP_arch:
62f3b8c8
PB
9992 {
9993 static const struct
9994 {
9995 int ver;
9996 int regs;
9997 } vfp_versions[7] =
9998 {
9999 {0, 0},
10000 {1, 16},
10001 {2, 16},
10002 {3, 32},
10003 {3, 16},
10004 {4, 32},
10005 {4, 16}
10006 };
10007 int ver;
10008 int regs;
10009 int newval;
10010
10011 /* Values greater than 6 aren't defined, so just pick the
10012 biggest */
10013 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
10014 {
10015 out_attr[i] = in_attr[i];
10016 break;
10017 }
10018 /* The output uses the superset of input features
10019 (ISA version) and registers. */
10020 ver = vfp_versions[in_attr[i].i].ver;
10021 if (ver < vfp_versions[out_attr[i].i].ver)
10022 ver = vfp_versions[out_attr[i].i].ver;
10023 regs = vfp_versions[in_attr[i].i].regs;
10024 if (regs < vfp_versions[out_attr[i].i].regs)
10025 regs = vfp_versions[out_attr[i].i].regs;
10026 /* This assumes all possible supersets are also a valid
10027 options. */
10028 for (newval = 6; newval > 0; newval--)
10029 {
10030 if (regs == vfp_versions[newval].regs
10031 && ver == vfp_versions[newval].ver)
10032 break;
10033 }
10034 out_attr[i].i = newval;
10035 }
b1cc4aeb 10036 break;
ee065d83
PB
10037 case Tag_PCS_config:
10038 if (out_attr[i].i == 0)
10039 out_attr[i].i = in_attr[i].i;
10040 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
10041 {
10042 /* It's sometimes ok to mix different configs, so this is only
10043 a warning. */
10044 _bfd_error_handler
10045 (_("Warning: %B: Conflicting platform configuration"), ibfd);
10046 }
10047 break;
10048 case Tag_ABI_PCS_R9_use:
004ae526
PB
10049 if (in_attr[i].i != out_attr[i].i
10050 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
10051 && in_attr[i].i != AEABI_R9_unused)
10052 {
10053 _bfd_error_handler
3895f852 10054 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 10055 result = FALSE;
ee065d83
PB
10056 }
10057 if (out_attr[i].i == AEABI_R9_unused)
10058 out_attr[i].i = in_attr[i].i;
10059 break;
10060 case Tag_ABI_PCS_RW_data:
10061 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
10062 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
10063 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
10064 {
10065 _bfd_error_handler
3895f852 10066 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 10067 ibfd);
91e22acd 10068 result = FALSE;
ee065d83
PB
10069 }
10070 /* Use the smallest value specified. */
10071 if (in_attr[i].i < out_attr[i].i)
10072 out_attr[i].i = in_attr[i].i;
10073 break;
ee065d83 10074 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
10075 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
10076 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
10077 {
10078 _bfd_error_handler
a9dc9481
JM
10079 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10080 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 10081 }
a9dc9481 10082 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
10083 out_attr[i].i = in_attr[i].i;
10084 break;
ee065d83
PB
10085 case Tag_ABI_enum_size:
10086 if (in_attr[i].i != AEABI_enum_unused)
10087 {
10088 if (out_attr[i].i == AEABI_enum_unused
10089 || out_attr[i].i == AEABI_enum_forced_wide)
10090 {
10091 /* The existing object is compatible with anything.
10092 Use whatever requirements the new object has. */
10093 out_attr[i].i = in_attr[i].i;
10094 }
10095 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 10096 && out_attr[i].i != in_attr[i].i
0ffa91dd 10097 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 10098 {
91e22acd 10099 static const char *aeabi_enum_names[] =
bf21ed78 10100 { "", "variable-size", "32-bit", "" };
91e22acd
AS
10101 const char *in_name =
10102 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10103 ? aeabi_enum_names[in_attr[i].i]
10104 : "<unknown>";
10105 const char *out_name =
10106 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10107 ? aeabi_enum_names[out_attr[i].i]
10108 : "<unknown>";
ee065d83 10109 _bfd_error_handler
bf21ed78 10110 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 10111 ibfd, in_name, out_name);
ee065d83
PB
10112 }
10113 }
10114 break;
10115 case Tag_ABI_VFP_args:
10116 /* Aready done. */
10117 break;
10118 case Tag_ABI_WMMX_args:
10119 if (in_attr[i].i != out_attr[i].i)
10120 {
10121 _bfd_error_handler
3895f852 10122 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 10123 ibfd, obfd);
91e22acd 10124 result = FALSE;
ee065d83
PB
10125 }
10126 break;
7b86a9fa
AS
10127 case Tag_compatibility:
10128 /* Merged in target-independent code. */
10129 break;
91e22acd
AS
10130 case Tag_ABI_HardFP_use:
10131 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
10132 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
10133 || (in_attr[i].i == 2 && out_attr[i].i == 1))
10134 out_attr[i].i = 3;
10135 else if (in_attr[i].i > out_attr[i].i)
10136 out_attr[i].i = in_attr[i].i;
10137 break;
10138 case Tag_ABI_FP_16bit_format:
10139 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10140 {
10141 if (in_attr[i].i != out_attr[i].i)
10142 {
10143 _bfd_error_handler
3895f852 10144 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
10145 ibfd, obfd);
10146 result = FALSE;
10147 }
10148 }
10149 if (in_attr[i].i != 0)
10150 out_attr[i].i = in_attr[i].i;
10151 break;
7b86a9fa 10152
91e22acd 10153 case Tag_nodefaults:
2d0bb761
AS
10154 /* This tag is set if it exists, but the value is unused (and is
10155 typically zero). We don't actually need to do anything here -
10156 the merge happens automatically when the type flags are merged
10157 below. */
91e22acd
AS
10158 break;
10159 case Tag_also_compatible_with:
10160 /* Already done in Tag_CPU_arch. */
10161 break;
10162 case Tag_conformance:
10163 /* Keep the attribute if it matches. Throw it away otherwise.
10164 No attribute means no claim to conform. */
10165 if (!in_attr[i].s || !out_attr[i].s
10166 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10167 out_attr[i].s = NULL;
10168 break;
3cfad14c 10169
91e22acd 10170 default:
3cfad14c 10171 {
91e22acd
AS
10172 bfd *err_bfd = NULL;
10173
10174 /* The "known_obj_attributes" table does contain some undefined
10175 attributes. Ensure that there are unused. */
10176 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10177 err_bfd = obfd;
10178 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10179 err_bfd = ibfd;
10180
10181 if (err_bfd != NULL)
10182 {
10183 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10184 if ((i & 127) < 64)
10185 {
10186 _bfd_error_handler
10187 (_("%B: Unknown mandatory EABI object attribute %d"),
10188 err_bfd, i);
10189 bfd_set_error (bfd_error_bad_value);
10190 result = FALSE;
10191 }
10192 else
10193 {
10194 _bfd_error_handler
10195 (_("Warning: %B: Unknown EABI object attribute %d"),
10196 err_bfd, i);
10197 }
10198 }
10199
10200 /* Only pass on attributes that match in both inputs. */
10201 if (in_attr[i].i != out_attr[i].i
10202 || in_attr[i].s != out_attr[i].s
10203 || (in_attr[i].s != NULL && out_attr[i].s != NULL
10204 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10205 {
10206 out_attr[i].i = 0;
10207 out_attr[i].s = NULL;
10208 }
3cfad14c 10209 }
91e22acd
AS
10210 }
10211
10212 /* If out_attr was copied from in_attr then it won't have a type yet. */
10213 if (in_attr[i].type && !out_attr[i].type)
10214 out_attr[i].type = in_attr[i].type;
ee065d83
PB
10215 }
10216
104d59d1
JM
10217 /* Merge Tag_compatibility attributes and any common GNU ones. */
10218 _bfd_elf_merge_object_attributes (ibfd, obfd);
ee065d83 10219
104d59d1
JM
10220 /* Check for any attributes not known on ARM. */
10221 in_list = elf_other_obj_attributes_proc (ibfd);
91e22acd
AS
10222 out_listp = &elf_other_obj_attributes_proc (obfd);
10223 out_list = *out_listp;
8e79c3df 10224
91e22acd 10225 for (; in_list || out_list; )
ee065d83 10226 {
91e22acd
AS
10227 bfd *err_bfd = NULL;
10228 int err_tag = 0;
8e79c3df
CM
10229
10230 /* The tags for each list are in numerical order. */
10231 /* If the tags are equal, then merge. */
91e22acd 10232 if (out_list && (!in_list || in_list->tag > out_list->tag))
8e79c3df 10233 {
91e22acd
AS
10234 /* This attribute only exists in obfd. We can't merge, and we don't
10235 know what the tag means, so delete it. */
10236 err_bfd = obfd;
10237 err_tag = out_list->tag;
10238 *out_listp = out_list->next;
10239 out_list = *out_listp;
8e79c3df 10240 }
91e22acd 10241 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8e79c3df 10242 {
91e22acd
AS
10243 /* This attribute only exists in ibfd. We can't merge, and we don't
10244 know what the tag means, so ignore it. */
10245 err_bfd = ibfd;
10246 err_tag = in_list->tag;
8e79c3df 10247 in_list = in_list->next;
eb111b1f 10248 }
91e22acd
AS
10249 else /* The tags are equal. */
10250 {
10251 /* As present, all attributes in the list are unknown, and
10252 therefore can't be merged meaningfully. */
10253 err_bfd = obfd;
10254 err_tag = out_list->tag;
10255
10256 /* Only pass on attributes that match in both inputs. */
10257 if (in_list->attr.i != out_list->attr.i
10258 || in_list->attr.s != out_list->attr.s
10259 || (in_list->attr.s && out_list->attr.s
10260 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10261 {
10262 /* No match. Delete the attribute. */
10263 *out_listp = out_list->next;
10264 out_list = *out_listp;
10265 }
10266 else
10267 {
10268 /* Matched. Keep the attribute and move to the next. */
10269 out_list = out_list->next;
10270 in_list = in_list->next;
10271 }
10272 }
10273
10274 if (err_bfd)
10275 {
10276 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10277 if ((err_tag & 127) < 64)
10278 {
10279 _bfd_error_handler
10280 (_("%B: Unknown mandatory EABI object attribute %d"),
10281 err_bfd, err_tag);
10282 bfd_set_error (bfd_error_bad_value);
10283 result = FALSE;
10284 }
10285 else
10286 {
10287 _bfd_error_handler
10288 (_("Warning: %B: Unknown EABI object attribute %d"),
10289 err_bfd, err_tag);
10290 }
10291 }
ee065d83 10292 }
91e22acd 10293 return result;
252b5132
RH
10294}
10295
3a4a14e9
PB
10296
10297/* Return TRUE if the two EABI versions are incompatible. */
10298
10299static bfd_boolean
10300elf32_arm_versions_compatible (unsigned iver, unsigned over)
10301{
10302 /* v4 and v5 are the same spec before and after it was released,
10303 so allow mixing them. */
10304 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10305 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10306 return TRUE;
10307
10308 return (iver == over);
10309}
10310
252b5132
RH
10311/* Merge backend specific data from an object file to the output
10312 object file when linking. */
9b485d32 10313
b34976b6 10314static bfd_boolean
21d799b5 10315elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
252b5132 10316
9b485d32
NC
10317/* Display the flags field. */
10318
b34976b6 10319static bfd_boolean
57e8b36a 10320elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 10321{
fc830a83
NC
10322 FILE * file = (FILE *) ptr;
10323 unsigned long flags;
252b5132
RH
10324
10325 BFD_ASSERT (abfd != NULL && ptr != NULL);
10326
10327 /* Print normal ELF private data. */
10328 _bfd_elf_print_private_bfd_data (abfd, ptr);
10329
fc830a83 10330 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
10331 /* Ignore init flag - it may not be set, despite the flags field
10332 containing valid data. */
252b5132
RH
10333
10334 /* xgettext:c-format */
9b485d32 10335 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 10336
fc830a83
NC
10337 switch (EF_ARM_EABI_VERSION (flags))
10338 {
10339 case EF_ARM_EABI_UNKNOWN:
4cc11e76 10340 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
10341 official ARM ELF extended ABI. Hence they are only decoded if
10342 the EABI version is not set. */
fd2ec330 10343 if (flags & EF_ARM_INTERWORK)
9b485d32 10344 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 10345
fd2ec330 10346 if (flags & EF_ARM_APCS_26)
6c571f00 10347 fprintf (file, " [APCS-26]");
fc830a83 10348 else
6c571f00 10349 fprintf (file, " [APCS-32]");
9a5aca8c 10350
96a846ea
RE
10351 if (flags & EF_ARM_VFP_FLOAT)
10352 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
10353 else if (flags & EF_ARM_MAVERICK_FLOAT)
10354 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
10355 else
10356 fprintf (file, _(" [FPA float format]"));
10357
fd2ec330 10358 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 10359 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 10360
fd2ec330 10361 if (flags & EF_ARM_PIC)
9b485d32 10362 fprintf (file, _(" [position independent]"));
fc830a83 10363
fd2ec330 10364 if (flags & EF_ARM_NEW_ABI)
9b485d32 10365 fprintf (file, _(" [new ABI]"));
9a5aca8c 10366
fd2ec330 10367 if (flags & EF_ARM_OLD_ABI)
9b485d32 10368 fprintf (file, _(" [old ABI]"));
9a5aca8c 10369
fd2ec330 10370 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 10371 fprintf (file, _(" [software FP]"));
9a5aca8c 10372
96a846ea
RE
10373 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10374 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
10375 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10376 | EF_ARM_MAVERICK_FLOAT);
fc830a83 10377 break;
9a5aca8c 10378
fc830a83 10379 case EF_ARM_EABI_VER1:
9b485d32 10380 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 10381
fc830a83 10382 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 10383 fprintf (file, _(" [sorted symbol table]"));
fc830a83 10384 else
9b485d32 10385 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 10386
fc830a83
NC
10387 flags &= ~ EF_ARM_SYMSARESORTED;
10388 break;
9a5aca8c 10389
fd2ec330
PB
10390 case EF_ARM_EABI_VER2:
10391 fprintf (file, _(" [Version2 EABI]"));
10392
10393 if (flags & EF_ARM_SYMSARESORTED)
10394 fprintf (file, _(" [sorted symbol table]"));
10395 else
10396 fprintf (file, _(" [unsorted symbol table]"));
10397
10398 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10399 fprintf (file, _(" [dynamic symbols use segment index]"));
10400
10401 if (flags & EF_ARM_MAPSYMSFIRST)
10402 fprintf (file, _(" [mapping symbols precede others]"));
10403
99e4ae17 10404 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
10405 | EF_ARM_MAPSYMSFIRST);
10406 break;
10407
d507cf36
PB
10408 case EF_ARM_EABI_VER3:
10409 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
10410 break;
10411
10412 case EF_ARM_EABI_VER4:
10413 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 10414 goto eabi;
d507cf36 10415
3a4a14e9
PB
10416 case EF_ARM_EABI_VER5:
10417 fprintf (file, _(" [Version5 EABI]"));
10418 eabi:
d507cf36
PB
10419 if (flags & EF_ARM_BE8)
10420 fprintf (file, _(" [BE8]"));
10421
10422 if (flags & EF_ARM_LE8)
10423 fprintf (file, _(" [LE8]"));
10424
10425 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10426 break;
10427
fc830a83 10428 default:
9b485d32 10429 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
10430 break;
10431 }
252b5132 10432
fc830a83 10433 flags &= ~ EF_ARM_EABIMASK;
252b5132 10434
fc830a83 10435 if (flags & EF_ARM_RELEXEC)
9b485d32 10436 fprintf (file, _(" [relocatable executable]"));
252b5132 10437
fc830a83 10438 if (flags & EF_ARM_HASENTRY)
9b485d32 10439 fprintf (file, _(" [has entry point]"));
252b5132 10440
fc830a83
NC
10441 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10442
10443 if (flags)
9b485d32 10444 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 10445
252b5132
RH
10446 fputc ('\n', file);
10447
b34976b6 10448 return TRUE;
252b5132
RH
10449}
10450
10451static int
57e8b36a 10452elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 10453{
2f0ca46a
NC
10454 switch (ELF_ST_TYPE (elf_sym->st_info))
10455 {
10456 case STT_ARM_TFUNC:
10457 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 10458
2f0ca46a
NC
10459 case STT_ARM_16BIT:
10460 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10461 This allows us to distinguish between data used by Thumb instructions
10462 and non-data (which is probably code) inside Thumb regions of an
10463 executable. */
1a0eb693 10464 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
10465 return ELF_ST_TYPE (elf_sym->st_info);
10466 break;
9a5aca8c 10467
ce855c42
NC
10468 default:
10469 break;
2f0ca46a
NC
10470 }
10471
10472 return type;
252b5132 10473}
f21f3fe0 10474
252b5132 10475static asection *
07adf181
AM
10476elf32_arm_gc_mark_hook (asection *sec,
10477 struct bfd_link_info *info,
10478 Elf_Internal_Rela *rel,
10479 struct elf_link_hash_entry *h,
10480 Elf_Internal_Sym *sym)
252b5132
RH
10481{
10482 if (h != NULL)
07adf181 10483 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
