]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elflink.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
64d03ab5 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
74f0fb50 3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
8fdd7217 10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
252b5132 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
252b5132
RH
24#include "bfdlink.h"
25#include "libbfd.h"
26#define ARCH_SIZE 0
27#include "elf-bfd.h"
4ad4eba5 28#include "safe-ctype.h"
ccf2f652 29#include "libiberty.h"
66eb6687 30#include "objalloc.h"
252b5132 31
d98685ac
AM
32/* Define a symbol in a dynamic linkage section. */
33
34struct elf_link_hash_entry *
35_bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39{
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
ccabcbe5 42 const struct elf_backend_data *bed;
d98685ac
AM
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
ccabcbe5
AM
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
d98685ac
AM
67 return h;
68}
69
b34976b6 70bfd_boolean
268b6b39 71_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
72{
73 flagword flags;
aad5d350 74 asection *s;
252b5132 75 struct elf_link_hash_entry *h;
9c5bfbb7 76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
77 int ptralign;
78
79 /* This function may be called more than once. */
aad5d350
AM
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 82 return TRUE;
252b5132
RH
83
84 switch (bed->s->arch_size)
85 {
bb0deeff
AO
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
b34976b6 96 return FALSE;
252b5132
RH
97 }
98
e5a52504 99 flags = bed->dynamic_sec_flags;
252b5132 100
3496cb2a 101 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 102 if (s == NULL
252b5132 103 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 104 return FALSE;
252b5132
RH
105
106 if (bed->want_got_plt)
107 {
3496cb2a 108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 109 if (s == NULL
252b5132 110 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 111 return FALSE;
252b5132
RH
112 }
113
2517a57f
AM
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
d98685ac 120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
2517a57f 121 elf_hash_table (info)->hgot = h;
d98685ac
AM
122 if (h == NULL)
123 return FALSE;
2517a57f 124 }
252b5132
RH
125
126 /* The first bit of the global offset table is the header. */
3b36f7e6 127 s->size += bed->got_header_size;
252b5132 128
b34976b6 129 return TRUE;
252b5132
RH
130}
131\f
7e9f0867
AM
132/* Create a strtab to hold the dynamic symbol names. */
133static bfd_boolean
134_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135{
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149}
150
45d6a902
AM
151/* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
252b5132 157
b34976b6 158bfd_boolean
268b6b39 159_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 160{
45d6a902
AM
161 flagword flags;
162 register asection *s;
9c5bfbb7 163 const struct elf_backend_data *bed;
252b5132 164
0eddce27 165 if (! is_elf_hash_table (info->hash))
45d6a902
AM
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
7e9f0867
AM
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
45d6a902 173
7e9f0867 174 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
45d6a902
AM
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
36af4a4e 181 if (info->executable)
252b5132 182 {
3496cb2a
L
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
45d6a902
AM
186 return FALSE;
187 }
bb0deeff 188
45d6a902
AM
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
3496cb2a
L
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
45d6a902 193 if (s == NULL
45d6a902
AM
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
3496cb2a
L
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
45d6a902 199 if (s == NULL
45d6a902
AM
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
3496cb2a
L
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
45d6a902 205 if (s == NULL
45d6a902
AM
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
3496cb2a
L
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
45d6a902 211 if (s == NULL
45d6a902
AM
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
3496cb2a
L
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
45d6a902
AM
218 return FALSE;
219
3496cb2a 220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 221 if (s == NULL
45d6a902
AM
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
d98685ac 231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
45d6a902
AM
232 return FALSE;
233
fdc90cb4
JJ
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
45d6a902
AM
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268}
269
270/* Create dynamic sections when linking against a dynamic object. */
271
272bfd_boolean
268b6b39 273_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
274{
275 flagword flags, pltflags;
7325306f 276 struct elf_link_hash_entry *h;
45d6a902 277 asection *s;
9c5bfbb7 278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 279
252b5132
RH
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
e5a52504 282 flags = bed->dynamic_sec_flags;
252b5132
RH
283
284 pltflags = flags;
252b5132 285 if (bed->plt_not_loaded)
6df4d94c
MM
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
5d1634d7 289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
3496cb2a 295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 296 if (s == NULL
252b5132 297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 298 return FALSE;
252b5132 299
d98685ac
AM
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
7325306f
RS
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
252b5132 310
3496cb2a 311 s = bfd_make_section_with_flags (abfd,
d35fd659 312 (bed->rela_plts_and_copies_p
3496cb2a
L
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
252b5132 315 if (s == NULL
45d6a902 316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 317 return FALSE;
252b5132
RH
318
319 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 320 return FALSE;
252b5132 321
3018b441
RH
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
3496cb2a
L
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
b34976b6 334 return FALSE;
252b5132 335
3018b441 336 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
3018b441
RH
347 if (! info->shared)
348 {
3496cb2a 349 s = bfd_make_section_with_flags (abfd,
d35fd659 350 (bed->rela_plts_and_copies_p
3496cb2a
L
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
3018b441 353 if (s == NULL
45d6a902 354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 355 return FALSE;
3018b441 356 }
252b5132
RH
357 }
358
b34976b6 359 return TRUE;
252b5132
RH
360}
361\f
252b5132
RH
362/* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
b34976b6 370bfd_boolean
c152c796
AM
371bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
252b5132
RH
373{
374 if (h->dynindx == -1)
375 {
2b0f7ef9 376 struct elf_strtab_hash *dynstr;
68b6ddd0 377 char *p;
252b5132 378 const char *name;
252b5132
RH
379 bfd_size_type indx;
380
7a13edea
NC
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
9d6eee78
L
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
38048eb9 391 {
f5385ebf 392 h->forced_local = 1;
67687978
PB
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
7a13edea 395 }
0444bdd4 396
7a13edea
NC
397 default:
398 break;
399 }
400
252b5132
RH
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 409 if (dynstr == NULL)
b34976b6 410 return FALSE;
252b5132
RH
411 }
412
413 /* We don't put any version information in the dynamic string
aad5d350 414 table. */
252b5132
RH
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
252b5132
RH
429
430 if (indx == (bfd_size_type) -1)
b34976b6 431 return FALSE;
252b5132
RH
432 h->dynstr_index = indx;
433 }
434
b34976b6 435 return TRUE;
252b5132 436}
45d6a902 437\f
55255dae
L
438/* Mark a symbol dynamic. */
439
440void
441bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
40b36307
L
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
55255dae 444{
40b36307 445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
55255dae 446
40b36307
L
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
55255dae
L
449 return;
450
40b36307
L
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
a0c8462f 455 || (d != NULL
40b36307
L
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
55255dae
L
458 h->dynamic = 1;
459}
460
45d6a902
AM
461/* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464bfd_boolean
fe21a8fc
L
465bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
268b6b39 467 const char *name,
fe21a8fc
L
468 bfd_boolean provide,
469 bfd_boolean hidden)
45d6a902 470{
00cbee0a 471 struct elf_link_hash_entry *h, *hv;
4ea42fb7 472 struct elf_link_hash_table *htab;
00cbee0a 473 const struct elf_backend_data *bed;
45d6a902 474
0eddce27 475 if (!is_elf_hash_table (info->hash))
45d6a902
AM
476 return TRUE;
477
4ea42fb7
AM
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 480 if (h == NULL)
4ea42fb7 481 return provide;
45d6a902 482
00cbee0a 483 switch (h->root.type)
77cfaee6 484 {
00cbee0a
L
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
4ea42fb7 494 h->root.type = bfd_link_hash_new;
77cfaee6
AM
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
00cbee0a
L
497 break;
498 case bfd_link_hash_new:
40b36307 499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
55255dae 500 h->non_elf = 0;
00cbee0a
L
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
a0c8462f 504 the versioned symbol point to this one. */
00cbee0a
L
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
55255dae 520 }
45d6a902
AM
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
f5385ebf
AM
527 && h->def_dynamic
528 && !h->def_regular)
45d6a902
AM
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
f5385ebf
AM
536 && h->def_dynamic
537 && !h->def_regular)
45d6a902
AM
538 h->verinfo.verdef = NULL;
539
f5385ebf 540 h->def_regular = 1;
45d6a902 541
fe21a8fc
L
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
6fa3860b
PB
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
f5385ebf
AM
558 if ((h->def_dynamic
559 || h->ref_dynamic
67687978
PB
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
562 && h->dynindx == -1)
563 {
c152c796 564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
f6e332e6
AM
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
45d6a902 572 {
f6e332e6 573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579}
42751cf3 580
8c58d23b
AM
581/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585int
c152c796
AM
586bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
8c58d23b
AM
589{
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
0eddce27 599 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
268b6b39 608 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 614 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
4fbb74a6 621 && entry->isym.st_shndx < SHN_LORESERVE)
8c58d23b
AM
622 {
623 asection *s;
624
625 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
626 if (s == NULL || bfd_is_abs_section (s->output_section))
627 {
628 /* We can still bfd_release here as nothing has done another
629 bfd_alloc. We can't do this later in this function. */
630 bfd_release (input_bfd, entry);
631 return 2;
632 }
633 }
634
635 name = (bfd_elf_string_from_elf_section
636 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
637 entry->isym.st_name));
638
639 dynstr = elf_hash_table (info)->dynstr;
640 if (dynstr == NULL)
641 {
642 /* Create a strtab to hold the dynamic symbol names. */
643 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
644 if (dynstr == NULL)
645 return 0;
646 }
647
b34976b6 648 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
649 if (dynstr_index == (unsigned long) -1)
650 return 0;
651 entry->isym.st_name = dynstr_index;
652
653 eht = elf_hash_table (info);
654
655 entry->next = eht->dynlocal;
656 eht->dynlocal = entry;
657 entry->input_bfd = input_bfd;
658 entry->input_indx = input_indx;
659 eht->dynsymcount++;
660
661 /* Whatever binding the symbol had before, it's now local. */
662 entry->isym.st_info
663 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
664
665 /* The dynindx will be set at the end of size_dynamic_sections. */
666
667 return 1;
668}
669
30b30c21 670/* Return the dynindex of a local dynamic symbol. */
42751cf3 671
30b30c21 672long
268b6b39
AM
673_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
674 bfd *input_bfd,
675 long input_indx)
30b30c21
RH
676{
677 struct elf_link_local_dynamic_entry *e;
678
679 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
680 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
681 return e->dynindx;
682 return -1;
683}
684
685/* This function is used to renumber the dynamic symbols, if some of
686 them are removed because they are marked as local. This is called
687 via elf_link_hash_traverse. */
688
b34976b6 689static bfd_boolean
268b6b39
AM
690elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
691 void *data)
42751cf3 692{
268b6b39 693 size_t *count = data;
30b30c21 694
e92d460e
AM
695 if (h->root.type == bfd_link_hash_warning)
696 h = (struct elf_link_hash_entry *) h->root.u.i.link;
697
6fa3860b
PB
698 if (h->forced_local)
699 return TRUE;
700
701 if (h->dynindx != -1)
702 h->dynindx = ++(*count);
703
704 return TRUE;
705}
706
707
708/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
709 STB_LOCAL binding. */
710
711static bfd_boolean
712elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
713 void *data)
714{
715 size_t *count = data;
716
717 if (h->root.type == bfd_link_hash_warning)
718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
719
720 if (!h->forced_local)
721 return TRUE;
722
42751cf3 723 if (h->dynindx != -1)
30b30c21
RH
724 h->dynindx = ++(*count);
725
b34976b6 726 return TRUE;
42751cf3 727}
30b30c21 728
aee6f5b4
AO
729/* Return true if the dynamic symbol for a given section should be
730 omitted when creating a shared library. */
731bfd_boolean
732_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
733 struct bfd_link_info *info,
734 asection *p)
735{
74541ad4
AM
736 struct elf_link_hash_table *htab;
737
aee6f5b4
AO
738 switch (elf_section_data (p)->this_hdr.sh_type)
739 {
740 case SHT_PROGBITS:
741 case SHT_NOBITS:
742 /* If sh_type is yet undecided, assume it could be
743 SHT_PROGBITS/SHT_NOBITS. */
744 case SHT_NULL:
74541ad4
AM
745 htab = elf_hash_table (info);
746 if (p == htab->tls_sec)
747 return FALSE;
748
749 if (htab->text_index_section != NULL)
750 return p != htab->text_index_section && p != htab->data_index_section;
751
aee6f5b4
AO
752 if (strcmp (p->name, ".got") == 0
753 || strcmp (p->name, ".got.plt") == 0
754 || strcmp (p->name, ".plt") == 0)
755 {
756 asection *ip;
aee6f5b4 757
74541ad4
AM
758 if (htab->dynobj != NULL
759 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
aee6f5b4
AO
760 && (ip->flags & SEC_LINKER_CREATED)
761 && ip->output_section == p)
762 return TRUE;
763 }
764 return FALSE;
765
766 /* There shouldn't be section relative relocations
767 against any other section. */
768 default:
769 return TRUE;
770 }
771}
772
062e2358 773/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
774 symbol for each output section, which come first. Next come symbols
775 which have been forced to local binding. Then all of the back-end
776 allocated local dynamic syms, followed by the rest of the global
777 symbols. */
30b30c21 778
554220db
AM
779static unsigned long
780_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
781 struct bfd_link_info *info,
782 unsigned long *section_sym_count)
30b30c21
RH
783{
784 unsigned long dynsymcount = 0;
785
67687978 786 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 787 {
aee6f5b4 788 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
789 asection *p;
790 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 791 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
792 && (p->flags & SEC_ALLOC) != 0
793 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
794 elf_section_data (p)->dynindx = ++dynsymcount;
74541ad4
AM
795 else
796 elf_section_data (p)->dynindx = 0;
30b30c21 797 }
554220db 798 *section_sym_count = dynsymcount;
30b30c21 799
6fa3860b
PB
800 elf_link_hash_traverse (elf_hash_table (info),
801 elf_link_renumber_local_hash_table_dynsyms,
802 &dynsymcount);
803
30b30c21
RH
804 if (elf_hash_table (info)->dynlocal)
805 {
806 struct elf_link_local_dynamic_entry *p;
807 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
808 p->dynindx = ++dynsymcount;
809 }
810
811 elf_link_hash_traverse (elf_hash_table (info),
812 elf_link_renumber_hash_table_dynsyms,
813 &dynsymcount);
814
815 /* There is an unused NULL entry at the head of the table which
816 we must account for in our count. Unless there weren't any
817 symbols, which means we'll have no table at all. */
818 if (dynsymcount != 0)
819 ++dynsymcount;
820
ccabcbe5
AM
821 elf_hash_table (info)->dynsymcount = dynsymcount;
822 return dynsymcount;
30b30c21 823}
252b5132 824
45d6a902
AM
825/* This function is called when we want to define a new symbol. It
826 handles the various cases which arise when we find a definition in
827 a dynamic object, or when there is already a definition in a
828 dynamic object. The new symbol is described by NAME, SYM, PSEC,
829 and PVALUE. We set SYM_HASH to the hash table entry. We set
830 OVERRIDE if the old symbol is overriding a new definition. We set
831 TYPE_CHANGE_OK if it is OK for the type to change. We set
832 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
833 change, we mean that we shouldn't warn if the type or size does
af44c138
L
834 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
835 object is overridden by a regular object. */
45d6a902
AM
836
837bfd_boolean
268b6b39
AM
838_bfd_elf_merge_symbol (bfd *abfd,
839 struct bfd_link_info *info,
840 const char *name,
841 Elf_Internal_Sym *sym,
842 asection **psec,
843 bfd_vma *pvalue,
af44c138 844 unsigned int *pold_alignment,
268b6b39
AM
845 struct elf_link_hash_entry **sym_hash,
846 bfd_boolean *skip,
847 bfd_boolean *override,
848 bfd_boolean *type_change_ok,
0f8a2703 849 bfd_boolean *size_change_ok)
252b5132 850{
7479dfd4 851 asection *sec, *oldsec;
45d6a902
AM
852 struct elf_link_hash_entry *h;
853 struct elf_link_hash_entry *flip;
854 int bind;
855 bfd *oldbfd;
856 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
0a36a439 857 bfd_boolean newweak, oldweak, newfunc, oldfunc;
a4d8e49b 858 const struct elf_backend_data *bed;
45d6a902
AM
859
860 *skip = FALSE;
861 *override = FALSE;
862
863 sec = *psec;
864 bind = ELF_ST_BIND (sym->st_info);
865
cd7be95b
KH
866 /* Silently discard TLS symbols from --just-syms. There's no way to
867 combine a static TLS block with a new TLS block for this executable. */
868 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
869 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
870 {
871 *skip = TRUE;
872 return TRUE;
873 }
874
45d6a902
AM
875 if (! bfd_is_und_section (sec))
876 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
877 else
878 h = ((struct elf_link_hash_entry *)
879 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
880 if (h == NULL)
881 return FALSE;
882 *sym_hash = h;
252b5132 883
88ba32a0
L
884 bed = get_elf_backend_data (abfd);
885
45d6a902
AM
886 /* This code is for coping with dynamic objects, and is only useful
887 if we are doing an ELF link. */
88ba32a0 888 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
45d6a902 889 return TRUE;
252b5132 890
45d6a902
AM
891 /* For merging, we only care about real symbols. */
892
893 while (h->root.type == bfd_link_hash_indirect
894 || h->root.type == bfd_link_hash_warning)
895 h = (struct elf_link_hash_entry *) h->root.u.i.link;
896
40b36307
L
897 /* We have to check it for every instance since the first few may be
898 refereences and not all compilers emit symbol type for undefined
899 symbols. */
900 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
901
45d6a902
AM
902 /* If we just created the symbol, mark it as being an ELF symbol.
903 Other than that, there is nothing to do--there is no merge issue
904 with a newly defined symbol--so we just return. */
905
906 if (h->root.type == bfd_link_hash_new)
252b5132 907 {
f5385ebf 908 h->non_elf = 0;
45d6a902
AM
909 return TRUE;
910 }
252b5132 911
7479dfd4
L
912 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
913 existing symbol. */
252b5132 914
45d6a902
AM
915 switch (h->root.type)
916 {
917 default:
918 oldbfd = NULL;
7479dfd4 919 oldsec = NULL;
45d6a902 920 break;
252b5132 921
45d6a902
AM
922 case bfd_link_hash_undefined:
923 case bfd_link_hash_undefweak:
924 oldbfd = h->root.u.undef.abfd;
7479dfd4 925 oldsec = NULL;
45d6a902
AM
926 break;
927
928 case bfd_link_hash_defined:
929 case bfd_link_hash_defweak:
930 oldbfd = h->root.u.def.section->owner;
7479dfd4 931 oldsec = h->root.u.def.section;
45d6a902
AM
932 break;
933
934 case bfd_link_hash_common:
935 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 936 oldsec = h->root.u.c.p->section;
45d6a902
AM
937 break;
938 }
939
940 /* In cases involving weak versioned symbols, we may wind up trying
941 to merge a symbol with itself. Catch that here, to avoid the
942 confusion that results if we try to override a symbol with
943 itself. The additional tests catch cases like
944 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
945 dynamic object, which we do want to handle here. */
946 if (abfd == oldbfd
947 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 948 || !h->def_regular))
45d6a902
AM
949 return TRUE;
950
951 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
952 respectively, is from a dynamic object. */
953
707bba77 954 newdyn = (abfd->flags & DYNAMIC) != 0;
45d6a902 955
707bba77 956 olddyn = FALSE;
45d6a902
AM
957 if (oldbfd != NULL)
958 olddyn = (oldbfd->flags & DYNAMIC) != 0;
707bba77 959 else if (oldsec != NULL)
45d6a902 960 {
707bba77 961 /* This handles the special SHN_MIPS_{TEXT,DATA} section
45d6a902 962 indices used by MIPS ELF. */
707bba77 963 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
45d6a902 964 }
252b5132 965
45d6a902
AM
966 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
967 respectively, appear to be a definition rather than reference. */
968
707bba77 969 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
45d6a902 970
707bba77
AM
971 olddef = (h->root.type != bfd_link_hash_undefined
972 && h->root.type != bfd_link_hash_undefweak
973 && h->root.type != bfd_link_hash_common);
45d6a902 974
0a36a439
L
975 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
976 respectively, appear to be a function. */
977
978 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
979 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
980
981 oldfunc = (h->type != STT_NOTYPE
982 && bed->is_function_type (h->type));
983
580a2b6e
L
984 /* When we try to create a default indirect symbol from the dynamic
985 definition with the default version, we skip it if its type and
986 the type of existing regular definition mismatch. We only do it
987 if the existing regular definition won't be dynamic. */
988 if (pold_alignment == NULL
989 && !info->shared
990 && !info->export_dynamic
991 && !h->ref_dynamic
992 && newdyn
993 && newdef
994 && !olddyn
995 && (olddef || h->root.type == bfd_link_hash_common)
996 && ELF_ST_TYPE (sym->st_info) != h->type
997 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
fcb93ecf 998 && h->type != STT_NOTYPE
0a36a439 999 && !(newfunc && oldfunc))
580a2b6e
L
1000 {
1001 *skip = TRUE;
1002 return TRUE;
1003 }
1004
68f49ba3
L
1005 /* Check TLS symbol. We don't check undefined symbol introduced by
1006 "ld -u". */
7479dfd4 1007 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
68f49ba3
L
1008 && ELF_ST_TYPE (sym->st_info) != h->type
1009 && oldbfd != NULL)
7479dfd4
L
1010 {
1011 bfd *ntbfd, *tbfd;
1012 bfd_boolean ntdef, tdef;
1013 asection *ntsec, *tsec;
1014
1015 if (h->type == STT_TLS)
1016 {
3b36f7e6 1017 ntbfd = abfd;
7479dfd4
L
1018 ntsec = sec;
1019 ntdef = newdef;
1020 tbfd = oldbfd;
1021 tsec = oldsec;
1022 tdef = olddef;
1023 }
1024 else
1025 {
1026 ntbfd = oldbfd;
1027 ntsec = oldsec;
1028 ntdef = olddef;
1029 tbfd = abfd;
1030 tsec = sec;
1031 tdef = newdef;
1032 }
1033
1034 if (tdef && ntdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1037 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1038 else if (!tdef && !ntdef)
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1041 tbfd, ntbfd, h->root.root.string);
1042 else if (tdef)
1043 (*_bfd_error_handler)
1044 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1045 tbfd, tsec, ntbfd, h->root.root.string);
1046 else
1047 (*_bfd_error_handler)
1048 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1049 tbfd, ntbfd, ntsec, h->root.root.string);
1050
1051 bfd_set_error (bfd_error_bad_value);
1052 return FALSE;
1053 }
1054
4cc11e76 1055 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
1056 object or is weak in all dynamic objects. Internal and hidden
1057 visibility will make it unavailable to dynamic objects. */
f5385ebf 1058 if (newdyn && !h->dynamic_def)
45d6a902
AM
1059 {
1060 if (!bfd_is_und_section (sec))
f5385ebf 1061 h->dynamic_def = 1;
45d6a902 1062 else
252b5132 1063 {
45d6a902
AM
1064 /* Check if this symbol is weak in all dynamic objects. If it
1065 is the first time we see it in a dynamic object, we mark
1066 if it is weak. Otherwise, we clear it. */
f5385ebf 1067 if (!h->ref_dynamic)
79349b09 1068 {
45d6a902 1069 if (bind == STB_WEAK)
f5385ebf 1070 h->dynamic_weak = 1;
252b5132 1071 }
45d6a902 1072 else if (bind != STB_WEAK)
f5385ebf 1073 h->dynamic_weak = 0;
252b5132 1074 }
45d6a902 1075 }
252b5132 1076
45d6a902
AM
1077 /* If the old symbol has non-default visibility, we ignore the new
1078 definition from a dynamic object. */
1079 if (newdyn
9c7a29a3 1080 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
1081 && !bfd_is_und_section (sec))
1082 {
1083 *skip = TRUE;
1084 /* Make sure this symbol is dynamic. */
f5385ebf 1085 h->ref_dynamic = 1;
45d6a902
AM
1086 /* A protected symbol has external availability. Make sure it is
1087 recorded as dynamic.
1088
1089 FIXME: Should we check type and size for protected symbol? */
1090 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 1091 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
1092 else
1093 return TRUE;
1094 }
1095 else if (!newdyn
9c7a29a3 1096 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 1097 && h->def_dynamic)
45d6a902
AM
1098 {
1099 /* If the new symbol with non-default visibility comes from a
1100 relocatable file and the old definition comes from a dynamic
1101 object, we remove the old definition. */
1102 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
d2dee3b2
L
1103 {
1104 /* Handle the case where the old dynamic definition is
1105 default versioned. We need to copy the symbol info from
1106 the symbol with default version to the normal one if it
1107 was referenced before. */
1108 if (h->ref_regular)
1109 {
1110 const struct elf_backend_data *bed
1111 = get_elf_backend_data (abfd);
1112 struct elf_link_hash_entry *vh = *sym_hash;
1113 vh->root.type = h->root.type;
1114 h->root.type = bfd_link_hash_indirect;
1115 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1116 /* Protected symbols will override the dynamic definition
1117 with default version. */
1118 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1119 {
1120 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1121 vh->dynamic_def = 1;
1122 vh->ref_dynamic = 1;
1123 }
1124 else
1125 {
1126 h->root.type = vh->root.type;
1127 vh->ref_dynamic = 0;
1128 /* We have to hide it here since it was made dynamic
1129 global with extra bits when the symbol info was
1130 copied from the old dynamic definition. */
1131 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1132 }
1133 h = vh;
1134 }
1135 else
1136 h = *sym_hash;
1137 }
1de1a317 1138
f6e332e6 1139 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1140 && bfd_is_und_section (sec))
1141 {
1142 /* If the new symbol is undefined and the old symbol was
1143 also undefined before, we need to make sure
1144 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1145 up the linker hash table undefs list. Since the old
1de1a317
L
1146 definition came from a dynamic object, it is still on the
1147 undefs list. */
1148 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1149 h->root.u.undef.abfd = abfd;
1150 }
1151 else
1152 {
1153 h->root.type = bfd_link_hash_new;
1154 h->root.u.undef.abfd = NULL;
1155 }
1156
f5385ebf 1157 if (h->def_dynamic)
252b5132 1158 {
f5385ebf
AM
1159 h->def_dynamic = 0;
1160 h->ref_dynamic = 1;
1161 h->dynamic_def = 1;
45d6a902
AM
1162 }
1163 /* FIXME: Should we check type and size for protected symbol? */
1164 h->size = 0;
1165 h->type = 0;
1166 return TRUE;
1167 }
14a793b2 1168
79349b09
AM
1169 /* Differentiate strong and weak symbols. */
1170 newweak = bind == STB_WEAK;
1171 oldweak = (h->root.type == bfd_link_hash_defweak
1172 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1173
15b43f48
AM
1174 /* If a new weak symbol definition comes from a regular file and the
1175 old symbol comes from a dynamic library, we treat the new one as
1176 strong. Similarly, an old weak symbol definition from a regular
1177 file is treated as strong when the new symbol comes from a dynamic
1178 library. Further, an old weak symbol from a dynamic library is
1179 treated as strong if the new symbol is from a dynamic library.
1180 This reflects the way glibc's ld.so works.
1181
1182 Do this before setting *type_change_ok or *size_change_ok so that
1183 we warn properly when dynamic library symbols are overridden. */
1184
1185 if (newdef && !newdyn && olddyn)
0f8a2703 1186 newweak = FALSE;
15b43f48 1187 if (olddef && newdyn)
0f8a2703
AM
1188 oldweak = FALSE;
1189
fcb93ecf 1190 /* Allow changes between different types of funciton symbol. */
0a36a439 1191 if (newfunc && oldfunc)
fcb93ecf
PB
1192 *type_change_ok = TRUE;
1193
79349b09
AM
1194 /* It's OK to change the type if either the existing symbol or the
1195 new symbol is weak. A type change is also OK if the old symbol
1196 is undefined and the new symbol is defined. */
252b5132 1197
79349b09
AM
1198 if (oldweak
1199 || newweak
1200 || (newdef
1201 && h->root.type == bfd_link_hash_undefined))
1202 *type_change_ok = TRUE;
1203
1204 /* It's OK to change the size if either the existing symbol or the
1205 new symbol is weak, or if the old symbol is undefined. */
1206
1207 if (*type_change_ok
1208 || h->root.type == bfd_link_hash_undefined)
1209 *size_change_ok = TRUE;
45d6a902 1210
45d6a902
AM
1211 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1212 symbol, respectively, appears to be a common symbol in a dynamic
1213 object. If a symbol appears in an uninitialized section, and is
1214 not weak, and is not a function, then it may be a common symbol
1215 which was resolved when the dynamic object was created. We want
1216 to treat such symbols specially, because they raise special
1217 considerations when setting the symbol size: if the symbol
1218 appears as a common symbol in a regular object, and the size in
1219 the regular object is larger, we must make sure that we use the
1220 larger size. This problematic case can always be avoided in C,
1221 but it must be handled correctly when using Fortran shared
1222 libraries.
1223
1224 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1225 likewise for OLDDYNCOMMON and OLDDEF.
1226
1227 Note that this test is just a heuristic, and that it is quite
1228 possible to have an uninitialized symbol in a shared object which
1229 is really a definition, rather than a common symbol. This could
1230 lead to some minor confusion when the symbol really is a common
1231 symbol in some regular object. However, I think it will be
1232 harmless. */
1233
1234 if (newdyn
1235 && newdef
79349b09 1236 && !newweak
45d6a902
AM
1237 && (sec->flags & SEC_ALLOC) != 0
1238 && (sec->flags & SEC_LOAD) == 0
1239 && sym->st_size > 0
0a36a439 1240 && !newfunc)
45d6a902
AM
1241 newdyncommon = TRUE;
1242 else
1243 newdyncommon = FALSE;
1244
1245 if (olddyn
1246 && olddef
1247 && h->root.type == bfd_link_hash_defined
f5385ebf 1248 && h->def_dynamic
45d6a902
AM
1249 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1250 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1251 && h->size > 0
0a36a439 1252 && !oldfunc)
45d6a902
AM
1253 olddyncommon = TRUE;
1254 else
1255 olddyncommon = FALSE;
1256
a4d8e49b
L
1257 /* We now know everything about the old and new symbols. We ask the
1258 backend to check if we can merge them. */
a4d8e49b
L
1259 if (bed->merge_symbol
1260 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1261 pold_alignment, skip, override,
1262 type_change_ok, size_change_ok,
1263 &newdyn, &newdef, &newdyncommon, &newweak,
1264 abfd, &sec,
1265 &olddyn, &olddef, &olddyncommon, &oldweak,
1266 oldbfd, &oldsec))
1267 return FALSE;
1268
45d6a902
AM
1269 /* If both the old and the new symbols look like common symbols in a
1270 dynamic object, set the size of the symbol to the larger of the
1271 two. */
1272
1273 if (olddyncommon
1274 && newdyncommon
1275 && sym->st_size != h->size)
1276 {
1277 /* Since we think we have two common symbols, issue a multiple
1278 common warning if desired. Note that we only warn if the
1279 size is different. If the size is the same, we simply let
1280 the old symbol override the new one as normally happens with
1281 symbols defined in dynamic objects. */
1282
1283 if (! ((*info->callbacks->multiple_common)
1284 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1285 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1286 return FALSE;
252b5132 1287
45d6a902
AM
1288 if (sym->st_size > h->size)
1289 h->size = sym->st_size;
252b5132 1290
45d6a902 1291 *size_change_ok = TRUE;
252b5132
RH
1292 }
1293
45d6a902
AM
1294 /* If we are looking at a dynamic object, and we have found a
1295 definition, we need to see if the symbol was already defined by
1296 some other object. If so, we want to use the existing
1297 definition, and we do not want to report a multiple symbol
1298 definition error; we do this by clobbering *PSEC to be
1299 bfd_und_section_ptr.
1300
1301 We treat a common symbol as a definition if the symbol in the
1302 shared library is a function, since common symbols always
1303 represent variables; this can cause confusion in principle, but
1304 any such confusion would seem to indicate an erroneous program or
1305 shared library. We also permit a common symbol in a regular
79349b09 1306 object to override a weak symbol in a shared object. */
45d6a902
AM
1307
1308 if (newdyn
1309 && newdef
77cfaee6 1310 && (olddef
45d6a902 1311 || (h->root.type == bfd_link_hash_common
0a36a439 1312 && (newweak || newfunc))))
45d6a902
AM
1313 {
1314 *override = TRUE;
1315 newdef = FALSE;
1316 newdyncommon = FALSE;
252b5132 1317
45d6a902
AM
1318 *psec = sec = bfd_und_section_ptr;
1319 *size_change_ok = TRUE;
252b5132 1320
45d6a902
AM
1321 /* If we get here when the old symbol is a common symbol, then
1322 we are explicitly letting it override a weak symbol or
1323 function in a dynamic object, and we don't want to warn about
1324 a type change. If the old symbol is a defined symbol, a type
1325 change warning may still be appropriate. */
252b5132 1326
45d6a902
AM
1327 if (h->root.type == bfd_link_hash_common)
1328 *type_change_ok = TRUE;
1329 }
1330
1331 /* Handle the special case of an old common symbol merging with a
1332 new symbol which looks like a common symbol in a shared object.
1333 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1334 common symbol, and let _bfd_generic_link_add_one_symbol do the
1335 right thing. */
45d6a902
AM
1336
1337 if (newdyncommon
1338 && h->root.type == bfd_link_hash_common)
1339 {
1340 *override = TRUE;
1341 newdef = FALSE;
1342 newdyncommon = FALSE;
1343 *pvalue = sym->st_size;
a4d8e49b 1344 *psec = sec = bed->common_section (oldsec);
45d6a902
AM
1345 *size_change_ok = TRUE;
1346 }
1347
c5e2cead 1348 /* Skip weak definitions of symbols that are already defined. */
f41d945b 1349 if (newdef && olddef && newweak)
c5e2cead
L
1350 *skip = TRUE;
1351
45d6a902
AM
1352 /* If the old symbol is from a dynamic object, and the new symbol is
1353 a definition which is not from a dynamic object, then the new
1354 symbol overrides the old symbol. Symbols from regular files
1355 always take precedence over symbols from dynamic objects, even if
1356 they are defined after the dynamic object in the link.
1357
1358 As above, we again permit a common symbol in a regular object to
1359 override a definition in a shared object if the shared object
0f8a2703 1360 symbol is a function or is weak. */
45d6a902
AM
1361
1362 flip = NULL;
77cfaee6 1363 if (!newdyn
45d6a902
AM
1364 && (newdef
1365 || (bfd_is_com_section (sec)
0a36a439 1366 && (oldweak || oldfunc)))
45d6a902
AM
1367 && olddyn
1368 && olddef
f5385ebf 1369 && h->def_dynamic)
45d6a902
AM
1370 {
1371 /* Change the hash table entry to undefined, and let
1372 _bfd_generic_link_add_one_symbol do the right thing with the
1373 new definition. */
1374
1375 h->root.type = bfd_link_hash_undefined;
1376 h->root.u.undef.abfd = h->root.u.def.section->owner;
1377 *size_change_ok = TRUE;
1378
1379 olddef = FALSE;
1380 olddyncommon = FALSE;
1381
1382 /* We again permit a type change when a common symbol may be
1383 overriding a function. */
1384
1385 if (bfd_is_com_section (sec))
0a36a439
L
1386 {
1387 if (oldfunc)
1388 {
1389 /* If a common symbol overrides a function, make sure
1390 that it isn't defined dynamically nor has type
1391 function. */
1392 h->def_dynamic = 0;
1393 h->type = STT_NOTYPE;
1394 }
1395 *type_change_ok = TRUE;
1396 }
45d6a902
AM
1397
1398 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1399 flip = *sym_hash;
1400 else
1401 /* This union may have been set to be non-NULL when this symbol
1402 was seen in a dynamic object. We must force the union to be
1403 NULL, so that it is correct for a regular symbol. */
1404 h->verinfo.vertree = NULL;
1405 }
1406
1407 /* Handle the special case of a new common symbol merging with an
1408 old symbol that looks like it might be a common symbol defined in
1409 a shared object. Note that we have already handled the case in
1410 which a new common symbol should simply override the definition
1411 in the shared library. */
1412
1413 if (! newdyn
1414 && bfd_is_com_section (sec)
1415 && olddyncommon)
1416 {
1417 /* It would be best if we could set the hash table entry to a
1418 common symbol, but we don't know what to use for the section
1419 or the alignment. */
1420 if (! ((*info->callbacks->multiple_common)
1421 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1422 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1423 return FALSE;
1424
4cc11e76 1425 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1426 larger, pretend that the new symbol has its size. */
1427
1428 if (h->size > *pvalue)
1429 *pvalue = h->size;
1430
af44c138
L
1431 /* We need to remember the alignment required by the symbol
1432 in the dynamic object. */
1433 BFD_ASSERT (pold_alignment);
1434 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1435
1436 olddef = FALSE;
1437 olddyncommon = FALSE;
1438
1439 h->root.type = bfd_link_hash_undefined;
1440 h->root.u.undef.abfd = h->root.u.def.section->owner;
1441
1442 *size_change_ok = TRUE;
1443 *type_change_ok = TRUE;
1444
1445 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1446 flip = *sym_hash;
1447 else
1448 h->verinfo.vertree = NULL;
1449 }
1450
1451 if (flip != NULL)
1452 {
1453 /* Handle the case where we had a versioned symbol in a dynamic
1454 library and now find a definition in a normal object. In this
1455 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1456 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 1457 flip->root.type = h->root.type;
00cbee0a 1458 flip->root.u.undef.abfd = h->root.u.undef.abfd;
45d6a902
AM
1459 h->root.type = bfd_link_hash_indirect;
1460 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
fcfa13d2 1461 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
f5385ebf 1462 if (h->def_dynamic)
45d6a902 1463 {
f5385ebf
AM
1464 h->def_dynamic = 0;
1465 flip->ref_dynamic = 1;
45d6a902
AM
1466 }
1467 }
1468
45d6a902
AM
1469 return TRUE;
1470}
1471
1472/* This function is called to create an indirect symbol from the
1473 default for the symbol with the default version if needed. The
1474 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1475 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1476
1477bfd_boolean
268b6b39
AM
1478_bfd_elf_add_default_symbol (bfd *abfd,
1479 struct bfd_link_info *info,
1480 struct elf_link_hash_entry *h,
1481 const char *name,
1482 Elf_Internal_Sym *sym,
1483 asection **psec,
1484 bfd_vma *value,
1485 bfd_boolean *dynsym,
0f8a2703 1486 bfd_boolean override)
45d6a902
AM
1487{
1488 bfd_boolean type_change_ok;
1489 bfd_boolean size_change_ok;
1490 bfd_boolean skip;
1491 char *shortname;
1492 struct elf_link_hash_entry *hi;
1493 struct bfd_link_hash_entry *bh;
9c5bfbb7 1494 const struct elf_backend_data *bed;
45d6a902
AM
1495 bfd_boolean collect;
1496 bfd_boolean dynamic;
1497 char *p;
1498 size_t len, shortlen;
1499 asection *sec;
1500
1501 /* If this symbol has a version, and it is the default version, we
1502 create an indirect symbol from the default name to the fully
1503 decorated name. This will cause external references which do not
1504 specify a version to be bound to this version of the symbol. */
1505 p = strchr (name, ELF_VER_CHR);
1506 if (p == NULL || p[1] != ELF_VER_CHR)
1507 return TRUE;
1508
1509 if (override)
1510 {
4cc11e76 1511 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1512 need to create the indirect symbol from the default name. */
1513 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1514 FALSE, FALSE);
1515 BFD_ASSERT (hi != NULL);
1516 if (hi == h)
1517 return TRUE;
1518 while (hi->root.type == bfd_link_hash_indirect
1519 || hi->root.type == bfd_link_hash_warning)
1520 {
1521 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1522 if (hi == h)
1523 return TRUE;
1524 }
1525 }
1526
1527 bed = get_elf_backend_data (abfd);
1528 collect = bed->collect;
1529 dynamic = (abfd->flags & DYNAMIC) != 0;
1530
1531 shortlen = p - name;
1532 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1533 if (shortname == NULL)
1534 return FALSE;
1535 memcpy (shortname, name, shortlen);
1536 shortname[shortlen] = '\0';
1537
1538 /* We are going to create a new symbol. Merge it with any existing
1539 symbol with this name. For the purposes of the merge, act as
1540 though we were defining the symbol we just defined, although we
1541 actually going to define an indirect symbol. */
1542 type_change_ok = FALSE;
1543 size_change_ok = FALSE;
1544 sec = *psec;
1545 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1546 NULL, &hi, &skip, &override,
1547 &type_change_ok, &size_change_ok))
45d6a902
AM
1548 return FALSE;
1549
1550 if (skip)
1551 goto nondefault;
1552
1553 if (! override)
1554 {
1555 bh = &hi->root;
1556 if (! (_bfd_generic_link_add_one_symbol
1557 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1558 0, name, FALSE, collect, &bh)))
45d6a902
AM
1559 return FALSE;
1560 hi = (struct elf_link_hash_entry *) bh;
1561 }
1562 else
1563 {
1564 /* In this case the symbol named SHORTNAME is overriding the
1565 indirect symbol we want to add. We were planning on making
1566 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1567 is the name without a version. NAME is the fully versioned
1568 name, and it is the default version.
1569
1570 Overriding means that we already saw a definition for the
1571 symbol SHORTNAME in a regular object, and it is overriding
1572 the symbol defined in the dynamic object.
1573
1574 When this happens, we actually want to change NAME, the
1575 symbol we just added, to refer to SHORTNAME. This will cause
1576 references to NAME in the shared object to become references
1577 to SHORTNAME in the regular object. This is what we expect
1578 when we override a function in a shared object: that the
1579 references in the shared object will be mapped to the
1580 definition in the regular object. */
1581
1582 while (hi->root.type == bfd_link_hash_indirect
1583 || hi->root.type == bfd_link_hash_warning)
1584 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1585
1586 h->root.type = bfd_link_hash_indirect;
1587 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1588 if (h->def_dynamic)
45d6a902 1589 {
f5385ebf
AM
1590 h->def_dynamic = 0;
1591 hi->ref_dynamic = 1;
1592 if (hi->ref_regular
1593 || hi->def_regular)
45d6a902 1594 {
c152c796 1595 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1596 return FALSE;
1597 }
1598 }
1599
1600 /* Now set HI to H, so that the following code will set the
1601 other fields correctly. */
1602 hi = h;
1603 }
1604
fab4a87f
L
1605 /* Check if HI is a warning symbol. */
1606 if (hi->root.type == bfd_link_hash_warning)
1607 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1608
45d6a902
AM
1609 /* If there is a duplicate definition somewhere, then HI may not
1610 point to an indirect symbol. We will have reported an error to
1611 the user in that case. */
1612
1613 if (hi->root.type == bfd_link_hash_indirect)
1614 {
1615 struct elf_link_hash_entry *ht;
1616
45d6a902 1617 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
fcfa13d2 1618 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
45d6a902
AM
1619
1620 /* See if the new flags lead us to realize that the symbol must
1621 be dynamic. */
1622 if (! *dynsym)
1623 {
1624 if (! dynamic)
1625 {
1626 if (info->shared
f5385ebf 1627 || hi->ref_dynamic)
45d6a902
AM
1628 *dynsym = TRUE;
1629 }
1630 else
1631 {
f5385ebf 1632 if (hi->ref_regular)
45d6a902
AM
1633 *dynsym = TRUE;
1634 }
1635 }
1636 }
1637
1638 /* We also need to define an indirection from the nondefault version
1639 of the symbol. */
1640
1641nondefault:
1642 len = strlen (name);
1643 shortname = bfd_hash_allocate (&info->hash->table, len);
1644 if (shortname == NULL)
1645 return FALSE;
1646 memcpy (shortname, name, shortlen);
1647 memcpy (shortname + shortlen, p + 1, len - shortlen);
1648
1649 /* Once again, merge with any existing symbol. */
1650 type_change_ok = FALSE;
1651 size_change_ok = FALSE;
1652 sec = *psec;
1653 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1654 NULL, &hi, &skip, &override,
1655 &type_change_ok, &size_change_ok))
45d6a902
AM
1656 return FALSE;
1657
1658 if (skip)
1659 return TRUE;
1660
1661 if (override)
1662 {
1663 /* Here SHORTNAME is a versioned name, so we don't expect to see
1664 the type of override we do in the case above unless it is
4cc11e76 1665 overridden by a versioned definition. */
45d6a902
AM
1666 if (hi->root.type != bfd_link_hash_defined
1667 && hi->root.type != bfd_link_hash_defweak)
1668 (*_bfd_error_handler)
d003868e
AM
1669 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1670 abfd, shortname);
45d6a902
AM
1671 }
1672 else
1673 {
1674 bh = &hi->root;
1675 if (! (_bfd_generic_link_add_one_symbol
1676 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1677 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1678 return FALSE;
1679 hi = (struct elf_link_hash_entry *) bh;
1680
1681 /* If there is a duplicate definition somewhere, then HI may not
1682 point to an indirect symbol. We will have reported an error
1683 to the user in that case. */
1684
1685 if (hi->root.type == bfd_link_hash_indirect)
1686 {
fcfa13d2 1687 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
45d6a902
AM
1688
1689 /* See if the new flags lead us to realize that the symbol
1690 must be dynamic. */
1691 if (! *dynsym)
1692 {
1693 if (! dynamic)
1694 {
1695 if (info->shared
f5385ebf 1696 || hi->ref_dynamic)
45d6a902
AM
1697 *dynsym = TRUE;
1698 }
1699 else
1700 {
f5385ebf 1701 if (hi->ref_regular)
45d6a902
AM
1702 *dynsym = TRUE;
1703 }
1704 }
1705 }
1706 }
1707
1708 return TRUE;
1709}
1710\f
1711/* This routine is used to export all defined symbols into the dynamic
1712 symbol table. It is called via elf_link_hash_traverse. */
1713
1714bfd_boolean
268b6b39 1715_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1716{
268b6b39 1717 struct elf_info_failed *eif = data;
45d6a902 1718
55255dae
L
1719 /* Ignore this if we won't export it. */
1720 if (!eif->info->export_dynamic && !h->dynamic)
1721 return TRUE;
1722
45d6a902
AM
1723 /* Ignore indirect symbols. These are added by the versioning code. */
1724 if (h->root.type == bfd_link_hash_indirect)
1725 return TRUE;
1726
1727 if (h->root.type == bfd_link_hash_warning)
1728 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1729
1730 if (h->dynindx == -1
f5385ebf
AM
1731 && (h->def_regular
1732 || h->ref_regular))
45d6a902
AM
1733 {
1734 struct bfd_elf_version_tree *t;
1735 struct bfd_elf_version_expr *d;
1736
1737 for (t = eif->verdefs; t != NULL; t = t->next)
1738 {
108ba305 1739 if (t->globals.list != NULL)
45d6a902 1740 {
108ba305
JJ
1741 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1742 if (d != NULL)
1743 goto doit;
45d6a902
AM
1744 }
1745
108ba305 1746 if (t->locals.list != NULL)
45d6a902 1747 {
108ba305
JJ
1748 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1749 if (d != NULL)
1750 return TRUE;
45d6a902
AM
1751 }
1752 }
1753
1754 if (!eif->verdefs)
1755 {
1756 doit:
c152c796 1757 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1758 {
1759 eif->failed = TRUE;
1760 return FALSE;
1761 }
1762 }
1763 }
1764
1765 return TRUE;
1766}
1767\f
1768/* Look through the symbols which are defined in other shared
1769 libraries and referenced here. Update the list of version
1770 dependencies. This will be put into the .gnu.version_r section.
