]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elflink.c
PR ld/1353
[thirdparty/binutils-gdb.git] / bfd / elflink.c
CommitLineData
252b5132 1/* ELF linking support for BFD.
7e9f0867 2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
7898deda 3 Free Software Foundation, Inc.
252b5132 4
8fdd7217 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
8fdd7217
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
252b5132 11
8fdd7217
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
8fdd7217
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
252b5132
RH
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#define ARCH_SIZE 0
26#include "elf-bfd.h"
4ad4eba5 27#include "safe-ctype.h"
ccf2f652 28#include "libiberty.h"
252b5132 29
d98685ac
AM
30/* Define a symbol in a dynamic linkage section. */
31
32struct elf_link_hash_entry *
33_bfd_elf_define_linkage_sym (bfd *abfd,
34 struct bfd_link_info *info,
35 asection *sec,
36 const char *name)
37{
38 struct elf_link_hash_entry *h;
39 struct bfd_link_hash_entry *bh;
ccabcbe5 40 const struct elf_backend_data *bed;
d98685ac
AM
41
42 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
43 if (h != NULL)
44 {
45 /* Zap symbol defined in an as-needed lib that wasn't linked.
46 This is a symptom of a larger problem: Absolute symbols
47 defined in shared libraries can't be overridden, because we
48 lose the link to the bfd which is via the symbol section. */
49 h->root.type = bfd_link_hash_new;
50 }
51
52 bh = &h->root;
53 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
54 sec, 0, NULL, FALSE,
55 get_elf_backend_data (abfd)->collect,
56 &bh))
57 return NULL;
58 h = (struct elf_link_hash_entry *) bh;
59 h->def_regular = 1;
60 h->type = STT_OBJECT;
61 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
62
ccabcbe5
AM
63 bed = get_elf_backend_data (abfd);
64 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
d98685ac
AM
65 return h;
66}
67
b34976b6 68bfd_boolean
268b6b39 69_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
252b5132
RH
70{
71 flagword flags;
aad5d350 72 asection *s;
252b5132 73 struct elf_link_hash_entry *h;
9c5bfbb7 74 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
252b5132
RH
75 int ptralign;
76
77 /* This function may be called more than once. */
aad5d350
AM
78 s = bfd_get_section_by_name (abfd, ".got");
79 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
b34976b6 80 return TRUE;
252b5132
RH
81
82 switch (bed->s->arch_size)
83 {
bb0deeff
AO
84 case 32:
85 ptralign = 2;
86 break;
87
88 case 64:
89 ptralign = 3;
90 break;
91
92 default:
93 bfd_set_error (bfd_error_bad_value);
b34976b6 94 return FALSE;
252b5132
RH
95 }
96
e5a52504 97 flags = bed->dynamic_sec_flags;
252b5132 98
3496cb2a 99 s = bfd_make_section_with_flags (abfd, ".got", flags);
252b5132 100 if (s == NULL
252b5132 101 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 102 return FALSE;
252b5132
RH
103
104 if (bed->want_got_plt)
105 {
3496cb2a 106 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
252b5132 107 if (s == NULL
252b5132 108 || !bfd_set_section_alignment (abfd, s, ptralign))
b34976b6 109 return FALSE;
252b5132
RH
110 }
111
2517a57f
AM
112 if (bed->want_got_sym)
113 {
114 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
115 (or .got.plt) section. We don't do this in the linker script
116 because we don't want to define the symbol if we are not creating
117 a global offset table. */
d98685ac 118 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
2517a57f 119 elf_hash_table (info)->hgot = h;
d98685ac
AM
120 if (h == NULL)
121 return FALSE;
2517a57f 122 }
252b5132
RH
123
124 /* The first bit of the global offset table is the header. */
3b36f7e6 125 s->size += bed->got_header_size;
252b5132 126
b34976b6 127 return TRUE;
252b5132
RH
128}
129\f
7e9f0867
AM
130/* Create a strtab to hold the dynamic symbol names. */
131static bfd_boolean
132_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
133{
134 struct elf_link_hash_table *hash_table;
135
136 hash_table = elf_hash_table (info);
137 if (hash_table->dynobj == NULL)
138 hash_table->dynobj = abfd;
139
140 if (hash_table->dynstr == NULL)
141 {
142 hash_table->dynstr = _bfd_elf_strtab_init ();
143 if (hash_table->dynstr == NULL)
144 return FALSE;
145 }
146 return TRUE;
147}
148
45d6a902
AM
149/* Create some sections which will be filled in with dynamic linking
150 information. ABFD is an input file which requires dynamic sections
151 to be created. The dynamic sections take up virtual memory space
152 when the final executable is run, so we need to create them before
153 addresses are assigned to the output sections. We work out the
154 actual contents and size of these sections later. */
252b5132 155
b34976b6 156bfd_boolean
268b6b39 157_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 158{
45d6a902
AM
159 flagword flags;
160 register asection *s;
9c5bfbb7 161 const struct elf_backend_data *bed;
252b5132 162
0eddce27 163 if (! is_elf_hash_table (info->hash))
45d6a902
AM
164 return FALSE;
165
166 if (elf_hash_table (info)->dynamic_sections_created)
167 return TRUE;
168
7e9f0867
AM
169 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
170 return FALSE;
45d6a902 171
7e9f0867 172 abfd = elf_hash_table (info)->dynobj;
e5a52504
MM
173 bed = get_elf_backend_data (abfd);
174
175 flags = bed->dynamic_sec_flags;
45d6a902
AM
176
177 /* A dynamically linked executable has a .interp section, but a
178 shared library does not. */
36af4a4e 179 if (info->executable)
252b5132 180 {
3496cb2a
L
181 s = bfd_make_section_with_flags (abfd, ".interp",
182 flags | SEC_READONLY);
183 if (s == NULL)
45d6a902
AM
184 return FALSE;
185 }
bb0deeff 186
0eddce27 187 if (! info->traditional_format)
45d6a902 188 {
3496cb2a
L
189 s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr",
190 flags | SEC_READONLY);
45d6a902 191 if (s == NULL
45d6a902
AM
192 || ! bfd_set_section_alignment (abfd, s, 2))
193 return FALSE;
194 elf_hash_table (info)->eh_info.hdr_sec = s;
195 }
bb0deeff 196
45d6a902
AM
197 /* Create sections to hold version informations. These are removed
198 if they are not needed. */
3496cb2a
L
199 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
200 flags | SEC_READONLY);
45d6a902 201 if (s == NULL
45d6a902
AM
202 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
203 return FALSE;
204
3496cb2a
L
205 s = bfd_make_section_with_flags (abfd, ".gnu.version",
206 flags | SEC_READONLY);
45d6a902 207 if (s == NULL
45d6a902
AM
208 || ! bfd_set_section_alignment (abfd, s, 1))
209 return FALSE;
210
3496cb2a
L
211 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
212 flags | SEC_READONLY);
45d6a902 213 if (s == NULL
45d6a902
AM
214 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
215 return FALSE;
216
3496cb2a
L
217 s = bfd_make_section_with_flags (abfd, ".dynsym",
218 flags | SEC_READONLY);
45d6a902 219 if (s == NULL
45d6a902
AM
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
3496cb2a
L
223 s = bfd_make_section_with_flags (abfd, ".dynstr",
224 flags | SEC_READONLY);
225 if (s == NULL)
45d6a902
AM
226 return FALSE;
227
3496cb2a 228 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
45d6a902 229 if (s == NULL
45d6a902
AM
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
231 return FALSE;
232
233 /* The special symbol _DYNAMIC is always set to the start of the
77cfaee6
AM
234 .dynamic section. We could set _DYNAMIC in a linker script, but we
235 only want to define it if we are, in fact, creating a .dynamic
236 section. We don't want to define it if there is no .dynamic
237 section, since on some ELF platforms the start up code examines it
238 to decide how to initialize the process. */
d98685ac 239 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
45d6a902
AM
240 return FALSE;
241
3496cb2a
L
242 s = bfd_make_section_with_flags (abfd, ".hash",
243 flags | SEC_READONLY);
45d6a902 244 if (s == NULL
45d6a902
AM
245 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
246 return FALSE;
247 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
248
249 /* Let the backend create the rest of the sections. This lets the
250 backend set the right flags. The backend will normally create
251 the .got and .plt sections. */
252 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
253 return FALSE;
254
255 elf_hash_table (info)->dynamic_sections_created = TRUE;
256
257 return TRUE;
258}
259
260/* Create dynamic sections when linking against a dynamic object. */
261
262bfd_boolean
268b6b39 263_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
45d6a902
AM
264{
265 flagword flags, pltflags;
266 asection *s;
9c5bfbb7 267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902 268
252b5132
RH
269 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
270 .rel[a].bss sections. */
e5a52504 271 flags = bed->dynamic_sec_flags;
252b5132
RH
272
273 pltflags = flags;
252b5132 274 if (bed->plt_not_loaded)
6df4d94c
MM
275 /* We do not clear SEC_ALLOC here because we still want the OS to
276 allocate space for the section; it's just that there's nothing
277 to read in from the object file. */
5d1634d7 278 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
6df4d94c
MM
279 else
280 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
252b5132
RH
281 if (bed->plt_readonly)
282 pltflags |= SEC_READONLY;
283
3496cb2a 284 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
252b5132 285 if (s == NULL
252b5132 286 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
b34976b6 287 return FALSE;
252b5132 288
d98685ac
AM
289 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
290 .plt section. */
291 if (bed->want_plt_sym
292 && !_bfd_elf_define_linkage_sym (abfd, info, s,
293 "_PROCEDURE_LINKAGE_TABLE_"))
294 return FALSE;
252b5132 295
3496cb2a
L
296 s = bfd_make_section_with_flags (abfd,
297 (bed->default_use_rela_p
298 ? ".rela.plt" : ".rel.plt"),
299 flags | SEC_READONLY);
252b5132 300 if (s == NULL
45d6a902 301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 302 return FALSE;
252b5132
RH
303
304 if (! _bfd_elf_create_got_section (abfd, info))
b34976b6 305 return FALSE;
252b5132 306
3018b441
RH
307 if (bed->want_dynbss)
308 {
309 /* The .dynbss section is a place to put symbols which are defined
310 by dynamic objects, are referenced by regular objects, and are
311 not functions. We must allocate space for them in the process
312 image and use a R_*_COPY reloc to tell the dynamic linker to
313 initialize them at run time. The linker script puts the .dynbss
314 section into the .bss section of the final image. */
3496cb2a
L
315 s = bfd_make_section_with_flags (abfd, ".dynbss",
316 (SEC_ALLOC
317 | SEC_LINKER_CREATED));
318 if (s == NULL)
b34976b6 319 return FALSE;
252b5132 320
3018b441 321 /* The .rel[a].bss section holds copy relocs. This section is not
77cfaee6
AM
322 normally needed. We need to create it here, though, so that the
323 linker will map it to an output section. We can't just create it
324 only if we need it, because we will not know whether we need it
325 until we have seen all the input files, and the first time the
326 main linker code calls BFD after examining all the input files
327 (size_dynamic_sections) the input sections have already been
328 mapped to the output sections. If the section turns out not to
329 be needed, we can discard it later. We will never need this
330 section when generating a shared object, since they do not use
331 copy relocs. */
3018b441
RH
332 if (! info->shared)
333 {
3496cb2a
L
334 s = bfd_make_section_with_flags (abfd,
335 (bed->default_use_rela_p
336 ? ".rela.bss" : ".rel.bss"),
337 flags | SEC_READONLY);
3018b441 338 if (s == NULL
45d6a902 339 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
b34976b6 340 return FALSE;
3018b441 341 }
252b5132
RH
342 }
343
b34976b6 344 return TRUE;
252b5132
RH
345}
346\f
252b5132
RH
347/* Record a new dynamic symbol. We record the dynamic symbols as we
348 read the input files, since we need to have a list of all of them
349 before we can determine the final sizes of the output sections.
350 Note that we may actually call this function even though we are not
351 going to output any dynamic symbols; in some cases we know that a
352 symbol should be in the dynamic symbol table, but only if there is
353 one. */
354
b34976b6 355bfd_boolean
c152c796
AM
356bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
357 struct elf_link_hash_entry *h)
252b5132
RH
358{
359 if (h->dynindx == -1)
360 {
2b0f7ef9 361 struct elf_strtab_hash *dynstr;
68b6ddd0 362 char *p;
252b5132 363 const char *name;
252b5132
RH
364 bfd_size_type indx;
365
7a13edea
NC
366 /* XXX: The ABI draft says the linker must turn hidden and
367 internal symbols into STB_LOCAL symbols when producing the
368 DSO. However, if ld.so honors st_other in the dynamic table,
369 this would not be necessary. */
370 switch (ELF_ST_VISIBILITY (h->other))
371 {
372 case STV_INTERNAL:
373 case STV_HIDDEN:
9d6eee78
L
374 if (h->root.type != bfd_link_hash_undefined
375 && h->root.type != bfd_link_hash_undefweak)
38048eb9 376 {
f5385ebf 377 h->forced_local = 1;
67687978
PB
378 if (!elf_hash_table (info)->is_relocatable_executable)
379 return TRUE;
7a13edea 380 }
0444bdd4 381
7a13edea
NC
382 default:
383 break;
384 }
385
252b5132
RH
386 h->dynindx = elf_hash_table (info)->dynsymcount;
387 ++elf_hash_table (info)->dynsymcount;
388
389 dynstr = elf_hash_table (info)->dynstr;
390 if (dynstr == NULL)
391 {
392 /* Create a strtab to hold the dynamic symbol names. */
2b0f7ef9 393 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
252b5132 394 if (dynstr == NULL)
b34976b6 395 return FALSE;
252b5132
RH
396 }
397
398 /* We don't put any version information in the dynamic string
aad5d350 399 table. */
252b5132
RH
400 name = h->root.root.string;
401 p = strchr (name, ELF_VER_CHR);
68b6ddd0
AM
402 if (p != NULL)
403 /* We know that the p points into writable memory. In fact,
404 there are only a few symbols that have read-only names, being
405 those like _GLOBAL_OFFSET_TABLE_ that are created specially
406 by the backends. Most symbols will have names pointing into
407 an ELF string table read from a file, or to objalloc memory. */
408 *p = 0;
409
410 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
411
412 if (p != NULL)
413 *p = ELF_VER_CHR;
252b5132
RH
414
415 if (indx == (bfd_size_type) -1)
b34976b6 416 return FALSE;
252b5132
RH
417 h->dynstr_index = indx;
418 }
419
b34976b6 420 return TRUE;
252b5132 421}
45d6a902
AM
422\f
423/* Record an assignment to a symbol made by a linker script. We need
424 this in case some dynamic object refers to this symbol. */
425
426bfd_boolean
eaae8ded 427bfd_elf_record_link_assignment (struct bfd_link_info *info,
268b6b39
AM
428 const char *name,
429 bfd_boolean provide)
45d6a902
AM
430{
431 struct elf_link_hash_entry *h;
4ea42fb7 432 struct elf_link_hash_table *htab;
45d6a902 433
0eddce27 434 if (!is_elf_hash_table (info->hash))
45d6a902
AM
435 return TRUE;
436
4ea42fb7
AM
437 htab = elf_hash_table (info);
438 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
45d6a902 439 if (h == NULL)
4ea42fb7 440 return provide;
45d6a902 441
02bb6eae
AO
442 /* Since we're defining the symbol, don't let it seem to have not
443 been defined. record_dynamic_symbol and size_dynamic_sections
77cfaee6 444 may depend on this. */
02bb6eae
AO
445 if (h->root.type == bfd_link_hash_undefweak
446 || h->root.type == bfd_link_hash_undefined)
77cfaee6 447 {
4ea42fb7 448 h->root.type = bfd_link_hash_new;
77cfaee6
AM
449 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
450 bfd_link_repair_undef_list (&htab->root);
77cfaee6 451 }
02bb6eae 452
45d6a902 453 if (h->root.type == bfd_link_hash_new)
f5385ebf 454 h->non_elf = 0;
45d6a902
AM
455
456 /* If this symbol is being provided by the linker script, and it is
457 currently defined by a dynamic object, but not by a regular
458 object, then mark it as undefined so that the generic linker will
459 force the correct value. */
460 if (provide
f5385ebf
AM
461 && h->def_dynamic
462 && !h->def_regular)
45d6a902
AM
463 h->root.type = bfd_link_hash_undefined;
464
465 /* If this symbol is not being provided by the linker script, and it is
466 currently defined by a dynamic object, but not by a regular object,
467 then clear out any version information because the symbol will not be
468 associated with the dynamic object any more. */
469 if (!provide
f5385ebf
AM
470 && h->def_dynamic
471 && !h->def_regular)
45d6a902
AM
472 h->verinfo.verdef = NULL;
473
f5385ebf 474 h->def_regular = 1;
45d6a902 475
6fa3860b
PB
476 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
477 and executables. */
478 if (!info->relocatable
479 && h->dynindx != -1
480 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
481 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
482 h->forced_local = 1;
483
f5385ebf
AM
484 if ((h->def_dynamic
485 || h->ref_dynamic
67687978
PB
486 || info->shared
487 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
45d6a902
AM
488 && h->dynindx == -1)
489 {
c152c796 490 if (! bfd_elf_link_record_dynamic_symbol (info, h))
45d6a902
AM
491 return FALSE;
492
493 /* If this is a weak defined symbol, and we know a corresponding
494 real symbol from the same dynamic object, make sure the real
495 symbol is also made into a dynamic symbol. */
f6e332e6
AM
496 if (h->u.weakdef != NULL
497 && h->u.weakdef->dynindx == -1)
45d6a902 498 {
f6e332e6 499 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
45d6a902
AM
500 return FALSE;
501 }
502 }
503
504 return TRUE;
505}
42751cf3 506
8c58d23b
AM
507/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
508 success, and 2 on a failure caused by attempting to record a symbol
509 in a discarded section, eg. a discarded link-once section symbol. */
510
511int
c152c796
AM
512bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
513 bfd *input_bfd,
514 long input_indx)
8c58d23b
AM
515{
516 bfd_size_type amt;
517 struct elf_link_local_dynamic_entry *entry;
518 struct elf_link_hash_table *eht;
519 struct elf_strtab_hash *dynstr;
520 unsigned long dynstr_index;
521 char *name;
522 Elf_External_Sym_Shndx eshndx;
523 char esym[sizeof (Elf64_External_Sym)];
524
0eddce27 525 if (! is_elf_hash_table (info->hash))
8c58d23b
AM
526 return 0;
527
528 /* See if the entry exists already. */
529 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
530 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
531 return 1;
532
533 amt = sizeof (*entry);
268b6b39 534 entry = bfd_alloc (input_bfd, amt);
8c58d23b
AM
535 if (entry == NULL)
536 return 0;
537
538 /* Go find the symbol, so that we can find it's name. */
539 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
268b6b39 540 1, input_indx, &entry->isym, esym, &eshndx))
8c58d23b
AM
541 {
542 bfd_release (input_bfd, entry);
543 return 0;
544 }
545
546 if (entry->isym.st_shndx != SHN_UNDEF
547 && (entry->isym.st_shndx < SHN_LORESERVE
548 || entry->isym.st_shndx > SHN_HIRESERVE))
549 {
550 asection *s;
551
552 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
553 if (s == NULL || bfd_is_abs_section (s->output_section))
554 {
555 /* We can still bfd_release here as nothing has done another
556 bfd_alloc. We can't do this later in this function. */
557 bfd_release (input_bfd, entry);
558 return 2;
559 }
560 }
561
562 name = (bfd_elf_string_from_elf_section
563 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
564 entry->isym.st_name));
565
566 dynstr = elf_hash_table (info)->dynstr;
567 if (dynstr == NULL)
568 {
569 /* Create a strtab to hold the dynamic symbol names. */
570 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
571 if (dynstr == NULL)
572 return 0;
573 }
574
b34976b6 575 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
8c58d23b
AM
576 if (dynstr_index == (unsigned long) -1)
577 return 0;
578 entry->isym.st_name = dynstr_index;
579
580 eht = elf_hash_table (info);
581
582 entry->next = eht->dynlocal;
583 eht->dynlocal = entry;
584 entry->input_bfd = input_bfd;
585 entry->input_indx = input_indx;
586 eht->dynsymcount++;
587
588 /* Whatever binding the symbol had before, it's now local. */
589 entry->isym.st_info
590 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
591
592 /* The dynindx will be set at the end of size_dynamic_sections. */
593
594 return 1;
595}
596
30b30c21 597/* Return the dynindex of a local dynamic symbol. */
42751cf3 598
30b30c21 599long
268b6b39
AM
600_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
601 bfd *input_bfd,
602 long input_indx)
30b30c21
RH
603{
604 struct elf_link_local_dynamic_entry *e;
605
606 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
607 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
608 return e->dynindx;
609 return -1;
610}
611
612/* This function is used to renumber the dynamic symbols, if some of
613 them are removed because they are marked as local. This is called
614 via elf_link_hash_traverse. */
615
b34976b6 616static bfd_boolean
268b6b39
AM
617elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
618 void *data)
42751cf3 619{
268b6b39 620 size_t *count = data;
30b30c21 621
e92d460e
AM
622 if (h->root.type == bfd_link_hash_warning)
623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
624
6fa3860b
PB
625 if (h->forced_local)
626 return TRUE;
627
628 if (h->dynindx != -1)
629 h->dynindx = ++(*count);
630
631 return TRUE;
632}
633
634
635/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
636 STB_LOCAL binding. */
637
638static bfd_boolean
639elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
640 void *data)
641{
642 size_t *count = data;
643
644 if (h->root.type == bfd_link_hash_warning)
645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
646
647 if (!h->forced_local)
648 return TRUE;
649
42751cf3 650 if (h->dynindx != -1)
30b30c21
RH
651 h->dynindx = ++(*count);
652
b34976b6 653 return TRUE;
42751cf3 654}
30b30c21 655
aee6f5b4
AO
656/* Return true if the dynamic symbol for a given section should be
657 omitted when creating a shared library. */
658bfd_boolean
659_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
660 struct bfd_link_info *info,
661 asection *p)
662{
663 switch (elf_section_data (p)->this_hdr.sh_type)
664 {
665 case SHT_PROGBITS:
666 case SHT_NOBITS:
667 /* If sh_type is yet undecided, assume it could be
668 SHT_PROGBITS/SHT_NOBITS. */
669 case SHT_NULL:
670 if (strcmp (p->name, ".got") == 0
671 || strcmp (p->name, ".got.plt") == 0
672 || strcmp (p->name, ".plt") == 0)
673 {
674 asection *ip;
675 bfd *dynobj = elf_hash_table (info)->dynobj;
676
677 if (dynobj != NULL
1da212d6 678 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
aee6f5b4
AO
679 && (ip->flags & SEC_LINKER_CREATED)
680 && ip->output_section == p)
681 return TRUE;
682 }
683 return FALSE;
684
685 /* There shouldn't be section relative relocations
686 against any other section. */
687 default:
688 return TRUE;
689 }
690}
691
062e2358 692/* Assign dynsym indices. In a shared library we generate a section
6fa3860b
PB
693 symbol for each output section, which come first. Next come symbols
694 which have been forced to local binding. Then all of the back-end
695 allocated local dynamic syms, followed by the rest of the global
696 symbols. */
30b30c21 697
554220db
AM
698static unsigned long
699_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
700 struct bfd_link_info *info,
701 unsigned long *section_sym_count)
30b30c21
RH
702{
703 unsigned long dynsymcount = 0;
704
67687978 705 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
30b30c21 706 {
aee6f5b4 707 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
30b30c21
RH
708 asection *p;
709 for (p = output_bfd->sections; p ; p = p->next)
8c37241b 710 if ((p->flags & SEC_EXCLUDE) == 0
aee6f5b4
AO
711 && (p->flags & SEC_ALLOC) != 0
712 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
713 elf_section_data (p)->dynindx = ++dynsymcount;
30b30c21 714 }
554220db 715 *section_sym_count = dynsymcount;
30b30c21 716
6fa3860b
PB
717 elf_link_hash_traverse (elf_hash_table (info),
718 elf_link_renumber_local_hash_table_dynsyms,
719 &dynsymcount);
720
30b30c21
RH
721 if (elf_hash_table (info)->dynlocal)
722 {
723 struct elf_link_local_dynamic_entry *p;
724 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
725 p->dynindx = ++dynsymcount;
726 }
727
728 elf_link_hash_traverse (elf_hash_table (info),
729 elf_link_renumber_hash_table_dynsyms,
730 &dynsymcount);
731
732 /* There is an unused NULL entry at the head of the table which
733 we must account for in our count. Unless there weren't any
734 symbols, which means we'll have no table at all. */
735 if (dynsymcount != 0)
736 ++dynsymcount;
737
ccabcbe5
AM
738 elf_hash_table (info)->dynsymcount = dynsymcount;
739 return dynsymcount;
30b30c21 740}
252b5132 741
45d6a902
AM
742/* This function is called when we want to define a new symbol. It
743 handles the various cases which arise when we find a definition in
744 a dynamic object, or when there is already a definition in a
745 dynamic object. The new symbol is described by NAME, SYM, PSEC,
746 and PVALUE. We set SYM_HASH to the hash table entry. We set
747 OVERRIDE if the old symbol is overriding a new definition. We set
748 TYPE_CHANGE_OK if it is OK for the type to change. We set
749 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
750 change, we mean that we shouldn't warn if the type or size does
af44c138
L
751 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
752 object is overridden by a regular object. */
45d6a902
AM
753
754bfd_boolean
268b6b39
AM
755_bfd_elf_merge_symbol (bfd *abfd,
756 struct bfd_link_info *info,
757 const char *name,
758 Elf_Internal_Sym *sym,
759 asection **psec,
760 bfd_vma *pvalue,
af44c138 761 unsigned int *pold_alignment,
268b6b39
AM
762 struct elf_link_hash_entry **sym_hash,
763 bfd_boolean *skip,
764 bfd_boolean *override,
765 bfd_boolean *type_change_ok,
0f8a2703 766 bfd_boolean *size_change_ok)
252b5132 767{
7479dfd4 768 asection *sec, *oldsec;
45d6a902
AM
769 struct elf_link_hash_entry *h;
770 struct elf_link_hash_entry *flip;
771 int bind;
772 bfd *oldbfd;
773 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
77cfaee6 774 bfd_boolean newweak, oldweak;
a4d8e49b 775 const struct elf_backend_data *bed;
45d6a902
AM
776
777 *skip = FALSE;
778 *override = FALSE;
779
780 sec = *psec;
781 bind = ELF_ST_BIND (sym->st_info);
782
783 if (! bfd_is_und_section (sec))
784 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
785 else
786 h = ((struct elf_link_hash_entry *)
787 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
788 if (h == NULL)
789 return FALSE;
790 *sym_hash = h;
252b5132 791
45d6a902
AM
792 /* This code is for coping with dynamic objects, and is only useful
793 if we are doing an ELF link. */
794 if (info->hash->creator != abfd->xvec)
795 return TRUE;
252b5132 796
45d6a902
AM
797 /* For merging, we only care about real symbols. */
798
799 while (h->root.type == bfd_link_hash_indirect
800 || h->root.type == bfd_link_hash_warning)
801 h = (struct elf_link_hash_entry *) h->root.u.i.link;
802
803 /* If we just created the symbol, mark it as being an ELF symbol.
804 Other than that, there is nothing to do--there is no merge issue
805 with a newly defined symbol--so we just return. */
806
807 if (h->root.type == bfd_link_hash_new)
252b5132 808 {
f5385ebf 809 h->non_elf = 0;
45d6a902
AM
810 return TRUE;
811 }
252b5132 812
7479dfd4
L
813 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
814 existing symbol. */
252b5132 815
45d6a902
AM
816 switch (h->root.type)
817 {
818 default:
819 oldbfd = NULL;
7479dfd4 820 oldsec = NULL;
45d6a902 821 break;
252b5132 822
45d6a902
AM
823 case bfd_link_hash_undefined:
824 case bfd_link_hash_undefweak:
825 oldbfd = h->root.u.undef.abfd;
7479dfd4 826 oldsec = NULL;
45d6a902
AM
827 break;
828
829 case bfd_link_hash_defined:
830 case bfd_link_hash_defweak:
831 oldbfd = h->root.u.def.section->owner;
7479dfd4 832 oldsec = h->root.u.def.section;
45d6a902
AM
833 break;
834
835 case bfd_link_hash_common:
836 oldbfd = h->root.u.c.p->section->owner;
7479dfd4 837 oldsec = h->root.u.c.p->section;
45d6a902
AM
838 break;
839 }
840
841 /* In cases involving weak versioned symbols, we may wind up trying
842 to merge a symbol with itself. Catch that here, to avoid the
843 confusion that results if we try to override a symbol with
844 itself. The additional tests catch cases like
845 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
846 dynamic object, which we do want to handle here. */
847 if (abfd == oldbfd
848 && ((abfd->flags & DYNAMIC) == 0
f5385ebf 849 || !h->def_regular))
45d6a902
AM
850 return TRUE;
851
852 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
853 respectively, is from a dynamic object. */
854
855 if ((abfd->flags & DYNAMIC) != 0)
856 newdyn = TRUE;
857 else
858 newdyn = FALSE;
859
860 if (oldbfd != NULL)
861 olddyn = (oldbfd->flags & DYNAMIC) != 0;
862 else
863 {
864 asection *hsec;
865
866 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
867 indices used by MIPS ELF. */
868 switch (h->root.type)
252b5132 869 {
45d6a902
AM
870 default:
871 hsec = NULL;
872 break;
252b5132 873
45d6a902
AM
874 case bfd_link_hash_defined:
875 case bfd_link_hash_defweak:
876 hsec = h->root.u.def.section;
877 break;
252b5132 878
45d6a902
AM
879 case bfd_link_hash_common:
880 hsec = h->root.u.c.p->section;
881 break;
252b5132 882 }
252b5132 883
45d6a902
AM
884 if (hsec == NULL)
885 olddyn = FALSE;
886 else
887 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
888 }
252b5132 889
45d6a902
AM
890 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
891 respectively, appear to be a definition rather than reference. */
892
893 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
894 newdef = FALSE;
895 else
896 newdef = TRUE;
897
898 if (h->root.type == bfd_link_hash_undefined
899 || h->root.type == bfd_link_hash_undefweak
900 || h->root.type == bfd_link_hash_common)
901 olddef = FALSE;
902 else
903 olddef = TRUE;
904
68f49ba3
L
905 /* Check TLS symbol. We don't check undefined symbol introduced by
906 "ld -u". */
7479dfd4 907 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
68f49ba3
L
908 && ELF_ST_TYPE (sym->st_info) != h->type
909 && oldbfd != NULL)
7479dfd4
L
910 {
911 bfd *ntbfd, *tbfd;
912 bfd_boolean ntdef, tdef;
913 asection *ntsec, *tsec;
914
915 if (h->type == STT_TLS)
916 {
3b36f7e6 917 ntbfd = abfd;
7479dfd4
L
918 ntsec = sec;
919 ntdef = newdef;
920 tbfd = oldbfd;
921 tsec = oldsec;
922 tdef = olddef;
923 }
924 else
925 {
926 ntbfd = oldbfd;
927 ntsec = oldsec;
928 ntdef = olddef;
929 tbfd = abfd;
930 tsec = sec;
931 tdef = newdef;
932 }
933
934 if (tdef && ntdef)
935 (*_bfd_error_handler)
936 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
937 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
938 else if (!tdef && !ntdef)
939 (*_bfd_error_handler)
940 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
941 tbfd, ntbfd, h->root.root.string);
942 else if (tdef)
943 (*_bfd_error_handler)
944 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
945 tbfd, tsec, ntbfd, h->root.root.string);
946 else
947 (*_bfd_error_handler)
948 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
949 tbfd, ntbfd, ntsec, h->root.root.string);
950
951 bfd_set_error (bfd_error_bad_value);
952 return FALSE;
953 }
954
4cc11e76 955 /* We need to remember if a symbol has a definition in a dynamic
45d6a902
AM
956 object or is weak in all dynamic objects. Internal and hidden
957 visibility will make it unavailable to dynamic objects. */
f5385ebf 958 if (newdyn && !h->dynamic_def)
45d6a902
AM
959 {
960 if (!bfd_is_und_section (sec))
f5385ebf 961 h->dynamic_def = 1;
45d6a902 962 else
252b5132 963 {
45d6a902
AM
964 /* Check if this symbol is weak in all dynamic objects. If it
965 is the first time we see it in a dynamic object, we mark
966 if it is weak. Otherwise, we clear it. */
f5385ebf 967 if (!h->ref_dynamic)
79349b09 968 {
45d6a902 969 if (bind == STB_WEAK)
f5385ebf 970 h->dynamic_weak = 1;
252b5132 971 }
45d6a902 972 else if (bind != STB_WEAK)
f5385ebf 973 h->dynamic_weak = 0;
252b5132 974 }
45d6a902 975 }
252b5132 976
45d6a902
AM
977 /* If the old symbol has non-default visibility, we ignore the new
978 definition from a dynamic object. */
979 if (newdyn
9c7a29a3 980 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
981 && !bfd_is_und_section (sec))
982 {
983 *skip = TRUE;
984 /* Make sure this symbol is dynamic. */
f5385ebf 985 h->ref_dynamic = 1;
45d6a902
AM
986 /* A protected symbol has external availability. Make sure it is
987 recorded as dynamic.