10484 {
10485 case R_ARM_GNU_VTINHERIT:
10486 case R_ARM_GNU_VTENTRY:
07adf181
AM
10487 return NULL;
10488 }
9ad5cbcf 10489
07adf181 10490 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
10491}
10492
780a67af
NC
10493/* Update the got entry reference counts for the section being removed. */
10494
b34976b6 10495static bfd_boolean
ba93b8ac
DJ
10496elf32_arm_gc_sweep_hook (bfd * abfd,
10497 struct bfd_link_info * info,
10498 asection * sec,
10499 const Elf_Internal_Rela * relocs)
252b5132 10500{
5e681ec4
PB
10501 Elf_Internal_Shdr *symtab_hdr;
10502 struct elf_link_hash_entry **sym_hashes;
10503 bfd_signed_vma *local_got_refcounts;
10504 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
10505 struct elf32_arm_link_hash_table * globals;
10506
7dda2462
TG
10507 if (info->relocatable)
10508 return TRUE;
10509
eb043451 10510 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10511 if (globals == NULL)
10512 return FALSE;
5e681ec4
PB
10513
10514 elf_section_data (sec)->local_dynrel = NULL;
10515
0ffa91dd 10516 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
10517 sym_hashes = elf_sym_hashes (abfd);
10518 local_got_refcounts = elf_local_got_refcounts (abfd);
10519
906e58ca 10520 check_use_blx (globals);
bd97cb95 10521
5e681ec4
PB
10522 relend = relocs + sec->reloc_count;
10523 for (rel = relocs; rel < relend; rel++)
eb043451 10524 {
3eb128b2
AM
10525 unsigned long r_symndx;
10526 struct elf_link_hash_entry *h = NULL;
eb043451 10527 int r_type;
5e681ec4 10528
3eb128b2
AM
10529 r_symndx = ELF32_R_SYM (rel->r_info);
10530 if (r_symndx >= symtab_hdr->sh_info)
10531 {
10532 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10533 while (h->root.type == bfd_link_hash_indirect
10534 || h->root.type == bfd_link_hash_warning)
10535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10536 }
10537
eb043451 10538 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 10539 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
10540 switch (r_type)
10541 {
10542 case R_ARM_GOT32:
eb043451 10543 case R_ARM_GOT_PREL:
ba93b8ac
DJ
10544 case R_ARM_TLS_GD32:
10545 case R_ARM_TLS_IE32:
3eb128b2 10546 if (h != NULL)
eb043451 10547 {
eb043451
PB
10548 if (h->got.refcount > 0)
10549 h->got.refcount -= 1;
10550 }
10551 else if (local_got_refcounts != NULL)
10552 {
10553 if (local_got_refcounts[r_symndx] > 0)
10554 local_got_refcounts[r_symndx] -= 1;
10555 }
10556 break;
10557
ba93b8ac 10558 case R_ARM_TLS_LDM32:
4dfe6ac6 10559 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
10560 break;
10561
eb043451 10562 case R_ARM_ABS32:
bb224fc3 10563 case R_ARM_ABS32_NOI:
eb043451 10564 case R_ARM_REL32:
bb224fc3 10565 case R_ARM_REL32_NOI:
eb043451
PB
10566 case R_ARM_PC24:
10567 case R_ARM_PLT32:
5b5bb741
PB
10568 case R_ARM_CALL:
10569 case R_ARM_JUMP24:
eb043451 10570 case R_ARM_PREL31:
c19d1205 10571 case R_ARM_THM_CALL:
bd97cb95
DJ
10572 case R_ARM_THM_JUMP24:
10573 case R_ARM_THM_JUMP19:
b6895b4f
PB
10574 case R_ARM_MOVW_ABS_NC:
10575 case R_ARM_MOVT_ABS:
10576 case R_ARM_MOVW_PREL_NC:
10577 case R_ARM_MOVT_PREL:
10578 case R_ARM_THM_MOVW_ABS_NC:
10579 case R_ARM_THM_MOVT_ABS:
10580 case R_ARM_THM_MOVW_PREL_NC:
10581 case R_ARM_THM_MOVT_PREL:
b7693d02
DJ
10582 /* Should the interworking branches be here also? */
10583
3eb128b2 10584 if (h != NULL)
eb043451
PB
10585 {
10586 struct elf32_arm_link_hash_entry *eh;
10587 struct elf32_arm_relocs_copied **pp;
10588 struct elf32_arm_relocs_copied *p;
5e681ec4 10589
b7693d02 10590 eh = (struct elf32_arm_link_hash_entry *) h;
5e681ec4 10591
eb043451 10592 if (h->plt.refcount > 0)
b7693d02
DJ
10593 {
10594 h->plt.refcount -= 1;
bd97cb95
DJ
10595 if (r_type == R_ARM_THM_CALL)
10596 eh->plt_maybe_thumb_refcount--;
10597
10598 if (r_type == R_ARM_THM_JUMP24
10599 || r_type == R_ARM_THM_JUMP19)
b7693d02
DJ
10600 eh->plt_thumb_refcount--;
10601 }
5e681ec4 10602
eb043451 10603 if (r_type == R_ARM_ABS32
bb224fc3
MS
10604 || r_type == R_ARM_REL32
10605 || r_type == R_ARM_ABS32_NOI
10606 || r_type == R_ARM_REL32_NOI)
eb043451 10607 {
eb043451
PB
10608 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10609 pp = &p->next)
10610 if (p->section == sec)
10611 {
10612 p->count -= 1;
bb224fc3
MS
10613 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10614 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
ba93b8ac 10615 p->pc_count -= 1;
eb043451
PB
10616 if (p->count == 0)
10617 *pp = p->next;
10618 break;
10619 }
10620 }
10621 }
10622 break;
5e681ec4 10623
eb043451
PB
10624 default:
10625 break;
10626 }
10627 }
5e681ec4 10628
b34976b6 10629 return TRUE;
252b5132
RH
10630}
10631
780a67af
NC
10632/* Look through the relocs for a section during the first phase. */
10633
b34976b6 10634static bfd_boolean
57e8b36a
NC
10635elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10636 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 10637{
b34976b6
AM
10638 Elf_Internal_Shdr *symtab_hdr;
10639 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
10640 const Elf_Internal_Rela *rel;
10641 const Elf_Internal_Rela *rel_end;
10642 bfd *dynobj;
5e681ec4 10643 asection *sreloc;
b34976b6 10644 bfd_vma *local_got_offsets;
5e681ec4 10645 struct elf32_arm_link_hash_table *htab;
39623e12 10646 bfd_boolean needs_plt;
ce98a316 10647 unsigned long nsyms;
9a5aca8c 10648
1049f94e 10649 if (info->relocatable)
b34976b6 10650 return TRUE;
9a5aca8c 10651
0ffa91dd
NC
10652 BFD_ASSERT (is_arm_elf (abfd));
10653
5e681ec4 10654 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
10655 if (htab == NULL)
10656 return FALSE;
10657
5e681ec4 10658 sreloc = NULL;
9a5aca8c 10659
67687978
PB
10660 /* Create dynamic sections for relocatable executables so that we can
10661 copy relocations. */
10662 if (htab->root.is_relocatable_executable
10663 && ! htab->root.dynamic_sections_created)
10664 {
10665 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10666 return FALSE;
10667 }
10668
252b5132
RH
10669 dynobj = elf_hash_table (info)->dynobj;
10670 local_got_offsets = elf_local_got_offsets (abfd);
f21f3fe0 10671
0ffa91dd 10672 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 10673 sym_hashes = elf_sym_hashes (abfd);
ce98a316
NC
10674 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10675
252b5132
RH
10676 rel_end = relocs + sec->reloc_count;
10677 for (rel = relocs; rel < rel_end; rel++)
10678 {
10679 struct elf_link_hash_entry *h;
b7693d02 10680 struct elf32_arm_link_hash_entry *eh;
252b5132 10681 unsigned long r_symndx;
eb043451 10682 int r_type;
9a5aca8c 10683
252b5132 10684 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 10685 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 10686 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 10687
ce98a316
NC
10688 if (r_symndx >= nsyms
10689 /* PR 9934: It is possible to have relocations that do not
10690 refer to symbols, thus it is also possible to have an
10691 object file containing relocations but no symbol table. */
10692 && (r_symndx > 0 || nsyms > 0))
ba93b8ac
DJ
10693 {
10694 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 10695 r_symndx);
ba93b8ac
DJ
10696 return FALSE;
10697 }
10698
ce98a316 10699 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
252b5132
RH
10700 h = NULL;
10701 else
973a3492
L
10702 {
10703 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10704 while (h->root.type == bfd_link_hash_indirect
10705 || h->root.type == bfd_link_hash_warning)
10706 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10707 }
9a5aca8c 10708
b7693d02
DJ
10709 eh = (struct elf32_arm_link_hash_entry *) h;
10710
eb043451 10711 switch (r_type)
252b5132 10712 {
5e681ec4 10713 case R_ARM_GOT32:
eb043451 10714 case R_ARM_GOT_PREL:
ba93b8ac
DJ
10715 case R_ARM_TLS_GD32:
10716 case R_ARM_TLS_IE32:
5e681ec4 10717 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
10718 {
10719 int tls_type, old_tls_type;
5e681ec4 10720
ba93b8ac
DJ
10721 switch (r_type)
10722 {
10723 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10724 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10725 default: tls_type = GOT_NORMAL; break;
10726 }
252b5132 10727
ba93b8ac
DJ
10728 if (h != NULL)
10729 {
10730 h->got.refcount++;
10731 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10732 }
10733 else
10734 {
10735 bfd_signed_vma *local_got_refcounts;
10736
10737 /* This is a global offset table entry for a local symbol. */
10738 local_got_refcounts = elf_local_got_refcounts (abfd);
10739 if (local_got_refcounts == NULL)
10740 {
10741 bfd_size_type size;
906e58ca 10742
ba93b8ac 10743 size = symtab_hdr->sh_info;
906e58ca 10744 size *= (sizeof (bfd_signed_vma) + sizeof (char));
21d799b5
NC
10745 local_got_refcounts = (bfd_signed_vma *)
10746 bfd_zalloc (abfd, size);
ba93b8ac
DJ
10747 if (local_got_refcounts == NULL)
10748 return FALSE;
10749 elf_local_got_refcounts (abfd) = local_got_refcounts;
10750 elf32_arm_local_got_tls_type (abfd)
10751 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10752 }
10753 local_got_refcounts[r_symndx] += 1;
10754 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10755 }
10756
10757 /* We will already have issued an error message if there is a
10758 TLS / non-TLS mismatch, based on the symbol type. We don't
10759 support any linker relaxations. So just combine any TLS
10760 types needed. */
10761 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10762 && tls_type != GOT_NORMAL)
10763 tls_type |= old_tls_type;
10764
10765 if (old_tls_type != tls_type)
10766 {
10767 if (h != NULL)
10768 elf32_arm_hash_entry (h)->tls_type = tls_type;
10769 else
10770 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10771 }
10772 }
8029a119 10773 /* Fall through. */
ba93b8ac
DJ
10774
10775 case R_ARM_TLS_LDM32:
10776 if (r_type == R_ARM_TLS_LDM32)
10777 htab->tls_ldm_got.refcount++;
8029a119 10778 /* Fall through. */
252b5132 10779
c19d1205 10780 case R_ARM_GOTOFF32:
5e681ec4
PB
10781 case R_ARM_GOTPC:
10782 if (htab->sgot == NULL)
10783 {
10784 if (htab->root.dynobj == NULL)
10785 htab->root.dynobj = abfd;
10786 if (!create_got_section (htab->root.dynobj, info))
10787 return FALSE;
10788 }
252b5132
RH
10789 break;
10790
00a97672
RS
10791 case R_ARM_ABS12:
10792 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10793 ldr __GOTT_INDEX__ offsets. */
10794 if (!htab->vxworks_p)
10795 break;
8029a119 10796 /* Fall through. */
00a97672 10797
252b5132 10798 case R_ARM_PC24:
7359ea65 10799 case R_ARM_PLT32:
5b5bb741
PB
10800 case R_ARM_CALL:
10801 case R_ARM_JUMP24:
eb043451 10802 case R_ARM_PREL31:
c19d1205 10803 case R_ARM_THM_CALL:
bd97cb95
DJ
10804 case R_ARM_THM_JUMP24:
10805 case R_ARM_THM_JUMP19:
39623e12
PB
10806 needs_plt = 1;
10807 goto normal_reloc;
10808
96c23d59
JM
10809 case R_ARM_MOVW_ABS_NC:
10810 case R_ARM_MOVT_ABS:
10811 case R_ARM_THM_MOVW_ABS_NC:
10812 case R_ARM_THM_MOVT_ABS:
10813 if (info->shared)
10814 {
10815 (*_bfd_error_handler)
10816 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10817 abfd, elf32_arm_howto_table_1[r_type].name,
10818 (h) ? h->root.root.string : "a local symbol");
10819 bfd_set_error (bfd_error_bad_value);
10820 return FALSE;
10821 }
10822
10823 /* Fall through. */
39623e12
PB
10824 case R_ARM_ABS32:
10825 case R_ARM_ABS32_NOI:
10826 case R_ARM_REL32:
10827 case R_ARM_REL32_NOI:
b6895b4f
PB
10828 case R_ARM_MOVW_PREL_NC:
10829 case R_ARM_MOVT_PREL:
b6895b4f
PB
10830 case R_ARM_THM_MOVW_PREL_NC:
10831 case R_ARM_THM_MOVT_PREL:
39623e12
PB
10832 needs_plt = 0;
10833 normal_reloc:
10834
b7693d02 10835 /* Should the interworking branches be listed here? */
7359ea65 10836 if (h != NULL)
5e681ec4
PB
10837 {
10838 /* If this reloc is in a read-only section, we might
10839 need a copy reloc. We can't check reliably at this
10840 stage whether the section is read-only, as input
10841 sections have not yet been mapped to output sections.
10842 Tentatively set the flag for now, and correct in
10843 adjust_dynamic_symbol. */
7359ea65 10844 if (!info->shared)
f5385ebf 10845 h->non_got_ref = 1;
7359ea65 10846
5e681ec4 10847 /* We may need a .plt entry if the function this reloc
c84cd8ee
DJ
10848 refers to is in a different object. We can't tell for
10849 sure yet, because something later might force the
10850 symbol local. */
39623e12 10851 if (needs_plt)
f5385ebf 10852 h->needs_plt = 1;
4f199be3
DJ
10853
10854 /* If we create a PLT entry, this relocation will reference
10855 it, even if it's an ABS32 relocation. */
10856 h->plt.refcount += 1;
b7693d02 10857
bd97cb95
DJ
10858 /* It's too early to use htab->use_blx here, so we have to
10859 record possible blx references separately from
10860 relocs that definitely need a thumb stub. */
10861
c19d1205 10862 if (r_type == R_ARM_THM_CALL)
bd97cb95
DJ
10863 eh->plt_maybe_thumb_refcount += 1;
10864
10865 if (r_type == R_ARM_THM_JUMP24
10866 || r_type == R_ARM_THM_JUMP19)
b7693d02 10867 eh->plt_thumb_refcount += 1;
5e681ec4
PB
10868 }
10869
67687978
PB
10870 /* If we are creating a shared library or relocatable executable,
10871 and this is a reloc against a global symbol, or a non PC
10872 relative reloc against a local symbol, then we need to copy
10873 the reloc into the shared library. However, if we are linking
10874 with -Bsymbolic, we do not need to copy a reloc against a
252b5132
RH
10875 global symbol which is defined in an object we are
10876 including in the link (i.e., DEF_REGULAR is set). At
10877 this point we have not seen all the input files, so it is
10878 possible that DEF_REGULAR is not set now but will be set
10879 later (it is never cleared). We account for that
10880 possibility below by storing information in the
5e681ec4 10881 relocs_copied field of the hash table entry. */
67687978 10882 if ((info->shared || htab->root.is_relocatable_executable)
5e681ec4 10883 && (sec->flags & SEC_ALLOC) != 0
bb224fc3 10884 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
71a976dd
DJ
10885 || (h != NULL && ! h->needs_plt
10886 && (! info->symbolic || ! h->def_regular))))
252b5132 10887 {
5e681ec4
PB
10888 struct elf32_arm_relocs_copied *p, **head;
10889
252b5132
RH
10890 /* When creating a shared object, we must copy these
10891 reloc types into the output file. We create a reloc
10892 section in dynobj and make room for this reloc. */
83bac4b0 10893 if (sreloc == NULL)
252b5132 10894 {
83bac4b0
NC
10895 sreloc = _bfd_elf_make_dynamic_reloc_section
10896 (sec, dynobj, 2, abfd, ! htab->use_rel);
252b5132 10897
83bac4b0 10898 if (sreloc == NULL)
b34976b6 10899 return FALSE;
252b5132 10900
83bac4b0 10901 /* BPABI objects never have dynamic relocations mapped. */
a89e6478 10902 if (htab->symbian_p)
252b5132 10903 {
83bac4b0 10904 flagword flags;
5e681ec4 10905
83bac4b0 10906 flags = bfd_get_section_flags (dynobj, sreloc);
a89e6478 10907 flags &= ~(SEC_LOAD | SEC_ALLOC);
83bac4b0
NC
10908 bfd_set_section_flags (dynobj, sreloc, flags);
10909 }
252b5132
RH
10910 }
10911
5e681ec4
PB
10912 /* If this is a global symbol, we count the number of
10913 relocations we need for this symbol. */
10914 if (h != NULL)
252b5132 10915 {
5e681ec4
PB
10916 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
10917 }
10918 else
10919 {
10920 /* Track dynamic relocs needed for local syms too.
10921 We really need local syms available to do this
10922 easily. Oh well. */
5e681ec4 10923 asection *s;
6edfbbad 10924 void *vpp;
87d72d41 10925 Elf_Internal_Sym *isym;
6edfbbad 10926
87d72d41
AM
10927 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
10928 abfd, r_symndx);
10929 if (isym == NULL)
5e681ec4 10930 return FALSE;
57e8b36a 10931
87d72d41
AM
10932 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
10933 if (s == NULL)
10934 s = sec;
10935
6edfbbad
DJ
10936 vpp = &elf_section_data (s)->local_dynrel;
10937 head = (struct elf32_arm_relocs_copied **) vpp;
5e681ec4 10938 }
57e8b36a 10939
5e681ec4
PB
10940 p = *head;
10941 if (p == NULL || p->section != sec)
10942 {
10943 bfd_size_type amt = sizeof *p;
57e8b36a 10944
21d799b5
NC
10945 p = (struct elf32_arm_relocs_copied *)
10946 bfd_alloc (htab->root.dynobj, amt);
252b5132 10947 if (p == NULL)
5e681ec4
PB
10948 return FALSE;
10949 p->next = *head;
10950 *head = p;
10951 p->section = sec;
10952 p->count = 0;
ba93b8ac 10953 p->pc_count = 0;
252b5132 10954 }
57e8b36a 10955
bb224fc3 10956 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
ba93b8ac 10957 p->pc_count += 1;
71a976dd 10958 p->count += 1;
252b5132
RH
10959 }
10960 break;
10961
10962 /* This relocation describes the C++ object vtable hierarchy.
