]>
Commit | Line | Data |
---|---|---|
252b5132 RH |
1 | /* BFD back-end for HP PA-RISC ELF files. |
2 | Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 1997 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | Written by | |
6 | ||
7 | Center for Software Science | |
8 | Department of Computer Science | |
9 | University of Utah | |
10 | ||
11 | This file is part of BFD, the Binary File Descriptor library. | |
12 | ||
13 | This program is free software; you can redistribute it and/or modify | |
14 | it under the terms of the GNU General Public License as published by | |
15 | the Free Software Foundation; either version 2 of the License, or | |
16 | (at your option) any later version. | |
17 | ||
18 | This program is distributed in the hope that it will be useful, | |
19 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
21 | GNU General Public License for more details. | |
22 | ||
23 | You should have received a copy of the GNU General Public License | |
24 | along with this program; if not, write to the Free Software | |
25 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
26 | ||
27 | #include "bfd.h" | |
28 | #include "sysdep.h" | |
29 | #include "bfdlink.h" | |
30 | #include "libbfd.h" | |
31 | #include "elf-bfd.h" | |
32 | ||
33 | /* The internal type of a symbol table extension entry. */ | |
34 | typedef unsigned long symext_entryS; | |
35 | ||
36 | /* The external type of a symbol table extension entry. */ | |
37 | #define ELF32_PARISC_SX_SIZE (4) | |
38 | #define ELF32_PARISC_SX_GET(bfd, addr) bfd_h_get_32 ((bfd), (addr)) | |
39 | #define ELF32_PARISC_SX_PUT(bfd, val, addr) \ | |
40 | bfd_h_put_32 ((bfd), (val), (addr)) | |
41 | ||
42 | /* HPPA symbol table extension entry types */ | |
43 | enum elf32_hppa_symextn_types | |
44 | { | |
45 | PARISC_SXT_NULL, | |
46 | PARISC_SXT_SYMNDX, | |
47 | PARISC_SXT_ARG_RELOC, | |
48 | }; | |
49 | ||
50 | /* These macros compose and decompose the value of a symextn entry: | |
51 | ||
52 | entry_type = ELF32_PARISC_SX_TYPE(word); | |
53 | entry_value = ELF32_PARISC_SX_VAL(word); | |
54 | word = ELF32_PARISC_SX_WORD(type,val); */ | |
55 | ||
56 | #define ELF32_PARISC_SX_TYPE(p) ((p) >> 24) | |
57 | #define ELF32_PARISC_SX_VAL(p) ((p) & 0xFFFFFF) | |
58 | #define ELF32_PARISC_SX_WORD(type,val) (((type) << 24) + (val & 0xFFFFFF)) | |
59 | ||
60 | /* The following was added facilitate implementation of the .hppa_symextn | |
61 | section. This section is built after the symbol table is built in the | |
62 | elf_write_object_contents routine (called from bfd_close). It is built | |
63 | so late because it requires information that is not known until | |
64 | the symbol and string table sections have been allocated, and | |
65 | the symbol table has been built. */ | |
66 | ||
67 | #define SYMEXTN_SECTION_NAME ".PARISC.symext" | |
68 | ||
69 | struct symext_chain | |
70 | { | |
71 | symext_entryS entry; | |
72 | struct symext_chain *next; | |
73 | }; | |
74 | ||
75 | typedef struct symext_chain symext_chainS; | |
76 | ||
77 | /* We use three different hash tables to hold information for | |
78 | linking PA ELF objects. | |
79 | ||
80 | The first is the elf32_hppa_link_hash_table which is derived | |
81 | from the standard ELF linker hash table. We use this as a place to | |
82 | attach other hash tables and static information. | |
83 | ||
84 | The second is the stub hash table which is derived from the | |
85 | base BFD hash table. The stub hash table holds the information | |
86 | necessary to build the linker stubs during a link. | |
87 | ||
88 | The last hash table keeps track of argument location information needed | |
89 | to build hash tables. Each function with nonzero argument location | |
90 | bits will have an entry in this table. */ | |
91 | ||
92 | /* Hash table for linker stubs. */ | |
93 | ||
94 | struct elf32_hppa_stub_hash_entry | |
95 | { | |
96 | /* Base hash table entry structure, we can get the name of the stub | |
97 | (and thus know exactly what actions it performs) from the base | |
98 | hash table entry. */ | |
99 | struct bfd_hash_entry root; | |
100 | ||
101 | /* Offset of the beginning of this stub. */ | |
102 | bfd_vma offset; | |
103 | ||
104 | /* Given the symbol's value and its section we can determine its final | |
105 | value when building the stubs (so the stub knows where to jump. */ | |
106 | symvalue target_value; | |
107 | asection *target_section; | |
108 | }; | |
109 | ||
110 | struct elf32_hppa_stub_hash_table | |
111 | { | |
112 | /* The hash table itself. */ | |
113 | struct bfd_hash_table root; | |
114 | ||
115 | /* The stub BFD. */ | |
116 | bfd *stub_bfd; | |
117 | ||
118 | /* Where to place the next stub. */ | |
119 | bfd_byte *location; | |
120 | ||
121 | /* Current offset in the stub section. */ | |
122 | unsigned int offset; | |
123 | ||
124 | }; | |
125 | ||
126 | /* Hash table for argument location information. */ | |
127 | ||
128 | struct elf32_hppa_args_hash_entry | |
129 | { | |
130 | /* Base hash table entry structure. */ | |
131 | struct bfd_hash_entry root; | |
132 | ||
133 | /* The argument location bits for this entry. */ | |
134 | int arg_bits; | |
135 | }; | |
136 | ||
137 | struct elf32_hppa_args_hash_table | |
138 | { | |
139 | /* The hash table itself. */ | |
140 | struct bfd_hash_table root; | |
141 | }; | |
142 | ||
143 | struct elf32_hppa_link_hash_entry | |
144 | { | |
145 | struct elf_link_hash_entry root; | |
146 | }; | |
147 | ||
148 | struct elf32_hppa_link_hash_table | |
149 | { | |
150 | /* The main hash table. */ | |
151 | struct elf_link_hash_table root; | |
152 | ||
153 | /* The stub hash table. */ | |
154 | struct elf32_hppa_stub_hash_table *stub_hash_table; | |
155 | ||
156 | /* The argument relocation bits hash table. */ | |
157 | struct elf32_hppa_args_hash_table *args_hash_table; | |
158 | ||
159 | /* A count of the number of output symbols. */ | |
160 | unsigned int output_symbol_count; | |
161 | ||
162 | /* Stuff so we can handle DP relative relocations. */ | |
163 | long global_value; | |
164 | int global_sym_defined; | |
165 | }; | |
166 | ||
167 | /* FIXME. */ | |
168 | #define ARGUMENTS 0 | |
169 | #define RETURN_VALUE 1 | |
170 | ||
171 | /* The various argument relocations that may be performed. */ | |
172 | typedef enum | |
173 | { | |
174 | /* No relocation. */ | |
175 | NO, | |
176 | /* Relocate 32 bits from GR to FP register. */ | |
177 | GF, | |
178 | /* Relocate 64 bits from a GR pair to FP pair. */ | |
179 | GD, | |
180 | /* Relocate 32 bits from FP to GR. */ | |
181 | FG, | |
182 | /* Relocate 64 bits from FP pair to GR pair. */ | |
183 | DG, | |
184 | } arg_reloc_type; | |
185 | ||
186 | /* What is being relocated (eg which argument or the return value). */ | |
187 | typedef enum | |
188 | { | |
189 | ARG0, ARG1, ARG2, ARG3, RET, | |
190 | } arg_reloc_location; | |
191 | ||
192 | ||
193 | /* ELF32/HPPA relocation support | |
194 | ||
195 | This file contains ELF32/HPPA relocation support as specified | |
196 | in the Stratus FTX/Golf Object File Format (SED-1762) dated | |
197 | February 1994. */ | |
198 | ||
199 | #include "elf32-hppa.h" | |
200 | #include "hppa_stubs.h" | |
201 | ||
202 | static bfd_reloc_status_type hppa_elf_reloc | |
203 | PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); | |
204 | ||
205 | static unsigned long hppa_elf_relocate_insn | |
206 | PARAMS ((bfd *, asection *, unsigned long, unsigned long, long, | |
207 | long, unsigned long, unsigned long, unsigned long)); | |
208 | ||
209 | static bfd_reloc_status_type hppa_elf_reloc | |
210 | PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd*, char **)); | |
211 | ||
212 | static reloc_howto_type * elf_hppa_reloc_type_lookup | |
213 | PARAMS ((bfd *, bfd_reloc_code_real_type)); | |
214 | ||
215 | static boolean elf32_hppa_set_section_contents | |
216 | PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type)); | |
217 | ||
218 | static void elf32_hppa_info_to_howto | |
219 | PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *)); | |
220 | ||
221 | static boolean elf32_hppa_backend_symbol_table_processing | |
222 | PARAMS ((bfd *, elf_symbol_type *, unsigned int)); | |
223 | ||
224 | static void elf32_hppa_backend_begin_write_processing | |
225 | PARAMS ((bfd *, struct bfd_link_info *)); | |
226 | ||
227 | static void elf32_hppa_backend_final_write_processing | |
228 | PARAMS ((bfd *, boolean)); | |
229 | ||
230 | static void add_entry_to_symext_chain | |
231 | PARAMS ((bfd *, unsigned int, unsigned int, symext_chainS **, | |
232 | symext_chainS **)); | |
233 | ||
234 | static void | |
235 | elf_hppa_tc_make_sections PARAMS ((bfd *, symext_chainS *)); | |
236 | ||
237 | static boolean hppa_elf_is_local_label_name PARAMS ((bfd *, const char *)); | |
238 | ||
239 | static boolean elf32_hppa_add_symbol_hook | |
240 | PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, | |
241 | const char **, flagword *, asection **, bfd_vma *)); | |
242 | ||
243 | static bfd_reloc_status_type elf32_hppa_bfd_final_link_relocate | |
244 | PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, | |
245 | bfd_byte *, bfd_vma, bfd_vma, bfd_vma, struct bfd_link_info *, | |
246 | asection *, const char *, int)); | |
247 | ||
248 | static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create | |
249 | PARAMS ((bfd *)); | |
250 | ||
251 | static struct bfd_hash_entry * | |
252 | elf32_hppa_stub_hash_newfunc | |
253 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
254 | ||
255 | static struct bfd_hash_entry * | |
256 | elf32_hppa_args_hash_newfunc | |
257 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
258 | ||
259 | static boolean | |
260 | elf32_hppa_relocate_section | |
261 | PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, | |
262 | bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); | |
263 | ||
264 | static boolean | |
265 | elf32_hppa_stub_hash_table_init | |
266 | PARAMS ((struct elf32_hppa_stub_hash_table *, bfd *, | |
267 | struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *, | |
268 | struct bfd_hash_table *, | |
269 | const char *)))); | |
270 | ||
271 | static boolean | |
272 | elf32_hppa_build_one_stub PARAMS ((struct bfd_hash_entry *, PTR)); | |
273 | ||
274 | static boolean | |
275 | elf32_hppa_read_symext_info | |
276 | PARAMS ((bfd *, Elf_Internal_Shdr *, struct elf32_hppa_args_hash_table *, | |
277 | Elf_Internal_Sym *)); | |
278 | ||
279 | static unsigned int elf32_hppa_size_of_stub | |
280 | PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, const char *)); | |
281 | ||
282 | static boolean elf32_hppa_arg_reloc_needed | |
283 | PARAMS ((unsigned int, unsigned int, arg_reloc_type [])); | |
284 | ||
285 | static void elf32_hppa_name_of_stub | |
286 | PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, char *)); | |
287 | ||
288 | static boolean elf32_hppa_size_symext PARAMS ((struct bfd_hash_entry *, PTR)); | |
289 | ||
290 | static boolean elf32_hppa_link_output_symbol_hook | |
291 | PARAMS ((bfd *, struct bfd_link_info *, const char *, | |
292 | Elf_Internal_Sym *, asection *)); | |
293 | ||
294 | /* ELF/PA relocation howto entries. */ | |
295 | ||
296 | static reloc_howto_type elf_hppa_howto_table[ELF_HOWTO_TABLE_SIZE] = | |
297 | { | |
298 | {R_PARISC_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_NONE"}, | |
299 | /* The values in DIR32 are to placate the check in | |
300 | _bfd_stab_section_find_nearest_line. */ | |
301 | {R_PARISC_DIR32, 0, 2, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR32", false, 0, 0xffffffff, false}, | |
302 | {R_PARISC_DIR21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR21L"}, | |
303 | {R_PARISC_DIR17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17R"}, | |
304 | {R_PARISC_DIR17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17F"}, | |
305 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
306 | {R_PARISC_DIR14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR14R"}, | |
307 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
308 | ||
309 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
310 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
311 | {R_PARISC_PCREL21L, 0, 0, 21, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL21L"}, | |
312 | {R_PARISC_PCREL17R, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17R"}, | |
313 | {R_PARISC_PCREL17F, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17F"}, | |
314 | {R_PARISC_PCREL17C, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17C"}, | |
315 | {R_PARISC_PCREL14R, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14R"}, | |
316 | {R_PARISC_PCREL14F, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14F"}, | |
317 | ||
318 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
319 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
320 | {R_PARISC_DPREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL21L"}, | |
321 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
322 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
323 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
324 | {R_PARISC_DPREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14R"}, | |
325 | {R_PARISC_DPREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14F"}, | |
326 | ||
327 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
328 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
329 | {R_PARISC_DLTREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL21L"}, | |
330 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
331 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
332 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
333 | {R_PARISC_DLTREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14R"}, | |
334 | {R_PARISC_DLTREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14F"}, | |
335 | ||
336 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
337 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
338 | {R_PARISC_DLTIND21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND21L"}, | |
339 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