988
989 FIXME: Should we check type and size for protected symbol? */
990 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
c152c796 991 return bfd_elf_link_record_dynamic_symbol (info, h);
45d6a902
AM
992 else
993 return TRUE;
994 }
995 else if (!newdyn
9c7a29a3 996 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
f5385ebf 997 && h->def_dynamic)
45d6a902
AM
998 {
999 /* If the new symbol with non-default visibility comes from a
1000 relocatable file and the old definition comes from a dynamic
1001 object, we remove the old definition. */
1002 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1003 h = *sym_hash;
1de1a317 1004
f6e332e6 1005 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1de1a317
L
1006 && bfd_is_und_section (sec))
1007 {
1008 /* If the new symbol is undefined and the old symbol was
1009 also undefined before, we need to make sure
1010 _bfd_generic_link_add_one_symbol doesn't mess
f6e332e6 1011 up the linker hash table undefs list. Since the old
1de1a317
L
1012 definition came from a dynamic object, it is still on the
1013 undefs list. */
1014 h->root.type = bfd_link_hash_undefined;
1de1a317
L
1015 h->root.u.undef.abfd = abfd;
1016 }
1017 else
1018 {
1019 h->root.type = bfd_link_hash_new;
1020 h->root.u.undef.abfd = NULL;
1021 }
1022
f5385ebf 1023 if (h->def_dynamic)
252b5132 1024 {
f5385ebf
AM
1025 h->def_dynamic = 0;
1026 h->ref_dynamic = 1;
1027 h->dynamic_def = 1;
45d6a902
AM
1028 }
1029 /* FIXME: Should we check type and size for protected symbol? */
1030 h->size = 0;
1031 h->type = 0;
1032 return TRUE;
1033 }
14a793b2 1034
79349b09
AM
1035 /* Differentiate strong and weak symbols. */
1036 newweak = bind == STB_WEAK;
1037 oldweak = (h->root.type == bfd_link_hash_defweak
1038 || h->root.type == bfd_link_hash_undefweak);
14a793b2 1039
15b43f48
AM
1040 /* If a new weak symbol definition comes from a regular file and the
1041 old symbol comes from a dynamic library, we treat the new one as
1042 strong. Similarly, an old weak symbol definition from a regular
1043 file is treated as strong when the new symbol comes from a dynamic
1044 library. Further, an old weak symbol from a dynamic library is
1045 treated as strong if the new symbol is from a dynamic library.
1046 This reflects the way glibc's ld.so works.
1047
1048 Do this before setting *type_change_ok or *size_change_ok so that
1049 we warn properly when dynamic library symbols are overridden. */
1050
1051 if (newdef && !newdyn && olddyn)
0f8a2703 1052 newweak = FALSE;
15b43f48 1053 if (olddef && newdyn)
0f8a2703
AM
1054 oldweak = FALSE;
1055
79349b09
AM
1056 /* It's OK to change the type if either the existing symbol or the
1057 new symbol is weak. A type change is also OK if the old symbol
1058 is undefined and the new symbol is defined. */
252b5132 1059
79349b09
AM
1060 if (oldweak
1061 || newweak
1062 || (newdef
1063 && h->root.type == bfd_link_hash_undefined))
1064 *type_change_ok = TRUE;
1065
1066 /* It's OK to change the size if either the existing symbol or the
1067 new symbol is weak, or if the old symbol is undefined. */
1068
1069 if (*type_change_ok
1070 || h->root.type == bfd_link_hash_undefined)
1071 *size_change_ok = TRUE;
45d6a902 1072
45d6a902
AM
1073 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1074 symbol, respectively, appears to be a common symbol in a dynamic
1075 object. If a symbol appears in an uninitialized section, and is
1076 not weak, and is not a function, then it may be a common symbol
1077 which was resolved when the dynamic object was created. We want
1078 to treat such symbols specially, because they raise special
1079 considerations when setting the symbol size: if the symbol
1080 appears as a common symbol in a regular object, and the size in
1081 the regular object is larger, we must make sure that we use the
1082 larger size. This problematic case can always be avoided in C,
1083 but it must be handled correctly when using Fortran shared
1084 libraries.
1085
1086 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1087 likewise for OLDDYNCOMMON and OLDDEF.
1088
1089 Note that this test is just a heuristic, and that it is quite
1090 possible to have an uninitialized symbol in a shared object which
1091 is really a definition, rather than a common symbol. This could
1092 lead to some minor confusion when the symbol really is a common
1093 symbol in some regular object. However, I think it will be
1094 harmless. */
1095
1096 if (newdyn
1097 && newdef
79349b09 1098 && !newweak
45d6a902
AM
1099 && (sec->flags & SEC_ALLOC) != 0
1100 && (sec->flags & SEC_LOAD) == 0
1101 && sym->st_size > 0
45d6a902
AM
1102 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1103 newdyncommon = TRUE;
1104 else
1105 newdyncommon = FALSE;
1106
1107 if (olddyn
1108 && olddef
1109 && h->root.type == bfd_link_hash_defined
f5385ebf 1110 && h->def_dynamic
45d6a902
AM
1111 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1112 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1113 && h->size > 0
1114 && h->type != STT_FUNC)
1115 olddyncommon = TRUE;
1116 else
1117 olddyncommon = FALSE;
1118
a4d8e49b
L
1119 /* We now know everything about the old and new symbols. We ask the
1120 backend to check if we can merge them. */
1121 bed = get_elf_backend_data (abfd);
1122 if (bed->merge_symbol
1123 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1124 pold_alignment, skip, override,
1125 type_change_ok, size_change_ok,
1126 &newdyn, &newdef, &newdyncommon, &newweak,
1127 abfd, &sec,
1128 &olddyn, &olddef, &olddyncommon, &oldweak,
1129 oldbfd, &oldsec))
1130 return FALSE;
1131
45d6a902
AM
1132 /* If both the old and the new symbols look like common symbols in a
1133 dynamic object, set the size of the symbol to the larger of the
1134 two. */
1135
1136 if (olddyncommon
1137 && newdyncommon
1138 && sym->st_size != h->size)
1139 {
1140 /* Since we think we have two common symbols, issue a multiple
1141 common warning if desired. Note that we only warn if the
1142 size is different. If the size is the same, we simply let
1143 the old symbol override the new one as normally happens with
1144 symbols defined in dynamic objects. */
1145
1146 if (! ((*info->callbacks->multiple_common)
1147 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1148 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1149 return FALSE;
252b5132 1150
45d6a902
AM
1151 if (sym->st_size > h->size)
1152 h->size = sym->st_size;
252b5132 1153
45d6a902 1154 *size_change_ok = TRUE;
252b5132
RH
1155 }
1156
45d6a902
AM
1157 /* If we are looking at a dynamic object, and we have found a
1158 definition, we need to see if the symbol was already defined by
1159 some other object. If so, we want to use the existing
1160 definition, and we do not want to report a multiple symbol
1161 definition error; we do this by clobbering *PSEC to be
1162 bfd_und_section_ptr.
1163
1164 We treat a common symbol as a definition if the symbol in the
1165 shared library is a function, since common symbols always
1166 represent variables; this can cause confusion in principle, but
1167 any such confusion would seem to indicate an erroneous program or
1168 shared library. We also permit a common symbol in a regular
79349b09 1169 object to override a weak symbol in a shared object. */
45d6a902
AM
1170
1171 if (newdyn
1172 && newdef
77cfaee6 1173 && (olddef
45d6a902 1174 || (h->root.type == bfd_link_hash_common
79349b09 1175 && (newweak
0f8a2703 1176 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
45d6a902
AM
1177 {
1178 *override = TRUE;
1179 newdef = FALSE;
1180 newdyncommon = FALSE;
252b5132 1181
45d6a902
AM
1182 *psec = sec = bfd_und_section_ptr;
1183 *size_change_ok = TRUE;
252b5132 1184
45d6a902
AM
1185 /* If we get here when the old symbol is a common symbol, then
1186 we are explicitly letting it override a weak symbol or
1187 function in a dynamic object, and we don't want to warn about
1188 a type change. If the old symbol is a defined symbol, a type
1189 change warning may still be appropriate. */
252b5132 1190
45d6a902
AM
1191 if (h->root.type == bfd_link_hash_common)
1192 *type_change_ok = TRUE;
1193 }
1194
1195 /* Handle the special case of an old common symbol merging with a
1196 new symbol which looks like a common symbol in a shared object.
1197 We change *PSEC and *PVALUE to make the new symbol look like a
91134c82
L
1198 common symbol, and let _bfd_generic_link_add_one_symbol do the
1199 right thing. */
45d6a902
AM
1200
1201 if (newdyncommon
1202 && h->root.type == bfd_link_hash_common)
1203 {
1204 *override = TRUE;
1205 newdef = FALSE;
1206 newdyncommon = FALSE;
1207 *pvalue = sym->st_size;
a4d8e49b 1208 *psec = sec = bed->common_section (oldsec);
45d6a902
AM
1209 *size_change_ok = TRUE;
1210 }
1211
c5e2cead 1212 /* Skip weak definitions of symbols that are already defined. */
f41d945b 1213 if (newdef && olddef && newweak)
c5e2cead
L
1214 *skip = TRUE;
1215
45d6a902
AM
1216 /* If the old symbol is from a dynamic object, and the new symbol is
1217 a definition which is not from a dynamic object, then the new
1218 symbol overrides the old symbol. Symbols from regular files
1219 always take precedence over symbols from dynamic objects, even if
1220 they are defined after the dynamic object in the link.
1221
1222 As above, we again permit a common symbol in a regular object to
1223 override a definition in a shared object if the shared object
0f8a2703 1224 symbol is a function or is weak. */
45d6a902
AM
1225
1226 flip = NULL;
77cfaee6 1227 if (!newdyn
45d6a902
AM
1228 && (newdef
1229 || (bfd_is_com_section (sec)
79349b09
AM
1230 && (oldweak
1231 || h->type == STT_FUNC)))
45d6a902
AM
1232 && olddyn
1233 && olddef
f5385ebf 1234 && h->def_dynamic)
45d6a902
AM
1235 {
1236 /* Change the hash table entry to undefined, and let
1237 _bfd_generic_link_add_one_symbol do the right thing with the
1238 new definition. */
1239
1240 h->root.type = bfd_link_hash_undefined;
1241 h->root.u.undef.abfd = h->root.u.def.section->owner;
1242 *size_change_ok = TRUE;
1243
1244 olddef = FALSE;
1245 olddyncommon = FALSE;
1246
1247 /* We again permit a type change when a common symbol may be
1248 overriding a function. */
1249
1250 if (bfd_is_com_section (sec))
1251 *type_change_ok = TRUE;
1252
1253 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1254 flip = *sym_hash;
1255 else
1256 /* This union may have been set to be non-NULL when this symbol
1257 was seen in a dynamic object. We must force the union to be
1258 NULL, so that it is correct for a regular symbol. */
1259 h->verinfo.vertree = NULL;
1260 }
1261
1262 /* Handle the special case of a new common symbol merging with an
1263 old symbol that looks like it might be a common symbol defined in
1264 a shared object. Note that we have already handled the case in
1265 which a new common symbol should simply override the definition
1266 in the shared library. */
1267
1268 if (! newdyn
1269 && bfd_is_com_section (sec)
1270 && olddyncommon)
1271 {
1272 /* It would be best if we could set the hash table entry to a
1273 common symbol, but we don't know what to use for the section
1274 or the alignment. */
1275 if (! ((*info->callbacks->multiple_common)
1276 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1277 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1278 return FALSE;
1279
4cc11e76 1280 /* If the presumed common symbol in the dynamic object is
45d6a902
AM
1281 larger, pretend that the new symbol has its size. */
1282
1283 if (h->size > *pvalue)
1284 *pvalue = h->size;
1285
af44c138
L
1286 /* We need to remember the alignment required by the symbol
1287 in the dynamic object. */
1288 BFD_ASSERT (pold_alignment);
1289 *pold_alignment = h->root.u.def.section->alignment_power;
45d6a902
AM
1290
1291 olddef = FALSE;
1292 olddyncommon = FALSE;
1293
1294 h->root.type = bfd_link_hash_undefined;
1295 h->root.u.undef.abfd = h->root.u.def.section->owner;
1296
1297 *size_change_ok = TRUE;
1298 *type_change_ok = TRUE;
1299
1300 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1301 flip = *sym_hash;
1302 else
1303 h->verinfo.vertree = NULL;
1304 }
1305
1306 if (flip != NULL)
1307 {
1308 /* Handle the case where we had a versioned symbol in a dynamic
1309 library and now find a definition in a normal object. In this
1310 case, we make the versioned symbol point to the normal one. */
9c5bfbb7 1311 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
1312 flip->root.type = h->root.type;
1313 h->root.type = bfd_link_hash_indirect;
1314 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1315 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1316 flip->root.u.undef.abfd = h->root.u.undef.abfd;
f5385ebf 1317 if (h->def_dynamic)
45d6a902 1318 {
f5385ebf
AM
1319 h->def_dynamic = 0;
1320 flip->ref_dynamic = 1;
45d6a902
AM
1321 }
1322 }
1323
45d6a902
AM
1324 return TRUE;
1325}
1326
1327/* This function is called to create an indirect symbol from the
1328 default for the symbol with the default version if needed. The
1329 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
0f8a2703 1330 set DYNSYM if the new indirect symbol is dynamic. */
45d6a902
AM
1331
1332bfd_boolean
268b6b39
AM
1333_bfd_elf_add_default_symbol (bfd *abfd,
1334 struct bfd_link_info *info,
1335 struct elf_link_hash_entry *h,
1336 const char *name,
1337 Elf_Internal_Sym *sym,
1338 asection **psec,
1339 bfd_vma *value,
1340 bfd_boolean *dynsym,
0f8a2703 1341 bfd_boolean override)
45d6a902
AM
1342{
1343 bfd_boolean type_change_ok;
1344 bfd_boolean size_change_ok;
1345 bfd_boolean skip;
1346 char *shortname;
1347 struct elf_link_hash_entry *hi;
1348 struct bfd_link_hash_entry *bh;
9c5bfbb7 1349 const struct elf_backend_data *bed;
45d6a902
AM
1350 bfd_boolean collect;
1351 bfd_boolean dynamic;
1352 char *p;
1353 size_t len, shortlen;
1354 asection *sec;
1355
1356 /* If this symbol has a version, and it is the default version, we
1357 create an indirect symbol from the default name to the fully
1358 decorated name. This will cause external references which do not
1359 specify a version to be bound to this version of the symbol. */
1360 p = strchr (name, ELF_VER_CHR);
1361 if (p == NULL || p[1] != ELF_VER_CHR)
1362 return TRUE;
1363
1364 if (override)
1365 {
4cc11e76 1366 /* We are overridden by an old definition. We need to check if we
45d6a902
AM
1367 need to create the indirect symbol from the default name. */
1368 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1369 FALSE, FALSE);
1370 BFD_ASSERT (hi != NULL);
1371 if (hi == h)
1372 return TRUE;
1373 while (hi->root.type == bfd_link_hash_indirect
1374 || hi->root.type == bfd_link_hash_warning)
1375 {
1376 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1377 if (hi == h)
1378 return TRUE;
1379 }
1380 }
1381
1382 bed = get_elf_backend_data (abfd);
1383 collect = bed->collect;
1384 dynamic = (abfd->flags & DYNAMIC) != 0;
1385
1386 shortlen = p - name;
1387 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1388 if (shortname == NULL)
1389 return FALSE;
1390 memcpy (shortname, name, shortlen);
1391 shortname[shortlen] = '\0';
1392
1393 /* We are going to create a new symbol. Merge it with any existing
1394 symbol with this name. For the purposes of the merge, act as
1395 though we were defining the symbol we just defined, although we
1396 actually going to define an indirect symbol. */
1397 type_change_ok = FALSE;
1398 size_change_ok = FALSE;
1399 sec = *psec;
1400 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1401 NULL, &hi, &skip, &override,
1402 &type_change_ok, &size_change_ok))
45d6a902
AM
1403 return FALSE;
1404
1405 if (skip)
1406 goto nondefault;
1407
1408 if (! override)
1409 {
1410 bh = &hi->root;
1411 if (! (_bfd_generic_link_add_one_symbol
1412 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
268b6b39 1413 0, name, FALSE, collect, &bh)))
45d6a902
AM
1414 return FALSE;
1415 hi = (struct elf_link_hash_entry *) bh;
1416 }
1417 else
1418 {
1419 /* In this case the symbol named SHORTNAME is overriding the
1420 indirect symbol we want to add. We were planning on making
1421 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1422 is the name without a version. NAME is the fully versioned
1423 name, and it is the default version.
1424
1425 Overriding means that we already saw a definition for the
1426 symbol SHORTNAME in a regular object, and it is overriding
1427 the symbol defined in the dynamic object.
1428
1429 When this happens, we actually want to change NAME, the
1430 symbol we just added, to refer to SHORTNAME. This will cause
1431 references to NAME in the shared object to become references
1432 to SHORTNAME in the regular object. This is what we expect
1433 when we override a function in a shared object: that the
1434 references in the shared object will be mapped to the
1435 definition in the regular object. */
1436
1437 while (hi->root.type == bfd_link_hash_indirect
1438 || hi->root.type == bfd_link_hash_warning)
1439 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1440
1441 h->root.type = bfd_link_hash_indirect;
1442 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
f5385ebf 1443 if (h->def_dynamic)
45d6a902 1444 {
f5385ebf
AM
1445 h->def_dynamic = 0;
1446 hi->ref_dynamic = 1;
1447 if (hi->ref_regular
1448 || hi->def_regular)
45d6a902 1449 {
c152c796 1450 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
45d6a902
AM
1451 return FALSE;
1452 }
1453 }
1454
1455 /* Now set HI to H, so that the following code will set the
1456 other fields correctly. */
1457 hi = h;
1458 }
1459
1460 /* If there is a duplicate definition somewhere, then HI may not
1461 point to an indirect symbol. We will have reported an error to
1462 the user in that case. */
1463
1464 if (hi->root.type == bfd_link_hash_indirect)
1465 {
1466 struct elf_link_hash_entry *ht;
1467
45d6a902
AM
1468 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1469 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1470
1471 /* See if the new flags lead us to realize that the symbol must
1472 be dynamic. */
1473 if (! *dynsym)
1474 {
1475 if (! dynamic)
1476 {
1477 if (info->shared
f5385ebf 1478 || hi->ref_dynamic)
45d6a902
AM
1479 *dynsym = TRUE;
1480 }
1481 else
1482 {
f5385ebf 1483 if (hi->ref_regular)
45d6a902
AM
1484 *dynsym = TRUE;
1485 }
1486 }
1487 }
1488
1489 /* We also need to define an indirection from the nondefault version
1490 of the symbol. */
1491
1492nondefault:
1493 len = strlen (name);
1494 shortname = bfd_hash_allocate (&info->hash->table, len);
1495 if (shortname == NULL)
1496 return FALSE;
1497 memcpy (shortname, name, shortlen);
1498 memcpy (shortname + shortlen, p + 1, len - shortlen);
1499
1500 /* Once again, merge with any existing symbol. */
1501 type_change_ok = FALSE;
1502 size_change_ok = FALSE;
1503 sec = *psec;
1504 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
af44c138
L
1505 NULL, &hi, &skip, &override,
1506 &type_change_ok, &size_change_ok))
45d6a902
AM
1507 return FALSE;
1508
1509 if (skip)
1510 return TRUE;
1511
1512 if (override)
1513 {
1514 /* Here SHORTNAME is a versioned name, so we don't expect to see
1515 the type of override we do in the case above unless it is
4cc11e76 1516 overridden by a versioned definition. */
45d6a902
AM
1517 if (hi->root.type != bfd_link_hash_defined
1518 && hi->root.type != bfd_link_hash_defweak)
1519 (*_bfd_error_handler)
d003868e
AM
1520 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1521 abfd, shortname);
45d6a902
AM
1522 }
1523 else
1524 {
1525 bh = &hi->root;
1526 if (! (_bfd_generic_link_add_one_symbol
1527 (info, abfd, shortname, BSF_INDIRECT,
268b6b39 1528 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
45d6a902
AM
1529 return FALSE;
1530 hi = (struct elf_link_hash_entry *) bh;
1531
1532 /* If there is a duplicate definition somewhere, then HI may not
1533 point to an indirect symbol. We will have reported an error
1534 to the user in that case. */
1535
1536 if (hi->root.type == bfd_link_hash_indirect)
1537 {
45d6a902
AM
1538 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1539
1540 /* See if the new flags lead us to realize that the symbol
1541 must be dynamic. */
1542 if (! *dynsym)
1543 {
1544 if (! dynamic)
1545 {
1546 if (info->shared
f5385ebf 1547 || hi->ref_dynamic)
45d6a902
AM
1548 *dynsym = TRUE;
1549 }
1550 else
1551 {
f5385ebf 1552 if (hi->ref_regular)
45d6a902
AM
1553 *dynsym = TRUE;
1554 }
1555 }
1556 }
1557 }
1558
1559 return TRUE;
1560}
1561\f
1562/* This routine is used to export all defined symbols into the dynamic
1563 symbol table. It is called via elf_link_hash_traverse. */
1564
1565bfd_boolean
268b6b39 1566_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 1567{
268b6b39 1568 struct elf_info_failed *eif = data;
45d6a902
AM
1569
1570 /* Ignore indirect symbols. These are added by the versioning code. */
1571 if (h->root.type == bfd_link_hash_indirect)
1572 return TRUE;
1573
1574 if (h->root.type == bfd_link_hash_warning)
1575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1576
1577 if (h->dynindx == -1
f5385ebf
AM
1578 && (h->def_regular
1579 || h->ref_regular))
45d6a902
AM
1580 {
1581 struct bfd_elf_version_tree *t;
1582 struct bfd_elf_version_expr *d;
1583
1584 for (t = eif->verdefs; t != NULL; t = t->next)
1585 {
108ba305 1586 if (t->globals.list != NULL)
45d6a902 1587 {
108ba305
JJ
1588 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1589 if (d != NULL)
1590 goto doit;
45d6a902
AM
1591 }
1592
108ba305 1593 if (t->locals.list != NULL)
45d6a902 1594 {
108ba305
JJ
1595 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1596 if (d != NULL)
1597 return TRUE;
45d6a902
AM
1598 }
1599 }
1600
1601 if (!eif->verdefs)
1602 {
1603 doit:
c152c796 1604 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
1605 {
1606 eif->failed = TRUE;
1607 return FALSE;
1608 }
1609 }
1610 }
1611
1612 return TRUE;
1613}
1614\f
1615/* Look through the symbols which are defined in other shared
1616 libraries and referenced here. Update the list of version
1617 dependencies. This will be put into the .gnu.version_r section.
1618 This function is called via elf_link_hash_traverse. */
1619
1620bfd_boolean
268b6b39
AM
1621_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1622 void *data)
45d6a902 1623{
268b6b39 1624 struct elf_find_verdep_info *rinfo = data;
45d6a902
AM
1625 Elf_Internal_Verneed *t;
1626 Elf_Internal_Vernaux *a;
1627 bfd_size_type amt;
1628
1629 if (h->root.type == bfd_link_hash_warning)
1630 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1631
1632 /* We only care about symbols defined in shared objects with version
1633 information. */
f5385ebf
AM
1634 if (!h->def_dynamic
1635 || h->def_regular
45d6a902
AM
1636 || h->dynindx == -1
1637 || h->verinfo.verdef == NULL)
1638 return TRUE;
1639
1640 /* See if we already know about this version. */
1641 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1642 {
1643 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1644 continue;
1645
1646 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1647 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1648 return TRUE;
1649
1650 break;
1651 }
1652
1653 /* This is a new version. Add it to tree we are building. */
1654
1655 if (t == NULL)
1656 {
1657 amt = sizeof *t;
268b6b39 1658 t = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1659 if (t == NULL)
1660 {
1661 rinfo->failed = TRUE;
1662 return FALSE;
1663 }
1664
1665 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1666 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1667 elf_tdata (rinfo->output_bfd)->verref = t;
1668 }
1669
1670 amt = sizeof *a;
268b6b39 1671 a = bfd_zalloc (rinfo->output_bfd, amt);
45d6a902
AM
1672
1673 /* Note that we are copying a string pointer here, and testing it
1674 above. If bfd_elf_string_from_elf_section is ever changed to
1675 discard the string data when low in memory, this will have to be
1676 fixed. */
1677 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1678
1679 a->vna_flags = h->verinfo.verdef->vd_flags;
1680 a->vna_nextptr = t->vn_auxptr;
1681
1682 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1683 ++rinfo->vers;
1684
1685 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1686
1687 t->vn_auxptr = a;
1688
1689 return TRUE;
1690}
1691
1692/* Figure out appropriate versions for all the symbols. We may not
1693 have the version number script until we have read all of the input
1694 files, so until that point we don't know which symbols should be
1695 local. This function is called via elf_link_hash_traverse. */
1696
1697bfd_boolean
268b6b39 1698_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
1699{
1700 struct elf_assign_sym_version_info *sinfo;
1701 struct bfd_link_info *info;
9c5bfbb7 1702 const struct elf_backend_data *bed;
45d6a902
AM
1703 struct elf_info_failed eif;
1704 char *p;
1705 bfd_size_type amt;
1706
268b6b39 1707 sinfo = data;
45d6a902
AM
1708 info = sinfo->info;
1709
1710 if (h->root.type == bfd_link_hash_warning)
1711 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1712
1713 /* Fix the symbol flags. */
1714 eif.failed = FALSE;
1715 eif.info = info;
1716 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1717 {
1718 if (eif.failed)
1719 sinfo->failed = TRUE;
1720 return FALSE;
1721 }
1722
1723 /* We only need version numbers for symbols defined in regular
1724 objects. */
f5385ebf 1725 if (!h->def_regular)
45d6a902
AM
1726 return TRUE;
1727
1728 bed = get_elf_backend_data (sinfo->output_bfd);
1729 p = strchr (h->root.root.string, ELF_VER_CHR);
1730 if (p != NULL && h->verinfo.vertree == NULL)
1731 {
1732 struct bfd_elf_version_tree *t;
1733 bfd_boolean hidden;
1734
1735 hidden = TRUE;
1736
1737 /* There are two consecutive ELF_VER_CHR characters if this is
1738 not a hidden symbol. */
1739 ++p;
1740 if (*p == ELF_VER_CHR)
1741 {
1742 hidden = FALSE;
1743 ++p;
1744 }
1745
1746 /* If there is no version string, we can just return out. */
1747 if (*p == '\0')
1748 {
1749 if (hidden)
f5385ebf 1750 h->hidden = 1;
45d6a902
AM
1751 return TRUE;
1752 }
1753
1754 /* Look for the version. If we find it, it is no longer weak. */
1755 for (t = sinfo->verdefs; t != NULL; t = t->next)
1756 {
1757 if (strcmp (t->name, p) == 0)
1758 {
1759 size_t len;
1760 char *alc;
1761 struct bfd_elf_version_expr *d;
1762
1763 len = p - h->root.root.string;
268b6b39 1764 alc = bfd_malloc (len);
45d6a902
AM
1765 if (alc == NULL)
1766 return FALSE;
1767 memcpy (alc, h->root.root.string, len - 1);
1768 alc[len - 1] = '\0';
1769 if (alc[len - 2] == ELF_VER_CHR)
1770 alc[len - 2] = '\0';
1771
1772 h->verinfo.vertree = t;
1773 t->used = TRUE;
1774 d = NULL;
1775
108ba305
JJ
1776 if (t->globals.list != NULL)
1777 d = (*t->match) (&t->globals, NULL, alc);
45d6a902
AM
1778
1779 /* See if there is anything to force this symbol to
1780 local scope. */
108ba305 1781 if (d == NULL && t->locals.list != NULL)
45d6a902 1782 {
108ba305
JJ
1783 d = (*t->match) (&t->locals, NULL, alc);
1784 if (d != NULL
1785 && h->dynindx != -1
108ba305
JJ
1786 && ! info->export_dynamic)
1787 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
45d6a902
AM
1788 }
1789
1790 free (alc);
1791 break;
1792 }
1793 }
1794
1795 /* If we are building an application, we need to create a
1796 version node for this version. */
36af4a4e 1797 if (t == NULL && info->executable)
45d6a902
AM
1798 {
1799 struct bfd_elf_version_tree **pp;
1800 int version_index;
1801
1802 /* If we aren't going to export this symbol, we don't need
1803 to worry about it. */
1804 if (h->dynindx == -1)
1805 return TRUE;
1806
1807 amt = sizeof *t;
108ba305 1808 t = bfd_zalloc (sinfo->output_bfd, amt);
45d6a902
AM
1809 if (t == NULL)
1810 {
1811 sinfo->failed = TRUE;
1812 return FALSE;
1813 }
1814
45d6a902 1815 t->name = p;
45d6a902
AM
1816 t->name_indx = (unsigned int) -1;
1817 t->used = TRUE;
1818
1819 version_index = 1;
1820 /* Don't count anonymous version tag. */
1821 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1822 version_index = 0;
1823 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1824 ++version_index;
1825 t->vernum = version_index;
1826
1827 *pp = t;
1828
1829 h->verinfo.vertree = t;
1830 }
1831 else if (t == NULL)
1832 {
1833 /* We could not find the version for a symbol when
1834 generating a shared archive. Return an error. */
1835 (*_bfd_error_handler)
d003868e
AM
1836 (_("%B: undefined versioned symbol name %s"),
1837 sinfo->output_bfd, h->root.root.string);
45d6a902
AM
1838 bfd_set_error (bfd_error_bad_value);
1839 sinfo->failed = TRUE;
1840 return FALSE;
1841 }
1842
1843 if (hidden)
f5385ebf 1844 h->hidden = 1;
45d6a902
AM
1845 }
1846
1847 /* If we don't have a version for this symbol, see if we can find
1848 something. */
1849 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1850 {
1851 struct bfd_elf_version_tree *t;
1852 struct bfd_elf_version_tree *local_ver;
1853 struct bfd_elf_version_expr *d;
1854
1855 /* See if can find what version this symbol is in. If the
1856 symbol is supposed to be local, then don't actually register
1857 it. */
1858 local_ver = NULL;
1859 for (t = sinfo->verdefs; t != NULL; t = t->next)
1860 {
108ba305 1861 if (t->globals.list != NULL)
45d6a902
AM
1862 {
1863 bfd_boolean matched;
1864
1865 matched = FALSE;
108ba305
JJ
1866 d = NULL;
1867 while ((d = (*t->match) (&t->globals, d,
1868 h->root.root.string)) != NULL)
1869 if (d->symver)
1870 matched = TRUE;
1871 else
1872 {
1873 /* There is a version without definition. Make
1874 the symbol the default definition for this
1875 version. */
1876 h->verinfo.vertree = t;
1877 local_ver = NULL;
1878 d->script = 1;
1879 break;
1880 }
45d6a902
AM
1881 if (d != NULL)
1882 break;
1883 else if (matched)
1884 /* There is no undefined version for this symbol. Hide the
1885 default one. */
1886 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1887 }
1888
108ba305 1889 if (t->locals.list != NULL)
45d6a902 1890 {
108ba305
JJ
1891 d = NULL;
1892 while ((d = (*t->match) (&t->locals, d,
1893 h->root.root.string)) != NULL)
45d6a902 1894 {
108ba305 1895 local_ver = t;
45d6a902 1896 /* If the match is "*", keep looking for a more
108ba305
JJ
1897 explicit, perhaps even global, match.
1898 XXX: Shouldn't this be !d->wildcard instead? */
1899 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1900 break;
45d6a902
AM
1901 }
1902
1903 if (d != NULL)
1904 break;
1905 }
1906 }
1907
1908 if (local_ver != NULL)
1909 {
1910 h->verinfo.vertree = local_ver;
1911 if (h->dynindx != -1
45d6a902
AM
1912 && ! info->export_dynamic)
1913 {
1914 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1915 }
1916 }
1917 }
1918
1919 return TRUE;
1920}
1921\f
45d6a902
AM
1922/* Read and swap the relocs from the section indicated by SHDR. This
1923 may be either a REL or a RELA section. The relocations are
1924 translated into RELA relocations and stored in INTERNAL_RELOCS,
1925 which should have already been allocated to contain enough space.
1926 The EXTERNAL_RELOCS are a buffer where the external form of the
1927 relocations should be stored.
