]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-hppa.c
* elf32-hppa.c (final_link_relocate): Branch to .+8 for
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
CommitLineData
252b5132 1/* BFD back-end for HP PA-RISC ELF files.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
252b5132
RH
3 Free Software Foundation, Inc.
4
30667bf3 5 Original code by
252b5132
RH
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
30667bf3 9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
252b5132
RH
10
11This file is part of BFD, the Binary File Descriptor library.
12
13This program is free software; you can redistribute it and/or modify
14it under the terms of the GNU General Public License as published by
15the Free Software Foundation; either version 2 of the License, or
16(at your option) any later version.
17
18This program is distributed in the hope that it will be useful,
19but WITHOUT ANY WARRANTY; without even the implied warranty of
20MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21GNU General Public License for more details.
22
23You should have received a copy of the GNU General Public License
24along with this program; if not, write to the Free Software
25Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27#include "bfd.h"
28#include "sysdep.h"
252b5132
RH
29#include "libbfd.h"
30#include "elf-bfd.h"
9e103c9c
JL
31#include "elf/hppa.h"
32#include "libhppa.h"
33#include "elf32-hppa.h"
34#define ARCH_SIZE 32
35#include "elf-hppa.h"
edd21aca 36#include "elf32-hppa.h"
9e103c9c 37
74d1c347
AM
38/* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
edd21aca 49/* We use two hash tables to hold information for linking PA ELF objects.
252b5132
RH
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
30667bf3
AM
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
3ee1d854
AM
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
30667bf3
AM
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
3ee1d854
AM
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
30667bf3 74 : bv %r0(%r21)
3ee1d854 75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
3ee1d854
AM
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
30667bf3 81 : bv %r0(%r21)
3ee1d854 82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
3ee1d854
AM
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
3ee1d854
AM
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
74d1c347 114 : be,n 0(%sr0,%rp) ; inter-space return */
30667bf3
AM
115
116#define PLT_ENTRY_SIZE 8
74d1c347 117#define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
30667bf3
AM
118#define GOT_ENTRY_SIZE 4
119#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120
47d89dba
AM
121static const bfd_byte plt_stub[] =
122{
123 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
124 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
125 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
126#define PLT_STUB_ENTRY (3*4)
127 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
128 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
129 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
130 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
131};
132
30667bf3
AM
133/* Section name for stubs is the associated section name plus this
134 string. */
135#define STUB_SUFFIX ".stub"
136
137/* Setting the following non-zero makes all long branch stubs
138 generated during a shared link of the PIC variety. This saves on
139 relocs, but costs one extra instruction per stub. */
140#ifndef LONG_BRANCH_PIC_IN_SHLIB
141#define LONG_BRANCH_PIC_IN_SHLIB 1
142#endif
252b5132 143
74d1c347
AM
144/* Set this non-zero to use import stubs instead of long branch stubs
145 where a .plt entry exists for the symbol. This is a fairly useless
146 option as import stubs are bigger than PIC long branch stubs. */
147#ifndef LONG_BRANCH_VIA_PLT
148#define LONG_BRANCH_VIA_PLT 0
149#endif
150
30667bf3
AM
151/* We don't need to copy any PC- or GP-relative dynamic relocs into a
152 shared object's dynamic section. */
153#ifndef RELATIVE_DYNAMIC_RELOCS
154#define RELATIVE_DYNAMIC_RELOCS 0
155#endif
156
30667bf3
AM
157enum elf32_hppa_stub_type {
158 hppa_stub_long_branch,
159 hppa_stub_long_branch_shared,
160 hppa_stub_import,
161 hppa_stub_import_shared,
162 hppa_stub_export,
163 hppa_stub_none
164};
165
30667bf3 166struct elf32_hppa_stub_hash_entry {
252b5132 167
edd21aca 168 /* Base hash table entry structure. */
252b5132
RH
169 struct bfd_hash_entry root;
170
edd21aca
AM
171 /* The stub section. */
172 asection *stub_sec;
173
30667bf3
AM
174#if ! LONG_BRANCH_PIC_IN_SHLIB
175 /* It's associated reloc section. */
176 asection *reloc_sec;
177#endif
178
edd21aca 179 /* Offset within stub_sec of the beginning of this stub. */
30667bf3 180 bfd_vma stub_offset;
252b5132
RH
181
182 /* Given the symbol's value and its section we can determine its final
183 value when building the stubs (so the stub knows where to jump. */
30667bf3 184 bfd_vma target_value;
252b5132 185 asection *target_section;
30667bf3
AM
186
187 enum elf32_hppa_stub_type stub_type;
188
189 /* The symbol table entry, if any, that this was derived from. */
190 struct elf32_hppa_link_hash_entry *h;
191
25f72752
AM
192 /* Where this stub is being called from, or, in the case of combined
193 stub sections, the first input section in the group. */
194 asection *id_sec;
252b5132
RH
195};
196
30667bf3
AM
197struct elf32_hppa_link_hash_entry {
198
199 struct elf_link_hash_entry elf;
200
201 /* A pointer to the most recently used stub hash entry against this
202 symbol. */
203 struct elf32_hppa_stub_hash_entry *stub_cache;
204
205#if ! LONG_BRANCH_PIC_IN_SHLIB
206 /* Used to track whether we have allocated space for a long branch
207 stub relocation for this symbol in the given section. */
208 asection *stub_reloc_sec;
209#endif
210
211#if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
212 /* Used to count relocations for delayed sizing of relocation
213 sections. */
214 struct elf32_hppa_dyn_reloc_entry {
215
216 /* Next relocation in the chain. */
217 struct elf32_hppa_dyn_reloc_entry *next;
218
219 /* The section in dynobj. */
220 asection *section;
221
222 /* Number of relocs copied in this section. */
223 bfd_size_type count;
224 } *reloc_entries;
225#endif
226
227 /* Set during a static link if we detect a function is PIC. */
12cca0d2
AM
228 unsigned int maybe_pic_call:1;
229
230 /* Set if the only reason we need a .plt entry is for a non-PIC to
231 PIC function call. */
74d1c347
AM
232 unsigned int pic_call:1;
233
234 /* Set if this symbol is used by a plabel reloc. */
235 unsigned int plabel:1;
236
237 /* Set if this symbol is an init or fini function and thus should
238 use an absolute reloc. */
239 unsigned int plt_abs:1;
30667bf3
AM
240};
241
30667bf3
AM
242struct elf32_hppa_link_hash_table {
243
252b5132
RH
244 /* The main hash table. */
245 struct elf_link_hash_table root;
246
247 /* The stub hash table. */
edd21aca 248 struct bfd_hash_table stub_hash_table;
252b5132 249
30667bf3
AM
250 /* Linker stub bfd. */
251 bfd *stub_bfd;
252
30667bf3
AM
253 /* Linker call-backs. */
254 asection * (*add_stub_section) PARAMS ((const char *, asection *));
255 void (*layout_sections_again) PARAMS ((void));
256
25f72752
AM
257 /* Array to keep track of which stub sections have been created, and
258 information on stub grouping. */
259 struct map_stub {
260 /* This is the section to which stubs in the group will be
261 attached. */
262 asection *link_sec;
263 /* The stub section. */
264 asection *stub_sec;
30667bf3 265#if ! LONG_BRANCH_PIC_IN_SHLIB
25f72752
AM
266 /* The stub section's reloc section. */
267 asection *reloc_sec;
30667bf3 268#endif
25f72752 269 } *stub_group;
30667bf3 270
30667bf3
AM
271 /* Short-cuts to get to dynamic linker sections. */
272 asection *sgot;
273 asection *srelgot;
274 asection *splt;
275 asection *srelplt;
276 asection *sdynbss;
277 asection *srelbss;
47d89dba 278
c46b7515
AM
279 /* Used during a final link to store the base of the text and data
280 segments so that we can perform SEGREL relocations. */
281 bfd_vma text_segment_base;
282 bfd_vma data_segment_base;
283
47d89dba
AM
284 /* Whether we support multiple sub-spaces for shared libs. */
285 unsigned int multi_subspace:1;
286
287 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
288 select suitable defaults for the stub group size. */
289 unsigned int has_12bit_branch:1;
290 unsigned int has_17bit_branch:1;
291
292 /* Set if we need a .plt stub to support lazy dynamic linking. */
293 unsigned int need_plt_stub:1;
252b5132
RH
294};
295
30667bf3
AM
296/* Various hash macros and functions. */
297#define hppa_link_hash_table(p) \
edd21aca 298 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
252b5132 299
30667bf3
AM
300#define hppa_stub_hash_lookup(table, string, create, copy) \
301 ((struct elf32_hppa_stub_hash_entry *) \
302 bfd_hash_lookup ((table), (string), (create), (copy)))
303
304static struct bfd_hash_entry *stub_hash_newfunc
305 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
edd21aca 306
30667bf3 307static struct bfd_hash_entry *hppa_link_hash_newfunc
edd21aca 308 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
252b5132
RH
309
310static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
311 PARAMS ((bfd *));
312
30667bf3
AM
313/* Stub handling functions. */
314static char *hppa_stub_name
315 PARAMS ((const asection *, const asection *,
316 const struct elf32_hppa_link_hash_entry *,
317 const Elf_Internal_Rela *));
edd21aca 318
30667bf3
AM
319static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
320 PARAMS ((const asection *, const asection *,
321 struct elf32_hppa_link_hash_entry *,
25f72752
AM
322 const Elf_Internal_Rela *,
323 struct elf32_hppa_link_hash_table *));
edd21aca 324
30667bf3 325static struct elf32_hppa_stub_hash_entry *hppa_add_stub
25f72752 326 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
30667bf3
AM
327
328static enum elf32_hppa_stub_type hppa_type_of_stub
329 PARAMS ((asection *, const Elf_Internal_Rela *,
330 struct elf32_hppa_link_hash_entry *, bfd_vma));
331
332static boolean hppa_build_one_stub
333 PARAMS ((struct bfd_hash_entry *, PTR));
334
335static boolean hppa_size_one_stub
336 PARAMS ((struct bfd_hash_entry *, PTR));
337
30667bf3
AM
338/* BFD and elf backend functions. */
339static boolean elf32_hppa_object_p PARAMS ((bfd *));
252b5132 340
edd21aca
AM
341static boolean elf32_hppa_add_symbol_hook
342 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
343 const char **, flagword *, asection **, bfd_vma *));
252b5132 344
30667bf3
AM
345static boolean elf32_hppa_create_dynamic_sections
346 PARAMS ((bfd *, struct bfd_link_info *));
252b5132 347
30667bf3
AM
348static boolean elf32_hppa_check_relocs
349 PARAMS ((bfd *, struct bfd_link_info *,
350 asection *, const Elf_Internal_Rela *));
351
352static asection *elf32_hppa_gc_mark_hook
353 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
354 struct elf_link_hash_entry *, Elf_Internal_Sym *));
355
356static boolean elf32_hppa_gc_sweep_hook
357 PARAMS ((bfd *, struct bfd_link_info *,
358 asection *, const Elf_Internal_Rela *));
359
74d1c347
AM
360static void elf32_hppa_hide_symbol
361 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
362
30667bf3
AM
363static boolean elf32_hppa_adjust_dynamic_symbol
364 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
365
366static boolean hppa_handle_PIC_calls
367 PARAMS ((struct elf_link_hash_entry *, PTR));
368
74d1c347
AM
369#if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
370 || RELATIVE_DYNAMIC_RELOCS)
30667bf3
AM
371static boolean hppa_discard_copies
372 PARAMS ((struct elf_link_hash_entry *, PTR));
373#endif
374
d5c73c2f
AM
375static boolean clobber_millicode_symbols
376 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
377
30667bf3
AM
378static boolean elf32_hppa_size_dynamic_sections
379 PARAMS ((bfd *, struct bfd_link_info *));
380
c46b7515
AM
381static boolean elf32_hppa_final_link
382 PARAMS ((bfd *, struct bfd_link_info *));
383
384static void hppa_record_segment_addr
385 PARAMS ((bfd *, asection *, PTR));
386
30667bf3
AM
387static bfd_reloc_status_type final_link_relocate
388 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
25f72752 389 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
30667bf3
AM
390 struct elf32_hppa_link_hash_entry *));
391
392static boolean elf32_hppa_relocate_section
393 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
394 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
395
c46b7515
AM
396static int hppa_unwind_entry_compare
397 PARAMS ((const PTR, const PTR));
398
30667bf3
AM
399static boolean elf32_hppa_finish_dynamic_symbol
400 PARAMS ((bfd *, struct bfd_link_info *,
401 struct elf_link_hash_entry *, Elf_Internal_Sym *));
402
403static boolean elf32_hppa_finish_dynamic_sections
404 PARAMS ((bfd *, struct bfd_link_info *));
405
d952f17a
AM
406static void elf32_hppa_post_process_headers
407 PARAMS ((bfd *, struct bfd_link_info *));
408
30667bf3
AM
409static int elf32_hppa_elf_get_symbol_type
410 PARAMS ((Elf_Internal_Sym *, int));
252b5132 411
252b5132
RH
412/* Assorted hash table functions. */
413
414/* Initialize an entry in the stub hash table. */
415
416static struct bfd_hash_entry *
30667bf3 417stub_hash_newfunc (entry, table, string)
252b5132
RH
418 struct bfd_hash_entry *entry;
419 struct bfd_hash_table *table;
420 const char *string;
421{
422 struct elf32_hppa_stub_hash_entry *ret;
423
424 ret = (struct elf32_hppa_stub_hash_entry *) entry;
425
426 /* Allocate the structure if it has not already been allocated by a
427 subclass. */
428 if (ret == NULL)
30667bf3
AM
429 {
430 ret = ((struct elf32_hppa_stub_hash_entry *)
431 bfd_hash_allocate (table,
432 sizeof (struct elf32_hppa_stub_hash_entry)));
433 if (ret == NULL)
434 return NULL;
435 }
252b5132
RH
436
437 /* Call the allocation method of the superclass. */
438 ret = ((struct elf32_hppa_stub_hash_entry *)
439 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
440
441 if (ret)
442 {
443 /* Initialize the local fields. */
edd21aca 444 ret->stub_sec = NULL;
30667bf3
AM
445#if ! LONG_BRANCH_PIC_IN_SHLIB
446 ret->reloc_sec = NULL;
447#endif
448 ret->stub_offset = 0;
252b5132
RH
449 ret->target_value = 0;
450 ret->target_section = NULL;
30667bf3
AM
451 ret->stub_type = hppa_stub_long_branch;
452 ret->h = NULL;
25f72752 453 ret->id_sec = NULL;
30667bf3
AM
454 }
455
456 return (struct bfd_hash_entry *) ret;
457}
458
30667bf3
AM
459/* Initialize an entry in the link hash table. */
460
461static struct bfd_hash_entry *
462hppa_link_hash_newfunc (entry, table, string)
463 struct bfd_hash_entry *entry;
464 struct bfd_hash_table *table;
465 const char *string;
466{
467 struct elf32_hppa_link_hash_entry *ret;
468
469 ret = (struct elf32_hppa_link_hash_entry *) entry;
470
471 /* Allocate the structure if it has not already been allocated by a
472 subclass. */
473 if (ret == NULL)
474 {
475 ret = ((struct elf32_hppa_link_hash_entry *)
476 bfd_hash_allocate (table,
477 sizeof (struct elf32_hppa_link_hash_entry)));
478 if (ret == NULL)
479 return NULL;
480 }
481
482 /* Call the allocation method of the superclass. */
483 ret = ((struct elf32_hppa_link_hash_entry *)
484 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
485 table, string));
486
487 if (ret)
488 {
489 /* Initialize the local fields. */
490#if ! LONG_BRANCH_PIC_IN_SHLIB
491 ret->stub_reloc_sec = NULL;
492#endif
493 ret->stub_cache = NULL;
494#if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
495 ret->reloc_entries = NULL;
496#endif
12cca0d2 497 ret->maybe_pic_call = 0;
30667bf3 498 ret->pic_call = 0;
74d1c347
AM
499 ret->plabel = 0;
500 ret->plt_abs = 0;
252b5132
RH
501 }
502
503 return (struct bfd_hash_entry *) ret;
504}
505
252b5132
RH
506/* Create the derived linker hash table. The PA ELF port uses the derived
507 hash table to keep information specific to the PA ELF linker (without
508 using static variables). */
509
510static struct bfd_link_hash_table *
511elf32_hppa_link_hash_table_create (abfd)
512 bfd *abfd;
513{
514 struct elf32_hppa_link_hash_table *ret;
515
edd21aca 516 ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
252b5132
RH
517 if (ret == NULL)
518 return NULL;
edd21aca 519
30667bf3 520 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
252b5132
RH
521 {
522 bfd_release (abfd, ret);
523 return NULL;
524 }
edd21aca
AM
525
526 /* Init the stub hash table too. */
30667bf3 527 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
edd21aca
AM
528 return NULL;
529
30667bf3 530 ret->stub_bfd = NULL;
30667bf3
AM
531 ret->add_stub_section = NULL;
532 ret->layout_sections_again = NULL;
25f72752 533 ret->stub_group = NULL;
30667bf3
AM
534 ret->sgot = NULL;
535 ret->srelgot = NULL;
536 ret->splt = NULL;
537 ret->srelplt = NULL;
538 ret->sdynbss = NULL;
539 ret->srelbss = NULL;
c46b7515
AM
540 ret->text_segment_base = (bfd_vma) -1;
541 ret->data_segment_base = (bfd_vma) -1;
47d89dba
AM
542 ret->multi_subspace = 0;
543 ret->has_12bit_branch = 0;
544 ret->has_17bit_branch = 0;
545 ret->need_plt_stub = 0;
252b5132
RH
546
547 return &ret->root.root;
548}
549
30667bf3
AM
550/* Build a name for an entry in the stub hash table. */
551
edd21aca 552static char *
30667bf3 553hppa_stub_name (input_section, sym_sec, hash, rel)
edd21aca 554 const asection *input_section;
30667bf3
AM
555 const asection *sym_sec;
556 const struct elf32_hppa_link_hash_entry *hash;
557 const Elf_Internal_Rela *rel;
edd21aca
AM
558{
559 char *stub_name;
74d1c347 560 size_t len;
edd21aca 561
30667bf3
AM
562 if (hash)
563 {
564 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
565 stub_name = bfd_malloc (len);
566 if (stub_name != NULL)
567 {
568 sprintf (stub_name, "%08x_%s+%x",
569 input_section->id & 0xffffffff,
570 hash->elf.root.root.string,
571 (int) rel->r_addend & 0xffffffff);
572 }
573 }
574 else
edd21aca 575 {
30667bf3
AM
576 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
577 stub_name = bfd_malloc (len);
578 if (stub_name != NULL)
579 {
580 sprintf (stub_name, "%08x_%x:%x+%x",
581 input_section->id & 0xffffffff,
582 sym_sec->id & 0xffffffff,
583 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
584 (int) rel->r_addend & 0xffffffff);
585 }
edd21aca
AM
586 }
587 return stub_name;
588}
252b5132 589
30667bf3
AM
590/* Look up an entry in the stub hash. Stub entries are cached because
591 creating the stub name takes a bit of time. */
592
593static struct elf32_hppa_stub_hash_entry *
25f72752 594hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
30667bf3
AM
595 const asection *input_section;
596 const asection *sym_sec;
597 struct elf32_hppa_link_hash_entry *hash;
598 const Elf_Internal_Rela *rel;
25f72752 599 struct elf32_hppa_link_hash_table *hplink;
252b5132 600{
30667bf3 601 struct elf32_hppa_stub_hash_entry *stub_entry;
25f72752
AM
602 const asection *id_sec;
603
604 /* If this input section is part of a group of sections sharing one
605 stub section, then use the id of the first section in the group.