340 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
341 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
342 | {R_PARISC_DLTIND14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14R"}, | |
343 | {R_PARISC_DLTIND14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14F"}, | |
344 | ||
345 | {R_PARISC_SETBASE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_SETBASE"}, | |
346 | {R_PARISC_BASEREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL32"}, | |
347 | {R_PARISC_BASEREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL21L"}, | |
348 | {R_PARISC_BASEREL17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17R"}, | |
349 | {R_PARISC_BASEREL17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17F"}, | |
350 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
351 | {R_PARISC_BASEREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14R"}, | |
352 | {R_PARISC_BASEREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14F"}, | |
353 | ||
354 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
355 | {R_PARISC_TEXTREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_TEXTREL32"}, | |
356 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
357 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
358 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
359 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
360 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
361 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
362 | ||
363 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
364 | {R_PARISC_DATAREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
365 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
366 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
367 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
368 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
369 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
370 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
371 | ||
372 | ||
373 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
374 | {R_PARISC_PLABEL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL32"}, | |
375 | {R_PARISC_PLABEL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL21L"}, | |
376 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
377 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
378 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
379 | {R_PARISC_PLABEL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL14R"}, | |
380 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
381 | ||
382 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
383 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
384 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
385 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
386 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
387 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
388 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
389 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
390 | ||
391 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
392 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
393 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
394 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
395 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
396 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
397 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
398 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
399 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
400 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
401 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
402 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
403 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
404 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
405 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
406 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
407 | ||
408 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
409 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
410 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
411 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
412 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
413 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
414 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
415 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
416 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
417 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
418 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
419 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
420 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
421 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
422 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
423 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
424 | ||
425 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
426 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
427 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
428 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
429 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
430 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
431 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
432 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
433 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
434 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
435 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
436 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
437 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
438 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
439 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
440 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
441 | ||
442 | ||
443 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
444 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
445 | {R_PARISC_PLTIND21L, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND21L"}, | |
446 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
447 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
448 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"}, | |
449 | {R_PARISC_PLTIND14R, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14R"}, | |
450 | {R_PARISC_PLTIND14F, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14F"}, | |
451 | ||
452 | ||
453 | {R_PARISC_COPY, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_COPY"}, | |
454 | {R_PARISC_GLOB_DAT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_GLOB_DAT"}, | |
455 | {R_PARISC_JMP_SLOT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_JMP_SLOT"}, | |
456 | {R_PARISC_RELATIVE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_RELATIVE"}, | |
457 | ||
458 | {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_dont, NULL, "R_PARISC_UNIMPLEMENTED"}, | |
459 | }; | |
460 | ||
461 | /* Where (what register type) is an argument comming from? */ | |
462 | typedef enum | |
463 | { | |
464 | AR_NO, | |
465 | AR_GR, | |
466 | AR_FR, | |
467 | AR_FU, | |
468 | AR_FPDBL1, | |
469 | AR_FPDBL2, | |
470 | } arg_location; | |
471 | ||
472 | /* Horizontal represents the callee's argument location information, | |
473 | vertical represents caller's argument location information. Value at a | |
474 | particular X,Y location represents what (if any) argument relocation | |
475 | needs to be performed to make caller and callee agree. */ | |
476 | ||
477 | static CONST arg_reloc_type arg_mismatches[6][6] = | |
478 | { | |
479 | {NO, NO, NO, NO, NO, NO}, | |
480 | {NO, NO, GF, NO, GD, NO}, | |
481 | {NO, FG, NO, NO, NO, NO}, | |
482 | {NO, NO, NO, NO, NO, NO}, | |
483 | {NO, DG, NO, NO, NO, NO}, | |
484 | {NO, DG, NO, NO, NO, NO}, | |
485 | }; | |
486 | ||
487 | /* Likewise, but reversed for the return value. */ | |
488 | static CONST arg_reloc_type ret_mismatches[6][6] = | |
489 | { | |
490 | {NO, NO, NO, NO, NO, NO}, | |
491 | {NO, NO, FG, NO, DG, NO}, | |
492 | {NO, GF, NO, NO, NO, NO}, | |
493 | {NO, NO, NO, NO, NO, NO}, | |
494 | {NO, GD, NO, NO, NO, NO}, | |
495 | {NO, GD, NO, NO, NO, NO}, | |
496 | }; | |
497 | ||
498 | /* Misc static crud for symbol extension records. */ | |
499 | static symext_chainS *symext_rootP; | |
500 | static symext_chainS *symext_lastP; | |
501 | static bfd_size_type symext_chain_size; | |
502 | ||
503 | /* FIXME: We should be able to try this static variable! */ | |
504 | static bfd_byte *symextn_contents; | |
505 | ||
506 | ||
507 | /* For linker stub hash tables. */ | |
508 | #define elf32_hppa_stub_hash_lookup(table, string, create, copy) \ | |
509 | ((struct elf32_hppa_stub_hash_entry *) \ | |
510 | bfd_hash_lookup (&(table)->root, (string), (create), (copy))) | |
511 | ||
512 | #define elf32_hppa_stub_hash_traverse(table, func, info) \ | |
513 | (bfd_hash_traverse \ | |
514 | (&(table)->root, \ | |
515 | (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \ | |
516 | (info))) | |
517 | ||
518 | /* For linker args hash tables. */ | |
519 | #define elf32_hppa_args_hash_lookup(table, string, create, copy) \ | |
520 | ((struct elf32_hppa_args_hash_entry *) \ | |
521 | bfd_hash_lookup (&(table)->root, (string), (create), (copy))) | |
522 | ||
523 | #define elf32_hppa_args_hash_traverse(table, func, info) \ | |
524 | (bfd_hash_traverse \ | |
525 | (&(table)->root, \ | |
526 | (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \ | |
527 | (info))) | |
528 | ||
529 | #define elf32_hppa_args_hash_table_init(table, newfunc) \ | |
530 | (bfd_hash_table_init \ | |
531 | (&(table)->root, \ | |
532 | (struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *, \ | |
533 | struct bfd_hash_table *, \ | |
534 | const char *))) (newfunc))) | |
535 | ||
536 | /* For HPPA linker hash table. */ | |
537 | ||
538 | #define elf32_hppa_link_hash_lookup(table, string, create, copy, follow)\ | |
539 | ((struct elf32_hppa_link_hash_entry *) \ | |
540 | elf_link_hash_lookup (&(table)->root, (string), (create), \ | |
541 | (copy), (follow))) | |
542 | ||
543 | #define elf32_hppa_link_hash_traverse(table, func, info) \ | |
544 | (elf_link_hash_traverse \ | |
545 | (&(table)->root, \ | |
546 | (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ | |
547 | (info))) | |
548 | ||
549 | /* Get the PA ELF linker hash table from a link_info structure. */ | |
550 | ||
551 | #define elf32_hppa_hash_table(p) \ | |
552 | ((struct elf32_hppa_link_hash_table *) ((p)->hash)) | |
553 | ||
554 | ||
555 | /* Extract specific argument location bits for WHICH from | |
556 | the full argument location in AR. */ | |
557 | #define EXTRACT_ARBITS(ar, which) ((ar) >> (8 - ((which) * 2))) & 3 | |
558 | ||
559 | /* Assorted hash table functions. */ | |
560 | ||
561 | /* Initialize an entry in the stub hash table. */ | |
562 | ||
563 | static struct bfd_hash_entry * | |
564 | elf32_hppa_stub_hash_newfunc (entry, table, string) | |
565 | struct bfd_hash_entry *entry; | |
566 | struct bfd_hash_table *table; | |
567 | const char *string; | |
568 | { | |
569 | struct elf32_hppa_stub_hash_entry *ret; | |
570 | ||
571 | ret = (struct elf32_hppa_stub_hash_entry *) entry; | |
572 | ||
573 | /* Allocate the structure if it has not already been allocated by a | |
574 | subclass. */ | |
575 | if (ret == NULL) | |
576 | ret = ((struct elf32_hppa_stub_hash_entry *) | |
577 | bfd_hash_allocate (table, | |
578 | sizeof (struct elf32_hppa_stub_hash_entry))); | |
579 | if (ret == NULL) | |
580 | return NULL; | |
581 | ||
582 | /* Call the allocation method of the superclass. */ | |
583 | ret = ((struct elf32_hppa_stub_hash_entry *) | |
584 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); | |
585 | ||
586 | if (ret) | |
587 | { | |
588 | /* Initialize the local fields. */ | |
589 | ret->offset = 0; | |
590 | ret->target_value = 0; | |
591 | ret->target_section = NULL; | |
592 | } | |
593 | ||
594 | return (struct bfd_hash_entry *) ret; | |
595 | } | |
596 | ||
597 | /* Initialize a stub hash table. */ | |
598 | ||
599 | static boolean | |
600 | elf32_hppa_stub_hash_table_init (table, stub_bfd, newfunc) | |
601 | struct elf32_hppa_stub_hash_table *table; | |
602 | bfd *stub_bfd; | |
603 | struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *, | |
604 | struct bfd_hash_table *, | |
605 | const char *)); | |
606 | { | |
607 | table->offset = 0; | |
608 | table->location = 0; | |
609 | table->stub_bfd = stub_bfd; | |
610 | return (bfd_hash_table_init (&table->root, newfunc)); | |
611 | } | |
612 | ||
613 | /* Initialize an entry in the argument location hash table. */ | |
614 | ||
615 | static struct bfd_hash_entry * | |
616 | elf32_hppa_args_hash_newfunc (entry, table, string) | |
617 | struct bfd_hash_entry *entry; | |
618 | struct bfd_hash_table *table; | |
619 | const char *string; | |
620 | { | |
621 | struct elf32_hppa_args_hash_entry *ret; | |
622 | ||
623 | ret = (struct elf32_hppa_args_hash_entry *) entry; | |
624 | ||
625 | /* Allocate the structure if it has not already been allocated by a | |
626 | subclass. */ | |
627 | if (ret == NULL) | |
628 | ret = ((struct elf32_hppa_args_hash_entry *) | |
629 | bfd_hash_allocate (table, | |
630 | sizeof (struct elf32_hppa_args_hash_entry))); | |
631 | if (ret == NULL) | |
632 | return NULL; | |
633 | ||
634 | /* Call the allocation method of the superclass. */ | |
635 | ret = ((struct elf32_hppa_args_hash_entry *) | |
636 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); | |
637 | ||
638 | /* Initialize the local fields. */ | |
639 | if (ret) | |
640 | ret->arg_bits = 0; | |
641 | ||
642 | return (struct bfd_hash_entry *) ret; | |
643 | } | |
644 | ||
645 | /* Create the derived linker hash table. The PA ELF port uses the derived | |
646 | hash table to keep information specific to the PA ELF linker (without | |
647 | using static variables). */ | |
648 | ||
649 | static struct bfd_link_hash_table * | |
650 | elf32_hppa_link_hash_table_create (abfd) | |
651 | bfd *abfd; | |
652 | { | |
653 | struct elf32_hppa_link_hash_table *ret; | |
654 | ||
655 | ret = ((struct elf32_hppa_link_hash_table *) | |