1771 This function is called via elf_link_hash_traverse. */
1772
1773bfd_boolean
268b6b39
AM
1774_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1775 void *data)
45d6a902 1776{
268b6b39 1777 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1778 Elf_Internal_Verneed *t;
1779 Elf_Internal_Vernaux *a;
1780 bfd_size_type amt;
1781
1782 if (h->root.type == bfd_link_hash_warning)
1783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1784
1785 /* We only care about symbols defined in shared objects with version
1786 information. */
f5385ebf
AM
1787 if (!h->def_dynamic
1788 || h->def_regular
45d6a902
AM
1789 || h->dynindx == -1
1790 || h->verinfo.verdef == NULL)
1791 return TRUE;
1792
1793 /* See if we already know about this version. */
1794 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1795 {
1796 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1797 continue;
1798
1799 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1800 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1801 return TRUE;
1802
1803 break;
1804 }
1805
1806 /* This is a new version. Add it to tree we are building. */
1807
1808 if (t == NULL)
1809 {
1810 amt = sizeof *t;
268b6b39 1811 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1812 if (t == NULL)
1813 {
1814 rinfo->failed = TRUE;
1815 return FALSE;
1816 }
1817
1818 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1819 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1820 elf_tdata (rinfo->output_bfd)->verref = t;
1821 }
1822
1823 amt = sizeof *a;
268b6b39 1824 a = bfd_zalloc (rinfo->output_bfd, amt);
14b1c01e
AM
1825 if (a == NULL)
1826 {
1827 rinfo->failed = TRUE;
1828 return FALSE;
1829 }
45d6a902
AM
1830
1831 /* Note that we are copying a string pointer here, and testing it
1832 above. If bfd_elf_string_from_elf_section is ever changed to
1833 discard the string data when low in memory, this will have to be
1834 fixed. */
1835 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1836
1837 a->vna_flags = h->verinfo.verdef->vd_flags;
1838 a->vna_nextptr = t->vn_auxptr;
1839
1840 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1841 ++rinfo->vers;
1842
1843 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1844
1845 t->vn_auxptr = a;
1846
1847 return TRUE;
1848}
1849
1850/* Figure out appropriate versions for all the symbols. We may not
1851 have the version number script until we have read all of the input
1852 files, so until that point we don't know which symbols should be
1853 local. This function is called via elf_link_hash_traverse. */
1854
1855bfd_boolean
268b6b39 1856_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1857{
1858 struct elf_assign_sym_version_info *sinfo;
1859 struct bfd_link_info *info;
9c5bfbb7 1860 const struct elf_backend_data *bed;
45d6a902
AM
1861 struct elf_info_failed eif;
1862 char *p;
1863 bfd_size_type amt;
1864
268b6b39 1865 sinfo = data;
45d6a902
AM
1866 info = sinfo->info;
1867
1868 if (h->root.type == bfd_link_hash_warning)
1869 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1870
1871 /* Fix the symbol flags. */
1872 eif.failed = FALSE;
1873 eif.info = info;
1874 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1875 {
1876 if (eif.failed)
1877 sinfo->failed = TRUE;
1878 return FALSE;
1879 }
1880
1881 /* We only need version numbers for symbols defined in regular
1882 objects. */
f5385ebf 1883 if (!h->def_regular)
45d6a902
AM
1884 return TRUE;
1885
1886 bed = get_elf_backend_data (sinfo->output_bfd);
1887 p = strchr (h->root.root.string, ELF_VER_CHR);
1888 if (p != NULL && h->verinfo.vertree == NULL)
1889 {
1890 struct bfd_elf_version_tree *t;
1891 bfd_boolean hidden;
1892
1893 hidden = TRUE;
1894
1895 /* There are two consecutive ELF_VER_CHR characters if this is
1896 not a hidden symbol. */
1897 ++p;
1898 if (*p == ELF_VER_CHR)
1899 {
1900 hidden = FALSE;
1901 ++p;
1902 }
1903
1904 /* If there is no version string, we can just return out. */
1905 if (*p == '\0')
1906 {
1907 if (hidden)
f5385ebf 1908 h->hidden = 1;
45d6a902
AM
1909 return TRUE;
1910 }
1911
1912 /* Look for the version. If we find it, it is no longer weak. */
1913 for (t = sinfo->verdefs; t != NULL; t = t->next)
1914 {
1915 if (strcmp (t->name, p) == 0)
1916 {
1917 size_t len;
1918 char *alc;
1919 struct bfd_elf_version_expr *d;
1920
1921 len = p - h->root.root.string;
268b6b39 1922 alc = bfd_malloc (len);
45d6a902 1923 if (alc == NULL)
14b1c01e
AM
1924 {
1925 sinfo->failed = TRUE;
1926 return FALSE;
1927 }
45d6a902
AM
1928 memcpy (alc, h->root.root.string, len - 1);
1929 alc[len - 1] = '\0';
1930 if (alc[len - 2] == ELF_VER_CHR)
1931 alc[len - 2] = '\0';
1932
1933 h->verinfo.vertree = t;
1934 t->used = TRUE;
1935 d = NULL;
1936
108ba305
JJ
1937 if (t->globals.list != NULL)
1938 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1939
1940 /* See if there is anything to force this symbol to
1941 local scope. */
108ba305 1942 if (d == NULL && t->locals.list != NULL)
45d6a902 1943 {
108ba305
JJ
1944 d = (*t->match) (&t->locals, NULL, alc);
1945 if (d != NULL
1946 && h->dynindx != -1
108ba305
JJ
1947 && ! info->export_dynamic)
1948 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1949 }
1950
1951 free (alc);
1952 break;
1953 }
1954 }
1955
1956 /* If we are building an application, we need to create a
1957 version node for this version. */
36af4a4e 1958 if (t == NULL && info->executable)
45d6a902
AM
1959 {
1960 struct bfd_elf_version_tree **pp;
1961 int version_index;
1962
1963 /* If we aren't going to export this symbol, we don't need
1964 to worry about it. */
1965 if (h->dynindx == -1)
1966 return TRUE;
1967
1968 amt = sizeof *t;
108ba305 1969 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1970 if (t == NULL)
1971 {
1972 sinfo->failed = TRUE;
1973 return FALSE;
1974 }
1975
45d6a902 1976 t->name = p;
45d6a902
AM
1977 t->name_indx = (unsigned int) -1;
1978 t->used = TRUE;
1979
1980 version_index = 1;
1981 /* Don't count anonymous version tag. */
1982 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1983 version_index = 0;
1984 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1985 ++version_index;
1986 t->vernum = version_index;
1987
1988 *pp = t;
1989
1990 h->verinfo.vertree = t;
1991 }
1992 else if (t == NULL)
1993 {
1994 /* We could not find the version for a symbol when
1995 generating a shared archive. Return an error. */
1996 (*_bfd_error_handler)
c55fe096 1997 (_("%B: version node not found for symbol %s"),
d003868e 1998 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1999 bfd_set_error (bfd_error_bad_value);
2000 sinfo->failed = TRUE;
2001 return FALSE;
2002 }
2003
2004 if (hidden)
f5385ebf 2005 h->hidden = 1;
45d6a902
AM
2006 }
2007
2008 /* If we don't have a version for this symbol, see if we can find
2009 something. */
2010 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2011 {
2012 struct bfd_elf_version_tree *t;
2013 struct bfd_elf_version_tree *local_ver;
2014 struct bfd_elf_version_expr *d;
2015
2016 /* See if can find what version this symbol is in. If the
2017 symbol is supposed to be local, then don't actually register
2018 it. */
2019 local_ver = NULL;
2020 for (t = sinfo->verdefs; t != NULL; t = t->next)
2021 {
108ba305 2022 if (t->globals.list != NULL)
45d6a902
AM
2023 {
2024 bfd_boolean matched;
2025
2026 matched = FALSE;
108ba305
JJ
2027 d = NULL;
2028 while ((d = (*t->match) (&t->globals, d,
2029 h->root.root.string)) != NULL)
2030 if (d->symver)
2031 matched = TRUE;
2032 else
2033 {
2034 /* There is a version without definition. Make
2035 the symbol the default definition for this
2036 version. */
2037 h->verinfo.vertree = t;
2038 local_ver = NULL;
2039 d->script = 1;
2040 break;
2041 }
45d6a902
AM
2042 if (d != NULL)
2043 break;
2044 else if (matched)
2045 /* There is no undefined version for this symbol. Hide the
2046 default one. */
2047 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2048 }
2049
108ba305 2050 if (t->locals.list != NULL)
45d6a902 2051 {
108ba305
JJ
2052 d = NULL;
2053 while ((d = (*t->match) (&t->locals, d,
2054 h->root.root.string)) != NULL)
45d6a902 2055 {
108ba305 2056 local_ver = t;
45d6a902 2057 /* If the match is "*", keep looking for a more
108ba305
JJ
2058 explicit, perhaps even global, match.
2059 XXX: Shouldn't this be !d->wildcard instead? */
2060 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2061 break;
45d6a902
AM
2062 }
2063
2064 if (d != NULL)
2065 break;
2066 }
2067 }
2068
2069 if (local_ver != NULL)
2070 {
2071 h->verinfo.vertree = local_ver;
2072 if (h->dynindx != -1
45d6a902
AM
2073 && ! info->export_dynamic)
2074 {
2075 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2076 }
2077 }
2078 }
2079
2080 return TRUE;
2081}
2082\f
45d6a902
AM
2083/* Read and swap the relocs from the section indicated by SHDR. This
2084 may be either a REL or a RELA section. The relocations are
2085 translated into RELA relocations and stored in INTERNAL_RELOCS,
2086 which should have already been allocated to contain enough space.
2087 The EXTERNAL_RELOCS are a buffer where the external form of the
2088 relocations should be stored.
2089
2090 Returns FALSE if something goes wrong. */
2091
2092static bfd_boolean
268b6b39 2093elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 2094 asection *sec,
268b6b39
AM
2095 Elf_Internal_Shdr *shdr,
2096 void *external_relocs,
2097 Elf_Internal_Rela *internal_relocs)
45d6a902 2098{
9c5bfbb7 2099 const struct elf_backend_data *bed;
268b6b39 2100 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
2101 const bfd_byte *erela;
2102 const bfd_byte *erelaend;
2103 Elf_Internal_Rela *irela;
243ef1e0
L
2104 Elf_Internal_Shdr *symtab_hdr;
2105 size_t nsyms;
45d6a902 2106
45d6a902
AM
2107 /* Position ourselves at the start of the section. */
2108 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 return FALSE;
2110
2111 /* Read the relocations. */
2112 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 return FALSE;
2114
243ef1e0
L
2115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2117
45d6a902
AM
2118 bed = get_elf_backend_data (abfd);
2119
2120 /* Convert the external relocations to the internal format. */
2121 if (shdr->sh_entsize == bed->s->sizeof_rel)
2122 swap_in = bed->s->swap_reloc_in;
2123 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2124 swap_in = bed->s->swap_reloca_in;
2125 else
2126 {
2127 bfd_set_error (bfd_error_wrong_format);
2128 return FALSE;
2129 }
2130
2131 erela = external_relocs;
51992aec 2132 erelaend = erela + shdr->sh_size;
45d6a902
AM
2133 irela = internal_relocs;
2134 while (erela < erelaend)
2135 {
243ef1e0
L
2136 bfd_vma r_symndx;
2137
45d6a902 2138 (*swap_in) (abfd, erela, irela);
243ef1e0
L
2139 r_symndx = ELF32_R_SYM (irela->r_info);
2140 if (bed->s->arch_size == 64)
2141 r_symndx >>= 24;
2142 if ((size_t) r_symndx >= nsyms)
2143 {
2144 (*_bfd_error_handler)
d003868e
AM
2145 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2146 " for offset 0x%lx in section `%A'"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
45d6a902
AM
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2154 }
2155
2156 return TRUE;
2157}
2158
2159/* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 REL_HDR2 relocations. */
2168
2169Elf_Internal_Rela *
268b6b39
AM
2170_bfd_elf_link_read_relocs (bfd *abfd,
2171 asection *o,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
45d6a902
AM
2175{
2176 Elf_Internal_Shdr *rel_hdr;
268b6b39 2177 void *alloc1 = NULL;
45d6a902 2178 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2180
2181 if (elf_section_data (o)->relocs != NULL)
2182 return elf_section_data (o)->relocs;
2183
2184 if (o->reloc_count == 0)
2185 return NULL;
2186
2187 rel_hdr = &elf_section_data (o)->rel_hdr;
2188
2189 if (internal_relocs == NULL)
2190 {
2191 bfd_size_type size;
2192
2193 size = o->reloc_count;
2194 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2195 if (keep_memory)
4dd07732 2196 internal_relocs = alloc2 = bfd_alloc (abfd, size);
45d6a902 2197 else
268b6b39 2198 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2199 if (internal_relocs == NULL)
2200 goto error_return;
2201 }
2202
2203 if (external_relocs == NULL)
2204 {
2205 bfd_size_type size = rel_hdr->sh_size;
2206
2207 if (elf_section_data (o)->rel_hdr2)
2208 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2209 alloc1 = bfd_malloc (size);
45d6a902
AM
2210 if (alloc1 == NULL)
2211 goto error_return;
2212 external_relocs = alloc1;
2213 }
2214
243ef1e0 2215 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2216 external_relocs,
2217 internal_relocs))
2218 goto error_return;
51992aec
AM
2219 if (elf_section_data (o)->rel_hdr2
2220 && (!elf_link_read_relocs_from_section
2221 (abfd, o,
2222 elf_section_data (o)->rel_hdr2,
2223 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2224 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2225 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2226 goto error_return;
2227
2228 /* Cache the results for next time, if we can. */
2229 if (keep_memory)
2230 elf_section_data (o)->relocs = internal_relocs;
2231
2232 if (alloc1 != NULL)
2233 free (alloc1);
2234
2235 /* Don't free alloc2, since if it was allocated we are passing it
2236 back (under the name of internal_relocs). */
2237
2238 return internal_relocs;
2239
2240 error_return:
2241 if (alloc1 != NULL)
2242 free (alloc1);
2243 if (alloc2 != NULL)
4dd07732
AM
2244 {
2245 if (keep_memory)
2246 bfd_release (abfd, alloc2);
2247 else
2248 free (alloc2);
2249 }
45d6a902
AM
2250 return NULL;
2251}
2252
2253/* Compute the size of, and allocate space for, REL_HDR which is the
2254 section header for a section containing relocations for O. */
2255
2256bfd_boolean
268b6b39
AM
2257_bfd_elf_link_size_reloc_section (bfd *abfd,
2258 Elf_Internal_Shdr *rel_hdr,
2259 asection *o)
45d6a902
AM
2260{
2261 bfd_size_type reloc_count;
2262 bfd_size_type num_rel_hashes;
2263
2264 /* Figure out how many relocations there will be. */
2265 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2266 reloc_count = elf_section_data (o)->rel_count;
2267 else
2268 reloc_count = elf_section_data (o)->rel_count2;
2269
2270 num_rel_hashes = o->reloc_count;
2271 if (num_rel_hashes < reloc_count)
2272 num_rel_hashes = reloc_count;
2273
2274 /* That allows us to calculate the size of the section. */
2275 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2276
2277 /* The contents field must last into write_object_contents, so we
2278 allocate it with bfd_alloc rather than malloc. Also since we
2279 cannot be sure that the contents will actually be filled in,
2280 we zero the allocated space. */
268b6b39 2281 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2282 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2283 return FALSE;
2284
2285 /* We only allocate one set of hash entries, so we only do it the
2286 first time we are called. */
2287 if (elf_section_data (o)->rel_hashes == NULL
2288 && num_rel_hashes)
2289 {
2290 struct elf_link_hash_entry **p;
2291
268b6b39 2292 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2293 if (p == NULL)
2294 return FALSE;
2295
2296 elf_section_data (o)->rel_hashes = p;
2297 }
2298
2299 return TRUE;
2300}
2301
2302/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2303 originated from the section given by INPUT_REL_HDR) to the
2304 OUTPUT_BFD. */
2305
2306bfd_boolean
268b6b39
AM
2307_bfd_elf_link_output_relocs (bfd *output_bfd,
2308 asection *input_section,
2309 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2310 Elf_Internal_Rela *internal_relocs,
2311 struct elf_link_hash_entry **rel_hash
2312 ATTRIBUTE_UNUSED)
45d6a902
AM
2313{
2314 Elf_Internal_Rela *irela;
2315 Elf_Internal_Rela *irelaend;
2316 bfd_byte *erel;
2317 Elf_Internal_Shdr *output_rel_hdr;
2318 asection *output_section;
2319 unsigned int *rel_countp = NULL;
9c5bfbb7 2320 const struct elf_backend_data *bed;
268b6b39 2321 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2322
2323 output_section = input_section->output_section;
2324 output_rel_hdr = NULL;
2325
2326 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2327 == input_rel_hdr->sh_entsize)
2328 {
2329 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2330 rel_countp = &elf_section_data (output_section)->rel_count;
2331 }
2332 else if (elf_section_data (output_section)->rel_hdr2
2333 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2334 == input_rel_hdr->sh_entsize))
2335 {
2336 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2337 rel_countp = &elf_section_data (output_section)->rel_count2;
2338 }
2339 else
2340 {
2341 (*_bfd_error_handler)
d003868e
AM
2342 (_("%B: relocation size mismatch in %B section %A"),
2343 output_bfd, input_section->owner, input_section);
297d8443 2344 bfd_set_error (bfd_error_wrong_format);
45d6a902
AM
2345 return FALSE;
2346 }
2347
2348 bed = get_elf_backend_data (output_bfd);
2349 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2350 swap_out = bed->s->swap_reloc_out;
2351 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2352 swap_out = bed->s->swap_reloca_out;
2353 else
2354 abort ();
2355
2356 erel = output_rel_hdr->contents;
2357 erel += *rel_countp * input_rel_hdr->sh_entsize;
2358 irela = internal_relocs;
2359 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2360 * bed->s->int_rels_per_ext_rel);
2361 while (irela < irelaend)
2362 {
2363 (*swap_out) (output_bfd, irela, erel);
2364 irela += bed->s->int_rels_per_ext_rel;
2365 erel += input_rel_hdr->sh_entsize;
2366 }
2367
2368 /* Bump the counter, so that we know where to add the next set of
2369 relocations. */
2370 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2371
2372 return TRUE;
2373}
2374\f
508c3946
L
2375/* Make weak undefined symbols in PIE dynamic. */
2376
2377bfd_boolean
2378_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2379 struct elf_link_hash_entry *h)
2380{
2381 if (info->pie
2382 && h->dynindx == -1
2383 && h->root.type == bfd_link_hash_undefweak)
2384 return bfd_elf_link_record_dynamic_symbol (info, h);
2385
2386 return TRUE;
2387}
2388
45d6a902
AM
2389/* Fix up the flags for a symbol. This handles various cases which
2390 can only be fixed after all the input files are seen. This is
2391 currently called by both adjust_dynamic_symbol and
2392 assign_sym_version, which is unnecessary but perhaps more robust in
2393 the face of future changes. */
2394
2395bfd_boolean
268b6b39
AM
2396_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2397 struct elf_info_failed *eif)
45d6a902 2398{
33774f08 2399 const struct elf_backend_data *bed;
508c3946 2400
45d6a902
AM
2401 /* If this symbol was mentioned in a non-ELF file, try to set
2402 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2403 permit a non-ELF file to correctly refer to a symbol defined in
2404 an ELF dynamic object. */
f5385ebf 2405 if (h->non_elf)
45d6a902
AM
2406 {
2407 while (h->root.type == bfd_link_hash_indirect)
2408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2409
2410 if (h->root.type != bfd_link_hash_defined
2411 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2412 {
2413 h->ref_regular = 1;
2414 h->ref_regular_nonweak = 1;
2415 }
45d6a902
AM
2416 else
2417 {
2418 if (h->root.u.def.section->owner != NULL
2419 && (bfd_get_flavour (h->root.u.def.section->owner)
2420 == bfd_target_elf_flavour))
f5385ebf
AM
2421 {
2422 h->ref_regular = 1;
2423 h->ref_regular_nonweak = 1;
2424 }
45d6a902 2425 else
f5385ebf 2426 h->def_regular = 1;
45d6a902
AM
2427 }
2428
2429 if (h->dynindx == -1
f5385ebf
AM
2430 && (h->def_dynamic
2431 || h->ref_dynamic))
45d6a902 2432 {
c152c796 2433 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2434 {
2435 eif->failed = TRUE;
2436 return FALSE;
2437 }
2438 }
2439 }
2440 else
2441 {
f5385ebf 2442 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2443 was first seen in a non-ELF file. Fortunately, if the symbol
2444 was first seen in an ELF file, we're probably OK unless the
2445 symbol was defined in a non-ELF file. Catch that case here.
2446 FIXME: We're still in trouble if the symbol was first seen in
2447 a dynamic object, and then later in a non-ELF regular object. */
2448 if ((h->root.type == bfd_link_hash_defined
2449 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2450 && !h->def_regular
45d6a902
AM
2451 && (h->root.u.def.section->owner != NULL
2452 ? (bfd_get_flavour (h->root.u.def.section->owner)
2453 != bfd_target_elf_flavour)
2454 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2455 && !h->def_dynamic)))
2456 h->def_regular = 1;
45d6a902
AM
2457 }
2458
508c3946 2459 /* Backend specific symbol fixup. */
33774f08
AM
2460 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2461 if (bed->elf_backend_fixup_symbol
2462 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2463 return FALSE;
508c3946 2464
45d6a902
AM
2465 /* If this is a final link, and the symbol was defined as a common
2466 symbol in a regular object file, and there was no definition in
2467 any dynamic object, then the linker will have allocated space for
f5385ebf 2468 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2469 flag will not have been set. */
2470 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2471 && !h->def_regular
2472 && h->ref_regular
2473 && !h->def_dynamic
45d6a902 2474 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2475 h->def_regular = 1;
45d6a902
AM
2476
2477 /* If -Bsymbolic was used (which means to bind references to global
2478 symbols to the definition within the shared object), and this
2479 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2480 need a PLT entry. Likewise, if the symbol has non-default
2481 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2482 will force it local. */
f5385ebf 2483 if (h->needs_plt
45d6a902 2484 && eif->info->shared
0eddce27 2485 && is_elf_hash_table (eif->info->hash)
55255dae 2486 && (SYMBOLIC_BIND (eif->info, h)
c1be741f 2487 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2488 && h->def_regular)
45d6a902 2489 {
45d6a902
AM
2490 bfd_boolean force_local;
2491
45d6a902
AM
2492 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2493 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2494 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2495 }
2496
2497 /* If a weak undefined symbol has non-default visibility, we also
2498 hide it from the dynamic linker. */
9c7a29a3 2499 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902 2500 && h->root.type == bfd_link_hash_undefweak)
33774f08 2501 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
45d6a902
AM
2502
2503 /* If this is a weak defined symbol in a dynamic object, and we know
2504 the real definition in the dynamic object, copy interesting flags
2505 over to the real definition. */
f6e332e6 2506 if (h->u.weakdef != NULL)
45d6a902
AM
2507 {
2508 struct elf_link_hash_entry *weakdef;
2509
f6e332e6 2510 weakdef = h->u.weakdef;
45d6a902
AM
2511 if (h->root.type == bfd_link_hash_indirect)
2512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2513
2514 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2515 || h->root.type == bfd_link_hash_defweak);
f5385ebf 2516 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2517
2518 /* If the real definition is defined by a regular object file,
2519 don't do anything special. See the longer description in
2520 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2521 if (weakdef->def_regular)
f6e332e6 2522 h->u.weakdef = NULL;
45d6a902 2523 else
a26587ba
RS
2524 {
2525 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2526 || weakdef->root.type == bfd_link_hash_defweak);
2527 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2528 }
45d6a902
AM
2529 }
2530
2531 return TRUE;
2532}
2533
2534/* Make the backend pick a good value for a dynamic symbol. This is
2535 called via elf_link_hash_traverse, and also calls itself
2536 recursively. */
2537
2538bfd_boolean
268b6b39 2539_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2540{
268b6b39 2541 struct elf_info_failed *eif = data;
45d6a902 2542 bfd *dynobj;
9c5bfbb7 2543 const struct elf_backend_data *bed;
45d6a902 2544
0eddce27 2545 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2546 return FALSE;
2547
2548 if (h->root.type == bfd_link_hash_warning)
2549 {
a6aa5195
AM
2550 h->got = elf_hash_table (eif->info)->init_got_offset;
2551 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2552
2553 /* When warning symbols are created, they **replace** the "real"
2554 entry in the hash table, thus we never get to see the real
2555 symbol in a hash traversal. So look at it now. */
2556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2557 }
2558
2559 /* Ignore indirect symbols. These are added by the versioning code. */
2560 if (h->root.type == bfd_link_hash_indirect)
2561 return TRUE;
2562
2563 /* Fix the symbol flags. */
2564 if (! _bfd_elf_fix_symbol_flags (h, eif))
2565 return FALSE;
2566
2567 /* If this symbol does not require a PLT entry, and it is not
2568 defined by a dynamic object, or is not referenced by a regular
2569 object, ignore it. We do have to handle a weak defined symbol,
2570 even if no regular object refers to it, if we decided to add it
2571 to the dynamic symbol table. FIXME: Do we normally need to worry
2572 about symbols which are defined by one dynamic object and
2573 referenced by another one? */
f5385ebf
AM
2574 if (!h->needs_plt
2575 && (h->def_regular
2576 || !h->def_dynamic
2577 || (!h->ref_regular
f6e332e6 2578 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2579 {
a6aa5195 2580 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2581 return TRUE;
2582 }
2583
2584 /* If we've already adjusted this symbol, don't do it again. This
2585 can happen via a recursive call. */
f5385ebf 2586 if (h->dynamic_adjusted)
45d6a902
AM
2587 return TRUE;
2588
2589 /* Don't look at this symbol again. Note that we must set this
2590 after checking the above conditions, because we may look at a
2591 symbol once, decide not to do anything, and then get called
2592 recursively later after REF_REGULAR is set below. */
f5385ebf 2593 h->dynamic_adjusted = 1;
45d6a902
AM
2594
2595 /* If this is a weak definition, and we know a real definition, and
2596 the real symbol is not itself defined by a regular object file,
2597 then get a good value for the real definition. We handle the
2598 real symbol first, for the convenience of the backend routine.
2599
2600 Note that there is a confusing case here. If the real definition
2601 is defined by a regular object file, we don't get the real symbol
2602 from the dynamic object, but we do get the weak symbol. If the
2603 processor backend uses a COPY reloc, then if some routine in the
2604 dynamic object changes the real symbol, we will not see that
2605 change in the corresponding weak symbol. This is the way other
2606 ELF linkers work as well, and seems to be a result of the shared
2607 library model.
2608
2609 I will clarify this issue. Most SVR4 shared libraries define the
2610 variable _timezone and define timezone as a weak synonym. The
2611 tzset call changes _timezone. If you write
2612 extern int timezone;
2613 int _timezone = 5;
2614 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2615 you might expect that, since timezone is a synonym for _timezone,
2616 the same number will print both times. However, if the processor
2617 backend uses a COPY reloc, then actually timezone will be copied
2618 into your process image, and, since you define _timezone
2619 yourself, _timezone will not. Thus timezone and _timezone will
2620 wind up at different memory locations. The tzset call will set
2621 _timezone, leaving timezone unchanged. */
2622
f6e332e6 2623 if (h->u.weakdef != NULL)
45d6a902
AM
2624 {
2625 /* If we get to this point, we know there is an implicit
2626 reference by a regular object file via the weak symbol H.
2627 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2628 H->U.WEAKDEF before it finds H? */
2629 h->u.weakdef->ref_regular = 1;
45d6a902 2630
f6e332e6 2631 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2632 return FALSE;
2633 }
2634
2635 /* If a symbol has no type and no size and does not require a PLT
2636 entry, then we are probably about to do the wrong thing here: we
2637 are probably going to create a COPY reloc for an empty object.
2638 This case can arise when a shared object is built with assembly
2639 code, and the assembly code fails to set the symbol type. */
2640 if (h->size == 0
2641 && h->type == STT_NOTYPE
f5385ebf 2642 && !h->needs_plt)
45d6a902
AM
2643 (*_bfd_error_handler)
2644 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2645 h->root.root.string);
2646
2647 dynobj = elf_hash_table (eif->info)->dynobj;
2648 bed = get_elf_backend_data (dynobj);
2649 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2650 {
2651 eif->failed = TRUE;
2652 return FALSE;
2653 }
2654
2655 return TRUE;
2656}
2657
027297b7
L
2658/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2659 DYNBSS. */
2660
2661bfd_boolean
2662_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2663 asection *dynbss)
2664{
91ac5911 2665 unsigned int power_of_two;
027297b7
L
2666 bfd_vma mask;
2667 asection *sec = h->root.u.def.section;
2668
2669 /* The section aligment of definition is the maximum alignment
91ac5911
L
2670 requirement of symbols defined in the section. Since we don't
2671 know the symbol alignment requirement, we start with the
2672 maximum alignment and check low bits of the symbol address
2673 for the minimum alignment. */
2674 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2675 mask = ((bfd_vma) 1 << power_of_two) - 1;
2676 while ((h->root.u.def.value & mask) != 0)
2677 {
2678 mask >>= 1;
2679 --power_of_two;
2680 }
027297b7 2681
91ac5911
L
2682 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2683 dynbss))
027297b7
L
2684 {
2685 /* Adjust the section alignment if needed. */
2686 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
91ac5911 2687 power_of_two))
027297b7
L
2688 return FALSE;
2689 }
2690
91ac5911 2691 /* We make sure that the symbol will be aligned properly. */
027297b7
L
2692 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2693
2694 /* Define the symbol as being at this point in DYNBSS. */
2695 h->root.u.def.section = dynbss;
2696 h->root.u.def.value = dynbss->size;
2697
2698 /* Increment the size of DYNBSS to make room for the symbol. */
2699 dynbss->size += h->size;
2700
2701 return TRUE;
2702}
2703
45d6a902
AM
2704/* Adjust all external symbols pointing into SEC_MERGE sections
2705 to reflect the object merging within the sections. */
2706
2707bfd_boolean
268b6b39 2708_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2709{
2710 asection *sec;
2711
2712 if (h->root.type == bfd_link_hash_warning)
2713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2714
2715 if ((h->root.type == bfd_link_hash_defined
2716 || h->root.type == bfd_link_hash_defweak)
2717 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2718 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2719 {
268b6b39 2720 bfd *output_bfd = data;
45d6a902
AM
2721
2722 h->root.u.def.value =
2723 _bfd_merged_section_offset (output_bfd,
2724 &h->root.u.def.section,
2725 elf_section_data (sec)->sec_info,
753731ee 2726 h->root.u.def.value);
45d6a902
AM
2727 }
2728
2729 return TRUE;
2730}
986a241f
RH
2731
2732/* Returns false if the symbol referred to by H should be considered
2733 to resolve local to the current module, and true if it should be
2734 considered to bind dynamically. */
2735
2736bfd_boolean
268b6b39
AM
2737_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2738 struct bfd_link_info *info,
2739 bfd_boolean ignore_protected)
986a241f
RH
2740{
2741 bfd_boolean binding_stays_local_p;
fcb93ecf
PB
2742 const struct elf_backend_data *bed;
2743 struct elf_link_hash_table *hash_table;
986a241f
RH
2744
2745 if (h == NULL)
2746 return FALSE;
2747
2748 while (h->root.type == bfd_link_hash_indirect
2749 || h->root.type == bfd_link_hash_warning)
2750 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2751
2752 /* If it was forced local, then clearly it's not dynamic. */
2753 if (h->dynindx == -1)
2754 return FALSE;
f5385ebf 2755 if (h->forced_local)
986a241f
RH
2756 return FALSE;
2757
2758 /* Identify the cases where name binding rules say that a
2759 visible symbol resolves locally. */
55255dae 2760 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
986a241f
RH
2761
2762 switch (ELF_ST_VISIBILITY (h->other))
2763 {
2764 case STV_INTERNAL:
2765 case STV_HIDDEN:
2766 return FALSE;
2767
2768 case STV_PROTECTED:
fcb93ecf
PB
2769 hash_table = elf_hash_table (info);
2770 if (!is_elf_hash_table (hash_table))
2771 return FALSE;
2772
2773 bed = get_elf_backend_data (hash_table->dynobj);
2774
986a241f
RH
2775 /* Proper resolution for function pointer equality may require
2776 that these symbols perhaps be resolved dynamically, even though
2777 we should be resolving them to the current module. */
fcb93ecf 2778 if (!ignore_protected || !bed->is_function_type (h->type))
986a241f
RH
2779 binding_stays_local_p = TRUE;
2780 break;
2781
2782 default:
986a241f
RH
2783 break;
2784 }
2785
aa37626c 2786 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2787 if (!h->def_regular)
aa37626c
L
2788 return TRUE;
2789
986a241f
RH
2790 /* Otherwise, the symbol is dynamic if binding rules don't tell
2791 us that it remains local. */
2792 return !binding_stays_local_p;
2793}
f6c52c13
AM
2794
2795/* Return true if the symbol referred to by H should be considered
2796 to resolve local to the current module, and false otherwise. Differs
2797 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2798 undefined symbols and weak symbols. */
2799
2800bfd_boolean
268b6b39
AM
2801_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2802 struct bfd_link_info *info,
2803 bfd_boolean local_protected)
f6c52c13 2804{
fcb93ecf
PB
2805 const struct elf_backend_data *bed;
2806 struct elf_link_hash_table *hash_table;
2807
f6c52c13
AM
2808 /* If it's a local sym, of course we resolve locally. */
2809 if (h == NULL)
2810 return TRUE;
2811
d95edcac
L
2812 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2813 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2814 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2815 return TRUE;
2816
7e2294f9
AO
2817 /* Common symbols that become definitions don't get the DEF_REGULAR
2818 flag set, so test it first, and don't bail out. */
2819 if (ELF_COMMON_DEF_P (h))
2820 /* Do nothing. */;
f6c52c13 2821 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2822 resolve locally. The sym is either undefined or dynamic. */
2823 else if (!h->def_regular)
f6c52c13
AM
2824 return FALSE;
2825
2826 /* Forced local symbols resolve locally. */
f5385ebf 2827 if (h->forced_local)
f6c52c13
AM
2828 return TRUE;
2829
2830 /* As do non-dynamic symbols. */
2831 if (h->dynindx == -1)
2832 return TRUE;
2833
2834 /* At this point, we know the symbol is defined and dynamic. In an
2835 executable it must resolve locally, likewise when building symbolic
2836 shared libraries. */
55255dae 2837 if (info->executable || SYMBOLIC_BIND (info, h))
f6c52c13
AM
2838 return TRUE;
2839
2840 /* Now deal with defined dynamic symbols in shared libraries. Ones
2841 with default visibility might not resolve locally. */
2842 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2843 return FALSE;
2844
fcb93ecf
PB
2845 hash_table = elf_hash_table (info);
2846 if (!is_elf_hash_table (hash_table))
2847 return TRUE;
2848
2849 bed = get_elf_backend_data (hash_table->dynobj);
2850
1c16dfa5 2851 /* STV_PROTECTED non-function symbols are local. */
fcb93ecf 2852 if (!bed->is_function_type (h->type))
1c16dfa5
L
2853 return TRUE;
2854
f6c52c13
AM
2855 /* Function pointer equality tests may require that STV_PROTECTED
2856 symbols be treated as dynamic symbols, even when we know that the
2857 dynamic linker will resolve them locally. */
2858 return local_protected;
2859}
e1918d23
AM
2860
2861/* Caches some TLS segment info, and ensures that the TLS segment vma is
2862 aligned. Returns the first TLS output section. */
2863
2864struct bfd_section *
2865_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2866{
2867 struct bfd_section *sec, *tls;
2868 unsigned int align = 0;
2869
2870 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2871 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2872 break;
2873 tls = sec;
2874
2875 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2876 if (sec->alignment_power > align)
2877 align = sec->alignment_power;
2878
2879 elf_hash_table (info)->tls_sec = tls;
2880
2881 /* Ensure the alignment of the first section is the largest alignment,
2882 so that the tls segment starts aligned. */
2883 if (tls != NULL)
2884 tls->alignment_power = align;
2885
2886 return tls;
2887}
0ad989f9
L
2888
2889/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2890static bfd_boolean
2891is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2892 Elf_Internal_Sym *sym)
2893{
a4d8e49b
L
2894 const struct elf_backend_data *bed;
2895
0ad989f9
L
2896 /* Local symbols do not count, but target specific ones might. */
2897 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2898 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2899 return FALSE;
2900
fcb93ecf 2901 bed = get_elf_backend_data (abfd);
0ad989f9 2902 /* Function symbols do not count. */
fcb93ecf 2903 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
0ad989f9
L
2904 return FALSE;
2905
2906 /* If the section is undefined, then so is the symbol. */
2907 if (sym->st_shndx == SHN_UNDEF)
2908 return FALSE;
2909
2910 /* If the symbol is defined in the common section, then
2911 it is a common definition and so does not count. */
a4d8e49b 2912 if (bed->common_definition (sym))
0ad989f9
L
2913 return FALSE;
2914
2915 /* If the symbol is in a target specific section then we
2916 must rely upon the backend to tell us what it is. */
2917 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2918 /* FIXME - this function is not coded yet:
2919
2920 return _bfd_is_global_symbol_definition (abfd, sym);
2921
2922 Instead for now assume that the definition is not global,
2923 Even if this is wrong, at least the linker will behave
2924 in the same way that it used to do. */
2925 return FALSE;
2926
2927 return TRUE;
2928}
2929
2930/* Search the symbol table of the archive element of the archive ABFD
2931 whose archive map contains a mention of SYMDEF, and determine if
2932 the symbol is defined in this element. */
2933static bfd_boolean
2934elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2935{
2936 Elf_Internal_Shdr * hdr;
2937 bfd_size_type symcount;
2938 bfd_size_type extsymcount;
2939 bfd_size_type extsymoff;
2940 Elf_Internal_Sym *isymbuf;
2941 Elf_Internal_Sym *isym;
2942 Elf_Internal_Sym *isymend;
2943 bfd_boolean result;
2944
2945 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2946 if (abfd == NULL)
2947 return FALSE;
2948
2949 if (! bfd_check_format (abfd, bfd_object))
2950 return FALSE;
2951
2952 /* If we have already included the element containing this symbol in the
2953 link then we do not need to include it again. Just claim that any symbol
2954 it contains is not a definition, so that our caller will not decide to
2955 (re)include this element. */
2956 if (abfd->archive_pass)
2957 return FALSE;
2958
2959 /* Select the appropriate symbol table. */
2960 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2961 hdr = &elf_tdata (abfd)->symtab_hdr;
2962 else
2963 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2964
2965 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2966
2967 /* The sh_info field of the symtab header tells us where the
2968 external symbols start. We don't care about the local symbols. */
2969 if (elf_bad_symtab (abfd))
2970 {
2971 extsymcount = symcount;
2972 extsymoff = 0;
2973 }
2974 else
2975 {
2976 extsymcount = symcount - hdr->sh_info;
2977 extsymoff = hdr->sh_info;
2978 }
2979
2980 if (extsymcount == 0)
2981 return FALSE;
2982
2983 /* Read in the symbol table. */
2984 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2985 NULL, NULL, NULL);
2986 if (isymbuf == NULL)
2987 return FALSE;
2988
2989 /* Scan the symbol table looking for SYMDEF. */
2990 result = FALSE;
2991 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2992 {
2993 const char *name;
2994
2995 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2996 isym->st_name);
2997 if (name == NULL)
2998 break;
2999
3000 if (strcmp (name, symdef->name) == 0)
3001 {
3002 result = is_global_data_symbol_definition (abfd, isym);
3003 break;
3004 }
3005 }
3006
3007 free (isymbuf);
3008
3009 return result;
3010}
3011\f
5a580b3a
AM
3012/* Add an entry to the .dynamic table. */
3013
3014bfd_boolean
3015_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3016 bfd_vma tag,
3017 bfd_vma val)
3018{
3019 struct elf_link_hash_table *hash_table;
3020 const struct elf_backend_data *bed;
3021 asection *s;
3022 bfd_size_type newsize;
3023 bfd_byte *newcontents;
3024 Elf_Internal_Dyn dyn;
3025
3026 hash_table = elf_hash_table (info);
3027 if (! is_elf_hash_table (hash_table))
3028 return FALSE;
3029
3030 bed = get_elf_backend_data (hash_table->dynobj);
3031 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3032 BFD_ASSERT (s != NULL);
3033
eea6121a 3034 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
3035 newcontents = bfd_realloc (s->contents, newsize);
3036 if (newcontents == NULL)
3037 return FALSE;
3038
3039 dyn.d_tag = tag;
3040 dyn.d_un.d_val = val;
eea6121a 3041 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 3042
eea6121a 3043 s->size = newsize;
5a580b3a
AM
3044 s->contents = newcontents;
3045
3046 return TRUE;
3047}
3048
3049/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3050 otherwise just check whether one already exists. Returns -1 on error,
3051 1 if a DT_NEEDED tag already exists, and 0 on success. */
3052
4ad4eba5 3053static int
7e9f0867
AM
3054elf_add_dt_needed_tag (bfd *abfd,
3055 struct bfd_link_info *info,
4ad4eba5
AM
3056 const char *soname,
3057 bfd_boolean do_it)
5a580b3a
AM
3058{
3059 struct elf_link_hash_table *hash_table;
3060 bfd_size_type oldsize;
3061 bfd_size_type strindex;
3062
7e9f0867
AM
3063 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3064 return -1;
3065
5a580b3a
AM
3066 hash_table = elf_hash_table (info);
3067 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3068 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3069 if (strindex == (bfd_size_type) -1)
3070 return -1;
3071
3072 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3073 {
3074 asection *sdyn;
3075 const struct elf_backend_data *bed;
3076 bfd_byte *extdyn;
3077
3078 bed = get_elf_backend_data (hash_table->dynobj);
3079 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
3080 if (sdyn != NULL)
3081 for (extdyn = sdyn->contents;
3082 extdyn < sdyn->contents + sdyn->size;
3083 extdyn += bed->s->sizeof_dyn)
3084 {
3085 Elf_Internal_Dyn dyn;
5a580b3a 3086
7e9f0867
AM
3087 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3088 if (dyn.d_tag == DT_NEEDED
3089 && dyn.d_un.d_val == strindex)
3090 {
3091 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3092 return 1;
3093 }
3094 }
5a580b3a
AM
3095 }
3096
3097 if (do_it)
3098 {
7e9f0867
AM
3099 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3100 return -1;
3101
5a580b3a
AM
3102 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3103 return -1;
3104 }
3105 else
3106 /* We were just checking for existence of the tag. */
3107 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3108
3109 return 0;
3110}
3111
3112/* Sort symbol by value and section. */
4ad4eba5
AM
3113static int
3114elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
3115{
3116 const struct elf_link_hash_entry *h1;
3117 const struct elf_link_hash_entry *h2;
10b7e05b 3118 bfd_signed_vma vdiff;
5a580b3a
AM
3119
3120 h1 = *(const struct elf_link_hash_entry **) arg1;
3121 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
3122 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3123 if (vdiff != 0)
3124 return vdiff > 0 ? 1 : -1;
3125 else
3126 {
3127 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3128 if (sdiff != 0)
3129 return sdiff > 0 ? 1 : -1;
3130 }
5a580b3a
AM
3131 return 0;
3132}
4ad4eba5 3133
5a580b3a
AM
3134/* This function is used to adjust offsets into .dynstr for
3135 dynamic symbols. This is called via elf_link_hash_traverse. */
3136
3137static bfd_boolean
3138elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3139{
3140 struct elf_strtab_hash *dynstr = data;
3141
3142 if (h->root.type == bfd_link_hash_warning)
3143 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3144
3145 if (h->dynindx != -1)
3146 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3147 return TRUE;
3148}
3149
3150/* Assign string offsets in .dynstr, update all structures referencing
3151 them. */
3152
4ad4eba5
AM
3153static bfd_boolean
3154elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
3155{
3156 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3157 struct elf_link_local_dynamic_entry *entry;
3158 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3159 bfd *dynobj = hash_table->dynobj;
3160 asection *sdyn;
3161 bfd_size_type size;
3162 const struct elf_backend_data *bed;
3163 bfd_byte *extdyn;
3164
3165 _bfd_elf_strtab_finalize (dynstr);
3166 size = _bfd_elf_strtab_size (dynstr);
3167
3168 bed = get_elf_backend_data (dynobj);
3169 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3170 BFD_ASSERT (sdyn != NULL);
3171
3172 /* Update all .dynamic entries referencing .dynstr strings. */
3173 for (extdyn = sdyn->contents;
eea6121a 3174 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3175 extdyn += bed->s->sizeof_dyn)
3176 {
3177 Elf_Internal_Dyn dyn;
3178
3179 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3180 switch (dyn.d_tag)
3181 {
3182 case DT_STRSZ:
3183 dyn.d_un.d_val = size;
3184 break;
3185 case DT_NEEDED:
3186 case DT_SONAME:
3187 case DT_RPATH:
3188 case DT_RUNPATH:
3189 case DT_FILTER:
3190 case DT_AUXILIARY:
3191 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3192 break;
3193 default:
3194 continue;
3195 }
3196 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3197 }
3198
3199 /* Now update local dynamic symbols. */
3200 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3201 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3202 entry->isym.st_name);
3203
3204 /* And the rest of dynamic symbols. */
3205 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3206
3207 /* Adjust version definitions. */
3208 if (elf_tdata (output_bfd)->cverdefs)
3209 {
3210 asection *s;
3211 bfd_byte *p;
3212 bfd_size_type i;
3213 Elf_Internal_Verdef def;
3214 Elf_Internal_Verdaux defaux;
3215
3216 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3217 p = s->contents;
3218 do
3219 {
3220 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3221 &def);
3222 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3223 if (def.vd_aux != sizeof (Elf_External_Verdef))
3224 continue;
5a580b3a
AM
3225 for (i = 0; i < def.vd_cnt; ++i)
3226 {
3227 _bfd_elf_swap_verdaux_in (output_bfd,
3228 (Elf_External_Verdaux *) p, &defaux);
3229 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3230 defaux.vda_name);
3231 _bfd_elf_swap_verdaux_out (output_bfd,
3232 &defaux, (Elf_External_Verdaux *) p);
3233 p += sizeof (Elf_External_Verdaux);
3234 }
3235 }
3236 while (def.vd_next);
3237 }
3238
3239 /* Adjust version references. */
3240 if (elf_tdata (output_bfd)->verref)
3241 {
3242 asection *s;
3243 bfd_byte *p;
3244 bfd_size_type i;
3245 Elf_Internal_Verneed need;
3246 Elf_Internal_Vernaux needaux;
3247
3248 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3249 p = s->contents;
3250 do
3251 {
3252 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3253 &need);
3254 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3255 _bfd_elf_swap_verneed_out (output_bfd, &need,
3256 (Elf_External_Verneed *) p);
3257 p += sizeof (Elf_External_Verneed);
3258 for (i = 0; i < need.vn_cnt; ++i)
3259 {
3260 _bfd_elf_swap_vernaux_in (output_bfd,
3261 (Elf_External_Vernaux *) p, &needaux);
3262 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3263 needaux.vna_name);
3264 _bfd_elf_swap_vernaux_out (output_bfd,
3265 &needaux,
3266 (Elf_External_Vernaux *) p);
3267 p += sizeof (Elf_External_Vernaux);
3268 }
3269 }
3270 while (need.vn_next);
3271 }
3272
3273 return TRUE;
3274}
3275\f
13285a1b
AM
3276/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3277 The default is to only match when the INPUT and OUTPUT are exactly
3278 the same target. */
3279
3280bfd_boolean
3281_bfd_elf_default_relocs_compatible (const bfd_target *input,
3282 const bfd_target *output)
3283{
3284 return input == output;
3285}
3286
3287/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3288 This version is used when different targets for the same architecture
3289 are virtually identical. */
3290
3291bfd_boolean
3292_bfd_elf_relocs_compatible (const bfd_target *input,
3293 const bfd_target *output)
3294{
3295 const struct elf_backend_data *obed, *ibed;
3296
3297 if (input == output)
3298 return TRUE;
3299
3300 ibed = xvec_get_elf_backend_data (input);
3301 obed = xvec_get_elf_backend_data (output);
3302
3303 if (ibed->arch != obed->arch)
3304 return FALSE;
3305
3306 /* If both backends are using this function, deem them compatible. */
3307 return ibed->relocs_compatible == obed->relocs_compatible;
3308}
3309
4ad4eba5
AM
3310/* Add symbols from an ELF object file to the linker hash table. */
3311
3312static bfd_boolean
3313elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3314{
4ad4eba5
AM
3315 Elf_Internal_Shdr *hdr;
3316 bfd_size_type symcount;
3317 bfd_size_type extsymcount;
3318 bfd_size_type extsymoff;
3319 struct elf_link_hash_entry **sym_hash;
3320 bfd_boolean dynamic;
3321 Elf_External_Versym *extversym = NULL;
3322 Elf_External_Versym *ever;
3323 struct elf_link_hash_entry *weaks;
3324 struct elf_link_hash_entry **nondeflt_vers = NULL;
3325 bfd_size_type nondeflt_vers_cnt = 0;
3326 Elf_Internal_Sym *isymbuf = NULL;
3327 Elf_Internal_Sym *isym;
3328 Elf_Internal_Sym *isymend;
3329 const struct elf_backend_data *bed;
3330 bfd_boolean add_needed;
66eb6687 3331 struct elf_link_hash_table *htab;
4ad4eba5 3332 bfd_size_type amt;
66eb6687 3333 void *alloc_mark = NULL;
4f87808c
AM
3334 struct bfd_hash_entry **old_table = NULL;
3335 unsigned int old_size = 0;
3336 unsigned int old_count = 0;
66eb6687
AM
3337 void *old_tab = NULL;
3338 void *old_hash;
3339 void *old_ent;
3340 struct bfd_link_hash_entry *old_undefs = NULL;
3341 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3342 long old_dynsymcount = 0;
3343 size_t tabsize = 0;
3344 size_t hashsize = 0;
4ad4eba5 3345
66eb6687 3346 htab = elf_hash_table (info);
4ad4eba5 3347 bed = get_elf_backend_data (abfd);
4ad4eba5
AM
3348
3349 if ((abfd->flags & DYNAMIC) == 0)
3350 dynamic = FALSE;
3351 else
3352 {
3353 dynamic = TRUE;
3354
3355 /* You can't use -r against a dynamic object. Also, there's no
3356 hope of using a dynamic object which does not exactly match
3357 the format of the output file. */
3358 if (info->relocatable
66eb6687 3359 || !is_elf_hash_table (htab)
f13a99db 3360 || info->output_bfd->xvec != abfd->xvec)
4ad4eba5 3361 {
9a0789ec
NC
3362 if (info->relocatable)
3363 bfd_set_error (bfd_error_invalid_operation);
3364 else
3365 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3366 goto error_return;
3367 }
3368 }
3369
3370 /* As a GNU extension, any input sections which are named
3371 .gnu.warning.SYMBOL are treated as warning symbols for the given
3372 symbol. This differs from .gnu.warning sections, which generate
3373 warnings when they are included in an output file. */
3374 if (info->executable)
3375 {
3376 asection *s;
3377
3378 for (s = abfd->sections; s != NULL; s = s->next)
3379 {
3380 const char *name;
3381
3382 name = bfd_get_section_name (abfd, s);
0112cd26 3383 if (CONST_STRNEQ (name, ".gnu.warning."))