10963 Reconstruct it for later use during GC. */
10964 case R_ARM_GNU_VTINHERIT:
c152c796 10965 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 10966 return FALSE;
252b5132 10967 break;
9a5aca8c 10968
252b5132
RH
10969 /* This relocation describes which C++ vtable entries are actually
10970 used. Record for later use during GC. */
10971 case R_ARM_GNU_VTENTRY:
d17e0c6e
JB
10972 BFD_ASSERT (h != NULL);
10973 if (h != NULL
10974 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 10975 return FALSE;
252b5132
RH
10976 break;
10977 }
10978 }
f21f3fe0 10979
b34976b6 10980 return TRUE;
252b5132
RH
10981}
10982
6a5bb875
PB
10983/* Unwinding tables are not referenced directly. This pass marks them as
10984 required if the corresponding code section is marked. */
10985
10986static bfd_boolean
906e58ca
NC
10987elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
10988 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
10989{
10990 bfd *sub;
10991 Elf_Internal_Shdr **elf_shdrp;
10992 bfd_boolean again;
10993
10994 /* Marking EH data may cause additional code sections to be marked,
10995 requiring multiple passes. */
10996 again = TRUE;
10997 while (again)
10998 {
10999 again = FALSE;
11000 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11001 {
11002 asection *o;
11003
0ffa91dd 11004 if (! is_arm_elf (sub))
6a5bb875
PB
11005 continue;
11006
11007 elf_shdrp = elf_elfsections (sub);
11008 for (o = sub->sections; o != NULL; o = o->next)
11009 {
11010 Elf_Internal_Shdr *hdr;
0ffa91dd 11011
6a5bb875 11012 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
11013 if (hdr->sh_type == SHT_ARM_EXIDX
11014 && hdr->sh_link
11015 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
11016 && !o->gc_mark
11017 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
11018 {
11019 again = TRUE;
11020 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11021 return FALSE;
11022 }
11023 }
11024 }
11025 }
11026
11027 return TRUE;
11028}
11029
3c9458e9
NC
11030/* Treat mapping symbols as special target symbols. */
11031
11032static bfd_boolean
11033elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
11034{
b0796911
PB
11035 return bfd_is_arm_special_symbol_name (sym->name,
11036 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
11037}
11038
0367ecfb
NC
11039/* This is a copy of elf_find_function() from elf.c except that
11040 ARM mapping symbols are ignored when looking for function names
11041 and STT_ARM_TFUNC is considered to a function type. */
252b5132 11042
0367ecfb
NC
11043static bfd_boolean
11044arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
11045 asection * section,
11046 asymbol ** symbols,
11047 bfd_vma offset,
11048 const char ** filename_ptr,
11049 const char ** functionname_ptr)
11050{
11051 const char * filename = NULL;
11052 asymbol * func = NULL;
11053 bfd_vma low_func = 0;
11054 asymbol ** p;
252b5132
RH
11055
11056 for (p = symbols; *p != NULL; p++)
11057 {
11058 elf_symbol_type *q;
11059
11060 q = (elf_symbol_type *) *p;
11061
252b5132
RH
11062 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
11063 {
11064 default:
11065 break;
11066 case STT_FILE:
11067 filename = bfd_asymbol_name (&q->symbol);
11068 break;
252b5132
RH
11069 case STT_FUNC:
11070 case STT_ARM_TFUNC:
9d2da7ca 11071 case STT_NOTYPE:
b0796911 11072 /* Skip mapping symbols. */
0367ecfb 11073 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
11074 && bfd_is_arm_special_symbol_name (q->symbol.name,
11075 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
11076 continue;
11077 /* Fall through. */
6b40fcba 11078 if (bfd_get_section (&q->symbol) == section
252b5132
RH
11079 && q->symbol.value >= low_func
11080 && q->symbol.value <= offset)
11081 {
11082 func = (asymbol *) q;
11083 low_func = q->symbol.value;
11084 }
11085 break;
11086 }
11087 }
11088
11089 if (func == NULL)
b34976b6 11090 return FALSE;
252b5132 11091
0367ecfb
NC
11092 if (filename_ptr)
11093 *filename_ptr = filename;
11094 if (functionname_ptr)
11095 *functionname_ptr = bfd_asymbol_name (func);
11096
11097 return TRUE;
906e58ca 11098}
0367ecfb
NC
11099
11100
11101/* Find the nearest line to a particular section and offset, for error
11102 reporting. This code is a duplicate of the code in elf.c, except
11103 that it uses arm_elf_find_function. */
11104
11105static bfd_boolean
11106elf32_arm_find_nearest_line (bfd * abfd,
11107 asection * section,
11108 asymbol ** symbols,
11109 bfd_vma offset,
11110 const char ** filename_ptr,
11111 const char ** functionname_ptr,
11112 unsigned int * line_ptr)
11113{
11114 bfd_boolean found = FALSE;
11115
11116 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11117
11118 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11119 filename_ptr, functionname_ptr,
11120 line_ptr, 0,
11121 & elf_tdata (abfd)->dwarf2_find_line_info))
11122 {
11123 if (!*functionname_ptr)
11124 arm_elf_find_function (abfd, section, symbols, offset,
11125 *filename_ptr ? NULL : filename_ptr,
11126 functionname_ptr);
f21f3fe0 11127
0367ecfb
NC
11128 return TRUE;
11129 }
11130
11131 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11132 & found, filename_ptr,
11133 functionname_ptr, line_ptr,
11134 & elf_tdata (abfd)->line_info))
11135 return FALSE;
11136
11137 if (found && (*functionname_ptr || *line_ptr))
11138 return TRUE;
11139
11140 if (symbols == NULL)
11141 return FALSE;
11142
11143 if (! arm_elf_find_function (abfd, section, symbols, offset,
11144 filename_ptr, functionname_ptr))
11145 return FALSE;
11146
11147 *line_ptr = 0;
b34976b6 11148 return TRUE;
252b5132
RH
11149}
11150
4ab527b0
FF
11151static bfd_boolean
11152elf32_arm_find_inliner_info (bfd * abfd,
11153 const char ** filename_ptr,
11154 const char ** functionname_ptr,
11155 unsigned int * line_ptr)
11156{
11157 bfd_boolean found;
11158 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11159 functionname_ptr, line_ptr,
11160 & elf_tdata (abfd)->dwarf2_find_line_info);
11161 return found;
11162}
11163
252b5132
RH
11164/* Adjust a symbol defined by a dynamic object and referenced by a
11165 regular object. The current definition is in some section of the
11166 dynamic object, but we're not including those sections. We have to
11167 change the definition to something the rest of the link can
11168 understand. */
11169
b34976b6 11170static bfd_boolean
57e8b36a
NC
11171elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11172 struct elf_link_hash_entry * h)
252b5132
RH
11173{
11174 bfd * dynobj;
11175 asection * s;
b7693d02 11176 struct elf32_arm_link_hash_entry * eh;
67687978 11177 struct elf32_arm_link_hash_table *globals;
252b5132 11178
67687978 11179 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
11180 if (globals == NULL)
11181 return FALSE;
11182
252b5132
RH
11183 dynobj = elf_hash_table (info)->dynobj;
11184
11185 /* Make sure we know what is going on here. */
11186 BFD_ASSERT (dynobj != NULL
f5385ebf 11187 && (h->needs_plt
f6e332e6 11188 || h->u.weakdef != NULL
f5385ebf
AM
11189 || (h->def_dynamic
11190 && h->ref_regular
11191 && !h->def_regular)));
252b5132 11192
b7693d02
DJ
11193 eh = (struct elf32_arm_link_hash_entry *) h;
11194
252b5132
RH
11195 /* If this is a function, put it in the procedure linkage table. We
11196 will fill in the contents of the procedure linkage table later,
11197 when we know the address of the .got section. */
0f88be7a 11198 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
f5385ebf 11199 || h->needs_plt)
252b5132 11200 {
5e681ec4
PB
11201 if (h->plt.refcount <= 0
11202 || SYMBOL_CALLS_LOCAL (info, h)
11203 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11204 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
11205 {
11206 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
11207 file, but the symbol was never referred to by a dynamic
11208 object, or if all references were garbage collected. In
11209 such a case, we don't actually need to build a procedure
11210 linkage table, and we can just do a PC24 reloc instead. */
11211 h->plt.offset = (bfd_vma) -1;
b7693d02 11212 eh->plt_thumb_refcount = 0;
bd97cb95 11213 eh->plt_maybe_thumb_refcount = 0;
f5385ebf 11214 h->needs_plt = 0;
252b5132
RH
11215 }
11216
b34976b6 11217 return TRUE;
252b5132 11218 }
5e681ec4 11219 else
b7693d02
DJ
11220 {
11221 /* It's possible that we incorrectly decided a .plt reloc was
11222 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11223 in check_relocs. We can't decide accurately between function
11224 and non-function syms in check-relocs; Objects loaded later in
11225 the link may change h->type. So fix it now. */
11226 h->plt.offset = (bfd_vma) -1;
11227 eh->plt_thumb_refcount = 0;
bd97cb95 11228 eh->plt_maybe_thumb_refcount = 0;
b7693d02 11229 }
252b5132
RH
11230
11231 /* If this is a weak symbol, and there is a real definition, the
11232 processor independent code will have arranged for us to see the
11233 real definition first, and we can just use the same value. */
f6e332e6 11234 if (h->u.weakdef != NULL)
252b5132 11235 {
f6e332e6
AM
11236 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11237 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11238 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11239 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 11240 return TRUE;
252b5132
RH
11241 }
11242
ba93b8ac
DJ
11243 /* If there are no non-GOT references, we do not need a copy
11244 relocation. */
11245 if (!h->non_got_ref)
11246 return TRUE;
11247
252b5132
RH
11248 /* This is a reference to a symbol defined by a dynamic object which
11249 is not a function. */
11250
11251 /* If we are creating a shared library, we must presume that the
11252 only references to the symbol are via the global offset table.
11253 For such cases we need not do anything here; the relocations will
67687978
PB
11254 be handled correctly by relocate_section. Relocatable executables
11255 can reference data in shared objects directly, so we don't need to
11256 do anything here. */
11257 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 11258 return TRUE;
252b5132 11259
909272ee
AM
11260 if (h->size == 0)
11261 {
11262 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11263 h->root.root.string);
11264 return TRUE;
11265 }
11266
252b5132
RH
11267 /* We must allocate the symbol in our .dynbss section, which will
11268 become part of the .bss section of the executable. There will be
11269 an entry for this symbol in the .dynsym section. The dynamic
11270 object will contain position independent code, so all references
11271 from the dynamic object to this symbol will go through the global
11272 offset table. The dynamic linker will use the .dynsym entry to
11273 determine the address it must put in the global offset table, so
11274 both the dynamic object and the regular object will refer to the
11275 same memory location for the variable. */
252b5132
RH
11276 s = bfd_get_section_by_name (dynobj, ".dynbss");
11277 BFD_ASSERT (s != NULL);
11278
11279 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11280 copy the initial value out of the dynamic object and into the
11281 runtime process image. We need to remember the offset into the
00a97672 11282 .rel(a).bss section we are going to use. */
252b5132
RH
11283 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11284 {
11285 asection *srel;
11286
00a97672 11287 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
252b5132 11288 BFD_ASSERT (srel != NULL);
00a97672 11289 srel->size += RELOC_SIZE (globals);
f5385ebf 11290 h->needs_copy = 1;
252b5132
RH
11291 }
11292
027297b7 11293 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
11294}
11295
5e681ec4
PB
11296/* Allocate space in .plt, .got and associated reloc sections for
11297 dynamic relocs. */
11298
11299static bfd_boolean
57e8b36a 11300allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
11301{
11302 struct bfd_link_info *info;
11303 struct elf32_arm_link_hash_table *htab;
11304 struct elf32_arm_link_hash_entry *eh;
11305 struct elf32_arm_relocs_copied *p;
bd97cb95 11306 bfd_signed_vma thumb_refs;
5e681ec4 11307
b7693d02
DJ
11308 eh = (struct elf32_arm_link_hash_entry *) h;
11309
5e681ec4
PB
11310 if (h->root.type == bfd_link_hash_indirect)
11311 return TRUE;
11312
11313 if (h->root.type == bfd_link_hash_warning)
11314 /* When warning symbols are created, they **replace** the "real"
11315 entry in the hash table, thus we never get to see the real
11316 symbol in a hash traversal. So look at it now. */
11317 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11318
11319 info = (struct bfd_link_info *) inf;
11320 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
11321 if (htab == NULL)
11322 return FALSE;
5e681ec4
PB
11323
11324 if (htab->root.dynamic_sections_created
11325 && h->plt.refcount > 0)
11326 {
11327 /* Make sure this symbol is output as a dynamic symbol.
11328 Undefined weak syms won't yet be marked as dynamic. */
11329 if (h->dynindx == -1
f5385ebf 11330 && !h->forced_local)
5e681ec4 11331 {
c152c796 11332 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11333 return FALSE;
11334 }
11335
11336 if (info->shared
7359ea65 11337 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4
PB
11338 {
11339 asection *s = htab->splt;
11340
11341 /* If this is the first .plt entry, make room for the special
11342 first entry. */
eea6121a 11343 if (s->size == 0)
e5a52504 11344 s->size += htab->plt_header_size;
5e681ec4 11345
eea6121a 11346 h->plt.offset = s->size;
5e681ec4 11347
b7693d02
DJ
11348 /* If we will insert a Thumb trampoline before this PLT, leave room
11349 for it. */
bd97cb95
DJ
11350 thumb_refs = eh->plt_thumb_refcount;
11351 if (!htab->use_blx)
11352 thumb_refs += eh->plt_maybe_thumb_refcount;
11353
11354 if (thumb_refs > 0)
b7693d02
DJ
11355 {
11356 h->plt.offset += PLT_THUMB_STUB_SIZE;
11357 s->size += PLT_THUMB_STUB_SIZE;
11358 }
11359
5e681ec4
PB
11360 /* If this symbol is not defined in a regular file, and we are
11361 not generating a shared library, then set the symbol to this
11362 location in the .plt. This is required to make function
11363 pointers compare as equal between the normal executable and
11364 the shared library. */
11365 if (! info->shared
f5385ebf 11366 && !h->def_regular)
5e681ec4
PB
11367 {
11368 h->root.u.def.section = s;
11369 h->root.u.def.value = h->plt.offset;
5e681ec4 11370
67d74e43
DJ
11371 /* Make sure the function is not marked as Thumb, in case
11372 it is the target of an ABS32 relocation, which will
11373 point to the PLT entry. */
11374 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11375 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11376 }
022f8312 11377
5e681ec4 11378 /* Make room for this entry. */
e5a52504 11379 s->size += htab->plt_entry_size;
5e681ec4 11380
e5a52504 11381 if (!htab->symbian_p)
b7693d02
DJ
11382 {
11383 /* We also need to make an entry in the .got.plt section, which
11384 will be placed in the .got section by the linker script. */
11385 eh->plt_got_offset = htab->sgotplt->size;
11386 htab->sgotplt->size += 4;
11387 }
5e681ec4 11388
00a97672
RS
11389 /* We also need to make an entry in the .rel(a).plt section. */
11390 htab->srelplt->size += RELOC_SIZE (htab);
11391
11392 /* VxWorks executables have a second set of relocations for
11393 each PLT entry. They go in a separate relocation section,
11394 which is processed by the kernel loader. */
11395 if (htab->vxworks_p && !info->shared)
11396 {
11397 /* There is a relocation for the initial PLT entry:
11398 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11399 if (h->plt.offset == htab->plt_header_size)
11400 htab->srelplt2->size += RELOC_SIZE (htab);
11401
11402 /* There are two extra relocations for each subsequent
11403 PLT entry: an R_ARM_32 relocation for the GOT entry,
11404 and an R_ARM_32 relocation for the PLT entry. */
11405 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11406 }
5e681ec4
PB
11407 }
11408 else
11409 {
11410 h->plt.offset = (bfd_vma) -1;
f5385ebf 11411 h->needs_plt = 0;
5e681ec4
PB
11412 }
11413 }
11414 else
11415 {
11416 h->plt.offset = (bfd_vma) -1;
f5385ebf 11417 h->needs_plt = 0;
5e681ec4
PB
11418 }
11419
11420 if (h->got.refcount > 0)
11421 {
11422 asection *s;
11423 bfd_boolean dyn;
ba93b8ac
DJ
11424 int tls_type = elf32_arm_hash_entry (h)->tls_type;
11425 int indx;
5e681ec4
PB
11426
11427 /* Make sure this symbol is output as a dynamic symbol.
11428 Undefined weak syms won't yet be marked as dynamic. */
11429 if (h->dynindx == -1
f5385ebf 11430 && !h->forced_local)
5e681ec4 11431 {
c152c796 11432 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11433 return FALSE;
11434 }
11435
e5a52504
MM
11436 if (!htab->symbian_p)
11437 {
11438 s = htab->sgot;
11439 h->got.offset = s->size;
ba93b8ac
DJ
11440
11441 if (tls_type == GOT_UNKNOWN)
11442 abort ();
11443
11444 if (tls_type == GOT_NORMAL)
11445 /* Non-TLS symbols need one GOT slot. */
11446 s->size += 4;
11447 else
11448 {
11449 if (tls_type & GOT_TLS_GD)
11450 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11451 s->size += 8;
11452 if (tls_type & GOT_TLS_IE)
11453 /* R_ARM_TLS_IE32 needs one GOT slot. */
11454 s->size += 4;
11455 }
11456
e5a52504 11457 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
11458
11459 indx = 0;
11460 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11461 && (!info->shared
11462 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11463 indx = h->dynindx;
11464
11465 if (tls_type != GOT_NORMAL
11466 && (info->shared || indx != 0)
11467 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11468 || h->root.type != bfd_link_hash_undefweak))
11469 {
11470 if (tls_type & GOT_TLS_IE)
00a97672 11471 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11472
11473 if (tls_type & GOT_TLS_GD)
00a97672 11474 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11475
11476 if ((tls_type & GOT_TLS_GD) && indx != 0)
00a97672 11477 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11478 }
11479 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11480 || h->root.type != bfd_link_hash_undefweak)
11481 && (info->shared
11482 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
00a97672 11483 htab->srelgot->size += RELOC_SIZE (htab);
e5a52504 11484 }
5e681ec4
PB
11485 }
11486 else
11487 h->got.offset = (bfd_vma) -1;
11488
a4fd1a8e
PB
11489 /* Allocate stubs for exported Thumb functions on v4t. */
11490 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 11491 && h->def_regular
a4fd1a8e
PB
11492 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11493 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11494 {
11495 struct elf_link_hash_entry * th;
11496 struct bfd_link_hash_entry * bh;
11497 struct elf_link_hash_entry * myh;
11498 char name[1024];
11499 asection *s;
11500 bh = NULL;
11501 /* Create a new symbol to regist the real location of the function. */
11502 s = h->root.u.def.section;
906e58ca 11503 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
11504 _bfd_generic_link_add_one_symbol (info, s->owner,
11505 name, BSF_GLOBAL, s,
11506 h->root.u.def.value,
11507 NULL, TRUE, FALSE, &bh);
11508
11509 myh = (struct elf_link_hash_entry *) bh;
11510 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11511 myh->forced_local = 1;
11512 eh->export_glue = myh;
11513 th = record_arm_to_thumb_glue (info, h);
11514 /* Point the symbol at the stub. */
11515 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11516 h->root.u.def.section = th->root.u.def.section;
11517 h->root.u.def.value = th->root.u.def.value & ~1;
11518 }
11519
5e681ec4
PB
11520 if (eh->relocs_copied == NULL)
11521 return TRUE;
11522
11523 /* In the shared -Bsymbolic case, discard space allocated for
11524 dynamic pc-relative relocs against symbols which turn out to be
11525 defined in regular objects. For the normal shared case, discard
11526 space for pc-relative relocs that have become local due to symbol
11527 visibility changes. */
11528
67687978 11529 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 11530 {
7bdca076 11531 /* The only relocs that use pc_count are R_ARM_REL32 and
bb224fc3
MS
11532 R_ARM_REL32_NOI, which will appear on something like
11533 ".long foo - .". We want calls to protected symbols to resolve
11534 directly to the function rather than going via the plt. If people
11535 want function pointer comparisons to work as expected then they
11536 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
11537 if (SYMBOL_CALLS_LOCAL (info, h))
11538 {
11539 struct elf32_arm_relocs_copied **pp;
11540
11541 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11542 {
11543 p->count -= p->pc_count;
11544 p->pc_count = 0;
11545 if (p->count == 0)
11546 *pp = p->next;
11547 else
11548 pp = &p->next;
11549 }
11550 }
11551
4dfe6ac6 11552 if (htab->vxworks_p)
3348747a
NS
11553 {
11554 struct elf32_arm_relocs_copied **pp;
11555
11556 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11557 {
11558 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11559 *pp = p->next;
11560 else
11561 pp = &p->next;
11562 }
11563 }
11564
ba93b8ac 11565 /* Also discard relocs on undefined weak syms with non-default
7359ea65 11566 visibility. */
22d606e9 11567 if (eh->relocs_copied != NULL
5e681ec4 11568 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
11569 {
11570 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11571 eh->relocs_copied = NULL;
11572
11573 /* Make sure undefined weak symbols are output as a dynamic
11574 symbol in PIEs. */
11575 else if (h->dynindx == -1
11576 && !h->forced_local)
11577 {
11578 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11579 return FALSE;
11580 }
11581 }
11582
67687978
PB
11583 else if (htab->root.is_relocatable_executable && h->dynindx == -1
11584 && h->root.type == bfd_link_hash_new)
11585 {
11586 /* Output absolute symbols so that we can create relocations
11587 against them. For normal symbols we output a relocation
11588 against the section that contains them. */
11589 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11590 return FALSE;
11591 }
11592
5e681ec4
PB
11593 }
11594 else
11595 {
11596 /* For the non-shared case, discard space for relocs against
11597 symbols which turn out to need copy relocs or are not
11598 dynamic. */
11599
f5385ebf
AM
11600 if (!h->non_got_ref
11601 && ((h->def_dynamic
11602 && !h->def_regular)
5e681ec4
PB
11603 || (htab->root.dynamic_sections_created
11604 && (h->root.type == bfd_link_hash_undefweak
11605 || h->root.type == bfd_link_hash_undefined))))
11606 {
11607 /* Make sure this symbol is output as a dynamic symbol.