656 | bfd_alloc (abfd, sizeof (struct elf32_hppa_link_hash_table))); | |
657 | if (ret == NULL) | |
658 | return NULL; | |
659 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | |
660 | _bfd_elf_link_hash_newfunc)) | |
661 | { | |
662 | bfd_release (abfd, ret); | |
663 | return NULL; | |
664 | } | |
665 | ret->stub_hash_table = NULL; | |
666 | ret->args_hash_table = NULL; | |
667 | ret->output_symbol_count = 0; | |
668 | ret->global_value = 0; | |
669 | ret->global_sym_defined = 0; | |
670 | ||
671 | return &ret->root.root; | |
672 | } | |
673 | ||
674 | /* Relocate the given INSN given the various input parameters. | |
675 | ||
676 | FIXME: endianness and sizeof (long) issues abound here. */ | |
677 | ||
678 | static unsigned long | |
679 | hppa_elf_relocate_insn (abfd, input_sect, insn, address, sym_value, | |
680 | r_addend, r_format, r_field, pcrel) | |
681 | bfd *abfd; | |
682 | asection *input_sect; | |
683 | unsigned long insn; | |
684 | unsigned long address; | |
685 | long sym_value; | |
686 | long r_addend; | |
687 | unsigned long r_format; | |
688 | unsigned long r_field; | |
689 | unsigned long pcrel; | |
690 | { | |
691 | unsigned char opcode = get_opcode (insn); | |
692 | long constant_value; | |
693 | ||
694 | switch (opcode) | |
695 | { | |
696 | case LDO: | |
697 | case LDB: | |
698 | case LDH: | |
699 | case LDW: | |
700 | case LDWM: | |
701 | case STB: | |
702 | case STH: | |
703 | case STW: | |
704 | case STWM: | |
705 | case COMICLR: | |
706 | case SUBI: | |
707 | case ADDIT: | |
708 | case ADDI: | |
709 | case LDIL: | |
710 | case ADDIL: | |
711 | constant_value = HPPA_R_CONSTANT (r_addend); | |
712 | ||
713 | if (pcrel) | |
714 | sym_value -= address; | |
715 | ||
716 | sym_value = hppa_field_adjust (sym_value, constant_value, r_field); | |
717 | return hppa_rebuild_insn (abfd, insn, sym_value, r_format); | |
718 | ||
719 | case BL: | |
720 | case BE: | |
721 | case BLE: | |
722 | /* XXX computing constant_value is not needed??? */ | |
723 | constant_value = assemble_17 ((insn & 0x001f0000) >> 16, | |
724 | (insn & 0x00001ffc) >> 2, | |
725 | insn & 1); | |
726 | ||
727 | constant_value = (constant_value << 15) >> 15; | |
728 | if (pcrel) | |
729 | { | |
730 | sym_value -= | |
731 | address + input_sect->output_offset | |
732 | + input_sect->output_section->vma; | |
733 | sym_value = hppa_field_adjust (sym_value, -8, r_field); | |
734 | } | |
735 | else | |
736 | sym_value = hppa_field_adjust (sym_value, constant_value, r_field); | |
737 | ||
738 | return hppa_rebuild_insn (abfd, insn, sym_value >> 2, r_format); | |
739 | ||
740 | default: | |
741 | if (opcode == 0) | |
742 | { | |
743 | constant_value = HPPA_R_CONSTANT (r_addend); | |
744 | ||
745 | if (pcrel) | |
746 | sym_value -= address; | |
747 | ||
748 | return hppa_field_adjust (sym_value, constant_value, r_field); | |
749 | } | |
750 | else | |
751 | abort (); | |
752 | } | |
753 | } | |
754 | ||
755 | /* Relocate an HPPA ELF section. */ | |
756 | ||
757 | static boolean | |
758 | elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section, | |
759 | contents, relocs, local_syms, local_sections) | |
760 | bfd *output_bfd; | |
761 | struct bfd_link_info *info; | |
762 | bfd *input_bfd; | |
763 | asection *input_section; | |
764 | bfd_byte *contents; | |
765 | Elf_Internal_Rela *relocs; | |
766 | Elf_Internal_Sym *local_syms; | |
767 | asection **local_sections; | |
768 | { | |
769 | Elf_Internal_Shdr *symtab_hdr; | |
770 | Elf_Internal_Rela *rel; | |
771 | Elf_Internal_Rela *relend; | |
772 | ||
773 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
774 | ||
775 | rel = relocs; | |
776 | relend = relocs + input_section->reloc_count; | |
777 | for (; rel < relend; rel++) | |
778 | { | |
779 | int r_type; | |
780 | reloc_howto_type *howto; | |
781 | unsigned long r_symndx; | |
782 | struct elf_link_hash_entry *h; | |
783 | Elf_Internal_Sym *sym; | |
784 | asection *sym_sec; | |
785 | bfd_vma relocation; | |
786 | bfd_reloc_status_type r; | |
787 | const char *sym_name; | |
788 | ||
789 | r_type = ELF32_R_TYPE (rel->r_info); | |
790 | if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED) | |
791 | { | |
792 | bfd_set_error (bfd_error_bad_value); | |
793 | return false; | |
794 | } | |
795 | howto = elf_hppa_howto_table + r_type; | |
796 | ||
797 | r_symndx = ELF32_R_SYM (rel->r_info); | |
798 | ||
799 | if (info->relocateable) | |
800 | { | |
801 | /* This is a relocateable link. We don't have to change | |
802 | anything, unless the reloc is against a section symbol, | |
803 | in which case we have to adjust according to where the | |
804 | section symbol winds up in the output section. */ | |
805 | if (r_symndx < symtab_hdr->sh_info) | |
806 | { | |
807 | sym = local_syms + r_symndx; | |
808 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
809 | { | |
810 | sym_sec = local_sections[r_symndx]; | |
811 | rel->r_addend += sym_sec->output_offset; | |
812 | } | |
813 | } | |
814 | ||
815 | continue; | |
816 | } | |
817 | ||
818 | /* This is a final link. */ | |
819 | h = NULL; | |
820 | sym = NULL; | |
821 | sym_sec = NULL; | |
822 | if (r_symndx < symtab_hdr->sh_info) | |
823 | { | |
824 | sym = local_syms + r_symndx; | |
825 | sym_sec = local_sections[r_symndx]; | |
826 | relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION | |
827 | ? 0 : sym->st_value) | |
828 | + sym_sec->output_offset | |
829 | + sym_sec->output_section->vma); | |
830 | } | |
831 | else | |
832 | { | |
833 | long indx; | |
834 | ||
835 | indx = r_symndx - symtab_hdr->sh_info; | |
836 | h = elf_sym_hashes (input_bfd)[indx]; | |
837 | while (h->root.type == bfd_link_hash_indirect | |
838 | || h->root.type == bfd_link_hash_warning) | |
839 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
840 | if (h->root.type == bfd_link_hash_defined | |
841 | || h->root.type == bfd_link_hash_defweak) | |
842 | { | |
843 | sym_sec = h->root.u.def.section; | |
844 | relocation = (h->root.u.def.value | |
845 | + sym_sec->output_offset | |
846 | + sym_sec->output_section->vma); | |
847 | } | |
848 | else if (h->root.type == bfd_link_hash_undefweak) | |
849 | relocation = 0; | |
850 | else | |
851 | { | |
852 | if (!((*info->callbacks->undefined_symbol) | |
853 | (info, h->root.root.string, input_bfd, | |
854 | input_section, rel->r_offset))) | |
855 | return false; | |
856 | break; | |
857 | } | |
858 | } | |
859 | ||
860 | if (h != NULL) | |
861 | sym_name = h->root.root.string; | |
862 | else | |
863 | { | |
864 | sym_name = bfd_elf_string_from_elf_section (input_bfd, | |
865 | symtab_hdr->sh_link, | |
866 | sym->st_name); | |
867 | if (sym_name == NULL) | |
868 | return false; | |
869 | if (*sym_name == '\0') | |
870 | sym_name = bfd_section_name (input_bfd, sym_sec); | |
871 | } | |
872 | ||
873 | /* If args_hash_table is NULL, then we have encountered some | |
874 | kind of link error (ex. undefined symbols). Do not try to | |
875 | apply any relocations, continue the loop so we can notify | |
876 | the user of several errors in a single attempted link. */ | |
877 | if (elf32_hppa_hash_table (info)->args_hash_table == NULL) | |
878 | continue; | |
879 | ||
880 | r = elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd, | |
881 | input_section, contents, | |
882 | rel->r_offset, relocation, | |
883 | rel->r_addend, info, sym_sec, | |
884 | sym_name, h == NULL); | |
885 | ||
886 | if (r != bfd_reloc_ok) | |
887 | { | |
888 | switch (r) | |
889 | { | |
890 | /* This can happen for DP relative relocs if $global$ is | |
891 | undefined. This is a panic situation so we don't try | |
892 | to continue. */ | |
893 | case bfd_reloc_undefined: | |
894 | case bfd_reloc_notsupported: | |
895 | if (!((*info->callbacks->undefined_symbol) | |
896 | (info, "$global$", input_bfd, | |
897 | input_section, rel->r_offset))) | |
898 | return false; | |
899 | return false; | |
900 | case bfd_reloc_dangerous: | |
901 | { | |
902 | /* We use this return value to indicate that we performed | |
903 | a "dangerous" relocation. This doesn't mean we did | |
904 | the wrong thing, it just means there may be some cleanup | |
905 | that needs to be done here. | |
906 | ||
907 | In particular we had to swap the last call insn and its | |
908 | delay slot. If the delay slot insn needed a relocation, | |
909 | then we'll need to adjust the next relocation entry's | |
910 | offset to account for the fact that the insn moved. | |
911 | ||
912 | This hair wouldn't be necessary if we inserted stubs | |
913 | between procedures and used a "bl" to get to the stub. */ | |
914 | if (rel != relend) | |
915 | { | |
916 | Elf_Internal_Rela *next_rel = rel + 1; | |
917 | ||
918 | if (rel->r_offset + 4 == next_rel->r_offset) | |
919 | next_rel->r_offset -= 4; | |
920 | } | |
921 | break; | |
922 | } | |
923 | default: | |
924 | case bfd_reloc_outofrange: | |
925 | case bfd_reloc_overflow: | |
926 | { | |
927 | if (!((*info->callbacks->reloc_overflow) | |
928 | (info, sym_name, howto->name, (bfd_vma) 0, | |
929 | input_bfd, input_section, rel->r_offset))) | |
930 | return false; | |
931 | } | |
932 | break; | |
933 | } | |
934 | } | |
935 | } | |
936 | ||
937 | return true; | |
938 | } | |
939 | ||
940 | /* Return one (or more) BFD relocations which implement the base | |
941 | relocation with modifications based on format and field. */ | |
942 | ||
943 | elf32_hppa_reloc_type ** | |
944 | hppa_elf_gen_reloc_type (abfd, base_type, format, field, ignore, sym) | |
945 | bfd *abfd; | |
946 | elf32_hppa_reloc_type base_type; | |
947 | int format; | |
948 | int field; | |
949 | int ignore; | |
950 | asymbol *sym; | |
951 | { | |
952 | elf32_hppa_reloc_type *finaltype; | |
953 | elf32_hppa_reloc_type **final_types; | |
954 | ||
955 | /* Allocate slots for the BFD relocation. */ | |
956 | final_types = ((elf32_hppa_reloc_type **) | |
957 | bfd_alloc (abfd, sizeof (elf32_hppa_reloc_type *) * 2)); | |
958 | if (final_types == NULL) | |
959 | return NULL; | |
960 | ||
961 | /* Allocate space for the relocation itself. */ | |
962 | finaltype = ((elf32_hppa_reloc_type *) | |
963 | bfd_alloc (abfd, sizeof (elf32_hppa_reloc_type))); | |
964 | if (finaltype == NULL) | |
965 | return NULL; | |
966 | ||
967 | /* Some reasonable defaults. */ | |
968 | final_types[0] = finaltype; | |
969 | final_types[1] = NULL; | |
970 | ||
971 | #define final_type finaltype[0] | |
972 | ||
973 | final_type = base_type; | |
974 | ||
975 | /* Just a tangle of nested switch statements to deal with the braindamage | |
976 | that a different field selector means a completely different relocation | |
977 | for PA ELF. */ | |
978 | switch (base_type) | |
979 | { | |
980 | case R_HPPA: | |
981 | case R_HPPA_ABS_CALL: | |
982 | switch (format) | |
983 | { | |
984 | case 14: | |
985 | switch (field) | |
986 | { | |
987 | case e_rsel: | |
988 | case e_rrsel: | |
989 | final_type = R_PARISC_DIR14R; | |
990 | break; | |
991 | case e_rtsel: | |
992 | final_type = R_PARISC_DLTREL14R; | |
993 | break; | |
994 | case e_tsel: | |
995 | final_type = R_PARISC_DLTREL14F; | |
996 | break; | |
997 | case e_rpsel: | |
998 | final_type = R_PARISC_PLABEL14R; | |
999 | break; | |
1000 | default: | |
1001 | return NULL; | |
1002 | } | |
1003 | break; | |
1004 | ||
1005 | case 17: | |
1006 | switch (field) | |
1007 | { | |
1008 | case e_fsel: | |
1009 | final_type = R_PARISC_DIR17F; | |
1010 | break; | |
1011 | case e_rsel: | |
1012 | case e_rrsel: | |
1013 | final_type = R_PARISC_DIR17R; | |
1014 | break; | |
1015 | default: | |
1016 | return NULL; | |
1017 | } | |
1018 | break; | |
1019 | ||
1020 | case 21: | |
1021 | switch (field) | |
1022 | { | |
1023 | case e_lsel: | |
1024 | case e_lrsel: | |
1025 | final_type = R_PARISC_DIR21L; | |
1026 | break; | |
1027 | case e_ltsel: | |
1028 | final_type = R_PARISC_DLTREL21L; | |
1029 | break; | |
1030 | case e_lpsel: | |
1031 | final_type = R_PARISC_PLABEL21L; | |
1032 | break; | |
1033 | default: | |
1034 | return NULL; | |
1035 | } | |
1036 | break; | |
1037 | ||
1038 | case 32: | |
1039 | switch (field) | |
1040 | { | |
1041 | case e_fsel: | |
1042 | final_type = R_PARISC_DIR32; | |
1043 | break; | |
1044 | case e_psel: | |
1045 | final_type = R_PARISC_PLABEL32; | |
1046 | break; | |
1047 | default: | |
1048 | return NULL; | |
1049 | } | |
1050 | break; | |
1051 | ||
1052 | default: | |
1053 | return NULL; | |
1054 | } | |
1055 | break; | |
1056 | ||
1057 | ||
1058 | case R_HPPA_GOTOFF: | |
1059 | switch (format) | |
1060 | { | |
1061 | case 14: | |
1062 | switch (field) | |
1063 | { | |
1064 | case e_rsel: | |
1065 | case e_rrsel: | |
1066 | final_type = R_PARISC_DPREL14R; | |
1067 | break; | |
1068 | case e_fsel: | |
1069 | final_type = R_PARISC_DPREL14F; | |
1070 | break; | |
1071 | default: | |
1072 | return NULL; | |
1073 | } | |
1074 | break; | |
1075 | ||
1076 | case 21: | |
1077 | switch (field) | |
1078 | { | |
1079 | case e_lrsel: | |
1080 | case e_lsel: | |
1081 | final_type = R_PARISC_DPREL21L; | |
1082 | break; | |
1083 | default: | |
1084 | return NULL; | |
1085 | } | |
1086 | break; | |
1087 | ||
1088 | default: | |
1089 | return NULL; | |
1090 | } | |
1091 | break; | |
1092 | ||
1093 | ||
1094 | case R_HPPA_PCREL_CALL: | |
1095 | switch (format) | |
1096 | { | |
1097 | case 14: | |
1098 | switch (field) | |
1099 | { | |
1100 | case e_rsel: | |
1101 | case e_rrsel: | |
1102 | final_type = R_PARISC_PCREL14R; | |
1103 | break; | |
1104 | case e_fsel: | |
1105 | final_type = R_PARISC_PCREL14F; | |
1106 | break; | |
1107 | default: | |
1108 | return NULL; | |
1109 | } | |
1110 | break; | |
1111 | ||
1112 | case 17: | |
1113 | switch (field) | |
1114 | { | |
1115 | case e_rsel: | |
1116 | case e_rrsel: | |
1117 | final_type = R_PARISC_PCREL17R; | |
1118 | break; | |
1119 | case e_fsel: | |
1120 | final_type = R_PARISC_PCREL17F; | |
1121 | break; | |
1122 | default: | |
1123 | return NULL; | |
1124 | } | |
1125 | break; | |
1126 | ||
1127 | case 21: | |
1128 | switch (field) | |
1129 | { | |
1130 | case e_lsel: | |
1131 | case e_lrsel: | |
1132 | final_type = R_PARISC_PCREL21L; | |
