]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-arm.c
enable-non-contiguous-regions warnings
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
a2c58332 2 Copyright (C) 1998-2022 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
00a97672 25#include "libiberty.h"
7f266840
DJ
26#include "libbfd.h"
27#include "elf-bfd.h"
b38cadfb 28#include "elf-nacl.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
f37164d7
AM
31#include "elf32-arm.h"
32#include "cpu-arm.h"
7f266840 33
00a97672
RS
34/* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36#define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39/* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41#define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46/* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48#define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53/* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55#define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
f3185997 60#define elf_info_to_howto NULL
07d6d2b8 61#define elf_info_to_howto_rel elf32_arm_info_to_howto
7f266840
DJ
62
63#define ARM_ELF_ABI_VERSION 0
64#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
79f08007
YZ
66/* The Adjusted Place, as defined by AAELF. */
67#define Pa(X) ((X) & 0xfffffffc)
68
0a1b45a2
AM
69static bool elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
3e6b1042 73
7f266840
DJ
74/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
c19d1205 78static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 79{
8029a119 80 /* No relocation. */
7f266840
DJ
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
c94cb026 83 0, /* size */
7f266840 84 0, /* bitsize */
0a1b45a2 85 false, /* pc_relative */
7f266840
DJ
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
0a1b45a2 90 false, /* partial_inplace */
7f266840
DJ
91 0, /* src_mask */
92 0, /* dst_mask */
0a1b45a2 93 false), /* pcrel_offset */
7f266840
DJ
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
c94cb026 97 4, /* size */
7f266840 98 24, /* bitsize */
0a1b45a2 99 true, /* pc_relative */
7f266840
DJ
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
0a1b45a2 104 false, /* partial_inplace */
7f266840
DJ
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
0a1b45a2 107 true), /* pcrel_offset */
7f266840
DJ
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
c94cb026 112 4, /* size */
7f266840 113 32, /* bitsize */
0a1b45a2 114 false, /* pc_relative */
7f266840
DJ
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
0a1b45a2 119 false, /* partial_inplace */
7f266840
DJ
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
0a1b45a2 122 false), /* pcrel_offset */
7f266840
DJ
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
c94cb026 127 4, /* size */
7f266840 128 32, /* bitsize */
0a1b45a2 129 true, /* pc_relative */
7f266840
DJ
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
0a1b45a2 134 false, /* partial_inplace */
7f266840
DJ
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
0a1b45a2 137 true), /* pcrel_offset */
7f266840 138
c19d1205 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 140 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840 141 0, /* rightshift */
c94cb026 142 1, /* size */
4962c51a 143 32, /* bitsize */
0a1b45a2 144 true, /* pc_relative */
7f266840 145 0, /* bitpos */
4962c51a 146 complain_overflow_dont,/* complain_on_overflow */
7f266840 147 bfd_elf_generic_reloc, /* special_function */
4962c51a 148 "R_ARM_LDR_PC_G0", /* name */
0a1b45a2 149 false, /* partial_inplace */
4962c51a
MS
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
0a1b45a2 152 true), /* pcrel_offset */
7f266840
DJ
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
c94cb026 157 2, /* size */
7f266840 158 16, /* bitsize */
0a1b45a2 159 false, /* pc_relative */
7f266840
DJ
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
0a1b45a2 164 false, /* partial_inplace */
7f266840
DJ
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
0a1b45a2 167 false), /* pcrel_offset */
7f266840
DJ
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
c94cb026 172 4, /* size */
7f266840 173 12, /* bitsize */
0a1b45a2 174 false, /* pc_relative */
7f266840
DJ
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
0a1b45a2 179 false, /* partial_inplace */
00a97672
RS
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
0a1b45a2 182 false), /* pcrel_offset */
7f266840
DJ
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
c94cb026 186 2, /* size */
7f266840 187 5, /* bitsize */
0a1b45a2 188 false, /* pc_relative */
7f266840
DJ
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
0a1b45a2 193 false, /* partial_inplace */
7f266840
DJ
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
0a1b45a2 196 false), /* pcrel_offset */
7f266840
DJ
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
c94cb026 201 1, /* size */
7f266840 202 8, /* bitsize */
0a1b45a2 203 false, /* pc_relative */
7f266840
DJ
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
0a1b45a2 208 false, /* partial_inplace */
7f266840
DJ
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
0a1b45a2 211 false), /* pcrel_offset */
7f266840
DJ
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
c94cb026 215 4, /* size */
7f266840 216 32, /* bitsize */
0a1b45a2 217 false, /* pc_relative */
7f266840
DJ
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
0a1b45a2 222 false, /* partial_inplace */
7f266840
DJ
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
0a1b45a2 225 false), /* pcrel_offset */
7f266840 226
c19d1205 227 HOWTO (R_ARM_THM_CALL, /* type */
7f266840 228 1, /* rightshift */
c94cb026 229 4, /* size */
f6ebfac0 230 24, /* bitsize */
0a1b45a2 231 true, /* pc_relative */
7f266840
DJ
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
c19d1205 235 "R_ARM_THM_CALL", /* name */
0a1b45a2 236 false, /* partial_inplace */
7f6ab9f8
AM
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
0a1b45a2 239 true), /* pcrel_offset */
7f266840 240
07d6d2b8 241 HOWTO (R_ARM_THM_PC8, /* type */
7f266840 242 1, /* rightshift */
c94cb026 243 2, /* size */
7f266840 244 8, /* bitsize */
0a1b45a2 245 true, /* pc_relative */
7f266840
DJ
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
0a1b45a2 250 false, /* partial_inplace */
7f266840
DJ
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
0a1b45a2 253 true), /* pcrel_offset */
7f266840 254
c19d1205 255 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840 256 1, /* rightshift */
c94cb026 257 2, /* size */
c19d1205 258 32, /* bitsize */
0a1b45a2 259 false, /* pc_relative */
7f266840
DJ
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
c19d1205 263 "R_ARM_BREL_ADJ", /* name */
0a1b45a2 264 false, /* partial_inplace */
c19d1205
ZW
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
0a1b45a2 267 false), /* pcrel_offset */
7f266840 268
0855e32b 269 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 270 0, /* rightshift */
c94cb026 271 4, /* size */
0855e32b 272 32, /* bitsize */
0a1b45a2 273 false, /* pc_relative */
7f266840 274 0, /* bitpos */
0855e32b 275 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 276 bfd_elf_generic_reloc, /* special_function */
0855e32b 277 "R_ARM_TLS_DESC", /* name */
0a1b45a2 278 false, /* partial_inplace */
0855e32b
NS
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
0a1b45a2 281 false), /* pcrel_offset */
7f266840
DJ
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
5d0feb98 285 0, /* size */
7f266840 286 0, /* bitsize */
0a1b45a2 287 false, /* pc_relative */
7f266840
DJ
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
0a1b45a2 292 false, /* partial_inplace */
7f266840
DJ
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
0a1b45a2 295 false), /* pcrel_offset */
7f266840
DJ
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
c94cb026 300 4, /* size */
7f6ab9f8 301 24, /* bitsize */
0a1b45a2 302 true, /* pc_relative */
7f266840
DJ
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
0a1b45a2 307 false, /* partial_inplace */
7f266840
DJ
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
0a1b45a2 310 true), /* pcrel_offset */
7f266840
DJ
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
c94cb026 315 4, /* size */
7f6ab9f8 316 24, /* bitsize */
0a1b45a2 317 true, /* pc_relative */
7f266840
DJ
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
0a1b45a2 322 false, /* partial_inplace */
7f6ab9f8
AM
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
0a1b45a2 325 true), /* pcrel_offset */
7f266840 326
ba93b8ac 327 /* Dynamic TLS relocations. */
7f266840 328
ba93b8ac 329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
07d6d2b8 330 0, /* rightshift */
c94cb026 331 4, /* size */
07d6d2b8 332 32, /* bitsize */
0a1b45a2 333 false, /* pc_relative */
07d6d2b8 334 0, /* bitpos */
99059e56
RM
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
0a1b45a2 338 true, /* partial_inplace */
99059e56
RM
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
0a1b45a2 341 false), /* pcrel_offset */
7f266840 342
ba93b8ac 343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
07d6d2b8 344 0, /* rightshift */
c94cb026 345 4, /* size */
07d6d2b8 346 32, /* bitsize */
0a1b45a2 347 false, /* pc_relative */
07d6d2b8 348 0, /* bitpos */
99059e56
RM
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
0a1b45a2 352 true, /* partial_inplace */
99059e56
RM
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
0a1b45a2 355 false), /* pcrel_offset */
7f266840 356
ba93b8ac 357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
07d6d2b8 358 0, /* rightshift */
c94cb026 359 4, /* size */
07d6d2b8 360 32, /* bitsize */
0a1b45a2 361 false, /* pc_relative */
07d6d2b8 362 0, /* bitpos */
99059e56
RM
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
0a1b45a2 366 true, /* partial_inplace */
99059e56
RM
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
0a1b45a2 369 false), /* pcrel_offset */
7f266840
DJ
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
07d6d2b8 374 0, /* rightshift */
c94cb026 375 4, /* size */
07d6d2b8 376 32, /* bitsize */
0a1b45a2 377 false, /* pc_relative */
07d6d2b8 378 0, /* bitpos */
99059e56
RM
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
0a1b45a2 382 true, /* partial_inplace */
99059e56
RM
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
0a1b45a2 385 false), /* pcrel_offset */
7f266840
DJ
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
07d6d2b8 388 0, /* rightshift */
c94cb026 389 4, /* size */
07d6d2b8 390 32, /* bitsize */
0a1b45a2 391 false, /* pc_relative */
07d6d2b8 392 0, /* bitpos */
99059e56
RM
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
0a1b45a2 396 true, /* partial_inplace */
99059e56
RM
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
0a1b45a2 399 false), /* pcrel_offset */
7f266840
DJ
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
07d6d2b8 402 0, /* rightshift */
c94cb026 403 4, /* size */
07d6d2b8 404 32, /* bitsize */
0a1b45a2 405 false, /* pc_relative */
07d6d2b8 406 0, /* bitpos */
99059e56
RM
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
0a1b45a2 410 true, /* partial_inplace */
99059e56
RM
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
0a1b45a2 413 false), /* pcrel_offset */
7f266840
DJ
414
415 HOWTO (R_ARM_RELATIVE, /* type */
07d6d2b8 416 0, /* rightshift */
c94cb026 417 4, /* size */
07d6d2b8 418 32, /* bitsize */
0a1b45a2 419 false, /* pc_relative */
07d6d2b8 420 0, /* bitpos */
99059e56
RM
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
0a1b45a2 424 true, /* partial_inplace */
99059e56
RM
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
0a1b45a2 427 false), /* pcrel_offset */
7f266840 428
c19d1205 429 HOWTO (R_ARM_GOTOFF32, /* type */
07d6d2b8 430 0, /* rightshift */
c94cb026 431 4, /* size */
07d6d2b8 432 32, /* bitsize */
0a1b45a2 433 false, /* pc_relative */
07d6d2b8 434 0, /* bitpos */
99059e56
RM
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
0a1b45a2 438 true, /* partial_inplace */
99059e56
RM
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
0a1b45a2 441 false), /* pcrel_offset */
7f266840
DJ
442
443 HOWTO (R_ARM_GOTPC, /* type */
07d6d2b8 444 0, /* rightshift */
c94cb026 445 4, /* size */
07d6d2b8 446 32, /* bitsize */
0a1b45a2 447 true, /* pc_relative */
07d6d2b8 448 0, /* bitpos */
99059e56
RM
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
0a1b45a2 452 true, /* partial_inplace */
99059e56
RM
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
0a1b45a2 455 true), /* pcrel_offset */
7f266840
DJ
456
457 HOWTO (R_ARM_GOT32, /* type */
07d6d2b8 458 0, /* rightshift */
c94cb026 459 4, /* size */
07d6d2b8 460 32, /* bitsize */
0a1b45a2 461 false, /* pc_relative */
07d6d2b8 462 0, /* bitpos */
99059e56
RM
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
0a1b45a2 466 true, /* partial_inplace */
99059e56
RM
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
0a1b45a2 469 false), /* pcrel_offset */
7f266840
DJ
470
471 HOWTO (R_ARM_PLT32, /* type */
07d6d2b8 472 2, /* rightshift */
c94cb026 473 4, /* size */
07d6d2b8 474 24, /* bitsize */
0a1b45a2 475 true, /* pc_relative */
07d6d2b8 476 0, /* bitpos */
99059e56
RM
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
0a1b45a2 480 false, /* partial_inplace */
99059e56
RM
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
0a1b45a2 483 true), /* pcrel_offset */
7f266840
DJ
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
c94cb026 487 4, /* size */
7f266840 488 24, /* bitsize */
0a1b45a2 489 true, /* pc_relative */
7f266840
DJ
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
0a1b45a2 494 false, /* partial_inplace */
7f266840
DJ
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
0a1b45a2 497 true), /* pcrel_offset */
7f266840
DJ
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
c94cb026 501 4, /* size */
7f266840 502 24, /* bitsize */
0a1b45a2 503 true, /* pc_relative */
7f266840
DJ
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
0a1b45a2 508 false, /* partial_inplace */
7f266840
DJ
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
0a1b45a2 511 true), /* pcrel_offset */
7f266840 512
c19d1205
ZW
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
c94cb026 515 4, /* size */
c19d1205 516 24, /* bitsize */
0a1b45a2 517 true, /* pc_relative */
7f266840 518 0, /* bitpos */
c19d1205 519 complain_overflow_signed,/* complain_on_overflow */
7f266840 520 bfd_elf_generic_reloc, /* special_function */
c19d1205 521 "R_ARM_THM_JUMP24", /* name */
0a1b45a2 522 false, /* partial_inplace */
c19d1205
ZW
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
0a1b45a2 525 true), /* pcrel_offset */
7f266840 526
c19d1205 527 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 528 0, /* rightshift */
c94cb026 529 4, /* size */
c19d1205 530 32, /* bitsize */
0a1b45a2 531 false, /* pc_relative */
7f266840
DJ
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
c19d1205 535 "R_ARM_BASE_ABS", /* name */
0a1b45a2 536 false, /* partial_inplace */
c19d1205
ZW
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
0a1b45a2 539 false), /* pcrel_offset */
7f266840
DJ
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
c94cb026 543 4, /* size */
7f266840 544 12, /* bitsize */
0a1b45a2 545 true, /* pc_relative */
7f266840
DJ
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
0a1b45a2 550 false, /* partial_inplace */
7f266840
DJ
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
0a1b45a2 553 true), /* pcrel_offset */
7f266840
DJ
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
c94cb026 557 4, /* size */
7f266840 558 12, /* bitsize */
0a1b45a2 559 true, /* pc_relative */
7f266840
DJ
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
0a1b45a2 564 false, /* partial_inplace */
7f266840
DJ
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
0a1b45a2 567 true), /* pcrel_offset */
7f266840
DJ
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
c94cb026 571 4, /* size */
7f266840 572 12, /* bitsize */
0a1b45a2 573 true, /* pc_relative */
7f266840
DJ
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
0a1b45a2 578 false, /* partial_inplace */
7f266840
DJ
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
0a1b45a2 581 true), /* pcrel_offset */
7f266840
DJ
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
c94cb026 585 4, /* size */
7f266840 586 12, /* bitsize */
0a1b45a2 587 false, /* pc_relative */
7f266840
DJ
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
0a1b45a2 592 false, /* partial_inplace */
7f266840
DJ
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
0a1b45a2 595 false), /* pcrel_offset */
7f266840
DJ
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
c94cb026 599 4, /* size */
7f266840 600 8, /* bitsize */
0a1b45a2 601 false, /* pc_relative */
7f266840
DJ
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
0a1b45a2 606 false, /* partial_inplace */
7f266840
DJ
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
0a1b45a2 609 false), /* pcrel_offset */
7f266840
DJ
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
c94cb026 613 4, /* size */
7f266840 614 8, /* bitsize */
0a1b45a2 615 false, /* pc_relative */
7f266840
DJ
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
0a1b45a2 620 false, /* partial_inplace */
7f266840
DJ
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
0a1b45a2 623 false), /* pcrel_offset */
7f266840
DJ
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
c94cb026 627 4, /* size */
7f266840 628 32, /* bitsize */
0a1b45a2 629 false, /* pc_relative */
7f266840
DJ
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
0a1b45a2 634 false, /* partial_inplace */
7f266840
DJ
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
0a1b45a2 637 false), /* pcrel_offset */
7f266840
DJ
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
c94cb026 641 4, /* size */
7f266840 642 32, /* bitsize */
0a1b45a2 643 false, /* pc_relative */
7f266840
DJ
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
0a1b45a2 648 false, /* partial_inplace */
7f266840
DJ
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
0a1b45a2 651 false), /* pcrel_offset */
7f266840
DJ
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
c94cb026 655 4, /* size */
7f266840 656 32, /* bitsize */
0a1b45a2 657 false, /* pc_relative */
7f266840
DJ
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
0a1b45a2 662 false, /* partial_inplace */
7f266840
DJ
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
0a1b45a2 665 false), /* pcrel_offset */
7f266840
DJ
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
c94cb026 669 4, /* size */
7f266840 670 32, /* bitsize */
0a1b45a2 671 false, /* pc_relative */
7f266840
DJ
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
0a1b45a2 676 false, /* partial_inplace */
7f266840
DJ
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
0a1b45a2 679 true), /* pcrel_offset */
7f266840
DJ
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
c94cb026 683 4, /* size */
7f266840 684 31, /* bitsize */
0a1b45a2 685 true, /* pc_relative */
7f266840
DJ
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
0a1b45a2 690 false, /* partial_inplace */
7f266840
DJ
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
0a1b45a2 693 true), /* pcrel_offset */
c19d1205
ZW
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
c94cb026 697 4, /* size */
c19d1205 698 16, /* bitsize */
0a1b45a2 699 false, /* pc_relative */
c19d1205
ZW
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
0a1b45a2 704 false, /* partial_inplace */
39623e12
PB
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
0a1b45a2 707 false), /* pcrel_offset */
c19d1205
ZW
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
c94cb026 711 4, /* size */
c19d1205 712 16, /* bitsize */
0a1b45a2 713 false, /* pc_relative */
c19d1205
ZW
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
0a1b45a2 718 false, /* partial_inplace */
39623e12
PB
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
0a1b45a2 721 false), /* pcrel_offset */
c19d1205
ZW
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
c94cb026 725 4, /* size */
c19d1205 726 16, /* bitsize */
0a1b45a2 727 true, /* pc_relative */
c19d1205
ZW
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
0a1b45a2 732 false, /* partial_inplace */
39623e12
PB
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
0a1b45a2 735 true), /* pcrel_offset */
c19d1205
ZW
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
c94cb026 739 4, /* size */
c19d1205 740 16, /* bitsize */
0a1b45a2 741 true, /* pc_relative */
c19d1205
ZW
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
0a1b45a2 746 false, /* partial_inplace */
39623e12
PB
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
0a1b45a2 749 true), /* pcrel_offset */
c19d1205
ZW
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
c94cb026 753 4, /* size */
c19d1205 754 16, /* bitsize */
0a1b45a2 755 false, /* pc_relative */
c19d1205
ZW
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
0a1b45a2 760 false, /* partial_inplace */
c19d1205
ZW
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
0a1b45a2 763 false), /* pcrel_offset */
c19d1205
ZW
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
c94cb026 767 4, /* size */
c19d1205 768 16, /* bitsize */
0a1b45a2 769 false, /* pc_relative */
c19d1205
ZW
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
0a1b45a2 774 false, /* partial_inplace */
c19d1205
ZW
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
0a1b45a2 777 false), /* pcrel_offset */
c19d1205
ZW
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
c94cb026 781 4, /* size */
c19d1205 782 16, /* bitsize */
0a1b45a2 783 true, /* pc_relative */
c19d1205
ZW
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
0a1b45a2 788 false, /* partial_inplace */
c19d1205
ZW
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
0a1b45a2 791 true), /* pcrel_offset */
c19d1205
ZW
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
c94cb026 795 4, /* size */
c19d1205 796 16, /* bitsize */
0a1b45a2 797 true, /* pc_relative */
c19d1205
ZW
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
0a1b45a2 802 false, /* partial_inplace */
c19d1205
ZW
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
0a1b45a2 805 true), /* pcrel_offset */
c19d1205
ZW
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
c94cb026 809 4, /* size */
c19d1205 810 19, /* bitsize */
0a1b45a2 811 true, /* pc_relative */
c19d1205
ZW
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
0a1b45a2 816 false, /* partial_inplace */
c19d1205
ZW
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
0a1b45a2 819 true), /* pcrel_offset */
c19d1205
ZW
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
c94cb026 823 2, /* size */
c19d1205 824 6, /* bitsize */
0a1b45a2 825 true, /* pc_relative */
c19d1205
ZW
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
0a1b45a2 830 false, /* partial_inplace */
c19d1205
ZW
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
0a1b45a2 833 true), /* pcrel_offset */
c19d1205
ZW
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
c94cb026 840 4, /* size */
c19d1205 841 13, /* bitsize */
0a1b45a2 842 true, /* pc_relative */
c19d1205 843 0, /* bitpos */
2cab6cc3 844 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
0a1b45a2 847 false, /* partial_inplace */
2cab6cc3
MS
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
0a1b45a2 850 true), /* pcrel_offset */
c19d1205
ZW
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
c94cb026 854 4, /* size */
c19d1205 855 13, /* bitsize */
0a1b45a2 856 true, /* pc_relative */
c19d1205 857 0, /* bitpos */
2cab6cc3 858 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
0a1b45a2 861 false, /* partial_inplace */
2cab6cc3
MS
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
0a1b45a2 864 true), /* pcrel_offset */
c19d1205
ZW
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
c94cb026 868 4, /* size */
c19d1205 869 32, /* bitsize */
0a1b45a2 870 false, /* pc_relative */
c19d1205
ZW
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
0a1b45a2 875 false, /* partial_inplace */
c19d1205
ZW
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
0a1b45a2 878 false), /* pcrel_offset */
c19d1205
ZW
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
c94cb026 882 4, /* size */
c19d1205 883 32, /* bitsize */
0a1b45a2 884 true, /* pc_relative */
c19d1205
ZW
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
0a1b45a2 889 false, /* partial_inplace */
c19d1205
ZW
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
0a1b45a2 892 false), /* pcrel_offset */
7f266840 893
4962c51a
MS
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
c94cb026 898 4, /* size */
4962c51a 899 32, /* bitsize */
0a1b45a2 900 true, /* pc_relative */
4962c51a
MS
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
0a1b45a2 905 false, /* partial_inplace */
4962c51a
MS
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
0a1b45a2 908 true), /* pcrel_offset */
4962c51a 909
07d6d2b8 910 HOWTO (R_ARM_ALU_PC_G0, /* type */
4962c51a 911 0, /* rightshift */
c94cb026 912 4, /* size */
4962c51a 913 32, /* bitsize */
0a1b45a2 914 true, /* pc_relative */
4962c51a
MS
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 918 "R_ARM_ALU_PC_G0", /* name */
0a1b45a2 919 false, /* partial_inplace */
4962c51a
MS
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
0a1b45a2 922 true), /* pcrel_offset */
4962c51a
MS
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
c94cb026 926 4, /* size */
4962c51a 927 32, /* bitsize */
0a1b45a2 928 true, /* pc_relative */
4962c51a
MS
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
0a1b45a2 933 false, /* partial_inplace */
4962c51a
MS
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
0a1b45a2 936 true), /* pcrel_offset */
4962c51a 937
07d6d2b8 938 HOWTO (R_ARM_ALU_PC_G1, /* type */
4962c51a 939 0, /* rightshift */
c94cb026 940 4, /* size */
4962c51a 941 32, /* bitsize */
0a1b45a2 942 true, /* pc_relative */
4962c51a
MS
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 946 "R_ARM_ALU_PC_G1", /* name */
0a1b45a2 947 false, /* partial_inplace */
4962c51a
MS
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
0a1b45a2 950 true), /* pcrel_offset */
4962c51a 951
07d6d2b8 952 HOWTO (R_ARM_ALU_PC_G2, /* type */
4962c51a 953 0, /* rightshift */
c94cb026 954 4, /* size */
4962c51a 955 32, /* bitsize */
0a1b45a2 956 true, /* pc_relative */
4962c51a
MS
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 960 "R_ARM_ALU_PC_G2", /* name */
0a1b45a2 961 false, /* partial_inplace */
4962c51a
MS
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
0a1b45a2 964 true), /* pcrel_offset */
4962c51a 965
07d6d2b8 966 HOWTO (R_ARM_LDR_PC_G1, /* type */
4962c51a 967 0, /* rightshift */
c94cb026 968 4, /* size */
4962c51a 969 32, /* bitsize */
0a1b45a2 970 true, /* pc_relative */
4962c51a
MS
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 974 "R_ARM_LDR_PC_G1", /* name */
0a1b45a2 975 false, /* partial_inplace */
4962c51a
MS
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
0a1b45a2 978 true), /* pcrel_offset */
4962c51a 979
07d6d2b8 980 HOWTO (R_ARM_LDR_PC_G2, /* type */
4962c51a 981 0, /* rightshift */
c94cb026 982 4, /* size */
4962c51a 983 32, /* bitsize */
0a1b45a2 984 true, /* pc_relative */
4962c51a
MS
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 988 "R_ARM_LDR_PC_G2", /* name */
0a1b45a2 989 false, /* partial_inplace */
4962c51a
MS
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
0a1b45a2 992 true), /* pcrel_offset */
4962c51a 993
07d6d2b8 994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
4962c51a 995 0, /* rightshift */
c94cb026 996 4, /* size */
4962c51a 997 32, /* bitsize */
0a1b45a2 998 true, /* pc_relative */
4962c51a
MS
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1002 "R_ARM_LDRS_PC_G0", /* name */
0a1b45a2 1003 false, /* partial_inplace */
4962c51a
MS
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
0a1b45a2 1006 true), /* pcrel_offset */
4962c51a 1007
07d6d2b8 1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
4962c51a 1009 0, /* rightshift */
c94cb026 1010 4, /* size */
4962c51a 1011 32, /* bitsize */
0a1b45a2 1012 true, /* pc_relative */
4962c51a
MS
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1016 "R_ARM_LDRS_PC_G1", /* name */
0a1b45a2 1017 false, /* partial_inplace */
4962c51a
MS
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
0a1b45a2 1020 true), /* pcrel_offset */
4962c51a 1021
07d6d2b8 1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
4962c51a 1023 0, /* rightshift */
c94cb026 1024 4, /* size */
4962c51a 1025 32, /* bitsize */
0a1b45a2 1026 true, /* pc_relative */
4962c51a
MS
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1030 "R_ARM_LDRS_PC_G2", /* name */
0a1b45a2 1031 false, /* partial_inplace */
4962c51a
MS
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
0a1b45a2 1034 true), /* pcrel_offset */
4962c51a 1035
07d6d2b8 1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
4962c51a 1037 0, /* rightshift */
c94cb026 1038 4, /* size */
4962c51a 1039 32, /* bitsize */
0a1b45a2 1040 true, /* pc_relative */
4962c51a
MS
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1044 "R_ARM_LDC_PC_G0", /* name */
0a1b45a2 1045 false, /* partial_inplace */
4962c51a
MS
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
0a1b45a2 1048 true), /* pcrel_offset */
4962c51a 1049
07d6d2b8 1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
4962c51a 1051 0, /* rightshift */
c94cb026 1052 4, /* size */
4962c51a 1053 32, /* bitsize */
0a1b45a2 1054 true, /* pc_relative */
4962c51a
MS
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1058 "R_ARM_LDC_PC_G1", /* name */
0a1b45a2 1059 false, /* partial_inplace */
4962c51a
MS
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
0a1b45a2 1062 true), /* pcrel_offset */
4962c51a 1063
07d6d2b8 1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
4962c51a 1065 0, /* rightshift */
c94cb026 1066 4, /* size */
4962c51a 1067 32, /* bitsize */
0a1b45a2 1068 true, /* pc_relative */
4962c51a
MS
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1072 "R_ARM_LDC_PC_G2", /* name */
0a1b45a2 1073 false, /* partial_inplace */
4962c51a
MS
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
0a1b45a2 1076 true), /* pcrel_offset */
4962c51a 1077
07d6d2b8 1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
4962c51a 1079 0, /* rightshift */
c94cb026 1080 4, /* size */
4962c51a 1081 32, /* bitsize */
0a1b45a2 1082 true, /* pc_relative */
4962c51a
MS
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1086 "R_ARM_ALU_SB_G0_NC", /* name */
0a1b45a2 1087 false, /* partial_inplace */
4962c51a
MS
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
0a1b45a2 1090 true), /* pcrel_offset */
4962c51a 1091
07d6d2b8 1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
4962c51a 1093 0, /* rightshift */
c94cb026 1094 4, /* size */
4962c51a 1095 32, /* bitsize */
0a1b45a2 1096 true, /* pc_relative */
4962c51a
MS
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1100 "R_ARM_ALU_SB_G0", /* name */
0a1b45a2 1101 false, /* partial_inplace */
4962c51a
MS
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
0a1b45a2 1104 true), /* pcrel_offset */
4962c51a 1105
07d6d2b8 1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
4962c51a 1107 0, /* rightshift */
c94cb026 1108 4, /* size */
4962c51a 1109 32, /* bitsize */
0a1b45a2 1110 true, /* pc_relative */
4962c51a
MS
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1114 "R_ARM_ALU_SB_G1_NC", /* name */
0a1b45a2 1115 false, /* partial_inplace */
4962c51a
MS
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
0a1b45a2 1118 true), /* pcrel_offset */
4962c51a 1119
07d6d2b8 1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
4962c51a 1121 0, /* rightshift */
c94cb026 1122 4, /* size */
4962c51a 1123 32, /* bitsize */
0a1b45a2 1124 true, /* pc_relative */
4962c51a
MS
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1128 "R_ARM_ALU_SB_G1", /* name */
0a1b45a2 1129 false, /* partial_inplace */
4962c51a
MS
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
0a1b45a2 1132 true), /* pcrel_offset */
4962c51a 1133
07d6d2b8 1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
4962c51a 1135 0, /* rightshift */
c94cb026 1136 4, /* size */
4962c51a 1137 32, /* bitsize */
0a1b45a2 1138 true, /* pc_relative */
4962c51a
MS
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1142 "R_ARM_ALU_SB_G2", /* name */
0a1b45a2 1143 false, /* partial_inplace */
4962c51a
MS
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
0a1b45a2 1146 true), /* pcrel_offset */
4962c51a 1147
07d6d2b8 1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
4962c51a 1149 0, /* rightshift */
c94cb026 1150 4, /* size */
4962c51a 1151 32, /* bitsize */
0a1b45a2 1152 true, /* pc_relative */
4962c51a
MS
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1156 "R_ARM_LDR_SB_G0", /* name */
0a1b45a2 1157 false, /* partial_inplace */
4962c51a
MS
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
0a1b45a2 1160 true), /* pcrel_offset */
4962c51a 1161
07d6d2b8 1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
4962c51a 1163 0, /* rightshift */
c94cb026 1164 4, /* size */
4962c51a 1165 32, /* bitsize */
0a1b45a2 1166 true, /* pc_relative */
4962c51a
MS
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1170 "R_ARM_LDR_SB_G1", /* name */
0a1b45a2 1171 false, /* partial_inplace */
4962c51a
MS
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
0a1b45a2 1174 true), /* pcrel_offset */
4962c51a 1175
07d6d2b8 1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
4962c51a 1177 0, /* rightshift */
c94cb026 1178 4, /* size */
4962c51a 1179 32, /* bitsize */
0a1b45a2 1180 true, /* pc_relative */
4962c51a
MS
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1184 "R_ARM_LDR_SB_G2", /* name */
0a1b45a2 1185 false, /* partial_inplace */
4962c51a
MS
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
0a1b45a2 1188 true), /* pcrel_offset */
4962c51a 1189
07d6d2b8 1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
4962c51a 1191 0, /* rightshift */
c94cb026 1192 4, /* size */
4962c51a 1193 32, /* bitsize */
0a1b45a2 1194 true, /* pc_relative */
4962c51a
MS
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1198 "R_ARM_LDRS_SB_G0", /* name */
0a1b45a2 1199 false, /* partial_inplace */
4962c51a
MS
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
0a1b45a2 1202 true), /* pcrel_offset */
4962c51a 1203
07d6d2b8 1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
4962c51a 1205 0, /* rightshift */
c94cb026 1206 4, /* size */
4962c51a 1207 32, /* bitsize */
0a1b45a2 1208 true, /* pc_relative */
4962c51a
MS
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1212 "R_ARM_LDRS_SB_G1", /* name */
0a1b45a2 1213 false, /* partial_inplace */
4962c51a
MS
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
0a1b45a2 1216 true), /* pcrel_offset */
4962c51a 1217
07d6d2b8 1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
4962c51a 1219 0, /* rightshift */
c94cb026 1220 4, /* size */
4962c51a 1221 32, /* bitsize */
0a1b45a2 1222 true, /* pc_relative */
4962c51a
MS
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1226 "R_ARM_LDRS_SB_G2", /* name */
0a1b45a2 1227 false, /* partial_inplace */
4962c51a
MS
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
0a1b45a2 1230 true), /* pcrel_offset */
4962c51a 1231
07d6d2b8 1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
4962c51a 1233 0, /* rightshift */
c94cb026 1234 4, /* size */
4962c51a 1235 32, /* bitsize */
0a1b45a2 1236 true, /* pc_relative */
4962c51a
MS
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1240 "R_ARM_LDC_SB_G0", /* name */
0a1b45a2 1241 false, /* partial_inplace */
4962c51a
MS
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
0a1b45a2 1244 true), /* pcrel_offset */
4962c51a 1245
07d6d2b8 1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
4962c51a 1247 0, /* rightshift */
c94cb026 1248 4, /* size */
4962c51a 1249 32, /* bitsize */
0a1b45a2 1250 true, /* pc_relative */
4962c51a
MS
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1254 "R_ARM_LDC_SB_G1", /* name */
0a1b45a2 1255 false, /* partial_inplace */
4962c51a
MS
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
0a1b45a2 1258 true), /* pcrel_offset */
4962c51a 1259
07d6d2b8 1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
4962c51a 1261 0, /* rightshift */
c94cb026 1262 4, /* size */
4962c51a 1263 32, /* bitsize */
0a1b45a2 1264 true, /* pc_relative */
4962c51a
MS
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
07d6d2b8 1268 "R_ARM_LDC_SB_G2", /* name */
0a1b45a2 1269 false, /* partial_inplace */
4962c51a
MS
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
0a1b45a2 1272 true), /* pcrel_offset */
4962c51a
MS
1273
1274 /* End of group relocations. */
c19d1205 1275
c19d1205
ZW
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
c94cb026 1278 4, /* size */
c19d1205 1279 16, /* bitsize */
0a1b45a2 1280 false, /* pc_relative */
c19d1205
ZW
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
0a1b45a2 1285 false, /* partial_inplace */
c19d1205
ZW
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
0a1b45a2 1288 false), /* pcrel_offset */
c19d1205
ZW
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
c94cb026 1292 4, /* size */
c19d1205 1293 16, /* bitsize */
0a1b45a2 1294 false, /* pc_relative */
c19d1205
ZW
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
0a1b45a2 1299 false, /* partial_inplace */
c19d1205
ZW
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
0a1b45a2 1302 false), /* pcrel_offset */
c19d1205
ZW
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
c94cb026 1306 4, /* size */
c19d1205 1307 16, /* bitsize */
0a1b45a2 1308 false, /* pc_relative */
c19d1205
ZW
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
0a1b45a2 1313 false, /* partial_inplace */
c19d1205
ZW
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
0a1b45a2 1316 false), /* pcrel_offset */
c19d1205
ZW
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
c94cb026 1320 4, /* size */
c19d1205 1321 16, /* bitsize */
0a1b45a2 1322 false, /* pc_relative */
c19d1205
ZW
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
0a1b45a2 1327 false, /* partial_inplace */
c19d1205
ZW
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
0a1b45a2 1330 false), /* pcrel_offset */
c19d1205
ZW
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
c94cb026 1334 4, /* size */
c19d1205 1335 16, /* bitsize */
0a1b45a2 1336 false, /* pc_relative */
c19d1205
ZW
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
0a1b45a2 1341 false, /* partial_inplace */
c19d1205
ZW
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
0a1b45a2 1344 false), /* pcrel_offset */
c19d1205
ZW
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
c94cb026 1348 4, /* size */
c19d1205 1349 16, /* bitsize */
0a1b45a2 1350 false, /* pc_relative */
c19d1205
ZW
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
0a1b45a2 1355 false, /* partial_inplace */
c19d1205
ZW
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
0a1b45a2 1358 false), /* pcrel_offset */
c19d1205 1359
0855e32b
NS
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
c94cb026 1362 4, /* size */
0855e32b 1363 32, /* bitsize */
0a1b45a2 1364 false, /* pc_relative */
0855e32b
NS
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
0a1b45a2 1369 true, /* partial_inplace */
0855e32b
NS
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
0a1b45a2 1372 false), /* pcrel_offset */
0855e32b
NS
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
c94cb026 1376 4, /* size */
0855e32b 1377 24, /* bitsize */
0a1b45a2 1378 false, /* pc_relative */
0855e32b
NS
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
0a1b45a2 1383 false, /* partial_inplace */
0855e32b
NS
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
0a1b45a2 1386 false), /* pcrel_offset */
0855e32b
NS
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
c94cb026 1390 4, /* size */
0855e32b 1391 0, /* bitsize */
0a1b45a2 1392 false, /* pc_relative */
0855e32b 1393 0, /* bitpos */
821e059c 1394 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
0a1b45a2 1397 false, /* partial_inplace */
0855e32b
NS
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
0a1b45a2 1400 false), /* pcrel_offset */
0855e32b
NS
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
c94cb026 1404 4, /* size */
0855e32b 1405 24, /* bitsize */
0a1b45a2 1406 false, /* pc_relative */
0855e32b
NS
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
0a1b45a2 1411 false, /* partial_inplace */
0855e32b
NS
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
0a1b45a2 1414 false), /* pcrel_offset */
c19d1205
ZW
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
c94cb026 1418 4, /* size */
c19d1205 1419 32, /* bitsize */
0a1b45a2 1420 false, /* pc_relative */
c19d1205
ZW
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
0a1b45a2 1425 false, /* partial_inplace */
c19d1205
ZW
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
0a1b45a2 1428 false), /* pcrel_offset */
c19d1205
ZW
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
c94cb026 1432 4, /* size */
c19d1205 1433 32, /* bitsize */
0a1b45a2 1434 false, /* pc_relative */
c19d1205
ZW
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
0a1b45a2 1439 false, /* partial_inplace */
c19d1205
ZW
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
0a1b45a2 1442 false), /* pcrel_offset */
c19d1205
ZW
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
c94cb026 1446 4, /* size */
c19d1205 1447 32, /* bitsize */
0a1b45a2 1448 true, /* pc_relative */
c19d1205
ZW
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
0a1b45a2 1453 false, /* partial_inplace */
c19d1205
ZW
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
0a1b45a2 1456 true), /* pcrel_offset */
c19d1205
ZW
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
c94cb026 1460 4, /* size */
c19d1205 1461 12, /* bitsize */
0a1b45a2 1462 false, /* pc_relative */
c19d1205
ZW
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
0a1b45a2 1467 false, /* partial_inplace */
c19d1205
ZW
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
0a1b45a2 1470 false), /* pcrel_offset */
c19d1205
ZW
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
c94cb026 1474 4, /* size */
c19d1205 1475 12, /* bitsize */
0a1b45a2 1476 false, /* pc_relative */
c19d1205
ZW
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
0a1b45a2 1481 false, /* partial_inplace */
c19d1205
ZW
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
0a1b45a2 1484 false), /* pcrel_offset */
c19d1205 1485
07d6d2b8 1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
c19d1205
ZW
1487
1488 /* GNU extension to record C++ vtable member usage */
07d6d2b8
AM
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
c94cb026 1491 4, /* size */
07d6d2b8 1492 0, /* bitsize */
0a1b45a2 1493 false, /* pc_relative */
07d6d2b8 1494 0, /* bitpos */
99059e56 1495 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8
AM
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
0a1b45a2 1498 false, /* partial_inplace */
07d6d2b8
AM
1499 0, /* src_mask */
1500 0, /* dst_mask */
0a1b45a2 1501 false), /* pcrel_offset */
c19d1205
ZW
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
07d6d2b8 1505 0, /* rightshift */
c94cb026 1506 4, /* size */
07d6d2b8 1507 0, /* bitsize */
0a1b45a2 1508 false, /* pc_relative */
07d6d2b8 1509 0, /* bitpos */
99059e56 1510 complain_overflow_dont, /* complain_on_overflow */
07d6d2b8 1511 NULL, /* special_function */
99059e56 1512 "R_ARM_GNU_VTINHERIT", /* name */
0a1b45a2 1513 false, /* partial_inplace */
07d6d2b8
AM
1514 0, /* src_mask */
1515 0, /* dst_mask */
0a1b45a2 1516 false), /* pcrel_offset */
c19d1205
ZW
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
c94cb026 1520 2, /* size */
c19d1205 1521 11, /* bitsize */
0a1b45a2 1522 true, /* pc_relative */
c19d1205
ZW
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
0a1b45a2 1527 false, /* partial_inplace */
c19d1205
ZW
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
0a1b45a2 1530 true), /* pcrel_offset */
c19d1205
ZW
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
c94cb026 1534 2, /* size */
c19d1205 1535 8, /* bitsize */
0a1b45a2 1536 true, /* pc_relative */
c19d1205
ZW
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
0a1b45a2 1541 false, /* partial_inplace */
c19d1205
ZW
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
0a1b45a2 1544 true), /* pcrel_offset */
ba93b8ac 1545
c19d1205
ZW
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
07d6d2b8 1548 0, /* rightshift */
c94cb026 1549 4, /* size */
07d6d2b8 1550 32, /* bitsize */
0a1b45a2 1551 false, /* pc_relative */
07d6d2b8 1552 0, /* bitpos */
99059e56
RM
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
0a1b45a2 1556 true, /* partial_inplace */
99059e56
RM
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
0a1b45a2 1559 false), /* pcrel_offset */
ba93b8ac 1560
ba93b8ac 1561 HOWTO (R_ARM_TLS_LDM32, /* type */
07d6d2b8 1562 0, /* rightshift */
c94cb026 1563 4, /* size */
07d6d2b8 1564 32, /* bitsize */
0a1b45a2 1565 false, /* pc_relative */
07d6d2b8 1566 0, /* bitpos */
99059e56
RM
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
0a1b45a2 1570 true, /* partial_inplace */
99059e56
RM
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
0a1b45a2 1573 false), /* pcrel_offset */
ba93b8ac 1574
c19d1205 1575 HOWTO (R_ARM_TLS_LDO32, /* type */
07d6d2b8 1576 0, /* rightshift */
c94cb026 1577 4, /* size */
07d6d2b8 1578 32, /* bitsize */
0a1b45a2 1579 false, /* pc_relative */
07d6d2b8 1580 0, /* bitpos */
99059e56
RM
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
0a1b45a2 1584 true, /* partial_inplace */
99059e56
RM
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
0a1b45a2 1587 false), /* pcrel_offset */
ba93b8ac 1588
ba93b8ac 1589 HOWTO (R_ARM_TLS_IE32, /* type */
07d6d2b8 1590 0, /* rightshift */
c94cb026 1591 4, /* size */
07d6d2b8 1592 32, /* bitsize */
0a1b45a2 1593 false, /* pc_relative */
07d6d2b8 1594 0, /* bitpos */
99059e56
RM
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
0a1b45a2 1598 true, /* partial_inplace */
99059e56
RM
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
0a1b45a2 1601 false), /* pcrel_offset */
7f266840 1602
c19d1205 1603 HOWTO (R_ARM_TLS_LE32, /* type */
07d6d2b8 1604 0, /* rightshift */
c94cb026 1605 4, /* size */
07d6d2b8 1606 32, /* bitsize */
0a1b45a2 1607 false, /* pc_relative */
07d6d2b8 1608 0, /* bitpos */
99059e56 1609 complain_overflow_bitfield,/* complain_on_overflow */
07d6d2b8 1610 NULL, /* special_function */
99059e56 1611 "R_ARM_TLS_LE32", /* name */
0a1b45a2 1612 true, /* partial_inplace */
99059e56
RM
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
0a1b45a2 1615 false), /* pcrel_offset */
7f266840 1616
c19d1205
ZW
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
c94cb026 1619 4, /* size */
c19d1205 1620 12, /* bitsize */
0a1b45a2 1621 false, /* pc_relative */
7f266840 1622 0, /* bitpos */
c19d1205 1623 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1624 bfd_elf_generic_reloc, /* special_function */
c19d1205 1625 "R_ARM_TLS_LDO12", /* name */
0a1b45a2 1626 false, /* partial_inplace */
c19d1205
ZW
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
0a1b45a2 1629 false), /* pcrel_offset */
7f266840 1630
c19d1205
ZW
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
c94cb026 1633 4, /* size */
c19d1205 1634 12, /* bitsize */
0a1b45a2 1635 false, /* pc_relative */
7f266840 1636 0, /* bitpos */
c19d1205 1637 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1638 bfd_elf_generic_reloc, /* special_function */
c19d1205 1639 "R_ARM_TLS_LE12", /* name */
0a1b45a2 1640 false, /* partial_inplace */
c19d1205
ZW
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
0a1b45a2 1643 false), /* pcrel_offset */
7f266840 1644
c19d1205 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840 1646 0, /* rightshift */
c94cb026 1647 4, /* size */
c19d1205 1648 12, /* bitsize */
0a1b45a2 1649 false, /* pc_relative */
7f266840 1650 0, /* bitpos */
c19d1205 1651 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1652 bfd_elf_generic_reloc, /* special_function */
c19d1205 1653 "R_ARM_TLS_IE12GP", /* name */
0a1b45a2 1654 false, /* partial_inplace */
c19d1205
ZW
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
0a1b45a2 1657 false), /* pcrel_offset */
0855e32b 1658
34e77a92 1659 /* 112-127 private relocations. */
0855e32b
NS
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
34e77a92
RS
1676
1677 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
c94cb026 1682 2, /* size */
0855e32b 1683 0, /* bitsize */
0a1b45a2 1684 false, /* pc_relative */
0855e32b 1685 0, /* bitpos */
821e059c 1686 complain_overflow_dont,/* complain_on_overflow */
0855e32b
NS
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
0a1b45a2 1689 false, /* partial_inplace */
0855e32b
NS
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
0a1b45a2 1692 false), /* pcrel_offset */
72d98d16
MG
1693 EMPTY_HOWTO (130),
1694 EMPTY_HOWTO (131),
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1696 0, /* rightshift. */
c94cb026 1697 2, /* size. */
72d98d16 1698 16, /* bitsize. */
0a1b45a2 1699 false, /* pc_relative. */
72d98d16
MG
1700 0, /* bitpos. */
1701 complain_overflow_bitfield,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
0a1b45a2 1704 false, /* partial_inplace. */
72d98d16
MG
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
0a1b45a2 1707 false), /* pcrel_offset. */
72d98d16
MG
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1709 0, /* rightshift. */
c94cb026 1710 2, /* size. */
72d98d16 1711 16, /* bitsize. */
0a1b45a2 1712 false, /* pc_relative. */
72d98d16
MG
1713 0, /* bitpos. */
1714 complain_overflow_bitfield,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
0a1b45a2 1717 false, /* partial_inplace. */
72d98d16
MG
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
0a1b45a2 1720 false), /* pcrel_offset. */
72d98d16
MG
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1722 0, /* rightshift. */
c94cb026 1723 2, /* size. */
72d98d16 1724 16, /* bitsize. */
0a1b45a2 1725 false, /* pc_relative. */
72d98d16
MG
1726 0, /* bitpos. */
1727 complain_overflow_bitfield,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
0a1b45a2 1730 false, /* partial_inplace. */
72d98d16
MG
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
0a1b45a2 1733 false), /* pcrel_offset. */
72d98d16
MG
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1735 0, /* rightshift. */
c94cb026 1736 2, /* size. */
72d98d16 1737 16, /* bitsize. */
0a1b45a2 1738 false, /* pc_relative. */
72d98d16
MG
1739 0, /* bitpos. */
1740 complain_overflow_bitfield,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
0a1b45a2 1743 false, /* partial_inplace. */
72d98d16
MG
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
0a1b45a2 1746 false), /* pcrel_offset. */
e5d6e09e
AV
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16, /* type. */
1749 0, /* rightshift. */
c94cb026 1750 2, /* size. */
e5d6e09e 1751 16, /* bitsize. */
0a1b45a2 1752 true, /* pc_relative. */
e5d6e09e
AV
1753 0, /* bitpos. */
1754 complain_overflow_dont,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
0a1b45a2 1757 false, /* partial_inplace. */
e5d6e09e
AV
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
0a1b45a2 1760 true), /* pcrel_offset. */
1889da70
AV
1761 HOWTO (R_ARM_THM_BF12, /* type. */
1762 0, /* rightshift. */
c94cb026 1763 2, /* size. */
1889da70 1764 12, /* bitsize. */
0a1b45a2 1765 true, /* pc_relative. */
1889da70
AV
1766 0, /* bitpos. */
1767 complain_overflow_dont,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
0a1b45a2 1770 false, /* partial_inplace. */
1889da70
AV
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
0a1b45a2 1773 true), /* pcrel_offset. */
1caf72a5
AV
1774 HOWTO (R_ARM_THM_BF18, /* type. */
1775 0, /* rightshift. */
c94cb026 1776 2, /* size. */
1caf72a5 1777 18, /* bitsize. */
0a1b45a2 1778 true, /* pc_relative. */
1caf72a5
AV
1779 0, /* bitpos. */
1780 complain_overflow_dont,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
0a1b45a2 1783 false, /* partial_inplace. */
1caf72a5
AV
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
0a1b45a2 1786 true), /* pcrel_offset. */
c19d1205
ZW
1787};
1788
34e77a92 1789/* 160 onwards: */
5c5a4843 1790static reloc_howto_type elf32_arm_howto_table_2[8] =
34e77a92
RS
1791{
1792 HOWTO (R_ARM_IRELATIVE, /* type */
07d6d2b8 1793 0, /* rightshift */
c94cb026 1794 4, /* size */
07d6d2b8 1795 32, /* bitsize */
0a1b45a2 1796 false, /* pc_relative */
07d6d2b8 1797 0, /* bitpos */
99059e56
RM
1798 complain_overflow_bitfield,/* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
0a1b45a2 1801 true, /* partial_inplace */
99059e56
RM
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
0a1b45a2 1804 false), /* pcrel_offset */
188fd7ae
CL
1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1806 0, /* rightshift */
c94cb026 1807 4, /* size */
188fd7ae 1808 32, /* bitsize */
0a1b45a2 1809 false, /* pc_relative */
188fd7ae
CL
1810 0, /* bitpos */
1811 complain_overflow_bitfield,/* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
0a1b45a2 1814 false, /* partial_inplace */
188fd7ae
CL
1815 0, /* src_mask */
1816 0xffffffff, /* dst_mask */
0a1b45a2 1817 false), /* pcrel_offset */
188fd7ae
CL
1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1819 0, /* rightshift */
c94cb026 1820 4, /* size */
188fd7ae 1821 32, /* bitsize */
0a1b45a2 1822 false, /* pc_relative */
188fd7ae
CL
1823 0, /* bitpos */
1824 complain_overflow_bitfield,/* complain_on_overflow */
1825 bfd_elf_generic_reloc, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
0a1b45a2 1827 false, /* partial_inplace */
188fd7ae
CL
1828 0, /* src_mask */
1829 0xffffffff, /* dst_mask */
0a1b45a2 1830 false), /* pcrel_offset */
188fd7ae
CL
1831 HOWTO (R_ARM_FUNCDESC, /* type */
1832 0, /* rightshift */
c94cb026 1833 4, /* size */
188fd7ae 1834 32, /* bitsize */
0a1b45a2 1835 false, /* pc_relative */
188fd7ae
CL
1836 0, /* bitpos */
1837 complain_overflow_bitfield,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
0a1b45a2 1840 false, /* partial_inplace */
188fd7ae
CL
1841 0, /* src_mask */
1842 0xffffffff, /* dst_mask */
0a1b45a2 1843 false), /* pcrel_offset */
188fd7ae
CL
1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1845 0, /* rightshift */
c94cb026 1846 4, /* size */
188fd7ae 1847 64, /* bitsize */
0a1b45a2 1848 false, /* pc_relative */
188fd7ae
CL
1849 0, /* bitpos */
1850 complain_overflow_bitfield,/* complain_on_overflow */
1851 bfd_elf_generic_reloc, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
0a1b45a2 1853 false, /* partial_inplace */
188fd7ae
CL
1854 0, /* src_mask */
1855 0xffffffff, /* dst_mask */
0a1b45a2 1856 false), /* pcrel_offset */
5c5a4843
CL
1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1858 0, /* rightshift */
c94cb026 1859 4, /* size */
5c5a4843 1860 32, /* bitsize */
0a1b45a2 1861 false, /* pc_relative */
5c5a4843
CL
1862 0, /* bitpos */
1863 complain_overflow_bitfield,/* complain_on_overflow */
1864 bfd_elf_generic_reloc, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
0a1b45a2 1866 false, /* partial_inplace */
5c5a4843
CL
1867 0, /* src_mask */
1868 0xffffffff, /* dst_mask */
0a1b45a2 1869 false), /* pcrel_offset */
5c5a4843
CL
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1871 0, /* rightshift */
c94cb026 1872 4, /* size */
5c5a4843 1873 32, /* bitsize */
0a1b45a2 1874 false, /* pc_relative */
5c5a4843
CL
1875 0, /* bitpos */
1876 complain_overflow_bitfield,/* complain_on_overflow */
1877 bfd_elf_generic_reloc, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
0a1b45a2 1879 false, /* partial_inplace */
5c5a4843
CL
1880 0, /* src_mask */
1881 0xffffffff, /* dst_mask */
0a1b45a2 1882 false), /* pcrel_offset */
5c5a4843
CL
1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1884 0, /* rightshift */
c94cb026 1885 4, /* size */
5c5a4843 1886 32, /* bitsize */
0a1b45a2 1887 false, /* pc_relative */
5c5a4843
CL
1888 0, /* bitpos */
1889 complain_overflow_bitfield,/* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
0a1b45a2 1892 false, /* partial_inplace */
5c5a4843
CL
1893 0, /* src_mask */
1894 0xffffffff, /* dst_mask */
0a1b45a2 1895 false), /* pcrel_offset */
34e77a92 1896};
c19d1205 1897
34e77a92
RS
1898/* 249-255 extended, currently unused, relocations: */
1899static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1900{
1901 HOWTO (R_ARM_RREL32, /* type */
1902 0, /* rightshift */
5d0feb98 1903 0, /* size */
7f266840 1904 0, /* bitsize */
0a1b45a2 1905 false, /* pc_relative */
7f266840
DJ
1906 0, /* bitpos */
1907 complain_overflow_dont,/* complain_on_overflow */
1908 bfd_elf_generic_reloc, /* special_function */
1909 "R_ARM_RREL32", /* name */
0a1b45a2 1910 false, /* partial_inplace */
7f266840
DJ
1911 0, /* src_mask */
1912 0, /* dst_mask */
0a1b45a2 1913 false), /* pcrel_offset */
7f266840
DJ
1914
1915 HOWTO (R_ARM_RABS32, /* type */
1916 0, /* rightshift */
5d0feb98 1917 0, /* size */
7f266840 1918 0, /* bitsize */
0a1b45a2 1919 false, /* pc_relative */
7f266840
DJ
1920 0, /* bitpos */
1921 complain_overflow_dont,/* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 "R_ARM_RABS32", /* name */
0a1b45a2 1924 false, /* partial_inplace */
7f266840
DJ
1925 0, /* src_mask */
1926 0, /* dst_mask */
0a1b45a2 1927 false), /* pcrel_offset */
7f266840
DJ
1928
1929 HOWTO (R_ARM_RPC24, /* type */
1930 0, /* rightshift */
5d0feb98 1931 0, /* size */
7f266840 1932 0, /* bitsize */
0a1b45a2 1933 false, /* pc_relative */
7f266840
DJ
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 "R_ARM_RPC24", /* name */
0a1b45a2 1938 false, /* partial_inplace */
7f266840
DJ
1939 0, /* src_mask */
1940 0, /* dst_mask */
0a1b45a2 1941 false), /* pcrel_offset */
7f266840
DJ
1942
1943 HOWTO (R_ARM_RBASE, /* type */
1944 0, /* rightshift */
5d0feb98 1945 0, /* size */
7f266840 1946 0, /* bitsize */
0a1b45a2 1947 false, /* pc_relative */
7f266840
DJ
1948 0, /* bitpos */
1949 complain_overflow_dont,/* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 "R_ARM_RBASE", /* name */
0a1b45a2 1952 false, /* partial_inplace */
7f266840
DJ
1953 0, /* src_mask */
1954 0, /* dst_mask */
0a1b45a2 1955 false) /* pcrel_offset */
7f266840
DJ
1956};
1957
1958static reloc_howto_type *
1959elf32_arm_howto_from_type (unsigned int r_type)
1960{
906e58ca 1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1962 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1963
188fd7ae
CL
1964 if (r_type >= R_ARM_IRELATIVE
1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
34e77a92
RS
1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1967
c19d1205 1968 if (r_type >= R_ARM_RREL32
34e77a92
RS
1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1971
c19d1205 1972 return NULL;
7f266840
DJ
1973}
1974
0a1b45a2 1975static bool
f3185997 1976elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
7f266840
DJ
1977 Elf_Internal_Rela * elf_reloc)
1978{
1979 unsigned int r_type;
1980
1981 r_type = ELF32_R_TYPE (elf_reloc->r_info);
f3185997
NC
1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1983 {
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1986 abfd, r_type);
1987 bfd_set_error (bfd_error_bad_value);
0a1b45a2 1988 return false;
f3185997 1989 }
0a1b45a2 1990 return true;
7f266840
DJ
1991}
1992
1993struct elf32_arm_reloc_map
1994 {
1995 bfd_reloc_code_real_type bfd_reloc_val;
07d6d2b8 1996 unsigned char elf_reloc_val;
7f266840
DJ
1997 };
1998
1999/* All entries in this list must also be present in elf32_arm_howto_table. */
2000static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
2001 {
07d6d2b8 2002 {BFD_RELOC_NONE, R_ARM_NONE},
7f266840 2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
07d6d2b8
AM
2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2008 {BFD_RELOC_32, R_ARM_ABS32},
2009 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2010 {BFD_RELOC_8, R_ARM_ABS8},
2011 {BFD_RELOC_16, R_ARM_ABS16},
2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
7f266840 2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
07d6d2b8
AM
2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
7f266840
DJ
2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac 2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
07d6d2b8
AM
2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
0855e32b 2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
07d6d2b8 2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
0855e32b 2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
07d6d2b8 2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
07d6d2b8
AM
2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
188fd7ae
CL
2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
5c5a4843
CL
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
c19d1205
ZW
2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6 2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
72d98d16
MG
2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
e5d6e09e 2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
1caf72a5 2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
1889da70 2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
1caf72a5 2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
7f266840
DJ
2102 };
2103
2104static reloc_howto_type *
f1c71a59
ZW
2105elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2106 bfd_reloc_code_real_type code)
7f266840
DJ
2107{
2108 unsigned int i;
8029a119 2109
906e58ca 2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 2113
c19d1205 2114 return NULL;
7f266840
DJ
2115}
2116
157090f7
AM
2117static reloc_howto_type *
2118elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2119 const char *r_name)
2120{
2121 unsigned int i;
2122
906e58ca 2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
2124 if (elf32_arm_howto_table_1[i].name != NULL
2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2126 return &elf32_arm_howto_table_1[i];
2127
906e58ca 2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
2129 if (elf32_arm_howto_table_2[i].name != NULL
2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2131 return &elf32_arm_howto_table_2[i];
2132
34e77a92
RS
2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2134 if (elf32_arm_howto_table_3[i].name != NULL
2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2136 return &elf32_arm_howto_table_3[i];
2137
157090f7
AM
2138 return NULL;
2139}
2140
906e58ca
NC
2141/* Support for core dump NOTE sections. */
2142
0a1b45a2 2143static bool
f1c71a59 2144elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2145{
2146 int offset;
2147 size_t size;
2148
2149 switch (note->descsz)
2150 {
2151 default:
0a1b45a2 2152 return false;
7f266840 2153
8029a119 2154 case 148: /* Linux/ARM 32-bit. */
7f266840 2155 /* pr_cursig */
228e534f 2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
2157
2158 /* pr_pid */
228e534f 2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
2160
2161 /* pr_reg */
2162 offset = 72;
2163 size = 72;
2164
2165 break;
2166 }
2167
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2170 size, note->descpos + offset);
2171}
2172
0a1b45a2 2173static bool
f1c71a59 2174elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
2175{
2176 switch (note->descsz)
2177 {
2178 default:
0a1b45a2 2179 return false;
7f266840 2180
8029a119 2181 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 2182 elf_tdata (abfd)->core->pid
4395ee08 2183 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 2184 elf_tdata (abfd)->core->program
7f266840 2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 2186 elf_tdata (abfd)->core->command
7f266840
DJ
2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2188 }
2189
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
7f266840 2193 {
228e534f 2194 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
2195 int n = strlen (command);
2196
2197 if (0 < n && command[n - 1] == ' ')
2198 command[n - 1] = '\0';
2199 }
2200
0a1b45a2 2201 return true;
7f266840
DJ
2202}
2203
1f20dca5
UW
2204static char *
2205elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2206 int note_type, ...)
2207{
2208 switch (note_type)
2209 {
2210 default:
2211 return NULL;
2212
2213 case NT_PRPSINFO:
2214 {
602f1657 2215 char data[124] ATTRIBUTE_NONSTRING;
1f20dca5
UW
2216 va_list ap;
2217
2218 va_start (ap, note_type);
2219 memset (data, 0, sizeof (data));
2220 strncpy (data + 28, va_arg (ap, const char *), 16);
be3e27bb 2221#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2222 DIAGNOSTIC_PUSH;
be3e27bb 2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
95da9854
L
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2226 */
95da9854
L
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2228#endif
1f20dca5 2229 strncpy (data + 44, va_arg (ap, const char *), 80);
be3e27bb 2230#if GCC_VERSION == 8000 || GCC_VERSION == 8001
95da9854 2231 DIAGNOSTIC_POP;
fe75810f 2232#endif
1f20dca5
UW
2233 va_end (ap);
2234
2235 return elfcore_write_note (abfd, buf, bufsiz,
2236 "CORE", note_type, data, sizeof (data));
2237 }
2238
2239 case NT_PRSTATUS:
2240 {
2241 char data[148];
2242 va_list ap;
2243 long pid;
2244 int cursig;
2245 const void *greg;
2246
2247 va_start (ap, note_type);
2248 memset (data, 0, sizeof (data));
2249 pid = va_arg (ap, long);
2250 bfd_put_32 (abfd, pid, data + 24);
2251 cursig = va_arg (ap, int);
2252 bfd_put_16 (abfd, cursig, data + 12);
2253 greg = va_arg (ap, const void *);
2254 memcpy (data + 72, greg, 72);
2255 va_end (ap);
2256
2257 return elfcore_write_note (abfd, buf, bufsiz,
2258 "CORE", note_type, data, sizeof (data));
2259 }
2260 }
2261}
2262
07d6d2b8
AM
2263#define TARGET_LITTLE_SYM arm_elf32_le_vec
2264#define TARGET_LITTLE_NAME "elf32-littlearm"
2265#define TARGET_BIG_SYM arm_elf32_be_vec
2266#define TARGET_BIG_NAME "elf32-bigarm"
7f266840
DJ
2267
2268#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2270#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2271
252b5132
RH
2272typedef unsigned long int insn32;
2273typedef unsigned short int insn16;
2274
3a4a14e9
PB
2275/* In lieu of proper flags, assume all EABIv4 or later objects are
2276 interworkable. */
57e8b36a 2277#define INTERWORK_FLAG(abfd) \
3a4a14e9 2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2281
252b5132
RH
2282/* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
9b485d32 2285 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2286#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2288
2289#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2291
c7b8f16e
JB
2292#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2294
a504d23a
LA
2295#define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296#define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2297
845b51d6
PB
2298#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2300
7413f23f
DJ
2301#define STUB_ENTRY_NAME "__%s_veneer"
2302
4ba2ef8f
TP
2303#define CMSE_PREFIX "__acle_se_"
2304
4d83e8d9
CL
2305#define CMSE_STUB_NAME ".gnu.sgstubs"
2306
252b5132
RH
2307/* The name of the dynamic interpreter. This is put in the .interp
2308 section. */
2309#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2310
cb10292c
CL
2311/* FDPIC default stack size. */
2312#define DEFAULT_STACK_SIZE 0x8000
2313
0855e32b 2314static const unsigned long tls_trampoline [] =
b38cadfb
NC
2315{
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2319};
0855e32b
NS
2320
2321static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2322{
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2330 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2332};
0855e32b 2333
b4e87f2c
TC
2334/* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2338
7801f98f
CL
2339/* ARM FDPIC PLT entry. */
2340/* The last 5 words contain PLT lazy fragment code and data. */
2341static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2342 {
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2353 };
2354
59029f57
CL
2355/* Thumb FDPIC PLT entry. */
2356/* The last 5 words contain PLT lazy fragment code and data. */
2357static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2358 {
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2369 };
2370
5e681ec4
PB
2371#ifdef FOUR_WORD_PLT
2372
252b5132
RH
2373/* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
59f2c4e7 2375 called before the relocation has been set up calls the dynamic
9b485d32 2376 linker first. */
e5a52504 2377static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2378{
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2383};
5e681ec4
PB
2384
2385/* Subsequent entries in a procedure linkage table look like
2386 this. */
e5a52504 2387static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2388{
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2393};
5e681ec4 2394
eed94f8f 2395#else /* not FOUR_WORD_PLT */
5e681ec4 2396
5e681ec4
PB
2397/* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2400 linker first. */
e5a52504 2401static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb 2402{
07d6d2b8
AM
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
b38cadfb 2408};
252b5132 2409
1db37fe6
YG
2410/* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2413{
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2417};
5e681ec4 2418
1db37fe6
YG
2419/* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421static const bfd_vma elf32_arm_plt_entry_long [] =
2422{
07d6d2b8
AM
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
1db37fe6
YG
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2427};
2428
0a1b45a2 2429static bool elf32_arm_use_long_plt_entry = false;
1db37fe6 2430
eed94f8f
NC
2431#endif /* not FOUR_WORD_PLT */
2432
2433/* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436static const bfd_vma elf32_thumb2_plt0_entry [] =
2437{
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2442 /* add lr, pc */
eed94f8f 2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
07d6d2b8 2444 0x00000000, /* &GOT[0] - . */
eed94f8f
NC
2445};
2446
2447/* Subsequent entries in a procedure linkage table for thumb only target
2448 look like this. */
2449static const bfd_vma elf32_thumb2_plt_entry [] =
2450{
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
07d6d2b8
AM
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
15ccbdd7
TC
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2457 /* b .-4 */
eed94f8f 2458};
252b5132 2459
00a97672
RS
2460/* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb 2463{
07d6d2b8
AM
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
b38cadfb 2468};
00a97672
RS
2469
2470/* The format of subsequent entries in a VxWorks executable. */
2471static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb 2472{
07d6d2b8
AM
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2479};
00a97672
RS
2480
2481/* The format of entries in a VxWorks shared library. */
2482static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb 2483{
07d6d2b8
AM
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
b38cadfb 2490};
00a97672 2491
b7693d02
DJ
2492/* An initial stub used if the PLT entry is referenced from Thumb code. */
2493#define PLT_THUMB_STUB_SIZE 4
2494static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2495{
2496 0x4778, /* bx pc */
b4e87f2c 2497 0xe7fd /* b .-2 */
b38cadfb 2498};
b7693d02 2499
b38cadfb
NC
2500/* The first entry in a procedure linkage table looks like
2501 this. It is set up so that any shared library function that is
2502 called before the relocation has been set up calls the dynamic
2503 linker first. */
2504static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2505{
2506 /* First bundle: */
2507 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2508 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2509 0xe08cc00f, /* add ip, ip, pc */
2510 0xe52dc008, /* str ip, [sp, #-8]! */
2511 /* Second bundle: */
edccdf7c
RM
2512 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2513 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2514 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2515 0xe12fff1c, /* bx ip */
b38cadfb 2516 /* Third bundle: */
edccdf7c
RM
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2519 0xe320f000, /* nop */
b38cadfb
NC
2520 /* .Lplt_tail: */
2521 0xe50dc004, /* str ip, [sp, #-4] */
2522 /* Fourth bundle: */
edccdf7c
RM
2523 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2524 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2525 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2526 0xe12fff1c, /* bx ip */
b38cadfb
NC
2527};
2528#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2529
2530/* Subsequent entries in a procedure linkage table look like this. */
2531static const bfd_vma elf32_arm_nacl_plt_entry [] =
2532{
2533 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2534 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2535 0xe08cc00f, /* add ip, ip, pc */
2536 0xea000000, /* b .Lplt_tail */
2537};
e5a52504 2538
a747a286
VP
2539/* PR 28924:
2540 There was a bug due to too high values of THM_MAX_FWD_BRANCH_OFFSET and
2541 THM2_MAX_FWD_BRANCH_OFFSET. The first macro concerns the case when Thumb-2
2542 is not available, and second macro when Thumb-2 is available. Among other
2543 things, they affect the range of branches represented as BLX instructions
2544 in Encoding T2 defined in Section A8.8.25 of the ARM Architecture
2545 Reference Manual ARMv7-A and ARMv7-R edition issue C.d. Such branches are
2546 specified there to have a maximum forward offset that is a multiple of 4.
2547 Previously, the respective values defined here were multiples of 2 but not
2548 4 and they are included in comments for reference. */
906e58ca 2549#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
a747a286
VP
2550#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2551#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 4 + 4)
2552/* #def THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) - 2 + 4) */
906e58ca 2553#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
a747a286
VP
2554#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 4) + 4)
2555/* #def THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) */
906e58ca 2556#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2557#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2558#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2559
461a49ca 2560enum stub_insn_type
b38cadfb
NC
2561{
2562 THUMB16_TYPE = 1,
2563 THUMB32_TYPE,
2564 ARM_TYPE,
2565 DATA_TYPE
2566};
461a49ca 2567
48229727
JB
2568#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2569/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2570 is inserted in arm_build_one_stub(). */
2571#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2572#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
d5a67c02
AV
2573#define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2574#define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
48229727
JB
2575#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2576#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2577#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2578#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2579
2580typedef struct
2581{
07d6d2b8 2582 bfd_vma data;
b38cadfb 2583 enum stub_insn_type type;
07d6d2b8
AM
2584 unsigned int r_type;
2585 int reloc_addend;
461a49ca
DJ
2586} insn_sequence;
2587
b4e87f2c
TC
2588/* See note [Thumb nop sequence] when adding a veneer. */
2589
fea2b4d6
CL
2590/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2591 to reach the stub if necessary. */
461a49ca 2592static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb 2593{
07d6d2b8 2594 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2595 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2596};
906e58ca 2597
fea2b4d6
CL
2598/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2599 available. */
461a49ca 2600static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb 2601{
07d6d2b8
AM
2602 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2603 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2604 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2605};
906e58ca 2606
d3626fb0 2607/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2608static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb 2609{
07d6d2b8
AM
2610 THUMB16_INSN (0xb401), /* push {r0} */
2611 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2612 THUMB16_INSN (0x4684), /* mov ip, r0 */
2613 THUMB16_INSN (0xbc01), /* pop {r0} */
2614 THUMB16_INSN (0x4760), /* bx ip */
2615 THUMB16_INSN (0xbf00), /* nop */
b38cadfb
NC
2616 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2617};
906e58ca 2618
80c135e5
TP
2619/* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2620static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2621{
07d6d2b8 2622 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
80c135e5
TP
2623 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2624};
2625
d5a67c02
AV
2626/* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2627 M-profile architectures. */
2628static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2629{
2630 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2631 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
07d6d2b8 2632 THUMB16_INSN (0x4760), /* bx ip */
d5a67c02
AV
2633};
2634
d3626fb0
CL
2635/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2636 allowed. */
2637static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb 2638{
07d6d2b8 2639 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2640 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2641 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2642 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2643 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2644};
d3626fb0 2645
fea2b4d6
CL
2646/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2647 available. */
461a49ca 2648static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb 2649{
07d6d2b8 2650 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2651 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8 2652 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
b38cadfb
NC
2653 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2654};
906e58ca 2655
fea2b4d6
CL
2656/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2657 one, when the destination is close enough. */
461a49ca 2658static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb 2659{
07d6d2b8 2660 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2661 THUMB16_INSN (0xe7fd), /* b .-2 */
b38cadfb
NC
2662 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2663};
c820be07 2664
cf3eccff 2665/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2666 blx to reach the stub if necessary. */
cf3eccff 2667static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb 2668{
07d6d2b8
AM
2669 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2670 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
b38cadfb
NC
2671 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2672};
906e58ca 2673
cf3eccff
DJ
2674/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2675 blx to reach the stub if necessary. We can not add into pc;
2676 it is not guaranteed to mode switch (different in ARMv6 and
2677 ARMv7). */
2678static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb 2679{
07d6d2b8
AM
2680 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2681 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2682 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2683 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2684};
cf3eccff 2685
ebe24dd4
CL
2686/* V4T ARM -> ARM long branch stub, PIC. */
2687static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb 2688{
07d6d2b8
AM
2689 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2690 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2691 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2692 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2693};
ebe24dd4
CL
2694
2695/* V4T Thumb -> ARM long branch stub, PIC. */
2696static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb 2697{
07d6d2b8 2698 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2699 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2700 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2701 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
b38cadfb
NC
2702 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2703};
ebe24dd4 2704
d3626fb0
CL
2705/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2706 architectures. */
ebe24dd4 2707static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb 2708{
07d6d2b8
AM
2709 THUMB16_INSN (0xb401), /* push {r0} */
2710 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2711 THUMB16_INSN (0x46fc), /* mov ip, pc */
2712 THUMB16_INSN (0x4484), /* add ip, r0 */
2713 THUMB16_INSN (0xbc01), /* pop {r0} */
2714 THUMB16_INSN (0x4760), /* bx ip */
b38cadfb
NC
2715 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2716};
ebe24dd4 2717
d3626fb0
CL
2718/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2719 allowed. */
2720static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb 2721{
07d6d2b8 2722 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2723 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2724 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2725 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2726 ARM_INSN (0xe12fff1c), /* bx ip */
b38cadfb
NC
2727 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2728};
d3626fb0 2729
0855e32b
NS
2730/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2731 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2732static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2733{
07d6d2b8
AM
2734 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2735 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
b38cadfb 2736 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2737};
2738
2739/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2740 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2741static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2742{
07d6d2b8 2743 THUMB16_INSN (0x4778), /* bx pc */
b4e87f2c 2744 THUMB16_INSN (0xe7fd), /* b .-2 */
07d6d2b8
AM
2745 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2746 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
b38cadfb 2747 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2748};
2749
7a89b94e
NC
2750/* NaCl ARM -> ARM long branch stub. */
2751static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2752{
2753 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2754 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2755 ARM_INSN (0xe12fff1c), /* bx ip */
2756 ARM_INSN (0xe320f000), /* nop */
2757 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2758 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2759 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2760 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2761};
2762
2763/* NaCl ARM -> ARM long branch stub, PIC. */
2764static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2765{
2766 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
07d6d2b8 2767 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
7a89b94e 2768 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
07d6d2b8
AM
2769 ARM_INSN (0xe12fff1c), /* bx ip */
2770 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2771 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2772 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2773 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
7a89b94e
NC
2774};
2775
4ba2ef8f
TP
2776/* Stub used for transition to secure state (aka SG veneer). */
2777static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2778{
2779 THUMB32_INSN (0xe97fe97f), /* sg. */
2780 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2781};
2782
7a89b94e 2783
48229727
JB
2784/* Cortex-A8 erratum-workaround stubs. */
2785
2786/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2787 can't use a conditional branch to reach this stub). */
2788
2789static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb 2790{
07d6d2b8 2791 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
b38cadfb
NC
2792 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2793 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2794};
48229727
JB
2795
2796/* Stub used for b.w and bl.w instructions. */
2797
2798static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2799{
2800 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2801};
48229727
JB
2802
2803static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2804{
2805 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2806};
48229727
JB
2807
2808/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2809 instruction (which switches to ARM mode) to point to this stub. Jump to the
2810 real destination using an ARM-mode branch. */
2811
2812static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2813{
2814 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2815};
48229727 2816
9553db3c
NC
2817/* For each section group there can be a specially created linker section
2818 to hold the stubs for that group. The name of the stub section is based
2819 upon the name of another section within that group with the suffix below
2820 applied.
2821
2822 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2823 create what appeared to be a linker stub section when it actually
2824 contained user code/data. For example, consider this fragment:
b38cadfb 2825
9553db3c
NC
2826 const char * stubborn_problems[] = { "np" };
2827
2828 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2829 section called:
2830
2831 .data.rel.local.stubborn_problems
2832
2833 This then causes problems in arm32_arm_build_stubs() as it triggers:
2834
2835 // Ignore non-stub sections.
2836 if (!strstr (stub_sec->name, STUB_SUFFIX))
2837 continue;
2838
2839 And so the section would be ignored instead of being processed. Hence
2840 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2841 C identifier. */
2842#define STUB_SUFFIX ".__stub"
906e58ca 2843
738a79f6
CL
2844/* One entry per long/short branch stub defined above. */
2845#define DEF_STUBS \
cc850f74
NC
2846 DEF_STUB (long_branch_any_any) \
2847 DEF_STUB (long_branch_v4t_arm_thumb) \
2848 DEF_STUB (long_branch_thumb_only) \
2849 DEF_STUB (long_branch_v4t_thumb_thumb) \
2850 DEF_STUB (long_branch_v4t_thumb_arm) \
2851 DEF_STUB (short_branch_v4t_thumb_arm) \
2852 DEF_STUB (long_branch_any_arm_pic) \
2853 DEF_STUB (long_branch_any_thumb_pic) \
2854 DEF_STUB (long_branch_v4t_thumb_thumb_pic) \
2855 DEF_STUB (long_branch_v4t_arm_thumb_pic) \
2856 DEF_STUB (long_branch_v4t_thumb_arm_pic) \
2857 DEF_STUB (long_branch_thumb_only_pic) \
2858 DEF_STUB (long_branch_any_tls_pic) \
2859 DEF_STUB (long_branch_v4t_thumb_tls_pic) \
2860 DEF_STUB (long_branch_arm_nacl) \
2861 DEF_STUB (long_branch_arm_nacl_pic) \
2862 DEF_STUB (cmse_branch_thumb_only) \
2863 DEF_STUB (a8_veneer_b_cond) \
2864 DEF_STUB (a8_veneer_b) \
2865 DEF_STUB (a8_veneer_bl) \
2866 DEF_STUB (a8_veneer_blx) \
2867 DEF_STUB (long_branch_thumb2_only) \
2868 DEF_STUB (long_branch_thumb2_only_pure)
738a79f6
CL
2869
2870#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2871enum elf32_arm_stub_type
2872{
906e58ca 2873 arm_stub_none,
738a79f6 2874 DEF_STUBS
4f4faa4d 2875 max_stub_type
738a79f6
CL
2876};
2877#undef DEF_STUB
2878
8d9d9490
TP
2879/* Note the first a8_veneer type. */
2880const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2881
738a79f6
CL
2882typedef struct
2883{
d3ce72d0 2884 const insn_sequence* template_sequence;
738a79f6
CL
2885 int template_size;
2886} stub_def;
2887
2888#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2889static const stub_def stub_definitions[] =
2890{
738a79f6
CL
2891 {NULL, 0},
2892 DEF_STUBS
906e58ca
NC
2893};
2894
2895struct elf32_arm_stub_hash_entry
2896{
2897 /* Base hash table entry structure. */
2898 struct bfd_hash_entry root;
2899
2900 /* The stub section. */
2901 asection *stub_sec;
2902
2903 /* Offset within stub_sec of the beginning of this stub. */
2904 bfd_vma stub_offset;
2905
2906 /* Given the symbol's value and its section we can determine its final
2907 value when building the stubs (so the stub knows where to jump). */
2908 bfd_vma target_value;
2909 asection *target_section;
2910
8d9d9490
TP
2911 /* Same as above but for the source of the branch to the stub. Used for
2912 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2913 such, source section does not need to be recorded since Cortex-A8 erratum
2914 workaround stubs are only generated when both source and target are in the
2915 same section. */
2916 bfd_vma source_value;
48229727
JB
2917
2918 /* The instruction which caused this stub to be generated (only valid for
2919 Cortex-A8 erratum workaround stubs at present). */
2920 unsigned long orig_insn;
2921
461a49ca 2922 /* The stub type. */
906e58ca 2923 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2924 /* Its encoding size in bytes. */
2925 int stub_size;
2926 /* Its template. */
2927 const insn_sequence *stub_template;
2928 /* The size of the template (number of entries). */
2929 int stub_template_size;
906e58ca
NC
2930
2931 /* The symbol table entry, if any, that this was derived from. */
2932 struct elf32_arm_link_hash_entry *h;
2933
35fc36a8
RS
2934 /* Type of branch. */
2935 enum arm_st_branch_type branch_type;
906e58ca
NC
2936
2937 /* Where this stub is being called from, or, in the case of combined
2938 stub sections, the first input section in the group. */
2939 asection *id_sec;
7413f23f
DJ
2940
2941 /* The name for the local symbol at the start of this stub. The
2942 stub name in the hash table has to be unique; this does not, so
2943 it can be friendlier. */
2944 char *output_name;
906e58ca
NC
2945};
2946
e489d0ae
PB
2947/* Used to build a map of a section. This is required for mixed-endian
2948 code/data. */
2949
2950typedef struct elf32_elf_section_map
2951{
2952 bfd_vma vma;
2953 char type;
2954}
2955elf32_arm_section_map;
2956
c7b8f16e
JB
2957/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2958
2959typedef enum
2960{
2961 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2962 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2963 VFP11_ERRATUM_ARM_VENEER,
2964 VFP11_ERRATUM_THUMB_VENEER
2965}
2966elf32_vfp11_erratum_type;
2967
2968typedef struct elf32_vfp11_erratum_list
2969{
2970 struct elf32_vfp11_erratum_list *next;
2971 bfd_vma vma;
2972 union
2973 {
2974 struct
2975 {
2976 struct elf32_vfp11_erratum_list *veneer;
2977 unsigned int vfp_insn;
2978 } b;
2979 struct
2980 {
2981 struct elf32_vfp11_erratum_list *branch;
2982 unsigned int id;
2983 } v;
2984 } u;
2985 elf32_vfp11_erratum_type type;
2986}
2987elf32_vfp11_erratum_list;
2988
a504d23a
LA
2989/* Information about a STM32L4XX erratum veneer, or a branch to such a
2990 veneer. */
2991typedef enum
2992{
2993 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2994 STM32L4XX_ERRATUM_VENEER
2995}
2996elf32_stm32l4xx_erratum_type;
2997
2998typedef struct elf32_stm32l4xx_erratum_list
2999{
3000 struct elf32_stm32l4xx_erratum_list *next;
3001 bfd_vma vma;
3002 union
3003 {
3004 struct
3005 {
3006 struct elf32_stm32l4xx_erratum_list *veneer;
3007 unsigned int insn;
3008 } b;
3009 struct
3010 {
3011 struct elf32_stm32l4xx_erratum_list *branch;
3012 unsigned int id;
3013 } v;
3014 } u;
3015 elf32_stm32l4xx_erratum_type type;
3016}
3017elf32_stm32l4xx_erratum_list;
3018
2468f9c9
PB
3019typedef enum
3020{
3021 DELETE_EXIDX_ENTRY,
3022 INSERT_EXIDX_CANTUNWIND_AT_END
3023}
3024arm_unwind_edit_type;
3025
3026/* A (sorted) list of edits to apply to an unwind table. */
3027typedef struct arm_unwind_table_edit
3028{
3029 arm_unwind_edit_type type;
3030 /* Note: we sometimes want to insert an unwind entry corresponding to a
3031 section different from the one we're currently writing out, so record the
3032 (text) section this edit relates to here. */
3033 asection *linked_section;
3034 unsigned int index;
3035 struct arm_unwind_table_edit *next;
3036}
3037arm_unwind_table_edit;
3038
8e3de13a 3039typedef struct _arm_elf_section_data
e489d0ae 3040{
2468f9c9 3041 /* Information about mapping symbols. */
e489d0ae 3042 struct bfd_elf_section_data elf;
8e3de13a 3043 unsigned int mapcount;
c7b8f16e 3044 unsigned int mapsize;
e489d0ae 3045 elf32_arm_section_map *map;
2468f9c9 3046 /* Information about CPU errata. */
c7b8f16e
JB
3047 unsigned int erratumcount;
3048 elf32_vfp11_erratum_list *erratumlist;
a504d23a
LA
3049 unsigned int stm32l4xx_erratumcount;
3050 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
491d01d3 3051 unsigned int additional_reloc_count;
2468f9c9
PB
3052 /* Information about unwind tables. */
3053 union
3054 {
3055 /* Unwind info attached to a text section. */
3056 struct
3057 {
3058 asection *arm_exidx_sec;
3059 } text;
3060
3061 /* Unwind info attached to an .ARM.exidx section. */
3062 struct
3063 {
3064 arm_unwind_table_edit *unwind_edit_list;
3065 arm_unwind_table_edit *unwind_edit_tail;
3066 } exidx;
3067 } u;
8e3de13a
NC
3068}
3069_arm_elf_section_data;
e489d0ae
PB
3070
3071#define elf32_arm_section_data(sec) \
8e3de13a 3072 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 3073
48229727
JB
3074/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3075 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3076 so may be created multiple times: we use an array of these entries whilst
3077 relaxing which we can refresh easily, then create stubs for each potentially
3078 erratum-triggering instruction once we've settled on a solution. */
3079
b38cadfb
NC
3080struct a8_erratum_fix
3081{
48229727
JB
3082 bfd *input_bfd;
3083 asection *section;
3084 bfd_vma offset;
8d9d9490 3085 bfd_vma target_offset;
48229727
JB
3086 unsigned long orig_insn;
3087 char *stub_name;
3088 enum elf32_arm_stub_type stub_type;
35fc36a8 3089 enum arm_st_branch_type branch_type;
48229727
JB
3090};
3091
3092/* A table of relocs applied to branches which might trigger Cortex-A8
3093 erratum. */
3094
b38cadfb
NC
3095struct a8_erratum_reloc
3096{
48229727
JB
3097 bfd_vma from;
3098 bfd_vma destination;
92750f34
DJ
3099 struct elf32_arm_link_hash_entry *hash;
3100 const char *sym_name;
48229727 3101 unsigned int r_type;
35fc36a8 3102 enum arm_st_branch_type branch_type;
0a1b45a2 3103 bool non_a8_stub;
48229727
JB
3104};
3105
ba93b8ac
DJ
3106/* The size of the thread control block. */
3107#define TCB_SIZE 8
3108
34e77a92
RS
3109/* ARM-specific information about a PLT entry, over and above the usual
3110 gotplt_union. */
b38cadfb
NC
3111struct arm_plt_info
3112{
34e77a92
RS
3113 /* We reference count Thumb references to a PLT entry separately,
3114 so that we can emit the Thumb trampoline only if needed. */
3115 bfd_signed_vma thumb_refcount;
3116
3117 /* Some references from Thumb code may be eliminated by BL->BLX
3118 conversion, so record them separately. */
3119 bfd_signed_vma maybe_thumb_refcount;
3120
3121 /* How many of the recorded PLT accesses were from non-call relocations.