11608 Undefined weak syms won't yet be marked as dynamic. */
11609 if (h->dynindx == -1
f5385ebf 11610 && !h->forced_local)
5e681ec4 11611 {
c152c796 11612 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11613 return FALSE;
11614 }
11615
11616 /* If that succeeded, we know we'll be keeping all the
11617 relocs. */
11618 if (h->dynindx != -1)
11619 goto keep;
11620 }
11621
11622 eh->relocs_copied = NULL;
11623
11624 keep: ;
11625 }
11626
11627 /* Finally, allocate space. */
11628 for (p = eh->relocs_copied; p != NULL; p = p->next)
11629 {
11630 asection *sreloc = elf_section_data (p->section)->sreloc;
00a97672 11631 sreloc->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
11632 }
11633
11634 return TRUE;
11635}
11636
08d1f311
DJ
11637/* Find any dynamic relocs that apply to read-only sections. */
11638
11639static bfd_boolean
8029a119 11640elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 11641{
8029a119
NC
11642 struct elf32_arm_link_hash_entry * eh;
11643 struct elf32_arm_relocs_copied * p;
08d1f311
DJ
11644
11645 if (h->root.type == bfd_link_hash_warning)
11646 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11647
11648 eh = (struct elf32_arm_link_hash_entry *) h;
11649 for (p = eh->relocs_copied; p != NULL; p = p->next)
11650 {
11651 asection *s = p->section;
11652
11653 if (s != NULL && (s->flags & SEC_READONLY) != 0)
11654 {
11655 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11656
11657 info->flags |= DF_TEXTREL;
11658
11659 /* Not an error, just cut short the traversal. */
11660 return FALSE;
11661 }
11662 }
11663 return TRUE;
11664}
11665
d504ffc8
DJ
11666void
11667bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11668 int byteswap_code)
11669{
11670 struct elf32_arm_link_hash_table *globals;
11671
11672 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
11673 if (globals == NULL)
11674 return;
11675
d504ffc8
DJ
11676 globals->byteswap_code = byteswap_code;
11677}
11678
252b5132
RH
11679/* Set the sizes of the dynamic sections. */
11680
b34976b6 11681static bfd_boolean
57e8b36a
NC
11682elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11683 struct bfd_link_info * info)
252b5132
RH
11684{
11685 bfd * dynobj;
11686 asection * s;
b34976b6
AM
11687 bfd_boolean plt;
11688 bfd_boolean relocs;
5e681ec4
PB
11689 bfd *ibfd;
11690 struct elf32_arm_link_hash_table *htab;
252b5132 11691
5e681ec4 11692 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
11693 if (htab == NULL)
11694 return FALSE;
11695
252b5132
RH
11696 dynobj = elf_hash_table (info)->dynobj;
11697 BFD_ASSERT (dynobj != NULL);
39b41c9c 11698 check_use_blx (htab);
252b5132
RH
11699
11700 if (elf_hash_table (info)->dynamic_sections_created)
11701 {
11702 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 11703 if (info->executable)
252b5132
RH
11704 {
11705 s = bfd_get_section_by_name (dynobj, ".interp");
11706 BFD_ASSERT (s != NULL);
eea6121a 11707 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
11708 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11709 }
11710 }
5e681ec4
PB
11711
11712 /* Set up .got offsets for local syms, and space for local dynamic
11713 relocs. */
11714 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 11715 {
5e681ec4
PB
11716 bfd_signed_vma *local_got;
11717 bfd_signed_vma *end_local_got;
11718 char *local_tls_type;
11719 bfd_size_type locsymcount;
11720 Elf_Internal_Shdr *symtab_hdr;
11721 asection *srel;
4dfe6ac6 11722 bfd_boolean is_vxworks = htab->vxworks_p;
5e681ec4 11723
0ffa91dd 11724 if (! is_arm_elf (ibfd))
5e681ec4
PB
11725 continue;
11726
11727 for (s = ibfd->sections; s != NULL; s = s->next)
11728 {
11729 struct elf32_arm_relocs_copied *p;
11730
21d799b5
NC
11731 for (p = (struct elf32_arm_relocs_copied *)
11732 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4
PB
11733 {
11734 if (!bfd_is_abs_section (p->section)
11735 && bfd_is_abs_section (p->section->output_section))
11736 {
11737 /* Input section has been discarded, either because
11738 it is a copy of a linkonce section or due to
11739 linker script /DISCARD/, so we'll be discarding
11740 the relocs too. */
11741 }
3348747a
NS
11742 else if (is_vxworks
11743 && strcmp (p->section->output_section->name,
11744 ".tls_vars") == 0)
11745 {
11746 /* Relocations in vxworks .tls_vars sections are
11747 handled specially by the loader. */
11748 }
5e681ec4
PB
11749 else if (p->count != 0)
11750 {
11751 srel = elf_section_data (p->section)->sreloc;
00a97672 11752 srel->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
11753 if ((p->section->output_section->flags & SEC_READONLY) != 0)
11754 info->flags |= DF_TEXTREL;
11755 }
11756 }
11757 }
11758
11759 local_got = elf_local_got_refcounts (ibfd);
11760 if (!local_got)
11761 continue;
11762
0ffa91dd 11763 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
11764 locsymcount = symtab_hdr->sh_info;
11765 end_local_got = local_got + locsymcount;
ba93b8ac 11766 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
5e681ec4
PB
11767 s = htab->sgot;
11768 srel = htab->srelgot;
11769 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11770 {
11771 if (*local_got > 0)
11772 {
eea6121a 11773 *local_got = s->size;
ba93b8ac
DJ
11774 if (*local_tls_type & GOT_TLS_GD)
11775 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11776 s->size += 8;
11777 if (*local_tls_type & GOT_TLS_IE)
11778 s->size += 4;
11779 if (*local_tls_type == GOT_NORMAL)
11780 s->size += 4;
11781
11782 if (info->shared || *local_tls_type == GOT_TLS_GD)
00a97672 11783 srel->size += RELOC_SIZE (htab);
5e681ec4
PB
11784 }
11785 else
11786 *local_got = (bfd_vma) -1;
11787 }
252b5132
RH
11788 }
11789
ba93b8ac
DJ
11790 if (htab->tls_ldm_got.refcount > 0)
11791 {
11792 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11793 for R_ARM_TLS_LDM32 relocations. */
11794 htab->tls_ldm_got.offset = htab->sgot->size;
11795 htab->sgot->size += 8;
11796 if (info->shared)
00a97672 11797 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11798 }
11799 else
11800 htab->tls_ldm_got.offset = -1;
11801
5e681ec4
PB
11802 /* Allocate global sym .plt and .got entries, and space for global
11803 sym dynamic relocs. */
57e8b36a 11804 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
252b5132 11805
d504ffc8
DJ
11806 /* Here we rummage through the found bfds to collect glue information. */
11807 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 11808 {
0ffa91dd 11809 if (! is_arm_elf (ibfd))
e44a2c9c
AM
11810 continue;
11811
c7b8f16e
JB
11812 /* Initialise mapping tables for code/data. */
11813 bfd_elf32_arm_init_maps (ibfd);
906e58ca 11814
c7b8f16e
JB
11815 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11816 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11817 /* xgettext:c-format */
11818 _bfd_error_handler (_("Errors encountered processing file %s"),
11819 ibfd->filename);
11820 }
d504ffc8 11821
3e6b1042
DJ
11822 /* Allocate space for the glue sections now that we've sized them. */
11823 bfd_elf32_arm_allocate_interworking_sections (info);
11824
252b5132
RH
11825 /* The check_relocs and adjust_dynamic_symbol entry points have
11826 determined the sizes of the various dynamic sections. Allocate
11827 memory for them. */
b34976b6
AM
11828 plt = FALSE;
11829 relocs = FALSE;
252b5132
RH
11830 for (s = dynobj->sections; s != NULL; s = s->next)
11831 {
11832 const char * name;
252b5132
RH
11833
11834 if ((s->flags & SEC_LINKER_CREATED) == 0)
11835 continue;
11836
11837 /* It's OK to base decisions on the section name, because none
11838 of the dynobj section names depend upon the input files. */
11839 name = bfd_get_section_name (dynobj, s);
11840
24a1ba0f 11841 if (strcmp (name, ".plt") == 0)
252b5132 11842 {
c456f082
AM
11843 /* Remember whether there is a PLT. */
11844 plt = s->size != 0;
252b5132 11845 }
0112cd26 11846 else if (CONST_STRNEQ (name, ".rel"))
252b5132 11847 {
c456f082 11848 if (s->size != 0)
252b5132 11849 {
252b5132 11850 /* Remember whether there are any reloc sections other
00a97672
RS
11851 than .rel(a).plt and .rela.plt.unloaded. */
11852 if (s != htab->srelplt && s != htab->srelplt2)
b34976b6 11853 relocs = TRUE;
252b5132
RH
11854
11855 /* We use the reloc_count field as a counter if we need
11856 to copy relocs into the output file. */
11857 s->reloc_count = 0;
11858 }
11859 }
0112cd26 11860 else if (! CONST_STRNEQ (name, ".got")
c456f082 11861 && strcmp (name, ".dynbss") != 0)
252b5132
RH
11862 {
11863 /* It's not one of our sections, so don't allocate space. */
11864 continue;
11865 }
11866
c456f082 11867 if (s->size == 0)
252b5132 11868 {
c456f082 11869 /* If we don't need this section, strip it from the
00a97672
RS
11870 output file. This is mostly to handle .rel(a).bss and
11871 .rel(a).plt. We must create both sections in
c456f082
AM
11872 create_dynamic_sections, because they must be created
11873 before the linker maps input sections to output
11874 sections. The linker does that before
11875 adjust_dynamic_symbol is called, and it is that
11876 function which decides whether anything needs to go
11877 into these sections. */
8423293d 11878 s->flags |= SEC_EXCLUDE;
252b5132
RH
11879 continue;
11880 }
11881
c456f082
AM
11882 if ((s->flags & SEC_HAS_CONTENTS) == 0)
11883 continue;
11884
252b5132 11885 /* Allocate memory for the section contents. */
21d799b5 11886 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 11887 if (s->contents == NULL)
b34976b6 11888 return FALSE;
252b5132
RH
11889 }
11890
11891 if (elf_hash_table (info)->dynamic_sections_created)
11892 {
11893 /* Add some entries to the .dynamic section. We fill in the
11894 values later, in elf32_arm_finish_dynamic_sections, but we
11895 must add the entries now so that we get the correct size for
11896 the .dynamic section. The DT_DEBUG entry is filled in by the
11897 dynamic linker and used by the debugger. */
dc810e39 11898#define add_dynamic_entry(TAG, VAL) \
5a580b3a 11899 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 11900
8532796c 11901 if (info->executable)
252b5132 11902 {
dc810e39 11903 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 11904 return FALSE;
252b5132
RH
11905 }
11906
11907 if (plt)
11908 {
dc810e39
AM
11909 if ( !add_dynamic_entry (DT_PLTGOT, 0)
11910 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
11911 || !add_dynamic_entry (DT_PLTREL,
11912 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 11913 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 11914 return FALSE;
252b5132
RH
11915 }
11916
11917 if (relocs)
11918 {
00a97672
RS
11919 if (htab->use_rel)
11920 {
11921 if (!add_dynamic_entry (DT_REL, 0)
11922 || !add_dynamic_entry (DT_RELSZ, 0)
11923 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
11924 return FALSE;
11925 }
11926 else
11927 {
11928 if (!add_dynamic_entry (DT_RELA, 0)
11929 || !add_dynamic_entry (DT_RELASZ, 0)
11930 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
11931 return FALSE;
11932 }
252b5132
RH
11933 }
11934
08d1f311
DJ
11935 /* If any dynamic relocs apply to a read-only section,
11936 then we need a DT_TEXTREL entry. */
11937 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
11938 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
11939 info);
08d1f311 11940
99e4ae17 11941 if ((info->flags & DF_TEXTREL) != 0)
252b5132 11942 {
dc810e39 11943 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 11944 return FALSE;
252b5132 11945 }
7a2b07ff
NS
11946 if (htab->vxworks_p
11947 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
11948 return FALSE;
252b5132 11949 }
8532796c 11950#undef add_dynamic_entry
252b5132 11951
b34976b6 11952 return TRUE;
252b5132
RH
11953}
11954
252b5132
RH
11955/* Finish up dynamic symbol handling. We set the contents of various
11956 dynamic sections here. */
11957
b34976b6 11958static bfd_boolean
906e58ca
NC
11959elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
11960 struct bfd_link_info * info,
11961 struct elf_link_hash_entry * h,
11962 Elf_Internal_Sym * sym)
252b5132
RH
11963{
11964 bfd * dynobj;
e5a52504 11965 struct elf32_arm_link_hash_table *htab;
b7693d02 11966 struct elf32_arm_link_hash_entry *eh;
252b5132
RH
11967
11968 dynobj = elf_hash_table (info)->dynobj;
e5a52504 11969 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
11970 if (htab == NULL)
11971 return FALSE;
11972
b7693d02 11973 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
11974
11975 if (h->plt.offset != (bfd_vma) -1)
11976 {
11977 asection * splt;
252b5132 11978 asection * srel;
e5a52504 11979 bfd_byte *loc;
24a1ba0f 11980 bfd_vma plt_index;
947216bf 11981 Elf_Internal_Rela rel;
252b5132
RH
11982
11983 /* This symbol has an entry in the procedure linkage table. Set
11984 it up. */
11985
11986 BFD_ASSERT (h->dynindx != -1);
11987
11988 splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672 11989 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
e5a52504 11990 BFD_ASSERT (splt != NULL && srel != NULL);
252b5132 11991
e5a52504
MM
11992 /* Fill in the entry in the procedure linkage table. */
11993 if (htab->symbian_p)
11994 {
906e58ca 11995 put_arm_insn (htab, output_bfd,
52ab56c2
PB
11996 elf32_arm_symbian_plt_entry[0],
11997 splt->contents + h->plt.offset);
906e58ca 11998 bfd_put_32 (output_bfd,
52ab56c2
PB
11999 elf32_arm_symbian_plt_entry[1],
12000 splt->contents + h->plt.offset + 4);
906e58ca 12001
e5a52504 12002 /* Fill in the entry in the .rel.plt section. */
2a1b9a48
MM
12003 rel.r_offset = (splt->output_section->vma
12004 + splt->output_offset
52ab56c2 12005 + h->plt.offset + 4);
e5a52504 12006 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
b7693d02
DJ
12007
12008 /* Get the index in the procedure linkage table which
12009 corresponds to this symbol. This is the index of this symbol
12010 in all the symbols for which we are making plt entries. The
12011 first entry in the procedure linkage table is reserved. */
906e58ca 12012 plt_index = ((h->plt.offset - htab->plt_header_size)
b7693d02 12013 / htab->plt_entry_size);
e5a52504
MM
12014 }
12015 else
12016 {
00a97672 12017 bfd_vma got_offset, got_address, plt_address;
e5a52504
MM
12018 bfd_vma got_displacement;
12019 asection * sgot;
52ab56c2 12020 bfd_byte * ptr;
906e58ca 12021
e5a52504
MM
12022 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12023 BFD_ASSERT (sgot != NULL);
12024
b7693d02
DJ
12025 /* Get the offset into the .got.plt table of the entry that
12026 corresponds to this function. */
12027 got_offset = eh->plt_got_offset;
12028
12029 /* Get the index in the procedure linkage table which
12030 corresponds to this symbol. This is the index of this symbol
12031 in all the symbols for which we are making plt entries. The
12032 first three entries in .got.plt are reserved; after that
12033 symbols appear in the same order as in .plt. */
12034 plt_index = (got_offset - 12) / 4;
e5a52504 12035
00a97672
RS
12036 /* Calculate the address of the GOT entry. */
12037 got_address = (sgot->output_section->vma
12038 + sgot->output_offset
12039 + got_offset);
5e681ec4 12040
00a97672
RS
12041 /* ...and the address of the PLT entry. */
12042 plt_address = (splt->output_section->vma
12043 + splt->output_offset
12044 + h->plt.offset);
5e681ec4 12045
52ab56c2 12046 ptr = htab->splt->contents + h->plt.offset;
00a97672
RS
12047 if (htab->vxworks_p && info->shared)
12048 {
12049 unsigned int i;
12050 bfd_vma val;
12051
52ab56c2 12052 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
12053 {
12054 val = elf32_arm_vxworks_shared_plt_entry[i];
12055 if (i == 2)
12056 val |= got_address - sgot->output_section->vma;
12057 if (i == 5)
12058 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
12059 if (i == 2 || i == 5)
12060 bfd_put_32 (output_bfd, val, ptr);
12061 else
12062 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
12063 }
12064 }
12065 else if (htab->vxworks_p)
b7693d02 12066 {
00a97672
RS
12067 unsigned int i;
12068 bfd_vma val;
12069
d3753b85 12070 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
12071 {
12072 val = elf32_arm_vxworks_exec_plt_entry[i];
12073 if (i == 2)
12074 val |= got_address;
12075 if (i == 4)
12076 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
12077 if (i == 5)
12078 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
12079 if (i == 2 || i == 5)
12080 bfd_put_32 (output_bfd, val, ptr);
12081 else
12082 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
12083 }
12084
12085 loc = (htab->srelplt2->contents
12086 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12087
12088 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12089 referencing the GOT for this PLT entry. */
12090 rel.r_offset = plt_address + 8;
12091 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12092 rel.r_addend = got_offset;
12093 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12094 loc += RELOC_SIZE (htab);
12095
12096 /* Create the R_ARM_ABS32 relocation referencing the
12097 beginning of the PLT for this GOT entry. */
12098 rel.r_offset = got_address;
12099 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12100 rel.r_addend = 0;
12101 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
b7693d02 12102 }
00a97672
RS
12103 else
12104 {
bd97cb95 12105 bfd_signed_vma thumb_refs;
00a97672
RS
12106 /* Calculate the displacement between the PLT slot and the
12107 entry in the GOT. The eight-byte offset accounts for the
12108 value produced by adding to pc in the first instruction
12109 of the PLT stub. */
12110 got_displacement = got_address - (plt_address + 8);
b7693d02 12111
00a97672
RS
12112 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12113
bd97cb95
DJ
12114 thumb_refs = eh->plt_thumb_refcount;
12115 if (!htab->use_blx)
12116 thumb_refs += eh->plt_maybe_thumb_refcount;
12117
12118 if (thumb_refs > 0)
00a97672 12119 {
52ab56c2
PB
12120 put_thumb_insn (htab, output_bfd,
12121 elf32_arm_plt_thumb_stub[0], ptr - 4);
12122 put_thumb_insn (htab, output_bfd,
12123 elf32_arm_plt_thumb_stub[1], ptr - 2);
00a97672
RS
12124 }
12125
52ab56c2
PB
12126 put_arm_insn (htab, output_bfd,
12127 elf32_arm_plt_entry[0]
12128 | ((got_displacement & 0x0ff00000) >> 20),
12129 ptr + 0);
12130 put_arm_insn (htab, output_bfd,
12131 elf32_arm_plt_entry[1]
12132 | ((got_displacement & 0x000ff000) >> 12),
12133 ptr+ 4);
12134 put_arm_insn (htab, output_bfd,
12135 elf32_arm_plt_entry[2]
12136 | (got_displacement & 0x00000fff),
12137 ptr + 8);
5e681ec4 12138#ifdef FOUR_WORD_PLT
52ab56c2 12139 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
5e681ec4 12140#endif
00a97672 12141 }
252b5132 12142
e5a52504
MM
12143 /* Fill in the entry in the global offset table. */
12144 bfd_put_32 (output_bfd,
12145 (splt->output_section->vma
12146 + splt->output_offset),
12147 sgot->contents + got_offset);
906e58ca 12148
00a97672
RS
12149 /* Fill in the entry in the .rel(a).plt section. */
12150 rel.r_addend = 0;
12151 rel.r_offset = got_address;
e5a52504
MM
12152 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12153 }
57e8b36a 12154
00a97672
RS
12155 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12156 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132 12157
f5385ebf 12158 if (!h->def_regular)
252b5132
RH
12159 {
12160 /* Mark the symbol as undefined, rather than as defined in
12161 the .plt section. Leave the value alone. */
12162 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
12163 /* If the symbol is weak, we do need to clear the value.