606 Stub names need to include a section id, as there may well be
607 more than one stub used to reach say, printf, and we need to
608 distinguish between them. */
609 id_sec = hplink->stub_group[input_section->id].link_sec;
edd21aca 610
30667bf3
AM
611 if (hash != NULL && hash->stub_cache != NULL
612 && hash->stub_cache->h == hash
25f72752 613 && hash->stub_cache->id_sec == id_sec)
edd21aca 614 {
30667bf3
AM
615 stub_entry = hash->stub_cache;
616 }
617 else
618 {
30667bf3 619 char *stub_name;
edd21aca 620
25f72752 621 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
30667bf3
AM
622 if (stub_name == NULL)
623 return NULL;
edd21aca 624
25f72752
AM
625 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
626 stub_name, false, false);
30667bf3
AM
627 if (stub_entry == NULL)
628 {
629 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
630 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
631 bfd_get_filename (input_section->owner),
632 input_section->name,
633 (long) rel->r_offset,
634 stub_name);
635 }
636 else
637 {
638 if (hash != NULL)
639 hash->stub_cache = stub_entry;
640 }
641
642 free (stub_name);
edd21aca 643 }
30667bf3
AM
644
645 return stub_entry;
646}
647
30667bf3
AM
648/* Add a new stub entry to the stub hash. Not all fields of the new
649 stub entry are initialised. */
650
651static struct elf32_hppa_stub_hash_entry *
25f72752 652hppa_add_stub (stub_name, section, hplink)
30667bf3
AM
653 const char *stub_name;
654 asection *section;
25f72752 655 struct elf32_hppa_link_hash_table *hplink;
30667bf3 656{
25f72752 657 asection *link_sec;
30667bf3 658 asection *stub_sec;
30667bf3 659 struct elf32_hppa_stub_hash_entry *stub_entry;
edd21aca 660
25f72752
AM
661 link_sec = hplink->stub_group[section->id].link_sec;
662 stub_sec = hplink->stub_group[section->id].stub_sec;
30667bf3 663 if (stub_sec == NULL)
edd21aca 664 {
25f72752 665 stub_sec = hplink->stub_group[link_sec->id].stub_sec;
30667bf3
AM
666 if (stub_sec == NULL)
667 {
74d1c347 668 size_t len;
30667bf3
AM
669 char *s_name;
670
25f72752 671 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
30667bf3
AM
672 s_name = bfd_alloc (hplink->stub_bfd, len);
673 if (s_name == NULL)
674 return NULL;
675
25f72752 676 strcpy (s_name, link_sec->name);
30667bf3 677 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
25f72752 678 stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
30667bf3
AM
679 if (stub_sec == NULL)
680 return NULL;
25f72752 681 hplink->stub_group[link_sec->id].stub_sec = stub_sec;
30667bf3 682 }
25f72752 683 hplink->stub_group[section->id].stub_sec = stub_sec;
edd21aca 684 }
252b5132 685
30667bf3
AM
686 /* Enter this entry into the linker stub hash table. */
687 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
688 true, false);
689 if (stub_entry == NULL)
690 {
691 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
692 bfd_get_filename (section->owner),
693 stub_name);
694 return NULL;
edd21aca
AM
695 }
696
30667bf3
AM
697 stub_entry->stub_sec = stub_sec;
698#if ! LONG_BRANCH_PIC_IN_SHLIB
25f72752 699 stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
30667bf3
AM
700#endif
701 stub_entry->stub_offset = 0;
25f72752 702 stub_entry->id_sec = link_sec;
30667bf3 703 return stub_entry;
edd21aca
AM
704}
705
30667bf3
AM
706/* Determine the type of stub needed, if any, for a call. */
707
708static enum elf32_hppa_stub_type
709hppa_type_of_stub (input_sec, rel, hash, destination)
710 asection *input_sec;
711 const Elf_Internal_Rela *rel;
712 struct elf32_hppa_link_hash_entry *hash;
713 bfd_vma destination;
edd21aca 714{
edd21aca 715 bfd_vma location;
30667bf3
AM
716 bfd_vma branch_offset;
717 bfd_vma max_branch_offset;
718 unsigned int r_type;
719
720 if (hash != NULL
721 && (((hash->elf.root.type == bfd_link_hash_defined
74d1c347
AM
722 || hash->elf.root.type == bfd_link_hash_defweak)
723 && hash->elf.root.u.def.section->output_section == NULL)
724 || (hash->elf.root.type == bfd_link_hash_defweak
725 && hash->elf.dynindx != -1
726 && hash->elf.plt.offset != (bfd_vma) -1)
30667bf3
AM
727 || hash->elf.root.type == bfd_link_hash_undefweak
728 || hash->elf.root.type == bfd_link_hash_undefined
12cca0d2 729 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
30667bf3
AM
730 {
731 /* If output_section is NULL, then it's a symbol defined in a
732 shared library. We will need an import stub. Decide between
74d1c347
AM
733 hppa_stub_import and hppa_stub_import_shared later. For
734 shared links we need stubs for undefined or weak syms too;
735 They will presumably be resolved by the dynamic linker. */
30667bf3
AM
736 return hppa_stub_import;
737 }
edd21aca 738
30667bf3
AM
739 /* Determine where the call point is. */
740 location = (input_sec->output_offset
741 + input_sec->output_section->vma
742 + rel->r_offset);
edd21aca 743
30667bf3
AM
744 branch_offset = destination - location - 8;
745 r_type = ELF32_R_TYPE (rel->r_info);
edd21aca 746
30667bf3
AM
747 /* Determine if a long branch stub is needed. parisc branch offsets
748 are relative to the second instruction past the branch, ie. +8
749 bytes on from the branch instruction location. The offset is
750 signed and counts in units of 4 bytes. */
751 if (r_type == (unsigned int) R_PARISC_PCREL17F)
edd21aca 752 {
30667bf3
AM
753 max_branch_offset = (1 << (17-1)) << 2;
754 }
755 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
756 {
757 max_branch_offset = (1 << (12-1)) << 2;
758 }
25f72752 759 else /* R_PARISC_PCREL22F. */
30667bf3
AM
760 {
761 max_branch_offset = (1 << (22-1)) << 2;
edd21aca
AM
762 }
763
30667bf3 764 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
edd21aca 765 {
74d1c347 766#if LONG_BRANCH_VIA_PLT
30667bf3
AM
767 if (hash != NULL
768 && hash->elf.dynindx != -1
769 && hash->elf.plt.offset != (bfd_vma) -1)
770 {
771 /* If we are doing a shared link and find we need a long
772 branch stub, then go via the .plt if possible. */
773 return hppa_stub_import;
774 }
775 else
776#endif
777 return hppa_stub_long_branch;
778 }
779 return hppa_stub_none;
780}
edd21aca 781
30667bf3
AM
782/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
783 IN_ARG contains the link info pointer. */
edd21aca 784
30667bf3
AM
785#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
786#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
edd21aca 787
30667bf3 788#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
3ee1d854 789#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
30667bf3 790#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
252b5132 791
3ee1d854
AM
792#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
793#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
30667bf3 794#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
3ee1d854 795#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
252b5132 796
3ee1d854
AM
797#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
798#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
edd21aca 799
30667bf3
AM
800#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
801#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
802#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
803#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
edd21aca 804
30667bf3
AM
805#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
806#define NOP 0x08000240 /* nop */
807#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
808#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
809#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
edd21aca 810
30667bf3
AM
811#ifndef R19_STUBS
812#define R19_STUBS 1
813#endif
edd21aca 814
30667bf3
AM
815#if R19_STUBS
816#define LDW_R1_DLT LDW_R1_R19
817#else
818#define LDW_R1_DLT LDW_R1_DP
819#endif
edd21aca 820
30667bf3
AM
821static boolean
822hppa_build_one_stub (gen_entry, in_arg)
823 struct bfd_hash_entry *gen_entry;
824 PTR in_arg;
825{
826 struct elf32_hppa_stub_hash_entry *stub_entry;
827 struct bfd_link_info *info;
828 struct elf32_hppa_link_hash_table *hplink;
829 asection *stub_sec;
830 bfd *stub_bfd;
831 bfd_byte *loc;
832 bfd_vma sym_value;
74d1c347
AM
833 bfd_vma insn;
834 int val;
30667bf3 835 int size;
edd21aca 836
30667bf3
AM
837 /* Massage our args to the form they really have. */
838 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
839 info = (struct bfd_link_info *) in_arg;
840
841 hplink = hppa_link_hash_table (info);
842 stub_sec = stub_entry->stub_sec;
edd21aca 843
30667bf3 844 /* Make a note of the offset within the stubs for this entry. */
74d1c347 845 stub_entry->stub_offset = stub_sec->_raw_size;
30667bf3 846 loc = stub_sec->contents + stub_entry->stub_offset;
252b5132 847
30667bf3
AM
848 stub_bfd = stub_sec->owner;
849
850 switch (stub_entry->stub_type)
851 {
852 case hppa_stub_long_branch:
853 /* Create the long branch. A long branch is formed with "ldil"
854 loading the upper bits of the target address into a register,
855 then branching with "be" which adds in the lower bits.
856 The "be" has its delay slot nullified. */
857 sym_value = (stub_entry->target_value
858 + stub_entry->target_section->output_offset
859 + stub_entry->target_section->output_section->vma);
860
74d1c347
AM
861 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
862 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
30667bf3
AM
863 bfd_put_32 (stub_bfd, insn, loc);
864
74d1c347
AM
865 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
866 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
867 bfd_put_32 (stub_bfd, insn, loc + 4);
868
869#if ! LONG_BRANCH_PIC_IN_SHLIB
870 if (info->shared)
871 {
872 /* Output a dynamic relocation for this stub. We only
873 output one PCREL21L reloc per stub, trusting that the
874 dynamic linker will also fix the implied PCREL17R for the
875 second instruction. PCREL21L dynamic relocs had better
876 never be emitted for some other purpose... */
877 asection *srel;
878 Elf_Internal_Rela outrel;
879
880 if (stub_entry->h == NULL)
edd21aca
AM
881 {
882 (*_bfd_error_handler)
30667bf3
AM
883 (_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
884 bfd_get_filename (stub_entry->target_section->owner),
885 stub_sec->name,
886 (long) stub_entry->stub_offset,
887 stub_entry->root.string);
888 bfd_set_error (bfd_error_bad_value);
889 return false;
edd21aca
AM
890 }
891
30667bf3
AM
892 srel = stub_entry->reloc_sec;
893 if (srel == NULL)
edd21aca
AM
894 {
895 (*_bfd_error_handler)
30667bf3
AM
896 (_("Could not find relocation section for %s"),
897 stub_sec->name);
898 bfd_set_error (bfd_error_bad_value);
899 return false;
edd21aca 900 }
252b5132 901
30667bf3
AM
902 outrel.r_offset = (stub_entry->stub_offset
903 + stub_sec->output_offset
904 + stub_sec->output_section->vma);
905 outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
906 outrel.r_addend = sym_value;
907 bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
908 &outrel,
909 ((Elf32_External_Rela *)
910 srel->contents + srel->reloc_count));
911 ++srel->reloc_count;
252b5132 912 }
30667bf3
AM
913#endif
914 size = 8;
edd21aca
AM
915 break;
916
30667bf3
AM
917 case hppa_stub_long_branch_shared:
918 /* Branches are relative. This is where we are going to. */
919 sym_value = (stub_entry->target_value
920 + stub_entry->target_section->output_offset
921 + stub_entry->target_section->output_section->vma);
922
923 /* And this is where we are coming from, more or less. */
924 sym_value -= (stub_entry->stub_offset
925 + stub_sec->output_offset
926 + stub_sec->output_section->vma);
927
74d1c347 928 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
47d89dba 929 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
74d1c347 930 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
30667bf3
AM
931 bfd_put_32 (stub_bfd, insn, loc + 4);
932
47d89dba 933 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
74d1c347 934 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
935 bfd_put_32 (stub_bfd, insn, loc + 8);
936 size = 12;
937 break;
edd21aca 938
30667bf3
AM
939 case hppa_stub_import:
940 case hppa_stub_import_shared:
941 sym_value = (stub_entry->h->elf.plt.offset
942 + hplink->splt->output_offset
943 + hplink->splt->output_section->vma
944 - elf_gp (hplink->splt->output_section->owner));
945
946 insn = ADDIL_DP;
947#if R19_STUBS
948 if (stub_entry->stub_type == hppa_stub_import_shared)
949 insn = ADDIL_R19;
950#endif
47d89dba 951 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
74d1c347 952 insn = hppa_rebuild_insn ((int) insn, val, 21);
30667bf3 953 bfd_put_32 (stub_bfd, insn, loc);
edd21aca 954
47d89dba
AM
955 /* It is critical to use lrsel/rrsel here because we are using
956 two different offsets (+0 and +4) from sym_value. If we use
957 lsel/rsel then with unfortunate sym_values we will round
958 sym_value+4 up to the next 2k block leading to a mis-match
959 between the lsel and rsel value. */
960 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
74d1c347 961 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
30667bf3 962 bfd_put_32 (stub_bfd, insn, loc + 4);
252b5132 963
30667bf3
AM
964 if (hplink->multi_subspace)
965 {
47d89dba 966 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 967 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 968 bfd_put_32 (stub_bfd, insn, loc + 8);
252b5132 969
74d1c347
AM
970 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
971 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
972 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
973 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
252b5132 974
30667bf3
AM
975 size = 28;
976 }
977 else
978 {
74d1c347 979 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
47d89dba 980 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 981 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 982 bfd_put_32 (stub_bfd, insn, loc + 12);
252b5132 983
30667bf3
AM
984 size = 16;
985 }
252b5132 986
30667bf3
AM
987 if (!info->shared
988 && stub_entry->h != NULL
989 && stub_entry->h->pic_call)
252b5132 990 {
30667bf3
AM
991 /* Build the .plt entry needed to call a PIC function from
992 statically linked code. We don't need any relocs. */
993 bfd *dynobj;
994 struct elf32_hppa_link_hash_entry *eh;
995 bfd_vma value;
252b5132 996
74d1c347 997 dynobj = hplink->root.dynobj;
30667bf3 998 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
252b5132 999
30667bf3
AM
1000 BFD_ASSERT (eh->elf.root.type == bfd_link_hash_defined
1001 || eh->elf.root.type == bfd_link_hash_defweak);
252b5132 1002
30667bf3
AM
1003 value = (eh->elf.root.u.def.value
1004 + eh->elf.root.u.def.section->output_offset
1005 + eh->elf.root.u.def.section->output_section->vma);
252b5132 1006
30667bf3 1007 /* Fill in the entry in the procedure linkage table.
252b5132 1008
30667bf3 1009 The format of a plt entry is
74d1c347
AM
1010 <funcaddr>
1011 <__gp>. */
252b5132 1012
30667bf3
AM
1013 bfd_put_32 (hplink->splt->owner, value,
1014 hplink->splt->contents + eh->elf.plt.offset);
1015 value = elf_gp (hplink->splt->output_section->owner);
1016 bfd_put_32 (hplink->splt->owner, value,
1017 hplink->splt->contents + eh->elf.plt.offset + 4);
252b5132 1018 }
30667bf3 1019 break;
252b5132 1020
30667bf3
AM
1021 case hppa_stub_export:
1022 /* Branches are relative. This is where we are going to. */
1023 sym_value = (stub_entry->target_value
1024 + stub_entry->target_section->output_offset
1025 + stub_entry->target_section->output_section->vma);
252b5132 1026
30667bf3
AM
1027 /* And this is where we are coming from. */
1028 sym_value -= (stub_entry->stub_offset
1029 + stub_sec->output_offset
1030 + stub_sec->output_section->vma);
edd21aca 1031
30667bf3
AM
1032 if (sym_value - 8 + 0x40000 >= 0x80000)
1033 {
edd21aca 1034 (*_bfd_error_handler)
30667bf3
AM
1035 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1036 bfd_get_filename (stub_entry->target_section->owner),
1037 stub_sec->name,
1038 (long) stub_entry->stub_offset,
1039 stub_entry->root.string);
1040 bfd_set_error (bfd_error_bad_value);
edd21aca 1041 return false;
252b5132 1042 }
30667bf3 1043
74d1c347
AM
1044 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1045 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
30667bf3
AM
1046 bfd_put_32 (stub_bfd, insn, loc);
1047
74d1c347
AM
1048 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
1049 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
1050 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1051 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
1052 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
30667bf3
AM
1053
1054 /* Point the function symbol at the stub. */
1055 stub_entry->h->elf.root.u.def.section = stub_sec;
74d1c347 1056 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
30667bf3
AM
1057
1058 size = 24;
1059 break;
1060
1061 default:
1062 BFD_FAIL ();
1063 return false;
252b5132
RH
1064 }
1065
74d1c347 1066 stub_sec->_raw_size += size;
252b5132
RH
1067 return true;
1068}
1069
30667bf3
AM
1070#undef LDIL_R1
1071#undef BE_SR4_R1
1072#undef BL_R1
1073#undef ADDIL_R1
1074#undef DEPI_R1
1075#undef ADDIL_DP
1076#undef LDW_R1_R21
1077#undef LDW_R1_DLT
1078#undef LDW_R1_R19
1079#undef ADDIL_R19
1080#undef LDW_R1_DP
1081#undef LDSID_R21_R1
1082#undef MTSP_R1
1083#undef BE_SR0_R21
1084#undef STW_RP
1085#undef BV_R0_R21
1086#undef BL_RP
1087#undef NOP
1088#undef LDW_RP
1089#undef LDSID_RP_R1
1090#undef BE_SR0_RP
252b5132 1091
30667bf3
AM
1092/* As above, but don't actually build the stub. Just bump offset so
1093 we know stub section sizes. */
1094
1095static boolean
1096hppa_size_one_stub (gen_entry, in_arg)
1097 struct bfd_hash_entry *gen_entry;
1098 PTR in_arg;
252b5132 1099{
30667bf3
AM
1100 struct elf32_hppa_stub_hash_entry *stub_entry;
1101 struct elf32_hppa_link_hash_table *hplink;
1102 int size;
1103
1104 /* Massage our args to the form they really have. */
1105 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1106 hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1107
1108 if (stub_entry->stub_type == hppa_stub_long_branch)
74d1c347
AM
1109 {
1110#if ! LONG_BRANCH_PIC_IN_SHLIB
1111 if (stub_entry->reloc_sec != NULL)
1112 stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1113#endif
1114 size = 8;
1115 }
30667bf3
AM
1116 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1117 size = 12;
1118 else if (stub_entry->stub_type == hppa_stub_export)
1119 size = 24;
74d1c347 1120 else /* hppa_stub_import or hppa_stub_import_shared. */
252b5132 1121 {
30667bf3
AM
1122 if (hplink->multi_subspace)
1123 size = 28;
1124 else
1125 size = 16;
1126 }
252b5132 1127
74d1c347 1128 stub_entry->stub_sec->_raw_size += size;
30667bf3
AM
1129 return true;
1130}
252b5132 1131
30667bf3
AM
1132/* Return nonzero if ABFD represents an HPPA ELF32 file.