1928
1929 Returns FALSE if something goes wrong. */
1930
1931static bfd_boolean
268b6b39 1932elf_link_read_relocs_from_section (bfd *abfd,
243ef1e0 1933 asection *sec,
268b6b39
AM
1934 Elf_Internal_Shdr *shdr,
1935 void *external_relocs,
1936 Elf_Internal_Rela *internal_relocs)
45d6a902 1937{
9c5bfbb7 1938 const struct elf_backend_data *bed;
268b6b39 1939 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
45d6a902
AM
1940 const bfd_byte *erela;
1941 const bfd_byte *erelaend;
1942 Elf_Internal_Rela *irela;
243ef1e0
L
1943 Elf_Internal_Shdr *symtab_hdr;
1944 size_t nsyms;
45d6a902 1945
45d6a902
AM
1946 /* Position ourselves at the start of the section. */
1947 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1948 return FALSE;
1949
1950 /* Read the relocations. */
1951 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1952 return FALSE;
1953
243ef1e0
L
1954 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1955 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1956
45d6a902
AM
1957 bed = get_elf_backend_data (abfd);
1958
1959 /* Convert the external relocations to the internal format. */
1960 if (shdr->sh_entsize == bed->s->sizeof_rel)
1961 swap_in = bed->s->swap_reloc_in;
1962 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1963 swap_in = bed->s->swap_reloca_in;
1964 else
1965 {
1966 bfd_set_error (bfd_error_wrong_format);
1967 return FALSE;
1968 }
1969
1970 erela = external_relocs;
51992aec 1971 erelaend = erela + shdr->sh_size;
45d6a902
AM
1972 irela = internal_relocs;
1973 while (erela < erelaend)
1974 {
243ef1e0
L
1975 bfd_vma r_symndx;
1976
45d6a902 1977 (*swap_in) (abfd, erela, irela);
243ef1e0
L
1978 r_symndx = ELF32_R_SYM (irela->r_info);
1979 if (bed->s->arch_size == 64)
1980 r_symndx >>= 24;
1981 if ((size_t) r_symndx >= nsyms)
1982 {
1983 (*_bfd_error_handler)
d003868e
AM
1984 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1985 " for offset 0x%lx in section `%A'"),
1986 abfd, sec,
1987 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
243ef1e0
L
1988 bfd_set_error (bfd_error_bad_value);
1989 return FALSE;
1990 }
45d6a902
AM
1991 irela += bed->s->int_rels_per_ext_rel;
1992 erela += shdr->sh_entsize;
1993 }
1994
1995 return TRUE;
1996}
1997
1998/* Read and swap the relocs for a section O. They may have been
1999 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2000 not NULL, they are used as buffers to read into. They are known to
2001 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2002 the return value is allocated using either malloc or bfd_alloc,
2003 according to the KEEP_MEMORY argument. If O has two relocation
2004 sections (both REL and RELA relocations), then the REL_HDR
2005 relocations will appear first in INTERNAL_RELOCS, followed by the
2006 REL_HDR2 relocations. */
2007
2008Elf_Internal_Rela *
268b6b39
AM
2009_bfd_elf_link_read_relocs (bfd *abfd,
2010 asection *o,
2011 void *external_relocs,
2012 Elf_Internal_Rela *internal_relocs,
2013 bfd_boolean keep_memory)
45d6a902
AM
2014{
2015 Elf_Internal_Shdr *rel_hdr;
268b6b39 2016 void *alloc1 = NULL;
45d6a902 2017 Elf_Internal_Rela *alloc2 = NULL;
9c5bfbb7 2018 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
45d6a902
AM
2019
2020 if (elf_section_data (o)->relocs != NULL)
2021 return elf_section_data (o)->relocs;
2022
2023 if (o->reloc_count == 0)
2024 return NULL;
2025
2026 rel_hdr = &elf_section_data (o)->rel_hdr;
2027
2028 if (internal_relocs == NULL)
2029 {
2030 bfd_size_type size;
2031
2032 size = o->reloc_count;
2033 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2034 if (keep_memory)
268b6b39 2035 internal_relocs = bfd_alloc (abfd, size);
45d6a902 2036 else
268b6b39 2037 internal_relocs = alloc2 = bfd_malloc (size);
45d6a902
AM
2038 if (internal_relocs == NULL)
2039 goto error_return;
2040 }
2041
2042 if (external_relocs == NULL)
2043 {
2044 bfd_size_type size = rel_hdr->sh_size;
2045
2046 if (elf_section_data (o)->rel_hdr2)
2047 size += elf_section_data (o)->rel_hdr2->sh_size;
268b6b39 2048 alloc1 = bfd_malloc (size);
45d6a902
AM
2049 if (alloc1 == NULL)
2050 goto error_return;
2051 external_relocs = alloc1;
2052 }
2053
243ef1e0 2054 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
45d6a902
AM
2055 external_relocs,
2056 internal_relocs))
2057 goto error_return;
51992aec
AM
2058 if (elf_section_data (o)->rel_hdr2
2059 && (!elf_link_read_relocs_from_section
2060 (abfd, o,
2061 elf_section_data (o)->rel_hdr2,
2062 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2063 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2064 * bed->s->int_rels_per_ext_rel))))
45d6a902
AM
2065 goto error_return;
2066
2067 /* Cache the results for next time, if we can. */
2068 if (keep_memory)
2069 elf_section_data (o)->relocs = internal_relocs;
2070
2071 if (alloc1 != NULL)
2072 free (alloc1);
2073
2074 /* Don't free alloc2, since if it was allocated we are passing it
2075 back (under the name of internal_relocs). */
2076
2077 return internal_relocs;
2078
2079 error_return:
2080 if (alloc1 != NULL)
2081 free (alloc1);
2082 if (alloc2 != NULL)
2083 free (alloc2);
2084 return NULL;
2085}
2086
2087/* Compute the size of, and allocate space for, REL_HDR which is the
2088 section header for a section containing relocations for O. */
2089
2090bfd_boolean
268b6b39
AM
2091_bfd_elf_link_size_reloc_section (bfd *abfd,
2092 Elf_Internal_Shdr *rel_hdr,
2093 asection *o)
45d6a902
AM
2094{
2095 bfd_size_type reloc_count;
2096 bfd_size_type num_rel_hashes;
2097
2098 /* Figure out how many relocations there will be. */
2099 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2100 reloc_count = elf_section_data (o)->rel_count;
2101 else
2102 reloc_count = elf_section_data (o)->rel_count2;
2103
2104 num_rel_hashes = o->reloc_count;
2105 if (num_rel_hashes < reloc_count)
2106 num_rel_hashes = reloc_count;
2107
2108 /* That allows us to calculate the size of the section. */
2109 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2110
2111 /* The contents field must last into write_object_contents, so we
2112 allocate it with bfd_alloc rather than malloc. Also since we
2113 cannot be sure that the contents will actually be filled in,
2114 we zero the allocated space. */
268b6b39 2115 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
45d6a902
AM
2116 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2117 return FALSE;
2118
2119 /* We only allocate one set of hash entries, so we only do it the
2120 first time we are called. */
2121 if (elf_section_data (o)->rel_hashes == NULL
2122 && num_rel_hashes)
2123 {
2124 struct elf_link_hash_entry **p;
2125
268b6b39 2126 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
45d6a902
AM
2127 if (p == NULL)
2128 return FALSE;
2129
2130 elf_section_data (o)->rel_hashes = p;
2131 }
2132
2133 return TRUE;
2134}
2135
2136/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2137 originated from the section given by INPUT_REL_HDR) to the
2138 OUTPUT_BFD. */
2139
2140bfd_boolean
268b6b39
AM
2141_bfd_elf_link_output_relocs (bfd *output_bfd,
2142 asection *input_section,
2143 Elf_Internal_Shdr *input_rel_hdr,
eac338cf
PB
2144 Elf_Internal_Rela *internal_relocs,
2145 struct elf_link_hash_entry **rel_hash
2146 ATTRIBUTE_UNUSED)
45d6a902
AM
2147{
2148 Elf_Internal_Rela *irela;
2149 Elf_Internal_Rela *irelaend;
2150 bfd_byte *erel;
2151 Elf_Internal_Shdr *output_rel_hdr;
2152 asection *output_section;
2153 unsigned int *rel_countp = NULL;
9c5bfbb7 2154 const struct elf_backend_data *bed;
268b6b39 2155 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
45d6a902
AM
2156
2157 output_section = input_section->output_section;
2158 output_rel_hdr = NULL;
2159
2160 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2161 == input_rel_hdr->sh_entsize)
2162 {
2163 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2164 rel_countp = &elf_section_data (output_section)->rel_count;
2165 }
2166 else if (elf_section_data (output_section)->rel_hdr2
2167 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2168 == input_rel_hdr->sh_entsize))
2169 {
2170 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2171 rel_countp = &elf_section_data (output_section)->rel_count2;
2172 }
2173 else
2174 {
2175 (*_bfd_error_handler)
d003868e
AM
2176 (_("%B: relocation size mismatch in %B section %A"),
2177 output_bfd, input_section->owner, input_section);
45d6a902
AM
2178 bfd_set_error (bfd_error_wrong_object_format);
2179 return FALSE;
2180 }
2181
2182 bed = get_elf_backend_data (output_bfd);
2183 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2184 swap_out = bed->s->swap_reloc_out;
2185 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2186 swap_out = bed->s->swap_reloca_out;
2187 else
2188 abort ();
2189
2190 erel = output_rel_hdr->contents;
2191 erel += *rel_countp * input_rel_hdr->sh_entsize;
2192 irela = internal_relocs;
2193 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2194 * bed->s->int_rels_per_ext_rel);
2195 while (irela < irelaend)
2196 {
2197 (*swap_out) (output_bfd, irela, erel);
2198 irela += bed->s->int_rels_per_ext_rel;
2199 erel += input_rel_hdr->sh_entsize;
2200 }
2201
2202 /* Bump the counter, so that we know where to add the next set of
2203 relocations. */
2204 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2205
2206 return TRUE;
2207}
2208\f
2209/* Fix up the flags for a symbol. This handles various cases which
2210 can only be fixed after all the input files are seen. This is
2211 currently called by both adjust_dynamic_symbol and
2212 assign_sym_version, which is unnecessary but perhaps more robust in
2213 the face of future changes. */
2214
2215bfd_boolean
268b6b39
AM
2216_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2217 struct elf_info_failed *eif)
45d6a902
AM
2218{
2219 /* If this symbol was mentioned in a non-ELF file, try to set
2220 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2221 permit a non-ELF file to correctly refer to a symbol defined in
2222 an ELF dynamic object. */
f5385ebf 2223 if (h->non_elf)
45d6a902
AM
2224 {
2225 while (h->root.type == bfd_link_hash_indirect)
2226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2227
2228 if (h->root.type != bfd_link_hash_defined
2229 && h->root.type != bfd_link_hash_defweak)
f5385ebf
AM
2230 {
2231 h->ref_regular = 1;
2232 h->ref_regular_nonweak = 1;
2233 }
45d6a902
AM
2234 else
2235 {
2236 if (h->root.u.def.section->owner != NULL
2237 && (bfd_get_flavour (h->root.u.def.section->owner)
2238 == bfd_target_elf_flavour))
f5385ebf
AM
2239 {
2240 h->ref_regular = 1;
2241 h->ref_regular_nonweak = 1;
2242 }
45d6a902 2243 else
f5385ebf 2244 h->def_regular = 1;
45d6a902
AM
2245 }
2246
2247 if (h->dynindx == -1
f5385ebf
AM
2248 && (h->def_dynamic
2249 || h->ref_dynamic))
45d6a902 2250 {
c152c796 2251 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
45d6a902
AM
2252 {
2253 eif->failed = TRUE;
2254 return FALSE;
2255 }
2256 }
2257 }
2258 else
2259 {
f5385ebf 2260 /* Unfortunately, NON_ELF is only correct if the symbol
45d6a902
AM
2261 was first seen in a non-ELF file. Fortunately, if the symbol
2262 was first seen in an ELF file, we're probably OK unless the
2263 symbol was defined in a non-ELF file. Catch that case here.
2264 FIXME: We're still in trouble if the symbol was first seen in
2265 a dynamic object, and then later in a non-ELF regular object. */
2266 if ((h->root.type == bfd_link_hash_defined
2267 || h->root.type == bfd_link_hash_defweak)
f5385ebf 2268 && !h->def_regular
45d6a902
AM
2269 && (h->root.u.def.section->owner != NULL
2270 ? (bfd_get_flavour (h->root.u.def.section->owner)
2271 != bfd_target_elf_flavour)
2272 : (bfd_is_abs_section (h->root.u.def.section)
f5385ebf
AM
2273 && !h->def_dynamic)))
2274 h->def_regular = 1;
45d6a902
AM
2275 }
2276
2277 /* If this is a final link, and the symbol was defined as a common
2278 symbol in a regular object file, and there was no definition in
2279 any dynamic object, then the linker will have allocated space for
f5385ebf 2280 the symbol in a common section but the DEF_REGULAR
45d6a902
AM
2281 flag will not have been set. */
2282 if (h->root.type == bfd_link_hash_defined
f5385ebf
AM
2283 && !h->def_regular
2284 && h->ref_regular
2285 && !h->def_dynamic
45d6a902 2286 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
f5385ebf 2287 h->def_regular = 1;
45d6a902
AM
2288
2289 /* If -Bsymbolic was used (which means to bind references to global
2290 symbols to the definition within the shared object), and this
2291 symbol was defined in a regular object, then it actually doesn't
9c7a29a3
AM
2292 need a PLT entry. Likewise, if the symbol has non-default
2293 visibility. If the symbol has hidden or internal visibility, we
c1be741f 2294 will force it local. */
f5385ebf 2295 if (h->needs_plt
45d6a902 2296 && eif->info->shared
0eddce27 2297 && is_elf_hash_table (eif->info->hash)
45d6a902 2298 && (eif->info->symbolic
c1be741f 2299 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
f5385ebf 2300 && h->def_regular)
45d6a902 2301 {
9c5bfbb7 2302 const struct elf_backend_data *bed;
45d6a902
AM
2303 bfd_boolean force_local;
2304
2305 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2306
2307 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2308 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2309 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2310 }
2311
2312 /* If a weak undefined symbol has non-default visibility, we also
2313 hide it from the dynamic linker. */
9c7a29a3 2314 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
45d6a902
AM
2315 && h->root.type == bfd_link_hash_undefweak)
2316 {
9c5bfbb7 2317 const struct elf_backend_data *bed;
45d6a902
AM
2318 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2319 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2320 }
2321
2322 /* If this is a weak defined symbol in a dynamic object, and we know
2323 the real definition in the dynamic object, copy interesting flags
2324 over to the real definition. */
f6e332e6 2325 if (h->u.weakdef != NULL)
45d6a902
AM
2326 {
2327 struct elf_link_hash_entry *weakdef;
2328
f6e332e6 2329 weakdef = h->u.weakdef;
45d6a902
AM
2330 if (h->root.type == bfd_link_hash_indirect)
2331 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2332
2333 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2334 || h->root.type == bfd_link_hash_defweak);
2335 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2336 || weakdef->root.type == bfd_link_hash_defweak);
f5385ebf 2337 BFD_ASSERT (weakdef->def_dynamic);
45d6a902
AM
2338
2339 /* If the real definition is defined by a regular object file,
2340 don't do anything special. See the longer description in
2341 _bfd_elf_adjust_dynamic_symbol, below. */
f5385ebf 2342 if (weakdef->def_regular)
f6e332e6 2343 h->u.weakdef = NULL;
45d6a902
AM
2344 else
2345 {
9c5bfbb7 2346 const struct elf_backend_data *bed;
45d6a902
AM
2347
2348 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2349 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2350 }
2351 }
2352
2353 return TRUE;
2354}
2355
2356/* Make the backend pick a good value for a dynamic symbol. This is
2357 called via elf_link_hash_traverse, and also calls itself
2358 recursively. */
2359
2360bfd_boolean
268b6b39 2361_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
45d6a902 2362{
268b6b39 2363 struct elf_info_failed *eif = data;
45d6a902 2364 bfd *dynobj;
9c5bfbb7 2365 const struct elf_backend_data *bed;
45d6a902 2366
0eddce27 2367 if (! is_elf_hash_table (eif->info->hash))
45d6a902
AM
2368 return FALSE;
2369
2370 if (h->root.type == bfd_link_hash_warning)
2371 {
a6aa5195
AM
2372 h->got = elf_hash_table (eif->info)->init_got_offset;
2373 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2374
2375 /* When warning symbols are created, they **replace** the "real"
2376 entry in the hash table, thus we never get to see the real
2377 symbol in a hash traversal. So look at it now. */
2378 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2379 }
2380
2381 /* Ignore indirect symbols. These are added by the versioning code. */
2382 if (h->root.type == bfd_link_hash_indirect)
2383 return TRUE;
2384
2385 /* Fix the symbol flags. */
2386 if (! _bfd_elf_fix_symbol_flags (h, eif))
2387 return FALSE;
2388
2389 /* If this symbol does not require a PLT entry, and it is not
2390 defined by a dynamic object, or is not referenced by a regular
2391 object, ignore it. We do have to handle a weak defined symbol,
2392 even if no regular object refers to it, if we decided to add it
2393 to the dynamic symbol table. FIXME: Do we normally need to worry
2394 about symbols which are defined by one dynamic object and
2395 referenced by another one? */
f5385ebf
AM
2396 if (!h->needs_plt
2397 && (h->def_regular
2398 || !h->def_dynamic
2399 || (!h->ref_regular
f6e332e6 2400 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
45d6a902 2401 {
a6aa5195 2402 h->plt = elf_hash_table (eif->info)->init_plt_offset;
45d6a902
AM
2403 return TRUE;
2404 }
2405
2406 /* If we've already adjusted this symbol, don't do it again. This
2407 can happen via a recursive call. */
f5385ebf 2408 if (h->dynamic_adjusted)
45d6a902
AM
2409 return TRUE;
2410
2411 /* Don't look at this symbol again. Note that we must set this
2412 after checking the above conditions, because we may look at a
2413 symbol once, decide not to do anything, and then get called
2414 recursively later after REF_REGULAR is set below. */
f5385ebf 2415 h->dynamic_adjusted = 1;
45d6a902
AM
2416
2417 /* If this is a weak definition, and we know a real definition, and
2418 the real symbol is not itself defined by a regular object file,
2419 then get a good value for the real definition. We handle the
2420 real symbol first, for the convenience of the backend routine.
2421
2422 Note that there is a confusing case here. If the real definition
2423 is defined by a regular object file, we don't get the real symbol
2424 from the dynamic object, but we do get the weak symbol. If the
2425 processor backend uses a COPY reloc, then if some routine in the
2426 dynamic object changes the real symbol, we will not see that
2427 change in the corresponding weak symbol. This is the way other
2428 ELF linkers work as well, and seems to be a result of the shared
2429 library model.
2430
2431 I will clarify this issue. Most SVR4 shared libraries define the
2432 variable _timezone and define timezone as a weak synonym. The
2433 tzset call changes _timezone. If you write
2434 extern int timezone;
2435 int _timezone = 5;
2436 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2437 you might expect that, since timezone is a synonym for _timezone,
2438 the same number will print both times. However, if the processor
2439 backend uses a COPY reloc, then actually timezone will be copied
2440 into your process image, and, since you define _timezone
2441 yourself, _timezone will not. Thus timezone and _timezone will
2442 wind up at different memory locations. The tzset call will set
2443 _timezone, leaving timezone unchanged. */
2444
f6e332e6 2445 if (h->u.weakdef != NULL)
45d6a902
AM
2446 {
2447 /* If we get to this point, we know there is an implicit
2448 reference by a regular object file via the weak symbol H.
2449 FIXME: Is this really true? What if the traversal finds
f6e332e6
AM
2450 H->U.WEAKDEF before it finds H? */
2451 h->u.weakdef->ref_regular = 1;
45d6a902 2452
f6e332e6 2453 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
45d6a902
AM
2454 return FALSE;
2455 }
2456
2457 /* If a symbol has no type and no size and does not require a PLT
2458 entry, then we are probably about to do the wrong thing here: we
2459 are probably going to create a COPY reloc for an empty object.
2460 This case can arise when a shared object is built with assembly
2461 code, and the assembly code fails to set the symbol type. */
2462 if (h->size == 0
2463 && h->type == STT_NOTYPE
f5385ebf 2464 && !h->needs_plt)
45d6a902
AM
2465 (*_bfd_error_handler)
2466 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2467 h->root.root.string);
2468
2469 dynobj = elf_hash_table (eif->info)->dynobj;
2470 bed = get_elf_backend_data (dynobj);
2471 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2472 {
2473 eif->failed = TRUE;
2474 return FALSE;
2475 }
2476
2477 return TRUE;
2478}
2479
2480/* Adjust all external symbols pointing into SEC_MERGE sections
2481 to reflect the object merging within the sections. */
2482
2483bfd_boolean
268b6b39 2484_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
45d6a902
AM
2485{
2486 asection *sec;
2487
2488 if (h->root.type == bfd_link_hash_warning)
2489 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2494 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2495 {
268b6b39 2496 bfd *output_bfd = data;
45d6a902
AM
2497
2498 h->root.u.def.value =
2499 _bfd_merged_section_offset (output_bfd,
2500 &h->root.u.def.section,
2501 elf_section_data (sec)->sec_info,
753731ee 2502 h->root.u.def.value);
45d6a902
AM
2503 }
2504
2505 return TRUE;
2506}
986a241f
RH
2507
2508/* Returns false if the symbol referred to by H should be considered
2509 to resolve local to the current module, and true if it should be
2510 considered to bind dynamically. */
2511
2512bfd_boolean
268b6b39
AM
2513_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2514 struct bfd_link_info *info,
2515 bfd_boolean ignore_protected)
986a241f
RH
2516{
2517 bfd_boolean binding_stays_local_p;
2518
2519 if (h == NULL)
2520 return FALSE;
2521
2522 while (h->root.type == bfd_link_hash_indirect
2523 || h->root.type == bfd_link_hash_warning)
2524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2525
2526 /* If it was forced local, then clearly it's not dynamic. */
2527 if (h->dynindx == -1)
2528 return FALSE;
f5385ebf 2529 if (h->forced_local)
986a241f
RH
2530 return FALSE;
2531
2532 /* Identify the cases where name binding rules say that a
2533 visible symbol resolves locally. */
2534 binding_stays_local_p = info->executable || info->symbolic;
2535
2536 switch (ELF_ST_VISIBILITY (h->other))
2537 {
2538 case STV_INTERNAL:
2539 case STV_HIDDEN:
2540 return FALSE;
2541
2542 case STV_PROTECTED:
2543 /* Proper resolution for function pointer equality may require
2544 that these symbols perhaps be resolved dynamically, even though
2545 we should be resolving them to the current module. */
1c16dfa5 2546 if (!ignore_protected || h->type != STT_FUNC)
986a241f
RH
2547 binding_stays_local_p = TRUE;
2548 break;
2549
2550 default:
986a241f
RH
2551 break;
2552 }
2553
aa37626c 2554 /* If it isn't defined locally, then clearly it's dynamic. */
f5385ebf 2555 if (!h->def_regular)
aa37626c
L
2556 return TRUE;
2557
986a241f
RH
2558 /* Otherwise, the symbol is dynamic if binding rules don't tell
2559 us that it remains local. */
2560 return !binding_stays_local_p;
2561}
f6c52c13
AM
2562
2563/* Return true if the symbol referred to by H should be considered
2564 to resolve local to the current module, and false otherwise. Differs
2565 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2566 undefined symbols and weak symbols. */
2567
2568bfd_boolean
268b6b39
AM
2569_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2570 struct bfd_link_info *info,
2571 bfd_boolean local_protected)
f6c52c13
AM
2572{
2573 /* If it's a local sym, of course we resolve locally. */
2574 if (h == NULL)
2575 return TRUE;
2576
7e2294f9
AO
2577 /* Common symbols that become definitions don't get the DEF_REGULAR
2578 flag set, so test it first, and don't bail out. */
2579 if (ELF_COMMON_DEF_P (h))
2580 /* Do nothing. */;
f6c52c13 2581 /* If we don't have a definition in a regular file, then we can't
49ff44d6
L
2582 resolve locally. The sym is either undefined or dynamic. */
2583 else if (!h->def_regular)
f6c52c13
AM
2584 return FALSE;
2585
2586 /* Forced local symbols resolve locally. */
f5385ebf 2587 if (h->forced_local)
f6c52c13
AM
2588 return TRUE;
2589
2590 /* As do non-dynamic symbols. */
2591 if (h->dynindx == -1)
2592 return TRUE;
2593
2594 /* At this point, we know the symbol is defined and dynamic. In an
2595 executable it must resolve locally, likewise when building symbolic
2596 shared libraries. */
2597 if (info->executable || info->symbolic)
2598 return TRUE;
2599
2600 /* Now deal with defined dynamic symbols in shared libraries. Ones
2601 with default visibility might not resolve locally. */
2602 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2603 return FALSE;
2604
2605 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2606 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2607 return TRUE;
2608
1c16dfa5
L
2609 /* STV_PROTECTED non-function symbols are local. */
2610 if (h->type != STT_FUNC)
2611 return TRUE;
2612
f6c52c13
AM
2613 /* Function pointer equality tests may require that STV_PROTECTED
2614 symbols be treated as dynamic symbols, even when we know that the
2615 dynamic linker will resolve them locally. */
2616 return local_protected;
2617}
e1918d23
AM
2618
2619/* Caches some TLS segment info, and ensures that the TLS segment vma is
2620 aligned. Returns the first TLS output section. */
2621
2622struct bfd_section *
2623_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2624{
2625 struct bfd_section *sec, *tls;
2626 unsigned int align = 0;
2627
2628 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2629 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2630 break;
2631 tls = sec;
2632
2633 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2634 if (sec->alignment_power > align)
2635 align = sec->alignment_power;
2636
2637 elf_hash_table (info)->tls_sec = tls;
2638
2639 /* Ensure the alignment of the first section is the largest alignment,
2640 so that the tls segment starts aligned. */
2641 if (tls != NULL)
2642 tls->alignment_power = align;
2643
2644 return tls;
2645}
0ad989f9
L
2646
2647/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2648static bfd_boolean
2649is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2650 Elf_Internal_Sym *sym)
2651{
a4d8e49b
L
2652 const struct elf_backend_data *bed;
2653
0ad989f9
L
2654 /* Local symbols do not count, but target specific ones might. */
2655 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2656 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2657 return FALSE;
2658
2659 /* Function symbols do not count. */
2660 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2661 return FALSE;
2662
2663 /* If the section is undefined, then so is the symbol. */
2664 if (sym->st_shndx == SHN_UNDEF)
2665 return FALSE;
2666
2667 /* If the symbol is defined in the common section, then
2668 it is a common definition and so does not count. */
a4d8e49b
L
2669 bed = get_elf_backend_data (abfd);
2670 if (bed->common_definition (sym))
0ad989f9
L
2671 return FALSE;
2672
2673 /* If the symbol is in a target specific section then we
2674 must rely upon the backend to tell us what it is. */
2675 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2676 /* FIXME - this function is not coded yet:
2677
2678 return _bfd_is_global_symbol_definition (abfd, sym);
2679
2680 Instead for now assume that the definition is not global,
2681 Even if this is wrong, at least the linker will behave
2682 in the same way that it used to do. */
2683 return FALSE;
2684
2685 return TRUE;
2686}
2687
2688/* Search the symbol table of the archive element of the archive ABFD
2689 whose archive map contains a mention of SYMDEF, and determine if
2690 the symbol is defined in this element. */
2691static bfd_boolean
2692elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2693{
2694 Elf_Internal_Shdr * hdr;
2695 bfd_size_type symcount;
2696 bfd_size_type extsymcount;
2697 bfd_size_type extsymoff;
2698 Elf_Internal_Sym *isymbuf;
2699 Elf_Internal_Sym *isym;
2700 Elf_Internal_Sym *isymend;
2701 bfd_boolean result;
2702
2703 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2704 if (abfd == NULL)
2705 return FALSE;
2706
2707 if (! bfd_check_format (abfd, bfd_object))
2708 return FALSE;
2709
2710 /* If we have already included the element containing this symbol in the
2711 link then we do not need to include it again. Just claim that any symbol
2712 it contains is not a definition, so that our caller will not decide to
2713 (re)include this element. */
2714 if (abfd->archive_pass)
2715 return FALSE;
2716
2717 /* Select the appropriate symbol table. */
2718 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2719 hdr = &elf_tdata (abfd)->symtab_hdr;
2720 else
2721 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2722
2723 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2724
2725 /* The sh_info field of the symtab header tells us where the
2726 external symbols start. We don't care about the local symbols. */
2727 if (elf_bad_symtab (abfd))
2728 {
2729 extsymcount = symcount;
2730 extsymoff = 0;
2731 }
2732 else
2733 {
2734 extsymcount = symcount - hdr->sh_info;
2735 extsymoff = hdr->sh_info;
2736 }
2737
2738 if (extsymcount == 0)
2739 return FALSE;
2740
2741 /* Read in the symbol table. */
2742 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2743 NULL, NULL, NULL);
2744 if (isymbuf == NULL)
2745 return FALSE;
2746
2747 /* Scan the symbol table looking for SYMDEF. */
2748 result = FALSE;
2749 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2750 {
2751 const char *name;
2752
2753 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2754 isym->st_name);
2755 if (name == NULL)
2756 break;
2757
2758 if (strcmp (name, symdef->name) == 0)
2759 {
2760 result = is_global_data_symbol_definition (abfd, isym);
2761 break;
2762 }
2763 }
2764
2765 free (isymbuf);
2766
2767 return result;
2768}
2769\f
5a580b3a
AM
2770/* Add an entry to the .dynamic table. */
2771
2772bfd_boolean
2773_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2774 bfd_vma tag,
2775 bfd_vma val)
2776{
2777 struct elf_link_hash_table *hash_table;
2778 const struct elf_backend_data *bed;
2779 asection *s;
2780 bfd_size_type newsize;
2781 bfd_byte *newcontents;
2782 Elf_Internal_Dyn dyn;
2783
2784 hash_table = elf_hash_table (info);
2785 if (! is_elf_hash_table (hash_table))
2786 return FALSE;
2787
8fdd7217
NC
2788 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2789 _bfd_error_handler
2790 (_("warning: creating a DT_TEXTREL in a shared object."));
2791
5a580b3a
AM
2792 bed = get_elf_backend_data (hash_table->dynobj);
2793 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2794 BFD_ASSERT (s != NULL);
2795
eea6121a 2796 newsize = s->size + bed->s->sizeof_dyn;
5a580b3a
AM
2797 newcontents = bfd_realloc (s->contents, newsize);
2798 if (newcontents == NULL)
2799 return FALSE;
2800
2801 dyn.d_tag = tag;
2802 dyn.d_un.d_val = val;
eea6121a 2803 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
5a580b3a 2804
eea6121a 2805 s->size = newsize;
5a580b3a
AM
2806 s->contents = newcontents;
2807
2808 return TRUE;
2809}
2810
2811/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2812 otherwise just check whether one already exists. Returns -1 on error,
2813 1 if a DT_NEEDED tag already exists, and 0 on success. */
2814
4ad4eba5 2815static int
7e9f0867
AM
2816elf_add_dt_needed_tag (bfd *abfd,
2817 struct bfd_link_info *info,
4ad4eba5
AM
2818 const char *soname,
2819 bfd_boolean do_it)
5a580b3a
AM
2820{
2821 struct elf_link_hash_table *hash_table;
2822 bfd_size_type oldsize;
2823 bfd_size_type strindex;
2824
7e9f0867
AM
2825 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2826 return -1;
2827
5a580b3a
AM
2828 hash_table = elf_hash_table (info);
2829 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2830 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2831 if (strindex == (bfd_size_type) -1)
2832 return -1;
2833
2834 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2835 {
2836 asection *sdyn;
2837 const struct elf_backend_data *bed;
2838 bfd_byte *extdyn;
2839
2840 bed = get_elf_backend_data (hash_table->dynobj);
2841 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
7e9f0867
AM
2842 if (sdyn != NULL)
2843 for (extdyn = sdyn->contents;
2844 extdyn < sdyn->contents + sdyn->size;
2845 extdyn += bed->s->sizeof_dyn)
2846 {
2847 Elf_Internal_Dyn dyn;
5a580b3a 2848
7e9f0867
AM
2849 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2850 if (dyn.d_tag == DT_NEEDED
2851 && dyn.d_un.d_val == strindex)
2852 {
2853 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2854 return 1;
2855 }
2856 }
5a580b3a
AM
2857 }
2858
2859 if (do_it)
2860 {
7e9f0867
AM
2861 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2862 return -1;
2863
5a580b3a
AM
2864 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2865 return -1;
2866 }
2867 else
2868 /* We were just checking for existence of the tag. */
2869 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2870
2871 return 0;
2872}
2873
77cfaee6
AM
2874/* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2875 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
ec13b3bb
AM
2876 references from regular objects to these symbols.