1133 | break; | |
1134 | default: | |
1135 | return NULL; | |
1136 | } | |
1137 | break; | |
1138 | ||
1139 | default: | |
1140 | return NULL; | |
1141 | } | |
1142 | break; | |
1143 | ||
1144 | default: | |
1145 | return NULL; | |
1146 | } | |
1147 | ||
1148 | return final_types; | |
1149 | } | |
1150 | ||
1151 | #undef final_type | |
1152 | ||
1153 | /* Set the contents of a particular section at a particular location. */ | |
1154 | ||
1155 | static boolean | |
1156 | elf32_hppa_set_section_contents (abfd, section, location, offset, count) | |
1157 | bfd *abfd; | |
1158 | sec_ptr section; | |
1159 | PTR location; | |
1160 | file_ptr offset; | |
1161 | bfd_size_type count; | |
1162 | { | |
1163 | /* Ignore write requests for the symbol extension section until we've | |
1164 | had the chance to rebuild it ourselves. */ | |
1165 | if (!strcmp (section->name, ".PARISC.symextn") && !symext_chain_size) | |
1166 | return true; | |
1167 | else | |
1168 | return _bfd_elf_set_section_contents (abfd, section, location, | |
1169 | offset, count); | |
1170 | } | |
1171 | ||
1172 | /* Translate from an elf into field into a howto relocation pointer. */ | |
1173 | ||
1174 | static void | |
1175 | elf32_hppa_info_to_howto (abfd, cache_ptr, dst) | |
1176 | bfd *abfd; | |
1177 | arelent *cache_ptr; | |
1178 | Elf32_Internal_Rela *dst; | |
1179 | { | |
1180 | BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_PARISC_UNIMPLEMENTED); | |
1181 | cache_ptr->howto = &elf_hppa_howto_table[ELF32_R_TYPE (dst->r_info)]; | |
1182 | } | |
1183 | ||
1184 | ||
1185 | /* Actually perform a relocation. NOTE this is (mostly) superceeded | |
1186 | by elf32_hppa_bfd_final_link_relocate which is called by the new | |
1187 | fast linker. */ | |
1188 | ||
1189 | static bfd_reloc_status_type | |
1190 | hppa_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd, | |
1191 | error_message) | |
1192 | bfd *abfd; | |
1193 | arelent *reloc_entry; | |
1194 | asymbol *symbol_in; | |
1195 | PTR data; | |
1196 | asection *input_section; | |
1197 | bfd *output_bfd; | |
1198 | char **error_message; | |
1199 | { | |
1200 | /* It is no longer valid to call hppa_elf_reloc when creating | |
1201 | a final executable. */ | |
1202 | if (output_bfd) | |
1203 | { | |
1204 | reloc_entry->address += input_section->output_offset; | |
1205 | ||
1206 | /* Work around lossage in generic elf code to write relocations. | |
1207 | (maps different section symbols into the same symbol index). */ | |
1208 | if ((symbol_in->flags & BSF_SECTION_SYM) | |
1209 | && symbol_in->section) | |
1210 | reloc_entry->addend += symbol_in->section->output_offset; | |
1211 | return bfd_reloc_ok; | |
1212 | } | |
1213 | else | |
1214 | { | |
1215 | *error_message = (char *) _("Unsupported call to hppa_elf_reloc"); | |
1216 | return bfd_reloc_notsupported; | |
1217 | } | |
1218 | } | |
1219 | ||
1220 | /* Actually perform a relocation as part of a final link. This can get | |
1221 | rather hairy when linker stubs are needed. */ | |
1222 | ||
1223 | static bfd_reloc_status_type | |
1224 | elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd, | |
1225 | input_section, contents, offset, value, | |
1226 | addend, info, sym_sec, sym_name, is_local) | |
1227 | reloc_howto_type *howto; | |
1228 | bfd *input_bfd; | |
1229 | bfd *output_bfd; | |
1230 | asection *input_section; | |
1231 | bfd_byte *contents; | |
1232 | bfd_vma offset; | |
1233 | bfd_vma value; | |
1234 | bfd_vma addend; | |
1235 | struct bfd_link_info *info; | |
1236 | asection *sym_sec; | |
1237 | const char *sym_name; | |
1238 | int is_local; | |
1239 | { | |
1240 | unsigned long insn; | |
1241 | unsigned long r_type = howto->type; | |
1242 | unsigned long r_format = howto->bitsize; | |
1243 | unsigned long r_field = e_fsel; | |
1244 | bfd_byte *hit_data = contents + offset; | |
1245 | boolean r_pcrel = howto->pc_relative; | |
1246 | ||
1247 | insn = bfd_get_32 (input_bfd, hit_data); | |
1248 | ||
1249 | /* Make sure we have a value for $global$. FIXME isn't this effectively | |
1250 | just like the gp pointer on MIPS? Can we use those routines for this | |
1251 | purpose? */ | |
1252 | if (!elf32_hppa_hash_table (info)->global_sym_defined) | |
1253 | { | |
1254 | struct elf_link_hash_entry *h; | |
1255 | asection *sec; | |
1256 | ||
1257 | h = elf_link_hash_lookup (elf_hash_table (info), "$global$", false, | |
1258 | false, false); | |
1259 | ||
1260 | /* If there isn't a $global$, then we're in deep trouble. */ | |
1261 | if (h == NULL) | |
1262 | return bfd_reloc_notsupported; | |
1263 | ||
1264 | /* If $global$ isn't a defined symbol, then we're still in deep | |
1265 | trouble. */ | |
1266 | if (h->root.type != bfd_link_hash_defined) | |
1267 | return bfd_reloc_undefined; | |
1268 | ||
1269 | sec = h->root.u.def.section; | |
1270 | elf32_hppa_hash_table (info)->global_value = (h->root.u.def.value | |
1271 | + sec->output_section->vma | |
1272 | + sec->output_offset); | |
1273 | elf32_hppa_hash_table (info)->global_sym_defined = 1; | |
1274 | } | |
1275 | ||
1276 | switch (r_type) | |
1277 | { | |
1278 | case R_PARISC_NONE: | |
1279 | break; | |
1280 | ||
1281 | case R_PARISC_DIR32: | |
1282 | case R_PARISC_DIR17F: | |
1283 | case R_PARISC_PCREL17C: | |
1284 | r_field = e_fsel; | |
1285 | goto do_basic_type_1; | |
1286 | case R_PARISC_DIR21L: | |
1287 | case R_PARISC_PCREL21L: | |
1288 | r_field = e_lrsel; | |
1289 | goto do_basic_type_1; | |
1290 | case R_PARISC_DIR17R: | |
1291 | case R_PARISC_PCREL17R: | |
1292 | case R_PARISC_DIR14R: | |
1293 | case R_PARISC_PCREL14R: | |
1294 | r_field = e_rrsel; | |
1295 | goto do_basic_type_1; | |
1296 | ||
1297 | /* For all the DP relative relocations, we need to examine the symbol's | |
1298 | section. If it's a code section, then "data pointer relative" makes | |
1299 | no sense. In that case we don't adjust the "value", and for 21 bit | |
1300 | addil instructions, we change the source addend register from %dp to | |
1301 | %r0. */ | |
1302 | case R_PARISC_DPREL21L: | |
1303 | r_field = e_lrsel; | |
1304 | if (sym_sec->flags & SEC_CODE) | |
1305 | { | |
1306 | if ((insn & 0xfc000000) >> 26 == 0xa | |
1307 | && (insn & 0x03e00000) >> 21 == 0x1b) | |
1308 | insn &= ~0x03e00000; | |
1309 | } | |
1310 | else | |
1311 | value -= elf32_hppa_hash_table (info)->global_value; | |
1312 | goto do_basic_type_1; | |
1313 | case R_PARISC_DPREL14R: | |
1314 | r_field = e_rrsel; | |
1315 | if ((sym_sec->flags & SEC_CODE) == 0) | |
1316 | value -= elf32_hppa_hash_table (info)->global_value; | |
1317 | goto do_basic_type_1; | |
1318 | case R_PARISC_DPREL14F: | |
1319 | r_field = e_fsel; | |
1320 | if ((sym_sec->flags & SEC_CODE) == 0) | |
1321 | value -= elf32_hppa_hash_table (info)->global_value; | |
1322 | goto do_basic_type_1; | |
1323 | ||
1324 | /* These cases are separate as they may involve a lot more work | |
1325 | to deal with linker stubs. */ | |
1326 | case R_PARISC_PLABEL32: | |
1327 | case R_PARISC_PLABEL21L: | |
1328 | case R_PARISC_PLABEL14R: | |
1329 | case R_PARISC_PCREL17F: | |
1330 | { | |
1331 | bfd_vma location; | |
1332 | unsigned int len, caller_args, callee_args; | |
1333 | arg_reloc_type arg_reloc_types[5]; | |
1334 | struct elf32_hppa_args_hash_table *args_hash_table; | |
1335 | struct elf32_hppa_args_hash_entry *args_hash; | |
1336 | char *new_name, *stub_name; | |
1337 | ||
1338 | /* Get the field selector right. We'll need it in a minute. */ | |
1339 | if (r_type == R_PARISC_PCREL17F | |
1340 | || r_type == R_PARISC_PLABEL32) | |
1341 | r_field = e_fsel; | |
1342 | else if (r_type == R_PARISC_PLABEL21L) | |
1343 | r_field = e_lrsel; | |
1344 | else if (r_type == R_PARISC_PLABEL14R) | |
1345 | r_field = e_rrsel; | |
1346 | ||
1347 | /* Find out where we are and where we're going. */ | |
1348 | location = (offset + | |
1349 | input_section->output_offset + | |
1350 | input_section->output_section->vma); | |
1351 | ||
1352 | /* Now look for the argument relocation bits associated with the | |
1353 | target. */ | |
1354 | len = strlen (sym_name) + 1; | |
1355 | if (is_local) | |
1356 | len += 9; | |
1357 | new_name = bfd_malloc (len); | |
1358 | if (!new_name) | |
1359 | return bfd_reloc_notsupported; | |
1360 | strcpy (new_name, sym_name); | |
1361 | ||
1362 | /* Local symbols have unique IDs. */ | |
1363 | if (is_local) | |
1364 | sprintf (new_name + len - 10, "_%08x", (int)sym_sec); | |
1365 | ||
1366 | args_hash_table = elf32_hppa_hash_table (info)->args_hash_table; | |
1367 | ||
1368 | args_hash = elf32_hppa_args_hash_lookup (args_hash_table, | |
1369 | new_name, false, false); | |
1370 | if (args_hash == NULL) | |
1371 | callee_args = 0; | |
1372 | else | |
1373 | callee_args = args_hash->arg_bits; | |
1374 | ||
1375 | /* If this is a CALL relocation, then get the caller's bits | |
1376 | from the addend. Else use the magic 0x155 value for PLABELS. | |
1377 | ||
1378 | Also we don't care about the destination (value) for PLABELS. */ | |
1379 | if (r_type == R_PARISC_PCREL17F) | |
1380 | caller_args = HPPA_R_ARG_RELOC (addend); | |
1381 | else | |
1382 | { | |
1383 | caller_args = 0x155; | |
1384 | location = value; | |
1385 | } | |
1386 | ||
1387 | /* Any kind of linker stub needed? */ | |
1388 | if (((int)(value - location) > 0x3ffff) | |
1389 | || ((int)(value - location) < (int)0xfffc0000) | |
1390 | || elf32_hppa_arg_reloc_needed (caller_args, callee_args, | |
1391 | arg_reloc_types)) | |
1392 | { | |
1393 | struct elf32_hppa_stub_hash_table *stub_hash_table; | |
1394 | struct elf32_hppa_stub_hash_entry *stub_hash; | |
1395 | asection *stub_section; | |
1396 | ||
1397 | /* Build a name for the stub. */ | |
1398 | ||
1399 | len = strlen (new_name); | |
1400 | len += 23; | |
1401 | stub_name = bfd_malloc (len); | |
1402 | if (!stub_name) | |
1403 | return bfd_reloc_notsupported; | |
1404 | elf32_hppa_name_of_stub (caller_args, callee_args, | |
1405 | location, value, stub_name); | |
1406 | strcat (stub_name, new_name); | |
1407 | free (new_name); | |
1408 | ||
1409 | stub_hash_table = elf32_hppa_hash_table (info)->stub_hash_table; | |
1410 | ||
1411 | stub_hash | |
1412 | = elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name, | |
1413 | false, false); | |
1414 | ||
1415 | /* We're done with that name. */ | |
1416 | free (stub_name); | |
1417 | ||
1418 | /* The stub BFD only has one section. */ | |
1419 | stub_section = stub_hash_table->stub_bfd->sections; | |
1420 | ||
1421 | if (stub_hash != NULL) | |
1422 | { | |
1423 | ||
1424 | if (r_type == R_PARISC_PCREL17F) | |
1425 | { | |
1426 | unsigned long delay_insn; | |
1427 | unsigned int opcode, rtn_reg, ldo_target_reg, ldo_src_reg; | |
1428 | ||
1429 | /* We'll need to peek at the next insn. */ | |
1430 | delay_insn = bfd_get_32 (input_bfd, hit_data + 4); | |
1431 | opcode = get_opcode (delay_insn); | |
1432 | ||
1433 | /* We also need to know the return register for this | |
1434 | call. */ | |
1435 | rtn_reg = (insn & 0x03e00000) >> 21; | |
1436 | ||
1437 | ldo_src_reg = (delay_insn & 0x03e00000) >> 21; | |
1438 | ldo_target_reg = (delay_insn & 0x001f0000) >> 16; | |
1439 | ||
1440 | /* Munge up the value and other parameters for | |
1441 | hppa_elf_relocate_insn. */ | |
1442 | ||
1443 | value = (stub_hash->offset | |
1444 | + stub_section->output_offset | |
1445 | + stub_section->output_section->vma); | |
1446 | ||
1447 | r_format = 17; | |
1448 | r_field = e_fsel; | |
1449 | r_pcrel = 0; | |
1450 | addend = 0; | |
1451 | ||
1452 | /* We need to peek at the delay insn and determine if | |
1453 | we'll need to swap the branch and its delay insn. */ | |
1454 | if ((insn & 2) | |
1455 | || (opcode == LDO | |
1456 | && ldo_target_reg == rtn_reg) | |
1457 | || (delay_insn == 0x08000240)) | |
1458 | { | |
1459 | /* No need to swap the branch and its delay slot, but | |
1460 | we do need to make sure to jump past the return | |
1461 | pointer update in the stub. */ | |
1462 | value += 4; | |
1463 | ||
1464 | /* If the delay insn does a return pointer adjustment, | |
1465 | then we have to make sure it stays valid. */ | |
1466 | if (opcode == LDO | |
1467 | && ldo_target_reg == rtn_reg) | |
1468 | { | |
1469 | delay_insn &= 0xfc00ffff; | |
1470 | delay_insn |= ((31 << 21) | (31 << 16)); | |
1471 | bfd_put_32 (input_bfd, delay_insn, hit_data + 4); | |
1472 | } | |
1473 | /* Use a BLE to reach the stub. */ | |
1474 | insn = BLE_SR4_R0; | |
1475 | } | |
1476 | else | |
1477 | { | |
1478 | /* Wonderful, we have to swap the call insn and its | |
1479 | delay slot. */ | |
1480 | bfd_put_32 (input_bfd, delay_insn, hit_data); | |
1481 | /* Use a BLE,n to reach the stub. */ | |
1482 | insn = (BLE_SR4_R0 | 0x2); | |
1483 | bfd_put_32 (input_bfd, insn, hit_data + 4); | |
1484 | insn = hppa_elf_relocate_insn (input_bfd, | |
1485 | input_section, | |
1486 | insn, offset + 4, | |
1487 | value, addend, | |
1488 | r_format, r_field, | |
1489 | r_pcrel); | |
1490 | /* Update the instruction word. */ | |
1491 | bfd_put_32 (input_bfd, insn, hit_data + 4); | |
1492 | return bfd_reloc_dangerous; | |
1493 | } | |
1494 | } | |
1495 | else | |
1496 | { | |
1497 | /* PLABEL stuff is easy. */ | |
1498 | ||
1499 | value = (stub_hash->offset | |
1500 | + stub_section->output_offset | |
1501 | + stub_section->output_section->vma); | |
1502 | /* We don't need the RP adjustment for PLABELs. */ | |
1503 | value += 4; | |
1504 | if (r_type == R_PARISC_PLABEL32) | |
1505 | r_format = 32; | |
1506 | else if (r_type == R_PARISC_PLABEL21L) | |
1507 | r_format = 21; | |
1508 | else if (r_type == R_PARISC_PLABEL14R) | |
1509 | r_format = 14; | |
1510 | ||
1511 | r_pcrel = 0; | |
1512 | addend = 0; | |
1513 | } | |
1514 | } | |
1515 | else | |
1516 | return bfd_reloc_notsupported; | |
1517 | } | |
1518 | goto do_basic_type_1; | |
1519 | } | |
1520 | ||
1521 | do_basic_type_1: | |
1522 | insn = hppa_elf_relocate_insn (input_bfd, input_section, insn, | |
1523 | offset, value, addend, r_format, | |
1524 | r_field, r_pcrel); | |
1525 | break; | |
1526 | ||
1527 | /* Something we don't know how to handle. */ | |
1528 | default: | |