3122 This information is useful when deciding whether anything takes the
3123 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3124 non-call references to the function should resolve directly to the
3125 real runtime target. */
3126 unsigned int noncall_refcount;
3127
3128 /* Since PLT entries have variable size if the Thumb prologue is
3129 used, we need to record the index into .got.plt instead of
3130 recomputing it from the PLT offset. */
3131 bfd_signed_vma got_offset;
3132};
3133
3134/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
3135struct arm_local_iplt_info
3136{
34e77a92
RS
3137 /* The information that is usually found in the generic ELF part of
3138 the hash table entry. */
3139 union gotplt_union root;
3140
3141 /* The information that is usually found in the ARM-specific part of
3142 the hash table entry. */
3143 struct arm_plt_info arm;
3144
3145 /* A list of all potential dynamic relocations against this symbol. */
3146 struct elf_dyn_relocs *dyn_relocs;
3147};
3148
e8b09b87 3149/* Structure to handle FDPIC support for local functions. */
cc850f74
NC
3150struct fdpic_local
3151{
e8b09b87
CL
3152 unsigned int funcdesc_cnt;
3153 unsigned int gotofffuncdesc_cnt;
3154 int funcdesc_offset;
3155};
3156
0ffa91dd 3157struct elf_arm_obj_tdata
ba93b8ac
DJ
3158{
3159 struct elf_obj_tdata root;
3160
cc850f74
NC
3161 /* Zero to warn when linking objects with incompatible enum sizes. */
3162 int no_enum_size_warning;
3163
3164 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3165 int no_wchar_size_warning;
3166
74fd118f
NC
3167 /* The number of entries in each of the arrays in this strcuture.
3168 Used to avoid buffer overruns. */
3169 bfd_size_type num_entries;
3170
ba93b8ac
DJ
3171 /* tls_type for each local got entry. */
3172 char *local_got_tls_type;
ee065d83 3173
0855e32b
NS
3174 /* GOTPLT entries for TLS descriptors. */
3175 bfd_vma *local_tlsdesc_gotent;
3176
34e77a92
RS
3177 /* Information for local symbols that need entries in .iplt. */
3178 struct arm_local_iplt_info **local_iplt;
3179
e8b09b87
CL
3180 /* Maintains FDPIC counters and funcdesc info. */
3181 struct fdpic_local *local_fdpic_cnts;
ba93b8ac
DJ
3182};
3183
0ffa91dd
NC
3184#define elf_arm_tdata(bfd) \
3185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 3186
74fd118f
NC
3187#define elf32_arm_num_entries(bfd) \
3188 (elf_arm_tdata (bfd)->num_entries)
3189
0ffa91dd
NC
3190#define elf32_arm_local_got_tls_type(bfd) \
3191 (elf_arm_tdata (bfd)->local_got_tls_type)
3192
0855e32b
NS
3193#define elf32_arm_local_tlsdesc_gotent(bfd) \
3194 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3195
34e77a92
RS
3196#define elf32_arm_local_iplt(bfd) \
3197 (elf_arm_tdata (bfd)->local_iplt)
3198
e8b09b87
CL
3199#define elf32_arm_local_fdpic_cnts(bfd) \
3200 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3201
0ffa91dd
NC
3202#define is_arm_elf(bfd) \
3203 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3204 && elf_tdata (bfd) != NULL \
4dfe6ac6 3205 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac 3206
0a1b45a2 3207static bool
ba93b8ac
DJ
3208elf32_arm_mkobject (bfd *abfd)
3209{
0ffa91dd 3210 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 3211 ARM_ELF_DATA);
ba93b8ac
DJ
3212}
3213
ba93b8ac
DJ
3214#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3215
e8b09b87
CL
3216/* Structure to handle FDPIC support for extern functions. */
3217struct fdpic_global {
3218 unsigned int gotofffuncdesc_cnt;
3219 unsigned int gotfuncdesc_cnt;
3220 unsigned int funcdesc_cnt;
3221 int funcdesc_offset;
3222 int gotfuncdesc_offset;
3223};
3224
ba96a88f 3225/* Arm ELF linker hash entry. */
252b5132 3226struct elf32_arm_link_hash_entry
b38cadfb
NC
3227{
3228 struct elf_link_hash_entry root;
252b5132 3229
b38cadfb
NC
3230 /* ARM-specific PLT information. */
3231 struct arm_plt_info plt;
ba93b8ac
DJ
3232
3233#define GOT_UNKNOWN 0
3234#define GOT_NORMAL 1
3235#define GOT_TLS_GD 2
3236#define GOT_TLS_IE 4
0855e32b
NS
3237#define GOT_TLS_GDESC 8
3238#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 3239 unsigned int tls_type : 8;
34e77a92 3240
b38cadfb
NC
3241 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3242 unsigned int is_iplt : 1;
34e77a92 3243
b38cadfb 3244 unsigned int unused : 23;
a4fd1a8e 3245
b38cadfb
NC
3246 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3247 starting at the end of the jump table. */
3248 bfd_vma tlsdesc_got;
0855e32b 3249
b38cadfb
NC
3250 /* The symbol marking the real symbol location for exported thumb
3251 symbols with Arm stubs. */
3252 struct elf_link_hash_entry *export_glue;
906e58ca 3253
b38cadfb 3254 /* A pointer to the most recently used stub hash entry against this
8029a119 3255 symbol. */
b38cadfb 3256 struct elf32_arm_stub_hash_entry *stub_cache;
e8b09b87
CL
3257
3258 /* Counter for FDPIC relocations against this symbol. */
3259 struct fdpic_global fdpic_cnts;
b38cadfb 3260};
252b5132 3261
252b5132 3262/* Traverse an arm ELF linker hash table. */
252b5132
RH
3263#define elf32_arm_link_hash_traverse(table, func, info) \
3264 (elf_link_hash_traverse \
3265 (&(table)->root, \
0a1b45a2 3266 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
3267 (info)))
3268
3269/* Get the ARM elf linker hash table from a link_info structure. */
0f55320b
AM
3270#define elf32_arm_hash_table(p) \
3271 ((is_elf_hash_table ((p)->hash) \
3272 && elf_hash_table_id (elf_hash_table (p)) == ARM_ELF_DATA) \
3273 ? (struct elf32_arm_link_hash_table *) (p)->hash : NULL)
252b5132 3274
906e58ca
NC
3275#define arm_stub_hash_lookup(table, string, create, copy) \
3276 ((struct elf32_arm_stub_hash_entry *) \
3277 bfd_hash_lookup ((table), (string), (create), (copy)))
3278
21d799b5
NC
3279/* Array to keep track of which stub sections have been created, and
3280 information on stub grouping. */
3281struct map_stub
3282{
3283 /* This is the section to which stubs in the group will be
3284 attached. */
3285 asection *link_sec;
3286 /* The stub section. */
3287 asection *stub_sec;
3288};
3289
0855e32b
NS
3290#define elf32_arm_compute_jump_table_size(htab) \
3291 ((htab)->next_tls_desc_index * 4)
3292
9b485d32 3293/* ARM ELF linker hash table. */
252b5132 3294struct elf32_arm_link_hash_table
906e58ca
NC
3295{
3296 /* The main hash table. */
3297 struct elf_link_hash_table root;
252b5132 3298
906e58ca
NC
3299 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3300 bfd_size_type thumb_glue_size;
252b5132 3301
906e58ca
NC
3302 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3303 bfd_size_type arm_glue_size;
252b5132 3304
906e58ca
NC
3305 /* The size in bytes of section containing the ARMv4 BX veneers. */
3306 bfd_size_type bx_glue_size;
845b51d6 3307
906e58ca
NC
3308 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3309 veneer has been populated. */
3310 bfd_vma bx_glue_offset[15];
845b51d6 3311
906e58ca
NC
3312 /* The size in bytes of the section containing glue for VFP11 erratum
3313 veneers. */
3314 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 3315
a504d23a
LA
3316 /* The size in bytes of the section containing glue for STM32L4XX erratum
3317 veneers. */
3318 bfd_size_type stm32l4xx_erratum_glue_size;
3319
48229727
JB
3320 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3321 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3322 elf32_arm_write_section(). */
3323 struct a8_erratum_fix *a8_erratum_fixes;
3324 unsigned int num_a8_erratum_fixes;
3325
906e58ca
NC
3326 /* An arbitrary input BFD chosen to hold the glue sections. */
3327 bfd * bfd_of_glue_owner;
ba96a88f 3328
906e58ca
NC
3329 /* Nonzero to output a BE8 image. */
3330 int byteswap_code;
e489d0ae 3331
906e58ca
NC
3332 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3333 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3334 int target1_is_rel;
9c504268 3335
906e58ca
NC
3336 /* The relocation to use for R_ARM_TARGET2 relocations. */
3337 int target2_reloc;
eb043451 3338
906e58ca
NC
3339 /* 0 = Ignore R_ARM_V4BX.
3340 1 = Convert BX to MOV PC.
3341 2 = Generate v4 interworing stubs. */
3342 int fix_v4bx;
319850b4 3343
48229727
JB
3344 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3345 int fix_cortex_a8;
3346
2de70689
MGD
3347 /* Whether we should fix the ARM1176 BLX immediate issue. */
3348 int fix_arm1176;
3349
906e58ca
NC
3350 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3351 int use_blx;
33bfe774 3352
906e58ca
NC
3353 /* What sort of code sequences we should look for which may trigger the
3354 VFP11 denorm erratum. */
3355 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 3356
906e58ca
NC
3357 /* Global counter for the number of fixes we have emitted. */
3358 int num_vfp11_fixes;
c7b8f16e 3359
a504d23a
LA
3360 /* What sort of code sequences we should look for which may trigger the
3361 STM32L4XX erratum. */
3362 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3363
3364 /* Global counter for the number of fixes we have emitted. */
3365 int num_stm32l4xx_fixes;
3366
906e58ca
NC
3367 /* Nonzero to force PIC branch veneers. */
3368 int pic_veneer;
27e55c4d 3369
906e58ca
NC
3370 /* The number of bytes in the initial entry in the PLT. */
3371 bfd_size_type plt_header_size;
e5a52504 3372
906e58ca
NC
3373 /* The number of bytes in the subsequent PLT etries. */
3374 bfd_size_type plt_entry_size;
e5a52504 3375
906e58ca 3376 /* True if the target uses REL relocations. */
0a1b45a2 3377 bool use_rel;
4e7fd91e 3378
54ddd295
TP
3379 /* Nonzero if import library must be a secure gateway import library
3380 as per ARMv8-M Security Extensions. */
3381 int cmse_implib;
3382
0955507f
TP
3383 /* The import library whose symbols' address must remain stable in
3384 the import library generated. */
3385 bfd *in_implib_bfd;
3386
0855e32b
NS
3387 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3388 bfd_vma next_tls_desc_index;
3389
3390 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3391 bfd_vma num_tls_desc;
3392
906e58ca
NC
3393 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3394 asection *srelplt2;
00a97672 3395
0855e32b
NS
3396 /* Offset in .plt section of tls_arm_trampoline. */
3397 bfd_vma tls_trampoline;
3398
5c5a4843 3399 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
906e58ca
NC
3400 union
3401 {
3402 bfd_signed_vma refcount;
3403 bfd_vma offset;
3404 } tls_ldm_got;
b7693d02 3405
906e58ca
NC
3406 /* For convenience in allocate_dynrelocs. */
3407 bfd * obfd;
3408
0855e32b
NS
3409 /* The amount of space used by the reserved portion of the sgotplt
3410 section, plus whatever space is used by the jump slots. */
3411 bfd_vma sgotplt_jump_table_size;
3412
906e58ca
NC
3413 /* The stub hash table. */
3414 struct bfd_hash_table stub_hash_table;
3415
3416 /* Linker stub bfd. */
3417 bfd *stub_bfd;
3418
3419 /* Linker call-backs. */
6bde4c52
TP
3420 asection * (*add_stub_section) (const char *, asection *, asection *,
3421 unsigned int);
906e58ca
NC
3422 void (*layout_sections_again) (void);
3423
3424 /* Array to keep track of which stub sections have been created, and
3425 information on stub grouping. */
21d799b5 3426 struct map_stub *stub_group;
906e58ca 3427
4ba2ef8f
TP
3428 /* Input stub section holding secure gateway veneers. */
3429 asection *cmse_stub_sec;
3430
0955507f
TP
3431 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3432 start to be allocated. */
3433 bfd_vma new_cmse_stub_offset;
3434
fe33d2fa 3435 /* Number of elements in stub_group. */
7292b3ac 3436 unsigned int top_id;
fe33d2fa 3437
906e58ca
NC
3438 /* Assorted information used by elf32_arm_size_stubs. */
3439 unsigned int bfd_count;
7292b3ac 3440 unsigned int top_index;
906e58ca 3441 asection **input_list;
617a5ada
CL
3442
3443 /* True if the target system uses FDPIC. */
3444 int fdpic_p;
e8b09b87
CL
3445
3446 /* Fixup section. Used for FDPIC. */
3447 asection *srofixup;
906e58ca 3448};
252b5132 3449
e8b09b87
CL
3450/* Add an FDPIC read-only fixup. */
3451static void
3452arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3453{
3454 bfd_vma fixup_offset;
3455
3456 fixup_offset = srofixup->reloc_count++ * 4;
3457 BFD_ASSERT (fixup_offset < srofixup->size);
3458 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3459}
3460
a504d23a
LA
3461static inline int
3462ctz (unsigned int mask)
3463{
3464#if GCC_VERSION >= 3004
3465 return __builtin_ctz (mask);
3466#else
3467 unsigned int i;
3468
3469 for (i = 0; i < 8 * sizeof (mask); i++)
3470 {
3471 if (mask & 0x1)
3472 break;
3473 mask = (mask >> 1);
3474 }
3475 return i;
3476#endif
3477}
3478
3479static inline int
b25e998d 3480elf32_arm_popcount (unsigned int mask)
a504d23a
LA
3481{
3482#if GCC_VERSION >= 3004
3483 return __builtin_popcount (mask);
3484#else
b25e998d
CG
3485 unsigned int i;
3486 int sum = 0;
a504d23a
LA
3487
3488 for (i = 0; i < 8 * sizeof (mask); i++)
3489 {
3490 if (mask & 0x1)
3491 sum++;
3492 mask = (mask >> 1);
3493 }
3494 return sum;
3495#endif
3496}
3497
e8b09b87
CL
3498static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3499 asection *sreloc, Elf_Internal_Rela *rel);
3500
3501static void
cc850f74
NC
3502arm_elf_fill_funcdesc (bfd *output_bfd,
3503 struct bfd_link_info *info,
3504 int *funcdesc_offset,
3505 int dynindx,
3506 int offset,
3507 bfd_vma addr,
3508 bfd_vma dynreloc_value,
3509 bfd_vma seg)
e8b09b87
CL
3510{
3511 if ((*funcdesc_offset & 1) == 0)
3512 {
3513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3514 asection *sgot = globals->root.sgot;
3515
cc850f74 3516 if (bfd_link_pic (info))
e8b09b87
CL
3517 {
3518 asection *srelgot = globals->root.srelgot;
3519 Elf_Internal_Rela outrel;
3520
3521 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3522 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3523 outrel.r_addend = 0;
3524
3525 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3526 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3527 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3528 }
3529 else
3530 {
3531 struct elf_link_hash_entry *hgot = globals->root.hgot;
3532 bfd_vma got_value = hgot->root.u.def.value
3533 + hgot->root.u.def.section->output_section->vma
3534 + hgot->root.u.def.section->output_offset;
3535
cc850f74
NC
3536 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3537 sgot->output_section->vma + sgot->output_offset
3538 + offset);
3539 arm_elf_add_rofixup (output_bfd, globals->srofixup,
3540 sgot->output_section->vma + sgot->output_offset
3541 + offset + 4);
e8b09b87
CL
3542 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3543 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3544 }
3545 *funcdesc_offset |= 1;
3546 }
3547}
3548
780a67af
NC
3549/* Create an entry in an ARM ELF linker hash table. */
3550
3551static struct bfd_hash_entry *
57e8b36a 3552elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3553 struct bfd_hash_table * table,
3554 const char * string)
780a67af
NC
3555{
3556 struct elf32_arm_link_hash_entry * ret =
3557 (struct elf32_arm_link_hash_entry *) entry;
3558
3559 /* Allocate the structure if it has not already been allocated by a
3560 subclass. */
906e58ca 3561 if (ret == NULL)
21d799b5 3562 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3563 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3564 if (ret == NULL)
780a67af
NC
3565 return (struct bfd_hash_entry *) ret;
3566
3567 /* Call the allocation method of the superclass. */
3568 ret = ((struct elf32_arm_link_hash_entry *)
3569 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3570 table, string));
57e8b36a 3571 if (ret != NULL)
b7693d02 3572 {
ba93b8ac 3573 ret->tls_type = GOT_UNKNOWN;
0855e32b 3574 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3575 ret->plt.thumb_refcount = 0;
3576 ret->plt.maybe_thumb_refcount = 0;
3577 ret->plt.noncall_refcount = 0;
3578 ret->plt.got_offset = -1;
0a1b45a2 3579 ret->is_iplt = false;
a4fd1a8e 3580 ret->export_glue = NULL;
906e58ca
NC
3581
3582 ret->stub_cache = NULL;
e8b09b87
CL
3583
3584 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3585 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3586 ret->fdpic_cnts.funcdesc_cnt = 0;
3587 ret->fdpic_cnts.funcdesc_offset = -1;
3588 ret->fdpic_cnts.gotfuncdesc_offset = -1;
b7693d02 3589 }
780a67af
NC
3590
3591 return (struct bfd_hash_entry *) ret;
3592}
3593
34e77a92
RS
3594/* Ensure that we have allocated bookkeeping structures for ABFD's local
3595 symbols. */
3596
0a1b45a2 3597static bool
34e77a92
RS
3598elf32_arm_allocate_local_sym_info (bfd *abfd)
3599{
3600 if (elf_local_got_refcounts (abfd) == NULL)
3601 {
3602 bfd_size_type num_syms;
74fd118f
NC
3603
3604 elf32_arm_num_entries (abfd) = 0;
3605
3606 /* Whilst it might be tempting to allocate a single block of memory and
3607 then divide it up amoungst the arrays in the elf_arm_obj_tdata
3608 structure, this interferes with the work of memory checkers looking
3609 for buffer overruns. So allocate each array individually. */
34e77a92
RS
3610
3611 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
74fd118f
NC
3612
3613 elf_local_got_refcounts (abfd) = bfd_zalloc
3614 (abfd, num_syms * sizeof (* elf_local_got_refcounts (abfd)));
3615
3616 if (elf_local_got_refcounts (abfd) == NULL)
0a1b45a2 3617 return false;
34e77a92 3618
74fd118f
NC
3619 elf32_arm_local_tlsdesc_gotent (abfd) = bfd_zalloc
3620 (abfd, num_syms * sizeof (* elf32_arm_local_tlsdesc_gotent (abfd)));
34e77a92 3621
74fd118f
NC
3622 if (elf32_arm_local_tlsdesc_gotent (abfd) == NULL)
3623 return false;
f911bb22 3624
74fd118f
NC
3625 elf32_arm_local_iplt (abfd) = bfd_zalloc
3626 (abfd, num_syms * sizeof (* elf32_arm_local_iplt (abfd)));
34e77a92 3627
74fd118f
NC
3628 if (elf32_arm_local_iplt (abfd) == NULL)
3629 return false;
3630
3631 elf32_arm_local_fdpic_cnts (abfd) = bfd_zalloc
3632 (abfd, num_syms * sizeof (* elf32_arm_local_fdpic_cnts (abfd)));
3633
3634 if (elf32_arm_local_fdpic_cnts (abfd) == NULL)
3635 return false;
3636
3637 elf32_arm_local_got_tls_type (abfd) = bfd_zalloc
3638 (abfd, num_syms * sizeof (* elf32_arm_local_got_tls_type (abfd)));
3639
3640 if (elf32_arm_local_got_tls_type (abfd) == NULL)
3641 return false;
3642
3643 elf32_arm_num_entries (abfd) = num_syms;
34e77a92 3644
f911bb22
AM
3645#if GCC_VERSION >= 3000
3646 BFD_ASSERT (__alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd))
3647 <= __alignof__ (*elf_local_got_refcounts (abfd)));
3648 BFD_ASSERT (__alignof__ (*elf32_arm_local_iplt (abfd))
3649 <= __alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd)));
3650 BFD_ASSERT (__alignof__ (*elf32_arm_local_fdpic_cnts (abfd))
3651 <= __alignof__ (*elf32_arm_local_iplt (abfd)));
3652 BFD_ASSERT (__alignof__ (*elf32_arm_local_got_tls_type (abfd))
3653 <= __alignof__ (*elf32_arm_local_fdpic_cnts (abfd)));
3654#endif
34e77a92 3655 }
0a1b45a2 3656 return true;
34e77a92
RS
3657}
3658
3659/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3660 to input bfd ABFD. Create the information if it doesn't already exist.
3661 Return null if an allocation fails. */
3662
3663static struct arm_local_iplt_info *
3664elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3665{
3666 struct arm_local_iplt_info **ptr;
3667
3668 if (!elf32_arm_allocate_local_sym_info (abfd))
3669 return NULL;
3670
3671 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
74fd118f 3672 BFD_ASSERT (r_symndx < elf32_arm_num_entries (abfd));
34e77a92
RS
3673 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3674 if (*ptr == NULL)
3675 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3676 return *ptr;
3677}
3678
3679/* Try to obtain PLT information for the symbol with index R_SYMNDX
3680 in ABFD's symbol table. If the symbol is global, H points to its
3681 hash table entry, otherwise H is null.
3682
3683 Return true if the symbol does have PLT information. When returning
3684 true, point *ROOT_PLT at the target-independent reference count/offset
3685 union and *ARM_PLT at the ARM-specific information. */
3686
0a1b45a2 3687static bool
4ba2ef8f
TP
3688elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3689 struct elf32_arm_link_hash_entry *h,
34e77a92
RS
3690 unsigned long r_symndx, union gotplt_union **root_plt,
3691 struct arm_plt_info **arm_plt)
3692{
3693 struct arm_local_iplt_info *local_iplt;
3694
4ba2ef8f 3695 if (globals->root.splt == NULL && globals->root.iplt == NULL)
0a1b45a2 3696 return false;
4ba2ef8f 3697
34e77a92
RS
3698 if (h != NULL)
3699 {
3700 *root_plt = &h->root.plt;
3701 *arm_plt = &h->plt;
0a1b45a2 3702 return true;
34e77a92
RS
3703 }
3704
3705 if (elf32_arm_local_iplt (abfd) == NULL)
0a1b45a2 3706 return false;
34e77a92 3707
74fd118f
NC
3708 if (r_symndx >= elf32_arm_num_entries (abfd))
3709 return false;
3710
34e77a92
RS
3711 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3712 if (local_iplt == NULL)
0a1b45a2 3713 return false;
34e77a92
RS
3714
3715 *root_plt = &local_iplt->root;
3716 *arm_plt = &local_iplt->arm;
0a1b45a2 3717 return true;
34e77a92
RS
3718}
3719
0a1b45a2 3720static bool using_thumb_only (struct elf32_arm_link_hash_table *globals);
59029f57 3721
34e77a92
RS
3722/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3723 before it. */
3724
0a1b45a2 3725static bool
34e77a92
RS
3726elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3727 struct arm_plt_info *arm_plt)
3728{
3729 struct elf32_arm_link_hash_table *htab;
3730
3731 htab = elf32_arm_hash_table (info);
59029f57 3732
cc850f74 3733 return (!using_thumb_only (htab) && (arm_plt->thumb_refcount != 0
59029f57 3734 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
34e77a92
RS
3735}
3736
3737/* Return a pointer to the head of the dynamic reloc list that should
3738 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3739 ABFD's symbol table. Return null if an error occurs. */
3740
3741static struct elf_dyn_relocs **
3742elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3743 Elf_Internal_Sym *isym)
3744{
3745 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3746 {
3747 struct arm_local_iplt_info *local_iplt;
3748
3749 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3750 if (local_iplt == NULL)
3751 return NULL;
3752 return &local_iplt->dyn_relocs;
3753 }
3754 else
3755 {
3756 /* Track dynamic relocs needed for local syms too.
3757 We really need local syms available to do this
3758 easily. Oh well. */
3759 asection *s;
3760 void *vpp;
3761
3762 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3763 if (s == NULL)
cc850f74 3764 return NULL;
34e77a92
RS
3765
3766 vpp = &elf_section_data (s)->local_dynrel;
3767 return (struct elf_dyn_relocs **) vpp;
3768 }
3769}
3770
906e58ca
NC
3771/* Initialize an entry in the stub hash table. */
3772
3773static struct bfd_hash_entry *
3774stub_hash_newfunc (struct bfd_hash_entry *entry,
3775 struct bfd_hash_table *table,
3776 const char *string)
3777{
3778 /* Allocate the structure if it has not already been allocated by a
3779 subclass. */
3780 if (entry == NULL)
3781 {
21d799b5 3782 entry = (struct bfd_hash_entry *)
99059e56 3783 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3784 if (entry == NULL)
3785 return entry;
3786 }
3787
3788 /* Call the allocation method of the superclass. */
3789 entry = bfd_hash_newfunc (entry, table, string);
3790 if (entry != NULL)
3791 {
3792 struct elf32_arm_stub_hash_entry *eh;
3793
3794 /* Initialize the local fields. */
3795 eh = (struct elf32_arm_stub_hash_entry *) entry;
3796 eh->stub_sec = NULL;
0955507f 3797 eh->stub_offset = (bfd_vma) -1;
8d9d9490 3798 eh->source_value = 0;
906e58ca
NC
3799 eh->target_value = 0;
3800 eh->target_section = NULL;
cedfb179 3801 eh->orig_insn = 0;
906e58ca 3802 eh->stub_type = arm_stub_none;
461a49ca
DJ
3803 eh->stub_size = 0;
3804 eh->stub_template = NULL;
0955507f 3805 eh->stub_template_size = -1;
906e58ca
NC
3806 eh->h = NULL;
3807 eh->id_sec = NULL;
d8d2f433 3808 eh->output_name = NULL;
906e58ca
NC
3809 }
3810
3811 return entry;
3812}
3813
00a97672 3814/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3815 shortcuts to them in our hash table. */
3816
0a1b45a2 3817static bool
57e8b36a 3818create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3819{
3820 struct elf32_arm_link_hash_table *htab;
3821
e5a52504 3822 htab = elf32_arm_hash_table (info);
4dfe6ac6 3823 if (htab == NULL)
0a1b45a2 3824 return false;
4dfe6ac6 3825
5e681ec4 3826 if (! _bfd_elf_create_got_section (dynobj, info))
0a1b45a2 3827 return false;
5e681ec4 3828
e8b09b87
CL
3829 /* Also create .rofixup. */
3830 if (htab->fdpic_p)
3831 {
3832 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3833 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
fd361982
AM
3835 if (htab->srofixup == NULL
3836 || !bfd_set_section_alignment (htab->srofixup, 2))
0a1b45a2 3837 return false;
e8b09b87
CL
3838 }
3839
0a1b45a2 3840 return true;
5e681ec4
PB
3841}
3842
34e77a92
RS
3843/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3844
0a1b45a2 3845static bool
34e77a92
RS
3846create_ifunc_sections (struct bfd_link_info *info)
3847{
3848 struct elf32_arm_link_hash_table *htab;
3849 const struct elf_backend_data *bed;
3850 bfd *dynobj;
3851 asection *s;
3852 flagword flags;
b38cadfb 3853
34e77a92
RS
3854 htab = elf32_arm_hash_table (info);
3855 dynobj = htab->root.dynobj;
3856 bed = get_elf_backend_data (dynobj);
3857 flags = bed->dynamic_sec_flags;
3858
3859 if (htab->root.iplt == NULL)
3860 {
3d4d4302
AM
3861 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3862 flags | SEC_READONLY | SEC_CODE);
34e77a92 3863 if (s == NULL
fd361982 3864 || !bfd_set_section_alignment (s, bed->plt_alignment))
0a1b45a2 3865 return false;
34e77a92
RS
3866 htab->root.iplt = s;
3867 }
3868
3869 if (htab->root.irelplt == NULL)
3870 {
3d4d4302
AM
3871 s = bfd_make_section_anyway_with_flags (dynobj,
3872 RELOC_SECTION (htab, ".iplt"),
3873 flags | SEC_READONLY);
34e77a92 3874 if (s == NULL
fd361982 3875 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3876 return false;
34e77a92
RS
3877 htab->root.irelplt = s;
3878 }
3879
3880 if (htab->root.igotplt == NULL)
3881 {
3d4d4302 3882 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92 3883 if (s == NULL
fd361982 3884 || !bfd_set_section_alignment (s, bed->s->log_file_align))
0a1b45a2 3885 return false;
34e77a92
RS
3886 htab->root.igotplt = s;
3887 }
0a1b45a2 3888 return true;
34e77a92
RS
3889}
3890
eed94f8f
NC
3891/* Determine if we're dealing with a Thumb only architecture. */
3892
0a1b45a2 3893static bool
eed94f8f
NC
3894using_thumb_only (struct elf32_arm_link_hash_table *globals)
3895{
2fd158eb
TP
3896 int arch;
3897 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3898 Tag_CPU_arch_profile);
eed94f8f 3899
2fd158eb
TP
3900 if (profile)
3901 return profile == 'M';
eed94f8f 3902
2fd158eb 3903 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
eed94f8f 3904
60a019a0 3905 /* Force return logic to be reviewed for each new architecture. */
031254f2 3906 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0 3907
2fd158eb
TP
3908 if (arch == TAG_CPU_ARCH_V6_M
3909 || arch == TAG_CPU_ARCH_V6S_M
3910 || arch == TAG_CPU_ARCH_V7E_M
3911 || arch == TAG_CPU_ARCH_V8M_BASE
031254f2
AV
3912 || arch == TAG_CPU_ARCH_V8M_MAIN
3913 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
0a1b45a2 3914 return true;
eed94f8f 3915
0a1b45a2 3916 return false;
eed94f8f
NC
3917}
3918
3919/* Determine if we're dealing with a Thumb-2 object. */
3920
0a1b45a2 3921static bool
eed94f8f
NC
3922using_thumb2 (struct elf32_arm_link_hash_table *globals)
3923{
60a019a0
TP
3924 int arch;
3925 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3926 Tag_THUMB_ISA_use);
3927
d8147d70
RE
3928 /* No use of thumb permitted, or a legacy thumb-1/2 definition. */
3929 if (thumb_isa < 3)
60a019a0
TP
3930 return thumb_isa == 2;
3931
d8147d70 3932 /* Variant of thumb is described by the architecture tag. */
60a019a0
TP
3933 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3934
3935 /* Force return logic to be reviewed for each new architecture. */
031254f2 3936 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
60a019a0
TP
3937
3938 return (arch == TAG_CPU_ARCH_V6T2
3939 || arch == TAG_CPU_ARCH_V7
3940 || arch == TAG_CPU_ARCH_V7E_M
3941 || arch == TAG_CPU_ARCH_V8
bff0500d 3942 || arch == TAG_CPU_ARCH_V8R
031254f2
AV
3943 || arch == TAG_CPU_ARCH_V8M_MAIN
3944 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
eed94f8f
NC
3945}
3946
5e866f5a
TP
3947/* Determine whether Thumb-2 BL instruction is available. */
3948
0a1b45a2 3949static bool
5e866f5a
TP
3950using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3951{
3952 int arch =
3953 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3954
3955 /* Force return logic to be reviewed for each new architecture. */
3197e593 3956 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
5e866f5a
TP
3957
3958 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3959 return (arch == TAG_CPU_ARCH_V6T2
3960 || arch >= TAG_CPU_ARCH_V7);
3961}
3962
00a97672
RS
3963/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3964 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3965 hash table. */
3966
0a1b45a2 3967static bool
57e8b36a 3968elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3969{
3970 struct elf32_arm_link_hash_table *htab;
3971
3972 htab = elf32_arm_hash_table (info);
4dfe6ac6 3973 if (htab == NULL)
0a1b45a2 3974 return false;
4dfe6ac6 3975
362d30a1 3976 if (!htab->root.sgot && !create_got_section (dynobj, info))
0a1b45a2 3977 return false;
5e681ec4
PB
3978
3979 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
0a1b45a2 3980 return false;
5e681ec4 3981
90c14f0c 3982 if (htab->root.target_os == is_vxworks)
00a97672
RS
3983 {
3984 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
0a1b45a2 3985 return false;
00a97672 3986
0e1862bb 3987 if (bfd_link_pic (info))
00a97672
RS
3988 {
3989 htab->plt_header_size = 0;
3990 htab->plt_entry_size
3991 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3992 }
3993 else
3994 {
3995 htab->plt_header_size
3996 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3997 htab->plt_entry_size
3998 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3999 }
aebf9be7
NC
4000
4001 if (elf_elfheader (dynobj))
4002 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
00a97672 4003 }
eed94f8f
NC
4004 else
4005 {
4006 /* PR ld/16017
4007 Test for thumb only architectures. Note - we cannot just call
4008 using_thumb_only() as the attributes in the output bfd have not been
4009 initialised at this point, so instead we use the input bfd. */
4010 bfd * saved_obfd = htab->obfd;
4011
4012 htab->obfd = dynobj;
4013 if (using_thumb_only (htab))
4014 {
4015 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
4016 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
4017 }
4018 htab->obfd = saved_obfd;
4019 }
5e681ec4 4020
7801f98f
CL
4021 if (htab->fdpic_p) {
4022 htab->plt_header_size = 0;
4023 if (info->flags & DF_BIND_NOW)
cc850f74 4024 htab->plt_entry_size = 4 * (ARRAY_SIZE (elf32_arm_fdpic_plt_entry) - 5);
7801f98f 4025 else
cc850f74 4026 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry);
7801f98f
CL
4027 }
4028
362d30a1
RS
4029 if (!htab->root.splt
4030 || !htab->root.srelplt
9d19e4fd
AM
4031 || !htab->root.sdynbss
4032 || (!bfd_link_pic (info) && !htab->root.srelbss))
5e681ec4
PB
4033 abort ();
4034
0a1b45a2 4035 return true;
5e681ec4
PB
4036}
4037
906e58ca
NC
4038/* Copy the extra info we tack onto an elf_link_hash_entry. */
4039
4040static void
4041elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4042 struct elf_link_hash_entry *dir,
4043 struct elf_link_hash_entry *ind)
4044{
4045 struct elf32_arm_link_hash_entry *edir, *eind;
4046
4047 edir = (struct elf32_arm_link_hash_entry *) dir;
4048 eind = (struct elf32_arm_link_hash_entry *) ind;
4049
906e58ca
NC
4050 if (ind->root.type == bfd_link_hash_indirect)
4051 {
4052 /* Copy over PLT info. */
34e77a92
RS
4053 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4054 eind->plt.thumb_refcount = 0;
4055 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4056 eind->plt.maybe_thumb_refcount = 0;
4057 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4058 eind->plt.noncall_refcount = 0;
4059
e8b09b87
CL
4060 /* Copy FDPIC counters. */
4061 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4062 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4063 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4064
34e77a92
RS
4065 /* We should only allocate a function to .iplt once the final
4066 symbol information is known. */
4067 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
4068
4069 if (dir->got.refcount <= 0)
4070 {
4071 edir->tls_type = eind->tls_type;
4072 eind->tls_type = GOT_UNKNOWN;
4073 }
4074 }
4075
4076 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4077}
4078
68faa637
AM
4079/* Destroy an ARM elf linker hash table. */
4080
4081static void
d495ab0d 4082elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
4083{
4084 struct elf32_arm_link_hash_table *ret
d495ab0d 4085 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
4086
4087 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 4088 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
4089}
4090
906e58ca
NC
4091/* Create an ARM elf linker hash table. */
4092
4093static struct bfd_link_hash_table *
4094elf32_arm_link_hash_table_create (bfd *abfd)
4095{
4096 struct elf32_arm_link_hash_table *ret;
986f0783 4097 size_t amt = sizeof (struct elf32_arm_link_hash_table);
906e58ca 4098
7bf52ea2 4099 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
4100 if (ret == NULL)
4101 return NULL;
4102
4103 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4104 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
4105 sizeof (struct elf32_arm_link_hash_entry),
4106 ARM_ELF_DATA))
906e58ca
NC
4107 {
4108 free (ret);
4109 return NULL;
4110 }
4111
906e58ca 4112 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
a504d23a 4113 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
906e58ca
NC
4114#ifdef FOUR_WORD_PLT
4115 ret->plt_header_size = 16;
4116 ret->plt_entry_size = 16;
4117#else
4118 ret->plt_header_size = 20;
1db37fe6 4119 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 4120#endif
0a1b45a2 4121 ret->use_rel = true;
906e58ca 4122 ret->obfd = abfd;
617a5ada 4123 ret->fdpic_p = 0;
906e58ca
NC
4124
4125 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4126 sizeof (struct elf32_arm_stub_hash_entry)))
4127 {
d495ab0d 4128 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
4129 return NULL;
4130 }
d495ab0d 4131 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
4132
4133 return &ret->root.root;
4134}
4135
cd1dac3d
DG
4136/* Determine what kind of NOPs are available. */
4137
0a1b45a2 4138static bool
cd1dac3d
DG
4139arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4140{
4141 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4142 Tag_CPU_arch);
cd1dac3d 4143
60a019a0 4144 /* Force return logic to be reviewed for each new architecture. */
3197e593 4145 BFD_ASSERT (arch <= TAG_CPU_ARCH_V9);
60a019a0
TP
4146
4147 return (arch == TAG_CPU_ARCH_V6T2
4148 || arch == TAG_CPU_ARCH_V6K
4149 || arch == TAG_CPU_ARCH_V7
bff0500d 4150 || arch == TAG_CPU_ARCH_V8
3197e593
PW
4151 || arch == TAG_CPU_ARCH_V8R
4152 || arch == TAG_CPU_ARCH_V9);
cd1dac3d
DG
4153}
4154
0a1b45a2 4155static bool
f4ac8484
DJ
4156arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4157{
4158 switch (stub_type)
4159 {
fea2b4d6 4160 case arm_stub_long_branch_thumb_only:
80c135e5 4161 case arm_stub_long_branch_thumb2_only:
d5a67c02 4162 case arm_stub_long_branch_thumb2_only_pure:
fea2b4d6
CL
4163 case arm_stub_long_branch_v4t_thumb_arm:
4164 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 4165 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 4166 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 4167 case arm_stub_long_branch_thumb_only_pic:
4ba2ef8f 4168 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4169 return true;
f4ac8484
DJ
4170 case arm_stub_none:
4171 BFD_FAIL ();
0a1b45a2 4172 return false;
f4ac8484
DJ
4173 break;
4174 default:
0a1b45a2 4175 return false;
f4ac8484
DJ
4176 }
4177}
4178
906e58ca
NC
4179/* Determine the type of stub needed, if any, for a call. */
4180
4181static enum elf32_arm_stub_type
4182arm_type_of_stub (struct bfd_link_info *info,
4183 asection *input_sec,
4184 const Elf_Internal_Rela *rel,
34e77a92 4185 unsigned char st_type,
35fc36a8 4186 enum arm_st_branch_type *actual_branch_type,
906e58ca 4187 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
4188 bfd_vma destination,
4189 asection *sym_sec,
4190 bfd *input_bfd,
4191 const char *name)
906e58ca
NC
4192{
4193 bfd_vma location;
4194 bfd_signed_vma branch_offset;
4195 unsigned int r_type;
4196 struct elf32_arm_link_hash_table * globals;
0a1b45a2 4197 bool thumb2, thumb2_bl, thumb_only;
906e58ca 4198 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 4199 int use_plt = 0;
35fc36a8 4200 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
4201 union gotplt_union *root_plt;
4202 struct arm_plt_info *arm_plt;
d5a67c02
AV
4203 int arch;
4204 int thumb2_movw;
906e58ca 4205
35fc36a8 4206 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
4207 return stub_type;
4208
906e58ca 4209 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4210 if (globals == NULL)
4211 return stub_type;
906e58ca
NC
4212
4213 thumb_only = using_thumb_only (globals);
906e58ca 4214 thumb2 = using_thumb2 (globals);
5e866f5a 4215 thumb2_bl = using_thumb2_bl (globals);
906e58ca 4216
d5a67c02
AV
4217 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4218
4219 /* True for architectures that implement the thumb2 movw instruction. */
4220 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4221
906e58ca
NC
4222 /* Determine where the call point is. */
4223 location = (input_sec->output_offset
4224 + input_sec->output_section->vma
4225 + rel->r_offset);
4226
906e58ca
NC
4227 r_type = ELF32_R_TYPE (rel->r_info);
4228
39f21624
NC
4229 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4230 are considering a function call relocation. */
c5423981 4231 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
07d6d2b8 4232 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
4233 && branch_type == ST_BRANCH_TO_ARM)
4234 branch_type = ST_BRANCH_TO_THUMB;
4235
34e77a92
RS
4236 /* For TLS call relocs, it is the caller's responsibility to provide
4237 the address of the appropriate trampoline. */
4238 if (r_type != R_ARM_TLS_CALL
4239 && r_type != R_ARM_THM_TLS_CALL
4ba2ef8f
TP
4240 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4241 ELF32_R_SYM (rel->r_info), &root_plt,
4242 &arm_plt)
34e77a92 4243 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 4244 {
34e77a92 4245 asection *splt;
fe33d2fa 4246
34e77a92
RS
4247 if (hash == NULL || hash->is_iplt)
4248 splt = globals->root.iplt;
4249 else
4250 splt = globals->root.splt;
4251 if (splt != NULL)
b38cadfb 4252 {
34e77a92
RS
4253 use_plt = 1;
4254
4255 /* Note when dealing with PLT entries: the main PLT stub is in
4256 ARM mode, so if the branch is in Thumb mode, another
4257 Thumb->ARM stub will be inserted later just before the ARM
2df2751d
CL
4258 PLT stub. If a long branch stub is needed, we'll add a
4259 Thumb->Arm one and branch directly to the ARM PLT entry.
4260 Here, we have to check if a pre-PLT Thumb->ARM stub
4261 is needed and if it will be close enough. */
34e77a92
RS
4262
4263 destination = (splt->output_section->vma
4264 + splt->output_offset
4265 + root_plt->offset);
4266 st_type = STT_FUNC;
2df2751d
CL
4267
4268 /* Thumb branch/call to PLT: it can become a branch to ARM
4269 or to Thumb. We must perform the same checks and
4270 corrections as in elf32_arm_final_link_relocate. */
4271 if ((r_type == R_ARM_THM_CALL)
4272 || (r_type == R_ARM_THM_JUMP24))
4273 {
4274 if (globals->use_blx
4275 && r_type == R_ARM_THM_CALL
4276 && !thumb_only)
4277 {
4278 /* If the Thumb BLX instruction is available, convert
4279 the BL to a BLX instruction to call the ARM-mode
4280 PLT entry. */
4281 branch_type = ST_BRANCH_TO_ARM;
4282 }
4283 else
4284 {
4285 if (!thumb_only)
4286 /* Target the Thumb stub before the ARM PLT entry. */
4287 destination -= PLT_THUMB_STUB_SIZE;
4288 branch_type = ST_BRANCH_TO_THUMB;
4289 }
4290 }
4291 else
4292 {
4293 branch_type = ST_BRANCH_TO_ARM;
4294 }
34e77a92 4295 }
5fa9e92f 4296 }
34e77a92
RS
4297 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4298 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 4299
fe33d2fa
CL
4300 branch_offset = (bfd_signed_vma)(destination - location);
4301
0855e32b 4302 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 4303 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 4304 {
5fa9e92f
CL
4305 /* Handle cases where:
4306 - this call goes too far (different Thumb/Thumb2 max
99059e56 4307 distance)
155d87d7 4308 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
4309 Thumb->Arm branch (not bl). A stub is needed in this case,
4310 but only if this call is not through a PLT entry. Indeed,
695344c0 4311 PLT stubs handle mode switching already. */
5e866f5a 4312 if ((!thumb2_bl
906e58ca
NC
4313 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4314 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
5e866f5a 4315 || (thumb2_bl
906e58ca
NC
4316 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
4318 || (thumb2
4319 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4320 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4321 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 4322 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
4323 && (((r_type == R_ARM_THM_CALL
4324 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981 4325 || (r_type == R_ARM_THM_JUMP24)
07d6d2b8 4326 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 4327 && !use_plt))
906e58ca 4328 {
2df2751d
CL
4329 /* If we need to insert a Thumb-Thumb long branch stub to a
4330 PLT, use one that branches directly to the ARM PLT
4331 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4332 stub, undo this now. */
695344c0
NC
4333 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4334 {
4335 branch_type = ST_BRANCH_TO_ARM;
4336 branch_offset += PLT_THUMB_STUB_SIZE;
4337 }
2df2751d 4338
35fc36a8 4339 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4340 {
4341 /* Thumb to thumb. */
4342 if (!thumb_only)
4343 {
d5a67c02 4344 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4345 _bfd_error_handler
871b3ab2 4346 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4347 " section with SHF_ARM_PURECODE section"
4348 " attribute is only supported for M-profile"
90b6238f 4349 " targets that implement the movw instruction"),
10463f39 4350 input_bfd, input_sec);
d5a67c02 4351
0e1862bb 4352 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4353 /* PIC stubs. */
155d87d7 4354 ? ((globals->use_blx
9553db3c 4355 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
4356 /* V5T and above. Stub starts with ARM code, so
4357 we must be able to switch mode before
4358 reaching it, which is only possible for 'bl'
4359 (ie R_ARM_THM_CALL relocation). */
cf3eccff 4360 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 4361 /* On V4T, use Thumb code only. */
d3626fb0 4362 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
4363
4364 /* non-PIC stubs. */
155d87d7 4365 : ((globals->use_blx
9553db3c 4366 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
4367 /* V5T and above. */
4368 ? arm_stub_long_branch_any_any
4369 /* V4T. */
d3626fb0 4370 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
4371 }
4372 else
4373 {
d5a67c02
AV
4374 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4375 stub_type = arm_stub_long_branch_thumb2_only_pure;
4376 else
4377 {
4378 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4379 _bfd_error_handler
871b3ab2 4380 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4381 " section with SHF_ARM_PURECODE section"
4382 " attribute is only supported for M-profile"
90b6238f 4383 " targets that implement the movw instruction"),
10463f39 4384 input_bfd, input_sec);
d5a67c02
AV
4385
4386 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4387 /* PIC stub. */
4388 ? arm_stub_long_branch_thumb_only_pic
4389 /* non-PIC stub. */
4390 : (thumb2 ? arm_stub_long_branch_thumb2_only
4391 : arm_stub_long_branch_thumb_only);
4392 }
906e58ca
NC
4393 }
4394 }
4395 else
4396 {
d5a67c02 4397 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4398 _bfd_error_handler
871b3ab2 4399 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4400 " section with SHF_ARM_PURECODE section"
4401 " attribute is only supported" " for M-profile"
90b6238f 4402 " targets that implement the movw instruction"),
10463f39 4403 input_bfd, input_sec);
d5a67c02 4404
906e58ca 4405 /* Thumb to arm. */
c820be07
NC
4406 if (sym_sec != NULL
4407 && sym_sec->owner != NULL
4408 && !INTERWORK_FLAG (sym_sec->owner))
4409 {
4eca0228 4410 _bfd_error_handler
90b6238f
AM
4411 (_("%pB(%s): warning: interworking not enabled;"
4412 " first occurrence: %pB: %s call to %s"),
4413 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
c820be07
NC
4414 }
4415
0855e32b 4416 stub_type =
0e1862bb 4417 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4418 /* PIC stubs. */
0855e32b 4419 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 4420 /* TLS PIC stubs. */
0855e32b
NS
4421 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4422 : arm_stub_long_branch_v4t_thumb_tls_pic)
4423 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4424 /* V5T PIC and above. */
4425 ? arm_stub_long_branch_any_arm_pic
4426 /* V4T PIC stub. */
4427 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
4428
4429 /* non-PIC stubs. */
0855e32b 4430 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
4431 /* V5T and above. */
4432 ? arm_stub_long_branch_any_any
4433 /* V4T. */
4434 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
4435
4436 /* Handle v4t short branches. */
fea2b4d6 4437 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
4438 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4439 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 4440 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
4441 }
4442 }
4443 }
fe33d2fa
CL
4444 else if (r_type == R_ARM_CALL
4445 || r_type == R_ARM_JUMP24
0855e32b
NS
4446 || r_type == R_ARM_PLT32
4447 || r_type == R_ARM_TLS_CALL)
906e58ca 4448 {
d5a67c02 4449 if (input_sec->flags & SEC_ELF_PURECODE)
10463f39 4450 _bfd_error_handler
871b3ab2 4451 (_("%pB(%pA): warning: long branch veneers used in"
10463f39
AM
4452 " section with SHF_ARM_PURECODE section"
4453 " attribute is only supported for M-profile"
90b6238f 4454 " targets that implement the movw instruction"),
10463f39 4455 input_bfd, input_sec);
35fc36a8 4456 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4457 {
4458 /* Arm to thumb. */
c820be07
NC
4459
4460 if (sym_sec != NULL
4461 && sym_sec->owner != NULL
4462 && !INTERWORK_FLAG (sym_sec->owner))
4463 {
4eca0228 4464 _bfd_error_handler
90b6238f
AM
4465 (_("%pB(%s): warning: interworking not enabled;"
4466 " first occurrence: %pB: %s call to %s"),
4467 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
c820be07
NC
4468 }
4469
4470 /* We have an extra 2-bytes reach because of
4471 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
4472 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4473 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 4474 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
4475 || (r_type == R_ARM_JUMP24)
4476 || (r_type == R_ARM_PLT32))
906e58ca 4477 {
0e1862bb 4478 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4479 /* PIC stubs. */
ebe24dd4
CL
4480 ? ((globals->use_blx)
4481 /* V5T and above. */
4482 ? arm_stub_long_branch_any_thumb_pic
4483 /* V4T stub. */
4484 : arm_stub_long_branch_v4t_arm_thumb_pic)
4485
c2b4a39d
CL
4486 /* non-PIC stubs. */
4487 : ((globals->use_blx)
4488 /* V5T and above. */
4489 ? arm_stub_long_branch_any_any
4490 /* V4T. */
4491 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
4492 }
4493 }
4494 else
4495 {
4496 /* Arm to arm. */
4497 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4498 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4499 {
0855e32b 4500 stub_type =
0e1862bb 4501 (bfd_link_pic (info) | globals->pic_veneer)
c2b4a39d 4502 /* PIC stubs. */
0855e32b 4503 ? (r_type == R_ARM_TLS_CALL
6a631e86 4504 /* TLS PIC Stub. */
0855e32b 4505 ? arm_stub_long_branch_any_tls_pic
90c14f0c 4506 : (globals->root.target_os == is_nacl
7a89b94e
NC
4507 ? arm_stub_long_branch_arm_nacl_pic
4508 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 4509 /* non-PIC stubs. */
90c14f0c 4510 : (globals->root.target_os == is_nacl
7a89b94e
NC
4511 ? arm_stub_long_branch_arm_nacl
4512 : arm_stub_long_branch_any_any);
906e58ca
NC
4513 }
4514 }
4515 }
4516
fe33d2fa
CL
4517 /* If a stub is needed, record the actual destination type. */
4518 if (stub_type != arm_stub_none)
35fc36a8 4519 *actual_branch_type = branch_type;
fe33d2fa 4520
906e58ca
NC
4521 return stub_type;
4522}
4523
4524/* Build a name for an entry in the stub hash table. */
4525
4526static char *
4527elf32_arm_stub_name (const asection *input_section,
4528 const asection *sym_sec,
4529 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
4530 const Elf_Internal_Rela *rel,
4531 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4532{
4533 char *stub_name;
4534 bfd_size_type len;
4535
4536 if (hash)
4537 {
fe33d2fa 4538 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 4539 stub_name = (char *) bfd_malloc (len);
906e58ca 4540 if (stub_name != NULL)
fe33d2fa 4541 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
4542 input_section->id & 0xffffffff,
4543 hash->root.root.root.string,
fe33d2fa
CL
4544 (int) rel->r_addend & 0xffffffff,
4545 (int) stub_type);
906e58ca
NC
4546 }
4547 else
4548 {
fe33d2fa 4549 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 4550 stub_name = (char *) bfd_malloc (len);
906e58ca 4551 if (stub_name != NULL)
fe33d2fa 4552 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
4553 input_section->id & 0xffffffff,
4554 sym_sec->id & 0xffffffff,
0855e32b
NS
4555 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4556 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4557 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
4558 (int) rel->r_addend & 0xffffffff,
4559 (int) stub_type);
906e58ca
NC
4560 }
4561
4562 return stub_name;
4563}
4564
4565/* Look up an entry in the stub hash. Stub entries are cached because
4566 creating the stub name takes a bit of time. */
4567
4568static struct elf32_arm_stub_hash_entry *
4569elf32_arm_get_stub_entry (const asection *input_section,
4570 const asection *sym_sec,
4571 struct elf_link_hash_entry *hash,
4572 const Elf_Internal_Rela *rel,
fe33d2fa
CL
4573 struct elf32_arm_link_hash_table *htab,
4574 enum elf32_arm_stub_type stub_type)
906e58ca
NC
4575{
4576 struct elf32_arm_stub_hash_entry *stub_entry;
4577 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4578 const asection *id_sec;
4579
4580 if ((input_section->flags & SEC_CODE) == 0)
4581 return NULL;
4582
4d83e8d9
CL
4583 /* If the input section is the CMSE stubs one and it needs a long
4584 branch stub to reach it's final destination, give up with an
4585 error message: this is not supported. See PR ld/24709. */
cc850f74 4586 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen (CMSE_STUB_NAME)))
4d83e8d9
CL
4587 {
4588 bfd *output_bfd = htab->obfd;
4589 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4590
4591 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4592 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4593 CMSE_STUB_NAME,
4594 (uint64_t)out_sec->output_section->vma
4595 + out_sec->output_offset,
4596 (uint64_t)sym_sec->output_section->vma
4597 + sym_sec->output_offset
4598 + h->root.root.u.def.value);
4599 /* Exit, rather than leave incompletely processed
4600 relocations. */
cc850f74 4601 xexit (1);
4d83e8d9
CL
4602 }
4603
906e58ca
NC
4604 /* If this input section is part of a group of sections sharing one
4605 stub section, then use the id of the first section in the group.
4606 Stub names need to include a section id, as there may well be
4607 more than one stub used to reach say, printf, and we need to
4608 distinguish between them. */
c2abbbeb 4609 BFD_ASSERT (input_section->id <= htab->top_id);
906e58ca
NC
4610 id_sec = htab->stub_group[input_section->id].link_sec;
4611
4612 if (h != NULL && h->stub_cache != NULL
4613 && h->stub_cache->h == h
fe33d2fa
CL
4614 && h->stub_cache->id_sec == id_sec
4615 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
4616 {
4617 stub_entry = h->stub_cache;
4618 }
4619 else
4620 {
4621 char *stub_name;
4622
fe33d2fa 4623 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
4624 if (stub_name == NULL)
4625 return NULL;
4626
4627 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
0a1b45a2 4628 stub_name, false, false);
906e58ca
NC
4629 if (h != NULL)
4630 h->stub_cache = stub_entry;
4631
4632 free (stub_name);
4633 }
4634
4635 return stub_entry;
4636}
4637
daa4adae
TP
4638/* Whether veneers of type STUB_TYPE require to be in a dedicated output
4639 section. */
4640
0a1b45a2 4641static bool
daa4adae
TP
4642arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4643{
4644 if (stub_type >= max_stub_type)
4645 abort (); /* Should be unreachable. */
4646
4ba2ef8f
TP
4647 switch (stub_type)
4648 {
4649 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4650 return true;
4ba2ef8f
TP
4651
4652 default:
0a1b45a2 4653 return false;
4ba2ef8f
TP
4654 }
4655
4656 abort (); /* Should be unreachable. */
daa4adae
TP
4657}
4658
4659/* Required alignment (as a power of 2) for the dedicated section holding
4660 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4661 with input sections. */
4662
4663static int
4664arm_dedicated_stub_output_section_required_alignment
4665 (enum elf32_arm_stub_type stub_type)
4666{
4667 if (stub_type >= max_stub_type)
4668 abort (); /* Should be unreachable. */
4669
4ba2ef8f
TP
4670 switch (stub_type)
4671 {
4672 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4673 boundary. */
4674 case arm_stub_cmse_branch_thumb_only:
4675 return 5;
4676
4677 default:
4678 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4679 return 0;
4680 }
4681
4682 abort (); /* Should be unreachable. */
daa4adae
TP
4683}
4684
4685/* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4686 NULL if veneers of this type are interspersed with input sections. */
4687
4688static const char *
4689arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4690{
4691 if (stub_type >= max_stub_type)
4692 abort (); /* Should be unreachable. */
4693
4ba2ef8f
TP
4694 switch (stub_type)
4695 {
4696 case arm_stub_cmse_branch_thumb_only:
4d83e8d9 4697 return CMSE_STUB_NAME;
4ba2ef8f
TP
4698
4699 default:
4700 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4701 return NULL;
4702 }
4703
4704 abort (); /* Should be unreachable. */
daa4adae
TP
4705}
4706
4707/* If veneers of type STUB_TYPE should go in a dedicated output section,
4708 returns the address of the hash table field in HTAB holding a pointer to the
4709 corresponding input section. Otherwise, returns NULL. */
4710
4711static asection **
4ba2ef8f
TP
4712arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4713 enum elf32_arm_stub_type stub_type)
daa4adae
TP
4714{
4715 if (stub_type >= max_stub_type)
4716 abort (); /* Should be unreachable. */
4717
4ba2ef8f
TP
4718 switch (stub_type)
4719 {
4720 case arm_stub_cmse_branch_thumb_only:
4721 return &htab->cmse_stub_sec;
4722
4723 default:
4724 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4725 return NULL;
4726 }
4727
4728 abort (); /* Should be unreachable. */
daa4adae
TP
4729}
4730
4731/* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4732 is the section that branch into veneer and can be NULL if stub should go in
4733 a dedicated output section. Returns a pointer to the stub section, and the
4734 section to which the stub section will be attached (in *LINK_SEC_P).
48229727 4735 LINK_SEC_P may be NULL. */
906e58ca 4736
48229727
JB
4737static asection *
4738elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
daa4adae
TP
4739 struct elf32_arm_link_hash_table *htab,
4740 enum elf32_arm_stub_type stub_type)
906e58ca 4741{
daa4adae
TP
4742 asection *link_sec, *out_sec, **stub_sec_p;
4743 const char *stub_sec_prefix;
0a1b45a2 4744 bool dedicated_output_section =
daa4adae
TP
4745 arm_dedicated_stub_output_section_required (stub_type);
4746 int align;
906e58ca 4747
daa4adae 4748 if (dedicated_output_section)
906e58ca 4749 {
daa4adae
TP
4750 bfd *output_bfd = htab->obfd;
4751 const char *out_sec_name =
4752 arm_dedicated_stub_output_section_name (stub_type);
4753 link_sec = NULL;
4754 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4755 stub_sec_prefix = out_sec_name;
4756 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4757 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4758 if (out_sec == NULL)
906e58ca 4759 {
90b6238f 4760 _bfd_error_handler (_("no address assigned to the veneers output "
4eca0228 4761 "section %s"), out_sec_name);
daa4adae 4762 return NULL;
906e58ca 4763 }
daa4adae
TP
4764 }
4765 else
4766 {
c2abbbeb 4767 BFD_ASSERT (section->id <= htab->top_id);
daa4adae
TP
4768 link_sec = htab->stub_group[section->id].link_sec;
4769 BFD_ASSERT (link_sec != NULL);
4770 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4771 if (*stub_sec_p == NULL)
4772 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4773 stub_sec_prefix = link_sec->name;
4774 out_sec = link_sec->output_section;
90c14f0c 4775 align = htab->root.target_os == is_nacl ? 4 : 3;
906e58ca 4776 }
b38cadfb 4777
daa4adae
TP
4778 if (*stub_sec_p == NULL)
4779 {
4780 size_t namelen;
4781 bfd_size_type len;
4782 char *s_name;
4783
4784 namelen = strlen (stub_sec_prefix);
4785 len = namelen + sizeof (STUB_SUFFIX);
4786 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4787 if (s_name == NULL)
4788 return NULL;
4789
4790 memcpy (s_name, stub_sec_prefix, namelen);
4791 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4792 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4793 align);
4794 if (*stub_sec_p == NULL)
4795 return NULL;
4796
4797 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4798 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4799 | SEC_KEEP;
4800 }
4801
4802 if (!dedicated_output_section)
4803 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4804
48229727
JB
4805 if (link_sec_p)
4806 *link_sec_p = link_sec;
b38cadfb 4807
daa4adae 4808 return *stub_sec_p;
48229727
JB
4809}
4810
4811/* Add a new stub entry to the stub hash. Not all fields of the new
4812 stub entry are initialised. */
4813
4814static struct elf32_arm_stub_hash_entry *
daa4adae
TP
4815elf32_arm_add_stub (const char *stub_name, asection *section,
4816 struct elf32_arm_link_hash_table *htab,
4817 enum elf32_arm_stub_type stub_type)
48229727
JB
4818{
4819 asection *link_sec;
4820 asection *stub_sec;
4821 struct elf32_arm_stub_hash_entry *stub_entry;
4822
daa4adae
TP
4823 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4824 stub_type);
48229727
JB
4825 if (stub_sec == NULL)
4826 return NULL;
906e58ca
NC
4827
4828 /* Enter this entry into the linker stub hash table. */
4829 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 4830 true, false);
906e58ca
NC
4831 if (stub_entry == NULL)
4832 {
6bde4c52
TP
4833 if (section == NULL)
4834 section = stub_sec;
871b3ab2 4835 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 4836 section->owner, stub_name);
906e58ca
NC
4837 return NULL;
4838 }
4839
4840 stub_entry->stub_sec = stub_sec;
0955507f 4841 stub_entry->stub_offset = (bfd_vma) -1;
906e58ca
NC
4842 stub_entry->id_sec = link_sec;
4843
906e58ca
NC
4844 return stub_entry;
4845}
4846
4847/* Store an Arm insn into an output section not processed by
4848 elf32_arm_write_section. */
4849
4850static void
8029a119
NC
4851put_arm_insn (struct elf32_arm_link_hash_table * htab,
4852 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4853{
4854 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4855 bfd_putl32 (val, ptr);
4856 else
4857 bfd_putb32 (val, ptr);
4858}
4859
4860/* Store a 16-bit Thumb insn into an output section not processed by
4861 elf32_arm_write_section. */
4862
4863static void
8029a119
NC
4864put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4865 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4866{
4867 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4868 bfd_putl16 (val, ptr);
4869 else
4870 bfd_putb16 (val, ptr);
4871}
4872
a504d23a
LA
4873/* Store a Thumb2 insn into an output section not processed by
4874 elf32_arm_write_section. */
4875
4876static void
4877put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
b98e6871 4878 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
a504d23a
LA
4879{
4880 /* T2 instructions are 16-bit streamed. */
4881 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4882 {
4883 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4884 bfd_putl16 ((val & 0xffff), ptr + 2);
4885 }
4886 else
4887 {
4888 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4889 bfd_putb16 ((val & 0xffff), ptr + 2);
4890 }
4891}
4892
0855e32b
NS
4893/* If it's possible to change R_TYPE to a more efficient access
4894 model, return the new reloc type. */
4895
4896static unsigned
b38cadfb 4897elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4898 struct elf_link_hash_entry *h)
4899{
4900 int is_local = (h == NULL);
4901
9cb09e33 4902 if (bfd_link_dll (info)
0e1862bb 4903 || (h && h->root.type == bfd_link_hash_undefweak))
0855e32b
NS
4904 return r_type;
4905
b38cadfb 4906 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4907 switch (r_type)
4908 {
4909 case R_ARM_TLS_GOTDESC:
4910 case R_ARM_TLS_CALL:
4911 case R_ARM_THM_TLS_CALL:
4912 case R_ARM_TLS_DESCSEQ:
4913 case R_ARM_THM_TLS_DESCSEQ:
4914 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4915 }
4916
4917 return r_type;
4918}
4919
48229727
JB
4920static bfd_reloc_status_type elf32_arm_final_link_relocate
4921 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4922 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92 4923 const char *, unsigned char, enum arm_st_branch_type,
0a1b45a2 4924 struct elf_link_hash_entry *, bool *, char **);
48229727 4925
4563a860
JB
4926static unsigned int
4927arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4928{
4929 switch (stub_type)
4930 {
4931 case arm_stub_a8_veneer_b_cond:
4932 case arm_stub_a8_veneer_b:
4933 case arm_stub_a8_veneer_bl:
4934 return 2;
4935
4936 case arm_stub_long_branch_any_any:
4937 case arm_stub_long_branch_v4t_arm_thumb:
4938 case arm_stub_long_branch_thumb_only:
80c135e5 4939 case arm_stub_long_branch_thumb2_only:
d5a67c02 4940 case arm_stub_long_branch_thumb2_only_pure:
4563a860
JB
4941 case arm_stub_long_branch_v4t_thumb_thumb:
4942 case arm_stub_long_branch_v4t_thumb_arm:
4943 case arm_stub_short_branch_v4t_thumb_arm:
4944 case arm_stub_long_branch_any_arm_pic:
4945 case arm_stub_long_branch_any_thumb_pic:
4946 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4947 case arm_stub_long_branch_v4t_arm_thumb_pic:
4948 case arm_stub_long_branch_v4t_thumb_arm_pic:
4949 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4950 case arm_stub_long_branch_any_tls_pic:
4951 case arm_stub_long_branch_v4t_thumb_tls_pic:
4ba2ef8f 4952 case arm_stub_cmse_branch_thumb_only:
4563a860
JB
4953 case arm_stub_a8_veneer_blx:
4954 return 4;
b38cadfb 4955
7a89b94e
NC
4956 case arm_stub_long_branch_arm_nacl:
4957 case arm_stub_long_branch_arm_nacl_pic:
4958 return 16;
4959
4563a860
JB
4960 default:
4961 abort (); /* Should be unreachable. */
4962 }
4963}
4964
4f4faa4d
TP
4965/* Returns whether stubs of type STUB_TYPE take over the symbol they are
4966 veneering (TRUE) or have their own symbol (FALSE). */
4967
0a1b45a2 4968static bool
4f4faa4d
TP
4969arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4970{
4971 if (stub_type >= max_stub_type)
4972 abort (); /* Should be unreachable. */
4973
4ba2ef8f
TP
4974 switch (stub_type)
4975 {
4976 case arm_stub_cmse_branch_thumb_only:
0a1b45a2 4977 return true;
4ba2ef8f
TP
4978
4979 default:
0a1b45a2 4980 return false;
4ba2ef8f
TP
4981 }
4982
4983 abort (); /* Should be unreachable. */
4f4faa4d
TP
4984}
4985
d7c5bd02
TP
4986/* Returns the padding needed for the dedicated section used stubs of type
4987 STUB_TYPE. */
4988
4989static int
4990arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4991{
4992 if (stub_type >= max_stub_type)
4993 abort (); /* Should be unreachable. */
4994
4ba2ef8f
TP
4995 switch (stub_type)
4996 {
4997 case arm_stub_cmse_branch_thumb_only:
4998 return 32;
4999
5000 default:
5001 return 0;
5002 }
5003
5004 abort (); /* Should be unreachable. */
d7c5bd02
TP
5005}
5006
0955507f
TP
5007/* If veneers of type STUB_TYPE should go in a dedicated output section,
5008 returns the address of the hash table field in HTAB holding the offset at
5009 which new veneers should be layed out in the stub section. */
5010
5011static bfd_vma*
5012arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5013 enum elf32_arm_stub_type stub_type)
5014{
5015 switch (stub_type)
5016 {
5017 case arm_stub_cmse_branch_thumb_only:
5018 return &htab->new_cmse_stub_offset;
5019
5020 default:
5021 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5022 return NULL;
5023 }
5024}
5025
0a1b45a2 5026static bool
906e58ca
NC
5027arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5028 void * in_arg)
5029{
7a89b94e 5030#define MAXRELOCS 3
0a1b45a2 5031 bool removed_sg_veneer;
906e58ca 5032 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 5033 struct elf32_arm_link_hash_table *globals;
906e58ca 5034 struct bfd_link_info *info;
906e58ca
NC
5035 asection *stub_sec;
5036 bfd *stub_bfd;
906e58ca
NC
5037 bfd_byte *loc;
5038 bfd_vma sym_value;
5039 int template_size;
5040 int size;
d3ce72d0 5041 const insn_sequence *template_sequence;
906e58ca 5042 int i;
48229727
JB
5043 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5044 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5045 int nrelocs = 0;
0955507f 5046 int just_allocated = 0;
906e58ca
NC
5047
5048 /* Massage our args to the form they really have. */
5049 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5050 info = (struct bfd_link_info *) in_arg;
5051
abf874aa
CL
5052 /* Fail if the target section could not be assigned to an output
5053 section. The user should fix his linker script. */
5054 if (stub_entry->target_section->output_section == NULL
5055 && info->non_contiguous_regions)
c63d4862 5056 info->callbacks->einfo (_("%F%P: Could not assign `%pA' to an output section. "
53215f21
CL
5057 "Retry without --enable-non-contiguous-regions.\n"),
5058 stub_entry->target_section);
abf874aa 5059
906e58ca 5060 globals = elf32_arm_hash_table (info);
4dfe6ac6 5061 if (globals == NULL)
0a1b45a2 5062 return false;
906e58ca 5063
906e58ca
NC
5064 stub_sec = stub_entry->stub_sec;
5065
4dfe6ac6 5066 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
5067 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5068 /* We have to do less-strictly-aligned fixes last. */
0a1b45a2 5069 return true;
fe33d2fa 5070
0955507f
TP
5071 /* Assign a slot at the end of section if none assigned yet. */
5072 if (stub_entry->stub_offset == (bfd_vma) -1)
5073 {
5074 stub_entry->stub_offset = stub_sec->size;
5075 just_allocated = 1;
5076 }
906e58ca
NC
5077 loc = stub_sec->contents + stub_entry->stub_offset;
5078
5079 stub_bfd = stub_sec->owner;
5080
906e58ca
NC
5081 /* This is the address of the stub destination. */
5082 sym_value = (stub_entry->target_value
5083 + stub_entry->target_section->output_offset
5084 + stub_entry->target_section->output_section->vma);
5085
d3ce72d0 5086 template_sequence = stub_entry->stub_template;
461a49ca 5087 template_size = stub_entry->stub_template_size;
906e58ca
NC
5088
5089 size = 0;
461a49ca 5090 for (i = 0; i < template_size; i++)
906e58ca 5091 {
d3ce72d0 5092 switch (template_sequence[i].type)
461a49ca
DJ
5093 {
5094 case THUMB16_TYPE:
48229727 5095 {
d3ce72d0
NC
5096 bfd_vma data = (bfd_vma) template_sequence[i].data;
5097 if (template_sequence[i].reloc_addend != 0)
48229727 5098 {
99059e56
RM
5099 /* We've borrowed the reloc_addend field to mean we should
5100 insert a condition code into this (Thumb-1 branch)
5101 instruction. See THUMB16_BCOND_INSN. */
5102 BFD_ASSERT ((data & 0xff00) == 0xd000);
5103 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 5104 }
fe33d2fa 5105 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
5106 size += 2;
5107 }
461a49ca 5108 break;
906e58ca 5109
48229727 5110 case THUMB32_TYPE:
fe33d2fa
CL
5111 bfd_put_16 (stub_bfd,
5112 (template_sequence[i].data >> 16) & 0xffff,
5113 loc + size);
5114 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5115 loc + size + 2);
99059e56
RM
5116 if (template_sequence[i].r_type != R_ARM_NONE)
5117 {
5118 stub_reloc_idx[nrelocs] = i;
5119 stub_reloc_offset[nrelocs++] = size;
5120 }
5121 size += 4;
5122 break;
48229727 5123
461a49ca 5124 case ARM_TYPE:
fe33d2fa
CL
5125 bfd_put_32 (stub_bfd, template_sequence[i].data,
5126 loc + size);
461a49ca
DJ
5127 /* Handle cases where the target is encoded within the
5128 instruction. */
d3ce72d0 5129 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 5130 {
48229727
JB
5131 stub_reloc_idx[nrelocs] = i;
5132 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5133 }
5134 size += 4;
5135 break;
5136
5137 case DATA_TYPE:
d3ce72d0 5138 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
5139 stub_reloc_idx[nrelocs] = i;
5140 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
5141 size += 4;
5142 break;
5143
5144 default:
5145 BFD_FAIL ();
0a1b45a2 5146 return false;
461a49ca 5147 }
906e58ca 5148 }
461a49ca 5149
0955507f
TP
5150 if (just_allocated)
5151 stub_sec->size += size;
906e58ca 5152
461a49ca
DJ
5153 /* Stub size has already been computed in arm_size_one_stub. Check
5154 consistency. */
5155 BFD_ASSERT (size == stub_entry->stub_size);
5156
906e58ca 5157 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 5158 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
5159 sym_value |= 1;
5160
0955507f
TP
5161 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5162 to relocate in each stub. */
5163 removed_sg_veneer =
5164 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5165 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
c820be07 5166
48229727 5167 for (i = 0; i < nrelocs; i++)
8d9d9490
TP
5168 {
5169 Elf_Internal_Rela rel;
0a1b45a2 5170 bool unresolved_reloc;
8d9d9490
TP
5171 char *error_message;
5172 bfd_vma points_to =
5173 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5174
5175 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5176 rel.r_info = ELF32_R_INFO (0,
5177 template_sequence[stub_reloc_idx[i]].r_type);
5178 rel.r_addend = 0;
5179
5180 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5181 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5182 template should refer back to the instruction after the original
5183 branch. We use target_section as Cortex-A8 erratum workaround stubs
5184 are only generated when both source and target are in the same
5185 section. */
5186 points_to = stub_entry->target_section->output_section->vma
5187 + stub_entry->target_section->output_offset
5188 + stub_entry->source_value;
5189
5190 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5191 (template_sequence[stub_reloc_idx[i]].r_type),
5192 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5193 points_to, info, stub_entry->target_section, "", STT_FUNC,
5194 stub_entry->branch_type,
5195 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5196 &error_message);
5197 }
906e58ca 5198
0a1b45a2 5199 return true;
48229727 5200#undef MAXRELOCS
906e58ca
NC
5201}
5202
48229727
JB
5203/* Calculate the template, template size and instruction size for a stub.
5204 Return value is the instruction size. */
906e58ca 5205
48229727
JB
5206static unsigned int
5207find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5208 const insn_sequence **stub_template,
5209 int *stub_template_size)
906e58ca 5210{
d3ce72d0 5211 const insn_sequence *template_sequence = NULL;
48229727
JB
5212 int template_size = 0, i;
5213 unsigned int size;
906e58ca 5214
d3ce72d0 5215 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
5216 if (stub_template)
5217 *stub_template = template_sequence;
5218
48229727 5219 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
5220 if (stub_template_size)
5221 *stub_template_size = template_size;
906e58ca
NC
5222
5223 size = 0;
461a49ca
DJ
5224 for (i = 0; i < template_size; i++)
5225 {
d3ce72d0 5226 switch (template_sequence[i].type)
461a49ca
DJ
5227 {
5228 case THUMB16_TYPE:
5229 size += 2;
5230 break;
5231
5232 case ARM_TYPE:
48229727 5233 case THUMB32_TYPE:
461a49ca
DJ
5234 case DATA_TYPE:
5235 size += 4;
5236 break;
5237
5238 default:
5239 BFD_FAIL ();
2a229407 5240 return 0;
461a49ca
DJ
5241 }
5242 }
5243
48229727
JB
5244 return size;
5245}
5246
5247/* As above, but don't actually build the stub. Just bump offset so
5248 we know stub section sizes. */
5249
0a1b45a2 5250static bool
48229727 5251arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 5252 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
5253{
5254 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 5255 const insn_sequence *template_sequence;
48229727
JB
5256 int template_size, size;
5257
5258 /* Massage our args to the form they really have. */
5259 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727 5260
cc850f74
NC
5261 BFD_ASSERT ((stub_entry->stub_type > arm_stub_none)
5262 && stub_entry->stub_type < ARRAY_SIZE (stub_definitions));
48229727 5263
d3ce72d0 5264 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
5265 &template_size);
5266
0955507f
TP
5267 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5268 if (stub_entry->stub_template_size)
5269 {
5270 stub_entry->stub_size = size;
5271 stub_entry->stub_template = template_sequence;
5272 stub_entry->stub_template_size = template_size;
5273 }
5274
5275 /* Already accounted for. */
5276 if (stub_entry->stub_offset != (bfd_vma) -1)
0a1b45a2 5277 return true;
461a49ca 5278
906e58ca
NC
5279 size = (size + 7) & ~7;
5280 stub_entry->stub_sec->size += size;
461a49ca 5281
0a1b45a2 5282 return true;
906e58ca
NC
5283}
5284
5285/* External entry points for sizing and building linker stubs. */
5286
5287/* Set up various things so that we can make a list of input sections
5288 for each output section included in the link. Returns -1 on error,
5289 0 when no stubs will be needed, and 1 on success. */
5290
5291int
5292elf32_arm_setup_section_lists (bfd *output_bfd,
5293 struct bfd_link_info *info)
5294{
5295 bfd *input_bfd;
5296 unsigned int bfd_count;
7292b3ac 5297 unsigned int top_id, top_index;
906e58ca
NC
5298 asection *section;
5299 asection **input_list, **list;
986f0783 5300 size_t amt;
906e58ca
NC
5301 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5302
4dfe6ac6
NC
5303 if (htab == NULL)
5304 return 0;
906e58ca
NC
5305
5306 /* Count the number of input BFDs and find the top input section id. */
5307 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5308 input_bfd != NULL;
c72f2fb2 5309 input_bfd = input_bfd->link.next)
906e58ca
NC
5310 {
5311 bfd_count += 1;
5312 for (section = input_bfd->sections;
5313 section != NULL;
5314 section = section->next)
5315 {
5316 if (top_id < section->id)
5317 top_id = section->id;
5318 }
5319 }
5320 htab->bfd_count = bfd_count;
5321
5322 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 5323 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
5324 if (htab->stub_group == NULL)
5325 return -1;
fe33d2fa 5326 htab->top_id = top_id;
906e58ca
NC
5327
5328 /* We can't use output_bfd->section_count here to find the top output
5329 section index as some sections may have been removed, and
5330 _bfd_strip_section_from_output doesn't renumber the indices. */
5331 for (section = output_bfd->sections, top_index = 0;
5332 section != NULL;
5333 section = section->next)
5334 {
5335 if (top_index < section->index)
5336 top_index = section->index;
5337 }
5338
5339 htab->top_index = top_index;
5340 amt = sizeof (asection *) * (top_index + 1);
21d799b5 5341 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
5342 htab->input_list = input_list;
5343 if (input_list == NULL)
5344 return -1;
5345
5346 /* For sections we aren't interested in, mark their entries with a
5347 value we can check later. */
5348 list = input_list + top_index;
5349 do
5350 *list = bfd_abs_section_ptr;
5351 while (list-- != input_list);
5352
5353 for (section = output_bfd->sections;
5354 section != NULL;
5355 section = section->next)
5356 {
5357 if ((section->flags & SEC_CODE) != 0)
5358 input_list[section->index] = NULL;
5359 }
5360
5361 return 1;
5362}
5363
5364/* The linker repeatedly calls this function for each input section,
5365 in the order that input sections are linked into output sections.
5366 Build lists of input sections to determine groupings between which
5367 we may insert linker stubs. */
5368
5369void
5370elf32_arm_next_input_section (struct bfd_link_info *info,
5371 asection *isec)
5372{
5373 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5374
4dfe6ac6
NC
5375 if (htab == NULL)
5376 return;
5377
906e58ca
NC
5378 if (isec->output_section->index <= htab->top_index)
5379 {
5380 asection **list = htab->input_list + isec->output_section->index;
5381
a7470592 5382 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
5383 {
5384 /* Steal the link_sec pointer for our list. */
5385#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5386 /* This happens to make the list in reverse order,
07d72278 5387 which we reverse later. */
906e58ca
NC
5388 PREV_SEC (isec) = *list;
5389 *list = isec;
5390 }
5391 }
5392}
5393
5394/* See whether we can group stub sections together. Grouping stub
5395 sections may result in fewer stubs. More importantly, we need to
07d72278 5396 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
5397 .fini output sections respectively, because glibc splits the
5398 _init and _fini functions into multiple parts. Putting a stub in
5399 the middle of a function is not a good idea. */
5400
5401static void
5402group_sections (struct elf32_arm_link_hash_table *htab,
5403 bfd_size_type stub_group_size,
0a1b45a2 5404 bool stubs_always_after_branch)
906e58ca 5405{
07d72278 5406 asection **list = htab->input_list;
906e58ca
NC
5407
5408 do
5409 {
5410 asection *tail = *list;
07d72278 5411 asection *head;
906e58ca
NC
5412
5413 if (tail == bfd_abs_section_ptr)
5414 continue;
5415
07d72278
DJ
5416 /* Reverse the list: we must avoid placing stubs at the
5417 beginning of the section because the beginning of the text
5418 section may be required for an interrupt vector in bare metal
5419 code. */
5420#define NEXT_SEC PREV_SEC
e780aef2
CL
5421 head = NULL;
5422 while (tail != NULL)
99059e56
RM
5423 {
5424 /* Pop from tail. */
5425 asection *item = tail;
5426 tail = PREV_SEC (item);
e780aef2 5427
99059e56
RM
5428 /* Push on head. */
5429 NEXT_SEC (item) = head;
5430 head = item;
5431 }
07d72278
DJ
5432
5433 while (head != NULL)
906e58ca
NC
5434 {
5435 asection *curr;
07d72278 5436 asection *next;
e780aef2
CL
5437 bfd_vma stub_group_start = head->output_offset;
5438 bfd_vma end_of_next;
906e58ca 5439
07d72278 5440 curr = head;
e780aef2 5441 while (NEXT_SEC (curr) != NULL)
8cd931b7 5442 {
e780aef2
CL
5443 next = NEXT_SEC (curr);
5444 end_of_next = next->output_offset + next->size;
5445 if (end_of_next - stub_group_start >= stub_group_size)
5446 /* End of NEXT is too far from start, so stop. */
8cd931b7 5447 break;
e780aef2
CL
5448 /* Add NEXT to the group. */
5449 curr = next;
8cd931b7 5450 }
906e58ca 5451
07d72278 5452 /* OK, the size from the start to the start of CURR is less
906e58ca 5453 than stub_group_size and thus can be handled by one stub
07d72278 5454 section. (Or the head section is itself larger than
906e58ca
NC
5455 stub_group_size, in which case we may be toast.)
5456 We should really be keeping track of the total size of
5457 stubs added here, as stubs contribute to the final output
7fb9f789 5458 section size. */
906e58ca
NC
5459 do
5460 {
07d72278 5461 next = NEXT_SEC (head);
906e58ca 5462 /* Set up this stub group. */
07d72278 5463 htab->stub_group[head->id].link_sec = curr;
906e58ca 5464 }
07d72278 5465 while (head != curr && (head = next) != NULL);
906e58ca
NC
5466
5467 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
5468 bytes after the stub section can be handled by it too. */
5469 if (!stubs_always_after_branch)
906e58ca 5470 {
e780aef2
CL
5471 stub_group_start = curr->output_offset + curr->size;
5472
8cd931b7 5473 while (next != NULL)
906e58ca 5474 {
e780aef2
CL
5475 end_of_next = next->output_offset + next->size;
5476 if (end_of_next - stub_group_start >= stub_group_size)
5477 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 5478 break;
e780aef2 5479 /* Add NEXT to the stub group. */
07d72278
DJ
5480 head = next;
5481 next = NEXT_SEC (head);
5482 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
5483 }
5484 }
07d72278 5485 head = next;
906e58ca
NC
5486 }
5487 }
07d72278 5488 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
5489
5490 free (htab->input_list);
5491#undef PREV_SEC
07d72278 5492#undef NEXT_SEC
906e58ca
NC
5493}
5494
48229727
JB
5495/* Comparison function for sorting/searching relocations relating to Cortex-A8
5496 erratum fix. */
5497
5498static int
5499a8_reloc_compare (const void *a, const void *b)
5500{
21d799b5
NC
5501 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5502 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
5503
5504 if (ra->from < rb->from)
5505 return -1;
5506 else if (ra->from > rb->from)
5507 return 1;
5508 else
5509 return 0;
5510}
5511
5512static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5513 const char *, char **);
5514
5515/* Helper function to scan code for sequences which might trigger the Cortex-A8
5516 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 5517 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
5518 otherwise. */
5519
0a1b45a2 5520static bool
81694485
NC
5521cortex_a8_erratum_scan (bfd *input_bfd,
5522 struct bfd_link_info *info,
48229727
JB
5523 struct a8_erratum_fix **a8_fixes_p,
5524 unsigned int *num_a8_fixes_p,
5525 unsigned int *a8_fix_table_size_p,
5526 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
5527 unsigned int num_a8_relocs,
5528 unsigned prev_num_a8_fixes,
0a1b45a2 5529 bool *stub_changed_p)
48229727
JB
5530{
5531 asection *section;
5532 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5533 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5534 unsigned int num_a8_fixes = *num_a8_fixes_p;
5535 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5536
4dfe6ac6 5537 if (htab == NULL)
0a1b45a2 5538 return false;
4dfe6ac6 5539
48229727
JB
5540 for (section = input_bfd->sections;
5541 section != NULL;
5542 section = section->next)
5543 {
5544 bfd_byte *contents = NULL;
5545 struct _arm_elf_section_data *sec_data;
5546 unsigned int span;
5547 bfd_vma base_vma;
5548
5549 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
5550 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5551 || (section->flags & SEC_EXCLUDE) != 0
5552 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5553 || (section->output_section == bfd_abs_section_ptr))
5554 continue;
48229727
JB
5555
5556 base_vma = section->output_section->vma + section->output_offset;
5557
5558 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 5559 contents = elf_section_data (section)->this_hdr.contents;
48229727 5560 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
0a1b45a2 5561 return true;
48229727
JB
5562
5563 sec_data = elf32_arm_section_data (section);
5564
5565 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
5566 {
5567 unsigned int span_start = sec_data->map[span].vma;
5568 unsigned int span_end = (span == sec_data->mapcount - 1)
5569 ? section->size : sec_data->map[span + 1].vma;
5570 unsigned int i;
5571 char span_type = sec_data->map[span].type;
0a1b45a2 5572 bool last_was_32bit = false, last_was_branch = false;
99059e56
RM
5573
5574 if (span_type != 't')
5575 continue;
5576
5577 /* Span is entirely within a single 4KB region: skip scanning. */
5578 if (((base_vma + span_start) & ~0xfff)
48229727 5579 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
5580 continue;
5581
5582 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5583
5584 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5585 * The branch target is in the same 4KB region as the
5586 first half of the branch.