2877
2878 ??? Should we do something about references from other dynamic
2879 obects? If not, we potentially lose some warnings about undefined
2880 symbols. But how can we recover the initial undefined / undefweak
2881 state? */
77cfaee6
AM
2882
2883struct elf_smash_syms_data
2884{
2885 bfd *not_needed;
2886 struct elf_link_hash_table *htab;
2887 bfd_boolean twiddled;
2888};
2889
2890static bfd_boolean
2891elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2892{
2893 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2894 struct bfd_link_hash_entry *bh;
2895
2896 switch (h->root.type)
2897 {
2898 default:
2899 case bfd_link_hash_new:
2900 return TRUE;
2901
2902 case bfd_link_hash_undefined:
11f25ea6
AM
2903 if (h->root.u.undef.abfd != inf->not_needed)
2904 return TRUE;
4ea42fb7
AM
2905 if (h->root.u.undef.weak != NULL
2906 && h->root.u.undef.weak != inf->not_needed)
11f25ea6
AM
2907 {
2908 /* Symbol was undefweak in u.undef.weak bfd, and has become
2909 undefined in as-needed lib. Restore weak. */
2910 h->root.type = bfd_link_hash_undefweak;
2911 h->root.u.undef.abfd = h->root.u.undef.weak;
2912 if (h->root.u.undef.next != NULL
2913 || inf->htab->root.undefs_tail == &h->root)
2914 inf->twiddled = TRUE;
2915 return TRUE;
2916 }
2917 break;
2918
77cfaee6
AM
2919 case bfd_link_hash_undefweak:
2920 if (h->root.u.undef.abfd != inf->not_needed)
2921 return TRUE;
2922 break;
2923
2924 case bfd_link_hash_defined:
2925 case bfd_link_hash_defweak:
2926 if (h->root.u.def.section->owner != inf->not_needed)
2927 return TRUE;
2928 break;
2929
2930 case bfd_link_hash_common:
2931 if (h->root.u.c.p->section->owner != inf->not_needed)
2932 return TRUE;
2933 break;
2934
2935 case bfd_link_hash_warning:
2936 case bfd_link_hash_indirect:
2937 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2938 if (h->root.u.i.link->type != bfd_link_hash_new)
2939 return TRUE;
2940 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2941 return TRUE;
2942 break;
2943 }
2944
11f25ea6
AM
2945 /* There is no way we can undo symbol table state from defined or
2946 defweak back to undefined. */
2947 if (h->ref_regular)
2948 abort ();
2949
2e8b3a61
AM
2950 /* Set sym back to newly created state, but keep undef.next if it is
2951 being used as a list pointer. */
77cfaee6 2952 bh = h->root.u.undef.next;
2e8b3a61
AM
2953 if (bh == &h->root)
2954 bh = NULL;
77cfaee6
AM
2955 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2956 inf->twiddled = TRUE;
2957 (*inf->htab->root.table.newfunc) (&h->root.root,
2958 &inf->htab->root.table,
2959 h->root.root.string);
2960 h->root.u.undef.next = bh;
2961 h->root.u.undef.abfd = inf->not_needed;
2962 h->non_elf = 0;
2963 return TRUE;
2964}
2965
5a580b3a 2966/* Sort symbol by value and section. */
4ad4eba5
AM
2967static int
2968elf_sort_symbol (const void *arg1, const void *arg2)
5a580b3a
AM
2969{
2970 const struct elf_link_hash_entry *h1;
2971 const struct elf_link_hash_entry *h2;
10b7e05b 2972 bfd_signed_vma vdiff;
5a580b3a
AM
2973
2974 h1 = *(const struct elf_link_hash_entry **) arg1;
2975 h2 = *(const struct elf_link_hash_entry **) arg2;
10b7e05b
NC
2976 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2977 if (vdiff != 0)
2978 return vdiff > 0 ? 1 : -1;
2979 else
2980 {
2981 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2982 if (sdiff != 0)
2983 return sdiff > 0 ? 1 : -1;
2984 }
5a580b3a
AM
2985 return 0;
2986}
4ad4eba5 2987
5a580b3a
AM
2988/* This function is used to adjust offsets into .dynstr for
2989 dynamic symbols. This is called via elf_link_hash_traverse. */
2990
2991static bfd_boolean
2992elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2993{
2994 struct elf_strtab_hash *dynstr = data;
2995
2996 if (h->root.type == bfd_link_hash_warning)
2997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2998
2999 if (h->dynindx != -1)
3000 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3001 return TRUE;
3002}
3003
3004/* Assign string offsets in .dynstr, update all structures referencing
3005 them. */
3006
4ad4eba5
AM
3007static bfd_boolean
3008elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5a580b3a
AM
3009{
3010 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3011 struct elf_link_local_dynamic_entry *entry;
3012 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3013 bfd *dynobj = hash_table->dynobj;
3014 asection *sdyn;
3015 bfd_size_type size;
3016 const struct elf_backend_data *bed;
3017 bfd_byte *extdyn;
3018
3019 _bfd_elf_strtab_finalize (dynstr);
3020 size = _bfd_elf_strtab_size (dynstr);
3021
3022 bed = get_elf_backend_data (dynobj);
3023 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3024 BFD_ASSERT (sdyn != NULL);
3025
3026 /* Update all .dynamic entries referencing .dynstr strings. */
3027 for (extdyn = sdyn->contents;
eea6121a 3028 extdyn < sdyn->contents + sdyn->size;
5a580b3a
AM
3029 extdyn += bed->s->sizeof_dyn)
3030 {
3031 Elf_Internal_Dyn dyn;
3032
3033 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3034 switch (dyn.d_tag)
3035 {
3036 case DT_STRSZ:
3037 dyn.d_un.d_val = size;
3038 break;
3039 case DT_NEEDED:
3040 case DT_SONAME:
3041 case DT_RPATH:
3042 case DT_RUNPATH:
3043 case DT_FILTER:
3044 case DT_AUXILIARY:
3045 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3046 break;
3047 default:
3048 continue;
3049 }
3050 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3051 }
3052
3053 /* Now update local dynamic symbols. */
3054 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3055 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3056 entry->isym.st_name);
3057
3058 /* And the rest of dynamic symbols. */
3059 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3060
3061 /* Adjust version definitions. */
3062 if (elf_tdata (output_bfd)->cverdefs)
3063 {
3064 asection *s;
3065 bfd_byte *p;
3066 bfd_size_type i;
3067 Elf_Internal_Verdef def;
3068 Elf_Internal_Verdaux defaux;
3069
3070 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3071 p = s->contents;
3072 do
3073 {
3074 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3075 &def);
3076 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
3077 if (def.vd_aux != sizeof (Elf_External_Verdef))
3078 continue;
5a580b3a
AM
3079 for (i = 0; i < def.vd_cnt; ++i)
3080 {
3081 _bfd_elf_swap_verdaux_in (output_bfd,
3082 (Elf_External_Verdaux *) p, &defaux);
3083 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3084 defaux.vda_name);
3085 _bfd_elf_swap_verdaux_out (output_bfd,
3086 &defaux, (Elf_External_Verdaux *) p);
3087 p += sizeof (Elf_External_Verdaux);
3088 }
3089 }
3090 while (def.vd_next);
3091 }
3092
3093 /* Adjust version references. */
3094 if (elf_tdata (output_bfd)->verref)
3095 {
3096 asection *s;
3097 bfd_byte *p;
3098 bfd_size_type i;
3099 Elf_Internal_Verneed need;
3100 Elf_Internal_Vernaux needaux;
3101
3102 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3103 p = s->contents;
3104 do
3105 {
3106 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3107 &need);
3108 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3109 _bfd_elf_swap_verneed_out (output_bfd, &need,
3110 (Elf_External_Verneed *) p);
3111 p += sizeof (Elf_External_Verneed);
3112 for (i = 0; i < need.vn_cnt; ++i)
3113 {
3114 _bfd_elf_swap_vernaux_in (output_bfd,
3115 (Elf_External_Vernaux *) p, &needaux);
3116 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3117 needaux.vna_name);
3118 _bfd_elf_swap_vernaux_out (output_bfd,
3119 &needaux,
3120 (Elf_External_Vernaux *) p);
3121 p += sizeof (Elf_External_Vernaux);
3122 }
3123 }
3124 while (need.vn_next);
3125 }
3126
3127 return TRUE;
3128}
3129\f
4ad4eba5
AM
3130/* Add symbols from an ELF object file to the linker hash table. */
3131
3132static bfd_boolean
3133elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3134{
3135 bfd_boolean (*add_symbol_hook)
555cd476 3136 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
4ad4eba5
AM
3137 const char **, flagword *, asection **, bfd_vma *);
3138 bfd_boolean (*check_relocs)
3139 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
85fbca6a
NC
3140 bfd_boolean (*check_directives)
3141 (bfd *, struct bfd_link_info *);
4ad4eba5
AM
3142 bfd_boolean collect;
3143 Elf_Internal_Shdr *hdr;
3144 bfd_size_type symcount;
3145 bfd_size_type extsymcount;
3146 bfd_size_type extsymoff;
3147 struct elf_link_hash_entry **sym_hash;
3148 bfd_boolean dynamic;
3149 Elf_External_Versym *extversym = NULL;
3150 Elf_External_Versym *ever;
3151 struct elf_link_hash_entry *weaks;
3152 struct elf_link_hash_entry **nondeflt_vers = NULL;
3153 bfd_size_type nondeflt_vers_cnt = 0;
3154 Elf_Internal_Sym *isymbuf = NULL;
3155 Elf_Internal_Sym *isym;
3156 Elf_Internal_Sym *isymend;
3157 const struct elf_backend_data *bed;
3158 bfd_boolean add_needed;
3159 struct elf_link_hash_table * hash_table;
3160 bfd_size_type amt;
3161
3162 hash_table = elf_hash_table (info);
3163
3164 bed = get_elf_backend_data (abfd);
3165 add_symbol_hook = bed->elf_add_symbol_hook;
3166 collect = bed->collect;
3167
3168 if ((abfd->flags & DYNAMIC) == 0)
3169 dynamic = FALSE;
3170 else
3171 {
3172 dynamic = TRUE;
3173
3174 /* You can't use -r against a dynamic object. Also, there's no
3175 hope of using a dynamic object which does not exactly match
3176 the format of the output file. */
3177 if (info->relocatable
3178 || !is_elf_hash_table (hash_table)
3179 || hash_table->root.creator != abfd->xvec)
3180 {
9a0789ec
NC
3181 if (info->relocatable)
3182 bfd_set_error (bfd_error_invalid_operation);
3183 else
3184 bfd_set_error (bfd_error_wrong_format);
4ad4eba5
AM
3185 goto error_return;
3186 }
3187 }
3188
3189 /* As a GNU extension, any input sections which are named
3190 .gnu.warning.SYMBOL are treated as warning symbols for the given
3191 symbol. This differs from .gnu.warning sections, which generate
3192 warnings when they are included in an output file. */
3193 if (info->executable)
3194 {
3195 asection *s;
3196
3197 for (s = abfd->sections; s != NULL; s = s->next)
3198 {
3199 const char *name;
3200
3201 name = bfd_get_section_name (abfd, s);
3202 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3203 {
3204 char *msg;
3205 bfd_size_type sz;
4ad4eba5
AM
3206
3207 name += sizeof ".gnu.warning." - 1;
3208
3209 /* If this is a shared object, then look up the symbol
3210 in the hash table. If it is there, and it is already
3211 been defined, then we will not be using the entry
3212 from this shared object, so we don't need to warn.
3213 FIXME: If we see the definition in a regular object
3214 later on, we will warn, but we shouldn't. The only
3215 fix is to keep track of what warnings we are supposed
3216 to emit, and then handle them all at the end of the
3217 link. */
3218 if (dynamic)
3219 {
3220 struct elf_link_hash_entry *h;
3221
3222 h = elf_link_hash_lookup (hash_table, name,
3223 FALSE, FALSE, TRUE);
3224
3225 /* FIXME: What about bfd_link_hash_common? */
3226 if (h != NULL
3227 && (h->root.type == bfd_link_hash_defined
3228 || h->root.type == bfd_link_hash_defweak))
3229 {
3230 /* We don't want to issue this warning. Clobber
3231 the section size so that the warning does not
3232 get copied into the output file. */
eea6121a 3233 s->size = 0;
4ad4eba5
AM
3234 continue;
3235 }
3236 }
3237
eea6121a 3238 sz = s->size;
370a0e1b 3239 msg = bfd_alloc (abfd, sz + 1);
4ad4eba5
AM
3240 if (msg == NULL)
3241 goto error_return;
3242
370a0e1b 3243 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4ad4eba5
AM
3244 goto error_return;
3245
370a0e1b 3246 msg[sz] = '\0';
4ad4eba5
AM
3247
3248 if (! (_bfd_generic_link_add_one_symbol
3249 (info, abfd, name, BSF_WARNING, s, 0, msg,
3250 FALSE, collect, NULL)))
3251 goto error_return;
3252
3253 if (! info->relocatable)
3254 {
3255 /* Clobber the section size so that the warning does
3256 not get copied into the output file. */
eea6121a 3257 s->size = 0;
11d2f718
AM
3258
3259 /* Also set SEC_EXCLUDE, so that symbols defined in
3260 the warning section don't get copied to the output. */
3261 s->flags |= SEC_EXCLUDE;
4ad4eba5
AM
3262 }
3263 }
3264 }
3265 }
3266
3267 add_needed = TRUE;
3268 if (! dynamic)
3269 {
3270 /* If we are creating a shared library, create all the dynamic
3271 sections immediately. We need to attach them to something,
3272 so we attach them to this BFD, provided it is the right
3273 format. FIXME: If there are no input BFD's of the same
3274 format as the output, we can't make a shared library. */
3275 if (info->shared
3276 && is_elf_hash_table (hash_table)
3277 && hash_table->root.creator == abfd->xvec
3278 && ! hash_table->dynamic_sections_created)
3279 {
3280 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3281 goto error_return;
3282 }
3283 }
3284 else if (!is_elf_hash_table (hash_table))
3285 goto error_return;
3286 else
3287 {
3288 asection *s;
3289 const char *soname = NULL;
3290 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3291 int ret;
3292
3293 /* ld --just-symbols and dynamic objects don't mix very well.
92fd189d 3294 ld shouldn't allow it. */
4ad4eba5
AM
3295 if ((s = abfd->sections) != NULL
3296 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
92fd189d 3297 abort ();
4ad4eba5
AM
3298
3299 /* If this dynamic lib was specified on the command line with
3300 --as-needed in effect, then we don't want to add a DT_NEEDED
3301 tag unless the lib is actually used. Similary for libs brought
e56f61be
L
3302 in by another lib's DT_NEEDED. When --no-add-needed is used
3303 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3304 any dynamic library in DT_NEEDED tags in the dynamic lib at
3305 all. */
3306 add_needed = (elf_dyn_lib_class (abfd)
3307 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3308 | DYN_NO_NEEDED)) == 0;
4ad4eba5
AM
3309
3310 s = bfd_get_section_by_name (abfd, ".dynamic");
3311 if (s != NULL)
3312 {
3313 bfd_byte *dynbuf;
3314 bfd_byte *extdyn;
3315 int elfsec;
3316 unsigned long shlink;
3317
eea6121a 3318 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4ad4eba5
AM
3319 goto error_free_dyn;
3320
3321 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3322 if (elfsec == -1)
3323 goto error_free_dyn;
3324 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3325
3326 for (extdyn = dynbuf;
eea6121a 3327 extdyn < dynbuf + s->size;
4ad4eba5
AM
3328 extdyn += bed->s->sizeof_dyn)
3329 {
3330 Elf_Internal_Dyn dyn;
3331
3332 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3333 if (dyn.d_tag == DT_SONAME)
3334 {
3335 unsigned int tagv = dyn.d_un.d_val;
3336 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3337 if (soname == NULL)
3338 goto error_free_dyn;
3339 }
3340 if (dyn.d_tag == DT_NEEDED)
3341 {
3342 struct bfd_link_needed_list *n, **pn;
3343 char *fnm, *anm;
3344 unsigned int tagv = dyn.d_un.d_val;
3345
3346 amt = sizeof (struct bfd_link_needed_list);
3347 n = bfd_alloc (abfd, amt);
3348 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3349 if (n == NULL || fnm == NULL)
3350 goto error_free_dyn;
3351 amt = strlen (fnm) + 1;
3352 anm = bfd_alloc (abfd, amt);
3353 if (anm == NULL)
3354 goto error_free_dyn;
3355 memcpy (anm, fnm, amt);
3356 n->name = anm;
3357 n->by = abfd;
3358 n->next = NULL;
3359 for (pn = & hash_table->needed;
3360 *pn != NULL;
3361 pn = &(*pn)->next)
3362 ;
3363 *pn = n;
3364 }
3365 if (dyn.d_tag == DT_RUNPATH)
3366 {
3367 struct bfd_link_needed_list *n, **pn;
3368 char *fnm, *anm;
3369 unsigned int tagv = dyn.d_un.d_val;
3370
3371 amt = sizeof (struct bfd_link_needed_list);
3372 n = bfd_alloc (abfd, amt);
3373 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3374 if (n == NULL || fnm == NULL)
3375 goto error_free_dyn;
3376 amt = strlen (fnm) + 1;
3377 anm = bfd_alloc (abfd, amt);
3378 if (anm == NULL)
3379 goto error_free_dyn;
3380 memcpy (anm, fnm, amt);
3381 n->name = anm;
3382 n->by = abfd;
3383 n->next = NULL;
3384 for (pn = & runpath;
3385 *pn != NULL;
3386 pn = &(*pn)->next)
3387 ;
3388 *pn = n;
3389 }
3390 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3391 if (!runpath && dyn.d_tag == DT_RPATH)
3392 {
3393 struct bfd_link_needed_list *n, **pn;
3394 char *fnm, *anm;
3395 unsigned int tagv = dyn.d_un.d_val;
3396
3397 amt = sizeof (struct bfd_link_needed_list);
3398 n = bfd_alloc (abfd, amt);
3399 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3400 if (n == NULL || fnm == NULL)
3401 goto error_free_dyn;
3402 amt = strlen (fnm) + 1;
3403 anm = bfd_alloc (abfd, amt);
3404 if (anm == NULL)
3405 {
3406 error_free_dyn:
3407 free (dynbuf);
3408 goto error_return;
3409 }
3410 memcpy (anm, fnm, amt);
3411 n->name = anm;
3412 n->by = abfd;
3413 n->next = NULL;
3414 for (pn = & rpath;
3415 *pn != NULL;
3416 pn = &(*pn)->next)
3417 ;
3418 *pn = n;
3419 }
3420 }
3421
3422 free (dynbuf);
3423 }
3424
3425 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3426 frees all more recently bfd_alloc'd blocks as well. */
3427 if (runpath)
3428 rpath = runpath;
3429
3430 if (rpath)
3431 {
3432 struct bfd_link_needed_list **pn;
3433 for (pn = & hash_table->runpath;
3434 *pn != NULL;
3435 pn = &(*pn)->next)
3436 ;
3437 *pn = rpath;
3438 }
3439
3440 /* We do not want to include any of the sections in a dynamic
3441 object in the output file. We hack by simply clobbering the
3442 list of sections in the BFD. This could be handled more
3443 cleanly by, say, a new section flag; the existing
3444 SEC_NEVER_LOAD flag is not the one we want, because that one
3445 still implies that the section takes up space in the output
3446 file. */
3447 bfd_section_list_clear (abfd);
3448
4ad4eba5
AM
3449 /* Find the name to use in a DT_NEEDED entry that refers to this
3450 object. If the object has a DT_SONAME entry, we use it.
3451 Otherwise, if the generic linker stuck something in
3452 elf_dt_name, we use that. Otherwise, we just use the file
3453 name. */
3454 if (soname == NULL || *soname == '\0')
3455 {
3456 soname = elf_dt_name (abfd);
3457 if (soname == NULL || *soname == '\0')
3458 soname = bfd_get_filename (abfd);
3459 }
3460
3461 /* Save the SONAME because sometimes the linker emulation code
3462 will need to know it. */
3463 elf_dt_name (abfd) = soname;
3464
7e9f0867 3465 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
3466 if (ret < 0)
3467 goto error_return;
3468
3469 /* If we have already included this dynamic object in the
3470 link, just ignore it. There is no reason to include a
3471 particular dynamic object more than once. */
3472 if (ret > 0)
3473 return TRUE;
3474 }
3475
3476 /* If this is a dynamic object, we always link against the .dynsym
3477 symbol table, not the .symtab symbol table. The dynamic linker
3478 will only see the .dynsym symbol table, so there is no reason to
3479 look at .symtab for a dynamic object. */
3480
3481 if (! dynamic || elf_dynsymtab (abfd) == 0)
3482 hdr = &elf_tdata (abfd)->symtab_hdr;
3483 else
3484 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3485
3486 symcount = hdr->sh_size / bed->s->sizeof_sym;
3487
3488 /* The sh_info field of the symtab header tells us where the
3489 external symbols start. We don't care about the local symbols at
3490 this point. */
3491 if (elf_bad_symtab (abfd))
3492 {
3493 extsymcount = symcount;
3494 extsymoff = 0;
3495 }
3496 else
3497 {
3498 extsymcount = symcount - hdr->sh_info;
3499 extsymoff = hdr->sh_info;
3500 }
3501
3502 sym_hash = NULL;
3503 if (extsymcount != 0)
3504 {
3505 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3506 NULL, NULL, NULL);
3507 if (isymbuf == NULL)
3508 goto error_return;
3509
3510 /* We store a pointer to the hash table entry for each external
3511 symbol. */
3512 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3513 sym_hash = bfd_alloc (abfd, amt);
3514 if (sym_hash == NULL)
3515 goto error_free_sym;
3516 elf_sym_hashes (abfd) = sym_hash;
3517 }
3518
3519 if (dynamic)
3520 {
3521 /* Read in any version definitions. */
fc0e6df6
PB
3522 if (!_bfd_elf_slurp_version_tables (abfd,
3523 info->default_imported_symver))
4ad4eba5
AM
3524 goto error_free_sym;
3525
3526 /* Read in the symbol versions, but don't bother to convert them
3527 to internal format. */
3528 if (elf_dynversym (abfd) != 0)
3529 {
3530 Elf_Internal_Shdr *versymhdr;
3531
3532 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3533 extversym = bfd_malloc (versymhdr->sh_size);
3534 if (extversym == NULL)
3535 goto error_free_sym;
3536 amt = versymhdr->sh_size;
3537 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3538 || bfd_bread (extversym, amt, abfd) != amt)
3539 goto error_free_vers;
3540 }
3541 }
3542
3543 weaks = NULL;
3544
3545 ever = extversym != NULL ? extversym + extsymoff : NULL;
3546 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3547 isym < isymend;
3548 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3549 {
3550 int bind;
3551 bfd_vma value;
af44c138 3552 asection *sec, *new_sec;
4ad4eba5
AM
3553 flagword flags;
3554 const char *name;
3555 struct elf_link_hash_entry *h;
3556 bfd_boolean definition;
3557 bfd_boolean size_change_ok;
3558 bfd_boolean type_change_ok;
3559 bfd_boolean new_weakdef;
3560 bfd_boolean override;
a4d8e49b 3561 bfd_boolean common;
4ad4eba5
AM
3562 unsigned int old_alignment;
3563 bfd *old_bfd;
3564
3565 override = FALSE;
3566
3567 flags = BSF_NO_FLAGS;
3568 sec = NULL;
3569 value = isym->st_value;
3570 *sym_hash = NULL;
a4d8e49b 3571 common = bed->common_definition (isym);
4ad4eba5
AM
3572
3573 bind = ELF_ST_BIND (isym->st_info);
3574 if (bind == STB_LOCAL)
3575 {
3576 /* This should be impossible, since ELF requires that all
3577 global symbols follow all local symbols, and that sh_info
3578 point to the first global symbol. Unfortunately, Irix 5
3579 screws this up. */
3580 continue;
3581 }
3582 else if (bind == STB_GLOBAL)
3583 {
a4d8e49b 3584 if (isym->st_shndx != SHN_UNDEF && !common)
4ad4eba5
AM
3585 flags = BSF_GLOBAL;
3586 }
3587 else if (bind == STB_WEAK)
3588 flags = BSF_WEAK;
3589 else
3590 {
3591 /* Leave it up to the processor backend. */
3592 }
3593
3594 if (isym->st_shndx == SHN_UNDEF)
3595 sec = bfd_und_section_ptr;
3596 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3597 {
3598 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3599 if (sec == NULL)
3600 sec = bfd_abs_section_ptr;
529fcb95
PB
3601 else if (sec->kept_section)
3602 {
1f02cbd9 3603 /* Symbols from discarded section are undefined, and have
3b36f7e6 3604 default visibility. */
529fcb95
PB
3605 sec = bfd_und_section_ptr;
3606 isym->st_shndx = SHN_UNDEF;
1f02cbd9
JB
3607 isym->st_other = STV_DEFAULT
3608 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
529fcb95 3609 }
4ad4eba5
AM
3610 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3611 value -= sec->vma;
3612 }
3613 else if (isym->st_shndx == SHN_ABS)
3614 sec = bfd_abs_section_ptr;
3615 else if (isym->st_shndx == SHN_COMMON)
3616 {
3617 sec = bfd_com_section_ptr;
3618 /* What ELF calls the size we call the value. What ELF
3619 calls the value we call the alignment. */
3620 value = isym->st_size;
3621 }
3622 else
3623 {
3624 /* Leave it up to the processor backend. */
3625 }
3626
3627 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3628 isym->st_name);
3629 if (name == NULL)
3630 goto error_free_vers;
3631
3632 if (isym->st_shndx == SHN_COMMON
3633 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3634 {
3635 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3636
3637 if (tcomm == NULL)
3638 {
3496cb2a
L
3639 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3640 (SEC_ALLOC
3641 | SEC_IS_COMMON
3642 | SEC_LINKER_CREATED
3643 | SEC_THREAD_LOCAL));
3644 if (tcomm == NULL)
4ad4eba5
AM
3645 goto error_free_vers;
3646 }
3647 sec = tcomm;
3648 }
3649 else if (add_symbol_hook)
3650 {
3651 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3652 &value))
3653 goto error_free_vers;
3654
3655 /* The hook function sets the name to NULL if this symbol
3656 should be skipped for some reason. */
3657 if (name == NULL)
3658 continue;
3659 }
3660
3661 /* Sanity check that all possibilities were handled. */
3662 if (sec == NULL)
3663 {
3664 bfd_set_error (bfd_error_bad_value);
3665 goto error_free_vers;
3666 }
3667
3668 if (bfd_is_und_section (sec)
3669 || bfd_is_com_section (sec))
3670 definition = FALSE;
3671 else
3672 definition = TRUE;
3673
3674 size_change_ok = FALSE;
3675 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3676 old_alignment = 0;
3677 old_bfd = NULL;
af44c138 3678 new_sec = sec;
4ad4eba5
AM
3679
3680 if (is_elf_hash_table (hash_table))
3681 {
3682 Elf_Internal_Versym iver;
3683 unsigned int vernum = 0;
3684 bfd_boolean skip;
3685
fc0e6df6 3686 if (ever == NULL)
4ad4eba5 3687 {
fc0e6df6
PB
3688 if (info->default_imported_symver)
3689 /* Use the default symbol version created earlier. */
3690 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3691 else
3692 iver.vs_vers = 0;
3693 }
3694 else
3695 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3696
3697 vernum = iver.vs_vers & VERSYM_VERSION;
3698
3699 /* If this is a hidden symbol, or if it is not version
3700 1, we append the version name to the symbol name.
cc86ff91
EB
3701 However, we do not modify a non-hidden absolute symbol
3702 if it is not a function, because it might be the version
3703 symbol itself. FIXME: What if it isn't? */
fc0e6df6 3704 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
cc86ff91
EB
3705 || (vernum > 1 && (! bfd_is_abs_section (sec)
3706 || ELF_ST_TYPE (isym->st_info) == STT_FUNC)))
fc0e6df6
PB
3707 {
3708 const char *verstr;
3709 size_t namelen, verlen, newlen;
3710 char *newname, *p;
3711
3712 if (isym->st_shndx != SHN_UNDEF)
4ad4eba5 3713 {
fc0e6df6
PB
3714 if (vernum > elf_tdata (abfd)->cverdefs)
3715 verstr = NULL;
3716 else if (vernum > 1)
3717 verstr =
3718 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3719 else
3720 verstr = "";
4ad4eba5 3721
fc0e6df6 3722 if (verstr == NULL)
4ad4eba5 3723 {
fc0e6df6
PB
3724 (*_bfd_error_handler)
3725 (_("%B: %s: invalid version %u (max %d)"),
3726 abfd, name, vernum,
3727 elf_tdata (abfd)->cverdefs);
3728 bfd_set_error (bfd_error_bad_value);
3729 goto error_free_vers;
4ad4eba5 3730 }
fc0e6df6
PB
3731 }
3732 else
3733 {
3734 /* We cannot simply test for the number of
3735 entries in the VERNEED section since the
3736 numbers for the needed versions do not start
3737 at 0. */
3738 Elf_Internal_Verneed *t;
3739
3740 verstr = NULL;
3741 for (t = elf_tdata (abfd)->verref;
3742 t != NULL;
3743 t = t->vn_nextref)
4ad4eba5 3744 {
fc0e6df6 3745 Elf_Internal_Vernaux *a;
4ad4eba5 3746
fc0e6df6
PB
3747 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3748 {
3749 if (a->vna_other == vernum)
4ad4eba5 3750 {
fc0e6df6
PB
3751 verstr = a->vna_nodename;
3752 break;
4ad4eba5 3753 }
4ad4eba5 3754 }
fc0e6df6
PB
3755 if (a != NULL)
3756 break;
3757 }
3758 if (verstr == NULL)
3759 {
3760 (*_bfd_error_handler)
3761 (_("%B: %s: invalid needed version %d"),
3762 abfd, name, vernum);
3763 bfd_set_error (bfd_error_bad_value);
3764 goto error_free_vers;
4ad4eba5 3765 }
4ad4eba5 3766 }
fc0e6df6
PB
3767
3768 namelen = strlen (name);
3769 verlen = strlen (verstr);
3770 newlen = namelen + verlen + 2;
3771 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3772 && isym->st_shndx != SHN_UNDEF)
3773 ++newlen;
3774
3775 newname = bfd_alloc (abfd, newlen);
3776 if (newname == NULL)
3777 goto error_free_vers;
3778 memcpy (newname, name, namelen);
3779 p = newname + namelen;
3780 *p++ = ELF_VER_CHR;
3781 /* If this is a defined non-hidden version symbol,
3782 we add another @ to the name. This indicates the
3783 default version of the symbol. */
3784 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3785 && isym->st_shndx != SHN_UNDEF)
3786 *p++ = ELF_VER_CHR;
3787 memcpy (p, verstr, verlen + 1);
3788
3789 name = newname;
4ad4eba5
AM
3790 }
3791
af44c138
L
3792 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3793 &value, &old_alignment,
4ad4eba5
AM
3794 sym_hash, &skip, &override,
3795 &type_change_ok, &size_change_ok))
3796 goto error_free_vers;
3797
3798 if (skip)
3799 continue;
3800
3801 if (override)
3802 definition = FALSE;
3803
3804 h = *sym_hash;
3805 while (h->root.type == bfd_link_hash_indirect
3806 || h->root.type == bfd_link_hash_warning)
3807 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3808
3809 /* Remember the old alignment if this is a common symbol, so
3810 that we don't reduce the alignment later on. We can't
3811 check later, because _bfd_generic_link_add_one_symbol
3812 will set a default for the alignment which we want to
3813 override. We also remember the old bfd where the existing
3814 definition comes from. */
3815 switch (h->root.type)
3816 {
3817 default:
3818 break;
3819
3820 case bfd_link_hash_defined:
3821 case bfd_link_hash_defweak:
3822 old_bfd = h->root.u.def.section->owner;
3823 break;
3824
3825 case bfd_link_hash_common:
3826 old_bfd = h->root.u.c.p->section->owner;
3827 old_alignment = h->root.u.c.p->alignment_power;
3828 break;
3829 }
3830
3831 if (elf_tdata (abfd)->verdef != NULL
3832 && ! override
3833 && vernum > 1
3834 && definition)
3835 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3836 }
3837
3838 if (! (_bfd_generic_link_add_one_symbol
3839 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3840 (struct bfd_link_hash_entry **) sym_hash)))
3841 goto error_free_vers;
3842
3843 h = *sym_hash;
3844 while (h->root.type == bfd_link_hash_indirect
3845 || h->root.type == bfd_link_hash_warning)
3846 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3847 *sym_hash = h;
3848
3849 new_weakdef = FALSE;
3850 if (dynamic
3851 && definition
3852 && (flags & BSF_WEAK) != 0
3853 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3854 && is_elf_hash_table (hash_table)
f6e332e6 3855 && h->u.weakdef == NULL)
4ad4eba5
AM
3856 {
3857 /* Keep a list of all weak defined non function symbols from
3858 a dynamic object, using the weakdef field. Later in this
3859 function we will set the weakdef field to the correct
3860 value. We only put non-function symbols from dynamic
3861 objects on this list, because that happens to be the only
3862 time we need to know the normal symbol corresponding to a
3863 weak symbol, and the information is time consuming to
3864 figure out. If the weakdef field is not already NULL,
3865 then this symbol was already defined by some previous
3866 dynamic object, and we will be using that previous
3867 definition anyhow. */
3868
f6e332e6 3869 h->u.weakdef = weaks;
4ad4eba5
AM
3870 weaks = h;
3871 new_weakdef = TRUE;
3872 }
3873
3874 /* Set the alignment of a common symbol. */
a4d8e49b 3875 if ((common || bfd_is_com_section (sec))
4ad4eba5
AM
3876 && h->root.type == bfd_link_hash_common)
3877 {
3878 unsigned int align;
3879
a4d8e49b 3880 if (common)
af44c138
L
3881 align = bfd_log2 (isym->st_value);
3882 else
3883 {
3884 /* The new symbol is a common symbol in a shared object.