1133 Additionally we set the default architecture and machine. */
1134
1135static boolean
1136elf32_hppa_object_p (abfd)
1137 bfd *abfd;
1138{
1139 unsigned int flags = elf_elfheader (abfd)->e_flags;
252b5132 1140
30667bf3
AM
1141 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1142 {
1143 case EFA_PARISC_1_0:
1144 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1145 case EFA_PARISC_1_1:
1146 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1147 case EFA_PARISC_2_0:
1148 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1149 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1150 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1151 }
1152 return true;
252b5132
RH
1153}
1154
252b5132
RH
1155/* Undo the generic ELF code's subtraction of section->vma from the
1156 value of each external symbol. */
1157
1158static boolean
1159elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
5f771d47
ILT
1160 bfd *abfd ATTRIBUTE_UNUSED;
1161 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1162 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1163 const char **namep ATTRIBUTE_UNUSED;
1164 flagword *flagsp ATTRIBUTE_UNUSED;
252b5132
RH
1165 asection **secp;
1166 bfd_vma *valp;
1167{
1168 *valp += (*secp)->vma;
1169 return true;
1170}
1171
30667bf3
AM
1172/* Create the .plt and .got sections, and set up our hash table
1173 short-cuts to various dynamic sections. */
1174
1175static boolean
1176elf32_hppa_create_dynamic_sections (abfd, info)
1177 bfd *abfd;
1178 struct bfd_link_info *info;
252b5132 1179{
30667bf3 1180 struct elf32_hppa_link_hash_table *hplink;
edd21aca 1181
30667bf3
AM
1182 /* Don't try to create the .plt and .got twice. */
1183 hplink = hppa_link_hash_table (info);
1184 if (hplink->splt != NULL)
1185 return true;
edd21aca 1186
30667bf3
AM
1187 /* Call the generic code to do most of the work. */
1188 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1189 return false;
252b5132 1190
47d89dba 1191 hplink->splt = bfd_get_section_by_name (abfd, ".plt");
30667bf3
AM
1192 hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1193
1194 hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1195 hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1196 if (hplink->srelgot == NULL
1197 || ! bfd_set_section_flags (abfd, hplink->srelgot,
1198 (SEC_ALLOC
1199 | SEC_LOAD
1200 | SEC_HAS_CONTENTS
1201 | SEC_IN_MEMORY
1202 | SEC_LINKER_CREATED
1203 | SEC_READONLY))
1204 || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1205 return false;
edd21aca 1206
30667bf3
AM
1207 hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1208 hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1209
1210 return true;
1211}
1212
30667bf3
AM
1213/* Look through the relocs for a section during the first phase, and
1214 allocate space in the global offset table or procedure linkage
1215 table. At this point we haven't necessarily read all the input
1216 files. */
252b5132
RH
1217
1218static boolean
30667bf3
AM
1219elf32_hppa_check_relocs (abfd, info, sec, relocs)
1220 bfd *abfd;
1221 struct bfd_link_info *info;
1222 asection *sec;
1223 const Elf_Internal_Rela *relocs;
252b5132 1224{
30667bf3
AM
1225 bfd *dynobj;
1226 Elf_Internal_Shdr *symtab_hdr;
1227 struct elf_link_hash_entry **sym_hashes;
1228 bfd_signed_vma *local_got_refcounts;
1229 const Elf_Internal_Rela *rel;
1230 const Elf_Internal_Rela *rel_end;
1231 struct elf32_hppa_link_hash_table *hplink;
1232 asection *sreloc;
1233 asection *stubreloc;
1234
1235 if (info->relocateable)
1236 return true;
1237
1238 hplink = hppa_link_hash_table (info);
74d1c347 1239 dynobj = hplink->root.dynobj;
30667bf3
AM
1240 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1241 sym_hashes = elf_sym_hashes (abfd);
1242 local_got_refcounts = elf_local_got_refcounts (abfd);
1243 sreloc = NULL;
1244 stubreloc = NULL;
1245
1246 rel_end = relocs + sec->reloc_count;
1247 for (rel = relocs; rel < rel_end; rel++)
1248 {
1249 enum {
1250 NEED_GOT = 1,
1251 NEED_PLT = 2,
1252 NEED_DYNREL = 4,
1253#if LONG_BRANCH_PIC_IN_SHLIB
74d1c347 1254 NEED_STUBREL = 0, /* We won't be needing them in this case. */
30667bf3 1255#else
74d1c347 1256 NEED_STUBREL = 8,
30667bf3 1257#endif
74d1c347 1258 PLT_PLABEL = 16
30667bf3 1259 };
edd21aca 1260
30667bf3
AM
1261 unsigned int r_symndx, r_type;
1262 struct elf32_hppa_link_hash_entry *h;
1263 int need_entry;
252b5132 1264
30667bf3 1265 r_symndx = ELF32_R_SYM (rel->r_info);
252b5132 1266
30667bf3
AM
1267 if (r_symndx < symtab_hdr->sh_info)
1268 h = NULL;
1269 else
1270 h = ((struct elf32_hppa_link_hash_entry *)
1271 sym_hashes[r_symndx - symtab_hdr->sh_info]);
252b5132 1272
30667bf3 1273 r_type = ELF32_R_TYPE (rel->r_info);
252b5132 1274
30667bf3
AM
1275 switch (r_type)
1276 {
1277 case R_PARISC_DLTIND14F:
1278 case R_PARISC_DLTIND14R:
1279 case R_PARISC_DLTIND21L:
1280 /* This symbol requires a global offset table entry. */
1281 need_entry = NEED_GOT;
1282
1283 /* Mark this section as containing PIC code. */
1284 sec->flags |= SEC_HAS_GOT_REF;
1285 break;
1286
1287 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1288 case R_PARISC_PLABEL21L:
1289 case R_PARISC_PLABEL32:
74d1c347
AM
1290 /* If the addend is non-zero, we break badly. */
1291 BFD_ASSERT (rel->r_addend == 0);
1292
1293 /* If we are creating a shared library, then we need to
1294 create a PLT entry for all PLABELs, because PLABELs with
1295 local symbols may be passed via a pointer to another
1296 object. Additionally, output a dynamic relocation
1297 pointing to the PLT entry. */
1298 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
30667bf3
AM
1299 break;
1300
1301 case R_PARISC_PCREL12F:
47d89dba
AM
1302 hplink->has_12bit_branch = 1;
1303 /* Fall thru. */
30667bf3
AM
1304 case R_PARISC_PCREL17C:
1305 case R_PARISC_PCREL17F:
47d89dba
AM
1306 hplink->has_17bit_branch = 1;
1307 /* Fall thru. */
30667bf3 1308 case R_PARISC_PCREL22F:
47d89dba
AM
1309 /* Function calls might need to go through the .plt, and
1310 might require long branch stubs. */
30667bf3
AM
1311 if (h == NULL)
1312 {
1313 /* We know local syms won't need a .plt entry, and if
1314 they need a long branch stub we can't guarantee that
1315 we can reach the stub. So just flag an error later
1316 if we're doing a shared link and find we need a long
1317 branch stub. */
1318 continue;
1319 }
1320 else
1321 {
1322 /* Global symbols will need a .plt entry if they remain
1323 global, and in most cases won't need a long branch
1324 stub. Unfortunately, we have to cater for the case
1325 where a symbol is forced local by versioning, or due
1326 to symbolic linking, and we lose the .plt entry. */
1327 need_entry = NEED_PLT | NEED_STUBREL;
1328 }
1329 break;
1330
1331 case R_PARISC_SEGBASE: /* Used to set segment base. */
c46b7515 1332 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
30667bf3
AM
1333 case R_PARISC_PCREL14F: /* PC relative load/store. */
1334 case R_PARISC_PCREL14R:
1335 case R_PARISC_PCREL17R: /* External branches. */
1336 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1337 /* We don't need to propagate the relocation if linking a
1338 shared object since these are section relative. */
1339 continue;
1340
1341 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1342 case R_PARISC_DPREL14R:
1343 case R_PARISC_DPREL21L:
1344 if (info->shared)
1345 {
1346 (*_bfd_error_handler)
1347 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1348 bfd_get_filename (abfd),
1349 elf_hppa_howto_table[r_type].name);
1350 bfd_set_error (bfd_error_bad_value);
1351 return false;
1352 }
1353 /* Fall through. */
1354
1355 case R_PARISC_DIR17F: /* Used for external branches. */
1356 case R_PARISC_DIR17R:
47d89dba
AM
1357 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1358 case R_PARISC_DIR14R:
30667bf3
AM
1359 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1360#if 1
1361 /* Help debug shared library creation. Any of the above
1362 relocs can be used in shared libs, but they may cause
1363 pages to become unshared. */
1364 if (info->shared)
1365 {
1366 (*_bfd_error_handler)
1367 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1368 bfd_get_filename (abfd),
1369 elf_hppa_howto_table[r_type].name);
1370 }
1371 /* Fall through. */
1372#endif
1373
c46b7515 1374 case R_PARISC_DIR32: /* .word relocs. */
30667bf3
AM
1375 /* We may want to output a dynamic relocation later. */
1376 need_entry = NEED_DYNREL;
1377 break;
1378
1379 /* This relocation describes the C++ object vtable hierarchy.
1380 Reconstruct it for later use during GC. */
1381 case R_PARISC_GNU_VTINHERIT:
1382 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1383 &h->elf, rel->r_offset))
1384 return false;
1385 continue;
1386
1387 /* This relocation describes which C++ vtable entries are actually
1388 used. Record for later use during GC. */
1389 case R_PARISC_GNU_VTENTRY:
1390 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
36605136 1391 &h->elf, rel->r_addend))
30667bf3
AM
1392 return false;
1393 continue;
1394
1395 default:
1396 continue;
1397 }
1398
1399 /* Now carry out our orders. */
1400 if (need_entry & NEED_GOT)
1401 {
1402 /* Allocate space for a GOT entry, as well as a dynamic
25f72752 1403 relocation for this entry. */
30667bf3 1404 if (dynobj == NULL)
74d1c347 1405 hplink->root.dynobj = dynobj = abfd;
30667bf3
AM
1406
1407 if (hplink->sgot == NULL)
1408 {
1409 if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1410 return false;
1411 }
1412
1413 if (h != NULL)
1414 {
1415 if (h->elf.got.refcount == -1)
1416 {
1417 h->elf.got.refcount = 1;
1418
1419 /* Make sure this symbol is output as a dynamic symbol. */
1420 if (h->elf.dynindx == -1)
1421 {
1422 if (! bfd_elf32_link_record_dynamic_symbol (info,
1423 &h->elf))
1424 return false;
1425 }
1426
1427 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1428 hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1429 }
1430 else
1431 h->elf.got.refcount += 1;
1432 }
1433 else
1434 {
1435 /* This is a global offset table entry for a local symbol. */
1436 if (local_got_refcounts == NULL)
1437 {
1438 size_t size;
1439
74d1c347
AM
1440 /* Allocate space for local got offsets and local
1441 plt offsets. Done this way to save polluting
1442 elf_obj_tdata with another target specific
1443 pointer. */
1444 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
30667bf3
AM
1445 local_got_refcounts = ((bfd_signed_vma *)
1446 bfd_alloc (abfd, size));
1447 if (local_got_refcounts == NULL)
1448 return false;
1449 elf_local_got_refcounts (abfd) = local_got_refcounts;
1450 memset (local_got_refcounts, -1, size);
1451 }
1452 if (local_got_refcounts[r_symndx] == -1)
1453 {
1454 local_got_refcounts[r_symndx] = 1;
1455
1456 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1457 if (info->shared)
1458 {
1459 /* If we are generating a shared object, we need to
1460 output a reloc so that the dynamic linker can
1461 adjust this GOT entry (because the address
1462 the shared library is loaded at is not fixed). */
1463 hplink->srelgot->_raw_size +=
1464 sizeof (Elf32_External_Rela);
1465 }
1466 }
1467 else
1468 local_got_refcounts[r_symndx] += 1;
1469 }
1470 }
1471
1472 if (need_entry & NEED_PLT)
1473 {
1474 /* If we are creating a shared library, and this is a reloc
1475 against a weak symbol or a global symbol in a dynamic
1476 object, then we will be creating an import stub and a
1477 .plt entry for the symbol. Similarly, on a normal link
1478 to symbols defined in a dynamic object we'll need the
1479 import stub and a .plt entry. We don't know yet whether
1480 the symbol is defined or not, so make an entry anyway and
1481 clean up later in adjust_dynamic_symbol. */
1482 if ((sec->flags & SEC_ALLOC) != 0)
1483 {
74d1c347 1484 if (h != NULL)
30667bf3 1485 {
74d1c347
AM
1486 if (h->elf.plt.refcount == -1)
1487 {
1488 h->elf.plt.refcount = 1;
1489 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1490 }
1491 else
1492 h->elf.plt.refcount += 1;
1493
36605136
AM
1494 /* If this .plt entry is for a plabel, mark it so
1495 that adjust_dynamic_symbol will keep the entry
1496 even if it appears to be local. */
74d1c347
AM
1497 if (need_entry & PLT_PLABEL)
1498 h->plabel = 1;
1499 }
1500 else if (need_entry & PLT_PLABEL)
1501 {
1502 int indx;
1503
1504 if (local_got_refcounts == NULL)
1505 {
1506 size_t size;
1507
1508 /* Allocate space for local got offsets and local
1509 plt offsets. */
1510 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1511 local_got_refcounts = ((bfd_signed_vma *)
1512 bfd_alloc (abfd, size));
1513 if (local_got_refcounts == NULL)
1514 return false;
1515 elf_local_got_refcounts (abfd) = local_got_refcounts;
1516 memset (local_got_refcounts, -1, size);
1517 }
1518 indx = r_symndx + symtab_hdr->sh_info;
1519 if (local_got_refcounts[indx] == -1)
1520 local_got_refcounts[indx] = 1;
1521 else
1522 local_got_refcounts[indx] += 1;
30667bf3 1523 }
30667bf3
AM
1524 }
1525 }
1526
1527 if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1528 {
1529 /* Flag this symbol as having a non-got, non-plt reference
1530 so that we generate copy relocs if it turns out to be
1531 dynamic. */
1532 if (h != NULL)
1533 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1534
1535 /* If we are creating a shared library then we need to copy
1536 the reloc into the shared library. However, if we are
1537 linking with -Bsymbolic, we need only copy absolute
1538 relocs or relocs against symbols that are not defined in
1539 an object we are including in the link. PC- or DP- or
1540 DLT-relative relocs against any local sym or global sym
1541 with DEF_REGULAR set, can be discarded. At this point we
1542 have not seen all the input files, so it is possible that
1543 DEF_REGULAR is not set now but will be set later (it is
1544 never cleared). We account for that possibility below by
1545 storing information in the reloc_entries field of the
1546 hash table entry.
1547
1548 A similar situation to the -Bsymbolic case occurs when
1549 creating shared libraries and symbol visibility changes
1550 render the symbol local.