4ad4eba5
AM
3384 {
3385 char *msg;
3386 bfd_size_type sz;
4ad4eba5
AM
3387
3388 name += sizeof ".gnu.warning." - 1;
3389
3390 /* If this is a shared object, then look up the symbol
3391 in the hash table. If it is there, and it is already
3392 been defined, then we will not be using the entry
3393 from this shared object, so we don't need to warn.
3394 FIXME: If we see the definition in a regular object
3395 later on, we will warn, but we shouldn't. The only
3396 fix is to keep track of what warnings we are supposed
3397 to emit, and then handle them all at the end of the
3398 link. */
3399 if (dynamic)
3400 {
3401 struct elf_link_hash_entry *h;
3402
66eb6687 3403 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4ad4eba5
AM
3404
3405 /* FIXME: What about bfd_link_hash_common? */
3406 if (h != NULL
3407 && (h->root.type == bfd_link_hash_defined
3408 || h->root.type == bfd_link_hash_defweak))
3409 {
3410 /* We don't want to issue this warning. Clobber
3411 the section size so that the warning does not
3412 get copied into the output file. */
eea6121a 3413 s->size = 0;
4ad4eba5
AM
3414 continue;
3415 }
3416 }
3417
eea6121a 3418 sz = s->size;
370a0e1b 3419 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3420 if (msg == NULL)
3421 goto error_return;
3422
370a0e1b 3423 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3424 goto error_return;
3425
370a0e1b 3426 msg[sz] = '\0';
4ad4eba5
AM
3427
3428 if (! (_bfd_generic_link_add_one_symbol
3429 (info, abfd, name, BSF_WARNING, s, 0, msg,
66eb6687 3430 FALSE, bed->collect, NULL)))
4ad4eba5
AM
3431 goto error_return;
3432
3433 if (! info->relocatable)
3434 {
3435 /* Clobber the section size so that the warning does
3436 not get copied into the output file. */
eea6121a 3437 s->size = 0;
11d2f718
AM
3438
3439 /* Also set SEC_EXCLUDE, so that symbols defined in
3440 the warning section don't get copied to the output. */
3441 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3442 }
3443 }
3444 }
3445 }
3446
3447 add_needed = TRUE;
3448 if (! dynamic)
3449 {
3450 /* If we are creating a shared library, create all the dynamic
3451 sections immediately. We need to attach them to something,
3452 so we attach them to this BFD, provided it is the right
3453 format. FIXME: If there are no input BFD's of the same
3454 format as the output, we can't make a shared library. */
3455 if (info->shared
66eb6687 3456 && is_elf_hash_table (htab)
f13a99db 3457 && info->output_bfd->xvec == abfd->xvec
66eb6687 3458 && !htab->dynamic_sections_created)
4ad4eba5
AM
3459 {
3460 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3461 goto error_return;
3462 }
3463 }
66eb6687 3464 else if (!is_elf_hash_table (htab))
4ad4eba5
AM
3465 goto error_return;
3466 else
3467 {
3468 asection *s;
3469 const char *soname = NULL;
3470 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3471 int ret;
3472
3473 /* ld --just-symbols and dynamic objects don't mix very well.
92fd189d 3474 ld shouldn't allow it. */
4ad4eba5
AM
3475 if ((s = abfd->sections) != NULL
3476 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
92fd189d 3477 abort ();
4ad4eba5
AM
3478
3479 /* If this dynamic lib was specified on the command line with
3480 --as-needed in effect, then we don't want to add a DT_NEEDED
3481 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3482 in by another lib's DT_NEEDED. When --no-add-needed is used
3483 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3484 any dynamic library in DT_NEEDED tags in the dynamic lib at
3485 all. */
3486 add_needed = (elf_dyn_lib_class (abfd)
3487 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3488 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3489
3490 s = bfd_get_section_by_name (abfd, ".dynamic");
3491 if (s != NULL)
3492 {
3493 bfd_byte *dynbuf;
3494 bfd_byte *extdyn;
cb33740c 3495 unsigned int elfsec;
4ad4eba5
AM
3496 unsigned long shlink;
3497
eea6121a 3498 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3499 goto error_free_dyn;
3500
3501 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 3502 if (elfsec == SHN_BAD)
4ad4eba5
AM
3503 goto error_free_dyn;
3504 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3505
3506 for (extdyn = dynbuf;
eea6121a 3507 extdyn < dynbuf + s->size;
4ad4eba5
AM
3508 extdyn += bed->s->sizeof_dyn)
3509 {
3510 Elf_Internal_Dyn dyn;
3511
3512 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3513 if (dyn.d_tag == DT_SONAME)
3514 {
3515 unsigned int tagv = dyn.d_un.d_val;
3516 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3517 if (soname == NULL)
3518 goto error_free_dyn;
3519 }
3520 if (dyn.d_tag == DT_NEEDED)
3521 {
3522 struct bfd_link_needed_list *n, **pn;
3523 char *fnm, *anm;
3524 unsigned int tagv = dyn.d_un.d_val;
3525
3526 amt = sizeof (struct bfd_link_needed_list);
3527 n = bfd_alloc (abfd, amt);
3528 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3529 if (n == NULL || fnm == NULL)
3530 goto error_free_dyn;
3531 amt = strlen (fnm) + 1;
3532 anm = bfd_alloc (abfd, amt);
3533 if (anm == NULL)
3534 goto error_free_dyn;
3535 memcpy (anm, fnm, amt);
3536 n->name = anm;
3537 n->by = abfd;
3538 n->next = NULL;
66eb6687 3539 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3540 ;
3541 *pn = n;
3542 }
3543 if (dyn.d_tag == DT_RUNPATH)
3544 {
3545 struct bfd_link_needed_list *n, **pn;
3546 char *fnm, *anm;
3547 unsigned int tagv = dyn.d_un.d_val;
3548
3549 amt = sizeof (struct bfd_link_needed_list);
3550 n = bfd_alloc (abfd, amt);
3551 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3552 if (n == NULL || fnm == NULL)
3553 goto error_free_dyn;
3554 amt = strlen (fnm) + 1;
3555 anm = bfd_alloc (abfd, amt);
3556 if (anm == NULL)
3557 goto error_free_dyn;
3558 memcpy (anm, fnm, amt);
3559 n->name = anm;
3560 n->by = abfd;
3561 n->next = NULL;
3562 for (pn = & runpath;
3563 *pn != NULL;
3564 pn = &(*pn)->next)
3565 ;
3566 *pn = n;
3567 }
3568 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3569 if (!runpath && dyn.d_tag == DT_RPATH)
3570 {
3571 struct bfd_link_needed_list *n, **pn;
3572 char *fnm, *anm;
3573 unsigned int tagv = dyn.d_un.d_val;
3574
3575 amt = sizeof (struct bfd_link_needed_list);
3576 n = bfd_alloc (abfd, amt);
3577 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3578 if (n == NULL || fnm == NULL)
3579 goto error_free_dyn;
3580 amt = strlen (fnm) + 1;
3581 anm = bfd_alloc (abfd, amt);
3582 if (anm == NULL)
3583 {
3584 error_free_dyn:
3585 free (dynbuf);
3586 goto error_return;
3587 }
3588 memcpy (anm, fnm, amt);
3589 n->name = anm;
3590 n->by = abfd;
3591 n->next = NULL;
3592 for (pn = & rpath;
3593 *pn != NULL;
3594 pn = &(*pn)->next)
3595 ;
3596 *pn = n;
3597 }
3598 }
3599
3600 free (dynbuf);
3601 }
3602
3603 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3604 frees all more recently bfd_alloc'd blocks as well. */
3605 if (runpath)
3606 rpath = runpath;
3607
3608 if (rpath)
3609 {
3610 struct bfd_link_needed_list **pn;
66eb6687 3611 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4ad4eba5
AM
3612 ;
3613 *pn = rpath;
3614 }
3615
3616 /* We do not want to include any of the sections in a dynamic
3617 object in the output file. We hack by simply clobbering the
3618 list of sections in the BFD. This could be handled more
3619 cleanly by, say, a new section flag; the existing
3620 SEC_NEVER_LOAD flag is not the one we want, because that one
3621 still implies that the section takes up space in the output
3622 file. */
3623 bfd_section_list_clear (abfd);
3624
4ad4eba5
AM
3625 /* Find the name to use in a DT_NEEDED entry that refers to this
3626 object. If the object has a DT_SONAME entry, we use it.
3627 Otherwise, if the generic linker stuck something in
3628 elf_dt_name, we use that. Otherwise, we just use the file
3629 name. */
3630 if (soname == NULL || *soname == '\0')
3631 {
3632 soname = elf_dt_name (abfd);
3633 if (soname == NULL || *soname == '\0')
3634 soname = bfd_get_filename (abfd);
3635 }
3636
3637 /* Save the SONAME because sometimes the linker emulation code
3638 will need to know it. */
3639 elf_dt_name (abfd) = soname;
3640
7e9f0867 3641 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3642 if (ret < 0)
3643 goto error_return;
3644
3645 /* If we have already included this dynamic object in the
3646 link, just ignore it. There is no reason to include a
3647 particular dynamic object more than once. */
3648 if (ret > 0)
3649 return TRUE;
3650 }
3651
3652 /* If this is a dynamic object, we always link against the .dynsym
3653 symbol table, not the .symtab symbol table. The dynamic linker
3654 will only see the .dynsym symbol table, so there is no reason to
3655 look at .symtab for a dynamic object. */
3656
3657 if (! dynamic || elf_dynsymtab (abfd) == 0)
3658 hdr = &elf_tdata (abfd)->symtab_hdr;
3659 else
3660 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3661
3662 symcount = hdr->sh_size / bed->s->sizeof_sym;
3663
3664 /* The sh_info field of the symtab header tells us where the
3665 external symbols start. We don't care about the local symbols at
3666 this point. */
3667 if (elf_bad_symtab (abfd))
3668 {
3669 extsymcount = symcount;
3670 extsymoff = 0;
3671 }
3672 else
3673 {
3674 extsymcount = symcount - hdr->sh_info;
3675 extsymoff = hdr->sh_info;
3676 }
3677
3678 sym_hash = NULL;
3679 if (extsymcount != 0)
3680 {
3681 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3682 NULL, NULL, NULL);
3683 if (isymbuf == NULL)
3684 goto error_return;
3685
3686 /* We store a pointer to the hash table entry for each external
3687 symbol. */
3688 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3689 sym_hash = bfd_alloc (abfd, amt);
3690 if (sym_hash == NULL)
3691 goto error_free_sym;
3692 elf_sym_hashes (abfd) = sym_hash;
3693 }
3694
3695 if (dynamic)
3696 {
3697 /* Read in any version definitions. */
fc0e6df6
PB
3698 if (!_bfd_elf_slurp_version_tables (abfd,
3699 info->default_imported_symver))
4ad4eba5
AM
3700 goto error_free_sym;
3701
3702 /* Read in the symbol versions, but don't bother to convert them
3703 to internal format. */
3704 if (elf_dynversym (abfd) != 0)
3705 {
3706 Elf_Internal_Shdr *versymhdr;
3707
3708 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3709 extversym = bfd_malloc (versymhdr->sh_size);
3710 if (extversym == NULL)
3711 goto error_free_sym;
3712 amt = versymhdr->sh_size;
3713 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3714 || bfd_bread (extversym, amt, abfd) != amt)
3715 goto error_free_vers;
3716 }
3717 }
3718
66eb6687
AM
3719 /* If we are loading an as-needed shared lib, save the symbol table
3720 state before we start adding symbols. If the lib turns out
3721 to be unneeded, restore the state. */
3722 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3723 {
3724 unsigned int i;
3725 size_t entsize;
3726
3727 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3728 {
3729 struct bfd_hash_entry *p;
2de92251 3730 struct elf_link_hash_entry *h;
66eb6687
AM
3731
3732 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
2de92251
AM
3733 {
3734 h = (struct elf_link_hash_entry *) p;
3735 entsize += htab->root.table.entsize;
3736 if (h->root.type == bfd_link_hash_warning)
3737 entsize += htab->root.table.entsize;
3738 }
66eb6687
AM
3739 }
3740
3741 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3742 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3743 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3744 if (old_tab == NULL)
3745 goto error_free_vers;
3746
3747 /* Remember the current objalloc pointer, so that all mem for
3748 symbols added can later be reclaimed. */
3749 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3750 if (alloc_mark == NULL)
3751 goto error_free_vers;
3752
5061a885
AM
3753 /* Make a special call to the linker "notice" function to
3754 tell it that we are about to handle an as-needed lib. */
3755 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3756 notice_as_needed))
9af2a943 3757 goto error_free_vers;
5061a885 3758
66eb6687
AM
3759 /* Clone the symbol table and sym hashes. Remember some
3760 pointers into the symbol table, and dynamic symbol count. */
3761 old_hash = (char *) old_tab + tabsize;
3762 old_ent = (char *) old_hash + hashsize;
3763 memcpy (old_tab, htab->root.table.table, tabsize);
3764 memcpy (old_hash, sym_hash, hashsize);
3765 old_undefs = htab->root.undefs;
3766 old_undefs_tail = htab->root.undefs_tail;
4f87808c
AM
3767 old_table = htab->root.table.table;
3768 old_size = htab->root.table.size;
3769 old_count = htab->root.table.count;
66eb6687
AM
3770 old_dynsymcount = htab->dynsymcount;
3771
3772 for (i = 0; i < htab->root.table.size; i++)
3773 {
3774 struct bfd_hash_entry *p;
2de92251 3775 struct elf_link_hash_entry *h;
66eb6687
AM
3776
3777 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3778 {
3779 memcpy (old_ent, p, htab->root.table.entsize);
3780 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
3781 h = (struct elf_link_hash_entry *) p;
3782 if (h->root.type == bfd_link_hash_warning)
3783 {
3784 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3785 old_ent = (char *) old_ent + htab->root.table.entsize;
3786 }
66eb6687
AM
3787 }
3788 }
3789 }
4ad4eba5 3790
66eb6687 3791 weaks = NULL;
4ad4eba5
AM
3792 ever = extversym != NULL ? extversym + extsymoff : NULL;
3793 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3794 isym < isymend;
3795 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3796 {
3797 int bind;
3798 bfd_vma value;
af44c138 3799 asection *sec, *new_sec;
4ad4eba5
AM
3800 flagword flags;
3801 const char *name;
3802 struct elf_link_hash_entry *h;
3803 bfd_boolean definition;
3804 bfd_boolean size_change_ok;
3805 bfd_boolean type_change_ok;
3806 bfd_boolean new_weakdef;
3807 bfd_boolean override;
a4d8e49b 3808 bfd_boolean common;
4ad4eba5
AM
3809 unsigned int old_alignment;
3810 bfd *old_bfd;
3811
3812 override = FALSE;
3813
3814 flags = BSF_NO_FLAGS;
3815 sec = NULL;
3816 value = isym->st_value;
3817 *sym_hash = NULL;
a4d8e49b 3818 common = bed->common_definition (isym);
4ad4eba5
AM
3819
3820 bind = ELF_ST_BIND (isym->st_info);
3821 if (bind == STB_LOCAL)
3822 {
3823 /* This should be impossible, since ELF requires that all
3824 global symbols follow all local symbols, and that sh_info
3825 point to the first global symbol. Unfortunately, Irix 5
3826 screws this up. */
3827 continue;
3828 }
3829 else if (bind == STB_GLOBAL)
3830 {
a4d8e49b 3831 if (isym->st_shndx != SHN_UNDEF && !common)
4ad4eba5
AM
3832 flags = BSF_GLOBAL;
3833 }
3834 else if (bind == STB_WEAK)
3835 flags = BSF_WEAK;
3836 else
3837 {
3838 /* Leave it up to the processor backend. */
3839 }
3840
3841 if (isym->st_shndx == SHN_UNDEF)
3842 sec = bfd_und_section_ptr;
cb33740c
AM
3843 else if (isym->st_shndx == SHN_ABS)
3844 sec = bfd_abs_section_ptr;
3845 else if (isym->st_shndx == SHN_COMMON)
3846 {
3847 sec = bfd_com_section_ptr;
3848 /* What ELF calls the size we call the value. What ELF
3849 calls the value we call the alignment. */
3850 value = isym->st_size;
3851 }
3852 else
4ad4eba5
AM
3853 {
3854 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3855 if (sec == NULL)
3856 sec = bfd_abs_section_ptr;
529fcb95
PB
3857 else if (sec->kept_section)
3858 {
e5d08002
L
3859 /* Symbols from discarded section are undefined. We keep
3860 its visibility. */
529fcb95
PB
3861 sec = bfd_und_section_ptr;
3862 isym->st_shndx = SHN_UNDEF;
3863 }
4ad4eba5
AM
3864 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3865 value -= sec->vma;
3866 }
4ad4eba5
AM
3867
3868 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3869 isym->st_name);
3870 if (name == NULL)
3871 goto error_free_vers;
3872
3873 if (isym->st_shndx == SHN_COMMON
6a4a0940
JJ
3874 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3875 && !info->relocatable)
4ad4eba5
AM
3876 {
3877 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3878
3879 if (tcomm == NULL)
3880 {
3496cb2a
L
3881 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3882 (SEC_ALLOC
3883 | SEC_IS_COMMON
3884 | SEC_LINKER_CREATED
3885 | SEC_THREAD_LOCAL));
3886 if (tcomm == NULL)
4ad4eba5
AM
3887 goto error_free_vers;
3888 }
3889 sec = tcomm;
3890 }
66eb6687 3891 else if (bed->elf_add_symbol_hook)
4ad4eba5 3892 {
66eb6687
AM
3893 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3894 &sec, &value))
4ad4eba5
AM
3895 goto error_free_vers;
3896
3897 /* The hook function sets the name to NULL if this symbol
3898 should be skipped for some reason. */
3899 if (name == NULL)
3900 continue;
3901 }
3902
3903 /* Sanity check that all possibilities were handled. */
3904 if (sec == NULL)
3905 {
3906 bfd_set_error (bfd_error_bad_value);
3907 goto error_free_vers;
3908 }
3909
3910 if (bfd_is_und_section (sec)
3911 || bfd_is_com_section (sec))
3912 definition = FALSE;
3913 else
3914 definition = TRUE;
3915
3916 size_change_ok = FALSE;
66eb6687 3917 type_change_ok = bed->type_change_ok;
4ad4eba5
AM
3918 old_alignment = 0;
3919 old_bfd = NULL;
af44c138 3920 new_sec = sec;
4ad4eba5 3921
66eb6687 3922 if (is_elf_hash_table (htab))
4ad4eba5
AM
3923 {
3924 Elf_Internal_Versym iver;
3925 unsigned int vernum = 0;
3926 bfd_boolean skip;
3927
fc0e6df6 3928 if (ever == NULL)
4ad4eba5 3929 {
fc0e6df6
PB
3930 if (info->default_imported_symver)
3931 /* Use the default symbol version created earlier. */
3932 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3933 else
3934 iver.vs_vers = 0;
3935 }
3936 else
3937 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3938
3939 vernum = iver.vs_vers & VERSYM_VERSION;
3940
3941 /* If this is a hidden symbol, or if it is not version
3942 1, we append the version name to the symbol name.
cc86ff91
EB
3943 However, we do not modify a non-hidden absolute symbol
3944 if it is not a function, because it might be the version
3945 symbol itself. FIXME: What if it isn't? */
fc0e6df6 3946 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
fcb93ecf
PB
3947 || (vernum > 1
3948 && (!bfd_is_abs_section (sec)
3949 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
fc0e6df6
PB
3950 {
3951 const char *verstr;
3952 size_t namelen, verlen, newlen;
3953 char *newname, *p;
3954
3955 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3956 {
fc0e6df6
PB
3957 if (vernum > elf_tdata (abfd)->cverdefs)
3958 verstr = NULL;
3959 else if (vernum > 1)
3960 verstr =
3961 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3962 else
3963 verstr = "";
4ad4eba5 3964
fc0e6df6 3965 if (verstr == NULL)
4ad4eba5 3966 {
fc0e6df6
PB
3967 (*_bfd_error_handler)
3968 (_("%B: %s: invalid version %u (max %d)"),
3969 abfd, name, vernum,
3970 elf_tdata (abfd)->cverdefs);
3971 bfd_set_error (bfd_error_bad_value);
3972 goto error_free_vers;
4ad4eba5 3973 }
fc0e6df6
PB
3974 }
3975 else
3976 {
3977 /* We cannot simply test for the number of
3978 entries in the VERNEED section since the
3979 numbers for the needed versions do not start
3980 at 0. */
3981 Elf_Internal_Verneed *t;
3982
3983 verstr = NULL;
3984 for (t = elf_tdata (abfd)->verref;
3985 t != NULL;
3986 t = t->vn_nextref)
4ad4eba5 3987 {
fc0e6df6 3988 Elf_Internal_Vernaux *a;
4ad4eba5 3989
fc0e6df6
PB
3990 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3991 {
3992 if (a->vna_other == vernum)
4ad4eba5 3993 {
fc0e6df6
PB
3994 verstr = a->vna_nodename;
3995 break;
4ad4eba5 3996 }
4ad4eba5 3997 }
fc0e6df6
PB
3998 if (a != NULL)
3999 break;
4000 }
4001 if (verstr == NULL)
4002 {
4003 (*_bfd_error_handler)
4004 (_("%B: %s: invalid needed version %d"),
4005 abfd, name, vernum);
4006 bfd_set_error (bfd_error_bad_value);
4007 goto error_free_vers;
4ad4eba5 4008 }
4ad4eba5 4009 }
fc0e6df6
PB
4010
4011 namelen = strlen (name);
4012 verlen = strlen (verstr);
4013 newlen = namelen + verlen + 2;
4014 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4015 && isym->st_shndx != SHN_UNDEF)
4016 ++newlen;
4017
66eb6687 4018 newname = bfd_hash_allocate (&htab->root.table, newlen);
fc0e6df6
PB
4019 if (newname == NULL)
4020 goto error_free_vers;
4021 memcpy (newname, name, namelen);
4022 p = newname + namelen;
4023 *p++ = ELF_VER_CHR;
4024 /* If this is a defined non-hidden version symbol,
4025 we add another @ to the name. This indicates the
4026 default version of the symbol. */
4027 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4028 && isym->st_shndx != SHN_UNDEF)
4029 *p++ = ELF_VER_CHR;
4030 memcpy (p, verstr, verlen + 1);
4031
4032 name = newname;
4ad4eba5
AM
4033 }
4034
af44c138
L
4035 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4036 &value, &old_alignment,
4ad4eba5
AM
4037 sym_hash, &skip, &override,
4038 &type_change_ok, &size_change_ok))
4039 goto error_free_vers;
4040
4041 if (skip)
4042 continue;
4043
4044 if (override)
4045 definition = FALSE;
4046
4047 h = *sym_hash;
4048 while (h->root.type == bfd_link_hash_indirect
4049 || h->root.type == bfd_link_hash_warning)
4050 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4051
4052 /* Remember the old alignment if this is a common symbol, so
4053 that we don't reduce the alignment later on. We can't
4054 check later, because _bfd_generic_link_add_one_symbol
4055 will set a default for the alignment which we want to
4056 override. We also remember the old bfd where the existing
4057 definition comes from. */
4058 switch (h->root.type)
4059 {
4060 default:
4061 break;
4062
4063 case bfd_link_hash_defined:
4064 case bfd_link_hash_defweak:
4065 old_bfd = h->root.u.def.section->owner;
4066 break;
4067
4068 case bfd_link_hash_common:
4069 old_bfd = h->root.u.c.p->section->owner;
4070 old_alignment = h->root.u.c.p->alignment_power;
4071 break;
4072 }
4073
4074 if (elf_tdata (abfd)->verdef != NULL
4075 && ! override
4076 && vernum > 1
4077 && definition)
4078 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4079 }
4080
4081 if (! (_bfd_generic_link_add_one_symbol
66eb6687 4082 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4ad4eba5
AM
4083 (struct bfd_link_hash_entry **) sym_hash)))
4084 goto error_free_vers;
4085
4086 h = *sym_hash;
4087 while (h->root.type == bfd_link_hash_indirect
4088 || h->root.type == bfd_link_hash_warning)
4089 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4090 *sym_hash = h;
4091
4092 new_weakdef = FALSE;
4093 if (dynamic
4094 && definition
4095 && (flags & BSF_WEAK) != 0
fcb93ecf 4096 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
66eb6687 4097 && is_elf_hash_table (htab)
f6e332e6 4098 && h->u.weakdef == NULL)
4ad4eba5
AM
4099 {
4100 /* Keep a list of all weak defined non function symbols from
4101 a dynamic object, using the weakdef field. Later in this
4102 function we will set the weakdef field to the correct
4103 value. We only put non-function symbols from dynamic
4104 objects on this list, because that happens to be the only
4105 time we need to know the normal symbol corresponding to a
4106 weak symbol, and the information is time consuming to
4107 figure out. If the weakdef field is not already NULL,
4108 then this symbol was already defined by some previous
4109 dynamic object, and we will be using that previous
4110 definition anyhow. */
4111
f6e332e6 4112 h->u.weakdef = weaks;
4ad4eba5
AM
4113 weaks = h;
4114 new_weakdef = TRUE;
4115 }
4116
4117 /* Set the alignment of a common symbol. */
a4d8e49b 4118 if ((common || bfd_is_com_section (sec))
4ad4eba5
AM
4119 && h->root.type == bfd_link_hash_common)
4120 {
4121 unsigned int align;
4122
a4d8e49b 4123 if (common)
af44c138
L
4124 align = bfd_log2 (isym->st_value);
4125 else
4126 {
4127 /* The new symbol is a common symbol in a shared object.
4128 We need to get the alignment from the section. */
4129 align = new_sec->alignment_power;
4130 }
4ad4eba5
AM
4131 if (align > old_alignment
4132 /* Permit an alignment power of zero if an alignment of one
4133 is specified and no other alignments have been specified. */
4134 || (isym->st_value == 1 && old_alignment == 0))
4135 h->root.u.c.p->alignment_power = align;
4136 else
4137 h->root.u.c.p->alignment_power = old_alignment;
4138 }
4139
66eb6687 4140 if (is_elf_hash_table (htab))
4ad4eba5 4141 {
4ad4eba5 4142 bfd_boolean dynsym;
4ad4eba5
AM
4143
4144 /* Check the alignment when a common symbol is involved. This
4145 can change when a common symbol is overridden by a normal
4146 definition or a common symbol is ignored due to the old
4147 normal definition. We need to make sure the maximum
4148 alignment is maintained. */
a4d8e49b 4149 if ((old_alignment || common)
4ad4eba5
AM
4150 && h->root.type != bfd_link_hash_common)
4151 {
4152 unsigned int common_align;
4153 unsigned int normal_align;
4154 unsigned int symbol_align;
4155 bfd *normal_bfd;
4156 bfd *common_bfd;
4157
4158 symbol_align = ffs (h->root.u.def.value) - 1;
4159 if (h->root.u.def.section->owner != NULL
4160 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4161 {
4162 normal_align = h->root.u.def.section->alignment_power;
4163 if (normal_align > symbol_align)
4164 normal_align = symbol_align;
4165 }
4166 else
4167 normal_align = symbol_align;
4168
4169 if (old_alignment)
4170 {
4171 common_align = old_alignment;
4172 common_bfd = old_bfd;
4173 normal_bfd = abfd;
4174 }
4175 else
4176 {
4177 common_align = bfd_log2 (isym->st_value);
4178 common_bfd = abfd;
4179 normal_bfd = old_bfd;
4180 }
4181
4182 if (normal_align < common_align)
d07676f8
NC
4183 {
4184 /* PR binutils/2735 */
4185 if (normal_bfd == NULL)
4186 (*_bfd_error_handler)
4187 (_("Warning: alignment %u of common symbol `%s' in %B"
4188 " is greater than the alignment (%u) of its section %A"),
4189 common_bfd, h->root.u.def.section,
4190 1 << common_align, name, 1 << normal_align);
4191 else
4192 (*_bfd_error_handler)
4193 (_("Warning: alignment %u of symbol `%s' in %B"
4194 " is smaller than %u in %B"),
4195 normal_bfd, common_bfd,
4196 1 << normal_align, name, 1 << common_align);
4197 }
4ad4eba5
AM
4198 }
4199
83ad0046
L
4200 /* Remember the symbol size if it isn't undefined. */
4201 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4ad4eba5
AM
4202 && (definition || h->size == 0))
4203 {
83ad0046
L
4204 if (h->size != 0
4205 && h->size != isym->st_size
4206 && ! size_change_ok)
4ad4eba5 4207 (*_bfd_error_handler)
d003868e
AM
4208 (_("Warning: size of symbol `%s' changed"
4209 " from %lu in %B to %lu in %B"),
4210 old_bfd, abfd,
4ad4eba5 4211 name, (unsigned long) h->size,
d003868e 4212 (unsigned long) isym->st_size);
4ad4eba5
AM
4213
4214 h->size = isym->st_size;
4215 }
4216
4217 /* If this is a common symbol, then we always want H->SIZE
4218 to be the size of the common symbol. The code just above
4219 won't fix the size if a common symbol becomes larger. We
4220 don't warn about a size change here, because that is
fcb93ecf
PB
4221 covered by --warn-common. Allow changed between different
4222 function types. */
4ad4eba5
AM
4223 if (h->root.type == bfd_link_hash_common)
4224 h->size = h->root.u.c.size;
4225
4226 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4227 && (definition || h->type == STT_NOTYPE))
4228 {
4229 if (h->type != STT_NOTYPE
4230 && h->type != ELF_ST_TYPE (isym->st_info)
4231 && ! type_change_ok)
4232 (*_bfd_error_handler)
d003868e
AM
4233 (_("Warning: type of symbol `%s' changed"
4234 " from %d to %d in %B"),
4235 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
4236
4237 h->type = ELF_ST_TYPE (isym->st_info);
4238 }
4239
4240 /* If st_other has a processor-specific meaning, specific
4241 code might be needed here. We never merge the visibility
4242 attribute with the one from a dynamic object. */
4243 if (bed->elf_backend_merge_symbol_attribute)
4244 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4245 dynamic);
4246
b58f81ae
DJ
4247 /* If this symbol has default visibility and the user has requested
4248 we not re-export it, then mark it as hidden. */
4249 if (definition && !dynamic
4250 && (abfd->no_export
4251 || (abfd->my_archive && abfd->my_archive->no_export))
4252 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
66eb6687
AM
4253 isym->st_other = (STV_HIDDEN
4254 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
b58f81ae 4255
8992f0d7 4256 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4ad4eba5
AM
4257 {
4258 unsigned char hvis, symvis, other, nvis;
4259
8992f0d7
TS
4260 /* Only merge the visibility. Leave the remainder of the
4261 st_other field to elf_backend_merge_symbol_attribute. */
4262 other = h->other & ~ELF_ST_VISIBILITY (-1);
4ad4eba5
AM
4263
4264 /* Combine visibilities, using the most constraining one. */
4265 hvis = ELF_ST_VISIBILITY (h->other);
4266 symvis = ELF_ST_VISIBILITY (isym->st_other);
4267 if (! hvis)
4268 nvis = symvis;
4269 else if (! symvis)
4270 nvis = hvis;
4271 else
4272 nvis = hvis < symvis ? hvis : symvis;
4273
4274 h->other = other | nvis;
4275 }
4276
4277 /* Set a flag in the hash table entry indicating the type of
4278 reference or definition we just found. Keep a count of
4279 the number of dynamic symbols we find. A dynamic symbol
4280 is one which is referenced or defined by both a regular
4281 object and a shared object. */
4ad4eba5
AM
4282 dynsym = FALSE;
4283 if (! dynamic)
4284 {
4285 if (! definition)
4286 {
f5385ebf 4287 h->ref_regular = 1;
4ad4eba5 4288 if (bind != STB_WEAK)
f5385ebf 4289 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4290 }
4291 else
f5385ebf 4292 h->def_regular = 1;
4ad4eba5 4293 if (! info->executable
f5385ebf
AM
4294 || h->def_dynamic
4295 || h->ref_dynamic)
4ad4eba5
AM
4296 dynsym = TRUE;
4297 }
4298 else
4299 {
4300 if (! definition)
f5385ebf 4301 h->ref_dynamic = 1;
4ad4eba5 4302 else
f5385ebf
AM
4303 h->def_dynamic = 1;
4304 if (h->def_regular
4305 || h->ref_regular
f6e332e6 4306 || (h->u.weakdef != NULL
4ad4eba5 4307 && ! new_weakdef
f6e332e6 4308 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4309 dynsym = TRUE;
4310 }
4311
b2064611 4312 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
92b7c7b6
L
4313 {
4314 /* We don't want to make debug symbol dynamic. */
4315 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4316 dynsym = FALSE;
4317 }
4318
4ad4eba5
AM
4319 /* Check to see if we need to add an indirect symbol for
4320 the default name. */
4321 if (definition || h->root.type == bfd_link_hash_common)
4322 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4323 &sec, &value, &dynsym,
4324 override))
4325 goto error_free_vers;
4326
4327 if (definition && !dynamic)
4328 {
4329 char *p = strchr (name, ELF_VER_CHR);
4330 if (p != NULL && p[1] != ELF_VER_CHR)
4331 {
4332 /* Queue non-default versions so that .symver x, x@FOO
4333 aliases can be checked. */
66eb6687 4334 if (!nondeflt_vers)
4ad4eba5 4335 {
66eb6687
AM
4336 amt = ((isymend - isym + 1)
4337 * sizeof (struct elf_link_hash_entry *));
4ad4eba5 4338 nondeflt_vers = bfd_malloc (amt);
14b1c01e
AM
4339 if (!nondeflt_vers)
4340 goto error_free_vers;
4ad4eba5 4341 }
66eb6687 4342 nondeflt_vers[nondeflt_vers_cnt++] = h;
4ad4eba5
AM
4343 }
4344 }
4345
4346 if (dynsym && h->dynindx == -1)
4347 {
c152c796 4348 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4349 goto error_free_vers;
f6e332e6 4350 if (h->u.weakdef != NULL
4ad4eba5 4351 && ! new_weakdef
f6e332e6 4352 && h->u.weakdef->dynindx == -1)
4ad4eba5 4353 {
66eb6687 4354 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4355 goto error_free_vers;
4356 }
4357 }
4358 else if (dynsym && h->dynindx != -1)
4359 /* If the symbol already has a dynamic index, but
4360 visibility says it should not be visible, turn it into
4361 a local symbol. */
4362 switch (ELF_ST_VISIBILITY (h->other))
4363 {
4364 case STV_INTERNAL:
4365 case STV_HIDDEN:
4366 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4367 dynsym = FALSE;
4368 break;
4369 }
4370
4371 if (!add_needed
4372 && definition
4373 && dynsym
f5385ebf 4374 && h->ref_regular)
4ad4eba5
AM
4375 {
4376 int ret;
4377 const char *soname = elf_dt_name (abfd);
4378
4379 /* A symbol from a library loaded via DT_NEEDED of some
4380 other library is referenced by a regular object.
e56f61be
L
4381 Add a DT_NEEDED entry for it. Issue an error if
4382 --no-add-needed is used. */
4383 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4384 {
4385 (*_bfd_error_handler)
4386 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4387 abfd, name);
e56f61be
L
4388 bfd_set_error (bfd_error_bad_value);
4389 goto error_free_vers;
4390 }
4391
a5db907e
AM
4392 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4393
4ad4eba5 4394 add_needed = TRUE;
7e9f0867 4395 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4396 if (ret < 0)
4397 goto error_free_vers;
4398
4399 BFD_ASSERT (ret == 0);
4400 }
4401 }
4402 }
4403
66eb6687
AM
4404 if (extversym != NULL)
4405 {
4406 free (extversym);
4407 extversym = NULL;
4408 }
4409
4410 if (isymbuf != NULL)
4411 {
4412 free (isymbuf);
4413 isymbuf = NULL;
4414 }
4415
4416 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4417 {
4418 unsigned int i;
4419
4420 /* Restore the symbol table. */
97fed1c9
JJ
4421 if (bed->as_needed_cleanup)
4422 (*bed->as_needed_cleanup) (abfd, info);
66eb6687
AM
4423 old_hash = (char *) old_tab + tabsize;
4424 old_ent = (char *) old_hash + hashsize;
4425 sym_hash = elf_sym_hashes (abfd);
4f87808c
AM
4426 htab->root.table.table = old_table;
4427 htab->root.table.size = old_size;
4428 htab->root.table.count = old_count;
66eb6687
AM
4429 memcpy (htab->root.table.table, old_tab, tabsize);
4430 memcpy (sym_hash, old_hash, hashsize);
4431 htab->root.undefs = old_undefs;
4432 htab->root.undefs_tail = old_undefs_tail;
4433 for (i = 0; i < htab->root.table.size; i++)
4434 {
4435 struct bfd_hash_entry *p;
4436 struct elf_link_hash_entry *h;
4437
4438 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4439 {
4440 h = (struct elf_link_hash_entry *) p;
2de92251
AM
4441 if (h->root.type == bfd_link_hash_warning)
4442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
66eb6687
AM
4443 if (h->dynindx >= old_dynsymcount)
4444 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
2de92251 4445
66eb6687
AM
4446 memcpy (p, old_ent, htab->root.table.entsize);
4447 old_ent = (char *) old_ent + htab->root.table.entsize;
2de92251
AM
4448 h = (struct elf_link_hash_entry *) p;
4449 if (h->root.type == bfd_link_hash_warning)
4450 {
4451 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4452 old_ent = (char *) old_ent + htab->root.table.entsize;
4453 }
66eb6687
AM
4454 }
4455 }
4456
5061a885
AM
4457 /* Make a special call to the linker "notice" function to
4458 tell it that symbols added for crefs may need to be removed. */
4459 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4460 notice_not_needed))
9af2a943 4461 goto error_free_vers;
5061a885 4462
66eb6687
AM
4463 free (old_tab);
4464 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4465 alloc_mark);
4466 if (nondeflt_vers != NULL)
4467 free (nondeflt_vers);
4468 return TRUE;
4469 }
2de92251 4470
66eb6687
AM
4471 if (old_tab != NULL)
4472 {
5061a885
AM
4473 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4474 notice_needed))
9af2a943 4475 goto error_free_vers;
66eb6687
AM
4476 free (old_tab);
4477 old_tab = NULL;
4478 }
4479
4ad4eba5
AM
4480 /* Now that all the symbols from this input file are created, handle
4481 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4482 if (nondeflt_vers != NULL)
4483 {
4484 bfd_size_type cnt, symidx;
4485
4486 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4487 {
4488 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4489 char *shortname, *p;
4490
4491 p = strchr (h->root.root.string, ELF_VER_CHR);
4492 if (p == NULL
4493 || (h->root.type != bfd_link_hash_defined
4494 && h->root.type != bfd_link_hash_defweak))
4495 continue;
4496
4497 amt = p - h->root.root.string;
4498 shortname = bfd_malloc (amt + 1);
14b1c01e
AM
4499 if (!shortname)
4500 goto error_free_vers;
4ad4eba5
AM
4501 memcpy (shortname, h->root.root.string, amt);
4502 shortname[amt] = '\0';
4503
4504 hi = (struct elf_link_hash_entry *)
66eb6687 4505 bfd_link_hash_lookup (&htab->root, shortname,
4ad4eba5
AM
4506 FALSE, FALSE, FALSE);
4507 if (hi != NULL
4508 && hi->root.type == h->root.type
4509 && hi->root.u.def.value == h->root.u.def.value
4510 && hi->root.u.def.section == h->root.u.def.section)
4511 {
4512 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4513 hi->root.type = bfd_link_hash_indirect;
4514 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
fcfa13d2 4515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4ad4eba5
AM
4516 sym_hash = elf_sym_hashes (abfd);
4517 if (sym_hash)
4518 for (symidx = 0; symidx < extsymcount; ++symidx)
4519 if (sym_hash[symidx] == hi)
4520 {
4521 sym_hash[symidx] = h;
4522 break;
4523 }
4524 }
4525 free (shortname);
4526 }
4527 free (nondeflt_vers);
4528 nondeflt_vers = NULL;
4529 }
4530
4ad4eba5
AM
4531 /* Now set the weakdefs field correctly for all the weak defined
4532 symbols we found. The only way to do this is to search all the
4533 symbols. Since we only need the information for non functions in
4534 dynamic objects, that's the only time we actually put anything on
4535 the list WEAKS. We need this information so that if a regular
4536 object refers to a symbol defined weakly in a dynamic object, the
4537 real symbol in the dynamic object is also put in the dynamic
4538 symbols; we also must arrange for both symbols to point to the
4539 same memory location. We could handle the general case of symbol
4540 aliasing, but a general symbol alias can only be generated in
4541 assembler code, handling it correctly would be very time
4542 consuming, and other ELF linkers don't handle general aliasing
4543 either. */
4544 if (weaks != NULL)
4545 {
4546 struct elf_link_hash_entry **hpp;
4547 struct elf_link_hash_entry **hppend;
4548 struct elf_link_hash_entry **sorted_sym_hash;
4549 struct elf_link_hash_entry *h;
4550 size_t sym_count;
4551
4552 /* Since we have to search the whole symbol list for each weak
4553 defined symbol, search time for N weak defined symbols will be
4554 O(N^2). Binary search will cut it down to O(NlogN). */
4555 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4556 sorted_sym_hash = bfd_malloc (amt);
4557 if (sorted_sym_hash == NULL)
4558 goto error_return;
4559 sym_hash = sorted_sym_hash;
4560 hpp = elf_sym_hashes (abfd);
4561 hppend = hpp + extsymcount;
4562 sym_count = 0;
4563 for (; hpp < hppend; hpp++)
4564 {
4565 h = *hpp;
4566 if (h != NULL
4567 && h->root.type == bfd_link_hash_defined
fcb93ecf 4568 && !bed->is_function_type (h->type))
4ad4eba5
AM
4569 {
4570 *sym_hash = h;
4571 sym_hash++;
4572 sym_count++;
4573 }
4574 }
4575
4576 qsort (sorted_sym_hash, sym_count,
4577 sizeof (struct elf_link_hash_entry *),
4578 elf_sort_symbol);
4579
4580 while (weaks != NULL)
4581 {
4582 struct elf_link_hash_entry *hlook;
4583 asection *slook;
4584 bfd_vma vlook;
4585 long ilook;
4586 size_t i, j, idx;
4587
4588 hlook = weaks;
f6e332e6
AM
4589 weaks = hlook->u.weakdef;
4590 hlook->u.weakdef = NULL;
4ad4eba5
AM
4591
4592 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4593 || hlook->root.type == bfd_link_hash_defweak
4594 || hlook->root.type == bfd_link_hash_common
4595 || hlook->root.type == bfd_link_hash_indirect);
4596 slook = hlook->root.u.def.section;
4597 vlook = hlook->root.u.def.value;
4598
4599 ilook = -1;
4600 i = 0;
4601 j = sym_count;
4602 while (i < j)
4603 {
4604 bfd_signed_vma vdiff;
4605 idx = (i + j) / 2;
4606 h = sorted_sym_hash [idx];
4607 vdiff = vlook - h->root.u.def.value;
4608 if (vdiff < 0)
4609 j = idx;
4610 else if (vdiff > 0)
4611 i = idx + 1;
4612 else
4613 {
a9b881be 4614 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4615 if (sdiff < 0)
4616 j = idx;
4617 else if (sdiff > 0)
4618 i = idx + 1;
4619 else
4620 {
4621 ilook = idx;
4622 break;
4623 }
4624 }
4625 }
4626
4627 /* We didn't find a value/section match. */
4628 if (ilook == -1)
4629 continue;
4630
4631 for (i = ilook; i < sym_count; i++)
4632 {
4633 h = sorted_sym_hash [i];
4634
4635 /* Stop if value or section doesn't match. */
4636 if (h->root.u.def.value != vlook
4637 || h->root.u.def.section != slook)
4638 break;
4639 else if (h != hlook)
4640 {
f6e332e6 4641 hlook->u.weakdef = h;
4ad4eba5
AM
4642
4643 /* If the weak definition is in the list of dynamic
4644 symbols, make sure the real definition is put
4645 there as well. */
4646 if (hlook->dynindx != -1 && h->dynindx == -1)
4647 {
c152c796 4648 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4dd07732
AM
4649 {
4650 err_free_sym_hash:
4651 free (sorted_sym_hash);
4652 goto error_return;
4653 }
4ad4eba5
AM
4654 }
4655
4656 /* If the real definition is in the list of dynamic
4657 symbols, make sure the weak definition is put
4658 there as well. If we don't do this, then the
4659 dynamic loader might not merge the entries for the
4660 real definition and the weak definition. */
4661 if (h->dynindx != -1 && hlook->dynindx == -1)
4662 {
c152c796 4663 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4dd07732 4664 goto err_free_sym_hash;
4ad4eba5
AM
4665 }
4666 break;
4667 }
4668 }
4669 }
4670
4671 free (sorted_sym_hash);
4672 }
4673
33177bb1
AM
4674 if (bed->check_directives
4675 && !(*bed->check_directives) (abfd, info))
4676 return FALSE;
85fbca6a 4677
4ad4eba5
AM
4678 /* If this object is the same format as the output object, and it is
4679 not a shared library, then let the backend look through the
4680 relocs.