5587 * The instruction before the branch is a 32-bit
5588 length non-branch instruction. */
5589 for (i = span_start; i < span_end;)
5590 {
5591 unsigned int insn = bfd_getl16 (&contents[i]);
0a1b45a2
AM
5592 bool insn_32bit = false, is_blx = false, is_b = false;
5593 bool is_bl = false, is_bcc = false, is_32bit_branch;
48229727 5594
99059e56 5595 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 5596 insn_32bit = true;
48229727
JB
5597
5598 if (insn_32bit)
99059e56
RM
5599 {
5600 /* Load the rest of the insn (in manual-friendly order). */
5601 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5602
5603 /* Encoding T4: B<c>.W. */
5604 is_b = (insn & 0xf800d000) == 0xf0009000;
5605 /* Encoding T1: BL<c>.W. */
5606 is_bl = (insn & 0xf800d000) == 0xf000d000;
5607 /* Encoding T2: BLX<c>.W. */
5608 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
5609 /* Encoding T3: B<c>.W (not permitted in IT block). */
5610 is_bcc = (insn & 0xf800d000) == 0xf0008000
5611 && (insn & 0x07f00000) != 0x03800000;
5612 }
5613
5614 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 5615
99059e56 5616 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
5617 && insn_32bit
5618 && is_32bit_branch
5619 && last_was_32bit
5620 && ! last_was_branch)
99059e56
RM
5621 {
5622 bfd_signed_vma offset = 0;
0a1b45a2
AM
5623 bool force_target_arm = false;
5624 bool force_target_thumb = false;
99059e56
RM
5625 bfd_vma target;
5626 enum elf32_arm_stub_type stub_type = arm_stub_none;
5627 struct a8_erratum_reloc key, *found;
0a1b45a2 5628 bool use_plt = false;
48229727 5629
99059e56
RM
5630 key.from = base_vma + i;
5631 found = (struct a8_erratum_reloc *)
5632 bsearch (&key, a8_relocs, num_a8_relocs,
5633 sizeof (struct a8_erratum_reloc),
5634 &a8_reloc_compare);
48229727
JB
5635
5636 if (found)
5637 {
5638 char *error_message = NULL;
5639 struct elf_link_hash_entry *entry;
5640
5641 /* We don't care about the error returned from this
99059e56 5642 function, only if there is glue or not. */
48229727
JB
5643 entry = find_thumb_glue (info, found->sym_name,
5644 &error_message);
5645
5646 if (entry)
0a1b45a2 5647 found->non_a8_stub = true;
48229727 5648
92750f34 5649 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 5650 if (htab->root.splt != NULL && found->hash != NULL
92750f34 5651 && found->hash->root.plt.offset != (bfd_vma) -1)
0a1b45a2 5652 use_plt = true;
92750f34
DJ
5653
5654 if (found->r_type == R_ARM_THM_CALL)
5655 {
35fc36a8
RS
5656 if (found->branch_type == ST_BRANCH_TO_ARM
5657 || use_plt)
0a1b45a2 5658 force_target_arm = true;
92750f34 5659 else
0a1b45a2 5660 force_target_thumb = true;
92750f34 5661 }
48229727
JB
5662 }
5663
99059e56 5664 /* Check if we have an offending branch instruction. */
48229727
JB
5665
5666 if (found && found->non_a8_stub)
5667 /* We've already made a stub for this instruction, e.g.
5668 it's a long branch or a Thumb->ARM stub. Assume that
5669 stub will suffice to work around the A8 erratum (see
5670 setting of always_after_branch above). */
5671 ;
99059e56
RM
5672 else if (is_bcc)
5673 {
5674 offset = (insn & 0x7ff) << 1;
5675 offset |= (insn & 0x3f0000) >> 4;
5676 offset |= (insn & 0x2000) ? 0x40000 : 0;
5677 offset |= (insn & 0x800) ? 0x80000 : 0;
5678 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5679 if (offset & 0x100000)
5680 offset |= ~ ((bfd_signed_vma) 0xfffff);
5681 stub_type = arm_stub_a8_veneer_b_cond;
5682 }
5683 else if (is_b || is_bl || is_blx)
5684 {
5685 int s = (insn & 0x4000000) != 0;
5686 int j1 = (insn & 0x2000) != 0;
5687 int j2 = (insn & 0x800) != 0;
5688 int i1 = !(j1 ^ s);
5689 int i2 = !(j2 ^ s);
5690
5691 offset = (insn & 0x7ff) << 1;
5692 offset |= (insn & 0x3ff0000) >> 4;
5693 offset |= i2 << 22;
5694 offset |= i1 << 23;
5695 offset |= s << 24;
5696 if (offset & 0x1000000)
5697 offset |= ~ ((bfd_signed_vma) 0xffffff);
5698
5699 if (is_blx)
5700 offset &= ~ ((bfd_signed_vma) 3);
5701
5702 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5703 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5704 }
5705
5706 if (stub_type != arm_stub_none)
5707 {
5708 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
5709
5710 /* The original instruction is a BL, but the target is
99059e56 5711 an ARM instruction. If we were not making a stub,
48229727
JB
5712 the BL would have been converted to a BLX. Use the
5713 BLX stub instead in that case. */
5714 if (htab->use_blx && force_target_arm
5715 && stub_type == arm_stub_a8_veneer_bl)
5716 {
5717 stub_type = arm_stub_a8_veneer_blx;
0a1b45a2
AM
5718 is_blx = true;
5719 is_bl = false;
48229727
JB
5720 }
5721 /* Conversely, if the original instruction was
5722 BLX but the target is Thumb mode, use the BL
5723 stub. */
5724 else if (force_target_thumb
5725 && stub_type == arm_stub_a8_veneer_blx)
5726 {
5727 stub_type = arm_stub_a8_veneer_bl;
0a1b45a2
AM
5728 is_blx = false;
5729 is_bl = true;
48229727
JB
5730 }
5731
99059e56
RM
5732 if (is_blx)
5733 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 5734
99059e56
RM
5735 /* If we found a relocation, use the proper destination,
5736 not the offset in the (unrelocated) instruction.
48229727
JB
5737 Note this is always done if we switched the stub type
5738 above. */
99059e56
RM
5739 if (found)
5740 offset =
81694485 5741 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 5742
99059e56
RM
5743 /* If the stub will use a Thumb-mode branch to a
5744 PLT target, redirect it to the preceding Thumb
5745 entry point. */
5746 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5747 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 5748
99059e56 5749 target = pc_for_insn + offset;
48229727 5750
99059e56
RM
5751 /* The BLX stub is ARM-mode code. Adjust the offset to
5752 take the different PC value (+8 instead of +4) into
48229727 5753 account. */
99059e56
RM
5754 if (stub_type == arm_stub_a8_veneer_blx)
5755 offset += 4;
5756
5757 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5758 {
5759 char *stub_name = NULL;
5760
5761 if (num_a8_fixes == a8_fix_table_size)
5762 {
5763 a8_fix_table_size *= 2;
5764 a8_fixes = (struct a8_erratum_fix *)
5765 bfd_realloc (a8_fixes,
5766 sizeof (struct a8_erratum_fix)
5767 * a8_fix_table_size);
5768 }
48229727 5769
eb7c4339
NS
5770 if (num_a8_fixes < prev_num_a8_fixes)
5771 {
5772 /* If we're doing a subsequent scan,
5773 check if we've found the same fix as
5774 before, and try and reuse the stub
5775 name. */
5776 stub_name = a8_fixes[num_a8_fixes].stub_name;
5777 if ((a8_fixes[num_a8_fixes].section != section)
5778 || (a8_fixes[num_a8_fixes].offset != i))
5779 {
5780 free (stub_name);
5781 stub_name = NULL;
0a1b45a2 5782 *stub_changed_p = true;
eb7c4339
NS
5783 }
5784 }
5785
5786 if (!stub_name)
5787 {
21d799b5 5788 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
5789 if (stub_name != NULL)
5790 sprintf (stub_name, "%x:%x", section->id, i);
5791 }
48229727 5792
99059e56
RM
5793 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5794 a8_fixes[num_a8_fixes].section = section;
5795 a8_fixes[num_a8_fixes].offset = i;
8d9d9490
TP
5796 a8_fixes[num_a8_fixes].target_offset =
5797 target - base_vma;
99059e56
RM
5798 a8_fixes[num_a8_fixes].orig_insn = insn;
5799 a8_fixes[num_a8_fixes].stub_name = stub_name;
5800 a8_fixes[num_a8_fixes].stub_type = stub_type;
5801 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 5802 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 5803
99059e56
RM
5804 num_a8_fixes++;
5805 }
5806 }
5807 }
48229727 5808
99059e56
RM
5809 i += insn_32bit ? 4 : 2;
5810 last_was_32bit = insn_32bit;
48229727 5811 last_was_branch = is_32bit_branch;
99059e56
RM
5812 }
5813 }
48229727
JB
5814
5815 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 5816 free (contents);
48229727 5817 }
fe33d2fa 5818
48229727
JB
5819 *a8_fixes_p = a8_fixes;
5820 *num_a8_fixes_p = num_a8_fixes;
5821 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 5822
0a1b45a2 5823 return false;
48229727
JB
5824}
5825
b715f643
TP
5826/* Create or update a stub entry depending on whether the stub can already be
5827 found in HTAB. The stub is identified by:
5828 - its type STUB_TYPE
5829 - its source branch (note that several can share the same stub) whose
5830 section and relocation (if any) are given by SECTION and IRELA
5831 respectively
5832 - its target symbol whose input section, hash, name, value and branch type
5833 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5834 respectively
5835
5836 If found, the value of the stub's target symbol is updated from SYM_VALUE
5837 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5838 TRUE and the stub entry is initialized.
5839
0955507f
TP
5840 Returns the stub that was created or updated, or NULL if an error
5841 occurred. */
b715f643 5842
0955507f 5843static struct elf32_arm_stub_hash_entry *
b715f643
TP
5844elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5845 enum elf32_arm_stub_type stub_type, asection *section,
5846 Elf_Internal_Rela *irela, asection *sym_sec,
5847 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5848 bfd_vma sym_value, enum arm_st_branch_type branch_type,
0a1b45a2 5849 bool *new_stub)
b715f643
TP
5850{
5851 const asection *id_sec;
5852 char *stub_name;
5853 struct elf32_arm_stub_hash_entry *stub_entry;
5854 unsigned int r_type;
0a1b45a2 5855 bool sym_claimed = arm_stub_sym_claimed (stub_type);
b715f643
TP
5856
5857 BFD_ASSERT (stub_type != arm_stub_none);
0a1b45a2 5858 *new_stub = false;
b715f643 5859
4f4faa4d
TP
5860 if (sym_claimed)
5861 stub_name = sym_name;
5862 else
5863 {
5864 BFD_ASSERT (irela);
5865 BFD_ASSERT (section);
c2abbbeb 5866 BFD_ASSERT (section->id <= htab->top_id);
b715f643 5867
4f4faa4d
TP
5868 /* Support for grouping stub sections. */
5869 id_sec = htab->stub_group[section->id].link_sec;
b715f643 5870
4f4faa4d
TP
5871 /* Get the name of this stub. */
5872 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5873 stub_type);
5874 if (!stub_name)
0955507f 5875 return NULL;
4f4faa4d 5876 }
b715f643 5877
0a1b45a2
AM
5878 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, false,
5879 false);
b715f643
TP
5880 /* The proper stub has already been created, just update its value. */
5881 if (stub_entry != NULL)
5882 {
4f4faa4d
TP
5883 if (!sym_claimed)
5884 free (stub_name);
b715f643 5885 stub_entry->target_value = sym_value;
0955507f 5886 return stub_entry;
b715f643
TP
5887 }
5888
daa4adae 5889 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
b715f643
TP
5890 if (stub_entry == NULL)
5891 {
4f4faa4d
TP
5892 if (!sym_claimed)
5893 free (stub_name);
0955507f 5894 return NULL;
b715f643
TP
5895 }
5896
5897 stub_entry->target_value = sym_value;
5898 stub_entry->target_section = sym_sec;
5899 stub_entry->stub_type = stub_type;
5900 stub_entry->h = hash;
5901 stub_entry->branch_type = branch_type;
5902
4f4faa4d
TP
5903 if (sym_claimed)
5904 stub_entry->output_name = sym_name;
5905 else
b715f643 5906 {
4f4faa4d
TP
5907 if (sym_name == NULL)
5908 sym_name = "unnamed";
5909 stub_entry->output_name = (char *)
5910 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5911 + strlen (sym_name));
5912 if (stub_entry->output_name == NULL)
5913 {
5914 free (stub_name);
0955507f 5915 return NULL;
4f4faa4d 5916 }
b715f643 5917
4f4faa4d
TP
5918 /* For historical reasons, use the existing names for ARM-to-Thumb and
5919 Thumb-to-ARM stubs. */
5920 r_type = ELF32_R_TYPE (irela->r_info);
5921 if ((r_type == (unsigned int) R_ARM_THM_CALL
5922 || r_type == (unsigned int) R_ARM_THM_JUMP24
5923 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5924 && branch_type == ST_BRANCH_TO_ARM)
5925 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5926 else if ((r_type == (unsigned int) R_ARM_CALL
5927 || r_type == (unsigned int) R_ARM_JUMP24)
5928 && branch_type == ST_BRANCH_TO_THUMB)
5929 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5930 else
5931 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5932 }
b715f643 5933
0a1b45a2 5934 *new_stub = true;
0955507f 5935 return stub_entry;
b715f643
TP
5936}
5937
4ba2ef8f
TP
5938/* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5939 gateway veneer to transition from non secure to secure state and create them
5940 accordingly.
5941
5942 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5943 defines the conditions that govern Secure Gateway veneer creation for a
5944 given symbol <SYM> as follows:
5945 - it has function type
5946 - it has non local binding
5947 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5948 same type, binding and value as <SYM> (called normal symbol).
5949 An entry function can handle secure state transition itself in which case
5950 its special symbol would have a different value from the normal symbol.
5951
5952 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5953 entry mapping while HTAB gives the name to hash entry mapping.
0955507f
TP
5954 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5955 created.
4ba2ef8f 5956
0955507f 5957 The return value gives whether a stub failed to be allocated. */
4ba2ef8f 5958
0a1b45a2 5959static bool
4ba2ef8f
TP
5960cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5961 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
0955507f 5962 int *cmse_stub_created)
4ba2ef8f
TP
5963{
5964 const struct elf_backend_data *bed;
5965 Elf_Internal_Shdr *symtab_hdr;
5966 unsigned i, j, sym_count, ext_start;
5967 Elf_Internal_Sym *cmse_sym, *local_syms;
5968 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5969 enum arm_st_branch_type branch_type;
5970 char *sym_name, *lsym_name;
5971 bfd_vma sym_value;
5972 asection *section;
0955507f 5973 struct elf32_arm_stub_hash_entry *stub_entry;
0a1b45a2 5974 bool is_v8m, new_stub, cmse_invalid, ret = true;
4ba2ef8f
TP
5975
5976 bed = get_elf_backend_data (input_bfd);
5977 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5978 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5979 ext_start = symtab_hdr->sh_info;
5980 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5981 && out_attr[Tag_CPU_arch_profile].i == 'M');
5982
5983 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5984 if (local_syms == NULL)
5985 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5986 symtab_hdr->sh_info, 0, NULL, NULL,
5987 NULL);
5988 if (symtab_hdr->sh_info && local_syms == NULL)
0a1b45a2 5989 return false;
4ba2ef8f
TP
5990
5991 /* Scan symbols. */
5992 for (i = 0; i < sym_count; i++)
5993 {
0a1b45a2 5994 cmse_invalid = false;
4ba2ef8f
TP
5995
5996 if (i < ext_start)
5997 {
5998 cmse_sym = &local_syms[i];
4ba2ef8f
TP
5999 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6000 symtab_hdr->sh_link,
6001 cmse_sym->st_name);
08dedd66 6002 if (!sym_name || !startswith (sym_name, CMSE_PREFIX))
baf46cd7
AM
6003 continue;
6004
4ba2ef8f 6005 /* Special symbol with local binding. */
0a1b45a2 6006 cmse_invalid = true;
4ba2ef8f
TP
6007 }
6008 else
6009 {
6010 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
6011 if (cmse_hash == NULL)
6012 continue;
6013
4ba2ef8f 6014 sym_name = (char *) cmse_hash->root.root.root.string;
08dedd66 6015 if (!startswith (sym_name, CMSE_PREFIX))
4ba2ef8f
TP
6016 continue;
6017
6018 /* Special symbol has incorrect binding or type. */
6019 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6020 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6021 || cmse_hash->root.type != STT_FUNC)
0a1b45a2 6022 cmse_invalid = true;
4ba2ef8f
TP
6023 }
6024
6025 if (!is_v8m)
6026 {
90b6238f
AM
6027 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6028 "ARMv8-M architecture or later"),
4eca0228 6029 input_bfd, sym_name);
0a1b45a2
AM
6030 is_v8m = true; /* Avoid multiple warning. */
6031 ret = false;
4ba2ef8f
TP
6032 }
6033
6034 if (cmse_invalid)
6035 {
90b6238f
AM
6036 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6037 " a global or weak function symbol"),
4eca0228 6038 input_bfd, sym_name);
0a1b45a2 6039 ret = false;
4ba2ef8f
TP
6040 if (i < ext_start)
6041 continue;
6042 }
6043
6044 sym_name += strlen (CMSE_PREFIX);
6045 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6046 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
4ba2ef8f
TP
6047
6048 /* No associated normal symbol or it is neither global nor weak. */
6049 if (!hash
6050 || (hash->root.root.type != bfd_link_hash_defined
6051 && hash->root.root.type != bfd_link_hash_defweak)
6052 || hash->root.type != STT_FUNC)
6053 {
6054 /* Initialize here to avoid warning about use of possibly
6055 uninitialized variable. */
6056 j = 0;
6057
6058 if (!hash)
6059 {
6060 /* Searching for a normal symbol with local binding. */
6061 for (; j < ext_start; j++)
6062 {
6063 lsym_name =
6064 bfd_elf_string_from_elf_section (input_bfd,
6065 symtab_hdr->sh_link,
6066 local_syms[j].st_name);
6067 if (!strcmp (sym_name, lsym_name))
6068 break;
6069 }
6070 }
6071
6072 if (hash || j < ext_start)
6073 {
4eca0228 6074 _bfd_error_handler
90b6238f
AM
6075 (_("%pB: invalid standard symbol `%s'; it must be "
6076 "a global or weak function symbol"),
6077 input_bfd, sym_name);
4ba2ef8f
TP
6078 }
6079 else
4eca0228 6080 _bfd_error_handler
90b6238f 6081 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
0a1b45a2 6082 ret = false;
4ba2ef8f
TP
6083 if (!hash)
6084 continue;
6085 }
6086
6087 sym_value = hash->root.root.u.def.value;
6088 section = hash->root.root.u.def.section;
6089
6090 if (cmse_hash->root.root.u.def.section != section)
6091 {
4eca0228 6092 _bfd_error_handler
90b6238f 6093 (_("%pB: `%s' and its special symbol are in different sections"),
4ba2ef8f 6094 input_bfd, sym_name);
0a1b45a2 6095 ret = false;
4ba2ef8f
TP
6096 }
6097 if (cmse_hash->root.root.u.def.value != sym_value)
6098 continue; /* Ignore: could be an entry function starting with SG. */
6099
6100 /* If this section is a link-once section that will be discarded, then
6101 don't create any stubs. */
6102 if (section->output_section == NULL)
6103 {
4eca0228 6104 _bfd_error_handler
90b6238f 6105 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
4ba2ef8f
TP
6106 continue;
6107 }
6108
6109 if (hash->root.size == 0)
6110 {
4eca0228 6111 _bfd_error_handler
90b6238f 6112 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
0a1b45a2 6113 ret = false;
4ba2ef8f
TP
6114 }
6115
6116 if (!ret)
6117 continue;
6118 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
0955507f 6119 stub_entry
4ba2ef8f
TP
6120 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6121 NULL, NULL, section, hash, sym_name,
6122 sym_value, branch_type, &new_stub);
6123
0955507f 6124 if (stub_entry == NULL)
0a1b45a2 6125 ret = false;
4ba2ef8f
TP
6126 else
6127 {
6128 BFD_ASSERT (new_stub);
0955507f 6129 (*cmse_stub_created)++;
4ba2ef8f
TP
6130 }
6131 }
6132
6133 if (!symtab_hdr->contents)
6134 free (local_syms);
6135 return ret;
6136}
6137
0955507f
TP
6138/* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6139 code entry function, ie can be called from non secure code without using a
6140 veneer. */
6141
0a1b45a2 6142static bool
0955507f
TP
6143cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6144{
42484486 6145 bfd_byte contents[4];
0955507f
TP
6146 uint32_t first_insn;
6147 asection *section;
6148 file_ptr offset;
6149 bfd *abfd;
6150
6151 /* Defined symbol of function type. */
6152 if (hash->root.root.type != bfd_link_hash_defined
6153 && hash->root.root.type != bfd_link_hash_defweak)
0a1b45a2 6154 return false;
0955507f 6155 if (hash->root.type != STT_FUNC)
0a1b45a2 6156 return false;
0955507f
TP
6157
6158 /* Read first instruction. */
6159 section = hash->root.root.u.def.section;
6160 abfd = section->owner;
6161 offset = hash->root.root.u.def.value - section->vma;
42484486
TP
6162 if (!bfd_get_section_contents (abfd, section, contents, offset,
6163 sizeof (contents)))
0a1b45a2 6164 return false;
0955507f 6165
42484486
TP
6166 first_insn = bfd_get_32 (abfd, contents);
6167
6168 /* Starts by SG instruction. */
0955507f
TP
6169 return first_insn == 0xe97fe97f;
6170}
6171
6172/* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6173 secure gateway veneers (ie. the veneers was not in the input import library)
6174 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6175
0a1b45a2 6176static bool
0955507f
TP
6177arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6178{
6179 struct elf32_arm_stub_hash_entry *stub_entry;
6180 struct bfd_link_info *info;
6181
6182 /* Massage our args to the form they really have. */
6183 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6184 info = (struct bfd_link_info *) gen_info;
6185
6186 if (info->out_implib_bfd)
0a1b45a2 6187 return true;
0955507f
TP
6188
6189 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
0a1b45a2 6190 return true;
0955507f
TP
6191
6192 if (stub_entry->stub_offset == (bfd_vma) -1)
4eca0228 6193 _bfd_error_handler (" %s", stub_entry->output_name);
0955507f 6194
0a1b45a2 6195 return true;
0955507f
TP
6196}
6197
6198/* Set offset of each secure gateway veneers so that its address remain
6199 identical to the one in the input import library referred by
6200 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6201 (present in input import library but absent from the executable being
6202 linked) or if new veneers appeared and there is no output import library
6203 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6204 number of secure gateway veneers found in the input import library.
6205
6206 The function returns whether an error occurred. If no error occurred,
6207 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6208 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6209 veneer observed set for new veneers to be layed out after. */
6210
0a1b45a2 6211static bool
0955507f
TP
6212set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6213 struct elf32_arm_link_hash_table *htab,
6214 int *cmse_stub_created)
6215{
6216 long symsize;
6217 char *sym_name;
6218 flagword flags;
6219 long i, symcount;
6220 bfd *in_implib_bfd;
6221 asection *stub_out_sec;
0a1b45a2 6222 bool ret = true;
0955507f
TP
6223 Elf_Internal_Sym *intsym;
6224 const char *out_sec_name;
6225 bfd_size_type cmse_stub_size;
6226 asymbol **sympp = NULL, *sym;
6227 struct elf32_arm_link_hash_entry *hash;
6228 const insn_sequence *cmse_stub_template;
6229 struct elf32_arm_stub_hash_entry *stub_entry;
6230 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6231 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6232 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6233
6234 /* No input secure gateway import library. */
6235 if (!htab->in_implib_bfd)
0a1b45a2 6236 return true;
0955507f
TP
6237
6238 in_implib_bfd = htab->in_implib_bfd;
6239 if (!htab->cmse_implib)
6240 {
871b3ab2 6241 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
90b6238f 6242 "Gateway import libraries"), in_implib_bfd);
0a1b45a2 6243 return false;
0955507f
TP
6244 }
6245
6246 /* Get symbol table size. */
6247 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6248 if (symsize < 0)
0a1b45a2 6249 return false;
0955507f
TP
6250
6251 /* Read in the input secure gateway import library's symbol table. */
9a733151
AM
6252 sympp = (asymbol **) bfd_malloc (symsize);
6253 if (sympp == NULL)
0a1b45a2 6254 return false;
9a733151 6255
0955507f
TP
6256 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6257 if (symcount < 0)
6258 {
0a1b45a2 6259 ret = false;
0955507f
TP
6260 goto free_sym_buf;
6261 }
6262
6263 htab->new_cmse_stub_offset = 0;
6264 cmse_stub_size =
6265 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6266 &cmse_stub_template,
6267 &cmse_stub_template_size);
6268 out_sec_name =
6269 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6270 stub_out_sec =
6271 bfd_get_section_by_name (htab->obfd, out_sec_name);
6272 if (stub_out_sec != NULL)
6273 cmse_stub_sec_vma = stub_out_sec->vma;
6274
6275 /* Set addresses of veneers mentionned in input secure gateway import
6276 library's symbol table. */
6277 for (i = 0; i < symcount; i++)
6278 {
6279 sym = sympp[i];
6280 flags = sym->flags;
6281 sym_name = (char *) bfd_asymbol_name (sym);
6282 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6283
6284 if (sym->section != bfd_abs_section_ptr
6285 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6286 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6287 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6288 != ST_BRANCH_TO_THUMB))
6289 {
90b6238f
AM
6290 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6291 "symbol should be absolute, global and "
6292 "refer to Thumb functions"),
4eca0228 6293 in_implib_bfd, sym_name);
0a1b45a2 6294 ret = false;
0955507f
TP
6295 continue;
6296 }
6297
6298 veneer_value = bfd_asymbol_value (sym);
6299 stub_offset = veneer_value - cmse_stub_sec_vma;
6300 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
0a1b45a2 6301 false, false);
0955507f 6302 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6303 elf_link_hash_lookup (&(htab)->root, sym_name, false, false, true);
0955507f
TP
6304
6305 /* Stub entry should have been created by cmse_scan or the symbol be of
6306 a secure function callable from non secure code. */
6307 if (!stub_entry && !hash)
6308 {
0a1b45a2 6309 bool new_stub;
0955507f 6310
4eca0228 6311 _bfd_error_handler
90b6238f 6312 (_("entry function `%s' disappeared from secure code"), sym_name);
0955507f 6313 hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 6314 elf_link_hash_lookup (&(htab)->root, sym_name, true, true, true);
0955507f
TP
6315 stub_entry
6316 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6317 NULL, NULL, bfd_abs_section_ptr, hash,
6318 sym_name, veneer_value,
6319 ST_BRANCH_TO_THUMB, &new_stub);
6320 if (stub_entry == NULL)
0a1b45a2 6321 ret = false;
0955507f
TP
6322 else
6323 {
6324 BFD_ASSERT (new_stub);
6325 new_cmse_stubs_created++;
6326 (*cmse_stub_created)++;
6327 }
6328 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6329 stub_entry->stub_offset = stub_offset;
6330 }
6331 /* Symbol found is not callable from non secure code. */
6332 else if (!stub_entry)
6333 {
6334 if (!cmse_entry_fct_p (hash))
6335 {
90b6238f 6336 _bfd_error_handler (_("`%s' refers to a non entry function"),
4eca0228 6337 sym_name);
0a1b45a2 6338 ret = false;
0955507f
TP
6339 }
6340 continue;
6341 }
6342 else
6343 {
6344 /* Only stubs for SG veneers should have been created. */
6345 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6346
6347 /* Check visibility hasn't changed. */
6348 if (!!(flags & BSF_GLOBAL)
6349 != (hash->root.root.type == bfd_link_hash_defined))
4eca0228 6350 _bfd_error_handler
90b6238f 6351 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
0955507f
TP
6352 sym_name);
6353
6354 stub_entry->stub_offset = stub_offset;
6355 }
6356
6357 /* Size should match that of a SG veneer. */
6358 if (intsym->st_size != cmse_stub_size)
6359 {
90b6238f 6360 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
4eca0228 6361 in_implib_bfd, sym_name);
0a1b45a2 6362 ret = false;
0955507f
TP
6363 }
6364
6365 /* Previous veneer address is before current SG veneer section. */
6366 if (veneer_value < cmse_stub_sec_vma)
6367 {
6368 /* Avoid offset underflow. */
6369 if (stub_entry)
6370 stub_entry->stub_offset = 0;
6371 stub_offset = 0;
0a1b45a2 6372 ret = false;
0955507f
TP
6373 }
6374
6375 /* Complain if stub offset not a multiple of stub size. */
6376 if (stub_offset % cmse_stub_size)
6377 {
4eca0228 6378 _bfd_error_handler
90b6238f
AM
6379 (_("offset of veneer for entry function `%s' not a multiple of "
6380 "its size"), sym_name);
0a1b45a2 6381 ret = false;
0955507f
TP
6382 }
6383
6384 if (!ret)
6385 continue;
6386
6387 new_cmse_stubs_created--;
6388 if (veneer_value < cmse_stub_array_start)
6389 cmse_stub_array_start = veneer_value;
6390 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6391 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6392 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6393 }
6394
6395 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6396 {
6397 BFD_ASSERT (new_cmse_stubs_created > 0);
4eca0228 6398 _bfd_error_handler
0955507f
TP
6399 (_("new entry function(s) introduced but no output import library "
6400 "specified:"));
6401 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6402 }
6403
6404 if (cmse_stub_array_start != cmse_stub_sec_vma)
6405 {
4eca0228 6406 _bfd_error_handler
90b6238f 6407 (_("start address of `%s' is different from previous link"),
0955507f 6408 out_sec_name);
0a1b45a2 6409 ret = false;
0955507f
TP
6410 }
6411
dc1e8a47 6412 free_sym_buf:
0955507f
TP
6413 free (sympp);
6414 return ret;
6415}
6416
906e58ca
NC
6417/* Determine and set the size of the stub section for a final link.
6418
6419 The basic idea here is to examine all the relocations looking for
6420 PC-relative calls to a target that is unreachable with a "bl"
6421 instruction. */
6422
0a1b45a2 6423bool
906e58ca
NC
6424elf32_arm_size_stubs (bfd *output_bfd,
6425 bfd *stub_bfd,
6426 struct bfd_link_info *info,
6427 bfd_signed_vma group_size,
7a89b94e 6428 asection * (*add_stub_section) (const char *, asection *,
6bde4c52 6429 asection *,
7a89b94e 6430 unsigned int),
906e58ca
NC
6431 void (*layout_sections_again) (void))
6432{
0a1b45a2 6433 bool ret = true;
4ba2ef8f 6434 obj_attribute *out_attr;
0955507f 6435 int cmse_stub_created = 0;
906e58ca 6436 bfd_size_type stub_group_size;
0a1b45a2 6437 bool m_profile, stubs_always_after_branch, first_veneer_scan = true;
906e58ca 6438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 6439 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 6440 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
6441 struct a8_erratum_reloc *a8_relocs = NULL;
6442 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6443
4dfe6ac6 6444 if (htab == NULL)
0a1b45a2 6445 return false;
4dfe6ac6 6446
48229727
JB
6447 if (htab->fix_cortex_a8)
6448 {
21d799b5 6449 a8_fixes = (struct a8_erratum_fix *)
99059e56 6450 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 6451 a8_relocs = (struct a8_erratum_reloc *)
99059e56 6452 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 6453 }
906e58ca
NC
6454
6455 /* Propagate mach to stub bfd, because it may not have been
6456 finalized when we created stub_bfd. */
6457 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6458 bfd_get_mach (output_bfd));
6459
6460 /* Stash our params away. */
6461 htab->stub_bfd = stub_bfd;
6462 htab->add_stub_section = add_stub_section;
6463 htab->layout_sections_again = layout_sections_again;
07d72278 6464 stubs_always_after_branch = group_size < 0;
48229727 6465
4ba2ef8f
TP
6466 out_attr = elf_known_obj_attributes_proc (output_bfd);
6467 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
0955507f 6468
48229727
JB
6469 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6470 as the first half of a 32-bit branch straddling two 4K pages. This is a
6471 crude way of enforcing that. */
6472 if (htab->fix_cortex_a8)
6473 stubs_always_after_branch = 1;
6474
906e58ca
NC
6475 if (group_size < 0)
6476 stub_group_size = -group_size;
6477 else
6478 stub_group_size = group_size;
6479
6480 if (stub_group_size == 1)
6481 {
6482 /* Default values. */
6483 /* Thumb branch range is +-4MB has to be used as the default
6484 maximum size (a given section can contain both ARM and Thumb
6485 code, so the worst case has to be taken into account).
6486
6487 This value is 24K less than that, which allows for 2025
6488 12-byte stubs. If we exceed that, then we will fail to link.
6489 The user will have to relink with an explicit group size
6490 option. */
6491 stub_group_size = 4170000;
6492 }
6493
07d72278 6494 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 6495
3ae046cc
NS
6496 /* If we're applying the cortex A8 fix, we need to determine the
6497 program header size now, because we cannot change it later --
6498 that could alter section placements. Notice the A8 erratum fix
6499 ends up requiring the section addresses to remain unchanged
6500 modulo the page size. That's something we cannot represent
6501 inside BFD, and we don't want to force the section alignment to
6502 be the page size. */
6503 if (htab->fix_cortex_a8)
6504 (*htab->layout_sections_again) ();
6505
906e58ca
NC
6506 while (1)
6507 {
6508 bfd *input_bfd;
6509 unsigned int bfd_indx;
6510 asection *stub_sec;
d7c5bd02 6511 enum elf32_arm_stub_type stub_type;
0a1b45a2 6512 bool stub_changed = false;
eb7c4339 6513 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 6514
48229727 6515 num_a8_fixes = 0;
906e58ca
NC
6516 for (input_bfd = info->input_bfds, bfd_indx = 0;
6517 input_bfd != NULL;
c72f2fb2 6518 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
6519 {
6520 Elf_Internal_Shdr *symtab_hdr;
6521 asection *section;
6522 Elf_Internal_Sym *local_syms = NULL;
6523
73d5efd7
AM
6524 if (!is_arm_elf (input_bfd))
6525 continue;
6526 if ((input_bfd->flags & DYNAMIC) != 0
6527 && (elf_sym_hashes (input_bfd) == NULL
6528 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0))
99059e56 6529 continue;
adbcc655 6530
48229727
JB
6531 num_a8_relocs = 0;
6532
906e58ca
NC
6533 /* We'll need the symbol table in a second. */
6534 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6535 if (symtab_hdr->sh_info == 0)
6536 continue;
6537
4ba2ef8f
TP
6538 /* Limit scan of symbols to object file whose profile is
6539 Microcontroller to not hinder performance in the general case. */
6540 if (m_profile && first_veneer_scan)
6541 {
6542 struct elf_link_hash_entry **sym_hashes;
6543
6544 sym_hashes = elf_sym_hashes (input_bfd);
6545 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
0955507f 6546 &cmse_stub_created))
4ba2ef8f 6547 goto error_ret_free_local;
0955507f
TP
6548
6549 if (cmse_stub_created != 0)
0a1b45a2 6550 stub_changed = true;
4ba2ef8f
TP
6551 }
6552
906e58ca
NC
6553 /* Walk over each section attached to the input bfd. */
6554 for (section = input_bfd->sections;
6555 section != NULL;
6556 section = section->next)
6557 {
6558 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6559
6560 /* If there aren't any relocs, then there's nothing more
6561 to do. */
6562 if ((section->flags & SEC_RELOC) == 0
6563 || section->reloc_count == 0
6564 || (section->flags & SEC_CODE) == 0)
6565 continue;
6566
6567 /* If this section is a link-once section that will be
6568 discarded, then don't create any stubs. */
6569 if (section->output_section == NULL
6570 || section->output_section->owner != output_bfd)
6571 continue;
6572
6573 /* Get the relocs. */
6574 internal_relocs
6575 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6576 NULL, info->keep_memory);
6577 if (internal_relocs == NULL)
6578 goto error_ret_free_local;
6579
6580 /* Now examine each relocation. */
6581 irela = internal_relocs;
6582 irelaend = irela + section->reloc_count;
6583 for (; irela < irelaend; irela++)
6584 {
6585 unsigned int r_type, r_indx;
906e58ca
NC
6586 asection *sym_sec;
6587 bfd_vma sym_value;
6588 bfd_vma destination;
6589 struct elf32_arm_link_hash_entry *hash;
7413f23f 6590 const char *sym_name;
34e77a92 6591 unsigned char st_type;
35fc36a8 6592 enum arm_st_branch_type branch_type;
0a1b45a2 6593 bool created_stub = false;
906e58ca
NC
6594
6595 r_type = ELF32_R_TYPE (irela->r_info);
6596 r_indx = ELF32_R_SYM (irela->r_info);
6597
6598 if (r_type >= (unsigned int) R_ARM_max)
6599 {
6600 bfd_set_error (bfd_error_bad_value);
6601 error_ret_free_internal:
6602 if (elf_section_data (section)->relocs == NULL)
6603 free (internal_relocs);
15dd01b1
TP
6604 /* Fall through. */
6605 error_ret_free_local:
c9594989 6606 if (symtab_hdr->contents != (unsigned char *) local_syms)
15dd01b1 6607 free (local_syms);
0a1b45a2 6608 return false;
906e58ca 6609 }
b38cadfb 6610
0855e32b
NS
6611 hash = NULL;
6612 if (r_indx >= symtab_hdr->sh_info)
6613 hash = elf32_arm_hash_entry
6614 (elf_sym_hashes (input_bfd)
6615 [r_indx - symtab_hdr->sh_info]);
b38cadfb 6616
0855e32b
NS
6617 /* Only look for stubs on branch instructions, or
6618 non-relaxed TLSCALL */
906e58ca 6619 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
6620 && (r_type != (unsigned int) R_ARM_THM_CALL)
6621 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
6622 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6623 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 6624 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
6625 && (r_type != (unsigned int) R_ARM_PLT32)
6626 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6627 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
c9f9a78d
AM
6628 && r_type == (elf32_arm_tls_transition
6629 (info, r_type,
6630 (struct elf_link_hash_entry *) hash))
0855e32b
NS
6631 && ((hash ? hash->tls_type
6632 : (elf32_arm_local_got_tls_type
6633 (input_bfd)[r_indx]))
6634 & GOT_TLS_GDESC) != 0))
906e58ca
NC
6635 continue;
6636
6637 /* Now determine the call target, its name, value,
6638 section. */
6639 sym_sec = NULL;
6640 sym_value = 0;
6641 destination = 0;
7413f23f 6642 sym_name = NULL;
b38cadfb 6643
0855e32b
NS
6644 if (r_type == (unsigned int) R_ARM_TLS_CALL
6645 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6646 {
6647 /* A non-relaxed TLS call. The target is the
6648 plt-resident trampoline and nothing to do
6649 with the symbol. */
6650 BFD_ASSERT (htab->tls_trampoline > 0);
6651 sym_sec = htab->root.splt;
6652 sym_value = htab->tls_trampoline;
6653 hash = 0;
34e77a92 6654 st_type = STT_FUNC;
35fc36a8 6655 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
6656 }
6657 else if (!hash)
906e58ca
NC
6658 {
6659 /* It's a local symbol. */
6660 Elf_Internal_Sym *sym;
906e58ca
NC
6661
6662 if (local_syms == NULL)
6663 {
6664 local_syms
6665 = (Elf_Internal_Sym *) symtab_hdr->contents;
6666 if (local_syms == NULL)
6667 local_syms
6668 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6669 symtab_hdr->sh_info, 0,
6670 NULL, NULL, NULL);
6671 if (local_syms == NULL)
6672 goto error_ret_free_internal;
6673 }
6674
6675 sym = local_syms + r_indx;
f6d250ce
TS
6676 if (sym->st_shndx == SHN_UNDEF)
6677 sym_sec = bfd_und_section_ptr;
6678 else if (sym->st_shndx == SHN_ABS)
6679 sym_sec = bfd_abs_section_ptr;
6680 else if (sym->st_shndx == SHN_COMMON)
6681 sym_sec = bfd_com_section_ptr;
6682 else
6683 sym_sec =
6684 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6685
ffcb4889
NS
6686 if (!sym_sec)
6687 /* This is an undefined symbol. It can never
6a631e86 6688 be resolved. */
ffcb4889 6689 continue;
fe33d2fa 6690
906e58ca
NC
6691 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6692 sym_value = sym->st_value;
6693 destination = (sym_value + irela->r_addend
6694 + sym_sec->output_offset
6695 + sym_sec->output_section->vma);
34e77a92 6696 st_type = ELF_ST_TYPE (sym->st_info);
39d911fc
TP
6697 branch_type =
6698 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
7413f23f
DJ
6699 sym_name
6700 = bfd_elf_string_from_elf_section (input_bfd,
6701 symtab_hdr->sh_link,
6702 sym->st_name);
906e58ca
NC
6703 }
6704 else
6705 {
6706 /* It's an external symbol. */
906e58ca
NC
6707 while (hash->root.root.type == bfd_link_hash_indirect
6708 || hash->root.root.type == bfd_link_hash_warning)
6709 hash = ((struct elf32_arm_link_hash_entry *)
6710 hash->root.root.u.i.link);
6711
6712 if (hash->root.root.type == bfd_link_hash_defined
6713 || hash->root.root.type == bfd_link_hash_defweak)
6714 {
6715 sym_sec = hash->root.root.u.def.section;
6716 sym_value = hash->root.root.u.def.value;
022f8312
CL
6717
6718 struct elf32_arm_link_hash_table *globals =
6719 elf32_arm_hash_table (info);
6720
6721 /* For a destination in a shared library,
6722 use the PLT stub as target address to
6723 decide whether a branch stub is
6724 needed. */
4dfe6ac6 6725 if (globals != NULL
362d30a1 6726 && globals->root.splt != NULL
4dfe6ac6 6727 && hash != NULL
022f8312
CL
6728 && hash->root.plt.offset != (bfd_vma) -1)
6729 {
362d30a1 6730 sym_sec = globals->root.splt;
022f8312
CL
6731 sym_value = hash->root.plt.offset;
6732 if (sym_sec->output_section != NULL)
6733 destination = (sym_value
6734 + sym_sec->output_offset
6735 + sym_sec->output_section->vma);
6736 }
6737 else if (sym_sec->output_section != NULL)
906e58ca
NC
6738 destination = (sym_value + irela->r_addend
6739 + sym_sec->output_offset
6740 + sym_sec->output_section->vma);
6741 }
69c5861e
CL
6742 else if ((hash->root.root.type == bfd_link_hash_undefined)
6743 || (hash->root.root.type == bfd_link_hash_undefweak))
6744 {
6745 /* For a shared library, use the PLT stub as
6746 target address to decide whether a long
6747 branch stub is needed.
6748 For absolute code, they cannot be handled. */
6749 struct elf32_arm_link_hash_table *globals =
6750 elf32_arm_hash_table (info);
6751
4dfe6ac6 6752 if (globals != NULL
362d30a1 6753 && globals->root.splt != NULL
4dfe6ac6 6754 && hash != NULL
69c5861e
CL
6755 && hash->root.plt.offset != (bfd_vma) -1)
6756 {
362d30a1 6757 sym_sec = globals->root.splt;
69c5861e
CL
6758 sym_value = hash->root.plt.offset;
6759 if (sym_sec->output_section != NULL)
6760 destination = (sym_value
6761 + sym_sec->output_offset
6762 + sym_sec->output_section->vma);
6763 }
6764 else
6765 continue;
6766 }
906e58ca
NC
6767 else
6768 {
6769 bfd_set_error (bfd_error_bad_value);
6770 goto error_ret_free_internal;
6771 }
34e77a92 6772 st_type = hash->root.type;
39d911fc
TP
6773 branch_type =
6774 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
7413f23f 6775 sym_name = hash->root.root.root.string;
906e58ca
NC
6776 }
6777
48229727 6778 do
7413f23f 6779 {
0a1b45a2 6780 bool new_stub;
0955507f 6781 struct elf32_arm_stub_hash_entry *stub_entry;
b715f643 6782
48229727
JB
6783 /* Determine what (if any) linker stub is needed. */
6784 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
6785 st_type, &branch_type,
6786 hash, destination, sym_sec,
48229727
JB
6787 input_bfd, sym_name);
6788 if (stub_type == arm_stub_none)
6789 break;
6790
48229727
JB
6791 /* We've either created a stub for this reloc already,
6792 or we are about to. */
0955507f 6793 stub_entry =
b715f643
TP
6794 elf32_arm_create_stub (htab, stub_type, section, irela,
6795 sym_sec, hash,
6796 (char *) sym_name, sym_value,
6797 branch_type, &new_stub);
7413f23f 6798
0955507f 6799 created_stub = stub_entry != NULL;
b715f643
TP
6800 if (!created_stub)
6801 goto error_ret_free_internal;
6802 else if (!new_stub)
6803 break;
99059e56 6804 else
0a1b45a2 6805 stub_changed = true;
99059e56
RM
6806 }
6807 while (0);
6808
6809 /* Look for relocations which might trigger Cortex-A8
6810 erratum. */
6811 if (htab->fix_cortex_a8
6812 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6813 || r_type == (unsigned int) R_ARM_THM_JUMP19
6814 || r_type == (unsigned int) R_ARM_THM_CALL
6815 || r_type == (unsigned int) R_ARM_THM_XPC22))
6816 {
6817 bfd_vma from = section->output_section->vma
6818 + section->output_offset
6819 + irela->r_offset;
6820
6821 if ((from & 0xfff) == 0xffe)
6822 {
6823 /* Found a candidate. Note we haven't checked the
6824 destination is within 4K here: if we do so (and
6825 don't create an entry in a8_relocs) we can't tell
6826 that a branch should have been relocated when
6827 scanning later. */
6828 if (num_a8_relocs == a8_reloc_table_size)
6829 {
6830 a8_reloc_table_size *= 2;
6831 a8_relocs = (struct a8_erratum_reloc *)
6832 bfd_realloc (a8_relocs,
6833 sizeof (struct a8_erratum_reloc)
6834 * a8_reloc_table_size);
6835 }
6836
6837 a8_relocs[num_a8_relocs].from = from;
6838 a8_relocs[num_a8_relocs].destination = destination;
6839 a8_relocs[num_a8_relocs].r_type = r_type;
6840 a8_relocs[num_a8_relocs].branch_type = branch_type;
6841 a8_relocs[num_a8_relocs].sym_name = sym_name;
6842 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6843 a8_relocs[num_a8_relocs].hash = hash;
6844
6845 num_a8_relocs++;
6846 }
6847 }
906e58ca
NC
6848 }
6849
99059e56
RM
6850 /* We're done with the internal relocs, free them. */
6851 if (elf_section_data (section)->relocs == NULL)
6852 free (internal_relocs);
6853 }
48229727 6854
99059e56 6855 if (htab->fix_cortex_a8)
48229727 6856 {
99059e56
RM
6857 /* Sort relocs which might apply to Cortex-A8 erratum. */
6858 qsort (a8_relocs, num_a8_relocs,
eb7c4339 6859 sizeof (struct a8_erratum_reloc),
99059e56 6860 &a8_reloc_compare);
48229727 6861
99059e56
RM
6862 /* Scan for branches which might trigger Cortex-A8 erratum. */
6863 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 6864 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
6865 a8_relocs, num_a8_relocs,
6866 prev_num_a8_fixes, &stub_changed)
6867 != 0)
48229727 6868 goto error_ret_free_local;
5e681ec4 6869 }
7f991970
AM
6870
6871 if (local_syms != NULL
6872 && symtab_hdr->contents != (unsigned char *) local_syms)
6873 {
6874 if (!info->keep_memory)
6875 free (local_syms);
6876 else
6877 symtab_hdr->contents = (unsigned char *) local_syms;
6878 }
5e681ec4
PB
6879 }
6880
0955507f
TP
6881 if (first_veneer_scan
6882 && !set_cmse_veneer_addr_from_implib (info, htab,
6883 &cmse_stub_created))
0a1b45a2 6884 ret = false;
0955507f 6885
eb7c4339 6886 if (prev_num_a8_fixes != num_a8_fixes)
0a1b45a2 6887 stub_changed = true;
48229727 6888
906e58ca
NC
6889 if (!stub_changed)
6890 break;
5e681ec4 6891
906e58ca
NC
6892 /* OK, we've added some stubs. Find out the new size of the
6893 stub sections. */
6894 for (stub_sec = htab->stub_bfd->sections;
6895 stub_sec != NULL;
6896 stub_sec = stub_sec->next)
3e6b1042
DJ
6897 {
6898 /* Ignore non-stub sections. */
6899 if (!strstr (stub_sec->name, STUB_SUFFIX))
6900 continue;
6901
6902 stub_sec->size = 0;
6903 }
b34b2d70 6904
0955507f
TP
6905 /* Add new SG veneers after those already in the input import
6906 library. */
6907 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6908 stub_type++)
6909 {
6910 bfd_vma *start_offset_p;
6911 asection **stub_sec_p;
6912
6913 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6914 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6915 if (start_offset_p == NULL)
6916 continue;
6917
6918 BFD_ASSERT (stub_sec_p != NULL);
6919 if (*stub_sec_p != NULL)
6920 (*stub_sec_p)->size = *start_offset_p;
6921 }
6922
d7c5bd02 6923 /* Compute stub section size, considering padding. */
906e58ca 6924 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
d7c5bd02
TP
6925 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6926 stub_type++)
6927 {
6928 int size, padding;
6929 asection **stub_sec_p;
6930
6931 padding = arm_dedicated_stub_section_padding (stub_type);
6932 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6933 /* Skip if no stub input section or no stub section padding
6934 required. */
6935 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6936 continue;
6937 /* Stub section padding required but no dedicated section. */
6938 BFD_ASSERT (stub_sec_p);
6939
6940 size = (*stub_sec_p)->size;
6941 size = (size + padding - 1) & ~(padding - 1);
6942 (*stub_sec_p)->size = size;
6943 }
906e58ca 6944
48229727
JB
6945 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6946 if (htab->fix_cortex_a8)
99059e56
RM
6947 for (i = 0; i < num_a8_fixes; i++)
6948 {
48229727 6949 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
daa4adae 6950 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
48229727
JB
6951
6952 if (stub_sec == NULL)
0a1b45a2 6953 return false;
48229727 6954
99059e56
RM
6955 stub_sec->size
6956 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6957 NULL);
6958 }
48229727
JB
6959
6960
906e58ca
NC
6961 /* Ask the linker to do its stuff. */
6962 (*htab->layout_sections_again) ();
0a1b45a2 6963 first_veneer_scan = false;
ba93b8ac
DJ
6964 }
6965
48229727
JB
6966 /* Add stubs for Cortex-A8 erratum fixes now. */
6967 if (htab->fix_cortex_a8)
6968 {
6969 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
6970 {
6971 struct elf32_arm_stub_hash_entry *stub_entry;
6972 char *stub_name = a8_fixes[i].stub_name;
6973 asection *section = a8_fixes[i].section;
6974 unsigned int section_id = a8_fixes[i].section->id;
6975 asection *link_sec = htab->stub_group[section_id].link_sec;
6976 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6977 const insn_sequence *template_sequence;
6978 int template_size, size = 0;
6979
6980 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
0a1b45a2 6981 true, false);
99059e56
RM
6982 if (stub_entry == NULL)
6983 {
871b3ab2 6984 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4eca0228 6985 section->owner, stub_name);
0a1b45a2 6986 return false;
99059e56
RM
6987 }
6988
6989 stub_entry->stub_sec = stub_sec;
0955507f 6990 stub_entry->stub_offset = (bfd_vma) -1;
99059e56
RM
6991 stub_entry->id_sec = link_sec;
6992 stub_entry->stub_type = a8_fixes[i].stub_type;
8d9d9490 6993 stub_entry->source_value = a8_fixes[i].offset;
99059e56 6994 stub_entry->target_section = a8_fixes[i].section;
8d9d9490 6995 stub_entry->target_value = a8_fixes[i].target_offset;
99059e56 6996 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 6997 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 6998
99059e56
RM
6999 size = find_stub_size_and_template (a8_fixes[i].stub_type,
7000 &template_sequence,
7001 &template_size);
48229727 7002
99059e56
RM
7003 stub_entry->stub_size = size;
7004 stub_entry->stub_template = template_sequence;
7005 stub_entry->stub_template_size = template_size;
7006 }
48229727
JB
7007
7008 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 7009 elf32_arm_write_section(). */
48229727
JB
7010 htab->a8_erratum_fixes = a8_fixes;
7011 htab->num_a8_erratum_fixes = num_a8_fixes;
7012 }
7013 else
7014 {
7015 htab->a8_erratum_fixes = NULL;
7016 htab->num_a8_erratum_fixes = 0;
7017 }
0955507f 7018 return ret;
5e681ec4
PB
7019}
7020
906e58ca
NC
7021/* Build all the stubs associated with the current output file. The
7022 stubs are kept in a hash table attached to the main linker hash
7023 table. We also set up the .plt entries for statically linked PIC
7024 functions here. This function is called via arm_elf_finish in the
7025 linker. */
252b5132 7026
0a1b45a2 7027bool
906e58ca 7028elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 7029{
906e58ca
NC
7030 asection *stub_sec;
7031 struct bfd_hash_table *table;
0955507f 7032 enum elf32_arm_stub_type stub_type;
906e58ca 7033 struct elf32_arm_link_hash_table *htab;
252b5132 7034
906e58ca 7035 htab = elf32_arm_hash_table (info);
4dfe6ac6 7036 if (htab == NULL)
0a1b45a2 7037 return false;
252b5132 7038
906e58ca
NC
7039 for (stub_sec = htab->stub_bfd->sections;
7040 stub_sec != NULL;
7041 stub_sec = stub_sec->next)
252b5132 7042 {
906e58ca
NC
7043 bfd_size_type size;
7044
8029a119 7045 /* Ignore non-stub sections. */
906e58ca
NC
7046 if (!strstr (stub_sec->name, STUB_SUFFIX))
7047 continue;
7048
d7c5bd02 7049 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
0955507f
TP
7050 must at least be done for stub section requiring padding and for SG
7051 veneers to ensure that a non secure code branching to a removed SG
7052 veneer causes an error. */
906e58ca 7053 size = stub_sec->size;
21d799b5 7054 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca 7055 if (stub_sec->contents == NULL && size != 0)
0a1b45a2 7056 return false;
0955507f 7057
906e58ca 7058 stub_sec->size = 0;
252b5132
RH
7059 }
7060
0955507f
TP
7061 /* Add new SG veneers after those already in the input import library. */
7062 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7063 {
7064 bfd_vma *start_offset_p;
7065 asection **stub_sec_p;
7066
7067 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7068 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7069 if (start_offset_p == NULL)
7070 continue;
7071
7072 BFD_ASSERT (stub_sec_p != NULL);
7073 if (*stub_sec_p != NULL)
7074 (*stub_sec_p)->size = *start_offset_p;
7075 }
7076
906e58ca
NC
7077 /* Build the stubs as directed by the stub hash table. */
7078 table = &htab->stub_hash_table;
7079 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
7080 if (htab->fix_cortex_a8)
7081 {
7082 /* Place the cortex a8 stubs last. */
7083 htab->fix_cortex_a8 = -1;
7084 bfd_hash_traverse (table, arm_build_one_stub, info);
7085 }
252b5132 7086
0a1b45a2 7087 return true;
252b5132
RH
7088}
7089
9b485d32
NC
7090/* Locate the Thumb encoded calling stub for NAME. */
7091
252b5132 7092static struct elf_link_hash_entry *
57e8b36a
NC
7093find_thumb_glue (struct bfd_link_info *link_info,
7094 const char *name,
f2a9dd69 7095 char **error_message)
252b5132
RH
7096{
7097 char *tmp_name;
7098 struct elf_link_hash_entry *hash;
7099 struct elf32_arm_link_hash_table *hash_table;
7100
7101 /* We need a pointer to the armelf specific hash table. */
7102 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7103 if (hash_table == NULL)
7104 return NULL;
252b5132 7105
21d799b5 7106 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7107 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7108
7109 BFD_ASSERT (tmp_name);
7110
7111 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7112
7113 hash = elf_link_hash_lookup
0a1b45a2 7114 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7115
b1657152 7116 if (hash == NULL
90b6238f
AM
7117 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7118 "Thumb", tmp_name, name) == -1)
b1657152 7119 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7120
7121 free (tmp_name);
7122
7123 return hash;
7124}
7125
9b485d32
NC
7126/* Locate the ARM encoded calling stub for NAME. */
7127
252b5132 7128static struct elf_link_hash_entry *
57e8b36a
NC
7129find_arm_glue (struct bfd_link_info *link_info,
7130 const char *name,
f2a9dd69 7131 char **error_message)
252b5132
RH
7132{
7133 char *tmp_name;
7134 struct elf_link_hash_entry *myh;
7135 struct elf32_arm_link_hash_table *hash_table;
7136
7137 /* We need a pointer to the elfarm specific hash table. */
7138 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7139 if (hash_table == NULL)
7140 return NULL;
252b5132 7141
21d799b5 7142 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7143 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7144 BFD_ASSERT (tmp_name);
7145
7146 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7147
7148 myh = elf_link_hash_lookup
0a1b45a2 7149 (&(hash_table)->root, tmp_name, false, false, true);
252b5132 7150
b1657152 7151 if (myh == NULL
90b6238f
AM
7152 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7153 "ARM", tmp_name, name) == -1)
b1657152 7154 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
7155
7156 free (tmp_name);
7157
7158 return myh;
7159}
7160
8f6277f5 7161/* ARM->Thumb glue (static images):
252b5132
RH
7162
7163 .arm
7164 __func_from_arm:
7165 ldr r12, __func_addr
7166 bx r12
7167 __func_addr:
906e58ca 7168 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 7169
26079076
PB
7170 (v5t static images)
7171 .arm
7172 __func_from_arm:
7173 ldr pc, __func_addr
7174 __func_addr:
906e58ca 7175 .word func @ behave as if you saw a ARM_32 reloc.
26079076 7176
8f6277f5
PB
7177 (relocatable images)
7178 .arm
7179 __func_from_arm:
7180 ldr r12, __func_offset
7181 add r12, r12, pc
7182 bx r12
7183 __func_offset:
8029a119 7184 .word func - . */
8f6277f5
PB
7185
7186#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
7187static const insn32 a2t1_ldr_insn = 0xe59fc000;
7188static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7189static const insn32 a2t3_func_addr_insn = 0x00000001;
7190
26079076
PB
7191#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7192static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7193static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7194
8f6277f5
PB
7195#define ARM2THUMB_PIC_GLUE_SIZE 16
7196static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7197static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7198static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7199
07d6d2b8 7200/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 7201
07d6d2b8
AM
7202 .thumb .thumb
7203 .align 2 .align 2
7204 __func_from_thumb: __func_from_thumb:
7205 bx pc push {r6, lr}
7206 nop ldr r6, __func_addr
7207 .arm mov lr, pc
7208 b func bx r6
99059e56
RM
7209 .arm
7210 ;; back_to_thumb
7211 ldmia r13! {r6, lr}
7212 bx lr
7213 __func_addr:
07d6d2b8 7214 .word func */
252b5132
RH
7215
7216#define THUMB2ARM_GLUE_SIZE 8
7217static const insn16 t2a1_bx_pc_insn = 0x4778;
7218static const insn16 t2a2_noop_insn = 0x46c0;
7219static const insn32 t2a3_b_insn = 0xea000000;
7220
c7b8f16e 7221#define VFP11_ERRATUM_VENEER_SIZE 8
a504d23a
LA
7222#define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7223#define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
c7b8f16e 7224
845b51d6
PB
7225#define ARM_BX_VENEER_SIZE 12
7226static const insn32 armbx1_tst_insn = 0xe3100001;
7227static const insn32 armbx2_moveq_insn = 0x01a0f000;
7228static const insn32 armbx3_bx_insn = 0xe12fff10;
7229
7e392df6 7230#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
7231static void
7232arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
7233{
7234 asection * s;
8029a119 7235 bfd_byte * contents;
252b5132 7236
8029a119 7237 if (size == 0)
3e6b1042
DJ
7238 {
7239 /* Do not include empty glue sections in the output. */
7240 if (abfd != NULL)
7241 {
3d4d4302 7242 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
7243 if (s != NULL)
7244 s->flags |= SEC_EXCLUDE;
7245 }
7246 return;
7247 }
252b5132 7248
8029a119 7249 BFD_ASSERT (abfd != NULL);
252b5132 7250
3d4d4302 7251 s = bfd_get_linker_section (abfd, name);
8029a119 7252 BFD_ASSERT (s != NULL);
252b5132 7253
b0f4fbf8 7254 contents = (bfd_byte *) bfd_zalloc (abfd, size);
252b5132 7255
8029a119
NC
7256 BFD_ASSERT (s->size == size);
7257 s->contents = contents;
7258}
906e58ca 7259
0a1b45a2 7260bool
8029a119
NC
7261bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7262{
7263 struct elf32_arm_link_hash_table * globals;
906e58ca 7264
8029a119
NC
7265 globals = elf32_arm_hash_table (info);
7266 BFD_ASSERT (globals != NULL);
906e58ca 7267
8029a119
NC
7268 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7269 globals->arm_glue_size,
7270 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 7271
8029a119
NC
7272 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7273 globals->thumb_glue_size,
7274 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 7275
8029a119
NC
7276 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7277 globals->vfp11_erratum_glue_size,
7278 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 7279
a504d23a
LA
7280 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7281 globals->stm32l4xx_erratum_glue_size,
7282 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7283
8029a119
NC
7284 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7285 globals->bx_glue_size,
845b51d6
PB
7286 ARM_BX_GLUE_SECTION_NAME);
7287
0a1b45a2 7288 return true;
252b5132
RH
7289}
7290
a4fd1a8e 7291/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
7292 returns the symbol identifying the stub. */
7293
a4fd1a8e 7294static struct elf_link_hash_entry *
57e8b36a
NC
7295record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7296 struct elf_link_hash_entry * h)
252b5132
RH
7297{
7298 const char * name = h->root.root.string;
63b0f745 7299 asection * s;
252b5132
RH
7300 char * tmp_name;
7301 struct elf_link_hash_entry * myh;
14a793b2 7302 struct bfd_link_hash_entry * bh;
252b5132 7303 struct elf32_arm_link_hash_table * globals;
dc810e39 7304 bfd_vma val;
2f475487 7305 bfd_size_type size;
252b5132
RH
7306
7307 globals = elf32_arm_hash_table (link_info);
252b5132
RH
7308 BFD_ASSERT (globals != NULL);
7309 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7310
3d4d4302 7311 s = bfd_get_linker_section
252b5132
RH
7312 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7313
252b5132
RH
7314 BFD_ASSERT (s != NULL);
7315
21d799b5 7316 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 7317 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
7318 BFD_ASSERT (tmp_name);
7319
7320 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7321
7322 myh = elf_link_hash_lookup
0a1b45a2 7323 (&(globals)->root, tmp_name, false, false, true);
252b5132
RH
7324
7325 if (myh != NULL)
7326 {
9b485d32 7327 /* We've already seen this guy. */
252b5132 7328 free (tmp_name);
a4fd1a8e 7329 return myh;
252b5132
RH
7330 }
7331
57e8b36a
NC
7332 /* The only trick here is using hash_table->arm_glue_size as the value.
7333 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
7334 putting it. The +1 on the value marks that the stub has not been
7335 output yet - not that it is a Thumb function. */
14a793b2 7336 bh = NULL;
dc810e39
AM
7337 val = globals->arm_glue_size + 1;
7338 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7339 tmp_name, BSF_GLOBAL, s, val,
0a1b45a2 7340 NULL, true, false, &bh);
252b5132 7341
b7693d02
DJ
7342 myh = (struct elf_link_hash_entry *) bh;
7343 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7344 myh->forced_local = 1;
7345
252b5132
RH
7346 free (tmp_name);
7347
0e1862bb
L
7348 if (bfd_link_pic (link_info)
7349 || globals->root.is_relocatable_executable
27e55c4d 7350 || globals->pic_veneer)
2f475487 7351 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
7352 else if (globals->use_blx)
7353 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 7354 else
2f475487
AM
7355 size = ARM2THUMB_STATIC_GLUE_SIZE;
7356
7357 s->size += size;
7358 globals->arm_glue_size += size;
252b5132 7359
a4fd1a8e 7360 return myh;
252b5132
RH
7361}
7362
845b51d6
PB
7363/* Allocate space for ARMv4 BX veneers. */
7364
7365static void
7366record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7367{
7368 asection * s;
7369 struct elf32_arm_link_hash_table *globals;
7370 char *tmp_name;
7371 struct elf_link_hash_entry *myh;
7372 struct bfd_link_hash_entry *bh;
7373 bfd_vma val;
7374
7375 /* BX PC does not need a veneer. */
7376 if (reg == 15)
7377 return;
7378
7379 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
7380 BFD_ASSERT (globals != NULL);
7381 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7382
7383 /* Check if this veneer has already been allocated. */
7384 if (globals->bx_glue_offset[reg])
7385 return;
7386
3d4d4302 7387 s = bfd_get_linker_section
845b51d6
PB
7388 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7389
7390 BFD_ASSERT (s != NULL);
7391
7392 /* Add symbol for veneer. */
21d799b5
NC
7393 tmp_name = (char *)
7394 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
845b51d6 7395 BFD_ASSERT (tmp_name);
906e58ca 7396
845b51d6 7397 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 7398
845b51d6 7399 myh = elf_link_hash_lookup
0a1b45a2 7400 (&(globals)->root, tmp_name, false, false, false);
906e58ca 7401
845b51d6 7402 BFD_ASSERT (myh == NULL);
906e58ca 7403
845b51d6
PB
7404 bh = NULL;
7405 val = globals->bx_glue_size;
7406 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56 7407 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7408 NULL, true, false, &bh);
845b51d6
PB
7409
7410 myh = (struct elf_link_hash_entry *) bh;
7411 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7412 myh->forced_local = 1;
7413
7414 s->size += ARM_BX_VENEER_SIZE;
7415 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7416 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7417}
7418
7419
c7b8f16e
JB
7420/* Add an entry to the code/data map for section SEC. */
7421
7422static void
7423elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7424{
7425 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7426 unsigned int newidx;
906e58ca 7427
c7b8f16e
JB
7428 if (sec_data->map == NULL)
7429 {
21d799b5 7430 sec_data->map = (elf32_arm_section_map *)
99059e56 7431 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
7432 sec_data->mapcount = 0;
7433 sec_data->mapsize = 1;
7434 }
906e58ca 7435
c7b8f16e 7436 newidx = sec_data->mapcount++;
906e58ca 7437
c7b8f16e
JB
7438 if (sec_data->mapcount > sec_data->mapsize)
7439 {
7440 sec_data->mapsize *= 2;
21d799b5 7441 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
7442 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7443 * sizeof (elf32_arm_section_map));
515ef31d
NC
7444 }
7445
7446 if (sec_data->map)
7447 {
7448 sec_data->map[newidx].vma = vma;
7449 sec_data->map[newidx].type = type;
c7b8f16e 7450 }
c7b8f16e
JB
7451}
7452
7453
7454/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7455 veneers are handled for now. */
7456
7457static bfd_vma
7458record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
7459 elf32_vfp11_erratum_list *branch,
7460 bfd *branch_bfd,
7461 asection *branch_sec,
7462 unsigned int offset)
c7b8f16e
JB
7463{
7464 asection *s;
7465 struct elf32_arm_link_hash_table *hash_table;
7466 char *tmp_name;
7467 struct elf_link_hash_entry *myh;
7468 struct bfd_link_hash_entry *bh;
7469 bfd_vma val;
7470 struct _arm_elf_section_data *sec_data;
c7b8f16e 7471 elf32_vfp11_erratum_list *newerr;
906e58ca 7472
c7b8f16e 7473 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
7474 BFD_ASSERT (hash_table != NULL);
7475 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 7476
3d4d4302 7477 s = bfd_get_linker_section
c7b8f16e 7478 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 7479
c7b8f16e 7480 sec_data = elf32_arm_section_data (s);
906e58ca 7481
c7b8f16e 7482 BFD_ASSERT (s != NULL);
906e58ca 7483
21d799b5 7484 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 7485 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e 7486 BFD_ASSERT (tmp_name);
906e58ca 7487
c7b8f16e
JB
7488 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7489 hash_table->num_vfp11_fixes);
906e58ca 7490
c7b8f16e 7491 myh = elf_link_hash_lookup
0a1b45a2 7492 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7493
c7b8f16e 7494 BFD_ASSERT (myh == NULL);
906e58ca 7495
c7b8f16e
JB
7496 bh = NULL;
7497 val = hash_table->vfp11_erratum_glue_size;
7498 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56 7499 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7500 NULL, true, false, &bh);
c7b8f16e
JB
7501
7502 myh = (struct elf_link_hash_entry *) bh;
7503 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7504 myh->forced_local = 1;
7505
7506 /* Link veneer back to calling location. */
c7e2358a 7507 sec_data->erratumcount += 1;
21d799b5
NC
7508 newerr = (elf32_vfp11_erratum_list *)
7509 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 7510
c7b8f16e
JB
7511 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7512 newerr->vma = -1;
7513 newerr->u.v.branch = branch;
7514 newerr->u.v.id = hash_table->num_vfp11_fixes;
7515 branch->u.b.veneer = newerr;
7516
7517 newerr->next = sec_data->erratumlist;
7518 sec_data->erratumlist = newerr;
7519
7520 /* A symbol for the return from the veneer. */
7521 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7522 hash_table->num_vfp11_fixes);
7523
7524 myh = elf_link_hash_lookup
0a1b45a2 7525 (&(hash_table)->root, tmp_name, false, false, false);
906e58ca 7526
c7b8f16e
JB
7527 if (myh != NULL)
7528 abort ();
7529
7530 bh = NULL;
7531 val = offset + 4;
7532 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7533 branch_sec, val, NULL, true, false, &bh);
906e58ca 7534
c7b8f16e
JB
7535 myh = (struct elf_link_hash_entry *) bh;
7536 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7537 myh->forced_local = 1;
7538
7539 free (tmp_name);
906e58ca 7540
c7b8f16e
JB
7541 /* Generate a mapping symbol for the veneer section, and explicitly add an
7542 entry for that symbol to the code/data map for the section. */
7543 if (hash_table->vfp11_erratum_glue_size == 0)
7544 {
7545 bh = NULL;
7546 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 7547 ever requires this erratum fix. */
c7b8f16e
JB
7548 _bfd_generic_link_add_one_symbol (link_info,
7549 hash_table->bfd_of_glue_owner, "$a",
7550 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7551 true, false, &bh);
c7b8f16e
JB
7552
7553 myh = (struct elf_link_hash_entry *) bh;
7554 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7555 myh->forced_local = 1;
906e58ca 7556
c7b8f16e 7557 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
7558 BFDs. We must make a note of this generated mapping symbol
7559 ourselves so that code byteswapping works properly in
7560 elf32_arm_write_section. */
c7b8f16e
JB
7561 elf32_arm_section_map_add (s, 'a', 0);
7562 }
906e58ca 7563
c7b8f16e
JB
7564 s->size += VFP11_ERRATUM_VENEER_SIZE;
7565 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7566 hash_table->num_vfp11_fixes++;
906e58ca 7567
c7b8f16e
JB
7568 /* The offset of the veneer. */
7569 return val;
7570}
7571
a504d23a
LA
7572/* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7573 veneers need to be handled because used only in Cortex-M. */
7574
7575static bfd_vma
7576record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7577 elf32_stm32l4xx_erratum_list *branch,
7578 bfd *branch_bfd,
7579 asection *branch_sec,
7580 unsigned int offset,
7581 bfd_size_type veneer_size)
7582{
7583 asection *s;
7584 struct elf32_arm_link_hash_table *hash_table;
7585 char *tmp_name;
7586 struct elf_link_hash_entry *myh;
7587 struct bfd_link_hash_entry *bh;
7588 bfd_vma val;
7589 struct _arm_elf_section_data *sec_data;
7590 elf32_stm32l4xx_erratum_list *newerr;
7591
7592 hash_table = elf32_arm_hash_table (link_info);
7593 BFD_ASSERT (hash_table != NULL);
7594 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7595
7596 s = bfd_get_linker_section
7597 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7598
7599 BFD_ASSERT (s != NULL);
7600
7601 sec_data = elf32_arm_section_data (s);
7602
7603 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7604 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
a504d23a
LA
7605 BFD_ASSERT (tmp_name);
7606
7607 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7608 hash_table->num_stm32l4xx_fixes);
7609
7610 myh = elf_link_hash_lookup
0a1b45a2 7611 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7612
7613 BFD_ASSERT (myh == NULL);
7614
7615 bh = NULL;
7616 val = hash_table->stm32l4xx_erratum_glue_size;
7617 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7618 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
0a1b45a2 7619 NULL, true, false, &bh);
a504d23a
LA
7620
7621 myh = (struct elf_link_hash_entry *) bh;
7622 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7623 myh->forced_local = 1;
7624
7625 /* Link veneer back to calling location. */
7626 sec_data->stm32l4xx_erratumcount += 1;
7627 newerr = (elf32_stm32l4xx_erratum_list *)
7628 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7629
7630 newerr->type = STM32L4XX_ERRATUM_VENEER;
7631 newerr->vma = -1;
7632 newerr->u.v.branch = branch;
7633 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7634 branch->u.b.veneer = newerr;
7635
7636 newerr->next = sec_data->stm32l4xx_erratumlist;
7637 sec_data->stm32l4xx_erratumlist = newerr;
7638
7639 /* A symbol for the return from the veneer. */
7640 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7641 hash_table->num_stm32l4xx_fixes);
7642
7643 myh = elf_link_hash_lookup
0a1b45a2 7644 (&(hash_table)->root, tmp_name, false, false, false);
a504d23a
LA
7645
7646 if (myh != NULL)
7647 abort ();
7648
7649 bh = NULL;
7650 val = offset + 4;
7651 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
0a1b45a2 7652 branch_sec, val, NULL, true, false, &bh);
a504d23a
LA
7653
7654 myh = (struct elf_link_hash_entry *) bh;
7655 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7656 myh->forced_local = 1;
7657
7658 free (tmp_name);
7659
7660 /* Generate a mapping symbol for the veneer section, and explicitly add an
7661 entry for that symbol to the code/data map for the section. */
7662 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7663 {
7664 bh = NULL;
7665 /* Creates a THUMB symbol since there is no other choice. */
7666 _bfd_generic_link_add_one_symbol (link_info,
7667 hash_table->bfd_of_glue_owner, "$t",
7668 BSF_LOCAL, s, 0, NULL,
0a1b45a2 7669 true, false, &bh);
a504d23a
LA
7670
7671 myh = (struct elf_link_hash_entry *) bh;
7672 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7673 myh->forced_local = 1;
7674
7675 /* The elf32_arm_init_maps function only cares about symbols from input
7676 BFDs. We must make a note of this generated mapping symbol
7677 ourselves so that code byteswapping works properly in
7678 elf32_arm_write_section. */
7679 elf32_arm_section_map_add (s, 't', 0);
7680 }
7681
7682 s->size += veneer_size;
7683 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7684 hash_table->num_stm32l4xx_fixes++;
7685
7686 /* The offset of the veneer. */
7687 return val;
7688}
7689
8029a119 7690#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
7691 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7692 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
7693
7694/* Create a fake section for use by the ARM backend of the linker. */
7695
0a1b45a2 7696static bool
8029a119
NC
7697arm_make_glue_section (bfd * abfd, const char * name)
7698{
7699 asection * sec;
7700
3d4d4302 7701 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
7702 if (sec != NULL)
7703 /* Already made. */
0a1b45a2 7704 return true;
8029a119 7705
3d4d4302 7706 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
7707
7708 if (sec == NULL
fd361982 7709 || !bfd_set_section_alignment (sec, 2))
0a1b45a2 7710 return false;
8029a119
NC
7711
7712 /* Set the gc mark to prevent the section from being removed by garbage
7713 collection, despite the fact that no relocs refer to this section. */
7714 sec->gc_mark = 1;
7715
0a1b45a2 7716 return true;
8029a119
NC
7717}
7718
1db37fe6
YG
7719/* Set size of .plt entries. This function is called from the
7720 linker scripts in ld/emultempl/{armelf}.em. */
7721
7722void
7723bfd_elf32_arm_use_long_plt (void)
7724{
0a1b45a2 7725 elf32_arm_use_long_plt_entry = true;
1db37fe6
YG
7726}
7727
8afb0e02
NC
7728/* Add the glue sections to ABFD. This function is called from the
7729 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 7730
0a1b45a2 7731bool
57e8b36a
NC
7732bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7733 struct bfd_link_info *info)
252b5132 7734{
a504d23a 7735 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
0a1b45a2 7736 bool dostm32l4xx = globals
a504d23a 7737 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
0a1b45a2 7738 bool addglue;
a504d23a 7739
8afb0e02
NC
7740 /* If we are only performing a partial
7741 link do not bother adding the glue. */
0e1862bb 7742 if (bfd_link_relocatable (info))
0a1b45a2 7743 return true;
252b5132 7744
a504d23a 7745 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
8029a119
NC
7746 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7747 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7748 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
a504d23a
LA
7749
7750 if (!dostm32l4xx)
7751 return addglue;
7752
7753 return addglue
7754 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
8afb0e02
NC
7755}
7756
daa4adae
TP
7757/* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7758 ensures they are not marked for deletion by
7759 strip_excluded_output_sections () when veneers are going to be created
7760 later. Not doing so would trigger assert on empty section size in
7761 lang_size_sections_1 (). */
7762
7763void
7764bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7765{
7766 enum elf32_arm_stub_type stub_type;
7767
7768 /* If we are only performing a partial
7769 link do not bother adding the glue. */
7770 if (bfd_link_relocatable (info))
7771 return;
7772
7773 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7774 {
7775 asection *out_sec;
7776 const char *out_sec_name;
7777
7778 if (!arm_dedicated_stub_output_section_required (stub_type))
7779 continue;
7780
7781 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7782 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7783 if (out_sec != NULL)
7784 out_sec->flags |= SEC_KEEP;
7785 }
7786}
7787
8afb0e02
NC
7788/* Select a BFD to be used to hold the sections used by the glue code.
7789 This function is called from the linker scripts in ld/emultempl/
8029a119 7790 {armelf/pe}.em. */
8afb0e02 7791
0a1b45a2 7792bool
57e8b36a 7793bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
7794{
7795 struct elf32_arm_link_hash_table *globals;
7796
7797 /* If we are only performing a partial link
7798 do not bother getting a bfd to hold the glue. */
0e1862bb 7799 if (bfd_link_relocatable (info))
0a1b45a2 7800 return true;
8afb0e02 7801
b7693d02
DJ
7802 /* Make sure we don't attach the glue sections to a dynamic object. */
7803 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7804
8afb0e02 7805 globals = elf32_arm_hash_table (info);
8afb0e02
NC
7806 BFD_ASSERT (globals != NULL);
7807
7808 if (globals->bfd_of_glue_owner != NULL)
0a1b45a2 7809 return true;
8afb0e02 7810
252b5132
RH
7811 /* Save the bfd for later use. */
7812 globals->bfd_of_glue_owner = abfd;
cedb70c5 7813
0a1b45a2 7814 return true;
252b5132
RH
7815}
7816
906e58ca
NC
7817static void
7818check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 7819{
2de70689
MGD
7820 int cpu_arch;
7821
b38cadfb 7822 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
7823 Tag_CPU_arch);
7824
7825 if (globals->fix_arm1176)
7826 {
7827 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7828 globals->use_blx = 1;
7829 }
7830 else
7831 {
7832 if (cpu_arch > TAG_CPU_ARCH_V4T)
7833 globals->use_blx = 1;
7834 }
39b41c9c
PB
7835}
7836
0a1b45a2 7837bool
57e8b36a 7838bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 7839 struct bfd_link_info *link_info)
252b5132
RH
7840{
7841 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 7842 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
7843 Elf_Internal_Rela *irel, *irelend;
7844 bfd_byte *contents = NULL;
252b5132
RH
7845
7846 asection *sec;
7847 struct elf32_arm_link_hash_table *globals;
7848
7849 /* If we are only performing a partial link do not bother
7850 to construct any glue. */
0e1862bb 7851 if (bfd_link_relocatable (link_info))
0a1b45a2 7852 return true;
252b5132 7853
39ce1a6a
NC
7854 /* Here we have a bfd that is to be included on the link. We have a
7855 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 7856 globals = elf32_arm_hash_table (link_info);
252b5132 7857 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
7858
7859 check_use_blx (globals);
252b5132 7860
d504ffc8 7861 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 7862 {
90b6238f 7863 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
d003868e 7864 abfd);
0a1b45a2 7865 return false;
e489d0ae 7866 }
f21f3fe0 7867
39ce1a6a
NC
7868 /* PR 5398: If we have not decided to include any loadable sections in
7869 the output then we will not have a glue owner bfd. This is OK, it
7870 just means that there is nothing else for us to do here. */
7871 if (globals->bfd_of_glue_owner == NULL)
0a1b45a2 7872 return true;
39ce1a6a 7873
252b5132
RH
7874 /* Rummage around all the relocs and map the glue vectors. */
7875 sec = abfd->sections;
7876
7877 if (sec == NULL)
0a1b45a2 7878 return true;
252b5132
RH
7879
7880 for (; sec != NULL; sec = sec->next)
7881 {
7882 if (sec->reloc_count == 0)
7883 continue;
7884
2f475487
AM
7885 if ((sec->flags & SEC_EXCLUDE) != 0)
7886 continue;
7887
0ffa91dd 7888 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 7889
9b485d32 7890 /* Load the relocs. */
6cdc0ccc 7891 internal_relocs
0a1b45a2 7892 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, false);
252b5132 7893
6cdc0ccc
AM
7894 if (internal_relocs == NULL)
7895 goto error_return;
252b5132 7896
6cdc0ccc
AM
7897 irelend = internal_relocs + sec->reloc_count;
7898 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
7899 {
7900 long r_type;
7901 unsigned long r_index;
252b5132
RH
7902
7903 struct elf_link_hash_entry *h;
7904
7905 r_type = ELF32_R_TYPE (irel->r_info);
7906 r_index = ELF32_R_SYM (irel->r_info);
7907
9b485d32 7908 /* These are the only relocation types we care about. */
ba96a88f 7909 if ( r_type != R_ARM_PC24
845b51d6 7910 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
7911 continue;
7912
7913 /* Get the section contents if we haven't done so already. */
7914 if (contents == NULL)
7915 {
7916 /* Get cached copy if it exists. */
7917 if (elf_section_data (sec)->this_hdr.contents != NULL)
7918 contents = elf_section_data (sec)->this_hdr.contents;
7919 else
7920 {
7921 /* Go get them off disk. */
57e8b36a 7922 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
7923 goto error_return;
7924 }
7925 }
7926
845b51d6
PB
7927 if (r_type == R_ARM_V4BX)
7928 {
7929 int reg;
7930
7931 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7932 record_arm_bx_glue (link_info, reg);
7933 continue;
7934 }
7935
a7c10850 7936 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
7937 h = NULL;
7938
9b485d32 7939 /* We don't care about local symbols. */
252b5132
RH
7940 if (r_index < symtab_hdr->sh_info)
7941 continue;
7942
9b485d32 7943 /* This is an external symbol. */
252b5132
RH
7944 r_index -= symtab_hdr->sh_info;
7945 h = (struct elf_link_hash_entry *)
7946 elf_sym_hashes (abfd)[r_index];
7947
7948 /* If the relocation is against a static symbol it must be within
7949 the current section and so cannot be a cross ARM/Thumb relocation. */
7950 if (h == NULL)
7951 continue;
7952
d504ffc8
DJ
7953 /* If the call will go through a PLT entry then we do not need
7954 glue. */
362d30a1 7955 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
7956 continue;
7957
252b5132
RH
7958 switch (r_type)
7959 {
7960 case R_ARM_PC24:
7961 /* This one is a call from arm code. We need to look up
99059e56
RM
7962 the target of the call. If it is a thumb target, we
7963 insert glue. */
39d911fc
TP
7964 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7965 == ST_BRANCH_TO_THUMB)
252b5132
RH
7966 record_arm_to_thumb_glue (link_info, h);
7967 break;
7968
252b5132 7969 default:
c6596c5e 7970 abort ();
252b5132
RH
7971 }
7972 }
6cdc0ccc 7973
c9594989 7974 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc
AM
7975 free (contents);
7976 contents = NULL;
7977
c9594989 7978 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc
AM
7979 free (internal_relocs);
7980 internal_relocs = NULL;
252b5132
RH
7981 }
7982
0a1b45a2 7983 return true;
9a5aca8c 7984
dc1e8a47 7985 error_return:
c9594989 7986 if (elf_section_data (sec)->this_hdr.contents != contents)
6cdc0ccc 7987 free (contents);
c9594989 7988 if (elf_section_data (sec)->relocs != internal_relocs)
6cdc0ccc 7989 free (internal_relocs);
9a5aca8c 7990
0a1b45a2 7991 return false;
252b5132 7992}
7e392df6 7993#endif
252b5132 7994
eb043451 7995
c7b8f16e
JB
7996/* Initialise maps of ARM/Thumb/data for input BFDs. */
7997
7998void
7999bfd_elf32_arm_init_maps (bfd *abfd)
8000{
8001 Elf_Internal_Sym *isymbuf;
8002 Elf_Internal_Shdr *hdr;
8003 unsigned int i, localsyms;
8004
af1f4419
NC
8005 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8006 if (! is_arm_elf (abfd))
8007 return;
8008
c7b8f16e
JB
8009 if ((abfd->flags & DYNAMIC) != 0)
8010 return;
8011
0ffa91dd 8012 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
8013 localsyms = hdr->sh_info;
8014
8015 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8016 should contain the number of local symbols, which should come before any
8017 global symbols. Mapping symbols are always local. */
8018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8019 NULL);
8020
8021 /* No internal symbols read? Skip this BFD. */
8022 if (isymbuf == NULL)
8023 return;
8024
8025 for (i = 0; i < localsyms; i++)
8026 {
8027 Elf_Internal_Sym *isym = &isymbuf[i];
8028 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8029 const char *name;
906e58ca 8030
c7b8f16e 8031 if (sec != NULL
99059e56
RM
8032 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8033 {
8034 name = bfd_elf_string_from_elf_section (abfd,
8035 hdr->sh_link, isym->st_name);
906e58ca 8036
99059e56 8037 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 8038 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
8039 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8040 }
c7b8f16e
JB
8041 }
8042}
8043
8044
48229727
JB
8045/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8046 say what they wanted. */
8047
8048void
8049bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8050{
8051 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8052 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8053
4dfe6ac6
NC
8054 if (globals == NULL)
8055 return;
8056
48229727
JB
8057 if (globals->fix_cortex_a8 == -1)
8058 {
8059 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8060 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8061 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8062 || out_attr[Tag_CPU_arch_profile].i == 0))
8063 globals->fix_cortex_a8 = 1;
8064 else
8065 globals->fix_cortex_a8 = 0;
8066 }
8067}
8068
8069
c7b8f16e
JB
8070void
8071bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8072{
8073 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 8074 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 8075
4dfe6ac6
NC
8076 if (globals == NULL)
8077 return;
c7b8f16e
JB
8078 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8079 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8080 {
8081 switch (globals->vfp11_fix)
99059e56
RM
8082 {
8083 case BFD_ARM_VFP11_FIX_DEFAULT:
8084 case BFD_ARM_VFP11_FIX_NONE:
8085 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8086 break;
8087
8088 default:
8089 /* Give a warning, but do as the user requests anyway. */
871b3ab2 8090 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
99059e56
RM
8091 "workaround is not necessary for target architecture"), obfd);
8092 }
c7b8f16e
JB
8093 }
8094 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8095 /* For earlier architectures, we might need the workaround, but do not
8096 enable it by default. If users is running with broken hardware, they
8097 must enable the erratum fix explicitly. */
8098 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8099}
8100
a504d23a
LA
8101void
8102bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8103{
8104 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8105 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8106
8107 if (globals == NULL)
8108 return;
8109
8110 /* We assume only Cortex-M4 may require the fix. */
8111 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8112 || out_attr[Tag_CPU_arch_profile].i != 'M')
8113 {
8114 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8115 /* Give a warning, but do as the user requests anyway. */
4eca0228 8116 _bfd_error_handler
871b3ab2 8117 (_("%pB: warning: selected STM32L4XX erratum "
a504d23a
LA
8118 "workaround is not necessary for target architecture"), obfd);
8119 }
8120}
c7b8f16e 8121
906e58ca
NC
8122enum bfd_arm_vfp11_pipe
8123{
c7b8f16e
JB
8124 VFP11_FMAC,
8125 VFP11_LS,
8126 VFP11_DS,
8127 VFP11_BAD
8128};
8129
8130/* Return a VFP register number. This is encoded as RX:X for single-precision
8131 registers, or X:RX for double-precision registers, where RX is the group of
8132 four bits in the instruction encoding and X is the single extension bit.
8133 RX and X fields are specified using their lowest (starting) bit. The return
8134 value is:
8135
8136 0...31: single-precision registers s0...s31
8137 32...63: double-precision registers d0...d31.