1529 | return bfd_reloc_notsupported; | |
1530 | } | |
1531 | ||
1532 | /* Update the instruction word. */ | |
1533 | bfd_put_32 (input_bfd, insn, hit_data); | |
1534 | return (bfd_reloc_ok); | |
1535 | } | |
1536 | ||
1537 | /* Return the address of the howto table entry to perform the CODE | |
1538 | relocation for an ARCH machine. */ | |
1539 | ||
1540 | static reloc_howto_type * | |
1541 | elf_hppa_reloc_type_lookup (abfd, code) | |
1542 | bfd *abfd; | |
1543 | bfd_reloc_code_real_type code; | |
1544 | { | |
1545 | if ((int) code < (int) R_PARISC_UNIMPLEMENTED) | |
1546 | { | |
1547 | BFD_ASSERT ((int) elf_hppa_howto_table[(int) code].type == (int) code); | |
1548 | return &elf_hppa_howto_table[(int) code]; | |
1549 | } | |
1550 | return NULL; | |
1551 | } | |
1552 | ||
1553 | /* Return true if SYM represents a local label symbol. */ | |
1554 | ||
1555 | static boolean | |
1556 | hppa_elf_is_local_label_name (abfd, name) | |
1557 | bfd *abfd; | |
1558 | const char *name; | |
1559 | { | |
1560 | return (name[0] == 'L' && name[1] == '$'); | |
1561 | } | |
1562 | ||
1563 | /* Do any backend specific processing when beginning to write an object | |
1564 | file. For PA ELF we need to determine the size of the symbol extension | |
1565 | section *before* any other output processing happens. */ | |
1566 | ||
1567 | static void | |
1568 | elf32_hppa_backend_begin_write_processing (abfd, info) | |
1569 | bfd *abfd; | |
1570 | struct bfd_link_info *info; | |
1571 | { | |
1572 | unsigned int i; | |
1573 | asection *symextn_sec; | |
1574 | ||
1575 | /* Size up the symbol extension section. */ | |
1576 | if ((abfd->outsymbols == NULL | |
1577 | && info == NULL) | |
1578 | || symext_chain_size != 0) | |
1579 | return; | |
1580 | ||
1581 | if (info == NULL) | |
1582 | { | |
1583 | /* We were not called from the BFD ELF linker code, so we need | |
1584 | to examine the output BFD's outsymbols. | |
1585 | ||
1586 | Note we can not build the symbol extensions now as the symbol | |
1587 | map hasn't been set up. */ | |
1588 | for (i = 0; i < abfd->symcount; i++) | |
1589 | { | |
1590 | elf_symbol_type *symbol = (elf_symbol_type *)abfd->outsymbols[i]; | |
1591 | ||
1592 | /* Only functions ever need an entry in the symbol extension | |
1593 | section. */ | |
1594 | if (!(symbol->symbol.flags & BSF_FUNCTION)) | |
1595 | continue; | |
1596 | ||
1597 | /* And only if they specify the locations of their arguments. */ | |
1598 | if (symbol->tc_data.hppa_arg_reloc == 0) | |
1599 | continue; | |
1600 | ||
1601 | /* Yup. This function symbol needs an entry. */ | |
1602 | symext_chain_size += 2 * ELF32_PARISC_SX_SIZE; | |
1603 | } | |
1604 | } | |
1605 | else if (info->relocateable == true) | |
1606 | { | |
1607 | struct elf32_hppa_args_hash_table *table; | |
1608 | table = elf32_hppa_hash_table (info)->args_hash_table; | |
1609 | ||
1610 | /* Determine the size of the symbol extension section. */ | |
1611 | elf32_hppa_args_hash_traverse (table, | |
1612 | elf32_hppa_size_symext, | |
1613 | &symext_chain_size); | |
1614 | } | |
1615 | ||
1616 | /* Now create the section and set its size. We'll fill in the | |
1617 | contents later. */ | |
1618 | symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME); | |
1619 | if (symextn_sec == NULL) | |
1620 | symextn_sec = bfd_make_section (abfd, SYMEXTN_SECTION_NAME); | |
1621 | ||
1622 | bfd_set_section_flags (abfd, symextn_sec, | |
1623 | SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA); | |
1624 | symextn_sec->output_section = symextn_sec; | |
1625 | symextn_sec->output_offset = 0; | |
1626 | bfd_set_section_alignment (abfd, symextn_sec, 2); | |
1627 | bfd_set_section_size (abfd, symextn_sec, symext_chain_size); | |
1628 | } | |
1629 | ||
1630 | /* Called for each entry in the args location hash table. For each | |
1631 | entry we bump the size pointer by 2 records (16 bytes). */ | |
1632 | ||
1633 | static boolean | |
1634 | elf32_hppa_size_symext (gen_entry, in_args) | |
1635 | struct bfd_hash_entry *gen_entry; | |
1636 | PTR in_args; | |
1637 | { | |
1638 | bfd_size_type *sizep = (bfd_size_type *)in_args; | |
1639 | ||
1640 | *sizep += 2 * ELF32_PARISC_SX_SIZE; | |
1641 | return true; | |
1642 | } | |
1643 | ||
1644 | /* Backend routine called by the linker for each output symbol. | |
1645 | ||
1646 | For PA ELF we use this opportunity to add an appropriate entry | |
1647 | to the symbol extension chain for function symbols. */ | |
1648 | ||
1649 | static boolean | |
1650 | elf32_hppa_link_output_symbol_hook (abfd, info, name, sym, section) | |
1651 | bfd *abfd; | |
1652 | struct bfd_link_info *info; | |
1653 | const char *name; | |
1654 | Elf_Internal_Sym *sym; | |
1655 | asection *section; | |
1656 | { | |
1657 | char *new_name; | |
1658 | unsigned int len, index; | |
1659 | struct elf32_hppa_args_hash_table *args_hash_table; | |
1660 | struct elf32_hppa_args_hash_entry *args_hash; | |
1661 | ||
1662 | /* If the args hash table is NULL, then we've encountered an error | |
1663 | of some sorts (for example, an undefined symbol). In that case | |
1664 | we've got nothing else to do. | |
1665 | ||
1666 | NOTE: elf_link_output_symbol will abort if we return false here! */ | |
1667 | if (elf32_hppa_hash_table (info)->args_hash_table == NULL) | |
1668 | return true; | |
1669 | ||
1670 | index = elf32_hppa_hash_table (info)->output_symbol_count++; | |
1671 | ||
1672 | /* We need to look up this symbol in the args hash table to see if | |
1673 | it has argument relocation bits. */ | |
1674 | if (ELF_ST_TYPE (sym->st_info) != STT_FUNC) | |
1675 | return true; | |
1676 | ||
1677 | /* We know it's a function symbol of some kind. */ | |
1678 | len = strlen (name) + 1; | |
1679 | if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) | |
1680 | len += 9; | |
1681 | ||
1682 | new_name = bfd_malloc (len); | |
1683 | if (new_name == NULL) | |
1684 | return false; | |
1685 | ||
1686 | strcpy (new_name, name); | |
1687 | if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) | |
1688 | sprintf (new_name + len - 10, "_%08x", (int)section); | |
1689 | ||
1690 | /* Now that we have the unique name, we can look it up in the | |
1691 | args hash table. */ | |
1692 | args_hash_table = elf32_hppa_hash_table (info)->args_hash_table; | |
1693 | args_hash = elf32_hppa_args_hash_lookup (args_hash_table, new_name, | |
1694 | false, false); | |
1695 | free (new_name); | |
1696 | if (args_hash == NULL) | |
1697 | return true; | |
1698 | ||
1699 | /* We know this symbol has arg reloc bits. */ | |
1700 | add_entry_to_symext_chain (abfd, args_hash->arg_bits, | |
1701 | index, &symext_rootP, &symext_lastP); | |
1702 | return true; | |
1703 | } | |
1704 | ||
1705 | /* Perform any processing needed late in the object file writing process. | |
1706 | For PA ELF we build and set the contents of the symbol extension | |
1707 | section. */ | |
1708 | ||
1709 | static void | |
1710 | elf32_hppa_backend_final_write_processing (abfd, linker) | |
1711 | bfd *abfd; | |
1712 | boolean linker; | |
1713 | { | |
1714 | asection *symextn_sec; | |
1715 | unsigned int i; | |
1716 | ||
1717 | /* Now build the symbol extension section. */ | |
1718 | if (symext_chain_size == 0) | |
1719 | return; | |
1720 | ||
1721 | if (! linker) | |
1722 | { | |
1723 | /* We were not called from the backend linker, so we still need | |
1724 | to build the symbol extension chain. | |
1725 | ||
1726 | Look at each symbol, adding the appropriate information to the | |
1727 | symbol extension section list as necessary. */ | |
1728 | for (i = 0; i < abfd->symcount; i++) | |
1729 | { | |
1730 | elf_symbol_type *symbol = (elf_symbol_type *) abfd->outsymbols[i]; | |
1731 | ||
1732 | /* Only functions ever need an entry in the symbol extension | |
1733 | section. */ | |
1734 | if (!(symbol->symbol.flags & BSF_FUNCTION)) | |
1735 | continue; | |
1736 | ||
1737 | /* And only if they specify the locations of their arguments. */ | |
1738 | if (symbol->tc_data.hppa_arg_reloc == 0) | |
1739 | continue; | |
1740 | ||
1741 | /* Add this symbol's information to the chain. */ | |
1742 | add_entry_to_symext_chain (abfd, symbol->tc_data.hppa_arg_reloc, | |
1743 | symbol->symbol.udata.i, &symext_rootP, | |
1744 | &symext_lastP); | |
1745 | } | |
1746 | } | |
1747 | ||
1748 | /* Now fill in the contents of the symbol extension section. */ | |
1749 | elf_hppa_tc_make_sections (abfd, symext_rootP); | |
1750 | ||
1751 | /* And attach that as the section's contents. */ | |
1752 | symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME); | |
1753 | if (symextn_sec == (asection *) 0) | |
1754 | abort(); | |
1755 | ||
1756 | symextn_sec->contents = (void *)symextn_contents; | |
1757 | ||
1758 | bfd_set_section_contents (abfd, symextn_sec, symextn_sec->contents, | |
1759 | symextn_sec->output_offset, symextn_sec->_raw_size); | |
1760 | } | |
1761 | ||
1762 | /* Update the symbol extention chain to include the symbol pointed to | |
1763 | by SYMBOLP if SYMBOLP is a function symbol. Used internally and by GAS. */ | |
1764 | ||
1765 | static void | |
1766 | add_entry_to_symext_chain (abfd, arg_reloc, sym_idx, symext_root, symext_last) | |
1767 | bfd *abfd; | |
1768 | unsigned int arg_reloc; | |
1769 | unsigned int sym_idx; | |
1770 | symext_chainS **symext_root; | |
1771 | symext_chainS **symext_last; | |
1772 | { | |
1773 | symext_chainS *symextP; | |
1774 | ||
1775 | /* Allocate memory and initialize this entry. */ | |
1776 | symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2); | |
1777 | if (!symextP) | |
1778 | abort(); /* FIXME */ | |
1779 | ||
1780 | symextP[0].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_SYMNDX, sym_idx); | |
1781 | symextP[0].next = &symextP[1]; | |
1782 | ||
1783 | symextP[1].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_ARG_RELOC, arg_reloc); | |
1784 | symextP[1].next = NULL; | |
1785 | ||
1786 | /* Now update the chain itself so it can be walked later to build | |
1787 | the symbol extension section. */ | |
1788 | if (*symext_root == NULL) | |
1789 | { | |
1790 | *symext_root = &symextP[0]; | |
1791 | *symext_last = &symextP[1]; | |
1792 | } | |
1793 | else | |
1794 | { | |
1795 | (*symext_last)->next = &symextP[0]; | |
1796 | *symext_last = &symextP[1]; | |
1797 | } | |
1798 | } | |
1799 | ||
1800 | /* Build the symbol extension section. */ | |
1801 | ||
1802 | static void | |
1803 | elf_hppa_tc_make_sections (abfd, symext_root) | |
1804 | bfd *abfd; | |
1805 | symext_chainS *symext_root; | |
1806 | { | |
1807 | symext_chainS *symextP; | |
1808 | unsigned int i; | |
1809 | asection *symextn_sec; | |
1810 | ||
1811 | symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME); | |
1812 | ||
1813 | /* Grab some memory for the contents of the symbol extension section | |
1814 | itself. */ | |
1815 | symextn_contents = (bfd_byte *) bfd_zalloc (abfd, | |
1816 | symextn_sec->_raw_size); | |
1817 | if (!symextn_contents) | |
1818 | abort(); /* FIXME */ | |
1819 | ||
1820 | /* Fill in the contents of the symbol extension chain. */ | |
1821 | for (i = 0, symextP = symext_root; symextP; symextP = symextP->next, ++i) | |
1822 | ELF32_PARISC_SX_PUT (abfd, (bfd_vma) symextP->entry, | |
1823 | symextn_contents + i * ELF32_PARISC_SX_SIZE); | |
1824 | ||
1825 | return; | |
1826 | } | |
1827 | ||
1828 | /* Do some PA ELF specific work after reading in the symbol table. | |
1829 | In particular attach the argument relocation from the | |
1830 | symbol extension section to the appropriate symbols. */ | |
1831 | ||
1832 | static boolean | |
1833 | elf32_hppa_backend_symbol_table_processing (abfd, esyms,symcnt) | |
1834 | bfd *abfd; | |
1835 | elf_symbol_type *esyms; | |
1836 | unsigned int symcnt; | |
1837 | { | |
1838 | Elf32_Internal_Shdr *symextn_hdr = | |
1839 | bfd_elf_find_section (abfd, SYMEXTN_SECTION_NAME); | |
1840 | unsigned int i, current_sym_idx = 0; | |
1841 | ||
1842 | /* If no symbol extension existed, then all symbol extension information | |
1843 | is assumed to be zero. */ | |
1844 | if (symextn_hdr == NULL) | |
1845 | { | |
1846 | for (i = 0; i < symcnt; i++) | |
1847 | esyms[i].tc_data.hppa_arg_reloc = 0; | |
1848 | return (true); | |
1849 | } | |
1850 | ||
1851 | /* FIXME: Why not use bfd_get_section_contents here? Also should give | |
1852 | memory back when we're done. */ | |
1853 | /* Allocate a buffer of the appropriate size for the symextn section. */ | |
1854 | symextn_hdr->contents = bfd_zalloc(abfd,symextn_hdr->sh_size); | |
1855 | if (!symextn_hdr->contents) | |
1856 | return false; | |
1857 | ||
1858 | /* Read in the symextn section. */ | |
1859 | if (bfd_seek (abfd, symextn_hdr->sh_offset, SEEK_SET) == -1) | |
1860 | return false; | |
1861 | if (bfd_read ((PTR) symextn_hdr->contents, 1, symextn_hdr->sh_size, abfd) | |
1862 | != symextn_hdr->sh_size) | |
1863 | return false; | |
1864 | ||
1865 | /* Parse entries in the symbol extension section, updating the symtab | |
1866 | entries as we go */ | |
1867 | for (i = 0; i < symextn_hdr->sh_size / ELF32_PARISC_SX_SIZE; i++) | |
1868 | { | |
1869 | symext_entryS se = | |
1870 | ELF32_PARISC_SX_GET (abfd, | |
1871 | ((unsigned char *)symextn_hdr->contents | |
1872 | + i * ELF32_PARISC_SX_SIZE)); | |
1873 | unsigned int se_value = ELF32_PARISC_SX_VAL (se); | |
1874 | unsigned int se_type = ELF32_PARISC_SX_TYPE (se); | |
1875 | ||
1876 | switch (se_type) | |
1877 | { | |
1878 | case PARISC_SXT_NULL: | |
1879 | break; | |
1880 | ||
1881 | case PARISC_SXT_SYMNDX: | |
1882 | if (se_value >= symcnt) | |
1883 | { | |
1884 | bfd_set_error (bfd_error_bad_value); | |
1885 | return (false); | |
1886 | } | |
1887 | current_sym_idx = se_value - 1; | |
1888 | break; | |
1889 | ||
1890 | case PARISC_SXT_ARG_RELOC: | |
1891 | esyms[current_sym_idx].tc_data.hppa_arg_reloc = se_value; | |
1892 | break; | |
1893 | ||
1894 | default: | |
1895 | bfd_set_error (bfd_error_bad_value); | |
1896 | return (false); | |
1897 | } | |
1898 | } | |
1899 | return (true); | |
1900 | } | |
1901 | ||
1902 | /* Read and attach the symbol extension information for the symbols | |