4681
4682 This is required to build global offset table entries and to
4683 arrange for dynamic relocs. It is not required for the
4684 particular common case of linking non PIC code, even when linking
4685 against shared libraries, but unfortunately there is no way of
4686 knowing whether an object file has been compiled PIC or not.
4687 Looking through the relocs is not particularly time consuming.
4688 The problem is that we must either (1) keep the relocs in memory,
4689 which causes the linker to require additional runtime memory or
4690 (2) read the relocs twice from the input file, which wastes time.
4691 This would be a good case for using mmap.
4692
4693 I have no idea how to handle linking PIC code into a file of a
4694 different format. It probably can't be done. */
4ad4eba5 4695 if (! dynamic
66eb6687 4696 && is_elf_hash_table (htab)
13285a1b 4697 && bed->check_relocs != NULL
f13a99db 4698 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4ad4eba5
AM
4699 {
4700 asection *o;
4701
4702 for (o = abfd->sections; o != NULL; o = o->next)
4703 {
4704 Elf_Internal_Rela *internal_relocs;
4705 bfd_boolean ok;
4706
4707 if ((o->flags & SEC_RELOC) == 0
4708 || o->reloc_count == 0
4709 || ((info->strip == strip_all || info->strip == strip_debugger)
4710 && (o->flags & SEC_DEBUGGING) != 0)
4711 || bfd_is_abs_section (o->output_section))
4712 continue;
4713
4714 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4715 info->keep_memory);
4716 if (internal_relocs == NULL)
4717 goto error_return;
4718
66eb6687 4719 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4ad4eba5
AM
4720
4721 if (elf_section_data (o)->relocs != internal_relocs)
4722 free (internal_relocs);
4723
4724 if (! ok)
4725 goto error_return;
4726 }
4727 }
4728
4729 /* If this is a non-traditional link, try to optimize the handling
4730 of the .stab/.stabstr sections. */
4731 if (! dynamic
4732 && ! info->traditional_format
66eb6687 4733 && is_elf_hash_table (htab)
4ad4eba5
AM
4734 && (info->strip != strip_all && info->strip != strip_debugger))
4735 {
4736 asection *stabstr;
4737
4738 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4739 if (stabstr != NULL)
4740 {
4741 bfd_size_type string_offset = 0;
4742 asection *stab;
4743
4744 for (stab = abfd->sections; stab; stab = stab->next)
0112cd26 4745 if (CONST_STRNEQ (stab->name, ".stab")
4ad4eba5
AM
4746 && (!stab->name[5] ||
4747 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4748 && (stab->flags & SEC_MERGE) == 0
4749 && !bfd_is_abs_section (stab->output_section))
4750 {
4751 struct bfd_elf_section_data *secdata;
4752
4753 secdata = elf_section_data (stab);
66eb6687
AM
4754 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4755 stabstr, &secdata->sec_info,
4ad4eba5
AM
4756 &string_offset))
4757 goto error_return;
4758 if (secdata->sec_info)
4759 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4760 }
4761 }
4762 }
4763
66eb6687 4764 if (is_elf_hash_table (htab) && add_needed)
4ad4eba5
AM
4765 {
4766 /* Add this bfd to the loaded list. */
4767 struct elf_link_loaded_list *n;
4768
4769 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4770 if (n == NULL)
4771 goto error_return;
4772 n->abfd = abfd;
66eb6687
AM
4773 n->next = htab->loaded;
4774 htab->loaded = n;
4ad4eba5
AM
4775 }
4776
4777 return TRUE;
4778
4779 error_free_vers:
66eb6687
AM
4780 if (old_tab != NULL)
4781 free (old_tab);
4ad4eba5
AM
4782 if (nondeflt_vers != NULL)
4783 free (nondeflt_vers);
4784 if (extversym != NULL)
4785 free (extversym);
4786 error_free_sym:
4787 if (isymbuf != NULL)
4788 free (isymbuf);
4789 error_return:
4790 return FALSE;
4791}
4792
8387904d
AM
4793/* Return the linker hash table entry of a symbol that might be
4794 satisfied by an archive symbol. Return -1 on error. */
4795
4796struct elf_link_hash_entry *
4797_bfd_elf_archive_symbol_lookup (bfd *abfd,
4798 struct bfd_link_info *info,
4799 const char *name)
4800{
4801 struct elf_link_hash_entry *h;
4802 char *p, *copy;
4803 size_t len, first;
4804
4805 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4806 if (h != NULL)
4807 return h;
4808
4809 /* If this is a default version (the name contains @@), look up the
4810 symbol again with only one `@' as well as without the version.
4811 The effect is that references to the symbol with and without the
4812 version will be matched by the default symbol in the archive. */
4813
4814 p = strchr (name, ELF_VER_CHR);
4815 if (p == NULL || p[1] != ELF_VER_CHR)
4816 return h;
4817
4818 /* First check with only one `@'. */
4819 len = strlen (name);
4820 copy = bfd_alloc (abfd, len);
4821 if (copy == NULL)
4822 return (struct elf_link_hash_entry *) 0 - 1;
4823
4824 first = p - name + 1;
4825 memcpy (copy, name, first);
4826 memcpy (copy + first, name + first + 1, len - first);
4827
4828 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4829 if (h == NULL)
4830 {
4831 /* We also need to check references to the symbol without the
4832 version. */
4833 copy[first - 1] = '\0';
4834 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4835 FALSE, FALSE, FALSE);
4836 }
4837
4838 bfd_release (abfd, copy);
4839 return h;
4840}
4841
0ad989f9
L
4842/* Add symbols from an ELF archive file to the linker hash table. We
4843 don't use _bfd_generic_link_add_archive_symbols because of a
4844 problem which arises on UnixWare. The UnixWare libc.so is an
4845 archive which includes an entry libc.so.1 which defines a bunch of
4846 symbols. The libc.so archive also includes a number of other
4847 object files, which also define symbols, some of which are the same
4848 as those defined in libc.so.1. Correct linking requires that we
4849 consider each object file in turn, and include it if it defines any
4850 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4851 this; it looks through the list of undefined symbols, and includes
4852 any object file which defines them. When this algorithm is used on
4853 UnixWare, it winds up pulling in libc.so.1 early and defining a
4854 bunch of symbols. This means that some of the other objects in the
4855 archive are not included in the link, which is incorrect since they
4856 precede libc.so.1 in the archive.
4857
4858 Fortunately, ELF archive handling is simpler than that done by
4859 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4860 oddities. In ELF, if we find a symbol in the archive map, and the
4861 symbol is currently undefined, we know that we must pull in that
4862 object file.
4863
4864 Unfortunately, we do have to make multiple passes over the symbol
4865 table until nothing further is resolved. */
4866
4ad4eba5
AM
4867static bfd_boolean
4868elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4869{
4870 symindex c;
4871 bfd_boolean *defined = NULL;
4872 bfd_boolean *included = NULL;
4873 carsym *symdefs;
4874 bfd_boolean loop;
4875 bfd_size_type amt;
8387904d
AM
4876 const struct elf_backend_data *bed;
4877 struct elf_link_hash_entry * (*archive_symbol_lookup)
4878 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4879
4880 if (! bfd_has_map (abfd))
4881 {
4882 /* An empty archive is a special case. */
4883 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4884 return TRUE;
4885 bfd_set_error (bfd_error_no_armap);
4886 return FALSE;
4887 }
4888
4889 /* Keep track of all symbols we know to be already defined, and all
4890 files we know to be already included. This is to speed up the
4891 second and subsequent passes. */
4892 c = bfd_ardata (abfd)->symdef_count;
4893 if (c == 0)
4894 return TRUE;
4895 amt = c;
4896 amt *= sizeof (bfd_boolean);
4897 defined = bfd_zmalloc (amt);
4898 included = bfd_zmalloc (amt);
4899 if (defined == NULL || included == NULL)
4900 goto error_return;
4901
4902 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4903 bed = get_elf_backend_data (abfd);
4904 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4905
4906 do
4907 {
4908 file_ptr last;
4909 symindex i;
4910 carsym *symdef;
4911 carsym *symdefend;
4912
4913 loop = FALSE;
4914 last = -1;
4915
4916 symdef = symdefs;
4917 symdefend = symdef + c;
4918 for (i = 0; symdef < symdefend; symdef++, i++)
4919 {
4920 struct elf_link_hash_entry *h;
4921 bfd *element;
4922 struct bfd_link_hash_entry *undefs_tail;
4923 symindex mark;
4924
4925 if (defined[i] || included[i])
4926 continue;
4927 if (symdef->file_offset == last)
4928 {
4929 included[i] = TRUE;
4930 continue;
4931 }
4932
8387904d
AM
4933 h = archive_symbol_lookup (abfd, info, symdef->name);
4934 if (h == (struct elf_link_hash_entry *) 0 - 1)
4935 goto error_return;
0ad989f9
L
4936
4937 if (h == NULL)
4938 continue;
4939
4940 if (h->root.type == bfd_link_hash_common)
4941 {
4942 /* We currently have a common symbol. The archive map contains
4943 a reference to this symbol, so we may want to include it. We
4944 only want to include it however, if this archive element
4945 contains a definition of the symbol, not just another common
4946 declaration of it.
4947
4948 Unfortunately some archivers (including GNU ar) will put
4949 declarations of common symbols into their archive maps, as
4950 well as real definitions, so we cannot just go by the archive
4951 map alone. Instead we must read in the element's symbol
4952 table and check that to see what kind of symbol definition
4953 this is. */
4954 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4955 continue;
4956 }
4957 else if (h->root.type != bfd_link_hash_undefined)
4958 {
4959 if (h->root.type != bfd_link_hash_undefweak)
4960 defined[i] = TRUE;
4961 continue;
4962 }
4963
4964 /* We need to include this archive member. */
4965 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4966 if (element == NULL)
4967 goto error_return;
4968
4969 if (! bfd_check_format (element, bfd_object))
4970 goto error_return;
4971
4972 /* Doublecheck that we have not included this object
4973 already--it should be impossible, but there may be
4974 something wrong with the archive. */
4975 if (element->archive_pass != 0)
4976 {
4977 bfd_set_error (bfd_error_bad_value);
4978 goto error_return;
4979 }
4980 element->archive_pass = 1;
4981
4982 undefs_tail = info->hash->undefs_tail;
4983
4984 if (! (*info->callbacks->add_archive_element) (info, element,
4985 symdef->name))
4986 goto error_return;
4987 if (! bfd_link_add_symbols (element, info))
4988 goto error_return;
4989
4990 /* If there are any new undefined symbols, we need to make
4991 another pass through the archive in order to see whether
4992 they can be defined. FIXME: This isn't perfect, because
4993 common symbols wind up on undefs_tail and because an
4994 undefined symbol which is defined later on in this pass
4995 does not require another pass. This isn't a bug, but it
4996 does make the code less efficient than it could be. */
4997 if (undefs_tail != info->hash->undefs_tail)
4998 loop = TRUE;
4999
5000 /* Look backward to mark all symbols from this object file
5001 which we have already seen in this pass. */
5002 mark = i;
5003 do
5004 {
5005 included[mark] = TRUE;
5006 if (mark == 0)
5007 break;
5008 --mark;
5009 }
5010 while (symdefs[mark].file_offset == symdef->file_offset);
5011
5012 /* We mark subsequent symbols from this object file as we go
5013 on through the loop. */
5014 last = symdef->file_offset;
5015 }
5016 }
5017 while (loop);
5018
5019 free (defined);
5020 free (included);
5021
5022 return TRUE;
5023
5024 error_return:
5025 if (defined != NULL)
5026 free (defined);
5027 if (included != NULL)
5028 free (included);
5029 return FALSE;
5030}
4ad4eba5
AM
5031
5032/* Given an ELF BFD, add symbols to the global hash table as
5033 appropriate. */
5034
5035bfd_boolean
5036bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5037{
5038 switch (bfd_get_format (abfd))
5039 {
5040 case bfd_object:
5041 return elf_link_add_object_symbols (abfd, info);
5042 case bfd_archive:
5043 return elf_link_add_archive_symbols (abfd, info);
5044 default:
5045 bfd_set_error (bfd_error_wrong_format);
5046 return FALSE;
5047 }
5048}
5a580b3a 5049\f
14b1c01e
AM
5050struct hash_codes_info
5051{
5052 unsigned long *hashcodes;
5053 bfd_boolean error;
5054};
a0c8462f 5055
5a580b3a
AM
5056/* This function will be called though elf_link_hash_traverse to store
5057 all hash value of the exported symbols in an array. */
5058
5059static bfd_boolean
5060elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5061{
14b1c01e 5062 struct hash_codes_info *inf = data;
5a580b3a
AM
5063 const char *name;
5064 char *p;
5065 unsigned long ha;
5066 char *alc = NULL;
5067
5068 if (h->root.type == bfd_link_hash_warning)
5069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5070
5071 /* Ignore indirect symbols. These are added by the versioning code. */
5072 if (h->dynindx == -1)
5073 return TRUE;
5074
5075 name = h->root.root.string;
5076 p = strchr (name, ELF_VER_CHR);
5077 if (p != NULL)
5078 {
5079 alc = bfd_malloc (p - name + 1);
14b1c01e
AM
5080 if (alc == NULL)
5081 {
5082 inf->error = TRUE;
5083 return FALSE;
5084 }
5a580b3a
AM
5085 memcpy (alc, name, p - name);
5086 alc[p - name] = '\0';
5087 name = alc;
5088 }
5089
5090 /* Compute the hash value. */
5091 ha = bfd_elf_hash (name);
5092
5093 /* Store the found hash value in the array given as the argument. */
14b1c01e 5094 *(inf->hashcodes)++ = ha;
5a580b3a
AM
5095
5096 /* And store it in the struct so that we can put it in the hash table
5097 later. */
f6e332e6 5098 h->u.elf_hash_value = ha;
5a580b3a
AM
5099
5100 if (alc != NULL)
5101 free (alc);
5102
5103 return TRUE;
5104}
5105
fdc90cb4
JJ
5106struct collect_gnu_hash_codes
5107{
5108 bfd *output_bfd;
5109 const struct elf_backend_data *bed;
5110 unsigned long int nsyms;
5111 unsigned long int maskbits;
5112 unsigned long int *hashcodes;
5113 unsigned long int *hashval;
5114 unsigned long int *indx;
5115 unsigned long int *counts;
5116 bfd_vma *bitmask;
5117 bfd_byte *contents;
5118 long int min_dynindx;
5119 unsigned long int bucketcount;
5120 unsigned long int symindx;
5121 long int local_indx;
5122 long int shift1, shift2;
5123 unsigned long int mask;
14b1c01e 5124 bfd_boolean error;
fdc90cb4
JJ
5125};
5126
5127/* This function will be called though elf_link_hash_traverse to store
5128 all hash value of the exported symbols in an array. */
5129
5130static bfd_boolean
5131elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5132{
5133 struct collect_gnu_hash_codes *s = data;
5134 const char *name;
5135 char *p;
5136 unsigned long ha;
5137 char *alc = NULL;
5138
5139 if (h->root.type == bfd_link_hash_warning)
5140 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5141
5142 /* Ignore indirect symbols. These are added by the versioning code. */
5143 if (h->dynindx == -1)
5144 return TRUE;
5145
5146 /* Ignore also local symbols and undefined symbols. */
5147 if (! (*s->bed->elf_hash_symbol) (h))
5148 return TRUE;
5149
5150 name = h->root.root.string;
5151 p = strchr (name, ELF_VER_CHR);
5152 if (p != NULL)
5153 {
5154 alc = bfd_malloc (p - name + 1);
14b1c01e
AM
5155 if (alc == NULL)
5156 {
5157 s->error = TRUE;
5158 return FALSE;
5159 }
fdc90cb4
JJ
5160 memcpy (alc, name, p - name);
5161 alc[p - name] = '\0';
5162 name = alc;
5163 }
5164
5165 /* Compute the hash value. */
5166 ha = bfd_elf_gnu_hash (name);
5167
5168 /* Store the found hash value in the array for compute_bucket_count,
5169 and also for .dynsym reordering purposes. */
5170 s->hashcodes[s->nsyms] = ha;
5171 s->hashval[h->dynindx] = ha;
5172 ++s->nsyms;
5173 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5174 s->min_dynindx = h->dynindx;
5175
5176 if (alc != NULL)
5177 free (alc);
5178
5179 return TRUE;
5180}
5181
5182/* This function will be called though elf_link_hash_traverse to do
5183 final dynaminc symbol renumbering. */
5184
5185static bfd_boolean
5186elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5187{
5188 struct collect_gnu_hash_codes *s = data;
5189 unsigned long int bucket;
5190 unsigned long int val;
5191
5192 if (h->root.type == bfd_link_hash_warning)
5193 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5194
5195 /* Ignore indirect symbols. */
5196 if (h->dynindx == -1)
5197 return TRUE;
5198
5199 /* Ignore also local symbols and undefined symbols. */
5200 if (! (*s->bed->elf_hash_symbol) (h))
5201 {
5202 if (h->dynindx >= s->min_dynindx)
5203 h->dynindx = s->local_indx++;
5204 return TRUE;
5205 }
5206
5207 bucket = s->hashval[h->dynindx] % s->bucketcount;
5208 val = (s->hashval[h->dynindx] >> s->shift1)
5209 & ((s->maskbits >> s->shift1) - 1);
5210 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5211 s->bitmask[val]
5212 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5213 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5214 if (s->counts[bucket] == 1)
5215 /* Last element terminates the chain. */
5216 val |= 1;
5217 bfd_put_32 (s->output_bfd, val,
5218 s->contents + (s->indx[bucket] - s->symindx) * 4);
5219 --s->counts[bucket];
5220 h->dynindx = s->indx[bucket]++;
5221 return TRUE;
5222}
5223
5224/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5225
5226bfd_boolean
5227_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5228{
5229 return !(h->forced_local
5230 || h->root.type == bfd_link_hash_undefined
5231 || h->root.type == bfd_link_hash_undefweak
5232 || ((h->root.type == bfd_link_hash_defined
5233 || h->root.type == bfd_link_hash_defweak)
5234 && h->root.u.def.section->output_section == NULL));
5235}
5236
5a580b3a
AM
5237/* Array used to determine the number of hash table buckets to use
5238 based on the number of symbols there are. If there are fewer than
5239 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5240 fewer than 37 we use 17 buckets, and so forth. We never use more
5241 than 32771 buckets. */
5242
5243static const size_t elf_buckets[] =
5244{
5245 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5246 16411, 32771, 0
5247};
5248
5249/* Compute bucket count for hashing table. We do not use a static set
5250 of possible tables sizes anymore. Instead we determine for all
5251 possible reasonable sizes of the table the outcome (i.e., the
5252 number of collisions etc) and choose the best solution. The
5253 weighting functions are not too simple to allow the table to grow
5254 without bounds. Instead one of the weighting factors is the size.
5255 Therefore the result is always a good payoff between few collisions
5256 (= short chain lengths) and table size. */
5257static size_t
d40f3da9
AM
5258compute_bucket_count (struct bfd_link_info *info,
5259 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5260 unsigned long int nsyms,
5261 int gnu_hash)
5a580b3a 5262{
5a580b3a 5263 size_t best_size = 0;
5a580b3a 5264 unsigned long int i;
5a580b3a 5265
5a580b3a
AM
5266 /* We have a problem here. The following code to optimize the table
5267 size requires an integer type with more the 32 bits. If
5268 BFD_HOST_U_64_BIT is set we know about such a type. */
5269#ifdef BFD_HOST_U_64_BIT
5270 if (info->optimize)
5271 {
5a580b3a
AM
5272 size_t minsize;
5273 size_t maxsize;
5274 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5a580b3a 5275 bfd *dynobj = elf_hash_table (info)->dynobj;
d40f3da9 5276 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5a580b3a 5277 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
fdc90cb4 5278 unsigned long int *counts;
d40f3da9 5279 bfd_size_type amt;
5a580b3a
AM
5280
5281 /* Possible optimization parameters: if we have NSYMS symbols we say
5282 that the hashing table must at least have NSYMS/4 and at most
5283 2*NSYMS buckets. */
5284 minsize = nsyms / 4;
5285 if (minsize == 0)
5286 minsize = 1;
5287 best_size = maxsize = nsyms * 2;
fdc90cb4
JJ
5288 if (gnu_hash)
5289 {
5290 if (minsize < 2)
5291 minsize = 2;
5292 if ((best_size & 31) == 0)
5293 ++best_size;
5294 }
5a580b3a
AM
5295
5296 /* Create array where we count the collisions in. We must use bfd_malloc
5297 since the size could be large. */
5298 amt = maxsize;
5299 amt *= sizeof (unsigned long int);
5300 counts = bfd_malloc (amt);
5301 if (counts == NULL)
fdc90cb4 5302 return 0;
5a580b3a
AM
5303
5304 /* Compute the "optimal" size for the hash table. The criteria is a
5305 minimal chain length. The minor criteria is (of course) the size
5306 of the table. */
5307 for (i = minsize; i < maxsize; ++i)
5308 {
5309 /* Walk through the array of hashcodes and count the collisions. */
5310 BFD_HOST_U_64_BIT max;
5311 unsigned long int j;
5312 unsigned long int fact;
5313
fdc90cb4
JJ
5314 if (gnu_hash && (i & 31) == 0)
5315 continue;
5316
5a580b3a
AM
5317 memset (counts, '\0', i * sizeof (unsigned long int));
5318
5319 /* Determine how often each hash bucket is used. */
5320 for (j = 0; j < nsyms; ++j)
5321 ++counts[hashcodes[j] % i];
5322
5323 /* For the weight function we need some information about the
5324 pagesize on the target. This is information need not be 100%
5325 accurate. Since this information is not available (so far) we
5326 define it here to a reasonable default value. If it is crucial
5327 to have a better value some day simply define this value. */
5328# ifndef BFD_TARGET_PAGESIZE
5329# define BFD_TARGET_PAGESIZE (4096)
5330# endif
5331
fdc90cb4
JJ
5332 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5333 and the chains. */
5334 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5a580b3a
AM
5335
5336# if 1
5337 /* Variant 1: optimize for short chains. We add the squares
5338 of all the chain lengths (which favors many small chain
5339 over a few long chains). */
5340 for (j = 0; j < i; ++j)
5341 max += counts[j] * counts[j];
5342
5343 /* This adds penalties for the overall size of the table. */
fdc90cb4 5344 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5345 max *= fact * fact;
5346# else
5347 /* Variant 2: Optimize a lot more for small table. Here we
5348 also add squares of the size but we also add penalties for
5349 empty slots (the +1 term). */
5350 for (j = 0; j < i; ++j)
5351 max += (1 + counts[j]) * (1 + counts[j]);
5352
5353 /* The overall size of the table is considered, but not as
5354 strong as in variant 1, where it is squared. */
fdc90cb4 5355 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5a580b3a
AM
5356 max *= fact;
5357# endif
5358
5359 /* Compare with current best results. */
5360 if (max < best_chlen)
5361 {
5362 best_chlen = max;
5363 best_size = i;
5364 }
5365 }
5366
5367 free (counts);
5368 }
5369 else
5370#endif /* defined (BFD_HOST_U_64_BIT) */
5371 {
5372 /* This is the fallback solution if no 64bit type is available or if we
5373 are not supposed to spend much time on optimizations. We select the
5374 bucket count using a fixed set of numbers. */
5375 for (i = 0; elf_buckets[i] != 0; i++)
5376 {
5377 best_size = elf_buckets[i];
fdc90cb4 5378 if (nsyms < elf_buckets[i + 1])
5a580b3a
AM
5379 break;
5380 }
fdc90cb4
JJ
5381 if (gnu_hash && best_size < 2)
5382 best_size = 2;
5a580b3a
AM
5383 }
5384
5a580b3a
AM
5385 return best_size;
5386}
5387
5388/* Set up the sizes and contents of the ELF dynamic sections. This is
5389 called by the ELF linker emulation before_allocation routine. We
5390 must set the sizes of the sections before the linker sets the
5391 addresses of the various sections. */
5392
5393bfd_boolean
5394bfd_elf_size_dynamic_sections (bfd *output_bfd,
5395 const char *soname,
5396 const char *rpath,
5397 const char *filter_shlib,
5398 const char * const *auxiliary_filters,
5399 struct bfd_link_info *info,
5400 asection **sinterpptr,
5401 struct bfd_elf_version_tree *verdefs)
5402{
5403 bfd_size_type soname_indx;
5404 bfd *dynobj;
5405 const struct elf_backend_data *bed;
5406 struct elf_assign_sym_version_info asvinfo;
5407
5408 *sinterpptr = NULL;
5409
5410 soname_indx = (bfd_size_type) -1;
5411
5412 if (!is_elf_hash_table (info->hash))
5413 return TRUE;
5414
6bfdb61b 5415 bed = get_elf_backend_data (output_bfd);
5a580b3a
AM
5416 if (info->execstack)
5417 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5418 else if (info->noexecstack)
5419 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5420 else
5421 {
5422 bfd *inputobj;
5423 asection *notesec = NULL;
5424 int exec = 0;
5425
5426 for (inputobj = info->input_bfds;
5427 inputobj;
5428 inputobj = inputobj->link_next)
5429 {
5430 asection *s;
5431
a94b9d2d 5432 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5a580b3a
AM
5433 continue;
5434 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5435 if (s)
5436 {
5437 if (s->flags & SEC_CODE)
5438 exec = PF_X;
5439 notesec = s;
5440 }
6bfdb61b 5441 else if (bed->default_execstack)
5a580b3a
AM
5442 exec = PF_X;
5443 }
5444 if (notesec)
5445 {
5446 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5447 if (exec && info->relocatable
5448 && notesec->output_section != bfd_abs_section_ptr)
5449 notesec->output_section->flags |= SEC_CODE;
5450 }
5451 }
5452
5453 /* Any syms created from now on start with -1 in
5454 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
5455 elf_hash_table (info)->init_got_refcount
5456 = elf_hash_table (info)->init_got_offset;
5457 elf_hash_table (info)->init_plt_refcount
5458 = elf_hash_table (info)->init_plt_offset;
5a580b3a
AM
5459
5460 /* The backend may have to create some sections regardless of whether
5461 we're dynamic or not. */
5a580b3a
AM
5462 if (bed->elf_backend_always_size_sections
5463 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5464 return FALSE;
5465
eb3d5f3b
JB
5466 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5467 return FALSE;
5468
5a580b3a
AM
5469 dynobj = elf_hash_table (info)->dynobj;
5470
5471 /* If there were no dynamic objects in the link, there is nothing to
5472 do here. */
5473 if (dynobj == NULL)
5474 return TRUE;
5475
5a580b3a
AM
5476 if (elf_hash_table (info)->dynamic_sections_created)
5477 {
5478 struct elf_info_failed eif;
5479 struct elf_link_hash_entry *h;
5480 asection *dynstr;
5481 struct bfd_elf_version_tree *t;
5482 struct bfd_elf_version_expr *d;
046183de 5483 asection *s;
5a580b3a
AM
5484 bfd_boolean all_defined;
5485
5486 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5487 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5488
5489 if (soname != NULL)
5490 {
5491 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5492 soname, TRUE);
5493 if (soname_indx == (bfd_size_type) -1
5494 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5495 return FALSE;
5496 }
5497
5498 if (info->symbolic)
5499 {
5500 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5501 return FALSE;
5502 info->flags |= DF_SYMBOLIC;
5503 }
5504
5505 if (rpath != NULL)
5506 {
5507 bfd_size_type indx;
5508
5509 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5510 TRUE);
5511 if (indx == (bfd_size_type) -1
5512 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5513 return FALSE;
5514
5515 if (info->new_dtags)
5516 {
5517 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5518 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5519 return FALSE;
5520 }
5521 }
5522
5523 if (filter_shlib != NULL)
5524 {
5525 bfd_size_type indx;
5526
5527 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5528 filter_shlib, TRUE);
5529 if (indx == (bfd_size_type) -1
5530 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5531 return FALSE;
5532 }
5533
5534 if (auxiliary_filters != NULL)
5535 {
5536 const char * const *p;
5537
5538 for (p = auxiliary_filters; *p != NULL; p++)
5539 {
5540 bfd_size_type indx;
5541
5542 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5543 *p, TRUE);
5544 if (indx == (bfd_size_type) -1
5545 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5546 return FALSE;
5547 }
5548 }
5549
5550 eif.info = info;
5551 eif.verdefs = verdefs;
5552 eif.failed = FALSE;
5553
5554 /* If we are supposed to export all symbols into the dynamic symbol
5555 table (this is not the normal case), then do so. */
55255dae
L
5556 if (info->export_dynamic
5557 || (info->executable && info->dynamic))
5a580b3a
AM
5558 {
5559 elf_link_hash_traverse (elf_hash_table (info),
5560 _bfd_elf_export_symbol,
5561 &eif);
5562 if (eif.failed)
5563 return FALSE;
5564 }
5565
5566 /* Make all global versions with definition. */
5567 for (t = verdefs; t != NULL; t = t->next)
5568 for (d = t->globals.list; d != NULL; d = d->next)
5569 if (!d->symver && d->symbol)
5570 {
5571 const char *verstr, *name;
5572 size_t namelen, verlen, newlen;
5573 char *newname, *p;
5574 struct elf_link_hash_entry *newh;
5575
5576 name = d->symbol;
5577 namelen = strlen (name);
5578 verstr = t->name;
5579 verlen = strlen (verstr);
5580 newlen = namelen + verlen + 3;
5581
5582 newname = bfd_malloc (newlen);
5583 if (newname == NULL)
5584 return FALSE;
5585 memcpy (newname, name, namelen);
5586
5587 /* Check the hidden versioned definition. */
5588 p = newname + namelen;
5589 *p++ = ELF_VER_CHR;
5590 memcpy (p, verstr, verlen + 1);
5591 newh = elf_link_hash_lookup (elf_hash_table (info),
5592 newname, FALSE, FALSE,
5593 FALSE);
5594 if (newh == NULL
5595 || (newh->root.type != bfd_link_hash_defined
5596 && newh->root.type != bfd_link_hash_defweak))
5597 {
5598 /* Check the default versioned definition. */
5599 *p++ = ELF_VER_CHR;
5600 memcpy (p, verstr, verlen + 1);
5601 newh = elf_link_hash_lookup (elf_hash_table (info),
5602 newname, FALSE, FALSE,
5603 FALSE);
5604 }
5605 free (newname);
5606
5607 /* Mark this version if there is a definition and it is
5608 not defined in a shared object. */
5609 if (newh != NULL
f5385ebf 5610 && !newh->def_dynamic
5a580b3a
AM
5611 && (newh->root.type == bfd_link_hash_defined
5612 || newh->root.type == bfd_link_hash_defweak))
5613 d->symver = 1;
5614 }
5615
5616 /* Attach all the symbols to their version information. */
5617 asvinfo.output_bfd = output_bfd;
5618 asvinfo.info = info;
5619 asvinfo.verdefs = verdefs;
5620 asvinfo.failed = FALSE;
5621
5622 elf_link_hash_traverse (elf_hash_table (info),
5623 _bfd_elf_link_assign_sym_version,
5624 &asvinfo);
5625 if (asvinfo.failed)
5626 return FALSE;
5627
5628 if (!info->allow_undefined_version)
5629 {
5630 /* Check if all global versions have a definition. */
5631 all_defined = TRUE;
5632 for (t = verdefs; t != NULL; t = t->next)
5633 for (d = t->globals.list; d != NULL; d = d->next)
5634 if (!d->symver && !d->script)
5635 {
5636 (*_bfd_error_handler)
5637 (_("%s: undefined version: %s"),
5638 d->pattern, t->name);
5639 all_defined = FALSE;
5640 }
5641
5642 if (!all_defined)
5643 {
5644 bfd_set_error (bfd_error_bad_value);
5645 return FALSE;
5646 }
5647 }
5648
5649 /* Find all symbols which were defined in a dynamic object and make
5650 the backend pick a reasonable value for them. */
5651 elf_link_hash_traverse (elf_hash_table (info),
5652 _bfd_elf_adjust_dynamic_symbol,
5653 &eif);
5654 if (eif.failed)
5655 return FALSE;
5656
5657 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5658 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5659 now so that we know the final size of the .dynamic section. */
5660
5661 /* If there are initialization and/or finalization functions to
5662 call then add the corresponding DT_INIT/DT_FINI entries. */
5663 h = (info->init_function
5664 ? elf_link_hash_lookup (elf_hash_table (info),
5665 info->init_function, FALSE,
5666 FALSE, FALSE)
5667 : NULL);
5668 if (h != NULL
f5385ebf
AM
5669 && (h->ref_regular
5670 || h->def_regular))
5a580b3a
AM
5671 {
5672 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5673 return FALSE;
5674 }
5675 h = (info->fini_function
5676 ? elf_link_hash_lookup (elf_hash_table (info),
5677 info->fini_function, FALSE,
5678 FALSE, FALSE)
5679 : NULL);
5680 if (h != NULL
f5385ebf
AM
5681 && (h->ref_regular
5682 || h->def_regular))
5a580b3a
AM
5683 {
5684 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5685 return FALSE;
5686 }
5687
046183de
AM
5688 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5689 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5690 {
5691 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5692 if (! info->executable)
5693 {
5694 bfd *sub;
5695 asection *o;
5696
5697 for (sub = info->input_bfds; sub != NULL;
5698 sub = sub->link_next)
3fcd97f1
JJ
5699 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5700 for (o = sub->sections; o != NULL; o = o->next)
5701 if (elf_section_data (o)->this_hdr.sh_type
5702 == SHT_PREINIT_ARRAY)
5703 {
5704 (*_bfd_error_handler)
5705 (_("%B: .preinit_array section is not allowed in DSO"),
5706 sub);
5707 break;
5708 }
5a580b3a
AM
5709
5710 bfd_set_error (bfd_error_nonrepresentable_section);
5711 return FALSE;
5712 }
5713
5714 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5715 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5716 return FALSE;
5717 }
046183de
AM
5718 s = bfd_get_section_by_name (output_bfd, ".init_array");
5719 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5720 {
5721 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5722 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5723 return FALSE;
5724 }
046183de
AM
5725 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5726 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5727 {
5728 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5729 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5730 return FALSE;
5731 }
5732
5733 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5734 /* If .dynstr is excluded from the link, we don't want any of
5735 these tags. Strictly, we should be checking each section
5736 individually; This quick check covers for the case where
5737 someone does a /DISCARD/ : { *(*) }. */
5738 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5739 {
5740 bfd_size_type strsize;
5741
5742 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
fdc90cb4
JJ
5743 if ((info->emit_hash
5744 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5745 || (info->emit_gnu_hash
5746 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5a580b3a
AM
5747 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5748 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5749 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5750 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5751 bed->s->sizeof_sym))
5752 return FALSE;
5753 }
5754 }
5755
5756 /* The backend must work out the sizes of all the other dynamic
5757 sections. */
5758 if (bed->elf_backend_size_dynamic_sections
5759 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5760 return FALSE;
5761
5762 if (elf_hash_table (info)->dynamic_sections_created)
5763 {
554220db 5764 unsigned long section_sym_count;
5a580b3a 5765 asection *s;
5a580b3a
AM
5766
5767 /* Set up the version definition section. */
5768 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5769 BFD_ASSERT (s != NULL);
5770
5771 /* We may have created additional version definitions if we are
5772 just linking a regular application. */
5773 verdefs = asvinfo.verdefs;
5774
5775 /* Skip anonymous version tag. */
5776 if (verdefs != NULL && verdefs->vernum == 0)
5777 verdefs = verdefs->next;
5778
3e3b46e5 5779 if (verdefs == NULL && !info->create_default_symver)
8423293d 5780 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5781 else
5782 {
5783 unsigned int cdefs;
5784 bfd_size_type size;
5785 struct bfd_elf_version_tree *t;
5786 bfd_byte *p;
5787 Elf_Internal_Verdef def;
5788 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5789 struct bfd_link_hash_entry *bh;
5790 struct elf_link_hash_entry *h;
5791 const char *name;
5a580b3a
AM
5792
5793 cdefs = 0;
5794 size = 0;
5795
5796 /* Make space for the base version. */
5797 size += sizeof (Elf_External_Verdef);
5798 size += sizeof (Elf_External_Verdaux);
5799 ++cdefs;
5800
3e3b46e5
PB
5801 /* Make space for the default version. */
5802 if (info->create_default_symver)
5803 {
5804 size += sizeof (Elf_External_Verdef);
5805 ++cdefs;
5806 }
5807
5a580b3a
AM
5808 for (t = verdefs; t != NULL; t = t->next)
5809 {
5810 struct bfd_elf_version_deps *n;
5811
5812 size += sizeof (Elf_External_Verdef);
5813 size += sizeof (Elf_External_Verdaux);
5814 ++cdefs;
5815
5816 for (n = t->deps; n != NULL; n = n->next)
5817 size += sizeof (Elf_External_Verdaux);
5818 }
5819
eea6121a
AM
5820 s->size = size;
5821 s->contents = bfd_alloc (output_bfd, s->size);
5822 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5823 return FALSE;
5824
5825 /* Fill in the version definition section. */
5826
5827 p = s->contents;
5828
5829 def.vd_version = VER_DEF_CURRENT;
5830 def.vd_flags = VER_FLG_BASE;
5831 def.vd_ndx = 1;
5832 def.vd_cnt = 1;
3e3b46e5
PB
5833 if (info->create_default_symver)
5834 {
5835 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5836 def.vd_next = sizeof (Elf_External_Verdef);
5837 }
5838 else
5839 {
5840 def.vd_aux = sizeof (Elf_External_Verdef);
5841 def.vd_next = (sizeof (Elf_External_Verdef)
5842 + sizeof (Elf_External_Verdaux));
5843 }
5a580b3a
AM
5844
5845 if (soname_indx != (bfd_size_type) -1)
5846 {
5847 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5848 soname_indx);
5849 def.vd_hash = bfd_elf_hash (soname);
5850 defaux.vda_name = soname_indx;
3e3b46e5 5851 name = soname;
5a580b3a
AM
5852 }
5853 else
5854 {
5a580b3a
AM
5855 bfd_size_type indx;
5856
06084812 5857 name = lbasename (output_bfd->filename);
5a580b3a
AM
5858 def.vd_hash = bfd_elf_hash (name);
5859 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5860 name, FALSE);
5861 if (indx == (bfd_size_type) -1)
5862 return FALSE;
5863 defaux.vda_name = indx;
5864 }
5865 defaux.vda_next = 0;
5866
5867 _bfd_elf_swap_verdef_out (output_bfd, &def,
5868 (Elf_External_Verdef *) p);
5869 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5870 if (info->create_default_symver)
5871 {
5872 /* Add a symbol representing this version. */
5873 bh = NULL;
5874 if (! (_bfd_generic_link_add_one_symbol
5875 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5876 0, NULL, FALSE,
5877 get_elf_backend_data (dynobj)->collect, &bh)))
5878 return FALSE;
5879 h = (struct elf_link_hash_entry *) bh;
5880 h->non_elf = 0;
5881 h->def_regular = 1;
5882 h->type = STT_OBJECT;
5883 h->verinfo.vertree = NULL;
5884
5885 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5886 return FALSE;
5887
5888 /* Create a duplicate of the base version with the same
5889 aux block, but different flags. */
5890 def.vd_flags = 0;
5891 def.vd_ndx = 2;
5892 def.vd_aux = sizeof (Elf_External_Verdef);
5893 if (verdefs)
5894 def.vd_next = (sizeof (Elf_External_Verdef)
5895 + sizeof (Elf_External_Verdaux));
5896 else
5897 def.vd_next = 0;
5898 _bfd_elf_swap_verdef_out (output_bfd, &def,
5899 (Elf_External_Verdef *) p);
5900 p += sizeof (Elf_External_Verdef);
5901 }
5a580b3a
AM
5902 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5903 (Elf_External_Verdaux *) p);
5904 p += sizeof (Elf_External_Verdaux);
5905
5906 for (t = verdefs; t != NULL; t = t->next)
5907 {
5908 unsigned int cdeps;
5909 struct bfd_elf_version_deps *n;
5a580b3a
AM
5910
5911 cdeps = 0;
5912 for (n = t->deps; n != NULL; n = n->next)
5913 ++cdeps;
5914
5915 /* Add a symbol representing this version. */
5916 bh = NULL;
5917 if (! (_bfd_generic_link_add_one_symbol
5918 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5919 0, NULL, FALSE,
5920 get_elf_backend_data (dynobj)->collect, &bh)))
5921 return FALSE;
5922 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5923 h->non_elf = 0;
5924 h->def_regular = 1;
5a580b3a
AM
5925 h->type = STT_OBJECT;
5926 h->verinfo.vertree = t;
5927
c152c796 5928 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5929 return FALSE;
5930
5931 def.vd_version = VER_DEF_CURRENT;
5932 def.vd_flags = 0;
5933 if (t->globals.list == NULL
5934 && t->locals.list == NULL
5935 && ! t->used)
5936 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5937 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5938 def.vd_cnt = cdeps + 1;
5939 def.vd_hash = bfd_elf_hash (t->name);
5940 def.vd_aux = sizeof (Elf_External_Verdef);
5941 def.vd_next = 0;
5942 if (t->next != NULL)
5943 def.vd_next = (sizeof (Elf_External_Verdef)
5944 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5945
5946 _bfd_elf_swap_verdef_out (output_bfd, &def,
5947 (Elf_External_Verdef *) p);
5948 p += sizeof (Elf_External_Verdef);
5949
5950 defaux.vda_name = h->dynstr_index;
5951 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5952 h->dynstr_index);
5953 defaux.vda_next = 0;
5954 if (t->deps != NULL)
5955 defaux.vda_next = sizeof (Elf_External_Verdaux);
5956 t->name_indx = defaux.vda_name;
5957
5958 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5959 (Elf_External_Verdaux *) p);
5960 p += sizeof (Elf_External_Verdaux);
5961
5962 for (n = t->deps; n != NULL; n = n->next)
5963 {
5964 if (n->version_needed == NULL)
5965 {
5966 /* This can happen if there was an error in the
5967 version script. */
5968 defaux.vda_name = 0;
5969 }
5970 else
5971 {
5972 defaux.vda_name = n->version_needed->name_indx;
5973 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5974 defaux.vda_name);
5975 }
5976 if (n->next == NULL)
5977 defaux.vda_next = 0;
5978 else
5979 defaux.vda_next = sizeof (Elf_External_Verdaux);
5980
5981 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5982 (Elf_External_Verdaux *) p);
5983 p += sizeof (Elf_External_Verdaux);
5984 }
5985 }
5986
5987 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5988 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5989 return FALSE;
5990
5991 elf_tdata (output_bfd)->cverdefs = cdefs;
5992 }
5993
5994 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5995 {
5996 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5997 return FALSE;
5998 }
5999 else if (info->flags & DF_BIND_NOW)
6000 {
6001 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6002 return FALSE;
6003 }
6004
6005 if (info->flags_1)
6006 {
6007 if (info->executable)
6008 info->flags_1 &= ~ (DF_1_INITFIRST
6009 | DF_1_NODELETE
6010 | DF_1_NOOPEN);
6011 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6012 return FALSE;
6013 }
6014
6015 /* Work out the size of the version reference section. */
6016
6017 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6018 BFD_ASSERT (s != NULL);
6019 {
6020 struct elf_find_verdep_info sinfo;
6021
6022 sinfo.output_bfd = output_bfd;
6023 sinfo.info = info;
6024 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6025 if (sinfo.vers == 0)
6026 sinfo.vers = 1;
6027 sinfo.failed = FALSE;
6028
6029 elf_link_hash_traverse (elf_hash_table (info),
6030 _bfd_elf_link_find_version_dependencies,
6031 &sinfo);
14b1c01e
AM
6032 if (sinfo.failed)
6033 return FALSE;
5a580b3a
AM
6034
6035 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 6036 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
6037 else
6038 {
6039 Elf_Internal_Verneed *t;
6040 unsigned int size;
6041 unsigned int crefs;
6042 bfd_byte *p;
6043
6044 /* Build the version definition section. */
6045 size = 0;
6046 crefs = 0;
6047 for (t = elf_tdata (output_bfd)->verref;
6048 t != NULL;
6049 t = t->vn_nextref)
6050 {
6051 Elf_Internal_Vernaux *a;
6052
6053 size += sizeof (Elf_External_Verneed);
6054 ++crefs;
6055 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6056 size += sizeof (Elf_External_Vernaux);
6057 }
6058
eea6121a
AM
6059 s->size = size;
6060 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
6061 if (s->contents == NULL)
6062 return FALSE;
6063
6064 p = s->contents;
6065 for (t = elf_tdata (output_bfd)->verref;
6066 t != NULL;
6067 t = t->vn_nextref)
6068 {
6069 unsigned int caux;
6070 Elf_Internal_Vernaux *a;
6071 bfd_size_type indx;
6072
6073 caux = 0;
6074 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6075 ++caux;
6076
6077 t->vn_version = VER_NEED_CURRENT;
6078 t->vn_cnt = caux;
6079 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6080 elf_dt_name (t->vn_bfd) != NULL
6081 ? elf_dt_name (t->vn_bfd)
06084812 6082 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
6083 FALSE);
6084 if (indx == (bfd_size_type) -1)
6085 return FALSE;
6086 t->vn_file = indx;
6087 t->vn_aux = sizeof (Elf_External_Verneed);
6088 if (t->vn_nextref == NULL)
6089 t->vn_next = 0;
6090 else
6091 t->vn_next = (sizeof (Elf_External_Verneed)
6092 + caux * sizeof (Elf_External_Vernaux));
6093
6094 _bfd_elf_swap_verneed_out (output_bfd, t,
6095 (Elf_External_Verneed *) p);
6096 p += sizeof (Elf_External_Verneed);
6097
6098 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6099 {
6100 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6101 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6102 a->vna_nodename, FALSE);
6103 if (indx == (bfd_size_type) -1)
6104 return FALSE;
6105 a->vna_name = indx;
6106 if (a->vna_nextptr == NULL)
6107 a->vna_next = 0;
6108 else
6109 a->vna_next = sizeof (Elf_External_Vernaux);
6110
6111 _bfd_elf_swap_vernaux_out (output_bfd, a,
6112 (Elf_External_Vernaux *) p);
6113 p += sizeof (Elf_External_Vernaux);
6114 }
6115 }
6116
6117 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6118 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6119 return FALSE;
6120
6121 elf_tdata (output_bfd)->cverrefs = crefs;
6122 }
6123 }
6124
8423293d
AM
6125 if ((elf_tdata (output_bfd)->cverrefs == 0
6126 && elf_tdata (output_bfd)->cverdefs == 0)
6127 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6128 &section_sym_count) == 0)
6129 {
6130 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6131 s->flags |= SEC_EXCLUDE;
6132 }
6133 }
6134 return TRUE;
6135}
6136
74541ad4
AM
6137/* Find the first non-excluded output section. We'll use its
6138 section symbol for some emitted relocs. */
6139void
6140_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6141{
6142 asection *s;
6143
6144 for (s = output_bfd->sections; s != NULL; s = s->next)
6145 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6146 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6147 {
6148 elf_hash_table (info)->text_index_section = s;
6149 break;
6150 }
6151}
6152
6153/* Find two non-excluded output sections, one for code, one for data.
6154 We'll use their section symbols for some emitted relocs. */
6155void
6156_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6157{
6158 asection *s;
6159
266b05cf
DJ
6160 /* Data first, since setting text_index_section changes
6161 _bfd_elf_link_omit_section_dynsym. */
74541ad4 6162 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf 6163 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
74541ad4
AM
6164 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6165 {
266b05cf 6166 elf_hash_table (info)->data_index_section = s;
74541ad4
AM
6167 break;
6168 }
6169
6170 for (s = output_bfd->sections; s != NULL; s = s->next)
266b05cf
DJ
6171 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6172 == (SEC_ALLOC | SEC_READONLY))
74541ad4
AM
6173 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6174 {
266b05cf 6175 elf_hash_table (info)->text_index_section = s;
74541ad4
AM
6176 break;
6177 }
6178
6179 if (elf_hash_table (info)->text_index_section == NULL)
6180 elf_hash_table (info)->text_index_section
6181 = elf_hash_table (info)->data_index_section;
6182}
6183
8423293d
AM
6184bfd_boolean
6185bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6186{
74541ad4
AM
6187 const struct elf_backend_data *bed;
6188
8423293d
AM
6189 if (!is_elf_hash_table (info->hash))
6190 return TRUE;
6191
74541ad4
AM
6192 bed = get_elf_backend_data (output_bfd);
6193 (*bed->elf_backend_init_index_section) (output_bfd, info);
6194
8423293d
AM
6195 if (elf_hash_table (info)->dynamic_sections_created)
6196 {
6197 bfd *dynobj;
8423293d
AM
6198 asection *s;
6199 bfd_size_type dynsymcount;
6200 unsigned long section_sym_count;
8423293d
AM
6201 unsigned int dtagcount;
6202
6203 dynobj = elf_hash_table (info)->dynobj;
6204
5a580b3a
AM
6205 /* Assign dynsym indicies. In a shared library we generate a
6206 section symbol for each output section, which come first.