3885 We need to get the alignment from the section. */
3886 align = new_sec->alignment_power;
3887 }
4ad4eba5
AM
3888 if (align > old_alignment
3889 /* Permit an alignment power of zero if an alignment of one
3890 is specified and no other alignments have been specified. */
3891 || (isym->st_value == 1 && old_alignment == 0))
3892 h->root.u.c.p->alignment_power = align;
3893 else
3894 h->root.u.c.p->alignment_power = old_alignment;
3895 }
3896
3897 if (is_elf_hash_table (hash_table))
3898 {
4ad4eba5 3899 bfd_boolean dynsym;
4ad4eba5
AM
3900
3901 /* Check the alignment when a common symbol is involved. This
3902 can change when a common symbol is overridden by a normal
3903 definition or a common symbol is ignored due to the old
3904 normal definition. We need to make sure the maximum
3905 alignment is maintained. */
a4d8e49b 3906 if ((old_alignment || common)
4ad4eba5
AM
3907 && h->root.type != bfd_link_hash_common)
3908 {
3909 unsigned int common_align;
3910 unsigned int normal_align;
3911 unsigned int symbol_align;
3912 bfd *normal_bfd;
3913 bfd *common_bfd;
3914
3915 symbol_align = ffs (h->root.u.def.value) - 1;
3916 if (h->root.u.def.section->owner != NULL
3917 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3918 {
3919 normal_align = h->root.u.def.section->alignment_power;
3920 if (normal_align > symbol_align)
3921 normal_align = symbol_align;
3922 }
3923 else
3924 normal_align = symbol_align;
3925
3926 if (old_alignment)
3927 {
3928 common_align = old_alignment;
3929 common_bfd = old_bfd;
3930 normal_bfd = abfd;
3931 }
3932 else
3933 {
3934 common_align = bfd_log2 (isym->st_value);
3935 common_bfd = abfd;
3936 normal_bfd = old_bfd;
3937 }
3938
3939 if (normal_align < common_align)
3940 (*_bfd_error_handler)
d003868e
AM
3941 (_("Warning: alignment %u of symbol `%s' in %B"
3942 " is smaller than %u in %B"),
3943 normal_bfd, common_bfd,
3944 1 << normal_align, name, 1 << common_align);
4ad4eba5
AM
3945 }
3946
3947 /* Remember the symbol size and type. */
3948 if (isym->st_size != 0
3949 && (definition || h->size == 0))
3950 {
3951 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3952 (*_bfd_error_handler)
d003868e
AM
3953 (_("Warning: size of symbol `%s' changed"
3954 " from %lu in %B to %lu in %B"),
3955 old_bfd, abfd,
4ad4eba5 3956 name, (unsigned long) h->size,
d003868e 3957 (unsigned long) isym->st_size);
4ad4eba5
AM
3958
3959 h->size = isym->st_size;
3960 }
3961
3962 /* If this is a common symbol, then we always want H->SIZE
3963 to be the size of the common symbol. The code just above
3964 won't fix the size if a common symbol becomes larger. We
3965 don't warn about a size change here, because that is
3966 covered by --warn-common. */
3967 if (h->root.type == bfd_link_hash_common)
3968 h->size = h->root.u.c.size;
3969
3970 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3971 && (definition || h->type == STT_NOTYPE))
3972 {
3973 if (h->type != STT_NOTYPE
3974 && h->type != ELF_ST_TYPE (isym->st_info)
3975 && ! type_change_ok)
3976 (*_bfd_error_handler)
d003868e
AM
3977 (_("Warning: type of symbol `%s' changed"
3978 " from %d to %d in %B"),
3979 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4ad4eba5
AM
3980
3981 h->type = ELF_ST_TYPE (isym->st_info);
3982 }
3983
3984 /* If st_other has a processor-specific meaning, specific
3985 code might be needed here. We never merge the visibility
3986 attribute with the one from a dynamic object. */
3987 if (bed->elf_backend_merge_symbol_attribute)
3988 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3989 dynamic);
3990
b58f81ae
DJ
3991 /* If this symbol has default visibility and the user has requested
3992 we not re-export it, then mark it as hidden. */
3993 if (definition && !dynamic
3994 && (abfd->no_export
3995 || (abfd->my_archive && abfd->my_archive->no_export))
3996 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3997 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3998
4ad4eba5
AM
3999 if (isym->st_other != 0 && !dynamic)
4000 {
4001 unsigned char hvis, symvis, other, nvis;
4002
4003 /* Take the balance of OTHER from the definition. */
4004 other = (definition ? isym->st_other : h->other);
4005 other &= ~ ELF_ST_VISIBILITY (-1);
4006
4007 /* Combine visibilities, using the most constraining one. */
4008 hvis = ELF_ST_VISIBILITY (h->other);
4009 symvis = ELF_ST_VISIBILITY (isym->st_other);
4010 if (! hvis)
4011 nvis = symvis;
4012 else if (! symvis)
4013 nvis = hvis;
4014 else
4015 nvis = hvis < symvis ? hvis : symvis;
4016
4017 h->other = other | nvis;
4018 }
4019
4020 /* Set a flag in the hash table entry indicating the type of
4021 reference or definition we just found. Keep a count of
4022 the number of dynamic symbols we find. A dynamic symbol
4023 is one which is referenced or defined by both a regular
4024 object and a shared object. */
4ad4eba5
AM
4025 dynsym = FALSE;
4026 if (! dynamic)
4027 {
4028 if (! definition)
4029 {
f5385ebf 4030 h->ref_regular = 1;
4ad4eba5 4031 if (bind != STB_WEAK)
f5385ebf 4032 h->ref_regular_nonweak = 1;
4ad4eba5
AM
4033 }
4034 else
f5385ebf 4035 h->def_regular = 1;
4ad4eba5 4036 if (! info->executable
f5385ebf
AM
4037 || h->def_dynamic
4038 || h->ref_dynamic)
4ad4eba5
AM
4039 dynsym = TRUE;
4040 }
4041 else
4042 {
4043 if (! definition)
f5385ebf 4044 h->ref_dynamic = 1;
4ad4eba5 4045 else
f5385ebf
AM
4046 h->def_dynamic = 1;
4047 if (h->def_regular
4048 || h->ref_regular
f6e332e6 4049 || (h->u.weakdef != NULL
4ad4eba5 4050 && ! new_weakdef
f6e332e6 4051 && h->u.weakdef->dynindx != -1))
4ad4eba5
AM
4052 dynsym = TRUE;
4053 }
4054
4ad4eba5
AM
4055 /* Check to see if we need to add an indirect symbol for
4056 the default name. */
4057 if (definition || h->root.type == bfd_link_hash_common)
4058 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4059 &sec, &value, &dynsym,
4060 override))
4061 goto error_free_vers;
4062
4063 if (definition && !dynamic)
4064 {
4065 char *p = strchr (name, ELF_VER_CHR);
4066 if (p != NULL && p[1] != ELF_VER_CHR)
4067 {
4068 /* Queue non-default versions so that .symver x, x@FOO
4069 aliases can be checked. */
4070 if (! nondeflt_vers)
4071 {
4072 amt = (isymend - isym + 1)
4073 * sizeof (struct elf_link_hash_entry *);
4074 nondeflt_vers = bfd_malloc (amt);
4075 }
4076 nondeflt_vers [nondeflt_vers_cnt++] = h;
4077 }
4078 }
4079
4080 if (dynsym && h->dynindx == -1)
4081 {
c152c796 4082 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5 4083 goto error_free_vers;
f6e332e6 4084 if (h->u.weakdef != NULL
4ad4eba5 4085 && ! new_weakdef
f6e332e6 4086 && h->u.weakdef->dynindx == -1)
4ad4eba5 4087 {
f6e332e6 4088 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4ad4eba5
AM
4089 goto error_free_vers;
4090 }
4091 }
4092 else if (dynsym && h->dynindx != -1)
4093 /* If the symbol already has a dynamic index, but
4094 visibility says it should not be visible, turn it into
4095 a local symbol. */
4096 switch (ELF_ST_VISIBILITY (h->other))
4097 {
4098 case STV_INTERNAL:
4099 case STV_HIDDEN:
4100 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4101 dynsym = FALSE;
4102 break;
4103 }
4104
4105 if (!add_needed
4106 && definition
4107 && dynsym
f5385ebf 4108 && h->ref_regular)
4ad4eba5
AM
4109 {
4110 int ret;
4111 const char *soname = elf_dt_name (abfd);
4112
4113 /* A symbol from a library loaded via DT_NEEDED of some
4114 other library is referenced by a regular object.
e56f61be
L
4115 Add a DT_NEEDED entry for it. Issue an error if
4116 --no-add-needed is used. */
4117 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4118 {
4119 (*_bfd_error_handler)
4120 (_("%s: invalid DSO for symbol `%s' definition"),
d003868e 4121 abfd, name);
e56f61be
L
4122 bfd_set_error (bfd_error_bad_value);
4123 goto error_free_vers;
4124 }
4125
a5db907e
AM
4126 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4127
4ad4eba5 4128 add_needed = TRUE;
7e9f0867 4129 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4ad4eba5
AM
4130 if (ret < 0)
4131 goto error_free_vers;
4132
4133 BFD_ASSERT (ret == 0);
4134 }
4135 }
4136 }
4137
4138 /* Now that all the symbols from this input file are created, handle
4139 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4140 if (nondeflt_vers != NULL)
4141 {
4142 bfd_size_type cnt, symidx;
4143
4144 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4145 {
4146 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4147 char *shortname, *p;
4148
4149 p = strchr (h->root.root.string, ELF_VER_CHR);
4150 if (p == NULL
4151 || (h->root.type != bfd_link_hash_defined
4152 && h->root.type != bfd_link_hash_defweak))
4153 continue;
4154
4155 amt = p - h->root.root.string;
4156 shortname = bfd_malloc (amt + 1);
4157 memcpy (shortname, h->root.root.string, amt);
4158 shortname[amt] = '\0';
4159
4160 hi = (struct elf_link_hash_entry *)
4161 bfd_link_hash_lookup (&hash_table->root, shortname,
4162 FALSE, FALSE, FALSE);
4163 if (hi != NULL
4164 && hi->root.type == h->root.type
4165 && hi->root.u.def.value == h->root.u.def.value
4166 && hi->root.u.def.section == h->root.u.def.section)
4167 {
4168 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4169 hi->root.type = bfd_link_hash_indirect;
4170 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4171 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4172 sym_hash = elf_sym_hashes (abfd);
4173 if (sym_hash)
4174 for (symidx = 0; symidx < extsymcount; ++symidx)
4175 if (sym_hash[symidx] == hi)
4176 {
4177 sym_hash[symidx] = h;
4178 break;
4179 }
4180 }
4181 free (shortname);
4182 }
4183 free (nondeflt_vers);
4184 nondeflt_vers = NULL;
4185 }
4186
4187 if (extversym != NULL)
4188 {
4189 free (extversym);
4190 extversym = NULL;
4191 }
4192
4193 if (isymbuf != NULL)
4194 free (isymbuf);
4195 isymbuf = NULL;
4196
ec13b3bb
AM
4197 if (!add_needed
4198 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
77cfaee6 4199 {
ec13b3bb
AM
4200 /* Remove symbols defined in an as-needed shared lib that wasn't
4201 needed. */
77cfaee6
AM
4202 struct elf_smash_syms_data inf;
4203 inf.not_needed = abfd;
4204 inf.htab = hash_table;
4205 inf.twiddled = FALSE;
4206 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4207 if (inf.twiddled)
4208 bfd_link_repair_undef_list (&hash_table->root);
4209 weaks = NULL;
4210 }
4211
4ad4eba5
AM
4212 /* Now set the weakdefs field correctly for all the weak defined
4213 symbols we found. The only way to do this is to search all the
4214 symbols. Since we only need the information for non functions in
4215 dynamic objects, that's the only time we actually put anything on
4216 the list WEAKS. We need this information so that if a regular
4217 object refers to a symbol defined weakly in a dynamic object, the
4218 real symbol in the dynamic object is also put in the dynamic
4219 symbols; we also must arrange for both symbols to point to the
4220 same memory location. We could handle the general case of symbol
4221 aliasing, but a general symbol alias can only be generated in
4222 assembler code, handling it correctly would be very time
4223 consuming, and other ELF linkers don't handle general aliasing
4224 either. */
4225 if (weaks != NULL)
4226 {
4227 struct elf_link_hash_entry **hpp;
4228 struct elf_link_hash_entry **hppend;
4229 struct elf_link_hash_entry **sorted_sym_hash;
4230 struct elf_link_hash_entry *h;
4231 size_t sym_count;
4232
4233 /* Since we have to search the whole symbol list for each weak
4234 defined symbol, search time for N weak defined symbols will be
4235 O(N^2). Binary search will cut it down to O(NlogN). */
4236 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4237 sorted_sym_hash = bfd_malloc (amt);
4238 if (sorted_sym_hash == NULL)
4239 goto error_return;
4240 sym_hash = sorted_sym_hash;
4241 hpp = elf_sym_hashes (abfd);
4242 hppend = hpp + extsymcount;
4243 sym_count = 0;
4244 for (; hpp < hppend; hpp++)
4245 {
4246 h = *hpp;
4247 if (h != NULL
4248 && h->root.type == bfd_link_hash_defined
4249 && h->type != STT_FUNC)
4250 {
4251 *sym_hash = h;
4252 sym_hash++;
4253 sym_count++;
4254 }
4255 }
4256
4257 qsort (sorted_sym_hash, sym_count,
4258 sizeof (struct elf_link_hash_entry *),
4259 elf_sort_symbol);
4260
4261 while (weaks != NULL)
4262 {
4263 struct elf_link_hash_entry *hlook;
4264 asection *slook;
4265 bfd_vma vlook;
4266 long ilook;
4267 size_t i, j, idx;
4268
4269 hlook = weaks;
f6e332e6
AM
4270 weaks = hlook->u.weakdef;
4271 hlook->u.weakdef = NULL;
4ad4eba5
AM
4272
4273 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4274 || hlook->root.type == bfd_link_hash_defweak
4275 || hlook->root.type == bfd_link_hash_common
4276 || hlook->root.type == bfd_link_hash_indirect);
4277 slook = hlook->root.u.def.section;
4278 vlook = hlook->root.u.def.value;
4279
4280 ilook = -1;
4281 i = 0;
4282 j = sym_count;
4283 while (i < j)
4284 {
4285 bfd_signed_vma vdiff;
4286 idx = (i + j) / 2;
4287 h = sorted_sym_hash [idx];
4288 vdiff = vlook - h->root.u.def.value;
4289 if (vdiff < 0)
4290 j = idx;
4291 else if (vdiff > 0)
4292 i = idx + 1;
4293 else
4294 {
a9b881be 4295 long sdiff = slook->id - h->root.u.def.section->id;
4ad4eba5
AM
4296 if (sdiff < 0)
4297 j = idx;
4298 else if (sdiff > 0)
4299 i = idx + 1;
4300 else
4301 {
4302 ilook = idx;
4303 break;
4304 }
4305 }
4306 }
4307
4308 /* We didn't find a value/section match. */
4309 if (ilook == -1)
4310 continue;
4311
4312 for (i = ilook; i < sym_count; i++)
4313 {
4314 h = sorted_sym_hash [i];
4315
4316 /* Stop if value or section doesn't match. */
4317 if (h->root.u.def.value != vlook
4318 || h->root.u.def.section != slook)
4319 break;
4320 else if (h != hlook)
4321 {
f6e332e6 4322 hlook->u.weakdef = h;
4ad4eba5
AM
4323
4324 /* If the weak definition is in the list of dynamic
4325 symbols, make sure the real definition is put
4326 there as well. */
4327 if (hlook->dynindx != -1 && h->dynindx == -1)
4328 {
c152c796 4329 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4ad4eba5
AM
4330 goto error_return;
4331 }
4332
4333 /* If the real definition is in the list of dynamic
4334 symbols, make sure the weak definition is put
4335 there as well. If we don't do this, then the
4336 dynamic loader might not merge the entries for the
4337 real definition and the weak definition. */
4338 if (h->dynindx != -1 && hlook->dynindx == -1)
4339 {
c152c796 4340 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4ad4eba5
AM
4341 goto error_return;
4342 }
4343 break;
4344 }
4345 }
4346 }
4347
4348 free (sorted_sym_hash);
4349 }
4350
85fbca6a
NC
4351 check_directives = get_elf_backend_data (abfd)->check_directives;
4352 if (check_directives)
4353 check_directives (abfd, info);
4354
4ad4eba5
AM
4355 /* If this object is the same format as the output object, and it is
4356 not a shared library, then let the backend look through the
4357 relocs.
4358
4359 This is required to build global offset table entries and to
4360 arrange for dynamic relocs. It is not required for the
4361 particular common case of linking non PIC code, even when linking
4362 against shared libraries, but unfortunately there is no way of
4363 knowing whether an object file has been compiled PIC or not.
4364 Looking through the relocs is not particularly time consuming.
4365 The problem is that we must either (1) keep the relocs in memory,
4366 which causes the linker to require additional runtime memory or
4367 (2) read the relocs twice from the input file, which wastes time.
4368 This would be a good case for using mmap.
4369
4370 I have no idea how to handle linking PIC code into a file of a
4371 different format. It probably can't be done. */
4372 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4373 if (! dynamic
4374 && is_elf_hash_table (hash_table)
4375 && hash_table->root.creator == abfd->xvec
4376 && check_relocs != NULL)
4377 {
4378 asection *o;
4379
4380 for (o = abfd->sections; o != NULL; o = o->next)
4381 {
4382 Elf_Internal_Rela *internal_relocs;
4383 bfd_boolean ok;
4384
4385 if ((o->flags & SEC_RELOC) == 0
4386 || o->reloc_count == 0
4387 || ((info->strip == strip_all || info->strip == strip_debugger)
4388 && (o->flags & SEC_DEBUGGING) != 0)
4389 || bfd_is_abs_section (o->output_section))
4390 continue;
4391
4392 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4393 info->keep_memory);
4394 if (internal_relocs == NULL)
4395 goto error_return;
4396
4397 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4398
4399 if (elf_section_data (o)->relocs != internal_relocs)
4400 free (internal_relocs);
4401
4402 if (! ok)
4403 goto error_return;
4404 }
4405 }
4406
4407 /* If this is a non-traditional link, try to optimize the handling
4408 of the .stab/.stabstr sections. */
4409 if (! dynamic
4410 && ! info->traditional_format
4411 && is_elf_hash_table (hash_table)
4412 && (info->strip != strip_all && info->strip != strip_debugger))
4413 {
4414 asection *stabstr;
4415
4416 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4417 if (stabstr != NULL)
4418 {
4419 bfd_size_type string_offset = 0;
4420 asection *stab;
4421
4422 for (stab = abfd->sections; stab; stab = stab->next)
4423 if (strncmp (".stab", stab->name, 5) == 0
4424 && (!stab->name[5] ||
4425 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4426 && (stab->flags & SEC_MERGE) == 0
4427 && !bfd_is_abs_section (stab->output_section))
4428 {
4429 struct bfd_elf_section_data *secdata;
4430
4431 secdata = elf_section_data (stab);
4432 if (! _bfd_link_section_stabs (abfd,
3722b82f 4433 &hash_table->stab_info,
4ad4eba5
AM
4434 stab, stabstr,
4435 &secdata->sec_info,
4436 &string_offset))
4437 goto error_return;
4438 if (secdata->sec_info)
4439 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4440 }
4441 }
4442 }
4443
77cfaee6 4444 if (is_elf_hash_table (hash_table) && add_needed)
4ad4eba5
AM
4445 {
4446 /* Add this bfd to the loaded list. */
4447 struct elf_link_loaded_list *n;
4448
4449 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4450 if (n == NULL)
4451 goto error_return;
4452 n->abfd = abfd;
4453 n->next = hash_table->loaded;
4454 hash_table->loaded = n;
4455 }
4456
4457 return TRUE;
4458
4459 error_free_vers:
4460 if (nondeflt_vers != NULL)
4461 free (nondeflt_vers);
4462 if (extversym != NULL)
4463 free (extversym);
4464 error_free_sym:
4465 if (isymbuf != NULL)
4466 free (isymbuf);
4467 error_return:
4468 return FALSE;
4469}
4470
8387904d
AM
4471/* Return the linker hash table entry of a symbol that might be
4472 satisfied by an archive symbol. Return -1 on error. */
4473
4474struct elf_link_hash_entry *
4475_bfd_elf_archive_symbol_lookup (bfd *abfd,
4476 struct bfd_link_info *info,
4477 const char *name)
4478{
4479 struct elf_link_hash_entry *h;
4480 char *p, *copy;
4481 size_t len, first;
4482
4483 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4484 if (h != NULL)
4485 return h;
4486
4487 /* If this is a default version (the name contains @@), look up the
4488 symbol again with only one `@' as well as without the version.
4489 The effect is that references to the symbol with and without the
4490 version will be matched by the default symbol in the archive. */
4491
4492 p = strchr (name, ELF_VER_CHR);
4493 if (p == NULL || p[1] != ELF_VER_CHR)
4494 return h;
4495
4496 /* First check with only one `@'. */
4497 len = strlen (name);
4498 copy = bfd_alloc (abfd, len);
4499 if (copy == NULL)
4500 return (struct elf_link_hash_entry *) 0 - 1;
4501
4502 first = p - name + 1;
4503 memcpy (copy, name, first);
4504 memcpy (copy + first, name + first + 1, len - first);
4505
4506 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4507 if (h == NULL)
4508 {
4509 /* We also need to check references to the symbol without the
4510 version. */
4511 copy[first - 1] = '\0';
4512 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4513 FALSE, FALSE, FALSE);
4514 }
4515
4516 bfd_release (abfd, copy);
4517 return h;
4518}
4519
0ad989f9
L
4520/* Add symbols from an ELF archive file to the linker hash table. We
4521 don't use _bfd_generic_link_add_archive_symbols because of a
4522 problem which arises on UnixWare. The UnixWare libc.so is an
4523 archive which includes an entry libc.so.1 which defines a bunch of
4524 symbols. The libc.so archive also includes a number of other
4525 object files, which also define symbols, some of which are the same
4526 as those defined in libc.so.1. Correct linking requires that we
4527 consider each object file in turn, and include it if it defines any
4528 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4529 this; it looks through the list of undefined symbols, and includes
4530 any object file which defines them. When this algorithm is used on
4531 UnixWare, it winds up pulling in libc.so.1 early and defining a
4532 bunch of symbols. This means that some of the other objects in the
4533 archive are not included in the link, which is incorrect since they
4534 precede libc.so.1 in the archive.
4535
4536 Fortunately, ELF archive handling is simpler than that done by
4537 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4538 oddities. In ELF, if we find a symbol in the archive map, and the
4539 symbol is currently undefined, we know that we must pull in that
4540 object file.
4541
4542 Unfortunately, we do have to make multiple passes over the symbol
4543 table until nothing further is resolved. */
4544
4ad4eba5
AM
4545static bfd_boolean
4546elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
0ad989f9
L
4547{
4548 symindex c;
4549 bfd_boolean *defined = NULL;
4550 bfd_boolean *included = NULL;
4551 carsym *symdefs;
4552 bfd_boolean loop;
4553 bfd_size_type amt;
8387904d
AM
4554 const struct elf_backend_data *bed;
4555 struct elf_link_hash_entry * (*archive_symbol_lookup)
4556 (bfd *, struct bfd_link_info *, const char *);
0ad989f9
L
4557
4558 if (! bfd_has_map (abfd))
4559 {
4560 /* An empty archive is a special case. */
4561 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4562 return TRUE;
4563 bfd_set_error (bfd_error_no_armap);
4564 return FALSE;
4565 }
4566
4567 /* Keep track of all symbols we know to be already defined, and all
4568 files we know to be already included. This is to speed up the
4569 second and subsequent passes. */
4570 c = bfd_ardata (abfd)->symdef_count;
4571 if (c == 0)
4572 return TRUE;
4573 amt = c;
4574 amt *= sizeof (bfd_boolean);
4575 defined = bfd_zmalloc (amt);
4576 included = bfd_zmalloc (amt);
4577 if (defined == NULL || included == NULL)
4578 goto error_return;
4579
4580 symdefs = bfd_ardata (abfd)->symdefs;
8387904d
AM
4581 bed = get_elf_backend_data (abfd);
4582 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
0ad989f9
L
4583
4584 do
4585 {
4586 file_ptr last;
4587 symindex i;
4588 carsym *symdef;
4589 carsym *symdefend;
4590
4591 loop = FALSE;
4592 last = -1;
4593
4594 symdef = symdefs;
4595 symdefend = symdef + c;
4596 for (i = 0; symdef < symdefend; symdef++, i++)
4597 {
4598 struct elf_link_hash_entry *h;
4599 bfd *element;
4600 struct bfd_link_hash_entry *undefs_tail;
4601 symindex mark;
4602
4603 if (defined[i] || included[i])
4604 continue;
4605 if (symdef->file_offset == last)
4606 {
4607 included[i] = TRUE;
4608 continue;
4609 }
4610
8387904d
AM
4611 h = archive_symbol_lookup (abfd, info, symdef->name);
4612 if (h == (struct elf_link_hash_entry *) 0 - 1)
4613 goto error_return;
0ad989f9
L
4614
4615 if (h == NULL)
4616 continue;
4617
4618 if (h->root.type == bfd_link_hash_common)
4619 {
4620 /* We currently have a common symbol. The archive map contains
4621 a reference to this symbol, so we may want to include it. We
4622 only want to include it however, if this archive element
4623 contains a definition of the symbol, not just another common
4624 declaration of it.
4625
4626 Unfortunately some archivers (including GNU ar) will put
4627 declarations of common symbols into their archive maps, as
4628 well as real definitions, so we cannot just go by the archive
4629 map alone. Instead we must read in the element's symbol
4630 table and check that to see what kind of symbol definition
4631 this is. */
4632 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4633 continue;
4634 }
4635 else if (h->root.type != bfd_link_hash_undefined)
4636 {
4637 if (h->root.type != bfd_link_hash_undefweak)
4638 defined[i] = TRUE;
4639 continue;
4640 }
4641
4642 /* We need to include this archive member. */
4643 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4644 if (element == NULL)
4645 goto error_return;
4646
4647 if (! bfd_check_format (element, bfd_object))
4648 goto error_return;
4649
4650 /* Doublecheck that we have not included this object
4651 already--it should be impossible, but there may be
4652 something wrong with the archive. */
4653 if (element->archive_pass != 0)
4654 {
4655 bfd_set_error (bfd_error_bad_value);
4656 goto error_return;
4657 }
4658 element->archive_pass = 1;
4659
4660 undefs_tail = info->hash->undefs_tail;
4661
4662 if (! (*info->callbacks->add_archive_element) (info, element,
4663 symdef->name))
4664 goto error_return;
4665 if (! bfd_link_add_symbols (element, info))
4666 goto error_return;
4667
4668 /* If there are any new undefined symbols, we need to make
4669 another pass through the archive in order to see whether
4670 they can be defined. FIXME: This isn't perfect, because
4671 common symbols wind up on undefs_tail and because an
4672 undefined symbol which is defined later on in this pass
4673 does not require another pass. This isn't a bug, but it
4674 does make the code less efficient than it could be. */
4675 if (undefs_tail != info->hash->undefs_tail)
4676 loop = TRUE;
4677
4678 /* Look backward to mark all symbols from this object file
4679 which we have already seen in this pass. */
4680 mark = i;
4681 do
4682 {
4683 included[mark] = TRUE;
4684 if (mark == 0)
4685 break;
4686 --mark;
4687 }
4688 while (symdefs[mark].file_offset == symdef->file_offset);
4689
4690 /* We mark subsequent symbols from this object file as we go
4691 on through the loop. */
4692 last = symdef->file_offset;
4693 }
4694 }
4695 while (loop);
4696
4697 free (defined);
4698 free (included);
4699
4700 return TRUE;
4701
4702 error_return:
4703 if (defined != NULL)
4704 free (defined);
4705 if (included != NULL)
4706 free (included);
4707 return FALSE;
4708}
4ad4eba5
AM
4709
4710/* Given an ELF BFD, add symbols to the global hash table as
4711 appropriate. */
4712
4713bfd_boolean
4714bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4715{
4716 switch (bfd_get_format (abfd))
4717 {
4718 case bfd_object:
4719 return elf_link_add_object_symbols (abfd, info);
4720 case bfd_archive:
4721 return elf_link_add_archive_symbols (abfd, info);
4722 default:
4723 bfd_set_error (bfd_error_wrong_format);
4724 return FALSE;
4725 }
4726}
5a580b3a
AM
4727\f
4728/* This function will be called though elf_link_hash_traverse to store
4729 all hash value of the exported symbols in an array. */
4730
4731static bfd_boolean
4732elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4733{
4734 unsigned long **valuep = data;
4735 const char *name;
4736 char *p;
4737 unsigned long ha;
4738 char *alc = NULL;
4739
4740 if (h->root.type == bfd_link_hash_warning)
4741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4742
4743 /* Ignore indirect symbols. These are added by the versioning code. */
4744 if (h->dynindx == -1)
4745 return TRUE;
4746
4747 name = h->root.root.string;
4748 p = strchr (name, ELF_VER_CHR);
4749 if (p != NULL)
4750 {
4751 alc = bfd_malloc (p - name + 1);
4752 memcpy (alc, name, p - name);
4753 alc[p - name] = '\0';
4754 name = alc;
4755 }
4756
4757 /* Compute the hash value. */
4758 ha = bfd_elf_hash (name);
4759
4760 /* Store the found hash value in the array given as the argument. */
4761 *(*valuep)++ = ha;
4762
4763 /* And store it in the struct so that we can put it in the hash table
4764 later. */
f6e332e6 4765 h->u.elf_hash_value = ha;
5a580b3a
AM
4766
4767 if (alc != NULL)
4768 free (alc);
4769
4770 return TRUE;
4771}
4772
4773/* Array used to determine the number of hash table buckets to use
4774 based on the number of symbols there are. If there are fewer than
4775 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4776 fewer than 37 we use 17 buckets, and so forth. We never use more
4777 than 32771 buckets. */
4778
4779static const size_t elf_buckets[] =
4780{
4781 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4782 16411, 32771, 0
4783};
4784
4785/* Compute bucket count for hashing table. We do not use a static set
4786 of possible tables sizes anymore. Instead we determine for all
4787 possible reasonable sizes of the table the outcome (i.e., the
4788 number of collisions etc) and choose the best solution. The
4789 weighting functions are not too simple to allow the table to grow
4790 without bounds. Instead one of the weighting factors is the size.