1551
1552 As it turns out, all the relocs we will be creating here
1553 are absolute, so we cannot remove them on -Bsymbolic
1554 links or visibility changes anyway. A STUB_REL reloc
1555 is absolute too, as in that case it is the reloc in the
1556 stub we will be creating, rather than copying the PCREL
1557 reloc in the branch. */
1558 if ((sec->flags & SEC_ALLOC) != 0
1559 && info->shared
1560#if RELATIVE_DYNAMIC_RELOCS
1561 && (!info->symbolic
1562 || is_absolute_reloc (r_type)
1563 || (h != NULL
1564 && ((h->elf.elf_link_hash_flags
a017a724 1565 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
30667bf3
AM
1566#endif
1567 )
1568 {
1569 boolean doit;
1570 asection *srel;
1571
1572 srel = sreloc;
1573 if ((need_entry & NEED_STUBREL))
1574 srel = stubreloc;
1575
1576 /* Create a reloc section in dynobj and make room for
1577 this reloc. */
1578 if (srel == NULL)
1579 {
1580 char *name;
1581
1582 if (dynobj == NULL)
74d1c347 1583 hplink->root.dynobj = dynobj = abfd;
30667bf3
AM
1584
1585 name = bfd_elf_string_from_elf_section
1586 (abfd,
1587 elf_elfheader (abfd)->e_shstrndx,
1588 elf_section_data (sec)->rel_hdr.sh_name);
1589 if (name == NULL)
1590 {
1591 (*_bfd_error_handler)
1592 (_("Could not find relocation section for %s"),
1593 sec->name);
1594 bfd_set_error (bfd_error_bad_value);
1595 return false;
1596 }
1597
1598 if ((need_entry & NEED_STUBREL))
1599 {
74d1c347 1600 size_t len = strlen (name) + sizeof (STUB_SUFFIX);
30667bf3
AM
1601 char *newname = bfd_malloc (len);
1602
1603 if (newname == NULL)
1604 return false;
1605 strcpy (newname, name);
1606 strcpy (newname + len - sizeof (STUB_SUFFIX),
1607 STUB_SUFFIX);
1608 name = newname;
1609 }
1610
1611 srel = bfd_get_section_by_name (dynobj, name);
1612 if (srel == NULL)
1613 {
1614 flagword flags;
1615
1616 srel = bfd_make_section (dynobj, name);
1617 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1618 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1619 if ((sec->flags & SEC_ALLOC) != 0)
1620 flags |= SEC_ALLOC | SEC_LOAD;
1621 if (srel == NULL
1622 || !bfd_set_section_flags (dynobj, srel, flags)
1623 || !bfd_set_section_alignment (dynobj, srel, 2))
1624 return false;
1625 }
1626 else if ((need_entry & NEED_STUBREL))
1627 free (name);
1628
1629 if ((need_entry & NEED_STUBREL))
1630 stubreloc = srel;
1631 else
1632 sreloc = srel;
1633 }
1634
1635#if ! LONG_BRANCH_PIC_IN_SHLIB
1636 /* If this is a function call, we only need one dynamic
1637 reloc for the stub as all calls to a particular
1638 function will go through the same stub. Actually, a
1639 long branch stub needs two relocations, but we count
1640 on some intelligence on the part of the dynamic
1641 linker. */
1642 if ((need_entry & NEED_STUBREL))
1643 {
1644 doit = h->stub_reloc_sec != stubreloc;
1645 h->stub_reloc_sec = stubreloc;
1646 }
1647 else
1648#endif
1649 doit = 1;
1650
1651 if (doit)
1652 {
1653 srel->_raw_size += sizeof (Elf32_External_Rela);
1654
1655#if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
1656 /* Keep track of relocations we have entered for
1657 this global symbol, so that we can discard them
1658 later if necessary. */
1659 if (h != NULL
1660 && (0
1661#if RELATIVE_DYNAMIC_RELOCS
1662 || ! is_absolute_reloc (rtype)
1663#endif
1664 || (need_entry & NEED_STUBREL)))
1665 {
1666 struct elf32_hppa_dyn_reloc_entry *p;
252b5132 1667
30667bf3
AM
1668 for (p = h->reloc_entries; p != NULL; p = p->next)
1669 if (p->section == srel)
1670 break;
edd21aca 1671
30667bf3
AM
1672 if (p == NULL)
1673 {
1674 p = ((struct elf32_hppa_dyn_reloc_entry *)
1675 bfd_alloc (dynobj, sizeof *p));
1676 if (p == NULL)
1677 return false;
1678 p->next = h->reloc_entries;
1679 h->reloc_entries = p;
1680 p->section = srel;
1681 p->count = 0;
1682 }
edd21aca 1683
30667bf3
AM
1684 /* NEED_STUBREL and NEED_DYNREL are never both
1685 set. Leave the count at zero for the
1686 NEED_STUBREL case as we only ever have one
1687 stub reloc per section per symbol, and this
1688 simplifies code in hppa_discard_copies. */
1689 if (! (need_entry & NEED_STUBREL))
1690 ++p->count;
1691 }
1692#endif
1693 }
1694 }
1695 }
1696 }
edd21aca
AM
1697
1698 return true;
1699}
1700
30667bf3
AM
1701/* Return the section that should be marked against garbage collection
1702 for a given relocation. */
1703
1704static asection *
1705elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1706 bfd *abfd;
1707 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1708 Elf_Internal_Rela *rel;
1709 struct elf_link_hash_entry *h;
1710 Elf_Internal_Sym *sym;
1711{
1712 if (h != NULL)
1713 {
1714 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1715 {
1716 case R_PARISC_GNU_VTINHERIT:
1717 case R_PARISC_GNU_VTENTRY:
1718 break;
1719
1720 default:
1721 switch (h->root.type)
1722 {
1723 case bfd_link_hash_defined:
1724 case bfd_link_hash_defweak:
1725 return h->root.u.def.section;
1726
1727 case bfd_link_hash_common:
1728 return h->root.u.c.p->section;
1729
1730 default:
1731 break;
1732 }
1733 }
1734 }
1735 else
1736 {
1737 if (!(elf_bad_symtab (abfd)
1738 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1739 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1740 && sym->st_shndx != SHN_COMMON))
1741 {
1742 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1743 }
1744 }
1745
1746 return NULL;
1747}
1748
30667bf3
AM
1749/* Update the got and plt entry reference counts for the section being
1750 removed. */
edd21aca
AM
1751
1752static boolean
30667bf3
AM
1753elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1754 bfd *abfd;
1755 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1756 asection *sec;
1757 const Elf_Internal_Rela *relocs;
edd21aca 1758{
30667bf3
AM
1759 Elf_Internal_Shdr *symtab_hdr;
1760 struct elf_link_hash_entry **sym_hashes;
1761 bfd_signed_vma *local_got_refcounts;
74d1c347 1762 bfd_signed_vma *local_plt_refcounts;
30667bf3
AM
1763 const Elf_Internal_Rela *rel, *relend;
1764 unsigned long r_symndx;
1765 struct elf_link_hash_entry *h;
74d1c347 1766 struct elf32_hppa_link_hash_table *hplink;
30667bf3
AM
1767 bfd *dynobj;
1768 asection *sgot;
1769 asection *srelgot;
1770
1771 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1772 sym_hashes = elf_sym_hashes (abfd);
1773 local_got_refcounts = elf_local_got_refcounts (abfd);
74d1c347
AM
1774 local_plt_refcounts = local_got_refcounts;
1775 if (local_plt_refcounts != NULL)
1776 local_plt_refcounts += symtab_hdr->sh_info;
1777 hplink = hppa_link_hash_table (info);
1778 dynobj = hplink->root.dynobj;
30667bf3
AM
1779 if (dynobj == NULL)
1780 return true;
1781
74d1c347
AM
1782 sgot = hplink->sgot;
1783 srelgot = hplink->srelgot;
30667bf3
AM
1784
1785 relend = relocs + sec->reloc_count;
1786 for (rel = relocs; rel < relend; rel++)
1787 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1788 {
1789 case R_PARISC_DLTIND14F:
1790 case R_PARISC_DLTIND14R:
1791 case R_PARISC_DLTIND21L:
1792 r_symndx = ELF32_R_SYM (rel->r_info);
1793 if (r_symndx >= symtab_hdr->sh_info)
1794 {
1795 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1796 if (h->got.refcount > 0)
1797 {
1798 h->got.refcount -= 1;
1799 if (h->got.refcount == 0)
1800 {
74d1c347 1801 sgot->_raw_size -= GOT_ENTRY_SIZE;
30667bf3
AM
1802 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1803 }
1804 }
1805 }
1806 else if (local_got_refcounts != NULL)
1807 {
1808 if (local_got_refcounts[r_symndx] > 0)
1809 {
1810 local_got_refcounts[r_symndx] -= 1;
1811 if (local_got_refcounts[r_symndx] == 0)
1812 {
74d1c347 1813 sgot->_raw_size -= GOT_ENTRY_SIZE;
30667bf3
AM
1814 if (info->shared)
1815 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1816 }
1817 }
1818 }
1819 break;
edd21aca 1820
30667bf3
AM
1821 case R_PARISC_PCREL12F:
1822 case R_PARISC_PCREL17C:
1823 case R_PARISC_PCREL17F:
1824 case R_PARISC_PCREL22F:
1825 r_symndx = ELF32_R_SYM (rel->r_info);
1826 if (r_symndx >= symtab_hdr->sh_info)
1827 {
1828 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1829 if (h->plt.refcount > 0)
1830 h->plt.refcount -= 1;
1831 }
1832 break;
edd21aca 1833
74d1c347
AM
1834 case R_PARISC_PLABEL14R:
1835 case R_PARISC_PLABEL21L:
1836 case R_PARISC_PLABEL32:
1837 r_symndx = ELF32_R_SYM (rel->r_info);
1838 if (r_symndx >= symtab_hdr->sh_info)
1839 {
1840 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1841 if (h->plt.refcount > 0)
1842 h->plt.refcount -= 1;
1843 }
1844 else if (local_plt_refcounts != NULL)
1845 {
1846 if (local_plt_refcounts[r_symndx] > 0)
1847 local_plt_refcounts[r_symndx] -= 1;
1848 }
1849 break;
1850
30667bf3
AM
1851 default:
1852 break;
1853 }
252b5132 1854
252b5132
RH
1855 return true;
1856}
1857
74d1c347
AM
1858/* Our own version of hide_symbol, so that we can keep plt entries for
1859 plabels. */
1860
1861static void
1862elf32_hppa_hide_symbol (info, h)
1863 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1864 struct elf_link_hash_entry *h;
1865{
1866 h->dynindx = -1;
1867 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1868 {
1869 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1870 h->plt.offset = (bfd_vma) -1;
1871 }
1872}
1873
30667bf3
AM
1874/* Adjust a symbol defined by a dynamic object and referenced by a
1875 regular object. The current definition is in some section of the
1876 dynamic object, but we're not including those sections. We have to
1877 change the definition to something the rest of the link can
1878 understand. */
252b5132 1879
30667bf3
AM
1880static boolean
1881elf32_hppa_adjust_dynamic_symbol (info, h)
1882 struct bfd_link_info *info;
1883 struct elf_link_hash_entry *h;
252b5132 1884{
30667bf3
AM
1885 bfd *dynobj;
1886 struct elf32_hppa_link_hash_table *hplink;
1887 asection *s;
1888
30667bf3 1889 hplink = hppa_link_hash_table (info);
74d1c347 1890 dynobj = hplink->root.dynobj;
30667bf3
AM
1891
1892 /* If this is a function, put it in the procedure linkage table. We
1893 will fill in the contents of the procedure linkage table later,
1894 when we know the address of the .got section. */
1895 if (h->type == STT_FUNC
1896 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1897 {
12cca0d2
AM
1898 if (!info->shared
1899 && h->plt.refcount > 0
1900 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1901 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1902 {
1903 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1904 }
1905
30667bf3
AM
1906 if (h->plt.refcount <= 0
1907 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1908 && h->root.type != bfd_link_hash_defweak
74d1c347 1909 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
30667bf3
AM
1910 && (!info->shared || info->symbolic)))
1911 {
1912 /* The .plt entry is not needed when:
1913 a) Garbage collection has removed all references to the
1914 symbol, or
1915 b) We know for certain the symbol is defined in this
74d1c347
AM
1916 object, and it's not a weak definition, nor is the symbol
1917 used by a plabel relocation. Either this object is the
1918 application or we are doing a shared symbolic link. */
1919
1920 /* As a special sop to the hppa ABI, we keep a .plt entry
1921 for functions in sections containing PIC code. */
12cca0d2
AM
1922 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1923 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
30667bf3
AM
1924 else
1925 {
1926 h->plt.offset = (bfd_vma) -1;
1927 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1928 return true;
1929 }
1930 }
1931
1932 /* Make an entry in the .plt section. */
1933 s = hplink->splt;
1934 h->plt.offset = s->_raw_size;
74d1c347
AM
1935 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
1936 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
1937 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1938 {
1939 /* Add some extra space for the dynamic linker to use. */
1940 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
1941 }
1942 else
1943 s->_raw_size += PLT_ENTRY_SIZE;
30667bf3
AM
1944
1945 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1946 {
1947 /* Make sure this symbol is output as a dynamic symbol. */
74d1c347
AM
1948 if (h->dynindx == -1
1949 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
30667bf3
AM
1950 {
1951 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1952 return false;
1953 }
1954
1955 /* We also need to make an entry in the .rela.plt section. */
1956 s = hplink->srelplt;
1957 s->_raw_size += sizeof (Elf32_External_Rela);
47d89dba
AM
1958
1959 hplink->need_plt_stub = 1;
30667bf3
AM
1960 }
1961 return true;
1962 }
edd21aca 1963
30667bf3
AM
1964 /* If this is a weak symbol, and there is a real definition, the
1965 processor independent code will have arranged for us to see the
1966 real definition first, and we can just use the same value. */
1967 if (h->weakdef != NULL)
edd21aca 1968 {
30667bf3
AM
1969 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1970 || h->weakdef->root.type == bfd_link_hash_defweak);
1971 h->root.u.def.section = h->weakdef->root.u.def.section;
1972 h->root.u.def.value = h->weakdef->root.u.def.value;
1973 return true;
1974 }
edd21aca 1975
30667bf3
AM
1976 /* This is a reference to a symbol defined by a dynamic object which
1977 is not a function. */
1978
1979 /* If we are creating a shared library, we must presume that the
1980 only references to the symbol are via the global offset table.
1981 For such cases we need not do anything here; the relocations will
1982 be handled correctly by relocate_section. */
1983 if (info->shared)
1984 return true;
1985
1986 /* If there are no references to this symbol that do not use the
1987 GOT, we don't need to generate a copy reloc. */
1988 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1989 return true;
1990
1991 /* We must allocate the symbol in our .dynbss section, which will
1992 become part of the .bss section of the executable. There will be
1993 an entry for this symbol in the .dynsym section. The dynamic
1994 object will contain position independent code, so all references
1995 from the dynamic object to this symbol will go through the global
1996 offset table. The dynamic linker will use the .dynsym entry to
1997 determine the address it must put in the global offset table, so
1998 both the dynamic object and the regular object will refer to the
1999 same memory location for the variable. */
2000
2001 s = hplink->sdynbss;
2002
2003 /* We must generate a COPY reloc to tell the dynamic linker to
2004 copy the initial value out of the dynamic object and into the
2005 runtime process image. We need to remember the offset into the
2006 .rela.bss section we are going to use. */
2007 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2008 {
2009 asection *srel;
2010
2011 srel = hplink->srelbss;
2012 srel->_raw_size += sizeof (Elf32_External_Rela);
2013 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
edd21aca 2014 }
252b5132 2015
30667bf3
AM
2016 {
2017 /* We need to figure out the alignment required for this symbol. I
2018 have no idea how other ELF linkers handle this. */
2019 unsigned int power_of_two;
2020
2021 power_of_two = bfd_log2 (h->size);
2022 if (power_of_two > 3)
2023 power_of_two = 3;
2024
2025 /* Apply the required alignment. */
2026 s->_raw_size = BFD_ALIGN (s->_raw_size,
2027 (bfd_size_type) (1 << power_of_two));
2028 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2029 {
2030 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2031 return false;
2032 }
2033 }
2034 /* Define the symbol as being at this point in the section. */
2035 h->root.u.def.section = s;
2036 h->root.u.def.value = s->_raw_size;
edd21aca 2037
30667bf3
AM
2038 /* Increment the section size to make room for the symbol. */
2039 s->_raw_size += h->size;
252b5132
RH
2040
2041 return true;
2042}
2043
30667bf3
AM
2044/* Called via elf_link_hash_traverse to create .plt entries for an
2045 application that uses statically linked PIC functions. Similar to
2046 the first part of elf32_hppa_adjust_dynamic_symbol. */
252b5132 2047
30667bf3
AM
2048static boolean
2049hppa_handle_PIC_calls (h, inf)
2050 struct elf_link_hash_entry *h;
2051 PTR inf;
252b5132 2052{
30667bf3
AM
2053 struct bfd_link_info *info;
2054 bfd *dynobj;
2055 struct elf32_hppa_link_hash_table *hplink;
2056 asection *s;
2057
2058 if (! (h->plt.refcount > 0
2059 && (h->root.type == bfd_link_hash_defined
2060 || h->root.type == bfd_link_hash_defweak)
2061 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
252b5132 2062 {
30667bf3
AM
2063 h->plt.offset = (bfd_vma) -1;
2064 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2065 return true;
252b5132
RH
2066 }
2067
74d1c347 2068 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
12cca0d2 2069 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
30667bf3 2070 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
edd21aca 2071
30667bf3 2072 info = (struct bfd_link_info *) inf;
30667bf3 2073 hplink = hppa_link_hash_table (info);
74d1c347 2074 dynobj = hplink->root.dynobj;
edd21aca 2075
30667bf3
AM
2076 /* Make an entry in the .plt section. */
2077 s = hplink->splt;
2078 h->plt.offset = s->_raw_size;
2079 s->_raw_size += PLT_ENTRY_SIZE;
2080
2081 return true;
2082}
2083
74d1c347
AM
2084#if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2085 || RELATIVE_DYNAMIC_RELOCS)
30667bf3
AM
2086/* This function is called via elf_link_hash_traverse to discard space
2087 we allocated for relocs that it turned out we didn't need. */
2088
2089static boolean
2090hppa_discard_copies (h, inf)
2091 struct elf_link_hash_entry *h;
2092 PTR inf;
2093{
2094 struct elf32_hppa_dyn_reloc_entry *s;
2095 struct elf32_hppa_link_hash_entry *eh;
2096 struct bfd_link_info *info;
2097
2098 eh = (struct elf32_hppa_link_hash_entry *) h;
2099 info = (struct bfd_link_info *) inf;
2100
74d1c347 2101#if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
30667bf3
AM
2102 /* Handle the stub reloc case. If we have a plt entry for the
2103 function, we won't be needing long branch stubs. s->count will
2104 only be zero for stub relocs, which provides a handy way of
2105 flagging these relocs, and means we need do nothing special for
2106 the forced local and symbolic link case. */
2107 if (eh->stub_reloc_sec != NULL
2108 && eh->elf.plt.offset != (bfd_vma) -1)
2109 {
2110 for (s = eh->reloc_entries; s != NULL; s = s->next)
2111 if (s->count == 0)
2112 s->section->_raw_size -= sizeof (Elf32_External_Rela);
2113 }
2114#endif
2115
74d1c347 2116#if RELATIVE_DYNAMIC_RELOCS
30667bf3
AM
2117 /* If a symbol has been forced local or we have found a regular
2118 definition for the symbolic link case, then we won't be needing
2119 any relocs. */
30667bf3
AM
2120 if (eh->elf.dynindx == -1
2121 || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
a017a724 2122 && !is_absolute_reloc (r_type)
30667bf3
AM
2123 && info->symbolic))
2124 {
2125 for (s = eh->reloc_entries; s != NULL; s = s->next)
2126 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
2127 }
2128#endif
2129
2130 return true;
2131}
2132#endif
2133
d5c73c2f
AM
2134/* This function is called via elf_link_hash_traverse to force
2135 millicode symbols local so they do not end up as globals in the
2136 dynamic symbol table. We ought to be able to do this in
2137 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2138 for all dynamic symbols. Arguably, this is a bug in
2139 elf_adjust_dynamic_symbol. */
2140
2141static boolean
2142clobber_millicode_symbols (h, info)
2143 struct elf_link_hash_entry *h;
2144 struct bfd_link_info *info;
2145{
25f72752
AM
2146 /* Note! We only want to remove these from the dynamic symbol
2147 table. Therefore we do not set ELF_LINK_FORCED_LOCAL. */
d5c73c2f 2148 if (h->type == STT_PARISC_MILLI)
3ee1d854 2149 elf32_hppa_hide_symbol (info, h);
d5c73c2f
AM
2150 return true;
2151}
2152
30667bf3
AM
2153/* Set the sizes of the dynamic sections. */
2154
2155static boolean
2156elf32_hppa_size_dynamic_sections (output_bfd, info)
2157 bfd *output_bfd;
2158 struct bfd_link_info *info;
2159{
2160 struct elf32_hppa_link_hash_table *hplink;
2161 bfd *dynobj;
2162 asection *s;
2163 boolean relocs;
2164 boolean reltext;
2165
2166 hplink = hppa_link_hash_table (info);
74d1c347 2167 dynobj = hplink->root.dynobj;
30667bf3
AM
2168 BFD_ASSERT (dynobj != NULL);
2169
74d1c347 2170 if (hplink->root.dynamic_sections_created)
30667bf3 2171 {
74d1c347
AM
2172 bfd *i;
2173
30667bf3
AM
2174 /* Set the contents of the .interp section to the interpreter. */
2175 if (! info->shared)
2176 {
2177 s = bfd_get_section_by_name (dynobj, ".interp");
2178 BFD_ASSERT (s != NULL);
2179 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2180 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2181 }
74d1c347 2182
d5c73c2f
AM
2183 /* Force millicode symbols local. */
2184 elf_link_hash_traverse (&hplink->root,
2185 clobber_millicode_symbols,
2186 info);
2187
74d1c347
AM
2188 /* Set up .plt offsets for local plabels. */
2189 for (i = info->input_bfds; i; i = i->link_next)
2190 {
2191 bfd_signed_vma *local_plt;
2192 bfd_signed_vma *end_local_plt;
2193 bfd_size_type locsymcount;
2194 Elf_Internal_Shdr *symtab_hdr;
2195
2196 local_plt = elf_local_got_refcounts (i);
2197 if (!local_plt)
2198 continue;
2199
2200 symtab_hdr = &elf_tdata (i)->symtab_hdr;
2201 locsymcount = symtab_hdr->sh_info;
2202 local_plt += locsymcount;
2203 end_local_plt = local_plt + locsymcount;
2204
2205 for (; local_plt < end_local_plt; ++local_plt)
2206 {
2207 if (*local_plt > 0)
2208 {
2209 s = hplink->splt;
2210 *local_plt = s->_raw_size;
2211 s->_raw_size += PLT_ENTRY_SIZE;
2212 if (info->shared)
2213 hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2214 }
2215 else
2216 *local_plt = (bfd_vma) -1;
2217 }
2218 }
30667bf3
AM
2219 }
2220 else
2221 {
2222 /* Run through the function symbols, looking for any that are
2223 PIC, and allocate space for the necessary .plt entries so
2224 that %r19 will be set up. */
2225 if (! info->shared)
2226 elf_link_hash_traverse (&hplink->root,
2227 hppa_handle_PIC_calls,
2228 info);
2229
2230 /* We may have created entries in the .rela.got section.