6207 Next come all of the back-end allocated local dynamic syms,
6208 followed by the rest of the global symbols. */
6209
554220db
AM
6210 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6211 &section_sym_count);
5a580b3a
AM
6212
6213 /* Work out the size of the symbol version section. */
6214 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6215 BFD_ASSERT (s != NULL);
8423293d
AM
6216 if (dynsymcount != 0
6217 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 6218 {
eea6121a
AM
6219 s->size = dynsymcount * sizeof (Elf_External_Versym);
6220 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
6221 if (s->contents == NULL)
6222 return FALSE;
6223
6224 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6225 return FALSE;
6226 }
6227
6228 /* Set the size of the .dynsym and .hash sections. We counted
6229 the number of dynamic symbols in elf_link_add_object_symbols.
6230 We will build the contents of .dynsym and .hash when we build
6231 the final symbol table, because until then we do not know the
6232 correct value to give the symbols. We built the .dynstr
6233 section as we went along in elf_link_add_object_symbols. */
6234 s = bfd_get_section_by_name (dynobj, ".dynsym");
6235 BFD_ASSERT (s != NULL);
eea6121a 6236 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
6237
6238 if (dynsymcount != 0)
6239 {
554220db
AM
6240 s->contents = bfd_alloc (output_bfd, s->size);
6241 if (s->contents == NULL)
6242 return FALSE;
5a580b3a 6243
554220db
AM
6244 /* The first entry in .dynsym is a dummy symbol.
6245 Clear all the section syms, in case we don't output them all. */
6246 ++section_sym_count;
6247 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
6248 }
6249
fdc90cb4
JJ
6250 elf_hash_table (info)->bucketcount = 0;
6251
5a580b3a
AM
6252 /* Compute the size of the hashing table. As a side effect this
6253 computes the hash values for all the names we export. */
fdc90cb4
JJ
6254 if (info->emit_hash)
6255 {
6256 unsigned long int *hashcodes;
14b1c01e 6257 struct hash_codes_info hashinf;
fdc90cb4
JJ
6258 bfd_size_type amt;
6259 unsigned long int nsyms;
6260 size_t bucketcount;
6261 size_t hash_entry_size;
6262
6263 /* Compute the hash values for all exported symbols. At the same
6264 time store the values in an array so that we could use them for
6265 optimizations. */
6266 amt = dynsymcount * sizeof (unsigned long int);
6267 hashcodes = bfd_malloc (amt);
6268 if (hashcodes == NULL)
6269 return FALSE;
14b1c01e
AM
6270 hashinf.hashcodes = hashcodes;
6271 hashinf.error = FALSE;
5a580b3a 6272
fdc90cb4
JJ
6273 /* Put all hash values in HASHCODES. */
6274 elf_link_hash_traverse (elf_hash_table (info),
14b1c01e
AM
6275 elf_collect_hash_codes, &hashinf);
6276 if (hashinf.error)
4dd07732
AM
6277 {
6278 free (hashcodes);
6279 return FALSE;
6280 }
5a580b3a 6281
14b1c01e 6282 nsyms = hashinf.hashcodes - hashcodes;
fdc90cb4
JJ
6283 bucketcount
6284 = compute_bucket_count (info, hashcodes, nsyms, 0);
6285 free (hashcodes);
6286
6287 if (bucketcount == 0)
6288 return FALSE;
5a580b3a 6289
fdc90cb4
JJ
6290 elf_hash_table (info)->bucketcount = bucketcount;
6291
6292 s = bfd_get_section_by_name (dynobj, ".hash");
6293 BFD_ASSERT (s != NULL);
6294 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6295 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6296 s->contents = bfd_zalloc (output_bfd, s->size);
6297 if (s->contents == NULL)
6298 return FALSE;
6299
6300 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6301 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6302 s->contents + hash_entry_size);
6303 }
6304
6305 if (info->emit_gnu_hash)
6306 {
6307 size_t i, cnt;
6308 unsigned char *contents;
6309 struct collect_gnu_hash_codes cinfo;
6310 bfd_size_type amt;
6311 size_t bucketcount;
6312
6313 memset (&cinfo, 0, sizeof (cinfo));
6314
6315 /* Compute the hash values for all exported symbols. At the same
6316 time store the values in an array so that we could use them for
6317 optimizations. */
6318 amt = dynsymcount * 2 * sizeof (unsigned long int);
6319 cinfo.hashcodes = bfd_malloc (amt);
6320 if (cinfo.hashcodes == NULL)
6321 return FALSE;
6322
6323 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6324 cinfo.min_dynindx = -1;
6325 cinfo.output_bfd = output_bfd;
6326 cinfo.bed = bed;
6327
6328 /* Put all hash values in HASHCODES. */
6329 elf_link_hash_traverse (elf_hash_table (info),
6330 elf_collect_gnu_hash_codes, &cinfo);
14b1c01e 6331 if (cinfo.error)
4dd07732
AM
6332 {
6333 free (cinfo.hashcodes);
6334 return FALSE;
6335 }
fdc90cb4
JJ
6336
6337 bucketcount
6338 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6339
6340 if (bucketcount == 0)
6341 {
6342 free (cinfo.hashcodes);
6343 return FALSE;
6344 }
6345
6346 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6347 BFD_ASSERT (s != NULL);
6348
6349 if (cinfo.nsyms == 0)
6350 {
6351 /* Empty .gnu.hash section is special. */
6352 BFD_ASSERT (cinfo.min_dynindx == -1);
6353 free (cinfo.hashcodes);
6354 s->size = 5 * 4 + bed->s->arch_size / 8;
6355 contents = bfd_zalloc (output_bfd, s->size);
6356 if (contents == NULL)
6357 return FALSE;
6358 s->contents = contents;
6359 /* 1 empty bucket. */
6360 bfd_put_32 (output_bfd, 1, contents);
6361 /* SYMIDX above the special symbol 0. */
6362 bfd_put_32 (output_bfd, 1, contents + 4);
6363 /* Just one word for bitmask. */
6364 bfd_put_32 (output_bfd, 1, contents + 8);
6365 /* Only hash fn bloom filter. */
6366 bfd_put_32 (output_bfd, 0, contents + 12);
6367 /* No hashes are valid - empty bitmask. */
6368 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6369 /* No hashes in the only bucket. */
6370 bfd_put_32 (output_bfd, 0,
6371 contents + 16 + bed->s->arch_size / 8);
6372 }
6373 else
6374 {
fdc90cb4 6375 unsigned long int maskwords, maskbitslog2;
0b33793d 6376 BFD_ASSERT (cinfo.min_dynindx != -1);
fdc90cb4
JJ
6377
6378 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6379 if (maskbitslog2 < 3)
6380 maskbitslog2 = 5;
6381 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6382 maskbitslog2 = maskbitslog2 + 3;
6383 else
6384 maskbitslog2 = maskbitslog2 + 2;
6385 if (bed->s->arch_size == 64)
6386 {
6387 if (maskbitslog2 == 5)
6388 maskbitslog2 = 6;
6389 cinfo.shift1 = 6;
6390 }
6391 else
6392 cinfo.shift1 = 5;
6393 cinfo.mask = (1 << cinfo.shift1) - 1;
2ccdbfcc 6394 cinfo.shift2 = maskbitslog2;
fdc90cb4
JJ
6395 cinfo.maskbits = 1 << maskbitslog2;
6396 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6397 amt = bucketcount * sizeof (unsigned long int) * 2;
6398 amt += maskwords * sizeof (bfd_vma);
6399 cinfo.bitmask = bfd_malloc (amt);
6400 if (cinfo.bitmask == NULL)
6401 {
6402 free (cinfo.hashcodes);
6403 return FALSE;
6404 }
6405
6406 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6407 cinfo.indx = cinfo.counts + bucketcount;
6408 cinfo.symindx = dynsymcount - cinfo.nsyms;
6409 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6410
6411 /* Determine how often each hash bucket is used. */
6412 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6413 for (i = 0; i < cinfo.nsyms; ++i)
6414 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6415
6416 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6417 if (cinfo.counts[i] != 0)
6418 {
6419 cinfo.indx[i] = cnt;
6420 cnt += cinfo.counts[i];
6421 }
6422 BFD_ASSERT (cnt == dynsymcount);
6423 cinfo.bucketcount = bucketcount;
6424 cinfo.local_indx = cinfo.min_dynindx;
6425
6426 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6427 s->size += cinfo.maskbits / 8;
6428 contents = bfd_zalloc (output_bfd, s->size);
6429 if (contents == NULL)
6430 {
6431 free (cinfo.bitmask);
6432 free (cinfo.hashcodes);
6433 return FALSE;
6434 }
6435
6436 s->contents = contents;
6437 bfd_put_32 (output_bfd, bucketcount, contents);
6438 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6439 bfd_put_32 (output_bfd, maskwords, contents + 8);
6440 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6441 contents += 16 + cinfo.maskbits / 8;
6442
6443 for (i = 0; i < bucketcount; ++i)
6444 {
6445 if (cinfo.counts[i] == 0)
6446 bfd_put_32 (output_bfd, 0, contents);
6447 else
6448 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6449 contents += 4;
6450 }
6451
6452 cinfo.contents = contents;
6453
6454 /* Renumber dynamic symbols, populate .gnu.hash section. */
6455 elf_link_hash_traverse (elf_hash_table (info),
6456 elf_renumber_gnu_hash_syms, &cinfo);
6457
6458 contents = s->contents + 16;
6459 for (i = 0; i < maskwords; ++i)
6460 {
6461 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6462 contents);
6463 contents += bed->s->arch_size / 8;
6464 }
6465
6466 free (cinfo.bitmask);
6467 free (cinfo.hashcodes);
6468 }
6469 }
5a580b3a
AM
6470
6471 s = bfd_get_section_by_name (dynobj, ".dynstr");
6472 BFD_ASSERT (s != NULL);
6473
4ad4eba5 6474 elf_finalize_dynstr (output_bfd, info);
5a580b3a 6475
eea6121a 6476 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
6477
6478 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6479 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6480 return FALSE;
6481 }
6482
6483 return TRUE;
6484}
4d269e42
AM
6485\f
6486/* Indicate that we are only retrieving symbol values from this
6487 section. */
6488
6489void
6490_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6491{
6492 if (is_elf_hash_table (info->hash))
6493 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6494 _bfd_generic_link_just_syms (sec, info);
6495}
6496
6497/* Make sure sec_info_type is cleared if sec_info is cleared too. */
6498
6499static void
6500merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6501 asection *sec)
6502{
6503 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6504 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6505}
6506
6507/* Finish SHF_MERGE section merging. */
6508
6509bfd_boolean
6510_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6511{
6512 bfd *ibfd;
6513 asection *sec;
6514
6515 if (!is_elf_hash_table (info->hash))
6516 return FALSE;
6517
6518 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6519 if ((ibfd->flags & DYNAMIC) == 0)
6520 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6521 if ((sec->flags & SEC_MERGE) != 0
6522 && !bfd_is_abs_section (sec->output_section))
6523 {
6524 struct bfd_elf_section_data *secdata;
6525
6526 secdata = elf_section_data (sec);
6527 if (! _bfd_add_merge_section (abfd,
6528 &elf_hash_table (info)->merge_info,
6529 sec, &secdata->sec_info))
6530 return FALSE;
6531 else if (secdata->sec_info)
6532 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6533 }
6534
6535 if (elf_hash_table (info)->merge_info != NULL)
6536 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6537 merge_sections_remove_hook);
6538 return TRUE;
6539}
6540
6541/* Create an entry in an ELF linker hash table. */
6542
6543struct bfd_hash_entry *
6544_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6545 struct bfd_hash_table *table,
6546 const char *string)
6547{
6548 /* Allocate the structure if it has not already been allocated by a
6549 subclass. */
6550 if (entry == NULL)
6551 {
6552 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6553 if (entry == NULL)
6554 return entry;
6555 }
6556
6557 /* Call the allocation method of the superclass. */
6558 entry = _bfd_link_hash_newfunc (entry, table, string);
6559 if (entry != NULL)
6560 {
6561 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6562 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6563
6564 /* Set local fields. */
6565 ret->indx = -1;
6566 ret->dynindx = -1;
6567 ret->got = htab->init_got_refcount;
6568 ret->plt = htab->init_plt_refcount;
6569 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6570 - offsetof (struct elf_link_hash_entry, size)));
6571 /* Assume that we have been called by a non-ELF symbol reader.
6572 This flag is then reset by the code which reads an ELF input
6573 file. This ensures that a symbol created by a non-ELF symbol
6574 reader will have the flag set correctly. */
6575 ret->non_elf = 1;
6576 }
6577
6578 return entry;
6579}
6580
6581/* Copy data from an indirect symbol to its direct symbol, hiding the
6582 old indirect symbol. Also used for copying flags to a weakdef. */
6583
6584void
6585_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6586 struct elf_link_hash_entry *dir,
6587 struct elf_link_hash_entry *ind)
6588{
6589 struct elf_link_hash_table *htab;
6590
6591 /* Copy down any references that we may have already seen to the
6592 symbol which just became indirect. */
6593
6594 dir->ref_dynamic |= ind->ref_dynamic;
6595 dir->ref_regular |= ind->ref_regular;
6596 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6597 dir->non_got_ref |= ind->non_got_ref;
6598 dir->needs_plt |= ind->needs_plt;
6599 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6600
6601 if (ind->root.type != bfd_link_hash_indirect)
6602 return;
6603
6604 /* Copy over the global and procedure linkage table refcount entries.
6605 These may have been already set up by a check_relocs routine. */
6606 htab = elf_hash_table (info);
6607 if (ind->got.refcount > htab->init_got_refcount.refcount)
6608 {
6609 if (dir->got.refcount < 0)
6610 dir->got.refcount = 0;
6611 dir->got.refcount += ind->got.refcount;
6612 ind->got.refcount = htab->init_got_refcount.refcount;
6613 }
6614
6615 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6616 {
6617 if (dir->plt.refcount < 0)
6618 dir->plt.refcount = 0;
6619 dir->plt.refcount += ind->plt.refcount;
6620 ind->plt.refcount = htab->init_plt_refcount.refcount;
6621 }
6622
6623 if (ind->dynindx != -1)
6624 {
6625 if (dir->dynindx != -1)
6626 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6627 dir->dynindx = ind->dynindx;
6628 dir->dynstr_index = ind->dynstr_index;
6629 ind->dynindx = -1;
6630 ind->dynstr_index = 0;
6631 }
6632}
6633
6634void
6635_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6636 struct elf_link_hash_entry *h,
6637 bfd_boolean force_local)
6638{
6639 h->plt = elf_hash_table (info)->init_plt_offset;
6640 h->needs_plt = 0;
6641 if (force_local)
6642 {
6643 h->forced_local = 1;
6644 if (h->dynindx != -1)
6645 {
6646 h->dynindx = -1;
6647 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6648 h->dynstr_index);
6649 }
6650 }
6651}
6652
6653/* Initialize an ELF linker hash table. */
6654
6655bfd_boolean
6656_bfd_elf_link_hash_table_init
6657 (struct elf_link_hash_table *table,
6658 bfd *abfd,
6659 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6660 struct bfd_hash_table *,
6661 const char *),
6662 unsigned int entsize)
6663{
6664 bfd_boolean ret;
6665 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6666
6667 memset (table, 0, sizeof * table);
6668 table->init_got_refcount.refcount = can_refcount - 1;
6669 table->init_plt_refcount.refcount = can_refcount - 1;
6670 table->init_got_offset.offset = -(bfd_vma) 1;
6671 table->init_plt_offset.offset = -(bfd_vma) 1;
6672 /* The first dynamic symbol is a dummy. */
6673 table->dynsymcount = 1;
6674
6675 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6676 table->root.type = bfd_link_elf_hash_table;
6677
6678 return ret;
6679}
6680
6681/* Create an ELF linker hash table. */
6682
6683struct bfd_link_hash_table *
6684_bfd_elf_link_hash_table_create (bfd *abfd)
6685{
6686 struct elf_link_hash_table *ret;
6687 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6688
6689 ret = bfd_malloc (amt);
6690 if (ret == NULL)
6691 return NULL;
6692
6693 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6694 sizeof (struct elf_link_hash_entry)))
6695 {
6696 free (ret);
6697 return NULL;
6698 }
6699
6700 return &ret->root;
6701}
6702
6703/* This is a hook for the ELF emulation code in the generic linker to
6704 tell the backend linker what file name to use for the DT_NEEDED
6705 entry for a dynamic object. */
6706
6707void
6708bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6709{
6710 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6711 && bfd_get_format (abfd) == bfd_object)
6712 elf_dt_name (abfd) = name;
6713}
6714
6715int
6716bfd_elf_get_dyn_lib_class (bfd *abfd)
6717{
6718 int lib_class;
6719 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6720 && bfd_get_format (abfd) == bfd_object)
6721 lib_class = elf_dyn_lib_class (abfd);
6722 else
6723 lib_class = 0;
6724 return lib_class;
6725}
6726
6727void
6728bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6729{
6730 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6731 && bfd_get_format (abfd) == bfd_object)
6732 elf_dyn_lib_class (abfd) = lib_class;
6733}
6734
6735/* Get the list of DT_NEEDED entries for a link. This is a hook for
6736 the linker ELF emulation code. */
6737
6738struct bfd_link_needed_list *
6739bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6740 struct bfd_link_info *info)
6741{
6742 if (! is_elf_hash_table (info->hash))
6743 return NULL;
6744 return elf_hash_table (info)->needed;
6745}
6746
6747/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6748 hook for the linker ELF emulation code. */
6749
6750struct bfd_link_needed_list *
6751bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6752 struct bfd_link_info *info)
6753{
6754 if (! is_elf_hash_table (info->hash))
6755 return NULL;
6756 return elf_hash_table (info)->runpath;
6757}
6758
6759/* Get the name actually used for a dynamic object for a link. This
6760 is the SONAME entry if there is one. Otherwise, it is the string
6761 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6762
6763const char *
6764bfd_elf_get_dt_soname (bfd *abfd)
6765{
6766 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6767 && bfd_get_format (abfd) == bfd_object)
6768 return elf_dt_name (abfd);
6769 return NULL;
6770}
6771
6772/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6773 the ELF linker emulation code. */
6774
6775bfd_boolean
6776bfd_elf_get_bfd_needed_list (bfd *abfd,
6777 struct bfd_link_needed_list **pneeded)
6778{
6779 asection *s;
6780 bfd_byte *dynbuf = NULL;
cb33740c 6781 unsigned int elfsec;
4d269e42
AM
6782 unsigned long shlink;
6783 bfd_byte *extdyn, *extdynend;
6784 size_t extdynsize;
6785 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6786
6787 *pneeded = NULL;
6788
6789 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6790 || bfd_get_format (abfd) != bfd_object)
6791 return TRUE;
6792
6793 s = bfd_get_section_by_name (abfd, ".dynamic");
6794 if (s == NULL || s->size == 0)
6795 return TRUE;
6796
6797 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6798 goto error_return;
6799
6800 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
cb33740c 6801 if (elfsec == SHN_BAD)
4d269e42
AM
6802 goto error_return;
6803
6804 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
c152c796 6805
4d269e42
AM
6806 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6807 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6808
6809 extdyn = dynbuf;
6810 extdynend = extdyn + s->size;
6811 for (; extdyn < extdynend; extdyn += extdynsize)
6812 {
6813 Elf_Internal_Dyn dyn;
6814
6815 (*swap_dyn_in) (abfd, extdyn, &dyn);
6816
6817 if (dyn.d_tag == DT_NULL)
6818 break;
6819
6820 if (dyn.d_tag == DT_NEEDED)
6821 {
6822 const char *string;
6823 struct bfd_link_needed_list *l;
6824 unsigned int tagv = dyn.d_un.d_val;
6825 bfd_size_type amt;
6826
6827 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6828 if (string == NULL)
6829 goto error_return;
6830
6831 amt = sizeof *l;
6832 l = bfd_alloc (abfd, amt);
6833 if (l == NULL)
6834 goto error_return;
6835
6836 l->by = abfd;
6837 l->name = string;
6838 l->next = *pneeded;
6839 *pneeded = l;
6840 }
6841 }
6842
6843 free (dynbuf);
6844
6845 return TRUE;
6846
6847 error_return:
6848 if (dynbuf != NULL)
6849 free (dynbuf);
6850 return FALSE;
6851}
6852
6853struct elf_symbuf_symbol
6854{
6855 unsigned long st_name; /* Symbol name, index in string tbl */
6856 unsigned char st_info; /* Type and binding attributes */
6857 unsigned char st_other; /* Visibilty, and target specific */
6858};
6859
6860struct elf_symbuf_head
6861{
6862 struct elf_symbuf_symbol *ssym;
6863 bfd_size_type count;
6864 unsigned int st_shndx;
6865};
6866
6867struct elf_symbol
6868{
6869 union
6870 {
6871 Elf_Internal_Sym *isym;
6872 struct elf_symbuf_symbol *ssym;
6873 } u;
6874 const char *name;
6875};
6876
6877/* Sort references to symbols by ascending section number. */
6878
6879static int
6880elf_sort_elf_symbol (const void *arg1, const void *arg2)
6881{
6882 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6883 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6884
6885 return s1->st_shndx - s2->st_shndx;
6886}
6887
6888static int
6889elf_sym_name_compare (const void *arg1, const void *arg2)
6890{
6891 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6892 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6893 return strcmp (s1->name, s2->name);
6894}
6895
6896static struct elf_symbuf_head *
6897elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6898{
14b1c01e 6899 Elf_Internal_Sym **ind, **indbufend, **indbuf;
4d269e42
AM
6900 struct elf_symbuf_symbol *ssym;
6901 struct elf_symbuf_head *ssymbuf, *ssymhead;
3ae181ee 6902 bfd_size_type i, shndx_count, total_size;
4d269e42 6903
14b1c01e 6904 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
4d269e42
AM
6905 if (indbuf == NULL)
6906 return NULL;
6907
6908 for (ind = indbuf, i = 0; i < symcount; i++)
6909 if (isymbuf[i].st_shndx != SHN_UNDEF)
6910 *ind++ = &isymbuf[i];
6911 indbufend = ind;
6912
6913 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6914 elf_sort_elf_symbol);
6915
6916 shndx_count = 0;
6917 if (indbufend > indbuf)
6918 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6919 if (ind[0]->st_shndx != ind[1]->st_shndx)
6920 shndx_count++;
6921
3ae181ee
L
6922 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6923 + (indbufend - indbuf) * sizeof (*ssym));
6924 ssymbuf = bfd_malloc (total_size);
4d269e42
AM
6925 if (ssymbuf == NULL)
6926 {
6927 free (indbuf);
6928 return NULL;
6929 }
6930
3ae181ee 6931 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
4d269e42
AM
6932 ssymbuf->ssym = NULL;
6933 ssymbuf->count = shndx_count;
6934 ssymbuf->st_shndx = 0;
6935 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6936 {
6937 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6938 {
6939 ssymhead++;
6940 ssymhead->ssym = ssym;
6941 ssymhead->count = 0;
6942 ssymhead->st_shndx = (*ind)->st_shndx;
6943 }
6944 ssym->st_name = (*ind)->st_name;
6945 ssym->st_info = (*ind)->st_info;
6946 ssym->st_other = (*ind)->st_other;
6947 ssymhead->count++;
6948 }
3ae181ee
L
6949 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6950 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6951 == total_size));
4d269e42
AM
6952
6953 free (indbuf);
6954 return ssymbuf;
6955}
6956
6957/* Check if 2 sections define the same set of local and global
6958 symbols. */
6959
8f317e31 6960static bfd_boolean
4d269e42
AM
6961bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6962 struct bfd_link_info *info)
6963{
6964 bfd *bfd1, *bfd2;
6965 const struct elf_backend_data *bed1, *bed2;
6966 Elf_Internal_Shdr *hdr1, *hdr2;
6967 bfd_size_type symcount1, symcount2;
6968 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6969 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6970 Elf_Internal_Sym *isym, *isymend;
6971 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6972 bfd_size_type count1, count2, i;
cb33740c 6973 unsigned int shndx1, shndx2;
4d269e42
AM
6974 bfd_boolean result;
6975
6976 bfd1 = sec1->owner;
6977 bfd2 = sec2->owner;
6978
4d269e42
AM
6979 /* Both sections have to be in ELF. */
6980 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6981 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6982 return FALSE;
6983
6984 if (elf_section_type (sec1) != elf_section_type (sec2))
6985 return FALSE;
6986
4d269e42
AM
6987 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6988 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
cb33740c 6989 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
4d269e42
AM
6990 return FALSE;
6991
6992 bed1 = get_elf_backend_data (bfd1);
6993 bed2 = get_elf_backend_data (bfd2);
6994 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6995 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6996 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6997 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6998
6999 if (symcount1 == 0 || symcount2 == 0)
7000 return FALSE;
7001
7002 result = FALSE;
7003 isymbuf1 = NULL;
7004 isymbuf2 = NULL;
7005 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7006 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7007
7008 if (ssymbuf1 == NULL)
7009 {
7010 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7011 NULL, NULL, NULL);
7012 if (isymbuf1 == NULL)
7013 goto done;
7014
7015 if (!info->reduce_memory_overheads)
7016 elf_tdata (bfd1)->symbuf = ssymbuf1
7017 = elf_create_symbuf (symcount1, isymbuf1);
7018 }
7019
7020 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7021 {
7022 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7023 NULL, NULL, NULL);
7024 if (isymbuf2 == NULL)
7025 goto done;
7026
7027 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7028 elf_tdata (bfd2)->symbuf = ssymbuf2
7029 = elf_create_symbuf (symcount2, isymbuf2);
7030 }
7031
7032 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7033 {
7034 /* Optimized faster version. */
7035 bfd_size_type lo, hi, mid;
7036 struct elf_symbol *symp;
7037 struct elf_symbuf_symbol *ssym, *ssymend;
7038
7039 lo = 0;
7040 hi = ssymbuf1->count;
7041 ssymbuf1++;
7042 count1 = 0;
7043 while (lo < hi)
7044 {
7045 mid = (lo + hi) / 2;
cb33740c 7046 if (shndx1 < ssymbuf1[mid].st_shndx)
4d269e42 7047 hi = mid;
cb33740c 7048 else if (shndx1 > ssymbuf1[mid].st_shndx)
4d269e42
AM
7049 lo = mid + 1;
7050 else
7051 {
7052 count1 = ssymbuf1[mid].count;
7053 ssymbuf1 += mid;
7054 break;
7055 }
7056 }
7057
7058 lo = 0;
7059 hi = ssymbuf2->count;
7060 ssymbuf2++;
7061 count2 = 0;
7062 while (lo < hi)
7063 {
7064 mid = (lo + hi) / 2;
cb33740c 7065 if (shndx2 < ssymbuf2[mid].st_shndx)
4d269e42 7066 hi = mid;
cb33740c 7067 else if (shndx2 > ssymbuf2[mid].st_shndx)
4d269e42
AM
7068 lo = mid + 1;
7069 else
7070 {
7071 count2 = ssymbuf2[mid].count;
7072 ssymbuf2 += mid;
7073 break;
7074 }
7075 }
7076
7077 if (count1 == 0 || count2 == 0 || count1 != count2)
7078 goto done;
7079
7080 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7081 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7082 if (symtable1 == NULL || symtable2 == NULL)
7083 goto done;
7084
7085 symp = symtable1;
7086 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7087 ssym < ssymend; ssym++, symp++)
7088 {
7089 symp->u.ssym = ssym;
7090 symp->name = bfd_elf_string_from_elf_section (bfd1,
7091 hdr1->sh_link,
7092 ssym->st_name);
7093 }
7094
7095 symp = symtable2;
7096 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7097 ssym < ssymend; ssym++, symp++)
7098 {
7099 symp->u.ssym = ssym;
7100 symp->name = bfd_elf_string_from_elf_section (bfd2,
7101 hdr2->sh_link,
7102 ssym->st_name);
7103 }
7104
7105 /* Sort symbol by name. */
7106 qsort (symtable1, count1, sizeof (struct elf_symbol),
7107 elf_sym_name_compare);
7108 qsort (symtable2, count1, sizeof (struct elf_symbol),
7109 elf_sym_name_compare);
7110
7111 for (i = 0; i < count1; i++)
7112 /* Two symbols must have the same binding, type and name. */
7113 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7114 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7115 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7116 goto done;
7117
7118 result = TRUE;
7119 goto done;
7120 }
7121
7122 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7123 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7124 if (symtable1 == NULL || symtable2 == NULL)
7125 goto done;
7126
7127 /* Count definitions in the section. */
7128 count1 = 0;
7129 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
cb33740c 7130 if (isym->st_shndx == shndx1)
4d269e42
AM
7131 symtable1[count1++].u.isym = isym;
7132
7133 count2 = 0;
7134 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
cb33740c 7135 if (isym->st_shndx == shndx2)
4d269e42
AM
7136 symtable2[count2++].u.isym = isym;
7137
7138 if (count1 == 0 || count2 == 0 || count1 != count2)
7139 goto done;
7140
7141 for (i = 0; i < count1; i++)
7142 symtable1[i].name
7143 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7144 symtable1[i].u.isym->st_name);
7145
7146 for (i = 0; i < count2; i++)
7147 symtable2[i].name
7148 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7149 symtable2[i].u.isym->st_name);
7150
7151 /* Sort symbol by name. */
7152 qsort (symtable1, count1, sizeof (struct elf_symbol),
7153 elf_sym_name_compare);
7154 qsort (symtable2, count1, sizeof (struct elf_symbol),
7155 elf_sym_name_compare);
7156
7157 for (i = 0; i < count1; i++)
7158 /* Two symbols must have the same binding, type and name. */
7159 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7160 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7161 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7162 goto done;
7163
7164 result = TRUE;
7165
7166done:
7167 if (symtable1)
7168 free (symtable1);
7169 if (symtable2)
7170 free (symtable2);
7171 if (isymbuf1)
7172 free (isymbuf1);
7173 if (isymbuf2)
7174 free (isymbuf2);
7175
7176 return result;
7177}
7178
7179/* Return TRUE if 2 section types are compatible. */
7180
7181bfd_boolean
7182_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7183 bfd *bbfd, const asection *bsec)
7184{
7185 if (asec == NULL
7186 || bsec == NULL
7187 || abfd->xvec->flavour != bfd_target_elf_flavour
7188 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7189 return TRUE;
7190
7191 return elf_section_type (asec) == elf_section_type (bsec);
7192}
7193\f
c152c796
AM
7194/* Final phase of ELF linker. */
7195
7196/* A structure we use to avoid passing large numbers of arguments. */
7197
7198struct elf_final_link_info
7199{
7200 /* General link information. */
7201 struct bfd_link_info *info;
7202 /* Output BFD. */
7203 bfd *output_bfd;
7204 /* Symbol string table. */
7205 struct bfd_strtab_hash *symstrtab;
7206 /* .dynsym section. */
7207 asection *dynsym_sec;
7208 /* .hash section. */
7209 asection *hash_sec;
7210 /* symbol version section (.gnu.version). */
7211 asection *symver_sec;
7212 /* Buffer large enough to hold contents of any section. */
7213 bfd_byte *contents;
7214 /* Buffer large enough to hold external relocs of any section. */
7215 void *external_relocs;
7216 /* Buffer large enough to hold internal relocs of any section. */
7217 Elf_Internal_Rela *internal_relocs;
7218 /* Buffer large enough to hold external local symbols of any input
7219 BFD. */
7220 bfd_byte *external_syms;
7221 /* And a buffer for symbol section indices. */
7222 Elf_External_Sym_Shndx *locsym_shndx;
7223 /* Buffer large enough to hold internal local symbols of any input
7224 BFD. */
7225 Elf_Internal_Sym *internal_syms;
7226 /* Array large enough to hold a symbol index for each local symbol
7227 of any input BFD. */
7228 long *indices;
7229 /* Array large enough to hold a section pointer for each local
7230 symbol of any input BFD. */
7231 asection **sections;
7232 /* Buffer to hold swapped out symbols. */
7233 bfd_byte *symbuf;
7234 /* And one for symbol section indices. */
7235 Elf_External_Sym_Shndx *symshndxbuf;
7236 /* Number of swapped out symbols in buffer. */
7237 size_t symbuf_count;
7238 /* Number of symbols which fit in symbuf. */
7239 size_t symbuf_size;
7240 /* And same for symshndxbuf. */
7241 size_t shndxbuf_size;
7242};
7243
7244/* This struct is used to pass information to elf_link_output_extsym. */
7245
7246struct elf_outext_info
7247{
7248 bfd_boolean failed;
7249 bfd_boolean localsyms;
7250 struct elf_final_link_info *finfo;
7251};
7252
d9352518
DB
7253
7254/* Support for evaluating a complex relocation.
7255
7256 Complex relocations are generalized, self-describing relocations. The
7257 implementation of them consists of two parts: complex symbols, and the
a0c8462f 7258 relocations themselves.
d9352518
DB
7259
7260 The relocations are use a reserved elf-wide relocation type code (R_RELC
7261 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7262 information (start bit, end bit, word width, etc) into the addend. This
7263 information is extracted from CGEN-generated operand tables within gas.
7264
7265 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7266 internal) representing prefix-notation expressions, including but not
7267 limited to those sorts of expressions normally encoded as addends in the
7268 addend field. The symbol mangling format is:
7269
7270 <node> := <literal>
7271 | <unary-operator> ':' <node>
7272 | <binary-operator> ':' <node> ':' <node>
7273 ;
7274
7275 <literal> := 's' <digits=N> ':' <N character symbol name>
7276 | 'S' <digits=N> ':' <N character section name>
7277 | '#' <hexdigits>
7278 ;
7279
7280 <binary-operator> := as in C
7281 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7282
7283static void
a0c8462f
AM
7284set_symbol_value (bfd *bfd_with_globals,
7285 Elf_Internal_Sym *isymbuf,
7286 size_t locsymcount,
7287 size_t symidx,
7288 bfd_vma val)
d9352518 7289{
8977835c
AM
7290 struct elf_link_hash_entry **sym_hashes;
7291 struct elf_link_hash_entry *h;
7292 size_t extsymoff = locsymcount;
d9352518 7293
8977835c 7294 if (symidx < locsymcount)
d9352518 7295 {
8977835c
AM
7296 Elf_Internal_Sym *sym;
7297
7298 sym = isymbuf + symidx;
7299 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7300 {
7301 /* It is a local symbol: move it to the
7302 "absolute" section and give it a value. */
7303 sym->st_shndx = SHN_ABS;
7304 sym->st_value = val;
7305 return;
7306 }
7307 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7308 extsymoff = 0;
d9352518 7309 }
8977835c
AM
7310
7311 /* It is a global symbol: set its link type
7312 to "defined" and give it a value. */
7313
7314 sym_hashes = elf_sym_hashes (bfd_with_globals);
7315 h = sym_hashes [symidx - extsymoff];
7316 while (h->root.type == bfd_link_hash_indirect
7317 || h->root.type == bfd_link_hash_warning)
7318 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7319 h->root.type = bfd_link_hash_defined;
7320 h->root.u.def.value = val;
7321 h->root.u.def.section = bfd_abs_section_ptr;
d9352518
DB
7322}
7323
a0c8462f
AM
7324static bfd_boolean
7325resolve_symbol (const char *name,
7326 bfd *input_bfd,
7327 struct elf_final_link_info *finfo,
7328 bfd_vma *result,
7329 Elf_Internal_Sym *isymbuf,
7330 size_t locsymcount)
d9352518 7331{
a0c8462f
AM
7332 Elf_Internal_Sym *sym;
7333 struct bfd_link_hash_entry *global_entry;
7334 const char *candidate = NULL;
7335 Elf_Internal_Shdr *symtab_hdr;
7336 size_t i;
7337
d9352518
DB
7338 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7339
7340 for (i = 0; i < locsymcount; ++ i)
7341 {
8977835c 7342 sym = isymbuf + i;
d9352518
DB
7343
7344 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7345 continue;
7346
7347 candidate = bfd_elf_string_from_elf_section (input_bfd,
7348 symtab_hdr->sh_link,
7349 sym->st_name);
7350#ifdef DEBUG
0f02bbd9
AM
7351 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7352 name, candidate, (unsigned long) sym->st_value);
d9352518
DB
7353#endif
7354 if (candidate && strcmp (candidate, name) == 0)
7355 {
0f02bbd9 7356 asection *sec = finfo->sections [i];
d9352518 7357
0f02bbd9
AM
7358 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7359 *result += sec->output_offset + sec->output_section->vma;
d9352518 7360#ifdef DEBUG
0f02bbd9
AM
7361 printf ("Found symbol with value %8.8lx\n",
7362 (unsigned long) *result);
d9352518
DB
7363#endif
7364 return TRUE;
7365 }
7366 }
7367
7368 /* Hmm, haven't found it yet. perhaps it is a global. */
a0c8462f
AM
7369 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7370 FALSE, FALSE, TRUE);
d9352518
DB
7371 if (!global_entry)
7372 return FALSE;
a0c8462f 7373
d9352518
DB
7374 if (global_entry->type == bfd_link_hash_defined
7375 || global_entry->type == bfd_link_hash_defweak)
7376 {
a0c8462f
AM
7377 *result = (global_entry->u.def.value
7378 + global_entry->u.def.section->output_section->vma
7379 + global_entry->u.def.section->output_offset);
d9352518 7380#ifdef DEBUG
0f02bbd9
AM
7381 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7382 global_entry->root.string, (unsigned long) *result);
d9352518
DB
7383#endif
7384 return TRUE;
a0c8462f 7385 }
d9352518 7386
d9352518
DB
7387 return FALSE;
7388}
7389
7390static bfd_boolean
a0c8462f
AM
7391resolve_section (const char *name,
7392 asection *sections,
7393 bfd_vma *result)
d9352518 7394{
a0c8462f
AM
7395 asection *curr;
7396 unsigned int len;
d9352518 7397
a0c8462f 7398 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7399 if (strcmp (curr->name, name) == 0)
7400 {
7401 *result = curr->vma;
7402 return TRUE;
7403 }
7404
7405 /* Hmm. still haven't found it. try pseudo-section names. */
a0c8462f 7406 for (curr = sections; curr; curr = curr->next)
d9352518
DB
7407 {
7408 len = strlen (curr->name);
a0c8462f 7409 if (len > strlen (name))
d9352518
DB
7410 continue;
7411
7412 if (strncmp (curr->name, name, len) == 0)
7413 {
7414 if (strncmp (".end", name + len, 4) == 0)
7415 {
7416 *result = curr->vma + curr->size;
7417 return TRUE;
7418 }
7419
7420 /* Insert more pseudo-section names here, if you like. */
7421 }
7422 }
a0c8462f 7423
d9352518
DB
7424 return FALSE;
7425}
7426
7427static void
a0c8462f 7428undefined_reference (const char *reftype, const char *name)
d9352518 7429{
a0c8462f
AM
7430 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7431 reftype, name);
d9352518
DB
7432}
7433
7434static bfd_boolean
a0c8462f
AM
7435eval_symbol (bfd_vma *result,
7436 const char **symp,
7437 bfd *input_bfd,
7438 struct elf_final_link_info *finfo,
7439 bfd_vma dot,
7440 Elf_Internal_Sym *isymbuf,
7441 size_t locsymcount,
7442 int signed_p)
d9352518 7443{
4b93929b
NC
7444 size_t len;
7445 size_t symlen;
a0c8462f
AM
7446 bfd_vma a;
7447 bfd_vma b;
4b93929b 7448 char symbuf[4096];
0f02bbd9 7449 const char *sym = *symp;
a0c8462f
AM
7450 const char *symend;
7451 bfd_boolean symbol_is_section = FALSE;
d9352518
DB
7452
7453 len = strlen (sym);
7454 symend = sym + len;
7455
4b93929b 7456 if (len < 1 || len > sizeof (symbuf))
d9352518
DB
7457 {
7458 bfd_set_error (bfd_error_invalid_operation);
7459 return FALSE;
7460 }
a0c8462f 7461
d9352518
DB
7462 switch (* sym)
7463 {
7464 case '.':
0f02bbd9
AM
7465 *result = dot;
7466 *symp = sym + 1;
d9352518
DB
7467 return TRUE;
7468
7469 case '#':
0f02bbd9
AM
7470 ++sym;
7471 *result = strtoul (sym, (char **) symp, 16);
d9352518
DB
7472 return TRUE;
7473
7474 case 'S':
7475 symbol_is_section = TRUE;
a0c8462f 7476 case 's':
0f02bbd9
AM
7477 ++sym;
7478 symlen = strtol (sym, (char **) symp, 10);
7479 sym = *symp + 1; /* Skip the trailing ':'. */
d9352518 7480
4b93929b 7481 if (symend < sym || symlen + 1 > sizeof (symbuf))
d9352518
DB
7482 {
7483 bfd_set_error (bfd_error_invalid_operation);
7484 return FALSE;
7485 }
7486
7487 memcpy (symbuf, sym, symlen);
a0c8462f 7488 symbuf[symlen] = '\0';
0f02bbd9 7489 *symp = sym + symlen;
a0c8462f
AM
7490
7491 /* Is it always possible, with complex symbols, that gas "mis-guessed"
d9352518
DB
7492 the symbol as a section, or vice-versa. so we're pretty liberal in our
7493 interpretation here; section means "try section first", not "must be a
7494 section", and likewise with symbol. */
7495
a0c8462f 7496 if (symbol_is_section)
d9352518 7497 {
8977835c
AM
7498 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7499 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7500 isymbuf, locsymcount))
d9352518
DB
7501 {
7502 undefined_reference ("section", symbuf);
7503 return FALSE;
7504 }
a0c8462f
AM
7505 }
7506 else
d9352518 7507 {
8977835c
AM
7508 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7509 isymbuf, locsymcount)
7510 && !resolve_section (symbuf, finfo->output_bfd->sections,
7511 result))
d9352518
DB
7512 {
7513 undefined_reference ("symbol", symbuf);
7514 return FALSE;
7515 }
7516 }
7517
7518 return TRUE;
a0c8462f 7519
d9352518
DB
7520 /* All that remains are operators. */
7521
7522#define UNARY_OP(op) \
7523 if (strncmp (sym, #op, strlen (#op)) == 0) \
7524 { \
7525 sym += strlen (#op); \
a0c8462f
AM
7526 if (*sym == ':') \
7527 ++sym; \
0f02bbd9
AM
7528 *symp = sym; \
7529 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7530 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7531 return FALSE; \
7532 if (signed_p) \
0f02bbd9 7533 *result = op ((bfd_signed_vma) a); \
a0c8462f
AM
7534 else \
7535 *result = op a; \
d9352518
DB
7536 return TRUE; \
7537 }
7538
7539#define BINARY_OP(op) \
7540 if (strncmp (sym, #op, strlen (#op)) == 0) \
7541 { \
7542 sym += strlen (#op); \
a0c8462f
AM
7543 if (*sym == ':') \
7544 ++sym; \
0f02bbd9
AM
7545 *symp = sym; \
7546 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7547 isymbuf, locsymcount, signed_p)) \
a0c8462f 7548 return FALSE; \
0f02bbd9
AM
7549 ++*symp; \
7550 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7551 isymbuf, locsymcount, signed_p)) \
a0c8462f
AM
7552 return FALSE; \
7553 if (signed_p) \
0f02bbd9 7554 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
a0c8462f
AM
7555 else \
7556 *result = a op b; \
d9352518
DB
7557 return TRUE; \
7558 }
7559
7560 default:
7561 UNARY_OP (0-);
7562 BINARY_OP (<<);
7563 BINARY_OP (>>);
7564 BINARY_OP (==);
7565 BINARY_OP (!=);
7566 BINARY_OP (<=);
7567 BINARY_OP (>=);
7568 BINARY_OP (&&);
7569 BINARY_OP (||);
7570 UNARY_OP (~);
7571 UNARY_OP (!);
7572 BINARY_OP (*);
7573 BINARY_OP (/);
7574 BINARY_OP (%);
7575 BINARY_OP (^);
7576 BINARY_OP (|);
7577 BINARY_OP (&);
7578 BINARY_OP (+);
7579 BINARY_OP (-);
7580 BINARY_OP (<);
7581 BINARY_OP (>);
7582#undef UNARY_OP
7583#undef BINARY_OP
7584 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7585 bfd_set_error (bfd_error_invalid_operation);
7586 return FALSE;
7587 }
7588}
7589
d9352518 7590static void
a0c8462f
AM
7591put_value (bfd_vma size,
7592 unsigned long chunksz,
7593 bfd *input_bfd,
7594 bfd_vma x,
7595 bfd_byte *location)
d9352518
DB
7596{
7597 location += (size - chunksz);
7598
a0c8462f 7599 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
d9352518
DB
7600 {
7601 switch (chunksz)
7602 {
7603 default:
7604 case 0:
7605 abort ();
7606 case 1:
7607 bfd_put_8 (input_bfd, x, location);
7608 break;
7609 case 2:
7610 bfd_put_16 (input_bfd, x, location);
7611 break;
7612 case 4:
7613 bfd_put_32 (input_bfd, x, location);
7614 break;
7615 case 8:
7616#ifdef BFD64
7617 bfd_put_64 (input_bfd, x, location);
7618#else
7619 abort ();
7620#endif
7621 break;
7622 }
7623 }
7624}
7625
a0c8462f
AM
7626static bfd_vma
7627get_value (bfd_vma size,
7628 unsigned long chunksz,
7629 bfd *input_bfd,
7630 bfd_byte *location)
d9352518
DB
7631{
7632 bfd_vma x = 0;
7633
a0c8462f 7634 for (; size; size -= chunksz, location += chunksz)
d9352518
DB
7635 {
7636 switch (chunksz)
7637 {
7638 default:
7639 case 0:
7640 abort ();
7641 case 1:
7642 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7643 break;
7644 case 2:
7645 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7646 break;
7647 case 4:
7648 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7649 break;
7650 case 8:
7651#ifdef BFD64
7652 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7653#else
7654 abort ();
7655#endif
7656 break;
7657 }
7658 }
7659 return x;
7660}
7661
a0c8462f
AM
7662static void
7663decode_complex_addend (unsigned long *start, /* in bits */
7664 unsigned long *oplen, /* in bits */
7665 unsigned long *len, /* in bits */
7666 unsigned long *wordsz, /* in bytes */
7667 unsigned long *chunksz, /* in bytes */
7668 unsigned long *lsb0_p,
7669 unsigned long *signed_p,
7670 unsigned long *trunc_p,
7671 unsigned long encoded)
d9352518
DB
7672{
7673 * start = encoded & 0x3F;
7674 * len = (encoded >> 6) & 0x3F;
7675 * oplen = (encoded >> 12) & 0x3F;
7676 * wordsz = (encoded >> 18) & 0xF;
7677 * chunksz = (encoded >> 22) & 0xF;
7678 * lsb0_p = (encoded >> 27) & 1;
7679 * signed_p = (encoded >> 28) & 1;
7680 * trunc_p = (encoded >> 29) & 1;
7681}
7682
cdfeee4f 7683bfd_reloc_status_type
0f02bbd9 7684bfd_elf_perform_complex_relocation (bfd *input_bfd,
cdfeee4f 7685 asection *input_section ATTRIBUTE_UNUSED,
0f02bbd9
AM
7686 bfd_byte *contents,
7687 Elf_Internal_Rela *rel,
7688 bfd_vma relocation)
d9352518 7689{
0f02bbd9
AM
7690 bfd_vma shift, x, mask;
7691 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
cdfeee4f 7692 bfd_reloc_status_type r;
d9352518
DB
7693
7694 /* Perform this reloc, since it is complex.