4791 Therefore the result is always a good payoff between few collisions
4792 (= short chain lengths) and table size. */
4793static size_t
4794compute_bucket_count (struct bfd_link_info *info)
4795{
4796 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4797 size_t best_size = 0;
4798 unsigned long int *hashcodes;
4799 unsigned long int *hashcodesp;
4800 unsigned long int i;
4801 bfd_size_type amt;
4802
4803 /* Compute the hash values for all exported symbols. At the same
4804 time store the values in an array so that we could use them for
4805 optimizations. */
4806 amt = dynsymcount;
4807 amt *= sizeof (unsigned long int);
4808 hashcodes = bfd_malloc (amt);
4809 if (hashcodes == NULL)
4810 return 0;
4811 hashcodesp = hashcodes;
4812
4813 /* Put all hash values in HASHCODES. */
4814 elf_link_hash_traverse (elf_hash_table (info),
4815 elf_collect_hash_codes, &hashcodesp);
4816
4817 /* We have a problem here. The following code to optimize the table
4818 size requires an integer type with more the 32 bits. If
4819 BFD_HOST_U_64_BIT is set we know about such a type. */
4820#ifdef BFD_HOST_U_64_BIT
4821 if (info->optimize)
4822 {
4823 unsigned long int nsyms = hashcodesp - hashcodes;
4824 size_t minsize;
4825 size_t maxsize;
4826 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4827 unsigned long int *counts ;
4828 bfd *dynobj = elf_hash_table (info)->dynobj;
4829 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4830
4831 /* Possible optimization parameters: if we have NSYMS symbols we say
4832 that the hashing table must at least have NSYMS/4 and at most
4833 2*NSYMS buckets. */
4834 minsize = nsyms / 4;
4835 if (minsize == 0)
4836 minsize = 1;
4837 best_size = maxsize = nsyms * 2;
4838
4839 /* Create array where we count the collisions in. We must use bfd_malloc
4840 since the size could be large. */
4841 amt = maxsize;
4842 amt *= sizeof (unsigned long int);
4843 counts = bfd_malloc (amt);
4844 if (counts == NULL)
4845 {
4846 free (hashcodes);
4847 return 0;
4848 }
4849
4850 /* Compute the "optimal" size for the hash table. The criteria is a
4851 minimal chain length. The minor criteria is (of course) the size
4852 of the table. */
4853 for (i = minsize; i < maxsize; ++i)
4854 {
4855 /* Walk through the array of hashcodes and count the collisions. */
4856 BFD_HOST_U_64_BIT max;
4857 unsigned long int j;
4858 unsigned long int fact;
4859
4860 memset (counts, '\0', i * sizeof (unsigned long int));
4861
4862 /* Determine how often each hash bucket is used. */
4863 for (j = 0; j < nsyms; ++j)
4864 ++counts[hashcodes[j] % i];
4865
4866 /* For the weight function we need some information about the
4867 pagesize on the target. This is information need not be 100%
4868 accurate. Since this information is not available (so far) we
4869 define it here to a reasonable default value. If it is crucial
4870 to have a better value some day simply define this value. */
4871# ifndef BFD_TARGET_PAGESIZE
4872# define BFD_TARGET_PAGESIZE (4096)
4873# endif
4874
4875 /* We in any case need 2 + NSYMS entries for the size values and
4876 the chains. */
4877 max = (2 + nsyms) * (bed->s->arch_size / 8);
4878
4879# if 1
4880 /* Variant 1: optimize for short chains. We add the squares
4881 of all the chain lengths (which favors many small chain
4882 over a few long chains). */
4883 for (j = 0; j < i; ++j)
4884 max += counts[j] * counts[j];
4885
4886 /* This adds penalties for the overall size of the table. */
4887 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4888 max *= fact * fact;
4889# else
4890 /* Variant 2: Optimize a lot more for small table. Here we
4891 also add squares of the size but we also add penalties for
4892 empty slots (the +1 term). */
4893 for (j = 0; j < i; ++j)
4894 max += (1 + counts[j]) * (1 + counts[j]);
4895
4896 /* The overall size of the table is considered, but not as
4897 strong as in variant 1, where it is squared. */
4898 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4899 max *= fact;
4900# endif
4901
4902 /* Compare with current best results. */
4903 if (max < best_chlen)
4904 {
4905 best_chlen = max;
4906 best_size = i;
4907 }
4908 }
4909
4910 free (counts);
4911 }
4912 else
4913#endif /* defined (BFD_HOST_U_64_BIT) */
4914 {
4915 /* This is the fallback solution if no 64bit type is available or if we
4916 are not supposed to spend much time on optimizations. We select the
4917 bucket count using a fixed set of numbers. */
4918 for (i = 0; elf_buckets[i] != 0; i++)
4919 {
4920 best_size = elf_buckets[i];
4921 if (dynsymcount < elf_buckets[i + 1])
4922 break;
4923 }
4924 }
4925
4926 /* Free the arrays we needed. */
4927 free (hashcodes);
4928
4929 return best_size;
4930}
4931
4932/* Set up the sizes and contents of the ELF dynamic sections. This is
4933 called by the ELF linker emulation before_allocation routine. We
4934 must set the sizes of the sections before the linker sets the
4935 addresses of the various sections. */
4936
4937bfd_boolean
4938bfd_elf_size_dynamic_sections (bfd *output_bfd,
4939 const char *soname,
4940 const char *rpath,
4941 const char *filter_shlib,
4942 const char * const *auxiliary_filters,
4943 struct bfd_link_info *info,
4944 asection **sinterpptr,
4945 struct bfd_elf_version_tree *verdefs)
4946{
4947 bfd_size_type soname_indx;
4948 bfd *dynobj;
4949 const struct elf_backend_data *bed;
4950 struct elf_assign_sym_version_info asvinfo;
4951
4952 *sinterpptr = NULL;
4953
4954 soname_indx = (bfd_size_type) -1;
4955
4956 if (!is_elf_hash_table (info->hash))
4957 return TRUE;
4958
8c37241b 4959 elf_tdata (output_bfd)->relro = info->relro;
5a580b3a
AM
4960 if (info->execstack)
4961 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4962 else if (info->noexecstack)
4963 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4964 else
4965 {
4966 bfd *inputobj;
4967 asection *notesec = NULL;
4968 int exec = 0;
4969
4970 for (inputobj = info->input_bfds;
4971 inputobj;
4972 inputobj = inputobj->link_next)
4973 {
4974 asection *s;
4975
d457dcf6 4976 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5a580b3a
AM
4977 continue;
4978 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4979 if (s)
4980 {
4981 if (s->flags & SEC_CODE)
4982 exec = PF_X;
4983 notesec = s;
4984 }
4985 else
4986 exec = PF_X;
4987 }
4988 if (notesec)
4989 {
4990 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4991 if (exec && info->relocatable
4992 && notesec->output_section != bfd_abs_section_ptr)
4993 notesec->output_section->flags |= SEC_CODE;
4994 }
4995 }
4996
4997 /* Any syms created from now on start with -1 in
4998 got.refcount/offset and plt.refcount/offset. */
a6aa5195
AM
4999 elf_hash_table (info)->init_got_refcount
5000 = elf_hash_table (info)->init_got_offset;
5001 elf_hash_table (info)->init_plt_refcount
5002 = elf_hash_table (info)->init_plt_offset;
5a580b3a
AM
5003
5004 /* The backend may have to create some sections regardless of whether
5005 we're dynamic or not. */
5006 bed = get_elf_backend_data (output_bfd);
5007 if (bed->elf_backend_always_size_sections
5008 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5009 return FALSE;
5010
5011 dynobj = elf_hash_table (info)->dynobj;
5012
5013 /* If there were no dynamic objects in the link, there is nothing to
5014 do here. */
5015 if (dynobj == NULL)
5016 return TRUE;
5017
5018 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5019 return FALSE;
5020
5021 if (elf_hash_table (info)->dynamic_sections_created)
5022 {
5023 struct elf_info_failed eif;
5024 struct elf_link_hash_entry *h;
5025 asection *dynstr;
5026 struct bfd_elf_version_tree *t;
5027 struct bfd_elf_version_expr *d;
046183de 5028 asection *s;
5a580b3a
AM
5029 bfd_boolean all_defined;
5030
5031 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5032 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5033
5034 if (soname != NULL)
5035 {
5036 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5037 soname, TRUE);
5038 if (soname_indx == (bfd_size_type) -1
5039 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5040 return FALSE;
5041 }
5042
5043 if (info->symbolic)
5044 {
5045 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5046 return FALSE;
5047 info->flags |= DF_SYMBOLIC;
5048 }
5049
5050 if (rpath != NULL)
5051 {
5052 bfd_size_type indx;
5053
5054 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5055 TRUE);
5056 if (indx == (bfd_size_type) -1
5057 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5058 return FALSE;
5059
5060 if (info->new_dtags)
5061 {
5062 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5063 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5064 return FALSE;
5065 }
5066 }
5067
5068 if (filter_shlib != NULL)
5069 {
5070 bfd_size_type indx;
5071
5072 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5073 filter_shlib, TRUE);
5074 if (indx == (bfd_size_type) -1
5075 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5076 return FALSE;
5077 }
5078
5079 if (auxiliary_filters != NULL)
5080 {
5081 const char * const *p;
5082
5083 for (p = auxiliary_filters; *p != NULL; p++)
5084 {
5085 bfd_size_type indx;
5086
5087 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5088 *p, TRUE);
5089 if (indx == (bfd_size_type) -1
5090 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5091 return FALSE;
5092 }
5093 }
5094
5095 eif.info = info;
5096 eif.verdefs = verdefs;
5097 eif.failed = FALSE;
5098
5099 /* If we are supposed to export all symbols into the dynamic symbol
5100 table (this is not the normal case), then do so. */
5101 if (info->export_dynamic)
5102 {
5103 elf_link_hash_traverse (elf_hash_table (info),
5104 _bfd_elf_export_symbol,
5105 &eif);
5106 if (eif.failed)
5107 return FALSE;
5108 }
5109
5110 /* Make all global versions with definition. */
5111 for (t = verdefs; t != NULL; t = t->next)
5112 for (d = t->globals.list; d != NULL; d = d->next)
5113 if (!d->symver && d->symbol)
5114 {
5115 const char *verstr, *name;
5116 size_t namelen, verlen, newlen;
5117 char *newname, *p;
5118 struct elf_link_hash_entry *newh;
5119
5120 name = d->symbol;
5121 namelen = strlen (name);
5122 verstr = t->name;
5123 verlen = strlen (verstr);
5124 newlen = namelen + verlen + 3;
5125
5126 newname = bfd_malloc (newlen);
5127 if (newname == NULL)
5128 return FALSE;
5129 memcpy (newname, name, namelen);
5130
5131 /* Check the hidden versioned definition. */
5132 p = newname + namelen;
5133 *p++ = ELF_VER_CHR;
5134 memcpy (p, verstr, verlen + 1);
5135 newh = elf_link_hash_lookup (elf_hash_table (info),
5136 newname, FALSE, FALSE,
5137 FALSE);
5138 if (newh == NULL
5139 || (newh->root.type != bfd_link_hash_defined
5140 && newh->root.type != bfd_link_hash_defweak))
5141 {
5142 /* Check the default versioned definition. */
5143 *p++ = ELF_VER_CHR;
5144 memcpy (p, verstr, verlen + 1);
5145 newh = elf_link_hash_lookup (elf_hash_table (info),
5146 newname, FALSE, FALSE,
5147 FALSE);
5148 }
5149 free (newname);
5150
5151 /* Mark this version if there is a definition and it is
5152 not defined in a shared object. */
5153 if (newh != NULL
f5385ebf 5154 && !newh->def_dynamic
5a580b3a
AM
5155 && (newh->root.type == bfd_link_hash_defined
5156 || newh->root.type == bfd_link_hash_defweak))
5157 d->symver = 1;
5158 }
5159
5160 /* Attach all the symbols to their version information. */
5161 asvinfo.output_bfd = output_bfd;
5162 asvinfo.info = info;
5163 asvinfo.verdefs = verdefs;
5164 asvinfo.failed = FALSE;
5165
5166 elf_link_hash_traverse (elf_hash_table (info),
5167 _bfd_elf_link_assign_sym_version,
5168 &asvinfo);
5169 if (asvinfo.failed)
5170 return FALSE;
5171
5172 if (!info->allow_undefined_version)
5173 {
5174 /* Check if all global versions have a definition. */
5175 all_defined = TRUE;
5176 for (t = verdefs; t != NULL; t = t->next)
5177 for (d = t->globals.list; d != NULL; d = d->next)
5178 if (!d->symver && !d->script)
5179 {
5180 (*_bfd_error_handler)
5181 (_("%s: undefined version: %s"),
5182 d->pattern, t->name);
5183 all_defined = FALSE;
5184 }
5185
5186 if (!all_defined)
5187 {
5188 bfd_set_error (bfd_error_bad_value);
5189 return FALSE;
5190 }
5191 }
5192
5193 /* Find all symbols which were defined in a dynamic object and make
5194 the backend pick a reasonable value for them. */
5195 elf_link_hash_traverse (elf_hash_table (info),
5196 _bfd_elf_adjust_dynamic_symbol,
5197 &eif);
5198 if (eif.failed)
5199 return FALSE;
5200
5201 /* Add some entries to the .dynamic section. We fill in some of the
ee75fd95 5202 values later, in bfd_elf_final_link, but we must add the entries
5a580b3a
AM
5203 now so that we know the final size of the .dynamic section. */
5204
5205 /* If there are initialization and/or finalization functions to
5206 call then add the corresponding DT_INIT/DT_FINI entries. */
5207 h = (info->init_function
5208 ? elf_link_hash_lookup (elf_hash_table (info),
5209 info->init_function, FALSE,
5210 FALSE, FALSE)
5211 : NULL);
5212 if (h != NULL
f5385ebf
AM
5213 && (h->ref_regular
5214 || h->def_regular))
5a580b3a
AM
5215 {
5216 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5217 return FALSE;
5218 }
5219 h = (info->fini_function
5220 ? elf_link_hash_lookup (elf_hash_table (info),
5221 info->fini_function, FALSE,
5222 FALSE, FALSE)
5223 : NULL);
5224 if (h != NULL
f5385ebf
AM
5225 && (h->ref_regular
5226 || h->def_regular))
5a580b3a
AM
5227 {
5228 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5229 return FALSE;
5230 }
5231
046183de
AM
5232 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5233 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5234 {
5235 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5236 if (! info->executable)
5237 {
5238 bfd *sub;
5239 asection *o;
5240
5241 for (sub = info->input_bfds; sub != NULL;
5242 sub = sub->link_next)
5243 for (o = sub->sections; o != NULL; o = o->next)
5244 if (elf_section_data (o)->this_hdr.sh_type
5245 == SHT_PREINIT_ARRAY)
5246 {
5247 (*_bfd_error_handler)
d003868e
AM
5248 (_("%B: .preinit_array section is not allowed in DSO"),
5249 sub);
5a580b3a
AM
5250 break;
5251 }
5252
5253 bfd_set_error (bfd_error_nonrepresentable_section);
5254 return FALSE;
5255 }
5256
5257 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5258 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5259 return FALSE;
5260 }
046183de
AM
5261 s = bfd_get_section_by_name (output_bfd, ".init_array");
5262 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5263 {
5264 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5265 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5266 return FALSE;
5267 }
046183de
AM
5268 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5269 if (s != NULL && s->linker_has_input)
5a580b3a
AM
5270 {
5271 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5272 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5273 return FALSE;
5274 }
5275
5276 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5277 /* If .dynstr is excluded from the link, we don't want any of
5278 these tags. Strictly, we should be checking each section
5279 individually; This quick check covers for the case where
5280 someone does a /DISCARD/ : { *(*) }. */
5281 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5282 {
5283 bfd_size_type strsize;
5284
5285 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5286 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5287 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5288 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5289 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5290 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5291 bed->s->sizeof_sym))
5292 return FALSE;
5293 }
5294 }
5295
5296 /* The backend must work out the sizes of all the other dynamic
5297 sections. */
5298 if (bed->elf_backend_size_dynamic_sections
5299 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5300 return FALSE;
5301
5302 if (elf_hash_table (info)->dynamic_sections_created)
5303 {
554220db 5304 unsigned long section_sym_count;
5a580b3a 5305 asection *s;
5a580b3a
AM
5306
5307 /* Set up the version definition section. */
5308 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5309 BFD_ASSERT (s != NULL);
5310
5311 /* We may have created additional version definitions if we are
5312 just linking a regular application. */
5313 verdefs = asvinfo.verdefs;
5314
5315 /* Skip anonymous version tag. */
5316 if (verdefs != NULL && verdefs->vernum == 0)
5317 verdefs = verdefs->next;
5318
3e3b46e5 5319 if (verdefs == NULL && !info->create_default_symver)
8423293d 5320 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5321 else
5322 {
5323 unsigned int cdefs;
5324 bfd_size_type size;
5325 struct bfd_elf_version_tree *t;
5326 bfd_byte *p;
5327 Elf_Internal_Verdef def;
5328 Elf_Internal_Verdaux defaux;
3e3b46e5
PB
5329 struct bfd_link_hash_entry *bh;
5330 struct elf_link_hash_entry *h;
5331 const char *name;
5a580b3a
AM
5332
5333 cdefs = 0;
5334 size = 0;
5335
5336 /* Make space for the base version. */
5337 size += sizeof (Elf_External_Verdef);
5338 size += sizeof (Elf_External_Verdaux);
5339 ++cdefs;
5340
3e3b46e5
PB
5341 /* Make space for the default version. */
5342 if (info->create_default_symver)
5343 {
5344 size += sizeof (Elf_External_Verdef);
5345 ++cdefs;
5346 }
5347
5a580b3a
AM
5348 for (t = verdefs; t != NULL; t = t->next)
5349 {
5350 struct bfd_elf_version_deps *n;
5351
5352 size += sizeof (Elf_External_Verdef);
5353 size += sizeof (Elf_External_Verdaux);
5354 ++cdefs;
5355
5356 for (n = t->deps; n != NULL; n = n->next)
5357 size += sizeof (Elf_External_Verdaux);
5358 }
5359
eea6121a
AM
5360 s->size = size;
5361 s->contents = bfd_alloc (output_bfd, s->size);
5362 if (s->contents == NULL && s->size != 0)
5a580b3a
AM
5363 return FALSE;
5364
5365 /* Fill in the version definition section. */
5366
5367 p = s->contents;
5368
5369 def.vd_version = VER_DEF_CURRENT;
5370 def.vd_flags = VER_FLG_BASE;
5371 def.vd_ndx = 1;
5372 def.vd_cnt = 1;
3e3b46e5
PB
5373 if (info->create_default_symver)
5374 {
5375 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5376 def.vd_next = sizeof (Elf_External_Verdef);
5377 }
5378 else
5379 {
5380 def.vd_aux = sizeof (Elf_External_Verdef);
5381 def.vd_next = (sizeof (Elf_External_Verdef)
5382 + sizeof (Elf_External_Verdaux));
5383 }
5a580b3a
AM
5384
5385 if (soname_indx != (bfd_size_type) -1)
5386 {
5387 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5388 soname_indx);
5389 def.vd_hash = bfd_elf_hash (soname);
5390 defaux.vda_name = soname_indx;
3e3b46e5 5391 name = soname;
5a580b3a
AM
5392 }
5393 else
5394 {
5a580b3a
AM
5395 bfd_size_type indx;
5396
06084812 5397 name = lbasename (output_bfd->filename);
5a580b3a
AM
5398 def.vd_hash = bfd_elf_hash (name);
5399 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5400 name, FALSE);
5401 if (indx == (bfd_size_type) -1)
5402 return FALSE;
5403 defaux.vda_name = indx;
5404 }
5405 defaux.vda_next = 0;
5406
5407 _bfd_elf_swap_verdef_out (output_bfd, &def,
5408 (Elf_External_Verdef *) p);
5409 p += sizeof (Elf_External_Verdef);
3e3b46e5
PB
5410 if (info->create_default_symver)
5411 {
5412 /* Add a symbol representing this version. */
5413 bh = NULL;
5414 if (! (_bfd_generic_link_add_one_symbol
5415 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5416 0, NULL, FALSE,
5417 get_elf_backend_data (dynobj)->collect, &bh)))
5418 return FALSE;
5419 h = (struct elf_link_hash_entry *) bh;
5420 h->non_elf = 0;
5421 h->def_regular = 1;
5422 h->type = STT_OBJECT;
5423 h->verinfo.vertree = NULL;
5424
5425 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5426 return FALSE;
5427
5428 /* Create a duplicate of the base version with the same
5429 aux block, but different flags. */
5430 def.vd_flags = 0;
5431 def.vd_ndx = 2;
5432 def.vd_aux = sizeof (Elf_External_Verdef);
5433 if (verdefs)
5434 def.vd_next = (sizeof (Elf_External_Verdef)
5435 + sizeof (Elf_External_Verdaux));
5436 else
5437 def.vd_next = 0;
5438 _bfd_elf_swap_verdef_out (output_bfd, &def,
5439 (Elf_External_Verdef *) p);
5440 p += sizeof (Elf_External_Verdef);
5441 }
5a580b3a
AM
5442 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5443 (Elf_External_Verdaux *) p);
5444 p += sizeof (Elf_External_Verdaux);
5445
5446 for (t = verdefs; t != NULL; t = t->next)
5447 {
5448 unsigned int cdeps;
5449 struct bfd_elf_version_deps *n;
5a580b3a
AM
5450
5451 cdeps = 0;
5452 for (n = t->deps; n != NULL; n = n->next)
5453 ++cdeps;
5454
5455 /* Add a symbol representing this version. */
5456 bh = NULL;
5457 if (! (_bfd_generic_link_add_one_symbol
5458 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5459 0, NULL, FALSE,
5460 get_elf_backend_data (dynobj)->collect, &bh)))
5461 return FALSE;
5462 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5463 h->non_elf = 0;
5464 h->def_regular = 1;
5a580b3a
AM
5465 h->type = STT_OBJECT;
5466 h->verinfo.vertree = t;
5467
c152c796 5468 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5a580b3a
AM
5469 return FALSE;
5470
5471 def.vd_version = VER_DEF_CURRENT;
5472 def.vd_flags = 0;
5473 if (t->globals.list == NULL
5474 && t->locals.list == NULL
5475 && ! t->used)
5476 def.vd_flags |= VER_FLG_WEAK;
3e3b46e5 5477 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5a580b3a
AM
5478 def.vd_cnt = cdeps + 1;
5479 def.vd_hash = bfd_elf_hash (t->name);
5480 def.vd_aux = sizeof (Elf_External_Verdef);
5481 def.vd_next = 0;
5482 if (t->next != NULL)
5483 def.vd_next = (sizeof (Elf_External_Verdef)
5484 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5485
5486 _bfd_elf_swap_verdef_out (output_bfd, &def,
5487 (Elf_External_Verdef *) p);
5488 p += sizeof (Elf_External_Verdef);
5489
5490 defaux.vda_name = h->dynstr_index;
5491 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5492 h->dynstr_index);
5493 defaux.vda_next = 0;
5494 if (t->deps != NULL)
5495 defaux.vda_next = sizeof (Elf_External_Verdaux);
5496 t->name_indx = defaux.vda_name;
5497
5498 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5499 (Elf_External_Verdaux *) p);
5500 p += sizeof (Elf_External_Verdaux);
5501
5502 for (n = t->deps; n != NULL; n = n->next)
5503 {
5504 if (n->version_needed == NULL)
5505 {
5506 /* This can happen if there was an error in the
5507 version script. */
5508 defaux.vda_name = 0;
5509 }
5510 else
5511 {
5512 defaux.vda_name = n->version_needed->name_indx;
5513 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5514 defaux.vda_name);
5515 }
5516 if (n->next == NULL)
5517 defaux.vda_next = 0;
5518 else
5519 defaux.vda_next = sizeof (Elf_External_Verdaux);
5520
5521 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5522 (Elf_External_Verdaux *) p);
5523 p += sizeof (Elf_External_Verdaux);
5524 }
5525 }
5526
5527 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5528 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5529 return FALSE;
5530
5531 elf_tdata (output_bfd)->cverdefs = cdefs;
5532 }
5533
5534 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5535 {
5536 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5537 return FALSE;
5538 }
5539 else if (info->flags & DF_BIND_NOW)
5540 {
5541 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5542 return FALSE;
5543 }
5544
5545 if (info->flags_1)
5546 {
5547 if (info->executable)
5548 info->flags_1 &= ~ (DF_1_INITFIRST
5549 | DF_1_NODELETE
5550 | DF_1_NOOPEN);
5551 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5552 return FALSE;
5553 }
5554
5555 /* Work out the size of the version reference section. */
5556
5557 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5558 BFD_ASSERT (s != NULL);
5559 {
5560 struct elf_find_verdep_info sinfo;
5561
5562 sinfo.output_bfd = output_bfd;
5563 sinfo.info = info;
5564 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5565 if (sinfo.vers == 0)
5566 sinfo.vers = 1;
5567 sinfo.failed = FALSE;
5568
5569 elf_link_hash_traverse (elf_hash_table (info),
5570 _bfd_elf_link_find_version_dependencies,
5571 &sinfo);
5572
5573 if (elf_tdata (output_bfd)->verref == NULL)
8423293d 5574 s->flags |= SEC_EXCLUDE;
5a580b3a
AM
5575 else
5576 {
5577 Elf_Internal_Verneed *t;
5578 unsigned int size;
5579 unsigned int crefs;
5580 bfd_byte *p;
5581
5582 /* Build the version definition section. */
5583 size = 0;
5584 crefs = 0;
5585 for (t = elf_tdata (output_bfd)->verref;
5586 t != NULL;
5587 t = t->vn_nextref)
5588 {
5589 Elf_Internal_Vernaux *a;
5590
5591 size += sizeof (Elf_External_Verneed);
5592 ++crefs;
5593 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5594 size += sizeof (Elf_External_Vernaux);
5595 }
5596
eea6121a
AM
5597 s->size = size;
5598 s->contents = bfd_alloc (output_bfd, s->size);
5a580b3a
AM
5599 if (s->contents == NULL)
5600 return FALSE;
5601
5602 p = s->contents;
5603 for (t = elf_tdata (output_bfd)->verref;
5604 t != NULL;
5605 t = t->vn_nextref)
5606 {
5607 unsigned int caux;
5608 Elf_Internal_Vernaux *a;
5609 bfd_size_type indx;
5610
5611 caux = 0;
5612 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5613 ++caux;
5614
5615 t->vn_version = VER_NEED_CURRENT;
5616 t->vn_cnt = caux;
5617 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5618 elf_dt_name (t->vn_bfd) != NULL
5619 ? elf_dt_name (t->vn_bfd)
06084812 5620 : lbasename (t->vn_bfd->filename),
5a580b3a
AM
5621 FALSE);
5622 if (indx == (bfd_size_type) -1)
5623 return FALSE;
5624 t->vn_file = indx;
5625 t->vn_aux = sizeof (Elf_External_Verneed);
5626 if (t->vn_nextref == NULL)
5627 t->vn_next = 0;
5628 else
5629 t->vn_next = (sizeof (Elf_External_Verneed)
5630 + caux * sizeof (Elf_External_Vernaux));
5631
5632 _bfd_elf_swap_verneed_out (output_bfd, t,
5633 (Elf_External_Verneed *) p);
5634 p += sizeof (Elf_External_Verneed);
5635
5636 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5637 {
5638 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5639 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5640 a->vna_nodename, FALSE);
5641 if (indx == (bfd_size_type) -1)
5642 return FALSE;
5643 a->vna_name = indx;
5644 if (a->vna_nextptr == NULL)
5645 a->vna_next = 0;
5646 else
5647 a->vna_next = sizeof (Elf_External_Vernaux);
5648
5649 _bfd_elf_swap_vernaux_out (output_bfd, a,
5650 (Elf_External_Vernaux *) p);
5651 p += sizeof (Elf_External_Vernaux);
5652 }
5653 }
5654
5655 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5656 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5657 return FALSE;
5658
5659 elf_tdata (output_bfd)->cverrefs = crefs;
5660 }
5661 }
5662
8423293d
AM
5663 if ((elf_tdata (output_bfd)->cverrefs == 0
5664 && elf_tdata (output_bfd)->cverdefs == 0)
5665 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5666 &section_sym_count) == 0)
5667 {
5668 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5669 s->flags |= SEC_EXCLUDE;
5670 }
5671 }
5672 return TRUE;
5673}
5674
5675bfd_boolean
5676bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5677{
5678 if (!is_elf_hash_table (info->hash))
5679 return TRUE;
5680
5681 if (elf_hash_table (info)->dynamic_sections_created)
5682 {
5683 bfd *dynobj;
5684 const struct elf_backend_data *bed;
5685 asection *s;
5686 bfd_size_type dynsymcount;
5687 unsigned long section_sym_count;
5688 size_t bucketcount = 0;
5689 size_t hash_entry_size;
5690 unsigned int dtagcount;
5691
5692 dynobj = elf_hash_table (info)->dynobj;
5693
5a580b3a
AM
5694 /* Assign dynsym indicies. In a shared library we generate a
5695 section symbol for each output section, which come first.
5696 Next come all of the back-end allocated local dynamic syms,
5697 followed by the rest of the global symbols. */
5698
554220db
AM
5699 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5700 &section_sym_count);
5a580b3a
AM
5701
5702 /* Work out the size of the symbol version section. */
5703 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5704 BFD_ASSERT (s != NULL);
8423293d
AM
5705 if (dynsymcount != 0
5706 && (s->flags & SEC_EXCLUDE) == 0)
5a580b3a 5707 {
eea6121a
AM
5708 s->size = dynsymcount * sizeof (Elf_External_Versym);
5709 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5710 if (s->contents == NULL)
5711 return FALSE;
5712
5713 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5714 return FALSE;
5715 }
5716
5717 /* Set the size of the .dynsym and .hash sections. We counted
5718 the number of dynamic symbols in elf_link_add_object_symbols.
5719 We will build the contents of .dynsym and .hash when we build
5720 the final symbol table, because until then we do not know the
5721 correct value to give the symbols. We built the .dynstr
5722 section as we went along in elf_link_add_object_symbols. */
5723 s = bfd_get_section_by_name (dynobj, ".dynsym");
5724 BFD_ASSERT (s != NULL);
8423293d 5725 bed = get_elf_backend_data (output_bfd);
eea6121a 5726 s->size = dynsymcount * bed->s->sizeof_sym;
5a580b3a
AM
5727
5728 if (dynsymcount != 0)
5729 {
554220db
AM
5730 s->contents = bfd_alloc (output_bfd, s->size);
5731 if (s->contents == NULL)
5732 return FALSE;
5a580b3a 5733
554220db
AM
5734 /* The first entry in .dynsym is a dummy symbol.
5735 Clear all the section syms, in case we don't output them all. */
5736 ++section_sym_count;
5737 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5a580b3a
AM
5738 }
5739
5740 /* Compute the size of the hashing table. As a side effect this
5741 computes the hash values for all the names we export. */
5742 bucketcount = compute_bucket_count (info);
5743
5744 s = bfd_get_section_by_name (dynobj, ".hash");
5745 BFD_ASSERT (s != NULL);
5746 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
eea6121a
AM
5747 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5748 s->contents = bfd_zalloc (output_bfd, s->size);
5a580b3a
AM
5749 if (s->contents == NULL)
5750 return FALSE;
5751
5752 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5753 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5754 s->contents + hash_entry_size);
5755
5756 elf_hash_table (info)->bucketcount = bucketcount;
5757
5758 s = bfd_get_section_by_name (dynobj, ".dynstr");
5759 BFD_ASSERT (s != NULL);
5760
4ad4eba5 5761 elf_finalize_dynstr (output_bfd, info);
5a580b3a 5762
eea6121a 5763 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5a580b3a
AM
5764
5765 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5766 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5767 return FALSE;
5768 }
5769
5770 return TRUE;
5771}
c152c796
AM
5772
5773/* Final phase of ELF linker. */
5774
5775/* A structure we use to avoid passing large numbers of arguments. */
5776
5777struct elf_final_link_info
5778{
5779 /* General link information. */
5780 struct bfd_link_info *info;
5781 /* Output BFD. */
5782 bfd *output_bfd;
5783 /* Symbol string table. */
5784 struct bfd_strtab_hash *symstrtab;
5785 /* .dynsym section. */
5786 asection *dynsym_sec;
5787 /* .hash section. */
5788 asection *hash_sec;
5789 /* symbol version section (.gnu.version). */
5790 asection *symver_sec;
5791 /* Buffer large enough to hold contents of any section. */
5792 bfd_byte *contents;
5793 /* Buffer large enough to hold external relocs of any section. */
5794 void *external_relocs;
5795 /* Buffer large enough to hold internal relocs of any section. */
5796 Elf_Internal_Rela *internal_relocs;
5797 /* Buffer large enough to hold external local symbols of any input
5798 BFD. */
5799 bfd_byte *external_syms;
5800 /* And a buffer for symbol section indices. */
5801 Elf_External_Sym_Shndx *locsym_shndx;
5802 /* Buffer large enough to hold internal local symbols of any input
5803 BFD. */
5804 Elf_Internal_Sym *internal_syms;
5805 /* Array large enough to hold a symbol index for each local symbol
5806 of any input BFD. */
5807 long *indices;
5808 /* Array large enough to hold a section pointer for each local
5809 symbol of any input BFD. */
5810 asection **sections;
5811 /* Buffer to hold swapped out symbols. */
5812 bfd_byte *symbuf;
5813 /* And one for symbol section indices. */
5814 Elf_External_Sym_Shndx *symshndxbuf;
5815 /* Number of swapped out symbols in buffer. */
5816 size_t symbuf_count;
5817 /* Number of symbols which fit in symbuf. */
5818 size_t symbuf_size;
5819 /* And same for symshndxbuf. */
5820 size_t shndxbuf_size;
5821};
5822
5823/* This struct is used to pass information to elf_link_output_extsym. */
5824
5825struct elf_outext_info
5826{
5827 bfd_boolean failed;
5828 bfd_boolean localsyms;
5829 struct elf_final_link_info *finfo;
5830};
5831
5832/* When performing a relocatable link, the input relocations are
5833 preserved. But, if they reference global symbols, the indices
5834 referenced must be updated. Update all the relocations in
5835 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5836
5837static void
5838elf_link_adjust_relocs (bfd *abfd,
5839 Elf_Internal_Shdr *rel_hdr,
5840 unsigned int count,
5841 struct elf_link_hash_entry **rel_hash)
5842{
5843 unsigned int i;
5844 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5845 bfd_byte *erela;
5846 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5847 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5848 bfd_vma r_type_mask;
5849 int r_sym_shift;
5850
5851 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5852 {
5853 swap_in = bed->s->swap_reloc_in;
5854 swap_out = bed->s->swap_reloc_out;
5855 }
5856 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5857 {
5858 swap_in = bed->s->swap_reloca_in;
5859 swap_out = bed->s->swap_reloca_out;
5860 }
5861 else
5862 abort ();
5863
5864 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5865 abort ();
5866
5867 if (bed->s->arch_size == 32)
5868 {
5869 r_type_mask = 0xff;
5870 r_sym_shift = 8;
5871 }
5872 else
5873 {
5874 r_type_mask = 0xffffffff;
5875 r_sym_shift = 32;
5876 }
5877
5878 erela = rel_hdr->contents;
5879 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5880 {
5881 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5882 unsigned int j;
5883
5884 if (*rel_hash == NULL)
5885 continue;
5886
5887 BFD_ASSERT ((*rel_hash)->indx >= 0);
5888
5889 (*swap_in) (abfd, erela, irela);
5890 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5891 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5892 | (irela[j].r_info & r_type_mask));
5893 (*swap_out) (abfd, irela, erela);
5894 }
5895}
5896
5897struct elf_link_sort_rela
5898{
5899 union {
5900 bfd_vma offset;
5901 bfd_vma sym_mask;
5902 } u;
5903 enum elf_reloc_type_class type;
5904 /* We use this as an array of size int_rels_per_ext_rel. */
5905 Elf_Internal_Rela rela[1];
5906};
5907
5908static int
5909elf_link_sort_cmp1 (const void *A, const void *B)
5910{
5911 const struct elf_link_sort_rela *a = A;
5912 const struct elf_link_sort_rela *b = B;
5913 int relativea, relativeb;
5914
5915 relativea = a->type == reloc_class_relative;
5916 relativeb = b->type == reloc_class_relative;
5917
5918 if (relativea < relativeb)
5919 return 1;
5920 if (relativea > relativeb)
5921 return -1;
5922 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5923 return -1;
5924 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5925 return 1;
5926 if (a->rela->r_offset < b->rela->r_offset)
5927 return -1;
5928 if (a->rela->r_offset > b->rela->r_offset)
5929 return 1;
5930 return 0;
5931}
5932
5933static int
5934elf_link_sort_cmp2 (const void *A, const void *B)
5935{
5936 const struct elf_link_sort_rela *a = A;
5937 const struct elf_link_sort_rela *b = B;
5938 int copya, copyb;
5939
5940 if (a->u.offset < b->u.offset)
5941 return -1;
5942 if (a->u.offset > b->u.offset)
5943 return 1;
5944 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5945 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5946 if (copya < copyb)
5947 return -1;
5948 if (copya > copyb)
5949 return 1;
5950 if (a->rela->r_offset < b->rela->r_offset)
5951 return -1;
5952 if (a->rela->r_offset > b->rela->r_offset)
5953 return 1;
5954 return 0;
5955}
5956
5957static size_t
5958elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5959{
5960 asection *reldyn;
5961 bfd_size_type count, size;
5962 size_t i, ret, sort_elt, ext_size;
5963 bfd_byte *sort, *s_non_relative, *p;
5964 struct elf_link_sort_rela *sq;
5965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5966 int i2e = bed->s->int_rels_per_ext_rel;
5967 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5968 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5969 struct bfd_link_order *lo;
5970 bfd_vma r_sym_mask;
5971
5972 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
eea6121a 5973 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5974 {
5975 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
eea6121a 5976 if (reldyn == NULL || reldyn->size == 0)
c152c796
AM
5977 return 0;
5978 ext_size = bed->s->sizeof_rel;
5979 swap_in = bed->s->swap_reloc_in;
5980 swap_out = bed->s->swap_reloc_out;
5981 }
5982 else
5983 {
5984 ext_size = bed->s->sizeof_rela;
5985 swap_in = bed->s->swap_reloca_in;
5986 swap_out = bed->s->swap_reloca_out;
5987 }
eea6121a 5988 count = reldyn->size / ext_size;
c152c796
AM
5989
5990 size = 0;
8423293d 5991 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
5992 if (lo->type == bfd_indirect_link_order)
5993 {
5994 asection *o = lo->u.indirect.section;
eea6121a 5995 size += o->size;
c152c796
AM
5996 }
5997
eea6121a 5998 if (size != reldyn->size)
c152c796
AM
5999 return 0;
6000
6001 sort_elt = (sizeof (struct elf_link_sort_rela)
6002 + (i2e - 1) * sizeof (Elf_Internal_Rela));
6003 sort = bfd_zmalloc (sort_elt * count);
6004 if (sort == NULL)
6005 {
6006 (*info->callbacks->warning)
6007 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
6008 return 0;
6009 }
6010
6011 if (bed->s->arch_size == 32)
6012 r_sym_mask = ~(bfd_vma) 0xff;
6013 else
6014 r_sym_mask = ~(bfd_vma) 0xffffffff;
6015
8423293d 6016 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6017 if (lo->type == bfd_indirect_link_order)
6018 {
6019 bfd_byte *erel, *erelend;
6020 asection *o = lo->u.indirect.section;
6021
1da212d6
AM
6022 if (o->contents == NULL && o->size != 0)
6023 {
6024 /* This is a reloc section that is being handled as a normal
6025 section. See bfd_section_from_shdr. We can't combine
6026 relocs in this case. */
6027 free (sort);
6028 return 0;
6029 }
c152c796 6030 erel = o->contents;
eea6121a 6031 erelend = o->contents + o->size;
c152c796
AM
6032 p = sort + o->output_offset / ext_size * sort_elt;
6033 while (erel < erelend)
6034 {
6035 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6036 (*swap_in) (abfd, erel, s->rela);
6037 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6038 s->u.sym_mask = r_sym_mask;
6039 p += sort_elt;
6040 erel += ext_size;
6041 }
6042 }
6043
6044 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6045
6046 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6047 {
6048 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6049 if (s->type != reloc_class_relative)
6050 break;
6051 }
6052 ret = i;
6053 s_non_relative = p;
6054
6055 sq = (struct elf_link_sort_rela *) s_non_relative;
6056 for (; i < count; i++, p += sort_elt)
6057 {
6058 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6059 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6060 sq = sp;
6061 sp->u.offset = sq->rela->r_offset;
6062 }
6063
6064 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6065
8423293d 6066 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
c152c796
AM
6067 if (lo->type == bfd_indirect_link_order)
6068 {
6069 bfd_byte *erel, *erelend;
6070 asection *o = lo->u.indirect.section;
6071
6072 erel = o->contents;
eea6121a 6073 erelend = o->contents + o->size;
c152c796
AM
6074 p = sort + o->output_offset / ext_size * sort_elt;
6075 while (erel < erelend)
6076 {
6077 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6078 (*swap_out) (abfd, s->rela, erel);
6079 p += sort_elt;
6080 erel += ext_size;
6081 }
6082 }
6083
6084 free (sort);
6085 *psec = reldyn;
6086 return ret;
6087}
6088
6089/* Flush the output symbols to the file. */
6090
6091static bfd_boolean
6092elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6093 const struct elf_backend_data *bed)
6094{
6095 if (finfo->symbuf_count > 0)
6096 {
6097 Elf_Internal_Shdr *hdr;
6098 file_ptr pos;
6099 bfd_size_type amt;
6100
6101 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6102 pos = hdr->sh_offset + hdr->sh_size;
6103 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6104 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6105 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6106 return FALSE;
6107
6108 hdr->sh_size += amt;
6109 finfo->symbuf_count = 0;
6110 }
6111
6112 return TRUE;
6113}
6114
6115/* Add a symbol to the output symbol table. */
6116
6117static bfd_boolean
6118elf_link_output_sym (struct elf_final_link_info *finfo,
6119 const char *name,
6120 Elf_Internal_Sym *elfsym,
6121 asection *input_sec,
6122 struct elf_link_hash_entry *h)
6123{
6124 bfd_byte *dest;
6125 Elf_External_Sym_Shndx *destshndx;
6126 bfd_boolean (*output_symbol_hook)
6127 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6128 struct elf_link_hash_entry *);
6129 const struct elf_backend_data *bed;
6130
6131 bed = get_elf_backend_data (finfo->output_bfd);
6132 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6133 if (output_symbol_hook != NULL)
6134 {
6135 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6136 return FALSE;
6137 }
6138
6139 if (name == NULL || *name == '\0')
6140 elfsym->st_name = 0;
6141 else if (input_sec->flags & SEC_EXCLUDE)
6142 elfsym->st_name = 0;
6143 else
6144 {
6145 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6146 name, TRUE, FALSE);
6147 if (elfsym->st_name == (unsigned long) -1)
6148 return FALSE;
6149 }
6150
6151 if (finfo->symbuf_count >= finfo->symbuf_size)
6152 {
6153 if (! elf_link_flush_output_syms (finfo, bed))
6154 return FALSE;
6155 }
6156
6157 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6158 destshndx = finfo->symshndxbuf;
6159 if (destshndx != NULL)
6160 {
6161 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6162 {
6163 bfd_size_type amt;
6164
6165 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6166 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6167 if (destshndx == NULL)
6168 return FALSE;
6169 memset ((char *) destshndx + amt, 0, amt);
6170 finfo->shndxbuf_size *= 2;
6171 }
6172 destshndx += bfd_get_symcount (finfo->output_bfd);
6173 }
6174
6175 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6176 finfo->symbuf_count += 1;
6177 bfd_get_symcount (finfo->output_bfd) += 1;
6178
6179 return TRUE;
6180}
6181
6182/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6183 allowing an unsatisfied unversioned symbol in the DSO to match a
6184 versioned symbol that would normally require an explicit version.