1903 | in INPUT_BFD to the argument location hash table. Handle locals | |
1904 | if DO_LOCALS is true; likewise for globals when DO_GLOBALS is true. */ | |
1905 | ||
1906 | static boolean | |
1907 | elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table, local_syms) | |
1908 | bfd *input_bfd; | |
1909 | Elf_Internal_Shdr *symtab_hdr; | |
1910 | struct elf32_hppa_args_hash_table *args_hash_table; | |
1911 | Elf_Internal_Sym *local_syms; | |
1912 | { | |
1913 | asection *symextn_sec; | |
1914 | bfd_byte *contents; | |
1915 | unsigned int i, n_entries, current_index = 0; | |
1916 | ||
1917 | /* Get the symbol extension section for this BFD. If no section exists | |
1918 | then there's nothing to do. Likewise if the section exists, but | |
1919 | has no contents. */ | |
1920 | symextn_sec = bfd_get_section_by_name (input_bfd, SYMEXTN_SECTION_NAME); | |
1921 | if (symextn_sec == NULL) | |
1922 | return true; | |
1923 | ||
1924 | /* Done separately so we can turn off SEC_HAS_CONTENTS (see below). */ | |
1925 | if (symextn_sec->_raw_size == 0) | |
1926 | { | |
1927 | symextn_sec->flags &= ~SEC_HAS_CONTENTS; | |
1928 | return true; | |
1929 | } | |
1930 | ||
1931 | contents = (bfd_byte *) bfd_malloc ((size_t) symextn_sec->_raw_size); | |
1932 | if (contents == NULL) | |
1933 | return false; | |
1934 | ||
1935 | /* How gross. We turn off SEC_HAS_CONTENTS for the input symbol extension | |
1936 | sections to keep the generic ELF/BFD code from trying to do anything | |
1937 | with them. We have to undo that hack temporarily so that we can read | |
1938 | in the contents with the generic code. */ | |
1939 | symextn_sec->flags |= SEC_HAS_CONTENTS; | |
1940 | if (bfd_get_section_contents (input_bfd, symextn_sec, contents, | |
1941 | 0, symextn_sec->_raw_size) == false) | |
1942 | { | |
1943 | symextn_sec->flags &= ~SEC_HAS_CONTENTS; | |
1944 | free (contents); | |
1945 | return false; | |
1946 | } | |
1947 | ||
1948 | /* Gross. Turn off SEC_HAS_CONTENTS for the input symbol extension | |
1949 | sections (see above). */ | |
1950 | symextn_sec->flags &= ~SEC_HAS_CONTENTS; | |
1951 | ||
1952 | n_entries = symextn_sec->_raw_size / ELF32_PARISC_SX_SIZE; | |
1953 | for (i = 0; i < n_entries; i++) | |
1954 | { | |
1955 | symext_entryS entry = | |
1956 | ELF32_PARISC_SX_GET (input_bfd, contents + i * ELF32_PARISC_SX_SIZE); | |
1957 | unsigned int value = ELF32_PARISC_SX_VAL (entry); | |
1958 | unsigned int type = ELF32_PARISC_SX_TYPE (entry); | |
1959 | struct elf32_hppa_args_hash_entry *args_hash; | |
1960 | ||
1961 | switch (type) | |
1962 | { | |
1963 | case PARISC_SXT_NULL: | |
1964 | break; | |
1965 | ||
1966 | case PARISC_SXT_SYMNDX: | |
1967 | if (value >= symtab_hdr->sh_size / sizeof (Elf32_External_Sym)) | |
1968 | { | |
1969 | bfd_set_error (bfd_error_bad_value); | |
1970 | free (contents); | |
1971 | return false; | |
1972 | } | |
1973 | current_index = value; | |
1974 | break; | |
1975 | ||
1976 | case PARISC_SXT_ARG_RELOC: | |
1977 | if (current_index < symtab_hdr->sh_info) | |
1978 | { | |
1979 | Elf_Internal_Shdr *hdr; | |
1980 | char *new_name; | |
1981 | const char *sym_name; | |
1982 | asection *sym_sec; | |
1983 | unsigned int len; | |
1984 | ||
1985 | hdr = elf_elfsections (input_bfd)[local_syms[current_index].st_shndx]; | |
1986 | sym_sec = hdr->bfd_section; | |
1987 | sym_name = bfd_elf_string_from_elf_section (input_bfd, | |
1988 | symtab_hdr->sh_link, | |
1989 | local_syms[current_index].st_name); | |
1990 | len = strlen (sym_name) + 10; | |
1991 | new_name = bfd_malloc (len); | |
1992 | if (new_name == NULL) | |
1993 | { | |
1994 | free (contents); | |
1995 | return false; | |
1996 | } | |
1997 | strcpy (new_name, sym_name); | |
1998 | sprintf (new_name + len - 10, "_%08x", (int)sym_sec); | |
1999 | ||
2000 | /* This is a global symbol with argument location info. | |
2001 | We need to enter it into the hash table. */ | |
2002 | args_hash = elf32_hppa_args_hash_lookup (args_hash_table, | |
2003 | new_name, true, | |
2004 | true); | |
2005 | free (new_name); | |
2006 | if (args_hash == NULL) | |
2007 | { | |
2008 | free (contents); | |
2009 | return false; | |
2010 | } | |
2011 | args_hash->arg_bits = value; | |
2012 | break; | |
2013 | } | |
2014 | else if (current_index >= symtab_hdr->sh_info) | |
2015 | { | |
2016 | struct elf_link_hash_entry *h; | |
2017 | ||
2018 | current_index -= symtab_hdr->sh_info; | |
2019 | h = elf_sym_hashes(input_bfd)[current_index]; | |
2020 | /* This is a global symbol with argument location | |
2021 | information. We need to enter it into the hash table. */ | |
2022 | args_hash = elf32_hppa_args_hash_lookup (args_hash_table, | |
2023 | h->root.root.string, | |
2024 | true, true); | |
2025 | if (args_hash == NULL) | |
2026 | { | |
2027 | bfd_set_error (bfd_error_bad_value); | |
2028 | free (contents); | |
2029 | return false; | |
2030 | } | |
2031 | args_hash->arg_bits = value; | |
2032 | break; | |
2033 | } | |
2034 | else | |
2035 | break; | |
2036 | ||
2037 | default: | |
2038 | bfd_set_error (bfd_error_bad_value); | |
2039 | free (contents); | |
2040 | return false; | |
2041 | } | |
2042 | } | |
2043 | free (contents); | |
2044 | return true; | |
2045 | } | |
2046 | ||
2047 | /* Undo the generic ELF code's subtraction of section->vma from the | |
2048 | value of each external symbol. */ | |
2049 | ||
2050 | static boolean | |
2051 | elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) | |
2052 | bfd *abfd; | |
2053 | struct bfd_link_info *info; | |
2054 | const Elf_Internal_Sym *sym; | |
2055 | const char **namep; | |
2056 | flagword *flagsp; | |
2057 | asection **secp; | |
2058 | bfd_vma *valp; | |
2059 | { | |
2060 | *valp += (*secp)->vma; | |
2061 | return true; | |
2062 | } | |
2063 | ||
2064 | /* Determine the name of the stub needed to perform a call assuming the | |
2065 | argument relocation bits for caller and callee are in CALLER and CALLEE | |
2066 | for a call from LOCATION to DESTINATION. Copy the name into STUB_NAME. */ | |
2067 | ||
2068 | static void | |
2069 | elf32_hppa_name_of_stub (caller, callee, location, destination, stub_name) | |
2070 | unsigned int caller, callee; | |
2071 | bfd_vma location, destination; | |
2072 | char *stub_name; | |
2073 | { | |
2074 | arg_reloc_type arg_reloc_types[5]; | |
2075 | ||
2076 | if (elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types)) | |
2077 | { | |
2078 | arg_reloc_location i; | |
2079 | /* Fill in the basic template. */ | |
2080 | strcpy (stub_name, "__XX_XX_XX_XX_XX_stub_"); | |
2081 | ||
2082 | /* Now fix the specifics. */ | |
2083 | for (i = ARG0; i <= RET; i++) | |
2084 | switch (arg_reloc_types[i]) | |
2085 | { | |
2086 | case NO: | |
2087 | stub_name[3 * i + 2] = 'N'; | |
2088 | stub_name[3 * i + 3] = 'O'; | |
2089 | break; | |
2090 | case GF: | |
2091 | stub_name[3 * i + 2] = 'G'; | |
2092 | stub_name[3 * i + 3] = 'F'; | |
2093 | break; | |
2094 | case FG: | |
2095 | stub_name[3 * i + 2] = 'F'; | |
2096 | stub_name[3 * i + 3] = 'G'; | |
2097 | break; | |
2098 | case GD: | |
2099 | stub_name[3 * i + 2] = 'G'; | |
2100 | stub_name[3 * i + 3] = 'D'; | |
2101 | break; | |
2102 | case DG: | |
2103 | stub_name[3 * i + 2] = 'D'; | |
2104 | stub_name[3 * i + 3] = 'G'; | |
2105 | break; | |
2106 | } | |
2107 | } | |
2108 | else | |
2109 | strcpy (stub_name, "_____long_branch_stub_"); | |
2110 | } | |
2111 | ||
2112 | /* Determine if an argument relocation stub is needed to perform a | |
2113 | call assuming the argument relocation bits for caller and callee | |
2114 | are in CALLER and CALLEE. Place the type of relocations (if any) | |
2115 | into stub_types_p. */ | |
2116 | ||
2117 | static boolean | |
2118 | elf32_hppa_arg_reloc_needed (caller, callee, stub_types) | |
2119 | unsigned int caller, callee; | |
2120 | arg_reloc_type stub_types[5]; | |
2121 | { | |
2122 | /* Special case for no relocations. */ | |
2123 | if (caller == 0 || callee == 0) | |
2124 | return 0; | |
2125 | else | |
2126 | { | |
2127 | arg_location caller_loc[5]; | |
2128 | arg_location callee_loc[5]; | |
2129 | ||
2130 | /* Extract the location information for the argument and return | |
2131 | value on both the caller and callee sides. */ | |
2132 | caller_loc[ARG0] = EXTRACT_ARBITS (caller, ARG0); | |
2133 | callee_loc[ARG0] = EXTRACT_ARBITS (callee, ARG0); | |
2134 | caller_loc[ARG1] = EXTRACT_ARBITS (caller, ARG1); | |
2135 | callee_loc[ARG1] = EXTRACT_ARBITS (callee, ARG1); | |
2136 | caller_loc[ARG2] = EXTRACT_ARBITS (caller, ARG2); | |
2137 | callee_loc[ARG2] = EXTRACT_ARBITS (callee, ARG2); | |
2138 | caller_loc[ARG3] = EXTRACT_ARBITS (caller, ARG3); | |
2139 | callee_loc[ARG3] = EXTRACT_ARBITS (callee, ARG3); | |
2140 | caller_loc[RET] = EXTRACT_ARBITS (caller, RET); | |
2141 | callee_loc[RET] = EXTRACT_ARBITS (callee, RET); | |
2142 | ||
2143 | /* Check some special combinations. This is necessary to | |
2144 | deal with double precision FP arguments. */ | |
2145 | if (caller_loc[ARG0] == AR_FU || caller_loc[ARG1] == AR_FU) | |
2146 | { | |
2147 | caller_loc[ARG0] = AR_FPDBL1; | |
2148 | caller_loc[ARG1] = AR_NO; | |
2149 | } | |
2150 | if (caller_loc[ARG2] == AR_FU || caller_loc[ARG3] == AR_FU) | |
2151 | { | |
2152 | caller_loc[ARG2] = AR_FPDBL2; | |
2153 | caller_loc[ARG3] = AR_NO; | |
2154 | } | |
2155 | if (callee_loc[ARG0] == AR_FU || callee_loc[ARG1] == AR_FU) | |
2156 | { | |
2157 | callee_loc[ARG0] = AR_FPDBL1; | |
2158 | callee_loc[ARG1] = AR_NO; | |
2159 | } | |
2160 | if (callee_loc[ARG2] == AR_FU || callee_loc[ARG3] == AR_FU) | |
2161 | { | |
2162 | callee_loc[ARG2] = AR_FPDBL2; | |
2163 | callee_loc[ARG3] = AR_NO; | |
2164 | } | |
2165 | ||
2166 | /* Now look up any relocation needed for each argument and the | |
2167 | return value. */ | |
2168 | stub_types[ARG0] = arg_mismatches[caller_loc[ARG0]][callee_loc[ARG0]]; | |
2169 | stub_types[ARG1] = arg_mismatches[caller_loc[ARG1]][callee_loc[ARG1]]; | |
2170 | stub_types[ARG2] = arg_mismatches[caller_loc[ARG2]][callee_loc[ARG2]]; | |
2171 | stub_types[ARG3] = arg_mismatches[caller_loc[ARG3]][callee_loc[ARG3]]; | |
2172 | stub_types[RET] = ret_mismatches[caller_loc[RET]][callee_loc[RET]]; | |
2173 | ||
2174 | return (stub_types[ARG0] != NO | |
2175 | || stub_types[ARG1] != NO | |
2176 | || stub_types[ARG2] != NO | |
2177 | || stub_types[ARG3] != NO | |
2178 | || stub_types[RET] != NO); | |
2179 | } | |
2180 | } | |
2181 | ||
2182 | /* Compute the size of the stub needed to call from LOCATION to DESTINATION | |
2183 | (a function named SYM_NAME), with argument relocation bits CALLER and | |
2184 | CALLEE. Return zero if no stub is needed to perform such a call. */ | |
2185 | ||
2186 | static unsigned int | |
2187 | elf32_hppa_size_of_stub (callee, caller, location, destination, sym_name) | |
2188 | unsigned int callee, caller; | |
2189 | bfd_vma location, destination; | |
2190 | const char *sym_name; | |
2191 | { | |
2192 | arg_reloc_type arg_reloc_types[5]; | |
2193 | ||
2194 | /* Determine if a long branch or argument relocation stub is needed. | |
2195 | If an argument relocation stub is needed, the relocation will be | |
2196 | stored into arg_reloc_types. */ | |
2197 | if (!(((int)(location - destination) > 0x3ffff) | |
2198 | || ((int)(location - destination) < (int)0xfffc0000) | |
2199 | || elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types))) | |
2200 | return 0; | |
2201 | ||
2202 | /* Some kind of stub is needed. Determine how big it needs to be. | |
2203 | First check for argument relocation stubs as they also handle | |
2204 | long calls. Then check for long calls to millicode and finally | |
2205 | the normal long calls. */ | |
2206 | if (arg_reloc_types[ARG0] != NO | |
2207 | || arg_reloc_types[ARG1] != NO | |
2208 | || arg_reloc_types[ARG2] != NO | |
2209 | || arg_reloc_types[ARG3] != NO | |
2210 | || arg_reloc_types[RET] != NO) | |
2211 | { | |
2212 | /* Some kind of argument relocation stub is needed. */ | |
2213 | unsigned int len = 16; | |
2214 | arg_reloc_location i; | |
2215 | ||
2216 | /* Each GR or FG relocation takes 2 insns, each GD or DG | |
2217 | relocation takes 3 insns. Plus 4 more insns for the | |
2218 | RP adjustment, ldil & (be | ble) and copy. */ | |
2219 | for (i = ARG0; i <= RET; i++) | |
2220 | switch (arg_reloc_types[i]) | |
2221 | { | |
2222 | case GF: | |
2223 | case FG: | |
2224 | len += 8; | |
2225 | break; | |
2226 | ||
2227 | case GD: | |
2228 | case DG: | |
2229 | len += 12; | |
2230 | break; | |
2231 | ||
2232 | default: | |
2233 | break; | |
2234 | } | |
2235 | ||
2236 | /* Extra instructions are needed if we're relocating a return value. */ | |
2237 | if (arg_reloc_types[RET] != NO) | |
2238 | len += 12; | |
2239 | ||
2240 | return len; | |
2241 | } | |
2242 | else if (!strncmp ("$$", sym_name, 2) | |
2243 | && strcmp ("$$dyncall", sym_name)) | |
2244 | return 12; | |
2245 | else | |
2246 | return 16; | |
2247 | } | |
2248 | ||
2249 | /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. | |
2250 | IN_ARGS contains the stub BFD and link info pointers. */ | |
2251 | ||
2252 | static boolean | |
2253 | elf32_hppa_build_one_stub (gen_entry, in_args) | |
2254 | struct bfd_hash_entry *gen_entry; | |
2255 | PTR in_args; | |
2256 | { | |
2257 | void **args = (void **)in_args; | |
2258 | bfd *stub_bfd = (bfd *)args[0]; | |
2259 | struct bfd_link_info *info = (struct bfd_link_info *)args[1]; | |
2260 | struct elf32_hppa_stub_hash_entry *entry; | |
2261 | struct elf32_hppa_stub_hash_table *stub_hash_table; | |
2262 | bfd_byte *loc; | |
2263 | symvalue sym_value; | |
2264 | const char *sym_name; | |
2265 | ||
2266 | /* Initialize pointers to the stub hash table, the particular entry we | |
2267 | are building a stub for, and where (in memory) we should place the stub | |
2268 | instructions. */ | |
2269 | entry = (struct elf32_hppa_stub_hash_entry *)gen_entry; | |
2270 | stub_hash_table = elf32_hppa_hash_table(info)->stub_hash_table; | |
2271 | loc = stub_hash_table->location; | |
2272 | ||
2273 | /* Make a note of the offset within the stubs for this entry. */ | |
2274 | entry->offset = stub_hash_table->offset; | |