7695 (this is not to say that it necessarily refers to a complex
7696 symbol; merely that it is a self-describing CGEN based reloc.
7697 i.e. the addend has the complete reloc information (bit start, end,
a0c8462f 7698 word size, etc) encoded within it.). */
d9352518 7699
a0c8462f
AM
7700 decode_complex_addend (&start, &oplen, &len, &wordsz,
7701 &chunksz, &lsb0_p, &signed_p,
7702 &trunc_p, rel->r_addend);
d9352518
DB
7703
7704 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7705
7706 if (lsb0_p)
7707 shift = (start + 1) - len;
7708 else
7709 shift = (8 * wordsz) - (start + len);
7710
a0c8462f 7711 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
d9352518
DB
7712
7713#ifdef DEBUG
7714 printf ("Doing complex reloc: "
7715 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7716 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7717 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7718 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7719 oplen, x, mask, relocation);
7720#endif
7721
cdfeee4f 7722 r = bfd_reloc_ok;
d9352518 7723 if (! trunc_p)
cdfeee4f
AM
7724 /* Now do an overflow check. */
7725 r = bfd_check_overflow ((signed_p
7726 ? complain_overflow_signed
7727 : complain_overflow_unsigned),
7728 len, 0, (8 * wordsz),
7729 relocation);
a0c8462f 7730
d9352518
DB
7731 /* Do the deed. */
7732 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7733
7734#ifdef DEBUG
7735 printf (" relocation: %8.8lx\n"
7736 " shifted mask: %8.8lx\n"
7737 " shifted/masked reloc: %8.8lx\n"
7738 " result: %8.8lx\n",
a0c8462f 7739 relocation, (mask << shift),
d9352518
DB
7740 ((relocation & mask) << shift), x);
7741#endif
7742 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
cdfeee4f 7743 return r;
d9352518
DB
7744}
7745
c152c796
AM
7746/* When performing a relocatable link, the input relocations are
7747 preserved. But, if they reference global symbols, the indices
7748 referenced must be updated. Update all the relocations in
7749 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7750
7751static void
7752elf_link_adjust_relocs (bfd *abfd,
7753 Elf_Internal_Shdr *rel_hdr,
7754 unsigned int count,
7755 struct elf_link_hash_entry **rel_hash)
7756{
7757 unsigned int i;
7758 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7759 bfd_byte *erela;
7760 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7761 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7762 bfd_vma r_type_mask;
7763 int r_sym_shift;
7764
7765 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7766 {
7767 swap_in = bed->s->swap_reloc_in;
7768 swap_out = bed->s->swap_reloc_out;
7769 }
7770 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7771 {
7772 swap_in = bed->s->swap_reloca_in;
7773 swap_out = bed->s->swap_reloca_out;
7774 }
7775 else
7776 abort ();
7777
7778 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7779 abort ();
7780
7781 if (bed->s->arch_size == 32)
7782 {
7783 r_type_mask = 0xff;
7784 r_sym_shift = 8;
7785 }
7786 else
7787 {
7788 r_type_mask = 0xffffffff;
7789 r_sym_shift = 32;
7790 }
7791
7792 erela = rel_hdr->contents;
7793 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7794 {
7795 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7796 unsigned int j;
7797
7798 if (*rel_hash == NULL)
7799 continue;
7800
7801 BFD_ASSERT ((*rel_hash)->indx >= 0);
7802
7803 (*swap_in) (abfd, erela, irela);
7804 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7805 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7806 | (irela[j].r_info & r_type_mask));
7807 (*swap_out) (abfd, irela, erela);
7808 }
7809}
7810
7811struct elf_link_sort_rela
7812{
7813 union {
7814 bfd_vma offset;
7815 bfd_vma sym_mask;
7816 } u;
7817 enum elf_reloc_type_class type;
7818 /* We use this as an array of size int_rels_per_ext_rel. */
7819 Elf_Internal_Rela rela[1];
7820};
7821
7822static int
7823elf_link_sort_cmp1 (const void *A, const void *B)
7824{
7825 const struct elf_link_sort_rela *a = A;
7826 const struct elf_link_sort_rela *b = B;
7827 int relativea, relativeb;
7828
7829 relativea = a->type == reloc_class_relative;
7830 relativeb = b->type == reloc_class_relative;
7831
7832 if (relativea < relativeb)
7833 return 1;
7834 if (relativea > relativeb)
7835 return -1;
7836 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7837 return -1;
7838 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7839 return 1;
7840 if (a->rela->r_offset < b->rela->r_offset)
7841 return -1;
7842 if (a->rela->r_offset > b->rela->r_offset)
7843 return 1;
7844 return 0;
7845}
7846
7847static int
7848elf_link_sort_cmp2 (const void *A, const void *B)
7849{
7850 const struct elf_link_sort_rela *a = A;
7851 const struct elf_link_sort_rela *b = B;
7852 int copya, copyb;
7853
7854 if (a->u.offset < b->u.offset)
7855 return -1;
7856 if (a->u.offset > b->u.offset)
7857 return 1;
7858 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7859 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7860 if (copya < copyb)
7861 return -1;
7862 if (copya > copyb)
7863 return 1;
7864 if (a->rela->r_offset < b->rela->r_offset)
7865 return -1;
7866 if (a->rela->r_offset > b->rela->r_offset)
7867 return 1;
7868 return 0;
7869}
7870
7871static size_t
7872elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7873{
3410fea8 7874 asection *dynamic_relocs;
fc66a176
L
7875 asection *rela_dyn;
7876 asection *rel_dyn;
c152c796
AM
7877 bfd_size_type count, size;
7878 size_t i, ret, sort_elt, ext_size;
7879 bfd_byte *sort, *s_non_relative, *p;
7880 struct elf_link_sort_rela *sq;
7881 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7882 int i2e = bed->s->int_rels_per_ext_rel;
7883 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7884 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7885 struct bfd_link_order *lo;
7886 bfd_vma r_sym_mask;
3410fea8 7887 bfd_boolean use_rela;
c152c796 7888
3410fea8
NC
7889 /* Find a dynamic reloc section. */
7890 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7891 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7892 if (rela_dyn != NULL && rela_dyn->size > 0
7893 && rel_dyn != NULL && rel_dyn->size > 0)
c152c796 7894 {
3410fea8
NC
7895 bfd_boolean use_rela_initialised = FALSE;
7896
7897 /* This is just here to stop gcc from complaining.
7898 It's initialization checking code is not perfect. */
7899 use_rela = TRUE;
7900
7901 /* Both sections are present. Examine the sizes
7902 of the indirect sections to help us choose. */
7903 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7904 if (lo->type == bfd_indirect_link_order)
7905 {
7906 asection *o = lo->u.indirect.section;
7907
7908 if ((o->size % bed->s->sizeof_rela) == 0)
7909 {
7910 if ((o->size % bed->s->sizeof_rel) == 0)
7911 /* Section size is divisible by both rel and rela sizes.
7912 It is of no help to us. */
7913 ;
7914 else
7915 {
7916 /* Section size is only divisible by rela. */
7917 if (use_rela_initialised && (use_rela == FALSE))
7918 {
7919 _bfd_error_handler
7920 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7921 bfd_set_error (bfd_error_invalid_operation);
7922 return 0;
7923 }
7924 else
7925 {
7926 use_rela = TRUE;
7927 use_rela_initialised = TRUE;
7928 }
7929 }
7930 }
7931 else if ((o->size % bed->s->sizeof_rel) == 0)
7932 {
7933 /* Section size is only divisible by rel. */
7934 if (use_rela_initialised && (use_rela == TRUE))
7935 {
7936 _bfd_error_handler
7937 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7938 bfd_set_error (bfd_error_invalid_operation);
7939 return 0;
7940 }
7941 else
7942 {
7943 use_rela = FALSE;
7944 use_rela_initialised = TRUE;
7945 }
7946 }
7947 else
7948 {
7949 /* The section size is not divisible by either - something is wrong. */
7950 _bfd_error_handler
7951 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7952 bfd_set_error (bfd_error_invalid_operation);
7953 return 0;
7954 }
7955 }
7956
7957 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7958 if (lo->type == bfd_indirect_link_order)
7959 {
7960 asection *o = lo->u.indirect.section;
7961
7962 if ((o->size % bed->s->sizeof_rela) == 0)
7963 {
7964 if ((o->size % bed->s->sizeof_rel) == 0)
7965 /* Section size is divisible by both rel and rela sizes.
7966 It is of no help to us. */
7967 ;
7968 else
7969 {
7970 /* Section size is only divisible by rela. */
7971 if (use_rela_initialised && (use_rela == FALSE))
7972 {
7973 _bfd_error_handler
7974 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7975 bfd_set_error (bfd_error_invalid_operation);
7976 return 0;
7977 }
7978 else
7979 {
7980 use_rela = TRUE;
7981 use_rela_initialised = TRUE;
7982 }
7983 }
7984 }
7985 else if ((o->size % bed->s->sizeof_rel) == 0)
7986 {
7987 /* Section size is only divisible by rel. */
7988 if (use_rela_initialised && (use_rela == TRUE))
7989 {
7990 _bfd_error_handler
7991 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7992 bfd_set_error (bfd_error_invalid_operation);
7993 return 0;
7994 }
7995 else
7996 {
7997 use_rela = FALSE;
7998 use_rela_initialised = TRUE;
7999 }
8000 }
8001 else
8002 {
8003 /* The section size is not divisible by either - something is wrong. */
8004 _bfd_error_handler
8005 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8006 bfd_set_error (bfd_error_invalid_operation);
8007 return 0;
8008 }
8009 }
8010
8011 if (! use_rela_initialised)
8012 /* Make a guess. */
8013 use_rela = TRUE;
c152c796 8014 }
fc66a176
L
8015 else if (rela_dyn != NULL && rela_dyn->size > 0)
8016 use_rela = TRUE;
8017 else if (rel_dyn != NULL && rel_dyn->size > 0)
3410fea8 8018 use_rela = FALSE;
c152c796 8019 else
fc66a176 8020 return 0;
3410fea8
NC
8021
8022 if (use_rela)
c152c796 8023 {
3410fea8 8024 dynamic_relocs = rela_dyn;
c152c796
AM
8025 ext_size = bed->s->sizeof_rela;
8026 swap_in = bed->s->swap_reloca_in;
8027 swap_out = bed->s->swap_reloca_out;
8028 }
3410fea8
NC
8029 else
8030 {
8031 dynamic_relocs = rel_dyn;
8032 ext_size = bed->s->sizeof_rel;
8033 swap_in = bed->s->swap_reloc_in;
8034 swap_out = bed->s->swap_reloc_out;
8035 }
c152c796
AM
8036
8037 size = 0;
3410fea8 8038 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796 8039 if (lo->type == bfd_indirect_link_order)
3410fea8 8040 size += lo->u.indirect.section->size;
c152c796 8041
3410fea8 8042 if (size != dynamic_relocs->size)
c152c796
AM
8043 return 0;
8044
8045 sort_elt = (sizeof (struct elf_link_sort_rela)
8046 + (i2e - 1) * sizeof (Elf_Internal_Rela));
3410fea8
NC
8047
8048 count = dynamic_relocs->size / ext_size;
c152c796 8049 sort = bfd_zmalloc (sort_elt * count);
3410fea8 8050
c152c796
AM
8051 if (sort == NULL)
8052 {
8053 (*info->callbacks->warning)
8054 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8055 return 0;
8056 }
8057
8058 if (bed->s->arch_size == 32)
8059 r_sym_mask = ~(bfd_vma) 0xff;
8060 else
8061 r_sym_mask = ~(bfd_vma) 0xffffffff;
8062
3410fea8 8063 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8064 if (lo->type == bfd_indirect_link_order)
8065 {
8066 bfd_byte *erel, *erelend;
8067 asection *o = lo->u.indirect.section;
8068
1da212d6
AM
8069 if (o->contents == NULL && o->size != 0)
8070 {
8071 /* This is a reloc section that is being handled as a normal
8072 section. See bfd_section_from_shdr. We can't combine
8073 relocs in this case. */
8074 free (sort);
8075 return 0;
8076 }
c152c796 8077 erel = o->contents;
eea6121a 8078 erelend = o->contents + o->size;
c152c796 8079 p = sort + o->output_offset / ext_size * sort_elt;
3410fea8 8080
c152c796
AM
8081 while (erel < erelend)
8082 {
8083 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
3410fea8 8084
c152c796
AM
8085 (*swap_in) (abfd, erel, s->rela);
8086 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8087 s->u.sym_mask = r_sym_mask;
8088 p += sort_elt;
8089 erel += ext_size;
8090 }
8091 }
8092
8093 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8094
8095 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8096 {
8097 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8098 if (s->type != reloc_class_relative)
8099 break;
8100 }
8101 ret = i;
8102 s_non_relative = p;
8103
8104 sq = (struct elf_link_sort_rela *) s_non_relative;
8105 for (; i < count; i++, p += sort_elt)
8106 {
8107 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8108 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8109 sq = sp;
8110 sp->u.offset = sq->rela->r_offset;
8111 }
8112
8113 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8114
3410fea8 8115 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
8116 if (lo->type == bfd_indirect_link_order)
8117 {
8118 bfd_byte *erel, *erelend;
8119 asection *o = lo->u.indirect.section;
8120
8121 erel = o->contents;
eea6121a 8122 erelend = o->contents + o->size;
c152c796
AM
8123 p = sort + o->output_offset / ext_size * sort_elt;
8124 while (erel < erelend)
8125 {
8126 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8127 (*swap_out) (abfd, s->rela, erel);
8128 p += sort_elt;
8129 erel += ext_size;
8130 }
8131 }
8132
8133 free (sort);
3410fea8 8134 *psec = dynamic_relocs;
c152c796
AM
8135 return ret;
8136}
8137
8138/* Flush the output symbols to the file. */
8139
8140static bfd_boolean
8141elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8142 const struct elf_backend_data *bed)
8143{
8144 if (finfo->symbuf_count > 0)
8145 {
8146 Elf_Internal_Shdr *hdr;
8147 file_ptr pos;
8148 bfd_size_type amt;
8149
8150 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8151 pos = hdr->sh_offset + hdr->sh_size;
8152 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8153 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8154 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8155 return FALSE;
8156
8157 hdr->sh_size += amt;
8158 finfo->symbuf_count = 0;
8159 }
8160
8161 return TRUE;
8162}
8163
8164/* Add a symbol to the output symbol table. */
8165
8166static bfd_boolean
8167elf_link_output_sym (struct elf_final_link_info *finfo,
8168 const char *name,
8169 Elf_Internal_Sym *elfsym,
8170 asection *input_sec,
8171 struct elf_link_hash_entry *h)
8172{
8173 bfd_byte *dest;
8174 Elf_External_Sym_Shndx *destshndx;
8175 bfd_boolean (*output_symbol_hook)
8176 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8177 struct elf_link_hash_entry *);
8178 const struct elf_backend_data *bed;
8179
8180 bed = get_elf_backend_data (finfo->output_bfd);
8181 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8182 if (output_symbol_hook != NULL)
8183 {
8184 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8185 return FALSE;
8186 }
8187
8188 if (name == NULL || *name == '\0')
8189 elfsym->st_name = 0;
8190 else if (input_sec->flags & SEC_EXCLUDE)
8191 elfsym->st_name = 0;
8192 else
8193 {
8194 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8195 name, TRUE, FALSE);
8196 if (elfsym->st_name == (unsigned long) -1)
8197 return FALSE;
8198 }
8199
8200 if (finfo->symbuf_count >= finfo->symbuf_size)
8201 {
8202 if (! elf_link_flush_output_syms (finfo, bed))
8203 return FALSE;
8204 }
8205
8206 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8207 destshndx = finfo->symshndxbuf;
8208 if (destshndx != NULL)
8209 {
8210 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8211 {
8212 bfd_size_type amt;
8213
8214 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
515ef31d 8215 destshndx = bfd_realloc (destshndx, amt * 2);
c152c796
AM
8216 if (destshndx == NULL)
8217 return FALSE;
515ef31d 8218 finfo->symshndxbuf = destshndx;
c152c796
AM
8219 memset ((char *) destshndx + amt, 0, amt);
8220 finfo->shndxbuf_size *= 2;
8221 }
8222 destshndx += bfd_get_symcount (finfo->output_bfd);
8223 }
8224
8225 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8226 finfo->symbuf_count += 1;
8227 bfd_get_symcount (finfo->output_bfd) += 1;
8228
8229 return TRUE;
8230}
8231
c0d5a53d
L
8232/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8233
8234static bfd_boolean
8235check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8236{
4fbb74a6
AM
8237 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8238 && sym->st_shndx < SHN_LORESERVE)
c0d5a53d
L
8239 {
8240 /* The gABI doesn't support dynamic symbols in output sections
a0c8462f 8241 beyond 64k. */
c0d5a53d
L
8242 (*_bfd_error_handler)
8243 (_("%B: Too many sections: %d (>= %d)"),
4fbb74a6 8244 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
c0d5a53d
L
8245 bfd_set_error (bfd_error_nonrepresentable_section);
8246 return FALSE;
8247 }
8248 return TRUE;
8249}
8250
c152c796
AM
8251/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8252 allowing an unsatisfied unversioned symbol in the DSO to match a
8253 versioned symbol that would normally require an explicit version.
8254 We also handle the case that a DSO references a hidden symbol
8255 which may be satisfied by a versioned symbol in another DSO. */
8256
8257static bfd_boolean
8258elf_link_check_versioned_symbol (struct bfd_link_info *info,
8259 const struct elf_backend_data *bed,
8260 struct elf_link_hash_entry *h)
8261{
8262 bfd *abfd;
8263 struct elf_link_loaded_list *loaded;
8264
8265 if (!is_elf_hash_table (info->hash))
8266 return FALSE;
8267
8268 switch (h->root.type)
8269 {
8270 default:
8271 abfd = NULL;
8272 break;
8273
8274 case bfd_link_hash_undefined:
8275 case bfd_link_hash_undefweak:
8276 abfd = h->root.u.undef.abfd;
8277 if ((abfd->flags & DYNAMIC) == 0
e56f61be 8278 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
8279 return FALSE;
8280 break;
8281
8282 case bfd_link_hash_defined:
8283 case bfd_link_hash_defweak:
8284 abfd = h->root.u.def.section->owner;
8285 break;
8286
8287 case bfd_link_hash_common:
8288 abfd = h->root.u.c.p->section->owner;
8289 break;
8290 }
8291 BFD_ASSERT (abfd != NULL);
8292
8293 for (loaded = elf_hash_table (info)->loaded;
8294 loaded != NULL;
8295 loaded = loaded->next)
8296 {
8297 bfd *input;
8298 Elf_Internal_Shdr *hdr;
8299 bfd_size_type symcount;
8300 bfd_size_type extsymcount;
8301 bfd_size_type extsymoff;
8302 Elf_Internal_Shdr *versymhdr;
8303 Elf_Internal_Sym *isym;
8304 Elf_Internal_Sym *isymend;
8305 Elf_Internal_Sym *isymbuf;
8306 Elf_External_Versym *ever;
8307 Elf_External_Versym *extversym;
8308
8309 input = loaded->abfd;
8310
8311 /* We check each DSO for a possible hidden versioned definition. */
8312 if (input == abfd
8313 || (input->flags & DYNAMIC) == 0
8314 || elf_dynversym (input) == 0)
8315 continue;
8316
8317 hdr = &elf_tdata (input)->dynsymtab_hdr;
8318
8319 symcount = hdr->sh_size / bed->s->sizeof_sym;
8320 if (elf_bad_symtab (input))
8321 {
8322 extsymcount = symcount;
8323 extsymoff = 0;
8324 }
8325 else
8326 {
8327 extsymcount = symcount - hdr->sh_info;
8328 extsymoff = hdr->sh_info;
8329 }
8330
8331 if (extsymcount == 0)
8332 continue;
8333
8334 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8335 NULL, NULL, NULL);
8336 if (isymbuf == NULL)
8337 return FALSE;
8338
8339 /* Read in any version definitions. */
8340 versymhdr = &elf_tdata (input)->dynversym_hdr;
8341 extversym = bfd_malloc (versymhdr->sh_size);
8342 if (extversym == NULL)
8343 goto error_ret;
8344
8345 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8346 || (bfd_bread (extversym, versymhdr->sh_size, input)
8347 != versymhdr->sh_size))
8348 {
8349 free (extversym);
8350 error_ret:
8351 free (isymbuf);
8352 return FALSE;
8353 }
8354
8355 ever = extversym + extsymoff;
8356 isymend = isymbuf + extsymcount;
8357 for (isym = isymbuf; isym < isymend; isym++, ever++)
8358 {
8359 const char *name;
8360 Elf_Internal_Versym iver;
8361 unsigned short version_index;
8362
8363 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8364 || isym->st_shndx == SHN_UNDEF)
8365 continue;
8366
8367 name = bfd_elf_string_from_elf_section (input,
8368 hdr->sh_link,
8369 isym->st_name);
8370 if (strcmp (name, h->root.root.string) != 0)
8371 continue;
8372
8373 _bfd_elf_swap_versym_in (input, ever, &iver);
8374
8375 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8376 {
8377 /* If we have a non-hidden versioned sym, then it should
8378 have provided a definition for the undefined sym. */
8379 abort ();
8380 }
8381
8382 version_index = iver.vs_vers & VERSYM_VERSION;
8383 if (version_index == 1 || version_index == 2)
8384 {
8385 /* This is the base or first version. We can use it. */
8386 free (extversym);
8387 free (isymbuf);
8388 return TRUE;
8389 }
8390 }
8391
8392 free (extversym);
8393 free (isymbuf);
8394 }
8395
8396 return FALSE;
8397}
8398
8399/* Add an external symbol to the symbol table. This is called from
8400 the hash table traversal routine. When generating a shared object,
8401 we go through the symbol table twice. The first time we output
8402 anything that might have been forced to local scope in a version
8403 script. The second time we output the symbols that are still
8404 global symbols. */
8405
8406static bfd_boolean
8407elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8408{
8409 struct elf_outext_info *eoinfo = data;
8410 struct elf_final_link_info *finfo = eoinfo->finfo;
8411 bfd_boolean strip;
8412 Elf_Internal_Sym sym;
8413 asection *input_sec;
8414 const struct elf_backend_data *bed;
8415
8416 if (h->root.type == bfd_link_hash_warning)
8417 {
8418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8419 if (h->root.type == bfd_link_hash_new)
8420 return TRUE;
8421 }
8422
8423 /* Decide whether to output this symbol in this pass. */
8424 if (eoinfo->localsyms)
8425 {
f5385ebf 8426 if (!h->forced_local)
c152c796
AM
8427 return TRUE;
8428 }
8429 else
8430 {
f5385ebf 8431 if (h->forced_local)
c152c796
AM
8432 return TRUE;
8433 }
8434
8435 bed = get_elf_backend_data (finfo->output_bfd);
8436
12ac1cf5 8437 if (h->root.type == bfd_link_hash_undefined)
c152c796 8438 {
12ac1cf5
NC
8439 /* If we have an undefined symbol reference here then it must have
8440 come from a shared library that is being linked in. (Undefined
8441 references in regular files have already been handled). */
8442 bfd_boolean ignore_undef = FALSE;
8443
8444 /* Some symbols may be special in that the fact that they're
8445 undefined can be safely ignored - let backend determine that. */
8446 if (bed->elf_backend_ignore_undef_symbol)
8447 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8448
8449 /* If we are reporting errors for this situation then do so now. */
8450 if (ignore_undef == FALSE
8451 && h->ref_dynamic
8452 && ! h->ref_regular
8453 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8454 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
c152c796 8455 {
12ac1cf5
NC
8456 if (! (finfo->info->callbacks->undefined_symbol
8457 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8458 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8459 {
8460 eoinfo->failed = TRUE;
8461 return FALSE;
8462 }
c152c796
AM
8463 }
8464 }
8465
8466 /* We should also warn if a forced local symbol is referenced from
8467 shared libraries. */
8468 if (! finfo->info->relocatable
8469 && (! finfo->info->shared)
f5385ebf
AM
8470 && h->forced_local
8471 && h->ref_dynamic
8472 && !h->dynamic_def
8473 && !h->dynamic_weak
c152c796
AM
8474 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8475 {
8476 (*_bfd_error_handler)
d003868e 8477 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
8478 finfo->output_bfd,
8479 h->root.u.def.section == bfd_abs_section_ptr
8480 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
8481 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8482 ? "internal"
8483 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
8484 ? "hidden" : "local",
8485 h->root.root.string);
c152c796
AM
8486 eoinfo->failed = TRUE;
8487 return FALSE;
8488 }
8489
8490 /* We don't want to output symbols that have never been mentioned by
8491 a regular file, or that we have been told to strip. However, if
8492 h->indx is set to -2, the symbol is used by a reloc and we must
8493 output it. */
8494 if (h->indx == -2)
8495 strip = FALSE;
f5385ebf 8496 else if ((h->def_dynamic
77cfaee6
AM
8497 || h->ref_dynamic
8498 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
8499 && !h->def_regular
8500 && !h->ref_regular)
c152c796
AM
8501 strip = TRUE;
8502 else if (finfo->info->strip == strip_all)
8503 strip = TRUE;
8504 else if (finfo->info->strip == strip_some
8505 && bfd_hash_lookup (finfo->info->keep_hash,
8506 h->root.root.string, FALSE, FALSE) == NULL)
8507 strip = TRUE;
8508 else if (finfo->info->strip_discarded
8509 && (h->root.type == bfd_link_hash_defined
8510 || h->root.type == bfd_link_hash_defweak)
8511 && elf_discarded_section (h->root.u.def.section))
8512 strip = TRUE;
8513 else
8514 strip = FALSE;
8515
8516 /* If we're stripping it, and it's not a dynamic symbol, there's
8517 nothing else to do unless it is a forced local symbol. */
8518 if (strip
8519 && h->dynindx == -1
f5385ebf 8520 && !h->forced_local)
c152c796
AM
8521 return TRUE;
8522
8523 sym.st_value = 0;
8524 sym.st_size = h->size;
8525 sym.st_other = h->other;
f5385ebf 8526 if (h->forced_local)
c152c796
AM
8527 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8528 else if (h->root.type == bfd_link_hash_undefweak
8529 || h->root.type == bfd_link_hash_defweak)
8530 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8531 else
8532 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8533
8534 switch (h->root.type)
8535 {
8536 default:
8537 case bfd_link_hash_new:
8538 case bfd_link_hash_warning:
8539 abort ();
8540 return FALSE;
8541
8542 case bfd_link_hash_undefined:
8543 case bfd_link_hash_undefweak:
8544 input_sec = bfd_und_section_ptr;
8545 sym.st_shndx = SHN_UNDEF;
8546 break;
8547
8548 case bfd_link_hash_defined:
8549 case bfd_link_hash_defweak:
8550 {
8551 input_sec = h->root.u.def.section;
8552 if (input_sec->output_section != NULL)
8553 {
8554 sym.st_shndx =
8555 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8556 input_sec->output_section);
8557 if (sym.st_shndx == SHN_BAD)
8558 {
8559 (*_bfd_error_handler)
d003868e
AM
8560 (_("%B: could not find output section %A for input section %A"),
8561 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
8562 eoinfo->failed = TRUE;
8563 return FALSE;
8564 }
8565
8566 /* ELF symbols in relocatable files are section relative,
8567 but in nonrelocatable files they are virtual
8568 addresses. */
8569 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8570 if (! finfo->info->relocatable)
8571 {
8572 sym.st_value += input_sec->output_section->vma;
8573 if (h->type == STT_TLS)
8574 {
430a16a5
NC
8575 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8576 if (tls_sec != NULL)
8577 sym.st_value -= tls_sec->vma;
8578 else
8579 {
8580 /* The TLS section may have been garbage collected. */
8581 BFD_ASSERT (finfo->info->gc_sections
8582 && !input_sec->gc_mark);
8583 }
c152c796
AM
8584 }
8585 }
8586 }
8587 else
8588 {
8589 BFD_ASSERT (input_sec->owner == NULL
8590 || (input_sec->owner->flags & DYNAMIC) != 0);
8591 sym.st_shndx = SHN_UNDEF;
8592 input_sec = bfd_und_section_ptr;
8593 }
8594 }
8595 break;
8596
8597 case bfd_link_hash_common:
8598 input_sec = h->root.u.c.p->section;
a4d8e49b 8599 sym.st_shndx = bed->common_section_index (input_sec);
c152c796
AM
8600 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8601 break;
8602
8603 case bfd_link_hash_indirect:
8604 /* These symbols are created by symbol versioning. They point
8605 to the decorated version of the name. For example, if the
8606 symbol foo@@GNU_1.2 is the default, which should be used when
8607 foo is used with no version, then we add an indirect symbol
8608 foo which points to foo@@GNU_1.2. We ignore these symbols,
8609 since the indirected symbol is already in the hash table. */
8610 return TRUE;
8611 }
8612
8613 /* Give the processor backend a chance to tweak the symbol value,
8614 and also to finish up anything that needs to be done for this
8615 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8616 forced local syms when non-shared is due to a historical quirk. */
8617 if ((h->dynindx != -1
f5385ebf 8618 || h->forced_local)
c152c796
AM
8619 && ((finfo->info->shared
8620 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8621 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 8622 || !h->forced_local)
c152c796
AM
8623 && elf_hash_table (finfo->info)->dynamic_sections_created)
8624 {
8625 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8626 (finfo->output_bfd, finfo->info, h, &sym)))
8627 {
8628 eoinfo->failed = TRUE;
8629 return FALSE;
8630 }
8631 }
8632
8633 /* If we are marking the symbol as undefined, and there are no
8634 non-weak references to this symbol from a regular object, then
8635 mark the symbol as weak undefined; if there are non-weak
8636 references, mark the symbol as strong. We can't do this earlier,
8637 because it might not be marked as undefined until the
8638 finish_dynamic_symbol routine gets through with it. */
8639 if (sym.st_shndx == SHN_UNDEF
f5385ebf 8640 && h->ref_regular
c152c796
AM
8641 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8642 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8643 {
8644 int bindtype;
8645
f5385ebf 8646 if (h->ref_regular_nonweak)
c152c796
AM
8647 bindtype = STB_GLOBAL;
8648 else
8649 bindtype = STB_WEAK;
8650 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8651 }
8652
bda987c2
CD
8653 /* If this is a symbol defined in a dynamic library, don't use the
8654 symbol size from the dynamic library. Relinking an executable
8655 against a new library may introduce gratuitous changes in the
8656 executable's symbols if we keep the size. */
8657 if (sym.st_shndx == SHN_UNDEF
8658 && !h->def_regular
8659 && h->def_dynamic)
8660 sym.st_size = 0;
8661
c152c796
AM
8662 /* If a non-weak symbol with non-default visibility is not defined
8663 locally, it is a fatal error. */
8664 if (! finfo->info->relocatable
8665 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8666 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8667 && h->root.type == bfd_link_hash_undefined
f5385ebf 8668 && !h->def_regular)
c152c796
AM
8669 {
8670 (*_bfd_error_handler)
d003868e
AM
8671 (_("%B: %s symbol `%s' isn't defined"),
8672 finfo->output_bfd,
8673 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8674 ? "protected"
8675 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8676 ? "internal" : "hidden",
8677 h->root.root.string);
c152c796
AM
8678 eoinfo->failed = TRUE;
8679 return FALSE;
8680 }
8681
8682 /* If this symbol should be put in the .dynsym section, then put it
8683 there now. We already know the symbol index. We also fill in
8684 the entry in the .hash section. */
8685 if (h->dynindx != -1
8686 && elf_hash_table (finfo->info)->dynamic_sections_created)
8687 {
c152c796
AM
8688 bfd_byte *esym;
8689
8690 sym.st_name = h->dynstr_index;
8691 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
c0d5a53d
L
8692 if (! check_dynsym (finfo->output_bfd, &sym))
8693 {
8694 eoinfo->failed = TRUE;
8695 return FALSE;
8696 }
c152c796
AM
8697 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8698
fdc90cb4
JJ
8699 if (finfo->hash_sec != NULL)
8700 {
8701 size_t hash_entry_size;
8702 bfd_byte *bucketpos;
8703 bfd_vma chain;
41198d0c
L
8704 size_t bucketcount;
8705 size_t bucket;
8706
8707 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8708 bucket = h->u.elf_hash_value % bucketcount;
fdc90cb4
JJ
8709
8710 hash_entry_size
8711 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8712 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8713 + (bucket + 2) * hash_entry_size);
8714 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8715 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8716 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8717 ((bfd_byte *) finfo->hash_sec->contents
8718 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8719 }
c152c796
AM
8720
8721 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8722 {
8723 Elf_Internal_Versym iversym;
8724 Elf_External_Versym *eversym;
8725
f5385ebf 8726 if (!h->def_regular)
c152c796
AM
8727 {
8728 if (h->verinfo.verdef == NULL)
8729 iversym.vs_vers = 0;
8730 else
8731 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8732 }
8733 else
8734 {
8735 if (h->verinfo.vertree == NULL)
8736 iversym.vs_vers = 1;
8737 else
8738 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
8739 if (finfo->info->create_default_symver)
8740 iversym.vs_vers++;
c152c796
AM
8741 }
8742
f5385ebf 8743 if (h->hidden)
c152c796
AM
8744 iversym.vs_vers |= VERSYM_HIDDEN;
8745
8746 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8747 eversym += h->dynindx;
8748 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8749 }
8750 }
8751
8752 /* If we're stripping it, then it was just a dynamic symbol, and
8753 there's nothing else to do. */
8754 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8755 return TRUE;
8756
8757 h->indx = bfd_get_symcount (finfo->output_bfd);
8758
8759 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8760 {
8761 eoinfo->failed = TRUE;
8762 return FALSE;
8763 }
8764
8765 return TRUE;
8766}
8767
cdd3575c
AM
8768/* Return TRUE if special handling is done for relocs in SEC against
8769 symbols defined in discarded sections. */
8770
c152c796
AM
8771static bfd_boolean
8772elf_section_ignore_discarded_relocs (asection *sec)
8773{
8774 const struct elf_backend_data *bed;
8775
cdd3575c
AM
8776 switch (sec->sec_info_type)
8777 {
8778 case ELF_INFO_TYPE_STABS:
8779 case ELF_INFO_TYPE_EH_FRAME:
8780 return TRUE;
8781 default:
8782 break;
8783 }
c152c796
AM
8784
8785 bed = get_elf_backend_data (sec->owner);
8786 if (bed->elf_backend_ignore_discarded_relocs != NULL
8787 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8788 return TRUE;
8789
8790 return FALSE;
8791}
8792
9e66c942
AM
8793/* Return a mask saying how ld should treat relocations in SEC against
8794 symbols defined in discarded sections. If this function returns
8795 COMPLAIN set, ld will issue a warning message. If this function
8796 returns PRETEND set, and the discarded section was link-once and the
8797 same size as the kept link-once section, ld will pretend that the
8798 symbol was actually defined in the kept section. Otherwise ld will
8799 zero the reloc (at least that is the intent, but some cooperation by
8800 the target dependent code is needed, particularly for REL targets). */
8801
8a696751
AM
8802unsigned int
8803_bfd_elf_default_action_discarded (asection *sec)
cdd3575c 8804{
9e66c942 8805 if (sec->flags & SEC_DEBUGGING)
69d54b1b 8806 return PRETEND;
cdd3575c
AM
8807
8808 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 8809 return 0;
cdd3575c
AM
8810
8811 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 8812 return 0;
cdd3575c 8813
9e66c942 8814 return COMPLAIN | PRETEND;
cdd3575c
AM
8815}
8816
3d7f7666
L
8817/* Find a match between a section and a member of a section group. */
8818
8819static asection *
c0f00686
L
8820match_group_member (asection *sec, asection *group,
8821 struct bfd_link_info *info)
3d7f7666
L
8822{
8823 asection *first = elf_next_in_group (group);
8824 asection *s = first;
8825
8826 while (s != NULL)
8827 {
c0f00686 8828 if (bfd_elf_match_symbols_in_sections (s, sec, info))
3d7f7666
L
8829 return s;
8830
83180ade 8831 s = elf_next_in_group (s);
3d7f7666
L
8832 if (s == first)
8833 break;
8834 }
8835
8836 return NULL;
8837}
8838
01b3c8ab 8839/* Check if the kept section of a discarded section SEC can be used
c2370991
AM
8840 to replace it. Return the replacement if it is OK. Otherwise return
8841 NULL. */
01b3c8ab
L
8842
8843asection *
c0f00686 8844_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
01b3c8ab
L
8845{
8846 asection *kept;
8847
8848 kept = sec->kept_section;
8849 if (kept != NULL)
8850 {
c2370991 8851 if ((kept->flags & SEC_GROUP) != 0)
c0f00686 8852 kept = match_group_member (sec, kept, info);
1dd2625f
BW
8853 if (kept != NULL
8854 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8855 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
01b3c8ab 8856 kept = NULL;
c2370991 8857 sec->kept_section = kept;
01b3c8ab
L
8858 }
8859 return kept;
8860}
8861
c152c796
AM
8862/* Link an input file into the linker output file. This function
8863 handles all the sections and relocations of the input file at once.
8864 This is so that we only have to read the local symbols once, and
8865 don't have to keep them in memory. */
8866
8867static bfd_boolean
8868elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8869{
ece5ef60 8870 int (*relocate_section)
c152c796
AM
8871 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8872 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8873 bfd *output_bfd;
8874 Elf_Internal_Shdr *symtab_hdr;
8875 size_t locsymcount;
8876 size_t extsymoff;
8877 Elf_Internal_Sym *isymbuf;
8878 Elf_Internal_Sym *isym;
8879 Elf_Internal_Sym *isymend;
8880 long *pindex;
8881 asection **ppsection;
8882 asection *o;
8883 const struct elf_backend_data *bed;
c152c796
AM
8884 struct elf_link_hash_entry **sym_hashes;
8885
8886 output_bfd = finfo->output_bfd;
8887 bed = get_elf_backend_data (output_bfd);
8888 relocate_section = bed->elf_backend_relocate_section;
8889
8890 /* If this is a dynamic object, we don't want to do anything here:
8891 we don't want the local symbols, and we don't want the section
8892 contents. */
8893 if ((input_bfd->flags & DYNAMIC) != 0)
8894 return TRUE;
8895
c152c796
AM
8896 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8897 if (elf_bad_symtab (input_bfd))
8898 {
8899 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8900 extsymoff = 0;
8901 }
8902 else
8903 {
8904 locsymcount = symtab_hdr->sh_info;
8905 extsymoff = symtab_hdr->sh_info;
8906 }
8907
8908 /* Read the local symbols. */
8909 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8910 if (isymbuf == NULL && locsymcount != 0)
8911 {
8912 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8913 finfo->internal_syms,
8914 finfo->external_syms,
8915 finfo->locsym_shndx);
8916 if (isymbuf == NULL)
8917 return FALSE;
8918 }
8919
8920 /* Find local symbol sections and adjust values of symbols in
8921 SEC_MERGE sections. Write out those local symbols we know are
8922 going into the output file. */
8923 isymend = isymbuf + locsymcount;
8924 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8925 isym < isymend;
8926 isym++, pindex++, ppsection++)
8927 {
8928 asection *isec;
8929 const char *name;
8930 Elf_Internal_Sym osym;
8931
8932 *pindex = -1;
8933
8934 if (elf_bad_symtab (input_bfd))
8935 {
8936 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8937 {
8938 *ppsection = NULL;
8939 continue;
8940 }
8941 }
8942
8943 if (isym->st_shndx == SHN_UNDEF)
8944 isec = bfd_und_section_ptr;
c152c796
AM
8945 else if (isym->st_shndx == SHN_ABS)
8946 isec = bfd_abs_section_ptr;
8947 else if (isym->st_shndx == SHN_COMMON)
8948 isec = bfd_com_section_ptr;
8949 else
8950 {
cb33740c
AM
8951 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8952 if (isec == NULL)
8953 {
8954 /* Don't attempt to output symbols with st_shnx in the
8955 reserved range other than SHN_ABS and SHN_COMMON. */
8956 *ppsection = NULL;
8957 continue;
8958 }
8959 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
8960 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8961 isym->st_value =
8962 _bfd_merged_section_offset (output_bfd, &isec,
8963 elf_section_data (isec)->sec_info,
8964 isym->st_value);
c152c796
AM
8965 }
8966
8967 *ppsection = isec;
8968
8969 /* Don't output the first, undefined, symbol. */
8970 if (ppsection == finfo->sections)
8971 continue;
8972
8973 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8974 {
8975 /* We never output section symbols. Instead, we use the
8976 section symbol of the corresponding section in the output
8977 file. */
8978 continue;
8979 }
8980
8981 /* If we are stripping all symbols, we don't want to output this
8982 one. */
8983 if (finfo->info->strip == strip_all)
8984 continue;
8985
8986 /* If we are discarding all local symbols, we don't want to
8987 output this one. If we are generating a relocatable output
8988 file, then some of the local symbols may be required by
8989 relocs; we output them below as we discover that they are
8990 needed. */
8991 if (finfo->info->discard == discard_all)
8992 continue;
8993
8994 /* If this symbol is defined in a section which we are
f02571c5
AM
8995 discarding, we don't need to keep it. */
8996 if (isym->st_shndx != SHN_UNDEF
4fbb74a6
AM
8997 && isym->st_shndx < SHN_LORESERVE
8998 && bfd_section_removed_from_list (output_bfd,
8999 isec->output_section))
e75a280b
L
9000 continue;
9001
c152c796
AM
9002 /* Get the name of the symbol. */
9003 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9004 isym->st_name);
9005 if (name == NULL)
9006 return FALSE;
9007
9008 /* See if we are discarding symbols with this name. */
9009 if ((finfo->info->strip == strip_some
9010 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9011 == NULL))
9012 || (((finfo->info->discard == discard_sec_merge
9013 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9014 || finfo->info->discard == discard_l)
9015 && bfd_is_local_label_name (input_bfd, name)))
9016 continue;
9017
9018 /* If we get here, we are going to output this symbol. */
9019
9020 osym = *isym;
9021
9022 /* Adjust the section index for the output file. */
9023 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9024 isec->output_section);
9025 if (osym.st_shndx == SHN_BAD)
9026 return FALSE;
9027
9028 *pindex = bfd_get_symcount (output_bfd);
9029
9030 /* ELF symbols in relocatable files are section relative, but
9031 in executable files they are virtual addresses. Note that
9032 this code assumes that all ELF sections have an associated
9033 BFD section with a reasonable value for output_offset; below
9034 we assume that they also have a reasonable value for
9035 output_section. Any special sections must be set up to meet
9036 these requirements. */
9037 osym.st_value += isec->output_offset;
9038 if (! finfo->info->relocatable)
9039 {
9040 osym.st_value += isec->output_section->vma;
9041 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9042 {
9043 /* STT_TLS symbols are relative to PT_TLS segment base. */
9044 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9045 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9046 }
9047 }
9048
9049 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9050 return FALSE;
9051 }
9052
9053 /* Relocate the contents of each section. */
9054 sym_hashes = elf_sym_hashes (input_bfd);
9055 for (o = input_bfd->sections; o != NULL; o = o->next)
9056 {
9057 bfd_byte *contents;
9058
9059 if (! o->linker_mark)
9060 {
9061 /* This section was omitted from the link. */
9062 continue;
9063 }
9064
9065 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 9066 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
9067 continue;
9068
9069 if ((o->flags & SEC_LINKER_CREATED) != 0)
9070 {
9071 /* Section was created by _bfd_elf_link_create_dynamic_sections
9072 or somesuch. */
9073 continue;
9074 }
9075
9076 /* Get the contents of the section. They have been cached by a
9077 relaxation routine. Note that o is a section in an input
9078 file, so the contents field will not have been set by any of
9079 the routines which work on output files. */
9080 if (elf_section_data (o)->this_hdr.contents != NULL)
9081 contents = elf_section_data (o)->this_hdr.contents;
9082 else
9083 {
eea6121a
AM
9084 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9085
c152c796 9086 contents = finfo->contents;
eea6121a 9087 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
9088 return FALSE;
9089 }
9090
9091 if ((o->flags & SEC_RELOC) != 0)
9092 {
9093 Elf_Internal_Rela *internal_relocs;
0f02bbd9 9094 Elf_Internal_Rela *rel, *relend;
c152c796
AM
9095 bfd_vma r_type_mask;
9096 int r_sym_shift;
0f02bbd9 9097 int action_discarded;
ece5ef60 9098 int ret;
c152c796
AM
9099
9100 /* Get the swapped relocs. */
9101 internal_relocs
9102 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9103 finfo->internal_relocs, FALSE);
9104 if (internal_relocs == NULL
9105 && o->reloc_count > 0)
9106 return FALSE;
9107
9108 if (bed->s->arch_size == 32)
9109 {
9110 r_type_mask = 0xff;
9111 r_sym_shift = 8;
9112 }
9113 else
9114 {
9115 r_type_mask = 0xffffffff;
9116 r_sym_shift = 32;
9117 }
9118
0f02bbd9 9119 action_discarded = -1;
c152c796 9120 if (!elf_section_ignore_discarded_relocs (o))
0f02bbd9
AM
9121 action_discarded = (*bed->action_discarded) (o);
9122
9123 /* Run through the relocs evaluating complex reloc symbols and
9124 looking for relocs against symbols from discarded sections
9125 or section symbols from removed link-once sections.
9126 Complain about relocs against discarded sections. Zero
9127 relocs against removed link-once sections. */
9128
9129 rel = internal_relocs;
9130 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9131 for ( ; rel < relend; rel++)
c152c796 9132 {
0f02bbd9
AM
9133 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9134 unsigned int s_type;
9135 asection **ps, *sec;
9136 struct elf_link_hash_entry *h = NULL;
9137 const char *sym_name;
c152c796 9138
0f02bbd9
AM
9139 if (r_symndx == STN_UNDEF)
9140 continue;
c152c796 9141
0f02bbd9
AM
9142 if (r_symndx >= locsymcount
9143 || (elf_bad_symtab (input_bfd)
9144 && finfo->sections[r_symndx] == NULL))
9145 {
9146 h = sym_hashes[r_symndx - extsymoff];
ee75fd95 9147
0f02bbd9
AM
9148 /* Badly formatted input files can contain relocs that
9149 reference non-existant symbols. Check here so that
9150 we do not seg fault. */
9151 if (h == NULL)
c152c796 9152 {
0f02bbd9 9153 char buffer [32];
dce669a1 9154
0f02bbd9
AM
9155 sprintf_vma (buffer, rel->r_info);
9156 (*_bfd_error_handler)
9157 (_("error: %B contains a reloc (0x%s) for section %A "
9158 "that references a non-existent global symbol"),
9159 input_bfd, o, buffer);
9160 bfd_set_error (bfd_error_bad_value);
9161 return FALSE;
9162 }
3b36f7e6 9163
0f02bbd9
AM
9164 while (h->root.type == bfd_link_hash_indirect
9165 || h->root.type == bfd_link_hash_warning)
9166 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796 9167
0f02bbd9 9168 s_type = h->type;
cdd3575c 9169
0f02bbd9
AM
9170 ps = NULL;
9171 if (h->root.type == bfd_link_hash_defined
9172 || h->root.type == bfd_link_hash_defweak)
9173 ps = &h->root.u.def.section;
9174
9175 sym_name = h->root.root.string;
9176 }
9177 else
9178 {
9179 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9180
9181 s_type = ELF_ST_TYPE (sym->st_info);
9182 ps = &finfo->sections[r_symndx];
9183 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9184 sym, *ps);
9185 }
c152c796 9186
0f02bbd9
AM
9187 if (s_type == STT_RELC || s_type == STT_SRELC)
9188 {
9189 bfd_vma val;
9190 bfd_vma dot = (rel->r_offset
9191 + o->output_offset + o->output_section->vma);
9192#ifdef DEBUG
9193 printf ("Encountered a complex symbol!");
9194 printf (" (input_bfd %s, section %s, reloc %ld\n",
9195 input_bfd->filename, o->name, rel - internal_relocs);
9196 printf (" symbol: idx %8.8lx, name %s\n",
9197 r_symndx, sym_name);
9198 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9199 (unsigned long) rel->r_info,
9200 (unsigned long) rel->r_offset);
9201#endif
9202 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9203 isymbuf, locsymcount, s_type == STT_SRELC))
9204 return FALSE;
9205
9206 /* Symbol evaluated OK. Update to absolute value. */
9207 set_symbol_value (input_bfd, isymbuf, locsymcount,
9208 r_symndx, val);
9209 continue;
9210 }
9211
9212 if (action_discarded != -1 && ps != NULL)
9213 {
cdd3575c
AM
9214 /* Complain if the definition comes from a
9215 discarded section. */
9216 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9217 {
87e5235d 9218 BFD_ASSERT (r_symndx != 0);
0f02bbd9 9219 if (action_discarded & COMPLAIN)
e1fffbe6
AM
9220 (*finfo->info->callbacks->einfo)
9221 (_("%X`%s' referenced in section `%A' of %B: "
58ac56d0 9222 "defined in discarded section `%A' of %B\n"),
e1fffbe6 9223 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 9224
87e5235d 9225 /* Try to do the best we can to support buggy old
e0ae6d6f 9226 versions of gcc. Pretend that the symbol is
87e5235d
AM
9227 really defined in the kept linkonce section.