6185 We also handle the case that a DSO references a hidden symbol
6186 which may be satisfied by a versioned symbol in another DSO. */
6187
6188static bfd_boolean
6189elf_link_check_versioned_symbol (struct bfd_link_info *info,
6190 const struct elf_backend_data *bed,
6191 struct elf_link_hash_entry *h)
6192{
6193 bfd *abfd;
6194 struct elf_link_loaded_list *loaded;
6195
6196 if (!is_elf_hash_table (info->hash))
6197 return FALSE;
6198
6199 switch (h->root.type)
6200 {
6201 default:
6202 abfd = NULL;
6203 break;
6204
6205 case bfd_link_hash_undefined:
6206 case bfd_link_hash_undefweak:
6207 abfd = h->root.u.undef.abfd;
6208 if ((abfd->flags & DYNAMIC) == 0
e56f61be 6209 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
c152c796
AM
6210 return FALSE;
6211 break;
6212
6213 case bfd_link_hash_defined:
6214 case bfd_link_hash_defweak:
6215 abfd = h->root.u.def.section->owner;
6216 break;
6217
6218 case bfd_link_hash_common:
6219 abfd = h->root.u.c.p->section->owner;
6220 break;
6221 }
6222 BFD_ASSERT (abfd != NULL);
6223
6224 for (loaded = elf_hash_table (info)->loaded;
6225 loaded != NULL;
6226 loaded = loaded->next)
6227 {
6228 bfd *input;
6229 Elf_Internal_Shdr *hdr;
6230 bfd_size_type symcount;
6231 bfd_size_type extsymcount;
6232 bfd_size_type extsymoff;
6233 Elf_Internal_Shdr *versymhdr;
6234 Elf_Internal_Sym *isym;
6235 Elf_Internal_Sym *isymend;
6236 Elf_Internal_Sym *isymbuf;
6237 Elf_External_Versym *ever;
6238 Elf_External_Versym *extversym;
6239
6240 input = loaded->abfd;
6241
6242 /* We check each DSO for a possible hidden versioned definition. */
6243 if (input == abfd
6244 || (input->flags & DYNAMIC) == 0
6245 || elf_dynversym (input) == 0)
6246 continue;
6247
6248 hdr = &elf_tdata (input)->dynsymtab_hdr;
6249
6250 symcount = hdr->sh_size / bed->s->sizeof_sym;
6251 if (elf_bad_symtab (input))
6252 {
6253 extsymcount = symcount;
6254 extsymoff = 0;
6255 }
6256 else
6257 {
6258 extsymcount = symcount - hdr->sh_info;
6259 extsymoff = hdr->sh_info;
6260 }
6261
6262 if (extsymcount == 0)
6263 continue;
6264
6265 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6266 NULL, NULL, NULL);
6267 if (isymbuf == NULL)
6268 return FALSE;
6269
6270 /* Read in any version definitions. */
6271 versymhdr = &elf_tdata (input)->dynversym_hdr;
6272 extversym = bfd_malloc (versymhdr->sh_size);
6273 if (extversym == NULL)
6274 goto error_ret;
6275
6276 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6277 || (bfd_bread (extversym, versymhdr->sh_size, input)
6278 != versymhdr->sh_size))
6279 {
6280 free (extversym);
6281 error_ret:
6282 free (isymbuf);
6283 return FALSE;
6284 }
6285
6286 ever = extversym + extsymoff;
6287 isymend = isymbuf + extsymcount;
6288 for (isym = isymbuf; isym < isymend; isym++, ever++)
6289 {
6290 const char *name;
6291 Elf_Internal_Versym iver;
6292 unsigned short version_index;
6293
6294 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6295 || isym->st_shndx == SHN_UNDEF)
6296 continue;
6297
6298 name = bfd_elf_string_from_elf_section (input,
6299 hdr->sh_link,
6300 isym->st_name);
6301 if (strcmp (name, h->root.root.string) != 0)
6302 continue;
6303
6304 _bfd_elf_swap_versym_in (input, ever, &iver);
6305
6306 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6307 {
6308 /* If we have a non-hidden versioned sym, then it should
6309 have provided a definition for the undefined sym. */
6310 abort ();
6311 }
6312
6313 version_index = iver.vs_vers & VERSYM_VERSION;
6314 if (version_index == 1 || version_index == 2)
6315 {
6316 /* This is the base or first version. We can use it. */
6317 free (extversym);
6318 free (isymbuf);
6319 return TRUE;
6320 }
6321 }
6322
6323 free (extversym);
6324 free (isymbuf);
6325 }
6326
6327 return FALSE;
6328}
6329
6330/* Add an external symbol to the symbol table. This is called from
6331 the hash table traversal routine. When generating a shared object,
6332 we go through the symbol table twice. The first time we output
6333 anything that might have been forced to local scope in a version
6334 script. The second time we output the symbols that are still
6335 global symbols. */
6336
6337static bfd_boolean
6338elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6339{
6340 struct elf_outext_info *eoinfo = data;
6341 struct elf_final_link_info *finfo = eoinfo->finfo;
6342 bfd_boolean strip;
6343 Elf_Internal_Sym sym;
6344 asection *input_sec;
6345 const struct elf_backend_data *bed;
6346
6347 if (h->root.type == bfd_link_hash_warning)
6348 {
6349 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6350 if (h->root.type == bfd_link_hash_new)
6351 return TRUE;
6352 }
6353
6354 /* Decide whether to output this symbol in this pass. */
6355 if (eoinfo->localsyms)
6356 {
f5385ebf 6357 if (!h->forced_local)
c152c796
AM
6358 return TRUE;
6359 }
6360 else
6361 {
f5385ebf 6362 if (h->forced_local)
c152c796
AM
6363 return TRUE;
6364 }
6365
6366 bed = get_elf_backend_data (finfo->output_bfd);
6367
6368 /* If we have an undefined symbol reference here then it must have
6369 come from a shared library that is being linked in. (Undefined
6370 references in regular files have already been handled). If we
6371 are reporting errors for this situation then do so now. */
6372 if (h->root.type == bfd_link_hash_undefined
f5385ebf
AM
6373 && h->ref_dynamic
6374 && !h->ref_regular
c152c796
AM
6375 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6376 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6377 {
6378 if (! ((*finfo->info->callbacks->undefined_symbol)
6379 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6380 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6381 {
6382 eoinfo->failed = TRUE;
6383 return FALSE;
6384 }
6385 }
6386
6387 /* We should also warn if a forced local symbol is referenced from
6388 shared libraries. */
6389 if (! finfo->info->relocatable
6390 && (! finfo->info->shared)
f5385ebf
AM
6391 && h->forced_local
6392 && h->ref_dynamic
6393 && !h->dynamic_def
6394 && !h->dynamic_weak
c152c796
AM
6395 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6396 {
6397 (*_bfd_error_handler)
d003868e 6398 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
cfca085c
L
6399 finfo->output_bfd,
6400 h->root.u.def.section == bfd_abs_section_ptr
6401 ? finfo->output_bfd : h->root.u.def.section->owner,
c152c796
AM
6402 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6403 ? "internal"
6404 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
d003868e
AM
6405 ? "hidden" : "local",
6406 h->root.root.string);
c152c796
AM
6407 eoinfo->failed = TRUE;
6408 return FALSE;
6409 }
6410
6411 /* We don't want to output symbols that have never been mentioned by
6412 a regular file, or that we have been told to strip. However, if
6413 h->indx is set to -2, the symbol is used by a reloc and we must
6414 output it. */
6415 if (h->indx == -2)
6416 strip = FALSE;
f5385ebf 6417 else if ((h->def_dynamic
77cfaee6
AM
6418 || h->ref_dynamic
6419 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
6420 && !h->def_regular
6421 && !h->ref_regular)
c152c796
AM
6422 strip = TRUE;
6423 else if (finfo->info->strip == strip_all)
6424 strip = TRUE;
6425 else if (finfo->info->strip == strip_some
6426 && bfd_hash_lookup (finfo->info->keep_hash,
6427 h->root.root.string, FALSE, FALSE) == NULL)
6428 strip = TRUE;
6429 else if (finfo->info->strip_discarded
6430 && (h->root.type == bfd_link_hash_defined
6431 || h->root.type == bfd_link_hash_defweak)
6432 && elf_discarded_section (h->root.u.def.section))
6433 strip = TRUE;
6434 else
6435 strip = FALSE;
6436
6437 /* If we're stripping it, and it's not a dynamic symbol, there's
6438 nothing else to do unless it is a forced local symbol. */
6439 if (strip
6440 && h->dynindx == -1
f5385ebf 6441 && !h->forced_local)
c152c796
AM
6442 return TRUE;
6443
6444 sym.st_value = 0;
6445 sym.st_size = h->size;
6446 sym.st_other = h->other;
f5385ebf 6447 if (h->forced_local)
c152c796
AM
6448 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6449 else if (h->root.type == bfd_link_hash_undefweak
6450 || h->root.type == bfd_link_hash_defweak)
6451 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6452 else
6453 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6454
6455 switch (h->root.type)
6456 {
6457 default:
6458 case bfd_link_hash_new:
6459 case bfd_link_hash_warning:
6460 abort ();
6461 return FALSE;
6462
6463 case bfd_link_hash_undefined:
6464 case bfd_link_hash_undefweak:
6465 input_sec = bfd_und_section_ptr;
6466 sym.st_shndx = SHN_UNDEF;
6467 break;
6468
6469 case bfd_link_hash_defined:
6470 case bfd_link_hash_defweak:
6471 {
6472 input_sec = h->root.u.def.section;
6473 if (input_sec->output_section != NULL)
6474 {
6475 sym.st_shndx =
6476 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6477 input_sec->output_section);
6478 if (sym.st_shndx == SHN_BAD)
6479 {
6480 (*_bfd_error_handler)
d003868e
AM
6481 (_("%B: could not find output section %A for input section %A"),
6482 finfo->output_bfd, input_sec->output_section, input_sec);
c152c796
AM
6483 eoinfo->failed = TRUE;
6484 return FALSE;
6485 }
6486
6487 /* ELF symbols in relocatable files are section relative,
6488 but in nonrelocatable files they are virtual
6489 addresses. */
6490 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6491 if (! finfo->info->relocatable)
6492 {
6493 sym.st_value += input_sec->output_section->vma;
6494 if (h->type == STT_TLS)
6495 {
6496 /* STT_TLS symbols are relative to PT_TLS segment
6497 base. */
6498 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6499 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6500 }
6501 }
6502 }
6503 else
6504 {
6505 BFD_ASSERT (input_sec->owner == NULL
6506 || (input_sec->owner->flags & DYNAMIC) != 0);
6507 sym.st_shndx = SHN_UNDEF;
6508 input_sec = bfd_und_section_ptr;
6509 }
6510 }
6511 break;
6512
6513 case bfd_link_hash_common:
6514 input_sec = h->root.u.c.p->section;
a4d8e49b 6515 sym.st_shndx = bed->common_section_index (input_sec);
c152c796
AM
6516 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6517 break;
6518
6519 case bfd_link_hash_indirect:
6520 /* These symbols are created by symbol versioning. They point
6521 to the decorated version of the name. For example, if the
6522 symbol foo@@GNU_1.2 is the default, which should be used when
6523 foo is used with no version, then we add an indirect symbol
6524 foo which points to foo@@GNU_1.2. We ignore these symbols,
6525 since the indirected symbol is already in the hash table. */
6526 return TRUE;
6527 }
6528
6529 /* Give the processor backend a chance to tweak the symbol value,
6530 and also to finish up anything that needs to be done for this
6531 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6532 forced local syms when non-shared is due to a historical quirk. */
6533 if ((h->dynindx != -1
f5385ebf 6534 || h->forced_local)
c152c796
AM
6535 && ((finfo->info->shared
6536 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6537 || h->root.type != bfd_link_hash_undefweak))
f5385ebf 6538 || !h->forced_local)
c152c796
AM
6539 && elf_hash_table (finfo->info)->dynamic_sections_created)
6540 {
6541 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6542 (finfo->output_bfd, finfo->info, h, &sym)))
6543 {
6544 eoinfo->failed = TRUE;
6545 return FALSE;
6546 }
6547 }
6548
6549 /* If we are marking the symbol as undefined, and there are no
6550 non-weak references to this symbol from a regular object, then
6551 mark the symbol as weak undefined; if there are non-weak
6552 references, mark the symbol as strong. We can't do this earlier,
6553 because it might not be marked as undefined until the
6554 finish_dynamic_symbol routine gets through with it. */
6555 if (sym.st_shndx == SHN_UNDEF
f5385ebf 6556 && h->ref_regular
c152c796
AM
6557 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6558 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6559 {
6560 int bindtype;
6561
f5385ebf 6562 if (h->ref_regular_nonweak)
c152c796
AM
6563 bindtype = STB_GLOBAL;
6564 else
6565 bindtype = STB_WEAK;
6566 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6567 }
6568
6569 /* If a non-weak symbol with non-default visibility is not defined
6570 locally, it is a fatal error. */
6571 if (! finfo->info->relocatable
6572 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6573 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6574 && h->root.type == bfd_link_hash_undefined
f5385ebf 6575 && !h->def_regular)
c152c796
AM
6576 {
6577 (*_bfd_error_handler)
d003868e
AM
6578 (_("%B: %s symbol `%s' isn't defined"),
6579 finfo->output_bfd,
6580 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6581 ? "protected"
6582 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6583 ? "internal" : "hidden",
6584 h->root.root.string);
c152c796
AM
6585 eoinfo->failed = TRUE;
6586 return FALSE;
6587 }
6588
6589 /* If this symbol should be put in the .dynsym section, then put it
6590 there now. We already know the symbol index. We also fill in
6591 the entry in the .hash section. */
6592 if (h->dynindx != -1
6593 && elf_hash_table (finfo->info)->dynamic_sections_created)
6594 {
6595 size_t bucketcount;
6596 size_t bucket;
6597 size_t hash_entry_size;
6598 bfd_byte *bucketpos;
6599 bfd_vma chain;
6600 bfd_byte *esym;
6601
6602 sym.st_name = h->dynstr_index;
6603 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6604 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6605
6606 bucketcount = elf_hash_table (finfo->info)->bucketcount;
f6e332e6 6607 bucket = h->u.elf_hash_value % bucketcount;
c152c796
AM
6608 hash_entry_size
6609 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6610 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6611 + (bucket + 2) * hash_entry_size);
6612 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6613 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6614 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6615 ((bfd_byte *) finfo->hash_sec->contents
6616 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6617
6618 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6619 {
6620 Elf_Internal_Versym iversym;
6621 Elf_External_Versym *eversym;
6622
f5385ebf 6623 if (!h->def_regular)
c152c796
AM
6624 {
6625 if (h->verinfo.verdef == NULL)
6626 iversym.vs_vers = 0;
6627 else
6628 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6629 }
6630 else
6631 {
6632 if (h->verinfo.vertree == NULL)
6633 iversym.vs_vers = 1;
6634 else
6635 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
3e3b46e5
PB
6636 if (finfo->info->create_default_symver)
6637 iversym.vs_vers++;
c152c796
AM
6638 }
6639
f5385ebf 6640 if (h->hidden)
c152c796
AM
6641 iversym.vs_vers |= VERSYM_HIDDEN;
6642
6643 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6644 eversym += h->dynindx;
6645 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6646 }
6647 }
6648
6649 /* If we're stripping it, then it was just a dynamic symbol, and
6650 there's nothing else to do. */
6651 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6652 return TRUE;
6653
6654 h->indx = bfd_get_symcount (finfo->output_bfd);
6655
6656 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6657 {
6658 eoinfo->failed = TRUE;
6659 return FALSE;
6660 }
6661
6662 return TRUE;
6663}
6664
cdd3575c
AM
6665/* Return TRUE if special handling is done for relocs in SEC against
6666 symbols defined in discarded sections. */
6667
c152c796
AM
6668static bfd_boolean
6669elf_section_ignore_discarded_relocs (asection *sec)
6670{
6671 const struct elf_backend_data *bed;
6672
cdd3575c
AM
6673 switch (sec->sec_info_type)
6674 {
6675 case ELF_INFO_TYPE_STABS:
6676 case ELF_INFO_TYPE_EH_FRAME:
6677 return TRUE;
6678 default:
6679 break;
6680 }
c152c796
AM
6681
6682 bed = get_elf_backend_data (sec->owner);
6683 if (bed->elf_backend_ignore_discarded_relocs != NULL
6684 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6685 return TRUE;
6686
6687 return FALSE;
6688}
6689
9e66c942
AM
6690/* Return a mask saying how ld should treat relocations in SEC against
6691 symbols defined in discarded sections. If this function returns
6692 COMPLAIN set, ld will issue a warning message. If this function
6693 returns PRETEND set, and the discarded section was link-once and the
6694 same size as the kept link-once section, ld will pretend that the
6695 symbol was actually defined in the kept section. Otherwise ld will
6696 zero the reloc (at least that is the intent, but some cooperation by
6697 the target dependent code is needed, particularly for REL targets). */
6698
8a696751
AM
6699unsigned int
6700_bfd_elf_default_action_discarded (asection *sec)
cdd3575c 6701{
9e66c942
AM
6702 if (sec->flags & SEC_DEBUGGING)
6703 return PRETEND;
cdd3575c
AM
6704
6705 if (strcmp (".eh_frame", sec->name) == 0)
9e66c942 6706 return 0;
cdd3575c
AM
6707
6708 if (strcmp (".gcc_except_table", sec->name) == 0)
9e66c942 6709 return 0;
cdd3575c 6710
9e66c942 6711 return COMPLAIN | PRETEND;
cdd3575c
AM
6712}
6713
3d7f7666
L
6714/* Find a match between a section and a member of a section group. */
6715
6716static asection *
6717match_group_member (asection *sec, asection *group)
6718{
6719 asection *first = elf_next_in_group (group);
6720 asection *s = first;
6721
6722 while (s != NULL)
6723 {
6724 if (bfd_elf_match_symbols_in_sections (s, sec))
6725 return s;
6726
6727 if (s == first)
6728 break;
6729 }
6730
6731 return NULL;
6732}
6733
01b3c8ab
L
6734/* Check if the kept section of a discarded section SEC can be used
6735 to replace it. Return the replacement if it is OK. Otherwise return
6736 NULL. */
6737
6738asection *
6739_bfd_elf_check_kept_section (asection *sec)
6740{
6741 asection *kept;
6742
6743 kept = sec->kept_section;
6744 if (kept != NULL)
6745 {
6746 if (elf_sec_group (sec) != NULL)
6747 kept = match_group_member (sec, kept);
6748 if (kept != NULL && sec->size != kept->size)
6749 kept = NULL;
6750 }
6751 return kept;
6752}
6753
c152c796
AM
6754/* Link an input file into the linker output file. This function
6755 handles all the sections and relocations of the input file at once.
6756 This is so that we only have to read the local symbols once, and
6757 don't have to keep them in memory. */
6758
6759static bfd_boolean
6760elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6761{
6762 bfd_boolean (*relocate_section)
6763 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6764 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6765 bfd *output_bfd;
6766 Elf_Internal_Shdr *symtab_hdr;
6767 size_t locsymcount;
6768 size_t extsymoff;
6769 Elf_Internal_Sym *isymbuf;
6770 Elf_Internal_Sym *isym;
6771 Elf_Internal_Sym *isymend;
6772 long *pindex;
6773 asection **ppsection;
6774 asection *o;
6775 const struct elf_backend_data *bed;
6776 bfd_boolean emit_relocs;
6777 struct elf_link_hash_entry **sym_hashes;
6778
6779 output_bfd = finfo->output_bfd;
6780 bed = get_elf_backend_data (output_bfd);
6781 relocate_section = bed->elf_backend_relocate_section;
6782
6783 /* If this is a dynamic object, we don't want to do anything here:
6784 we don't want the local symbols, and we don't want the section
6785 contents. */
6786 if ((input_bfd->flags & DYNAMIC) != 0)
6787 return TRUE;
6788
6789 emit_relocs = (finfo->info->relocatable
eac338cf 6790 || finfo->info->emitrelocations);
c152c796
AM
6791
6792 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6793 if (elf_bad_symtab (input_bfd))
6794 {
6795 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6796 extsymoff = 0;
6797 }
6798 else
6799 {
6800 locsymcount = symtab_hdr->sh_info;
6801 extsymoff = symtab_hdr->sh_info;
6802 }
6803
6804 /* Read the local symbols. */
6805 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6806 if (isymbuf == NULL && locsymcount != 0)
6807 {
6808 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6809 finfo->internal_syms,
6810 finfo->external_syms,
6811 finfo->locsym_shndx);
6812 if (isymbuf == NULL)
6813 return FALSE;
6814 }
6815
6816 /* Find local symbol sections and adjust values of symbols in
6817 SEC_MERGE sections. Write out those local symbols we know are
6818 going into the output file. */
6819 isymend = isymbuf + locsymcount;
6820 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6821 isym < isymend;
6822 isym++, pindex++, ppsection++)
6823 {
6824 asection *isec;
6825 const char *name;
6826 Elf_Internal_Sym osym;
6827
6828 *pindex = -1;
6829
6830 if (elf_bad_symtab (input_bfd))
6831 {
6832 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6833 {
6834 *ppsection = NULL;
6835 continue;
6836 }
6837 }
6838
6839 if (isym->st_shndx == SHN_UNDEF)
6840 isec = bfd_und_section_ptr;
6841 else if (isym->st_shndx < SHN_LORESERVE
6842 || isym->st_shndx > SHN_HIRESERVE)
6843 {
6844 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6845 if (isec
6846 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6847 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6848 isym->st_value =
6849 _bfd_merged_section_offset (output_bfd, &isec,
6850 elf_section_data (isec)->sec_info,
753731ee 6851 isym->st_value);
c152c796
AM
6852 }
6853 else if (isym->st_shndx == SHN_ABS)
6854 isec = bfd_abs_section_ptr;
6855 else if (isym->st_shndx == SHN_COMMON)
6856 isec = bfd_com_section_ptr;
6857 else
6858 {
6859 /* Who knows? */
6860 isec = NULL;
6861 }
6862
6863 *ppsection = isec;
6864
6865 /* Don't output the first, undefined, symbol. */
6866 if (ppsection == finfo->sections)
6867 continue;
6868
6869 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6870 {
6871 /* We never output section symbols. Instead, we use the
6872 section symbol of the corresponding section in the output
6873 file. */
6874 continue;
6875 }
6876
6877 /* If we are stripping all symbols, we don't want to output this
6878 one. */
6879 if (finfo->info->strip == strip_all)
6880 continue;
6881
6882 /* If we are discarding all local symbols, we don't want to
6883 output this one. If we are generating a relocatable output
6884 file, then some of the local symbols may be required by
6885 relocs; we output them below as we discover that they are
6886 needed. */
6887 if (finfo->info->discard == discard_all)
6888 continue;
6889
6890 /* If this symbol is defined in a section which we are
6891 discarding, we don't need to keep it, but note that
6892 linker_mark is only reliable for sections that have contents.
6893 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6894 as well as linker_mark. */
6895 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
ccf5f610
PB
6896 && (isec == NULL
6897 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
c152c796
AM
6898 || (! finfo->info->relocatable
6899 && (isec->flags & SEC_EXCLUDE) != 0)))
6900 continue;
6901
e75a280b
L
6902 /* If the section is not in the output BFD's section list, it is not
6903 being output. */
6904 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6905 continue;
6906
c152c796
AM
6907 /* Get the name of the symbol. */
6908 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6909 isym->st_name);
6910 if (name == NULL)
6911 return FALSE;
6912
6913 /* See if we are discarding symbols with this name. */
6914 if ((finfo->info->strip == strip_some
6915 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6916 == NULL))
6917 || (((finfo->info->discard == discard_sec_merge
6918 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6919 || finfo->info->discard == discard_l)
6920 && bfd_is_local_label_name (input_bfd, name)))
6921 continue;
6922
6923 /* If we get here, we are going to output this symbol. */
6924
6925 osym = *isym;
6926
6927 /* Adjust the section index for the output file. */
6928 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6929 isec->output_section);
6930 if (osym.st_shndx == SHN_BAD)
6931 return FALSE;
6932
6933 *pindex = bfd_get_symcount (output_bfd);
6934
6935 /* ELF symbols in relocatable files are section relative, but
6936 in executable files they are virtual addresses. Note that
6937 this code assumes that all ELF sections have an associated
6938 BFD section with a reasonable value for output_offset; below
6939 we assume that they also have a reasonable value for
6940 output_section. Any special sections must be set up to meet
6941 these requirements. */
6942 osym.st_value += isec->output_offset;
6943 if (! finfo->info->relocatable)
6944 {
6945 osym.st_value += isec->output_section->vma;
6946 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6947 {
6948 /* STT_TLS symbols are relative to PT_TLS segment base. */
6949 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6950 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6951 }
6952 }
6953
6954 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6955 return FALSE;
6956 }
6957
6958 /* Relocate the contents of each section. */
6959 sym_hashes = elf_sym_hashes (input_bfd);
6960 for (o = input_bfd->sections; o != NULL; o = o->next)
6961 {
6962 bfd_byte *contents;
6963
6964 if (! o->linker_mark)
6965 {
6966 /* This section was omitted from the link. */
6967 continue;
6968 }
6969
6970 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 6971 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
c152c796
AM
6972 continue;
6973
6974 if ((o->flags & SEC_LINKER_CREATED) != 0)
6975 {
6976 /* Section was created by _bfd_elf_link_create_dynamic_sections
6977 or somesuch. */
6978 continue;
6979 }
6980
6981 /* Get the contents of the section. They have been cached by a
6982 relaxation routine. Note that o is a section in an input
6983 file, so the contents field will not have been set by any of
6984 the routines which work on output files. */
6985 if (elf_section_data (o)->this_hdr.contents != NULL)
6986 contents = elf_section_data (o)->this_hdr.contents;
6987 else
6988 {
eea6121a
AM
6989 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6990
c152c796 6991 contents = finfo->contents;
eea6121a 6992 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
c152c796
AM
6993 return FALSE;
6994 }
6995
6996 if ((o->flags & SEC_RELOC) != 0)
6997 {
6998 Elf_Internal_Rela *internal_relocs;
6999 bfd_vma r_type_mask;
7000 int r_sym_shift;
7001
7002 /* Get the swapped relocs. */
7003 internal_relocs
7004 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7005 finfo->internal_relocs, FALSE);
7006 if (internal_relocs == NULL
7007 && o->reloc_count > 0)
7008 return FALSE;
7009
7010 if (bed->s->arch_size == 32)
7011 {
7012 r_type_mask = 0xff;
7013 r_sym_shift = 8;
7014 }
7015 else
7016 {
7017 r_type_mask = 0xffffffff;
7018 r_sym_shift = 32;
7019 }
7020
7021 /* Run through the relocs looking for any against symbols
7022 from discarded sections and section symbols from
7023 removed link-once sections. Complain about relocs
7024 against discarded sections. Zero relocs against removed
7025 link-once sections. Preserve debug information as much
7026 as we can. */
7027 if (!elf_section_ignore_discarded_relocs (o))
7028 {
7029 Elf_Internal_Rela *rel, *relend;
8a696751 7030 unsigned int action = (*bed->action_discarded) (o);
c152c796
AM
7031
7032 rel = internal_relocs;
7033 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7034 for ( ; rel < relend; rel++)
7035 {
7036 unsigned long r_symndx = rel->r_info >> r_sym_shift;
cdd3575c
AM
7037 asection **ps, *sec;
7038 struct elf_link_hash_entry *h = NULL;
7039 const char *sym_name;
c152c796 7040
ee75fd95
AM
7041 if (r_symndx == STN_UNDEF)
7042 continue;
7043
c152c796
AM
7044 if (r_symndx >= locsymcount
7045 || (elf_bad_symtab (input_bfd)
7046 && finfo->sections[r_symndx] == NULL))
7047 {
c152c796 7048 h = sym_hashes[r_symndx - extsymoff];
dce669a1 7049
8c19749a
NC
7050 /* Badly formatted input files can contain relocs that
7051 reference non-existant symbols. Check here so that
7052 we do not seg fault. */
7053 if (h == NULL)
7054 {
7055 char buffer [32];
7056
7057 sprintf_vma (buffer, rel->r_info);
7058 (*_bfd_error_handler)
7059 (_("error: %B contains a reloc (0x%s) for section %A "
7060 "that references a non-existent global symbol"),
7061 input_bfd, o, buffer);
7062 bfd_set_error (bfd_error_bad_value);
7063 return FALSE;
7064 }
3b36f7e6 7065
c152c796
AM
7066 while (h->root.type == bfd_link_hash_indirect
7067 || h->root.type == bfd_link_hash_warning)
7068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7069
cdd3575c
AM
7070 if (h->root.type != bfd_link_hash_defined
7071 && h->root.type != bfd_link_hash_defweak)
7072 continue;
7073
7074 ps = &h->root.u.def.section;
7075 sym_name = h->root.root.string;
c152c796
AM
7076 }
7077 else
7078 {
cdd3575c
AM
7079 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7080 ps = &finfo->sections[r_symndx];
26c61ae5
L
7081 sym_name = bfd_elf_sym_name (input_bfd,
7082 symtab_hdr,
7083 sym, *ps);
cdd3575c 7084 }
c152c796 7085
cdd3575c
AM
7086 /* Complain if the definition comes from a
7087 discarded section. */
7088 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7089 {
87e5235d 7090 BFD_ASSERT (r_symndx != 0);
9e66c942 7091 if (action & COMPLAIN)
e1fffbe6
AM
7092 (*finfo->info->callbacks->einfo)
7093 (_("%X`%s' referenced in section `%A' of %B: "
58ac56d0 7094 "defined in discarded section `%A' of %B\n"),
e1fffbe6 7095 sym_name, o, input_bfd, sec, sec->owner);
cdd3575c 7096
87e5235d
AM
7097 /* Try to do the best we can to support buggy old
7098 versions of gcc. If we've warned, or this is
7099 debugging info, pretend that the symbol is
7100 really defined in the kept linkonce section.