2231 However, if we are not creating the dynamic sections, we will
2232 not actually use these entries. Reset the size of .rela.got,
2233 which will cause it to get stripped from the output file
2234 below. */
2235 hplink->srelgot->_raw_size = 0;
2236 }
2237
74d1c347
AM
2238#if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2239 || RELATIVE_DYNAMIC_RELOCS)
30667bf3
AM
2240 /* If this is a -Bsymbolic shared link, then we need to discard all
2241 relocs against symbols defined in a regular object. We also need
2242 to lose relocs we've allocated for long branch stubs if we know
2243 we won't be generating a stub. */
2244 if (info->shared)
2245 elf_link_hash_traverse (&hplink->root,
2246 hppa_discard_copies,
2247 info);
2248#endif
2249
2250 /* The check_relocs and adjust_dynamic_symbol entry points have
2251 determined the sizes of the various dynamic sections. Allocate
2252 memory for them. */
2253 relocs = false;
2254 reltext = false;
2255 for (s = dynobj->sections; s != NULL; s = s->next)
2256 {
2257 const char *name;
2258
2259 if ((s->flags & SEC_LINKER_CREATED) == 0)
2260 continue;
2261
2262 /* It's OK to base decisions on the section name, because none
2263 of the dynobj section names depend upon the input files. */
2264 name = bfd_get_section_name (dynobj, s);
2265
2266 if (strncmp (name, ".rela", 5) == 0)
2267 {
2268 if (s->_raw_size != 0)
2269 {
2270 asection *target;
47d89dba 2271 const char *outname;
30667bf3
AM
2272
2273 /* Remember whether there are any reloc sections other
2274 than .rela.plt. */
2275 if (strcmp (name+5, ".plt") != 0)
47d89dba
AM
2276 relocs = true;
2277
2278 /* If this relocation section applies to a read only
2279 section, then we probably need a DT_TEXTREL entry. */
2280 outname = bfd_get_section_name (output_bfd,
2281 s->output_section);
2282 target = bfd_get_section_by_name (output_bfd, outname + 5);
2283 if (target != NULL
2284 && (target->flags & SEC_READONLY) != 0
2285 && (target->flags & SEC_ALLOC) != 0)
2286 reltext = true;
30667bf3
AM
2287
2288 /* We use the reloc_count field as a counter if we need
2289 to copy relocs into the output file. */
2290 s->reloc_count = 0;
2291 }
2292 }
2293 else if (strcmp (name, ".plt") == 0)
47d89dba
AM
2294 {
2295 if (hplink->need_plt_stub)
2296 {
2297 /* Make space for the plt stub at the end of the .plt
2298 section. We want this stub right at the end, up
2299 against the .got section. */
2300 int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2301 int pltalign = bfd_section_alignment (dynobj, s);
2302 bfd_size_type mask;
2303
2304 if (gotalign > pltalign)
2305 bfd_set_section_alignment (dynobj, s, gotalign);
2306 mask = ((bfd_size_type) 1 << gotalign) - 1;
2307 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2308 }
2309 }
30667bf3
AM
2310 else if (strcmp (name, ".got") == 0)
2311 ;
2312 else
2313 {
2314 /* It's not one of our sections, so don't allocate space. */
2315 continue;
2316 }
2317
2318 if (s->_raw_size == 0)
2319 {
2320 /* If we don't need this section, strip it from the
2321 output file. This is mostly to handle .rela.bss and
2322 .rela.plt. We must create both sections in
2323 create_dynamic_sections, because they must be created
2324 before the linker maps input sections to output
2325 sections. The linker does that before
2326 adjust_dynamic_symbol is called, and it is that
2327 function which decides whether anything needs to go
2328 into these sections. */
2329 _bfd_strip_section_from_output (info, s);
2330 continue;
2331 }
2332
2333 /* Allocate memory for the section contents. Zero it, because
2334 we may not fill in all the reloc sections. */
2335 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2336 if (s->contents == NULL && s->_raw_size != 0)
2337 return false;
2338 }
2339
74d1c347 2340 if (hplink->root.dynamic_sections_created)
30667bf3
AM
2341 {
2342 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2343 actually has nothing to do with the PLT, it is how we
2344 communicate the LTP value of a load module to the dynamic
2345 linker. */
2346 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2347 return false;
2348
2349 /* Add some entries to the .dynamic section. We fill in the
2350 values later, in elf32_hppa_finish_dynamic_sections, but we
2351 must add the entries now so that we get the correct size for
2352 the .dynamic section. The DT_DEBUG entry is filled in by the
2353 dynamic linker and used by the debugger. */
2354 if (! info->shared)
2355 {
2356 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2357 return false;
2358 }
2359
2360 if (hplink->srelplt->_raw_size != 0)
2361 {
2362 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2363 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2364 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2365 return false;
2366 }
2367
2368 if (relocs)
2369 {
2370 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2371 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2372 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2373 sizeof (Elf32_External_Rela)))
2374 return false;
2375 }
2376
2377 if (reltext)
2378 {
2379 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2380 return false;
2381 info->flags |= DF_TEXTREL;
2382 }
2383 }
2384
2385 return true;
2386}
2387
30667bf3
AM
2388/* External entry points for sizing and building linker stubs. */
2389
2390/* Determine and set the size of the stub section for a final link.
2391
2392 The basic idea here is to examine all the relocations looking for
2393 PC-relative calls to a target that is unreachable with a "bl"
2394 instruction. */
2395
2396boolean
47d89dba 2397elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
30667bf3 2398 add_stub_section, layout_sections_again)
25f72752 2399 bfd *output_bfd;
30667bf3 2400 bfd *stub_bfd;
30667bf3 2401 struct bfd_link_info *info;
25f72752 2402 boolean multi_subspace;
47d89dba 2403 bfd_signed_vma group_size;
30667bf3
AM
2404 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2405 void (*layout_sections_again) PARAMS ((void));
2406{
2407 bfd *input_bfd;
2408 asection *section;
25f72752 2409 asection **input_list, **list;
30667bf3 2410 Elf_Internal_Sym *local_syms, **all_local_syms;
25f72752
AM
2411 unsigned int bfd_indx, bfd_count;
2412 int top_id, top_index;
30667bf3 2413 struct elf32_hppa_link_hash_table *hplink;
47d89dba
AM
2414 bfd_size_type stub_group_size;
2415 boolean stubs_always_before_branch;
30667bf3 2416 boolean stub_changed = 0;
25f72752 2417 boolean ret = 0;
30667bf3
AM
2418
2419 hplink = hppa_link_hash_table (info);
2420
2421 /* Stash our params away. */
2422 hplink->stub_bfd = stub_bfd;
2423 hplink->multi_subspace = multi_subspace;
2424 hplink->add_stub_section = add_stub_section;
2425 hplink->layout_sections_again = layout_sections_again;
47d89dba
AM
2426 stubs_always_before_branch = group_size < 0;
2427 if (group_size < 0)
2428 stub_group_size = -group_size;
2429 else
2430 stub_group_size = group_size;
2431 if (stub_group_size == 1)
2432 {
2433 /* Default values. */
2434 stub_group_size = 8000000;
2435 if (hplink->has_17bit_branch || hplink->multi_subspace)
2436 stub_group_size = 250000;
2437 if (hplink->has_12bit_branch)
2438 stub_group_size = 7812;
2439 }
30667bf3 2440
1badb539
AM
2441 /* Count the number of input BFDs and find the top input section id. */
2442 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
30667bf3
AM
2443 input_bfd != NULL;
2444 input_bfd = input_bfd->link_next)
2445 {
2446 bfd_count += 1;
25f72752
AM
2447 for (section = input_bfd->sections;
2448 section != NULL;
2449 section = section->next)
2450 {
2451 if (top_id < section->id)
2452 top_id = section->id;
2453 }
30667bf3
AM
2454 }
2455
25f72752
AM
2456 hplink->stub_group
2457 = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2458 if (hplink->stub_group == NULL)
30667bf3
AM
2459 return false;
2460
1badb539
AM
2461 /* Make a list of input sections for each output section included in
2462 the link.
2463
2464 We can't use output_bfd->section_count here to find the top output
2465 section index as some sections may have been removed, and
2466 _bfd_strip_section_from_output doesn't renumber the indices. */
2467 for (section = output_bfd->sections, top_index = 0;
2468 section != NULL;
2469 section = section->next)
2470 {
2471 if (top_index < section->index)
2472 top_index = section->index;
2473 }
2474
25f72752 2475 input_list
1badb539 2476 = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
25f72752
AM
2477 if (input_list == NULL)
2478 return false;
2479
1badb539
AM
2480 /* For sections we aren't interested in, mark their entries with a
2481 value we can check later. */
2482 list = input_list + top_index;
2483 do
2484 *list = bfd_abs_section_ptr;
2485 while (list-- != input_list);
2486
2487 for (section = output_bfd->sections;
2488 section != NULL;
2489 section = section->next)
2490 {
47d89dba 2491 if ((section->flags & SEC_CODE) != 0)
1badb539
AM
2492 input_list[section->index] = NULL;
2493 }
2494
2495 /* Now actually build the lists. */
25f72752
AM
2496 for (input_bfd = info->input_bfds;
2497 input_bfd != NULL;
2498 input_bfd = input_bfd->link_next)
2499 {
2500 for (section = input_bfd->sections;
2501 section != NULL;
2502 section = section->next)
2503 {
2504 if (section->output_section != NULL
1badb539
AM
2505 && section->output_section->owner == output_bfd
2506 && section->output_section->index <= top_index)
25f72752
AM
2507 {
2508 list = input_list + section->output_section->index;
1badb539
AM
2509 if (*list != bfd_abs_section_ptr)
2510 {
2511 /* Steal the link_sec pointer for our list. */
25f72752 2512#define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
1badb539
AM
2513 /* This happens to make the list in reverse order,
2514 which is what we want. */
2515 PREV_SEC (section) = *list;
2516 *list = section;
2517 }
25f72752
AM
2518 }
2519 }
2520 }
2521
2522 /* See whether we can group stub sections together. Grouping stub
2523 sections may result in fewer stubs. More importantly, we need to
2524 put all .init* and .fini* stubs at the beginning of the .init or
2525 .fini output sections respectively, because glibc splits the
2526 _init and _fini functions into multiple parts. Putting a stub in
2527 the middle of a function is not a good idea. */
a017a724 2528 list = input_list + top_index;
1badb539 2529 do
25f72752
AM
2530 {
2531 asection *tail = *list;
1badb539
AM
2532 if (tail == bfd_abs_section_ptr)
2533 continue;
25f72752
AM
2534 while (tail != NULL)
2535 {
2536 asection *curr;
2537 asection *prev;
2538 bfd_size_type total;
2539
2540 curr = tail;
2541 if (tail->_cooked_size)
2542 total = tail->_cooked_size;
2543 else
2544 total = tail->_raw_size;
2545 while ((prev = PREV_SEC (curr)) != NULL
2546 && ((total += curr->output_offset - prev->output_offset)
47d89dba 2547 < stub_group_size))
25f72752
AM
2548 curr = prev;
2549
2550 /* OK, the size from the start of CURR to the end is less
2551 than 250000 bytes and thus can be handled by one stub
2552 section. (or the tail section is itself larger than
2553 250000 bytes, in which case we may be toast.)
2554 We should really be keeping track of the total size of
2555 stubs added here, as stubs contribute to the final output
2556 section size. That's a little tricky, and this way will
2557 only break if stubs added total more than 12144 bytes, or
2558 1518 long branch stubs. It seems unlikely for more than
2559 1518 different functions to be called, especially from
2560 code only 250000 bytes long. */
2561 do
2562 {
2563 prev = PREV_SEC (tail);
2564 /* Set up this stub group. */
2565 hplink->stub_group[tail->id].link_sec = curr;
2566 }
2567 while (tail != curr && (tail = prev) != NULL);
2568
2569 /* But wait, there's more! Input sections up to 250000
2570 bytes before the stub section can be handled by it too. */
47d89dba 2571 if (!stubs_always_before_branch)
25f72752 2572 {
47d89dba
AM
2573 total = 0;
2574 while (prev != NULL
2575 && ((total += tail->output_offset - prev->output_offset)
2576 < stub_group_size))
2577 {
2578 tail = prev;
2579 prev = PREV_SEC (tail);
2580 hplink->stub_group[tail->id].link_sec = curr;
2581 }
25f72752
AM
2582 }
2583 tail = prev;
2584 }
2585 }
1badb539 2586 while (list-- != input_list);
25f72752 2587 free (input_list);
1badb539 2588#undef PREV_SEC
30667bf3
AM
2589
2590 /* We want to read in symbol extension records only once. To do this
2591 we need to read in the local symbols in parallel and save them for
2592 later use; so hold pointers to the local symbols in an array. */
2593 all_local_syms
2594 = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2595 * bfd_count);
2596 if (all_local_syms == NULL)
25f72752 2597 return false;
30667bf3
AM
2598
2599 /* Walk over all the input BFDs, swapping in local symbols.
2600 If we are creating a shared library, create hash entries for the
2601 export stubs. */
25f72752 2602 for (input_bfd = info->input_bfds, bfd_indx = 0;
30667bf3 2603 input_bfd != NULL;
25f72752 2604 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2605 {
2606 Elf_Internal_Shdr *symtab_hdr;
2607 Elf_Internal_Sym *isym;
25f72752 2608 Elf32_External_Sym *ext_syms, *esym, *end_sy;
edd21aca 2609
252b5132
RH
2610 /* We'll need the symbol table in a second. */
2611 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2612 if (symtab_hdr->sh_info == 0)
2613 continue;
2614
edd21aca
AM
2615 /* We need an array of the local symbols attached to the input bfd.