12164 Otherwise, the PLT entry would provide a definition for
12165 the symbol even if the symbol wasn't defined anywhere,
12166 and so the symbol would never be NULL. */
f5385ebf 12167 if (!h->ref_regular_nonweak)
d982ba73 12168 sym->st_value = 0;
252b5132
RH
12169 }
12170 }
12171
ba93b8ac
DJ
12172 if (h->got.offset != (bfd_vma) -1
12173 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12174 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
252b5132
RH
12175 {
12176 asection * sgot;
12177 asection * srel;
947216bf
AM
12178 Elf_Internal_Rela rel;
12179 bfd_byte *loc;
00a97672 12180 bfd_vma offset;
252b5132
RH
12181
12182 /* This symbol has an entry in the global offset table. Set it
12183 up. */
252b5132 12184 sgot = bfd_get_section_by_name (dynobj, ".got");
00a97672 12185 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
252b5132
RH
12186 BFD_ASSERT (sgot != NULL && srel != NULL);
12187
00a97672
RS
12188 offset = (h->got.offset & ~(bfd_vma) 1);
12189 rel.r_addend = 0;
252b5132
RH
12190 rel.r_offset = (sgot->output_section->vma
12191 + sgot->output_offset
00a97672 12192 + offset);
252b5132 12193
5e681ec4
PB
12194 /* If this is a static link, or it is a -Bsymbolic link and the
12195 symbol is defined locally or was forced to be local because
12196 of a version file, we just want to emit a RELATIVE reloc.
12197 The entry in the global offset table will already have been
12198 initialized in the relocate_section function. */
252b5132 12199 if (info->shared
5e681ec4
PB
12200 && SYMBOL_REFERENCES_LOCAL (info, h))
12201 {
906e58ca 12202 BFD_ASSERT ((h->got.offset & 1) != 0);
5e681ec4 12203 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
00a97672
RS
12204 if (!htab->use_rel)
12205 {
12206 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12207 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12208 }
5e681ec4 12209 }
252b5132
RH
12210 else
12211 {
906e58ca 12212 BFD_ASSERT ((h->got.offset & 1) == 0);
00a97672 12213 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
252b5132
RH
12214 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12215 }
12216
00a97672
RS
12217 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12218 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
12219 }
12220
f5385ebf 12221 if (h->needs_copy)
252b5132
RH
12222 {
12223 asection * s;
947216bf
AM
12224 Elf_Internal_Rela rel;
12225 bfd_byte *loc;
252b5132
RH
12226
12227 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
12228 BFD_ASSERT (h->dynindx != -1
12229 && (h->root.type == bfd_link_hash_defined
12230 || h->root.type == bfd_link_hash_defweak));
12231
12232 s = bfd_get_section_by_name (h->root.u.def.section->owner,
00a97672 12233 RELOC_SECTION (htab, ".bss"));
252b5132
RH
12234 BFD_ASSERT (s != NULL);
12235
00a97672 12236 rel.r_addend = 0;
252b5132
RH
12237 rel.r_offset = (h->root.u.def.value
12238 + h->root.u.def.section->output_section->vma
12239 + h->root.u.def.section->output_offset);
12240 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
00a97672
RS
12241 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12242 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
12243 }
12244
00a97672
RS
12245 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12246 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12247 to the ".got" section. */
252b5132 12248 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
00a97672 12249 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
12250 sym->st_shndx = SHN_ABS;
12251
b34976b6 12252 return TRUE;
252b5132
RH
12253}
12254
12255/* Finish up the dynamic sections. */
12256
b34976b6 12257static bfd_boolean
57e8b36a 12258elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
12259{
12260 bfd * dynobj;
12261 asection * sgot;
12262 asection * sdyn;
4dfe6ac6
NC
12263 struct elf32_arm_link_hash_table *htab;
12264
12265 htab = elf32_arm_hash_table (info);
12266 if (htab == NULL)
12267 return FALSE;
252b5132
RH
12268
12269 dynobj = elf_hash_table (info)->dynobj;
12270
12271 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4dfe6ac6 12272 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
12273 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12274
12275 if (elf_hash_table (info)->dynamic_sections_created)
12276 {
12277 asection *splt;
12278 Elf32_External_Dyn *dyncon, *dynconend;
12279
12280 splt = bfd_get_section_by_name (dynobj, ".plt");
24a1ba0f 12281 BFD_ASSERT (splt != NULL && sdyn != NULL);
252b5132
RH
12282
12283 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 12284 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 12285
252b5132
RH
12286 for (; dyncon < dynconend; dyncon++)
12287 {
12288 Elf_Internal_Dyn dyn;
12289 const char * name;
12290 asection * s;
12291
12292 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12293
12294 switch (dyn.d_tag)
12295 {
229fcec5
MM
12296 unsigned int type;
12297
252b5132 12298 default:
7a2b07ff
NS
12299 if (htab->vxworks_p
12300 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12301 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
12302 break;
12303
229fcec5
MM
12304 case DT_HASH:
12305 name = ".hash";
12306 goto get_vma_if_bpabi;
12307 case DT_STRTAB:
12308 name = ".dynstr";
12309 goto get_vma_if_bpabi;
12310 case DT_SYMTAB:
12311 name = ".dynsym";
12312 goto get_vma_if_bpabi;
c0042f5d
MM
12313 case DT_VERSYM:
12314 name = ".gnu.version";
12315 goto get_vma_if_bpabi;
12316 case DT_VERDEF:
12317 name = ".gnu.version_d";
12318 goto get_vma_if_bpabi;
12319 case DT_VERNEED:
12320 name = ".gnu.version_r";
12321 goto get_vma_if_bpabi;
12322
252b5132
RH
12323 case DT_PLTGOT:
12324 name = ".got";
12325 goto get_vma;
12326 case DT_JMPREL:
00a97672 12327 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
12328 get_vma:
12329 s = bfd_get_section_by_name (output_bfd, name);
12330 BFD_ASSERT (s != NULL);
229fcec5
MM
12331 if (!htab->symbian_p)
12332 dyn.d_un.d_ptr = s->vma;
12333 else
12334 /* In the BPABI, tags in the PT_DYNAMIC section point
12335 at the file offset, not the memory address, for the
12336 convenience of the post linker. */
12337 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
12338 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12339 break;
12340
229fcec5
MM
12341 get_vma_if_bpabi:
12342 if (htab->symbian_p)
12343 goto get_vma;
12344 break;
12345
252b5132 12346 case DT_PLTRELSZ:
00a97672
RS
12347 s = bfd_get_section_by_name (output_bfd,
12348 RELOC_SECTION (htab, ".plt"));
252b5132 12349 BFD_ASSERT (s != NULL);
eea6121a 12350 dyn.d_un.d_val = s->size;
252b5132
RH
12351 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12352 break;
906e58ca 12353
252b5132 12354 case DT_RELSZ:
00a97672 12355 case DT_RELASZ:
229fcec5
MM
12356 if (!htab->symbian_p)
12357 {
12358 /* My reading of the SVR4 ABI indicates that the
12359 procedure linkage table relocs (DT_JMPREL) should be
12360 included in the overall relocs (DT_REL). This is
12361 what Solaris does. However, UnixWare can not handle
12362 that case. Therefore, we override the DT_RELSZ entry
12363 here to make it not include the JMPREL relocs. Since
00a97672 12364 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
12365 other relocation sections, we don't have to worry
12366 about changing the DT_REL entry. */
00a97672
RS
12367 s = bfd_get_section_by_name (output_bfd,
12368 RELOC_SECTION (htab, ".plt"));
229fcec5
MM
12369 if (s != NULL)
12370 dyn.d_un.d_val -= s->size;
12371 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12372 break;
12373 }
8029a119 12374 /* Fall through. */
229fcec5
MM
12375
12376 case DT_REL:
12377 case DT_RELA:
229fcec5
MM
12378 /* In the BPABI, the DT_REL tag must point at the file
12379 offset, not the VMA, of the first relocation
12380 section. So, we use code similar to that in
12381 elflink.c, but do not check for SHF_ALLOC on the
12382 relcoation section, since relocations sections are
12383 never allocated under the BPABI. The comments above
12384 about Unixware notwithstanding, we include all of the
12385 relocations here. */
12386 if (htab->symbian_p)
12387 {
12388 unsigned int i;
12389 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12390 ? SHT_REL : SHT_RELA);
12391 dyn.d_un.d_val = 0;
12392 for (i = 1; i < elf_numsections (output_bfd); i++)
12393 {
906e58ca 12394 Elf_Internal_Shdr *hdr
229fcec5
MM
12395 = elf_elfsections (output_bfd)[i];
12396 if (hdr->sh_type == type)
12397 {
906e58ca 12398 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
12399 || dyn.d_tag == DT_RELASZ)
12400 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
12401 else if ((ufile_ptr) hdr->sh_offset
12402 <= dyn.d_un.d_val - 1)
229fcec5
MM
12403 dyn.d_un.d_val = hdr->sh_offset;
12404 }
12405 }
12406 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12407 }
252b5132 12408 break;
88f7bcd5
NC
12409
12410 /* Set the bottom bit of DT_INIT/FINI if the
12411 corresponding function is Thumb. */
12412 case DT_INIT:
12413 name = info->init_function;
12414 goto get_sym;
12415 case DT_FINI:
12416 name = info->fini_function;
12417 get_sym:
12418 /* If it wasn't set by elf_bfd_final_link
4cc11e76 12419 then there is nothing to adjust. */
88f7bcd5
NC
12420 if (dyn.d_un.d_val != 0)
12421 {
12422 struct elf_link_hash_entry * eh;
12423
12424 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 12425 FALSE, FALSE, TRUE);
906e58ca 12426 if (eh != NULL
88f7bcd5
NC
12427 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12428 {
12429 dyn.d_un.d_val |= 1;
b34976b6 12430 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
12431 }
12432 }
12433 break;
252b5132
RH
12434 }
12435 }
12436
24a1ba0f 12437 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 12438 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 12439 {
00a97672
RS
12440 const bfd_vma *plt0_entry;
12441 bfd_vma got_address, plt_address, got_displacement;
12442
12443 /* Calculate the addresses of the GOT and PLT. */
12444 got_address = sgot->output_section->vma + sgot->output_offset;
12445 plt_address = splt->output_section->vma + splt->output_offset;
12446
12447 if (htab->vxworks_p)
12448 {
12449 /* The VxWorks GOT is relocated by the dynamic linker.