2275 | ||
2276 | /* The symbol's name starts at offset 22. */ | |
2277 | sym_name = entry->root.string + 22; | |
2278 | ||
2279 | sym_value = (entry->target_value | |
2280 | + entry->target_section->output_offset | |
2281 | + entry->target_section->output_section->vma); | |
2282 | ||
2283 | if (strncmp ("_____long_branch_stub_", entry->root.string, 22)) | |
2284 | { | |
2285 | /* This must be an argument or return value relocation stub. */ | |
2286 | unsigned long insn; | |
2287 | arg_reloc_location i; | |
2288 | bfd_byte *begin_loc = loc; | |
2289 | ||
2290 | /* First the return pointer adjustment. Depending on exact calling | |
2291 | sequence this instruction may be skipped. */ | |
2292 | bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc); | |
2293 | loc += 4; | |
2294 | ||
2295 | /* If we are relocating a return value, then we're going to have | |
2296 | to return into the stub. So we have to save off the user's | |
2297 | return pointer into the stack at RP'. */ | |
2298 | if (strncmp (entry->root.string + 14, "NO", 2)) | |
2299 | { | |
2300 | bfd_put_32 (stub_bfd, STW_R31_M8R30, loc); | |
2301 | loc += 4; | |
2302 | } | |
2303 | ||
2304 | /* Iterate over the argument relocations, emitting instructions | |
2305 | to move them around as necessary. */ | |
2306 | for (i = ARG0; i <= ARG3; i++) | |
2307 | { | |
2308 | if (!strncmp (entry->root.string + 3 * i + 2, "GF", 2)) | |
2309 | { | |
2310 | bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((26 - i) << 16), loc); | |
2311 | bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | (4 + i), loc + 4); | |
2312 | loc += 8; | |
2313 | } | |
2314 | else if (!strncmp (entry->root.string + 3 * i + 2, "FG", 2)) | |
2315 | { | |
2316 | bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | (4 + i), loc); | |
2317 | bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((26 - i) << 16), loc + 4); | |
2318 | loc += 8; | |
2319 | } | |
2320 | else if (!strncmp (entry->root.string + 3 * i + 2, "GD", 2)) | |
2321 | { | |
2322 | bfd_put_32 (stub_bfd, STW_ARG_M12R30 | ((26 - i) << 16), loc); | |
2323 | bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((25 - i) << 16), loc + 4); | |
2324 | bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | (5 + i), loc + 8); | |
2325 | loc += 12; | |
2326 | } | |
2327 | else if (!strncmp (entry->root.string + 3 * i + 2, "DG", 2)) | |
2328 | { | |
2329 | bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | (5 + i), loc); | |
2330 | bfd_put_32 (stub_bfd, LDW_M12R30_ARG | ((26 - i) << 16), loc + 4); | |
2331 | bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((25 - i) << 16), loc + 8); | |
2332 | loc += 12; | |
2333 | } | |
2334 | } | |
2335 | ||
2336 | /* Load the high bits of the target address into %r1. */ | |
2337 | insn = hppa_rebuild_insn (stub_bfd, LDIL_R1, | |
2338 | hppa_field_adjust (sym_value, 0, e_lrsel), 21); | |
2339 | bfd_put_32 (stub_bfd, insn, loc); | |
2340 | loc += 4; | |
2341 | ||
2342 | /* If we are relocating a return value, then we're going to have | |
2343 | to return into the stub, then perform the return value relocation. */ | |
2344 | if (strncmp (entry->root.string + 14, "NO", 2)) | |
2345 | { | |
2346 | /* To return to the stub we "ble" to the target and copy the return | |
2347 | pointer from %r31 into %r2. */ | |
2348 | insn = hppa_rebuild_insn (stub_bfd, | |
2349 | BLE_SR4_R1, | |
2350 | hppa_field_adjust (sym_value, 0, | |
2351 | e_rrsel) >> 2, | |
2352 | 17); | |
2353 | bfd_put_32 (stub_bfd, insn, loc); | |
2354 | bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4); | |
2355 | ||
2356 | /* Reload the return pointer for our caller from the stack. */ | |
2357 | bfd_put_32 (stub_bfd, LDW_M8R30_R31, loc + 8); | |
2358 | loc += 12; | |
2359 | ||
2360 | /* Perform the return value relocation. */ | |
2361 | if (!strncmp (entry->root.string + 14, "GF", 2)) | |
2362 | { | |
2363 | bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (28 << 16), loc); | |
2364 | bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | 4, loc + 4); | |
2365 | loc += 8; | |
2366 | } | |
2367 | else if (!strncmp (entry->root.string + 14, "FG", 2)) | |
2368 | { | |
2369 | bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | 4, loc); | |
2370 | bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (28 << 16), loc + 4); | |
2371 | loc += 8; | |
2372 | } | |
2373 | else if (!strncmp (entry->root.string + 2, "GD", 2)) | |
2374 | { | |
2375 | bfd_put_32 (stub_bfd, STW_ARG_M12R30 | (28 << 16), loc); | |
2376 | bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (29 << 16), loc + 4); | |
2377 | bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | 4, loc + 8); | |
2378 | loc += 12; | |
2379 | } | |
2380 | else if (!strncmp (entry->root.string + 2, "DG", 2)) | |
2381 | { | |
2382 | bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | 4, loc); | |
2383 | bfd_put_32 (stub_bfd, LDW_M12R30_ARG | (28 << 16), loc + 4); | |
2384 | bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (29 << 16), loc + 8); | |
2385 | loc += 12; | |
2386 | } | |
2387 | /* Branch back to the user's code now. */ | |
2388 | bfd_put_32 (stub_bfd, BV_N_0_R31, loc); | |
2389 | loc += 4; | |
2390 | } | |
2391 | else | |
2392 | { | |
2393 | /* No return value relocation, so we can simply "be" to the | |
2394 | target and copy out return pointer into %r2. */ | |
2395 | insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1, | |
2396 | hppa_field_adjust (sym_value, 0, | |
2397 | e_rrsel) >> 2, 17); | |
2398 | bfd_put_32 (stub_bfd, insn, loc); | |
2399 | bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4); | |
2400 | loc += 8; | |
2401 | } | |
2402 | ||
2403 | /* Update the location and offsets. */ | |
2404 | stub_hash_table->location += (loc - begin_loc); | |
2405 | stub_hash_table->offset += (loc - begin_loc); | |
2406 | } | |
2407 | else | |
2408 | { | |
2409 | /* Create one of two variant long branch stubs. One for $$dyncall and | |
2410 | normal calls, the other for calls to millicode. */ | |
2411 | unsigned long insn; | |
2412 | int millicode_call = 0; | |
2413 | ||
2414 | if (!strncmp ("$$", sym_name, 2) && strcmp ("$$dyncall", sym_name)) | |
2415 | millicode_call = 1; | |
2416 | ||
2417 | /* First the return pointer adjustment. Depending on exact calling | |
2418 | sequence this instruction may be skipped. */ | |
2419 | bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc); | |
2420 | ||
2421 | /* The next two instructions are the long branch itself. A long branch | |
2422 | is formed with "ldil" loading the upper bits of the target address | |
2423 | into a register, then branching with "be" which adds in the lower bits. | |
2424 | Long branches to millicode nullify the delay slot of the "be". */ | |
2425 | insn = hppa_rebuild_insn (stub_bfd, LDIL_R1, | |
2426 | hppa_field_adjust (sym_value, 0, e_lrsel), 21); | |
2427 | bfd_put_32 (stub_bfd, insn, loc + 4); | |
2428 | insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1 | (millicode_call ? 2 : 0), | |
2429 | hppa_field_adjust (sym_value, 0, e_rrsel) >> 2, | |
2430 | 17); | |
2431 | bfd_put_32 (stub_bfd, insn, loc + 8); | |
2432 | ||
2433 | if (!millicode_call) | |
2434 | { | |
2435 | /* The sequence to call this stub places the return pointer into %r31, | |
2436 | the final target expects the return pointer in %r2, so copy the | |
2437 | return pointer into the proper register. */ | |
2438 | bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 12); | |
2439 | ||
2440 | /* Update the location and offsets. */ | |
2441 | stub_hash_table->location += 16; | |
2442 | stub_hash_table->offset += 16; | |
2443 | } | |
2444 | else | |
2445 | { | |
2446 | /* Update the location and offsets. */ | |
2447 | stub_hash_table->location += 12; | |
2448 | stub_hash_table->offset += 12; | |
2449 | } | |
2450 | ||
2451 | } | |
2452 | return true; | |
2453 | } | |
2454 | ||
2455 | /* External entry points for sizing and building linker stubs. */ | |
2456 | ||
2457 | /* Build all the stubs associated with the current output file. The | |
2458 | stubs are kept in a hash table attached to the main linker hash | |
2459 | table. This is called via hppaelf_finish in the linker. */ | |
2460 | ||
2461 | boolean | |
2462 | elf32_hppa_build_stubs (stub_bfd, info) | |
2463 | bfd *stub_bfd; | |
2464 | struct bfd_link_info *info; | |
2465 | { | |
2466 | /* The stub BFD only has one section. */ | |
2467 | asection *stub_sec = stub_bfd->sections; | |
2468 | struct elf32_hppa_stub_hash_table *table; | |
2469 | unsigned int size; | |
2470 | void *args[2]; | |
2471 | ||
2472 | /* So we can pass both the BFD for the stubs and the link info | |
2473 | structure to the routine which actually builds stubs. */ | |
2474 | args[0] = stub_bfd; | |
2475 | args[1] = info; | |
2476 | ||
2477 | /* Allocate memory to hold the linker stubs. */ | |
2478 | size = bfd_section_size (stub_bfd, stub_sec); | |
2479 | stub_sec->contents = (unsigned char *) bfd_zalloc (stub_bfd, size); | |
2480 | if (stub_sec->contents == NULL) | |
2481 | return false; | |
2482 | table = elf32_hppa_hash_table(info)->stub_hash_table; | |
2483 | table->location = stub_sec->contents; | |
2484 | ||
2485 | /* Build the stubs as directed by the stub hash table. */ | |
2486 | elf32_hppa_stub_hash_traverse (table, elf32_hppa_build_one_stub, args); | |
2487 | ||
2488 | return true; | |
2489 | } | |
2490 | ||
2491 | /* Determine and set the size of the stub section for a final link. | |
2492 | ||
2493 | The basic idea here is to examine all the relocations looking for | |
2494 | PC-relative calls to a target that is unreachable with a "bl" | |
2495 | instruction or calls where the caller and callee disagree on the | |
2496 | location of their arguments or return value. */ | |
2497 | ||
2498 | boolean | |
2499 | elf32_hppa_size_stubs (stub_bfd, output_bfd, link_info) | |
2500 | bfd *stub_bfd; | |
2501 | bfd *output_bfd; | |
2502 | struct bfd_link_info *link_info; | |
2503 | { | |
2504 | bfd *input_bfd; | |
2505 | asection *section, *stub_sec = 0; | |
2506 | Elf_Internal_Shdr *symtab_hdr; | |
2507 | Elf_Internal_Sym *local_syms, *isym, **all_local_syms; | |
2508 | Elf32_External_Sym *ext_syms, *esym; | |
2509 | unsigned int i, index, bfd_count = 0; | |
2510 | struct elf32_hppa_stub_hash_table *stub_hash_table = 0; | |
2511 | struct elf32_hppa_args_hash_table *args_hash_table = 0; | |
2512 | ||
2513 | /* Create and initialize the stub hash table. */ | |
2514 | stub_hash_table = ((struct elf32_hppa_stub_hash_table *) | |
2515 | bfd_malloc (sizeof (struct elf32_hppa_stub_hash_table))); | |
2516 | if (!stub_hash_table) | |
2517 | goto error_return; | |
2518 | ||
2519 | if (!elf32_hppa_stub_hash_table_init (stub_hash_table, stub_bfd, | |
2520 | elf32_hppa_stub_hash_newfunc)) | |
2521 | goto error_return; | |
2522 | ||
2523 | /* Likewise for the argument location hash table. */ | |
2524 | args_hash_table = ((struct elf32_hppa_args_hash_table *) | |
2525 | bfd_malloc (sizeof (struct elf32_hppa_args_hash_table))); | |
2526 | if (!args_hash_table) | |
2527 | goto error_return; | |
2528 | ||
2529 | if (!elf32_hppa_args_hash_table_init (args_hash_table, | |
2530 | elf32_hppa_args_hash_newfunc)) | |
2531 | goto error_return; | |
2532 | ||
2533 | /* Attach the hash tables to the main hash table. */ | |
2534 | elf32_hppa_hash_table(link_info)->stub_hash_table = stub_hash_table; | |
2535 | elf32_hppa_hash_table(link_info)->args_hash_table = args_hash_table; | |
2536 | ||
2537 | /* Count the number of input BFDs. */ | |
2538 | for (input_bfd = link_info->input_bfds; | |
2539 | input_bfd != NULL; | |
2540 | input_bfd = input_bfd->link_next) | |
2541 | bfd_count++; | |
2542 | ||
2543 | /* We want to read in symbol extension records only once. To do this | |
2544 | we need to read in the local symbols in parallel and save them for | |
2545 | later use; so hold pointers to the local symbols in an array. */ | |
2546 | all_local_syms | |
2547 | = (Elf_Internal_Sym **) bfd_malloc (sizeof (Elf_Internal_Sym *) | |
2548 | * bfd_count); | |
2549 | if (all_local_syms == NULL) | |
2550 | goto error_return; | |
2551 | memset (all_local_syms, 0, sizeof (Elf_Internal_Sym *) * bfd_count); | |
2552 | ||
2553 | /* Walk over all the input BFDs adding entries to the args hash table | |
2554 | for all the external functions. */ | |
2555 | for (input_bfd = link_info->input_bfds, index = 0; | |
2556 | input_bfd != NULL; | |
2557 | input_bfd = input_bfd->link_next, index++) | |
2558 | { | |
2559 | /* We'll need the symbol table in a second. */ | |
2560 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2561 | if (symtab_hdr->sh_info == 0) | |
2562 | continue; | |
2563 | ||
2564 | /* We need an array of the local symbols attached to the input bfd. | |
2565 | Unfortunately, we're going to have to read & swap them in. */ | |
2566 | local_syms | |
2567 | = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info | |
2568 | * sizeof (Elf_Internal_Sym)); | |
2569 | if (local_syms == NULL) | |
2570 | { | |
2571 | for (i = 0; i < bfd_count; i++) | |
2572 | if (all_local_syms[i]) | |
2573 | free (all_local_syms[i]); | |
2574 | free (all_local_syms); | |
2575 | goto error_return; | |
2576 | } | |
2577 | all_local_syms[index] = local_syms; | |
2578 | ||
2579 | ext_syms | |
2580 | = (Elf32_External_Sym *) bfd_malloc (symtab_hdr->sh_info | |
2581 | * sizeof (Elf32_External_Sym)); | |
2582 | if (ext_syms == NULL) | |
2583 | { | |
2584 | for (i = 0; i < bfd_count; i++) | |
2585 | if (all_local_syms[i]) | |
2586 | free (all_local_syms[i]); | |
2587 | free (all_local_syms); | |
2588 | goto error_return; | |
2589 | } | |
2590 | ||
2591 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
2592 | || bfd_read (ext_syms, 1, | |
2593 | (symtab_hdr->sh_info | |
2594 | * sizeof (Elf32_External_Sym)), input_bfd) | |
2595 | != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))) | |
2596 | { | |
2597 | for (i = 0; i < bfd_count; i++) | |
2598 | if (all_local_syms[i]) | |
2599 | free (all_local_syms[i]); | |
2600 | free (all_local_syms); | |
2601 | free (ext_syms); | |
2602 | goto error_return; | |