9228 FIXME: This is quite broken. Modifying the
9229 symbol here means we will be changing all later
e0ae6d6f 9230 uses of the symbol, not just in this section. */
0f02bbd9 9231 if (action_discarded & PRETEND)
87e5235d 9232 {
01b3c8ab
L
9233 asection *kept;
9234
c0f00686
L
9235 kept = _bfd_elf_check_kept_section (sec,
9236 finfo->info);
01b3c8ab 9237 if (kept != NULL)
87e5235d
AM
9238 {
9239 *ps = kept;
9240 continue;
9241 }
9242 }
c152c796
AM
9243 }
9244 }
9245 }
9246
9247 /* Relocate the section by invoking a back end routine.
9248
9249 The back end routine is responsible for adjusting the
9250 section contents as necessary, and (if using Rela relocs
9251 and generating a relocatable output file) adjusting the
9252 reloc addend as necessary.
9253
9254 The back end routine does not have to worry about setting
9255 the reloc address or the reloc symbol index.
9256
9257 The back end routine is given a pointer to the swapped in
9258 internal symbols, and can access the hash table entries
9259 for the external symbols via elf_sym_hashes (input_bfd).
9260
9261 When generating relocatable output, the back end routine
9262 must handle STB_LOCAL/STT_SECTION symbols specially. The
9263 output symbol is going to be a section symbol
9264 corresponding to the output section, which will require
9265 the addend to be adjusted. */
9266
ece5ef60 9267 ret = (*relocate_section) (output_bfd, finfo->info,
c152c796
AM
9268 input_bfd, o, contents,
9269 internal_relocs,
9270 isymbuf,
ece5ef60
AM
9271 finfo->sections);
9272 if (!ret)
c152c796
AM
9273 return FALSE;
9274
ece5ef60
AM
9275 if (ret == 2
9276 || finfo->info->relocatable
9277 || finfo->info->emitrelocations)
c152c796
AM
9278 {
9279 Elf_Internal_Rela *irela;
9280 Elf_Internal_Rela *irelaend;
9281 bfd_vma last_offset;
9282 struct elf_link_hash_entry **rel_hash;
eac338cf 9283 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
9284 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9285 unsigned int next_erel;
c152c796
AM
9286 bfd_boolean rela_normal;
9287
9288 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9289 rela_normal = (bed->rela_normal
9290 && (input_rel_hdr->sh_entsize
9291 == bed->s->sizeof_rela));
9292
9293 /* Adjust the reloc addresses and symbol indices. */
9294
9295 irela = internal_relocs;
9296 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9297 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9298 + elf_section_data (o->output_section)->rel_count
9299 + elf_section_data (o->output_section)->rel_count2);
eac338cf 9300 rel_hash_list = rel_hash;
c152c796
AM
9301 last_offset = o->output_offset;
9302 if (!finfo->info->relocatable)
9303 last_offset += o->output_section->vma;
9304 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9305 {
9306 unsigned long r_symndx;
9307 asection *sec;
9308 Elf_Internal_Sym sym;
9309
9310 if (next_erel == bed->s->int_rels_per_ext_rel)
9311 {
9312 rel_hash++;
9313 next_erel = 0;
9314 }
9315
9316 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9317 finfo->info, o,
9318 irela->r_offset);
9319 if (irela->r_offset >= (bfd_vma) -2)
9320 {
9321 /* This is a reloc for a deleted entry or somesuch.
9322 Turn it into an R_*_NONE reloc, at the same
9323 offset as the last reloc. elf_eh_frame.c and
e460dd0d 9324 bfd_elf_discard_info rely on reloc offsets
c152c796
AM
9325 being ordered. */
9326 irela->r_offset = last_offset;
9327 irela->r_info = 0;
9328 irela->r_addend = 0;
9329 continue;
9330 }
9331
9332 irela->r_offset += o->output_offset;
9333
9334 /* Relocs in an executable have to be virtual addresses. */
9335 if (!finfo->info->relocatable)
9336 irela->r_offset += o->output_section->vma;
9337
9338 last_offset = irela->r_offset;
9339
9340 r_symndx = irela->r_info >> r_sym_shift;
9341 if (r_symndx == STN_UNDEF)
9342 continue;
9343
9344 if (r_symndx >= locsymcount
9345 || (elf_bad_symtab (input_bfd)
9346 && finfo->sections[r_symndx] == NULL))
9347 {
9348 struct elf_link_hash_entry *rh;
9349 unsigned long indx;
9350
9351 /* This is a reloc against a global symbol. We
9352 have not yet output all the local symbols, so
9353 we do not know the symbol index of any global
9354 symbol. We set the rel_hash entry for this
9355 reloc to point to the global hash table entry
9356 for this symbol. The symbol index is then
ee75fd95 9357 set at the end of bfd_elf_final_link. */
c152c796
AM
9358 indx = r_symndx - extsymoff;
9359 rh = elf_sym_hashes (input_bfd)[indx];
9360 while (rh->root.type == bfd_link_hash_indirect
9361 || rh->root.type == bfd_link_hash_warning)
9362 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9363
9364 /* Setting the index to -2 tells
9365 elf_link_output_extsym that this symbol is
9366 used by a reloc. */
9367 BFD_ASSERT (rh->indx < 0);
9368 rh->indx = -2;
9369
9370 *rel_hash = rh;
9371
9372 continue;
9373 }
9374
9375 /* This is a reloc against a local symbol. */
9376
9377 *rel_hash = NULL;
9378 sym = isymbuf[r_symndx];
9379 sec = finfo->sections[r_symndx];
9380 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9381 {
9382 /* I suppose the backend ought to fill in the
9383 section of any STT_SECTION symbol against a
6a8d1586
AM
9384 processor specific section. */
9385 r_symndx = 0;
9386 if (bfd_is_abs_section (sec))
9387 ;
c152c796
AM
9388 else if (sec == NULL || sec->owner == NULL)
9389 {
9390 bfd_set_error (bfd_error_bad_value);
9391 return FALSE;
9392 }
9393 else
9394 {
6a8d1586
AM
9395 asection *osec = sec->output_section;
9396
9397 /* If we have discarded a section, the output
9398 section will be the absolute section. In
ab96bf03
AM
9399 case of discarded SEC_MERGE sections, use
9400 the kept section. relocate_section should
9401 have already handled discarded linkonce
9402 sections. */
6a8d1586
AM
9403 if (bfd_is_abs_section (osec)
9404 && sec->kept_section != NULL
9405 && sec->kept_section->output_section != NULL)
9406 {
9407 osec = sec->kept_section->output_section;
9408 irela->r_addend -= osec->vma;
9409 }
9410
9411 if (!bfd_is_abs_section (osec))
9412 {
9413 r_symndx = osec->target_index;
74541ad4
AM
9414 if (r_symndx == 0)
9415 {
9416 struct elf_link_hash_table *htab;
9417 asection *oi;
9418
9419 htab = elf_hash_table (finfo->info);
9420 oi = htab->text_index_section;
9421 if ((osec->flags & SEC_READONLY) == 0
9422 && htab->data_index_section != NULL)
9423 oi = htab->data_index_section;
9424
9425 if (oi != NULL)
9426 {
9427 irela->r_addend += osec->vma - oi->vma;
9428 r_symndx = oi->target_index;
9429 }
9430 }
9431
6a8d1586
AM
9432 BFD_ASSERT (r_symndx != 0);
9433 }
c152c796
AM
9434 }
9435
9436 /* Adjust the addend according to where the
9437 section winds up in the output section. */
9438 if (rela_normal)
9439 irela->r_addend += sec->output_offset;
9440 }
9441 else
9442 {
9443 if (finfo->indices[r_symndx] == -1)
9444 {
9445 unsigned long shlink;
9446 const char *name;
9447 asection *osec;
9448
9449 if (finfo->info->strip == strip_all)
9450 {
9451 /* You can't do ld -r -s. */
9452 bfd_set_error (bfd_error_invalid_operation);
9453 return FALSE;
9454 }
9455
9456 /* This symbol was skipped earlier, but
9457 since it is needed by a reloc, we
9458 must output it now. */
9459 shlink = symtab_hdr->sh_link;
9460 name = (bfd_elf_string_from_elf_section
9461 (input_bfd, shlink, sym.st_name));
9462 if (name == NULL)
9463 return FALSE;
9464
9465 osec = sec->output_section;
9466 sym.st_shndx =
9467 _bfd_elf_section_from_bfd_section (output_bfd,
9468 osec);
9469 if (sym.st_shndx == SHN_BAD)
9470 return FALSE;
9471
9472 sym.st_value += sec->output_offset;
9473 if (! finfo->info->relocatable)
9474 {
9475 sym.st_value += osec->vma;
9476 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9477 {
9478 /* STT_TLS symbols are relative to PT_TLS
9479 segment base. */
9480 BFD_ASSERT (elf_hash_table (finfo->info)
9481 ->tls_sec != NULL);
9482 sym.st_value -= (elf_hash_table (finfo->info)
9483 ->tls_sec->vma);
9484 }
9485 }
9486
9487 finfo->indices[r_symndx]
9488 = bfd_get_symcount (output_bfd);
9489
9490 if (! elf_link_output_sym (finfo, name, &sym, sec,
9491 NULL))
9492 return FALSE;
9493 }
9494
9495 r_symndx = finfo->indices[r_symndx];
9496 }
9497
9498 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9499 | (irela->r_info & r_type_mask));
9500 }
9501
9502 /* Swap out the relocs. */
c152c796 9503 if (input_rel_hdr->sh_size != 0
eac338cf
PB
9504 && !bed->elf_backend_emit_relocs (output_bfd, o,
9505 input_rel_hdr,
9506 internal_relocs,
9507 rel_hash_list))
c152c796
AM
9508 return FALSE;
9509
9510 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9511 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9512 {
9513 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9514 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
9515 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9516 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9517 input_rel_hdr2,
9518 internal_relocs,
9519 rel_hash_list))
c152c796
AM
9520 return FALSE;
9521 }
9522 }
9523 }
9524
9525 /* Write out the modified section contents. */
9526 if (bed->elf_backend_write_section
c7b8f16e
JB
9527 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9528 contents))
c152c796
AM
9529 {
9530 /* Section written out. */
9531 }
9532 else switch (o->sec_info_type)
9533 {
9534 case ELF_INFO_TYPE_STABS:
9535 if (! (_bfd_write_section_stabs
9536 (output_bfd,
9537 &elf_hash_table (finfo->info)->stab_info,
9538 o, &elf_section_data (o)->sec_info, contents)))
9539 return FALSE;
9540 break;
9541 case ELF_INFO_TYPE_MERGE:
9542 if (! _bfd_write_merged_section (output_bfd, o,
9543 elf_section_data (o)->sec_info))
9544 return FALSE;
9545 break;
9546 case ELF_INFO_TYPE_EH_FRAME:
9547 {
9548 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9549 o, contents))
9550 return FALSE;
9551 }
9552 break;
9553 default:
9554 {
c152c796 9555 if (! (o->flags & SEC_EXCLUDE)
ace79388 9556 && ! (o->output_section->flags & SEC_NEVER_LOAD)
c152c796
AM
9557 && ! bfd_set_section_contents (output_bfd, o->output_section,
9558 contents,
9559 (file_ptr) o->output_offset,
eea6121a 9560 o->size))
c152c796
AM
9561 return FALSE;
9562 }
9563 break;
9564 }
9565 }
9566
9567 return TRUE;
9568}
9569
9570/* Generate a reloc when linking an ELF file. This is a reloc
3a800eb9 9571 requested by the linker, and does not come from any input file. This
c152c796
AM
9572 is used to build constructor and destructor tables when linking
9573 with -Ur. */
9574
9575static bfd_boolean
9576elf_reloc_link_order (bfd *output_bfd,
9577 struct bfd_link_info *info,
9578 asection *output_section,
9579 struct bfd_link_order *link_order)
9580{
9581 reloc_howto_type *howto;
9582 long indx;
9583 bfd_vma offset;
9584 bfd_vma addend;
9585 struct elf_link_hash_entry **rel_hash_ptr;
9586 Elf_Internal_Shdr *rel_hdr;
9587 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9588 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9589 bfd_byte *erel;
9590 unsigned int i;
9591
9592 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9593 if (howto == NULL)
9594 {
9595 bfd_set_error (bfd_error_bad_value);
9596 return FALSE;
9597 }
9598
9599 addend = link_order->u.reloc.p->addend;
9600
9601 /* Figure out the symbol index. */
9602 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9603 + elf_section_data (output_section)->rel_count
9604 + elf_section_data (output_section)->rel_count2);
9605 if (link_order->type == bfd_section_reloc_link_order)
9606 {
9607 indx = link_order->u.reloc.p->u.section->target_index;
9608 BFD_ASSERT (indx != 0);
9609 *rel_hash_ptr = NULL;
9610 }
9611 else
9612 {
9613 struct elf_link_hash_entry *h;
9614
9615 /* Treat a reloc against a defined symbol as though it were
9616 actually against the section. */
9617 h = ((struct elf_link_hash_entry *)
9618 bfd_wrapped_link_hash_lookup (output_bfd, info,
9619 link_order->u.reloc.p->u.name,
9620 FALSE, FALSE, TRUE));
9621 if (h != NULL
9622 && (h->root.type == bfd_link_hash_defined
9623 || h->root.type == bfd_link_hash_defweak))
9624 {
9625 asection *section;
9626
9627 section = h->root.u.def.section;
9628 indx = section->output_section->target_index;
9629 *rel_hash_ptr = NULL;
9630 /* It seems that we ought to add the symbol value to the
9631 addend here, but in practice it has already been added
9632 because it was passed to constructor_callback. */
9633 addend += section->output_section->vma + section->output_offset;
9634 }
9635 else if (h != NULL)
9636 {
9637 /* Setting the index to -2 tells elf_link_output_extsym that
9638 this symbol is used by a reloc. */
9639 h->indx = -2;
9640 *rel_hash_ptr = h;
9641 indx = 0;
9642 }
9643 else
9644 {
9645 if (! ((*info->callbacks->unattached_reloc)
9646 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9647 return FALSE;
9648 indx = 0;
9649 }
9650 }
9651
9652 /* If this is an inplace reloc, we must write the addend into the
9653 object file. */
9654 if (howto->partial_inplace && addend != 0)
9655 {
9656 bfd_size_type size;
9657 bfd_reloc_status_type rstat;
9658 bfd_byte *buf;
9659 bfd_boolean ok;
9660 const char *sym_name;
9661
9662 size = bfd_get_reloc_size (howto);
9663 buf = bfd_zmalloc (size);
9664 if (buf == NULL)
9665 return FALSE;
9666 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9667 switch (rstat)
9668 {
9669 case bfd_reloc_ok:
9670 break;
9671
9672 default:
9673 case bfd_reloc_outofrange:
9674 abort ();
9675
9676 case bfd_reloc_overflow:
9677 if (link_order->type == bfd_section_reloc_link_order)
9678 sym_name = bfd_section_name (output_bfd,
9679 link_order->u.reloc.p->u.section);
9680 else
9681 sym_name = link_order->u.reloc.p->u.name;
9682 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
9683 (info, NULL, sym_name, howto->name, addend, NULL,
9684 NULL, (bfd_vma) 0)))
c152c796
AM
9685 {
9686 free (buf);
9687 return FALSE;
9688 }
9689 break;
9690 }
9691 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9692 link_order->offset, size);
9693 free (buf);
9694 if (! ok)
9695 return FALSE;
9696 }
9697
9698 /* The address of a reloc is relative to the section in a
9699 relocatable file, and is a virtual address in an executable
9700 file. */
9701 offset = link_order->offset;
9702 if (! info->relocatable)
9703 offset += output_section->vma;
9704
9705 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9706 {
9707 irel[i].r_offset = offset;
9708 irel[i].r_info = 0;
9709 irel[i].r_addend = 0;
9710 }
9711 if (bed->s->arch_size == 32)
9712 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9713 else
9714 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9715
9716 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9717 erel = rel_hdr->contents;
9718 if (rel_hdr->sh_type == SHT_REL)
9719 {
9720 erel += (elf_section_data (output_section)->rel_count
9721 * bed->s->sizeof_rel);
9722 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9723 }
9724 else
9725 {
9726 irel[0].r_addend = addend;
9727 erel += (elf_section_data (output_section)->rel_count
9728 * bed->s->sizeof_rela);
9729 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9730 }
9731
9732 ++elf_section_data (output_section)->rel_count;
9733
9734 return TRUE;
9735}
9736
0b52efa6
PB
9737
9738/* Get the output vma of the section pointed to by the sh_link field. */
9739
9740static bfd_vma
9741elf_get_linked_section_vma (struct bfd_link_order *p)
9742{
9743 Elf_Internal_Shdr **elf_shdrp;
9744 asection *s;
9745 int elfsec;
9746
9747 s = p->u.indirect.section;
9748 elf_shdrp = elf_elfsections (s->owner);
9749 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9750 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
9751 /* PR 290:
9752 The Intel C compiler generates SHT_IA_64_UNWIND with
e04bcc6d 9753 SHF_LINK_ORDER. But it doesn't set the sh_link or
185d09ad
L
9754 sh_info fields. Hence we could get the situation
9755 where elfsec is 0. */
9756 if (elfsec == 0)
9757 {
9758 const struct elf_backend_data *bed
9759 = get_elf_backend_data (s->owner);
9760 if (bed->link_order_error_handler)
d003868e
AM
9761 bed->link_order_error_handler
9762 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
9763 return 0;
9764 }
9765 else
9766 {
9767 s = elf_shdrp[elfsec]->bfd_section;
9768 return s->output_section->vma + s->output_offset;
9769 }
0b52efa6
PB
9770}
9771
9772
9773/* Compare two sections based on the locations of the sections they are
9774 linked to. Used by elf_fixup_link_order. */
9775
9776static int
9777compare_link_order (const void * a, const void * b)
9778{
9779 bfd_vma apos;
9780 bfd_vma bpos;
9781
9782 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9783 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9784 if (apos < bpos)
9785 return -1;
9786 return apos > bpos;
9787}
9788
9789
9790/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9791 order as their linked sections. Returns false if this could not be done
9792 because an output section includes both ordered and unordered
9793 sections. Ideally we'd do this in the linker proper. */
9794
9795static bfd_boolean
9796elf_fixup_link_order (bfd *abfd, asection *o)
9797{
9798 int seen_linkorder;
9799 int seen_other;
9800 int n;
9801 struct bfd_link_order *p;
9802 bfd *sub;
9803 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
b761a207 9804 unsigned elfsec;
0b52efa6 9805 struct bfd_link_order **sections;
d33cdfe3 9806 asection *s, *other_sec, *linkorder_sec;
0b52efa6 9807 bfd_vma offset;
3b36f7e6 9808
d33cdfe3
L
9809 other_sec = NULL;
9810 linkorder_sec = NULL;
0b52efa6
PB
9811 seen_other = 0;
9812 seen_linkorder = 0;
8423293d 9813 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6 9814 {
d33cdfe3 9815 if (p->type == bfd_indirect_link_order)
0b52efa6
PB
9816 {
9817 s = p->u.indirect.section;
d33cdfe3
L
9818 sub = s->owner;
9819 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9820 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
b761a207
BE
9821 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9822 && elfsec < elf_numsections (sub)
4fbb74a6
AM
9823 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9824 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
d33cdfe3
L
9825 {
9826 seen_linkorder++;
9827 linkorder_sec = s;
9828 }
0b52efa6 9829 else
d33cdfe3
L
9830 {
9831 seen_other++;
9832 other_sec = s;
9833 }
0b52efa6
PB
9834 }
9835 else
9836 seen_other++;
d33cdfe3
L
9837
9838 if (seen_other && seen_linkorder)
9839 {
9840 if (other_sec && linkorder_sec)
9841 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9842 o, linkorder_sec,
9843 linkorder_sec->owner, other_sec,
9844 other_sec->owner);
9845 else
9846 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9847 o);
9848 bfd_set_error (bfd_error_bad_value);
9849 return FALSE;
9850 }
0b52efa6
PB
9851 }
9852
9853 if (!seen_linkorder)
9854 return TRUE;
9855
0b52efa6 9856 sections = (struct bfd_link_order **)
14b1c01e
AM
9857 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9858 if (sections == NULL)
9859 return FALSE;
0b52efa6 9860 seen_linkorder = 0;
3b36f7e6 9861
8423293d 9862 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
9863 {
9864 sections[seen_linkorder++] = p;
9865 }
9866 /* Sort the input sections in the order of their linked section. */
9867 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9868 compare_link_order);
9869
9870 /* Change the offsets of the sections. */
9871 offset = 0;
9872 for (n = 0; n < seen_linkorder; n++)
9873 {
9874 s = sections[n]->u.indirect.section;
461686a3 9875 offset &= ~(bfd_vma) 0 << s->alignment_power;
0b52efa6
PB
9876 s->output_offset = offset;
9877 sections[n]->offset = offset;
9878 offset += sections[n]->size;
9879 }
9880
4dd07732 9881 free (sections);
0b52efa6
PB
9882 return TRUE;
9883}
9884
9885
c152c796
AM
9886/* Do the final step of an ELF link. */
9887
9888bfd_boolean
9889bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9890{
9891 bfd_boolean dynamic;
9892 bfd_boolean emit_relocs;
9893 bfd *dynobj;
9894 struct elf_final_link_info finfo;
9895 register asection *o;
9896 register struct bfd_link_order *p;
9897 register bfd *sub;
9898 bfd_size_type max_contents_size;
9899 bfd_size_type max_external_reloc_size;
9900 bfd_size_type max_internal_reloc_count;
9901 bfd_size_type max_sym_count;
9902 bfd_size_type max_sym_shndx_count;
9903 file_ptr off;
9904 Elf_Internal_Sym elfsym;
9905 unsigned int i;
9906 Elf_Internal_Shdr *symtab_hdr;
9907 Elf_Internal_Shdr *symtab_shndx_hdr;
9908 Elf_Internal_Shdr *symstrtab_hdr;
9909 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9910 struct elf_outext_info eoinfo;
9911 bfd_boolean merged;
9912 size_t relativecount = 0;
9913 asection *reldyn = 0;
9914 bfd_size_type amt;
104d59d1
JM
9915 asection *attr_section = NULL;
9916 bfd_vma attr_size = 0;
9917 const char *std_attrs_section;
c152c796
AM
9918
9919 if (! is_elf_hash_table (info->hash))
9920 return FALSE;
9921
9922 if (info->shared)
9923 abfd->flags |= DYNAMIC;
9924
9925 dynamic = elf_hash_table (info)->dynamic_sections_created;
9926 dynobj = elf_hash_table (info)->dynobj;
9927
9928 emit_relocs = (info->relocatable
a4676736 9929 || info->emitrelocations);
c152c796
AM
9930
9931 finfo.info = info;
9932 finfo.output_bfd = abfd;
9933 finfo.symstrtab = _bfd_elf_stringtab_init ();
9934 if (finfo.symstrtab == NULL)
9935 return FALSE;
9936
9937 if (! dynamic)
9938 {
9939 finfo.dynsym_sec = NULL;
9940 finfo.hash_sec = NULL;
9941 finfo.symver_sec = NULL;
9942 }
9943 else
9944 {
9945 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9946 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
fdc90cb4 9947 BFD_ASSERT (finfo.dynsym_sec != NULL);
c152c796
AM
9948 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9949 /* Note that it is OK if symver_sec is NULL. */
9950 }
9951
9952 finfo.contents = NULL;
9953 finfo.external_relocs = NULL;
9954 finfo.internal_relocs = NULL;
9955 finfo.external_syms = NULL;
9956 finfo.locsym_shndx = NULL;
9957 finfo.internal_syms = NULL;
9958 finfo.indices = NULL;
9959 finfo.sections = NULL;
9960 finfo.symbuf = NULL;
9961 finfo.symshndxbuf = NULL;
9962 finfo.symbuf_count = 0;
9963 finfo.shndxbuf_size = 0;
9964
104d59d1
JM
9965 /* The object attributes have been merged. Remove the input
9966 sections from the link, and set the contents of the output
9967 secton. */
9968 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9969 for (o = abfd->sections; o != NULL; o = o->next)
9970 {
9971 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9972 || strcmp (o->name, ".gnu.attributes") == 0)
9973 {
9974 for (p = o->map_head.link_order; p != NULL; p = p->next)
9975 {
9976 asection *input_section;
9977
9978 if (p->type != bfd_indirect_link_order)
9979 continue;
9980 input_section = p->u.indirect.section;
9981 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9982 elf_link_input_bfd ignores this section. */
9983 input_section->flags &= ~SEC_HAS_CONTENTS;
9984 }
a0c8462f 9985
104d59d1
JM
9986 attr_size = bfd_elf_obj_attr_size (abfd);
9987 if (attr_size)
9988 {
9989 bfd_set_section_size (abfd, o, attr_size);
9990 attr_section = o;
9991 /* Skip this section later on. */
9992 o->map_head.link_order = NULL;
9993 }
9994 else
9995 o->flags |= SEC_EXCLUDE;
9996 }
9997 }
9998
c152c796
AM
9999 /* Count up the number of relocations we will output for each output
10000 section, so that we know the sizes of the reloc sections. We
10001 also figure out some maximum sizes. */
10002 max_contents_size = 0;
10003 max_external_reloc_size = 0;
10004 max_internal_reloc_count = 0;
10005 max_sym_count = 0;
10006 max_sym_shndx_count = 0;
10007 merged = FALSE;
10008 for (o = abfd->sections; o != NULL; o = o->next)
10009 {
10010 struct bfd_elf_section_data *esdo = elf_section_data (o);
10011 o->reloc_count = 0;
10012
8423293d 10013 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10014 {
10015 unsigned int reloc_count = 0;
10016 struct bfd_elf_section_data *esdi = NULL;
10017 unsigned int *rel_count1;
10018
10019 if (p->type == bfd_section_reloc_link_order
10020 || p->type == bfd_symbol_reloc_link_order)
10021 reloc_count = 1;
10022 else if (p->type == bfd_indirect_link_order)
10023 {
10024 asection *sec;
10025
10026 sec = p->u.indirect.section;
10027 esdi = elf_section_data (sec);
10028
10029 /* Mark all sections which are to be included in the
10030 link. This will normally be every section. We need
10031 to do this so that we can identify any sections which
10032 the linker has decided to not include. */
10033 sec->linker_mark = TRUE;
10034
10035 if (sec->flags & SEC_MERGE)
10036 merged = TRUE;
10037
10038 if (info->relocatable || info->emitrelocations)
10039 reloc_count = sec->reloc_count;
10040 else if (bed->elf_backend_count_relocs)
10041 {
10042 Elf_Internal_Rela * relocs;
10043
1182cb93
AM
10044 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10045 NULL, NULL,
c152c796
AM
10046 info->keep_memory);
10047
1182cb93
AM
10048 if (relocs != NULL)
10049 {
10050 reloc_count
10051 = (*bed->elf_backend_count_relocs) (sec, relocs);
c152c796 10052
1182cb93
AM
10053 if (elf_section_data (sec)->relocs != relocs)
10054 free (relocs);
10055 }
c152c796
AM
10056 }
10057
eea6121a
AM
10058 if (sec->rawsize > max_contents_size)
10059 max_contents_size = sec->rawsize;
10060 if (sec->size > max_contents_size)
10061 max_contents_size = sec->size;
c152c796
AM
10062
10063 /* We are interested in just local symbols, not all
10064 symbols. */
10065 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10066 && (sec->owner->flags & DYNAMIC) == 0)
10067 {
10068 size_t sym_count;
10069
10070 if (elf_bad_symtab (sec->owner))
10071 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10072 / bed->s->sizeof_sym);
10073 else
10074 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10075
10076 if (sym_count > max_sym_count)
10077 max_sym_count = sym_count;
10078
10079 if (sym_count > max_sym_shndx_count
10080 && elf_symtab_shndx (sec->owner) != 0)
10081 max_sym_shndx_count = sym_count;
10082
10083 if ((sec->flags & SEC_RELOC) != 0)
10084 {
10085 size_t ext_size;
10086
10087 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10088 if (ext_size > max_external_reloc_size)
10089 max_external_reloc_size = ext_size;
10090 if (sec->reloc_count > max_internal_reloc_count)
10091 max_internal_reloc_count = sec->reloc_count;
10092 }
10093 }
10094 }
10095
10096 if (reloc_count == 0)
10097 continue;
10098
10099 o->reloc_count += reloc_count;
10100
10101 /* MIPS may have a mix of REL and RELA relocs on sections.
10102 To support this curious ABI we keep reloc counts in
10103 elf_section_data too. We must be careful to add the
10104 relocations from the input section to the right output
10105 count. FIXME: Get rid of one count. We have
10106 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10107 rel_count1 = &esdo->rel_count;
10108 if (esdi != NULL)
10109 {
10110 bfd_boolean same_size;
10111 bfd_size_type entsize1;
10112
10113 entsize1 = esdi->rel_hdr.sh_entsize;
10114 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10115 || entsize1 == bed->s->sizeof_rela);
10116 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10117
10118 if (!same_size)
10119 rel_count1 = &esdo->rel_count2;
10120
10121 if (esdi->rel_hdr2 != NULL)
10122 {
10123 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10124 unsigned int alt_count;
10125 unsigned int *rel_count2;
10126
10127 BFD_ASSERT (entsize2 != entsize1
10128 && (entsize2 == bed->s->sizeof_rel
10129 || entsize2 == bed->s->sizeof_rela));
10130
10131 rel_count2 = &esdo->rel_count2;
10132 if (!same_size)
10133 rel_count2 = &esdo->rel_count;
10134
10135 /* The following is probably too simplistic if the
10136 backend counts output relocs unusually. */
10137 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10138 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10139 *rel_count2 += alt_count;
10140 reloc_count -= alt_count;
10141 }
10142 }
10143 *rel_count1 += reloc_count;
10144 }
10145
10146 if (o->reloc_count > 0)
10147 o->flags |= SEC_RELOC;
10148 else
10149 {
10150 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10151 set it (this is probably a bug) and if it is set
10152 assign_section_numbers will create a reloc section. */
10153 o->flags &=~ SEC_RELOC;
10154 }
10155
10156 /* If the SEC_ALLOC flag is not set, force the section VMA to
10157 zero. This is done in elf_fake_sections as well, but forcing
10158 the VMA to 0 here will ensure that relocs against these
10159 sections are handled correctly. */
10160 if ((o->flags & SEC_ALLOC) == 0
10161 && ! o->user_set_vma)
10162 o->vma = 0;
10163 }
10164
10165 if (! info->relocatable && merged)
10166 elf_link_hash_traverse (elf_hash_table (info),
10167 _bfd_elf_link_sec_merge_syms, abfd);
10168
10169 /* Figure out the file positions for everything but the symbol table
10170 and the relocs. We set symcount to force assign_section_numbers
10171 to create a symbol table. */
10172 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10173 BFD_ASSERT (! abfd->output_has_begun);
10174 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10175 goto error_return;
10176
ee75fd95 10177 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
10178 for (o = abfd->sections; o != NULL; o = o->next)
10179 {
10180 if ((o->flags & SEC_RELOC) != 0)
10181 {
10182 if (!(_bfd_elf_link_size_reloc_section
10183 (abfd, &elf_section_data (o)->rel_hdr, o)))
10184 goto error_return;
10185
10186 if (elf_section_data (o)->rel_hdr2
10187 && !(_bfd_elf_link_size_reloc_section
10188 (abfd, elf_section_data (o)->rel_hdr2, o)))
10189 goto error_return;
10190 }
10191
10192 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10193 to count upwards while actually outputting the relocations. */
10194 elf_section_data (o)->rel_count = 0;
10195 elf_section_data (o)->rel_count2 = 0;
10196 }
10197
10198 _bfd_elf_assign_file_positions_for_relocs (abfd);
10199
10200 /* We have now assigned file positions for all the sections except
10201 .symtab and .strtab. We start the .symtab section at the current
10202 file position, and write directly to it. We build the .strtab
10203 section in memory. */
10204 bfd_get_symcount (abfd) = 0;
10205 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10206 /* sh_name is set in prep_headers. */
10207 symtab_hdr->sh_type = SHT_SYMTAB;
10208 /* sh_flags, sh_addr and sh_size all start off zero. */
10209 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10210 /* sh_link is set in assign_section_numbers. */
10211 /* sh_info is set below. */
10212 /* sh_offset is set just below. */
72de5009 10213 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
c152c796
AM
10214
10215 off = elf_tdata (abfd)->next_file_pos;
10216 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10217
10218 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10219 incorrect. We do not yet know the size of the .symtab section.
10220 We correct next_file_pos below, after we do know the size. */
10221
10222 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10223 continuously seeking to the right position in the file. */
10224 if (! info->keep_memory || max_sym_count < 20)
10225 finfo.symbuf_size = 20;
10226 else
10227 finfo.symbuf_size = max_sym_count;
10228 amt = finfo.symbuf_size;
10229 amt *= bed->s->sizeof_sym;
10230 finfo.symbuf = bfd_malloc (amt);
10231 if (finfo.symbuf == NULL)
10232 goto error_return;
4fbb74a6 10233 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
c152c796
AM
10234 {
10235 /* Wild guess at number of output symbols. realloc'd as needed. */
10236 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10237 finfo.shndxbuf_size = amt;
10238 amt *= sizeof (Elf_External_Sym_Shndx);
10239 finfo.symshndxbuf = bfd_zmalloc (amt);
10240 if (finfo.symshndxbuf == NULL)
10241 goto error_return;
10242 }
10243
10244 /* Start writing out the symbol table. The first symbol is always a
10245 dummy symbol. */
10246 if (info->strip != strip_all
10247 || emit_relocs)
10248 {
10249 elfsym.st_value = 0;
10250 elfsym.st_size = 0;
10251 elfsym.st_info = 0;
10252 elfsym.st_other = 0;
10253 elfsym.st_shndx = SHN_UNDEF;
10254 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10255 NULL))
10256 goto error_return;
10257 }
10258
c152c796
AM
10259 /* Output a symbol for each section. We output these even if we are
10260 discarding local symbols, since they are used for relocs. These
10261 symbols have no names. We store the index of each one in the
10262 index field of the section, so that we can find it again when
10263 outputting relocs. */
10264 if (info->strip != strip_all
10265 || emit_relocs)
10266 {
10267 elfsym.st_size = 0;
10268 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10269 elfsym.st_other = 0;
f0b5bb34 10270 elfsym.st_value = 0;
c152c796
AM
10271 for (i = 1; i < elf_numsections (abfd); i++)
10272 {
10273 o = bfd_section_from_elf_index (abfd, i);
10274 if (o != NULL)
f0b5bb34
AM
10275 {
10276 o->target_index = bfd_get_symcount (abfd);
10277 elfsym.st_shndx = i;
10278 if (!info->relocatable)
10279 elfsym.st_value = o->vma;
10280 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10281 goto error_return;
10282 }
c152c796
AM
10283 }
10284 }
10285
10286 /* Allocate some memory to hold information read in from the input
10287 files. */
10288 if (max_contents_size != 0)
10289 {
10290 finfo.contents = bfd_malloc (max_contents_size);
10291 if (finfo.contents == NULL)
10292 goto error_return;
10293 }
10294
10295 if (max_external_reloc_size != 0)
10296 {
10297 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10298 if (finfo.external_relocs == NULL)
10299 goto error_return;
10300 }
10301
10302 if (max_internal_reloc_count != 0)
10303 {
10304 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10305 amt *= sizeof (Elf_Internal_Rela);
10306 finfo.internal_relocs = bfd_malloc (amt);
10307 if (finfo.internal_relocs == NULL)
10308 goto error_return;
10309 }
10310
10311 if (max_sym_count != 0)
10312 {
10313 amt = max_sym_count * bed->s->sizeof_sym;
10314 finfo.external_syms = bfd_malloc (amt);
10315 if (finfo.external_syms == NULL)
10316 goto error_return;
10317
10318 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10319 finfo.internal_syms = bfd_malloc (amt);
10320 if (finfo.internal_syms == NULL)
10321 goto error_return;
10322
10323 amt = max_sym_count * sizeof (long);
10324 finfo.indices = bfd_malloc (amt);
10325 if (finfo.indices == NULL)
10326 goto error_return;
10327
10328 amt = max_sym_count * sizeof (asection *);
10329 finfo.sections = bfd_malloc (amt);
10330 if (finfo.sections == NULL)
10331 goto error_return;
10332 }
10333
10334 if (max_sym_shndx_count != 0)
10335 {
10336 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10337 finfo.locsym_shndx = bfd_malloc (amt);
10338 if (finfo.locsym_shndx == NULL)
10339 goto error_return;
10340 }
10341
10342 if (elf_hash_table (info)->tls_sec)
10343 {
10344 bfd_vma base, end = 0;
10345 asection *sec;
10346
10347 for (sec = elf_hash_table (info)->tls_sec;
10348 sec && (sec->flags & SEC_THREAD_LOCAL);
10349 sec = sec->next)
10350 {
3a800eb9 10351 bfd_size_type size = sec->size;
c152c796 10352
3a800eb9
AM
10353 if (size == 0
10354 && (sec->flags & SEC_HAS_CONTENTS) == 0)
c152c796 10355 {
3a800eb9
AM
10356 struct bfd_link_order *o = sec->map_tail.link_order;
10357 if (o != NULL)
10358 size = o->offset + o->size;
c152c796
AM
10359 }
10360 end = sec->vma + size;
10361 }
10362 base = elf_hash_table (info)->tls_sec->vma;
10363 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10364 elf_hash_table (info)->tls_size = end - base;
10365 }
10366
0b52efa6
PB
10367 /* Reorder SHF_LINK_ORDER sections. */
10368 for (o = abfd->sections; o != NULL; o = o->next)
10369 {
10370 if (!elf_fixup_link_order (abfd, o))
10371 return FALSE;
10372 }
10373
c152c796
AM
10374 /* Since ELF permits relocations to be against local symbols, we
10375 must have the local symbols available when we do the relocations.
10376 Since we would rather only read the local symbols once, and we
10377 would rather not keep them in memory, we handle all the
10378 relocations for a single input file at the same time.
10379
10380 Unfortunately, there is no way to know the total number of local
10381 symbols until we have seen all of them, and the local symbol
10382 indices precede the global symbol indices. This means that when
10383 we are generating relocatable output, and we see a reloc against
10384 a global symbol, we can not know the symbol index until we have
10385 finished examining all the local symbols to see which ones we are
10386 going to output. To deal with this, we keep the relocations in
10387 memory, and don't output them until the end of the link. This is
10388 an unfortunate waste of memory, but I don't see a good way around
10389 it. Fortunately, it only happens when performing a relocatable
10390 link, which is not the common case. FIXME: If keep_memory is set
10391 we could write the relocs out and then read them again; I don't
10392 know how bad the memory loss will be. */
10393
10394 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10395 sub->output_has_begun = FALSE;
10396 for (o = abfd->sections; o != NULL; o = o->next)
10397 {
8423293d 10398 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
10399 {
10400 if (p->type == bfd_indirect_link_order
10401 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10402 == bfd_target_elf_flavour)
10403 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10404 {
10405 if (! sub->output_has_begun)
10406 {
10407 if (! elf_link_input_bfd (&finfo, sub))
10408 goto error_return;
10409 sub->output_has_begun = TRUE;
10410 }
10411 }
10412 else if (p->type == bfd_section_reloc_link_order
10413 || p->type == bfd_symbol_reloc_link_order)
10414 {
10415 if (! elf_reloc_link_order (abfd, info, o, p))
10416 goto error_return;
10417 }
10418 else
10419 {
10420 if (! _bfd_default_link_order (abfd, info, o, p))
10421 goto error_return;
10422 }
10423 }
10424 }
10425
c0f00686
L
10426 /* Free symbol buffer if needed. */
10427 if (!info->reduce_memory_overheads)
10428 {
10429 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3fcd97f1
JJ
10430 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10431 && elf_tdata (sub)->symbuf)
c0f00686
L
10432 {
10433 free (elf_tdata (sub)->symbuf);
10434 elf_tdata (sub)->symbuf = NULL;
10435 }
10436 }
10437
c152c796
AM
10438 /* Output any global symbols that got converted to local in a
10439 version script or due to symbol visibility. We do this in a
10440 separate step since ELF requires all local symbols to appear
10441 prior to any global symbols. FIXME: We should only do this if
10442 some global symbols were, in fact, converted to become local.
10443 FIXME: Will this work correctly with the Irix 5 linker? */
10444 eoinfo.failed = FALSE;
10445 eoinfo.finfo = &finfo;
10446 eoinfo.localsyms = TRUE;
10447 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10448 &eoinfo);
10449 if (eoinfo.failed)
10450 return FALSE;
10451
4e617b1e
PB
10452 /* If backend needs to output some local symbols not present in the hash
10453 table, do it now. */
10454 if (bed->elf_backend_output_arch_local_syms)
10455 {
10456 typedef bfd_boolean (*out_sym_func)
10457 (void *, const char *, Elf_Internal_Sym *, asection *,
10458 struct elf_link_hash_entry *);
10459
10460 if (! ((*bed->elf_backend_output_arch_local_syms)
10461 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10462 return FALSE;
10463 }
10464
c152c796
AM
10465 /* That wrote out all the local symbols. Finish up the symbol table
10466 with the global symbols. Even if we want to strip everything we
10467 can, we still need to deal with those global symbols that got
10468 converted to local in a version script. */
10469
10470 /* The sh_info field records the index of the first non local symbol. */
10471 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10472
10473 if (dynamic
10474 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10475 {
10476 Elf_Internal_Sym sym;
10477 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10478 long last_local = 0;
10479
10480 /* Write out the section symbols for the output sections. */
67687978 10481 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
10482 {
10483 asection *s;
10484
10485 sym.st_size = 0;
10486 sym.st_name = 0;
10487 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10488 sym.st_other = 0;
10489
10490 for (s = abfd->sections; s != NULL; s = s->next)
10491 {
10492 int indx;
10493 bfd_byte *dest;
10494 long dynindx;
10495
c152c796 10496 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
10497 if (dynindx <= 0)
10498 continue;
10499 indx = elf_section_data (s)->this_idx;
c152c796
AM
10500 BFD_ASSERT (indx > 0);
10501 sym.st_shndx = indx;
c0d5a53d
L
10502 if (! check_dynsym (abfd, &sym))
10503 return FALSE;
c152c796
AM
10504 sym.st_value = s->vma;
10505 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
10506 if (last_local < dynindx)
10507 last_local = dynindx;
c152c796
AM
10508 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10509 }
c152c796
AM
10510 }
10511
10512 /* Write out the local dynsyms. */
10513 if (elf_hash_table (info)->dynlocal)
10514 {
10515 struct elf_link_local_dynamic_entry *e;
10516 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10517 {
10518 asection *s;
10519 bfd_byte *dest;
10520
10521 sym.st_size = e->isym.st_size;
10522 sym.st_other = e->isym.st_other;
10523
10524 /* Copy the internal symbol as is.