12450 Therefore, we must emit relocations rather than simply
12451 computing the values now. */
12452 Elf_Internal_Rela rel;
12453
12454 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
12455 put_arm_insn (htab, output_bfd, plt0_entry[0],
12456 splt->contents + 0);
12457 put_arm_insn (htab, output_bfd, plt0_entry[1],
12458 splt->contents + 4);
12459 put_arm_insn (htab, output_bfd, plt0_entry[2],
12460 splt->contents + 8);
00a97672
RS
12461 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12462
8029a119 12463 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
12464 rel.r_offset = plt_address + 12;
12465 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12466 rel.r_addend = 0;
12467 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12468 htab->srelplt2->contents);
12469 }
12470 else
12471 {
12472 got_displacement = got_address - (plt_address + 16);
12473
12474 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
12475 put_arm_insn (htab, output_bfd, plt0_entry[0],
12476 splt->contents + 0);
12477 put_arm_insn (htab, output_bfd, plt0_entry[1],
12478 splt->contents + 4);
12479 put_arm_insn (htab, output_bfd, plt0_entry[2],
12480 splt->contents + 8);
12481 put_arm_insn (htab, output_bfd, plt0_entry[3],
12482 splt->contents + 12);
5e681ec4 12483
5e681ec4 12484#ifdef FOUR_WORD_PLT
00a97672
RS
12485 /* The displacement value goes in the otherwise-unused
12486 last word of the second entry. */
12487 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 12488#else
00a97672 12489 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 12490#endif
00a97672 12491 }
f7a74f8c 12492 }
252b5132
RH
12493
12494 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12495 really seem like the right value. */
74541ad4
AM
12496 if (splt->output_section->owner == output_bfd)
12497 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672
RS
12498
12499 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12500 {
12501 /* Correct the .rel(a).plt.unloaded relocations. They will have
12502 incorrect symbol indexes. */
12503 int num_plts;
eed62c48 12504 unsigned char *p;
00a97672
RS
12505
12506 num_plts = ((htab->splt->size - htab->plt_header_size)
12507 / htab->plt_entry_size);
12508 p = htab->srelplt2->contents + RELOC_SIZE (htab);
12509
12510 for (; num_plts; num_plts--)
12511 {
12512 Elf_Internal_Rela rel;
12513
12514 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12515 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12516 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12517 p += RELOC_SIZE (htab);
12518
12519 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12520 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12521 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12522 p += RELOC_SIZE (htab);
12523 }
12524 }
252b5132
RH
12525 }
12526
12527 /* Fill in the first three entries in the global offset table. */
229fcec5 12528 if (sgot)
252b5132 12529 {
229fcec5
MM
12530 if (sgot->size > 0)
12531 {
12532 if (sdyn == NULL)
12533 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12534 else
12535 bfd_put_32 (output_bfd,
12536 sdyn->output_section->vma + sdyn->output_offset,
12537 sgot->contents);
12538 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12539 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12540 }
252b5132 12541
229fcec5
MM
12542 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12543 }
252b5132 12544
b34976b6 12545 return TRUE;
252b5132
RH
12546}
12547
ba96a88f 12548static void
57e8b36a 12549elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 12550{
9b485d32 12551 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 12552 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
12553
12554 i_ehdrp = elf_elfheader (abfd);
12555
94a3258f
PB
12556 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12557 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12558 else
12559 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 12560 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 12561
93204d3a
PB
12562 if (link_info)
12563 {
12564 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 12565 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
12566 i_ehdrp->e_flags |= EF_ARM_BE8;
12567 }
ba96a88f
NC
12568}
12569
99e4ae17 12570static enum elf_reloc_type_class
57e8b36a 12571elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
99e4ae17 12572{
f51e552e 12573 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
12574 {
12575 case R_ARM_RELATIVE:
12576 return reloc_class_relative;
12577 case R_ARM_JUMP_SLOT:
12578 return reloc_class_plt;
12579 case R_ARM_COPY:
12580 return reloc_class_copy;
12581 default:
12582 return reloc_class_normal;
12583 }
12584}
12585
e16bb312
NC
12586/* Set the right machine number for an Arm ELF file. */
12587
12588static bfd_boolean
57e8b36a 12589elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
e16bb312
NC
12590{
12591 if (hdr->sh_type == SHT_NOTE)
12592 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12593
12594 return TRUE;
12595}
12596
e489d0ae 12597static void
57e8b36a 12598elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 12599{
5a6c6817 12600 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
12601}
12602
40a18ebd
NC
12603/* Return TRUE if this is an unwinding table entry. */
12604
12605static bfd_boolean
12606is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12607{
0112cd26
NC
12608 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12609 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
12610}
12611
12612
12613/* Set the type and flags for an ARM section. We do this by
12614 the section name, which is a hack, but ought to work. */
12615
12616static bfd_boolean
12617elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12618{
12619 const char * name;
12620
12621 name = bfd_get_section_name (abfd, sec);
12622
12623 if (is_arm_elf_unwind_section_name (abfd, name))
12624 {
12625 hdr->sh_type = SHT_ARM_EXIDX;
12626 hdr->sh_flags |= SHF_LINK_ORDER;
12627 }
12628 return TRUE;
12629}
12630
6dc132d9
L
12631/* Handle an ARM specific section when reading an object file. This is
12632 called when bfd_section_from_shdr finds a section with an unknown
12633 type. */
40a18ebd
NC
12634
12635static bfd_boolean
12636elf32_arm_section_from_shdr (bfd *abfd,
12637 Elf_Internal_Shdr * hdr,
6dc132d9
L
12638 const char *name,
12639 int shindex)
40a18ebd
NC
12640{
12641 /* There ought to be a place to keep ELF backend specific flags, but
12642 at the moment there isn't one. We just keep track of the
12643 sections by their name, instead. Fortunately, the ABI gives
12644 names for all the ARM specific sections, so we will probably get
12645 away with this. */
12646 switch (hdr->sh_type)
12647 {
12648 case SHT_ARM_EXIDX:
0951f019
RE
12649 case SHT_ARM_PREEMPTMAP:
12650 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
12651 break;
12652
12653 default:
12654 return FALSE;
12655 }
12656
6dc132d9 12657 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
12658 return FALSE;
12659
12660 return TRUE;
12661}
e489d0ae 12662
8e3de13a
NC
12663/* A structure used to record a list of sections, independently
12664 of the next and prev fields in the asection structure. */
12665typedef struct section_list
12666{
12667 asection * sec;
12668 struct section_list * next;
12669 struct section_list * prev;
12670}
12671section_list;
12672
12673/* Unfortunately we need to keep a list of sections for which
12674 an _arm_elf_section_data structure has been allocated. This
12675 is because it is possible for functions like elf32_arm_write_section
12676 to be called on a section which has had an elf_data_structure
12677 allocated for it (and so the used_by_bfd field is valid) but
12678 for which the ARM extended version of this structure - the
12679 _arm_elf_section_data structure - has not been allocated. */
12680static section_list * sections_with_arm_elf_section_data = NULL;
12681
12682static void
957c6e41 12683record_section_with_arm_elf_section_data (asection * sec)
8e3de13a
NC
12684{
12685 struct section_list * entry;
12686
21d799b5 12687 entry = (struct section_list *) bfd_malloc (sizeof (* entry));
8e3de13a
NC
12688 if (entry == NULL)
12689 return;
12690 entry->sec = sec;
12691 entry->next = sections_with_arm_elf_section_data;
12692 entry->prev = NULL;
12693 if (entry->next != NULL)
12694 entry->next->prev = entry;
12695 sections_with_arm_elf_section_data = entry;
12696}
12697
44444f50
NC
12698static struct section_list *
12699find_arm_elf_section_entry (asection * sec)
8e3de13a
NC
12700{
12701 struct section_list * entry;
bd4aae00 12702 static struct section_list * last_entry = NULL;
8e3de13a 12703
bd4aae00
NC
12704 /* This is a short cut for the typical case where the sections are added
12705 to the sections_with_arm_elf_section_data list in forward order and
12706 then looked up here in backwards order. This makes a real difference
12707 to the ld-srec/sec64k.exp linker test. */
44444f50 12708 entry = sections_with_arm_elf_section_data;
bd4aae00
NC
12709 if (last_entry != NULL)
12710 {
12711 if (last_entry->sec == sec)
44444f50
NC
12712 entry = last_entry;
12713 else if (last_entry->next != NULL
12714 && last_entry->next->sec == sec)
12715 entry = last_entry->next;
bd4aae00 12716 }
44444f50
NC
12717
12718 for (; entry; entry = entry->next)
8e3de13a 12719 if (entry->sec == sec)
44444f50 12720 break;
bd4aae00 12721
44444f50
NC
12722 if (entry)
12723 /* Record the entry prior to this one - it is the entry we are most
12724 likely to want to locate next time. Also this way if we have been
12725 called from unrecord_section_with_arm_elf_section_data() we will not
12726 be caching a pointer that is about to be freed. */
12727 last_entry = entry->prev;
12728
12729 return entry;
12730}
12731
12732static _arm_elf_section_data *
12733get_arm_elf_section_data (asection * sec)
12734{
12735 struct section_list * entry;
12736
12737 entry = find_arm_elf_section_entry (sec);
12738
12739 if (entry)
12740 return elf32_arm_section_data (entry->sec);
12741 else
12742 return NULL;
8e3de13a
NC
12743}
12744
12745static void
12746unrecord_section_with_arm_elf_section_data (asection * sec)
12747{
12748 struct section_list * entry;
12749
44444f50
NC
12750 entry = find_arm_elf_section_entry (sec);
12751
12752 if (entry)
12753 {
12754 if (entry->prev != NULL)
12755 entry->prev->next = entry->next;
12756 if (entry->next != NULL)
12757 entry->next->prev = entry->prev;
12758 if (entry == sections_with_arm_elf_section_data)
12759 sections_with_arm_elf_section_data = entry->next;
12760 free (entry);
12761 }
8e3de13a
NC
12762}
12763
e489d0ae 12764
4e617b1e
PB
12765typedef struct
12766{
12767 void *finfo;
12768 struct bfd_link_info *info;
91a5743d
PB
12769 asection *sec;
12770 int sec_shndx;
6e0b88f1
AM
12771 int (*func) (void *, const char *, Elf_Internal_Sym *,
12772 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
12773} output_arch_syminfo;
12774
12775enum map_symbol_type
12776{
12777 ARM_MAP_ARM,
12778 ARM_MAP_THUMB,
12779 ARM_MAP_DATA
12780};
12781
12782
7413f23f 12783/* Output a single mapping symbol. */
4e617b1e
PB
12784
12785static bfd_boolean
7413f23f
DJ
12786elf32_arm_output_map_sym (output_arch_syminfo *osi,
12787 enum map_symbol_type type,
12788 bfd_vma offset)
4e617b1e
PB
12789{
12790 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
12791 Elf_Internal_Sym sym;
12792
91a5743d
PB
12793 sym.st_value = osi->sec->output_section->vma
12794 + osi->sec->output_offset
12795 + offset;
4e617b1e
PB
12796 sym.st_size = 0;
12797 sym.st_other = 0;
12798 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 12799 sym.st_shndx = osi->sec_shndx;
6e0b88f1 12800 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
12801}
12802
12803
12804/* Output mapping symbols for PLT entries associated with H. */
12805
12806static bfd_boolean
12807elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12808{
12809 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12810 struct elf32_arm_link_hash_table *htab;
12811 struct elf32_arm_link_hash_entry *eh;
12812 bfd_vma addr;
12813
4e617b1e
PB
12814 if (h->root.type == bfd_link_hash_indirect)
12815 return TRUE;
12816
12817 if (h->root.type == bfd_link_hash_warning)
12818 /* When warning symbols are created, they **replace** the "real"
12819 entry in the hash table, thus we never get to see the real
12820 symbol in a hash traversal. So look at it now. */
12821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12822
12823 if (h->plt.offset == (bfd_vma) -1)
12824 return TRUE;
12825
4dfe6ac6
NC
12826 htab = elf32_arm_hash_table (osi->info);
12827 if (htab == NULL)
12828 return FALSE;
12829
4e617b1e
PB
12830 eh = (struct elf32_arm_link_hash_entry *) h;
12831 addr = h->plt.offset;
12832 if (htab->symbian_p)
12833 {
7413f23f 12834 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12835 return FALSE;
7413f23f 12836 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
12837 return FALSE;
12838 }
12839 else if (htab->vxworks_p)
12840 {
7413f23f 12841 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12842 return FALSE;
7413f23f 12843 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 12844 return FALSE;
7413f23f 12845 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 12846 return FALSE;
7413f23f 12847 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
12848 return FALSE;
12849 }
12850 else
12851 {
bd97cb95
DJ
12852 bfd_signed_vma thumb_refs;
12853
12854 thumb_refs = eh->plt_thumb_refcount;
12855 if (!htab->use_blx)
12856 thumb_refs += eh->plt_maybe_thumb_refcount;
4e617b1e 12857
bd97cb95 12858 if (thumb_refs > 0)
4e617b1e 12859 {
7413f23f 12860 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
12861 return FALSE;
12862 }
12863#ifdef FOUR_WORD_PLT
7413f23f 12864 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12865 return FALSE;
7413f23f 12866 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
12867 return FALSE;
12868#else
906e58ca 12869 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
12870 so only need to output a mapping symbol for the first PLT entry and
12871 entries with thumb thunks. */
bd97cb95 12872 if (thumb_refs > 0 || addr == 20)
4e617b1e 12873 {
7413f23f 12874 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
12875 return FALSE;
12876 }
12877#endif
12878 }
12879
12880 return TRUE;
12881}
12882
7413f23f
DJ
12883/* Output a single local symbol for a generated stub. */
12884
12885static bfd_boolean
12886elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12887 bfd_vma offset, bfd_vma size)
12888{
7413f23f
DJ
12889 Elf_Internal_Sym sym;
12890
7413f23f
DJ
12891 sym.st_value = osi->sec->output_section->vma
12892 + osi->sec->output_offset
12893 + offset;
12894 sym.st_size = size;
12895 sym.st_other = 0;
12896 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12897 sym.st_shndx = osi->sec_shndx;
6e0b88f1 12898 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 12899}
4e617b1e 12900
da5938a2 12901static bfd_boolean
8029a119
NC
12902arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12903 void * in_arg)
da5938a2
NC
12904{
12905 struct elf32_arm_stub_hash_entry *stub_entry;
12906 struct bfd_link_info *info;
da5938a2
NC
12907 asection *stub_sec;
12908 bfd_vma addr;
7413f23f 12909 char *stub_name;
9a008db3 12910 output_arch_syminfo *osi;
d3ce72d0 12911 const insn_sequence *template_sequence;
461a49ca
DJ
12912 enum stub_insn_type prev_type;
12913 int size;
12914 int i;
12915 enum map_symbol_type sym_type;
da5938a2
NC
12916
12917 /* Massage our args to the form they really have. */
12918 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 12919 osi = (output_arch_syminfo *) in_arg;
da5938a2 12920
da5938a2
NC
12921 info = osi->info;
12922
da5938a2
NC
12923 stub_sec = stub_entry->stub_sec;
12924
12925 /* Ensure this stub is attached to the current section being
7413f23f 12926 processed. */
da5938a2
NC
12927 if (stub_sec != osi->sec)
12928 return TRUE;
12929
7413f23f
DJ
12930 addr = (bfd_vma) stub_entry->stub_offset;
12931 stub_name = stub_entry->output_name;
da5938a2 12932
d3ce72d0
NC
12933 template_sequence = stub_entry->stub_template;
12934 switch (template_sequence[0].type)
7413f23f 12935 {
461a49ca
DJ
12936 case ARM_TYPE:
12937 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
12938 return FALSE;
12939 break;
461a49ca 12940 case THUMB16_TYPE:
48229727 12941 case THUMB32_TYPE:
461a49ca
DJ
12942 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
12943 stub_entry->stub_size))
da5938a2
NC
12944 return FALSE;
12945 break;
12946 default:
12947 BFD_FAIL ();
48229727 12948 return 0;
7413f23f 12949 }
da5938a2 12950
461a49ca
DJ
12951 prev_type = DATA_TYPE;
12952 size = 0;
12953 for (i = 0; i < stub_entry->stub_template_size; i++)
12954 {
d3ce72d0 12955 switch (template_sequence[i].type)
461a49ca
DJ
12956 {
12957 case ARM_TYPE:
12958 sym_type = ARM_MAP_ARM;
12959 break;
12960
12961 case THUMB16_TYPE:
48229727 12962 case THUMB32_TYPE:
461a49ca
DJ
12963 sym_type = ARM_MAP_THUMB;
12964 break;
12965
12966 case DATA_TYPE:
12967 sym_type = ARM_MAP_DATA;
12968 break;
12969
12970 default:
12971 BFD_FAIL ();
4e31c731 12972 return FALSE;
461a49ca
DJ
12973 }
12974
d3ce72d0 12975 if (template_sequence[i].type != prev_type)
461a49ca 12976 {
d3ce72d0 12977 prev_type = template_sequence[i].type;
461a49ca
DJ
12978 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
12979 return FALSE;
12980 }
12981
d3ce72d0 12982 switch (template_sequence[i].type)
461a49ca
DJ
12983 {
12984 case ARM_TYPE:
48229727 12985 case THUMB32_TYPE:
461a49ca
DJ
12986 size += 4;
12987 break;
12988
12989 case THUMB16_TYPE:
12990 size += 2;
12991 break;
12992
12993 case DATA_TYPE:
12994 size += 4;
12995 break;
12996
12997 default:
12998 BFD_FAIL ();
4e31c731 12999 return FALSE;
461a49ca
DJ
13000 }
13001 }
13002
da5938a2
NC
13003 return TRUE;
13004}
13005
91a5743d 13006/* Output mapping symbols for linker generated sections. */
4e617b1e
PB
13007
13008static bfd_boolean
13009elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca
NC
13010 struct bfd_link_info *info,
13011 void *finfo,
6e0b88f1
AM
13012 int (*func) (void *, const char *,
13013 Elf_Internal_Sym *,
13014 asection *,
13015 struct elf_link_hash_entry *))
4e617b1e
PB
13016{
13017 output_arch_syminfo osi;
13018 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
13019 bfd_vma offset;
13020 bfd_size_type size;
4e617b1e
PB
13021
13022 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13023 if (htab == NULL)
13024 return FALSE;
13025
906e58ca 13026 check_use_blx (htab);
91a5743d 13027
4e617b1e
PB
13028 osi.finfo = finfo;
13029 osi.info = info;
13030 osi.func = func;
906e58ca 13031
91a5743d
PB
13032 /* ARM->Thumb glue. */
13033 if (htab->arm_glue_size > 0)
13034 {
13035 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13036 ARM2THUMB_GLUE_SECTION_NAME);
13037
13038 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13039 (output_bfd, osi.sec->output_section);
13040 if (info->shared || htab->root.is_relocatable_executable
13041 || htab->pic_veneer)
13042 size = ARM2THUMB_PIC_GLUE_SIZE;
13043 else if (htab->use_blx)
13044 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
13045 else
13046 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 13047
91a5743d
PB
13048 for (offset = 0; offset < htab->arm_glue_size; offset += size)
13049 {
7413f23f
DJ
13050 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
13051 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
13052 }
13053 }
13054
13055 /* Thumb->ARM glue. */
13056 if (htab->thumb_glue_size > 0)
13057 {
13058 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13059 THUMB2ARM_GLUE_SECTION_NAME);
13060
13061 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13062 (output_bfd, osi.sec->output_section);