906e58ca 8138
c7b8f16e
JB
8139 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8140 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 8141
c7b8f16e 8142static unsigned int
0a1b45a2 8143bfd_arm_vfp11_regno (unsigned int insn, bool is_double, unsigned int rx,
99059e56 8144 unsigned int x)
c7b8f16e
JB
8145{
8146 if (is_double)
8147 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8148 else
8149 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8150}
8151
8152/* Set bits in *WMASK according to a register number REG as encoded by
8153 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8154
8155static void
8156bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8157{
8158 if (reg < 32)
8159 *wmask |= 1 << reg;
8160 else if (reg < 48)
8161 *wmask |= 3 << ((reg - 32) * 2);
8162}
8163
8164/* Return TRUE if WMASK overwrites anything in REGS. */
8165
0a1b45a2 8166static bool
c7b8f16e
JB
8167bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8168{
8169 int i;
906e58ca 8170
c7b8f16e
JB
8171 for (i = 0; i < numregs; i++)
8172 {
8173 unsigned int reg = regs[i];
8174
8175 if (reg < 32 && (wmask & (1 << reg)) != 0)
0a1b45a2 8176 return true;
906e58ca 8177
c7b8f16e
JB
8178 reg -= 32;
8179
8180 if (reg >= 16)
99059e56 8181 continue;
906e58ca 8182
c7b8f16e 8183 if ((wmask & (3 << (reg * 2))) != 0)
0a1b45a2 8184 return true;
c7b8f16e 8185 }
906e58ca 8186
0a1b45a2 8187 return false;
c7b8f16e
JB
8188}
8189
8190/* In this function, we're interested in two things: finding input registers
8191 for VFP data-processing instructions, and finding the set of registers which
8192 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8193 hold the written set, so FLDM etc. are easy to deal with (we're only
8194 interested in 32 SP registers or 16 dp registers, due to the VFP version
8195 implemented by the chip in question). DP registers are marked by setting
8196 both SP registers in the write mask). */
8197
8198static enum bfd_arm_vfp11_pipe
8199bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 8200 int *numregs)
c7b8f16e 8201{
91d6fa6a 8202 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
0a1b45a2 8203 bool is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
c7b8f16e
JB
8204
8205 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8206 {
8207 unsigned int pqrs;
8208 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8209 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8210
8211 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
8212 | ((insn & 0x00300000) >> 19)
8213 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
8214
8215 switch (pqrs)
99059e56
RM
8216 {
8217 case 0: /* fmac[sd]. */
8218 case 1: /* fnmac[sd]. */
8219 case 2: /* fmsc[sd]. */
8220 case 3: /* fnmsc[sd]. */
8221 vpipe = VFP11_FMAC;
8222 bfd_arm_vfp11_write_mask (destmask, fd);
8223 regs[0] = fd;
8224 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8225 regs[2] = fm;
8226 *numregs = 3;
8227 break;
8228
8229 case 4: /* fmul[sd]. */
8230 case 5: /* fnmul[sd]. */
8231 case 6: /* fadd[sd]. */
8232 case 7: /* fsub[sd]. */
8233 vpipe = VFP11_FMAC;
8234 goto vfp_binop;
8235
8236 case 8: /* fdiv[sd]. */
8237 vpipe = VFP11_DS;
8238 vfp_binop:
8239 bfd_arm_vfp11_write_mask (destmask, fd);
8240 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8241 regs[1] = fm;
8242 *numregs = 2;
8243 break;
8244
8245 case 15: /* extended opcode. */
8246 {
8247 unsigned int extn = ((insn >> 15) & 0x1e)
8248 | ((insn >> 7) & 1);
8249
8250 switch (extn)
8251 {
8252 case 0: /* fcpy[sd]. */
8253 case 1: /* fabs[sd]. */
8254 case 2: /* fneg[sd]. */
8255 case 8: /* fcmp[sd]. */
8256 case 9: /* fcmpe[sd]. */
8257 case 10: /* fcmpz[sd]. */
8258 case 11: /* fcmpez[sd]. */
8259 case 16: /* fuito[sd]. */
8260 case 17: /* fsito[sd]. */
8261 case 24: /* ftoui[sd]. */
8262 case 25: /* ftouiz[sd]. */
8263 case 26: /* ftosi[sd]. */
8264 case 27: /* ftosiz[sd]. */
8265 /* These instructions will not bounce due to underflow. */
8266 *numregs = 0;
8267 vpipe = VFP11_FMAC;
8268 break;
8269
8270 case 3: /* fsqrt[sd]. */
8271 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8272 registers to cause the erratum in previous instructions. */
8273 bfd_arm_vfp11_write_mask (destmask, fd);
8274 vpipe = VFP11_DS;
8275 break;
8276
8277 case 15: /* fcvt{ds,sd}. */
8278 {
8279 int rnum = 0;
8280
8281 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
8282
8283 /* Only FCVTSD can underflow. */
99059e56
RM
8284 if ((insn & 0x100) != 0)
8285 regs[rnum++] = fm;
c7b8f16e 8286
99059e56 8287 *numregs = rnum;
c7b8f16e 8288
99059e56
RM
8289 vpipe = VFP11_FMAC;
8290 }
8291 break;
c7b8f16e 8292
99059e56
RM
8293 default:
8294 return VFP11_BAD;
8295 }
8296 }
8297 break;
c7b8f16e 8298
99059e56
RM
8299 default:
8300 return VFP11_BAD;
8301 }
c7b8f16e
JB
8302 }
8303 /* Two-register transfer. */
8304 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8305 {
8306 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 8307
c7b8f16e
JB
8308 if ((insn & 0x100000) == 0)
8309 {
99059e56
RM
8310 if (is_double)
8311 bfd_arm_vfp11_write_mask (destmask, fm);
8312 else
8313 {
8314 bfd_arm_vfp11_write_mask (destmask, fm);
8315 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8316 }
c7b8f16e
JB
8317 }
8318
91d6fa6a 8319 vpipe = VFP11_LS;
c7b8f16e
JB
8320 }
8321 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8322 {
8323 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8324 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 8325
c7b8f16e 8326 switch (puw)
99059e56
RM
8327 {
8328 case 0: /* Two-reg transfer. We should catch these above. */
8329 abort ();
906e58ca 8330
99059e56
RM
8331 case 2: /* fldm[sdx]. */
8332 case 3:
8333 case 5:
8334 {
8335 unsigned int i, offset = insn & 0xff;
c7b8f16e 8336
99059e56
RM
8337 if (is_double)
8338 offset >>= 1;
c7b8f16e 8339
99059e56
RM
8340 for (i = fd; i < fd + offset; i++)
8341 bfd_arm_vfp11_write_mask (destmask, i);
8342 }
8343 break;
906e58ca 8344
99059e56
RM
8345 case 4: /* fld[sd]. */
8346 case 6:
8347 bfd_arm_vfp11_write_mask (destmask, fd);
8348 break;
906e58ca 8349
99059e56
RM
8350 default:
8351 return VFP11_BAD;
8352 }
c7b8f16e 8353
91d6fa6a 8354 vpipe = VFP11_LS;
c7b8f16e
JB
8355 }
8356 /* Single-register transfer. Note L==0. */
8357 else if ((insn & 0x0f100e10) == 0x0e000a10)
8358 {
8359 unsigned int opcode = (insn >> 21) & 7;
8360 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8361
8362 switch (opcode)
99059e56
RM
8363 {
8364 case 0: /* fmsr/fmdlr. */
8365 case 1: /* fmdhr. */
8366 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8367 destination register. I don't know if this is exactly right,
8368 but it is the conservative choice. */
8369 bfd_arm_vfp11_write_mask (destmask, fn);
8370 break;
8371
8372 case 7: /* fmxr. */
8373 break;
8374 }
c7b8f16e 8375
91d6fa6a 8376 vpipe = VFP11_LS;
c7b8f16e
JB
8377 }
8378
91d6fa6a 8379 return vpipe;
c7b8f16e
JB
8380}
8381
8382
8383static int elf32_arm_compare_mapping (const void * a, const void * b);
8384
8385
8386/* Look for potentially-troublesome code sequences which might trigger the
8387 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8388 (available from ARM) for details of the erratum. A short version is
8389 described in ld.texinfo. */
8390
0a1b45a2 8391bool
c7b8f16e
JB
8392bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8393{
8394 asection *sec;
8395 bfd_byte *contents = NULL;
8396 int state = 0;
8397 int regs[3], numregs = 0;
8398 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8399 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 8400
4dfe6ac6 8401 if (globals == NULL)
0a1b45a2 8402 return false;
4dfe6ac6 8403
c7b8f16e
JB
8404 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8405 The states transition as follows:
906e58ca 8406
c7b8f16e 8407 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
8408 A VFP FMAC-pipeline instruction has been seen. Fill
8409 regs[0]..regs[numregs-1] with its input operands. Remember this
8410 instruction in 'first_fmac'.
c7b8f16e
JB
8411
8412 1 -> 2
99059e56
RM
8413 Any instruction, except for a VFP instruction which overwrites
8414 regs[*].
906e58ca 8415
c7b8f16e
JB
8416 1 -> 3 [ -> 0 ] or
8417 2 -> 3 [ -> 0 ]
99059e56
RM
8418 A VFP instruction has been seen which overwrites any of regs[*].
8419 We must make a veneer! Reset state to 0 before examining next
8420 instruction.
906e58ca 8421
c7b8f16e 8422 2 -> 0
99059e56
RM
8423 If we fail to match anything in state 2, reset to state 0 and reset
8424 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
8425
8426 If the VFP11 vector mode is in use, there must be at least two unrelated
8427 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 8428 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
8429
8430 /* If we are only performing a partial link do not bother
8431 to construct any glue. */
0e1862bb 8432 if (bfd_link_relocatable (link_info))
0a1b45a2 8433 return true;
c7b8f16e 8434
0ffa91dd
NC
8435 /* Skip if this bfd does not correspond to an ELF image. */
8436 if (! is_arm_elf (abfd))
0a1b45a2 8437 return true;
906e58ca 8438
c7b8f16e
JB
8439 /* We should have chosen a fix type by the time we get here. */
8440 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8441
8442 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
0a1b45a2 8443 return true;
2e6030b9 8444
33a7ffc2
JM
8445 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8446 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8447 return true;
33a7ffc2 8448
c7b8f16e
JB
8449 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8450 {
8451 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8452 struct _arm_elf_section_data *sec_data;
8453
8454 /* If we don't have executable progbits, we're not interested in this
99059e56 8455 section. Also skip if section is to be excluded. */
c7b8f16e 8456 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
8457 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8458 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 8459 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 8460 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
8461 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8462 continue;
c7b8f16e
JB
8463
8464 sec_data = elf32_arm_section_data (sec);
906e58ca 8465
c7b8f16e 8466 if (sec_data->mapcount == 0)
99059e56 8467 continue;
906e58ca 8468
c7b8f16e
JB
8469 if (elf_section_data (sec)->this_hdr.contents != NULL)
8470 contents = elf_section_data (sec)->this_hdr.contents;
8471 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8472 goto error_return;
8473
8474 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8475 elf32_arm_compare_mapping);
8476
8477 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
8478 {
8479 unsigned int span_start = sec_data->map[span].vma;
8480 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 8481 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
8482 char span_type = sec_data->map[span].type;
8483
8484 /* FIXME: Only ARM mode is supported at present. We may need to
8485 support Thumb-2 mode also at some point. */
8486 if (span_type != 'a')
8487 continue;
8488
8489 for (i = span_start; i < span_end;)
8490 {
8491 unsigned int next_i = i + 4;
8492 unsigned int insn = bfd_big_endian (abfd)
13c9c485
AM
8493 ? (((unsigned) contents[i] << 24)
8494 | (contents[i + 1] << 16)
8495 | (contents[i + 2] << 8)
8496 | contents[i + 3])
8497 : (((unsigned) contents[i + 3] << 24)
8498 | (contents[i + 2] << 16)
8499 | (contents[i + 1] << 8)
8500 | contents[i]);
99059e56
RM
8501 unsigned int writemask = 0;
8502 enum bfd_arm_vfp11_pipe vpipe;
8503
8504 switch (state)
8505 {
8506 case 0:
8507 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8508 &numregs);
8509 /* I'm assuming the VFP11 erratum can trigger with denorm
8510 operands on either the FMAC or the DS pipeline. This might
8511 lead to slightly overenthusiastic veneer insertion. */
8512 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8513 {
8514 state = use_vector ? 1 : 2;
8515 first_fmac = i;
8516 veneer_of_insn = insn;
8517 }
8518 break;
8519
8520 case 1:
8521 {
8522 int other_regs[3], other_numregs;
8523 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8524 other_regs,
99059e56
RM
8525 &other_numregs);
8526 if (vpipe != VFP11_BAD
8527 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8528 numregs))
99059e56
RM
8529 state = 3;
8530 else
8531 state = 2;
8532 }
8533 break;
8534
8535 case 2:
8536 {
8537 int other_regs[3], other_numregs;
8538 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 8539 other_regs,
99059e56
RM
8540 &other_numregs);
8541 if (vpipe != VFP11_BAD
8542 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 8543 numregs))
99059e56
RM
8544 state = 3;
8545 else
8546 {
8547 state = 0;
8548 next_i = first_fmac + 4;
8549 }
8550 }
8551 break;
8552
8553 case 3:
8554 abort (); /* Should be unreachable. */
8555 }
8556
8557 if (state == 3)
8558 {
8559 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8560 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8561
8562 elf32_arm_section_data (sec)->erratumcount += 1;
8563
8564 newerr->u.b.vfp_insn = veneer_of_insn;
8565
8566 switch (span_type)
8567 {
8568 case 'a':
8569 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8570 break;
8571
8572 default:
8573 abort ();
8574 }
8575
8576 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
8577 first_fmac);
8578
99059e56 8579 newerr->vma = -1;
c7b8f16e 8580
99059e56
RM
8581 newerr->next = sec_data->erratumlist;
8582 sec_data->erratumlist = newerr;
c7b8f16e 8583
99059e56
RM
8584 state = 0;
8585 }
c7b8f16e 8586
99059e56
RM
8587 i = next_i;
8588 }
8589 }
906e58ca 8590
c9594989 8591 if (elf_section_data (sec)->this_hdr.contents != contents)
99059e56 8592 free (contents);
c7b8f16e
JB
8593 contents = NULL;
8594 }
8595
0a1b45a2 8596 return true;
c7b8f16e 8597
dc1e8a47 8598 error_return:
c9594989 8599 if (elf_section_data (sec)->this_hdr.contents != contents)
c7b8f16e 8600 free (contents);
906e58ca 8601
0a1b45a2 8602 return false;
c7b8f16e
JB
8603}
8604
8605/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8606 after sections have been laid out, using specially-named symbols. */
8607
8608void
8609bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8610 struct bfd_link_info *link_info)
8611{
8612 asection *sec;
8613 struct elf32_arm_link_hash_table *globals;
8614 char *tmp_name;
906e58ca 8615
0e1862bb 8616 if (bfd_link_relocatable (link_info))
c7b8f16e 8617 return;
2e6030b9
MS
8618
8619 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 8620 if (! is_arm_elf (abfd))
2e6030b9
MS
8621 return;
8622
c7b8f16e 8623 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
8624 if (globals == NULL)
8625 return;
906e58ca 8626
21d799b5 8627 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 8628 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8629 BFD_ASSERT (tmp_name);
c7b8f16e
JB
8630
8631 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8632 {
8633 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8634 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 8635
c7b8f16e 8636 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
8637 {
8638 struct elf_link_hash_entry *myh;
8639 bfd_vma vma;
8640
8641 switch (errnode->type)
8642 {
8643 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8644 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8645 /* Find veneer symbol. */
8646 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
8647 errnode->u.b.veneer->u.v.id);
8648
99059e56 8649 myh = elf_link_hash_lookup
0a1b45a2 8650 (&(globals)->root, tmp_name, false, false, true);
c7b8f16e 8651
a504d23a 8652 if (myh == NULL)
90b6238f
AM
8653 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8654 abfd, "VFP11", tmp_name);
a504d23a
LA
8655
8656 vma = myh->root.u.def.section->output_section->vma
8657 + myh->root.u.def.section->output_offset
8658 + myh->root.u.def.value;
8659
8660 errnode->u.b.veneer->vma = vma;
8661 break;
8662
8663 case VFP11_ERRATUM_ARM_VENEER:
8664 case VFP11_ERRATUM_THUMB_VENEER:
8665 /* Find return location. */
8666 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8667 errnode->u.v.id);
8668
8669 myh = elf_link_hash_lookup
0a1b45a2 8670 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8671
8672 if (myh == NULL)
90b6238f
AM
8673 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8674 abfd, "VFP11", tmp_name);
a504d23a
LA
8675
8676 vma = myh->root.u.def.section->output_section->vma
8677 + myh->root.u.def.section->output_offset
8678 + myh->root.u.def.value;
8679
8680 errnode->u.v.branch->vma = vma;
8681 break;
8682
8683 default:
8684 abort ();
8685 }
8686 }
8687 }
8688
8689 free (tmp_name);
8690}
8691
8692/* Find virtual-memory addresses for STM32L4XX erratum veneers and
8693 return locations after sections have been laid out, using
8694 specially-named symbols. */
8695
8696void
8697bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8698 struct bfd_link_info *link_info)
8699{
8700 asection *sec;
8701 struct elf32_arm_link_hash_table *globals;
8702 char *tmp_name;
8703
8704 if (bfd_link_relocatable (link_info))
8705 return;
8706
8707 /* Skip if this bfd does not correspond to an ELF image. */
8708 if (! is_arm_elf (abfd))
8709 return;
8710
8711 globals = elf32_arm_hash_table (link_info);
8712 if (globals == NULL)
8713 return;
8714
8715 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8716 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7a0fb7be 8717 BFD_ASSERT (tmp_name);
a504d23a
LA
8718
8719 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8720 {
8721 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8722 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8723
8724 for (; errnode != NULL; errnode = errnode->next)
8725 {
8726 struct elf_link_hash_entry *myh;
8727 bfd_vma vma;
8728
8729 switch (errnode->type)
8730 {
8731 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8732 /* Find veneer symbol. */
8733 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8734 errnode->u.b.veneer->u.v.id);
8735
8736 myh = elf_link_hash_lookup
0a1b45a2 8737 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8738
8739 if (myh == NULL)
90b6238f
AM
8740 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8741 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8742
8743 vma = myh->root.u.def.section->output_section->vma
8744 + myh->root.u.def.section->output_offset
8745 + myh->root.u.def.value;
8746
8747 errnode->u.b.veneer->vma = vma;
8748 break;
8749
8750 case STM32L4XX_ERRATUM_VENEER:
8751 /* Find return location. */
8752 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8753 errnode->u.v.id);
8754
8755 myh = elf_link_hash_lookup
0a1b45a2 8756 (&(globals)->root, tmp_name, false, false, true);
a504d23a
LA
8757
8758 if (myh == NULL)
90b6238f
AM
8759 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8760 abfd, "STM32L4XX", tmp_name);
a504d23a
LA
8761
8762 vma = myh->root.u.def.section->output_section->vma
8763 + myh->root.u.def.section->output_offset
8764 + myh->root.u.def.value;
8765
8766 errnode->u.v.branch->vma = vma;
8767 break;
8768
8769 default:
8770 abort ();
8771 }
8772 }
8773 }
8774
8775 free (tmp_name);
8776}
8777
0a1b45a2 8778static inline bool
a504d23a
LA
8779is_thumb2_ldmia (const insn32 insn)
8780{
8781 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8782 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8783 return (insn & 0xffd02000) == 0xe8900000;
8784}
8785
0a1b45a2 8786static inline bool
a504d23a
LA
8787is_thumb2_ldmdb (const insn32 insn)
8788{
8789 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8790 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8791 return (insn & 0xffd02000) == 0xe9100000;
8792}
8793
0a1b45a2 8794static inline bool
a504d23a
LA
8795is_thumb2_vldm (const insn32 insn)
8796{
8797 /* A6.5 Extension register load or store instruction
8798 A7.7.229
9239bbd3
CM
8799 We look for SP 32-bit and DP 64-bit registers.
8800 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8801 <list> is consecutive 64-bit registers
8802 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
a504d23a
LA
8803 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8804 <list> is consecutive 32-bit registers
8805 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8806 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8807 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8808 return
9239bbd3
CM
8809 (((insn & 0xfe100f00) == 0xec100b00) ||
8810 ((insn & 0xfe100f00) == 0xec100a00))
a504d23a
LA
8811 && /* (IA without !). */
8812 (((((insn << 7) >> 28) & 0xd) == 0x4)
9239bbd3 8813 /* (IA with !), includes VPOP (when reg number is SP). */
a504d23a
LA
8814 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8815 /* (DB with !). */
8816 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8817}
8818
8819/* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8820 VLDM opcode and:
8821 - computes the number and the mode of memory accesses
8822 - decides if the replacement should be done:
8823 . replaces only if > 8-word accesses
8824 . or (testing purposes only) replaces all accesses. */
8825
0a1b45a2 8826static bool
a504d23a
LA
8827stm32l4xx_need_create_replacing_stub (const insn32 insn,
8828 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8829{
9239bbd3 8830 int nb_words = 0;
a504d23a
LA
8831
8832 /* The field encoding the register list is the same for both LDMIA
8833 and LDMDB encodings. */
8834 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
b25e998d 8835 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
a504d23a 8836 else if (is_thumb2_vldm (insn))
9239bbd3 8837 nb_words = (insn & 0xff);
a504d23a
LA
8838
8839 /* DEFAULT mode accounts for the real bug condition situation,
8840 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
63b4cc53
AM
8841 return (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT
8842 ? nb_words > 8
8843 : stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL);
a504d23a
LA
8844}
8845
8846/* Look for potentially-troublesome code sequences which might trigger
8847 the STM STM32L4XX erratum. */
8848
0a1b45a2 8849bool
a504d23a
LA
8850bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8851 struct bfd_link_info *link_info)
8852{
8853 asection *sec;
8854 bfd_byte *contents = NULL;
8855 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8856
8857 if (globals == NULL)
0a1b45a2 8858 return false;
a504d23a
LA
8859
8860 /* If we are only performing a partial link do not bother
8861 to construct any glue. */
8862 if (bfd_link_relocatable (link_info))
0a1b45a2 8863 return true;
a504d23a
LA
8864
8865 /* Skip if this bfd does not correspond to an ELF image. */
8866 if (! is_arm_elf (abfd))
0a1b45a2 8867 return true;
a504d23a
LA
8868
8869 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
0a1b45a2 8870 return true;
a504d23a
LA
8871
8872 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8873 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
0a1b45a2 8874 return true;
a504d23a
LA
8875
8876 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8877 {
8878 unsigned int i, span;
8879 struct _arm_elf_section_data *sec_data;
8880
8881 /* If we don't have executable progbits, we're not interested in this
8882 section. Also skip if section is to be excluded. */
8883 if (elf_section_type (sec) != SHT_PROGBITS
8884 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8885 || (sec->flags & SEC_EXCLUDE) != 0
8886 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8887 || sec->output_section == bfd_abs_section_ptr
8888 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8889 continue;
8890
8891 sec_data = elf32_arm_section_data (sec);
c7b8f16e 8892
a504d23a
LA
8893 if (sec_data->mapcount == 0)
8894 continue;
c7b8f16e 8895
a504d23a
LA
8896 if (elf_section_data (sec)->this_hdr.contents != NULL)
8897 contents = elf_section_data (sec)->this_hdr.contents;
8898 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8899 goto error_return;
c7b8f16e 8900
a504d23a
LA
8901 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8902 elf32_arm_compare_mapping);
c7b8f16e 8903
a504d23a
LA
8904 for (span = 0; span < sec_data->mapcount; span++)
8905 {
8906 unsigned int span_start = sec_data->map[span].vma;
8907 unsigned int span_end = (span == sec_data->mapcount - 1)
8908 ? sec->size : sec_data->map[span + 1].vma;
8909 char span_type = sec_data->map[span].type;
8910 int itblock_current_pos = 0;
c7b8f16e 8911
a504d23a
LA
8912 /* Only Thumb2 mode need be supported with this CM4 specific
8913 code, we should not encounter any arm mode eg span_type
8914 != 'a'. */
8915 if (span_type != 't')
8916 continue;
c7b8f16e 8917
a504d23a
LA
8918 for (i = span_start; i < span_end;)
8919 {
8920 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
0a1b45a2
AM
8921 bool insn_32bit = false;
8922 bool is_ldm = false;
8923 bool is_vldm = false;
8924 bool is_not_last_in_it_block = false;
a504d23a
LA
8925
8926 /* The first 16-bits of all 32-bit thumb2 instructions start
8927 with opcode[15..13]=0b111 and the encoded op1 can be anything
8928 except opcode[12..11]!=0b00.
8929 See 32-bit Thumb instruction encoding. */
8930 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
0a1b45a2 8931 insn_32bit = true;
c7b8f16e 8932
a504d23a
LA
8933 /* Compute the predicate that tells if the instruction
8934 is concerned by the IT block
8935 - Creates an error if there is a ldm that is not
8936 last in the IT block thus cannot be replaced
8937 - Otherwise we can create a branch at the end of the
8938 IT block, it will be controlled naturally by IT
8939 with the proper pseudo-predicate
8940 - So the only interesting predicate is the one that
8941 tells that we are not on the last item of an IT
8942 block. */
8943 if (itblock_current_pos != 0)
8944 is_not_last_in_it_block = !!--itblock_current_pos;
906e58ca 8945
a504d23a
LA
8946 if (insn_32bit)
8947 {
8948 /* Load the rest of the insn (in manual-friendly order). */
8949 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8950 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8951 is_vldm = is_thumb2_vldm (insn);
8952
8953 /* Veneers are created for (v)ldm depending on
8954 option flags and memory accesses conditions; but
8955 if the instruction is not the last instruction of
8956 an IT block, we cannot create a jump there, so we
8957 bail out. */
5025eb7c
AO
8958 if ((is_ldm || is_vldm)
8959 && stm32l4xx_need_create_replacing_stub
a504d23a
LA
8960 (insn, globals->stm32l4xx_fix))
8961 {
8962 if (is_not_last_in_it_block)
8963 {
4eca0228 8964 _bfd_error_handler
695344c0 8965 /* xgettext:c-format */
871b3ab2 8966 (_("%pB(%pA+%#x): error: multiple load detected"
90b6238f
AM
8967 " in non-last IT block instruction:"
8968 " STM32L4XX veneer cannot be generated; "
8969 "use gcc option -mrestrict-it to generate"
8970 " only one instruction per IT block"),
d42c267e 8971 abfd, sec, i);
a504d23a
LA
8972 }
8973 else
8974 {
8975 elf32_stm32l4xx_erratum_list *newerr =
8976 (elf32_stm32l4xx_erratum_list *)
8977 bfd_zmalloc
8978 (sizeof (elf32_stm32l4xx_erratum_list));
8979
8980 elf32_arm_section_data (sec)
8981 ->stm32l4xx_erratumcount += 1;
8982 newerr->u.b.insn = insn;
8983 /* We create only thumb branches. */
8984 newerr->type =
8985 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8986 record_stm32l4xx_erratum_veneer
8987 (link_info, newerr, abfd, sec,
8988 i,
8989 is_ldm ?
8990 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8991 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8992 newerr->vma = -1;
8993 newerr->next = sec_data->stm32l4xx_erratumlist;
8994 sec_data->stm32l4xx_erratumlist = newerr;
8995 }
8996 }
8997 }
8998 else
8999 {
9000 /* A7.7.37 IT p208
9001 IT blocks are only encoded in T1
9002 Encoding T1: IT{x{y{z}}} <firstcond>
9003 1 0 1 1 - 1 1 1 1 - firstcond - mask
9004 if mask = '0000' then see 'related encodings'
9005 We don't deal with UNPREDICTABLE, just ignore these.
9006 There can be no nested IT blocks so an IT block
9007 is naturally a new one for which it is worth
9008 computing its size. */
0a1b45a2 9009 bool is_newitblock = ((insn & 0xff00) == 0xbf00)
5025eb7c 9010 && ((insn & 0x000f) != 0x0000);
a504d23a
LA
9011 /* If we have a new IT block we compute its size. */
9012 if (is_newitblock)
9013 {
9014 /* Compute the number of instructions controlled
9015 by the IT block, it will be used to decide
9016 whether we are inside an IT block or not. */
9017 unsigned int mask = insn & 0x000f;
9018 itblock_current_pos = 4 - ctz (mask);
9019 }
9020 }
9021
9022 i += insn_32bit ? 4 : 2;
99059e56
RM
9023 }
9024 }
a504d23a 9025
c9594989 9026 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a
LA
9027 free (contents);
9028 contents = NULL;
c7b8f16e 9029 }
906e58ca 9030
0a1b45a2 9031 return true;
a504d23a 9032
dc1e8a47 9033 error_return:
c9594989 9034 if (elf_section_data (sec)->this_hdr.contents != contents)
a504d23a 9035 free (contents);
c7b8f16e 9036
0a1b45a2 9037 return false;
a504d23a 9038}
c7b8f16e 9039
eb043451
PB
9040/* Set target relocation values needed during linking. */
9041
9042void
68c39892 9043bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
bf21ed78 9044 struct bfd_link_info *link_info,
68c39892 9045 struct elf32_arm_params *params)
eb043451
PB
9046{
9047 struct elf32_arm_link_hash_table *globals;
9048
9049 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9050 if (globals == NULL)
9051 return;
eb043451 9052
68c39892 9053 globals->target1_is_rel = params->target1_is_rel;
29e9b073
CL
9054 if (globals->fdpic_p)
9055 globals->target2_reloc = R_ARM_GOT32;
9056 else if (strcmp (params->target2_type, "rel") == 0)
eb043451 9057 globals->target2_reloc = R_ARM_REL32;
68c39892 9058 else if (strcmp (params->target2_type, "abs") == 0)
eeac373a 9059 globals->target2_reloc = R_ARM_ABS32;
68c39892 9060 else if (strcmp (params->target2_type, "got-rel") == 0)
eb043451
PB
9061 globals->target2_reloc = R_ARM_GOT_PREL;
9062 else
9063 {
90b6238f 9064 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
68c39892 9065 params->target2_type);
eb043451 9066 }
68c39892
TP
9067 globals->fix_v4bx = params->fix_v4bx;
9068 globals->use_blx |= params->use_blx;
9069 globals->vfp11_fix = params->vfp11_denorm_fix;
9070 globals->stm32l4xx_fix = params->stm32l4xx_fix;
e8b09b87
CL
9071 if (globals->fdpic_p)
9072 globals->pic_veneer = 1;
9073 else
9074 globals->pic_veneer = params->pic_veneer;
68c39892
TP
9075 globals->fix_cortex_a8 = params->fix_cortex_a8;
9076 globals->fix_arm1176 = params->fix_arm1176;
9077 globals->cmse_implib = params->cmse_implib;
9078 globals->in_implib_bfd = params->in_implib_bfd;
bf21ed78 9079
0ffa91dd 9080 BFD_ASSERT (is_arm_elf (output_bfd));
68c39892
TP
9081 elf_arm_tdata (output_bfd)->no_enum_size_warning
9082 = params->no_enum_size_warning;
9083 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9084 = params->no_wchar_size_warning;
eb043451 9085}
eb043451 9086
12a0a0fd 9087/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 9088
12a0a0fd
PB
9089static void
9090insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9091{
9092 bfd_vma upper;
9093 bfd_vma lower;
9094 int reloc_sign;
9095
9096 BFD_ASSERT ((offset & 1) == 0);
9097
9098 upper = bfd_get_16 (abfd, insn);
9099 lower = bfd_get_16 (abfd, insn + 2);
9100 reloc_sign = (offset < 0) ? 1 : 0;
9101 upper = (upper & ~(bfd_vma) 0x7ff)
9102 | ((offset >> 12) & 0x3ff)
9103 | (reloc_sign << 10);
906e58ca 9104 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
9105 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9106 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9107 | ((offset >> 1) & 0x7ff);
9108 bfd_put_16 (abfd, upper, insn);
9109 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
9110}
9111
9b485d32
NC
9112/* Thumb code calling an ARM function. */
9113
252b5132 9114static int
57e8b36a 9115elf32_thumb_to_arm_stub (struct bfd_link_info * info,
07d6d2b8
AM
9116 const char * name,
9117 bfd * input_bfd,
9118 bfd * output_bfd,
9119 asection * input_section,
9120 bfd_byte * hit_data,
9121 asection * sym_sec,
9122 bfd_vma offset,
9123 bfd_signed_vma addend,
9124 bfd_vma val,
f2a9dd69 9125 char **error_message)
252b5132 9126{
bcbdc74c 9127 asection * s = 0;
dc810e39 9128 bfd_vma my_offset;
252b5132 9129 long int ret_offset;
bcbdc74c
NC
9130 struct elf_link_hash_entry * myh;
9131 struct elf32_arm_link_hash_table * globals;
252b5132 9132
f2a9dd69 9133 myh = find_thumb_glue (info, name, error_message);
252b5132 9134 if (myh == NULL)
0a1b45a2 9135 return false;
252b5132
RH
9136
9137 globals = elf32_arm_hash_table (info);
252b5132
RH
9138 BFD_ASSERT (globals != NULL);
9139 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9140
9141 my_offset = myh->root.u.def.value;
9142
3d4d4302
AM
9143 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9144 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
9145
9146 BFD_ASSERT (s != NULL);
9147 BFD_ASSERT (s->contents != NULL);
9148 BFD_ASSERT (s->output_section != NULL);
9149
9150 if ((my_offset & 0x01) == 0x01)
9151 {
9152 if (sym_sec != NULL
9153 && sym_sec->owner != NULL
9154 && !INTERWORK_FLAG (sym_sec->owner))
9155 {
4eca0228 9156 _bfd_error_handler
90b6238f
AM
9157 (_("%pB(%s): warning: interworking not enabled;"
9158 " first occurrence: %pB: %s call to %s"),
9159 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
252b5132 9160
0a1b45a2 9161 return false;
252b5132
RH
9162 }
9163
9164 --my_offset;
9165 myh->root.u.def.value = my_offset;
9166
52ab56c2
PB
9167 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9168 s->contents + my_offset);
252b5132 9169
52ab56c2
PB
9170 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9171 s->contents + my_offset + 2);
252b5132
RH
9172
9173 ret_offset =
9b485d32
NC
9174 /* Address of destination of the stub. */
9175 ((bfd_signed_vma) val)
252b5132 9176 - ((bfd_signed_vma)
57e8b36a
NC
9177 /* Offset from the start of the current section
9178 to the start of the stubs. */
9b485d32
NC
9179 (s->output_offset
9180 /* Offset of the start of this stub from the start of the stubs. */
9181 + my_offset
9182 /* Address of the start of the current section. */
9183 + s->output_section->vma)
9184 /* The branch instruction is 4 bytes into the stub. */
9185 + 4
9186 /* ARM branches work from the pc of the instruction + 8. */
9187 + 8);
252b5132 9188
52ab56c2
PB
9189 put_arm_insn (globals, output_bfd,
9190 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9191 s->contents + my_offset + 4);
252b5132
RH
9192 }
9193
9194 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9195
427bfd90
NC
9196 /* Now go back and fix up the original BL insn to point to here. */
9197 ret_offset =
9198 /* Address of where the stub is located. */
9199 (s->output_section->vma + s->output_offset + my_offset)
9200 /* Address of where the BL is located. */
57e8b36a
NC
9201 - (input_section->output_section->vma + input_section->output_offset
9202 + offset)
427bfd90
NC
9203 /* Addend in the relocation. */
9204 - addend
9205 /* Biassing for PC-relative addressing. */
9206 - 8;
252b5132 9207
12a0a0fd 9208 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 9209
0a1b45a2 9210 return true;
252b5132
RH
9211}
9212
a4fd1a8e 9213/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 9214
a4fd1a8e
PB
9215static struct elf_link_hash_entry *
9216elf32_arm_create_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9217 const char * name,
9218 bfd * input_bfd,
9219 bfd * output_bfd,
9220 asection * sym_sec,
9221 bfd_vma val,
9222 asection * s,
9223 char ** error_message)
252b5132 9224{
dc810e39 9225 bfd_vma my_offset;
252b5132 9226 long int ret_offset;
bcbdc74c
NC
9227 struct elf_link_hash_entry * myh;
9228 struct elf32_arm_link_hash_table * globals;
252b5132 9229
f2a9dd69 9230 myh = find_arm_glue (info, name, error_message);
252b5132 9231 if (myh == NULL)
a4fd1a8e 9232 return NULL;
252b5132
RH
9233
9234 globals = elf32_arm_hash_table (info);
252b5132
RH
9235 BFD_ASSERT (globals != NULL);
9236 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9237
9238 my_offset = myh->root.u.def.value;
252b5132
RH
9239
9240 if ((my_offset & 0x01) == 0x01)
9241 {
9242 if (sym_sec != NULL
9243 && sym_sec->owner != NULL
9244 && !INTERWORK_FLAG (sym_sec->owner))
9245 {
4eca0228 9246 _bfd_error_handler
90b6238f
AM
9247 (_("%pB(%s): warning: interworking not enabled;"
9248 " first occurrence: %pB: %s call to %s"),
9249 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
252b5132 9250 }
9b485d32 9251
252b5132
RH
9252 --my_offset;
9253 myh->root.u.def.value = my_offset;
9254
0e1862bb
L
9255 if (bfd_link_pic (info)
9256 || globals->root.is_relocatable_executable
27e55c4d 9257 || globals->pic_veneer)
8f6277f5
PB
9258 {
9259 /* For relocatable objects we can't use absolute addresses,
9260 so construct the address from a relative offset. */
9261 /* TODO: If the offset is small it's probably worth
9262 constructing the address with adds. */
52ab56c2
PB
9263 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9264 s->contents + my_offset);
9265 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9266 s->contents + my_offset + 4);
9267 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9268 s->contents + my_offset + 8);
8f6277f5
PB
9269 /* Adjust the offset by 4 for the position of the add,
9270 and 8 for the pipeline offset. */
9271 ret_offset = (val - (s->output_offset
9272 + s->output_section->vma
9273 + my_offset + 12))
9274 | 1;
9275 bfd_put_32 (output_bfd, ret_offset,
9276 s->contents + my_offset + 12);
9277 }
26079076
PB
9278 else if (globals->use_blx)
9279 {
9280 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9281 s->contents + my_offset);
9282
9283 /* It's a thumb address. Add the low order bit. */
9284 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9285 s->contents + my_offset + 4);
9286 }
8f6277f5
PB
9287 else
9288 {
52ab56c2
PB
9289 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9290 s->contents + my_offset);
252b5132 9291
52ab56c2
PB
9292 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9293 s->contents + my_offset + 4);
252b5132 9294
8f6277f5
PB
9295 /* It's a thumb address. Add the low order bit. */
9296 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9297 s->contents + my_offset + 8);
8029a119
NC
9298
9299 my_offset += 12;
8f6277f5 9300 }
252b5132
RH
9301 }
9302
9303 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9304
a4fd1a8e
PB
9305 return myh;
9306}
9307
9308/* Arm code calling a Thumb function. */
9309
9310static int
9311elf32_arm_to_thumb_stub (struct bfd_link_info * info,
07d6d2b8
AM
9312 const char * name,
9313 bfd * input_bfd,
9314 bfd * output_bfd,
9315 asection * input_section,
9316 bfd_byte * hit_data,
9317 asection * sym_sec,
9318 bfd_vma offset,
9319 bfd_signed_vma addend,
9320 bfd_vma val,
f2a9dd69 9321 char **error_message)
a4fd1a8e
PB
9322{
9323 unsigned long int tmp;
9324 bfd_vma my_offset;
9325 asection * s;
9326 long int ret_offset;
9327 struct elf_link_hash_entry * myh;
9328 struct elf32_arm_link_hash_table * globals;
9329
9330 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9331 BFD_ASSERT (globals != NULL);
9332 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9333
3d4d4302
AM
9334 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9335 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9336 BFD_ASSERT (s != NULL);
9337 BFD_ASSERT (s->contents != NULL);
9338 BFD_ASSERT (s->output_section != NULL);
9339
9340 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 9341 sym_sec, val, s, error_message);
a4fd1a8e 9342 if (!myh)
0a1b45a2 9343 return false;
a4fd1a8e
PB
9344
9345 my_offset = myh->root.u.def.value;
252b5132
RH
9346 tmp = bfd_get_32 (input_bfd, hit_data);
9347 tmp = tmp & 0xFF000000;
9348
9b485d32 9349 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
9350 ret_offset = (s->output_offset
9351 + my_offset
9352 + s->output_section->vma
9353 - (input_section->output_offset
9354 + input_section->output_section->vma
9355 + offset + addend)
9356 - 8);
9a5aca8c 9357
252b5132
RH
9358 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9359
dc810e39 9360 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 9361
0a1b45a2 9362 return true;
252b5132
RH
9363}
9364
a4fd1a8e
PB
9365/* Populate Arm stub for an exported Thumb function. */
9366
0a1b45a2 9367static bool
a4fd1a8e
PB
9368elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9369{
9370 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9371 asection * s;
9372 struct elf_link_hash_entry * myh;
9373 struct elf32_arm_link_hash_entry *eh;
9374 struct elf32_arm_link_hash_table * globals;
9375 asection *sec;
9376 bfd_vma val;
f2a9dd69 9377 char *error_message;
a4fd1a8e 9378
906e58ca 9379 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
9380 /* Allocate stubs for exported Thumb functions on v4t. */
9381 if (eh->export_glue == NULL)
0a1b45a2 9382 return true;
a4fd1a8e
PB
9383
9384 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
9385 BFD_ASSERT (globals != NULL);
9386 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9387
3d4d4302
AM
9388 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9389 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
9390 BFD_ASSERT (s != NULL);
9391 BFD_ASSERT (s->contents != NULL);
9392 BFD_ASSERT (s->output_section != NULL);
9393
9394 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
9395
9396 BFD_ASSERT (sec->output_section != NULL);
9397
a4fd1a8e
PB
9398 val = eh->export_glue->root.u.def.value + sec->output_offset
9399 + sec->output_section->vma;
8029a119 9400
a4fd1a8e
PB
9401 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9402 h->root.u.def.section->owner,
f2a9dd69
DJ
9403 globals->obfd, sec, val, s,
9404 &error_message);
a4fd1a8e 9405 BFD_ASSERT (myh);
0a1b45a2 9406 return true;
a4fd1a8e
PB
9407}
9408
845b51d6
PB
9409/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9410
9411static bfd_vma
9412elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9413{
9414 bfd_byte *p;
9415 bfd_vma glue_addr;
9416 asection *s;
9417 struct elf32_arm_link_hash_table *globals;
9418
9419 globals = elf32_arm_hash_table (info);
845b51d6
PB
9420 BFD_ASSERT (globals != NULL);
9421 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9422
3d4d4302
AM
9423 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9424 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
9425 BFD_ASSERT (s != NULL);
9426 BFD_ASSERT (s->contents != NULL);
9427 BFD_ASSERT (s->output_section != NULL);
9428
9429 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9430
9431 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9432
9433 if ((globals->bx_glue_offset[reg] & 1) == 0)
9434 {
9435 p = s->contents + glue_addr;
9436 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9437 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9438 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9439 globals->bx_glue_offset[reg] |= 1;
9440 }
9441
9442 return glue_addr + s->output_section->vma + s->output_offset;
9443}
9444
a4fd1a8e
PB
9445/* Generate Arm stubs for exported Thumb symbols. */
9446static void
906e58ca 9447elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
9448 struct bfd_link_info *link_info)
9449{
9450 struct elf32_arm_link_hash_table * globals;
9451
8029a119
NC
9452 if (link_info == NULL)
9453 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
9454 return;
9455
9456 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
9457 if (globals == NULL)
9458 return;
9459
84c08195
PB
9460 /* If blx is available then exported Thumb symbols are OK and there is
9461 nothing to do. */
a4fd1a8e
PB
9462 if (globals->use_blx)
9463 return;
9464
9465 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9466 link_info);
9467}
9468
47beaa6a
RS
9469/* Reserve space for COUNT dynamic relocations in relocation selection
9470 SRELOC. */
9471
9472static void
9473elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9474 bfd_size_type count)
9475{
9476 struct elf32_arm_link_hash_table *htab;
9477
9478 htab = elf32_arm_hash_table (info);
9479 BFD_ASSERT (htab->root.dynamic_sections_created);
9480 if (sreloc == NULL)
9481 abort ();
9482 sreloc->size += RELOC_SIZE (htab) * count;
9483}
9484
34e77a92
RS
9485/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9486 dynamic, the relocations should go in SRELOC, otherwise they should
9487 go in the special .rel.iplt section. */
9488
9489static void
9490elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9491 bfd_size_type count)
9492{
9493 struct elf32_arm_link_hash_table *htab;
9494
9495 htab = elf32_arm_hash_table (info);
9496 if (!htab->root.dynamic_sections_created)
9497 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9498 else
9499 {
9500 BFD_ASSERT (sreloc != NULL);
9501 sreloc->size += RELOC_SIZE (htab) * count;
9502 }
9503}
9504
47beaa6a
RS
9505/* Add relocation REL to the end of relocation section SRELOC. */
9506
9507static void
9508elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9509 asection *sreloc, Elf_Internal_Rela *rel)
9510{
9511 bfd_byte *loc;
9512 struct elf32_arm_link_hash_table *htab;
9513
9514 htab = elf32_arm_hash_table (info);
34e77a92
RS
9515 if (!htab->root.dynamic_sections_created
9516 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9517 sreloc = htab->root.irelplt;
47beaa6a
RS
9518 if (sreloc == NULL)
9519 abort ();
9520 loc = sreloc->contents;
9521 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9522 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9523 abort ();
9524 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9525}
9526
34e77a92
RS
9527/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9528 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9529 to .plt. */
9530
9531static void
9532elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
0a1b45a2 9533 bool is_iplt_entry,
34e77a92
RS
9534 union gotplt_union *root_plt,
9535 struct arm_plt_info *arm_plt)
9536{
9537 struct elf32_arm_link_hash_table *htab;
9538 asection *splt;
9539 asection *sgotplt;
9540
9541 htab = elf32_arm_hash_table (info);
9542
9543 if (is_iplt_entry)
9544 {
9545 splt = htab->root.iplt;
9546 sgotplt = htab->root.igotplt;
9547
99059e56 9548 /* NaCl uses a special first entry in .iplt too. */
90c14f0c 9549 if (htab->root.target_os == is_nacl && splt->size == 0)
99059e56
RM
9550 splt->size += htab->plt_header_size;
9551
34e77a92
RS
9552 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9553 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9554 }
9555 else
9556 {
9557 splt = htab->root.splt;
9558 sgotplt = htab->root.sgotplt;
9559
7801f98f
CL
9560 if (htab->fdpic_p)
9561 {
9562 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9563 /* For lazy binding, relocations will be put into .rel.plt, in
9564 .rel.got otherwise. */
9565 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9566 if (info->flags & DF_BIND_NOW)
9567 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9568 else
9569 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9570 }
9571 else
9572 {
9573 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9574 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9575 }
34e77a92
RS
9576
9577 /* If this is the first .plt entry, make room for the special
9578 first entry. */
9579 if (splt->size == 0)
9580 splt->size += htab->plt_header_size;
9f19ab6d
WN
9581
9582 htab->next_tls_desc_index++;
34e77a92
RS
9583 }
9584
9585 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9586 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9587 splt->size += PLT_THUMB_STUB_SIZE;
9588 root_plt->offset = splt->size;
9589 splt->size += htab->plt_entry_size;
9590
a57d1773
AM
9591 /* We also need to make an entry in the .got.plt section, which
9592 will be placed in the .got section by the linker script. */
9593 if (is_iplt_entry)
9594 arm_plt->got_offset = sgotplt->size;
9595 else
9596 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9597 if (htab->fdpic_p)
9598 /* Function descriptor takes 64 bits in GOT. */
9599 sgotplt->size += 8;
9600 else
9601 sgotplt->size += 4;
34e77a92
RS
9602}
9603
b38cadfb
NC
9604static bfd_vma
9605arm_movw_immediate (bfd_vma value)
9606{
9607 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9608}
9609
9610static bfd_vma
9611arm_movt_immediate (bfd_vma value)
9612{
9613 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9614}
9615
34e77a92
RS
9616/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9617 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9618 Otherwise, DYNINDX is the index of the symbol in the dynamic
9619 symbol table and SYM_VALUE is undefined.
9620
9621 ROOT_PLT points to the offset of the PLT entry from the start of its
9622 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 9623 bookkeeping information.
34e77a92 9624
57460bcf
NC
9625 Returns FALSE if there was a problem. */
9626
0a1b45a2 9627static bool
34e77a92
RS
9628elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9629 union gotplt_union *root_plt,
9630 struct arm_plt_info *arm_plt,
9631 int dynindx, bfd_vma sym_value)
9632{
9633 struct elf32_arm_link_hash_table *htab;
9634 asection *sgot;
9635 asection *splt;
9636 asection *srel;
9637 bfd_byte *loc;
9638 bfd_vma plt_index;
9639 Elf_Internal_Rela rel;
34e77a92
RS
9640 bfd_vma got_header_size;
9641
9642 htab = elf32_arm_hash_table (info);
9643
9644 /* Pick the appropriate sections and sizes. */
9645 if (dynindx == -1)
9646 {
9647 splt = htab->root.iplt;
9648 sgot = htab->root.igotplt;
9649 srel = htab->root.irelplt;
9650
9651 /* There are no reserved entries in .igot.plt, and no special
9652 first entry in .iplt. */
9653 got_header_size = 0;
34e77a92
RS
9654 }
9655 else
9656 {
9657 splt = htab->root.splt;
9658 sgot = htab->root.sgotplt;
9659 srel = htab->root.srelplt;
9660
9661 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
34e77a92
RS
9662 }
9663 BFD_ASSERT (splt != NULL && srel != NULL);
9664
a57d1773
AM
9665 bfd_vma got_offset, got_address, plt_address;
9666 bfd_vma got_displacement, initial_got_entry;
9667 bfd_byte * ptr;
9668
9669 BFD_ASSERT (sgot != NULL);
9670
9671 /* Get the offset into the .(i)got.plt table of the entry that
9672 corresponds to this function. */
9673 got_offset = (arm_plt->got_offset & -2);
9674
9675 /* Get the index in the procedure linkage table which
9676 corresponds to this symbol. This is the index of this symbol
9677 in all the symbols for which we are making plt entries.
9678 After the reserved .got.plt entries, all symbols appear in
9679 the same order as in .plt. */
9680 if (htab->fdpic_p)
9681 /* Function descriptor takes 8 bytes. */
9682 plt_index = (got_offset - got_header_size) / 8;
9683 else
9684 plt_index = (got_offset - got_header_size) / 4;
9685
9686 /* Calculate the address of the GOT entry. */
9687 got_address = (sgot->output_section->vma
9688 + sgot->output_offset
9689 + got_offset);
9690
9691 /* ...and the address of the PLT entry. */
9692 plt_address = (splt->output_section->vma
9693 + splt->output_offset
9694 + root_plt->offset);
9695
9696 ptr = splt->contents + root_plt->offset;
9697 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
34e77a92 9698 {
a57d1773
AM
9699 unsigned int i;
9700 bfd_vma val;
9701
9702 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9703 {
9704 val = elf32_arm_vxworks_shared_plt_entry[i];
9705 if (i == 2)
9706 val |= got_address - sgot->output_section->vma;
9707 if (i == 5)
9708 val |= plt_index * RELOC_SIZE (htab);
9709 if (i == 2 || i == 5)
9710 bfd_put_32 (output_bfd, val, ptr);
9711 else
9712 put_arm_insn (htab, output_bfd, val, ptr);
9713 }
34e77a92 9714 }
a57d1773 9715 else if (htab->root.target_os == is_vxworks)
34e77a92 9716 {
a57d1773
AM
9717 unsigned int i;
9718 bfd_vma val;
34e77a92 9719
a57d1773
AM
9720 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9721 {
9722 val = elf32_arm_vxworks_exec_plt_entry[i];
9723 if (i == 2)
9724 val |= got_address;
9725 if (i == 4)
9726 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9727 if (i == 5)
9728 val |= plt_index * RELOC_SIZE (htab);
9729 if (i == 2 || i == 5)
9730 bfd_put_32 (output_bfd, val, ptr);
9731 else
9732 put_arm_insn (htab, output_bfd, val, ptr);
9733 }
34e77a92 9734
a57d1773
AM
9735 loc = (htab->srelplt2->contents
9736 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
34e77a92 9737
a57d1773
AM
9738 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9739 referencing the GOT for this PLT entry. */
9740 rel.r_offset = plt_address + 8;
9741 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9742 rel.r_addend = got_offset;
9743 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9744 loc += RELOC_SIZE (htab);
34e77a92 9745
a57d1773
AM
9746 /* Create the R_ARM_ABS32 relocation referencing the
9747 beginning of the PLT for this GOT entry. */
9748 rel.r_offset = got_address;
9749 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9750 rel.r_addend = 0;
9751 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9752 }
9753 else if (htab->root.target_os == is_nacl)
9754 {
9755 /* Calculate the displacement between the PLT slot and the
9756 common tail that's part of the special initial PLT slot. */
9757 int32_t tail_displacement
9758 = ((splt->output_section->vma + splt->output_offset
9759 + ARM_NACL_PLT_TAIL_OFFSET)
9760 - (plt_address + htab->plt_entry_size + 4));
9761 BFD_ASSERT ((tail_displacement & 3) == 0);
9762 tail_displacement >>= 2;
34e77a92 9763
a57d1773
AM
9764 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9765 || (-tail_displacement & 0xff000000) == 0);
34e77a92 9766
a57d1773
AM
9767 /* Calculate the displacement between the PLT slot and the entry
9768 in the GOT. The offset accounts for the value produced by
9769 adding to pc in the penultimate instruction of the PLT stub. */
9770 got_displacement = (got_address
9771 - (plt_address + htab->plt_entry_size));
34e77a92 9772
a57d1773
AM
9773 /* NaCl does not support interworking at all. */
9774 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9775
9776 put_arm_insn (htab, output_bfd,
9777 elf32_arm_nacl_plt_entry[0]
9778 | arm_movw_immediate (got_displacement),
9779 ptr + 0);
9780 put_arm_insn (htab, output_bfd,
9781 elf32_arm_nacl_plt_entry[1]
9782 | arm_movt_immediate (got_displacement),
9783 ptr + 4);
9784 put_arm_insn (htab, output_bfd,
9785 elf32_arm_nacl_plt_entry[2],
9786 ptr + 8);
9787 put_arm_insn (htab, output_bfd,
9788 elf32_arm_nacl_plt_entry[3]
9789 | (tail_displacement & 0x00ffffff),
9790 ptr + 12);
9791 }
9792 else if (htab->fdpic_p)
9793 {
cc850f74 9794 const bfd_vma *plt_entry = using_thumb_only (htab)
a57d1773
AM
9795 ? elf32_arm_fdpic_thumb_plt_entry
9796 : elf32_arm_fdpic_plt_entry;
9797
9798 /* Fill-up Thumb stub if needed. */
9799 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9800 {
9801 put_thumb_insn (htab, output_bfd,
9802 elf32_arm_plt_thumb_stub[0], ptr - 4);
9803 put_thumb_insn (htab, output_bfd,
9804 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9805 }
a57d1773
AM
9806 /* As we are using 32 bit instructions even for the Thumb
9807 version, we have to use 'put_arm_insn' instead of
9808 'put_thumb_insn'. */
cc850f74
NC
9809 put_arm_insn (htab, output_bfd, plt_entry[0], ptr + 0);
9810 put_arm_insn (htab, output_bfd, plt_entry[1], ptr + 4);
9811 put_arm_insn (htab, output_bfd, plt_entry[2], ptr + 8);
9812 put_arm_insn (htab, output_bfd, plt_entry[3], ptr + 12);
a57d1773
AM
9813 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9814
9815 if (!(info->flags & DF_BIND_NOW))
34e77a92 9816 {
a57d1773
AM
9817 /* funcdesc_value_reloc_offset. */
9818 bfd_put_32 (output_bfd,
9819 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9820 ptr + 20);
cc850f74
NC
9821 put_arm_insn (htab, output_bfd, plt_entry[6], ptr + 24);
9822 put_arm_insn (htab, output_bfd, plt_entry[7], ptr + 28);
9823 put_arm_insn (htab, output_bfd, plt_entry[8], ptr + 32);
9824 put_arm_insn (htab, output_bfd, plt_entry[9], ptr + 36);
a57d1773
AM
9825 }
9826 }
9827 else if (using_thumb_only (htab))
9828 {
9829 /* PR ld/16017: Generate thumb only PLT entries. */
9830 if (!using_thumb2 (htab))
9831 {
9832 /* FIXME: We ought to be able to generate thumb-1 PLT
9833 instructions... */
9834 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9835 output_bfd);
0a1b45a2 9836 return false;
a57d1773 9837 }
34e77a92 9838
a57d1773
AM
9839 /* Calculate the displacement between the PLT slot and the entry in
9840 the GOT. The 12-byte offset accounts for the value produced by
9841 adding to pc in the 3rd instruction of the PLT stub. */
9842 got_displacement = got_address - (plt_address + 12);
34e77a92 9843
a57d1773
AM
9844 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9845 instead of 'put_thumb_insn'. */
9846 put_arm_insn (htab, output_bfd,
9847 elf32_thumb2_plt_entry[0]
9848 | ((got_displacement & 0x000000ff) << 16)
9849 | ((got_displacement & 0x00000700) << 20)
9850 | ((got_displacement & 0x00000800) >> 1)
9851 | ((got_displacement & 0x0000f000) >> 12),
9852 ptr + 0);
9853 put_arm_insn (htab, output_bfd,
9854 elf32_thumb2_plt_entry[1]
9855 | ((got_displacement & 0x00ff0000) )
9856 | ((got_displacement & 0x07000000) << 4)
9857 | ((got_displacement & 0x08000000) >> 17)
9858 | ((got_displacement & 0xf0000000) >> 28),
9859 ptr + 4);
9860 put_arm_insn (htab, output_bfd,
9861 elf32_thumb2_plt_entry[2],
9862 ptr + 8);
9863 put_arm_insn (htab, output_bfd,
9864 elf32_thumb2_plt_entry[3],
9865 ptr + 12);
9866 }
9867 else
9868 {
9869 /* Calculate the displacement between the PLT slot and the
9870 entry in the GOT. The eight-byte offset accounts for the
9871 value produced by adding to pc in the first instruction
9872 of the PLT stub. */
9873 got_displacement = got_address - (plt_address + 8);
34e77a92 9874
a57d1773
AM
9875 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9876 {
9877 put_thumb_insn (htab, output_bfd,
9878 elf32_arm_plt_thumb_stub[0], ptr - 4);
9879 put_thumb_insn (htab, output_bfd,
9880 elf32_arm_plt_thumb_stub[1], ptr - 2);
34e77a92 9881 }
a57d1773
AM
9882
9883 if (!elf32_arm_use_long_plt_entry)
b38cadfb 9884 {
a57d1773 9885 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
b38cadfb
NC
9886
9887 put_arm_insn (htab, output_bfd,
a57d1773
AM
9888 elf32_arm_plt_entry_short[0]
9889 | ((got_displacement & 0x0ff00000) >> 20),
b38cadfb
NC
9890 ptr + 0);
9891 put_arm_insn (htab, output_bfd,
a57d1773
AM
9892 elf32_arm_plt_entry_short[1]
9893 | ((got_displacement & 0x000ff000) >> 12),
9894 ptr+ 4);
b38cadfb 9895 put_arm_insn (htab, output_bfd,
a57d1773
AM
9896 elf32_arm_plt_entry_short[2]
9897 | (got_displacement & 0x00000fff),
b38cadfb 9898 ptr + 8);
a57d1773
AM
9899#ifdef FOUR_WORD_PLT
9900 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9901#endif
7801f98f 9902 }
a57d1773 9903 else
57460bcf 9904 {
eed94f8f 9905 put_arm_insn (htab, output_bfd,
a57d1773
AM
9906 elf32_arm_plt_entry_long[0]
9907 | ((got_displacement & 0xf0000000) >> 28),
eed94f8f
NC
9908 ptr + 0);
9909 put_arm_insn (htab, output_bfd,
a57d1773
AM
9910 elf32_arm_plt_entry_long[1]
9911 | ((got_displacement & 0x0ff00000) >> 20),
eed94f8f
NC
9912 ptr + 4);
9913 put_arm_insn (htab, output_bfd,
a57d1773
AM
9914 elf32_arm_plt_entry_long[2]
9915 | ((got_displacement & 0x000ff000) >> 12),
9916 ptr+ 8);
eed94f8f 9917 put_arm_insn (htab, output_bfd,
a57d1773
AM
9918 elf32_arm_plt_entry_long[3]
9919 | (got_displacement & 0x00000fff),
eed94f8f 9920 ptr + 12);
57460bcf 9921 }
a57d1773 9922 }
34e77a92 9923
a57d1773
AM
9924 /* Fill in the entry in the .rel(a).(i)plt section. */
9925 rel.r_offset = got_address;
9926 rel.r_addend = 0;
9927 if (dynindx == -1)
9928 {
9929 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9930 The dynamic linker or static executable then calls SYM_VALUE
9931 to determine the correct run-time value of the .igot.plt entry. */
9932 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9933 initial_got_entry = sym_value;
9934 }
9935 else
9936 {
9937 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9938 used by PLT entry. */
9939 if (htab->fdpic_p)
34e77a92 9940 {
a57d1773
AM
9941 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9942 initial_got_entry = 0;
34e77a92
RS
9943 }
9944 else
9945 {
a57d1773
AM
9946 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9947 initial_got_entry = (splt->output_section->vma
9948 + splt->output_offset);
9949
9950 /* PR ld/16017
9951 When thumb only we need to set the LSB for any address that
9952 will be used with an interworking branch instruction. */
9953 if (using_thumb_only (htab))
9954 initial_got_entry |= 1;
34e77a92 9955 }
a57d1773 9956 }
34e77a92 9957
a57d1773
AM
9958 /* Fill in the entry in the global offset table. */
9959 bfd_put_32 (output_bfd, initial_got_entry,
9960 sgot->contents + got_offset);
9961
9962 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9963 {
9964 /* Setup initial funcdesc value. */
9965 /* FIXME: we don't support lazy binding because there is a
9966 race condition between both words getting written and
9967 some other thread attempting to read them. The ARM
9968 architecture does not have an atomic 64 bit load/store
9969 instruction that could be used to prevent it; it is
9970 recommended that threaded FDPIC applications run with the
9971 LD_BIND_NOW environment variable set. */
cc850f74
NC
9972 bfd_put_32 (output_bfd, plt_address + 0x18,
9973 sgot->contents + got_offset);
9974 bfd_put_32 (output_bfd, -1 /*TODO*/,
9975 sgot->contents + got_offset + 4);
34e77a92
RS
9976 }
9977
aba8c3de
WN
9978 if (dynindx == -1)
9979 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9980 else
9981 {
7801f98f
CL
9982 if (htab->fdpic_p)
9983 {
9984 /* For FDPIC we put PLT relocationss into .rel.got when not
9985 lazy binding otherwise we put them in .rel.plt. For now,
9986 we don't support lazy binding so put it in .rel.got. */
9987 if (info->flags & DF_BIND_NOW)
cc850f74 9988 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelgot, &rel);
7801f98f 9989 else
cc850f74 9990 elf32_arm_add_dynreloc (output_bfd, info, htab->root.srelplt, &rel);
7801f98f
CL
9991 }
9992 else
9993 {
9994 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9995 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9996 }
aba8c3de 9997 }
57460bcf 9998
0a1b45a2 9999 return true;
34e77a92
RS
10000}
10001
eb043451
PB
10002/* Some relocations map to different relocations depending on the
10003 target. Return the real relocation. */
8029a119 10004
eb043451
PB
10005static int
10006arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10007 int r_type)
10008{
10009 switch (r_type)
10010 {
10011 case R_ARM_TARGET1:
10012 if (globals->target1_is_rel)
10013 return R_ARM_REL32;
10014 else
10015 return R_ARM_ABS32;
10016
10017 case R_ARM_TARGET2:
10018 return globals->target2_reloc;
10019
10020 default:
10021 return r_type;
10022 }
10023}
eb043451 10024
ba93b8ac
DJ
10025/* Return the base VMA address which should be subtracted from real addresses
10026 when resolving @dtpoff relocation.
10027 This is PT_TLS segment p_vaddr. */
10028
10029static bfd_vma
10030dtpoff_base (struct bfd_link_info *info)
10031{
10032 /* If tls_sec is NULL, we should have signalled an error already. */
10033 if (elf_hash_table (info)->tls_sec == NULL)
10034 return 0;
10035 return elf_hash_table (info)->tls_sec->vma;
10036}
10037
10038/* Return the relocation value for @tpoff relocation
10039 if STT_TLS virtual address is ADDRESS. */
10040
10041static bfd_vma
10042tpoff (struct bfd_link_info *info, bfd_vma address)
10043{
10044 struct elf_link_hash_table *htab = elf_hash_table (info);
10045 bfd_vma base;
10046
10047 /* If tls_sec is NULL, we should have signalled an error already. */
10048 if (htab->tls_sec == NULL)
10049 return 0;
10050 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10051 return address - htab->tls_sec->vma + base;
10052}
10053
00a97672
RS
10054/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10055 VALUE is the relocation value. */
10056
10057static bfd_reloc_status_type
10058elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10059{
10060 if (value > 0xfff)
10061 return bfd_reloc_overflow;
10062
10063 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10064 bfd_put_32 (abfd, value, data);
10065 return bfd_reloc_ok;
10066}
10067
0855e32b
NS
10068/* Handle TLS relaxations. Relaxing is possible for symbols that use
10069 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10070 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10071
10072 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10073 is to then call final_link_relocate. Return other values in the
62672b10
NS
10074 case of error.
10075
10076 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10077 the pre-relaxed code. It would be nice if the relocs were updated
10078 to match the optimization. */
0855e32b 10079
b38cadfb 10080static bfd_reloc_status_type
0855e32b 10081elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 10082 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
10083 Elf_Internal_Rela *rel, unsigned long is_local)
10084{
10085 unsigned long insn;
b38cadfb 10086
0855e32b
NS
10087 switch (ELF32_R_TYPE (rel->r_info))
10088 {
10089 default:
10090 return bfd_reloc_notsupported;
b38cadfb 10091
0855e32b
NS
10092 case R_ARM_TLS_GOTDESC:
10093 if (is_local)
10094 insn = 0;
10095 else
10096 {
10097 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10098 if (insn & 1)
10099 insn -= 5; /* THUMB */
10100 else
10101 insn -= 8; /* ARM */
10102 }
10103 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10104 return bfd_reloc_continue;
10105
10106 case R_ARM_THM_TLS_DESCSEQ:
10107 /* Thumb insn. */
10108 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10109 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10110 {
10111 if (is_local)
10112 /* nop */
10113 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10114 }
10115 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10116 {
10117 if (is_local)
10118 /* nop */
10119 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10120 else
10121 /* ldr rx,[ry] */
10122 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10123 }
10124 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10125 {
10126 if (is_local)
10127 /* nop */
10128 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10129 else
10130 /* mov r0, rx */
10131 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10132 contents + rel->r_offset);
10133 }
10134 else
10135 {
10136 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10137 /* It's a 32 bit instruction, fetch the rest of it for
10138 error generation. */
10139 insn = (insn << 16)
10140 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
4eca0228 10141 _bfd_error_handler
695344c0 10142 /* xgettext:c-format */
2dcf00ce 10143 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10144 "unexpected %s instruction '%#lx' in TLS trampoline"),
10145 input_bfd, input_sec, (uint64_t) rel->r_offset,
10146 "Thumb", insn);
0855e32b
NS
10147 return bfd_reloc_notsupported;
10148 }
10149 break;
b38cadfb 10150
0855e32b
NS
10151 case R_ARM_TLS_DESCSEQ:
10152 /* arm insn. */
10153 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10154 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10155 {
10156 if (is_local)
10157 /* mov rx, ry */
10158 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10159 contents + rel->r_offset);
10160 }
10161 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10162 {
10163 if (is_local)
10164 /* nop */
10165 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10166 else
10167 /* ldr rx,[ry] */
10168 bfd_put_32 (input_bfd, insn & 0xfffff000,
10169 contents + rel->r_offset);
10170 }
10171 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10172 {
10173 if (is_local)
10174 /* nop */
10175 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10176 else
10177 /* mov r0, rx */
10178 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10179 contents + rel->r_offset);
10180 }
10181 else
10182 {
4eca0228 10183 _bfd_error_handler
695344c0 10184 /* xgettext:c-format */
2dcf00ce 10185 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f
AM
10186 "unexpected %s instruction '%#lx' in TLS trampoline"),
10187 input_bfd, input_sec, (uint64_t) rel->r_offset,
10188 "ARM", insn);
0855e32b
NS
10189 return bfd_reloc_notsupported;
10190 }
10191 break;
10192
10193 case R_ARM_TLS_CALL:
10194 /* GD->IE relaxation, turn the instruction into 'nop' or
10195 'ldr r0, [pc,r0]' */
10196 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10197 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10198 break;
b38cadfb 10199
0855e32b 10200 case R_ARM_THM_TLS_CALL:
6a631e86 10201 /* GD->IE relaxation. */
0855e32b
NS
10202 if (!is_local)
10203 /* add r0,pc; ldr r0, [r0] */
10204 insn = 0x44786800;
60a019a0 10205 else if (using_thumb2 (globals))
0855e32b
NS
10206 /* nop.w */
10207 insn = 0xf3af8000;
10208 else
10209 /* nop; nop */
10210 insn = 0xbf00bf00;
b38cadfb 10211
0855e32b
NS
10212 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10213 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10214 break;
10215 }
10216 return bfd_reloc_ok;
10217}
10218
4962c51a
MS
10219/* For a given value of n, calculate the value of G_n as required to
10220 deal with group relocations. We return it in the form of an
10221 encoded constant-and-rotation, together with the final residual. If n is
10222 specified as less than zero, then final_residual is filled with the
10223 input value and no further action is performed. */
10224
10225static bfd_vma
10226calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10227{
10228 int current_n;
10229 bfd_vma g_n;
10230 bfd_vma encoded_g_n = 0;
10231 bfd_vma residual = value; /* Also known as Y_n. */
10232
10233 for (current_n = 0; current_n <= n; current_n++)
10234 {
10235 int shift;
10236
10237 /* Calculate which part of the value to mask. */
10238 if (residual == 0)
99059e56 10239 shift = 0;
4962c51a 10240 else
99059e56
RM
10241 {
10242 int msb;
10243
10244 /* Determine the most significant bit in the residual and
10245 align the resulting value to a 2-bit boundary. */
10246 for (msb = 30; msb >= 0; msb -= 2)
00c91124 10247 if (residual & (3u << msb))
99059e56
RM
10248 break;
10249
10250 /* The desired shift is now (msb - 6), or zero, whichever
10251 is the greater. */
10252 shift = msb - 6;
10253 if (shift < 0)
10254 shift = 0;
10255 }
4962c51a
MS
10256
10257 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10258 g_n = residual & (0xff << shift);
10259 encoded_g_n = (g_n >> shift)
99059e56 10260 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
10261
10262 /* Calculate the residual for the next time around. */
10263 residual &= ~g_n;
10264 }
10265
10266 *final_residual = residual;
10267
10268 return encoded_g_n;
10269}
10270
10271/* Given an ARM instruction, determine whether it is an ADD or a SUB.
10272 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 10273
4962c51a 10274static int
906e58ca 10275identify_add_or_sub (bfd_vma insn)
4962c51a
MS
10276{
10277 int opcode = insn & 0x1e00000;
10278
10279 if (opcode == 1 << 23) /* ADD */
10280 return 1;
10281
10282 if (opcode == 1 << 22) /* SUB */
10283 return -1;
10284
10285 return 0;
10286}
10287
252b5132 10288/* Perform a relocation as part of a final link. */
9b485d32 10289
252b5132 10290static bfd_reloc_status_type
07d6d2b8
AM
10291elf32_arm_final_link_relocate (reloc_howto_type * howto,
10292 bfd * input_bfd,
10293 bfd * output_bfd,
10294 asection * input_section,
10295 bfd_byte * contents,
10296 Elf_Internal_Rela * rel,
10297 bfd_vma value,
10298 struct bfd_link_info * info,
10299 asection * sym_sec,
10300 const char * sym_name,
10301 unsigned char st_type,
10302 enum arm_st_branch_type branch_type,
0945cdfd 10303 struct elf_link_hash_entry * h,
0a1b45a2 10304 bool * unresolved_reloc_p,
07d6d2b8
AM
10305 char ** error_message)
10306{
10307 unsigned long r_type = howto->type;
10308 unsigned long r_symndx;
10309 bfd_byte * hit_data = contents + rel->r_offset;
10310 bfd_vma * local_got_offsets;
10311 bfd_vma * local_tlsdesc_gotents;
10312 asection * sgot;
10313 asection * splt;
10314 asection * sreloc = NULL;
10315 asection * srelgot;
10316 bfd_vma addend;
10317 bfd_signed_vma signed_addend;
10318 unsigned char dynreloc_st_type;
10319 bfd_vma dynreloc_value;
ba96a88f 10320 struct elf32_arm_link_hash_table * globals;
34e77a92 10321 struct elf32_arm_link_hash_entry *eh;
07d6d2b8
AM
10322 union gotplt_union *root_plt;
10323 struct arm_plt_info *arm_plt;
10324 bfd_vma plt_offset;
10325 bfd_vma gotplt_offset;
0a1b45a2
AM
10326 bool has_iplt_entry;
10327 bool resolved_to_zero;
f21f3fe0 10328
9c504268 10329 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10330 if (globals == NULL)
10331 return bfd_reloc_notsupported;
9c504268 10332
0ffa91dd 10333 BFD_ASSERT (is_arm_elf (input_bfd));
47aeb64c 10334 BFD_ASSERT (howto != NULL);
0ffa91dd
NC
10335
10336 /* Some relocation types map to different relocations depending on the
9c504268 10337 target. We pick the right one here. */
eb043451 10338 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
10339
10340 /* It is possible to have linker relaxations on some TLS access
10341 models. Update our information here. */
10342 r_type = elf32_arm_tls_transition (info, r_type, h);
10343
eb043451
PB
10344 if (r_type != howto->type)
10345 howto = elf32_arm_howto_from_type (r_type);
9c504268 10346
34e77a92 10347 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 10348 sgot = globals->root.sgot;
252b5132 10349 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
10350 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10351
34e77a92
RS
10352 if (globals->root.dynamic_sections_created)
10353 srelgot = globals->root.srelgot;
10354 else
10355 srelgot = NULL;
10356
252b5132
RH
10357 r_symndx = ELF32_R_SYM (rel->r_info);
10358
4e7fd91e 10359 if (globals->use_rel)
ba96a88f 10360 {
d2327e47 10361 bfd_vma sign;
4e7fd91e 10362
57698478 10363 switch (bfd_get_reloc_size (howto))
4e7fd91e 10364 {
57698478
AM
10365 case 1: addend = bfd_get_8 (input_bfd, hit_data); break;
10366 case 2: addend = bfd_get_16 (input_bfd, hit_data); break;
10367 case 4: addend = bfd_get_32 (input_bfd, hit_data); break;
d2327e47 10368 default: addend = 0; break;
4e7fd91e 10369 }
d2327e47
AM
10370 /* Note: the addend and signed_addend calculated here are
10371 incorrect for any split field. */
10372 addend &= howto->src_mask;
10373 sign = howto->src_mask & ~(howto->src_mask >> 1);
10374 signed_addend = (addend ^ sign) - sign;
10375 signed_addend = (bfd_vma) signed_addend << howto->rightshift;
10376 addend <<= howto->rightshift;
ba96a88f
NC
10377 }
10378 else
4e7fd91e 10379 addend = signed_addend = rel->r_addend;
f21f3fe0 10380
39f21624
NC
10381 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10382 are resolving a function call relocation. */
10383 if (using_thumb_only (globals)
10384 && (r_type == R_ARM_THM_CALL
10385 || r_type == R_ARM_THM_JUMP24)
10386 && branch_type == ST_BRANCH_TO_ARM)
10387 branch_type = ST_BRANCH_TO_THUMB;
10388
34e77a92
RS
10389 /* Record the symbol information that should be used in dynamic
10390 relocations. */
10391 dynreloc_st_type = st_type;
10392 dynreloc_value = value;
10393 if (branch_type == ST_BRANCH_TO_THUMB)
10394 dynreloc_value |= 1;
10395
10396 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10397 VALUE appropriately for relocations that we resolve at link time. */
0a1b45a2 10398 has_iplt_entry = false;
4ba2ef8f
TP
10399 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10400 &arm_plt)
34e77a92
RS
10401 && root_plt->offset != (bfd_vma) -1)
10402 {
10403 plt_offset = root_plt->offset;
10404 gotplt_offset = arm_plt->got_offset;
10405
10406 if (h == NULL || eh->is_iplt)
10407 {
0a1b45a2 10408 has_iplt_entry = true;
34e77a92
RS
10409 splt = globals->root.iplt;
10410
10411 /* Populate .iplt entries here, because not all of them will
10412 be seen by finish_dynamic_symbol. The lower bit is set if
10413 we have already populated the entry. */
10414 if (plt_offset & 1)
10415 plt_offset--;
10416 else
10417 {
57460bcf
NC
10418 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10419 -1, dynreloc_value))
10420 root_plt->offset |= 1;
10421 else
10422 return bfd_reloc_notsupported;
34e77a92
RS
10423 }
10424
10425 /* Static relocations always resolve to the .iplt entry. */
10426 st_type = STT_FUNC;
10427 value = (splt->output_section->vma
10428 + splt->output_offset
10429 + plt_offset);
10430 branch_type = ST_BRANCH_TO_ARM;
10431
10432 /* If there are non-call relocations that resolve to the .iplt
10433 entry, then all dynamic ones must too. */
10434 if (arm_plt->noncall_refcount != 0)
10435 {
10436 dynreloc_st_type = st_type;
10437 dynreloc_value = value;
10438 }
10439 }
10440 else
10441 /* We populate the .plt entry in finish_dynamic_symbol. */
10442 splt = globals->root.splt;
10443 }
10444 else
10445 {
10446 splt = NULL;
10447 plt_offset = (bfd_vma) -1;
10448 gotplt_offset = (bfd_vma) -1;
10449 }
10450
95b03e4a
L
10451 resolved_to_zero = (h != NULL
10452 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10453
252b5132
RH
10454 switch (r_type)
10455 {
10456 case R_ARM_NONE:
28a094c2
DJ
10457 /* We don't need to find a value for this symbol. It's just a
10458 marker. */
0a1b45a2 10459 *unresolved_reloc_p = false;
252b5132
RH
10460 return bfd_reloc_ok;
10461
00a97672 10462 case R_ARM_ABS12:
90c14f0c 10463 if (globals->root.target_os != is_vxworks)
00a97672 10464 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
1a0670f3 10465 /* Fall through. */
00a97672 10466
252b5132
RH
10467 case R_ARM_PC24:
10468 case R_ARM_ABS32:
bb224fc3 10469 case R_ARM_ABS32_NOI:
252b5132 10470 case R_ARM_REL32:
bb224fc3 10471 case R_ARM_REL32_NOI:
5b5bb741
PB
10472 case R_ARM_CALL:
10473 case R_ARM_JUMP24:
dfc5f959 10474 case R_ARM_XPC25:
eb043451 10475 case R_ARM_PREL31:
7359ea65 10476 case R_ARM_PLT32:
7359ea65
DJ
10477 /* Handle relocations which should use the PLT entry. ABS32/REL32
10478 will use the symbol's value, which may point to a PLT entry, but we
10479 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
10480 branches in this object should go to it, except if the PLT is too
10481 far away, in which case a long branch stub should be inserted. */
bb224fc3 10482 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 10483 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
10484 && r_type != R_ARM_CALL
10485 && r_type != R_ARM_JUMP24
10486 && r_type != R_ARM_PLT32)
34e77a92 10487 && plt_offset != (bfd_vma) -1)
7359ea65 10488 {
34e77a92
RS
10489 /* If we've created a .plt section, and assigned a PLT entry
10490 to this function, it must either be a STT_GNU_IFUNC reference
10491 or not be known to bind locally. In other cases, we should
10492 have cleared the PLT entry by now. */
10493 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
10494
10495 value = (splt->output_section->vma
10496 + splt->output_offset
34e77a92 10497 + plt_offset);
0a1b45a2 10498 *unresolved_reloc_p = false;
7359ea65
DJ
10499 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10500 contents, rel->r_offset, value,
00a97672 10501 rel->r_addend);
7359ea65
DJ
10502 }
10503
67687978
PB
10504 /* When generating a shared object or relocatable executable, these
10505 relocations are copied into the output file to be resolved at
10506 run time. */
0e1862bb 10507 if ((bfd_link_pic (info)
e8b09b87
CL
10508 || globals->root.is_relocatable_executable
10509 || globals->fdpic_p)
7359ea65 10510 && (input_section->flags & SEC_ALLOC)
90c14f0c 10511 && !(globals->root.target_os == is_vxworks
3348747a
NS
10512 && strcmp (input_section->output_section->name,
10513 ".tls_vars") == 0)
bb224fc3 10514 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 10515 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
10516 && !(input_bfd == globals->stub_bfd
10517 && strstr (input_section->name, STUB_SUFFIX))
7359ea65 10518 && (h == NULL
95b03e4a
L
10519 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10520 && !resolved_to_zero)
7359ea65
DJ
10521 || h->root.type != bfd_link_hash_undefweak)
10522 && r_type != R_ARM_PC24
5b5bb741
PB
10523 && r_type != R_ARM_CALL
10524 && r_type != R_ARM_JUMP24
ee06dc07 10525 && r_type != R_ARM_PREL31
7359ea65 10526 && r_type != R_ARM_PLT32)
252b5132 10527 {
947216bf 10528 Elf_Internal_Rela outrel;
0a1b45a2 10529 bool skip, relocate;
e8b09b87 10530 int isrofixup = 0;
f21f3fe0 10531
52db4ec2
JW
10532 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10533 && !h->def_regular)
10534 {
10535 char *v = _("shared object");
10536
0e1862bb 10537 if (bfd_link_executable (info))
52db4ec2
JW
10538 v = _("PIE executable");
10539
4eca0228 10540 _bfd_error_handler
871b3ab2 10541 (_("%pB: relocation %s against external or undefined symbol `%s'"
52db4ec2
JW
10542 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10543 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10544 return bfd_reloc_notsupported;
10545 }
10546
0a1b45a2 10547 *unresolved_reloc_p = false;
0945cdfd 10548
34e77a92 10549 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 10550 {
83bac4b0
NC
10551 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10552 ! globals->use_rel);
f21f3fe0 10553
83bac4b0 10554 if (sreloc == NULL)
252b5132 10555 return bfd_reloc_notsupported;
252b5132 10556 }
f21f3fe0 10557
0a1b45a2
AM
10558 skip = false;
10559 relocate = false;
f21f3fe0 10560
00a97672 10561 outrel.r_addend = addend;
c629eae0
JJ
10562 outrel.r_offset =
10563 _bfd_elf_section_offset (output_bfd, info, input_section,
10564 rel->r_offset);
10565 if (outrel.r_offset == (bfd_vma) -1)
0a1b45a2 10566 skip = true;
0bb2d96a 10567 else if (outrel.r_offset == (bfd_vma) -2)
0a1b45a2 10568 skip = true, relocate = true;
252b5132
RH
10569 outrel.r_offset += (input_section->output_section->vma
10570 + input_section->output_offset);
f21f3fe0 10571
252b5132 10572 if (skip)
0bb2d96a 10573 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
10574 else if (h != NULL
10575 && h->dynindx != -1
0e1862bb 10576 && (!bfd_link_pic (info)
1dcb9720
JW
10577 || !(bfd_link_pie (info)
10578 || SYMBOLIC_BIND (info, h))
f5385ebf 10579 || !h->def_regular))
5e681ec4 10580 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
10581 else
10582 {
a16385dc
MM
10583 int symbol;
10584
5e681ec4 10585 /* This symbol is local, or marked to become local. */
e8b09b87 10586 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
cc850f74 10587 || (globals->fdpic_p && !bfd_link_pic (info)));
a57d1773
AM
10588 /* On SVR4-ish systems, the dynamic loader cannot
10589 relocate the text and data segments independently,
10590 so the symbol does not matter. */
10591 symbol = 0;
34e77a92
RS
10592 if (dynreloc_st_type == STT_GNU_IFUNC)
10593 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10594 to the .iplt entry. Instead, every non-call reference
10595 must use an R_ARM_IRELATIVE relocation to obtain the
10596 correct run-time address. */
10597 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
cc850f74 10598 else if (globals->fdpic_p && !bfd_link_pic (info))
e8b09b87 10599 isrofixup = 1;
34e77a92
RS
10600 else
10601 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672 10602 if (globals->use_rel)
0a1b45a2 10603 relocate = true;
00a97672 10604 else
34e77a92 10605 outrel.r_addend += dynreloc_value;
252b5132 10606 }
f21f3fe0 10607
e8b09b87 10608 if (isrofixup)
cc850f74 10609 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
10610 else
10611 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 10612
f21f3fe0 10613 /* If this reloc is against an external symbol, we do not want to
252b5132 10614 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 10615 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
10616 if (! relocate)
10617 return bfd_reloc_ok;
9a5aca8c 10618
f21f3fe0 10619 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
10620 contents, rel->r_offset,
10621 dynreloc_value, (bfd_vma) 0);
252b5132
RH
10622 }
10623 else switch (r_type)
10624 {
00a97672
RS
10625 case R_ARM_ABS12:
10626 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10627
dfc5f959 10628 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
10629 case R_ARM_CALL:
10630 case R_ARM_JUMP24:
8029a119 10631 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 10632 case R_ARM_PLT32:
906e58ca 10633 {
906e58ca
NC
10634 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10635
dfc5f959 10636 if (r_type == R_ARM_XPC25)
252b5132 10637 {
dfc5f959
NC
10638 /* Check for Arm calling Arm function. */
10639 /* FIXME: Should we translate the instruction into a BL
10640 instruction instead ? */
35fc36a8 10641 if (branch_type != ST_BRANCH_TO_THUMB)
4eca0228 10642 _bfd_error_handler
90b6238f
AM
10643 (_("\%pB: warning: %s BLX instruction targets"
10644 " %s function '%s'"),
10645 input_bfd, "ARM",
10646 "ARM", h ? h->root.root.string : "(local)");
dfc5f959 10647 }
155d87d7 10648 else if (r_type == R_ARM_PC24)
dfc5f959
NC
10649 {
10650 /* Check for Arm calling Thumb function. */
35fc36a8 10651 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 10652 {
f2a9dd69
DJ
10653 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10654 output_bfd, input_section,
10655 hit_data, sym_sec, rel->r_offset,
10656 signed_addend, value,
10657 error_message))
10658 return bfd_reloc_ok;
10659 else
10660 return bfd_reloc_dangerous;
dfc5f959 10661 }
252b5132 10662 }
ba96a88f 10663
906e58ca 10664 /* Check if a stub has to be inserted because the
8029a119 10665 destination is too far or we are changing mode. */
155d87d7
CL
10666 if ( r_type == R_ARM_CALL
10667 || r_type == R_ARM_JUMP24
10668 || r_type == R_ARM_PLT32)
906e58ca 10669 {
fe33d2fa
CL
10670 enum elf32_arm_stub_type stub_type = arm_stub_none;
10671 struct elf32_arm_link_hash_entry *hash;
10672
10673 hash = (struct elf32_arm_link_hash_entry *) h;
10674 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
10675 st_type, &branch_type,
10676 hash, value, sym_sec,
fe33d2fa 10677 input_bfd, sym_name);
5fa9e92f 10678
fe33d2fa 10679 if (stub_type != arm_stub_none)
906e58ca
NC
10680 {
10681 /* The target is out of reach, so redirect the
10682 branch to the local stub for this function. */
906e58ca
NC
10683 stub_entry = elf32_arm_get_stub_entry (input_section,
10684 sym_sec, h,
fe33d2fa
CL
10685 rel, globals,
10686 stub_type);
9cd3e4e5
NC
10687 {
10688 if (stub_entry != NULL)
10689 value = (stub_entry->stub_offset
10690 + stub_entry->stub_sec->output_offset
10691 + stub_entry->stub_sec->output_section->vma);
10692
10693 if (plt_offset != (bfd_vma) -1)
0a1b45a2 10694 *unresolved_reloc_p = false;
9cd3e4e5 10695 }
906e58ca 10696 }
fe33d2fa
CL
10697 else
10698 {
10699 /* If the call goes through a PLT entry, make sure to
10700 check distance to the right destination address. */
34e77a92 10701 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
10702 {
10703 value = (splt->output_section->vma
10704 + splt->output_offset
34e77a92 10705 + plt_offset);
0a1b45a2 10706 *unresolved_reloc_p = false;
fe33d2fa
CL
10707 /* The PLT entry is in ARM mode, regardless of the
10708 target function. */
35fc36a8 10709 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
10710 }
10711 }
906e58ca
NC
10712 }
10713
dea514f5
PB
10714 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10715 where:
10716 S is the address of the symbol in the relocation.
10717 P is address of the instruction being relocated.
10718 A is the addend (extracted from the instruction) in bytes.
10719
10720 S is held in 'value'.
10721 P is the base address of the section containing the
10722 instruction plus the offset of the reloc into that
10723 section, ie:
10724 (input_section->output_section->vma +
10725 input_section->output_offset +
10726 rel->r_offset).