2616 Unfortunately, we're going to have to read & swap them in. */
2617 local_syms = (Elf_Internal_Sym *)
2618 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2619 if (local_syms == NULL)
2620 {
2621 goto error_ret_free_local;
2622 }
25f72752 2623 all_local_syms[bfd_indx] = local_syms;
edd21aca
AM
2624 ext_syms = (Elf32_External_Sym *)
2625 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2626 if (ext_syms == NULL)
2627 {
2628 goto error_ret_free_local;
2629 }
2630
2631 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
30667bf3 2632 || (bfd_read (ext_syms, 1,
edd21aca
AM
2633 (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2634 input_bfd)
2635 != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2636 {
2637 free (ext_syms);
2638 goto error_ret_free_local;
2639 }
2640
2641 /* Swap the local symbols in. */
2642 isym = local_syms;
2643 esym = ext_syms;
25f72752 2644 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
edd21aca
AM
2645 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2646
2647 /* Now we can free the external symbols. */
2648 free (ext_syms);
edd21aca 2649
d5c73c2f 2650#if ! LONG_BRANCH_PIC_IN_SHLIB
25f72752
AM
2651 /* If this is a shared link, find all the stub reloc sections. */
2652 if (info->shared)
2653 for (section = input_bfd->sections;
2654 section != NULL;
2655 section = section->next)
2656 {
2657 char *name;
2658 asection *reloc_sec;
d5c73c2f 2659
25f72752
AM
2660 name = bfd_malloc (strlen (section->name)
2661 + sizeof STUB_SUFFIX
2662 + 5);
2663 if (name == NULL)
2664 return false;
2665 sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2666 reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2667 hplink->stub_group[section->id].reloc_sec = reloc_sec;
2668 free (name);
2669 }
d5c73c2f 2670#endif
d5c73c2f 2671
30667bf3
AM
2672 if (info->shared && hplink->multi_subspace)
2673 {
25f72752
AM
2674 struct elf_link_hash_entry **sym_hashes;
2675 struct elf_link_hash_entry **end_hashes;
30667bf3
AM
2676 unsigned int symcount;
2677
2678 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2679 - symtab_hdr->sh_info);
25f72752
AM
2680 sym_hashes = elf_sym_hashes (input_bfd);
2681 end_hashes = sym_hashes + symcount;
30667bf3
AM
2682
2683 /* Look through the global syms for functions; We need to
2684 build export stubs for all globally visible functions. */
25f72752 2685 for (; sym_hashes < end_hashes; sym_hashes++)
30667bf3
AM
2686 {
2687 struct elf32_hppa_link_hash_entry *hash;
2688
25f72752 2689 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
30667bf3
AM
2690
2691 while (hash->elf.root.type == bfd_link_hash_indirect
2692 || hash->elf.root.type == bfd_link_hash_warning)
2693 hash = ((struct elf32_hppa_link_hash_entry *)
2694 hash->elf.root.u.i.link);
2695
2696 /* At this point in the link, undefined syms have been
2697 resolved, so we need to check that the symbol was
2698 defined in this BFD. */
2699 if ((hash->elf.root.type == bfd_link_hash_defined
2700 || hash->elf.root.type == bfd_link_hash_defweak)
2701 && hash->elf.type == STT_FUNC
2702 && hash->elf.root.u.def.section->output_section != NULL
25f72752
AM
2703 && (hash->elf.root.u.def.section->output_section->owner
2704 == output_bfd)
30667bf3
AM
2705 && hash->elf.root.u.def.section->owner == input_bfd
2706 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2707 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2708 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2709 {
2710 asection *sec;
2711 const char *stub_name;
2712 struct elf32_hppa_stub_hash_entry *stub_entry;
2713
2714 sec = hash->elf.root.u.def.section;
2715 stub_name = hash->elf.root.root.string;
2716 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2717 stub_name,
2718 false, false);
2719 if (stub_entry == NULL)
2720 {
25f72752 2721 stub_entry = hppa_add_stub (stub_name, sec, hplink);
30667bf3
AM
2722 if (!stub_entry)
2723 goto error_ret_free_local;
2724
2725 stub_entry->target_value = hash->elf.root.u.def.value;
2726 stub_entry->target_section = hash->elf.root.u.def.section;
2727 stub_entry->stub_type = hppa_stub_export;
2728 stub_entry->h = hash;
2729 stub_changed = 1;
2730 }
2731 else
2732 {
2733 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2734 bfd_get_filename (input_bfd),
2735 stub_name);
2736 }
2737 }
2738 }
30667bf3
AM
2739 }
2740 }
edd21aca
AM
2741
2742 while (1)
2743 {
30667bf3
AM
2744 asection *stub_sec;
2745
25f72752 2746 for (input_bfd = info->input_bfds, bfd_indx = 0;
30667bf3 2747 input_bfd != NULL;
25f72752 2748 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2749 {
2750 Elf_Internal_Shdr *symtab_hdr;
2751
2752 /* We'll need the symbol table in a second. */
2753 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2754 if (symtab_hdr->sh_info == 0)
2755 continue;
2756
25f72752 2757 local_syms = all_local_syms[bfd_indx];
30667bf3
AM
2758
2759 /* Walk over each section attached to the input bfd. */
2760 for (section = input_bfd->sections;
2761 section != NULL;
25f72752 2762 section = section->next)
30667bf3
AM
2763 {
2764 Elf_Internal_Shdr *input_rel_hdr;
2765 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2766 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2767
2768 /* If there aren't any relocs, then there's nothing more
2769 to do. */
2770 if ((section->flags & SEC_RELOC) == 0
2771 || section->reloc_count == 0)
2772 continue;
2773
25f72752
AM
2774 /* If this section is a link-once section that will be
2775 discarded, then don't create any stubs. */
2776 if (section->output_section == NULL
2777 || section->output_section->owner != output_bfd)
2778 continue;
2779
30667bf3
AM
2780 /* Allocate space for the external relocations. */
2781 external_relocs
2782 = ((Elf32_External_Rela *)
2783 bfd_malloc (section->reloc_count
2784 * sizeof (Elf32_External_Rela)));
2785 if (external_relocs == NULL)
2786 {
2787 goto error_ret_free_local;
2788 }
2789
2790 /* Likewise for the internal relocations. */
2791 internal_relocs = ((Elf_Internal_Rela *)
2792 bfd_malloc (section->reloc_count
2793 * sizeof (Elf_Internal_Rela)));
2794 if (internal_relocs == NULL)
2795 {
2796 free (external_relocs);
2797 goto error_ret_free_local;
2798 }
2799
2800 /* Read in the external relocs. */
2801 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2802 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2803 || bfd_read (external_relocs, 1,
2804 input_rel_hdr->sh_size,
2805 input_bfd) != input_rel_hdr->sh_size)
2806 {
2807 free (external_relocs);
2808 error_ret_free_internal:
2809 free (internal_relocs);
2810 goto error_ret_free_local;
2811 }
2812
2813 /* Swap in the relocs. */
2814 erela = external_relocs;
2815 erelaend = erela + section->reloc_count;
2816 irela = internal_relocs;
2817 for (; erela < erelaend; erela++, irela++)
2818 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2819
2820 /* We're done with the external relocs, free them. */
2821 free (external_relocs);
2822
2823 /* Now examine each relocation. */
2824 irela = internal_relocs;
2825 irelaend = irela + section->reloc_count;
2826 for (; irela < irelaend; irela++)
2827 {
2828 unsigned int r_type, r_indx;
2829 enum elf32_hppa_stub_type stub_type;
2830 struct elf32_hppa_stub_hash_entry *stub_entry;
2831 asection *sym_sec;
2832 bfd_vma sym_value;
2833 bfd_vma destination;
2834 struct elf32_hppa_link_hash_entry *hash;
2835 char *stub_name;
25f72752 2836 const asection *id_sec;
30667bf3
AM
2837
2838 r_type = ELF32_R_TYPE (irela->r_info);
2839 r_indx = ELF32_R_SYM (irela->r_info);
2840
2841 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2842 {
2843 bfd_set_error (bfd_error_bad_value);
2844 goto error_ret_free_internal;
2845 }
2846
2847 /* Only look for stubs on call instructions. */
2848 if (r_type != (unsigned int) R_PARISC_PCREL12F
2849 && r_type != (unsigned int) R_PARISC_PCREL17F
2850 && r_type != (unsigned int) R_PARISC_PCREL22F)
2851 continue;
2852
2853 /* Now determine the call target, its name, value,
2854 section. */
2855 sym_sec = NULL;
2856 sym_value = 0;
2857 destination = 0;
2858 hash = NULL;
2859 if (r_indx < symtab_hdr->sh_info)
2860 {
2861 /* It's a local symbol. */
2862 Elf_Internal_Sym *sym;
2863 Elf_Internal_Shdr *hdr;
2864
2865 sym = local_syms + r_indx;
2866 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2867 sym_sec = hdr->bfd_section;
2868 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2869 sym_value = sym->st_value;
2870 destination = (sym_value + irela->r_addend
2871 + sym_sec->output_offset
2872 + sym_sec->output_section->vma);
2873 }
2874 else
2875 {
2876 /* It's an external symbol. */
2877 int e_indx;
2878
2879 e_indx = r_indx - symtab_hdr->sh_info;
2880 hash = ((struct elf32_hppa_link_hash_entry *)
2881 elf_sym_hashes (input_bfd)[e_indx]);
2882
2883 while (hash->elf.root.type == bfd_link_hash_indirect
2884 || hash->elf.root.type == bfd_link_hash_warning)
2885 hash = ((struct elf32_hppa_link_hash_entry *)
2886 hash->elf.root.u.i.link);
2887
2888 if (hash->elf.root.type == bfd_link_hash_defined
2889 || hash->elf.root.type == bfd_link_hash_defweak)
2890 {
2891 sym_sec = hash->elf.root.u.def.section;
2892 sym_value = hash->elf.root.u.def.value;
2893 if (sym_sec->output_section != NULL)
2894 destination = (sym_value + irela->r_addend
2895 + sym_sec->output_offset
2896 + sym_sec->output_section->vma);
2897 }
2898 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2899 {
2900 if (! info->shared)
2901 continue;
2902 }
2903 else if (hash->elf.root.type == bfd_link_hash_undefined)
2904 {
2905 if (! (info->shared
2906 && !info->no_undefined
2907 && (ELF_ST_VISIBILITY (hash->elf.other)
2908 == STV_DEFAULT)))
2909 continue;
2910 }
2911 else
2912 {
2913 bfd_set_error (bfd_error_bad_value);
2914 goto error_ret_free_internal;
2915 }
2916 }
2917
2918 /* Determine what (if any) linker stub is needed. */
2919 stub_type = hppa_type_of_stub (section, irela, hash,
2920 destination);
2921 if (stub_type == hppa_stub_none)
2922 continue;
2923
25f72752
AM
2924 /* Support for grouping stub sections. */
2925 id_sec = hplink->stub_group[section->id].link_sec;
2926
30667bf3 2927 /* Get the name of this stub. */
25f72752 2928 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
30667bf3
AM
2929 if (!stub_name)
2930 goto error_ret_free_internal;
2931
2932 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2933 stub_name,
2934 false, false);
2935 if (stub_entry != NULL)
2936 {
2937 /* The proper stub has already been created. */
2938 free (stub_name);
2939 continue;
2940 }
2941
25f72752 2942 stub_entry = hppa_add_stub (stub_name, section, hplink);
30667bf3
AM
2943 if (stub_entry == NULL)
2944 {
2945 free (stub_name);
2946 goto error_ret_free_local;
2947 }
2948
2949 stub_entry->target_value = sym_value;
2950 stub_entry->target_section = sym_sec;
2951 stub_entry->stub_type = stub_type;
2952 if (info->shared)
2953 {
2954 if (stub_type == hppa_stub_import)
2955 stub_entry->stub_type = hppa_stub_import_shared;
2956 else if (stub_type == hppa_stub_long_branch
2957 && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
2958 stub_entry->stub_type = hppa_stub_long_branch_shared;
2959 }
2960 stub_entry->h = hash;
2961 stub_changed = 1;
2962 }
2963
2964 /* We're done with the internal relocs, free them. */
2965 free (internal_relocs);
2966 }
2967 }
2968
2969 if (!stub_changed)
2970 break;
2971
2972 /* OK, we've added some stubs. Find out the new size of the
2973 stub sections. */
30667bf3
AM
2974 for (stub_sec = hplink->stub_bfd->sections;
2975 stub_sec != NULL;
2976 stub_sec = stub_sec->next)
2977 {
74d1c347
AM
2978 stub_sec->_raw_size = 0;
2979 stub_sec->_cooked_size = 0;
2980 }
2981#if ! LONG_BRANCH_PIC_IN_SHLIB
25f72752
AM
2982 {
2983 int i;
2984
2985 for (i = top_id; i >= 0; --i)
2986 {
2987 /* This will probably hit the same section many times.. */
2988 stub_sec = hplink->stub_group[i].reloc_sec;
2989 if (stub_sec != NULL)
2990 {
2991 stub_sec->_raw_size = 0;
2992 stub_sec->_cooked_size = 0;
2993 }
2994 }
2995 }
74d1c347
AM
2996#endif
2997
2998 bfd_hash_traverse (&hplink->stub_hash_table,
2999 hppa_size_one_stub,
3000 hplink);
3001
30667bf3
AM
3002 /* Ask the linker to do its stuff. */
3003 (*hplink->layout_sections_again) ();
3004 stub_changed = 0;
3005 }
3006
25f72752 3007 ret = 1;
30667bf3
AM
3008
3009 error_ret_free_local:
25f72752
AM
3010 while (bfd_count-- > 0)
3011 if (all_local_syms[bfd_count])
3012 free (all_local_syms[bfd_count]);
30667bf3
AM
3013 free (all_local_syms);
3014
25f72752 3015 return ret;
30667bf3
AM
3016}
3017
30667bf3
AM
3018/* For a final link, this function is called after we have sized the
3019 stubs to provide a value for __gp. */
3020
3021boolean
3022elf32_hppa_set_gp (abfd, info)
3023 bfd *abfd;
3024 struct bfd_link_info *info;
3025{
74d1c347 3026 struct elf32_hppa_link_hash_table *hplink;
30667bf3
AM
3027 struct elf_link_hash_entry *h;
3028 asection *sec;
3029 bfd_vma gp_val;
3030
74d1c347
AM
3031 hplink = hppa_link_hash_table (info);
3032 h = elf_link_hash_lookup (&hplink->root, "$global$",
30667bf3
AM
3033 false, false, false);
3034
df8634e3
AM
3035 if (h != NULL
3036 && (h->root.type == bfd_link_hash_defined
3037 || h->root.type == bfd_link_hash_defweak))
30667bf3
AM
3038 {
3039 gp_val = h->root.u.def.value;
3040 sec = h->root.u.def.section;
3041 }
3042 else
3043 {
74d1c347
AM
3044 /* Choose to point our LTP at, in this order, one of .plt, .got,
3045 or .data, if these sections exist. In the case of choosing
3046 .plt try to make the LTP ideal for addressing anywhere in the
3047 .plt or .got with a 14 bit signed offset. Typically, the end
3048 of the .plt is the start of the .got, so choose .plt + 0x2000
3049 if either the .plt or .got is larger than 0x2000. If both
3050 the .plt and .got are smaller than 0x2000, choose the end of
3051 the .plt section. */
3052
3053 sec = hplink->splt;
3054 if (sec != NULL)
30667bf3 3055 {
74d1c347
AM
3056 gp_val = sec->_raw_size;
3057 if (gp_val > 0x2000
3058 || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3059 {
3060 gp_val = 0x2000;
3061 }
3062 }
3063 else
3064 {
3065 gp_val = 0;
3066 sec = hplink->sgot;
3067 if (sec != NULL)
3068 {
3069 /* We know we don't have a .plt. If .got is large,
3070 offset our LTP. */
3071 if (sec->_raw_size > 0x2000)
3072 gp_val = 0x2000;
3073 }
3074 else
3075 {
3076 /* No .plt or .got. Who cares what the LTP is? */
3077 sec = bfd_get_section_by_name (abfd, ".data");
3078 }
30667bf3 3079 }
df8634e3
AM
3080
3081 if (h != NULL)
3082 {
3083 h->root.type = bfd_link_hash_defined;
3084 h->root.u.def.value = gp_val;
3085 if (sec != NULL)
3086 h->root.u.def.section = sec;
3087 else
3088 h->root.u.def.section = bfd_abs_section_ptr;
3089 }
30667bf3
AM
3090 }
3091
b32b5d6e 3092 if (sec != NULL && sec->output_section != NULL)
74d1c347
AM
3093 gp_val += sec->output_section->vma + sec->output_offset;
3094
3095 elf_gp (abfd) = gp_val;
30667bf3
AM
3096 return true;
3097}
3098
30667bf3
AM
3099/* Build all the stubs associated with the current output file. The
3100 stubs are kept in a hash table attached to the main linker hash
3101 table. We also set up the .plt entries for statically linked PIC
3102 functions here. This function is called via hppaelf_finish in the
3103 linker. */
3104
3105boolean
3106elf32_hppa_build_stubs (info)
3107 struct bfd_link_info *info;
3108{
3109 asection *stub_sec;
3110 struct bfd_hash_table *table;
3111 struct elf32_hppa_link_hash_table *hplink;
3112
3113 hplink = hppa_link_hash_table (info);
3114
3115 for (stub_sec = hplink->stub_bfd->sections;
3116 stub_sec != NULL;
3117 stub_sec = stub_sec->next)
3118 {
74d1c347 3119 size_t size;
30667bf3
AM
3120
3121 /* Allocate memory to hold the linker stubs. */
74d1c347 3122 size = stub_sec->_raw_size;
30667bf3
AM
3123 stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3124 size);
3125 if (stub_sec->contents == NULL && size != 0)
3126 return false;
74d1c347 3127 stub_sec->_raw_size = 0;
30667bf3
AM
3128 }
3129
3130 /* Build the stubs as directed by the stub hash table. */
30667bf3
AM
3131 table = &hplink->stub_hash_table;
3132 bfd_hash_traverse (table, hppa_build_one_stub, info);
3133
3134 return true;
3135}
3136
c46b7515
AM
3137/* Perform a final link. */
3138
3139static boolean
3140elf32_hppa_final_link (abfd, info)
3141 bfd *abfd;
3142 struct bfd_link_info *info;
3143{
3144 asection *s;
3145
3146 /* Invoke the regular ELF garbage collecting linker to do all the
3147 work. */
3148 if (!_bfd_elf32_gc_common_final_link (abfd, info))
3149 return false;
3150
3151 /* If we're producing a final executable, sort the contents of the
3152 unwind section. Magic section names, but this is much safer than
3153 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3154 occurred. Consider what happens if someone inept creates a
3155 linker script that puts unwind information in .text. */
3156 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3157 if (s != NULL)
3158 {
3159 bfd_size_type size;
3160 char *contents;
3161
3162 size = s->_raw_size;
3163 contents = bfd_malloc (size);
3164 if (contents == NULL)
3165 return false;
3166
3167 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3168 return false;
3169
3170 qsort (contents, size / 16, 16, hppa_unwind_entry_compare);
3171
3172 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3173 return false;
3174 }
3175 return true;
3176}
3177
3178/* Record the lowest address for the data and text segments. */
3179
3180static void
3181hppa_record_segment_addr (abfd, section, data)
3182 bfd *abfd ATTRIBUTE_UNUSED;
3183 asection *section;
3184 PTR data;
3185{
3186 struct elf32_hppa_link_hash_table *hplink;
3187
3188 hplink = (struct elf32_hppa_link_hash_table *) data;
3189