13063 size = THUMB2ARM_GLUE_SIZE;
13064
13065 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
13066 {
7413f23f
DJ
13067 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
13068 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
13069 }
13070 }
13071
845b51d6
PB
13072 /* ARMv4 BX veneers. */
13073 if (htab->bx_glue_size > 0)
13074 {
13075 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
13076 ARM_BX_GLUE_SECTION_NAME);
13077
13078 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13079 (output_bfd, osi.sec->output_section);
13080
7413f23f 13081 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
13082 }
13083
8029a119
NC
13084 /* Long calls stubs. */
13085 if (htab->stub_bfd && htab->stub_bfd->sections)
13086 {
da5938a2 13087 asection* stub_sec;
8029a119 13088
da5938a2
NC
13089 for (stub_sec = htab->stub_bfd->sections;
13090 stub_sec != NULL;
8029a119
NC
13091 stub_sec = stub_sec->next)
13092 {
13093 /* Ignore non-stub sections. */
13094 if (!strstr (stub_sec->name, STUB_SUFFIX))
13095 continue;
da5938a2 13096
8029a119 13097 osi.sec = stub_sec;
da5938a2 13098
8029a119
NC
13099 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13100 (output_bfd, osi.sec->output_section);
da5938a2 13101
8029a119
NC
13102 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13103 }
13104 }
da5938a2 13105
91a5743d
PB
13106 /* Finally, output mapping symbols for the PLT. */
13107 if (!htab->splt || htab->splt->size == 0)
13108 return TRUE;
13109
13110 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8029a119 13111 htab->splt->output_section);
91a5743d 13112 osi.sec = htab->splt;
4e617b1e
PB
13113 /* Output mapping symbols for the plt header. SymbianOS does not have a
13114 plt header. */
13115 if (htab->vxworks_p)
13116 {
13117 /* VxWorks shared libraries have no PLT header. */
13118 if (!info->shared)
13119 {
7413f23f 13120 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 13121 return FALSE;
7413f23f 13122 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
4e617b1e
PB
13123 return FALSE;
13124 }
13125 }
13126 else if (!htab->symbian_p)
13127 {
7413f23f 13128 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e
PB
13129 return FALSE;
13130#ifndef FOUR_WORD_PLT
7413f23f 13131 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e
PB
13132 return FALSE;
13133#endif
13134 }
13135
13136 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13137 return TRUE;
13138}
13139
e489d0ae
PB
13140/* Allocate target specific section data. */
13141
13142static bfd_boolean
13143elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13144{
f592407e
AM
13145 if (!sec->used_by_bfd)
13146 {
13147 _arm_elf_section_data *sdata;
13148 bfd_size_type amt = sizeof (*sdata);
e489d0ae 13149
21d799b5 13150 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
13151 if (sdata == NULL)
13152 return FALSE;
13153 sec->used_by_bfd = sdata;
13154 }
e489d0ae 13155
957c6e41 13156 record_section_with_arm_elf_section_data (sec);
8e3de13a 13157
e489d0ae
PB
13158 return _bfd_elf_new_section_hook (abfd, sec);
13159}
13160
13161
13162/* Used to order a list of mapping symbols by address. */
13163
13164static int
13165elf32_arm_compare_mapping (const void * a, const void * b)
13166{
7f6a71ff
JM
13167 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13168 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13169
13170 if (amap->vma > bmap->vma)
13171 return 1;
13172 else if (amap->vma < bmap->vma)
13173 return -1;
13174 else if (amap->type > bmap->type)
13175 /* Ensure results do not depend on the host qsort for objects with
13176 multiple mapping symbols at the same address by sorting on type
13177 after vma. */
13178 return 1;
13179 else if (amap->type < bmap->type)
13180 return -1;
13181 else
13182 return 0;
e489d0ae
PB
13183}
13184
2468f9c9
PB
13185/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13186
13187static unsigned long
13188offset_prel31 (unsigned long addr, bfd_vma offset)
13189{
13190 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13191}
13192
13193/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13194 relocations. */
13195
13196static void
13197copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13198{
13199 unsigned long first_word = bfd_get_32 (output_bfd, from);
13200 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13201
13202 /* High bit of first word is supposed to be zero. */
13203 if ((first_word & 0x80000000ul) == 0)
13204 first_word = offset_prel31 (first_word, offset);
13205
13206 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13207 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13208 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13209 second_word = offset_prel31 (second_word, offset);
13210
13211 bfd_put_32 (output_bfd, first_word, to);
13212 bfd_put_32 (output_bfd, second_word, to + 4);
13213}
e489d0ae 13214
48229727
JB
13215/* Data for make_branch_to_a8_stub(). */
13216
13217struct a8_branch_to_stub_data {
13218 asection *writing_section;
13219 bfd_byte *contents;
13220};
13221
13222
13223/* Helper to insert branches to Cortex-A8 erratum stubs in the right
13224 places for a particular section. */
13225
13226static bfd_boolean
13227make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13228 void *in_arg)
13229{
13230 struct elf32_arm_stub_hash_entry *stub_entry;
13231 struct a8_branch_to_stub_data *data;
13232 bfd_byte *contents;
13233 unsigned long branch_insn;
13234 bfd_vma veneered_insn_loc, veneer_entry_loc;
13235 bfd_signed_vma branch_offset;
13236 bfd *abfd;
91d6fa6a 13237 unsigned int target;
48229727
JB
13238
13239 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13240 data = (struct a8_branch_to_stub_data *) in_arg;
13241
13242 if (stub_entry->target_section != data->writing_section
13243 || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13244 return TRUE;
13245
13246 contents = data->contents;
13247
13248 veneered_insn_loc = stub_entry->target_section->output_section->vma
13249 + stub_entry->target_section->output_offset
13250 + stub_entry->target_value;
13251
13252 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13253 + stub_entry->stub_sec->output_offset
13254 + stub_entry->stub_offset;
13255
13256 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13257 veneered_insn_loc &= ~3u;
13258
13259 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13260
13261 abfd = stub_entry->target_section->owner;
91d6fa6a 13262 target = stub_entry->target_value;
48229727
JB
13263
13264 /* We attempt to avoid this condition by setting stubs_always_after_branch
13265 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13266 This check is just to be on the safe side... */
13267 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13268 {
13269 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13270 "allocated in unsafe location"), abfd);
13271 return FALSE;
13272 }
13273
13274 switch (stub_entry->stub_type)
13275 {
13276 case arm_stub_a8_veneer_b:
13277 case arm_stub_a8_veneer_b_cond:
13278 branch_insn = 0xf0009000;
13279 goto jump24;
13280
13281 case arm_stub_a8_veneer_blx:
13282 branch_insn = 0xf000e800;
13283 goto jump24;
13284
13285 case arm_stub_a8_veneer_bl:
13286 {
13287 unsigned int i1, j1, i2, j2, s;
13288
13289 branch_insn = 0xf000d000;
13290
13291 jump24:
13292 if (branch_offset < -16777216 || branch_offset > 16777214)
13293 {
13294 /* There's not much we can do apart from complain if this
13295 happens. */
13296 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13297 "of range (input file too large)"), abfd);
13298 return FALSE;
13299 }
13300
13301 /* i1 = not(j1 eor s), so:
13302 not i1 = j1 eor s
13303 j1 = (not i1) eor s. */
13304
13305 branch_insn |= (branch_offset >> 1) & 0x7ff;
13306 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13307 i2 = (branch_offset >> 22) & 1;
13308 i1 = (branch_offset >> 23) & 1;
13309 s = (branch_offset >> 24) & 1;
13310 j1 = (!i1) ^ s;
13311 j2 = (!i2) ^ s;
13312 branch_insn |= j2 << 11;
13313 branch_insn |= j1 << 13;
13314 branch_insn |= s << 26;
13315 }
13316 break;
13317
13318 default:
13319 BFD_FAIL ();
13320 return FALSE;
13321 }
13322
91d6fa6a
NC
13323 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
13324 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
48229727
JB
13325
13326 return TRUE;
13327}
13328
e489d0ae
PB
13329/* Do code byteswapping. Return FALSE afterwards so that the section is
13330 written out as normal. */
13331
13332static bfd_boolean
c7b8f16e 13333elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
13334 struct bfd_link_info *link_info,
13335 asection *sec,
e489d0ae
PB
13336 bfd_byte *contents)
13337{
48229727 13338 unsigned int mapcount, errcount;
8e3de13a 13339 _arm_elf_section_data *arm_data;
c7b8f16e 13340 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 13341 elf32_arm_section_map *map;
c7b8f16e 13342 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
13343 bfd_vma ptr;
13344 bfd_vma end;
c7b8f16e 13345 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 13346 bfd_byte tmp;
48229727 13347 unsigned int i;
57e8b36a 13348
4dfe6ac6
NC
13349 if (globals == NULL)
13350 return FALSE;
13351
8e3de13a
NC
13352 /* If this section has not been allocated an _arm_elf_section_data
13353 structure then we cannot record anything. */
13354 arm_data = get_arm_elf_section_data (sec);
13355 if (arm_data == NULL)
13356 return FALSE;
13357
13358 mapcount = arm_data->mapcount;
13359 map = arm_data->map;
c7b8f16e
JB
13360 errcount = arm_data->erratumcount;
13361
13362 if (errcount != 0)
13363 {
13364 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13365
13366 for (errnode = arm_data->erratumlist; errnode != 0;
13367 errnode = errnode->next)
13368 {
91d6fa6a 13369 bfd_vma target = errnode->vma - offset;
c7b8f16e
JB
13370
13371 switch (errnode->type)
13372 {
13373 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13374 {
13375 bfd_vma branch_to_veneer;
13376 /* Original condition code of instruction, plus bit mask for
13377 ARM B instruction. */
13378 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13379 | 0x0a000000;
13380
13381 /* The instruction is before the label. */
91d6fa6a 13382 target -= 4;
c7b8f16e
JB
13383
13384 /* Above offset included in -4 below. */
13385 branch_to_veneer = errnode->u.b.veneer->vma
13386 - errnode->vma - 4;
13387
13388 if ((signed) branch_to_veneer < -(1 << 25)
13389 || (signed) branch_to_veneer >= (1 << 25))
13390 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13391 "range"), output_bfd);
13392
13393 insn |= (branch_to_veneer >> 2) & 0xffffff;
91d6fa6a
NC
13394 contents[endianflip ^ target] = insn & 0xff;
13395 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13396 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13397 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
c7b8f16e
JB
13398 }
13399 break;
13400
13401 case VFP11_ERRATUM_ARM_VENEER:
13402 {
13403 bfd_vma branch_from_veneer;
13404 unsigned int insn;
13405
13406 /* Take size of veneer into account. */
13407 branch_from_veneer = errnode->u.v.branch->vma
13408 - errnode->vma - 12;
13409
13410 if ((signed) branch_from_veneer < -(1 << 25)
13411 || (signed) branch_from_veneer >= (1 << 25))
13412 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13413 "range"), output_bfd);
13414
13415 /* Original instruction. */
13416 insn = errnode->u.v.branch->u.b.vfp_insn;
91d6fa6a
NC
13417 contents[endianflip ^ target] = insn & 0xff;
13418 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
13419 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
13420 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
c7b8f16e
JB
13421
13422 /* Branch back to insn after original insn. */
13423 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
91d6fa6a
NC
13424 contents[endianflip ^ (target + 4)] = insn & 0xff;
13425 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
13426 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
13427 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
c7b8f16e
JB
13428 }
13429 break;
13430
13431 default:
13432 abort ();
13433 }
13434 }
13435 }
e489d0ae 13436
2468f9c9
PB
13437 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13438 {
13439 arm_unwind_table_edit *edit_node
13440 = arm_data->u.exidx.unwind_edit_list;
13441 /* Now, sec->size is the size of the section we will write. The original
13442 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13443 markers) was sec->rawsize. (This isn't the case if we perform no
13444 edits, then rawsize will be zero and we should use size). */
21d799b5 13445 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
13446 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13447 unsigned int in_index, out_index;
13448 bfd_vma add_to_offsets = 0;
13449
13450 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13451 {
13452 if (edit_node)
13453 {
13454 unsigned int edit_index = edit_node->index;
13455
13456 if (in_index < edit_index && in_index * 8 < input_size)
13457 {
13458 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13459 contents + in_index * 8, add_to_offsets);
13460 out_index++;
13461 in_index++;
13462 }
13463 else if (in_index == edit_index
13464 || (in_index * 8 >= input_size
13465 && edit_index == UINT_MAX))
13466 {
13467 switch (edit_node->type)
13468 {
13469 case DELETE_EXIDX_ENTRY:
13470 in_index++;
13471 add_to_offsets += 8;
13472 break;
13473
13474 case INSERT_EXIDX_CANTUNWIND_AT_END:
13475 {
13476 asection *text_sec = edit_node->linked_section;
13477 bfd_vma text_offset = text_sec->output_section->vma
13478 + text_sec->output_offset
13479 + text_sec->size;
13480 bfd_vma exidx_offset = offset + out_index * 8;
13481 unsigned long prel31_offset;
13482
13483 /* Note: this is meant to be equivalent to an
13484 R_ARM_PREL31 relocation. These synthetic
13485 EXIDX_CANTUNWIND markers are not relocated by the
13486 usual BFD method. */
13487 prel31_offset = (text_offset - exidx_offset)
13488 & 0x7ffffffful;
13489
13490 /* First address we can't unwind. */
13491 bfd_put_32 (output_bfd, prel31_offset,
13492 &edited_contents[out_index * 8]);
13493
13494 /* Code for EXIDX_CANTUNWIND. */
13495 bfd_put_32 (output_bfd, 0x1,
13496 &edited_contents[out_index * 8 + 4]);
13497
13498 out_index++;
13499 add_to_offsets -= 8;
13500 }
13501 break;
13502 }
13503
13504 edit_node = edit_node->next;
13505 }
13506 }
13507 else
13508 {
13509 /* No more edits, copy remaining entries verbatim. */
13510 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13511 contents + in_index * 8, add_to_offsets);
13512 out_index++;
13513 in_index++;
13514 }
13515 }
13516
13517 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13518 bfd_set_section_contents (output_bfd, sec->output_section,
13519 edited_contents,
13520 (file_ptr) sec->output_offset, sec->size);
13521
13522 return TRUE;
13523 }
13524
48229727
JB
13525 /* Fix code to point to Cortex-A8 erratum stubs. */
13526 if (globals->fix_cortex_a8)
13527 {
13528 struct a8_branch_to_stub_data data;
13529
13530 data.writing_section = sec;
13531 data.contents = contents;
13532
13533 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13534 &data);
13535 }
13536
e489d0ae
PB
13537 if (mapcount == 0)
13538 return FALSE;
13539
c7b8f16e 13540 if (globals->byteswap_code)
e489d0ae 13541 {
c7b8f16e 13542 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 13543
c7b8f16e
JB
13544 ptr = map[0].vma;
13545 for (i = 0; i < mapcount; i++)
13546 {
13547 if (i == mapcount - 1)
13548 end = sec->size;
13549 else
13550 end = map[i + 1].vma;
e489d0ae 13551
c7b8f16e 13552 switch (map[i].type)
e489d0ae 13553 {
c7b8f16e
JB
13554 case 'a':
13555 /* Byte swap code words. */
13556 while (ptr + 3 < end)
13557 {
13558 tmp = contents[ptr];
13559 contents[ptr] = contents[ptr + 3];
13560 contents[ptr + 3] = tmp;
13561 tmp = contents[ptr + 1];
13562 contents[ptr + 1] = contents[ptr + 2];
13563 contents[ptr + 2] = tmp;
13564 ptr += 4;
13565 }
13566 break;
e489d0ae 13567
c7b8f16e
JB
13568 case 't':
13569 /* Byte swap code halfwords. */
13570 while (ptr + 1 < end)
13571 {
13572 tmp = contents[ptr];
13573 contents[ptr] = contents[ptr + 1];
13574 contents[ptr + 1] = tmp;
13575 ptr += 2;
13576 }
13577 break;
13578
13579 case 'd':
13580 /* Leave data alone. */
13581 break;
13582 }
13583 ptr = end;
13584 }
e489d0ae 13585 }
8e3de13a 13586
93204d3a 13587 free (map);
8e3de13a 13588 arm_data->mapcount = 0;
c7b8f16e 13589 arm_data->mapsize = 0;
8e3de13a
NC
13590 arm_data->map = NULL;
13591 unrecord_section_with_arm_elf_section_data (sec);
13592
e489d0ae
PB
13593 return FALSE;
13594}
13595
957c6e41
NC
13596static void
13597unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
13598 asection * sec,
13599 void * ignore ATTRIBUTE_UNUSED)
13600{
13601 unrecord_section_with_arm_elf_section_data (sec);
13602}
13603
13604static bfd_boolean
13605elf32_arm_close_and_cleanup (bfd * abfd)
13606{
b25e3d87
L
13607 if (abfd->sections)
13608 bfd_map_over_sections (abfd,
13609 unrecord_section_via_map_over_sections,
13610 NULL);
957c6e41
NC
13611
13612 return _bfd_elf_close_and_cleanup (abfd);
13613}
13614
b25e3d87
L
13615static bfd_boolean
13616elf32_arm_bfd_free_cached_info (bfd * abfd)
13617{
13618 if (abfd->sections)
13619 bfd_map_over_sections (abfd,
13620 unrecord_section_via_map_over_sections,
13621 NULL);
13622
13623 return _bfd_free_cached_info (abfd);
13624}
13625
b7693d02
DJ
13626/* Display STT_ARM_TFUNC symbols as functions. */
13627
13628static void
13629elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13630 asymbol *asym)
13631{
13632 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13633
13634 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13635 elfsym->symbol.flags |= BSF_FUNCTION;
13636}
13637
0beaef2b
PB
13638
13639/* Mangle thumb function symbols as we read them in. */
13640
8384fb8f 13641static bfd_boolean
0beaef2b
PB
13642elf32_arm_swap_symbol_in (bfd * abfd,
13643 const void *psrc,
13644 const void *pshn,
13645 Elf_Internal_Sym *dst)
13646{
8384fb8f
AM
13647 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13648 return FALSE;
0beaef2b
PB
13649
13650 /* New EABI objects mark thumb function symbols by setting the low bit of
13651 the address. Turn these into STT_ARM_TFUNC. */
0f88be7a 13652 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
0beaef2b
PB
13653 && (dst->st_value & 1))
13654 {
13655 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13656 dst->st_value &= ~(bfd_vma) 1;
13657 }
8384fb8f 13658 return TRUE;
0beaef2b
PB
13659}
13660
13661
13662/* Mangle thumb function symbols as we write them out. */
13663
13664static void
13665elf32_arm_swap_symbol_out (bfd *abfd,
13666 const Elf_Internal_Sym *src,
13667 void *cdst,
13668 void *shndx)
13669{
13670 Elf_Internal_Sym newsym;
13671
13672 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13673 of the address set, as per the new EABI. We do this unconditionally
13674 because objcopy does not set the elf header flags until after
13675 it writes out the symbol table. */
13676 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13677 {
13678 newsym = *src;
13679 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad
PB
13680 if (newsym.st_shndx != SHN_UNDEF)
13681 {
13682 /* Do this only for defined symbols. At link type, the static
13683 linker will simulate the work of dynamic linker of resolving
13684 symbols and will carry over the thumbness of found symbols to
13685 the output symbol table. It's not clear how it happens, but
b0fead2b 13686 the thumbness of undefined symbols can well be different at
0fa3dcad
PB
13687 runtime, and writing '1' for them will be confusing for users
13688 and possibly for dynamic linker itself.