10727 A is the addend, converted into bytes, ie:
10728 (signed_addend * 4)
10729
10730 Note: None of these operations have knowledge of the pipeline
10731 size of the processor, thus it is up to the assembler to
10732 encode this information into the addend. */
10733 value -= (input_section->output_section->vma
10734 + input_section->output_offset);
10735 value -= rel->r_offset;
d2327e47 10736 value += signed_addend;
23080146 10737
dcb5e6e6
NC
10738 signed_addend = value;
10739 signed_addend >>= howto->rightshift;
9a5aca8c 10740
5ab79981 10741 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 10742 the next instruction unless a PLT entry will be created.
77b4f08f 10743 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
10744 The jump to the next instruction is optimized as a NOP depending
10745 on the architecture. */
ffcb4889 10746 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 10747 && plt_offset == (bfd_vma) -1)
77b4f08f 10748 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 10749 {
cd1dac3d
DG
10750 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10751
10752 if (arch_has_arm_nop (globals))
10753 value |= 0x0320f000;
10754 else
10755 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
10756 }
10757 else
59f2c4e7 10758 {
9b485d32 10759 /* Perform a signed range check. */
dcb5e6e6 10760 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
10761 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10762 return bfd_reloc_overflow;
9a5aca8c 10763
5ab79981 10764 addend = (value & 2);
39b41c9c 10765
5ab79981
PB
10766 value = (signed_addend & howto->dst_mask)
10767 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 10768
5ab79981
PB
10769 if (r_type == R_ARM_CALL)
10770 {
155d87d7 10771 /* Set the H bit in the BLX instruction. */
35fc36a8 10772 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
10773 {
10774 if (addend)
10775 value |= (1 << 24);
10776 else
10777 value &= ~(bfd_vma)(1 << 24);
10778 }
10779
5ab79981 10780 /* Select the correct instruction (BL or BLX). */
906e58ca 10781 /* Only if we are not handling a BL to a stub. In this
8029a119 10782 case, mode switching is performed by the stub. */
35fc36a8 10783 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 10784 value |= (1 << 28);
63e1a0fc 10785 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
10786 {
10787 value &= ~(bfd_vma)(1 << 28);
10788 value |= (1 << 24);
10789 }
39b41c9c
PB
10790 }
10791 }
906e58ca 10792 }
252b5132 10793 break;
f21f3fe0 10794
252b5132
RH
10795 case R_ARM_ABS32:
10796 value += addend;
35fc36a8 10797 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
10798 value |= 1;
10799 break;
f21f3fe0 10800
bb224fc3
MS
10801 case R_ARM_ABS32_NOI:
10802 value += addend;
10803 break;
10804
252b5132 10805 case R_ARM_REL32:
a8bc6c78 10806 value += addend;
35fc36a8 10807 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 10808 value |= 1;
252b5132 10809 value -= (input_section->output_section->vma
62efb346 10810 + input_section->output_offset + rel->r_offset);
252b5132 10811 break;
eb043451 10812
bb224fc3
MS
10813 case R_ARM_REL32_NOI:
10814 value += addend;
10815 value -= (input_section->output_section->vma
10816 + input_section->output_offset + rel->r_offset);
10817 break;
10818
eb043451
PB
10819 case R_ARM_PREL31:
10820 value -= (input_section->output_section->vma
10821 + input_section->output_offset + rel->r_offset);
10822 value += signed_addend;
10823 if (! h || h->root.type != bfd_link_hash_undefweak)
10824 {
8029a119 10825 /* Check for overflow. */
eb043451
PB
10826 if ((value ^ (value >> 1)) & (1 << 30))
10827 return bfd_reloc_overflow;
10828 }
10829 value &= 0x7fffffff;
10830 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 10831 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
10832 value |= 1;
10833 break;
252b5132 10834 }
f21f3fe0 10835
252b5132
RH
10836 bfd_put_32 (input_bfd, value, hit_data);
10837 return bfd_reloc_ok;
10838
10839 case R_ARM_ABS8:
10840 value += addend;
4e67d4ca
DG
10841
10842 /* There is no way to tell whether the user intended to use a signed or
10843 unsigned addend. When checking for overflow we accept either,
10844 as specified by the AAELF. */
10845 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
10846 return bfd_reloc_overflow;
10847
10848 bfd_put_8 (input_bfd, value, hit_data);
10849 return bfd_reloc_ok;
10850
10851 case R_ARM_ABS16:
10852 value += addend;
10853
4e67d4ca
DG
10854 /* See comment for R_ARM_ABS8. */
10855 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
10856 return bfd_reloc_overflow;
10857
10858 bfd_put_16 (input_bfd, value, hit_data);
10859 return bfd_reloc_ok;
10860
252b5132 10861 case R_ARM_THM_ABS5:
9b485d32 10862 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
10863 if (globals->use_rel)
10864 {
10865 /* Need to refetch addend. */
10866 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10867 /* ??? Need to determine shift amount from operand size. */
10868 addend >>= howto->rightshift;
10869 }
252b5132
RH
10870 value += addend;
10871
10872 /* ??? Isn't value unsigned? */
10873 if ((long) value > 0x1f || (long) value < -0x10)
10874 return bfd_reloc_overflow;
10875
10876 /* ??? Value needs to be properly shifted into place first. */
10877 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10878 bfd_put_16 (input_bfd, value, hit_data);
10879 return bfd_reloc_ok;
10880
2cab6cc3
MS
10881 case R_ARM_THM_ALU_PREL_11_0:
10882 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10883 {
10884 bfd_vma insn;
10885 bfd_signed_vma relocation;
10886
10887 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10888 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10889
99059e56
RM
10890 if (globals->use_rel)
10891 {
10892 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10893 | ((insn & (1 << 26)) >> 15);
10894 if (insn & 0xf00000)
10895 signed_addend = -signed_addend;
10896 }
2cab6cc3
MS
10897
10898 relocation = value + signed_addend;
79f08007 10899 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10900 + input_section->output_offset
10901 + rel->r_offset);
2cab6cc3 10902
8c65b54f
CS
10903 /* PR 21523: Use an absolute value. The user of this reloc will
10904 have already selected an ADD or SUB insn appropriately. */
453f8e1e 10905 value = llabs (relocation);
2cab6cc3 10906
99059e56
RM
10907 if (value >= 0x1000)
10908 return bfd_reloc_overflow;
2cab6cc3 10909
e645cf40
AG
10910 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10911 if (branch_type == ST_BRANCH_TO_THUMB)
10912 value |= 1;
10913
2cab6cc3 10914 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
10915 | ((value & 0x700) << 4)
10916 | ((value & 0x800) << 15);
10917 if (relocation < 0)
10918 insn |= 0xa00000;
2cab6cc3
MS
10919
10920 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10921 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10922
99059e56 10923 return bfd_reloc_ok;
2cab6cc3
MS
10924 }
10925
e1ec24c6
NC
10926 case R_ARM_THM_PC8:
10927 /* PR 10073: This reloc is not generated by the GNU toolchain,
10928 but it is supported for compatibility with third party libraries
10929 generated by other compilers, specifically the ARM/IAR. */
10930 {
10931 bfd_vma insn;
10932 bfd_signed_vma relocation;
10933
10934 insn = bfd_get_16 (input_bfd, hit_data);
10935
99059e56 10936 if (globals->use_rel)
79f08007 10937 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
10938
10939 relocation = value + addend;
79f08007 10940 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10941 + input_section->output_offset
10942 + rel->r_offset);
e1ec24c6 10943
b6518b38 10944 value = relocation;
e1ec24c6
NC
10945
10946 /* We do not check for overflow of this reloc. Although strictly
10947 speaking this is incorrect, it appears to be necessary in order
10948 to work with IAR generated relocs. Since GCC and GAS do not
10949 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10950 a problem for them. */
10951 value &= 0x3fc;
10952
10953 insn = (insn & 0xff00) | (value >> 2);
10954
10955 bfd_put_16 (input_bfd, insn, hit_data);
10956
99059e56 10957 return bfd_reloc_ok;
e1ec24c6
NC
10958 }
10959
2cab6cc3
MS
10960 case R_ARM_THM_PC12:
10961 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10962 {
10963 bfd_vma insn;
10964 bfd_signed_vma relocation;
10965
10966 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 10967 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 10968
99059e56
RM
10969 if (globals->use_rel)
10970 {
10971 signed_addend = insn & 0xfff;
10972 if (!(insn & (1 << 23)))
10973 signed_addend = -signed_addend;
10974 }
2cab6cc3
MS
10975
10976 relocation = value + signed_addend;
79f08007 10977 relocation -= Pa (input_section->output_section->vma
99059e56
RM
10978 + input_section->output_offset
10979 + rel->r_offset);
2cab6cc3 10980
b6518b38 10981 value = relocation;
2cab6cc3 10982
99059e56
RM
10983 if (value >= 0x1000)
10984 return bfd_reloc_overflow;
2cab6cc3
MS
10985
10986 insn = (insn & 0xff7ff000) | value;
99059e56
RM
10987 if (relocation >= 0)
10988 insn |= (1 << 23);
2cab6cc3
MS
10989
10990 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10991 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10992
99059e56 10993 return bfd_reloc_ok;
2cab6cc3
MS
10994 }
10995
dfc5f959 10996 case R_ARM_THM_XPC22:
c19d1205 10997 case R_ARM_THM_CALL:
bd97cb95 10998 case R_ARM_THM_JUMP24:
dfc5f959 10999 /* Thumb BL (branch long instruction). */
252b5132 11000 {
b34976b6 11001 bfd_vma relocation;
99059e56 11002 bfd_vma reloc_sign;
0a1b45a2 11003 bool overflow = false;
b34976b6
AM
11004 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11005 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
11006 bfd_signed_vma reloc_signed_max;
11007 bfd_signed_vma reloc_signed_min;
b34976b6 11008 bfd_vma check;
252b5132 11009 bfd_signed_vma signed_check;
e95de063 11010 int bitsize;
cd1dac3d 11011 const int thumb2 = using_thumb2 (globals);
5e866f5a 11012 const int thumb2_bl = using_thumb2_bl (globals);
252b5132 11013
5ab79981 11014 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
11015 the next instruction unless a PLT entry will be created.
11016 The jump to the next instruction is optimized as a NOP.W for
11017 Thumb-2 enabled architectures. */
19540007 11018 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 11019 && plt_offset == (bfd_vma) -1)
5ab79981 11020 {
60a019a0 11021 if (thumb2)
cd1dac3d
DG
11022 {
11023 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11024 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11025 }
11026 else
11027 {
11028 bfd_put_16 (input_bfd, 0xe000, hit_data);
11029 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11030 }
5ab79981
PB
11031 return bfd_reloc_ok;
11032 }
11033
e95de063 11034 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 11035 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
11036 if (globals->use_rel)
11037 {
99059e56
RM
11038 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11039 bfd_vma upper = upper_insn & 0x3ff;
11040 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
11041 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11042 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
11043 bfd_vma i1 = j1 ^ s ? 0 : 1;
11044 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 11045
99059e56
RM
11046 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11047 /* Sign extend. */
11048 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 11049
4e7fd91e
PB
11050 signed_addend = addend;
11051 }
cb1afa5c 11052
dfc5f959
NC
11053 if (r_type == R_ARM_THM_XPC22)
11054 {
11055 /* Check for Thumb to Thumb call. */
11056 /* FIXME: Should we translate the instruction into a BL
11057 instruction instead ? */
35fc36a8 11058 if (branch_type == ST_BRANCH_TO_THUMB)
4eca0228 11059 _bfd_error_handler
90b6238f
AM
11060 (_("%pB: warning: %s BLX instruction targets"
11061 " %s function '%s'"),
11062 input_bfd, "Thumb",
11063 "Thumb", h ? h->root.root.string : "(local)");
dfc5f959
NC
11064 }
11065 else
252b5132 11066 {
dfc5f959
NC
11067 /* If it is not a call to Thumb, assume call to Arm.
11068 If it is a call relative to a section name, then it is not a
b7693d02
DJ
11069 function call at all, but rather a long jump. Calls through
11070 the PLT do not require stubs. */
34e77a92 11071 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 11072 {
bd97cb95 11073 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11074 {
11075 /* Convert BL to BLX. */
11076 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11077 }
155d87d7
CL
11078 else if (( r_type != R_ARM_THM_CALL)
11079 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
11080 {
11081 if (elf32_thumb_to_arm_stub
11082 (info, sym_name, input_bfd, output_bfd, input_section,
11083 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11084 error_message))
11085 return bfd_reloc_ok;
11086 else
11087 return bfd_reloc_dangerous;
11088 }
da5938a2 11089 }
35fc36a8
RS
11090 else if (branch_type == ST_BRANCH_TO_THUMB
11091 && globals->use_blx
bd97cb95 11092 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
11093 {
11094 /* Make sure this is a BL. */
11095 lower_insn |= 0x1800;
11096 }
252b5132 11097 }
f21f3fe0 11098
fe33d2fa 11099 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 11100 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
11101 {
11102 /* Check if a stub has to be inserted because the destination
8029a119 11103 is too far. */
fe33d2fa
CL
11104 struct elf32_arm_stub_hash_entry *stub_entry;
11105 struct elf32_arm_link_hash_entry *hash;
11106
11107 hash = (struct elf32_arm_link_hash_entry *) h;
11108
11109 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
11110 st_type, &branch_type,
11111 hash, value, sym_sec,
fe33d2fa
CL
11112 input_bfd, sym_name);
11113
11114 if (stub_type != arm_stub_none)
906e58ca
NC
11115 {
11116 /* The target is out of reach or we are changing modes, so
11117 redirect the branch to the local stub for this
11118 function. */
11119 stub_entry = elf32_arm_get_stub_entry (input_section,
11120 sym_sec, h,
fe33d2fa
CL
11121 rel, globals,
11122 stub_type);
906e58ca 11123 if (stub_entry != NULL)
9cd3e4e5
NC
11124 {
11125 value = (stub_entry->stub_offset
11126 + stub_entry->stub_sec->output_offset
11127 + stub_entry->stub_sec->output_section->vma);
11128
11129 if (plt_offset != (bfd_vma) -1)
0a1b45a2 11130 *unresolved_reloc_p = false;
9cd3e4e5 11131 }
906e58ca 11132
f4ac8484 11133 /* If this call becomes a call to Arm, force BLX. */
155d87d7 11134 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
11135 {
11136 if ((stub_entry
11137 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 11138 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
11139 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11140 }
906e58ca
NC
11141 }
11142 }
11143
fe33d2fa 11144 /* Handle calls via the PLT. */
34e77a92 11145 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
11146 {
11147 value = (splt->output_section->vma
11148 + splt->output_offset
34e77a92 11149 + plt_offset);
fe33d2fa 11150
eed94f8f
NC
11151 if (globals->use_blx
11152 && r_type == R_ARM_THM_CALL
11153 && ! using_thumb_only (globals))
fe33d2fa
CL
11154 {
11155 /* If the Thumb BLX instruction is available, convert
11156 the BL to a BLX instruction to call the ARM-mode
11157 PLT entry. */
11158 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 11159 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
11160 }
11161 else
11162 {
eed94f8f
NC
11163 if (! using_thumb_only (globals))
11164 /* Target the Thumb stub before the ARM PLT entry. */
11165 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 11166 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa 11167 }
0a1b45a2 11168 *unresolved_reloc_p = false;
fe33d2fa
CL
11169 }
11170
ba96a88f 11171 relocation = value + signed_addend;
f21f3fe0 11172
252b5132 11173 relocation -= (input_section->output_section->vma
ba96a88f
NC
11174 + input_section->output_offset
11175 + rel->r_offset);
9a5aca8c 11176
252b5132
RH
11177 check = relocation >> howto->rightshift;
11178
11179 /* If this is a signed value, the rightshift just dropped
11180 leading 1 bits (assuming twos complement). */
11181 if ((bfd_signed_vma) relocation >= 0)
11182 signed_check = check;
11183 else
11184 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11185
e95de063
MS
11186 /* Calculate the permissable maximum and minimum values for
11187 this relocation according to whether we're relocating for
11188 Thumb-2 or not. */
11189 bitsize = howto->bitsize;
5e866f5a 11190 if (!thumb2_bl)
e95de063 11191 bitsize -= 2;
f6ebfac0 11192 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
11193 reloc_signed_min = ~reloc_signed_max;
11194
252b5132 11195 /* Assumes two's complement. */
ba96a88f 11196 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11197 overflow = true;
252b5132 11198
bd97cb95 11199 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
11200 /* For a BLX instruction, make sure that the relocation is rounded up
11201 to a word boundary. This follows the semantics of the instruction
11202 which specifies that bit 1 of the target address will come from bit
11203 1 of the base address. */
11204 relocation = (relocation + 2) & ~ 3;
cb1afa5c 11205
e95de063
MS
11206 /* Put RELOCATION back into the insn. Assumes two's complement.
11207 We use the Thumb-2 encoding, which is safe even if dealing with
11208 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 11209 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 11210 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
11211 | ((relocation >> 12) & 0x3ff)
11212 | (reloc_sign << 10);
906e58ca 11213 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
11214 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11215 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11216 | ((relocation >> 1) & 0x7ff);
c62e1cc3 11217
252b5132
RH
11218 /* Put the relocated value back in the object file: */
11219 bfd_put_16 (input_bfd, upper_insn, hit_data);
11220 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11221
11222 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11223 }
11224 break;
11225
c19d1205
ZW
11226 case R_ARM_THM_JUMP19:
11227 /* Thumb32 conditional branch instruction. */
11228 {
11229 bfd_vma relocation;
0a1b45a2 11230 bool overflow = false;
c19d1205
ZW
11231 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11232 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
11233 bfd_signed_vma reloc_signed_max = 0xffffe;
11234 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 11235 bfd_signed_vma signed_check;
07d6d2b8 11236 enum elf32_arm_stub_type stub_type = arm_stub_none;
c5423981
TG
11237 struct elf32_arm_stub_hash_entry *stub_entry;
11238 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
11239
11240 /* Need to refetch the addend, reconstruct the top three bits,
11241 and squish the two 11 bit pieces together. */
11242 if (globals->use_rel)
11243 {
11244 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 11245 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
11246 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11247 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11248 bfd_vma lower = (lower_insn & 0x07ff);
11249
a00a1f35
MS
11250 upper |= J1 << 6;
11251 upper |= J2 << 7;
11252 upper |= (!S) << 8;
c19d1205
ZW
11253 upper -= 0x0100; /* Sign extend. */
11254
11255 addend = (upper << 12) | (lower << 1);
11256 signed_addend = addend;
11257 }
11258
bd97cb95 11259 /* Handle calls via the PLT. */
34e77a92 11260 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
11261 {
11262 value = (splt->output_section->vma
11263 + splt->output_offset
34e77a92 11264 + plt_offset);
bd97cb95
DJ
11265 /* Target the Thumb stub before the ARM PLT entry. */
11266 value -= PLT_THUMB_STUB_SIZE;
0a1b45a2 11267 *unresolved_reloc_p = false;
bd97cb95
DJ
11268 }
11269
c5423981
TG
11270 hash = (struct elf32_arm_link_hash_entry *)h;
11271
11272 stub_type = arm_type_of_stub (info, input_section, rel,
07d6d2b8
AM
11273 st_type, &branch_type,
11274 hash, value, sym_sec,
11275 input_bfd, sym_name);
c5423981
TG
11276 if (stub_type != arm_stub_none)
11277 {
11278 stub_entry = elf32_arm_get_stub_entry (input_section,
07d6d2b8
AM
11279 sym_sec, h,
11280 rel, globals,
11281 stub_type);
c5423981
TG
11282 if (stub_entry != NULL)
11283 {
07d6d2b8
AM
11284 value = (stub_entry->stub_offset
11285 + stub_entry->stub_sec->output_offset
11286 + stub_entry->stub_sec->output_section->vma);
c5423981
TG
11287 }
11288 }
c19d1205 11289
99059e56 11290 relocation = value + signed_addend;
c19d1205
ZW
11291 relocation -= (input_section->output_section->vma
11292 + input_section->output_offset
11293 + rel->r_offset);
a00a1f35 11294 signed_check = (bfd_signed_vma) relocation;
c19d1205 11295
c19d1205 11296 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
0a1b45a2 11297 overflow = true;
c19d1205
ZW
11298
11299 /* Put RELOCATION back into the insn. */
11300 {
11301 bfd_vma S = (relocation & 0x00100000) >> 20;
11302 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11303 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11304 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11305 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11306
a00a1f35 11307 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
11308 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11309 }
11310
11311 /* Put the relocated value back in the object file: */
11312 bfd_put_16 (input_bfd, upper_insn, hit_data);
11313 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11314
11315 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11316 }
11317
11318 case R_ARM_THM_JUMP11:
11319 case R_ARM_THM_JUMP8:
11320 case R_ARM_THM_JUMP6:
51c5503b
NC
11321 /* Thumb B (branch) instruction). */
11322 {
6cf9e9fe 11323 bfd_signed_vma relocation;
51c5503b
NC
11324 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11325 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
11326 bfd_signed_vma signed_check;
11327
c19d1205
ZW
11328 /* CZB cannot jump backward. */
11329 if (r_type == R_ARM_THM_JUMP6)
6cf9e9fe 11330 {
d2327e47
AM
11331 reloc_signed_min = 0;
11332 if (globals->use_rel)
11333 signed_addend = ((addend & 0x200) >> 3) | ((addend & 0xf8) >> 2);
6cf9e9fe 11334 }
d2327e47 11335
6cf9e9fe 11336 relocation = value + signed_addend;
51c5503b
NC
11337
11338 relocation -= (input_section->output_section->vma
11339 + input_section->output_offset
11340 + rel->r_offset);
11341
6cf9e9fe
NC
11342 relocation >>= howto->rightshift;
11343 signed_check = relocation;
c19d1205
ZW
11344
11345 if (r_type == R_ARM_THM_JUMP6)
11346 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11347 else
11348 relocation &= howto->dst_mask;
51c5503b 11349 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 11350
51c5503b
NC
11351 bfd_put_16 (input_bfd, relocation, hit_data);
11352
11353 /* Assumes two's complement. */
11354 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11355 return bfd_reloc_overflow;
11356
11357 return bfd_reloc_ok;
11358 }
cedb70c5 11359
8375c36b
PB
11360 case R_ARM_ALU_PCREL7_0:
11361 case R_ARM_ALU_PCREL15_8:
11362 case R_ARM_ALU_PCREL23_15:
11363 {
11364 bfd_vma insn;
11365 bfd_vma relocation;
11366
11367 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
11368 if (globals->use_rel)
11369 {
11370 /* Extract the addend. */
11371 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11372 signed_addend = addend;
11373 }
8375c36b
PB
11374 relocation = value + signed_addend;
11375
11376 relocation -= (input_section->output_section->vma
11377 + input_section->output_offset
11378 + rel->r_offset);
11379 insn = (insn & ~0xfff)
11380 | ((howto->bitpos << 7) & 0xf00)
11381 | ((relocation >> howto->bitpos) & 0xff);
11382 bfd_put_32 (input_bfd, value, hit_data);
11383 }
11384 return bfd_reloc_ok;
11385
252b5132
RH
11386 case R_ARM_GNU_VTINHERIT:
11387 case R_ARM_GNU_VTENTRY:
11388 return bfd_reloc_ok;
11389
c19d1205 11390 case R_ARM_GOTOFF32:
252b5132 11391 /* Relocation is relative to the start of the
99059e56 11392 global offset table. */
252b5132
RH
11393
11394 BFD_ASSERT (sgot != NULL);
11395 if (sgot == NULL)
99059e56 11396 return bfd_reloc_notsupported;
9a5aca8c 11397
cedb70c5 11398 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
11399 address by one, so that attempts to call the function pointer will
11400 correctly interpret it as Thumb code. */
35fc36a8 11401 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
11402 value += 1;
11403
252b5132 11404 /* Note that sgot->output_offset is not involved in this
99059e56
RM
11405 calculation. We always want the start of .got. If we
11406 define _GLOBAL_OFFSET_TABLE in a different way, as is
11407 permitted by the ABI, we might have to change this
11408 calculation. */
252b5132 11409 value -= sgot->output_section->vma;
f21f3fe0 11410 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11411 contents, rel->r_offset, value,
00a97672 11412 rel->r_addend);
252b5132
RH
11413
11414 case R_ARM_GOTPC:
a7c10850 11415 /* Use global offset table as symbol value. */
252b5132 11416 BFD_ASSERT (sgot != NULL);
f21f3fe0 11417
252b5132 11418 if (sgot == NULL)
99059e56 11419 return bfd_reloc_notsupported;
252b5132 11420
0a1b45a2 11421 *unresolved_reloc_p = false;
252b5132 11422 value = sgot->output_section->vma;
f21f3fe0 11423 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11424 contents, rel->r_offset, value,
00a97672 11425 rel->r_addend);
f21f3fe0 11426
252b5132 11427 case R_ARM_GOT32:
eb043451 11428 case R_ARM_GOT_PREL:
252b5132 11429 /* Relocation is to the entry for this symbol in the
99059e56 11430 global offset table. */
252b5132
RH
11431 if (sgot == NULL)
11432 return bfd_reloc_notsupported;
f21f3fe0 11433
34e77a92
RS
11434 if (dynreloc_st_type == STT_GNU_IFUNC
11435 && plt_offset != (bfd_vma) -1
11436 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11437 {
11438 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11439 symbol, and the relocation resolves directly to the runtime
11440 target rather than to the .iplt entry. This means that any
11441 .got entry would be the same value as the .igot.plt entry,
11442 so there's no point creating both. */
11443 sgot = globals->root.igotplt;
11444 value = sgot->output_offset + gotplt_offset;
11445 }
11446 else if (h != NULL)
252b5132
RH
11447 {
11448 bfd_vma off;
f21f3fe0 11449
252b5132
RH
11450 off = h->got.offset;
11451 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 11452 if ((off & 1) != 0)
252b5132 11453 {
b436d854
RS
11454 /* We have already processsed one GOT relocation against
11455 this symbol. */
11456 off &= ~1;
11457 if (globals->root.dynamic_sections_created
11458 && !SYMBOL_REFERENCES_LOCAL (info, h))
0a1b45a2 11459 *unresolved_reloc_p = false;
b436d854
RS
11460 }
11461 else
11462 {
11463 Elf_Internal_Rela outrel;
e8b09b87 11464 int isrofixup = 0;
b436d854 11465
e8b09b87
CL
11466 if (((h->dynindx != -1) || globals->fdpic_p)
11467 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
11468 {
11469 /* If the symbol doesn't resolve locally in a static
11470 object, we have an undefined reference. If the
11471 symbol doesn't resolve locally in a dynamic object,
11472 it should be resolved by the dynamic linker. */
11473 if (globals->root.dynamic_sections_created)
11474 {
11475 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
0a1b45a2 11476 *unresolved_reloc_p = false;
b436d854
RS
11477 }
11478 else
11479 outrel.r_info = 0;
11480 outrel.r_addend = 0;
11481 }
252b5132
RH
11482 else
11483 {
34e77a92 11484 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 11485 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
5025eb7c 11486 else if (bfd_link_pic (info)
7f026732 11487 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
99059e56
RM
11488 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11489 else
2376f038
EB
11490 {
11491 outrel.r_info = 0;
11492 if (globals->fdpic_p)
11493 isrofixup = 1;
11494 }
34e77a92 11495 outrel.r_addend = dynreloc_value;
b436d854 11496 }
ee29b9fb 11497
b436d854
RS
11498 /* The GOT entry is initialized to zero by default.
11499 See if we should install a different value. */
11500 if (outrel.r_addend != 0
2376f038 11501 && (globals->use_rel || outrel.r_info == 0))
b436d854
RS
11502 {
11503 bfd_put_32 (output_bfd, outrel.r_addend,
11504 sgot->contents + off);
11505 outrel.r_addend = 0;
252b5132 11506 }
f21f3fe0 11507
2376f038
EB
11508 if (isrofixup)
11509 arm_elf_add_rofixup (output_bfd,
cc850f74 11510 elf32_arm_hash_table (info)->srofixup,
2376f038
EB
11511 sgot->output_section->vma
11512 + sgot->output_offset + off);
11513
11514 else if (outrel.r_info != 0)
b436d854
RS
11515 {
11516 outrel.r_offset = (sgot->output_section->vma
11517 + sgot->output_offset
11518 + off);
11519 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11520 }
2376f038 11521
b436d854
RS
11522 h->got.offset |= 1;
11523 }
252b5132
RH
11524 value = sgot->output_offset + off;
11525 }
11526 else
11527 {
11528 bfd_vma off;
f21f3fe0 11529
5025eb7c
AO
11530 BFD_ASSERT (local_got_offsets != NULL
11531 && local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 11532
252b5132 11533 off = local_got_offsets[r_symndx];
f21f3fe0 11534
252b5132
RH
11535 /* The offset must always be a multiple of 4. We use the
11536 least significant bit to record whether we have already
9b485d32 11537 generated the necessary reloc. */
252b5132
RH
11538 if ((off & 1) != 0)
11539 off &= ~1;
11540 else
11541 {
2376f038
EB
11542 Elf_Internal_Rela outrel;
11543 int isrofixup = 0;
f21f3fe0 11544
2376f038
EB
11545 if (dynreloc_st_type == STT_GNU_IFUNC)
11546 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11547 else if (bfd_link_pic (info))
11548 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11549 else
252b5132 11550 {
2376f038
EB
11551 outrel.r_info = 0;
11552 if (globals->fdpic_p)
11553 isrofixup = 1;
11554 }
11555
11556 /* The GOT entry is initialized to zero by default.
11557 See if we should install a different value. */
11558 if (globals->use_rel || outrel.r_info == 0)
11559 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11560
11561 if (isrofixup)
11562 arm_elf_add_rofixup (output_bfd,
11563 globals->srofixup,
11564 sgot->output_section->vma
11565 + sgot->output_offset + off);
f21f3fe0 11566
2376f038
EB
11567 else if (outrel.r_info != 0)
11568 {
34e77a92 11569 outrel.r_addend = addend + dynreloc_value;
252b5132 11570 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 11571 + sgot->output_offset
252b5132 11572 + off);
47beaa6a 11573 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 11574 }
f21f3fe0 11575
252b5132
RH
11576 local_got_offsets[r_symndx] |= 1;
11577 }
f21f3fe0 11578
252b5132
RH
11579 value = sgot->output_offset + off;
11580 }
eb043451
PB
11581 if (r_type != R_ARM_GOT32)
11582 value += sgot->output_section->vma;
9a5aca8c 11583
f21f3fe0 11584 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 11585 contents, rel->r_offset, value,
00a97672 11586 rel->r_addend);
f21f3fe0 11587
ba93b8ac
DJ
11588 case R_ARM_TLS_LDO32:
11589 value = value - dtpoff_base (info);
11590
11591 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
11592 contents, rel->r_offset, value,
11593 rel->r_addend);
ba93b8ac
DJ
11594
11595 case R_ARM_TLS_LDM32:
5c5a4843 11596 case R_ARM_TLS_LDM32_FDPIC:
ba93b8ac
DJ
11597 {
11598 bfd_vma off;
11599
362d30a1 11600 if (sgot == NULL)
ba93b8ac
DJ
11601 abort ();
11602
11603 off = globals->tls_ldm_got.offset;
11604
11605 if ((off & 1) != 0)
11606 off &= ~1;
11607 else
11608 {
11609 /* If we don't know the module number, create a relocation
11610 for it. */
9cb09e33 11611 if (bfd_link_dll (info))
ba93b8ac
DJ
11612 {
11613 Elf_Internal_Rela outrel;
ba93b8ac 11614
362d30a1 11615 if (srelgot == NULL)
ba93b8ac
DJ
11616 abort ();
11617
00a97672 11618 outrel.r_addend = 0;
362d30a1
RS
11619 outrel.r_offset = (sgot->output_section->vma
11620 + sgot->output_offset + off);
ba93b8ac
DJ
11621 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11622
00a97672
RS
11623 if (globals->use_rel)
11624 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11625 sgot->contents + off);
ba93b8ac 11626
47beaa6a 11627 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11628 }
11629 else
362d30a1 11630 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
11631
11632 globals->tls_ldm_got.offset |= 1;
11633 }
11634
5c5a4843 11635 if (r_type == R_ARM_TLS_LDM32_FDPIC)
e8b09b87 11636 {
cc850f74
NC
11637 bfd_put_32 (output_bfd,
11638 globals->root.sgot->output_offset + off,
11639 contents + rel->r_offset);
e8b09b87
CL
11640
11641 return bfd_reloc_ok;
11642 }
11643 else
11644 {
11645 value = sgot->output_section->vma + sgot->output_offset + off
11646 - (input_section->output_section->vma
11647 + input_section->output_offset + rel->r_offset);
ba93b8ac 11648
e8b09b87
CL
11649 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11650 contents, rel->r_offset, value,
11651 rel->r_addend);
11652 }
ba93b8ac
DJ
11653 }
11654
0855e32b
NS
11655 case R_ARM_TLS_CALL:
11656 case R_ARM_THM_TLS_CALL:
ba93b8ac 11657 case R_ARM_TLS_GD32:
5c5a4843 11658 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 11659 case R_ARM_TLS_IE32:
5c5a4843 11660 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
11661 case R_ARM_TLS_GOTDESC:
11662 case R_ARM_TLS_DESCSEQ:
11663 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 11664 {
0855e32b
NS
11665 bfd_vma off, offplt;
11666 int indx = 0;
ba93b8ac
DJ
11667 char tls_type;
11668
0855e32b 11669 BFD_ASSERT (sgot != NULL);
ba93b8ac 11670
ba93b8ac
DJ
11671 if (h != NULL)
11672 {
0a1b45a2 11673 bool dyn;
ba93b8ac 11674 dyn = globals->root.dynamic_sections_created;
0e1862bb
L
11675 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11676 bfd_link_pic (info),
11677 h)
11678 && (!bfd_link_pic (info)
ba93b8ac
DJ
11679 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11680 {
0a1b45a2 11681 *unresolved_reloc_p = false;
ba93b8ac
DJ
11682 indx = h->dynindx;
11683 }
11684 off = h->got.offset;
0855e32b 11685 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
11686 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11687 }
11688 else
11689 {
0855e32b 11690 BFD_ASSERT (local_got_offsets != NULL);
cc850f74 11691
74fd118f
NC
11692 if (r_symndx >= elf32_arm_num_entries (input_bfd))
11693 {
11694 _bfd_error_handler (_("\
11695%pB: expected symbol index in range 0..%lu but found local symbol with index %lu"),
11696 input_bfd,
11697 (unsigned long) elf32_arm_num_entries (input_bfd),
11698 r_symndx);
11699 return false;
11700 }
ba93b8ac 11701 off = local_got_offsets[r_symndx];
0855e32b 11702 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
11703 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11704 }
11705
0855e32b 11706 /* Linker relaxations happens from one of the
b38cadfb 11707 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
cc850f74 11708 if (ELF32_R_TYPE (rel->r_info) != r_type)
b38cadfb 11709 tls_type = GOT_TLS_IE;
0855e32b
NS
11710
11711 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
11712
11713 if ((off & 1) != 0)
11714 off &= ~1;
11715 else
11716 {
0a1b45a2 11717 bool need_relocs = false;
ba93b8ac 11718 Elf_Internal_Rela outrel;
ba93b8ac
DJ
11719 int cur_off = off;
11720
11721 /* The GOT entries have not been initialized yet. Do it
11722 now, and emit any relocations. If both an IE GOT and a
11723 GD GOT are necessary, we emit the GD first. */
11724
9cb09e33 11725 if ((bfd_link_dll (info) || indx != 0)
ba93b8ac 11726 && (h == NULL
95b03e4a
L
11727 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11728 && !resolved_to_zero)
ba93b8ac
DJ
11729 || h->root.type != bfd_link_hash_undefweak))
11730 {
0a1b45a2 11731 need_relocs = true;
0855e32b 11732 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
11733 }
11734
0855e32b
NS
11735 if (tls_type & GOT_TLS_GDESC)
11736 {
47beaa6a
RS
11737 bfd_byte *loc;
11738
0855e32b
NS
11739 /* We should have relaxed, unless this is an undefined
11740 weak symbol. */
11741 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9cb09e33 11742 || bfd_link_dll (info));
0855e32b 11743 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 11744 <= globals->root.sgotplt->size);
0855e32b
NS
11745
11746 outrel.r_addend = 0;
11747 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11748 + globals->root.sgotplt->output_offset
11749 + offplt
11750 + globals->sgotplt_jump_table_size);
b38cadfb 11751
0855e32b
NS
11752 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11753 sreloc = globals->root.srelplt;
11754 loc = sreloc->contents;
11755 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11756 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 11757 <= sreloc->contents + sreloc->size);
0855e32b
NS
11758
11759 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11760
11761 /* For globals, the first word in the relocation gets
11762 the relocation index and the top bit set, or zero,
11763 if we're binding now. For locals, it gets the
11764 symbol's offset in the tls section. */
99059e56 11765 bfd_put_32 (output_bfd,
0855e32b
NS
11766 !h ? value - elf_hash_table (info)->tls_sec->vma
11767 : info->flags & DF_BIND_NOW ? 0
11768 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
11769 globals->root.sgotplt->contents + offplt
11770 + globals->sgotplt_jump_table_size);
11771
0855e32b 11772 /* Second word in the relocation is always zero. */
99059e56 11773 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
11774 globals->root.sgotplt->contents + offplt
11775 + globals->sgotplt_jump_table_size + 4);
0855e32b 11776 }
ba93b8ac
DJ
11777 if (tls_type & GOT_TLS_GD)
11778 {
11779 if (need_relocs)
11780 {
00a97672 11781 outrel.r_addend = 0;
362d30a1
RS
11782 outrel.r_offset = (sgot->output_section->vma
11783 + sgot->output_offset
00a97672 11784 + cur_off);
ba93b8ac 11785 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 11786
00a97672
RS
11787 if (globals->use_rel)
11788 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11789 sgot->contents + cur_off);
00a97672 11790
47beaa6a 11791 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11792
11793 if (indx == 0)
11794 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11795 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11796 else
11797 {
00a97672 11798 outrel.r_addend = 0;
ba93b8ac
DJ
11799 outrel.r_info = ELF32_R_INFO (indx,
11800 R_ARM_TLS_DTPOFF32);
11801 outrel.r_offset += 4;
00a97672
RS
11802
11803 if (globals->use_rel)
11804 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11805 sgot->contents + cur_off + 4);
00a97672 11806
47beaa6a
RS
11807 elf32_arm_add_dynreloc (output_bfd, info,
11808 srelgot, &outrel);
ba93b8ac
DJ
11809 }
11810 }
11811 else
11812 {
11813 /* If we are not emitting relocations for a
11814 general dynamic reference, then we must be in a
11815 static link or an executable link with the
11816 symbol binding locally. Mark it as belonging
11817 to module 1, the executable. */
11818 bfd_put_32 (output_bfd, 1,
362d30a1 11819 sgot->contents + cur_off);
ba93b8ac 11820 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 11821 sgot->contents + cur_off + 4);
ba93b8ac
DJ
11822 }
11823
11824 cur_off += 8;
11825 }
11826
11827 if (tls_type & GOT_TLS_IE)
11828 {
11829 if (need_relocs)
11830 {
00a97672
RS
11831 if (indx == 0)
11832 outrel.r_addend = value - dtpoff_base (info);
11833 else
11834 outrel.r_addend = 0;
362d30a1
RS
11835 outrel.r_offset = (sgot->output_section->vma
11836 + sgot->output_offset
ba93b8ac
DJ
11837 + cur_off);
11838 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11839
00a97672
RS
11840 if (globals->use_rel)
11841 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 11842 sgot->contents + cur_off);
ba93b8ac 11843
47beaa6a 11844 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
11845 }
11846 else
11847 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 11848 sgot->contents + cur_off);
ba93b8ac
DJ
11849 cur_off += 4;
11850 }
11851
11852 if (h != NULL)
11853 h->got.offset |= 1;
11854 else
11855 local_got_offsets[r_symndx] |= 1;
11856 }
11857
5c5a4843 11858 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
ba93b8ac 11859 off += 8;
0855e32b
NS
11860 else if (tls_type & GOT_TLS_GDESC)
11861 off = offplt;
11862
cc850f74
NC
11863 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
11864 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL)
0855e32b
NS
11865 {
11866 bfd_signed_vma offset;
12352d3f
PB
11867 /* TLS stubs are arm mode. The original symbol is a
11868 data object, so branch_type is bogus. */
11869 branch_type = ST_BRANCH_TO_ARM;
0855e32b 11870 enum elf32_arm_stub_type stub_type
34e77a92
RS
11871 = arm_type_of_stub (info, input_section, rel,
11872 st_type, &branch_type,
0855e32b
NS
11873 (struct elf32_arm_link_hash_entry *)h,
11874 globals->tls_trampoline, globals->root.splt,
11875 input_bfd, sym_name);
11876
11877 if (stub_type != arm_stub_none)
11878 {
11879 struct elf32_arm_stub_hash_entry *stub_entry
11880 = elf32_arm_get_stub_entry
11881 (input_section, globals->root.splt, 0, rel,
11882 globals, stub_type);
11883 offset = (stub_entry->stub_offset
11884 + stub_entry->stub_sec->output_offset
11885 + stub_entry->stub_sec->output_section->vma);
11886 }
11887 else
11888 offset = (globals->root.splt->output_section->vma
11889 + globals->root.splt->output_offset
11890 + globals->tls_trampoline);
11891
cc850f74 11892 if (ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL)
0855e32b
NS
11893 {
11894 unsigned long inst;
b38cadfb
NC
11895
11896 offset -= (input_section->output_section->vma
11897 + input_section->output_offset
11898 + rel->r_offset + 8);
0855e32b
NS
11899
11900 inst = offset >> 2;
11901 inst &= 0x00ffffff;
11902 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11903 }
11904 else
11905 {
11906 /* Thumb blx encodes the offset in a complicated
11907 fashion. */
11908 unsigned upper_insn, lower_insn;
11909 unsigned neg;
11910
b38cadfb
NC
11911 offset -= (input_section->output_section->vma
11912 + input_section->output_offset
0855e32b 11913 + rel->r_offset + 4);
b38cadfb 11914
12352d3f
PB
11915 if (stub_type != arm_stub_none
11916 && arm_stub_is_thumb (stub_type))
11917 {
11918 lower_insn = 0xd000;
11919 }
11920 else
11921 {
11922 lower_insn = 0xc000;
6a631e86 11923 /* Round up the offset to a word boundary. */
12352d3f
PB
11924 offset = (offset + 2) & ~2;
11925 }
11926
0855e32b
NS
11927 neg = offset < 0;
11928 upper_insn = (0xf000
11929 | ((offset >> 12) & 0x3ff)
11930 | (neg << 10));
12352d3f 11931 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 11932 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 11933 | ((offset >> 1) & 0x7ff);
0855e32b
NS
11934 bfd_put_16 (input_bfd, upper_insn, hit_data);
11935 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11936 return bfd_reloc_ok;
11937 }
11938 }
11939 /* These relocations needs special care, as besides the fact
11940 they point somewhere in .gotplt, the addend must be
11941 adjusted accordingly depending on the type of instruction
6a631e86 11942 we refer to. */
0855e32b
NS
11943 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11944 {
11945 unsigned long data, insn;
11946 unsigned thumb;
b38cadfb 11947
b627f562 11948 data = bfd_get_signed_32 (input_bfd, hit_data);
0855e32b 11949 thumb = data & 1;
b627f562 11950 data &= ~1ul;
b38cadfb 11951
0855e32b
NS
11952 if (thumb)
11953 {
11954 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11955 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11956 insn = (insn << 16)
11957 | bfd_get_16 (input_bfd,
11958 contents + rel->r_offset - data + 2);
11959 if ((insn & 0xf800c000) == 0xf000c000)
11960 /* bl/blx */
11961 value = -6;
11962 else if ((insn & 0xffffff00) == 0x4400)
11963 /* add */
11964 value = -5;
11965 else
11966 {
4eca0228 11967 _bfd_error_handler
695344c0 11968 /* xgettext:c-format */
2dcf00ce 11969 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 11970 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
11971 "referenced by TLS_GOTDESC"),
11972 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 11973 "Thumb", insn);
0855e32b
NS
11974 return bfd_reloc_notsupported;
11975 }
11976 }
11977 else
11978 {
11979 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11980
11981 switch (insn >> 24)
11982 {
11983 case 0xeb: /* bl */
11984 case 0xfa: /* blx */
11985 value = -4;
11986 break;
11987
11988 case 0xe0: /* add */
11989 value = -8;
11990 break;
b38cadfb 11991
0855e32b 11992 default:
4eca0228 11993 _bfd_error_handler
695344c0 11994 /* xgettext:c-format */
2dcf00ce 11995 (_("%pB(%pA+%#" PRIx64 "): "
90b6238f 11996 "unexpected %s instruction '%#lx' "
2dcf00ce
AM
11997 "referenced by TLS_GOTDESC"),
11998 input_bfd, input_section, (uint64_t) rel->r_offset,
90b6238f 11999 "ARM", insn);
0855e32b
NS
12000 return bfd_reloc_notsupported;
12001 }
12002 }
b38cadfb 12003
0855e32b
NS
12004 value += ((globals->root.sgotplt->output_section->vma
12005 + globals->root.sgotplt->output_offset + off)
12006 - (input_section->output_section->vma
12007 + input_section->output_offset
12008 + rel->r_offset)
12009 + globals->sgotplt_jump_table_size);
12010 }
12011 else
12012 value = ((globals->root.sgot->output_section->vma
12013 + globals->root.sgot->output_offset + off)
12014 - (input_section->output_section->vma
12015 + input_section->output_offset + rel->r_offset));
ba93b8ac 12016
5c5a4843
CL
12017 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12018 r_type == R_ARM_TLS_IE32_FDPIC))
e8b09b87
CL
12019 {
12020 /* For FDPIC relocations, resolve to the offset of the GOT
12021 entry from the start of GOT. */
cc850f74
NC
12022 bfd_put_32 (output_bfd,
12023 globals->root.sgot->output_offset + off,
12024 contents + rel->r_offset);
e8b09b87
CL
12025
12026 return bfd_reloc_ok;
12027 }
12028 else
12029 {
12030 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12031 contents, rel->r_offset, value,
12032 rel->r_addend);
12033 }
ba93b8ac
DJ
12034 }
12035
12036 case R_ARM_TLS_LE32:
3cbc1e5e 12037 if (bfd_link_dll (info))
ba93b8ac 12038 {
4eca0228 12039 _bfd_error_handler
695344c0 12040 /* xgettext:c-format */
2dcf00ce
AM
12041 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12042 "in shared object"),
12043 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
46691134 12044 return bfd_reloc_notsupported;
ba93b8ac
DJ
12045 }
12046 else
12047 value = tpoff (info, value);
906e58ca 12048
ba93b8ac 12049 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
12050 contents, rel->r_offset, value,
12051 rel->r_addend);
ba93b8ac 12052
319850b4
JB
12053 case R_ARM_V4BX:
12054 if (globals->fix_v4bx)
845b51d6
PB
12055 {
12056 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 12057
845b51d6
PB
12058 /* Ensure that we have a BX instruction. */
12059 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 12060
845b51d6
PB
12061 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12062 {
12063 /* Branch to veneer. */
12064 bfd_vma glue_addr;
12065 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12066 glue_addr -= input_section->output_section->vma
12067 + input_section->output_offset
12068 + rel->r_offset + 8;
12069 insn = (insn & 0xf0000000) | 0x0a000000
12070 | ((glue_addr >> 2) & 0x00ffffff);
12071 }
12072 else
12073 {
12074 /* Preserve Rm (lowest four bits) and the condition code
12075 (highest four bits). Other bits encode MOV PC,Rm. */
12076 insn = (insn & 0xf000000f) | 0x01a0f000;
12077 }
319850b4 12078
845b51d6
PB
12079 bfd_put_32 (input_bfd, insn, hit_data);
12080 }
319850b4
JB
12081 return bfd_reloc_ok;
12082
b6895b4f
PB
12083 case R_ARM_MOVW_ABS_NC:
12084 case R_ARM_MOVT_ABS:
12085 case R_ARM_MOVW_PREL_NC:
12086 case R_ARM_MOVT_PREL:
92f5d02b
MS
12087 /* Until we properly support segment-base-relative addressing then
12088 we assume the segment base to be zero, as for the group relocations.
12089 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12090 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12091 case R_ARM_MOVW_BREL_NC:
12092 case R_ARM_MOVW_BREL:
12093 case R_ARM_MOVT_BREL:
b6895b4f
PB
12094 {
12095 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12096
12097 if (globals->use_rel)
12098 {
12099 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 12100 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12101 }
92f5d02b 12102
b6895b4f 12103 value += signed_addend;
b6895b4f
PB
12104
12105 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12106 value -= (input_section->output_section->vma
12107 + input_section->output_offset + rel->r_offset);
12108
92f5d02b 12109 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 12110 return bfd_reloc_overflow;
92f5d02b 12111
35fc36a8 12112 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12113 value |= 1;
12114
12115 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 12116 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
12117 value >>= 16;
12118
12119 insn &= 0xfff0f000;
12120 insn |= value & 0xfff;
12121 insn |= (value & 0xf000) << 4;
12122 bfd_put_32 (input_bfd, insn, hit_data);
12123 }
12124 return bfd_reloc_ok;
12125
12126 case R_ARM_THM_MOVW_ABS_NC:
12127 case R_ARM_THM_MOVT_ABS:
12128 case R_ARM_THM_MOVW_PREL_NC:
12129 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
12130 /* Until we properly support segment-base-relative addressing then
12131 we assume the segment base to be zero, as for the above relocations.
12132 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12133 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12134 as R_ARM_THM_MOVT_ABS. */
12135 case R_ARM_THM_MOVW_BREL_NC:
12136 case R_ARM_THM_MOVW_BREL:
12137 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
12138 {
12139 bfd_vma insn;
906e58ca 12140
b6895b4f
PB
12141 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12142 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12143
12144 if (globals->use_rel)
12145 {
12146 addend = ((insn >> 4) & 0xf000)
12147 | ((insn >> 15) & 0x0800)
12148 | ((insn >> 4) & 0x0700)
07d6d2b8 12149 | (insn & 0x00ff);
39623e12 12150 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 12151 }
92f5d02b 12152
b6895b4f 12153 value += signed_addend;
b6895b4f
PB
12154
12155 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12156 value -= (input_section->output_section->vma
12157 + input_section->output_offset + rel->r_offset);
12158
92f5d02b 12159 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 12160 return bfd_reloc_overflow;
92f5d02b 12161
35fc36a8 12162 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
12163 value |= 1;
12164
12165 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 12166 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
12167 value >>= 16;
12168
12169 insn &= 0xfbf08f00;
12170 insn |= (value & 0xf000) << 4;
12171 insn |= (value & 0x0800) << 15;
12172 insn |= (value & 0x0700) << 4;
12173 insn |= (value & 0x00ff);
12174
12175 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12176 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12177 }
12178 return bfd_reloc_ok;
12179
4962c51a
MS
12180 case R_ARM_ALU_PC_G0_NC:
12181 case R_ARM_ALU_PC_G1_NC:
12182 case R_ARM_ALU_PC_G0:
12183 case R_ARM_ALU_PC_G1:
12184 case R_ARM_ALU_PC_G2:
12185 case R_ARM_ALU_SB_G0_NC:
12186 case R_ARM_ALU_SB_G1_NC:
12187 case R_ARM_ALU_SB_G0:
12188 case R_ARM_ALU_SB_G1:
12189 case R_ARM_ALU_SB_G2:
12190 {
12191 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12192 bfd_vma pc = input_section->output_section->vma
4962c51a 12193 + input_section->output_offset + rel->r_offset;
31a91d61 12194 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12195 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
12196 bfd_vma residual;
12197 bfd_vma g_n;
4962c51a 12198 bfd_signed_vma signed_value;
99059e56
RM
12199 int group = 0;
12200
12201 /* Determine which group of bits to select. */
12202 switch (r_type)
12203 {
12204 case R_ARM_ALU_PC_G0_NC:
12205 case R_ARM_ALU_PC_G0:
12206 case R_ARM_ALU_SB_G0_NC:
12207 case R_ARM_ALU_SB_G0:
12208 group = 0;
12209 break;
12210
12211 case R_ARM_ALU_PC_G1_NC:
12212 case R_ARM_ALU_PC_G1:
12213 case R_ARM_ALU_SB_G1_NC:
12214 case R_ARM_ALU_SB_G1:
12215 group = 1;
12216 break;
12217
12218 case R_ARM_ALU_PC_G2:
12219 case R_ARM_ALU_SB_G2:
12220 group = 2;
12221 break;
12222
12223 default:
12224 abort ();
12225 }
12226
12227 /* If REL, extract the addend from the insn. If RELA, it will
12228 have already been fetched for us. */
4962c51a 12229 if (globals->use_rel)
99059e56
RM
12230 {
12231 int negative;
12232 bfd_vma constant = insn & 0xff;
12233 bfd_vma rotation = (insn & 0xf00) >> 8;
12234
12235 if (rotation == 0)
12236 signed_addend = constant;
12237 else
12238 {
12239 /* Compensate for the fact that in the instruction, the
12240 rotation is stored in multiples of 2 bits. */
12241 rotation *= 2;
12242
12243 /* Rotate "constant" right by "rotation" bits. */
12244 signed_addend = (constant >> rotation) |
12245 (constant << (8 * sizeof (bfd_vma) - rotation));
12246 }
12247
12248 /* Determine if the instruction is an ADD or a SUB.
12249 (For REL, this determines the sign of the addend.) */
12250 negative = identify_add_or_sub (insn);
12251 if (negative == 0)
12252 {
4eca0228 12253 _bfd_error_handler
695344c0 12254 /* xgettext:c-format */
90b6238f 12255 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
2dcf00ce
AM
12256 "are allowed for ALU group relocations"),
12257 input_bfd, input_section, (uint64_t) rel->r_offset);
99059e56
RM
12258 return bfd_reloc_overflow;
12259 }
12260
12261 signed_addend *= negative;
12262 }
4962c51a
MS
12263
12264 /* Compute the value (X) to go in the place. */
99059e56
RM
12265 if (r_type == R_ARM_ALU_PC_G0_NC
12266 || r_type == R_ARM_ALU_PC_G1_NC
12267 || r_type == R_ARM_ALU_PC_G0
12268 || r_type == R_ARM_ALU_PC_G1
12269 || r_type == R_ARM_ALU_PC_G2)
12270 /* PC relative. */
12271 signed_value = value - pc + signed_addend;
12272 else
12273 /* Section base relative. */
12274 signed_value = value - sb + signed_addend;
12275
12276 /* If the target symbol is a Thumb function, then set the
12277 Thumb bit in the address. */
35fc36a8 12278 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
12279 signed_value |= 1;
12280
99059e56
RM
12281 /* Calculate the value of the relevant G_n, in encoded
12282 constant-with-rotation format. */
b6518b38
NC
12283 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12284 group, &residual);
99059e56
RM
12285
12286 /* Check for overflow if required. */
12287 if ((r_type == R_ARM_ALU_PC_G0
12288 || r_type == R_ARM_ALU_PC_G1
12289 || r_type == R_ARM_ALU_PC_G2
12290 || r_type == R_ARM_ALU_SB_G0
12291 || r_type == R_ARM_ALU_SB_G1
12292 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12293 {
4eca0228 12294 _bfd_error_handler
695344c0 12295 /* xgettext:c-format */
90b6238f 12296 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12297 "splitting %#" PRIx64 " for group relocation %s"),
12298 input_bfd, input_section, (uint64_t) rel->r_offset,
12299 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12300 howto->name);
99059e56
RM
12301 return bfd_reloc_overflow;
12302 }
12303
12304 /* Mask out the value and the ADD/SUB part of the opcode; take care
12305 not to destroy the S bit. */
12306 insn &= 0xff1ff000;
12307
12308 /* Set the opcode according to whether the value to go in the
12309 place is negative. */
12310 if (signed_value < 0)
12311 insn |= 1 << 22;
12312 else
12313 insn |= 1 << 23;
12314
12315 /* Encode the offset. */
12316 insn |= g_n;
4962c51a
MS
12317
12318 bfd_put_32 (input_bfd, insn, hit_data);
12319 }
12320 return bfd_reloc_ok;
12321
12322 case R_ARM_LDR_PC_G0:
12323 case R_ARM_LDR_PC_G1:
12324 case R_ARM_LDR_PC_G2:
12325 case R_ARM_LDR_SB_G0:
12326 case R_ARM_LDR_SB_G1:
12327 case R_ARM_LDR_SB_G2:
12328 {
12329 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12330 bfd_vma pc = input_section->output_section->vma
4962c51a 12331 + input_section->output_offset + rel->r_offset;
31a91d61 12332 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12333 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12334 bfd_vma residual;
4962c51a 12335 bfd_signed_vma signed_value;
99059e56
RM
12336 int group = 0;
12337
12338 /* Determine which groups of bits to calculate. */
12339 switch (r_type)
12340 {
12341 case R_ARM_LDR_PC_G0:
12342 case R_ARM_LDR_SB_G0:
12343 group = 0;
12344 break;
12345
12346 case R_ARM_LDR_PC_G1:
12347 case R_ARM_LDR_SB_G1:
12348 group = 1;
12349 break;
12350
12351 case R_ARM_LDR_PC_G2:
12352 case R_ARM_LDR_SB_G2:
12353 group = 2;
12354 break;
12355
12356 default:
12357 abort ();
12358 }
12359
12360 /* If REL, extract the addend from the insn. If RELA, it will
12361 have already been fetched for us. */
4962c51a 12362 if (globals->use_rel)
99059e56
RM
12363 {
12364 int negative = (insn & (1 << 23)) ? 1 : -1;
12365 signed_addend = negative * (insn & 0xfff);
12366 }
4962c51a
MS
12367
12368 /* Compute the value (X) to go in the place. */
99059e56
RM
12369 if (r_type == R_ARM_LDR_PC_G0
12370 || r_type == R_ARM_LDR_PC_G1
12371 || r_type == R_ARM_LDR_PC_G2)
12372 /* PC relative. */
12373 signed_value = value - pc + signed_addend;
12374 else
12375 /* Section base relative. */
12376 signed_value = value - sb + signed_addend;
12377
12378 /* Calculate the value of the relevant G_{n-1} to obtain
12379 the residual at that stage. */
b6518b38
NC
12380 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12381 group - 1, &residual);
99059e56
RM
12382
12383 /* Check for overflow. */
12384 if (residual >= 0x1000)
12385 {
4eca0228 12386 _bfd_error_handler
695344c0 12387 /* xgettext:c-format */
90b6238f 12388 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12389 "splitting %#" PRIx64 " for group relocation %s"),
12390 input_bfd, input_section, (uint64_t) rel->r_offset,
12391 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12392 howto->name);
99059e56
RM
12393 return bfd_reloc_overflow;
12394 }
12395
12396 /* Mask out the value and U bit. */
12397 insn &= 0xff7ff000;
12398
12399 /* Set the U bit if the value to go in the place is non-negative. */
12400 if (signed_value >= 0)
12401 insn |= 1 << 23;
12402
12403 /* Encode the offset. */
12404 insn |= residual;
4962c51a
MS
12405
12406 bfd_put_32 (input_bfd, insn, hit_data);
12407 }
12408 return bfd_reloc_ok;
12409
12410 case R_ARM_LDRS_PC_G0:
12411 case R_ARM_LDRS_PC_G1:
12412 case R_ARM_LDRS_PC_G2:
12413 case R_ARM_LDRS_SB_G0:
12414 case R_ARM_LDRS_SB_G1:
12415 case R_ARM_LDRS_SB_G2:
12416 {
12417 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12418 bfd_vma pc = input_section->output_section->vma
4962c51a 12419 + input_section->output_offset + rel->r_offset;
31a91d61 12420 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12421 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12422 bfd_vma residual;
4962c51a 12423 bfd_signed_vma signed_value;
99059e56
RM
12424 int group = 0;
12425
12426 /* Determine which groups of bits to calculate. */
12427 switch (r_type)
12428 {
12429 case R_ARM_LDRS_PC_G0:
12430 case R_ARM_LDRS_SB_G0:
12431 group = 0;
12432 break;
12433
12434 case R_ARM_LDRS_PC_G1:
12435 case R_ARM_LDRS_SB_G1:
12436 group = 1;
12437 break;
12438
12439 case R_ARM_LDRS_PC_G2:
12440 case R_ARM_LDRS_SB_G2:
12441 group = 2;
12442 break;
12443
12444 default:
12445 abort ();
12446 }
12447
12448 /* If REL, extract the addend from the insn. If RELA, it will
12449 have already been fetched for us. */
4962c51a 12450 if (globals->use_rel)
99059e56
RM
12451 {
12452 int negative = (insn & (1 << 23)) ? 1 : -1;
12453 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12454 }
4962c51a
MS
12455
12456 /* Compute the value (X) to go in the place. */
99059e56
RM
12457 if (r_type == R_ARM_LDRS_PC_G0
12458 || r_type == R_ARM_LDRS_PC_G1
12459 || r_type == R_ARM_LDRS_PC_G2)
12460 /* PC relative. */
12461 signed_value = value - pc + signed_addend;
12462 else
12463 /* Section base relative. */
12464 signed_value = value - sb + signed_addend;
12465
12466 /* Calculate the value of the relevant G_{n-1} to obtain
12467 the residual at that stage. */
b6518b38
NC
12468 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12469 group - 1, &residual);
99059e56
RM
12470
12471 /* Check for overflow. */
12472 if (residual >= 0x100)
12473 {
4eca0228 12474 _bfd_error_handler
695344c0 12475 /* xgettext:c-format */
90b6238f 12476 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12477 "splitting %#" PRIx64 " for group relocation %s"),
12478 input_bfd, input_section, (uint64_t) rel->r_offset,
12479 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12480 howto->name);
99059e56
RM
12481 return bfd_reloc_overflow;
12482 }
12483
12484 /* Mask out the value and U bit. */
12485 insn &= 0xff7ff0f0;
12486
12487 /* Set the U bit if the value to go in the place is non-negative. */
12488 if (signed_value >= 0)
12489 insn |= 1 << 23;
12490
12491 /* Encode the offset. */
12492 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
12493
12494 bfd_put_32 (input_bfd, insn, hit_data);
12495 }
12496 return bfd_reloc_ok;
12497
12498 case R_ARM_LDC_PC_G0:
12499 case R_ARM_LDC_PC_G1:
12500 case R_ARM_LDC_PC_G2:
12501 case R_ARM_LDC_SB_G0:
12502 case R_ARM_LDC_SB_G1:
12503 case R_ARM_LDC_SB_G2:
12504 {
12505 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 12506 bfd_vma pc = input_section->output_section->vma
4962c51a 12507 + input_section->output_offset + rel->r_offset;
31a91d61 12508 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 12509 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 12510 bfd_vma residual;
4962c51a 12511 bfd_signed_vma signed_value;
99059e56
RM
12512 int group = 0;
12513
12514 /* Determine which groups of bits to calculate. */
12515 switch (r_type)
12516 {
12517 case R_ARM_LDC_PC_G0:
12518 case R_ARM_LDC_SB_G0:
12519 group = 0;
12520 break;
12521
12522 case R_ARM_LDC_PC_G1:
12523 case R_ARM_LDC_SB_G1:
12524 group = 1;
12525 break;
12526
12527 case R_ARM_LDC_PC_G2:
12528 case R_ARM_LDC_SB_G2:
12529 group = 2;
12530 break;
12531
12532 default:
12533 abort ();
12534 }
12535
12536 /* If REL, extract the addend from the insn. If RELA, it will
12537 have already been fetched for us. */
4962c51a 12538 if (globals->use_rel)
99059e56
RM
12539 {
12540 int negative = (insn & (1 << 23)) ? 1 : -1;
12541 signed_addend = negative * ((insn & 0xff) << 2);
12542 }
4962c51a
MS
12543
12544 /* Compute the value (X) to go in the place. */
99059e56
RM
12545 if (r_type == R_ARM_LDC_PC_G0
12546 || r_type == R_ARM_LDC_PC_G1
12547 || r_type == R_ARM_LDC_PC_G2)
12548 /* PC relative. */
12549 signed_value = value - pc + signed_addend;
12550 else
12551 /* Section base relative. */
12552 signed_value = value - sb + signed_addend;
12553
12554 /* Calculate the value of the relevant G_{n-1} to obtain
12555 the residual at that stage. */
b6518b38
NC
12556 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12557 group - 1, &residual);
99059e56
RM
12558
12559 /* Check for overflow. (The absolute value to go in the place must be
12560 divisible by four and, after having been divided by four, must
12561 fit in eight bits.) */
12562 if ((residual & 0x3) != 0 || residual >= 0x400)
12563 {
4eca0228 12564 _bfd_error_handler
695344c0 12565 /* xgettext:c-format */
90b6238f 12566 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
2dcf00ce
AM
12567 "splitting %#" PRIx64 " for group relocation %s"),
12568 input_bfd, input_section, (uint64_t) rel->r_offset,
12569 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12570 howto->name);
99059e56
RM
12571 return bfd_reloc_overflow;
12572 }
12573
12574 /* Mask out the value and U bit. */
12575 insn &= 0xff7fff00;
12576
12577 /* Set the U bit if the value to go in the place is non-negative. */
12578 if (signed_value >= 0)
12579 insn |= 1 << 23;
12580
12581 /* Encode the offset. */
12582 insn |= residual >> 2;
4962c51a
MS
12583
12584 bfd_put_32 (input_bfd, insn, hit_data);
12585 }
12586 return bfd_reloc_ok;
12587
72d98d16
MG
12588 case R_ARM_THM_ALU_ABS_G0_NC:
12589 case R_ARM_THM_ALU_ABS_G1_NC:
12590 case R_ARM_THM_ALU_ABS_G2_NC:
12591 case R_ARM_THM_ALU_ABS_G3_NC:
12592 {
12593 const int shift_array[4] = {0, 8, 16, 24};
12594 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12595 bfd_vma addr = value;
12596 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12597
12598 /* Compute address. */
12599 if (globals->use_rel)
12600 signed_addend = insn & 0xff;
12601 addr += signed_addend;
12602 if (branch_type == ST_BRANCH_TO_THUMB)
12603 addr |= 1;
12604 /* Clean imm8 insn. */
12605 insn &= 0xff00;
12606 /* And update with correct part of address. */
12607 insn |= (addr >> shift) & 0xff;
12608 /* Update insn. */
12609 bfd_put_16 (input_bfd, insn, hit_data);
12610 }
12611
0a1b45a2 12612 *unresolved_reloc_p = false;
72d98d16
MG
12613 return bfd_reloc_ok;
12614
e8b09b87
CL
12615 case R_ARM_GOTOFFFUNCDESC:
12616 {
4b24dd1a 12617 if (h == NULL)
e8b09b87 12618 {
cc850f74 12619 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87 12620 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12621
12622 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12623 {
12624 * error_message = _("local symbol index too big");
12625 return bfd_reloc_dangerous;
12626 }
12627
e8b09b87
CL
12628 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12629 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12630 bfd_vma seg = -1;
12631
cc850f74
NC
12632 if (bfd_link_pic (info) && dynindx == 0)
12633 {
12634 * error_message = _("no dynamic index information available");
12635 return bfd_reloc_dangerous;
12636 }
e8b09b87
CL
12637
12638 /* Resolve relocation. */
cc850f74 12639 bfd_put_32 (output_bfd, (offset + sgot->output_offset)
e8b09b87
CL
12640 , contents + rel->r_offset);
12641 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12642 not done yet. */
cc850f74
NC
12643 arm_elf_fill_funcdesc (output_bfd, info,
12644 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12645 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12646 }
12647 else
12648 {
12649 int dynindx;
12650 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12651 bfd_vma addr;
12652 bfd_vma seg = -1;
12653
12654 /* For static binaries, sym_sec can be null. */
12655 if (sym_sec)
12656 {
12657 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12658 addr = dynreloc_value - sym_sec->output_section->vma;
12659 }
12660 else
12661 {
12662 dynindx = 0;
12663 addr = 0;
12664 }
12665
cc850f74
NC
12666 if (bfd_link_pic (info) && dynindx == 0)
12667 {
12668 * error_message = _("no dynamic index information available");
12669 return bfd_reloc_dangerous;
12670 }
e8b09b87
CL
12671
12672 /* This case cannot occur since funcdesc is allocated by
12673 the dynamic loader so we cannot resolve the relocation. */
12674 if (h->dynindx != -1)
cc850f74
NC
12675 {
12676 * error_message = _("invalid dynamic index");
12677 return bfd_reloc_dangerous;
12678 }
e8b09b87
CL
12679
12680 /* Resolve relocation. */
cc850f74
NC
12681 bfd_put_32 (output_bfd, (offset + sgot->output_offset),
12682 contents + rel->r_offset);
e8b09b87 12683 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12684 arm_elf_fill_funcdesc (output_bfd, info,
12685 &eh->fdpic_cnts.funcdesc_offset,
12686 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12687 }
12688 }
0a1b45a2 12689 *unresolved_reloc_p = false;
e8b09b87
CL
12690 return bfd_reloc_ok;
12691
12692 case R_ARM_GOTFUNCDESC:
12693 {
4b24dd1a 12694 if (h != NULL)
e8b09b87
CL
12695 {
12696 Elf_Internal_Rela outrel;
12697
12698 /* Resolve relocation. */
cc850f74
NC
12699 bfd_put_32 (output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12700 + sgot->output_offset),
12701 contents + rel->r_offset);
e8b09b87 12702 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
cc850f74 12703 if (h->dynindx == -1)
e8b09b87
CL
12704 {
12705 int dynindx;
12706 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12707 bfd_vma addr;
12708 bfd_vma seg = -1;
12709
12710 /* For static binaries sym_sec can be null. */
12711 if (sym_sec)
12712 {
12713 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12714 addr = dynreloc_value - sym_sec->output_section->vma;
12715 }
12716 else
12717 {
12718 dynindx = 0;
12719 addr = 0;
12720 }
12721
12722 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12723 arm_elf_fill_funcdesc (output_bfd, info,
12724 &eh->fdpic_cnts.funcdesc_offset,
12725 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12726 }
12727
12728 /* Add a dynamic relocation on GOT entry if not already done. */
12729 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12730 {
12731 if (h->dynindx == -1)
12732 {
12733 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12734 if (h->root.type == bfd_link_hash_undefweak)
cc850f74
NC
12735 bfd_put_32 (output_bfd, 0, sgot->contents
12736 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87 12737 else
cc850f74
NC
12738 bfd_put_32 (output_bfd, sgot->output_section->vma
12739 + sgot->output_offset
12740 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12741 sgot->contents
12742 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
e8b09b87
CL
12743 }
12744 else
12745 {
12746 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12747 }
12748 outrel.r_offset = sgot->output_section->vma
12749 + sgot->output_offset
12750 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12751 outrel.r_addend = 0;
cc850f74 12752 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87 12753 if (h->root.type == bfd_link_hash_undefweak)
cc850f74 12754 arm_elf_add_rofixup (output_bfd, globals->srofixup, -1);
e8b09b87 12755 else
cc850f74
NC
12756 arm_elf_add_rofixup (output_bfd, globals->srofixup,
12757 outrel.r_offset);
e8b09b87
CL
12758 else
12759 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12760 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12761 }
12762 }
12763 else
12764 {
12765 /* Such relocation on static function should not have been
12766 emitted by the compiler. */
cc850f74 12767 return bfd_reloc_notsupported;
e8b09b87
CL
12768 }
12769 }
0a1b45a2 12770 *unresolved_reloc_p = false;
e8b09b87
CL
12771 return bfd_reloc_ok;
12772
12773 case R_ARM_FUNCDESC:
12774 {
4b24dd1a 12775 if (h == NULL)
e8b09b87 12776 {
cc850f74 12777 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts (input_bfd);
e8b09b87
CL
12778 Elf_Internal_Rela outrel;
12779 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
74fd118f
NC
12780
12781 if (r_symndx >= elf32_arm_num_entries (input_bfd))
12782 {
12783 * error_message = _("local symbol index too big");
12784 return bfd_reloc_dangerous;
12785 }
12786
e8b09b87
CL
12787 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12788 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12789 bfd_vma seg = -1;
12790
cc850f74
NC
12791 if (bfd_link_pic (info) && dynindx == 0)
12792 {
12793 * error_message = _("dynamic index information not available");
12794 return bfd_reloc_dangerous;
12795 }
e8b09b87
CL
12796
12797 /* Replace static FUNCDESC relocation with a
12798 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12799 executable. */
12800 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12801 outrel.r_offset = input_section->output_section->vma
12802 + input_section->output_offset + rel->r_offset;
12803 outrel.r_addend = 0;
cc850f74 12804 if (bfd_link_pic (info))
e8b09b87
CL
12805 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12806 else
cc850f74 12807 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12808
12809 bfd_put_32 (input_bfd, sgot->output_section->vma
12810 + sgot->output_offset + offset, hit_data);
12811
12812 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12813 arm_elf_fill_funcdesc (output_bfd, info,
12814 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12815 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12816 }
12817 else
12818 {
12819 if (h->dynindx == -1)
12820 {
12821 int dynindx;
12822 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12823 bfd_vma addr;
12824 bfd_vma seg = -1;
12825 Elf_Internal_Rela outrel;
12826
12827 /* For static binaries sym_sec can be null. */
12828 if (sym_sec)
12829 {
12830 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12831 addr = dynreloc_value - sym_sec->output_section->vma;
12832 }
12833 else
12834 {
12835 dynindx = 0;
12836 addr = 0;
12837 }
12838
cc850f74
NC
12839 if (bfd_link_pic (info) && dynindx == 0)
12840 abort ();
e8b09b87
CL
12841
12842 /* Replace static FUNCDESC relocation with a
12843 R_ARM_RELATIVE dynamic relocation. */
12844 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12845 outrel.r_offset = input_section->output_section->vma
12846 + input_section->output_offset + rel->r_offset;
12847 outrel.r_addend = 0;
cc850f74 12848 if (bfd_link_pic (info))
e8b09b87
CL
12849 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12850 else
cc850f74 12851 arm_elf_add_rofixup (output_bfd, globals->srofixup, outrel.r_offset);
e8b09b87
CL
12852
12853 bfd_put_32 (input_bfd, sgot->output_section->vma
12854 + sgot->output_offset + offset, hit_data);
12855
12856 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
cc850f74
NC
12857 arm_elf_fill_funcdesc (output_bfd, info,
12858 &eh->fdpic_cnts.funcdesc_offset,
12859 dynindx, offset, addr, dynreloc_value, seg);
e8b09b87
CL
12860 }
12861 else
12862 {
12863 Elf_Internal_Rela outrel;
12864
12865 /* Add a dynamic relocation. */
12866 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12867 outrel.r_offset = input_section->output_section->vma
12868 + input_section->output_offset + rel->r_offset;
12869 outrel.r_addend = 0;
12870 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12871 }
12872 }
12873 }
0a1b45a2 12874 *unresolved_reloc_p = false;
e8b09b87
CL
12875 return bfd_reloc_ok;
12876
e5d6e09e
AV
12877 case R_ARM_THM_BF16:
12878 {
12879 bfd_vma relocation;
12880 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12881 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12882
12883 if (globals->use_rel)
12884 {
12885 bfd_vma immA = (upper_insn & 0x001f);
12886 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12887 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12888 addend = (immA << 12);
12889 addend |= (immB << 2);
12890 addend |= (immC << 1);
12891 addend |= 1;
12892 /* Sign extend. */
e6f65e75 12893 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
e5d6e09e
AV
12894 }
12895
e6f65e75 12896 relocation = value + signed_addend;
e5d6e09e
AV
12897 relocation -= (input_section->output_section->vma
12898 + input_section->output_offset
12899 + rel->r_offset);
12900
12901 /* Put RELOCATION back into the insn. */
12902 {
12903 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12904 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12905 bfd_vma immC = (relocation & 0x00000002) >> 1;
12906
12907 upper_insn = (upper_insn & 0xffe0) | immA;
12908 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12909 }
12910
12911 /* Put the relocated value back in the object file: */
12912 bfd_put_16 (input_bfd, upper_insn, hit_data);
12913 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12914
12915 return bfd_reloc_ok;
12916 }
12917
1889da70
AV
12918 case R_ARM_THM_BF12:
12919 {
12920 bfd_vma relocation;
12921 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12922 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12923
12924 if (globals->use_rel)
12925 {
12926 bfd_vma immA = (upper_insn & 0x0001);
12927 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12928 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12929 addend = (immA << 12);
12930 addend |= (immB << 2);
12931 addend |= (immC << 1);
12932 addend |= 1;
12933 /* Sign extend. */
12934 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
e6f65e75 12935 signed_addend = addend;
1889da70
AV
12936 }
12937
e6f65e75 12938 relocation = value + signed_addend;
1889da70
AV
12939 relocation -= (input_section->output_section->vma
12940 + input_section->output_offset
12941 + rel->r_offset);
12942
12943 /* Put RELOCATION back into the insn. */
12944 {
12945 bfd_vma immA = (relocation & 0x00001000) >> 12;
12946 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12947 bfd_vma immC = (relocation & 0x00000002) >> 1;
12948
12949 upper_insn = (upper_insn & 0xfffe) | immA;
12950 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12951 }
12952
12953 /* Put the relocated value back in the object file: */
12954 bfd_put_16 (input_bfd, upper_insn, hit_data);
12955 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12956
12957 return bfd_reloc_ok;
12958 }
12959
1caf72a5
AV
12960 case R_ARM_THM_BF18:
12961 {
12962 bfd_vma relocation;
12963 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12964 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12965
12966 if (globals->use_rel)
12967 {
12968 bfd_vma immA = (upper_insn & 0x007f);
12969 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12970 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12971 addend = (immA << 12);
12972 addend |= (immB << 2);
12973 addend |= (immC << 1);
12974 addend |= 1;
12975 /* Sign extend. */
12976 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
e6f65e75 12977 signed_addend = addend;
1caf72a5
AV
12978 }
12979
e6f65e75 12980 relocation = value + signed_addend;
1caf72a5
AV
12981 relocation -= (input_section->output_section->vma
12982 + input_section->output_offset
12983 + rel->r_offset);
12984
12985 /* Put RELOCATION back into the insn. */
12986 {
12987 bfd_vma immA = (relocation & 0x0007f000) >> 12;
12988 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12989 bfd_vma immC = (relocation & 0x00000002) >> 1;
12990
12991 upper_insn = (upper_insn & 0xff80) | immA;
12992 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12993 }
12994
12995 /* Put the relocated value back in the object file: */
12996 bfd_put_16 (input_bfd, upper_insn, hit_data);
12997 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12998
12999 return bfd_reloc_ok;
13000 }
13001
252b5132
RH
13002 default:
13003 return bfd_reloc_notsupported;
13004 }
13005}
13006
98c1d4aa
NC
13007/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13008static void
07d6d2b8
AM
13009arm_add_to_rel (bfd * abfd,
13010 bfd_byte * address,
57e8b36a 13011 reloc_howto_type * howto,
07d6d2b8 13012 bfd_signed_vma increment)
98c1d4aa 13013{
98c1d4aa
NC
13014 bfd_signed_vma addend;
13015
bd97cb95
DJ
13016 if (howto->type == R_ARM_THM_CALL
13017 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 13018 {
9a5aca8c
AM
13019 int upper_insn, lower_insn;
13020 int upper, lower;
98c1d4aa 13021
9a5aca8c
AM
13022 upper_insn = bfd_get_16 (abfd, address);
13023 lower_insn = bfd_get_16 (abfd, address + 2);
13024 upper = upper_insn & 0x7ff;
13025 lower = lower_insn & 0x7ff;
13026
13027 addend = (upper << 12) | (lower << 1);
ddda4409 13028 addend += increment;
9a5aca8c 13029 addend >>= 1;
98c1d4aa 13030
9a5aca8c
AM
13031 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13032 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13033
dc810e39
AM
13034 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13035 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
13036 }
13037 else
13038 {
07d6d2b8 13039 bfd_vma contents;
9a5aca8c
AM
13040
13041 contents = bfd_get_32 (abfd, address);
13042
13043 /* Get the (signed) value from the instruction. */
13044 addend = contents & howto->src_mask;
13045 if (addend & ((howto->src_mask + 1) >> 1))
13046 {
13047 bfd_signed_vma mask;
13048
13049 mask = -1;
13050 mask &= ~ howto->src_mask;
13051 addend |= mask;
13052 }
13053
13054 /* Add in the increment, (which is a byte value). */
13055 switch (howto->type)
13056 {
13057 default:
13058 addend += increment;
13059 break;
13060
13061 case R_ARM_PC24:
c6596c5e 13062 case R_ARM_PLT32:
5b5bb741
PB
13063 case R_ARM_CALL:
13064 case R_ARM_JUMP24:
57698478 13065 addend *= bfd_get_reloc_size (howto);
dc810e39 13066 addend += increment;
9a5aca8c
AM
13067
13068 /* Should we check for overflow here ? */
13069
13070 /* Drop any undesired bits. */
13071 addend >>= howto->rightshift;
13072 break;
13073 }
13074
13075 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13076
13077 bfd_put_32 (abfd, contents, address);
ddda4409 13078 }
98c1d4aa 13079}
252b5132 13080
ba93b8ac
DJ
13081#define IS_ARM_TLS_RELOC(R_TYPE) \
13082 ((R_TYPE) == R_ARM_TLS_GD32 \
5c5a4843 13083 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
ba93b8ac
DJ
13084 || (R_TYPE) == R_ARM_TLS_LDO32 \
13085 || (R_TYPE) == R_ARM_TLS_LDM32 \
5c5a4843 13086 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
ba93b8ac
DJ
13087 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13088 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13089 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13090 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b 13091 || (R_TYPE) == R_ARM_TLS_IE32 \
5c5a4843 13092 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
0855e32b
NS
13093 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13094
13095/* Specific set of relocations for the gnu tls dialect. */
13096#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13097 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13098 || (R_TYPE) == R_ARM_TLS_CALL \
13099 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13100 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13101 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 13102
252b5132 13103/* Relocate an ARM ELF section. */
906e58ca 13104
0f684201 13105static int
07d6d2b8 13106elf32_arm_relocate_section (bfd * output_bfd,
57e8b36a 13107 struct bfd_link_info * info,
07d6d2b8
AM
13108 bfd * input_bfd,
13109 asection * input_section,
13110 bfd_byte * contents,
13111 Elf_Internal_Rela * relocs,
13112 Elf_Internal_Sym * local_syms,
13113 asection ** local_sections)
252b5132 13114{
b34976b6
AM
13115 Elf_Internal_Shdr *symtab_hdr;
13116 struct elf_link_hash_entry **sym_hashes;
13117 Elf_Internal_Rela *rel;
13118 Elf_Internal_Rela *relend;
13119 const char *name;
b32d3aa2 13120 struct elf32_arm_link_hash_table * globals;
252b5132 13121
4e7fd91e 13122 globals = elf32_arm_hash_table (info);
4dfe6ac6 13123 if (globals == NULL)
0a1b45a2 13124 return false;
b491616a 13125
0ffa91dd 13126 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
13127 sym_hashes = elf_sym_hashes (input_bfd);
13128
13129 rel = relocs;
13130 relend = relocs + input_section->reloc_count;
13131 for (; rel < relend; rel++)
13132 {
07d6d2b8
AM
13133 int r_type;
13134 reloc_howto_type * howto;
13135 unsigned long r_symndx;
13136 Elf_Internal_Sym * sym;
13137 asection * sec;
252b5132 13138 struct elf_link_hash_entry * h;
07d6d2b8
AM
13139 bfd_vma relocation;
13140 bfd_reloc_status_type r;
13141 arelent bfd_reloc;
13142 char sym_type;
0a1b45a2 13143 bool unresolved_reloc = false;
f2a9dd69 13144 char *error_message = NULL;
f21f3fe0 13145
252b5132 13146 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 13147 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 13148 r_type = arm_real_reloc_type (globals, r_type);
252b5132 13149
ba96a88f 13150 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
13151 || r_type == R_ARM_GNU_VTINHERIT)
13152 continue;
252b5132 13153
47aeb64c
NC
13154 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13155
13156 if (howto == NULL)
13157 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
252b5132 13158
252b5132
RH
13159 h = NULL;
13160 sym = NULL;
13161 sec = NULL;
9b485d32 13162
252b5132
RH
13163 if (r_symndx < symtab_hdr->sh_info)
13164 {
13165 sym = local_syms + r_symndx;
ba93b8ac 13166 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 13167 sec = local_sections[r_symndx];
ffcb4889
NS
13168
13169 /* An object file might have a reference to a local
13170 undefined symbol. This is a daft object file, but we
13171 should at least do something about it. V4BX & NONE
13172 relocations do not use the symbol and are explicitly
77b4f08f
TS
13173 allowed to use the undefined symbol, so allow those.