3190 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3191 {
3192 bfd_vma value = section->vma - section->filepos;
3193
3194 if ((section->flags & SEC_READONLY) != 0)
3195 {
3196 if (value < hplink->text_segment_base)
3197 hplink->text_segment_base = value;
3198 }
3199 else
3200 {
3201 if (value < hplink->data_segment_base)
3202 hplink->data_segment_base = value;
3203 }
3204 }
3205}
3206
30667bf3
AM
3207/* Perform a relocation as part of a final link. */
3208
3209static bfd_reloc_status_type
25f72752 3210final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
30667bf3
AM
3211 asection *input_section;
3212 bfd_byte *contents;
3213 const Elf_Internal_Rela *rel;
3214 bfd_vma value;
25f72752 3215 struct elf32_hppa_link_hash_table *hplink;
30667bf3
AM
3216 asection *sym_sec;
3217 struct elf32_hppa_link_hash_entry *h;
3218{
3219 int insn;
3220 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3221 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3222 int r_format = howto->bitsize;
3223 enum hppa_reloc_field_selector_type_alt r_field;
3224 bfd *input_bfd = input_section->owner;
3225 bfd_vma offset = rel->r_offset;
3226 bfd_vma max_branch_offset = 0;
3227 bfd_byte *hit_data = contents + offset;
3228 bfd_signed_vma addend = rel->r_addend;
3229 bfd_vma location;
3230 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3231 int val;
3232
3233 if (r_type == R_PARISC_NONE)
3234 return bfd_reloc_ok;
3235
3236 insn = bfd_get_32 (input_bfd, hit_data);
3237
3238 /* Find out where we are and where we're going. */
3239 location = (offset +
3240 input_section->output_offset +
3241 input_section->output_section->vma);
3242
3243 switch (r_type)
3244 {
3245 case R_PARISC_PCREL12F:
3246 case R_PARISC_PCREL17F:
3247 case R_PARISC_PCREL22F:
3248 /* If this is a call to a function defined in another dynamic
3249 library, or if it is a call to a PIC function in the same
74d1c347
AM
3250 object, or if this is a shared link and it is a call to a
3251 weak symbol which may or may not be in the same object, then
3252 find the import stub in the stub hash. */
30667bf3
AM
3253 if (sym_sec == NULL
3254 || sym_sec->output_section == NULL
12cca0d2
AM
3255 || (h != NULL
3256 && ((h->maybe_pic_call
3257 && !(input_section->flags & SEC_HAS_GOT_REF))
3258 || (h->elf.root.type == bfd_link_hash_defweak
3259 && h->elf.dynindx != -1
3260 && h->elf.plt.offset != (bfd_vma) -1))))
30667bf3
AM
3261 {
3262 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
25f72752 3263 h, rel, hplink);
30667bf3
AM
3264 if (stub_entry != NULL)
3265 {
3266 value = (stub_entry->stub_offset
3267 + stub_entry->stub_sec->output_offset
3268 + stub_entry->stub_sec->output_section->vma);
3269 addend = 0;
3270 }
3271 else if (sym_sec == NULL && h != NULL
3272 && h->elf.root.type == bfd_link_hash_undefweak)
3273 {
db20fd76
AM
3274 /* It's OK if undefined weak. Calls to undefined weak
3275 symbols behave as if the "called" function
3276 immediately returns. We can thus call to a weak
3277 function without first checking whether the function
3278 is defined. */
30667bf3 3279 value = location;
db20fd76 3280 addend = 8;
30667bf3
AM
3281 }
3282 else
3283 return bfd_reloc_notsupported;
3284 }
3285 /* Fall thru. */
3286
3287 case R_PARISC_PCREL21L:
3288 case R_PARISC_PCREL17C:
3289 case R_PARISC_PCREL17R:
3290 case R_PARISC_PCREL14R:
3291 case R_PARISC_PCREL14F:
3292 /* Make it a pc relative offset. */
3293 value -= location;
3294 addend -= 8;
3295 break;
3296
3297 case R_PARISC_DPREL21L:
3298 case R_PARISC_DPREL14R:
3299 case R_PARISC_DPREL14F:
3300 /* For all the DP relative relocations, we need to examine the symbol's
3301 section. If it's a code section, then "data pointer relative" makes
3302 no sense. In that case we don't adjust the "value", and for 21 bit
3303 addil instructions, we change the source addend register from %dp to
3304 %r0. This situation commonly arises when a variable's "constness"
3305 is declared differently from the way the variable is defined. For
3306 instance: "extern int foo" with foo defined as "const int foo". */
3307 if (sym_sec == NULL)
3308 break;
3309 if ((sym_sec->flags & SEC_CODE) != 0)
3310 {
3311 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3312 == (((int) OP_ADDIL << 26) | (27 << 21)))
3313 {
3314 insn &= ~ (0x1f << 21);
74d1c347 3315#if 1 /* debug them. */
30667bf3
AM
3316 (*_bfd_error_handler)
3317 (_("%s(%s+0x%lx): fixing %s"),
3318 bfd_get_filename (input_bfd),
3319 input_section->name,
3320 (long) rel->r_offset,
3321 howto->name);
3322#endif
3323 }
3324 /* Now try to make things easy for the dynamic linker. */
3325
3326 break;
3327 }
74d1c347 3328 /* Fall thru. */
30667bf3
AM
3329
3330 case R_PARISC_DLTIND21L:
3331 case R_PARISC_DLTIND14R:
3332 case R_PARISC_DLTIND14F:
3333 value -= elf_gp (input_section->output_section->owner);
3334 break;
3335
c46b7515
AM
3336 case R_PARISC_SEGREL32:
3337 if ((sym_sec->flags & SEC_CODE) != 0)
3338 value -= hplink->text_segment_base;
3339 else
3340 value -= hplink->data_segment_base;
3341 break;
3342
30667bf3
AM
3343 default:
3344 break;
3345 }
3346
3347 switch (r_type)
3348 {
3349 case R_PARISC_DIR32:
47d89dba 3350 case R_PARISC_DIR14F:
30667bf3
AM
3351 case R_PARISC_DIR17F:
3352 case R_PARISC_PCREL17C:
3353 case R_PARISC_PCREL14F:
3354 case R_PARISC_DPREL14F:
3355 case R_PARISC_PLABEL32:
3356 case R_PARISC_DLTIND14F:
3357 case R_PARISC_SEGBASE:
3358 case R_PARISC_SEGREL32:
3359 r_field = e_fsel;
3360 break;
3361
3362 case R_PARISC_DIR21L:
3363 case R_PARISC_PCREL21L:
3364 case R_PARISC_DPREL21L:
3365 case R_PARISC_PLABEL21L:
3366 case R_PARISC_DLTIND21L:
3367 r_field = e_lrsel;
3368 break;
3369
3370 case R_PARISC_DIR17R:
3371 case R_PARISC_PCREL17R:
3372 case R_PARISC_DIR14R:
3373 case R_PARISC_PCREL14R:
3374 case R_PARISC_DPREL14R:
3375 case R_PARISC_PLABEL14R:
3376 case R_PARISC_DLTIND14R:
3377 r_field = e_rrsel;
3378 break;
3379
3380 case R_PARISC_PCREL12F:
3381 case R_PARISC_PCREL17F:
3382 case R_PARISC_PCREL22F:
3383 r_field = e_fsel;
3384
3385 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3386 {
3387 max_branch_offset = (1 << (17-1)) << 2;
3388 }
3389 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3390 {
3391 max_branch_offset = (1 << (12-1)) << 2;
3392 }
3393 else
3394 {
3395 max_branch_offset = (1 << (22-1)) << 2;
3396 }
3397
3398 /* sym_sec is NULL on undefined weak syms or when shared on
3399 undefined syms. We've already checked for a stub for the
3400 shared undefined case. */
3401 if (sym_sec == NULL)
3402 break;
3403
3404 /* If the branch is out of reach, then redirect the
3405 call to the local stub for this function. */
3406 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3407 {
3408 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
25f72752 3409 h, rel, hplink);
30667bf3
AM
3410 if (stub_entry == NULL)
3411 return bfd_reloc_notsupported;
3412
3413 /* Munge up the value and addend so that we call the stub
3414 rather than the procedure directly. */
3415 value = (stub_entry->stub_offset
3416 + stub_entry->stub_sec->output_offset
3417 + stub_entry->stub_sec->output_section->vma
3418 - location);
3419 addend = -8;
3420 }
3421 break;
3422
3423 /* Something we don't know how to handle. */
3424 default:
3425 return bfd_reloc_notsupported;
3426 }
3427
3428 /* Make sure we can reach the stub. */
3429 if (max_branch_offset != 0
3430 && value + addend + max_branch_offset >= 2*max_branch_offset)
3431 {
3432 (*_bfd_error_handler)
3433 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3434 bfd_get_filename (input_bfd),
3435 input_section->name,
3436 (long) rel->r_offset,
3437 stub_entry->root.string);
3438 return bfd_reloc_notsupported;
3439 }
3440
3441 val = hppa_field_adjust (value, addend, r_field);
3442
3443 switch (r_type)
3444 {
3445 case R_PARISC_PCREL12F:
3446 case R_PARISC_PCREL17C:
3447 case R_PARISC_PCREL17F:
3448 case R_PARISC_PCREL17R:
3449 case R_PARISC_PCREL22F:
3450 case R_PARISC_DIR17F:
3451 case R_PARISC_DIR17R:
3452 /* This is a branch. Divide the offset by four.
3453 Note that we need to decide whether it's a branch or
3454 otherwise by inspecting the reloc. Inspecting insn won't
3455 work as insn might be from a .word directive. */
3456 val >>= 2;
3457 break;
3458
3459 default:
3460 break;
3461 }
3462
3463 insn = hppa_rebuild_insn (insn, val, r_format);
3464
3465 /* Update the instruction word. */
74d1c347 3466 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
30667bf3
AM
3467 return bfd_reloc_ok;
3468}
3469
30667bf3
AM
3470/* Relocate an HPPA ELF section. */
3471
3472static boolean
3473elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3474 contents, relocs, local_syms, local_sections)
3475 bfd *output_bfd;
3476 struct bfd_link_info *info;
3477 bfd *input_bfd;
3478 asection *input_section;
3479 bfd_byte *contents;
3480 Elf_Internal_Rela *relocs;
3481 Elf_Internal_Sym *local_syms;
3482 asection **local_sections;
3483{
3484 bfd *dynobj;
3485 bfd_vma *local_got_offsets;
3486 struct elf32_hppa_link_hash_table *hplink;
3487 Elf_Internal_Shdr *symtab_hdr;
3488 Elf_Internal_Rela *rel;
3489 Elf_Internal_Rela *relend;
3490 asection *sreloc;
3491
3492 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3493
30667bf3 3494 hplink = hppa_link_hash_table (info);
74d1c347
AM
3495 dynobj = hplink->root.dynobj;
3496 local_got_offsets = elf_local_got_offsets (input_bfd);
30667bf3
AM
3497 sreloc = NULL;
3498
3499 rel = relocs;
3500 relend = relocs + input_section->reloc_count;
3501 for (; rel < relend; rel++)
3502 {
3503 unsigned int r_type;
3504 reloc_howto_type *howto;
3505 unsigned int r_symndx;
3506 struct elf32_hppa_link_hash_entry *h;
3507 Elf_Internal_Sym *sym;
3508 asection *sym_sec;
3509 bfd_vma relocation;
3510 bfd_reloc_status_type r;
3511 const char *sym_name;
74d1c347 3512 boolean plabel;
30667bf3
AM
3513
3514 r_type = ELF32_R_TYPE (rel->r_info);
3515 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3516 {
3517 bfd_set_error (bfd_error_bad_value);
3518 return false;
3519 }
3520 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3521 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3522 continue;
3523
3524 r_symndx = ELF32_R_SYM (rel->r_info);
3525
3526 if (info->relocateable)
3527 {
3528 /* This is a relocateable link. We don't have to change
3529 anything, unless the reloc is against a section symbol,
3530 in which case we have to adjust according to where the
3531 section symbol winds up in the output section. */
3532 if (r_symndx < symtab_hdr->sh_info)
3533 {
3534 sym = local_syms + r_symndx;
3535 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3536 {
3537 sym_sec = local_sections[r_symndx];
3538 rel->r_addend += sym_sec->output_offset;
3539 }
3540 }
3541 continue;
3542 }
3543
3544 /* This is a final link. */
3545 h = NULL;
3546 sym = NULL;
3547 sym_sec = NULL;
3548 if (r_symndx < symtab_hdr->sh_info)
3549 {
3550 /* This is a local symbol, h defaults to NULL. */
3551 sym = local_syms + r_symndx;
3552 sym_sec = local_sections[r_symndx];
3553 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3554 ? 0 : sym->st_value)
3555 + sym_sec->output_offset
3556 + sym_sec->output_section->vma);
3557 }
3558 else
3559 {
3560 int indx;
3561
3562 /* It's a global; Find its entry in the link hash. */
3563 indx = r_symndx - symtab_hdr->sh_info;
3564 h = ((struct elf32_hppa_link_hash_entry *)
3565 elf_sym_hashes (input_bfd)[indx]);
3566 while (h->elf.root.type == bfd_link_hash_indirect
3567 || h->elf.root.type == bfd_link_hash_warning)
3568 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3569
3570 relocation = 0;
3571 if (h->elf.root.type == bfd_link_hash_defined
3572 || h->elf.root.type == bfd_link_hash_defweak)
3573 {
3574 sym_sec = h->elf.root.u.def.section;
3575 /* If sym_sec->output_section is NULL, then it's a
3576 symbol defined in a shared library. */
3577 if (sym_sec->output_section != NULL)
3578 relocation = (h->elf.root.u.def.value
3579 + sym_sec->output_offset
3580 + sym_sec->output_section->vma);
3581 }
3582 else if (h->elf.root.type == bfd_link_hash_undefweak)
3583 ;
3584 else if (info->shared && !info->no_undefined
3585 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT)
3586 {
3587 if (info->symbolic)
3588 if (!((*info->callbacks->undefined_symbol)
3589 (info, h->elf.root.root.string, input_bfd,
3590 input_section, rel->r_offset, false)))
3591 return false;
3592 }
3593 else
3594 {
3595 if (!((*info->callbacks->undefined_symbol)
3596 (info, h->elf.root.root.string, input_bfd,
3597 input_section, rel->r_offset, true)))
3598 return false;
3599 }
3600 }
3601
3602 /* Do any required modifications to the relocation value, and
25f72752
AM
3603 determine what types of dynamic info we need to output, if
3604 any. */
74d1c347 3605 plabel = 0;
30667bf3
AM
3606 switch (r_type)
3607 {
3608 case R_PARISC_DLTIND14F:
3609 case R_PARISC_DLTIND14R:
3610 case R_PARISC_DLTIND21L:
3611 /* Relocation is to the entry for this symbol in the global
3612 offset table. */
3613 if (h != NULL)
3614 {
3615 bfd_vma off;
3616
3617 off = h->elf.got.offset;
3618 BFD_ASSERT (off != (bfd_vma) -1);
3619
74d1c347 3620 if (! hplink->root.dynamic_sections_created
30667bf3
AM
3621 || (info->shared
3622 && (info->symbolic || h->elf.dynindx == -1)
3623 && (h->elf.elf_link_hash_flags
3624 & ELF_LINK_HASH_DEF_REGULAR) != 0))
3625 {
3626 /* This is actually a static link, or it is a
3627 -Bsymbolic link and the symbol is defined
3628 locally, or the symbol was forced to be local
3629 because of a version file. We must initialize
3630 this entry in the global offset table. Since the
3631 offset must always be a multiple of 4, we use the
3632 least significant bit to record whether we have
3633 initialized it already.
3634
3635 When doing a dynamic link, we create a .rela.got
3636 relocation entry to initialize the value. This
3637 is done in the finish_dynamic_symbol routine. */
3638 if ((off & 1) != 0)
3639 off &= ~1;
3640 else
3641 {
3642 bfd_put_32 (output_bfd, relocation,
3643 hplink->sgot->contents + off);
3644 h->elf.got.offset |= 1;
3645 }
3646 }
3647
3648 relocation = off;
3649 }
3650 else
3651 {
3652 /* Local symbol case. */
3653 bfd_vma off;
3654
3655 BFD_ASSERT (local_got_offsets != NULL
3656 && local_got_offsets[r_symndx] != (bfd_vma) -1);
3657
3658 off = local_got_offsets[r_symndx];
3659
3660 /* The offset must always be a multiple of 4. We use
3661 the least significant bit to record whether we have
3662 already generated the necessary reloc. */
3663 if ((off & 1) != 0)
3664 off &= ~1;
3665 else
3666 {
3667 bfd_put_32 (output_bfd, relocation,
3668 hplink->sgot->contents + off);
3669
3670 if (info->shared)
3671 {
74d1c347 3672 /* Output a dynamic *ABS* relocation for this
30667bf3
AM
3673 GOT entry. In this case it is relative to
3674 the base of the object because the symbol
3675 index is zero. */
3676 Elf_Internal_Rela outrel;
3677 asection *srelgot = hplink->srelgot;
3678
3679 outrel.r_offset = (off
3680 + hplink->sgot->output_offset
3681 + hplink->sgot->output_section->vma);
74d1c347 3682 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
30667bf3
AM
3683 outrel.r_addend = relocation;
3684 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3685 ((Elf32_External_Rela *)
3686 srelgot->contents
3687 + srelgot->reloc_count));
3688 ++srelgot->reloc_count;
3689 }
252b5132 3690
30667bf3
AM
3691 local_got_offsets[r_symndx] |= 1;
3692 }
252b5132 3693
30667bf3
AM
3694 relocation = off;
3695 }
252b5132 3696
30667bf3
AM
3697 /* Add the base of the GOT to the relocation value. */
3698 relocation += (hplink->sgot->output_offset
3699 + hplink->sgot->output_section->vma);
3700 break;
252b5132 3701
c46b7515
AM
3702 case R_PARISC_SEGREL32:
3703 /* If this is the first SEGREL relocation, then initialize
3704 the segment base values. */
3705 if (hplink->text_segment_base == (bfd_vma) -1)
3706 bfd_map_over_sections (output_bfd,
3707 hppa_record_segment_addr,
3708 hplink);
3709 break;
3710
30667bf3
AM
3711 case R_PARISC_PLABEL14R:
3712 case R_PARISC_PLABEL21L:
3713 case R_PARISC_PLABEL32:
74d1c347 3714 if (hplink->root.dynamic_sections_created)
252b5132 3715 {
74d1c347
AM
3716 bfd_vma off;
3717
3718 /* If we have a global symbol with a PLT slot, then
3719 redirect this relocation to it. */
3720 if (h != NULL)
3721 {
3722 off = h->elf.plt.offset;
3723 }
3724 else
3725 {
3726 int indx;
3727
3728 indx = r_symndx + symtab_hdr->sh_info;
3729 off = local_got_offsets[indx];
3730
3731 /* As for the local .got entry case, we use the last
3732 bit to record whether we've already initialised
3733 this local .plt entry. */
3734 if ((off & 1) != 0)
3735 off &= ~1;
3736 else
3737 {
3738 bfd_put_32 (output_bfd,
3739 relocation,
3740 hplink->splt->contents + off);
3741 bfd_put_32 (output_bfd,
3742 elf_gp (hplink->splt->output_section->owner),
3743 hplink->splt->contents + off + 4);
3744
3745 if (info->shared)
3746 {
3747 /* Output a dynamic IPLT relocation for this
3748 PLT entry. */
3749 Elf_Internal_Rela outrel;
3750 asection *srelplt = hplink->srelplt;
3751
3752 outrel.r_offset = (off
3753 + hplink->splt->output_offset
3754 + hplink->splt->output_section->vma);
3755 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3756 outrel.r_addend = relocation;
3757 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3758 ((Elf32_External_Rela *)
3759 srelplt->contents
3760 + srelplt->reloc_count));
3761 ++srelplt->reloc_count;
3762 }
3763
3764 local_got_offsets[indx] |= 1;
3765 }
3766 }
3767
3768 BFD_ASSERT (off < (bfd_vma) -2);
3769
3770 /* PLABELs contain function pointers. Relocation is to
3771 the entry for the function in the .plt. The magic +2
3772 offset signals to $$dyncall that the function pointer
3773 is in the .plt and thus has a gp pointer too.