10525 Note that we saved a word of storage and overwrote
10526 the original st_name with the dynstr_index. */
10527 sym = e->isym;
10528
cb33740c
AM
10529 s = bfd_section_from_elf_index (e->input_bfd,
10530 e->isym.st_shndx);
10531 if (s != NULL)
c152c796 10532 {
c152c796
AM
10533 sym.st_shndx =
10534 elf_section_data (s->output_section)->this_idx;
c0d5a53d
L
10535 if (! check_dynsym (abfd, &sym))
10536 return FALSE;
c152c796
AM
10537 sym.st_value = (s->output_section->vma
10538 + s->output_offset
10539 + e->isym.st_value);
10540 }
10541
10542 if (last_local < e->dynindx)
10543 last_local = e->dynindx;
10544
10545 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10546 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10547 }
10548 }
10549
10550 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10551 last_local + 1;
10552 }
10553
10554 /* We get the global symbols from the hash table. */
10555 eoinfo.failed = FALSE;
10556 eoinfo.localsyms = FALSE;
10557 eoinfo.finfo = &finfo;
10558 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10559 &eoinfo);
10560 if (eoinfo.failed)
10561 return FALSE;
10562
10563 /* If backend needs to output some symbols not present in the hash
10564 table, do it now. */
10565 if (bed->elf_backend_output_arch_syms)
10566 {
10567 typedef bfd_boolean (*out_sym_func)
10568 (void *, const char *, Elf_Internal_Sym *, asection *,
10569 struct elf_link_hash_entry *);
10570
10571 if (! ((*bed->elf_backend_output_arch_syms)
10572 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10573 return FALSE;
10574 }
10575
10576 /* Flush all symbols to the file. */
10577 if (! elf_link_flush_output_syms (&finfo, bed))
10578 return FALSE;
10579
10580 /* Now we know the size of the symtab section. */
10581 off += symtab_hdr->sh_size;
10582
10583 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10584 if (symtab_shndx_hdr->sh_name != 0)
10585 {
10586 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10587 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10588 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10589 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10590 symtab_shndx_hdr->sh_size = amt;
10591
10592 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10593 off, TRUE);
10594
10595 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10596 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10597 return FALSE;
10598 }
10599
10600
10601 /* Finish up and write out the symbol string table (.strtab)
10602 section. */
10603 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10604 /* sh_name was set in prep_headers. */
10605 symstrtab_hdr->sh_type = SHT_STRTAB;
10606 symstrtab_hdr->sh_flags = 0;
10607 symstrtab_hdr->sh_addr = 0;
10608 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10609 symstrtab_hdr->sh_entsize = 0;
10610 symstrtab_hdr->sh_link = 0;
10611 symstrtab_hdr->sh_info = 0;
10612 /* sh_offset is set just below. */
10613 symstrtab_hdr->sh_addralign = 1;
10614
10615 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10616 elf_tdata (abfd)->next_file_pos = off;
10617
10618 if (bfd_get_symcount (abfd) > 0)
10619 {
10620 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10621 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10622 return FALSE;
10623 }
10624
10625 /* Adjust the relocs to have the correct symbol indices. */
10626 for (o = abfd->sections; o != NULL; o = o->next)
10627 {
10628 if ((o->flags & SEC_RELOC) == 0)
10629 continue;
10630
10631 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10632 elf_section_data (o)->rel_count,
10633 elf_section_data (o)->rel_hashes);
10634 if (elf_section_data (o)->rel_hdr2 != NULL)
10635 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10636 elf_section_data (o)->rel_count2,
10637 (elf_section_data (o)->rel_hashes
10638 + elf_section_data (o)->rel_count));
10639
10640 /* Set the reloc_count field to 0 to prevent write_relocs from
10641 trying to swap the relocs out itself. */
10642 o->reloc_count = 0;
10643 }
10644
10645 if (dynamic && info->combreloc && dynobj != NULL)
10646 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10647
10648 /* If we are linking against a dynamic object, or generating a
10649 shared library, finish up the dynamic linking information. */
10650 if (dynamic)
10651 {
10652 bfd_byte *dyncon, *dynconend;
10653
10654 /* Fix up .dynamic entries. */
10655 o = bfd_get_section_by_name (dynobj, ".dynamic");
10656 BFD_ASSERT (o != NULL);
10657
10658 dyncon = o->contents;
eea6121a 10659 dynconend = o->contents + o->size;
c152c796
AM
10660 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10661 {
10662 Elf_Internal_Dyn dyn;
10663 const char *name;
10664 unsigned int type;
10665
10666 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10667
10668 switch (dyn.d_tag)
10669 {
10670 default:
10671 continue;
10672 case DT_NULL:
10673 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10674 {
10675 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10676 {
10677 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10678 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10679 default: continue;
10680 }
10681 dyn.d_un.d_val = relativecount;
10682 relativecount = 0;
10683 break;
10684 }
10685 continue;
10686
10687 case DT_INIT:
10688 name = info->init_function;
10689 goto get_sym;
10690 case DT_FINI:
10691 name = info->fini_function;
10692 get_sym:
10693 {
10694 struct elf_link_hash_entry *h;
10695
10696 h = elf_link_hash_lookup (elf_hash_table (info), name,
10697 FALSE, FALSE, TRUE);
10698 if (h != NULL
10699 && (h->root.type == bfd_link_hash_defined
10700 || h->root.type == bfd_link_hash_defweak))
10701 {
10702 dyn.d_un.d_val = h->root.u.def.value;
10703 o = h->root.u.def.section;
10704 if (o->output_section != NULL)
10705 dyn.d_un.d_val += (o->output_section->vma
10706 + o->output_offset);
10707 else
10708 {
10709 /* The symbol is imported from another shared
10710 library and does not apply to this one. */
10711 dyn.d_un.d_val = 0;
10712 }
10713 break;
10714 }
10715 }
10716 continue;
10717
10718 case DT_PREINIT_ARRAYSZ:
10719 name = ".preinit_array";
10720 goto get_size;
10721 case DT_INIT_ARRAYSZ:
10722 name = ".init_array";
10723 goto get_size;
10724 case DT_FINI_ARRAYSZ:
10725 name = ".fini_array";
10726 get_size:
10727 o = bfd_get_section_by_name (abfd, name);
10728 if (o == NULL)
10729 {
10730 (*_bfd_error_handler)
d003868e 10731 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
10732 goto error_return;
10733 }
eea6121a 10734 if (o->size == 0)
c152c796
AM
10735 (*_bfd_error_handler)
10736 (_("warning: %s section has zero size"), name);
eea6121a 10737 dyn.d_un.d_val = o->size;
c152c796
AM
10738 break;
10739
10740 case DT_PREINIT_ARRAY:
10741 name = ".preinit_array";
10742 goto get_vma;
10743 case DT_INIT_ARRAY:
10744 name = ".init_array";
10745 goto get_vma;
10746 case DT_FINI_ARRAY:
10747 name = ".fini_array";
10748 goto get_vma;
10749
10750 case DT_HASH:
10751 name = ".hash";
10752 goto get_vma;
fdc90cb4
JJ
10753 case DT_GNU_HASH:
10754 name = ".gnu.hash";
10755 goto get_vma;
c152c796
AM
10756 case DT_STRTAB:
10757 name = ".dynstr";
10758 goto get_vma;
10759 case DT_SYMTAB:
10760 name = ".dynsym";
10761 goto get_vma;
10762 case DT_VERDEF:
10763 name = ".gnu.version_d";
10764 goto get_vma;
10765 case DT_VERNEED:
10766 name = ".gnu.version_r";
10767 goto get_vma;
10768 case DT_VERSYM:
10769 name = ".gnu.version";
10770 get_vma:
10771 o = bfd_get_section_by_name (abfd, name);
10772 if (o == NULL)
10773 {
10774 (*_bfd_error_handler)
d003868e 10775 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
10776 goto error_return;
10777 }
10778 dyn.d_un.d_ptr = o->vma;
10779 break;
10780
10781 case DT_REL:
10782 case DT_RELA:
10783 case DT_RELSZ:
10784 case DT_RELASZ:
10785 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10786 type = SHT_REL;
10787 else
10788 type = SHT_RELA;
10789 dyn.d_un.d_val = 0;
10790 for (i = 1; i < elf_numsections (abfd); i++)
10791 {
10792 Elf_Internal_Shdr *hdr;
10793
10794 hdr = elf_elfsections (abfd)[i];
10795 if (hdr->sh_type == type
10796 && (hdr->sh_flags & SHF_ALLOC) != 0)
10797 {
10798 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10799 dyn.d_un.d_val += hdr->sh_size;
10800 else
10801 {
10802 if (dyn.d_un.d_val == 0
10803 || hdr->sh_addr < dyn.d_un.d_val)
10804 dyn.d_un.d_val = hdr->sh_addr;
10805 }
10806 }
10807 }
10808 break;
10809 }
10810 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10811 }
10812 }
10813
10814 /* If we have created any dynamic sections, then output them. */
10815 if (dynobj != NULL)
10816 {
10817 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10818 goto error_return;
10819
943284cc
DJ
10820 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10821 if (info->warn_shared_textrel && info->shared)
10822 {
10823 bfd_byte *dyncon, *dynconend;
10824
10825 /* Fix up .dynamic entries. */
10826 o = bfd_get_section_by_name (dynobj, ".dynamic");
10827 BFD_ASSERT (o != NULL);
10828
10829 dyncon = o->contents;
10830 dynconend = o->contents + o->size;
10831 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10832 {
10833 Elf_Internal_Dyn dyn;
10834
10835 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10836
10837 if (dyn.d_tag == DT_TEXTREL)
10838 {
a0c8462f 10839 info->callbacks->einfo
9267588c 10840 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
943284cc
DJ
10841 break;
10842 }
10843 }
10844 }
10845
c152c796
AM
10846 for (o = dynobj->sections; o != NULL; o = o->next)
10847 {
10848 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 10849 || o->size == 0
c152c796
AM
10850 || o->output_section == bfd_abs_section_ptr)
10851 continue;
10852 if ((o->flags & SEC_LINKER_CREATED) == 0)
10853 {
10854 /* At this point, we are only interested in sections
10855 created by _bfd_elf_link_create_dynamic_sections. */
10856 continue;
10857 }
3722b82f
AM
10858 if (elf_hash_table (info)->stab_info.stabstr == o)
10859 continue;
eea6121a
AM
10860 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10861 continue;
c152c796
AM
10862 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10863 != SHT_STRTAB)
10864 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10865 {
10866 if (! bfd_set_section_contents (abfd, o->output_section,
10867 o->contents,
10868 (file_ptr) o->output_offset,
eea6121a 10869 o->size))
c152c796
AM
10870 goto error_return;
10871 }
10872 else
10873 {
10874 /* The contents of the .dynstr section are actually in a
10875 stringtab. */
10876 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10877 if (bfd_seek (abfd, off, SEEK_SET) != 0
10878 || ! _bfd_elf_strtab_emit (abfd,
10879 elf_hash_table (info)->dynstr))
10880 goto error_return;
10881 }
10882 }
10883 }
10884
10885 if (info->relocatable)
10886 {
10887 bfd_boolean failed = FALSE;
10888
10889 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10890 if (failed)
10891 goto error_return;
10892 }
10893
10894 /* If we have optimized stabs strings, output them. */
3722b82f 10895 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
10896 {
10897 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10898 goto error_return;
10899 }
10900
10901 if (info->eh_frame_hdr)
10902 {
10903 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10904 goto error_return;
10905 }
10906
10907 if (finfo.symstrtab != NULL)
10908 _bfd_stringtab_free (finfo.symstrtab);
10909 if (finfo.contents != NULL)
10910 free (finfo.contents);
10911 if (finfo.external_relocs != NULL)
10912 free (finfo.external_relocs);
10913 if (finfo.internal_relocs != NULL)
10914 free (finfo.internal_relocs);
10915 if (finfo.external_syms != NULL)
10916 free (finfo.external_syms);
10917 if (finfo.locsym_shndx != NULL)
10918 free (finfo.locsym_shndx);
10919 if (finfo.internal_syms != NULL)
10920 free (finfo.internal_syms);
10921 if (finfo.indices != NULL)
10922 free (finfo.indices);
10923 if (finfo.sections != NULL)
10924 free (finfo.sections);
10925 if (finfo.symbuf != NULL)
10926 free (finfo.symbuf);
10927 if (finfo.symshndxbuf != NULL)
10928 free (finfo.symshndxbuf);
10929 for (o = abfd->sections; o != NULL; o = o->next)
10930 {
10931 if ((o->flags & SEC_RELOC) != 0
10932 && elf_section_data (o)->rel_hashes != NULL)
10933 free (elf_section_data (o)->rel_hashes);
10934 }
10935
10936 elf_tdata (abfd)->linker = TRUE;
10937
104d59d1
JM
10938 if (attr_section)
10939 {
10940 bfd_byte *contents = bfd_malloc (attr_size);
10941 if (contents == NULL)
d0f16d5e 10942 return FALSE; /* Bail out and fail. */
104d59d1
JM
10943 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10944 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10945 free (contents);
10946 }
10947
c152c796
AM
10948 return TRUE;
10949
10950 error_return:
10951 if (finfo.symstrtab != NULL)
10952 _bfd_stringtab_free (finfo.symstrtab);
10953 if (finfo.contents != NULL)
10954 free (finfo.contents);
10955 if (finfo.external_relocs != NULL)
10956 free (finfo.external_relocs);
10957 if (finfo.internal_relocs != NULL)
10958 free (finfo.internal_relocs);
10959 if (finfo.external_syms != NULL)
10960 free (finfo.external_syms);
10961 if (finfo.locsym_shndx != NULL)
10962 free (finfo.locsym_shndx);
10963 if (finfo.internal_syms != NULL)
10964 free (finfo.internal_syms);
10965 if (finfo.indices != NULL)
10966 free (finfo.indices);
10967 if (finfo.sections != NULL)
10968 free (finfo.sections);
10969 if (finfo.symbuf != NULL)
10970 free (finfo.symbuf);
10971 if (finfo.symshndxbuf != NULL)
10972 free (finfo.symshndxbuf);
10973 for (o = abfd->sections; o != NULL; o = o->next)
10974 {
10975 if ((o->flags & SEC_RELOC) != 0
10976 && elf_section_data (o)->rel_hashes != NULL)
10977 free (elf_section_data (o)->rel_hashes);
10978 }
10979
10980 return FALSE;
10981}
10982\f
5241d853
RS
10983/* Initialize COOKIE for input bfd ABFD. */
10984
10985static bfd_boolean
10986init_reloc_cookie (struct elf_reloc_cookie *cookie,
10987 struct bfd_link_info *info, bfd *abfd)
10988{
10989 Elf_Internal_Shdr *symtab_hdr;
10990 const struct elf_backend_data *bed;
10991
10992 bed = get_elf_backend_data (abfd);
10993 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10994
10995 cookie->abfd = abfd;
10996 cookie->sym_hashes = elf_sym_hashes (abfd);
10997 cookie->bad_symtab = elf_bad_symtab (abfd);
10998 if (cookie->bad_symtab)
10999 {
11000 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11001 cookie->extsymoff = 0;
11002 }
11003 else
11004 {
11005 cookie->locsymcount = symtab_hdr->sh_info;
11006 cookie->extsymoff = symtab_hdr->sh_info;
11007 }
11008
11009 if (bed->s->arch_size == 32)
11010 cookie->r_sym_shift = 8;
11011 else
11012 cookie->r_sym_shift = 32;
11013
11014 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11015 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11016 {
11017 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11018 cookie->locsymcount, 0,
11019 NULL, NULL, NULL);
11020 if (cookie->locsyms == NULL)
11021 {
11022 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11023 return FALSE;
11024 }
11025 if (info->keep_memory)
11026 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11027 }
11028 return TRUE;
11029}
11030
11031/* Free the memory allocated by init_reloc_cookie, if appropriate. */
11032
11033static void
11034fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11035{
11036 Elf_Internal_Shdr *symtab_hdr;
11037
11038 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11039 if (cookie->locsyms != NULL
11040 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11041 free (cookie->locsyms);
11042}
11043
11044/* Initialize the relocation information in COOKIE for input section SEC
11045 of input bfd ABFD. */
11046
11047static bfd_boolean
11048init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11049 struct bfd_link_info *info, bfd *abfd,
11050 asection *sec)
11051{
11052 const struct elf_backend_data *bed;
11053
11054 if (sec->reloc_count == 0)
11055 {
11056 cookie->rels = NULL;
11057 cookie->relend = NULL;
11058 }
11059 else
11060 {
11061 bed = get_elf_backend_data (abfd);
11062
11063 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11064 info->keep_memory);
11065 if (cookie->rels == NULL)
11066 return FALSE;
11067 cookie->rel = cookie->rels;
11068 cookie->relend = (cookie->rels
11069 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11070 }
11071 cookie->rel = cookie->rels;
11072 return TRUE;
11073}
11074
11075/* Free the memory allocated by init_reloc_cookie_rels,
11076 if appropriate. */
11077
11078static void
11079fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11080 asection *sec)
11081{
11082 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11083 free (cookie->rels);
11084}
11085
11086/* Initialize the whole of COOKIE for input section SEC. */
11087
11088static bfd_boolean
11089init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11090 struct bfd_link_info *info,
11091 asection *sec)
11092{
11093 if (!init_reloc_cookie (cookie, info, sec->owner))
11094 goto error1;
11095 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11096 goto error2;
11097 return TRUE;
11098
11099 error2:
11100 fini_reloc_cookie (cookie, sec->owner);
11101 error1:
11102 return FALSE;
11103}
11104
11105/* Free the memory allocated by init_reloc_cookie_for_section,
11106 if appropriate. */
11107
11108static void
11109fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11110 asection *sec)
11111{
11112 fini_reloc_cookie_rels (cookie, sec);
11113 fini_reloc_cookie (cookie, sec->owner);
11114}
11115\f
c152c796
AM
11116/* Garbage collect unused sections. */
11117
07adf181
AM
11118/* Default gc_mark_hook. */
11119
11120asection *
11121_bfd_elf_gc_mark_hook (asection *sec,
11122 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11123 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11124 struct elf_link_hash_entry *h,
11125 Elf_Internal_Sym *sym)
11126{
11127 if (h != NULL)
11128 {
11129 switch (h->root.type)
11130 {
11131 case bfd_link_hash_defined:
11132 case bfd_link_hash_defweak:
11133 return h->root.u.def.section;
11134
11135 case bfd_link_hash_common:
11136 return h->root.u.c.p->section;
11137
11138 default:
11139 break;
11140 }
11141 }
11142 else
11143 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11144
11145 return NULL;
11146}
11147
5241d853
RS
11148/* COOKIE->rel describes a relocation against section SEC, which is
11149 a section we've decided to keep. Return the section that contains
11150 the relocation symbol, or NULL if no section contains it. */
11151
11152asection *
11153_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11154 elf_gc_mark_hook_fn gc_mark_hook,
11155 struct elf_reloc_cookie *cookie)
11156{
11157 unsigned long r_symndx;
11158 struct elf_link_hash_entry *h;
11159
11160 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11161 if (r_symndx == 0)
11162 return NULL;
11163
11164 if (r_symndx >= cookie->locsymcount
11165 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11166 {
11167 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11168 while (h->root.type == bfd_link_hash_indirect
11169 || h->root.type == bfd_link_hash_warning)
11170 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11171 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11172 }
11173
11174 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11175 &cookie->locsyms[r_symndx]);
11176}
11177
11178/* COOKIE->rel describes a relocation against section SEC, which is
11179 a section we've decided to keep. Mark the section that contains
9d0a14d3 11180 the relocation symbol. */
5241d853
RS
11181
11182bfd_boolean
11183_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11184 asection *sec,
11185 elf_gc_mark_hook_fn gc_mark_hook,
9d0a14d3 11186 struct elf_reloc_cookie *cookie)
5241d853
RS
11187{
11188 asection *rsec;
11189
11190 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11191 if (rsec && !rsec->gc_mark)
11192 {
11193 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11194 rsec->gc_mark = 1;
5241d853
RS
11195 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11196 return FALSE;
11197 }
11198 return TRUE;
11199}
11200
07adf181
AM
11201/* The mark phase of garbage collection. For a given section, mark
11202 it and any sections in this section's group, and all the sections
11203 which define symbols to which it refers. */
11204
ccfa59ea
AM
11205bfd_boolean
11206_bfd_elf_gc_mark (struct bfd_link_info *info,
11207 asection *sec,
6a5bb875 11208 elf_gc_mark_hook_fn gc_mark_hook)
c152c796
AM
11209{
11210 bfd_boolean ret;
9d0a14d3 11211 asection *group_sec, *eh_frame;
c152c796
AM
11212
11213 sec->gc_mark = 1;
11214
11215 /* Mark all the sections in the group. */
11216 group_sec = elf_section_data (sec)->next_in_group;
11217 if (group_sec && !group_sec->gc_mark)
ccfa59ea 11218 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
11219 return FALSE;
11220
11221 /* Look through the section relocs. */
11222 ret = TRUE;
9d0a14d3
RS
11223 eh_frame = elf_eh_frame_section (sec->owner);
11224 if ((sec->flags & SEC_RELOC) != 0
11225 && sec->reloc_count > 0
11226 && sec != eh_frame)
c152c796 11227 {
5241d853 11228 struct elf_reloc_cookie cookie;
c152c796 11229
5241d853
RS
11230 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11231 ret = FALSE;
c152c796 11232 else
c152c796 11233 {
5241d853 11234 for (; cookie.rel < cookie.relend; cookie.rel++)
9d0a14d3 11235 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
5241d853
RS
11236 {
11237 ret = FALSE;
11238 break;
11239 }
11240 fini_reloc_cookie_for_section (&cookie, sec);
c152c796
AM
11241 }
11242 }
9d0a14d3
RS
11243
11244 if (ret && eh_frame && elf_fde_list (sec))
11245 {
11246 struct elf_reloc_cookie cookie;
11247
11248 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11249 ret = FALSE;
11250 else
11251 {
11252 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11253 gc_mark_hook, &cookie))
11254 ret = FALSE;
11255 fini_reloc_cookie_for_section (&cookie, eh_frame);
11256 }
11257 }
11258
c152c796
AM
11259 return ret;
11260}
11261
11262/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11263
c17d87de
NC
11264struct elf_gc_sweep_symbol_info
11265{
ccabcbe5
AM
11266 struct bfd_link_info *info;
11267 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11268 bfd_boolean);
11269};
11270
c152c796 11271static bfd_boolean
ccabcbe5 11272elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
c152c796 11273{
c152c796
AM
11274 if (h->root.type == bfd_link_hash_warning)
11275 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11276
ccabcbe5
AM
11277 if ((h->root.type == bfd_link_hash_defined
11278 || h->root.type == bfd_link_hash_defweak)
11279 && !h->root.u.def.section->gc_mark
11280 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11281 {
11282 struct elf_gc_sweep_symbol_info *inf = data;
11283 (*inf->hide_symbol) (inf->info, h, TRUE);
11284 }
c152c796
AM
11285
11286 return TRUE;
11287}
11288
11289/* The sweep phase of garbage collection. Remove all garbage sections. */
11290
11291typedef bfd_boolean (*gc_sweep_hook_fn)
11292 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11293
11294static bfd_boolean
ccabcbe5 11295elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
c152c796
AM
11296{
11297 bfd *sub;
ccabcbe5
AM
11298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11299 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11300 unsigned long section_sym_count;
11301 struct elf_gc_sweep_symbol_info sweep_info;
c152c796
AM
11302
11303 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11304 {
11305 asection *o;
11306
11307 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11308 continue;
11309
11310 for (o = sub->sections; o != NULL; o = o->next)
11311 {
7c2c8505
AM
11312 /* Keep debug and special sections. */
11313 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
dea5f36a 11314 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
c152c796
AM
11315 o->gc_mark = 1;
11316
11317 if (o->gc_mark)
11318 continue;
11319
11320 /* Skip sweeping sections already excluded. */
11321 if (o->flags & SEC_EXCLUDE)
11322 continue;
11323
11324 /* Since this is early in the link process, it is simple
11325 to remove a section from the output. */
11326 o->flags |= SEC_EXCLUDE;
11327
c55fe096 11328 if (info->print_gc_sections && o->size != 0)
c17d87de
NC
11329 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11330
c152c796
AM
11331 /* But we also have to update some of the relocation
11332 info we collected before. */
11333 if (gc_sweep_hook
e8aaee2a
AM
11334 && (o->flags & SEC_RELOC) != 0
11335 && o->reloc_count > 0
11336 && !bfd_is_abs_section (o->output_section))
c152c796
AM
11337 {
11338 Elf_Internal_Rela *internal_relocs;
11339 bfd_boolean r;
11340
11341 internal_relocs
11342 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11343 info->keep_memory);
11344 if (internal_relocs == NULL)
11345 return FALSE;
11346
11347 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11348
11349 if (elf_section_data (o)->relocs != internal_relocs)
11350 free (internal_relocs);
11351
11352 if (!r)
11353 return FALSE;
11354 }
11355 }
11356 }
11357
11358 /* Remove the symbols that were in the swept sections from the dynamic
11359 symbol table. GCFIXME: Anyone know how to get them out of the
11360 static symbol table as well? */
ccabcbe5
AM
11361 sweep_info.info = info;
11362 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11363 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11364 &sweep_info);
c152c796 11365
ccabcbe5 11366 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
c152c796
AM
11367 return TRUE;
11368}
11369
11370/* Propagate collected vtable information. This is called through
11371 elf_link_hash_traverse. */
11372
11373static bfd_boolean
11374elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11375{
11376 if (h->root.type == bfd_link_hash_warning)
11377 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11378
11379 /* Those that are not vtables. */
f6e332e6 11380 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11381 return TRUE;
11382
11383 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 11384 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
11385 return TRUE;
11386
11387 /* If we've already been done, exit. */
f6e332e6 11388 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
11389 return TRUE;
11390
11391 /* Make sure the parent's table is up to date. */
f6e332e6 11392 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 11393
f6e332e6 11394 if (h->vtable->used == NULL)
c152c796
AM
11395 {
11396 /* None of this table's entries were referenced. Re-use the
11397 parent's table. */
f6e332e6
AM
11398 h->vtable->used = h->vtable->parent->vtable->used;
11399 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
11400 }
11401 else
11402 {
11403 size_t n;
11404 bfd_boolean *cu, *pu;
11405
11406 /* Or the parent's entries into ours. */
f6e332e6 11407 cu = h->vtable->used;
c152c796 11408 cu[-1] = TRUE;
f6e332e6 11409 pu = h->vtable->parent->vtable->used;
c152c796
AM
11410 if (pu != NULL)
11411 {
11412 const struct elf_backend_data *bed;
11413 unsigned int log_file_align;
11414
11415 bed = get_elf_backend_data (h->root.u.def.section->owner);
11416 log_file_align = bed->s->log_file_align;
f6e332e6 11417 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
11418 while (n--)
11419 {
11420 if (*pu)
11421 *cu = TRUE;
11422 pu++;
11423 cu++;
11424 }
11425 }
11426 }
11427
11428 return TRUE;
11429}
11430
11431static bfd_boolean
11432elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11433{
11434 asection *sec;
11435 bfd_vma hstart, hend;
11436 Elf_Internal_Rela *relstart, *relend, *rel;
11437 const struct elf_backend_data *bed;
11438 unsigned int log_file_align;
11439
11440 if (h->root.type == bfd_link_hash_warning)
11441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11442
11443 /* Take care of both those symbols that do not describe vtables as
11444 well as those that are not loaded. */
f6e332e6 11445 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
11446 return TRUE;
11447
11448 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11449 || h->root.type == bfd_link_hash_defweak);
11450
11451 sec = h->root.u.def.section;
11452 hstart = h->root.u.def.value;
11453 hend = hstart + h->size;
11454
11455 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11456 if (!relstart)
11457 return *(bfd_boolean *) okp = FALSE;
11458 bed = get_elf_backend_data (sec->owner);
11459 log_file_align = bed->s->log_file_align;
11460
11461 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11462
11463 for (rel = relstart; rel < relend; ++rel)
11464 if (rel->r_offset >= hstart && rel->r_offset < hend)
11465 {
11466 /* If the entry is in use, do nothing. */
f6e332e6
AM
11467 if (h->vtable->used
11468 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
11469 {
11470 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 11471 if (h->vtable->used[entry])
c152c796
AM
11472 continue;
11473 }
11474 /* Otherwise, kill it. */
11475 rel->r_offset = rel->r_info = rel->r_addend = 0;
11476 }
11477
11478 return TRUE;
11479}
11480
87538722
AM
11481/* Mark sections containing dynamically referenced symbols. When
11482 building shared libraries, we must assume that any visible symbol is
11483 referenced. */
715df9b8 11484
64d03ab5
AM
11485bfd_boolean
11486bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
715df9b8 11487{
87538722
AM
11488 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11489
715df9b8
EB
11490 if (h->root.type == bfd_link_hash_warning)
11491 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11492
11493 if ((h->root.type == bfd_link_hash_defined
11494 || h->root.type == bfd_link_hash_defweak)
87538722 11495 && (h->ref_dynamic
5adcfd8b 11496 || (!info->executable
87538722
AM
11497 && h->def_regular
11498 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11499 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
715df9b8
EB
11500 h->root.u.def.section->flags |= SEC_KEEP;
11501
11502 return TRUE;
11503}
3b36f7e6 11504
74f0fb50
AM
11505/* Keep all sections containing symbols undefined on the command-line,
11506 and the section containing the entry symbol. */
11507
11508void
11509_bfd_elf_gc_keep (struct bfd_link_info *info)
11510{
11511 struct bfd_sym_chain *sym;
11512
11513 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11514 {
11515 struct elf_link_hash_entry *h;
11516
11517 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11518 FALSE, FALSE, FALSE);
11519
11520 if (h != NULL
11521 && (h->root.type == bfd_link_hash_defined
11522 || h->root.type == bfd_link_hash_defweak)
11523 && !bfd_is_abs_section (h->root.u.def.section))
11524 h->root.u.def.section->flags |= SEC_KEEP;
11525 }
11526}
11527
c152c796
AM
11528/* Do mark and sweep of unused sections. */
11529
11530bfd_boolean
11531bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11532{
11533 bfd_boolean ok = TRUE;
11534 bfd *sub;
6a5bb875 11535 elf_gc_mark_hook_fn gc_mark_hook;
64d03ab5 11536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
c152c796 11537
64d03ab5 11538 if (!bed->can_gc_sections
715df9b8 11539 || !is_elf_hash_table (info->hash))
c152c796
AM
11540 {
11541 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11542 return TRUE;
11543 }
11544
74f0fb50
AM
11545 bed->gc_keep (info);
11546
9d0a14d3
RS
11547 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11548 at the .eh_frame section if we can mark the FDEs individually. */
11549 _bfd_elf_begin_eh_frame_parsing (info);
11550 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11551 {
11552 asection *sec;
11553 struct elf_reloc_cookie cookie;
11554
11555 sec = bfd_get_section_by_name (sub, ".eh_frame");
11556 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11557 {
11558 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11559 if (elf_section_data (sec)->sec_info)
11560 elf_eh_frame_section (sub) = sec;
11561 fini_reloc_cookie_for_section (&cookie, sec);
11562 }
11563 }
11564 _bfd_elf_end_eh_frame_parsing (info);
11565
c152c796
AM
11566 /* Apply transitive closure to the vtable entry usage info. */
11567 elf_link_hash_traverse (elf_hash_table (info),
11568 elf_gc_propagate_vtable_entries_used,
11569 &ok);
11570 if (!ok)
11571 return FALSE;
11572
11573 /* Kill the vtable relocations that were not used. */
11574 elf_link_hash_traverse (elf_hash_table (info),
11575 elf_gc_smash_unused_vtentry_relocs,
11576 &ok);
11577 if (!ok)
11578 return FALSE;
11579
715df9b8
EB
11580 /* Mark dynamically referenced symbols. */
11581 if (elf_hash_table (info)->dynamic_sections_created)
11582 elf_link_hash_traverse (elf_hash_table (info),
64d03ab5 11583 bed->gc_mark_dynamic_ref,
87538722 11584 info);
c152c796 11585
715df9b8 11586 /* Grovel through relocs to find out who stays ... */
64d03ab5 11587 gc_mark_hook = bed->gc_mark_hook;
c152c796
AM
11588 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11589 {
11590 asection *o;
11591
11592 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11593 continue;
11594
11595 for (o = sub->sections; o != NULL; o = o->next)
a14a5de3 11596 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
39c2f51b
AM
11597 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11598 return FALSE;
c152c796
AM
11599 }
11600
6a5bb875
PB
11601 /* Allow the backend to mark additional target specific sections. */
11602 if (bed->gc_mark_extra_sections)
74f0fb50 11603 bed->gc_mark_extra_sections (info, gc_mark_hook);
6a5bb875 11604
c152c796 11605 /* ... and mark SEC_EXCLUDE for those that go. */
ccabcbe5 11606 return elf_gc_sweep (abfd, info);
c152c796
AM
11607}
11608\f
11609/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11610
11611bfd_boolean
11612bfd_elf_gc_record_vtinherit (bfd *abfd,
11613 asection *sec,
11614 struct elf_link_hash_entry *h,
11615 bfd_vma offset)
11616{
11617 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11618 struct elf_link_hash_entry **search, *child;
11619 bfd_size_type extsymcount;
11620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11621
11622 /* The sh_info field of the symtab header tells us where the
11623 external symbols start. We don't care about the local symbols at
11624 this point. */
11625 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11626 if (!elf_bad_symtab (abfd))
11627 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11628
11629 sym_hashes = elf_sym_hashes (abfd);
11630 sym_hashes_end = sym_hashes + extsymcount;
11631
11632 /* Hunt down the child symbol, which is in this section at the same
11633 offset as the relocation. */
11634 for (search = sym_hashes; search != sym_hashes_end; ++search)
11635 {
11636 if ((child = *search) != NULL
11637 && (child->root.type == bfd_link_hash_defined
11638 || child->root.type == bfd_link_hash_defweak)
11639 && child->root.u.def.section == sec
11640 && child->root.u.def.value == offset)
11641 goto win;
11642 }
11643
d003868e
AM
11644 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11645 abfd, sec, (unsigned long) offset);
c152c796
AM
11646 bfd_set_error (bfd_error_invalid_operation);
11647 return FALSE;
11648
11649 win:
f6e332e6
AM
11650 if (!child->vtable)
11651 {
11652 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11653 if (!child->vtable)
11654 return FALSE;
11655 }
c152c796
AM
11656 if (!h)
11657 {
11658 /* This *should* only be the absolute section. It could potentially
11659 be that someone has defined a non-global vtable though, which
11660 would be bad. It isn't worth paging in the local symbols to be
11661 sure though; that case should simply be handled by the assembler. */
11662
f6e332e6 11663 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
11664 }
11665 else
f6e332e6 11666 child->vtable->parent = h;
c152c796
AM
11667
11668 return TRUE;
11669}
11670
11671/* Called from check_relocs to record the existence of a VTENTRY reloc. */
11672
11673bfd_boolean
11674bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11675 asection *sec ATTRIBUTE_UNUSED,
11676 struct elf_link_hash_entry *h,
11677 bfd_vma addend)
11678{
11679 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11680 unsigned int log_file_align = bed->s->log_file_align;
11681
f6e332e6
AM
11682 if (!h->vtable)
11683 {
11684 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11685 if (!h->vtable)
11686 return FALSE;
11687 }
11688
11689 if (addend >= h->vtable->size)
c152c796
AM
11690 {
11691 size_t size, bytes, file_align;
f6e332e6 11692 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
11693
11694 /* While the symbol is undefined, we have to be prepared to handle
11695 a zero size. */
11696 file_align = 1 << log_file_align;
11697 if (h->root.type == bfd_link_hash_undefined)
11698 size = addend + file_align;
11699 else
11700 {
11701 size = h->size;
11702 if (addend >= size)
11703 {
11704 /* Oops! We've got a reference past the defined end of
11705 the table. This is probably a bug -- shall we warn? */
11706 size = addend + file_align;
11707 }
11708 }
11709 size = (size + file_align - 1) & -file_align;
11710
11711 /* Allocate one extra entry for use as a "done" flag for the
11712 consolidation pass. */
11713 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11714
11715 if (ptr)
11716 {
11717 ptr = bfd_realloc (ptr - 1, bytes);
11718
11719 if (ptr != NULL)
11720 {
11721 size_t oldbytes;
11722
f6e332e6 11723 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
11724 * sizeof (bfd_boolean));
11725 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11726 }
11727 }
11728 else
11729 ptr = bfd_zmalloc (bytes);
11730
11731 if (ptr == NULL)
11732 return FALSE;
11733
11734 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
11735 h->vtable->used = ptr + 1;
11736 h->vtable->size = size;
c152c796
AM
11737 }
11738
f6e332e6 11739 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
11740
11741 return TRUE;
11742}
11743
11744struct alloc_got_off_arg {
11745 bfd_vma gotoff;
11746 unsigned int got_elt_size;
11747};
11748
11749/* We need a special top-level link routine to convert got reference counts
11750 to real got offsets. */
11751
11752static bfd_boolean
11753elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11754{
11755 struct alloc_got_off_arg *gofarg = arg;
11756
11757 if (h->root.type == bfd_link_hash_warning)
11758 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11759
11760 if (h->got.refcount > 0)
11761 {
11762 h->got.offset = gofarg->gotoff;
11763 gofarg->gotoff += gofarg->got_elt_size;
11764 }
11765 else
11766 h->got.offset = (bfd_vma) -1;
11767
11768 return TRUE;
11769}
11770
11771/* And an accompanying bit to work out final got entry offsets once
11772 we're done. Should be called from final_link. */
11773
11774bfd_boolean
11775bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11776 struct bfd_link_info *info)
11777{
11778 bfd *i;
11779 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11780 bfd_vma gotoff;
11781 unsigned int got_elt_size = bed->s->arch_size / 8;
11782 struct alloc_got_off_arg gofarg;
11783
11784 if (! is_elf_hash_table (info->hash))
11785 return FALSE;
11786
11787 /* The GOT offset is relative to the .got section, but the GOT header is
11788 put into the .got.plt section, if the backend uses it. */
11789 if (bed->want_got_plt)
11790 gotoff = 0;
11791 else
11792 gotoff = bed->got_header_size;
11793
11794 /* Do the local .got entries first. */
11795 for (i = info->input_bfds; i; i = i->link_next)
11796 {
11797 bfd_signed_vma *local_got;
11798 bfd_size_type j, locsymcount;
11799 Elf_Internal_Shdr *symtab_hdr;
11800
11801 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11802 continue;
11803
11804 local_got = elf_local_got_refcounts (i);
11805 if (!local_got)
11806 continue;
11807
11808 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11809 if (elf_bad_symtab (i))
11810 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11811 else
11812 locsymcount = symtab_hdr->sh_info;
11813
11814 for (j = 0; j < locsymcount; ++j)
11815 {
11816 if (local_got[j] > 0)
11817 {
11818 local_got[j] = gotoff;
11819 gotoff += got_elt_size;
11820 }
11821 else
11822 local_got[j] = (bfd_vma) -1;
11823 }
11824 }
11825
11826 /* Then the global .got entries. .plt refcounts are handled by
11827 adjust_dynamic_symbol */
11828 gofarg.gotoff = gotoff;
11829 gofarg.got_elt_size = got_elt_size;
11830 elf_link_hash_traverse (elf_hash_table (info),
11831 elf_gc_allocate_got_offsets,
11832 &gofarg);
11833 return TRUE;
11834}
11835
11836/* Many folk need no more in the way of final link than this, once
11837 got entry reference counting is enabled. */
11838
11839bfd_boolean
11840bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11841{
11842 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11843 return FALSE;
11844
11845 /* Invoke the regular ELF backend linker to do all the work. */
11846 return bfd_elf_final_link (abfd, info);
11847}
11848
11849bfd_boolean
11850bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11851{
11852 struct elf_reloc_cookie *rcookie = cookie;
11853
11854 if (rcookie->bad_symtab)
11855 rcookie->rel = rcookie->rels;
11856
11857 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11858 {
11859 unsigned long r_symndx;
11860
11861 if (! rcookie->bad_symtab)
11862 if (rcookie->rel->r_offset > offset)
11863 return FALSE;
11864 if (rcookie->rel->r_offset != offset)
11865 continue;
11866
11867 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11868 if (r_symndx == SHN_UNDEF)
11869 return TRUE;
11870
11871 if (r_symndx >= rcookie->locsymcount
11872 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11873 {
11874 struct elf_link_hash_entry *h;
11875
11876 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11877
11878 while (h->root.type == bfd_link_hash_indirect
11879 || h->root.type == bfd_link_hash_warning)
11880 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11881
11882 if ((h->root.type == bfd_link_hash_defined
11883 || h->root.type == bfd_link_hash_defweak)
11884 && elf_discarded_section (h->root.u.def.section))
11885 return TRUE;
11886 else
11887 return FALSE;
11888 }
11889 else
11890 {
11891 /* It's not a relocation against a global symbol,
11892 but it could be a relocation against a local
11893 symbol for a discarded section. */
11894 asection *isec;
11895 Elf_Internal_Sym *isym;
11896
11897 /* Need to: get the symbol; get the section. */
11898 isym = &rcookie->locsyms[r_symndx];
cb33740c
AM
11899 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11900 if (isec != NULL && elf_discarded_section (isec))
11901 return TRUE;
c152c796
AM
11902 }
11903 return FALSE;
11904 }
11905 return FALSE;
11906}
11907
11908/* Discard unneeded references to discarded sections.
11909 Returns TRUE if any section's size was changed. */
11910/* This function assumes that the relocations are in sorted order,
11911 which is true for all known assemblers. */
11912
11913bfd_boolean
11914bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11915{
11916 struct elf_reloc_cookie cookie;
11917 asection *stab, *eh;
c152c796
AM
11918 const struct elf_backend_data *bed;
11919 bfd *abfd;
c152c796
AM
11920 bfd_boolean ret = FALSE;
11921
11922 if (info->traditional_format
11923 || !is_elf_hash_table (info->hash))
11924 return FALSE;
11925
ca92cecb 11926 _bfd_elf_begin_eh_frame_parsing (info);
c152c796
AM
11927 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11928 {
11929 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11930 continue;
11931
11932 bed = get_elf_backend_data (abfd);
11933
11934 if ((abfd->flags & DYNAMIC) != 0)
11935 continue;
11936
8da3dbc5
AM
11937 eh = NULL;
11938 if (!info->relocatable)
11939 {
11940 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11941 if (eh != NULL
eea6121a 11942 && (eh->size == 0
8da3dbc5
AM
11943 || bfd_is_abs_section (eh->output_section)))
11944 eh = NULL;
11945 }
c152c796
AM
11946
11947 stab = bfd_get_section_by_name (abfd, ".stab");
11948 if (stab != NULL
eea6121a 11949 && (stab->size == 0
c152c796
AM
11950 || bfd_is_abs_section (stab->output_section)
11951 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11952 stab = NULL;
11953
11954 if (stab == NULL
11955 && eh == NULL
11956 && bed->elf_backend_discard_info == NULL)
11957 continue;
11958
5241d853
RS
11959 if (!init_reloc_cookie (&cookie, info, abfd))
11960 return FALSE;
c152c796 11961
5241d853
RS
11962 if (stab != NULL
11963 && stab->reloc_count > 0
11964 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
c152c796 11965 {
5241d853
RS
11966 if (_bfd_discard_section_stabs (abfd, stab,
11967 elf_section_data (stab)->sec_info,
11968 bfd_elf_reloc_symbol_deleted_p,
11969 &cookie))
11970 ret = TRUE;
11971 fini_reloc_cookie_rels (&cookie, stab);
c152c796
AM
11972 }
11973
5241d853
RS
11974 if (eh != NULL
11975 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
c152c796 11976 {
ca92cecb 11977 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
c152c796
AM
11978 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11979 bfd_elf_reloc_symbol_deleted_p,
11980 &cookie))
11981 ret = TRUE;
5241d853 11982 fini_reloc_cookie_rels (&cookie, eh);
c152c796
AM
11983 }
11984
11985 if (bed->elf_backend_discard_info != NULL
11986 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11987 ret = TRUE;
11988
5241d853 11989 fini_reloc_cookie (&cookie, abfd);
c152c796 11990 }
ca92cecb 11991 _bfd_elf_end_eh_frame_parsing (info);
c152c796
AM
11992
11993 if (info->eh_frame_hdr
11994 && !info->relocatable
11995 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11996 ret = TRUE;
11997
11998 return ret;
11999}
082b7297 12000
9659de1c
AM
12001/* For a SHT_GROUP section, return the group signature. For other
12002 sections, return the normal section name. */
12003
12004static const char *
12005section_signature (asection *sec)
12006{
12007 if ((sec->flags & SEC_GROUP) != 0
12008 && elf_next_in_group (sec) != NULL
12009 && elf_group_name (elf_next_in_group (sec)) != NULL)
12010 return elf_group_name (elf_next_in_group (sec));
12011 return sec->name;
12012}
12013
082b7297 12014void
9659de1c 12015_bfd_elf_section_already_linked (bfd *abfd, asection *sec,
c0f00686 12016 struct bfd_link_info *info)
082b7297
L
12017{
12018 flagword flags;
6d2cd210 12019 const char *name, *p;
082b7297
L
12020 struct bfd_section_already_linked *l;
12021 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666 12022
3d7f7666
L
12023 if (sec->output_section == bfd_abs_section_ptr)
12024 return;
082b7297
L
12025
12026 flags = sec->flags;
3d7f7666 12027
c2370991
AM
12028 /* Return if it isn't a linkonce section. A comdat group section
12029 also has SEC_LINK_ONCE set. */
12030 if ((flags & SEC_LINK_ONCE) == 0)
082b7297
L
12031 return;
12032
c2370991
AM
12033 /* Don't put group member sections on our list of already linked
12034 sections. They are handled as a group via their group section. */
12035 if (elf_sec_group (sec) != NULL)
12036 return;
3d7f7666 12037
082b7297
L
12038 /* FIXME: When doing a relocatable link, we may have trouble
12039 copying relocations in other sections that refer to local symbols
12040 in the section being discarded. Those relocations will have to
12041 be converted somehow; as of this writing I'm not sure that any of
12042 the backends handle that correctly.
12043
12044 It is tempting to instead not discard link once sections when
12045 doing a relocatable link (technically, they should be discarded
12046 whenever we are building constructors). However, that fails,
12047 because the linker winds up combining all the link once sections
12048 into a single large link once section, which defeats the purpose
12049 of having link once sections in the first place.
12050
12051 Also, not merging link once sections in a relocatable link
12052 causes trouble for MIPS ELF, which relies on link once semantics
12053 to handle the .reginfo section correctly. */
12054
9659de1c 12055 name = section_signature (sec);
082b7297 12056
0112cd26 12057 if (CONST_STRNEQ (name, ".gnu.linkonce.")
6d2cd210
JJ
12058 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12059 p++;
12060 else
12061 p = name;
12062
12063 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
12064
12065 for (l = already_linked_list->entry; l != NULL; l = l->next)
12066 {
c2370991
AM
12067 /* We may have 2 different types of sections on the list: group
12068 sections and linkonce sections. Match like sections. */
3d7f7666 12069 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9659de1c 12070 && strcmp (name, section_signature (l->sec)) == 0
082b7297
L
12071 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12072 {
12073 /* The section has already been linked. See if we should
6d2cd210 12074 issue a warning. */
082b7297
L
12075 switch (flags & SEC_LINK_DUPLICATES)
12076 {
12077 default:
12078 abort ();
12079
12080 case SEC_LINK_DUPLICATES_DISCARD:
12081 break;
12082
12083 case SEC_LINK_DUPLICATES_ONE_ONLY:
12084 (*_bfd_error_handler)
c93625e2 12085 (_("%B: ignoring duplicate section `%A'"),
d003868e 12086 abfd, sec);
082b7297
L
12087 break;
12088
12089 case SEC_LINK_DUPLICATES_SAME_SIZE:
12090 if (sec->size != l->sec->size)
12091 (*_bfd_error_handler)
c93625e2 12092 (_("%B: duplicate section `%A' has different size"),
d003868e 12093 abfd, sec);
082b7297 12094 break;
ea5158d8
DJ
12095
12096 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12097 if (sec->size != l->sec->size)
12098 (*_bfd_error_handler)
c93625e2 12099 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
12100 abfd, sec);
12101 else if (sec->size != 0)
12102 {
12103 bfd_byte *sec_contents, *l_sec_contents;
12104
12105 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12106 (*_bfd_error_handler)
c93625e2 12107 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12108 abfd, sec);
12109 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12110 &l_sec_contents))
12111 (*_bfd_error_handler)
c93625e2 12112 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
12113 l->sec->owner, l->sec);
12114 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12115 (*_bfd_error_handler)
c93625e2 12116 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
12117 abfd, sec);
12118
12119 if (sec_contents)
12120 free (sec_contents);
12121 if (l_sec_contents)
12122 free (l_sec_contents);
12123 }
12124 break;
082b7297
L
12125 }
12126
12127 /* Set the output_section field so that lang_add_section
12128 does not create a lang_input_section structure for this
12129 section. Since there might be a symbol in the section
12130 being discarded, we must retain a pointer to the section
12131 which we are really going to use. */
12132 sec->output_section = bfd_abs_section_ptr;
12133 sec->kept_section = l->sec;
3b36f7e6 12134
082b7297 12135 if (flags & SEC_GROUP)
3d7f7666
L
12136 {
12137 asection *first = elf_next_in_group (sec);
12138 asection *s = first;
12139
12140 while (s != NULL)
12141 {
12142 s->output_section = bfd_abs_section_ptr;
12143 /* Record which group discards it. */
12144 s->kept_section = l->sec;
12145 s = elf_next_in_group (s);
12146 /* These lists are circular. */
12147 if (s == first)
12148 break;
12149 }
12150 }
082b7297
L
12151
12152 return;
12153 }
12154 }
12155
c2370991
AM
12156 /* A single member comdat group section may be discarded by a
12157 linkonce section and vice versa. */
12158
12159 if ((flags & SEC_GROUP) != 0)
3d7f7666 12160 {
c2370991
AM
12161 asection *first = elf_next_in_group (sec);
12162
12163 if (first != NULL && elf_next_in_group (first) == first)
12164 /* Check this single member group against linkonce sections. */
12165 for (l = already_linked_list->entry; l != NULL; l = l->next)
12166 if ((l->sec->flags & SEC_GROUP) == 0
12167 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12168 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12169 {
12170 first->output_section = bfd_abs_section_ptr;
12171 first->kept_section = l->sec;
12172 sec->output_section = bfd_abs_section_ptr;
12173 break;
12174 }
3d7f7666
L
12175 }
12176 else
c2370991 12177 /* Check this linkonce section against single member groups. */
6d2cd210
JJ
12178 for (l = already_linked_list->entry; l != NULL; l = l->next)
12179 if (l->sec->flags & SEC_GROUP)
12180 {
12181 asection *first = elf_next_in_group (l->sec);
12182
12183 if (first != NULL
12184 && elf_next_in_group (first) == first
c0f00686 12185 && bfd_elf_match_symbols_in_sections (first, sec, info))
6d2cd210
JJ
12186 {
12187 sec->output_section = bfd_abs_section_ptr;
c2370991 12188 sec->kept_section = first;
6d2cd210
JJ
12189 break;
12190 }
12191 }
12192
082b7297 12193 /* This is the first section with this name. Record it. */
a6626e8c
MS
12194 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12195 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
082b7297 12196}
81e1b023 12197
a4d8e49b
L
12198bfd_boolean
12199_bfd_elf_common_definition (Elf_Internal_Sym *sym)
12200{
12201 return sym->st_shndx == SHN_COMMON;
12202}
12203
12204unsigned int
12205_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12206{
12207 return SHN_COMMON;
12208}
12209
12210asection *
12211_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12212{
12213 return bfd_com_section_ptr;
12214}