13174 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
13175 if (r_type != R_ARM_V4BX
13176 && r_type != R_ARM_NONE
77b4f08f 13177 && r_symndx != STN_UNDEF
ffcb4889
NS
13178 && bfd_is_und_section (sec)
13179 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
1a72702b
AM
13180 (*info->callbacks->undefined_symbol)
13181 (info, bfd_elf_string_from_elf_section
13182 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13183 input_bfd, input_section,
0a1b45a2 13184 rel->r_offset, true);
b38cadfb 13185
4e7fd91e 13186 if (globals->use_rel)
f8df10f4 13187 {
4e7fd91e
PB
13188 relocation = (sec->output_section->vma
13189 + sec->output_offset
13190 + sym->st_value);
0e1862bb 13191 if (!bfd_link_relocatable (info)
ab96bf03
AM
13192 && (sec->flags & SEC_MERGE)
13193 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 13194 {
4e7fd91e
PB
13195 asection *msec;
13196 bfd_vma addend, value;
13197
39623e12 13198 switch (r_type)
4e7fd91e 13199 {
39623e12
PB
13200 case R_ARM_MOVW_ABS_NC:
13201 case R_ARM_MOVT_ABS:
13202 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13203 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13204 addend = (addend ^ 0x8000) - 0x8000;
13205 break;
f8df10f4 13206
39623e12
PB
13207 case R_ARM_THM_MOVW_ABS_NC:
13208 case R_ARM_THM_MOVT_ABS:
13209 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13210 << 16;
13211 value |= bfd_get_16 (input_bfd,
13212 contents + rel->r_offset + 2);
13213 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13214 | ((value & 0x04000000) >> 15);
13215 addend = (addend ^ 0x8000) - 0x8000;
13216 break;
f8df10f4 13217
39623e12
PB
13218 default:
13219 if (howto->rightshift
13220 || (howto->src_mask & (howto->src_mask + 1)))
13221 {
4eca0228 13222 _bfd_error_handler
695344c0 13223 /* xgettext:c-format */
2dcf00ce
AM
13224 (_("%pB(%pA+%#" PRIx64 "): "
13225 "%s relocation against SEC_MERGE section"),
39623e12 13226 input_bfd, input_section,
2dcf00ce 13227 (uint64_t) rel->r_offset, howto->name);
0a1b45a2 13228 return false;
39623e12
PB
13229 }
13230
13231 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13232
13233 /* Get the (signed) value from the instruction. */
13234 addend = value & howto->src_mask;
13235 if (addend & ((howto->src_mask + 1) >> 1))
13236 {
13237 bfd_signed_vma mask;
13238
13239 mask = -1;
13240 mask &= ~ howto->src_mask;
13241 addend |= mask;
13242 }
13243 break;
4e7fd91e 13244 }
39623e12 13245
4e7fd91e
PB
13246 msec = sec;
13247 addend =
13248 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13249 - relocation;
13250 addend += msec->output_section->vma + msec->output_offset;
39623e12 13251
cc643b88 13252 /* Cases here must match those in the preceding
39623e12
PB
13253 switch statement. */
13254 switch (r_type)
13255 {
13256 case R_ARM_MOVW_ABS_NC:
13257 case R_ARM_MOVT_ABS:
13258 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13259 | (addend & 0xfff);
13260 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13261 break;
13262
13263 case R_ARM_THM_MOVW_ABS_NC:
13264 case R_ARM_THM_MOVT_ABS:
13265 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13266 | (addend & 0xff) | ((addend & 0x0800) << 15);
13267 bfd_put_16 (input_bfd, value >> 16,
13268 contents + rel->r_offset);
13269 bfd_put_16 (input_bfd, value,
13270 contents + rel->r_offset + 2);
13271 break;
13272
13273 default:
13274 value = (value & ~ howto->dst_mask)
13275 | (addend & howto->dst_mask);
13276 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13277 break;
13278 }
f8df10f4 13279 }
f8df10f4 13280 }
4e7fd91e
PB
13281 else
13282 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
13283 }
13284 else
13285 {
0a1b45a2 13286 bool warned, ignored;
560e09e9 13287
b2a8e766
AM
13288 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13289 r_symndx, symtab_hdr, sym_hashes,
13290 h, sec, relocation,
62d887d4 13291 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
13292
13293 sym_type = h->type;
252b5132
RH
13294 }
13295
dbaa2011 13296 if (sec != NULL && discarded_section (sec))
e4067dbb 13297 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 13298 rel, 1, relend, howto, 0, contents);
ab96bf03 13299
0e1862bb 13300 if (bfd_link_relocatable (info))
ab96bf03
AM
13301 {
13302 /* This is a relocatable link. We don't have to change
13303 anything, unless the reloc is against a section symbol,
13304 in which case we have to adjust according to where the
13305 section symbol winds up in the output section. */
13306 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13307 {
13308 if (globals->use_rel)
13309 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13310 howto, (bfd_signed_vma) sec->output_offset);
13311 else
13312 rel->r_addend += sec->output_offset;
13313 }
13314 continue;
13315 }
13316
252b5132
RH
13317 if (h != NULL)
13318 name = h->root.root.string;
13319 else
13320 {
13321 name = (bfd_elf_string_from_elf_section
13322 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13323 if (name == NULL || *name == '\0')
fd361982 13324 name = bfd_section_name (sec);
252b5132 13325 }
f21f3fe0 13326
cf35638d 13327 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
13328 && r_type != R_ARM_NONE
13329 && (h == NULL
13330 || h->root.type == bfd_link_hash_defined
13331 || h->root.type == bfd_link_hash_defweak)
13332 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13333 {
4eca0228 13334 _bfd_error_handler
ba93b8ac 13335 ((sym_type == STT_TLS
695344c0 13336 /* xgettext:c-format */
2dcf00ce 13337 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 13338 /* xgettext:c-format */
2dcf00ce 13339 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
ba93b8ac
DJ
13340 input_bfd,
13341 input_section,
2dcf00ce 13342 (uint64_t) rel->r_offset,
ba93b8ac
DJ
13343 howto->name,
13344 name);
13345 }
13346
0855e32b 13347 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
13348 done, i.e., the relaxation produced the final output we want,
13349 and we won't let anybody mess with it. Also, we have to do
13350 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 13351 both in relaxed and non-relaxed cases. */
39d911fc
TP
13352 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13353 || (IS_ARM_TLS_GNU_RELOC (r_type)
13354 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13355 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13356 & GOT_TLS_GDESC)))
13357 {
13358 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13359 contents, rel, h == NULL);
13360 /* This may have been marked unresolved because it came from
13361 a shared library. But we've just dealt with that. */
13362 unresolved_reloc = 0;
13363 }
13364 else
13365 r = bfd_reloc_continue;
b38cadfb 13366
39d911fc
TP
13367 if (r == bfd_reloc_continue)
13368 {
13369 unsigned char branch_type =
13370 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13371 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13372
13373 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13374 input_section, contents, rel,
13375 relocation, info, sec, name,
13376 sym_type, branch_type, h,
13377 &unresolved_reloc,
13378 &error_message);
13379 }
0945cdfd
DJ
13380
13381 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13382 because such sections are not SEC_ALLOC and thus ld.so will
13383 not process them. */
13384 if (unresolved_reloc
99059e56
RM
13385 && !((input_section->flags & SEC_DEBUGGING) != 0
13386 && h->def_dynamic)
1d5316ab
AM
13387 && _bfd_elf_section_offset (output_bfd, info, input_section,
13388 rel->r_offset) != (bfd_vma) -1)
0945cdfd 13389 {
4eca0228 13390 _bfd_error_handler
695344c0 13391 /* xgettext:c-format */
2dcf00ce
AM
13392 (_("%pB(%pA+%#" PRIx64 "): "
13393 "unresolvable %s relocation against symbol `%s'"),
843fe662
L
13394 input_bfd,
13395 input_section,
2dcf00ce 13396 (uint64_t) rel->r_offset,
843fe662
L
13397 howto->name,
13398 h->root.root.string);
0a1b45a2 13399 return false;
0945cdfd 13400 }
252b5132
RH
13401
13402 if (r != bfd_reloc_ok)
13403 {
252b5132
RH
13404 switch (r)
13405 {
13406 case bfd_reloc_overflow:
cf919dfd
PB
13407 /* If the overflowing reloc was to an undefined symbol,
13408 we have already printed one error message and there
13409 is no point complaining again. */
1a72702b
AM
13410 if (!h || h->root.type != bfd_link_hash_undefined)
13411 (*info->callbacks->reloc_overflow)
13412 (info, (h ? &h->root : NULL), name, howto->name,
13413 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
252b5132
RH
13414 break;
13415
13416 case bfd_reloc_undefined:
1a72702b 13417 (*info->callbacks->undefined_symbol)
0a1b45a2 13418 (info, name, input_bfd, input_section, rel->r_offset, true);
252b5132
RH
13419 break;
13420
13421 case bfd_reloc_outofrange:
f2a9dd69 13422 error_message = _("out of range");
252b5132
RH
13423 goto common_error;
13424
13425 case bfd_reloc_notsupported:
f2a9dd69 13426 error_message = _("unsupported relocation");
252b5132
RH
13427 goto common_error;
13428
13429 case bfd_reloc_dangerous:
f2a9dd69 13430 /* error_message should already be set. */
252b5132
RH
13431 goto common_error;
13432
13433 default:
f2a9dd69 13434 error_message = _("unknown error");
8029a119 13435 /* Fall through. */
252b5132
RH
13436
13437 common_error:
f2a9dd69 13438 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13439 (*info->callbacks->reloc_dangerous)
13440 (info, error_message, input_bfd, input_section, rel->r_offset);
252b5132
RH
13441 break;
13442 }
13443 }
13444 }
13445
0a1b45a2 13446 return true;
252b5132
RH
13447}
13448
91d6fa6a 13449/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 13450 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 13451 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
13452 maintaining that condition). */
13453
13454static void
13455add_unwind_table_edit (arm_unwind_table_edit **head,
13456 arm_unwind_table_edit **tail,
13457 arm_unwind_edit_type type,
13458 asection *linked_section,
91d6fa6a 13459 unsigned int tindex)
2468f9c9 13460{
21d799b5
NC
13461 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13462 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 13463
2468f9c9
PB
13464 new_edit->type = type;
13465 new_edit->linked_section = linked_section;
91d6fa6a 13466 new_edit->index = tindex;
b38cadfb 13467
91d6fa6a 13468 if (tindex > 0)
2468f9c9
PB
13469 {
13470 new_edit->next = NULL;
13471
13472 if (*tail)
13473 (*tail)->next = new_edit;
13474
13475 (*tail) = new_edit;
13476
13477 if (!*head)
13478 (*head) = new_edit;
13479 }
13480 else
13481 {
13482 new_edit->next = *head;
13483
13484 if (!*tail)
13485 *tail = new_edit;
13486
13487 *head = new_edit;
13488 }
13489}
13490
13491static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13492
13493/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
cc850f74 13494
2468f9c9 13495static void
cc850f74 13496adjust_exidx_size (asection *exidx_sec, int adjust)
2468f9c9
PB
13497{
13498 asection *out_sec;
13499
13500 if (!exidx_sec->rawsize)
13501 exidx_sec->rawsize = exidx_sec->size;
13502
fd361982 13503 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust);
2468f9c9
PB
13504 out_sec = exidx_sec->output_section;
13505 /* Adjust size of output section. */
cc850f74 13506 bfd_set_section_size (out_sec, out_sec->size + adjust);
2468f9c9
PB
13507}
13508
13509/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
cc850f74 13510
2468f9c9 13511static void
cc850f74 13512insert_cantunwind_after (asection *text_sec, asection *exidx_sec)
2468f9c9
PB
13513{
13514 struct _arm_elf_section_data *exidx_arm_data;
13515
13516 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
cc850f74
NC
13517 add_unwind_table_edit
13518 (&exidx_arm_data->u.exidx.unwind_edit_list,
13519 &exidx_arm_data->u.exidx.unwind_edit_tail,
13520 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
2468f9c9 13521
491d01d3
YU
13522 exidx_arm_data->additional_reloc_count++;
13523
cc850f74 13524 adjust_exidx_size (exidx_sec, 8);
2468f9c9
PB
13525}
13526
13527/* Scan .ARM.exidx tables, and create a list describing edits which should be
13528 made to those tables, such that:
b38cadfb 13529
2468f9c9
PB
13530 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13531 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 13532 codes which have been inlined into the index).
2468f9c9 13533
85fdf906
AH
13534 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13535
2468f9c9 13536 The edits are applied when the tables are written
b38cadfb 13537 (in elf32_arm_write_section). */
2468f9c9 13538
0a1b45a2 13539bool
2468f9c9
PB
13540elf32_arm_fix_exidx_coverage (asection **text_section_order,
13541 unsigned int num_text_sections,
85fdf906 13542 struct bfd_link_info *info,
0a1b45a2 13543 bool merge_exidx_entries)
2468f9c9
PB
13544{
13545 bfd *inp;
13546 unsigned int last_second_word = 0, i;
13547 asection *last_exidx_sec = NULL;
13548 asection *last_text_sec = NULL;
13549 int last_unwind_type = -1;
13550
13551 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13552 text sections. */
c72f2fb2 13553 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
13554 {
13555 asection *sec;
b38cadfb 13556
2468f9c9 13557 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 13558 {
2468f9c9
PB
13559 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13560 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 13561
dec9d5df 13562 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 13563 continue;
b38cadfb 13564
2468f9c9
PB
13565 if (elf_sec->linked_to)
13566 {
13567 Elf_Internal_Shdr *linked_hdr
99059e56 13568 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 13569 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 13570 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
13571
13572 if (linked_sec_arm_data == NULL)
99059e56 13573 continue;
2468f9c9
PB
13574
13575 /* Link this .ARM.exidx section back from the text section it
99059e56 13576 describes. */
2468f9c9
PB
13577 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13578 }
13579 }
13580 }
13581
13582 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13583 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 13584 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
13585
13586 for (i = 0; i < num_text_sections; i++)
13587 {
13588 asection *sec = text_section_order[i];
13589 asection *exidx_sec;
13590 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13591 struct _arm_elf_section_data *exidx_arm_data;
13592 bfd_byte *contents = NULL;
13593 int deleted_exidx_bytes = 0;
13594 bfd_vma j;
13595 arm_unwind_table_edit *unwind_edit_head = NULL;
13596 arm_unwind_table_edit *unwind_edit_tail = NULL;
13597 Elf_Internal_Shdr *hdr;
13598 bfd *ibfd;
13599
13600 if (arm_data == NULL)
99059e56 13601 continue;
2468f9c9
PB
13602
13603 exidx_sec = arm_data->u.text.arm_exidx_sec;
13604 if (exidx_sec == NULL)
13605 {
13606 /* Section has no unwind data. */
13607 if (last_unwind_type == 0 || !last_exidx_sec)
13608 continue;
13609
13610 /* Ignore zero sized sections. */
13611 if (sec->size == 0)
13612 continue;
13613
cc850f74 13614 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9
PB
13615 last_unwind_type = 0;
13616 continue;
13617 }
13618
22a8f80e
PB
13619 /* Skip /DISCARD/ sections. */
13620 if (bfd_is_abs_section (exidx_sec->output_section))
13621 continue;
13622
2468f9c9
PB
13623 hdr = &elf_section_data (exidx_sec)->this_hdr;
13624 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 13625 continue;
b38cadfb 13626
2468f9c9
PB
13627 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13628 if (exidx_arm_data == NULL)
99059e56 13629 continue;
b38cadfb 13630
2468f9c9 13631 ibfd = exidx_sec->owner;
b38cadfb 13632
2468f9c9
PB
13633 if (hdr->contents != NULL)
13634 contents = hdr->contents;
13635 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13636 /* An error? */
13637 continue;
13638
ac06903d
YU
13639 if (last_unwind_type > 0)
13640 {
13641 unsigned int first_word = bfd_get_32 (ibfd, contents);
13642 /* Add cantunwind if first unwind item does not match section
13643 start. */
13644 if (first_word != sec->vma)
13645 {
13646 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13647 last_unwind_type = 0;
13648 }
13649 }
13650
2468f9c9
PB
13651 for (j = 0; j < hdr->sh_size; j += 8)
13652 {
13653 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13654 int unwind_type;
13655 int elide = 0;
13656
13657 /* An EXIDX_CANTUNWIND entry. */
13658 if (second_word == 1)
13659 {
13660 if (last_unwind_type == 0)
13661 elide = 1;
13662 unwind_type = 0;
13663 }
13664 /* Inlined unwinding data. Merge if equal to previous. */
13665 else if ((second_word & 0x80000000) != 0)
13666 {
85fdf906
AH
13667 if (merge_exidx_entries
13668 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
13669 elide = 1;
13670 unwind_type = 1;
13671 last_second_word = second_word;
13672 }
13673 /* Normal table entry. In theory we could merge these too,
13674 but duplicate entries are likely to be much less common. */
13675 else
13676 unwind_type = 2;
13677
491d01d3 13678 if (elide && !bfd_link_relocatable (info))
2468f9c9
PB
13679 {
13680 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13681 DELETE_EXIDX_ENTRY, NULL, j / 8);
13682
13683 deleted_exidx_bytes += 8;
13684 }
13685
13686 last_unwind_type = unwind_type;
13687 }
13688
13689 /* Free contents if we allocated it ourselves. */
13690 if (contents != hdr->contents)
99059e56 13691 free (contents);
2468f9c9
PB
13692
13693 /* Record edits to be applied later (in elf32_arm_write_section). */
13694 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13695 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 13696
2468f9c9 13697 if (deleted_exidx_bytes > 0)
cc850f74 13698 adjust_exidx_size (exidx_sec, - deleted_exidx_bytes);
2468f9c9
PB
13699
13700 last_exidx_sec = exidx_sec;
13701 last_text_sec = sec;
13702 }
13703
13704 /* Add terminating CANTUNWIND entry. */
491d01d3
YU
13705 if (!bfd_link_relocatable (info) && last_exidx_sec
13706 && last_unwind_type != 0)
cc850f74 13707 insert_cantunwind_after (last_text_sec, last_exidx_sec);
2468f9c9 13708
0a1b45a2 13709 return true;
2468f9c9
PB
13710}
13711
0a1b45a2 13712static bool
3e6b1042
DJ
13713elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13714 bfd *ibfd, const char *name)
13715{
13716 asection *sec, *osec;
13717
3d4d4302 13718 sec = bfd_get_linker_section (ibfd, name);
3e6b1042 13719 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
0a1b45a2 13720 return true;
3e6b1042
DJ
13721
13722 osec = sec->output_section;
13723 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
0a1b45a2 13724 return true;
3e6b1042
DJ
13725
13726 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13727 sec->output_offset, sec->size))
0a1b45a2 13728 return false;
3e6b1042 13729
0a1b45a2 13730 return true;
3e6b1042
DJ
13731}
13732
0a1b45a2 13733static bool
3e6b1042
DJ
13734elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13735{
13736 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 13737 asection *sec, *osec;
3e6b1042 13738
4dfe6ac6 13739 if (globals == NULL)
0a1b45a2 13740 return false;
4dfe6ac6 13741
3e6b1042
DJ
13742 /* Invoke the regular ELF backend linker to do all the work. */
13743 if (!bfd_elf_final_link (abfd, info))
0a1b45a2 13744 return false;
3e6b1042 13745
fe33d2fa
CL
13746 /* Process stub sections (eg BE8 encoding, ...). */
13747 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
7292b3ac 13748 unsigned int i;
cdb21a0a
NS
13749 for (i=0; i<htab->top_id; i++)
13750 {
13751 sec = htab->stub_group[i].stub_sec;
13752 /* Only process it once, in its link_sec slot. */
13753 if (sec && i == htab->stub_group[i].link_sec->id)
13754 {
13755 osec = sec->output_section;
13756 elf32_arm_write_section (abfd, info, sec, sec->contents);
13757 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13758 sec->output_offset, sec->size))
0a1b45a2 13759 return false;
cdb21a0a 13760 }
fe33d2fa 13761 }
fe33d2fa 13762
3e6b1042
DJ
13763 /* Write out any glue sections now that we have created all the
13764 stubs. */
13765 if (globals->bfd_of_glue_owner != NULL)
13766 {
13767 if (! elf32_arm_output_glue_section (info, abfd,
13768 globals->bfd_of_glue_owner,
13769 ARM2THUMB_GLUE_SECTION_NAME))
0a1b45a2 13770 return false;
3e6b1042
DJ
13771
13772 if (! elf32_arm_output_glue_section (info, abfd,
13773 globals->bfd_of_glue_owner,
13774 THUMB2ARM_GLUE_SECTION_NAME))
0a1b45a2 13775 return false;
3e6b1042
DJ
13776
13777 if (! elf32_arm_output_glue_section (info, abfd,
13778 globals->bfd_of_glue_owner,
13779 VFP11_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13780 return false;
3e6b1042 13781
a504d23a
LA
13782 if (! elf32_arm_output_glue_section (info, abfd,
13783 globals->bfd_of_glue_owner,
13784 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
0a1b45a2 13785 return false;
a504d23a 13786
3e6b1042
DJ
13787 if (! elf32_arm_output_glue_section (info, abfd,
13788 globals->bfd_of_glue_owner,
13789 ARM_BX_GLUE_SECTION_NAME))
0a1b45a2 13790 return false;
3e6b1042
DJ
13791 }
13792
0a1b45a2 13793 return true;
3e6b1042
DJ
13794}
13795
5968a7b8
NC
13796/* Return a best guess for the machine number based on the attributes. */
13797
13798static unsigned int
13799bfd_arm_get_mach_from_attributes (bfd * abfd)
13800{
13801 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13802
13803 switch (arch)
13804 {
c0c468d5 13805 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
5968a7b8
NC
13806 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13807 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13808 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13809
13810 case TAG_CPU_ARCH_V5TE:
13811 {
13812 char * name;
13813
13814 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13815 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13816
13817 if (name)
13818 {
13819 if (strcmp (name, "IWMMXT2") == 0)
13820 return bfd_mach_arm_iWMMXt2;
13821
13822 if (strcmp (name, "IWMMXT") == 0)
6034aab8 13823 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
13824
13825 if (strcmp (name, "XSCALE") == 0)
13826 {
13827 int wmmx;
13828
13829 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13830 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13831 switch (wmmx)
13832 {
13833 case 1: return bfd_mach_arm_iWMMXt;
13834 case 2: return bfd_mach_arm_iWMMXt2;
13835 default: return bfd_mach_arm_XScale;
13836 }
13837 }
5968a7b8
NC
13838 }
13839
13840 return bfd_mach_arm_5TE;
13841 }
13842
c0c468d5
TP
13843 case TAG_CPU_ARCH_V5TEJ:
13844 return bfd_mach_arm_5TEJ;
13845 case TAG_CPU_ARCH_V6:
13846 return bfd_mach_arm_6;
13847 case TAG_CPU_ARCH_V6KZ:
13848 return bfd_mach_arm_6KZ;
13849 case TAG_CPU_ARCH_V6T2:
13850 return bfd_mach_arm_6T2;
13851 case TAG_CPU_ARCH_V6K:
13852 return bfd_mach_arm_6K;
13853 case TAG_CPU_ARCH_V7:
13854 return bfd_mach_arm_7;
13855 case TAG_CPU_ARCH_V6_M:
13856 return bfd_mach_arm_6M;
13857 case TAG_CPU_ARCH_V6S_M:
13858 return bfd_mach_arm_6SM;
13859 case TAG_CPU_ARCH_V7E_M:
13860 return bfd_mach_arm_7EM;
13861 case TAG_CPU_ARCH_V8:
13862 return bfd_mach_arm_8;
13863 case TAG_CPU_ARCH_V8R:
13864 return bfd_mach_arm_8R;
13865 case TAG_CPU_ARCH_V8M_BASE:
13866 return bfd_mach_arm_8M_BASE;
13867 case TAG_CPU_ARCH_V8M_MAIN:
13868 return bfd_mach_arm_8M_MAIN;
031254f2
AV
13869 case TAG_CPU_ARCH_V8_1M_MAIN:
13870 return bfd_mach_arm_8_1M_MAIN;
3197e593
PW
13871 case TAG_CPU_ARCH_V9:
13872 return bfd_mach_arm_9;
c0c468d5 13873
5968a7b8 13874 default:
c0c468d5
TP
13875 /* Force entry to be added for any new known Tag_CPU_arch value. */
13876 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13877
13878 /* Unknown Tag_CPU_arch value. */
5968a7b8
NC
13879 return bfd_mach_arm_unknown;
13880 }
13881}
13882
c178919b
NC
13883/* Set the right machine number. */
13884
0a1b45a2 13885static bool
57e8b36a 13886elf32_arm_object_p (bfd *abfd)
c178919b 13887{
5a6c6817 13888 unsigned int mach;
57e8b36a 13889
5a6c6817 13890 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 13891
5968a7b8
NC
13892 if (mach == bfd_mach_arm_unknown)
13893 {
13894 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13895 mach = bfd_mach_arm_ep9312;
13896 else
13897 mach = bfd_arm_get_mach_from_attributes (abfd);
13898 }
c178919b 13899
5968a7b8 13900 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
0a1b45a2 13901 return true;
c178919b
NC
13902}
13903
fc830a83 13904/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 13905
0a1b45a2 13906static bool
57e8b36a 13907elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
13908{
13909 if (elf_flags_init (abfd)
13910 && elf_elfheader (abfd)->e_flags != flags)
13911 {
fc830a83
NC
13912 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13913 {
fd2ec330 13914 if (flags & EF_ARM_INTERWORK)
4eca0228 13915 _bfd_error_handler
90b6238f 13916 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
d003868e 13917 abfd);
fc830a83 13918 else
d003868e 13919 _bfd_error_handler
90b6238f 13920 (_("warning: clearing the interworking flag of %pB due to outside request"),
d003868e 13921 abfd);
fc830a83 13922 }
252b5132
RH
13923 }
13924 else
13925 {
13926 elf_elfheader (abfd)->e_flags = flags;
0a1b45a2 13927 elf_flags_init (abfd) = true;
252b5132
RH
13928 }
13929
0a1b45a2 13930 return true;
252b5132
RH
13931}
13932
fc830a83 13933/* Copy backend specific data from one object module to another. */
9b485d32 13934
0a1b45a2 13935static bool
57e8b36a 13936elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
13937{
13938 flagword in_flags;
13939 flagword out_flags;
13940
0ffa91dd 13941 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 13942 return true;
252b5132 13943
fc830a83 13944 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
13945 out_flags = elf_elfheader (obfd)->e_flags;
13946
fc830a83
NC
13947 if (elf_flags_init (obfd)
13948 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13949 && in_flags != out_flags)
252b5132 13950 {
252b5132 13951 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 13952 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
0a1b45a2 13953 return false;
252b5132
RH
13954
13955 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 13956 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
0a1b45a2 13957 return false;
252b5132
RH
13958
13959 /* If the src and dest have different interworking flags
99059e56 13960 then turn off the interworking bit. */
fd2ec330 13961 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 13962 {
fd2ec330 13963 if (out_flags & EF_ARM_INTERWORK)
d003868e 13964 _bfd_error_handler
90b6238f 13965 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
d003868e 13966 obfd, ibfd);
252b5132 13967
fd2ec330 13968 in_flags &= ~EF_ARM_INTERWORK;
252b5132 13969 }
1006ba19
PB
13970
13971 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
13972 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13973 in_flags &= ~EF_ARM_PIC;
252b5132
RH
13974 }
13975
13976 elf_elfheader (obfd)->e_flags = in_flags;
0a1b45a2 13977 elf_flags_init (obfd) = true;
252b5132 13978
e2349352 13979 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
13980}
13981
13982/* Values for Tag_ABI_PCS_R9_use. */
13983enum
13984{
13985 AEABI_R9_V6,
13986 AEABI_R9_SB,
13987 AEABI_R9_TLS,
13988 AEABI_R9_unused
13989};
13990
13991/* Values for Tag_ABI_PCS_RW_data. */
13992enum
13993{
13994 AEABI_PCS_RW_data_absolute,
13995 AEABI_PCS_RW_data_PCrel,
13996 AEABI_PCS_RW_data_SBrel,
13997 AEABI_PCS_RW_data_unused
13998};
13999
14000/* Values for Tag_ABI_enum_size. */
14001enum
14002{
14003 AEABI_enum_unused,
14004 AEABI_enum_short,
14005 AEABI_enum_wide,
14006 AEABI_enum_forced_wide
14007};
14008
104d59d1
JM
14009/* Determine whether an object attribute tag takes an integer, a
14010 string or both. */
906e58ca 14011
104d59d1
JM
14012static int
14013elf32_arm_obj_attrs_arg_type (int tag)
14014{
14015 if (tag == Tag_compatibility)
3483fe2e 14016 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 14017 else if (tag == Tag_nodefaults)
3483fe2e
AS
14018 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14019 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14020 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 14021 else if (tag < 32)
3483fe2e 14022 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 14023 else
3483fe2e 14024 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
14025}
14026
5aa6ff7c
AS
14027/* The ABI defines that Tag_conformance should be emitted first, and that
14028 Tag_nodefaults should be second (if either is defined). This sets those
14029 two positions, and bumps up the position of all the remaining tags to
14030 compensate. */
14031static int
14032elf32_arm_obj_attrs_order (int num)
14033{
3de4a297 14034 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 14035 return Tag_conformance;
3de4a297 14036 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
14037 return Tag_nodefaults;
14038 if ((num - 2) < Tag_nodefaults)
14039 return num - 2;
14040 if ((num - 1) < Tag_conformance)
14041 return num - 1;
14042 return num;
14043}
14044
e8b36cd1 14045/* Attribute numbers >=64 (mod 128) can be safely ignored. */
0a1b45a2 14046static bool
e8b36cd1
JM
14047elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14048{
14049 if ((tag & 127) < 64)
14050 {
14051 _bfd_error_handler
90b6238f 14052 (_("%pB: unknown mandatory EABI object attribute %d"),
e8b36cd1
JM
14053 abfd, tag);
14054 bfd_set_error (bfd_error_bad_value);
0a1b45a2 14055 return false;
e8b36cd1
JM
14056 }
14057 else
14058 {
14059 _bfd_error_handler
90b6238f 14060 (_("warning: %pB: unknown EABI object attribute %d"),
e8b36cd1 14061 abfd, tag);
0a1b45a2 14062 return true;
e8b36cd1
JM
14063 }
14064}
14065
91e22acd
AS
14066/* Read the architecture from the Tag_also_compatible_with attribute, if any.
14067 Returns -1 if no architecture could be read. */
14068
14069static int
14070get_secondary_compatible_arch (bfd *abfd)
14071{
14072 obj_attribute *attr =
14073 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14074
14075 /* Note: the tag and its argument below are uleb128 values, though
14076 currently-defined values fit in one byte for each. */
14077 if (attr->s
14078 && attr->s[0] == Tag_CPU_arch
14079 && (attr->s[1] & 128) != 128
14080 && attr->s[2] == 0)
14081 return attr->s[1];
14082
14083 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14084 return -1;
14085}
14086
14087/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14088 The tag is removed if ARCH is -1. */
14089
8e79c3df 14090static void
91e22acd 14091set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 14092{
91e22acd
AS
14093 obj_attribute *attr =
14094 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 14095
91e22acd
AS
14096 if (arch == -1)
14097 {
14098 attr->s = NULL;
14099 return;
8e79c3df 14100 }
91e22acd
AS
14101
14102 /* Note: the tag and its argument below are uleb128 values, though
14103 currently-defined values fit in one byte for each. */
14104 if (!attr->s)
21d799b5 14105 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
14106 attr->s[0] = Tag_CPU_arch;
14107 attr->s[1] = arch;
14108 attr->s[2] = '\0';
8e79c3df
CM
14109}
14110
91e22acd
AS
14111/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14112 into account. */
14113
14114static int
14115tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14116 int newtag, int secondary_compat)
8e79c3df 14117{
91e22acd
AS
14118#define T(X) TAG_CPU_ARCH_##X
14119 int tagl, tagh, result;
14120 const int v6t2[] =
14121 {
14122 T(V6T2), /* PRE_V4. */
14123 T(V6T2), /* V4. */
14124 T(V6T2), /* V4T. */
14125 T(V6T2), /* V5T. */
14126 T(V6T2), /* V5TE. */
14127 T(V6T2), /* V5TEJ. */
14128 T(V6T2), /* V6. */
14129 T(V7), /* V6KZ. */
14130 T(V6T2) /* V6T2. */
14131 };
14132 const int v6k[] =
14133 {
14134 T(V6K), /* PRE_V4. */
14135 T(V6K), /* V4. */
14136 T(V6K), /* V4T. */
14137 T(V6K), /* V5T. */
14138 T(V6K), /* V5TE. */
14139 T(V6K), /* V5TEJ. */
14140 T(V6K), /* V6. */
14141 T(V6KZ), /* V6KZ. */
14142 T(V7), /* V6T2. */
14143 T(V6K) /* V6K. */
14144 };
14145 const int v7[] =
14146 {
14147 T(V7), /* PRE_V4. */
14148 T(V7), /* V4. */
14149 T(V7), /* V4T. */
14150 T(V7), /* V5T. */
14151 T(V7), /* V5TE. */
14152 T(V7), /* V5TEJ. */
14153 T(V7), /* V6. */
14154 T(V7), /* V6KZ. */
14155 T(V7), /* V6T2. */
14156 T(V7), /* V6K. */
14157 T(V7) /* V7. */
14158 };
14159 const int v6_m[] =
14160 {
07d6d2b8
AM
14161 -1, /* PRE_V4. */
14162 -1, /* V4. */
91e22acd
AS
14163 T(V6K), /* V4T. */
14164 T(V6K), /* V5T. */
14165 T(V6K), /* V5TE. */
14166 T(V6K), /* V5TEJ. */
14167 T(V6K), /* V6. */
14168 T(V6KZ), /* V6KZ. */
14169 T(V7), /* V6T2. */
14170 T(V6K), /* V6K. */
14171 T(V7), /* V7. */
14172 T(V6_M) /* V6_M. */
14173 };
14174 const int v6s_m[] =
14175 {
07d6d2b8
AM
14176 -1, /* PRE_V4. */
14177 -1, /* V4. */
91e22acd
AS
14178 T(V6K), /* V4T. */
14179 T(V6K), /* V5T. */
14180 T(V6K), /* V5TE. */
14181 T(V6K), /* V5TEJ. */
14182 T(V6K), /* V6. */
14183 T(V6KZ), /* V6KZ. */
14184 T(V7), /* V6T2. */
14185 T(V6K), /* V6K. */
14186 T(V7), /* V7. */
14187 T(V6S_M), /* V6_M. */
14188 T(V6S_M) /* V6S_M. */
14189 };
9e3c6df6
PB
14190 const int v7e_m[] =
14191 {
07d6d2b8
AM
14192 -1, /* PRE_V4. */
14193 -1, /* V4. */
9e3c6df6
PB
14194 T(V7E_M), /* V4T. */
14195 T(V7E_M), /* V5T. */
14196 T(V7E_M), /* V5TE. */
14197 T(V7E_M), /* V5TEJ. */
14198 T(V7E_M), /* V6. */
14199 T(V7E_M), /* V6KZ. */
14200 T(V7E_M), /* V6T2. */
14201 T(V7E_M), /* V6K. */
14202 T(V7E_M), /* V7. */
14203 T(V7E_M), /* V6_M. */
14204 T(V7E_M), /* V6S_M. */
14205 T(V7E_M) /* V7E_M. */
14206 };
bca38921
MGD
14207 const int v8[] =
14208 {
14209 T(V8), /* PRE_V4. */
14210 T(V8), /* V4. */
14211 T(V8), /* V4T. */
14212 T(V8), /* V5T. */
14213 T(V8), /* V5TE. */
14214 T(V8), /* V5TEJ. */
14215 T(V8), /* V6. */
14216 T(V8), /* V6KZ. */
14217 T(V8), /* V6T2. */
14218 T(V8), /* V6K. */
14219 T(V8), /* V7. */
14220 T(V8), /* V6_M. */
14221 T(V8), /* V6S_M. */
14222 T(V8), /* V7E_M. */
3197e593
PW
14223 T(V8), /* V8. */
14224 T(V8), /* V8-R. */
14225 T(V8), /* V8-M.BASE. */
14226 T(V8), /* V8-M.MAIN. */
14227 T(V8), /* V8.1. */
14228 T(V8), /* V8.2. */
14229 T(V8), /* V8.3. */
14230 T(V8), /* V8.1-M.MAIN. */
bca38921 14231 };
bff0500d
TP
14232 const int v8r[] =
14233 {
14234 T(V8R), /* PRE_V4. */
14235 T(V8R), /* V4. */
14236 T(V8R), /* V4T. */
14237 T(V8R), /* V5T. */
14238 T(V8R), /* V5TE. */
14239 T(V8R), /* V5TEJ. */
14240 T(V8R), /* V6. */
14241 T(V8R), /* V6KZ. */
14242 T(V8R), /* V6T2. */
14243 T(V8R), /* V6K. */
14244 T(V8R), /* V7. */
14245 T(V8R), /* V6_M. */
14246 T(V8R), /* V6S_M. */
14247 T(V8R), /* V7E_M. */
14248 T(V8), /* V8. */
14249 T(V8R), /* V8R. */
14250 };
2fd158eb
TP
14251 const int v8m_baseline[] =
14252 {
14253 -1, /* PRE_V4. */
14254 -1, /* V4. */
14255 -1, /* V4T. */
14256 -1, /* V5T. */
14257 -1, /* V5TE. */
14258 -1, /* V5TEJ. */
14259 -1, /* V6. */
14260 -1, /* V6KZ. */
14261 -1, /* V6T2. */
14262 -1, /* V6K. */
14263 -1, /* V7. */
14264 T(V8M_BASE), /* V6_M. */
14265 T(V8M_BASE), /* V6S_M. */
14266 -1, /* V7E_M. */
14267 -1, /* V8. */
bff0500d 14268 -1, /* V8R. */
2fd158eb
TP
14269 T(V8M_BASE) /* V8-M BASELINE. */
14270 };
14271 const int v8m_mainline[] =
14272 {
14273 -1, /* PRE_V4. */
14274 -1, /* V4. */
14275 -1, /* V4T. */
14276 -1, /* V5T. */
14277 -1, /* V5TE. */
14278 -1, /* V5TEJ. */
14279 -1, /* V6. */
14280 -1, /* V6KZ. */
14281 -1, /* V6T2. */
14282 -1, /* V6K. */
14283 T(V8M_MAIN), /* V7. */
14284 T(V8M_MAIN), /* V6_M. */
14285 T(V8M_MAIN), /* V6S_M. */
14286 T(V8M_MAIN), /* V7E_M. */
14287 -1, /* V8. */
bff0500d 14288 -1, /* V8R. */
2fd158eb
TP
14289 T(V8M_MAIN), /* V8-M BASELINE. */
14290 T(V8M_MAIN) /* V8-M MAINLINE. */
14291 };
031254f2
AV
14292 const int v8_1m_mainline[] =
14293 {
14294 -1, /* PRE_V4. */
14295 -1, /* V4. */
14296 -1, /* V4T. */
14297 -1, /* V5T. */
14298 -1, /* V5TE. */
14299 -1, /* V5TEJ. */
14300 -1, /* V6. */
14301 -1, /* V6KZ. */
14302 -1, /* V6T2. */
14303 -1, /* V6K. */
14304 T(V8_1M_MAIN), /* V7. */
14305 T(V8_1M_MAIN), /* V6_M. */
14306 T(V8_1M_MAIN), /* V6S_M. */
14307 T(V8_1M_MAIN), /* V7E_M. */
14308 -1, /* V8. */
14309 -1, /* V8R. */
14310 T(V8_1M_MAIN), /* V8-M BASELINE. */
14311 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14312 -1, /* Unused (18). */
14313 -1, /* Unused (19). */
14314 -1, /* Unused (20). */
14315 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14316 };
3197e593
PW
14317 const int v9[] =
14318 {
14319 T(V9), /* PRE_V4. */
14320 T(V9), /* V4. */
14321 T(V9), /* V4T. */
14322 T(V9), /* V5T. */
14323 T(V9), /* V5TE. */
14324 T(V9), /* V5TEJ. */
14325 T(V9), /* V6. */
14326 T(V9), /* V6KZ. */
14327 T(V9), /* V6T2. */
14328 T(V9), /* V6K. */
14329 T(V9), /* V7. */
14330 T(V9), /* V6_M. */
14331 T(V9), /* V6S_M. */
14332 T(V9), /* V7E_M. */
14333 T(V9), /* V8. */
14334 T(V9), /* V8-R. */
14335 T(V9), /* V8-M.BASE. */
14336 T(V9), /* V8-M.MAIN. */
14337 T(V9), /* V8.1. */
14338 T(V9), /* V8.2. */
14339 T(V9), /* V8.3. */
14340 T(V9), /* V8.1-M.MAIN. */
14341 T(V9), /* V9. */
14342 };
91e22acd
AS
14343 const int v4t_plus_v6_m[] =
14344 {
14345 -1, /* PRE_V4. */
14346 -1, /* V4. */
14347 T(V4T), /* V4T. */
14348 T(V5T), /* V5T. */
14349 T(V5TE), /* V5TE. */
14350 T(V5TEJ), /* V5TEJ. */
14351 T(V6), /* V6. */
14352 T(V6KZ), /* V6KZ. */
14353 T(V6T2), /* V6T2. */
14354 T(V6K), /* V6K. */
14355 T(V7), /* V7. */
14356 T(V6_M), /* V6_M. */
14357 T(V6S_M), /* V6S_M. */
9e3c6df6 14358 T(V7E_M), /* V7E_M. */
bca38921 14359 T(V8), /* V8. */
bff0500d 14360 -1, /* V8R. */
2fd158eb
TP
14361 T(V8M_BASE), /* V8-M BASELINE. */
14362 T(V8M_MAIN), /* V8-M MAINLINE. */
031254f2
AV
14363 -1, /* Unused (18). */
14364 -1, /* Unused (19). */
14365 -1, /* Unused (20). */
14366 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
3197e593 14367 T(V9), /* V9. */
91e22acd
AS
14368 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14369 };
14370 const int *comb[] =
14371 {
14372 v6t2,
14373 v6k,
14374 v7,
14375 v6_m,
14376 v6s_m,
9e3c6df6 14377 v7e_m,
bca38921 14378 v8,
bff0500d 14379 v8r,
2fd158eb
TP
14380 v8m_baseline,
14381 v8m_mainline,
031254f2
AV
14382 NULL,
14383 NULL,
14384 NULL,
14385 v8_1m_mainline,
3197e593 14386 v9,
91e22acd
AS
14387 /* Pseudo-architecture. */
14388 v4t_plus_v6_m
14389 };
14390
14391 /* Check we've not got a higher architecture than we know about. */
14392
9e3c6df6 14393 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 14394 {
90b6238f 14395 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
91e22acd
AS
14396 return -1;
14397 }
14398
14399 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14400
14401 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14402 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14403 oldtag = T(V4T_PLUS_V6_M);
14404
14405 /* And override the new tag if we have a Tag_also_compatible_with on the
14406 input. */
14407
14408 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14409 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14410 newtag = T(V4T_PLUS_V6_M);
14411
14412 tagl = (oldtag < newtag) ? oldtag : newtag;
14413 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14414
14415 /* Architectures before V6KZ add features monotonically. */
14416 if (tagh <= TAG_CPU_ARCH_V6KZ)
14417 return result;
14418
4ed7ed8d 14419 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
91e22acd
AS
14420
14421 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14422 as the canonical version. */
14423 if (result == T(V4T_PLUS_V6_M))
14424 {
14425 result = T(V4T);
14426 *secondary_compat_out = T(V6_M);
14427 }
14428 else
14429 *secondary_compat_out = -1;
14430
14431 if (result == -1)
14432 {
90b6238f 14433 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
91e22acd
AS
14434 ibfd, oldtag, newtag);
14435 return -1;
14436 }
14437
14438 return result;
14439#undef T
8e79c3df
CM
14440}
14441
ac56ee8f
MGD
14442/* Query attributes object to see if integer divide instructions may be
14443 present in an object. */
0a1b45a2 14444static bool
ac56ee8f
MGD
14445elf32_arm_attributes_accept_div (const obj_attribute *attr)
14446{
14447 int arch = attr[Tag_CPU_arch].i;
14448 int profile = attr[Tag_CPU_arch_profile].i;
14449
14450 switch (attr[Tag_DIV_use].i)
14451 {
14452 case 0:
14453 /* Integer divide allowed if instruction contained in archetecture. */
14454 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
0a1b45a2 14455 return true;
ac56ee8f 14456 else if (arch >= TAG_CPU_ARCH_V7E_M)
0a1b45a2 14457 return true;
ac56ee8f 14458 else
0a1b45a2 14459 return false;
ac56ee8f
MGD
14460
14461 case 1:
14462 /* Integer divide explicitly prohibited. */
0a1b45a2 14463 return false;
ac56ee8f
MGD
14464
14465 default:
14466 /* Unrecognised case - treat as allowing divide everywhere. */
14467 case 2:
14468 /* Integer divide allowed in ARM state. */
0a1b45a2 14469 return true;
ac56ee8f
MGD
14470 }
14471}
14472
14473/* Query attributes object to see if integer divide instructions are
14474 forbidden to be in the object. This is not the inverse of
14475 elf32_arm_attributes_accept_div. */
0a1b45a2 14476static bool
ac56ee8f
MGD
14477elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14478{
14479 return attr[Tag_DIV_use].i == 1;
14480}
14481
ee065d83
PB
14482/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14483 are conflicting attributes. */
906e58ca 14484
0a1b45a2 14485static bool
50e03d47 14486elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
ee065d83 14487{
50e03d47 14488 bfd *obfd = info->output_bfd;
104d59d1
JM
14489 obj_attribute *in_attr;
14490 obj_attribute *out_attr;
ee065d83
PB
14491 /* Some tags have 0 = don't care, 1 = strong requirement,
14492 2 = weak requirement. */
91e22acd 14493 static const int order_021[3] = {0, 2, 1};
ee065d83 14494 int i;
0a1b45a2 14495 bool result = true;
9274e9de 14496 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 14497
3e6b1042
DJ
14498 /* Skip the linker stubs file. This preserves previous behavior
14499 of accepting unknown attributes in the first input file - but
14500 is that a bug? */
14501 if (ibfd->flags & BFD_LINKER_CREATED)
0a1b45a2 14502 return true;
3e6b1042 14503
9274e9de
TG
14504 /* Skip any input that hasn't attribute section.
14505 This enables to link object files without attribute section with
14506 any others. */
14507 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
0a1b45a2 14508 return true;
9274e9de 14509
104d59d1 14510 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
14511 {
14512 /* This is the first object. Copy the attributes. */
104d59d1 14513 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 14514
cd21e546
MGD
14515 out_attr = elf_known_obj_attributes_proc (obfd);
14516
004ae526
PB
14517 /* Use the Tag_null value to indicate the attributes have been
14518 initialized. */
cd21e546 14519 out_attr[0].i = 1;
004ae526 14520
cd21e546
MGD
14521 /* We do not output objects with Tag_MPextension_use_legacy - we move
14522 the attribute's value to Tag_MPextension_use. */
14523 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14524 {
14525 if (out_attr[Tag_MPextension_use].i != 0
14526 && out_attr[Tag_MPextension_use_legacy].i
99059e56 14527 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
14528 {
14529 _bfd_error_handler
871b3ab2 14530 (_("Error: %pB has both the current and legacy "
cd21e546 14531 "Tag_MPextension_use attributes"), ibfd);
0a1b45a2 14532 result = false;
cd21e546
MGD
14533 }
14534
14535 out_attr[Tag_MPextension_use] =
14536 out_attr[Tag_MPextension_use_legacy];
14537 out_attr[Tag_MPextension_use_legacy].type = 0;
14538 out_attr[Tag_MPextension_use_legacy].i = 0;
14539 }
14540
81c9e0f6
NC
14541 /* PR 28859 and 28848: Handle the case where the first input file,
14542 eg crti.o, has a Tag_ABI_HardFP_use of 3 but no Tag_FP_arch set.
14543 Using Tag_ABI_HardFP_use in this way is deprecated, so reset the
14544 attribute to zero.
14545 FIXME: Should we handle other non-zero values of Tag_ABI_HardFO_use ? */
14546 if (out_attr[Tag_ABI_HardFP_use].i == 3 && out_attr[Tag_FP_arch].i == 0)
14547 out_attr[Tag_ABI_HardFP_use].i = 0;
14548
cd21e546 14549 return result;
ee065d83
PB
14550 }
14551
104d59d1
JM
14552 in_attr = elf_known_obj_attributes_proc (ibfd);
14553 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
14554 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14555 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14556 {
5c294fee
TG
14557 /* Ignore mismatches if the object doesn't use floating point or is
14558 floating point ABI independent. */
14559 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14560 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14561 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 14562 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
14563 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14564 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
14565 {
14566 _bfd_error_handler
871b3ab2 14567 (_("error: %pB uses VFP register arguments, %pB does not"),
deddc40b
NS
14568 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14569 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
0a1b45a2 14570 result = false;
ee065d83
PB
14571 }
14572 }
14573
3de4a297 14574 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
14575 {
14576 /* Merge this attribute with existing attributes. */
14577 switch (i)
14578 {
14579 case Tag_CPU_raw_name:
14580 case Tag_CPU_name:
6a631e86 14581 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
14582 break;
14583
14584 case Tag_ABI_optimization_goals:
14585 case Tag_ABI_FP_optimization_goals:
14586 /* Use the first value seen. */
14587 break;
14588
14589 case Tag_CPU_arch:
91e22acd
AS
14590 {
14591 int secondary_compat = -1, secondary_compat_out = -1;
14592 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
14593 int arch_attr;
14594 static const char *name_table[] =
14595 {
91e22acd
AS
14596 /* These aren't real CPU names, but we can't guess
14597 that from the architecture version alone. */
14598 "Pre v4",
14599 "ARM v4",
14600 "ARM v4T",
14601 "ARM v5T",
14602 "ARM v5TE",
14603 "ARM v5TEJ",
14604 "ARM v6",
14605 "ARM v6KZ",
14606 "ARM v6T2",
14607 "ARM v6K",
14608 "ARM v7",
14609 "ARM v6-M",
bca38921 14610 "ARM v6S-M",
3197e593 14611 "ARM v7E-M",
2fd158eb 14612 "ARM v8",
3197e593 14613 "ARM v8-R",
2fd158eb
TP
14614 "ARM v8-M.baseline",
14615 "ARM v8-M.mainline",
3197e593
PW
14616 "ARM v8.1-A",
14617 "ARM v8.2-A",
14618 "ARM v8.3-A",
14619 "ARM v8.1-M.mainline",
14620 "ARM v9",
91e22acd
AS
14621 };
14622
14623 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14624 secondary_compat = get_secondary_compatible_arch (ibfd);
14625 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
14626 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14627 &secondary_compat_out,
14628 in_attr[i].i,
14629 secondary_compat);
14630
14631 /* Return with error if failed to merge. */
14632 if (arch_attr == -1)
0a1b45a2 14633 return false;
70e99720
TG
14634
14635 out_attr[i].i = arch_attr;
14636
91e22acd
AS
14637 set_secondary_compatible_arch (obfd, secondary_compat_out);
14638
14639 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14640 if (out_attr[i].i == saved_out_attr)
14641 ; /* Leave the names alone. */
14642 else if (out_attr[i].i == in_attr[i].i)
14643 {
14644 /* The output architecture has been changed to match the
14645 input architecture. Use the input names. */
14646 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14647 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14648 : NULL;
14649 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14650 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14651 : NULL;
14652 }
14653 else
14654 {
14655 out_attr[Tag_CPU_name].s = NULL;
14656 out_attr[Tag_CPU_raw_name].s = NULL;
14657 }
14658
14659 /* If we still don't have a value for Tag_CPU_name,
14660 make one up now. Tag_CPU_raw_name remains blank. */
14661 if (out_attr[Tag_CPU_name].s == NULL
14662 && out_attr[i].i < ARRAY_SIZE (name_table))
14663 out_attr[Tag_CPU_name].s =
14664 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14665 }
14666 break;
14667
ee065d83
PB
14668 case Tag_ARM_ISA_use:
14669 case Tag_THUMB_ISA_use:
ee065d83 14670 case Tag_WMMX_arch:
91e22acd
AS
14671 case Tag_Advanced_SIMD_arch:
14672 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 14673 case Tag_ABI_FP_rounding:
ee065d83
PB
14674 case Tag_ABI_FP_exceptions:
14675 case Tag_ABI_FP_user_exceptions:
14676 case Tag_ABI_FP_number_model:
75375b3e 14677 case Tag_FP_HP_extension:
91e22acd
AS
14678 case Tag_CPU_unaligned_access:
14679 case Tag_T2EE_use:
91e22acd 14680 case Tag_MPextension_use:
a7ad558c 14681 case Tag_MVE_arch:
99db83d0 14682 case Tag_PAC_extension:
4b535030 14683 case Tag_BTI_extension:
b81ee92f 14684 case Tag_BTI_use:
c9fed665 14685 case Tag_PACRET_use:
ee065d83
PB
14686 /* Use the largest value specified. */
14687 if (in_attr[i].i > out_attr[i].i)
14688 out_attr[i].i = in_attr[i].i;
14689 break;
14690
75375b3e 14691 case Tag_ABI_align_preserved:
91e22acd
AS
14692 case Tag_ABI_PCS_RO_data:
14693 /* Use the smallest value specified. */
14694 if (in_attr[i].i < out_attr[i].i)
14695 out_attr[i].i = in_attr[i].i;
14696 break;
14697
75375b3e 14698 case Tag_ABI_align_needed:
91e22acd 14699 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
14700 && (in_attr[Tag_ABI_align_preserved].i == 0
14701 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 14702 {
91e22acd
AS
14703 /* This error message should be enabled once all non-conformant
14704 binaries in the toolchain have had the attributes set
14705 properly.
ee065d83 14706 _bfd_error_handler
871b3ab2 14707 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
91e22acd 14708 obfd, ibfd);
0a1b45a2 14709 result = false; */
ee065d83 14710 }
91e22acd
AS
14711 /* Fall through. */
14712 case Tag_ABI_FP_denormal:
14713 case Tag_ABI_PCS_GOT_use:
14714 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14715 value if greater than 2 (for future-proofing). */
14716 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14717 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14718 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
14719 out_attr[i].i = in_attr[i].i;
14720 break;
91e22acd 14721
75375b3e
MGD
14722 case Tag_Virtualization_use:
14723 /* The virtualization tag effectively stores two bits of
14724 information: the intended use of TrustZone (in bit 0), and the
14725 intended use of Virtualization (in bit 1). */
14726 if (out_attr[i].i == 0)
14727 out_attr[i].i = in_attr[i].i;
14728 else if (in_attr[i].i != 0
14729 && in_attr[i].i != out_attr[i].i)
14730 {
14731 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14732 out_attr[i].i = 3;
14733 else
14734 {
14735 _bfd_error_handler
871b3ab2
AM
14736 (_("error: %pB: unable to merge virtualization attributes "
14737 "with %pB"),
75375b3e 14738 obfd, ibfd);
0a1b45a2 14739 result = false;
75375b3e
MGD
14740 }
14741 }
14742 break;
91e22acd
AS
14743
14744 case Tag_CPU_arch_profile:
14745 if (out_attr[i].i != in_attr[i].i)
14746 {
14747 /* 0 will merge with anything.
14748 'A' and 'S' merge to 'A'.
14749 'R' and 'S' merge to 'R'.
99059e56 14750 'M' and 'A|R|S' is an error. */
91e22acd
AS
14751 if (out_attr[i].i == 0
14752 || (out_attr[i].i == 'S'
14753 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14754 out_attr[i].i = in_attr[i].i;
14755 else if (in_attr[i].i == 0
14756 || (in_attr[i].i == 'S'
14757 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 14758 ; /* Do nothing. */
91e22acd
AS
14759 else
14760 {
14761 _bfd_error_handler
90b6238f 14762 (_("error: %pB: conflicting architecture profiles %c/%c"),
91e22acd
AS
14763 ibfd,
14764 in_attr[i].i ? in_attr[i].i : '0',
14765 out_attr[i].i ? out_attr[i].i : '0');
0a1b45a2 14766 result = false;
91e22acd
AS
14767 }
14768 }
14769 break;
15afaa63
TP
14770
14771 case Tag_DSP_extension:
14772 /* No need to change output value if any of:
14773 - pre (<=) ARMv5T input architecture (do not have DSP)
14774 - M input profile not ARMv7E-M and do not have DSP. */
14775 if (in_attr[Tag_CPU_arch].i <= 3
14776 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14777 && in_attr[Tag_CPU_arch].i != 13
14778 && in_attr[i].i == 0))
14779 ; /* Do nothing. */
14780 /* Output value should be 0 if DSP part of architecture, ie.
14781 - post (>=) ARMv5te architecture output
14782 - A, R or S profile output or ARMv7E-M output architecture. */
14783 else if (out_attr[Tag_CPU_arch].i >= 4
14784 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14785 || out_attr[Tag_CPU_arch_profile].i == 'R'
14786 || out_attr[Tag_CPU_arch_profile].i == 'S'
14787 || out_attr[Tag_CPU_arch].i == 13))
14788 out_attr[i].i = 0;
14789 /* Otherwise, DSP instructions are added and not part of output
14790 architecture. */
14791 else
14792 out_attr[i].i = 1;
14793 break;
14794
75375b3e 14795 case Tag_FP_arch:
62f3b8c8 14796 {
4547cb56
NC
14797 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14798 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14799 when it's 0. It might mean absence of FP hardware if
99654aaf 14800 Tag_FP_arch is zero. */
4547cb56 14801
a715796b 14802#define VFP_VERSION_COUNT 9
62f3b8c8
PB
14803 static const struct
14804 {
14805 int ver;
14806 int regs;
bca38921 14807 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
14808 {
14809 {0, 0},
14810 {1, 16},
14811 {2, 16},
14812 {3, 32},
14813 {3, 16},
14814 {4, 32},
bca38921 14815 {4, 16},
a715796b
TG
14816 {8, 32},
14817 {8, 16}
62f3b8c8
PB
14818 };
14819 int ver;
14820 int regs;
14821 int newval;
14822
4547cb56
NC
14823 /* If the output has no requirement about FP hardware,
14824 follow the requirement of the input. */
14825 if (out_attr[i].i == 0)
14826 {
4ec192e6
RE
14827 /* This assert is still reasonable, we shouldn't
14828 produce the suspicious build attribute
14829 combination (See below for in_attr). */
4547cb56
NC
14830 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14831 out_attr[i].i = in_attr[i].i;
14832 out_attr[Tag_ABI_HardFP_use].i
14833 = in_attr[Tag_ABI_HardFP_use].i;
14834 break;
14835 }
14836 /* If the input has no requirement about FP hardware, do
14837 nothing. */
14838 else if (in_attr[i].i == 0)
14839 {
4ec192e6
RE
14840 /* We used to assert that Tag_ABI_HardFP_use was
14841 zero here, but we should never assert when
14842 consuming an object file that has suspicious
14843 build attributes. The single precision variant
14844 of 'no FP architecture' is still 'no FP
14845 architecture', so we just ignore the tag in this
14846 case. */
4547cb56
NC
14847 break;
14848 }
14849
14850 /* Both the input and the output have nonzero Tag_FP_arch.
99654aaf 14851 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
4547cb56
NC
14852
14853 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14854 do nothing. */
14855 if (in_attr[Tag_ABI_HardFP_use].i == 0
14856 && out_attr[Tag_ABI_HardFP_use].i == 0)
14857 ;
14858 /* If the input and the output have different Tag_ABI_HardFP_use,
99654aaf 14859 the combination of them is 0 (implied by Tag_FP_arch). */
4547cb56
NC
14860 else if (in_attr[Tag_ABI_HardFP_use].i
14861 != out_attr[Tag_ABI_HardFP_use].i)
99654aaf 14862 out_attr[Tag_ABI_HardFP_use].i = 0;
4547cb56
NC
14863
14864 /* Now we can handle Tag_FP_arch. */
14865
bca38921
MGD
14866 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14867 pick the biggest. */
14868 if (in_attr[i].i >= VFP_VERSION_COUNT
14869 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
14870 {
14871 out_attr[i] = in_attr[i];
14872 break;
14873 }
14874 /* The output uses the superset of input features
14875 (ISA version) and registers. */
14876 ver = vfp_versions[in_attr[i].i].ver;
14877 if (ver < vfp_versions[out_attr[i].i].ver)
14878 ver = vfp_versions[out_attr[i].i].ver;
14879 regs = vfp_versions[in_attr[i].i].regs;
14880 if (regs < vfp_versions[out_attr[i].i].regs)
14881 regs = vfp_versions[out_attr[i].i].regs;
14882 /* This assumes all possible supersets are also a valid
99059e56 14883 options. */
bca38921 14884 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
14885 {
14886 if (regs == vfp_versions[newval].regs
14887 && ver == vfp_versions[newval].ver)
14888 break;
14889 }
14890 out_attr[i].i = newval;
14891 }
b1cc4aeb 14892 break;
ee065d83
PB
14893 case Tag_PCS_config:
14894 if (out_attr[i].i == 0)
14895 out_attr[i].i = in_attr[i].i;
b6009aca 14896 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
14897 {
14898 /* It's sometimes ok to mix different configs, so this is only
99059e56 14899 a warning. */
ee065d83 14900 _bfd_error_handler
90b6238f 14901 (_("warning: %pB: conflicting platform configuration"), ibfd);
ee065d83
PB
14902 }
14903 break;
14904 case Tag_ABI_PCS_R9_use:
004ae526
PB
14905 if (in_attr[i].i != out_attr[i].i
14906 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
14907 && in_attr[i].i != AEABI_R9_unused)
14908 {
14909 _bfd_error_handler
90b6238f 14910 (_("error: %pB: conflicting use of R9"), ibfd);
0a1b45a2 14911 result = false;
ee065d83
PB
14912 }
14913 if (out_attr[i].i == AEABI_R9_unused)
14914 out_attr[i].i = in_attr[i].i;
14915 break;
14916 case Tag_ABI_PCS_RW_data:
14917 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14918 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14919 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14920 {
14921 _bfd_error_handler
871b3ab2 14922 (_("error: %pB: SB relative addressing conflicts with use of R9"),
ee065d83 14923 ibfd);
0a1b45a2 14924 result = false;
ee065d83
PB
14925 }
14926 /* Use the smallest value specified. */
14927 if (in_attr[i].i < out_attr[i].i)
14928 out_attr[i].i = in_attr[i].i;
14929 break;
ee065d83 14930 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
14931 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14932 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
14933 {
14934 _bfd_error_handler
871b3ab2 14935 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
a9dc9481 14936 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 14937 }
a9dc9481 14938 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
14939 out_attr[i].i = in_attr[i].i;
14940 break;
ee065d83
PB
14941 case Tag_ABI_enum_size:
14942 if (in_attr[i].i != AEABI_enum_unused)
14943 {
14944 if (out_attr[i].i == AEABI_enum_unused
14945 || out_attr[i].i == AEABI_enum_forced_wide)
14946 {
14947 /* The existing object is compatible with anything.
14948 Use whatever requirements the new object has. */
14949 out_attr[i].i = in_attr[i].i;
14950 }
14951 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 14952 && out_attr[i].i != in_attr[i].i
0ffa91dd 14953 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 14954 {
91e22acd 14955 static const char *aeabi_enum_names[] =
bf21ed78 14956 { "", "variable-size", "32-bit", "" };
91e22acd 14957 const char *in_name =
cc850f74 14958 in_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14959 ? aeabi_enum_names[in_attr[i].i]
14960 : "<unknown>";
14961 const char *out_name =
cc850f74 14962 out_attr[i].i < ARRAY_SIZE (aeabi_enum_names)
91e22acd
AS
14963 ? aeabi_enum_names[out_attr[i].i]
14964 : "<unknown>";
ee065d83 14965 _bfd_error_handler
871b3ab2 14966 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 14967 ibfd, in_name, out_name);
ee065d83
PB
14968 }
14969 }
14970 break;
14971 case Tag_ABI_VFP_args:
14972 /* Aready done. */
14973 break;
14974 case Tag_ABI_WMMX_args:
14975 if (in_attr[i].i != out_attr[i].i)
14976 {
14977 _bfd_error_handler
871b3ab2 14978 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
ee065d83 14979 ibfd, obfd);
0a1b45a2 14980 result = false;
ee065d83
PB
14981 }
14982 break;
7b86a9fa
AS
14983 case Tag_compatibility:
14984 /* Merged in target-independent code. */
14985 break;
91e22acd 14986 case Tag_ABI_HardFP_use:
4547cb56 14987 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
14988 break;
14989 case Tag_ABI_FP_16bit_format:
14990 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14991 {
14992 if (in_attr[i].i != out_attr[i].i)
14993 {
14994 _bfd_error_handler
871b3ab2 14995 (_("error: fp16 format mismatch between %pB and %pB"),
91e22acd 14996 ibfd, obfd);
0a1b45a2 14997 result = false;
91e22acd
AS
14998 }
14999 }
15000 if (in_attr[i].i != 0)
15001 out_attr[i].i = in_attr[i].i;
15002 break;
7b86a9fa 15003
cd21e546 15004 case Tag_DIV_use:
ac56ee8f
MGD
15005 /* A value of zero on input means that the divide instruction may
15006 be used if available in the base architecture as specified via
15007 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15008 the user did not want divide instructions. A value of 2
15009 explicitly means that divide instructions were allowed in ARM
15010 and Thumb state. */
15011 if (in_attr[i].i == out_attr[i].i)
15012 /* Do nothing. */ ;
15013 else if (elf32_arm_attributes_forbid_div (in_attr)
15014 && !elf32_arm_attributes_accept_div (out_attr))
15015 out_attr[i].i = 1;
15016 else if (elf32_arm_attributes_forbid_div (out_attr)
15017 && elf32_arm_attributes_accept_div (in_attr))
15018 out_attr[i].i = in_attr[i].i;
15019 else if (in_attr[i].i == 2)
15020 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
15021 break;
15022
15023 case Tag_MPextension_use_legacy:
15024 /* We don't output objects with Tag_MPextension_use_legacy - we
15025 move the value to Tag_MPextension_use. */
15026 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15027 {
15028 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15029 {
15030 _bfd_error_handler
871b3ab2 15031 (_("%pB has both the current and legacy "
b38cadfb 15032 "Tag_MPextension_use attributes"),
cd21e546 15033 ibfd);
0a1b45a2 15034 result = false;
cd21e546
MGD
15035 }
15036 }
15037
15038 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15039 out_attr[Tag_MPextension_use] = in_attr[i];
15040
15041 break;
15042
91e22acd 15043 case Tag_nodefaults:
2d0bb761
AS
15044 /* This tag is set if it exists, but the value is unused (and is
15045 typically zero). We don't actually need to do anything here -
15046 the merge happens automatically when the type flags are merged
15047 below. */
91e22acd
AS
15048 break;
15049 case Tag_also_compatible_with:
15050 /* Already done in Tag_CPU_arch. */
15051 break;
15052 case Tag_conformance:
15053 /* Keep the attribute if it matches. Throw it away otherwise.
15054 No attribute means no claim to conform. */
15055 if (!in_attr[i].s || !out_attr[i].s
15056 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15057 out_attr[i].s = NULL;
15058 break;
3cfad14c 15059
91e22acd 15060 default:
e8b36cd1
JM
15061 result
15062 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
15063 }
15064
15065 /* If out_attr was copied from in_attr then it won't have a type yet. */
15066 if (in_attr[i].type && !out_attr[i].type)
15067 out_attr[i].type = in_attr[i].type;
ee065d83
PB
15068 }
15069
104d59d1 15070 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15071 if (!_bfd_elf_merge_object_attributes (ibfd, info))
0a1b45a2 15072 return false;
ee065d83 15073
104d59d1 15074 /* Check for any attributes not known on ARM. */
e8b36cd1 15075 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 15076
91e22acd 15077 return result;
252b5132
RH
15078}
15079
3a4a14e9
PB
15080
15081/* Return TRUE if the two EABI versions are incompatible. */
15082
0a1b45a2 15083static bool
3a4a14e9
PB
15084elf32_arm_versions_compatible (unsigned iver, unsigned over)
15085{
15086 /* v4 and v5 are the same spec before and after it was released,
15087 so allow mixing them. */
15088 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15089 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
0a1b45a2 15090 return true;
3a4a14e9
PB
15091
15092 return (iver == over);
15093}
15094
252b5132
RH
15095/* Merge backend specific data from an object file to the output
15096 object file when linking. */
9b485d32 15097
0a1b45a2 15098static bool
50e03d47 15099elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
252b5132 15100
9b485d32
NC
15101/* Display the flags field. */
15102
0a1b45a2 15103static bool
57e8b36a 15104elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 15105{
fc830a83
NC
15106 FILE * file = (FILE *) ptr;
15107 unsigned long flags;
252b5132
RH
15108
15109 BFD_ASSERT (abfd != NULL && ptr != NULL);
15110
15111 /* Print normal ELF private data. */
15112 _bfd_elf_print_private_bfd_data (abfd, ptr);
15113
fc830a83 15114 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
15115 /* Ignore init flag - it may not be set, despite the flags field
15116 containing valid data. */
252b5132 15117
dbb078f6 15118 fprintf (file, _("private flags = 0x%lx:"), elf_elfheader (abfd)->e_flags);
252b5132 15119
fc830a83
NC
15120 switch (EF_ARM_EABI_VERSION (flags))
15121 {
15122 case EF_ARM_EABI_UNKNOWN:
4cc11e76 15123 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
15124 official ARM ELF extended ABI. Hence they are only decoded if
15125 the EABI version is not set. */
fd2ec330 15126 if (flags & EF_ARM_INTERWORK)
9b485d32 15127 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 15128
fd2ec330 15129 if (flags & EF_ARM_APCS_26)
6c571f00 15130 fprintf (file, " [APCS-26]");
fc830a83 15131 else
6c571f00 15132 fprintf (file, " [APCS-32]");
9a5aca8c 15133
96a846ea
RE
15134 if (flags & EF_ARM_VFP_FLOAT)
15135 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
15136 else if (flags & EF_ARM_MAVERICK_FLOAT)
15137 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
15138 else
15139 fprintf (file, _(" [FPA float format]"));
15140
fd2ec330 15141 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 15142 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 15143
fd2ec330 15144 if (flags & EF_ARM_PIC)
9b485d32 15145 fprintf (file, _(" [position independent]"));
fc830a83 15146
fd2ec330 15147 if (flags & EF_ARM_NEW_ABI)
9b485d32 15148 fprintf (file, _(" [new ABI]"));
9a5aca8c 15149
fd2ec330 15150 if (flags & EF_ARM_OLD_ABI)
9b485d32 15151 fprintf (file, _(" [old ABI]"));
9a5aca8c 15152
fd2ec330 15153 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 15154 fprintf (file, _(" [software FP]"));
9a5aca8c 15155
96a846ea
RE
15156 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15157 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
15158 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15159 | EF_ARM_MAVERICK_FLOAT);
fc830a83 15160 break;
9a5aca8c 15161
fc830a83 15162 case EF_ARM_EABI_VER1:
9b485d32 15163 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 15164
fc830a83 15165 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 15166 fprintf (file, _(" [sorted symbol table]"));
fc830a83 15167 else
9b485d32 15168 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 15169
fc830a83
NC
15170 flags &= ~ EF_ARM_SYMSARESORTED;
15171 break;
9a5aca8c 15172
fd2ec330
PB
15173 case EF_ARM_EABI_VER2:
15174 fprintf (file, _(" [Version2 EABI]"));
15175
15176 if (flags & EF_ARM_SYMSARESORTED)
15177 fprintf (file, _(" [sorted symbol table]"));
15178 else
15179 fprintf (file, _(" [unsorted symbol table]"));
15180
15181 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15182 fprintf (file, _(" [dynamic symbols use segment index]"));
15183
15184 if (flags & EF_ARM_MAPSYMSFIRST)
15185 fprintf (file, _(" [mapping symbols precede others]"));
15186
99e4ae17 15187 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
15188 | EF_ARM_MAPSYMSFIRST);
15189 break;
15190
d507cf36
PB
15191 case EF_ARM_EABI_VER3:
15192 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
15193 break;
15194
15195 case EF_ARM_EABI_VER4:
15196 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 15197 goto eabi;
d507cf36 15198
3a4a14e9
PB
15199 case EF_ARM_EABI_VER5:
15200 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
15201
15202 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15203 fprintf (file, _(" [soft-float ABI]"));
15204
15205 if (flags & EF_ARM_ABI_FLOAT_HARD)
15206 fprintf (file, _(" [hard-float ABI]"));
15207
15208 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15209
3a4a14e9 15210 eabi:
d507cf36
PB
15211 if (flags & EF_ARM_BE8)
15212 fprintf (file, _(" [BE8]"));
15213
15214 if (flags & EF_ARM_LE8)
15215 fprintf (file, _(" [LE8]"));
15216
15217 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15218 break;
15219
fc830a83 15220 default:
9b485d32 15221 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
15222 break;
15223 }
252b5132 15224
fc830a83 15225 flags &= ~ EF_ARM_EABIMASK;
252b5132 15226
fc830a83 15227 if (flags & EF_ARM_RELEXEC)
9b485d32 15228 fprintf (file, _(" [relocatable executable]"));
252b5132 15229
18a20338
CL
15230 if (flags & EF_ARM_PIC)
15231 fprintf (file, _(" [position independent]"));
15232
15233 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15234 fprintf (file, _(" [FDPIC ABI supplement]"));
15235
15236 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
fc830a83
NC
15237
15238 if (flags)
dbb078f6 15239 fprintf (file, _(" <Unrecognised flag bits set>"));
9a5aca8c 15240
252b5132
RH
15241 fputc ('\n', file);
15242
0a1b45a2 15243 return true;
252b5132
RH
15244}
15245
15246static int
57e8b36a 15247elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 15248{
2f0ca46a
NC
15249 switch (ELF_ST_TYPE (elf_sym->st_info))
15250 {
15251 case STT_ARM_TFUNC:
15252 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 15253
2f0ca46a
NC
15254 case STT_ARM_16BIT:
15255 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15256 This allows us to distinguish between data used by Thumb instructions
15257 and non-data (which is probably code) inside Thumb regions of an
15258 executable. */
1a0eb693 15259 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
15260 return ELF_ST_TYPE (elf_sym->st_info);
15261 break;
9a5aca8c 15262
ce855c42
NC
15263 default:
15264 break;
2f0ca46a
NC
15265 }
15266
15267 return type;
252b5132 15268}
f21f3fe0 15269
252b5132 15270static asection *
07adf181
AM
15271elf32_arm_gc_mark_hook (asection *sec,
15272 struct bfd_link_info *info,
15273 Elf_Internal_Rela *rel,
15274 struct elf_link_hash_entry *h,
15275 Elf_Internal_Sym *sym)
252b5132
RH
15276{
15277 if (h != NULL)
07adf181 15278 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
15279 {
15280 case R_ARM_GNU_VTINHERIT:
15281 case R_ARM_GNU_VTENTRY:
07adf181
AM
15282 return NULL;
15283 }
9ad5cbcf 15284
07adf181 15285 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
15286}
15287
780a67af
NC
15288/* Look through the relocs for a section during the first phase. */
15289
0a1b45a2 15290static bool
57e8b36a
NC
15291elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15292 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 15293{
b34976b6
AM
15294 Elf_Internal_Shdr *symtab_hdr;
15295 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
15296 const Elf_Internal_Rela *rel;
15297 const Elf_Internal_Rela *rel_end;
15298 bfd *dynobj;
5e681ec4 15299 asection *sreloc;
5e681ec4 15300 struct elf32_arm_link_hash_table *htab;
0a1b45a2
AM
15301 bool call_reloc_p;
15302 bool may_become_dynamic_p;
15303 bool may_need_local_target_p;
ce98a316 15304 unsigned long nsyms;
9a5aca8c 15305
0e1862bb 15306 if (bfd_link_relocatable (info))
0a1b45a2 15307 return true;
9a5aca8c 15308
0ffa91dd
NC
15309 BFD_ASSERT (is_arm_elf (abfd));
15310
5e681ec4 15311 htab = elf32_arm_hash_table (info);
4dfe6ac6 15312 if (htab == NULL)
0a1b45a2 15313 return false;
4dfe6ac6 15314
5e681ec4 15315 sreloc = NULL;
9a5aca8c 15316
67687978
PB
15317 /* Create dynamic sections for relocatable executables so that we can
15318 copy relocations. */
15319 if (htab->root.is_relocatable_executable
15320 && ! htab->root.dynamic_sections_created)
15321 {
15322 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
0a1b45a2 15323 return false;
67687978
PB
15324 }
15325
cbc704f3
RS
15326 if (htab->root.dynobj == NULL)
15327 htab->root.dynobj = abfd;
34e77a92 15328 if (!create_ifunc_sections (info))
0a1b45a2 15329 return false;
cbc704f3
RS
15330
15331 dynobj = htab->root.dynobj;
15332
0ffa91dd 15333 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 15334 sym_hashes = elf_sym_hashes (abfd);
ce98a316 15335 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 15336
252b5132
RH
15337 rel_end = relocs + sec->reloc_count;
15338 for (rel = relocs; rel < rel_end; rel++)
15339 {
34e77a92 15340 Elf_Internal_Sym *isym;
252b5132 15341 struct elf_link_hash_entry *h;
b7693d02 15342 struct elf32_arm_link_hash_entry *eh;
d42c267e 15343 unsigned int r_symndx;
eb043451 15344 int r_type;
9a5aca8c 15345
252b5132 15346 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 15347 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 15348 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 15349
ce98a316
NC
15350 if (r_symndx >= nsyms
15351 /* PR 9934: It is possible to have relocations that do not
15352 refer to symbols, thus it is also possible to have an
15353 object file containing relocations but no symbol table. */
cf35638d 15354 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac 15355 {
871b3ab2 15356 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
4eca0228 15357 r_symndx);
0a1b45a2 15358 return false;
ba93b8ac
DJ
15359 }
15360
34e77a92
RS
15361 h = NULL;
15362 isym = NULL;
15363 if (nsyms > 0)
973a3492 15364 {
34e77a92
RS
15365 if (r_symndx < symtab_hdr->sh_info)
15366 {
15367 /* A local symbol. */
f1dfbfdb 15368 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache,
34e77a92
RS
15369 abfd, r_symndx);
15370 if (isym == NULL)
0a1b45a2 15371 return false;
34e77a92
RS
15372 }
15373 else
15374 {
15375 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15376 while (h->root.type == bfd_link_hash_indirect
15377 || h->root.type == bfd_link_hash_warning)
15378 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15379 }
973a3492 15380 }
9a5aca8c 15381
b7693d02
DJ
15382 eh = (struct elf32_arm_link_hash_entry *) h;
15383
0a1b45a2
AM
15384 call_reloc_p = false;
15385 may_become_dynamic_p = false;
15386 may_need_local_target_p = false;
f6e32f6d 15387
0855e32b
NS
15388 /* Could be done earlier, if h were already available. */
15389 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 15390 switch (r_type)
99059e56 15391 {
e8b09b87
CL
15392 case R_ARM_GOTOFFFUNCDESC:
15393 {
15394 if (h == NULL)
15395 {
15396 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15397 return false;
74fd118f
NC
15398 if (r_symndx >= elf32_arm_num_entries (abfd))
15399 return false;
cc850f74
NC
15400 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].gotofffuncdesc_cnt += 1;
15401 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15402 }
15403 else
15404 {
15405 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15406 }
15407 }
15408 break;
15409
15410 case R_ARM_GOTFUNCDESC:
15411 {
15412 if (h == NULL)
15413 {
15414 /* Such a relocation is not supposed to be generated
cc850f74 15415 by gcc on a static function. */
e8b09b87 15416 /* Anyway if needed it could be handled. */
cc850f74 15417 return false;
e8b09b87
CL
15418 }
15419 else
15420 {
15421 eh->fdpic_cnts.gotfuncdesc_cnt++;
15422 }
15423 }
15424 break;
15425
15426 case R_ARM_FUNCDESC:
15427 {
15428 if (h == NULL)
15429 {
15430 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15431 return false;
74fd118f
NC
15432 if (r_symndx >= elf32_arm_num_entries (abfd))
15433 return false;
cc850f74
NC
15434 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_cnt += 1;
15435 elf32_arm_local_fdpic_cnts (abfd) [r_symndx].funcdesc_offset = -1;
e8b09b87
CL
15436 }
15437 else
15438 {
15439 eh->fdpic_cnts.funcdesc_cnt++;
15440 }
15441 }
15442 break;
15443
5e681ec4 15444 case R_ARM_GOT32:
eb043451 15445 case R_ARM_GOT_PREL:
ba93b8ac 15446 case R_ARM_TLS_GD32:
5c5a4843 15447 case R_ARM_TLS_GD32_FDPIC:
ba93b8ac 15448 case R_ARM_TLS_IE32:
5c5a4843 15449 case R_ARM_TLS_IE32_FDPIC:
0855e32b
NS
15450 case R_ARM_TLS_GOTDESC:
15451 case R_ARM_TLS_DESCSEQ:
15452 case R_ARM_THM_TLS_DESCSEQ:
15453 case R_ARM_TLS_CALL:
15454 case R_ARM_THM_TLS_CALL:
5e681ec4 15455 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
15456 {
15457 int tls_type, old_tls_type;
5e681ec4 15458
ba93b8ac
DJ
15459 switch (r_type)
15460 {
15461 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
5c5a4843 15462 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
b38cadfb 15463
ba93b8ac 15464 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
5c5a4843 15465 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
b38cadfb 15466
0855e32b
NS
15467 case R_ARM_TLS_GOTDESC:
15468 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15469 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15470 tls_type = GOT_TLS_GDESC; break;
b38cadfb 15471
ba93b8ac
DJ
15472 default: tls_type = GOT_NORMAL; break;
15473 }
252b5132 15474
0e1862bb 15475 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
eea6dad2
KM
15476 info->flags |= DF_STATIC_TLS;
15477
ba93b8ac
DJ
15478 if (h != NULL)
15479 {
15480 h->got.refcount++;
15481 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15482 }
15483 else
15484 {
ba93b8ac 15485 /* This is a global offset table entry for a local symbol. */
34e77a92 15486 if (!elf32_arm_allocate_local_sym_info (abfd))
0a1b45a2 15487 return false;
74fd118f
NC
15488 if (r_symndx >= elf32_arm_num_entries (abfd))
15489 {
15490 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15491 r_symndx);
15492 return false;
15493 }
15494
34e77a92 15495 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
15496 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15497 }
15498
0855e32b 15499 /* If a variable is accessed with both tls methods, two
99059e56 15500 slots may be created. */
0855e32b
NS
15501 if (GOT_TLS_GD_ANY_P (old_tls_type)
15502 && GOT_TLS_GD_ANY_P (tls_type))
15503 tls_type |= old_tls_type;
15504
15505 /* We will already have issued an error message if there
15506 is a TLS/non-TLS mismatch, based on the symbol
15507 type. So just combine any TLS types needed. */
ba93b8ac
DJ
15508 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15509 && tls_type != GOT_NORMAL)
15510 tls_type |= old_tls_type;
15511
0855e32b 15512 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
15513 method, we're able to relax. Turn off the GDESC flag,
15514 without messing up with any other kind of tls types
6a631e86 15515 that may be involved. */
0855e32b
NS
15516 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15517 tls_type &= ~GOT_TLS_GDESC;
15518
ba93b8ac
DJ
15519 if (old_tls_type != tls_type)
15520 {
15521 if (h != NULL)
15522 elf32_arm_hash_entry (h)->tls_type = tls_type;
15523 else
15524 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15525 }
15526 }
8029a119 15527 /* Fall through. */
ba93b8ac
DJ
15528
15529 case R_ARM_TLS_LDM32:
5c5a4843
CL
15530 case R_ARM_TLS_LDM32_FDPIC:
15531 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
ba93b8ac 15532 htab->tls_ldm_got.refcount++;
8029a119 15533 /* Fall through. */
252b5132 15534
c19d1205 15535 case R_ARM_GOTOFF32:
5e681ec4 15536 case R_ARM_GOTPC:
cbc704f3
RS
15537 if (htab->root.sgot == NULL
15538 && !create_got_section (htab->root.dynobj, info))
0a1b45a2 15539 return false;
252b5132
RH
15540 break;
15541
252b5132 15542 case R_ARM_PC24:
7359ea65 15543 case R_ARM_PLT32:
5b5bb741
PB
15544 case R_ARM_CALL:
15545 case R_ARM_JUMP24:
eb043451 15546 case R_ARM_PREL31:
c19d1205 15547 case R_ARM_THM_CALL:
bd97cb95
DJ
15548 case R_ARM_THM_JUMP24:
15549 case R_ARM_THM_JUMP19:
0a1b45a2
AM
15550 call_reloc_p = true;
15551 may_need_local_target_p = true;
f6e32f6d
RS
15552 break;
15553
15554 case R_ARM_ABS12:
15555 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15556 ldr __GOTT_INDEX__ offsets. */
90c14f0c 15557 if (htab->root.target_os != is_vxworks)
f6e32f6d 15558 {
0a1b45a2 15559 may_need_local_target_p = true;
f6e32f6d
RS
15560 break;
15561 }
aebf9be7 15562 else goto jump_over;
9eaff861 15563
f6e32f6d 15564 /* Fall through. */
39623e12 15565
96c23d59
JM
15566 case R_ARM_MOVW_ABS_NC:
15567 case R_ARM_MOVT_ABS:
15568 case R_ARM_THM_MOVW_ABS_NC:
15569 case R_ARM_THM_MOVT_ABS:
0e1862bb 15570 if (bfd_link_pic (info))
96c23d59 15571 {
4eca0228 15572 _bfd_error_handler
871b3ab2 15573 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
96c23d59
JM
15574 abfd, elf32_arm_howto_table_1[r_type].name,
15575 (h) ? h->root.root.string : "a local symbol");
15576 bfd_set_error (bfd_error_bad_value);
0a1b45a2 15577 return false;
96c23d59
JM
15578 }
15579
15580 /* Fall through. */
39623e12
PB
15581 case R_ARM_ABS32:
15582 case R_ARM_ABS32_NOI:
aebf9be7 15583 jump_over:
0e1862bb 15584 if (h != NULL && bfd_link_executable (info))
97323ad1
WN
15585 {
15586 h->pointer_equality_needed = 1;
15587 }
15588 /* Fall through. */
39623e12
PB
15589 case R_ARM_REL32:
15590 case R_ARM_REL32_NOI:
b6895b4f
PB
15591 case R_ARM_MOVW_PREL_NC:
15592 case R_ARM_MOVT_PREL:
b6895b4f
PB
15593 case R_ARM_THM_MOVW_PREL_NC:
15594 case R_ARM_THM_MOVT_PREL:
39623e12 15595
b7693d02 15596 /* Should the interworking branches be listed here? */
e8b09b87
CL
15597 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15598 || htab->fdpic_p)
34e77a92
RS
15599 && (sec->flags & SEC_ALLOC) != 0)
15600 {
15601 if (h == NULL
469a3493 15602 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
15603 {
15604 /* In shared libraries and relocatable executables,
15605 we treat local relative references as calls;
15606 see the related SYMBOL_CALLS_LOCAL code in
15607 allocate_dynrelocs. */
0a1b45a2
AM
15608 call_reloc_p = true;
15609 may_need_local_target_p = true;
34e77a92
RS
15610 }
15611 else
15612 /* We are creating a shared library or relocatable
15613 executable, and this is a reloc against a global symbol,
15614 or a non-PC-relative reloc against a local symbol.
15615 We may need to copy the reloc into the output. */
0a1b45a2 15616 may_become_dynamic_p = true;
34e77a92 15617 }
f6e32f6d 15618 else
0a1b45a2 15619 may_need_local_target_p = true;
252b5132
RH
15620 break;
15621
99059e56
RM
15622 /* This relocation describes the C++ object vtable hierarchy.
15623 Reconstruct it for later use during GC. */
15624 case R_ARM_GNU_VTINHERIT:
15625 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
0a1b45a2 15626 return false;
99059e56
RM
15627 break;
15628
15629 /* This relocation describes which C++ vtable entries are actually
15630 used. Record for later use during GC. */
15631 case R_ARM_GNU_VTENTRY:
a0ea3a14 15632 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
0a1b45a2 15633 return false;
99059e56
RM
15634 break;
15635 }
f6e32f6d
RS
15636
15637 if (h != NULL)
15638 {
15639 if (call_reloc_p)
15640 /* We may need a .plt entry if the function this reloc
15641 refers to is in a different object, regardless of the
15642 symbol's type. We can't tell for sure yet, because
15643 something later might force the symbol local. */
15644 h->needs_plt = 1;
15645 else if (may_need_local_target_p)
15646 /* If this reloc is in a read-only section, we might
15647 need a copy reloc. We can't check reliably at this
15648 stage whether the section is read-only, as input
15649 sections have not yet been mapped to output sections.