2603 | } | |
2604 | ||
2605 | /* Swap the local symbols in. */ | |
2606 | isym = local_syms; | |
2607 | esym = ext_syms; | |
2608 | for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++) | |
2609 | bfd_elf32_swap_symbol_in (input_bfd, esym, isym); | |
2610 | ||
2611 | /* Now we can free the external symbols. */ | |
2612 | free (ext_syms); | |
2613 | ||
2614 | if (elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table, | |
2615 | local_syms) == false) | |
2616 | { | |
2617 | for (i = 0; i < bfd_count; i++) | |
2618 | if (all_local_syms[i]) | |
2619 | free (all_local_syms[i]); | |
2620 | free (all_local_syms); | |
2621 | goto error_return; | |
2622 | } | |
2623 | } | |
2624 | ||
2625 | /* Magic as we know the stub bfd only has one section. */ | |
2626 | stub_sec = stub_bfd->sections; | |
2627 | ||
2628 | /* If generating a relocateable output file, then we don't | |
2629 | have to examine the relocs. */ | |
2630 | if (link_info->relocateable) | |
2631 | { | |
2632 | for (i = 0; i < bfd_count; i++) | |
2633 | if (all_local_syms[i]) | |
2634 | free (all_local_syms[i]); | |
2635 | free (all_local_syms); | |
2636 | return true; | |
2637 | } | |
2638 | ||
2639 | /* Now that we have argument location information for all the global | |
2640 | functions we can start looking for stubs. */ | |
2641 | for (input_bfd = link_info->input_bfds, index = 0; | |
2642 | input_bfd != NULL; | |
2643 | input_bfd = input_bfd->link_next, index++) | |
2644 | { | |
2645 | /* We'll need the symbol table in a second. */ | |
2646 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2647 | if (symtab_hdr->sh_info == 0) | |
2648 | continue; | |
2649 | ||
2650 | local_syms = all_local_syms[index]; | |
2651 | ||
2652 | /* Walk over each section attached to the input bfd. */ | |
2653 | for (section = input_bfd->sections; | |
2654 | section != NULL; | |
2655 | section = section->next) | |
2656 | { | |
2657 | Elf_Internal_Shdr *input_rel_hdr; | |
2658 | Elf32_External_Rela *external_relocs, *erelaend, *erela; | |
2659 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | |
2660 | ||
2661 | /* If there aren't any relocs, then there's nothing to do. */ | |
2662 | if ((section->flags & SEC_RELOC) == 0 | |
2663 | || section->reloc_count == 0) | |
2664 | continue; | |
2665 | ||
2666 | /* Allocate space for the external relocations. */ | |
2667 | external_relocs | |
2668 | = ((Elf32_External_Rela *) | |
2669 | bfd_malloc (section->reloc_count | |
2670 | * sizeof (Elf32_External_Rela))); | |
2671 | if (external_relocs == NULL) | |
2672 | { | |
2673 | for (i = 0; i < bfd_count; i++) | |
2674 | if (all_local_syms[i]) | |
2675 | free (all_local_syms[i]); | |
2676 | free (all_local_syms); | |
2677 | goto error_return; | |
2678 | } | |
2679 | ||
2680 | /* Likewise for the internal relocations. */ | |
2681 | internal_relocs | |
2682 | = ((Elf_Internal_Rela *) | |
2683 | bfd_malloc (section->reloc_count * sizeof (Elf_Internal_Rela))); | |
2684 | if (internal_relocs == NULL) | |
2685 | { | |
2686 | free (external_relocs); | |
2687 | for (i = 0; i < bfd_count; i++) | |
2688 | if (all_local_syms[i]) | |
2689 | free (all_local_syms[i]); | |
2690 | free (all_local_syms); | |
2691 | goto error_return; | |
2692 | } | |
2693 | ||
2694 | /* Read in the external relocs. */ | |
2695 | input_rel_hdr = &elf_section_data (section)->rel_hdr; | |
2696 | if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0 | |
2697 | || bfd_read (external_relocs, 1, input_rel_hdr->sh_size, | |
2698 | input_bfd) != input_rel_hdr->sh_size) | |
2699 | { | |
2700 | free (external_relocs); | |
2701 | free (internal_relocs); | |
2702 | for (i = 0; i < bfd_count; i++) | |
2703 | if (all_local_syms[i]) | |
2704 | free (all_local_syms[i]); | |
2705 | free (all_local_syms); | |
2706 | goto error_return; | |
2707 | } | |
2708 | ||
2709 | /* Swap in the relocs. */ | |
2710 | erela = external_relocs; | |
2711 | erelaend = erela + section->reloc_count; | |
2712 | irela = internal_relocs; | |
2713 | for (; erela < erelaend; erela++, irela++) | |
2714 | bfd_elf32_swap_reloca_in (input_bfd, erela, irela); | |
2715 | ||
2716 | /* We're done with the external relocs, free them. */ | |
2717 | free (external_relocs); | |
2718 | ||
2719 | /* Now examine each relocation. */ | |
2720 | irela = internal_relocs; | |
2721 | irelaend = irela + section->reloc_count; | |
2722 | for (; irela < irelaend; irela++) | |
2723 | { | |
2724 | long r_type, callee_args, caller_args, size_of_stub; | |
2725 | unsigned long r_index; | |
2726 | struct elf_link_hash_entry *hash; | |
2727 | struct elf32_hppa_stub_hash_entry *stub_hash; | |
2728 | struct elf32_hppa_args_hash_entry *args_hash; | |
2729 | Elf_Internal_Sym *sym; | |
2730 | asection *sym_sec; | |
2731 | const char *sym_name; | |
2732 | symvalue sym_value; | |
2733 | bfd_vma location, destination; | |
2734 | char *new_name = NULL; | |
2735 | ||
2736 | r_type = ELF32_R_TYPE (irela->r_info); | |
2737 | r_index = ELF32_R_SYM (irela->r_info); | |
2738 | ||
2739 | if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED) | |
2740 | { | |
2741 | bfd_set_error (bfd_error_bad_value); | |
2742 | free (internal_relocs); | |
2743 | for (i = 0; i < bfd_count; i++) | |
2744 | if (all_local_syms[i]) | |
2745 | free (all_local_syms[i]); | |
2746 | free (all_local_syms); | |
2747 | goto error_return; | |
2748 | } | |
2749 | ||
2750 | /* Only look for stubs on call instructions or plabel | |
2751 | references. */ | |
2752 | if (r_type != R_PARISC_PCREL17F | |
2753 | && r_type != R_PARISC_PLABEL32 | |
2754 | && r_type != R_PARISC_PLABEL21L | |
2755 | && r_type != R_PARISC_PLABEL14R) | |
2756 | continue; | |
2757 | ||
2758 | /* Now determine the call target, its name, value, section | |
2759 | and argument relocation bits. */ | |
2760 | hash = NULL; | |
2761 | sym = NULL; | |
2762 | sym_sec = NULL; | |
2763 | if (r_index < symtab_hdr->sh_info) | |
2764 | { | |
2765 | /* It's a local symbol. */ | |
2766 | Elf_Internal_Shdr *hdr; | |
2767 | ||
2768 | sym = local_syms + r_index; | |
2769 | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; | |
2770 | sym_sec = hdr->bfd_section; | |
2771 | sym_name = bfd_elf_string_from_elf_section (input_bfd, | |
2772 | symtab_hdr->sh_link, | |
2773 | sym->st_name); | |
2774 | sym_value = (ELF_ST_TYPE (sym->st_info) == STT_SECTION | |
2775 | ? 0 : sym->st_value); | |
2776 | destination = (sym_value | |
2777 | + sym_sec->output_offset | |
2778 | + sym_sec->output_section->vma); | |
2779 | ||
2780 | /* Tack on an ID so we can uniquely identify this local | |
2781 | symbol in the stub or arg info hash tables. */ | |
2782 | new_name = bfd_malloc (strlen (sym_name) + 10); | |
2783 | if (new_name == 0) | |
2784 | { | |
2785 | free (internal_relocs); | |
2786 | for (i = 0; i < bfd_count; i++) | |
2787 | if (all_local_syms[i]) | |
2788 | free (all_local_syms[i]); | |
2789 | free (all_local_syms); | |
2790 | goto error_return; | |
2791 | } | |
2792 | sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec); | |
2793 | sym_name = new_name; | |
2794 | } | |
2795 | else | |
2796 | { | |
2797 | /* It's an external symbol. */ | |
2798 | long index; | |
2799 | ||
2800 | index = r_index - symtab_hdr->sh_info; | |
2801 | hash = elf_sym_hashes (input_bfd)[index]; | |
2802 | if (hash->root.type == bfd_link_hash_defined | |
2803 | || hash->root.type == bfd_link_hash_defweak) | |
2804 | { | |
2805 | sym_sec = hash->root.u.def.section; | |
2806 | sym_name = hash->root.root.string; | |
2807 | sym_value = hash->root.u.def.value; | |
2808 | destination = (sym_value | |
2809 | + sym_sec->output_offset | |
2810 | + sym_sec->output_section->vma); | |
2811 | } | |
2812 | else | |
2813 | { | |
2814 | bfd_set_error (bfd_error_bad_value); | |
2815 | free (internal_relocs); | |
2816 | for (i = 0; i < bfd_count; i++) | |
2817 | if (all_local_syms[i]) | |
2818 | free (all_local_syms[i]); | |
2819 | free (all_local_syms); | |
2820 | goto error_return; | |
2821 | } | |
2822 | } | |
2823 | ||
2824 | args_hash = elf32_hppa_args_hash_lookup (args_hash_table, | |
2825 | sym_name, false, false); | |
2826 | ||
2827 | /* Get both caller and callee argument information. */ | |
2828 | if (args_hash == NULL) | |
2829 | callee_args = 0; | |
2830 | else | |
2831 | callee_args = args_hash->arg_bits; | |
2832 | ||
2833 | /* For calls get the caller's bits from the addend of | |
2834 | the call relocation. For PLABELS the caller's bits | |
2835 | are assumed to have all args & return values in general | |
2836 | registers (0x155). */ | |
2837 | if (r_type == R_PARISC_PCREL17F) | |
2838 | caller_args = HPPA_R_ARG_RELOC (irela->r_addend); | |
2839 | else | |
2840 | caller_args = 0x155; | |
2841 | ||
2842 | /* Now determine where the call point is. */ | |
2843 | location = (section->output_offset | |
2844 | + section->output_section->vma | |
2845 | + irela->r_offset); | |
2846 | ||
2847 | /* We only care about the destination for PCREL function | |
2848 | calls (eg. we don't care for PLABELS). */ | |
2849 | if (r_type != R_PARISC_PCREL17F) | |
2850 | location = destination; | |
2851 | ||
2852 | /* Determine what (if any) linker stub is needed and its | |
2853 | size (in bytes). */ | |
2854 | size_of_stub = elf32_hppa_size_of_stub (callee_args, | |
2855 | caller_args, | |
2856 | location, | |
2857 | destination, | |
2858 | sym_name); | |
2859 | if (size_of_stub != 0) | |
2860 | { | |
2861 | char *stub_name; | |
2862 | unsigned int len; | |
2863 | ||
2864 | /* Get the name of this stub. */ | |
2865 | len = strlen (sym_name); | |
2866 | len += 23; | |
2867 | ||
2868 | stub_name = bfd_malloc (len); | |
2869 | if (!stub_name) | |
2870 | { | |
2871 | /* Because sym_name was mallocd above for local | |
2872 | symbols. */ | |
2873 | if (r_index < symtab_hdr->sh_info) | |
2874 | free (new_name); | |
2875 | ||
2876 | free (internal_relocs); | |
2877 | for (i = 0; i < bfd_count; i++) | |
2878 | if (all_local_syms[i]) | |
2879 | free (all_local_syms[i]); | |
2880 | free (all_local_syms); | |
2881 | goto error_return; | |
2882 | } | |
2883 | elf32_hppa_name_of_stub (caller_args, callee_args, | |
2884 | location, destination, stub_name); | |
2885 | strcat (stub_name + 22, sym_name); | |
2886 | ||
2887 | /* Because sym_name was malloced above for local symbols. */ | |
2888 | if (r_index < symtab_hdr->sh_info) | |
2889 | free (new_name); | |
2890 | ||
2891 | stub_hash | |
2892 | = elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name, | |
2893 | false, false); | |
2894 | if (stub_hash != NULL) | |
2895 | { | |
2896 | /* The proper stub has already been created, nothing | |
2897 | else to do. */ | |
2898 | free (stub_name); | |
2899 | } | |
2900 | else | |
2901 | { | |
2902 | bfd_set_section_size (stub_bfd, stub_sec, | |
2903 | (bfd_section_size (stub_bfd, | |
2904 | stub_sec) | |
2905 | + size_of_stub)); | |
2906 | ||
2907 | /* Enter this entry into the linker stub hash table. */ | |
2908 | stub_hash | |
2909 | = elf32_hppa_stub_hash_lookup (stub_hash_table, | |
2910 | stub_name, true, true); | |
2911 | if (stub_hash == NULL) | |
2912 | { | |
2913 | free (stub_name); | |
2914 | free (internal_relocs); | |
2915 | for (i = 0; i < bfd_count; i++) | |
2916 | if (all_local_syms[i]) | |
2917 | free (all_local_syms[i]); | |
2918 | free (all_local_syms); | |
2919 | goto error_return; | |
2920 | } | |
2921 | ||
2922 | /* We'll need these to determine the address that the | |
2923 | stub will branch to. */ | |
2924 | stub_hash->target_value = sym_value; | |
2925 | stub_hash->target_section = sym_sec; | |
2926 | } | |
2927 | free (stub_name); | |
2928 | } | |
2929 | } | |
2930 | /* We're done with the internal relocs, free them. */ | |
2931 | free (internal_relocs); | |
2932 | } | |
2933 | } | |
2934 | /* We're done with the local symbols, free them. */ | |
2935 | for (i = 0; i < bfd_count; i++) | |
2936 | if (all_local_syms[i]) | |
2937 | free (all_local_syms[i]); | |
2938 | free (all_local_syms); | |
2939 | return true; | |
2940 | ||
2941 | error_return: | |
2942 | /* Return gracefully, avoiding dangling references to the hash tables. */ | |
2943 | if (stub_hash_table) | |
2944 | { | |
2945 | elf32_hppa_hash_table(link_info)->stub_hash_table = NULL; | |
2946 | free (stub_hash_table); | |
2947 | } | |
2948 | if (args_hash_table) | |
2949 | { | |
2950 | elf32_hppa_hash_table(link_info)->args_hash_table = NULL; | |
2951 | free (args_hash_table); | |
2952 | } | |
2953 | /* Set the size of the stub section to zero since we're never going | |
2954 | to create them. Avoids losing when we try to get its contents | |
2955 | too. */ | |
2956 | bfd_set_section_size (stub_bfd, stub_sec, 0); | |
2957 | return false; | |
2958 | } | |
2959 | ||
2960 | /* Misc BFD support code. */ | |
2961 | #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup | |
2962 | #define bfd_elf32_bfd_is_local_label_name hppa_elf_is_local_label_name | |
2963 | ||
2964 | /* Symbol extension stuff. */ | |
2965 | #define bfd_elf32_set_section_contents elf32_hppa_set_section_contents | |
2966 | #define elf_info_to_howto elf32_hppa_info_to_howto | |
2967 | #define elf_backend_symbol_table_processing \ | |
2968 | elf32_hppa_backend_symbol_table_processing | |
2969 | #define elf_backend_begin_write_processing \ | |
2970 | elf32_hppa_backend_begin_write_processing | |
2971 | #define elf_backend_final_write_processing \ | |
2972 | elf32_hppa_backend_final_write_processing | |
2973 | ||
2974 | /* Stuff for the BFD linker. */ | |
2975 | #define elf_backend_relocate_section elf32_hppa_relocate_section | |
2976 | #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook | |
2977 | #define elf_backend_link_output_symbol_hook \ | |
2978 | elf32_hppa_link_output_symbol_hook | |
2979 | #define bfd_elf32_bfd_link_hash_table_create \ | |
2980 | elf32_hppa_link_hash_table_create | |
2981 | ||
2982 | #define TARGET_BIG_SYM bfd_elf32_hppa_vec | |
2983 | #define TARGET_BIG_NAME "elf32-hppa" | |
2984 | #define ELF_ARCH bfd_arch_hppa | |
2985 | #define ELF_MACHINE_CODE EM_PARISC | |
2986 | #define ELF_MAXPAGESIZE 0x1000 | |
2987 | ||
2988 | #include "elf32-target.h" |