13689 */
13690 newsym.st_value |= 1;
13691 }
906e58ca 13692
0beaef2b
PB
13693 src = &newsym;
13694 }
13695 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13696}
13697
b294bdf8
MM
13698/* Add the PT_ARM_EXIDX program header. */
13699
13700static bfd_boolean
906e58ca 13701elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
13702 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13703{
13704 struct elf_segment_map *m;
13705 asection *sec;
13706
13707 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13708 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13709 {
13710 /* If there is already a PT_ARM_EXIDX header, then we do not
13711 want to add another one. This situation arises when running
13712 "strip"; the input binary already has the header. */
13713 m = elf_tdata (abfd)->segment_map;
13714 while (m && m->p_type != PT_ARM_EXIDX)
13715 m = m->next;
13716 if (!m)
13717 {
21d799b5
NC
13718 m = (struct elf_segment_map *)
13719 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
13720 if (m == NULL)
13721 return FALSE;
13722 m->p_type = PT_ARM_EXIDX;
13723 m->count = 1;
13724 m->sections[0] = sec;
13725
13726 m->next = elf_tdata (abfd)->segment_map;
13727 elf_tdata (abfd)->segment_map = m;
13728 }
13729 }
13730
13731 return TRUE;
13732}
13733
13734/* We may add a PT_ARM_EXIDX program header. */
13735
13736static int
a6b96beb
AM
13737elf32_arm_additional_program_headers (bfd *abfd,
13738 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
13739{
13740 asection *sec;
13741
13742 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13743 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13744 return 1;
13745 else
13746 return 0;
13747}
13748
fcb93ecf 13749/* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
906e58ca 13750
fcb93ecf
PB
13751static bfd_boolean
13752elf32_arm_is_function_type (unsigned int type)
13753{
0f88be7a 13754 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
fcb93ecf
PB
13755}
13756
0beaef2b 13757/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
13758const struct elf_size_info elf32_arm_size_info =
13759{
0beaef2b
PB
13760 sizeof (Elf32_External_Ehdr),
13761 sizeof (Elf32_External_Phdr),
13762 sizeof (Elf32_External_Shdr),
13763 sizeof (Elf32_External_Rel),
13764 sizeof (Elf32_External_Rela),
13765 sizeof (Elf32_External_Sym),
13766 sizeof (Elf32_External_Dyn),
13767 sizeof (Elf_External_Note),
13768 4,
13769 1,
13770 32, 2,
13771 ELFCLASS32, EV_CURRENT,
13772 bfd_elf32_write_out_phdrs,
13773 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 13774 bfd_elf32_checksum_contents,
0beaef2b
PB
13775 bfd_elf32_write_relocs,
13776 elf32_arm_swap_symbol_in,
13777 elf32_arm_swap_symbol_out,
13778 bfd_elf32_slurp_reloc_table,
13779 bfd_elf32_slurp_symbol_table,
13780 bfd_elf32_swap_dyn_in,
13781 bfd_elf32_swap_dyn_out,
13782 bfd_elf32_swap_reloc_in,
13783 bfd_elf32_swap_reloc_out,
13784 bfd_elf32_swap_reloca_in,
13785 bfd_elf32_swap_reloca_out
13786};
13787
252b5132
RH
13788#define ELF_ARCH bfd_arch_arm
13789#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
13790#ifdef __QNXTARGET__
13791#define ELF_MAXPAGESIZE 0x1000
13792#else
f21f3fe0 13793#define ELF_MAXPAGESIZE 0x8000
d0facd1b 13794#endif
b1342370 13795#define ELF_MINPAGESIZE 0x1000
24718e3b 13796#define ELF_COMMONPAGESIZE 0x1000
252b5132 13797
ba93b8ac
DJ
13798#define bfd_elf32_mkobject elf32_arm_mkobject
13799
99e4ae17
AJ
13800#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13801#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
13802#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13803#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13804#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 13805#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 13806#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
157090f7 13807#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 13808#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 13809#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 13810#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 13811#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
957c6e41 13812#define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
b25e3d87 13813#define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
3e6b1042 13814#define bfd_elf32_bfd_final_link elf32_arm_final_link
252b5132
RH
13815
13816#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13817#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 13818#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
13819#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13820#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 13821#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 13822#define elf_backend_write_section elf32_arm_write_section
252b5132 13823#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 13824#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
13825#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13826#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13827#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
74541ad4 13828#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 13829#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 13830#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 13831#define elf_backend_object_p elf32_arm_object_p
e16bb312 13832#define elf_backend_section_flags elf32_arm_section_flags
40a18ebd
NC
13833#define elf_backend_fake_sections elf32_arm_fake_sections
13834#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 13835#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 13836#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
b7693d02 13837#define elf_backend_symbol_processing elf32_arm_symbol_processing
0beaef2b 13838#define elf_backend_size_info elf32_arm_size_info
b294bdf8 13839#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
13840#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13841#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13842#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13843#define elf_backend_is_function_type elf32_arm_is_function_type
13844
13845#define elf_backend_can_refcount 1
13846#define elf_backend_can_gc_sections 1
13847#define elf_backend_plt_readonly 1
13848#define elf_backend_want_got_plt 1
13849#define elf_backend_want_plt_sym 0
13850#define elf_backend_may_use_rel_p 1
13851#define elf_backend_may_use_rela_p 0
4e7fd91e 13852#define elf_backend_default_use_rela_p 0
252b5132 13853
04f7c78d 13854#define elf_backend_got_header_size 12
04f7c78d 13855
906e58ca
NC
13856#undef elf_backend_obj_attrs_vendor
13857#define elf_backend_obj_attrs_vendor "aeabi"
13858#undef elf_backend_obj_attrs_section
13859#define elf_backend_obj_attrs_section ".ARM.attributes"
13860#undef elf_backend_obj_attrs_arg_type
13861#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13862#undef elf_backend_obj_attrs_section_type
104d59d1 13863#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
5aa6ff7c 13864#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
104d59d1 13865
252b5132 13866#include "elf32-target.h"
7f266840 13867
906e58ca 13868/* VxWorks Targets. */
4e7fd91e 13869
906e58ca 13870#undef TARGET_LITTLE_SYM
4e7fd91e 13871#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 13872#undef TARGET_LITTLE_NAME
4e7fd91e 13873#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 13874#undef TARGET_BIG_SYM
4e7fd91e 13875#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 13876#undef TARGET_BIG_NAME
4e7fd91e
PB
13877#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13878
13879/* Like elf32_arm_link_hash_table_create -- but overrides
13880 appropriately for VxWorks. */
906e58ca 13881
4e7fd91e
PB
13882static struct bfd_link_hash_table *
13883elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13884{
13885 struct bfd_link_hash_table *ret;
13886
13887 ret = elf32_arm_link_hash_table_create (abfd);
13888 if (ret)
13889 {
13890 struct elf32_arm_link_hash_table *htab
00a97672 13891 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 13892 htab->use_rel = 0;
00a97672 13893 htab->vxworks_p = 1;
4e7fd91e
PB
13894 }
13895 return ret;
906e58ca 13896}
4e7fd91e 13897
00a97672
RS
13898static void
13899elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13900{
13901 elf32_arm_final_write_processing (abfd, linker);
13902 elf_vxworks_final_write_processing (abfd, linker);
13903}
13904
906e58ca 13905#undef elf32_bed
4e7fd91e
PB
13906#define elf32_bed elf32_arm_vxworks_bed
13907
906e58ca
NC
13908#undef bfd_elf32_bfd_link_hash_table_create
13909#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13910#undef elf_backend_add_symbol_hook
13911#define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13912#undef elf_backend_final_write_processing
13913#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13914#undef elf_backend_emit_relocs
13915#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 13916
906e58ca 13917#undef elf_backend_may_use_rel_p
00a97672 13918#define elf_backend_may_use_rel_p 0
906e58ca 13919#undef elf_backend_may_use_rela_p
00a97672 13920#define elf_backend_may_use_rela_p 1
906e58ca 13921#undef elf_backend_default_use_rela_p
00a97672 13922#define elf_backend_default_use_rela_p 1
906e58ca 13923#undef elf_backend_want_plt_sym
00a97672 13924#define elf_backend_want_plt_sym 1
906e58ca 13925#undef ELF_MAXPAGESIZE
00a97672 13926#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
13927
13928#include "elf32-target.h"
13929
13930
21d799b5
NC
13931/* Merge backend specific data from an object file to the output
13932 object file when linking. */
13933
13934static bfd_boolean
13935elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
13936{
13937 flagword out_flags;
13938 flagword in_flags;
13939 bfd_boolean flags_compatible = TRUE;
13940 asection *sec;
13941
13942 /* Check if we have the same endianess. */
13943 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13944 return FALSE;
13945
13946 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13947 return TRUE;
13948
13949 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
13950 return FALSE;
13951
13952 /* The input BFD must have had its flags initialised. */
13953 /* The following seems bogus to me -- The flags are initialized in
13954 the assembler but I don't think an elf_flags_init field is
13955 written into the object. */
13956 /* BFD_ASSERT (elf_flags_init (ibfd)); */
13957
13958 in_flags = elf_elfheader (ibfd)->e_flags;
13959 out_flags = elf_elfheader (obfd)->e_flags;
13960
13961 /* In theory there is no reason why we couldn't handle this. However
13962 in practice it isn't even close to working and there is no real
13963 reason to want it. */
13964 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
13965 && !(ibfd->flags & DYNAMIC)
13966 && (in_flags & EF_ARM_BE8))
13967 {
13968 _bfd_error_handler (_("error: %B is already in final BE8 format"),
13969 ibfd);
13970 return FALSE;
13971 }
13972
13973 if (!elf_flags_init (obfd))
13974 {
13975 /* If the input is the default architecture and had the default
13976 flags then do not bother setting the flags for the output
13977 architecture, instead allow future merges to do this. If no
13978 future merges ever set these flags then they will retain their
13979 uninitialised values, which surprise surprise, correspond
13980 to the default values. */
13981 if (bfd_get_arch_info (ibfd)->the_default
13982 && elf_elfheader (ibfd)->e_flags == 0)
13983 return TRUE;
13984
13985 elf_flags_init (obfd) = TRUE;
13986 elf_elfheader (obfd)->e_flags = in_flags;
13987
13988 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13989 && bfd_get_arch_info (obfd)->the_default)
13990 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
13991
13992 return TRUE;
13993 }
13994
13995 /* Determine what should happen if the input ARM architecture
13996 does not match the output ARM architecture. */
13997 if (! bfd_arm_merge_machines (ibfd, obfd))
13998 return FALSE;
13999
14000 /* Identical flags must be compatible. */
14001 if (in_flags == out_flags)
14002 return TRUE;
14003
14004 /* Check to see if the input BFD actually contains any sections. If
14005 not, its flags may not have been initialised either, but it
14006 cannot actually cause any incompatiblity. Do not short-circuit
14007 dynamic objects; their section list may be emptied by
14008 elf_link_add_object_symbols.
14009
14010 Also check to see if there are no code sections in the input.
14011 In this case there is no need to check for code specific flags.
14012 XXX - do we need to worry about floating-point format compatability
14013 in data sections ? */
14014 if (!(ibfd->flags & DYNAMIC))
14015 {
14016 bfd_boolean null_input_bfd = TRUE;
14017 bfd_boolean only_data_sections = TRUE;
14018
14019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14020 {
14021 /* Ignore synthetic glue sections. */
14022 if (strcmp (sec->name, ".glue_7")
14023 && strcmp (sec->name, ".glue_7t"))
14024 {
14025 if ((bfd_get_section_flags (ibfd, sec)
14026 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14027 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
14028 only_data_sections = FALSE;
14029
14030 null_input_bfd = FALSE;
14031 break;
14032 }
14033 }
14034
14035 if (null_input_bfd || only_data_sections)
14036 return TRUE;
14037 }
14038
14039 /* Complain about various flag mismatches. */
14040 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
14041 EF_ARM_EABI_VERSION (out_flags)))
14042 {
14043 _bfd_error_handler
14044 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
14045 ibfd, obfd,
14046 (in_flags & EF_ARM_EABIMASK) >> 24,
14047 (out_flags & EF_ARM_EABIMASK) >> 24);
14048 return FALSE;
14049 }
14050
14051 /* Not sure what needs to be checked for EABI versions >= 1. */
14052 /* VxWorks libraries do not use these flags. */
14053 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
14054 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
14055 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
14056 {
14057 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14058 {
14059 _bfd_error_handler
14060 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
14061 ibfd, obfd,
14062 in_flags & EF_ARM_APCS_26 ? 26 : 32,
14063 out_flags & EF_ARM_APCS_26 ? 26 : 32);
14064 flags_compatible = FALSE;
14065 }
14066
14067 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14068 {
14069 if (in_flags & EF_ARM_APCS_FLOAT)
14070 _bfd_error_handler
14071 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
14072 ibfd, obfd);
14073 else
14074 _bfd_error_handler
14075 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
14076 ibfd, obfd);
14077
14078 flags_compatible = FALSE;
14079 }
14080
14081 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
14082 {
14083 if (in_flags & EF_ARM_VFP_FLOAT)
14084 _bfd_error_handler
14085 (_("error: %B uses VFP instructions, whereas %B does not"),
14086 ibfd, obfd);
14087 else
14088 _bfd_error_handler
14089 (_("error: %B uses FPA instructions, whereas %B does not"),
14090 ibfd, obfd);
14091
14092 flags_compatible = FALSE;
14093 }
14094
14095 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
14096 {
14097 if (in_flags & EF_ARM_MAVERICK_FLOAT)
14098 _bfd_error_handler
14099 (_("error: %B uses Maverick instructions, whereas %B does not"),
14100 ibfd, obfd);
14101 else
14102 _bfd_error_handler
14103 (_("error: %B does not use Maverick instructions, whereas %B does"),
14104 ibfd, obfd);
14105
14106 flags_compatible = FALSE;
14107 }
14108
14109#ifdef EF_ARM_SOFT_FLOAT
14110 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
14111 {
14112 /* We can allow interworking between code that is VFP format
14113 layout, and uses either soft float or integer regs for
14114 passing floating point arguments and results. We already
14115 know that the APCS_FLOAT flags match; similarly for VFP
14116 flags. */
14117 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
14118 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
14119 {
14120 if (in_flags & EF_ARM_SOFT_FLOAT)
14121 _bfd_error_handler
14122 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14123 ibfd, obfd);
14124 else
14125 _bfd_error_handler
14126 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14127 ibfd, obfd);
14128
14129 flags_compatible = FALSE;
14130 }
14131 }
14132#endif
14133
14134 /* Interworking mismatch is only a warning. */
14135 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14136 {
14137 if (in_flags & EF_ARM_INTERWORK)
14138 {
14139 _bfd_error_handler
14140 (_("Warning: %B supports interworking, whereas %B does not"),
14141 ibfd, obfd);
14142 }
14143 else
14144 {
14145 _bfd_error_handler
14146 (_("Warning: %B does not support interworking, whereas %B does"),
14147 ibfd, obfd);
14148 }
14149 }
14150 }
14151
14152 return flags_compatible;
14153}
14154
14155
906e58ca 14156/* Symbian OS Targets. */
7f266840 14157
906e58ca 14158#undef TARGET_LITTLE_SYM
7f266840 14159#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 14160#undef TARGET_LITTLE_NAME
7f266840 14161#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 14162#undef TARGET_BIG_SYM
7f266840 14163#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 14164#undef TARGET_BIG_NAME
7f266840
DJ
14165#define TARGET_BIG_NAME "elf32-bigarm-symbian"
14166
14167/* Like elf32_arm_link_hash_table_create -- but overrides
14168 appropriately for Symbian OS. */
906e58ca 14169
7f266840
DJ
14170static struct bfd_link_hash_table *
14171elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14172{
14173 struct bfd_link_hash_table *ret;
14174
14175 ret = elf32_arm_link_hash_table_create (abfd);
14176 if (ret)
14177 {
14178 struct elf32_arm_link_hash_table *htab
14179 = (struct elf32_arm_link_hash_table *)ret;
14180 /* There is no PLT header for Symbian OS. */
14181 htab->plt_header_size = 0;
95720a86
DJ
14182 /* The PLT entries are each one instruction and one word. */
14183 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 14184 htab->symbian_p = 1;
33bfe774
JB
14185 /* Symbian uses armv5t or above, so use_blx is always true. */
14186 htab->use_blx = 1;
67687978 14187 htab->root.is_relocatable_executable = 1;
7f266840
DJ
14188 }
14189 return ret;
906e58ca 14190}
7f266840 14191
b35d266b 14192static const struct bfd_elf_special_section
551b43fd 14193elf32_arm_symbian_special_sections[] =
7f266840 14194{
5cd3778d
MM
14195 /* In a BPABI executable, the dynamic linking sections do not go in
14196 the loadable read-only segment. The post-linker may wish to
14197 refer to these sections, but they are not part of the final
14198 program image. */
0112cd26
NC
14199 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
14200 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
14201 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
14202 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
14203 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
14204 /* These sections do not need to be writable as the SymbianOS
14205 postlinker will arrange things so that no dynamic relocation is
14206 required. */
0112cd26
NC
14207 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
14208 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
14209 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14210 { NULL, 0, 0, 0, 0 }
7f266840
DJ
14211};
14212
c3c76620 14213static void
906e58ca 14214elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 14215 struct bfd_link_info *link_info)
c3c76620
MM
14216{
14217 /* BPABI objects are never loaded directly by an OS kernel; they are
14218 processed by a postlinker first, into an OS-specific format. If
14219 the D_PAGED bit is set on the file, BFD will align segments on
14220 page boundaries, so that an OS can directly map the file. With
14221 BPABI objects, that just results in wasted space. In addition,
14222 because we clear the D_PAGED bit, map_sections_to_segments will
14223 recognize that the program headers should not be mapped into any
14224 loadable segment. */
14225 abfd->flags &= ~D_PAGED;
906e58ca 14226 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 14227}
7f266840
DJ
14228
14229static bfd_boolean
906e58ca 14230elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 14231 struct bfd_link_info *info)
7f266840
DJ
14232{
14233 struct elf_segment_map *m;
14234 asection *dynsec;
14235
7f266840
DJ
14236 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14237 segment. However, because the .dynamic section is not marked
14238 with SEC_LOAD, the generic ELF code will not create such a
14239 segment. */
14240 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14241 if (dynsec)
14242 {
8ded5a0f
AM
14243 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14244 if (m->p_type == PT_DYNAMIC)
14245 break;
14246
14247 if (m == NULL)
14248 {
14249 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14250 m->next = elf_tdata (abfd)->segment_map;
14251 elf_tdata (abfd)->segment_map = m;
14252 }
7f266840
DJ
14253 }
14254
b294bdf8
MM
14255 /* Also call the generic arm routine. */
14256 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
14257}
14258
95720a86
DJ
14259/* Return address for Ith PLT stub in section PLT, for relocation REL
14260 or (bfd_vma) -1 if it should not be included. */
14261
14262static bfd_vma
14263elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14264 const arelent *rel ATTRIBUTE_UNUSED)
14265{
14266 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14267}
14268
14269
8029a119 14270#undef elf32_bed
7f266840
DJ
14271#define elf32_bed elf32_arm_symbian_bed
14272
14273/* The dynamic sections are not allocated on SymbianOS; the postlinker
14274 will process them and then discard them. */
906e58ca 14275#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
14276#define ELF_DYNAMIC_SEC_FLAGS \
14277 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14278
00a97672 14279#undef elf_backend_add_symbol_hook
00a97672 14280#undef elf_backend_emit_relocs
c3c76620 14281
906e58ca
NC
14282#undef bfd_elf32_bfd_link_hash_table_create
14283#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14284#undef elf_backend_special_sections
14285#define elf_backend_special_sections elf32_arm_symbian_special_sections
14286#undef elf_backend_begin_write_processing
14287#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14288#undef elf_backend_final_write_processing
14289#define elf_backend_final_write_processing elf32_arm_final_write_processing
14290
14291#undef elf_backend_modify_segment_map
7f266840
DJ
14292#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14293
14294/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 14295#undef elf_backend_got_header_size
7f266840
DJ
14296#define elf_backend_got_header_size 0
14297
14298/* Similarly, there is no .got.plt section. */
906e58ca 14299#undef elf_backend_want_got_plt
7f266840
DJ
14300#define elf_backend_want_got_plt 0
14301
906e58ca 14302#undef elf_backend_plt_sym_val
95720a86
DJ
14303#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14304
906e58ca 14305#undef elf_backend_may_use_rel_p
00a97672 14306#define elf_backend_may_use_rel_p 1
906e58ca 14307#undef elf_backend_may_use_rela_p
00a97672 14308#define elf_backend_may_use_rela_p 0
906e58ca 14309#undef elf_backend_default_use_rela_p
00a97672 14310#define elf_backend_default_use_rela_p 0
906e58ca 14311#undef elf_backend_want_plt_sym
00a97672 14312#define elf_backend_want_plt_sym 0
906e58ca 14313#undef ELF_MAXPAGESIZE
00a97672 14314#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 14315
7f266840 14316#include "elf32-target.h"