15650 Tentatively set the flag for now, and correct in
15651 adjust_dynamic_symbol. */
15652 h->non_got_ref = 1;
15653 }
15654
34e77a92
RS
15655 if (may_need_local_target_p
15656 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 15657 {
34e77a92
RS
15658 union gotplt_union *root_plt;
15659 struct arm_plt_info *arm_plt;
15660 struct arm_local_iplt_info *local_iplt;
15661
15662 if (h != NULL)
15663 {
15664 root_plt = &h->plt;
15665 arm_plt = &eh->plt;
15666 }
15667 else
15668 {
15669 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15670 if (local_iplt == NULL)
0a1b45a2 15671 return false;
34e77a92
RS
15672 root_plt = &local_iplt->root;
15673 arm_plt = &local_iplt->arm;
15674 }
15675
f6e32f6d
RS
15676 /* If the symbol is a function that doesn't bind locally,
15677 this relocation will need a PLT entry. */
a8c887dd
NC
15678 if (root_plt->refcount != -1)
15679 root_plt->refcount += 1;
34e77a92
RS
15680
15681 if (!call_reloc_p)
15682 arm_plt->noncall_refcount++;
f6e32f6d
RS
15683
15684 /* It's too early to use htab->use_blx here, so we have to
15685 record possible blx references separately from
15686 relocs that definitely need a thumb stub. */
15687
15688 if (r_type == R_ARM_THM_CALL)
34e77a92 15689 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
15690
15691 if (r_type == R_ARM_THM_JUMP24
15692 || r_type == R_ARM_THM_JUMP19)
34e77a92 15693 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
15694 }
15695
15696 if (may_become_dynamic_p)
15697 {
15698 struct elf_dyn_relocs *p, **head;
15699
15700 /* Create a reloc section in dynobj. */
15701 if (sreloc == NULL)
15702 {
15703 sreloc = _bfd_elf_make_dynamic_reloc_section
15704 (sec, dynobj, 2, abfd, ! htab->use_rel);
15705
15706 if (sreloc == NULL)
0a1b45a2 15707 return false;
f6e32f6d
RS
15708 }
15709
15710 /* If this is a global symbol, count the number of
15711 relocations we need for this symbol. */
15712 if (h != NULL)
190eb1dd 15713 head = &h->dyn_relocs;
f6e32f6d
RS
15714 else
15715 {
34e77a92
RS
15716 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15717 if (head == NULL)
0a1b45a2 15718 return false;
f6e32f6d
RS
15719 }
15720
15721 p = *head;
15722 if (p == NULL || p->sec != sec)
15723 {
986f0783 15724 size_t amt = sizeof *p;
f6e32f6d
RS
15725
15726 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15727 if (p == NULL)
0a1b45a2 15728 return false;
f6e32f6d
RS
15729 p->next = *head;
15730 *head = p;
15731 p->sec = sec;
15732 p->count = 0;
15733 p->pc_count = 0;
15734 }
15735
469a3493 15736 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
15737 p->pc_count += 1;
15738 p->count += 1;
cc850f74
NC
15739 if (h == NULL && htab->fdpic_p && !bfd_link_pic (info)
15740 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI)
15741 {
15742 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15743 that will become rofixup. */
15744 /* This is due to the fact that we suppose all will become rofixup. */
15745 _bfd_error_handler
15746 (_("FDPIC does not yet support %s relocation"
15747 " to become dynamic for executable"),
15748 elf32_arm_howto_table_1[r_type].name);
15749 abort ();
15750 }
f6e32f6d 15751 }
252b5132 15752 }
f21f3fe0 15753
0a1b45a2 15754 return true;
252b5132
RH
15755}
15756
9eaff861
AO
15757static void
15758elf32_arm_update_relocs (asection *o,
15759 struct bfd_elf_section_reloc_data *reldata)
15760{
15761 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15762 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15763 const struct elf_backend_data *bed;
15764 _arm_elf_section_data *eado;
15765 struct bfd_link_order *p;
15766 bfd_byte *erela_head, *erela;
15767 Elf_Internal_Rela *irela_head, *irela;
15768 Elf_Internal_Shdr *rel_hdr;
15769 bfd *abfd;
15770 unsigned int count;
15771
15772 eado = get_arm_elf_section_data (o);
15773
15774 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15775 return;
15776
15777 abfd = o->owner;
15778 bed = get_elf_backend_data (abfd);
15779 rel_hdr = reldata->hdr;
15780
15781 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15782 {
15783 swap_in = bed->s->swap_reloc_in;
15784 swap_out = bed->s->swap_reloc_out;
15785 }
15786 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15787 {
15788 swap_in = bed->s->swap_reloca_in;
15789 swap_out = bed->s->swap_reloca_out;
15790 }
15791 else
15792 abort ();
15793
15794 erela_head = rel_hdr->contents;
15795 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15796 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15797
15798 erela = erela_head;
15799 irela = irela_head;
15800 count = 0;
15801
15802 for (p = o->map_head.link_order; p; p = p->next)
15803 {
15804 if (p->type == bfd_section_reloc_link_order
15805 || p->type == bfd_symbol_reloc_link_order)
15806 {
15807 (*swap_in) (abfd, erela, irela);
15808 erela += rel_hdr->sh_entsize;
15809 irela++;
15810 count++;
15811 }
15812 else if (p->type == bfd_indirect_link_order)
15813 {
15814 struct bfd_elf_section_reloc_data *input_reldata;
15815 arm_unwind_table_edit *edit_list, *edit_tail;
15816 _arm_elf_section_data *eadi;
15817 bfd_size_type j;
15818 bfd_vma offset;
15819 asection *i;
15820
15821 i = p->u.indirect.section;
15822
15823 eadi = get_arm_elf_section_data (i);
15824 edit_list = eadi->u.exidx.unwind_edit_list;
15825 edit_tail = eadi->u.exidx.unwind_edit_tail;
539300fb 15826 offset = i->output_offset;
9eaff861
AO
15827
15828 if (eadi->elf.rel.hdr &&
15829 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15830 input_reldata = &eadi->elf.rel;
15831 else if (eadi->elf.rela.hdr &&
15832 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15833 input_reldata = &eadi->elf.rela;
15834 else
15835 abort ();
15836
15837 if (edit_list)
15838 {
15839 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15840 {
15841 arm_unwind_table_edit *edit_node, *edit_next;
15842 bfd_vma bias;
c48182bf 15843 bfd_vma reloc_index;
9eaff861
AO
15844
15845 (*swap_in) (abfd, erela, irela);
c48182bf 15846 reloc_index = (irela->r_offset - offset) / 8;
9eaff861
AO
15847
15848 bias = 0;
15849 edit_node = edit_list;
15850 for (edit_next = edit_list;
c48182bf 15851 edit_next && edit_next->index <= reloc_index;
9eaff861
AO
15852 edit_next = edit_node->next)
15853 {
15854 bias++;
15855 edit_node = edit_next;
15856 }
15857
15858 if (edit_node->type != DELETE_EXIDX_ENTRY
c48182bf 15859 || edit_node->index != reloc_index)
9eaff861
AO
15860 {
15861 irela->r_offset -= bias * 8;
15862 irela++;
15863 count++;
15864 }
15865
15866 erela += rel_hdr->sh_entsize;
15867 }
15868
15869 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15870 {
15871 /* New relocation entity. */
15872 asection *text_sec = edit_tail->linked_section;
15873 asection *text_out = text_sec->output_section;
15874 bfd_vma exidx_offset = offset + i->size - 8;
15875
15876 irela->r_addend = 0;
15877 irela->r_offset = exidx_offset;
15878 irela->r_info = ELF32_R_INFO
15879 (text_out->target_index, R_ARM_PREL31);
15880 irela++;
15881 count++;
15882 }
15883 }
15884 else
15885 {
15886 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15887 {
15888 (*swap_in) (abfd, erela, irela);
15889 erela += rel_hdr->sh_entsize;
15890 irela++;
15891 }
15892
15893 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15894 }
15895 }
15896 }
15897
15898 reldata->count = count;
15899 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15900
15901 erela = erela_head;
15902 irela = irela_head;
15903 while (count > 0)
15904 {
15905 (*swap_out) (abfd, irela, erela);
15906 erela += rel_hdr->sh_entsize;
15907 irela++;
15908 count--;
15909 }
15910
15911 free (irela_head);
15912
15913 /* Hashes are no longer valid. */
15914 free (reldata->hashes);
15915 reldata->hashes = NULL;
15916}
15917
6a5bb875 15918/* Unwinding tables are not referenced directly. This pass marks them as
4ba2ef8f
TP
15919 required if the corresponding code section is marked. Similarly, ARMv8-M
15920 secure entry functions can only be referenced by SG veneers which are
15921 created after the GC process. They need to be marked in case they reside in
15922 their own section (as would be the case if code was compiled with
15923 -ffunction-sections). */
6a5bb875 15924
0a1b45a2 15925static bool
906e58ca
NC
15926elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15927 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
15928{
15929 bfd *sub;
15930 Elf_Internal_Shdr **elf_shdrp;
4ba2ef8f
TP
15931 asection *cmse_sec;
15932 obj_attribute *out_attr;
15933 Elf_Internal_Shdr *symtab_hdr;
15934 unsigned i, sym_count, ext_start;
15935 const struct elf_backend_data *bed;
15936 struct elf_link_hash_entry **sym_hashes;
15937 struct elf32_arm_link_hash_entry *cmse_hash;
0a1b45a2
AM
15938 bool again, is_v8m, first_bfd_browse = true;
15939 bool debug_sec_need_to_be_marked = false;
bb32413f 15940 asection *isec;
6a5bb875 15941
7f6ab9f8
AM
15942 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15943
4ba2ef8f
TP
15944 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15945 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15946 && out_attr[Tag_CPU_arch_profile].i == 'M';
15947
6a5bb875
PB
15948 /* Marking EH data may cause additional code sections to be marked,
15949 requiring multiple passes. */
0a1b45a2 15950 again = true;
6a5bb875
PB
15951 while (again)
15952 {
0a1b45a2 15953 again = false;
c72f2fb2 15954 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
15955 {
15956 asection *o;
15957
0ffa91dd 15958 if (! is_arm_elf (sub))
6a5bb875
PB
15959 continue;
15960
15961 elf_shdrp = elf_elfsections (sub);
15962 for (o = sub->sections; o != NULL; o = o->next)
15963 {
15964 Elf_Internal_Shdr *hdr;
0ffa91dd 15965
6a5bb875 15966 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
15967 if (hdr->sh_type == SHT_ARM_EXIDX
15968 && hdr->sh_link
15969 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
15970 && !o->gc_mark
15971 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15972 {
0a1b45a2 15973 again = true;
6a5bb875 15974 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
0a1b45a2 15975 return false;
6a5bb875
PB
15976 }
15977 }
4ba2ef8f
TP
15978
15979 /* Mark section holding ARMv8-M secure entry functions. We mark all
15980 of them so no need for a second browsing. */
15981 if (is_v8m && first_bfd_browse)
15982 {
15983 sym_hashes = elf_sym_hashes (sub);
15984 bed = get_elf_backend_data (sub);
15985 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15986 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15987 ext_start = symtab_hdr->sh_info;
15988
15989 /* Scan symbols. */
15990 for (i = ext_start; i < sym_count; i++)
15991 {
15992 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
83f18e5e
NC
15993 if (cmse_hash == NULL)
15994 continue;
4ba2ef8f
TP
15995
15996 /* Assume it is a special symbol. If not, cmse_scan will
15997 warn about it and user can do something about it. */
08dedd66 15998 if (startswith (cmse_hash->root.root.root.string,
baf46cd7 15999 CMSE_PREFIX))
4ba2ef8f
TP
16000 {
16001 cmse_sec = cmse_hash->root.root.u.def.section;
5025eb7c
AO
16002 if (!cmse_sec->gc_mark
16003 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
0a1b45a2 16004 return false;
bb32413f
SP
16005 /* The debug sections related to these secure entry
16006 functions are marked on enabling below flag. */
0a1b45a2 16007 debug_sec_need_to_be_marked = true;
4ba2ef8f
TP
16008 }
16009 }
bb32413f
SP
16010
16011 if (debug_sec_need_to_be_marked)
16012 {
16013 /* Looping over all the sections of the object file containing
16014 Armv8-M secure entry functions and marking all the debug
16015 sections. */
16016 for (isec = sub->sections; isec != NULL; isec = isec->next)
16017 {
16018 /* If not a debug sections, skip it. */
16019 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
16020 isec->gc_mark = 1 ;
16021 }
0a1b45a2 16022 debug_sec_need_to_be_marked = false;
bb32413f 16023 }
4ba2ef8f 16024 }
6a5bb875 16025 }
0a1b45a2 16026 first_bfd_browse = false;
6a5bb875
PB
16027 }
16028
0a1b45a2 16029 return true;
6a5bb875
PB
16030}
16031
3c9458e9
NC
16032/* Treat mapping symbols as special target symbols. */
16033
0a1b45a2 16034static bool
3c9458e9
NC
16035elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16036{
b0796911
PB
16037 return bfd_is_arm_special_symbol_name (sym->name,
16038 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
16039}
16040
e7679060
AM
16041/* If the ELF symbol SYM might be a function in SEC, return the
16042 function size and set *CODE_OFF to the function's entry point,
16043 otherwise return zero. */
252b5132 16044
e7679060
AM
16045static bfd_size_type
16046elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec,
16047 bfd_vma *code_off)
16048{
16049 bfd_size_type size;
24aebc79 16050 elf_symbol_type * elf_sym = (elf_symbol_type *) sym;
252b5132 16051
e7679060
AM
16052 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
16053 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
16054 || sym->section != sec)
16055 return 0;
252b5132 16056
24aebc79
NC
16057 size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size;
16058
e7679060 16059 if (!(sym->flags & BSF_SYNTHETIC))
24aebc79 16060 switch (ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info))
e7679060 16061 {
24aebc79
NC
16062 case STT_NOTYPE:
16063 /* Ignore symbols created by the annobin plugin for gcc and clang.
16064 These symbols are hidden, local, notype and have a size of 0. */
16065 if (size == 0
16066 && sym->flags & BSF_LOCAL
16067 && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN)
16068 return 0;
16069 /* Fall through. */
252b5132
RH
16070 case STT_FUNC:
16071 case STT_ARM_TFUNC:
24aebc79 16072 /* FIXME: Allow STT_GNU_IFUNC as well ? */
252b5132 16073 break;
e7679060
AM
16074 default:
16075 return 0;
16076 }
cc850f74 16077
e7679060
AM
16078 if ((sym->flags & BSF_LOCAL)
16079 && bfd_is_arm_special_symbol_name (sym->name,
16080 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16081 return 0;
0367ecfb 16082
e7679060 16083 *code_off = sym->value;
24aebc79
NC
16084
16085 /* Do not return 0 for the function's size. */
16086 return size ? size : 1;
16087
252b5132
RH
16088}
16089
0a1b45a2 16090static bool
07d6d2b8 16091elf32_arm_find_inliner_info (bfd * abfd,
4ab527b0
FF
16092 const char ** filename_ptr,
16093 const char ** functionname_ptr,
16094 unsigned int * line_ptr)
16095{
0a1b45a2 16096 bool found;
4ab527b0
FF
16097 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16098 functionname_ptr, line_ptr,
16099 & elf_tdata (abfd)->dwarf2_find_line_info);
16100 return found;
16101}
16102
252b5132
RH
16103/* Adjust a symbol defined by a dynamic object and referenced by a
16104 regular object. The current definition is in some section of the
16105 dynamic object, but we're not including those sections. We have to
16106 change the definition to something the rest of the link can
16107 understand. */
16108
0a1b45a2 16109static bool
57e8b36a
NC
16110elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16111 struct elf_link_hash_entry * h)
252b5132
RH
16112{
16113 bfd * dynobj;
5474d94f 16114 asection *s, *srel;
b7693d02 16115 struct elf32_arm_link_hash_entry * eh;
67687978 16116 struct elf32_arm_link_hash_table *globals;
252b5132 16117
67687978 16118 globals = elf32_arm_hash_table (info);
4dfe6ac6 16119 if (globals == NULL)
0a1b45a2 16120 return false;
4dfe6ac6 16121
252b5132
RH
16122 dynobj = elf_hash_table (info)->dynobj;
16123
16124 /* Make sure we know what is going on here. */
16125 BFD_ASSERT (dynobj != NULL
f5385ebf 16126 && (h->needs_plt
34e77a92 16127 || h->type == STT_GNU_IFUNC
60d67dc8 16128 || h->is_weakalias
f5385ebf
AM
16129 || (h->def_dynamic
16130 && h->ref_regular
16131 && !h->def_regular)));
252b5132 16132
b7693d02
DJ
16133 eh = (struct elf32_arm_link_hash_entry *) h;
16134
252b5132
RH
16135 /* If this is a function, put it in the procedure linkage table. We
16136 will fill in the contents of the procedure linkage table later,
16137 when we know the address of the .got section. */
34e77a92 16138 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 16139 {
34e77a92
RS
16140 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16141 symbol binds locally. */
5e681ec4 16142 if (h->plt.refcount <= 0
34e77a92
RS
16143 || (h->type != STT_GNU_IFUNC
16144 && (SYMBOL_CALLS_LOCAL (info, h)
16145 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16146 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
16147 {
16148 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
16149 file, but the symbol was never referred to by a dynamic
16150 object, or if all references were garbage collected. In
16151 such a case, we don't actually need to build a procedure
16152 linkage table, and we can just do a PC24 reloc instead. */
16153 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16154 eh->plt.thumb_refcount = 0;
16155 eh->plt.maybe_thumb_refcount = 0;
16156 eh->plt.noncall_refcount = 0;
f5385ebf 16157 h->needs_plt = 0;
252b5132
RH
16158 }
16159
0a1b45a2 16160 return true;
252b5132 16161 }
5e681ec4 16162 else
b7693d02
DJ
16163 {
16164 /* It's possible that we incorrectly decided a .plt reloc was
16165 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16166 in check_relocs. We can't decide accurately between function
16167 and non-function syms in check-relocs; Objects loaded later in
16168 the link may change h->type. So fix it now. */
16169 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
16170 eh->plt.thumb_refcount = 0;
16171 eh->plt.maybe_thumb_refcount = 0;
16172 eh->plt.noncall_refcount = 0;
b7693d02 16173 }
252b5132
RH
16174
16175 /* If this is a weak symbol, and there is a real definition, the
16176 processor independent code will have arranged for us to see the
16177 real definition first, and we can just use the same value. */
60d67dc8 16178 if (h->is_weakalias)
252b5132 16179 {
60d67dc8
AM
16180 struct elf_link_hash_entry *def = weakdef (h);
16181 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16182 h->root.u.def.section = def->root.u.def.section;
16183 h->root.u.def.value = def->root.u.def.value;
0a1b45a2 16184 return true;
252b5132
RH
16185 }
16186
ba93b8ac
DJ
16187 /* If there are no non-GOT references, we do not need a copy
16188 relocation. */
16189 if (!h->non_got_ref)
0a1b45a2 16190 return true;
ba93b8ac 16191
252b5132
RH
16192 /* This is a reference to a symbol defined by a dynamic object which
16193 is not a function. */
16194
16195 /* If we are creating a shared library, we must presume that the
16196 only references to the symbol are via the global offset table.
16197 For such cases we need not do anything here; the relocations will
67687978
PB
16198 be handled correctly by relocate_section. Relocatable executables
16199 can reference data in shared objects directly, so we don't need to
16200 do anything here. */
0e1862bb 16201 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
0a1b45a2 16202 return true;
252b5132
RH
16203
16204 /* We must allocate the symbol in our .dynbss section, which will
16205 become part of the .bss section of the executable. There will be
16206 an entry for this symbol in the .dynsym section. The dynamic
16207 object will contain position independent code, so all references
16208 from the dynamic object to this symbol will go through the global
16209 offset table. The dynamic linker will use the .dynsym entry to
16210 determine the address it must put in the global offset table, so
16211 both the dynamic object and the regular object will refer to the
16212 same memory location for the variable. */
5522f910
NC
16213 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16214 linker to copy the initial value out of the dynamic object and into
16215 the runtime process image. We need to remember the offset into the
00a97672 16216 .rel(a).bss section we are going to use. */
5474d94f
AM
16217 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16218 {
16219 s = globals->root.sdynrelro;
16220 srel = globals->root.sreldynrelro;
16221 }
16222 else
16223 {
16224 s = globals->root.sdynbss;
16225 srel = globals->root.srelbss;
16226 }
5522f910
NC
16227 if (info->nocopyreloc == 0
16228 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
5522f910 16229 && h->size != 0)
252b5132 16230 {
47beaa6a 16231 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 16232 h->needs_copy = 1;
252b5132
RH
16233 }
16234
6cabe1ea 16235 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
16236}
16237
5e681ec4
PB
16238/* Allocate space in .plt, .got and associated reloc sections for
16239 dynamic relocs. */
16240
0a1b45a2 16241static bool
47beaa6a 16242allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
16243{
16244 struct bfd_link_info *info;
16245 struct elf32_arm_link_hash_table *htab;
16246 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 16247 struct elf_dyn_relocs *p;
5e681ec4
PB
16248
16249 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 16250 return true;
5e681ec4 16251
e6a6bb22
AM
16252 eh = (struct elf32_arm_link_hash_entry *) h;
16253
5e681ec4
PB
16254 info = (struct bfd_link_info *) inf;
16255 htab = elf32_arm_hash_table (info);
4dfe6ac6 16256 if (htab == NULL)
0a1b45a2 16257 return false;
5e681ec4 16258
34e77a92 16259 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
16260 && h->plt.refcount > 0)
16261 {
16262 /* Make sure this symbol is output as a dynamic symbol.
16263 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16264 if (h->dynindx == -1 && !h->forced_local
16265 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16266 {
c152c796 16267 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16268 return false;
5e681ec4
PB
16269 }
16270
34e77a92
RS
16271 /* If the call in the PLT entry binds locally, the associated
16272 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16273 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16274 than the .plt section. */
16275 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16276 {
16277 eh->is_iplt = 1;
16278 if (eh->plt.noncall_refcount == 0
16279 && SYMBOL_REFERENCES_LOCAL (info, h))
16280 /* All non-call references can be resolved directly.
16281 This means that they can (and in some cases, must)
16282 resolve directly to the run-time target, rather than
16283 to the PLT. That in turns means that any .got entry
16284 would be equal to the .igot.plt entry, so there's
16285 no point having both. */
16286 h->got.refcount = 0;
16287 }
16288
0e1862bb 16289 if (bfd_link_pic (info)
34e77a92 16290 || eh->is_iplt
7359ea65 16291 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 16292 {
34e77a92 16293 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 16294
5e681ec4
PB
16295 /* If this symbol is not defined in a regular file, and we are
16296 not generating a shared library, then set the symbol to this
16297 location in the .plt. This is required to make function
16298 pointers compare as equal between the normal executable and
16299 the shared library. */
0e1862bb 16300 if (! bfd_link_pic (info)
f5385ebf 16301 && !h->def_regular)
5e681ec4 16302 {
34e77a92 16303 h->root.u.def.section = htab->root.splt;
5e681ec4 16304 h->root.u.def.value = h->plt.offset;
5e681ec4 16305
67d74e43
DJ
16306 /* Make sure the function is not marked as Thumb, in case
16307 it is the target of an ABS32 relocation, which will
16308 point to the PLT entry. */
39d911fc 16309 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
67d74e43 16310 }
022f8312 16311
00a97672
RS
16312 /* VxWorks executables have a second set of relocations for
16313 each PLT entry. They go in a separate relocation section,
16314 which is processed by the kernel loader. */
90c14f0c 16315 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
00a97672
RS
16316 {
16317 /* There is a relocation for the initial PLT entry:
16318 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16319 if (h->plt.offset == htab->plt_header_size)
47beaa6a 16320 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
16321
16322 /* There are two extra relocations for each subsequent
16323 PLT entry: an R_ARM_32 relocation for the GOT entry,
16324 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 16325 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 16326 }
5e681ec4
PB
16327 }
16328 else
16329 {
16330 h->plt.offset = (bfd_vma) -1;
f5385ebf 16331 h->needs_plt = 0;
5e681ec4
PB
16332 }
16333 }
16334 else
16335 {
16336 h->plt.offset = (bfd_vma) -1;
f5385ebf 16337 h->needs_plt = 0;
5e681ec4
PB
16338 }
16339
0855e32b
NS
16340 eh = (struct elf32_arm_link_hash_entry *) h;
16341 eh->tlsdesc_got = (bfd_vma) -1;
16342
5e681ec4
PB
16343 if (h->got.refcount > 0)
16344 {
16345 asection *s;
0a1b45a2 16346 bool dyn;
ba93b8ac
DJ
16347 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16348 int indx;
5e681ec4
PB
16349
16350 /* Make sure this symbol is output as a dynamic symbol.
16351 Undefined weak syms won't yet be marked as dynamic. */
a57d1773
AM
16352 if (htab->root.dynamic_sections_created
16353 && h->dynindx == -1
16354 && !h->forced_local
6c699715 16355 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16356 {
c152c796 16357 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16358 return false;
5e681ec4
PB
16359 }
16360
a57d1773
AM
16361 s = htab->root.sgot;
16362 h->got.offset = s->size;
ba93b8ac 16363
a57d1773
AM
16364 if (tls_type == GOT_UNKNOWN)
16365 abort ();
ba93b8ac 16366
a57d1773
AM
16367 if (tls_type == GOT_NORMAL)
16368 /* Non-TLS symbols need one GOT slot. */
16369 s->size += 4;
16370 else
16371 {
16372 if (tls_type & GOT_TLS_GDESC)
ba93b8ac 16373 {
a57d1773
AM
16374 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16375 eh->tlsdesc_got
16376 = (htab->root.sgotplt->size
16377 - elf32_arm_compute_jump_table_size (htab));
16378 htab->root.sgotplt->size += 8;
16379 h->got.offset = (bfd_vma) -2;
16380 /* plt.got_offset needs to know there's a TLS_DESC
16381 reloc in the middle of .got.plt. */
16382 htab->num_tls_desc++;
16383 }
0855e32b 16384
a57d1773
AM
16385 if (tls_type & GOT_TLS_GD)
16386 {
16387 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16388 consecutive GOT slots. If the symbol is both GD
16389 and GDESC, got.offset may have been
16390 overwritten. */
16391 h->got.offset = s->size;
16392 s->size += 8;
ba93b8ac
DJ
16393 }
16394
a57d1773
AM
16395 if (tls_type & GOT_TLS_IE)
16396 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16397 slot. */
16398 s->size += 4;
16399 }
ba93b8ac 16400
a57d1773 16401 dyn = htab->root.dynamic_sections_created;
ba93b8ac 16402
a57d1773
AM
16403 indx = 0;
16404 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
16405 && (!bfd_link_pic (info)
16406 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16407 indx = h->dynindx;
ba93b8ac 16408
a57d1773
AM
16409 if (tls_type != GOT_NORMAL
16410 && (bfd_link_dll (info) || indx != 0)
16411 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16412 || h->root.type != bfd_link_hash_undefweak))
16413 {
16414 if (tls_type & GOT_TLS_IE)
16415 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 16416
a57d1773
AM
16417 if (tls_type & GOT_TLS_GD)
16418 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
0855e32b 16419
a57d1773 16420 if (tls_type & GOT_TLS_GDESC)
b436d854 16421 {
a57d1773
AM
16422 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16423 /* GDESC needs a trampoline to jump to. */
16424 htab->tls_trampoline = -1;
b436d854 16425 }
a57d1773
AM
16426
16427 /* Only GD needs it. GDESC just emits one relocation per
16428 2 entries. */
16429 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 16430 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 16431 }
a57d1773
AM
16432 else if (((indx != -1) || htab->fdpic_p)
16433 && !SYMBOL_REFERENCES_LOCAL (info, h))
16434 {
16435 if (htab->root.dynamic_sections_created)
16436 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16437 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16438 }
16439 else if (h->type == STT_GNU_IFUNC
16440 && eh->plt.noncall_refcount == 0)
16441 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16442 they all resolve dynamically instead. Reserve room for the
16443 GOT entry's R_ARM_IRELATIVE relocation. */
16444 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16445 else if (bfd_link_pic (info)
16446 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16447 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16448 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16449 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16450 /* Reserve room for rofixup for FDPIC executable. */
16451 /* TLS relocs do not need space since they are completely
16452 resolved. */
16453 htab->srofixup->size += 4;
5e681ec4
PB
16454 }
16455 else
16456 h->got.offset = (bfd_vma) -1;
16457
e8b09b87
CL
16458 /* FDPIC support. */
16459 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16460 {
16461 /* Symbol musn't be exported. */
16462 if (h->dynindx != -1)
cc850f74 16463 abort ();
e8b09b87 16464
a57d1773
AM
16465 /* We only allocate one function descriptor with its associated
16466 relocation. */
e8b09b87
CL
16467 if (eh->fdpic_cnts.funcdesc_offset == -1)
16468 {
16469 asection *s = htab->root.sgot;
16470
16471 eh->fdpic_cnts.funcdesc_offset = s->size;
16472 s->size += 8;
16473 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16474 if (bfd_link_pic (info))
e8b09b87
CL
16475 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16476 else
16477 htab->srofixup->size += 8;
16478 }
16479 }
16480
16481 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16482 {
16483 asection *s = htab->root.sgot;
16484
16485 if (htab->root.dynamic_sections_created && h->dynindx == -1
16486 && !h->forced_local)
16487 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16488 return false;
e8b09b87
CL
16489
16490 if (h->dynindx == -1)
16491 {
a57d1773
AM
16492 /* We only allocate one function descriptor with its
16493 associated relocation. */
e8b09b87
CL
16494 if (eh->fdpic_cnts.funcdesc_offset == -1)
16495 {
16496
16497 eh->fdpic_cnts.funcdesc_offset = s->size;
16498 s->size += 8;
a57d1773
AM
16499 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16500 rofixups. */
cc850f74 16501 if (bfd_link_pic (info))
e8b09b87
CL
16502 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16503 else
16504 htab->srofixup->size += 8;
16505 }
16506 }
16507
16508 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16509 R_ARM_RELATIVE/rofixup relocation on it. */
16510 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16511 s->size += 4;
cc850f74 16512 if (h->dynindx == -1 && !bfd_link_pic (info))
4b24dd1a 16513 htab->srofixup->size += 4;
e8b09b87 16514 else
4b24dd1a 16515 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e8b09b87
CL
16516 }
16517
16518 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16519 {
16520 if (htab->root.dynamic_sections_created && h->dynindx == -1
16521 && !h->forced_local)
16522 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16523 return false;
e8b09b87
CL
16524
16525 if (h->dynindx == -1)
16526 {
a57d1773
AM
16527 /* We only allocate one function descriptor with its
16528 associated relocation. */
e8b09b87
CL
16529 if (eh->fdpic_cnts.funcdesc_offset == -1)
16530 {
16531 asection *s = htab->root.sgot;
16532
16533 eh->fdpic_cnts.funcdesc_offset = s->size;
16534 s->size += 8;
a57d1773
AM
16535 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two
16536 rofixups. */
cc850f74 16537 if (bfd_link_pic (info))
e8b09b87
CL
16538 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16539 else
16540 htab->srofixup->size += 8;
16541 }
16542 }
cc850f74 16543 if (h->dynindx == -1 && !bfd_link_pic (info))
e8b09b87
CL
16544 {
16545 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16546 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16547 }
16548 else
16549 {
16550 /* Will need one dynamic reloc per reference. will be either
16551 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16552 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16553 eh->fdpic_cnts.funcdesc_cnt);
16554 }
16555 }
16556
a4fd1a8e
PB
16557 /* Allocate stubs for exported Thumb functions on v4t. */
16558 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 16559 && h->def_regular
39d911fc 16560 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
16561 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16562 {
16563 struct elf_link_hash_entry * th;
16564 struct bfd_link_hash_entry * bh;
16565 struct elf_link_hash_entry * myh;
16566 char name[1024];
16567 asection *s;
16568 bh = NULL;
16569 /* Create a new symbol to regist the real location of the function. */
16570 s = h->root.u.def.section;
906e58ca 16571 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
16572 _bfd_generic_link_add_one_symbol (info, s->owner,
16573 name, BSF_GLOBAL, s,
16574 h->root.u.def.value,
0a1b45a2 16575 NULL, true, false, &bh);
a4fd1a8e
PB
16576
16577 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 16578 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 16579 myh->forced_local = 1;
39d911fc 16580 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
a4fd1a8e
PB
16581 eh->export_glue = myh;
16582 th = record_arm_to_thumb_glue (info, h);
16583 /* Point the symbol at the stub. */
16584 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
39d911fc 16585 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
a4fd1a8e
PB
16586 h->root.u.def.section = th->root.u.def.section;
16587 h->root.u.def.value = th->root.u.def.value & ~1;
16588 }
16589
190eb1dd 16590 if (h->dyn_relocs == NULL)
0a1b45a2 16591 return true;
5e681ec4
PB
16592
16593 /* In the shared -Bsymbolic case, discard space allocated for
16594 dynamic pc-relative relocs against symbols which turn out to be
16595 defined in regular objects. For the normal shared case, discard
16596 space for pc-relative relocs that have become local due to symbol
16597 visibility changes. */
16598
a57d1773
AM
16599 if (bfd_link_pic (info)
16600 || htab->root.is_relocatable_executable
16601 || htab->fdpic_p)
5e681ec4 16602 {
469a3493
RM
16603 /* Relocs that use pc_count are PC-relative forms, which will appear
16604 on something like ".long foo - ." or "movw REG, foo - .". We want
16605 calls to protected symbols to resolve directly to the function
16606 rather than going via the plt. If people want function pointer
16607 comparisons to work as expected then they should avoid writing
16608 assembly like ".long foo - .". */
ba93b8ac
DJ
16609 if (SYMBOL_CALLS_LOCAL (info, h))
16610 {
0bdcacaf 16611 struct elf_dyn_relocs **pp;
ba93b8ac 16612
190eb1dd 16613 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
16614 {
16615 p->count -= p->pc_count;
16616 p->pc_count = 0;
16617 if (p->count == 0)
16618 *pp = p->next;
16619 else
16620 pp = &p->next;
16621 }
16622 }
16623
90c14f0c 16624 if (htab->root.target_os == is_vxworks)
3348747a 16625 {
0bdcacaf 16626 struct elf_dyn_relocs **pp;
3348747a 16627
190eb1dd 16628 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
3348747a 16629 {
0bdcacaf 16630 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
16631 *pp = p->next;
16632 else
16633 pp = &p->next;
16634 }
16635 }
16636
ba93b8ac 16637 /* Also discard relocs on undefined weak syms with non-default
99059e56 16638 visibility. */
190eb1dd 16639 if (h->dyn_relocs != NULL
5e681ec4 16640 && h->root.type == bfd_link_hash_undefweak)
22d606e9 16641 {
95b03e4a
L
16642 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16643 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
190eb1dd 16644 h->dyn_relocs = NULL;
22d606e9
AM
16645
16646 /* Make sure undefined weak symbols are output as a dynamic
16647 symbol in PIEs. */
e8b09b87 16648 else if (htab->root.dynamic_sections_created && h->dynindx == -1
22d606e9
AM
16649 && !h->forced_local)
16650 {
16651 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16652 return false;
22d606e9
AM
16653 }
16654 }
16655
67687978
PB
16656 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16657 && h->root.type == bfd_link_hash_new)
16658 {
16659 /* Output absolute symbols so that we can create relocations
16660 against them. For normal symbols we output a relocation
16661 against the section that contains them. */
16662 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16663 return false;
67687978
PB
16664 }
16665
5e681ec4
PB
16666 }
16667 else
16668 {
16669 /* For the non-shared case, discard space for relocs against
16670 symbols which turn out to need copy relocs or are not
16671 dynamic. */
16672
f5385ebf
AM
16673 if (!h->non_got_ref
16674 && ((h->def_dynamic
16675 && !h->def_regular)
5e681ec4
PB
16676 || (htab->root.dynamic_sections_created
16677 && (h->root.type == bfd_link_hash_undefweak
16678 || h->root.type == bfd_link_hash_undefined))))
16679 {
16680 /* Make sure this symbol is output as a dynamic symbol.
16681 Undefined weak syms won't yet be marked as dynamic. */
6c699715
RL
16682 if (h->dynindx == -1 && !h->forced_local
16683 && h->root.type == bfd_link_hash_undefweak)
5e681ec4 16684 {
c152c796 16685 if (! bfd_elf_link_record_dynamic_symbol (info, h))
0a1b45a2 16686 return false;
5e681ec4
PB
16687 }
16688
16689 /* If that succeeded, we know we'll be keeping all the
16690 relocs. */
16691 if (h->dynindx != -1)
16692 goto keep;
16693 }
16694
190eb1dd 16695 h->dyn_relocs = NULL;
5e681ec4
PB
16696
16697 keep: ;
16698 }
16699
16700 /* Finally, allocate space. */
190eb1dd 16701 for (p = h->dyn_relocs; p != NULL; p = p->next)
5e681ec4 16702 {
0bdcacaf 16703 asection *sreloc = elf_section_data (p->sec)->sreloc;
e8b09b87 16704
34e77a92
RS
16705 if (h->type == STT_GNU_IFUNC
16706 && eh->plt.noncall_refcount == 0
16707 && SYMBOL_REFERENCES_LOCAL (info, h))
16708 elf32_arm_allocate_irelocs (info, sreloc, p->count);
a57d1773 16709 else if (h->dynindx != -1
cc850f74 16710 && (!bfd_link_pic (info) || !info->symbolic || !h->def_regular))
e8b09b87 16711 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
cc850f74 16712 else if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87 16713 htab->srofixup->size += 4 * p->count;
34e77a92
RS
16714 else
16715 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
16716 }
16717
0a1b45a2 16718 return true;
5e681ec4
PB
16719}
16720
d504ffc8
DJ
16721void
16722bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16723 int byteswap_code)
16724{
16725 struct elf32_arm_link_hash_table *globals;
16726
16727 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
16728 if (globals == NULL)
16729 return;
16730
d504ffc8
DJ
16731 globals->byteswap_code = byteswap_code;
16732}
16733
252b5132
RH
16734/* Set the sizes of the dynamic sections. */
16735
0a1b45a2 16736static bool
57e8b36a
NC
16737elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16738 struct bfd_link_info * info)
252b5132
RH
16739{
16740 bfd * dynobj;
16741 asection * s;
0a1b45a2 16742 bool relocs;
5e681ec4
PB
16743 bfd *ibfd;
16744 struct elf32_arm_link_hash_table *htab;
252b5132 16745
5e681ec4 16746 htab = elf32_arm_hash_table (info);
4dfe6ac6 16747 if (htab == NULL)
0a1b45a2 16748 return false;
4dfe6ac6 16749
252b5132
RH
16750 dynobj = elf_hash_table (info)->dynobj;
16751 BFD_ASSERT (dynobj != NULL);
39b41c9c 16752 check_use_blx (htab);
252b5132
RH
16753
16754 if (elf_hash_table (info)->dynamic_sections_created)
16755 {
16756 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 16757 if (bfd_link_executable (info) && !info->nointerp)
252b5132 16758 {
3d4d4302 16759 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 16760 BFD_ASSERT (s != NULL);
eea6121a 16761 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
16762 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16763 }
16764 }
5e681ec4
PB
16765
16766 /* Set up .got offsets for local syms, and space for local dynamic
16767 relocs. */
c72f2fb2 16768 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 16769 {
5e681ec4
PB
16770 bfd_signed_vma *local_got;
16771 bfd_signed_vma *end_local_got;
34e77a92 16772 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 16773 char *local_tls_type;
0855e32b 16774 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
16775 bfd_size_type locsymcount;
16776 Elf_Internal_Shdr *symtab_hdr;
16777 asection *srel;
34e77a92 16778 unsigned int symndx;
e8b09b87 16779 struct fdpic_local *local_fdpic_cnts;
5e681ec4 16780
0ffa91dd 16781 if (! is_arm_elf (ibfd))
5e681ec4
PB
16782 continue;
16783
16784 for (s = ibfd->sections; s != NULL; s = s->next)
16785 {
0bdcacaf 16786 struct elf_dyn_relocs *p;
5e681ec4 16787
0bdcacaf 16788 for (p = (struct elf_dyn_relocs *)
99059e56 16789 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 16790 {
0bdcacaf
RS
16791 if (!bfd_is_abs_section (p->sec)
16792 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
16793 {
16794 /* Input section has been discarded, either because
16795 it is a copy of a linkonce section or due to
16796 linker script /DISCARD/, so we'll be discarding
16797 the relocs too. */
16798 }
90c14f0c 16799 else if (htab->root.target_os == is_vxworks
0bdcacaf 16800 && strcmp (p->sec->output_section->name,
3348747a
NS
16801 ".tls_vars") == 0)
16802 {
16803 /* Relocations in vxworks .tls_vars sections are
16804 handled specially by the loader. */
16805 }
5e681ec4
PB
16806 else if (p->count != 0)
16807 {
0bdcacaf 16808 srel = elf_section_data (p->sec)->sreloc;
cc850f74 16809 if (htab->fdpic_p && !bfd_link_pic (info))
e8b09b87
CL
16810 htab->srofixup->size += 4 * p->count;
16811 else
16812 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 16813 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
16814 info->flags |= DF_TEXTREL;
16815 }
16816 }
16817 }
16818
16819 local_got = elf_local_got_refcounts (ibfd);
cc850f74 16820 if (local_got == NULL)
5e681ec4
PB
16821 continue;
16822
0ffa91dd 16823 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
16824 locsymcount = symtab_hdr->sh_info;
16825 end_local_got = local_got + locsymcount;
34e77a92 16826 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 16827 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 16828 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
e8b09b87 16829 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
34e77a92 16830 symndx = 0;
362d30a1
RS
16831 s = htab->root.sgot;
16832 srel = htab->root.srelgot;
0855e32b 16833 for (; local_got < end_local_got;
34e77a92 16834 ++local_got, ++local_iplt_ptr, ++local_tls_type,
e8b09b87 16835 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
5e681ec4 16836 {
74fd118f
NC
16837 if (symndx >= elf32_arm_num_entries (ibfd))
16838 return false;
16839
0855e32b 16840 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92 16841 local_iplt = *local_iplt_ptr;
e8b09b87
CL
16842
16843 /* FDPIC support. */
16844 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16845 {
16846 if (local_fdpic_cnts->funcdesc_offset == -1)
16847 {
16848 local_fdpic_cnts->funcdesc_offset = s->size;
16849 s->size += 8;
16850
16851 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16852 if (bfd_link_pic (info))
e8b09b87
CL
16853 elf32_arm_allocate_dynrelocs (info, srel, 1);
16854 else
16855 htab->srofixup->size += 8;
16856 }
16857 }
16858
16859 if (local_fdpic_cnts->funcdesc_cnt > 0)
16860 {
16861 if (local_fdpic_cnts->funcdesc_offset == -1)
16862 {
16863 local_fdpic_cnts->funcdesc_offset = s->size;
16864 s->size += 8;
16865
16866 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
cc850f74 16867 if (bfd_link_pic (info))
e8b09b87
CL
16868 elf32_arm_allocate_dynrelocs (info, srel, 1);
16869 else
16870 htab->srofixup->size += 8;
16871 }
16872
16873 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
cc850f74 16874 if (bfd_link_pic (info))
e8b09b87
CL
16875 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16876 else
16877 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16878 }
16879
34e77a92
RS
16880 if (local_iplt != NULL)
16881 {
16882 struct elf_dyn_relocs *p;
16883
16884 if (local_iplt->root.refcount > 0)
16885 {
0a1b45a2 16886 elf32_arm_allocate_plt_entry (info, true,
34e77a92
RS
16887 &local_iplt->root,
16888 &local_iplt->arm);
16889 if (local_iplt->arm.noncall_refcount == 0)
16890 /* All references to the PLT are calls, so all
16891 non-call references can resolve directly to the
16892 run-time target. This means that the .got entry
16893 would be the same as the .igot.plt entry, so there's
16894 no point creating both. */
16895 *local_got = 0;
16896 }
16897 else
16898 {
16899 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16900 local_iplt->root.offset = (bfd_vma) -1;
16901 }
16902
16903 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16904 {
16905 asection *psrel;
16906
16907 psrel = elf_section_data (p->sec)->sreloc;
16908 if (local_iplt->arm.noncall_refcount == 0)
16909 elf32_arm_allocate_irelocs (info, psrel, p->count);
16910 else
16911 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16912 }
16913 }
5e681ec4
PB
16914 if (*local_got > 0)
16915 {
34e77a92
RS
16916 Elf_Internal_Sym *isym;
16917
eea6121a 16918 *local_got = s->size;
ba93b8ac
DJ
16919 if (*local_tls_type & GOT_TLS_GD)
16920 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16921 s->size += 8;
0855e32b
NS
16922 if (*local_tls_type & GOT_TLS_GDESC)
16923 {
16924 *local_tlsdesc_gotent = htab->root.sgotplt->size
16925 - elf32_arm_compute_jump_table_size (htab);
16926 htab->root.sgotplt->size += 8;
16927 *local_got = (bfd_vma) -2;
34e77a92 16928 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 16929 reloc in the middle of .got.plt. */
99059e56 16930 htab->num_tls_desc++;
0855e32b 16931 }
ba93b8ac
DJ
16932 if (*local_tls_type & GOT_TLS_IE)
16933 s->size += 4;
ba93b8ac 16934
0855e32b
NS
16935 if (*local_tls_type & GOT_NORMAL)
16936 {
16937 /* If the symbol is both GD and GDESC, *local_got
16938 may have been overwritten. */
16939 *local_got = s->size;
16940 s->size += 4;
16941 }
16942
f1dfbfdb
L
16943 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ibfd,
16944 symndx);
34e77a92 16945 if (isym == NULL)
0a1b45a2 16946 return false;
34e77a92
RS
16947
16948 /* If all references to an STT_GNU_IFUNC PLT are calls,
16949 then all non-call references, including this GOT entry,
16950 resolve directly to the run-time target. */
16951 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16952 && (local_iplt == NULL
16953 || local_iplt->arm.noncall_refcount == 0))
16954 elf32_arm_allocate_irelocs (info, srel, 1);
e8b09b87 16955 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
0855e32b 16956 {
e8b09b87 16957 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
3064e1ff 16958 elf32_arm_allocate_dynrelocs (info, srel, 1);
e8b09b87
CL
16959 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16960 htab->srofixup->size += 4;
99059e56 16961
e8b09b87
CL
16962 if ((bfd_link_pic (info) || htab->fdpic_p)
16963 && *local_tls_type & GOT_TLS_GDESC)
3064e1ff
JB
16964 {
16965 elf32_arm_allocate_dynrelocs (info,
16966 htab->root.srelplt, 1);
16967 htab->tls_trampoline = -1;
16968 }
0855e32b 16969 }
5e681ec4
PB
16970 }
16971 else
16972 *local_got = (bfd_vma) -1;
16973 }
252b5132
RH
16974 }
16975
ba93b8ac
DJ
16976 if (htab->tls_ldm_got.refcount > 0)
16977 {
16978 /* Allocate two GOT entries and one dynamic relocation (if necessary)
5c5a4843 16979 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
362d30a1
RS
16980 htab->tls_ldm_got.offset = htab->root.sgot->size;
16981 htab->root.sgot->size += 8;
0e1862bb 16982 if (bfd_link_pic (info))
47beaa6a 16983 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
16984 }
16985 else
16986 htab->tls_ldm_got.offset = -1;
16987
e8b09b87
CL
16988 /* At the very end of the .rofixup section is a pointer to the GOT,
16989 reserve space for it. */
16990 if (htab->fdpic_p && htab->srofixup != NULL)
16991 htab->srofixup->size += 4;
16992
5e681ec4
PB
16993 /* Allocate global sym .plt and .got entries, and space for global
16994 sym dynamic relocs. */
47beaa6a 16995 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 16996
d504ffc8 16997 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 16998 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 16999 {
0ffa91dd 17000 if (! is_arm_elf (ibfd))
e44a2c9c
AM
17001 continue;
17002
c7b8f16e
JB
17003 /* Initialise mapping tables for code/data. */
17004 bfd_elf32_arm_init_maps (ibfd);
906e58ca 17005
c7b8f16e 17006 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
a504d23a
LA
17007 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17008 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
90b6238f 17009 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
c7b8f16e 17010 }
d504ffc8 17011
3e6b1042
DJ
17012 /* Allocate space for the glue sections now that we've sized them. */
17013 bfd_elf32_arm_allocate_interworking_sections (info);
17014
0855e32b
NS
17015 /* For every jump slot reserved in the sgotplt, reloc_count is
17016 incremented. However, when we reserve space for TLS descriptors,
17017 it's not incremented, so in order to compute the space reserved
17018 for them, it suffices to multiply the reloc count by the jump
17019 slot size. */
17020 if (htab->root.srelplt)
cc850f74 17021 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size (htab);
0855e32b
NS
17022
17023 if (htab->tls_trampoline)
17024 {
17025 if (htab->root.splt->size == 0)
17026 htab->root.splt->size += htab->plt_header_size;
b38cadfb 17027
0855e32b
NS
17028 htab->tls_trampoline = htab->root.splt->size;
17029 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 17030
0855e32b 17031 /* If we're not using lazy TLS relocations, don't generate the
99059e56 17032 PLT and GOT entries they require. */
9bcc30e4
L
17033 if ((info->flags & DF_BIND_NOW))
17034 htab->root.tlsdesc_plt = 0;
17035 else
0855e32b 17036 {
9bcc30e4 17037 htab->root.tlsdesc_got = htab->root.sgot->size;
0855e32b
NS
17038 htab->root.sgot->size += 4;
17039
9bcc30e4 17040 htab->root.tlsdesc_plt = htab->root.splt->size;
0855e32b
NS
17041 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17042 }
17043 }
17044
252b5132
RH
17045 /* The check_relocs and adjust_dynamic_symbol entry points have
17046 determined the sizes of the various dynamic sections. Allocate
17047 memory for them. */
0a1b45a2 17048 relocs = false;
252b5132
RH
17049 for (s = dynobj->sections; s != NULL; s = s->next)
17050 {
17051 const char * name;
252b5132
RH
17052
17053 if ((s->flags & SEC_LINKER_CREATED) == 0)
17054 continue;
17055
17056 /* It's OK to base decisions on the section name, because none
17057 of the dynobj section names depend upon the input files. */
fd361982 17058 name = bfd_section_name (s);
252b5132 17059
34e77a92 17060 if (s == htab->root.splt)
252b5132 17061 {
c456f082 17062 /* Remember whether there is a PLT. */
3084d7a2 17063 ;
252b5132 17064 }
08dedd66 17065 else if (startswith (name, ".rel"))
252b5132 17066 {
c456f082 17067 if (s->size != 0)
252b5132 17068 {
252b5132 17069 /* Remember whether there are any reloc sections other
00a97672 17070 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 17071 if (s != htab->root.srelplt && s != htab->srelplt2)
0a1b45a2 17072 relocs = true;
252b5132
RH
17073
17074 /* We use the reloc_count field as a counter if we need
17075 to copy relocs into the output file. */
17076 s->reloc_count = 0;
17077 }
17078 }
34e77a92
RS
17079 else if (s != htab->root.sgot
17080 && s != htab->root.sgotplt
17081 && s != htab->root.iplt
17082 && s != htab->root.igotplt
5474d94f 17083 && s != htab->root.sdynbss
e8b09b87
CL
17084 && s != htab->root.sdynrelro
17085 && s != htab->srofixup)
252b5132
RH
17086 {
17087 /* It's not one of our sections, so don't allocate space. */
17088 continue;
17089 }
17090
c456f082 17091 if (s->size == 0)
252b5132 17092 {
c456f082 17093 /* If we don't need this section, strip it from the
00a97672
RS
17094 output file. This is mostly to handle .rel(a).bss and
17095 .rel(a).plt. We must create both sections in
c456f082
AM
17096 create_dynamic_sections, because they must be created
17097 before the linker maps input sections to output
17098 sections. The linker does that before
17099 adjust_dynamic_symbol is called, and it is that
17100 function which decides whether anything needs to go
17101 into these sections. */
8423293d 17102 s->flags |= SEC_EXCLUDE;
252b5132
RH
17103 continue;
17104 }
17105
c456f082
AM
17106 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17107 continue;
17108
252b5132 17109 /* Allocate memory for the section contents. */
21d799b5 17110 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 17111 if (s->contents == NULL)
0a1b45a2 17112 return false;
252b5132
RH
17113 }
17114
3084d7a2
L
17115 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
17116 relocs);
252b5132
RH
17117}
17118
0855e32b
NS
17119/* Size sections even though they're not dynamic. We use it to setup
17120 _TLS_MODULE_BASE_, if needed. */
17121
0a1b45a2 17122static bool
0855e32b 17123elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 17124 struct bfd_link_info *info)
0855e32b
NS
17125{
17126 asection *tls_sec;
cb10292c
CL
17127 struct elf32_arm_link_hash_table *htab;
17128
17129 htab = elf32_arm_hash_table (info);
0855e32b 17130
0e1862bb 17131 if (bfd_link_relocatable (info))
0a1b45a2 17132 return true;
0855e32b
NS
17133
17134 tls_sec = elf_hash_table (info)->tls_sec;
17135
17136 if (tls_sec)
17137 {
17138 struct elf_link_hash_entry *tlsbase;
17139
17140 tlsbase = elf_link_hash_lookup
0a1b45a2 17141 (elf_hash_table (info), "_TLS_MODULE_BASE_", true, true, false);
0855e32b
NS
17142
17143 if (tlsbase)
99059e56
RM
17144 {
17145 struct bfd_link_hash_entry *bh = NULL;
0855e32b 17146 const struct elf_backend_data *bed
99059e56 17147 = get_elf_backend_data (output_bfd);
0855e32b 17148
99059e56 17149 if (!(_bfd_generic_link_add_one_symbol
0855e32b 17150 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
0a1b45a2 17151 tls_sec, 0, NULL, false,
0855e32b 17152 bed->collect, &bh)))
0a1b45a2 17153 return false;
b38cadfb 17154
99059e56
RM
17155 tlsbase->type = STT_TLS;
17156 tlsbase = (struct elf_link_hash_entry *)bh;
17157 tlsbase->def_regular = 1;
17158 tlsbase->other = STV_HIDDEN;
0a1b45a2 17159 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
0855e32b
NS
17160 }
17161 }
cb10292c
CL
17162
17163 if (htab->fdpic_p && !bfd_link_relocatable (info)
17164 && !bfd_elf_stack_segment_size (output_bfd, info,
17165 "__stacksize", DEFAULT_STACK_SIZE))
0a1b45a2 17166 return false;
cb10292c 17167
0a1b45a2 17168 return true;
0855e32b
NS
17169}
17170
252b5132
RH
17171/* Finish up dynamic symbol handling. We set the contents of various
17172 dynamic sections here. */
17173
0a1b45a2 17174static bool
906e58ca
NC
17175elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17176 struct bfd_link_info * info,
17177 struct elf_link_hash_entry * h,
17178 Elf_Internal_Sym * sym)
252b5132 17179{
e5a52504 17180 struct elf32_arm_link_hash_table *htab;
b7693d02 17181 struct elf32_arm_link_hash_entry *eh;
252b5132 17182
e5a52504 17183 htab = elf32_arm_hash_table (info);
4dfe6ac6 17184 if (htab == NULL)
0a1b45a2 17185 return false;
4dfe6ac6 17186
b7693d02 17187 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
17188
17189 if (h->plt.offset != (bfd_vma) -1)
17190 {
34e77a92 17191 if (!eh->is_iplt)
e5a52504 17192 {
34e77a92 17193 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
17194 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17195 h->dynindx, 0))
0a1b45a2 17196 return false;
e5a52504 17197 }
57e8b36a 17198
f5385ebf 17199 if (!h->def_regular)
252b5132
RH
17200 {
17201 /* Mark the symbol as undefined, rather than as defined in
3a635617 17202 the .plt section. */
252b5132 17203 sym->st_shndx = SHN_UNDEF;
3a635617 17204 /* If the symbol is weak we need to clear the value.
d982ba73
PB
17205 Otherwise, the PLT entry would provide a definition for
17206 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
17207 and so the symbol would never be NULL. Leave the value if
17208 there were any relocations where pointer equality matters
17209 (this is a clue for the dynamic linker, to make function
17210 pointer comparisons work between an application and shared
17211 library). */
97323ad1 17212 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 17213 sym->st_value = 0;
252b5132 17214 }
34e77a92
RS
17215 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17216 {
17217 /* At least one non-call relocation references this .iplt entry,
17218 so the .iplt entry is the function's canonical address. */
17219 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
39d911fc 17220 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
34e77a92
RS
17221 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17222 (output_bfd, htab->root.iplt->output_section));
17223 sym->st_value = (h->plt.offset
17224 + htab->root.iplt->output_section->vma
17225 + htab->root.iplt->output_offset);
17226 }
252b5132
RH
17227 }
17228
f5385ebf 17229 if (h->needs_copy)
252b5132
RH
17230 {
17231 asection * s;
947216bf 17232 Elf_Internal_Rela rel;
252b5132
RH
17233
17234 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
17235 BFD_ASSERT (h->dynindx != -1
17236 && (h->root.type == bfd_link_hash_defined
17237 || h->root.type == bfd_link_hash_defweak));
17238
00a97672 17239 rel.r_addend = 0;
252b5132
RH
17240 rel.r_offset = (h->root.u.def.value
17241 + h->root.u.def.section->output_section->vma
17242 + h->root.u.def.section->output_offset);
17243 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
afbf7e8e 17244 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
17245 s = htab->root.sreldynrelro;
17246 else
17247 s = htab->root.srelbss;
47beaa6a 17248 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
17249 }
17250
00a97672 17251 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
fac7bd64
CL
17252 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17253 it is relative to the ".got" section. */
9637f6ef 17254 if (h == htab->root.hdynamic
90c14f0c
L
17255 || (!htab->fdpic_p
17256 && htab->root.target_os != is_vxworks
17257 && h == htab->root.hgot))
252b5132
RH
17258 sym->st_shndx = SHN_ABS;
17259
0a1b45a2 17260 return true;
252b5132
RH
17261}
17262
0855e32b
NS
17263static void
17264arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17265 void *contents,
17266 const unsigned long *template, unsigned count)
17267{
17268 unsigned ix;
b38cadfb 17269
0855e32b
NS
17270 for (ix = 0; ix != count; ix++)
17271 {
17272 unsigned long insn = template[ix];
17273
17274 /* Emit mov pc,rx if bx is not permitted. */
17275 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17276 insn = (insn & 0xf000000f) | 0x01a0f000;
17277 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17278 }
17279}
17280
99059e56
RM
17281/* Install the special first PLT entry for elf32-arm-nacl. Unlike
17282 other variants, NaCl needs this entry in a static executable's
17283 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17284 zero. For .iplt really only the last bundle is useful, and .iplt
17285 could have a shorter first entry, with each individual PLT entry's
17286 relative branch calculated differently so it targets the last
17287 bundle instead of the instruction before it (labelled .Lplt_tail
17288 above). But it's simpler to keep the size and layout of PLT0
17289 consistent with the dynamic case, at the cost of some dead code at
17290 the start of .iplt and the one dead store to the stack at the start
17291 of .Lplt_tail. */
17292static void
17293arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17294 asection *plt, bfd_vma got_displacement)
17295{
17296 unsigned int i;
17297
17298 put_arm_insn (htab, output_bfd,
17299 elf32_arm_nacl_plt0_entry[0]
17300 | arm_movw_immediate (got_displacement),
17301 plt->contents + 0);
17302 put_arm_insn (htab, output_bfd,
17303 elf32_arm_nacl_plt0_entry[1]
17304 | arm_movt_immediate (got_displacement),
17305 plt->contents + 4);
17306
17307 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17308 put_arm_insn (htab, output_bfd,
17309 elf32_arm_nacl_plt0_entry[i],
17310 plt->contents + (i * 4));
17311}
17312
252b5132
RH
17313/* Finish up the dynamic sections. */
17314
0a1b45a2 17315static bool
57e8b36a 17316elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
17317{
17318 bfd * dynobj;
17319 asection * sgot;
17320 asection * sdyn;
4dfe6ac6
NC
17321 struct elf32_arm_link_hash_table *htab;
17322
17323 htab = elf32_arm_hash_table (info);
17324 if (htab == NULL)
0a1b45a2 17325 return false;
252b5132
RH
17326
17327 dynobj = elf_hash_table (info)->dynobj;
17328
362d30a1 17329 sgot = htab->root.sgotplt;
894891db
NC
17330 /* A broken linker script might have discarded the dynamic sections.
17331 Catch this here so that we do not seg-fault later on. */
17332 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
0a1b45a2 17333 return false;
3d4d4302 17334 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
17335
17336 if (elf_hash_table (info)->dynamic_sections_created)
17337 {
17338 asection *splt;
17339 Elf32_External_Dyn *dyncon, *dynconend;
17340
362d30a1 17341 splt = htab->root.splt;
24a1ba0f 17342 BFD_ASSERT (splt != NULL && sdyn != NULL);
a57d1773 17343 BFD_ASSERT (sgot != NULL);
252b5132
RH
17344
17345 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 17346 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 17347
252b5132
RH
17348 for (; dyncon < dynconend; dyncon++)
17349 {
17350 Elf_Internal_Dyn dyn;
17351 const char * name;
17352 asection * s;
17353
17354 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17355
17356 switch (dyn.d_tag)
17357 {
17358 default:
90c14f0c 17359 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
17360 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17361 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
17362 break;
17363
229fcec5 17364 case DT_HASH:
229fcec5 17365 case DT_STRTAB:
229fcec5 17366 case DT_SYMTAB:
c0042f5d 17367 case DT_VERSYM:
c0042f5d 17368 case DT_VERDEF:
c0042f5d 17369 case DT_VERNEED:
a57d1773 17370 break;
c0042f5d 17371
252b5132 17372 case DT_PLTGOT:
a57d1773 17373 name = ".got.plt";
252b5132
RH
17374 goto get_vma;
17375 case DT_JMPREL:
00a97672 17376 name = RELOC_SECTION (htab, ".plt");
252b5132 17377 get_vma:
4ade44b7 17378 s = bfd_get_linker_section (dynobj, name);
05456594
NC
17379 if (s == NULL)
17380 {
4eca0228 17381 _bfd_error_handler
4ade44b7 17382 (_("could not find section %s"), name);
05456594 17383 bfd_set_error (bfd_error_invalid_operation);
0a1b45a2 17384 return false;
05456594 17385 }
a57d1773 17386 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
252b5132
RH
17387 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17388 break;
17389
17390 case DT_PLTRELSZ:
362d30a1 17391 s = htab->root.srelplt;
252b5132 17392 BFD_ASSERT (s != NULL);
eea6121a 17393 dyn.d_un.d_val = s->size;
252b5132
RH
17394 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17395 break;
906e58ca 17396
252b5132 17397 case DT_RELSZ:
00a97672 17398 case DT_RELASZ:
229fcec5
MM
17399 case DT_REL:
17400 case DT_RELA:
252b5132 17401 break;
88f7bcd5 17402
0855e32b 17403 case DT_TLSDESC_PLT:
99059e56 17404 s = htab->root.splt;
0855e32b 17405 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17406 + htab->root.tlsdesc_plt);
0855e32b
NS
17407 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17408 break;
17409
17410 case DT_TLSDESC_GOT:
99059e56 17411 s = htab->root.sgot;
0855e32b 17412 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
9bcc30e4 17413 + htab->root.tlsdesc_got);
0855e32b
NS
17414 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17415 break;
17416
88f7bcd5
NC
17417 /* Set the bottom bit of DT_INIT/FINI if the
17418 corresponding function is Thumb. */
17419 case DT_INIT:
17420 name = info->init_function;
17421 goto get_sym;
17422 case DT_FINI:
17423 name = info->fini_function;
17424 get_sym:
17425 /* If it wasn't set by elf_bfd_final_link
4cc11e76 17426 then there is nothing to adjust. */
88f7bcd5
NC
17427 if (dyn.d_un.d_val != 0)
17428 {
17429 struct elf_link_hash_entry * eh;
17430
17431 eh = elf_link_hash_lookup (elf_hash_table (info), name,
0a1b45a2 17432 false, false, true);
39d911fc
TP
17433 if (eh != NULL
17434 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17435 == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
17436 {
17437 dyn.d_un.d_val |= 1;
b34976b6 17438 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
17439 }
17440 }
17441 break;
252b5132
RH
17442 }
17443 }
17444
24a1ba0f 17445 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 17446 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 17447 {
00a97672
RS
17448 const bfd_vma *plt0_entry;
17449 bfd_vma got_address, plt_address, got_displacement;
17450
17451 /* Calculate the addresses of the GOT and PLT. */
17452 got_address = sgot->output_section->vma + sgot->output_offset;
17453 plt_address = splt->output_section->vma + splt->output_offset;
17454
90c14f0c 17455 if (htab->root.target_os == is_vxworks)
00a97672
RS
17456 {
17457 /* The VxWorks GOT is relocated by the dynamic linker.
17458 Therefore, we must emit relocations rather than simply
17459 computing the values now. */
17460 Elf_Internal_Rela rel;
17461
17462 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
17463 put_arm_insn (htab, output_bfd, plt0_entry[0],
17464 splt->contents + 0);
17465 put_arm_insn (htab, output_bfd, plt0_entry[1],
17466 splt->contents + 4);
17467 put_arm_insn (htab, output_bfd, plt0_entry[2],
17468 splt->contents + 8);
00a97672
RS
17469 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17470
8029a119 17471 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
17472 rel.r_offset = plt_address + 12;
17473 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17474 rel.r_addend = 0;
17475 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17476 htab->srelplt2->contents);
17477 }
90c14f0c 17478 else if (htab->root.target_os == is_nacl)
99059e56
RM
17479 arm_nacl_put_plt0 (htab, output_bfd, splt,
17480 got_address + 8 - (plt_address + 16));
eed94f8f
NC
17481 else if (using_thumb_only (htab))
17482 {
17483 got_displacement = got_address - (plt_address + 12);
17484
17485 plt0_entry = elf32_thumb2_plt0_entry;
17486 put_arm_insn (htab, output_bfd, plt0_entry[0],
17487 splt->contents + 0);
17488 put_arm_insn (htab, output_bfd, plt0_entry[1],
17489 splt->contents + 4);
17490 put_arm_insn (htab, output_bfd, plt0_entry[2],
17491 splt->contents + 8);
17492
17493 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17494 }
00a97672
RS
17495 else
17496 {
17497 got_displacement = got_address - (plt_address + 16);
17498
17499 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
17500 put_arm_insn (htab, output_bfd, plt0_entry[0],
17501 splt->contents + 0);
17502 put_arm_insn (htab, output_bfd, plt0_entry[1],
17503 splt->contents + 4);
17504 put_arm_insn (htab, output_bfd, plt0_entry[2],
17505 splt->contents + 8);
17506 put_arm_insn (htab, output_bfd, plt0_entry[3],
17507 splt->contents + 12);
5e681ec4 17508
5e681ec4 17509#ifdef FOUR_WORD_PLT
00a97672
RS
17510 /* The displacement value goes in the otherwise-unused
17511 last word of the second entry. */
17512 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 17513#else
00a97672 17514 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 17515#endif
00a97672 17516 }
f7a74f8c 17517 }
252b5132
RH
17518
17519 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17520 really seem like the right value. */
74541ad4
AM
17521 if (splt->output_section->owner == output_bfd)
17522 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 17523
9bcc30e4 17524 if (htab->root.tlsdesc_plt)
0855e32b
NS
17525 {
17526 bfd_vma got_address
17527 = sgot->output_section->vma + sgot->output_offset;
17528 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17529 + htab->root.sgot->output_offset);
17530 bfd_vma plt_address
17531 = splt->output_section->vma + splt->output_offset;
17532
b38cadfb 17533 arm_put_trampoline (htab, output_bfd,
9bcc30e4 17534 splt->contents + htab->root.tlsdesc_plt,
0855e32b
NS
17535 dl_tlsdesc_lazy_trampoline, 6);
17536
17537 bfd_put_32 (output_bfd,
9bcc30e4
L
17538 gotplt_address + htab->root.tlsdesc_got
17539 - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17540 - dl_tlsdesc_lazy_trampoline[6],
9bcc30e4 17541 splt->contents + htab->root.tlsdesc_plt + 24);
0855e32b 17542 bfd_put_32 (output_bfd,
9bcc30e4 17543 got_address - (plt_address + htab->root.tlsdesc_plt)
0855e32b 17544 - dl_tlsdesc_lazy_trampoline[7],
9bcc30e4 17545 splt->contents + htab->root.tlsdesc_plt + 24 + 4);
0855e32b
NS
17546 }
17547
17548 if (htab->tls_trampoline)
17549 {
b38cadfb 17550 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
17551 splt->contents + htab->tls_trampoline,
17552 tls_trampoline, 3);
17553#ifdef FOUR_WORD_PLT
17554 bfd_put_32 (output_bfd, 0x00000000,
17555 splt->contents + htab->tls_trampoline + 12);
b38cadfb 17556#endif
0855e32b
NS
17557 }
17558
90c14f0c 17559 if (htab->root.target_os == is_vxworks
0e1862bb
L
17560 && !bfd_link_pic (info)
17561 && htab->root.splt->size > 0)
00a97672
RS
17562 {
17563 /* Correct the .rel(a).plt.unloaded relocations. They will have
17564 incorrect symbol indexes. */
17565 int num_plts;
eed62c48 17566 unsigned char *p;
00a97672 17567
362d30a1 17568 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
17569 / htab->plt_entry_size);
17570 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17571
17572 for (; num_plts; num_plts--)
17573 {
17574 Elf_Internal_Rela rel;
17575
17576 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17577 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17578 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17579 p += RELOC_SIZE (htab);
17580
17581 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17582 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17583 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17584 p += RELOC_SIZE (htab);
17585 }
17586 }
252b5132
RH
17587 }
17588
90c14f0c
L
17589 if (htab->root.target_os == is_nacl
17590 && htab->root.iplt != NULL
17591 && htab->root.iplt->size > 0)
99059e56
RM
17592 /* NaCl uses a special first entry in .iplt too. */
17593 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17594
252b5132 17595 /* Fill in the first three entries in the global offset table. */
229fcec5 17596 if (sgot)
252b5132 17597 {
229fcec5
MM
17598 if (sgot->size > 0)
17599 {
17600 if (sdyn == NULL)
17601 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17602 else
17603 bfd_put_32 (output_bfd,
17604 sdyn->output_section->vma + sdyn->output_offset,
17605 sgot->contents);
17606 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17607 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17608 }
252b5132 17609
229fcec5
MM
17610 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17611 }
252b5132 17612
e8b09b87
CL
17613 /* At the very end of the .rofixup section is a pointer to the GOT. */
17614 if (htab->fdpic_p && htab->srofixup != NULL)
17615 {
17616 struct elf_link_hash_entry *hgot = htab->root.hgot;
17617
17618 bfd_vma got_value = hgot->root.u.def.value
17619 + hgot->root.u.def.section->output_section->vma
17620 + hgot->root.u.def.section->output_offset;
17621
cc850f74 17622 arm_elf_add_rofixup (output_bfd, htab->srofixup, got_value);
e8b09b87
CL
17623
17624 /* Make sure we allocated and generated the same number of fixups. */
17625 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17626 }
17627
0a1b45a2 17628 return true;
252b5132
RH
17629}
17630
0a1b45a2 17631static bool
ed7e9d0b 17632elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
ba96a88f 17633{
9b485d32 17634 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 17635 struct elf32_arm_link_hash_table *globals;
ac4c9b04 17636 struct elf_segment_map *m;
ba96a88f 17637
ed7e9d0b 17638 if (!_bfd_elf_init_file_header (abfd, link_info))
0a1b45a2 17639 return false;
ed7e9d0b 17640
ba96a88f
NC
17641 i_ehdrp = elf_elfheader (abfd);
17642
94a3258f
PB
17643 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17644 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
ba96a88f 17645 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 17646
93204d3a
PB
17647 if (link_info)
17648 {
17649 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 17650 if (globals != NULL && globals->byteswap_code)
93204d3a 17651 i_ehdrp->e_flags |= EF_ARM_BE8;
18a20338
CL
17652
17653 if (globals->fdpic_p)
17654 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
93204d3a 17655 }
3bfcb652
NC
17656
17657 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17658 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17659 {
17660 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 17661 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
17662 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17663 else
17664 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17665 }
ac4c9b04
MG
17666
17667 /* Scan segment to set p_flags attribute if it contains only sections with
f0728ee3 17668 SHF_ARM_PURECODE flag. */
ac4c9b04
MG
17669 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17670 {
17671 unsigned int j;
17672
17673 if (m->count == 0)
17674 continue;
17675 for (j = 0; j < m->count; j++)
17676 {
f0728ee3 17677 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
ac4c9b04
MG
17678 break;
17679 }
17680 if (j == m->count)
17681 {
17682 m->p_flags = PF_X;
17683 m->p_flags_valid = 1;
17684 }
17685 }
0a1b45a2 17686 return true;
ba96a88f
NC
17687}
17688
99e4ae17 17689static enum elf_reloc_type_class
7e612e98
AM
17690elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17691 const asection *rel_sec ATTRIBUTE_UNUSED,
17692 const Elf_Internal_Rela *rela)
99e4ae17 17693{
f51e552e 17694 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
17695 {
17696 case R_ARM_RELATIVE:
17697 return reloc_class_relative;
17698 case R_ARM_JUMP_SLOT:
17699 return reloc_class_plt;
17700 case R_ARM_COPY:
17701 return reloc_class_copy;
109575d7
JW
17702 case R_ARM_IRELATIVE:
17703 return reloc_class_ifunc;
99e4ae17
AJ
17704 default:
17705 return reloc_class_normal;
17706 }
17707}
17708
e489d0ae 17709static void
cc364be6 17710arm_final_write_processing (bfd *abfd)
e16bb312 17711{
5a6c6817 17712 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
17713}
17714
0a1b45a2 17715static bool
cc364be6 17716elf32_arm_final_write_processing (bfd *abfd)
06f44071 17717{
cc364be6
AM
17718 arm_final_write_processing (abfd);
17719 return _bfd_elf_final_write_processing (abfd);
06f44071
AM
17720}
17721
40a18ebd
NC
17722/* Return TRUE if this is an unwinding table entry. */
17723
0a1b45a2 17724static bool
40a18ebd
NC
17725is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17726{
08dedd66
ML
17727 return (startswith (name, ELF_STRING_ARM_unwind)
17728 || startswith (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
17729}
17730
17731
17732/* Set the type and flags for an ARM section. We do this by
17733 the section name, which is a hack, but ought to work. */
17734
0a1b45a2 17735static bool
40a18ebd
NC
17736elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17737{
17738 const char * name;
17739
fd361982 17740 name = bfd_section_name (sec);
40a18ebd
NC
17741
17742 if (is_arm_elf_unwind_section_name (abfd, name))
17743 {
17744 hdr->sh_type = SHT_ARM_EXIDX;
17745 hdr->sh_flags |= SHF_LINK_ORDER;
17746 }
ac4c9b04 17747
f0728ee3
AV
17748 if (sec->flags & SEC_ELF_PURECODE)
17749 hdr->sh_flags |= SHF_ARM_PURECODE;
ac4c9b04 17750
0a1b45a2 17751 return true;
40a18ebd
NC
17752}
17753
6dc132d9
L
17754/* Handle an ARM specific section when reading an object file. This is
17755 called when bfd_section_from_shdr finds a section with an unknown
17756 type. */
40a18ebd 17757
0a1b45a2 17758static bool
40a18ebd
NC
17759elf32_arm_section_from_shdr (bfd *abfd,
17760 Elf_Internal_Shdr * hdr,
6dc132d9
L
17761 const char *name,
17762 int shindex)
40a18ebd
NC
17763{
17764 /* There ought to be a place to keep ELF backend specific flags, but
17765 at the moment there isn't one. We just keep track of the
17766 sections by their name, instead. Fortunately, the ABI gives
17767 names for all the ARM specific sections, so we will probably get
17768 away with this. */
17769 switch (hdr->sh_type)
17770 {
17771 case SHT_ARM_EXIDX:
0951f019
RE
17772 case SHT_ARM_PREEMPTMAP:
17773 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
17774 break;
17775
17776 default:
0a1b45a2 17777 return false;
40a18ebd
NC
17778 }
17779
6dc132d9 17780 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
0a1b45a2 17781 return false;
40a18ebd 17782
0a1b45a2 17783 return true;
40a18ebd 17784}
e489d0ae 17785
44444f50
NC
17786static _arm_elf_section_data *
17787get_arm_elf_section_data (asection * sec)
17788{
47b2e99c
JZ
17789 if (sec && sec->owner && is_arm_elf (sec->owner))
17790 return elf32_arm_section_data (sec);
44444f50
NC
17791 else
17792 return NULL;
8e3de13a
NC
17793}
17794
4e617b1e
PB
17795typedef struct
17796{
57402f1e 17797 void *flaginfo;
4e617b1e 17798 struct bfd_link_info *info;
91a5743d
PB
17799 asection *sec;
17800 int sec_shndx;
6e0b88f1
AM
17801 int (*func) (void *, const char *, Elf_Internal_Sym *,
17802 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
17803} output_arch_syminfo;
17804
17805enum map_symbol_type
17806{
17807 ARM_MAP_ARM,
17808 ARM_MAP_THUMB,
17809 ARM_MAP_DATA
17810};
17811
17812
7413f23f 17813/* Output a single mapping symbol. */
4e617b1e 17814
0a1b45a2 17815static bool
7413f23f
DJ
17816elf32_arm_output_map_sym (output_arch_syminfo *osi,
17817 enum map_symbol_type type,
17818 bfd_vma offset)
4e617b1e
PB
17819{
17820 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
17821 Elf_Internal_Sym sym;
17822
91a5743d
PB
17823 sym.st_value = osi->sec->output_section->vma
17824 + osi->sec->output_offset
17825 + offset;
4e617b1e
PB
17826 sym.st_size = 0;
17827 sym.st_other = 0;
17828 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 17829 sym.st_shndx = osi->sec_shndx;
35fc36a8 17830 sym.st_target_internal = 0;
fe33d2fa 17831 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 17832 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
17833}
17834
34e77a92
RS
17835/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17836 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e 17837
0a1b45a2 17838static bool
34e77a92 17839elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
0a1b45a2 17840 bool is_iplt_entry_p,
34e77a92
RS
17841 union gotplt_union *root_plt,
17842 struct arm_plt_info *arm_plt)
4e617b1e 17843{
4e617b1e 17844 struct elf32_arm_link_hash_table *htab;
34e77a92 17845 bfd_vma addr, plt_header_size;
4e617b1e 17846
34e77a92 17847 if (root_plt->offset == (bfd_vma) -1)
0a1b45a2 17848 return true;
4e617b1e 17849
4dfe6ac6
NC
17850 htab = elf32_arm_hash_table (osi->info);
17851 if (htab == NULL)
0a1b45a2 17852 return false;
4dfe6ac6 17853
34e77a92
RS
17854 if (is_iplt_entry_p)
17855 {
17856 osi->sec = htab->root.iplt;
17857 plt_header_size = 0;
17858 }
17859 else
17860 {
17861 osi->sec = htab->root.splt;
17862 plt_header_size = htab->plt_header_size;
17863 }
17864 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17865 (osi->info->output_bfd, osi->sec->output_section));
17866
17867 addr = root_plt->offset & -2;
a57d1773 17868 if (htab->root.target_os == is_vxworks)
4e617b1e 17869 {
7413f23f 17870 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17871 return false;
7413f23f 17872 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
0a1b45a2 17873 return false;
7413f23f 17874 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
0a1b45a2 17875 return false;
7413f23f 17876 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
0a1b45a2 17877 return false;
4e617b1e 17878 }
90c14f0c 17879 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
17880 {
17881 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17882 return false;
b38cadfb 17883 }
7801f98f
CL
17884 else if (htab->fdpic_p)
17885 {
cc850f74 17886 enum map_symbol_type type = using_thumb_only (htab)
59029f57
CL
17887 ? ARM_MAP_THUMB
17888 : ARM_MAP_ARM;
17889
7801f98f 17890 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
4b24dd1a 17891 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17892 return false;
59029f57 17893 if (!elf32_arm_output_map_sym (osi, type, addr))
0a1b45a2 17894 return false;
7801f98f 17895 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
0a1b45a2 17896 return false;
cc850f74 17897 if (htab->plt_entry_size == 4 * ARRAY_SIZE (elf32_arm_fdpic_plt_entry))
4b24dd1a 17898 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
0a1b45a2 17899 return false;
7801f98f 17900 }
eed94f8f
NC
17901 else if (using_thumb_only (htab))
17902 {
17903 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
0a1b45a2 17904 return false;
6a631e86 17905 }
4e617b1e
PB
17906 else
17907 {
0a1b45a2 17908 bool thumb_stub_p;
bd97cb95 17909
34e77a92
RS
17910 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17911 if (thumb_stub_p)
4e617b1e 17912 {
7413f23f 17913 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
0a1b45a2 17914 return false;
4e617b1e
PB
17915 }
17916#ifdef FOUR_WORD_PLT
7413f23f 17917 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17918 return false;
7413f23f 17919 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
0a1b45a2 17920 return false;
4e617b1e 17921#else
906e58ca 17922 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
17923 so only need to output a mapping symbol for the first PLT entry and
17924 entries with thumb thunks. */
34e77a92 17925 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 17926 {
7413f23f 17927 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
0a1b45a2 17928 return false;
4e617b1e
PB
17929 }
17930#endif
17931 }
17932
0a1b45a2 17933 return true;
4e617b1e
PB
17934}
17935
34e77a92
RS
17936/* Output mapping symbols for PLT entries associated with H. */
17937
0a1b45a2 17938static bool
34e77a92
RS
17939elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17940{
17941 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17942 struct elf32_arm_link_hash_entry *eh;
17943
17944 if (h->root.type == bfd_link_hash_indirect)
0a1b45a2 17945 return true;
34e77a92
RS
17946
17947 if (h->root.type == bfd_link_hash_warning)
17948 /* When warning symbols are created, they **replace** the "real"
17949 entry in the hash table, thus we never get to see the real
17950 symbol in a hash traversal. So look at it now. */
17951 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17952
17953 eh = (struct elf32_arm_link_hash_entry *) h;
17954 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17955 &h->plt, &eh->plt);
17956}
17957
4f4faa4d
TP
17958/* Bind a veneered symbol to its veneer identified by its hash entry
17959 STUB_ENTRY. The veneered location thus loose its symbol. */
17960
17961static void
17962arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17963{
17964 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17965
17966 BFD_ASSERT (hash);
17967 hash->root.root.u.def.section = stub_entry->stub_sec;
17968 hash->root.root.u.def.value = stub_entry->stub_offset;
17969 hash->root.size = stub_entry->stub_size;
17970}
17971
7413f23f
DJ
17972/* Output a single local symbol for a generated stub. */
17973
0a1b45a2 17974static bool
7413f23f
DJ
17975elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17976 bfd_vma offset, bfd_vma size)
17977{
7413f23f
DJ
17978 Elf_Internal_Sym sym;
17979
7413f23f
DJ
17980 sym.st_value = osi->sec->output_section->vma
17981 + osi->sec->output_offset
17982 + offset;
17983 sym.st_size = size;
17984 sym.st_other = 0;
17985 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17986 sym.st_shndx = osi->sec_shndx;
35fc36a8 17987 sym.st_target_internal = 0;
57402f1e 17988 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 17989}
4e617b1e 17990
0a1b45a2 17991static bool
8029a119
NC
17992arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17993 void * in_arg)
da5938a2
NC
17994{
17995 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
17996 asection *stub_sec;
17997 bfd_vma addr;
7413f23f 17998 char *stub_name;
9a008db3 17999 output_arch_syminfo *osi;
d3ce72d0 18000 const insn_sequence *template_sequence;
461a49ca
DJ
18001 enum stub_insn_type prev_type;
18002 int size;
18003 int i;
18004 enum map_symbol_type sym_type;
da5938a2
NC
18005
18006 /* Massage our args to the form they really have. */
18007 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 18008 osi = (output_arch_syminfo *) in_arg;
da5938a2 18009
da5938a2
NC
18010 stub_sec = stub_entry->stub_sec;
18011
18012 /* Ensure this stub is attached to the current section being
7413f23f 18013 processed. */
da5938a2 18014 if (stub_sec != osi->sec)
0a1b45a2 18015 return true;
da5938a2 18016
7413f23f 18017 addr = (bfd_vma) stub_entry->stub_offset;
d3ce72d0 18018 template_sequence = stub_entry->stub_template;
4f4faa4d
TP
18019
18020 if (arm_stub_sym_claimed (stub_entry->stub_type))
18021 arm_stub_claim_sym (stub_entry);
18022 else
7413f23f 18023 {
4f4faa4d
TP
18024 stub_name = stub_entry->output_name;
18025 switch (template_sequence[0].type)
18026 {
18027 case ARM_TYPE:
18028 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18029 stub_entry->stub_size))
0a1b45a2 18030 return false;
4f4faa4d
TP
18031 break;
18032 case THUMB16_TYPE:
18033 case THUMB32_TYPE:
18034 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18035 stub_entry->stub_size))
0a1b45a2 18036 return false;
4f4faa4d
TP
18037 break;
18038 default:
18039 BFD_FAIL ();
18040 return 0;
18041 }
7413f23f 18042 }
da5938a2 18043
461a49ca
DJ
18044 prev_type = DATA_TYPE;
18045 size = 0;
18046 for (i = 0; i < stub_entry->stub_template_size; i++)
18047 {
d3ce72d0 18048 switch (template_sequence[i].type)
461a49ca
DJ
18049 {
18050 case ARM_TYPE:
18051 sym_type = ARM_MAP_ARM;
18052 break;
18053
18054 case THUMB16_TYPE:
48229727 18055 case THUMB32_TYPE:
461a49ca
DJ
18056 sym_type = ARM_MAP_THUMB;
18057 break;
18058
18059 case DATA_TYPE:
18060 sym_type = ARM_MAP_DATA;
18061 break;
18062
18063 default:
18064 BFD_FAIL ();
0a1b45a2 18065 return false;
461a49ca
DJ
18066 }
18067
d3ce72d0 18068 if (template_sequence[i].type != prev_type)
461a49ca 18069 {
d3ce72d0 18070 prev_type = template_sequence[i].type;
461a49ca 18071 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
0a1b45a2 18072 return false;
461a49ca
DJ
18073 }
18074
d3ce72d0 18075 switch (template_sequence[i].type)
461a49ca
DJ
18076 {
18077 case ARM_TYPE:
48229727 18078 case THUMB32_TYPE:
461a49ca
DJ
18079 size += 4;
18080 break;
18081
18082 case THUMB16_TYPE:
18083 size += 2;
18084 break;
18085
18086 case DATA_TYPE:
18087 size += 4;
18088 break;
18089
18090 default:
18091 BFD_FAIL ();
0a1b45a2 18092 return false;
461a49ca
DJ
18093 }
18094 }
18095
0a1b45a2 18096 return true;
da5938a2
NC
18097}
18098
33811162
DG
18099/* Output mapping symbols for linker generated sections,
18100 and for those data-only sections that do not have a
18101 $d. */
4e617b1e 18102
0a1b45a2 18103static bool
4e617b1e 18104elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 18105 struct bfd_link_info *info,
57402f1e 18106 void *flaginfo,
6e0b88f1
AM
18107 int (*func) (void *, const char *,
18108 Elf_Internal_Sym *,
18109 asection *,
18110 struct elf_link_hash_entry *))
4e617b1e
PB
18111{
18112 output_arch_syminfo osi;
18113 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
18114 bfd_vma offset;
18115 bfd_size_type size;
33811162 18116 bfd *input_bfd;
4e617b1e 18117
25d17459
L
18118 if (info->strip == strip_all
18119 && !info->emitrelocations
18120 && !bfd_link_relocatable (info))
18121 return true;
18122
4e617b1e 18123 htab = elf32_arm_hash_table (info);
4dfe6ac6 18124 if (htab == NULL)
0a1b45a2 18125 return false;
4dfe6ac6 18126
906e58ca 18127 check_use_blx (htab);
91a5743d 18128
57402f1e 18129 osi.flaginfo = flaginfo;
4e617b1e
PB
18130 osi.info = info;
18131 osi.func = func;
906e58ca 18132
33811162
DG
18133 /* Add a $d mapping symbol to data-only sections that
18134 don't have any mapping symbol. This may result in (harmless) redundant
18135 mapping symbols. */
18136 for (input_bfd = info->input_bfds;
18137 input_bfd != NULL;
c72f2fb2 18138 input_bfd = input_bfd->link.next)
33811162
DG
18139 {
18140 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18141 for (osi.sec = input_bfd->sections;
18142 osi.sec != NULL;
18143 osi.sec = osi.sec->next)
18144 {
18145 if (osi.sec->output_section != NULL
f7dd8c79
DJ
18146 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18147 != 0)
33811162
DG
18148 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18149 == SEC_HAS_CONTENTS
18150 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 18151 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
18152 && osi.sec->size > 0
18153 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
18154 {
18155 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18156 (output_bfd, osi.sec->output_section);
18157 if (osi.sec_shndx != (int)SHN_BAD)
18158 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18159 }
18160 }
18161 }
18162
91a5743d
PB
18163 /* ARM->Thumb glue. */
18164 if (htab->arm_glue_size > 0)
18165 {
3d4d4302
AM
18166 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18167 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
18168
18169 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18170 (output_bfd, osi.sec->output_section);
0e1862bb 18171 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
91a5743d
PB
18172 || htab->pic_veneer)
18173 size = ARM2THUMB_PIC_GLUE_SIZE;
18174 else if (htab->use_blx)
18175 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18176 else
18177 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 18178
91a5743d
PB
18179 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18180 {
7413f23f
DJ
18181 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18182 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
18183 }
18184 }
18185
18186 /* Thumb->ARM glue. */
18187 if (htab->thumb_glue_size > 0)
18188 {
3d4d4302
AM
18189 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18190 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
18191
18192 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18193 (output_bfd, osi.sec->output_section);
18194 size = THUMB2ARM_GLUE_SIZE;
18195
18196 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18197 {
7413f23f
DJ
18198 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18199 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
18200 }
18201 }
18202
845b51d6
PB
18203 /* ARMv4 BX veneers. */
18204 if (htab->bx_glue_size > 0)
18205 {
3d4d4302
AM
18206 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18207 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
18208
18209 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18210 (output_bfd, osi.sec->output_section);
18211
7413f23f 18212 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
18213 }
18214
8029a119
NC
18215 /* Long calls stubs. */
18216 if (htab->stub_bfd && htab->stub_bfd->sections)
18217 {
da5938a2 18218 asection* stub_sec;
8029a119 18219
da5938a2
NC
18220 for (stub_sec = htab->stub_bfd->sections;
18221 stub_sec != NULL;
8029a119
NC
18222 stub_sec = stub_sec->next)
18223 {
18224 /* Ignore non-stub sections. */
18225 if (!strstr (stub_sec->name, STUB_SUFFIX))
18226 continue;
da5938a2 18227
8029a119 18228 osi.sec = stub_sec;
da5938a2 18229
8029a119
NC
18230 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18231 (output_bfd, osi.sec->output_section);
da5938a2 18232
8029a119
NC
18233 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18234 }
18235 }
da5938a2 18236
91a5743d 18237 /* Finally, output mapping symbols for the PLT. */
34e77a92 18238 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 18239 {
34e77a92
RS
18240 osi.sec = htab->root.splt;
18241 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18242 (output_bfd, osi.sec->output_section));
18243
a57d1773 18244 /* Output mapping symbols for the plt header. */
90c14f0c 18245 if (htab->root.target_os == is_vxworks)
34e77a92
RS
18246 {
18247 /* VxWorks shared libraries have no PLT header. */
0e1862bb 18248 if (!bfd_link_pic (info))
34e77a92
RS
18249 {
18250 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18251 return false;
34e77a92 18252 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18253 return false;
34e77a92
RS
18254 }
18255 }
90c14f0c 18256 else if (htab->root.target_os == is_nacl)
b38cadfb
NC
18257 {
18258 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18259 return false;
b38cadfb 18260 }
59029f57 18261 else if (using_thumb_only (htab) && !htab->fdpic_p)
eed94f8f
NC
18262 {
18263 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
0a1b45a2 18264 return false;
eed94f8f 18265 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
0a1b45a2 18266 return false;
eed94f8f 18267 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
0a1b45a2 18268 return false;
eed94f8f 18269 }
a57d1773 18270 else if (!htab->fdpic_p)
4e617b1e 18271 {
7413f23f 18272 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18273 return false;
34e77a92
RS
18274#ifndef FOUR_WORD_PLT
18275 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
0a1b45a2 18276 return false;
34e77a92 18277#endif
4e617b1e
PB
18278 }
18279 }
90c14f0c
L
18280 if (htab->root.target_os == is_nacl
18281 && htab->root.iplt
18282 && htab->root.iplt->size > 0)
99059e56
RM
18283 {
18284 /* NaCl uses a special first entry in .iplt too. */
18285 osi.sec = htab->root.iplt;
18286 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18287 (output_bfd, osi.sec->output_section));
18288 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
0a1b45a2 18289 return false;
99059e56 18290 }
34e77a92
RS
18291 if ((htab->root.splt && htab->root.splt->size > 0)
18292 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 18293 {
34e77a92
RS
18294 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18295 for (input_bfd = info->input_bfds;
18296 input_bfd != NULL;
c72f2fb2 18297 input_bfd = input_bfd->link.next)
34e77a92
RS
18298 {
18299 struct arm_local_iplt_info **local_iplt;
18300 unsigned int i, num_syms;
4e617b1e 18301
34e77a92
RS
18302 local_iplt = elf32_arm_local_iplt (input_bfd);
18303 if (local_iplt != NULL)
18304 {
18305 num_syms = elf_symtab_hdr (input_bfd).sh_info;
74fd118f
NC
18306 if (num_syms > elf32_arm_num_entries (input_bfd))
18307 {
18308 _bfd_error_handler (_("\
18309%pB: Number of symbols in input file has increased from %lu to %u\n"),
18310 input_bfd,
18311 (unsigned long) elf32_arm_num_entries (input_bfd),
18312 num_syms);
18313 return false;
18314 }
34e77a92
RS
18315 for (i = 0; i < num_syms; i++)
18316 if (local_iplt[i] != NULL
0a1b45a2 18317 && !elf32_arm_output_plt_map_1 (&osi, true,
34e77a92
RS
18318 &local_iplt[i]->root,
18319 &local_iplt[i]->arm))
0a1b45a2 18320 return false;
34e77a92
RS
18321 }
18322 }
18323 }
9bcc30e4 18324 if (htab->root.tlsdesc_plt != 0)
0855e32b
NS
18325 {
18326 /* Mapping symbols for the lazy tls trampoline. */
9bcc30e4
L
18327 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM,
18328 htab->root.tlsdesc_plt))
0a1b45a2 18329 return false;
b38cadfb 18330
0855e32b 18331 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
9bcc30e4 18332 htab->root.tlsdesc_plt + 24))
0a1b45a2 18333 return false;
0855e32b
NS
18334 }
18335 if (htab->tls_trampoline != 0)
18336 {
18337 /* Mapping symbols for the tls trampoline. */
18338 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
0a1b45a2 18339 return false;
0855e32b
NS
18340#ifdef FOUR_WORD_PLT
18341 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18342 htab->tls_trampoline + 12))
0a1b45a2 18343 return false;
b38cadfb 18344#endif
0855e32b 18345 }
b38cadfb 18346
0a1b45a2 18347 return true;
4e617b1e
PB
18348}
18349
54ddd295
TP
18350/* Filter normal symbols of CMSE entry functions of ABFD to include in
18351 the import library. All SYMCOUNT symbols of ABFD can be examined
18352 from their pointers in SYMS. Pointers of symbols to keep should be
18353 stored continuously at the beginning of that array.