3774 Exception: Undefined PLABELs should have a value of
3775 zero. */
3776 if (h == NULL
3777 || (h->elf.root.type != bfd_link_hash_undefweak
3778 && h->elf.root.type != bfd_link_hash_undefined))
3779 {
3780 relocation = (off
3781 + hplink->splt->output_offset
3782 + hplink->splt->output_section->vma
3783 + 2);
3784 }
3785 plabel = 1;
30667bf3
AM
3786 }
3787 /* Fall through and possibly emit a dynamic relocation. */
3788
3789 case R_PARISC_DIR17F:
3790 case R_PARISC_DIR17R:
47d89dba 3791 case R_PARISC_DIR14F:
30667bf3
AM
3792 case R_PARISC_DIR14R:
3793 case R_PARISC_DIR21L:
3794 case R_PARISC_DPREL14F:
3795 case R_PARISC_DPREL14R:
3796 case R_PARISC_DPREL21L:
3797 case R_PARISC_DIR32:
3798 /* The reloc types handled here and this conditional
3799 expression must match the code in check_relocs and
3800 hppa_discard_copies. ie. We need exactly the same
3801 condition as in check_relocs, with some extra conditions
3802 (dynindx test in this case) to cater for relocs removed
3803 by hppa_discard_copies. */
3804 if ((input_section->flags & SEC_ALLOC) != 0
3805 && info->shared
3806#if RELATIVE_DYNAMIC_RELOCS
3807 && (is_absolute_reloc (r_type)
3808 || ((!info->symbolic
3809 || (h != NULL
6609fa74 3810 && ((h->elf.elf_link_hash_flags
30667bf3
AM
3811 & ELF_LINK_HASH_DEF_REGULAR) == 0
3812 || h->elf.root.type == bfd_link_hash_defweak)))
3813 && (h == NULL || h->elf.dynindx != -1)))
3814#endif
3815 )
3816 {
3817 Elf_Internal_Rela outrel;
3818 boolean skip;
252b5132 3819
30667bf3
AM
3820 /* When generating a shared object, these relocations
3821 are copied into the output file to be resolved at run
3822 time. */
252b5132 3823
30667bf3 3824 if (sreloc == NULL)
edd21aca 3825 {
30667bf3
AM
3826 const char *name;
3827
3828 name = (bfd_elf_string_from_elf_section
3829 (input_bfd,
3830 elf_elfheader (input_bfd)->e_shstrndx,
3831 elf_section_data (input_section)->rel_hdr.sh_name));
3832 if (name == NULL)
3833 return false;
3834 sreloc = bfd_get_section_by_name (dynobj, name);
3835 BFD_ASSERT (sreloc != NULL);
edd21aca 3836 }
252b5132 3837
30667bf3
AM
3838 outrel.r_offset = rel->r_offset;
3839 outrel.r_addend = rel->r_addend;
3840 skip = false;
3841 if (elf_section_data (input_section)->stab_info != NULL)
edd21aca 3842 {
30667bf3
AM
3843 bfd_vma off;
3844
3845 off = (_bfd_stab_section_offset
74d1c347 3846 (output_bfd, &hplink->root.stab_info,
30667bf3
AM
3847 input_section,
3848 &elf_section_data (input_section)->stab_info,
3849 rel->r_offset));
3850 if (off == (bfd_vma) -1)
3851 skip = true;
3852 outrel.r_offset = off;
edd21aca 3853 }
252b5132 3854
30667bf3
AM
3855 outrel.r_offset += (input_section->output_offset
3856 + input_section->output_section->vma);
3857
3858 if (skip)
252b5132 3859 {
30667bf3 3860 memset (&outrel, 0, sizeof (outrel));
252b5132 3861 }
74d1c347
AM
3862 else if (h != NULL
3863 && h->elf.dynindx != -1
3864 && (plabel
3865 || !info->symbolic
30667bf3
AM
3866 || (h->elf.elf_link_hash_flags
3867 & ELF_LINK_HASH_DEF_REGULAR) == 0))
252b5132 3868 {
30667bf3
AM
3869 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3870 }
3871 else /* It's a local symbol, or one marked to become local. */
3872 {
3873 int indx = 0;
edd21aca 3874
30667bf3
AM
3875 /* Add the absolute offset of the symbol. */
3876 outrel.r_addend += relocation;
edd21aca 3877
74d1c347
AM
3878 /* Global plabels need to be processed by the
3879 dynamic linker so that functions have at most one
3880 fptr. For this reason, we need to differentiate
3881 between global and local plabels, which we do by
3882 providing the function symbol for a global plabel
3883 reloc, and no symbol for local plabels. */
3884 if (! plabel
3885 && sym_sec != NULL
30667bf3
AM
3886 && sym_sec->output_section != NULL
3887 && ! bfd_is_abs_section (sym_sec))
252b5132 3888 {
30667bf3
AM
3889 indx = elf_section_data (sym_sec->output_section)->dynindx;
3890 /* We are turning this relocation into one
3891 against a section symbol, so subtract out the
3892 output section's address but not the offset
3893 of the input section in the output section. */
3894 outrel.r_addend -= sym_sec->output_section->vma;
252b5132 3895 }
252b5132 3896
30667bf3
AM
3897 outrel.r_info = ELF32_R_INFO (indx, r_type);
3898 }
edd21aca 3899
30667bf3
AM
3900 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3901 ((Elf32_External_Rela *)
3902 sreloc->contents
3903 + sreloc->reloc_count));
3904 ++sreloc->reloc_count;
3905 }
3906 break;
edd21aca 3907
30667bf3
AM
3908 default:
3909 break;
3910 }
252b5132 3911
30667bf3 3912 r = final_link_relocate (input_section, contents, rel, relocation,
25f72752 3913 hplink, sym_sec, h);
252b5132 3914
30667bf3
AM
3915 if (r == bfd_reloc_ok)
3916 continue;
252b5132 3917
30667bf3
AM
3918 if (h != NULL)
3919 sym_name = h->elf.root.root.string;
3920 else
3921 {
3922 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3923 symtab_hdr->sh_link,
3924 sym->st_name);
3925 if (sym_name == NULL)
3926 return false;
3927 if (*sym_name == '\0')
3928 sym_name = bfd_section_name (input_bfd, sym_sec);
3929 }
edd21aca 3930
30667bf3 3931 howto = elf_hppa_howto_table + r_type;
252b5132 3932
30667bf3
AM
3933 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3934 {
3935 (*_bfd_error_handler)
3936 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3937 bfd_get_filename (input_bfd),
3938 input_section->name,
3939 (long) rel->r_offset,
3940 howto->name,
3941 sym_name);
3942 }
3943 else
3944 {
3945 if (!((*info->callbacks->reloc_overflow)
3946 (info, sym_name, howto->name, (bfd_vma) 0,
3947 input_bfd, input_section, rel->r_offset)))
3948 return false;
3949 }
3950 }
edd21aca 3951
30667bf3
AM
3952 return true;
3953}
252b5132 3954
c46b7515
AM
3955/* Comparison function for qsort to sort unwind section during a
3956 final link. */
3957
3958static int
3959hppa_unwind_entry_compare (a, b)
3960 const PTR a;
3961 const PTR b;
3962{
3963 const bfd_byte *ap, *bp;
3964 unsigned long av, bv;
3965
3966 ap = (const bfd_byte *) a;
3967 av = (unsigned long) ap[0] << 24;
3968 av |= (unsigned long) ap[1] << 16;
3969 av |= (unsigned long) ap[2] << 8;
3970 av |= (unsigned long) ap[3];
3971
3972 bp = (const bfd_byte *) b;
3973 bv = (unsigned long) bp[0] << 24;
3974 bv |= (unsigned long) bp[1] << 16;
3975 bv |= (unsigned long) bp[2] << 8;
3976 bv |= (unsigned long) bp[3];
3977
3978 return av < bv ? -1 : av > bv ? 1 : 0;
3979}
3980
30667bf3
AM
3981/* Finish up dynamic symbol handling. We set the contents of various
3982 dynamic sections here. */
252b5132 3983
30667bf3
AM
3984static boolean
3985elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
3986 bfd *output_bfd;
3987 struct bfd_link_info *info;
3988 struct elf_link_hash_entry *h;
3989 Elf_Internal_Sym *sym;
3990{
3991 struct elf32_hppa_link_hash_table *hplink;
3992 bfd *dynobj;
edd21aca 3993
30667bf3 3994 hplink = hppa_link_hash_table (info);
74d1c347 3995 dynobj = hplink->root.dynobj;
30667bf3 3996
30667bf3
AM
3997 if (h->plt.offset != (bfd_vma) -1)
3998 {
3999 bfd_vma value;
30667bf3
AM
4000
4001 /* This symbol has an entry in the procedure linkage table. Set
4002 it up.
4003
4004 The format of a plt entry is
74d1c347
AM
4005 <funcaddr>
4006 <__gp>
47d89dba 4007 */
30667bf3
AM
4008 value = 0;
4009 if (h->root.type == bfd_link_hash_defined
4010 || h->root.type == bfd_link_hash_defweak)
4011 {
4012 value = h->root.u.def.value;
4013 if (h->root.u.def.section->output_section != NULL)
4014 value += (h->root.u.def.section->output_offset
4015 + h->root.u.def.section->output_section->vma);
252b5132 4016 }
edd21aca 4017
74d1c347 4018 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
30667bf3 4019 {
47d89dba
AM
4020 Elf_Internal_Rela rel;
4021
30667bf3
AM
4022 /* Create a dynamic IPLT relocation for this entry. */
4023 rel.r_offset = (h->plt.offset
4024 + hplink->splt->output_offset
4025 + hplink->splt->output_section->vma);
74d1c347
AM
4026 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
4027 && h->dynindx != -1)
4028 {
47d89dba
AM
4029 /* To support lazy linking, the function pointer is
4030 initialised to point to a special stub stored at the
4031 end of the .plt. This is only done for plt entries
4032 with a non-*ABS* dynamic relocation. */
4033 value = (hplink->splt->output_offset
4034 + hplink->splt->output_section->vma
4035 + hplink->splt->_raw_size
4036 - sizeof (plt_stub)
4037 + PLT_STUB_ENTRY);
74d1c347
AM
4038 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4039 rel.r_addend = 0;
4040 }
4041 else
4042 {
4043 /* This symbol has been marked to become local, and is
4044 used by a plabel so must be kept in the .plt. */
4045 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4046 rel.r_addend = value;
4047 }
30667bf3
AM
4048
4049 bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
4050 &rel,
4051 ((Elf32_External_Rela *)
4052 hplink->srelplt->contents
4053 + hplink->srelplt->reloc_count));
4054 hplink->srelplt->reloc_count++;
4055 }
4056
47d89dba
AM
4057 bfd_put_32 (hplink->splt->owner,
4058 value,
4059 hplink->splt->contents + h->plt.offset);
4060 bfd_put_32 (hplink->splt->owner,
4061 elf_gp (hplink->splt->output_section->owner),
4062 hplink->splt->contents + h->plt.offset + 4);
4063 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
4064 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
4065 && h->dynindx != -1)
4066 {
4067 memset (hplink->splt->contents + h->plt.offset + 8,
4068 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
4069 }
4070
30667bf3
AM
4071 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4072 {
4073 /* Mark the symbol as undefined, rather than as defined in
4074 the .plt section. Leave the value alone. */
4075 sym->st_shndx = SHN_UNDEF;
4076 }
4077 }
edd21aca 4078
30667bf3
AM
4079 if (h->got.offset != (bfd_vma) -1)
4080 {
4081 Elf_Internal_Rela rel;
4082
4083 /* This symbol has an entry in the global offset table. Set it
4084 up. */
4085
4086 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4087 + hplink->sgot->output_offset
4088 + hplink->sgot->output_section->vma);
4089
4090 /* If this is a static link, or it is a -Bsymbolic link and the
4091 symbol is defined locally or was forced to be local because
4092 of a version file, we just want to emit a RELATIVE reloc.
4093 The entry in the global offset table will already have been
4094 initialized in the relocate_section function. */
74d1c347 4095 if (! hplink->root.dynamic_sections_created
30667bf3
AM
4096 || (info->shared
4097 && (info->symbolic || h->dynindx == -1)
4098 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
4099 {
74d1c347 4100 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
30667bf3
AM
4101 rel.r_addend = (h->root.u.def.value
4102 + h->root.u.def.section->output_offset
4103 + h->root.u.def.section->output_section->vma);
4104 }
4105 else
4106 {
4107 BFD_ASSERT((h->got.offset & 1) == 0);
4108 bfd_put_32 (output_bfd, (bfd_vma) 0,
4109 hplink->sgot->contents + h->got.offset);
4110 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4111 rel.r_addend = 0;
4112 }
edd21aca 4113
30667bf3
AM
4114 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4115 ((Elf32_External_Rela *)
4116 hplink->srelgot->contents
4117 + hplink->srelgot->reloc_count));
4118 ++hplink->srelgot->reloc_count;
4119 }
edd21aca 4120
30667bf3
AM
4121 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4122 {
4123 asection *s;
4124 Elf_Internal_Rela rel;
4125
4126 /* This symbol needs a copy reloc. Set it up. */
4127
4128 BFD_ASSERT (h->dynindx != -1
4129 && (h->root.type == bfd_link_hash_defined
4130 || h->root.type == bfd_link_hash_defweak));
4131
4132 s = hplink->srelbss;
4133
4134 rel.r_offset = (h->root.u.def.value
4135 + h->root.u.def.section->output_offset
4136 + h->root.u.def.section->output_section->vma);
4137 rel.r_addend = 0;
4138 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4139 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4140 ((Elf32_External_Rela *) s->contents
4141 + s->reloc_count));
4142 ++s->reloc_count;
4143 }
4144
4145 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4146 if (h->root.root.string[0] == '_'
4147 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4148 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4149 {
4150 sym->st_shndx = SHN_ABS;
4151 }
4152
4153 return true;
4154}
4155
30667bf3
AM
4156/* Finish up the dynamic sections. */
4157
4158static boolean
4159elf32_hppa_finish_dynamic_sections (output_bfd, info)
4160 bfd *output_bfd;
4161 struct bfd_link_info *info;
4162{
4163 bfd *dynobj;
4164 struct elf32_hppa_link_hash_table *hplink;
4165 asection *sdyn;
4166
30667bf3 4167 hplink = hppa_link_hash_table (info);
74d1c347 4168 dynobj = hplink->root.dynobj;
30667bf3
AM
4169
4170 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4171
74d1c347 4172 if (hplink->root.dynamic_sections_created)
30667bf3
AM
4173 {
4174 Elf32_External_Dyn *dyncon, *dynconend;
4175
4176 BFD_ASSERT (sdyn != NULL);
4177
4178 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4179 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4180 for (; dyncon < dynconend; dyncon++)
edd21aca 4181 {
30667bf3
AM
4182 Elf_Internal_Dyn dyn;
4183 asection *s;
4184
4185 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4186
4187 switch (dyn.d_tag)
4188 {
4189 default:
4190 break;
4191
4192 case DT_PLTGOT:
4193 /* Use PLTGOT to set the GOT register. */
4194 dyn.d_un.d_ptr = elf_gp (output_bfd);
4195 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4196 break;
4197
4198 case DT_JMPREL:
4199 s = hplink->srelplt;
4200 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4201 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4202 break;
4203
4204 case DT_PLTRELSZ:
4205 s = hplink->srelplt;
4206 if (s->_cooked_size != 0)
4207 dyn.d_un.d_val = s->_cooked_size;
4208 else
4209 dyn.d_un.d_val = s->_raw_size;
4210 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4211 break;
4212 }
edd21aca 4213 }
252b5132 4214 }
edd21aca 4215
30667bf3
AM
4216 if (hplink->sgot->_raw_size != 0)
4217 {
74d1c347
AM
4218 /* Fill in the first entry in the global offset table.
4219 We use it to point to our dynamic section, if we have one. */
30667bf3
AM
4220 bfd_put_32 (output_bfd,
4221 (sdyn != NULL
4222 ? sdyn->output_section->vma + sdyn->output_offset
4223 : (bfd_vma) 0),
4224 hplink->sgot->contents);
4225
74d1c347 4226 /* The second entry is reserved for use by the dynamic linker. */
47d89dba 4227 memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
74d1c347 4228
30667bf3 4229 /* Set .got entry size. */
74d1c347
AM
4230 elf_section_data (hplink->sgot->output_section)
4231 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
30667bf3
AM
4232 }
4233
30667bf3 4234 if (hplink->splt->_raw_size != 0)
47d89dba
AM
4235 {
4236 /* Set plt entry size. */
4237 elf_section_data (hplink->splt->output_section)
4238 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4239
4240 if (hplink->need_plt_stub)
4241 {
4242 /* Set up the .plt stub. */
4243 memcpy (hplink->splt->contents
4244 + hplink->splt->_raw_size - sizeof (plt_stub),
4245 plt_stub, sizeof (plt_stub));
4246
4247 if ((hplink->splt->output_offset
4248 + hplink->splt->output_section->vma
4249 + hplink->splt->_raw_size)
4250 != (hplink->sgot->output_offset
4251 + hplink->sgot->output_section->vma))
4252 {
4253 (*_bfd_error_handler)
4254 (_(".got section not immediately after .plt section"));
4255 return false;
4256 }
4257 }
4258 }
30667bf3 4259
252b5132 4260 return true;
30667bf3 4261}
252b5132 4262
d952f17a
AM
4263/* Tweak the OSABI field of the elf header. */
4264
4265static void
4266elf32_hppa_post_process_headers (abfd, link_info)
4267 bfd *abfd;
4268 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4269{
4270 Elf_Internal_Ehdr * i_ehdrp;
4271
4272 i_ehdrp = elf_elfheader (abfd);
4273
4274 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4275 {
4276 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4277 }
4278 else
4279 {
4280 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4281 }
4282}
4283
30667bf3
AM
4284/* Called when writing out an object file to decide the type of a
4285 symbol. */
4286static int
4287elf32_hppa_elf_get_symbol_type (elf_sym, type)
4288 Elf_Internal_Sym *elf_sym;
4289 int type;
4290{
4291 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4292 return STT_PARISC_MILLI;
4293 else
4294 return type;
252b5132
RH
4295}
4296
4297/* Misc BFD support code. */
30667bf3
AM
4298#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4299#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4300#define elf_info_to_howto elf_hppa_info_to_howto
4301#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
252b5132 4302
252b5132 4303/* Stuff for the BFD linker. */
c46b7515 4304#define bfd_elf32_bfd_final_link elf32_hppa_final_link
30667bf3
AM
4305#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4306#define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4307#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4308#define elf_backend_check_relocs elf32_hppa_check_relocs
4309#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4310#define elf_backend_fake_sections elf_hppa_fake_sections
4311#define elf_backend_relocate_section elf32_hppa_relocate_section
74d1c347 4312#define elf_backend_hide_symbol elf32_hppa_hide_symbol
30667bf3
AM
4313#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4314#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4315#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4316#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4317#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4318#define elf_backend_object_p elf32_hppa_object_p
4319#define elf_backend_final_write_processing elf_hppa_final_write_processing
d952f17a 4320#define elf_backend_post_process_headers elf32_hppa_post_process_headers
30667bf3
AM
4321#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4322
4323#define elf_backend_can_gc_sections 1
4324#define elf_backend_plt_alignment 2
4325#define elf_backend_want_got_plt 0
4326#define elf_backend_plt_readonly 0
4327#define elf_backend_want_plt_sym 0
74d1c347 4328#define elf_backend_got_header_size 8
252b5132
RH
4329
4330#define TARGET_BIG_SYM bfd_elf32_hppa_vec
4331#define TARGET_BIG_NAME "elf32-hppa"
4332#define ELF_ARCH bfd_arch_hppa
4333#define ELF_MACHINE_CODE EM_PARISC
4334#define ELF_MAXPAGESIZE 0x1000
4335
4336#include "elf32-target.h"
d952f17a
AM
4337
4338#undef TARGET_BIG_SYM
4339#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4340#undef TARGET_BIG_NAME
4341#define TARGET_BIG_NAME "elf32-hppa-linux"
4342
4343#define INCLUDED_TARGET_FILE 1
4344#include "elf32-target.h"