18354
18355 Returns the number of symbols to keep. */
18356
18357static unsigned int
18358elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18359 struct bfd_link_info *info,
18360 asymbol **syms, long symcount)
18361{
18362 size_t maxnamelen;
18363 char *cmse_name;
18364 long src_count, dst_count = 0;
18365 struct elf32_arm_link_hash_table *htab;
18366
18367 htab = elf32_arm_hash_table (info);
18368 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18369 symcount = 0;
18370
18371 maxnamelen = 128;
18372 cmse_name = (char *) bfd_malloc (maxnamelen);
7a0fb7be
NC
18373 BFD_ASSERT (cmse_name);
18374
54ddd295
TP
18375 for (src_count = 0; src_count < symcount; src_count++)
18376 {
18377 struct elf32_arm_link_hash_entry *cmse_hash;
18378 asymbol *sym;
18379 flagword flags;
18380 char *name;
18381 size_t namelen;
18382
18383 sym = syms[src_count];
18384 flags = sym->flags;
18385 name = (char *) bfd_asymbol_name (sym);
18386
18387 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18388 continue;
18389 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18390 continue;
18391
18392 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18393 if (namelen > maxnamelen)
18394 {
18395 cmse_name = (char *)
18396 bfd_realloc (cmse_name, namelen);
18397 maxnamelen = namelen;
18398 }
18399 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18400 cmse_hash = (struct elf32_arm_link_hash_entry *)
0a1b45a2 18401 elf_link_hash_lookup (&(htab)->root, cmse_name, false, false, true);
54ddd295
TP
18402
18403 if (!cmse_hash
18404 || (cmse_hash->root.root.type != bfd_link_hash_defined
18405 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18406 || cmse_hash->root.type != STT_FUNC)
18407 continue;
18408
54ddd295
TP
18409 syms[dst_count++] = sym;
18410 }
18411 free (cmse_name);
18412
18413 syms[dst_count] = NULL;
18414
18415 return dst_count;
18416}
18417
18418/* Filter symbols of ABFD to include in the import library. All
18419 SYMCOUNT symbols of ABFD can be examined from their pointers in
18420 SYMS. Pointers of symbols to keep should be stored continuously at
18421 the beginning of that array.
18422
18423 Returns the number of symbols to keep. */
18424
18425static unsigned int
18426elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18427 struct bfd_link_info *info,
18428 asymbol **syms, long symcount)
18429{
18430 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18431
046734ff
TP
18432 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18433 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18434 library to be a relocatable object file. */
18435 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
54ddd295
TP
18436 if (globals->cmse_implib)
18437 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18438 else
18439 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18440}
18441
e489d0ae
PB
18442/* Allocate target specific section data. */
18443
0a1b45a2 18444static bool
e489d0ae
PB
18445elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18446{
f592407e
AM
18447 if (!sec->used_by_bfd)
18448 {
18449 _arm_elf_section_data *sdata;
986f0783 18450 size_t amt = sizeof (*sdata);
e489d0ae 18451
21d799b5 18452 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e 18453 if (sdata == NULL)
0a1b45a2 18454 return false;
f592407e
AM
18455 sec->used_by_bfd = sdata;
18456 }
e489d0ae
PB
18457
18458 return _bfd_elf_new_section_hook (abfd, sec);
18459}
18460
18461
18462/* Used to order a list of mapping symbols by address. */
18463
18464static int
18465elf32_arm_compare_mapping (const void * a, const void * b)
18466{
7f6a71ff
JM
18467 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18468 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18469
18470 if (amap->vma > bmap->vma)
18471 return 1;
18472 else if (amap->vma < bmap->vma)
18473 return -1;
18474 else if (amap->type > bmap->type)
18475 /* Ensure results do not depend on the host qsort for objects with
18476 multiple mapping symbols at the same address by sorting on type
18477 after vma. */
18478 return 1;
18479 else if (amap->type < bmap->type)
18480 return -1;
18481 else
18482 return 0;
e489d0ae
PB
18483}
18484
2468f9c9
PB
18485/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18486
18487static unsigned long
18488offset_prel31 (unsigned long addr, bfd_vma offset)
18489{
18490 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18491}
18492
18493/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18494 relocations. */
18495
18496static void
18497copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18498{
18499 unsigned long first_word = bfd_get_32 (output_bfd, from);
18500 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 18501
2468f9c9
PB
18502 /* High bit of first word is supposed to be zero. */
18503 if ((first_word & 0x80000000ul) == 0)
18504 first_word = offset_prel31 (first_word, offset);
b38cadfb 18505
2468f9c9
PB
18506 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18507 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18508 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18509 second_word = offset_prel31 (second_word, offset);
b38cadfb 18510
2468f9c9
PB
18511 bfd_put_32 (output_bfd, first_word, to);
18512 bfd_put_32 (output_bfd, second_word, to + 4);
18513}
e489d0ae 18514
48229727
JB
18515/* Data for make_branch_to_a8_stub(). */
18516
b38cadfb
NC
18517struct a8_branch_to_stub_data
18518{
48229727
JB
18519 asection *writing_section;
18520 bfd_byte *contents;
18521};
18522
18523
18524/* Helper to insert branches to Cortex-A8 erratum stubs in the right
18525 places for a particular section. */
18526
0a1b45a2 18527static bool
48229727 18528make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 18529 void *in_arg)
48229727
JB
18530{
18531 struct elf32_arm_stub_hash_entry *stub_entry;
18532 struct a8_branch_to_stub_data *data;
18533 bfd_byte *contents;
18534 unsigned long branch_insn;
18535 bfd_vma veneered_insn_loc, veneer_entry_loc;
18536 bfd_signed_vma branch_offset;
18537 bfd *abfd;
8d9d9490 18538 unsigned int loc;
48229727
JB
18539
18540 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18541 data = (struct a8_branch_to_stub_data *) in_arg;
18542
18543 if (stub_entry->target_section != data->writing_section
4563a860 18544 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
0a1b45a2 18545 return true;
48229727
JB
18546
18547 contents = data->contents;
18548
8d9d9490
TP
18549 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18550 generated when both source and target are in the same section. */
48229727
JB
18551 veneered_insn_loc = stub_entry->target_section->output_section->vma
18552 + stub_entry->target_section->output_offset
8d9d9490 18553 + stub_entry->source_value;
48229727
JB
18554
18555 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18556 + stub_entry->stub_sec->output_offset
18557 + stub_entry->stub_offset;
18558
18559 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18560 veneered_insn_loc &= ~3u;
18561
18562 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18563
18564 abfd = stub_entry->target_section->owner;
8d9d9490 18565 loc = stub_entry->source_value;
48229727
JB
18566
18567 /* We attempt to avoid this condition by setting stubs_always_after_branch
18568 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18569 This check is just to be on the safe side... */
18570 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18571 {
871b3ab2 18572 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
4eca0228 18573 "allocated in unsafe location"), abfd);
0a1b45a2 18574 return false;
48229727
JB
18575 }
18576
18577 switch (stub_entry->stub_type)
18578 {
18579 case arm_stub_a8_veneer_b:
18580 case arm_stub_a8_veneer_b_cond:
18581 branch_insn = 0xf0009000;
18582 goto jump24;
18583
18584 case arm_stub_a8_veneer_blx:
18585 branch_insn = 0xf000e800;
18586 goto jump24;
18587
18588 case arm_stub_a8_veneer_bl:
18589 {
18590 unsigned int i1, j1, i2, j2, s;
18591
18592 branch_insn = 0xf000d000;
18593
18594 jump24:
18595 if (branch_offset < -16777216 || branch_offset > 16777214)
18596 {
18597 /* There's not much we can do apart from complain if this
18598 happens. */
871b3ab2 18599 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
4eca0228 18600 "of range (input file too large)"), abfd);
0a1b45a2 18601 return false;
48229727
JB
18602 }
18603
18604 /* i1 = not(j1 eor s), so:
18605 not i1 = j1 eor s
18606 j1 = (not i1) eor s. */
18607
18608 branch_insn |= (branch_offset >> 1) & 0x7ff;
18609 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18610 i2 = (branch_offset >> 22) & 1;
18611 i1 = (branch_offset >> 23) & 1;
18612 s = (branch_offset >> 24) & 1;
18613 j1 = (!i1) ^ s;
18614 j2 = (!i2) ^ s;
18615 branch_insn |= j2 << 11;
18616 branch_insn |= j1 << 13;
18617 branch_insn |= s << 26;
18618 }
18619 break;
18620
18621 default:
18622 BFD_FAIL ();
0a1b45a2 18623 return false;
48229727
JB
18624 }
18625
8d9d9490
TP
18626 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18627 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
48229727 18628
0a1b45a2 18629 return true;
48229727
JB
18630}
18631
a504d23a
LA
18632/* Beginning of stm32l4xx work-around. */
18633
18634/* Functions encoding instructions necessary for the emission of the
18635 fix-stm32l4xx-629360.
18636 Encoding is extracted from the
18637 ARM (C) Architecture Reference Manual
18638 ARMv7-A and ARMv7-R edition
18639 ARM DDI 0406C.b (ID072512). */
18640
18641static inline bfd_vma
82188b29 18642create_instruction_branch_absolute (int branch_offset)
a504d23a
LA
18643{
18644 /* A8.8.18 B (A8-334)
18645 B target_address (Encoding T4). */
18646 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18647 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18648 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18649
a504d23a
LA
18650 int s = ((branch_offset & 0x1000000) >> 24);
18651 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18652 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18653
18654 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18655 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18656
18657 bfd_vma patched_inst = 0xf0009000
18658 | s << 26 /* S. */
18659 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18660 | j1 << 13 /* J1. */
18661 | j2 << 11 /* J2. */
18662 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18663
18664 return patched_inst;
18665}
18666
18667static inline bfd_vma
18668create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18669{
18670 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18671 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18672 bfd_vma patched_inst = 0xe8900000
18673 | (/*W=*/wback << 21)
18674 | (base_reg << 16)
18675 | (reg_mask & 0x0000ffff);
18676
18677 return patched_inst;
18678}
18679
18680static inline bfd_vma
18681create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18682{
18683 /* A8.8.60 LDMDB/LDMEA (A8-402)
18684 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18685 bfd_vma patched_inst = 0xe9100000
18686 | (/*W=*/wback << 21)
18687 | (base_reg << 16)
18688 | (reg_mask & 0x0000ffff);
18689
18690 return patched_inst;
18691}
18692
18693static inline bfd_vma
18694create_instruction_mov (int target_reg, int source_reg)
18695{
18696 /* A8.8.103 MOV (register) (A8-486)
18697 MOV Rd, Rm (Encoding T1). */
18698 bfd_vma patched_inst = 0x4600
18699 | (target_reg & 0x7)
18700 | ((target_reg & 0x8) >> 3) << 7
18701 | (source_reg << 3);
18702
18703 return patched_inst;
18704}
18705
18706static inline bfd_vma
18707create_instruction_sub (int target_reg, int source_reg, int value)
18708{
18709 /* A8.8.221 SUB (immediate) (A8-708)
18710 SUB Rd, Rn, #value (Encoding T3). */
18711 bfd_vma patched_inst = 0xf1a00000
18712 | (target_reg << 8)
18713 | (source_reg << 16)
18714 | (/*S=*/0 << 20)
18715 | ((value & 0x800) >> 11) << 26
18716 | ((value & 0x700) >> 8) << 12
18717 | (value & 0x0ff);
18718
18719 return patched_inst;
18720}
18721
18722static inline bfd_vma
9239bbd3 18723create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
a504d23a
LA
18724 int first_reg)
18725{
18726 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18727 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18728 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
a504d23a
LA
18729 | (/*W=*/wback << 21)
18730 | (base_reg << 16)
9239bbd3
CM
18731 | (num_words & 0x000000ff)
18732 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
a504d23a
LA
18733 | (first_reg & 0x00000001) << 22;
18734
18735 return patched_inst;
18736}
18737
18738static inline bfd_vma
9239bbd3
CM
18739create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18740 int first_reg)
a504d23a
LA
18741{
18742 /* A8.8.332 VLDM (A8-922)
9239bbd3
CM
18743 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18744 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
a504d23a 18745 | (base_reg << 16)
9239bbd3
CM
18746 | (num_words & 0x000000ff)
18747 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
a504d23a
LA
18748 | (first_reg & 0x00000001) << 22;
18749
18750 return patched_inst;
18751}
18752
18753static inline bfd_vma
18754create_instruction_udf_w (int value)
18755{
18756 /* A8.8.247 UDF (A8-758)
18757 Undefined (Encoding T2). */
18758 bfd_vma patched_inst = 0xf7f0a000
18759 | (value & 0x00000fff)
18760 | (value & 0x000f0000) << 16;
18761
18762 return patched_inst;
18763}
18764
18765static inline bfd_vma
18766create_instruction_udf (int value)
18767{
18768 /* A8.8.247 UDF (A8-758)
18769 Undefined (Encoding T1). */
18770 bfd_vma patched_inst = 0xde00
18771 | (value & 0xff);
18772
18773 return patched_inst;
18774}
18775
18776/* Functions writing an instruction in memory, returning the next
18777 memory position to write to. */
18778
18779static inline bfd_byte *
18780push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18781 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18782{
18783 put_thumb2_insn (htab, output_bfd, insn, pt);
18784 return pt + 4;
18785}
18786
18787static inline bfd_byte *
18788push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18789 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18790{
18791 put_thumb_insn (htab, output_bfd, insn, pt);
18792 return pt + 2;
18793}
18794
18795/* Function filling up a region in memory with T1 and T2 UDFs taking
18796 care of alignment. */
18797
18798static bfd_byte *
18799stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
07d6d2b8
AM
18800 bfd * output_bfd,
18801 const bfd_byte * const base_stub_contents,
18802 bfd_byte * const from_stub_contents,
18803 const bfd_byte * const end_stub_contents)
a504d23a
LA
18804{
18805 bfd_byte *current_stub_contents = from_stub_contents;
18806
18807 /* Fill the remaining of the stub with deterministic contents : UDF
18808 instructions.
18809 Check if realignment is needed on modulo 4 frontier using T1, to
18810 further use T2. */
18811 if ((current_stub_contents < end_stub_contents)
18812 && !((current_stub_contents - base_stub_contents) % 2)
18813 && ((current_stub_contents - base_stub_contents) % 4))
18814 current_stub_contents =
18815 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18816 create_instruction_udf (0));
18817
18818 for (; current_stub_contents < end_stub_contents;)
18819 current_stub_contents =
18820 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18821 create_instruction_udf_w (0));
18822
18823 return current_stub_contents;
18824}
18825
18826/* Functions writing the stream of instructions equivalent to the
18827 derived sequence for ldmia, ldmdb, vldm respectively. */
18828
18829static void
18830stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18831 bfd * output_bfd,
18832 const insn32 initial_insn,
18833 const bfd_byte *const initial_insn_addr,
18834 bfd_byte *const base_stub_contents)
18835{
18836 int wback = (initial_insn & 0x00200000) >> 21;
18837 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18838 int insn_all_registers = initial_insn & 0x0000ffff;
18839 int insn_low_registers, insn_high_registers;
18840 int usable_register_mask;
b25e998d 18841 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18842 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18843 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18844 bfd_byte *current_stub_contents = base_stub_contents;
18845
18846 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18847
18848 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18849 smaller than 8 registers load sequences that do not cause the
18850 hardware issue. */
18851 if (nb_registers <= 8)
18852 {
18853 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18854 current_stub_contents =
18855 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18856 initial_insn);
18857
18858 /* B initial_insn_addr+4. */
18859 if (!restore_pc)
18860 current_stub_contents =
18861 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18862 create_instruction_branch_absolute
82188b29 18863 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18864
18865 /* Fill the remaining of the stub with deterministic contents. */
18866 current_stub_contents =
18867 stm32l4xx_fill_stub_udf (htab, output_bfd,
18868 base_stub_contents, current_stub_contents,
18869 base_stub_contents +
18870 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18871
18872 return;
18873 }
18874
18875 /* - reg_list[13] == 0. */
18876 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18877
18878 /* - reg_list[14] & reg_list[15] != 1. */
18879 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18880
18881 /* - if (wback==1) reg_list[rn] == 0. */
18882 BFD_ASSERT (!wback || !restore_rn);
18883
18884 /* - nb_registers > 8. */
b25e998d 18885 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
18886
18887 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18888
18889 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18890 - One with the 7 lowest registers (register mask 0x007F)
18891 This LDM will finally contain between 2 and 7 registers
18892 - One with the 7 highest registers (register mask 0xDF80)
18893 This ldm will finally contain between 2 and 7 registers. */
18894 insn_low_registers = insn_all_registers & 0x007F;
18895 insn_high_registers = insn_all_registers & 0xDF80;
18896
18897 /* A spare register may be needed during this veneer to temporarily
18898 handle the base register. This register will be restored with the
18899 last LDM operation.
18900 The usable register may be any general purpose register (that
18901 excludes PC, SP, LR : register mask is 0x1FFF). */
18902 usable_register_mask = 0x1FFF;
18903
18904 /* Generate the stub function. */
18905 if (wback)
18906 {
18907 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18908 current_stub_contents =
18909 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18910 create_instruction_ldmia
18911 (rn, /*wback=*/1, insn_low_registers));
18912
18913 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18914 current_stub_contents =
18915 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18916 create_instruction_ldmia
18917 (rn, /*wback=*/1, insn_high_registers));
18918 if (!restore_pc)
18919 {
18920 /* B initial_insn_addr+4. */
18921 current_stub_contents =
18922 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18923 create_instruction_branch_absolute
82188b29 18924 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18925 }
18926 }
18927 else /* if (!wback). */
18928 {
18929 ri = rn;
18930
18931 /* If Rn is not part of the high-register-list, move it there. */
18932 if (!(insn_high_registers & (1 << rn)))
18933 {
18934 /* Choose a Ri in the high-register-list that will be restored. */
18935 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18936
18937 /* MOV Ri, Rn. */
18938 current_stub_contents =
18939 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18940 create_instruction_mov (ri, rn));
18941 }
18942
18943 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18944 current_stub_contents =
18945 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18946 create_instruction_ldmia
18947 (ri, /*wback=*/1, insn_low_registers));
18948
18949 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18950 current_stub_contents =
18951 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18952 create_instruction_ldmia
18953 (ri, /*wback=*/0, insn_high_registers));
18954
18955 if (!restore_pc)
18956 {
18957 /* B initial_insn_addr+4. */
18958 current_stub_contents =
18959 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18960 create_instruction_branch_absolute
82188b29 18961 (initial_insn_addr - current_stub_contents));
a504d23a
LA
18962 }
18963 }
18964
18965 /* Fill the remaining of the stub with deterministic contents. */
18966 current_stub_contents =
18967 stm32l4xx_fill_stub_udf (htab, output_bfd,
18968 base_stub_contents, current_stub_contents,
18969 base_stub_contents +
18970 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18971}
18972
18973static void
18974stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18975 bfd * output_bfd,
18976 const insn32 initial_insn,
18977 const bfd_byte *const initial_insn_addr,
18978 bfd_byte *const base_stub_contents)
18979{
18980 int wback = (initial_insn & 0x00200000) >> 21;
18981 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18982 int insn_all_registers = initial_insn & 0x0000ffff;
18983 int insn_low_registers, insn_high_registers;
18984 int usable_register_mask;
18985 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18986 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
b25e998d 18987 int nb_registers = elf32_arm_popcount (insn_all_registers);
a504d23a
LA
18988 bfd_byte *current_stub_contents = base_stub_contents;
18989
18990 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18991
18992 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18993 smaller than 8 registers load sequences that do not cause the
18994 hardware issue. */
18995 if (nb_registers <= 8)
18996 {
18997 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18998 current_stub_contents =
18999 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19000 initial_insn);
19001
19002 /* B initial_insn_addr+4. */
19003 current_stub_contents =
19004 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19005 create_instruction_branch_absolute
82188b29 19006 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19007
19008 /* Fill the remaining of the stub with deterministic contents. */
19009 current_stub_contents =
19010 stm32l4xx_fill_stub_udf (htab, output_bfd,
19011 base_stub_contents, current_stub_contents,
19012 base_stub_contents +
19013 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19014
19015 return;
19016 }
19017
19018 /* - reg_list[13] == 0. */
19019 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19020
19021 /* - reg_list[14] & reg_list[15] != 1. */
19022 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19023
19024 /* - if (wback==1) reg_list[rn] == 0. */
19025 BFD_ASSERT (!wback || !restore_rn);
19026
19027 /* - nb_registers > 8. */
b25e998d 19028 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
a504d23a
LA
19029
19030 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19031
19032 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19033 - One with the 7 lowest registers (register mask 0x007F)
19034 This LDM will finally contain between 2 and 7 registers
19035 - One with the 7 highest registers (register mask 0xDF80)
19036 This ldm will finally contain between 2 and 7 registers. */
19037 insn_low_registers = insn_all_registers & 0x007F;
19038 insn_high_registers = insn_all_registers & 0xDF80;
19039
19040 /* A spare register may be needed during this veneer to temporarily
19041 handle the base register. This register will be restored with
19042 the last LDM operation.
19043 The usable register may be any general purpose register (that excludes
19044 PC, SP, LR : register mask is 0x1FFF). */
19045 usable_register_mask = 0x1FFF;
19046
19047 /* Generate the stub function. */
19048 if (!wback && !restore_pc && !restore_rn)
19049 {
19050 /* Choose a Ri in the low-register-list that will be restored. */
19051 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19052
19053 /* MOV Ri, Rn. */
19054 current_stub_contents =
19055 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19056 create_instruction_mov (ri, rn));
19057
19058 /* LDMDB Ri!, {R-high-register-list}. */
19059 current_stub_contents =
19060 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19061 create_instruction_ldmdb
19062 (ri, /*wback=*/1, insn_high_registers));
19063
19064 /* LDMDB Ri, {R-low-register-list}. */
19065 current_stub_contents =
19066 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19067 create_instruction_ldmdb
19068 (ri, /*wback=*/0, insn_low_registers));
19069
19070 /* B initial_insn_addr+4. */
19071 current_stub_contents =
19072 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19073 create_instruction_branch_absolute
82188b29 19074 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19075 }
19076 else if (wback && !restore_pc && !restore_rn)
19077 {
19078 /* LDMDB Rn!, {R-high-register-list}. */
19079 current_stub_contents =
19080 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19081 create_instruction_ldmdb
19082 (rn, /*wback=*/1, insn_high_registers));
19083
19084 /* LDMDB Rn!, {R-low-register-list}. */
19085 current_stub_contents =
19086 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19087 create_instruction_ldmdb
19088 (rn, /*wback=*/1, insn_low_registers));
19089
19090 /* B initial_insn_addr+4. */
19091 current_stub_contents =
19092 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19093 create_instruction_branch_absolute
82188b29 19094 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19095 }
19096 else if (!wback && restore_pc && !restore_rn)
19097 {
19098 /* Choose a Ri in the high-register-list that will be restored. */
19099 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19100
19101 /* SUB Ri, Rn, #(4*nb_registers). */
19102 current_stub_contents =
19103 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19104 create_instruction_sub (ri, rn, (4 * nb_registers)));
19105
19106 /* LDMIA Ri!, {R-low-register-list}. */
19107 current_stub_contents =
19108 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19109 create_instruction_ldmia
19110 (ri, /*wback=*/1, insn_low_registers));
19111
19112 /* LDMIA Ri, {R-high-register-list}. */
19113 current_stub_contents =
19114 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19115 create_instruction_ldmia
19116 (ri, /*wback=*/0, insn_high_registers));
19117 }
19118 else if (wback && restore_pc && !restore_rn)
19119 {
19120 /* Choose a Ri in the high-register-list that will be restored. */
19121 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19122
19123 /* SUB Rn, Rn, #(4*nb_registers) */
19124 current_stub_contents =
19125 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19126 create_instruction_sub (rn, rn, (4 * nb_registers)));
19127
19128 /* MOV Ri, Rn. */
19129 current_stub_contents =
19130 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19131 create_instruction_mov (ri, rn));
19132
19133 /* LDMIA Ri!, {R-low-register-list}. */
19134 current_stub_contents =
19135 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19136 create_instruction_ldmia
19137 (ri, /*wback=*/1, insn_low_registers));
19138
19139 /* LDMIA Ri, {R-high-register-list}. */
19140 current_stub_contents =
19141 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19142 create_instruction_ldmia
19143 (ri, /*wback=*/0, insn_high_registers));
19144 }
19145 else if (!wback && !restore_pc && restore_rn)
19146 {
19147 ri = rn;
19148 if (!(insn_low_registers & (1 << rn)))
19149 {
19150 /* Choose a Ri in the low-register-list that will be restored. */
19151 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19152
19153 /* MOV Ri, Rn. */
19154 current_stub_contents =
19155 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19156 create_instruction_mov (ri, rn));
19157 }
19158
19159 /* LDMDB Ri!, {R-high-register-list}. */
19160 current_stub_contents =
19161 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19162 create_instruction_ldmdb
19163 (ri, /*wback=*/1, insn_high_registers));
19164
19165 /* LDMDB Ri, {R-low-register-list}. */
19166 current_stub_contents =
19167 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19168 create_instruction_ldmdb
19169 (ri, /*wback=*/0, insn_low_registers));
19170
19171 /* B initial_insn_addr+4. */
19172 current_stub_contents =
19173 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19174 create_instruction_branch_absolute
82188b29 19175 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19176 }
19177 else if (!wback && restore_pc && restore_rn)
19178 {
19179 ri = rn;
19180 if (!(insn_high_registers & (1 << rn)))
19181 {
19182 /* Choose a Ri in the high-register-list that will be restored. */
19183 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19184 }
19185
19186 /* SUB Ri, Rn, #(4*nb_registers). */
19187 current_stub_contents =
19188 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19189 create_instruction_sub (ri, rn, (4 * nb_registers)));
19190
19191 /* LDMIA Ri!, {R-low-register-list}. */
19192 current_stub_contents =
19193 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19194 create_instruction_ldmia
19195 (ri, /*wback=*/1, insn_low_registers));
19196
19197 /* LDMIA Ri, {R-high-register-list}. */
19198 current_stub_contents =
19199 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19200 create_instruction_ldmia
19201 (ri, /*wback=*/0, insn_high_registers));
19202 }
19203 else if (wback && restore_rn)
19204 {
19205 /* The assembler should not have accepted to encode this. */
19206 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19207 "undefined behavior.\n");
19208 }
19209
19210 /* Fill the remaining of the stub with deterministic contents. */
19211 current_stub_contents =
19212 stm32l4xx_fill_stub_udf (htab, output_bfd,
19213 base_stub_contents, current_stub_contents,
19214 base_stub_contents +
19215 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19216
19217}
19218
19219static void
19220stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19221 bfd * output_bfd,
19222 const insn32 initial_insn,
19223 const bfd_byte *const initial_insn_addr,
19224 bfd_byte *const base_stub_contents)
19225{
13c9c485 19226 int num_words = initial_insn & 0xff;
a504d23a
LA
19227 bfd_byte *current_stub_contents = base_stub_contents;
19228
19229 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19230
19231 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
9239bbd3 19232 smaller than 8 words load sequences that do not cause the
a504d23a 19233 hardware issue. */
9239bbd3 19234 if (num_words <= 8)
a504d23a
LA
19235 {
19236 /* Untouched instruction. */
19237 current_stub_contents =
19238 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19239 initial_insn);
19240
19241 /* B initial_insn_addr+4. */
19242 current_stub_contents =
19243 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19244 create_instruction_branch_absolute
82188b29 19245 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19246 }
19247 else
19248 {
0a1b45a2 19249 bool is_dp = /* DP encoding. */
9239bbd3 19250 (initial_insn & 0xfe100f00) == 0xec100b00;
0a1b45a2 19251 bool is_ia_nobang = /* (IA without !). */
a504d23a 19252 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
0a1b45a2 19253 bool is_ia_bang = /* (IA with !) - includes VPOP. */
a504d23a 19254 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
0a1b45a2 19255 bool is_db_bang = /* (DB with !). */
a504d23a 19256 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
9239bbd3 19257 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
a504d23a 19258 /* d = UInt (Vd:D);. */
9239bbd3 19259 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
a504d23a
LA
19260 | (((unsigned int)initial_insn << 9) >> 31);
19261
9239bbd3
CM
19262 /* Compute the number of 8-words chunks needed to split. */
19263 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
a504d23a
LA
19264 int chunk;
19265
19266 /* The test coverage has been done assuming the following
19267 hypothesis that exactly one of the previous is_ predicates is
19268 true. */
9239bbd3
CM
19269 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19270 && !(is_ia_nobang & is_ia_bang & is_db_bang));
a504d23a 19271
9239bbd3 19272 /* We treat the cutting of the words in one pass for all
a504d23a
LA
19273 cases, then we emit the adjustments:
19274
19275 vldm rx, {...}
19276 -> vldm rx!, {8_words_or_less} for each needed 8_word
19277 -> sub rx, rx, #size (list)
19278
19279 vldm rx!, {...}
19280 -> vldm rx!, {8_words_or_less} for each needed 8_word
19281 This also handles vpop instruction (when rx is sp)
19282
19283 vldmd rx!, {...}
19284 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
9239bbd3 19285 for (chunk = 0; chunk < chunks; ++chunk)
a504d23a 19286 {
9239bbd3
CM
19287 bfd_vma new_insn = 0;
19288
a504d23a
LA
19289 if (is_ia_nobang || is_ia_bang)
19290 {
9239bbd3
CM
19291 new_insn = create_instruction_vldmia
19292 (base_reg,
19293 is_dp,
19294 /*wback= . */1,
19295 chunks - (chunk + 1) ?
19296 8 : num_words - chunk * 8,
19297 first_reg + chunk * 8);
a504d23a
LA
19298 }
19299 else if (is_db_bang)
19300 {
9239bbd3
CM
19301 new_insn = create_instruction_vldmdb
19302 (base_reg,
19303 is_dp,
19304 chunks - (chunk + 1) ?
19305 8 : num_words - chunk * 8,
19306 first_reg + chunk * 8);
a504d23a 19307 }
9239bbd3
CM
19308
19309 if (new_insn)
19310 current_stub_contents =
19311 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19312 new_insn);
a504d23a
LA
19313 }
19314
19315 /* Only this case requires the base register compensation
19316 subtract. */
19317 if (is_ia_nobang)
19318 {
19319 current_stub_contents =
19320 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19321 create_instruction_sub
9239bbd3 19322 (base_reg, base_reg, 4*num_words));
a504d23a
LA
19323 }
19324
19325 /* B initial_insn_addr+4. */
19326 current_stub_contents =
19327 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19328 create_instruction_branch_absolute
82188b29 19329 (initial_insn_addr - current_stub_contents));
a504d23a
LA
19330 }
19331
19332 /* Fill the remaining of the stub with deterministic contents. */
19333 current_stub_contents =
19334 stm32l4xx_fill_stub_udf (htab, output_bfd,
19335 base_stub_contents, current_stub_contents,
19336 base_stub_contents +
19337 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19338}
19339
19340static void
19341stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19342 bfd * output_bfd,
19343 const insn32 wrong_insn,
19344 const bfd_byte *const wrong_insn_addr,
19345 bfd_byte *const stub_contents)
19346{
19347 if (is_thumb2_ldmia (wrong_insn))
19348 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19349 wrong_insn, wrong_insn_addr,
19350 stub_contents);
19351 else if (is_thumb2_ldmdb (wrong_insn))
19352 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19353 wrong_insn, wrong_insn_addr,
19354 stub_contents);
19355 else if (is_thumb2_vldm (wrong_insn))
19356 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19357 wrong_insn, wrong_insn_addr,
19358 stub_contents);
19359}
19360
19361/* End of stm32l4xx work-around. */
19362
19363
e489d0ae
PB
19364/* Do code byteswapping. Return FALSE afterwards so that the section is
19365 written out as normal. */
19366
0a1b45a2 19367static bool
c7b8f16e 19368elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
19369 struct bfd_link_info *link_info,
19370 asection *sec,
e489d0ae
PB
19371 bfd_byte *contents)
19372{
48229727 19373 unsigned int mapcount, errcount;
8e3de13a 19374 _arm_elf_section_data *arm_data;
c7b8f16e 19375 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 19376 elf32_arm_section_map *map;
c7b8f16e 19377 elf32_vfp11_erratum_list *errnode;
a504d23a 19378 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
e489d0ae
PB
19379 bfd_vma ptr;
19380 bfd_vma end;
c7b8f16e 19381 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 19382 bfd_byte tmp;
48229727 19383 unsigned int i;
57e8b36a 19384
4dfe6ac6 19385 if (globals == NULL)
0a1b45a2 19386 return false;
4dfe6ac6 19387
8e3de13a
NC
19388 /* If this section has not been allocated an _arm_elf_section_data
19389 structure then we cannot record anything. */
19390 arm_data = get_arm_elf_section_data (sec);
19391 if (arm_data == NULL)
0a1b45a2 19392 return false;
8e3de13a
NC
19393
19394 mapcount = arm_data->mapcount;
19395 map = arm_data->map;
c7b8f16e
JB
19396 errcount = arm_data->erratumcount;
19397
19398 if (errcount != 0)
19399 {
19400 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19401
19402 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
19403 errnode = errnode->next)
19404 {
19405 bfd_vma target = errnode->vma - offset;
19406
19407 switch (errnode->type)
19408 {
19409 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19410 {
19411 bfd_vma branch_to_veneer;
19412 /* Original condition code of instruction, plus bit mask for
19413 ARM B instruction. */
19414 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19415 | 0x0a000000;
c7b8f16e
JB
19416
19417 /* The instruction is before the label. */
91d6fa6a 19418 target -= 4;
c7b8f16e
JB
19419
19420 /* Above offset included in -4 below. */
19421 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 19422 - errnode->vma - 4;
c7b8f16e
JB
19423
19424 if ((signed) branch_to_veneer < -(1 << 25)
19425 || (signed) branch_to_veneer >= (1 << 25))
871b3ab2 19426 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19427 "range"), output_bfd);
c7b8f16e 19428
99059e56
RM
19429 insn |= (branch_to_veneer >> 2) & 0xffffff;
19430 contents[endianflip ^ target] = insn & 0xff;
19431 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19432 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19433 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19434 }
19435 break;
c7b8f16e
JB
19436
19437 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
19438 {
19439 bfd_vma branch_from_veneer;
19440 unsigned int insn;
c7b8f16e 19441
99059e56
RM
19442 /* Take size of veneer into account. */
19443 branch_from_veneer = errnode->u.v.branch->vma
19444 - errnode->vma - 12;
c7b8f16e
JB
19445
19446 if ((signed) branch_from_veneer < -(1 << 25)
19447 || (signed) branch_from_veneer >= (1 << 25))
871b3ab2 19448 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
4eca0228 19449 "range"), output_bfd);
c7b8f16e 19450
99059e56
RM
19451 /* Original instruction. */
19452 insn = errnode->u.v.branch->u.b.vfp_insn;
19453 contents[endianflip ^ target] = insn & 0xff;
19454 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19455 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19456 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19457
19458 /* Branch back to insn after original insn. */
19459 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19460 contents[endianflip ^ (target + 4)] = insn & 0xff;
19461 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19462 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19463 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19464 }
19465 break;
c7b8f16e 19466
99059e56
RM
19467 default:
19468 abort ();
19469 }
19470 }
c7b8f16e 19471 }
e489d0ae 19472
a504d23a
LA
19473 if (arm_data->stm32l4xx_erratumcount != 0)
19474 {
19475 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19476 stm32l4xx_errnode != 0;
19477 stm32l4xx_errnode = stm32l4xx_errnode->next)
19478 {
19479 bfd_vma target = stm32l4xx_errnode->vma - offset;
19480
19481 switch (stm32l4xx_errnode->type)
19482 {
19483 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19484 {
19485 unsigned int insn;
19486 bfd_vma branch_to_veneer =
19487 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19488
19489 if ((signed) branch_to_veneer < -(1 << 24)
19490 || (signed) branch_to_veneer >= (1 << 24))
19491 {
19492 bfd_vma out_of_range =
19493 ((signed) branch_to_veneer < -(1 << 24)) ?
19494 - branch_to_veneer - (1 << 24) :
19495 ((signed) branch_to_veneer >= (1 << 24)) ?
19496 branch_to_veneer - (1 << 24) : 0;
19497
4eca0228 19498 _bfd_error_handler
2dcf00ce 19499 (_("%pB(%#" PRIx64 "): error: "
90b6238f
AM
19500 "cannot create STM32L4XX veneer; "
19501 "jump out of range by %" PRId64 " bytes; "
19502 "cannot encode branch instruction"),
a504d23a 19503 output_bfd,
2dcf00ce
AM
19504 (uint64_t) (stm32l4xx_errnode->vma - 4),
19505 (int64_t) out_of_range);
a504d23a
LA
19506 continue;
19507 }
19508
19509 insn = create_instruction_branch_absolute
82188b29 19510 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
a504d23a 19511
a2699ef2
AM
19512 /* The instruction is before the label. */
19513 target -= 4;
19514
a504d23a
LA
19515 put_thumb2_insn (globals, output_bfd,
19516 (bfd_vma) insn, contents + target);
19517 }
19518 break;
19519
19520 case STM32L4XX_ERRATUM_VENEER:
19521 {
82188b29
NC
19522 bfd_byte * veneer;
19523 bfd_byte * veneer_r;
a504d23a
LA
19524 unsigned int insn;
19525
82188b29
NC
19526 veneer = contents + target;
19527 veneer_r = veneer
19528 + stm32l4xx_errnode->u.b.veneer->vma
19529 - stm32l4xx_errnode->vma - 4;
a504d23a
LA
19530
19531 if ((signed) (veneer_r - veneer -
19532 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19533 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19534 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19535 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19536 || (signed) (veneer_r - veneer) >= (1 << 24))
19537 {
90b6238f
AM
19538 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19539 "veneer"), output_bfd);
a504d23a
LA
19540 continue;
19541 }
19542
19543 /* Original instruction. */
19544 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19545
19546 stm32l4xx_create_replacing_stub
19547 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19548 }
19549 break;
19550
19551 default:
19552 abort ();
19553 }
19554 }
19555 }
19556
2468f9c9
PB
19557 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19558 {
19559 arm_unwind_table_edit *edit_node
99059e56 19560 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 19561 /* Now, sec->size is the size of the section we will write. The original
99059e56 19562 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
19563 markers) was sec->rawsize. (This isn't the case if we perform no
19564 edits, then rawsize will be zero and we should use size). */
21d799b5 19565 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
19566 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19567 unsigned int in_index, out_index;
19568 bfd_vma add_to_offsets = 0;
19569
7a0fb7be 19570 if (edited_contents == NULL)
0a1b45a2 19571 return false;
2468f9c9 19572 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 19573 {
2468f9c9
PB
19574 if (edit_node)
19575 {
19576 unsigned int edit_index = edit_node->index;
b38cadfb 19577
2468f9c9 19578 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 19579 {
2468f9c9
PB
19580 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19581 contents + in_index * 8, add_to_offsets);
19582 out_index++;
19583 in_index++;
19584 }
19585 else if (in_index == edit_index
19586 || (in_index * 8 >= input_size
19587 && edit_index == UINT_MAX))
99059e56 19588 {
2468f9c9
PB
19589 switch (edit_node->type)
19590 {
19591 case DELETE_EXIDX_ENTRY:
19592 in_index++;
19593 add_to_offsets += 8;
19594 break;
b38cadfb 19595
2468f9c9
PB
19596 case INSERT_EXIDX_CANTUNWIND_AT_END:
19597 {
99059e56 19598 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
19599 bfd_vma text_offset = text_sec->output_section->vma
19600 + text_sec->output_offset
19601 + text_sec->size;
19602 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 19603 unsigned long prel31_offset;
2468f9c9
PB
19604
19605 /* Note: this is meant to be equivalent to an
19606 R_ARM_PREL31 relocation. These synthetic
19607 EXIDX_CANTUNWIND markers are not relocated by the
19608 usual BFD method. */
19609 prel31_offset = (text_offset - exidx_offset)
19610 & 0x7ffffffful;
491d01d3
YU
19611 if (bfd_link_relocatable (link_info))
19612 {
19613 /* Here relocation for new EXIDX_CANTUNWIND is
19614 created, so there is no need to
19615 adjust offset by hand. */
19616 prel31_offset = text_sec->output_offset
19617 + text_sec->size;
491d01d3 19618 }
2468f9c9
PB
19619
19620 /* First address we can't unwind. */
19621 bfd_put_32 (output_bfd, prel31_offset,
19622 &edited_contents[out_index * 8]);
19623
19624 /* Code for EXIDX_CANTUNWIND. */
19625 bfd_put_32 (output_bfd, 0x1,
19626 &edited_contents[out_index * 8 + 4]);
19627
19628 out_index++;
19629 add_to_offsets -= 8;
19630 }
19631 break;
19632 }
b38cadfb 19633
2468f9c9
PB
19634 edit_node = edit_node->next;
19635 }
19636 }
19637 else
19638 {
19639 /* No more edits, copy remaining entries verbatim. */
19640 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19641 contents + in_index * 8, add_to_offsets);
19642 out_index++;
19643 in_index++;
19644 }
19645 }
19646
19647 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19648 bfd_set_section_contents (output_bfd, sec->output_section,
19649 edited_contents,
19650 (file_ptr) sec->output_offset, sec->size);
19651
0a1b45a2 19652 return true;
2468f9c9
PB
19653 }
19654
48229727
JB
19655 /* Fix code to point to Cortex-A8 erratum stubs. */
19656 if (globals->fix_cortex_a8)
19657 {
19658 struct a8_branch_to_stub_data data;
19659
19660 data.writing_section = sec;
19661 data.contents = contents;
19662
a504d23a
LA
19663 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19664 & data);
48229727
JB
19665 }
19666
e489d0ae 19667 if (mapcount == 0)
0a1b45a2 19668 return false;
e489d0ae 19669
c7b8f16e 19670 if (globals->byteswap_code)
e489d0ae 19671 {
c7b8f16e 19672 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 19673
c7b8f16e
JB
19674 ptr = map[0].vma;
19675 for (i = 0; i < mapcount; i++)
99059e56
RM
19676 {
19677 if (i == mapcount - 1)
c7b8f16e 19678 end = sec->size;
99059e56
RM
19679 else
19680 end = map[i + 1].vma;
e489d0ae 19681
99059e56 19682 switch (map[i].type)
e489d0ae 19683 {
c7b8f16e
JB
19684 case 'a':
19685 /* Byte swap code words. */
19686 while (ptr + 3 < end)
99059e56
RM
19687 {
19688 tmp = contents[ptr];
19689 contents[ptr] = contents[ptr + 3];
19690 contents[ptr + 3] = tmp;
19691 tmp = contents[ptr + 1];
19692 contents[ptr + 1] = contents[ptr + 2];
19693 contents[ptr + 2] = tmp;
19694 ptr += 4;
19695 }
c7b8f16e 19696 break;
e489d0ae 19697
c7b8f16e
JB
19698 case 't':
19699 /* Byte swap code halfwords. */
19700 while (ptr + 1 < end)
99059e56
RM
19701 {
19702 tmp = contents[ptr];
19703 contents[ptr] = contents[ptr + 1];
19704 contents[ptr + 1] = tmp;
19705 ptr += 2;
19706 }
c7b8f16e
JB
19707 break;
19708
19709 case 'd':
19710 /* Leave data alone. */
19711 break;
19712 }
99059e56
RM
19713 ptr = end;
19714 }
e489d0ae 19715 }
8e3de13a 19716
93204d3a 19717 free (map);
47b2e99c 19718 arm_data->mapcount = -1;
c7b8f16e 19719 arm_data->mapsize = 0;
8e3de13a 19720 arm_data->map = NULL;
8e3de13a 19721
0a1b45a2 19722 return false;
e489d0ae
PB
19723}
19724
0beaef2b
PB
19725/* Mangle thumb function symbols as we read them in. */
19726
0a1b45a2 19727static bool
0beaef2b
PB
19728elf32_arm_swap_symbol_in (bfd * abfd,
19729 const void *psrc,
19730 const void *pshn,
19731 Elf_Internal_Sym *dst)
19732{
8384fb8f 19733 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
0a1b45a2 19734 return false;
39d911fc 19735 dst->st_target_internal = 0;
0beaef2b
PB
19736
19737 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 19738 the address. */
63e1a0fc
PB
19739 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19740 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 19741 {
63e1a0fc
PB
19742 if (dst->st_value & 1)
19743 {
19744 dst->st_value &= ~(bfd_vma) 1;
39d911fc
TP
19745 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19746 ST_BRANCH_TO_THUMB);
63e1a0fc
PB
19747 }
19748 else
39d911fc 19749 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
35fc36a8
RS
19750 }
19751 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19752 {
19753 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
39d911fc 19754 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
0beaef2b 19755 }
35fc36a8 19756 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
39d911fc 19757 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
35fc36a8 19758 else
39d911fc 19759 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
35fc36a8 19760
0a1b45a2 19761 return true;
0beaef2b
PB
19762}
19763
19764
19765/* Mangle thumb function symbols as we write them out. */
19766
19767static void
19768elf32_arm_swap_symbol_out (bfd *abfd,
19769 const Elf_Internal_Sym *src,
19770 void *cdst,
19771 void *shndx)
19772{
19773 Elf_Internal_Sym newsym;
19774
19775 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19776 of the address set, as per the new EABI. We do this unconditionally
19777 because objcopy does not set the elf header flags until after
19778 it writes out the symbol table. */
39d911fc 19779 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
0beaef2b
PB
19780 {
19781 newsym = *src;
34e77a92
RS
19782 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19783 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 19784 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
19785 {
19786 /* Do this only for defined symbols. At link type, the static
19787 linker will simulate the work of dynamic linker of resolving
19788 symbols and will carry over the thumbness of found symbols to
19789 the output symbol table. It's not clear how it happens, but
19790 the thumbness of undefined symbols can well be different at
19791 runtime, and writing '1' for them will be confusing for users
19792 and possibly for dynamic linker itself.
19793 */
19794 newsym.st_value |= 1;
19795 }
906e58ca 19796
0beaef2b
PB
19797 src = &newsym;
19798 }
19799 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19800}
19801
b294bdf8
MM
19802/* Add the PT_ARM_EXIDX program header. */
19803
0a1b45a2 19804static bool
906e58ca 19805elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
19806 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19807{
19808 struct elf_segment_map *m;
19809 asection *sec;
19810
19811 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19812 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19813 {
19814 /* If there is already a PT_ARM_EXIDX header, then we do not
19815 want to add another one. This situation arises when running
19816 "strip"; the input binary already has the header. */
12bd6957 19817 m = elf_seg_map (abfd);
b294bdf8
MM
19818 while (m && m->p_type != PT_ARM_EXIDX)
19819 m = m->next;
19820 if (!m)
19821 {
21d799b5 19822 m = (struct elf_segment_map *)
99059e56 19823 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8 19824 if (m == NULL)
0a1b45a2 19825 return false;
b294bdf8
MM
19826 m->p_type = PT_ARM_EXIDX;
19827 m->count = 1;
19828 m->sections[0] = sec;
19829
12bd6957
AM
19830 m->next = elf_seg_map (abfd);
19831 elf_seg_map (abfd) = m;
b294bdf8
MM
19832 }
19833 }
19834
0a1b45a2 19835 return true;
b294bdf8
MM
19836}
19837
19838/* We may add a PT_ARM_EXIDX program header. */
19839
19840static int
a6b96beb
AM
19841elf32_arm_additional_program_headers (bfd *abfd,
19842 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
19843{
19844 asection *sec;
19845
19846 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19847 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19848 return 1;
19849 else
19850 return 0;
19851}
19852
34e77a92
RS
19853/* Hook called by the linker routine which adds symbols from an object
19854 file. */
19855
0a1b45a2 19856static bool
34e77a92
RS
19857elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19858 Elf_Internal_Sym *sym, const char **namep,
19859 flagword *flagsp, asection **secp, bfd_vma *valp)
19860{
c792917c 19861 if (elf32_arm_hash_table (info) == NULL)
0a1b45a2 19862 return false;
c792917c 19863
90c14f0c 19864 if (elf32_arm_hash_table (info)->root.target_os == is_vxworks
34e77a92
RS
19865 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19866 flagsp, secp, valp))
0a1b45a2 19867 return false;
34e77a92 19868
0a1b45a2 19869 return true;
34e77a92
RS
19870}
19871
0beaef2b 19872/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
19873const struct elf_size_info elf32_arm_size_info =
19874{
0beaef2b
PB
19875 sizeof (Elf32_External_Ehdr),
19876 sizeof (Elf32_External_Phdr),
19877 sizeof (Elf32_External_Shdr),
19878 sizeof (Elf32_External_Rel),
19879 sizeof (Elf32_External_Rela),
19880 sizeof (Elf32_External_Sym),
19881 sizeof (Elf32_External_Dyn),
19882 sizeof (Elf_External_Note),
19883 4,
19884 1,
19885 32, 2,
19886 ELFCLASS32, EV_CURRENT,
19887 bfd_elf32_write_out_phdrs,
19888 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 19889 bfd_elf32_checksum_contents,
0beaef2b
PB
19890 bfd_elf32_write_relocs,
19891 elf32_arm_swap_symbol_in,
19892 elf32_arm_swap_symbol_out,
19893 bfd_elf32_slurp_reloc_table,
19894 bfd_elf32_slurp_symbol_table,
19895 bfd_elf32_swap_dyn_in,
19896 bfd_elf32_swap_dyn_out,
19897 bfd_elf32_swap_reloc_in,
19898 bfd_elf32_swap_reloc_out,
19899 bfd_elf32_swap_reloca_in,
19900 bfd_elf32_swap_reloca_out
19901};
19902
685e70ae
VK
19903static bfd_vma
19904read_code32 (const bfd *abfd, const bfd_byte *addr)
19905{
19906 /* V7 BE8 code is always little endian. */
19907 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19908 return bfd_getl32 (addr);
19909
19910 return bfd_get_32 (abfd, addr);
19911}
19912
19913static bfd_vma
19914read_code16 (const bfd *abfd, const bfd_byte *addr)
19915{
19916 /* V7 BE8 code is always little endian. */
19917 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19918 return bfd_getl16 (addr);
19919
19920 return bfd_get_16 (abfd, addr);
19921}
19922
6a631e86
YG
19923/* Return size of plt0 entry starting at ADDR
19924 or (bfd_vma) -1 if size can not be determined. */
19925
19926static bfd_vma
19927elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19928{
19929 bfd_vma first_word;
19930 bfd_vma plt0_size;
19931
685e70ae 19932 first_word = read_code32 (abfd, addr);
6a631e86
YG
19933
19934 if (first_word == elf32_arm_plt0_entry[0])
19935 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19936 else if (first_word == elf32_thumb2_plt0_entry[0])
19937 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19938 else
19939 /* We don't yet handle this PLT format. */
19940 return (bfd_vma) -1;
19941
19942 return plt0_size;
19943}
19944
19945/* Return size of plt entry starting at offset OFFSET
19946 of plt section located at address START
19947 or (bfd_vma) -1 if size can not be determined. */
19948
19949static bfd_vma
19950elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19951{
19952 bfd_vma first_insn;
19953 bfd_vma plt_size = 0;
19954 const bfd_byte *addr = start + offset;
19955
19956 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 19957 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
19958 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19959
19960 /* Respect Thumb stub if necessary. */
685e70ae 19961 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86 19962 {
cc850f74 19963 plt_size += 2 * ARRAY_SIZE (elf32_arm_plt_thumb_stub);
6a631e86
YG
19964 }
19965
19966 /* Strip immediate from first add. */
685e70ae 19967 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
19968
19969#ifdef FOUR_WORD_PLT
19970 if (first_insn == elf32_arm_plt_entry[0])
19971 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19972#else
19973 if (first_insn == elf32_arm_plt_entry_long[0])
19974 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19975 else if (first_insn == elf32_arm_plt_entry_short[0])
19976 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19977#endif
19978 else
19979 /* We don't yet handle this PLT format. */
19980 return (bfd_vma) -1;
19981
19982 return plt_size;
19983}
19984
19985/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19986
19987static long
19988elf32_arm_get_synthetic_symtab (bfd *abfd,
19989 long symcount ATTRIBUTE_UNUSED,
19990 asymbol **syms ATTRIBUTE_UNUSED,
19991 long dynsymcount,
19992 asymbol **dynsyms,
19993 asymbol **ret)
19994{
19995 asection *relplt;
19996 asymbol *s;
19997 arelent *p;
19998 long count, i, n;
19999 size_t size;
20000 Elf_Internal_Shdr *hdr;
20001 char *names;
20002 asection *plt;
20003 bfd_vma offset;
20004 bfd_byte *data;
20005
20006 *ret = NULL;
20007
20008 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20009 return 0;
20010
20011 if (dynsymcount <= 0)
20012 return 0;
20013
20014 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20015 if (relplt == NULL)
20016 return 0;
20017
20018 hdr = &elf_section_data (relplt)->this_hdr;
20019 if (hdr->sh_link != elf_dynsymtab (abfd)
20020 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20021 return 0;
20022
20023 plt = bfd_get_section_by_name (abfd, ".plt");
20024 if (plt == NULL)
20025 return 0;
20026
0a1b45a2 20027 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, true))
6a631e86
YG
20028 return -1;
20029
20030 data = plt->contents;
20031 if (data == NULL)
20032 {
206e9791
AM
20033 if (!bfd_get_full_section_contents (abfd, plt, &data)
20034 || data == NULL)
6a631e86 20035 return -1;
206e9791
AM
20036 plt->contents = data;
20037 plt->flags |= SEC_IN_MEMORY;
6a631e86
YG
20038 }
20039
20040 count = relplt->size / hdr->sh_entsize;
20041 size = count * sizeof (asymbol);
20042 p = relplt->relocation;
20043 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20044 {
20045 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20046 if (p->addend != 0)
20047 size += sizeof ("+0x") - 1 + 8;
20048 }
20049
20050 s = *ret = (asymbol *) bfd_malloc (size);
20051 if (s == NULL)
20052 return -1;
20053
20054 offset = elf32_arm_plt0_size (abfd, data);
20055 if (offset == (bfd_vma) -1)
20056 return -1;
20057
20058 names = (char *) (s + count);
20059 p = relplt->relocation;
20060 n = 0;
20061 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20062 {
20063 size_t len;
20064
20065 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20066 if (plt_size == (bfd_vma) -1)
20067 break;
20068
20069 *s = **p->sym_ptr_ptr;
20070 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20071 we are defining a symbol, ensure one of them is set. */
20072 if ((s->flags & BSF_LOCAL) == 0)
20073 s->flags |= BSF_GLOBAL;
20074 s->flags |= BSF_SYNTHETIC;
20075 s->section = plt;
20076 s->value = offset;
20077 s->name = names;
20078 s->udata.p = NULL;
20079 len = strlen ((*p->sym_ptr_ptr)->name);
20080 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20081 names += len;
20082 if (p->addend != 0)
20083 {
20084 char buf[30], *a;
20085
20086 memcpy (names, "+0x", sizeof ("+0x") - 1);
20087 names += sizeof ("+0x") - 1;
20088 bfd_sprintf_vma (abfd, buf, p->addend);
20089 for (a = buf; *a == '0'; ++a)
20090 ;
20091 len = strlen (a);
20092 memcpy (names, a, len);
20093 names += len;
20094 }
20095 memcpy (names, "@plt", sizeof ("@plt"));
20096 names += sizeof ("@plt");
20097 ++s, ++n;
20098 offset += plt_size;
20099 }
20100
20101 return n;
20102}
20103
0a1b45a2 20104static bool
8c803a2d 20105elf32_arm_section_flags (const Elf_Internal_Shdr *hdr)
ac4c9b04 20106{
f0728ee3 20107 if (hdr->sh_flags & SHF_ARM_PURECODE)
8c803a2d 20108 hdr->bfd_section->flags |= SEC_ELF_PURECODE;
0a1b45a2 20109 return true;
ac4c9b04
MG
20110}
20111
20112static flagword
20113elf32_arm_lookup_section_flags (char *flag_name)
20114{
f0728ee3
AV
20115 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20116 return SHF_ARM_PURECODE;
ac4c9b04
MG
20117
20118 return SEC_NO_FLAGS;
20119}
20120
491d01d3
YU
20121static unsigned int
20122elf32_arm_count_additional_relocs (asection *sec)
20123{
20124 struct _arm_elf_section_data *arm_data;
20125 arm_data = get_arm_elf_section_data (sec);
5025eb7c 20126
6342be70 20127 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
491d01d3
YU
20128}
20129
5522f910 20130/* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
9eaff861 20131 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
5522f910
NC
20132 FALSE otherwise. ISECTION is the best guess matching section from the
20133 input bfd IBFD, but it might be NULL. */
20134
0a1b45a2 20135static bool
5522f910
NC
20136elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20137 bfd *obfd ATTRIBUTE_UNUSED,
20138 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20139 Elf_Internal_Shdr *osection)
20140{
20141 switch (osection->sh_type)
20142 {
20143 case SHT_ARM_EXIDX:
20144 {
20145 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20146 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20147 unsigned i = 0;
20148
20149 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20150 osection->sh_info = 0;
20151
20152 /* The sh_link field must be set to the text section associated with
20153 this index section. Unfortunately the ARM EHABI does not specify
20154 exactly how to determine this association. Our caller does try
20155 to match up OSECTION with its corresponding input section however
20156 so that is a good first guess. */
20157 if (isection != NULL
20158 && osection->bfd_section != NULL
20159 && isection->bfd_section != NULL
20160 && isection->bfd_section->output_section != NULL
20161 && isection->bfd_section->output_section == osection->bfd_section
20162 && iheaders != NULL
20163 && isection->sh_link > 0
20164 && isection->sh_link < elf_numsections (ibfd)
20165 && iheaders[isection->sh_link]->bfd_section != NULL
20166 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20167 )
20168 {
20169 for (i = elf_numsections (obfd); i-- > 0;)
20170 if (oheaders[i]->bfd_section
20171 == iheaders[isection->sh_link]->bfd_section->output_section)
20172 break;
20173 }
9eaff861 20174
5522f910
NC
20175 if (i == 0)
20176 {
20177 /* Failing that we have to find a matching section ourselves. If
20178 we had the output section name available we could compare that
20179 with input section names. Unfortunately we don't. So instead
20180 we use a simple heuristic and look for the nearest executable
20181 section before this one. */
20182 for (i = elf_numsections (obfd); i-- > 0;)
20183 if (oheaders[i] == osection)
20184 break;
20185 if (i == 0)
20186 break;
20187
20188 while (i-- > 0)
20189 if (oheaders[i]->sh_type == SHT_PROGBITS
20190 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20191 == (SHF_ALLOC | SHF_EXECINSTR))
20192 break;
20193 }
20194
20195 if (i)
20196 {
20197 osection->sh_link = i;
20198 /* If the text section was part of a group
20199 then the index section should be too. */
20200 if (oheaders[i]->sh_flags & SHF_GROUP)
20201 osection->sh_flags |= SHF_GROUP;
0a1b45a2 20202 return true;
5522f910
NC
20203 }
20204 }
20205 break;
20206
20207 case SHT_ARM_PREEMPTMAP:
20208 osection->sh_flags = SHF_ALLOC;
20209 break;
20210
20211 case SHT_ARM_ATTRIBUTES:
20212 case SHT_ARM_DEBUGOVERLAY:
20213 case SHT_ARM_OVERLAYSECTION:
20214 default:
20215 break;
20216 }
20217
0a1b45a2 20218 return false;
5522f910
NC
20219}
20220
d691934d
NC
20221/* Returns TRUE if NAME is an ARM mapping symbol.
20222 Traditionally the symbols $a, $d and $t have been used.
20223 The ARM ELF standard also defines $x (for A64 code). It also allows a
20224 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20225 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20226 not support them here. $t.x indicates the start of ThumbEE instructions. */
20227
0a1b45a2 20228static bool
d691934d
NC
20229is_arm_mapping_symbol (const char * name)
20230{
20231 return name != NULL /* Paranoia. */
20232 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20233 the mapping symbols could have acquired a prefix.
20234 We do not support this here, since such symbols no
20235 longer conform to the ARM ELF ABI. */
20236 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20237 && (name[2] == 0 || name[2] == '.');
20238 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20239 any characters that follow the period are legal characters for the body
20240 of a symbol's name. For now we just assume that this is the case. */
20241}
20242
fca2a38f
NC
20243/* Make sure that mapping symbols in object files are not removed via the
20244 "strip --strip-unneeded" tool. These symbols are needed in order to
20245 correctly generate interworking veneers, and for byte swapping code
20246 regions. Once an object file has been linked, it is safe to remove the
20247 symbols as they will no longer be needed. */
20248
20249static void
20250elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20251{
20252 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
fca2a38f 20253 && sym->section != bfd_abs_section_ptr
d691934d 20254 && is_arm_mapping_symbol (sym->name))
fca2a38f
NC
20255 sym->flags |= BSF_KEEP;
20256}
20257
5522f910
NC
20258#undef elf_backend_copy_special_section_fields
20259#define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20260
252b5132 20261#define ELF_ARCH bfd_arch_arm
ae95ffa6 20262#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 20263#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
20264#ifdef __QNXTARGET__
20265#define ELF_MAXPAGESIZE 0x1000
20266#else
7572ca89 20267#define ELF_MAXPAGESIZE 0x10000
d0facd1b 20268#endif
24718e3b 20269#define ELF_COMMONPAGESIZE 0x1000
252b5132 20270
07d6d2b8 20271#define bfd_elf32_mkobject elf32_arm_mkobject
ba93b8ac 20272
99e4ae17
AJ
20273#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20274#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
20275#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20276#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
07d6d2b8 20277#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 20278#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 20279#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
07d6d2b8 20280#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 20281#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 20282#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 20283#define bfd_elf32_bfd_final_link elf32_arm_final_link
07d6d2b8 20284#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132 20285
07d6d2b8 20286#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
e7679060 20287#define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
07d6d2b8 20288#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 20289#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
07d6d2b8 20290#define elf_backend_check_relocs elf32_arm_check_relocs
9eaff861 20291#define elf_backend_update_relocs elf32_arm_update_relocs
dc810e39 20292#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 20293#define elf_backend_write_section elf32_arm_write_section
252b5132 20294#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
07d6d2b8 20295#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
20296#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20297#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20298#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 20299#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 20300#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ed7e9d0b 20301#define elf_backend_init_file_header elf32_arm_init_file_header
99e4ae17 20302#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 20303#define elf_backend_object_p elf32_arm_object_p
07d6d2b8
AM
20304#define elf_backend_fake_sections elf32_arm_fake_sections
20305#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20306#define elf_backend_final_write_processing elf32_arm_final_write_processing
20307#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 20308#define elf_backend_size_info elf32_arm_size_info
b294bdf8 20309#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
07d6d2b8
AM
20310#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20311#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
54ddd295 20312#define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
07d6d2b8 20313#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 20314#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
491d01d3 20315#define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
fca2a38f 20316#define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
906e58ca
NC
20317
20318#define elf_backend_can_refcount 1
20319#define elf_backend_can_gc_sections 1
20320#define elf_backend_plt_readonly 1
20321#define elf_backend_want_got_plt 1
20322#define elf_backend_want_plt_sym 0
5474d94f 20323#define elf_backend_want_dynrelro 1
906e58ca
NC
20324#define elf_backend_may_use_rel_p 1
20325#define elf_backend_may_use_rela_p 0
4e7fd91e 20326#define elf_backend_default_use_rela_p 0
64f52338 20327#define elf_backend_dtrel_excludes_plt 1
252b5132 20328
04f7c78d 20329#define elf_backend_got_header_size 12
af9bf9cb 20330#define elf_backend_extern_protected_data 0
04f7c78d 20331
07d6d2b8 20332#undef elf_backend_obj_attrs_vendor
906e58ca 20333#define elf_backend_obj_attrs_vendor "aeabi"
07d6d2b8 20334#undef elf_backend_obj_attrs_section
906e58ca 20335#define elf_backend_obj_attrs_section ".ARM.attributes"
07d6d2b8 20336#undef elf_backend_obj_attrs_arg_type
906e58ca 20337#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
07d6d2b8 20338#undef elf_backend_obj_attrs_section_type
104d59d1 20339#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb 20340#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
07d6d2b8 20341#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 20342
07d6d2b8 20343#undef elf_backend_section_flags
ac4c9b04 20344#define elf_backend_section_flags elf32_arm_section_flags
07d6d2b8
AM
20345#undef elf_backend_lookup_section_flags_hook
20346#define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
ac4c9b04 20347
0a1b45a2 20348#define elf_backend_linux_prpsinfo32_ugid16 true
a2f63b2e 20349
252b5132 20350#include "elf32-target.h"
7f266840 20351
b38cadfb
NC
20352/* Native Client targets. */
20353
20354#undef TARGET_LITTLE_SYM
6d00b590 20355#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
20356#undef TARGET_LITTLE_NAME
20357#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20358#undef TARGET_BIG_SYM
6d00b590 20359#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
20360#undef TARGET_BIG_NAME
20361#define TARGET_BIG_NAME "elf32-bigarm-nacl"
20362
20363/* Like elf32_arm_link_hash_table_create -- but overrides
20364 appropriately for NaCl. */
20365
20366static struct bfd_link_hash_table *
20367elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20368{
20369 struct bfd_link_hash_table *ret;
20370
20371 ret = elf32_arm_link_hash_table_create (abfd);
20372 if (ret)
20373 {
20374 struct elf32_arm_link_hash_table *htab
20375 = (struct elf32_arm_link_hash_table *) ret;
20376
b38cadfb
NC
20377 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20378 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20379 }
20380 return ret;
20381}
20382
20383/* Since NaCl doesn't use the ARM-specific unwind format, we don't
20384 really need to use elf32_arm_modify_segment_map. But we do it
20385 anyway just to reduce gratuitous differences with the stock ARM backend. */
20386
0a1b45a2 20387static bool
b38cadfb
NC
20388elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20389{
20390 return (elf32_arm_modify_segment_map (abfd, info)
20391 && nacl_modify_segment_map (abfd, info));
20392}
20393
0a1b45a2 20394static bool
cc364be6 20395elf32_arm_nacl_final_write_processing (bfd *abfd)
887badb3 20396{
cc364be6
AM
20397 arm_final_write_processing (abfd);
20398 return nacl_final_write_processing (abfd);
887badb3
RM
20399}
20400
6a631e86
YG
20401static bfd_vma
20402elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20403 const arelent *rel ATTRIBUTE_UNUSED)
20404{
20405 return plt->vma
20406 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20407 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20408}
887badb3 20409
b38cadfb 20410#undef elf32_bed
6a631e86 20411#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
20412#undef bfd_elf32_bfd_link_hash_table_create
20413#define bfd_elf32_bfd_link_hash_table_create \
20414 elf32_arm_nacl_link_hash_table_create
20415#undef elf_backend_plt_alignment
6a631e86 20416#define elf_backend_plt_alignment 4
b38cadfb
NC
20417#undef elf_backend_modify_segment_map
20418#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
6d6c25c8
AM
20419#undef elf_backend_modify_headers
20420#define elf_backend_modify_headers nacl_modify_headers
887badb3
RM
20421#undef elf_backend_final_write_processing
20422#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
20423#undef bfd_elf32_get_synthetic_symtab
20424#undef elf_backend_plt_sym_val
20425#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
5522f910 20426#undef elf_backend_copy_special_section_fields
b38cadfb 20427
887badb3
RM
20428#undef ELF_MINPAGESIZE
20429#undef ELF_COMMONPAGESIZE
20430
90c14f0c
L
20431#undef ELF_TARGET_OS
20432#define ELF_TARGET_OS is_nacl
b38cadfb
NC
20433
20434#include "elf32-target.h"
20435
20436/* Reset to defaults. */
20437#undef elf_backend_plt_alignment
20438#undef elf_backend_modify_segment_map
20439#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
6d6c25c8 20440#undef elf_backend_modify_headers
887badb3
RM
20441#undef elf_backend_final_write_processing
20442#define elf_backend_final_write_processing elf32_arm_final_write_processing
20443#undef ELF_MINPAGESIZE
887badb3
RM
20444#undef ELF_COMMONPAGESIZE
20445#define ELF_COMMONPAGESIZE 0x1000
20446
b38cadfb 20447
617a5ada
CL
20448/* FDPIC Targets. */
20449
20450#undef TARGET_LITTLE_SYM
20451#define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20452#undef TARGET_LITTLE_NAME
20453#define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20454#undef TARGET_BIG_SYM
20455#define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20456#undef TARGET_BIG_NAME
20457#define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20458#undef elf_match_priority
20459#define elf_match_priority 128
18a20338
CL
20460#undef ELF_OSABI
20461#define ELF_OSABI ELFOSABI_ARM_FDPIC
617a5ada
CL
20462
20463/* Like elf32_arm_link_hash_table_create -- but overrides
20464 appropriately for FDPIC. */
20465
20466static struct bfd_link_hash_table *
20467elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20468{
20469 struct bfd_link_hash_table *ret;
20470
20471 ret = elf32_arm_link_hash_table_create (abfd);
20472 if (ret)
20473 {
20474 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20475
20476 htab->fdpic_p = 1;
20477 }
20478 return ret;
20479}
20480
e8b09b87
CL
20481/* We need dynamic symbols for every section, since segments can
20482 relocate independently. */
0a1b45a2 20483static bool
e8b09b87
CL
20484elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20485 struct bfd_link_info *info
20486 ATTRIBUTE_UNUSED,
20487 asection *p ATTRIBUTE_UNUSED)
20488{
20489 switch (elf_section_data (p)->this_hdr.sh_type)
20490 {
20491 case SHT_PROGBITS:
20492 case SHT_NOBITS:
20493 /* If sh_type is yet undecided, assume it could be
20494 SHT_PROGBITS/SHT_NOBITS. */
20495 case SHT_NULL:
0a1b45a2 20496 return false;
e8b09b87
CL
20497
20498 /* There shouldn't be section relative relocations
20499 against any other section. */
20500 default:
0a1b45a2 20501 return true;
e8b09b87
CL
20502 }
20503}
20504
617a5ada
CL
20505#undef elf32_bed
20506#define elf32_bed elf32_arm_fdpic_bed
20507
20508#undef bfd_elf32_bfd_link_hash_table_create
4b24dd1a 20509#define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
617a5ada 20510
e8b09b87
CL
20511#undef elf_backend_omit_section_dynsym
20512#define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20513
90c14f0c
L
20514#undef ELF_TARGET_OS
20515
617a5ada 20516#include "elf32-target.h"
e8b09b87 20517
617a5ada 20518#undef elf_match_priority
18a20338 20519#undef ELF_OSABI
e8b09b87 20520#undef elf_backend_omit_section_dynsym
617a5ada 20521
906e58ca 20522/* VxWorks Targets. */
4e7fd91e 20523
07d6d2b8
AM
20524#undef TARGET_LITTLE_SYM
20525#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20526#undef TARGET_LITTLE_NAME
20527#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20528#undef TARGET_BIG_SYM
20529#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20530#undef TARGET_BIG_NAME
20531#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
4e7fd91e
PB
20532
20533/* Like elf32_arm_link_hash_table_create -- but overrides
20534 appropriately for VxWorks. */
906e58ca 20535
4e7fd91e
PB
20536static struct bfd_link_hash_table *
20537elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20538{
20539 struct bfd_link_hash_table *ret;
20540
20541 ret = elf32_arm_link_hash_table_create (abfd);
20542 if (ret)
20543 {
20544 struct elf32_arm_link_hash_table *htab
00a97672 20545 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e
PB
20546 htab->use_rel = 0;
20547 }
20548 return ret;
906e58ca 20549}
4e7fd91e 20550
0a1b45a2 20551static bool
cc364be6 20552elf32_arm_vxworks_final_write_processing (bfd *abfd)
00a97672 20553{
cc364be6
AM
20554 arm_final_write_processing (abfd);
20555 return elf_vxworks_final_write_processing (abfd);
00a97672
RS
20556}
20557
906e58ca 20558#undef elf32_bed
4e7fd91e
PB
20559#define elf32_bed elf32_arm_vxworks_bed
20560
906e58ca
NC
20561#undef bfd_elf32_bfd_link_hash_table_create
20562#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
20563#undef elf_backend_final_write_processing
20564#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20565#undef elf_backend_emit_relocs
9eaff861 20566#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 20567
906e58ca 20568#undef elf_backend_may_use_rel_p
00a97672 20569#define elf_backend_may_use_rel_p 0
906e58ca 20570#undef elf_backend_may_use_rela_p
00a97672 20571#define elf_backend_may_use_rela_p 1
906e58ca 20572#undef elf_backend_default_use_rela_p
00a97672 20573#define elf_backend_default_use_rela_p 1
906e58ca 20574#undef elf_backend_want_plt_sym
00a97672 20575#define elf_backend_want_plt_sym 1
906e58ca 20576#undef ELF_MAXPAGESIZE
00a97672 20577#define ELF_MAXPAGESIZE 0x1000
90c14f0c
L
20578#undef ELF_TARGET_OS
20579#define ELF_TARGET_OS is_vxworks
4e7fd91e
PB
20580
20581#include "elf32-target.h"
20582
20583
21d799b5
NC
20584/* Merge backend specific data from an object file to the output
20585 object file when linking. */
20586
0a1b45a2 20587static bool
50e03d47 20588elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
21d799b5 20589{
50e03d47 20590 bfd *obfd = info->output_bfd;
21d799b5
NC
20591 flagword out_flags;
20592 flagword in_flags;
0a1b45a2 20593 bool flags_compatible = true;
21d799b5
NC
20594 asection *sec;
20595
cc643b88 20596 /* Check if we have the same endianness. */
50e03d47 20597 if (! _bfd_generic_verify_endian_match (ibfd, info))
0a1b45a2 20598 return false;
21d799b5
NC
20599
20600 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
0a1b45a2 20601 return true;
21d799b5 20602
50e03d47 20603 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
0a1b45a2 20604 return false;
21d799b5
NC
20605
20606 /* The input BFD must have had its flags initialised. */
20607 /* The following seems bogus to me -- The flags are initialized in
20608 the assembler but I don't think an elf_flags_init field is
20609 written into the object. */
20610 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20611
20612 in_flags = elf_elfheader (ibfd)->e_flags;
20613 out_flags = elf_elfheader (obfd)->e_flags;
20614
20615 /* In theory there is no reason why we couldn't handle this. However
20616 in practice it isn't even close to working and there is no real
20617 reason to want it. */
20618 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20619 && !(ibfd->flags & DYNAMIC)
20620 && (in_flags & EF_ARM_BE8))
20621 {
871b3ab2 20622 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
21d799b5 20623 ibfd);
0a1b45a2 20624 return false;
21d799b5
NC
20625 }
20626
20627 if (!elf_flags_init (obfd))
20628 {
20629 /* If the input is the default architecture and had the default
20630 flags then do not bother setting the flags for the output
20631 architecture, instead allow future merges to do this. If no
20632 future merges ever set these flags then they will retain their
99059e56
RM
20633 uninitialised values, which surprise surprise, correspond
20634 to the default values. */
21d799b5
NC
20635 if (bfd_get_arch_info (ibfd)->the_default
20636 && elf_elfheader (ibfd)->e_flags == 0)
0a1b45a2 20637 return true;
21d799b5 20638
0a1b45a2 20639 elf_flags_init (obfd) = true;
21d799b5
NC
20640 elf_elfheader (obfd)->e_flags = in_flags;
20641
20642 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20643 && bfd_get_arch_info (obfd)->the_default)
20644 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20645
0a1b45a2 20646 return true;
21d799b5
NC
20647 }
20648
20649 /* Determine what should happen if the input ARM architecture
20650 does not match the output ARM architecture. */
20651 if (! bfd_arm_merge_machines (ibfd, obfd))
0a1b45a2 20652 return false;
21d799b5
NC
20653
20654 /* Identical flags must be compatible. */
20655 if (in_flags == out_flags)
0a1b45a2 20656 return true;
21d799b5
NC
20657
20658 /* Check to see if the input BFD actually contains any sections. If
20659 not, its flags may not have been initialised either, but it
20660 cannot actually cause any incompatiblity. Do not short-circuit
20661 dynamic objects; their section list may be emptied by
20662 elf_link_add_object_symbols.
20663
20664 Also check to see if there are no code sections in the input.
20665 In this case there is no need to check for code specific flags.
20666 XXX - do we need to worry about floating-point format compatability
20667 in data sections ? */
20668 if (!(ibfd->flags & DYNAMIC))
20669 {
0a1b45a2
AM
20670 bool null_input_bfd = true;
20671 bool only_data_sections = true;
21d799b5
NC
20672
20673 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20674 {
20675 /* Ignore synthetic glue sections. */
20676 if (strcmp (sec->name, ".glue_7")
20677 && strcmp (sec->name, ".glue_7t"))
20678 {
fd361982 20679 if ((bfd_section_flags (sec)
21d799b5
NC
20680 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20681 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
0a1b45a2 20682 only_data_sections = false;
21d799b5 20683
0a1b45a2 20684 null_input_bfd = false;
21d799b5
NC
20685 break;
20686 }
20687 }
20688
20689 if (null_input_bfd || only_data_sections)
0a1b45a2 20690 return true;
21d799b5
NC
20691 }
20692
20693 /* Complain about various flag mismatches. */
20694 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20695 EF_ARM_EABI_VERSION (out_flags)))
20696 {
20697 _bfd_error_handler
90b6238f 20698 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
c08bb8dd
AM
20699 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20700 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
0a1b45a2 20701 return false;
21d799b5
NC
20702 }
20703
20704 /* Not sure what needs to be checked for EABI versions >= 1. */
20705 /* VxWorks libraries do not use these flags. */
20706 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20707 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20708 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20709 {
20710 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20711 {
20712 _bfd_error_handler
871b3ab2 20713 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
c08bb8dd
AM
20714 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20715 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
0a1b45a2 20716 flags_compatible = false;
21d799b5
NC
20717 }
20718
20719 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20720 {
20721 if (in_flags & EF_ARM_APCS_FLOAT)
20722 _bfd_error_handler
871b3ab2 20723 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
21d799b5
NC
20724 ibfd, obfd);
20725 else
20726 _bfd_error_handler
871b3ab2 20727 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
21d799b5
NC
20728 ibfd, obfd);
20729
0a1b45a2 20730 flags_compatible = false;
21d799b5
NC
20731 }
20732
20733 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20734 {
20735 if (in_flags & EF_ARM_VFP_FLOAT)
20736 _bfd_error_handler
90b6238f
AM
20737 (_("error: %pB uses %s instructions, whereas %pB does not"),
20738 ibfd, "VFP", obfd);
21d799b5
NC
20739 else
20740 _bfd_error_handler
90b6238f
AM
20741 (_("error: %pB uses %s instructions, whereas %pB does not"),
20742 ibfd, "FPA", obfd);
21d799b5 20743
0a1b45a2 20744 flags_compatible = false;
21d799b5
NC
20745 }
20746
20747 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20748 {
20749 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20750 _bfd_error_handler
90b6238f
AM
20751 (_("error: %pB uses %s instructions, whereas %pB does not"),
20752 ibfd, "Maverick", obfd);
21d799b5
NC
20753 else
20754 _bfd_error_handler
90b6238f
AM
20755 (_("error: %pB does not use %s instructions, whereas %pB does"),
20756 ibfd, "Maverick", obfd);
21d799b5 20757
0a1b45a2 20758 flags_compatible = false;
21d799b5
NC
20759 }
20760
20761#ifdef EF_ARM_SOFT_FLOAT
20762 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20763 {
20764 /* We can allow interworking between code that is VFP format
20765 layout, and uses either soft float or integer regs for
20766 passing floating point arguments and results. We already
20767 know that the APCS_FLOAT flags match; similarly for VFP
20768 flags. */
20769 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20770 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20771 {
20772 if (in_flags & EF_ARM_SOFT_FLOAT)
20773 _bfd_error_handler
871b3ab2 20774 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
21d799b5
NC
20775 ibfd, obfd);
20776 else
20777 _bfd_error_handler
871b3ab2 20778 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
21d799b5
NC
20779 ibfd, obfd);
20780
0a1b45a2 20781 flags_compatible = false;
21d799b5
NC
20782 }
20783 }
20784#endif
20785
20786 /* Interworking mismatch is only a warning. */
20787 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20788 {
20789 if (in_flags & EF_ARM_INTERWORK)
20790 {
20791 _bfd_error_handler
90b6238f 20792 (_("warning: %pB supports interworking, whereas %pB does not"),
21d799b5
NC
20793 ibfd, obfd);
20794 }
20795 else
20796 {
20797 _bfd_error_handler
90b6238f 20798 (_("warning: %pB does not support interworking, whereas %pB does"),
21d799b5
NC
20799 ibfd, obfd);
20800 }
20801 }
20802 }
20803
20804 return flags_compatible;
20805}