7101 FIXME: This is quite broken. Modifying the
7102 symbol here means we will be changing all later
7103 uses of the symbol, not just in this section.
7104 The only thing that makes this half reasonable
7105 is that we warn in non-debug sections, and
7106 debug sections tend to come after other
7107 sections. */
01b3c8ab 7108 if (action & PRETEND)
87e5235d 7109 {
01b3c8ab
L
7110 asection *kept;
7111
7112 kept = _bfd_elf_check_kept_section (sec);
7113 if (kept != NULL)
87e5235d
AM
7114 {
7115 *ps = kept;
7116 continue;
7117 }
7118 }
7119
cdd3575c
AM
7120 /* Remove the symbol reference from the reloc, but
7121 don't kill the reloc completely. This is so that
7122 a zero value will be written into the section,
7123 which may have non-zero contents put there by the
7124 assembler. Zero in things like an eh_frame fde
7125 pc_begin allows stack unwinders to recognize the
7126 fde as bogus. */
7127 rel->r_info &= r_type_mask;
7128 rel->r_addend = 0;
c152c796
AM
7129 }
7130 }
7131 }
7132
7133 /* Relocate the section by invoking a back end routine.
7134
7135 The back end routine is responsible for adjusting the
7136 section contents as necessary, and (if using Rela relocs
7137 and generating a relocatable output file) adjusting the
7138 reloc addend as necessary.
7139
7140 The back end routine does not have to worry about setting
7141 the reloc address or the reloc symbol index.
7142
7143 The back end routine is given a pointer to the swapped in
7144 internal symbols, and can access the hash table entries
7145 for the external symbols via elf_sym_hashes (input_bfd).
7146
7147 When generating relocatable output, the back end routine
7148 must handle STB_LOCAL/STT_SECTION symbols specially. The
7149 output symbol is going to be a section symbol
7150 corresponding to the output section, which will require
7151 the addend to be adjusted. */
7152
7153 if (! (*relocate_section) (output_bfd, finfo->info,
7154 input_bfd, o, contents,
7155 internal_relocs,
7156 isymbuf,
7157 finfo->sections))
7158 return FALSE;
7159
7160 if (emit_relocs)
7161 {
7162 Elf_Internal_Rela *irela;
7163 Elf_Internal_Rela *irelaend;
7164 bfd_vma last_offset;
7165 struct elf_link_hash_entry **rel_hash;
eac338cf 7166 struct elf_link_hash_entry **rel_hash_list;
c152c796
AM
7167 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7168 unsigned int next_erel;
c152c796
AM
7169 bfd_boolean rela_normal;
7170
7171 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7172 rela_normal = (bed->rela_normal
7173 && (input_rel_hdr->sh_entsize
7174 == bed->s->sizeof_rela));
7175
7176 /* Adjust the reloc addresses and symbol indices. */
7177
7178 irela = internal_relocs;
7179 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7180 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7181 + elf_section_data (o->output_section)->rel_count
7182 + elf_section_data (o->output_section)->rel_count2);
eac338cf 7183 rel_hash_list = rel_hash;
c152c796
AM
7184 last_offset = o->output_offset;
7185 if (!finfo->info->relocatable)
7186 last_offset += o->output_section->vma;
7187 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7188 {
7189 unsigned long r_symndx;
7190 asection *sec;
7191 Elf_Internal_Sym sym;
7192
7193 if (next_erel == bed->s->int_rels_per_ext_rel)
7194 {
7195 rel_hash++;
7196 next_erel = 0;
7197 }
7198
7199 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7200 finfo->info, o,
7201 irela->r_offset);
7202 if (irela->r_offset >= (bfd_vma) -2)
7203 {
7204 /* This is a reloc for a deleted entry or somesuch.
7205 Turn it into an R_*_NONE reloc, at the same
7206 offset as the last reloc. elf_eh_frame.c and
7207 elf_bfd_discard_info rely on reloc offsets
7208 being ordered. */
7209 irela->r_offset = last_offset;
7210 irela->r_info = 0;
7211 irela->r_addend = 0;
7212 continue;
7213 }
7214
7215 irela->r_offset += o->output_offset;
7216
7217 /* Relocs in an executable have to be virtual addresses. */
7218 if (!finfo->info->relocatable)
7219 irela->r_offset += o->output_section->vma;
7220
7221 last_offset = irela->r_offset;
7222
7223 r_symndx = irela->r_info >> r_sym_shift;
7224 if (r_symndx == STN_UNDEF)
7225 continue;
7226
7227 if (r_symndx >= locsymcount
7228 || (elf_bad_symtab (input_bfd)
7229 && finfo->sections[r_symndx] == NULL))
7230 {
7231 struct elf_link_hash_entry *rh;
7232 unsigned long indx;
7233
7234 /* This is a reloc against a global symbol. We
7235 have not yet output all the local symbols, so
7236 we do not know the symbol index of any global
7237 symbol. We set the rel_hash entry for this
7238 reloc to point to the global hash table entry
7239 for this symbol. The symbol index is then
ee75fd95 7240 set at the end of bfd_elf_final_link. */
c152c796
AM
7241 indx = r_symndx - extsymoff;
7242 rh = elf_sym_hashes (input_bfd)[indx];
7243 while (rh->root.type == bfd_link_hash_indirect
7244 || rh->root.type == bfd_link_hash_warning)
7245 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7246
7247 /* Setting the index to -2 tells
7248 elf_link_output_extsym that this symbol is
7249 used by a reloc. */
7250 BFD_ASSERT (rh->indx < 0);
7251 rh->indx = -2;
7252
7253 *rel_hash = rh;
7254
7255 continue;
7256 }
7257
7258 /* This is a reloc against a local symbol. */
7259
7260 *rel_hash = NULL;
7261 sym = isymbuf[r_symndx];
7262 sec = finfo->sections[r_symndx];
7263 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7264 {
7265 /* I suppose the backend ought to fill in the
7266 section of any STT_SECTION symbol against a
6a8d1586
AM
7267 processor specific section. */
7268 r_symndx = 0;
7269 if (bfd_is_abs_section (sec))
7270 ;
c152c796
AM
7271 else if (sec == NULL || sec->owner == NULL)
7272 {
7273 bfd_set_error (bfd_error_bad_value);
7274 return FALSE;
7275 }
7276 else
7277 {
6a8d1586
AM
7278 asection *osec = sec->output_section;
7279
7280 /* If we have discarded a section, the output
7281 section will be the absolute section. In
7282 case of discarded link-once and discarded
7283 SEC_MERGE sections, use the kept section. */
7284 if (bfd_is_abs_section (osec)
7285 && sec->kept_section != NULL
7286 && sec->kept_section->output_section != NULL)
7287 {
7288 osec = sec->kept_section->output_section;
7289 irela->r_addend -= osec->vma;
7290 }
7291
7292 if (!bfd_is_abs_section (osec))
7293 {
7294 r_symndx = osec->target_index;
7295 BFD_ASSERT (r_symndx != 0);
7296 }
c152c796
AM
7297 }
7298
7299 /* Adjust the addend according to where the
7300 section winds up in the output section. */
7301 if (rela_normal)
7302 irela->r_addend += sec->output_offset;
7303 }
7304 else
7305 {
7306 if (finfo->indices[r_symndx] == -1)
7307 {
7308 unsigned long shlink;
7309 const char *name;
7310 asection *osec;
7311
7312 if (finfo->info->strip == strip_all)
7313 {
7314 /* You can't do ld -r -s. */
7315 bfd_set_error (bfd_error_invalid_operation);
7316 return FALSE;
7317 }
7318
7319 /* This symbol was skipped earlier, but
7320 since it is needed by a reloc, we
7321 must output it now. */
7322 shlink = symtab_hdr->sh_link;
7323 name = (bfd_elf_string_from_elf_section
7324 (input_bfd, shlink, sym.st_name));
7325 if (name == NULL)
7326 return FALSE;
7327
7328 osec = sec->output_section;
7329 sym.st_shndx =
7330 _bfd_elf_section_from_bfd_section (output_bfd,
7331 osec);
7332 if (sym.st_shndx == SHN_BAD)
7333 return FALSE;
7334
7335 sym.st_value += sec->output_offset;
7336 if (! finfo->info->relocatable)
7337 {
7338 sym.st_value += osec->vma;
7339 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7340 {
7341 /* STT_TLS symbols are relative to PT_TLS
7342 segment base. */
7343 BFD_ASSERT (elf_hash_table (finfo->info)
7344 ->tls_sec != NULL);
7345 sym.st_value -= (elf_hash_table (finfo->info)
7346 ->tls_sec->vma);
7347 }
7348 }
7349
7350 finfo->indices[r_symndx]
7351 = bfd_get_symcount (output_bfd);
7352
7353 if (! elf_link_output_sym (finfo, name, &sym, sec,
7354 NULL))
7355 return FALSE;
7356 }
7357
7358 r_symndx = finfo->indices[r_symndx];
7359 }
7360
7361 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7362 | (irela->r_info & r_type_mask));
7363 }
7364
7365 /* Swap out the relocs. */
c152c796 7366 if (input_rel_hdr->sh_size != 0
eac338cf
PB
7367 && !bed->elf_backend_emit_relocs (output_bfd, o,
7368 input_rel_hdr,
7369 internal_relocs,
7370 rel_hash_list))
c152c796
AM
7371 return FALSE;
7372
7373 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7374 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7375 {
7376 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7377 * bed->s->int_rels_per_ext_rel);
eac338cf
PB
7378 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
7379 if (!bed->elf_backend_emit_relocs (output_bfd, o,
7380 input_rel_hdr2,
7381 internal_relocs,
7382 rel_hash_list))
c152c796
AM
7383 return FALSE;
7384 }
7385 }
7386 }
7387
7388 /* Write out the modified section contents. */
7389 if (bed->elf_backend_write_section
7390 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7391 {
7392 /* Section written out. */
7393 }
7394 else switch (o->sec_info_type)
7395 {
7396 case ELF_INFO_TYPE_STABS:
7397 if (! (_bfd_write_section_stabs
7398 (output_bfd,
7399 &elf_hash_table (finfo->info)->stab_info,
7400 o, &elf_section_data (o)->sec_info, contents)))
7401 return FALSE;
7402 break;
7403 case ELF_INFO_TYPE_MERGE:
7404 if (! _bfd_write_merged_section (output_bfd, o,
7405 elf_section_data (o)->sec_info))
7406 return FALSE;
7407 break;
7408 case ELF_INFO_TYPE_EH_FRAME:
7409 {
7410 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7411 o, contents))
7412 return FALSE;
7413 }
7414 break;
7415 default:
7416 {
c152c796
AM
7417 if (! (o->flags & SEC_EXCLUDE)
7418 && ! bfd_set_section_contents (output_bfd, o->output_section,
7419 contents,
7420 (file_ptr) o->output_offset,
eea6121a 7421 o->size))
c152c796
AM
7422 return FALSE;
7423 }
7424 break;
7425 }
7426 }
7427
7428 return TRUE;
7429}
7430
7431/* Generate a reloc when linking an ELF file. This is a reloc
7432 requested by the linker, and does come from any input file. This
7433 is used to build constructor and destructor tables when linking
7434 with -Ur. */
7435
7436static bfd_boolean
7437elf_reloc_link_order (bfd *output_bfd,
7438 struct bfd_link_info *info,
7439 asection *output_section,
7440 struct bfd_link_order *link_order)
7441{
7442 reloc_howto_type *howto;
7443 long indx;
7444 bfd_vma offset;
7445 bfd_vma addend;
7446 struct elf_link_hash_entry **rel_hash_ptr;
7447 Elf_Internal_Shdr *rel_hdr;
7448 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7449 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7450 bfd_byte *erel;
7451 unsigned int i;
7452
7453 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7454 if (howto == NULL)
7455 {
7456 bfd_set_error (bfd_error_bad_value);
7457 return FALSE;
7458 }
7459
7460 addend = link_order->u.reloc.p->addend;
7461
7462 /* Figure out the symbol index. */
7463 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7464 + elf_section_data (output_section)->rel_count
7465 + elf_section_data (output_section)->rel_count2);
7466 if (link_order->type == bfd_section_reloc_link_order)
7467 {
7468 indx = link_order->u.reloc.p->u.section->target_index;
7469 BFD_ASSERT (indx != 0);
7470 *rel_hash_ptr = NULL;
7471 }
7472 else
7473 {
7474 struct elf_link_hash_entry *h;
7475
7476 /* Treat a reloc against a defined symbol as though it were
7477 actually against the section. */
7478 h = ((struct elf_link_hash_entry *)
7479 bfd_wrapped_link_hash_lookup (output_bfd, info,
7480 link_order->u.reloc.p->u.name,
7481 FALSE, FALSE, TRUE));
7482 if (h != NULL
7483 && (h->root.type == bfd_link_hash_defined
7484 || h->root.type == bfd_link_hash_defweak))
7485 {
7486 asection *section;
7487
7488 section = h->root.u.def.section;
7489 indx = section->output_section->target_index;
7490 *rel_hash_ptr = NULL;
7491 /* It seems that we ought to add the symbol value to the
7492 addend here, but in practice it has already been added
7493 because it was passed to constructor_callback. */
7494 addend += section->output_section->vma + section->output_offset;
7495 }
7496 else if (h != NULL)
7497 {
7498 /* Setting the index to -2 tells elf_link_output_extsym that
7499 this symbol is used by a reloc. */
7500 h->indx = -2;
7501 *rel_hash_ptr = h;
7502 indx = 0;
7503 }
7504 else
7505 {
7506 if (! ((*info->callbacks->unattached_reloc)
7507 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7508 return FALSE;
7509 indx = 0;
7510 }
7511 }
7512
7513 /* If this is an inplace reloc, we must write the addend into the
7514 object file. */
7515 if (howto->partial_inplace && addend != 0)
7516 {
7517 bfd_size_type size;
7518 bfd_reloc_status_type rstat;
7519 bfd_byte *buf;
7520 bfd_boolean ok;
7521 const char *sym_name;
7522
7523 size = bfd_get_reloc_size (howto);
7524 buf = bfd_zmalloc (size);
7525 if (buf == NULL)
7526 return FALSE;
7527 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7528 switch (rstat)
7529 {
7530 case bfd_reloc_ok:
7531 break;
7532
7533 default:
7534 case bfd_reloc_outofrange:
7535 abort ();
7536
7537 case bfd_reloc_overflow:
7538 if (link_order->type == bfd_section_reloc_link_order)
7539 sym_name = bfd_section_name (output_bfd,
7540 link_order->u.reloc.p->u.section);
7541 else
7542 sym_name = link_order->u.reloc.p->u.name;
7543 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f
L
7544 (info, NULL, sym_name, howto->name, addend, NULL,
7545 NULL, (bfd_vma) 0)))
c152c796
AM
7546 {
7547 free (buf);
7548 return FALSE;
7549 }
7550 break;
7551 }
7552 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7553 link_order->offset, size);
7554 free (buf);
7555 if (! ok)
7556 return FALSE;
7557 }
7558
7559 /* The address of a reloc is relative to the section in a
7560 relocatable file, and is a virtual address in an executable
7561 file. */
7562 offset = link_order->offset;
7563 if (! info->relocatable)
7564 offset += output_section->vma;
7565
7566 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7567 {
7568 irel[i].r_offset = offset;
7569 irel[i].r_info = 0;
7570 irel[i].r_addend = 0;
7571 }
7572 if (bed->s->arch_size == 32)
7573 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7574 else
7575 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7576
7577 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7578 erel = rel_hdr->contents;
7579 if (rel_hdr->sh_type == SHT_REL)
7580 {
7581 erel += (elf_section_data (output_section)->rel_count
7582 * bed->s->sizeof_rel);
7583 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7584 }
7585 else
7586 {
7587 irel[0].r_addend = addend;
7588 erel += (elf_section_data (output_section)->rel_count
7589 * bed->s->sizeof_rela);
7590 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7591 }
7592
7593 ++elf_section_data (output_section)->rel_count;
7594
7595 return TRUE;
7596}
7597
0b52efa6
PB
7598
7599/* Get the output vma of the section pointed to by the sh_link field. */
7600
7601static bfd_vma
7602elf_get_linked_section_vma (struct bfd_link_order *p)
7603{
7604 Elf_Internal_Shdr **elf_shdrp;
7605 asection *s;
7606 int elfsec;
7607
7608 s = p->u.indirect.section;
7609 elf_shdrp = elf_elfsections (s->owner);
7610 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7611 elfsec = elf_shdrp[elfsec]->sh_link;
185d09ad
L
7612 /* PR 290:
7613 The Intel C compiler generates SHT_IA_64_UNWIND with
e04bcc6d 7614 SHF_LINK_ORDER. But it doesn't set the sh_link or
185d09ad
L
7615 sh_info fields. Hence we could get the situation
7616 where elfsec is 0. */
7617 if (elfsec == 0)
7618 {
7619 const struct elf_backend_data *bed
7620 = get_elf_backend_data (s->owner);
7621 if (bed->link_order_error_handler)
d003868e
AM
7622 bed->link_order_error_handler
7623 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
185d09ad
L
7624 return 0;
7625 }
7626 else
7627 {
7628 s = elf_shdrp[elfsec]->bfd_section;
7629 return s->output_section->vma + s->output_offset;
7630 }
0b52efa6
PB
7631}
7632
7633
7634/* Compare two sections based on the locations of the sections they are
7635 linked to. Used by elf_fixup_link_order. */
7636
7637static int
7638compare_link_order (const void * a, const void * b)
7639{
7640 bfd_vma apos;
7641 bfd_vma bpos;
7642
7643 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7644 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7645 if (apos < bpos)
7646 return -1;
7647 return apos > bpos;
7648}
7649
7650
7651/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7652 order as their linked sections. Returns false if this could not be done
7653 because an output section includes both ordered and unordered
7654 sections. Ideally we'd do this in the linker proper. */
7655
7656static bfd_boolean
7657elf_fixup_link_order (bfd *abfd, asection *o)
7658{
7659 int seen_linkorder;
7660 int seen_other;
7661 int n;
7662 struct bfd_link_order *p;
7663 bfd *sub;
7664 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7665 int elfsec;
7666 struct bfd_link_order **sections;
7667 asection *s;
7668 bfd_vma offset;
3b36f7e6 7669
0b52efa6
PB
7670 seen_other = 0;
7671 seen_linkorder = 0;
8423293d 7672 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7673 {
7674 if (p->type == bfd_indirect_link_order
7675 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7676 == bfd_target_elf_flavour)
7677 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7678 {
7679 s = p->u.indirect.section;
7680 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7681 if (elfsec != -1
7682 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7683 seen_linkorder++;
7684 else
7685 seen_other++;
7686 }
7687 else
7688 seen_other++;
7689 }
7690
7691 if (!seen_linkorder)
7692 return TRUE;
7693
7694 if (seen_other && seen_linkorder)
08ccf96b 7695 {
d003868e
AM
7696 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7697 o);
08ccf96b
L
7698 bfd_set_error (bfd_error_bad_value);
7699 return FALSE;
7700 }
3b36f7e6 7701
0b52efa6
PB
7702 sections = (struct bfd_link_order **)
7703 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7704 seen_linkorder = 0;
3b36f7e6 7705
8423293d 7706 for (p = o->map_head.link_order; p != NULL; p = p->next)
0b52efa6
PB
7707 {
7708 sections[seen_linkorder++] = p;
7709 }
7710 /* Sort the input sections in the order of their linked section. */
7711 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7712 compare_link_order);
7713
7714 /* Change the offsets of the sections. */
7715 offset = 0;
7716 for (n = 0; n < seen_linkorder; n++)
7717 {
7718 s = sections[n]->u.indirect.section;
7719 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7720 s->output_offset = offset;
7721 sections[n]->offset = offset;
7722 offset += sections[n]->size;
7723 }
7724
7725 return TRUE;
7726}
7727
7728
c152c796
AM
7729/* Do the final step of an ELF link. */
7730
7731bfd_boolean
7732bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7733{
7734 bfd_boolean dynamic;
7735 bfd_boolean emit_relocs;
7736 bfd *dynobj;
7737 struct elf_final_link_info finfo;
7738 register asection *o;
7739 register struct bfd_link_order *p;
7740 register bfd *sub;
7741 bfd_size_type max_contents_size;
7742 bfd_size_type max_external_reloc_size;
7743 bfd_size_type max_internal_reloc_count;
7744 bfd_size_type max_sym_count;
7745 bfd_size_type max_sym_shndx_count;
7746 file_ptr off;
7747 Elf_Internal_Sym elfsym;
7748 unsigned int i;
7749 Elf_Internal_Shdr *symtab_hdr;
7750 Elf_Internal_Shdr *symtab_shndx_hdr;
7751 Elf_Internal_Shdr *symstrtab_hdr;
7752 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7753 struct elf_outext_info eoinfo;
7754 bfd_boolean merged;
7755 size_t relativecount = 0;
7756 asection *reldyn = 0;
7757 bfd_size_type amt;
7758
7759 if (! is_elf_hash_table (info->hash))
7760 return FALSE;
7761
7762 if (info->shared)
7763 abfd->flags |= DYNAMIC;
7764
7765 dynamic = elf_hash_table (info)->dynamic_sections_created;
7766 dynobj = elf_hash_table (info)->dynobj;
7767
7768 emit_relocs = (info->relocatable
7769 || info->emitrelocations
7770 || bed->elf_backend_emit_relocs);
7771
7772 finfo.info = info;
7773 finfo.output_bfd = abfd;
7774 finfo.symstrtab = _bfd_elf_stringtab_init ();
7775 if (finfo.symstrtab == NULL)
7776 return FALSE;
7777
7778 if (! dynamic)
7779 {
7780 finfo.dynsym_sec = NULL;
7781 finfo.hash_sec = NULL;
7782 finfo.symver_sec = NULL;
7783 }
7784 else
7785 {
7786 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7787 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7788 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7789 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7790 /* Note that it is OK if symver_sec is NULL. */
7791 }
7792
7793 finfo.contents = NULL;
7794 finfo.external_relocs = NULL;
7795 finfo.internal_relocs = NULL;
7796 finfo.external_syms = NULL;
7797 finfo.locsym_shndx = NULL;
7798 finfo.internal_syms = NULL;
7799 finfo.indices = NULL;
7800 finfo.sections = NULL;
7801 finfo.symbuf = NULL;
7802 finfo.symshndxbuf = NULL;
7803 finfo.symbuf_count = 0;
7804 finfo.shndxbuf_size = 0;
7805
7806 /* Count up the number of relocations we will output for each output
7807 section, so that we know the sizes of the reloc sections. We
7808 also figure out some maximum sizes. */
7809 max_contents_size = 0;
7810 max_external_reloc_size = 0;
7811 max_internal_reloc_count = 0;
7812 max_sym_count = 0;
7813 max_sym_shndx_count = 0;
7814 merged = FALSE;
7815 for (o = abfd->sections; o != NULL; o = o->next)
7816 {
7817 struct bfd_elf_section_data *esdo = elf_section_data (o);
7818 o->reloc_count = 0;
7819
8423293d 7820 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
7821 {
7822 unsigned int reloc_count = 0;
7823 struct bfd_elf_section_data *esdi = NULL;
7824 unsigned int *rel_count1;
7825
7826 if (p->type == bfd_section_reloc_link_order
7827 || p->type == bfd_symbol_reloc_link_order)
7828 reloc_count = 1;
7829 else if (p->type == bfd_indirect_link_order)
7830 {
7831 asection *sec;
7832
7833 sec = p->u.indirect.section;
7834 esdi = elf_section_data (sec);
7835
7836 /* Mark all sections which are to be included in the
7837 link. This will normally be every section. We need
7838 to do this so that we can identify any sections which
7839 the linker has decided to not include. */
7840 sec->linker_mark = TRUE;
7841
7842 if (sec->flags & SEC_MERGE)
7843 merged = TRUE;
7844
7845 if (info->relocatable || info->emitrelocations)
7846 reloc_count = sec->reloc_count;
7847 else if (bed->elf_backend_count_relocs)
7848 {
7849 Elf_Internal_Rela * relocs;
7850
7851 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7852 info->keep_memory);
7853
7854 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7855
7856 if (elf_section_data (o)->relocs != relocs)
7857 free (relocs);
7858 }
7859
eea6121a
AM
7860 if (sec->rawsize > max_contents_size)
7861 max_contents_size = sec->rawsize;
7862 if (sec->size > max_contents_size)
7863 max_contents_size = sec->size;
c152c796
AM
7864
7865 /* We are interested in just local symbols, not all
7866 symbols. */
7867 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7868 && (sec->owner->flags & DYNAMIC) == 0)
7869 {
7870 size_t sym_count;
7871
7872 if (elf_bad_symtab (sec->owner))
7873 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7874 / bed->s->sizeof_sym);
7875 else
7876 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7877
7878 if (sym_count > max_sym_count)
7879 max_sym_count = sym_count;
7880
7881 if (sym_count > max_sym_shndx_count
7882 && elf_symtab_shndx (sec->owner) != 0)
7883 max_sym_shndx_count = sym_count;
7884
7885 if ((sec->flags & SEC_RELOC) != 0)
7886 {
7887 size_t ext_size;
7888
7889 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7890 if (ext_size > max_external_reloc_size)
7891 max_external_reloc_size = ext_size;
7892 if (sec->reloc_count > max_internal_reloc_count)
7893 max_internal_reloc_count = sec->reloc_count;
7894 }
7895 }
7896 }
7897
7898 if (reloc_count == 0)
7899 continue;
7900
7901 o->reloc_count += reloc_count;
7902
7903 /* MIPS may have a mix of REL and RELA relocs on sections.
7904 To support this curious ABI we keep reloc counts in
7905 elf_section_data too. We must be careful to add the
7906 relocations from the input section to the right output
7907 count. FIXME: Get rid of one count. We have
7908 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7909 rel_count1 = &esdo->rel_count;
7910 if (esdi != NULL)
7911 {
7912 bfd_boolean same_size;
7913 bfd_size_type entsize1;
7914
7915 entsize1 = esdi->rel_hdr.sh_entsize;
7916 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7917 || entsize1 == bed->s->sizeof_rela);
7918 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7919
7920 if (!same_size)
7921 rel_count1 = &esdo->rel_count2;
7922
7923 if (esdi->rel_hdr2 != NULL)
7924 {
7925 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7926 unsigned int alt_count;
7927 unsigned int *rel_count2;
7928
7929 BFD_ASSERT (entsize2 != entsize1
7930 && (entsize2 == bed->s->sizeof_rel
7931 || entsize2 == bed->s->sizeof_rela));
7932
7933 rel_count2 = &esdo->rel_count2;
7934 if (!same_size)
7935 rel_count2 = &esdo->rel_count;
7936
7937 /* The following is probably too simplistic if the
7938 backend counts output relocs unusually. */
7939 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7940 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7941 *rel_count2 += alt_count;
7942 reloc_count -= alt_count;
7943 }
7944 }
7945 *rel_count1 += reloc_count;
7946 }
7947
7948 if (o->reloc_count > 0)
7949 o->flags |= SEC_RELOC;
7950 else
7951 {
7952 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7953 set it (this is probably a bug) and if it is set
7954 assign_section_numbers will create a reloc section. */
7955 o->flags &=~ SEC_RELOC;
7956 }
7957
7958 /* If the SEC_ALLOC flag is not set, force the section VMA to
7959 zero. This is done in elf_fake_sections as well, but forcing
7960 the VMA to 0 here will ensure that relocs against these
7961 sections are handled correctly. */
7962 if ((o->flags & SEC_ALLOC) == 0
7963 && ! o->user_set_vma)
7964 o->vma = 0;
7965 }
7966
7967 if (! info->relocatable && merged)
7968 elf_link_hash_traverse (elf_hash_table (info),
7969 _bfd_elf_link_sec_merge_syms, abfd);
7970
7971 /* Figure out the file positions for everything but the symbol table
7972 and the relocs. We set symcount to force assign_section_numbers
7973 to create a symbol table. */
7974 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7975 BFD_ASSERT (! abfd->output_has_begun);
7976 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7977 goto error_return;
7978
ee75fd95 7979 /* Set sizes, and assign file positions for reloc sections. */
c152c796
AM
7980 for (o = abfd->sections; o != NULL; o = o->next)
7981 {
7982 if ((o->flags & SEC_RELOC) != 0)
7983 {
7984 if (!(_bfd_elf_link_size_reloc_section
7985 (abfd, &elf_section_data (o)->rel_hdr, o)))
7986 goto error_return;
7987
7988 if (elf_section_data (o)->rel_hdr2
7989 && !(_bfd_elf_link_size_reloc_section
7990 (abfd, elf_section_data (o)->rel_hdr2, o)))
7991 goto error_return;
7992 }
7993
7994 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7995 to count upwards while actually outputting the relocations. */
7996 elf_section_data (o)->rel_count = 0;
7997 elf_section_data (o)->rel_count2 = 0;
7998 }
7999
8000 _bfd_elf_assign_file_positions_for_relocs (abfd);
8001
8002 /* We have now assigned file positions for all the sections except
8003 .symtab and .strtab. We start the .symtab section at the current
8004 file position, and write directly to it. We build the .strtab
8005 section in memory. */
8006 bfd_get_symcount (abfd) = 0;
8007 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8008 /* sh_name is set in prep_headers. */
8009 symtab_hdr->sh_type = SHT_SYMTAB;
8010 /* sh_flags, sh_addr and sh_size all start off zero. */
8011 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8012 /* sh_link is set in assign_section_numbers. */
8013 /* sh_info is set below. */
8014 /* sh_offset is set just below. */
8015 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8016
8017 off = elf_tdata (abfd)->next_file_pos;
8018 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8019
8020 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8021 incorrect. We do not yet know the size of the .symtab section.
8022 We correct next_file_pos below, after we do know the size. */
8023
8024 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8025 continuously seeking to the right position in the file. */
8026 if (! info->keep_memory || max_sym_count < 20)
8027 finfo.symbuf_size = 20;
8028 else
8029 finfo.symbuf_size = max_sym_count;
8030 amt = finfo.symbuf_size;
8031 amt *= bed->s->sizeof_sym;
8032 finfo.symbuf = bfd_malloc (amt);
8033 if (finfo.symbuf == NULL)
8034 goto error_return;
8035 if (elf_numsections (abfd) > SHN_LORESERVE)
8036 {
8037 /* Wild guess at number of output symbols. realloc'd as needed. */
8038 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8039 finfo.shndxbuf_size = amt;
8040 amt *= sizeof (Elf_External_Sym_Shndx);
8041 finfo.symshndxbuf = bfd_zmalloc (amt);
8042 if (finfo.symshndxbuf == NULL)
8043 goto error_return;
8044 }
8045
8046 /* Start writing out the symbol table. The first symbol is always a
8047 dummy symbol. */
8048 if (info->strip != strip_all
8049 || emit_relocs)
8050 {
8051 elfsym.st_value = 0;
8052 elfsym.st_size = 0;
8053 elfsym.st_info = 0;
8054 elfsym.st_other = 0;
8055 elfsym.st_shndx = SHN_UNDEF;
8056 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8057 NULL))
8058 goto error_return;
8059 }
8060
c152c796
AM
8061 /* Output a symbol for each section. We output these even if we are
8062 discarding local symbols, since they are used for relocs. These
8063 symbols have no names. We store the index of each one in the
8064 index field of the section, so that we can find it again when
8065 outputting relocs. */
8066 if (info->strip != strip_all
8067 || emit_relocs)
8068 {
8069 elfsym.st_size = 0;
8070 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8071 elfsym.st_other = 0;
8072 for (i = 1; i < elf_numsections (abfd); i++)
8073 {
8074 o = bfd_section_from_elf_index (abfd, i);
8075 if (o != NULL)
8076 o->target_index = bfd_get_symcount (abfd);
8077 elfsym.st_shndx = i;
8078 if (info->relocatable || o == NULL)
8079 elfsym.st_value = 0;
8080 else
8081 elfsym.st_value = o->vma;
8082 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8083 goto error_return;
8084 if (i == SHN_LORESERVE - 1)
8085 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8086 }
8087 }
8088
8089 /* Allocate some memory to hold information read in from the input
8090 files. */
8091 if (max_contents_size != 0)
8092 {
8093 finfo.contents = bfd_malloc (max_contents_size);
8094 if (finfo.contents == NULL)
8095 goto error_return;
8096 }
8097
8098 if (max_external_reloc_size != 0)
8099 {
8100 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8101 if (finfo.external_relocs == NULL)
8102 goto error_return;
8103 }
8104
8105 if (max_internal_reloc_count != 0)
8106 {
8107 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8108 amt *= sizeof (Elf_Internal_Rela);
8109 finfo.internal_relocs = bfd_malloc (amt);
8110 if (finfo.internal_relocs == NULL)
8111 goto error_return;
8112 }
8113
8114 if (max_sym_count != 0)
8115 {
8116 amt = max_sym_count * bed->s->sizeof_sym;
8117 finfo.external_syms = bfd_malloc (amt);
8118 if (finfo.external_syms == NULL)
8119 goto error_return;
8120
8121 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8122 finfo.internal_syms = bfd_malloc (amt);
8123 if (finfo.internal_syms == NULL)
8124 goto error_return;
8125
8126 amt = max_sym_count * sizeof (long);
8127 finfo.indices = bfd_malloc (amt);
8128 if (finfo.indices == NULL)
8129 goto error_return;
8130
8131 amt = max_sym_count * sizeof (asection *);
8132 finfo.sections = bfd_malloc (amt);
8133 if (finfo.sections == NULL)
8134 goto error_return;
8135 }
8136
8137 if (max_sym_shndx_count != 0)
8138 {
8139 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8140 finfo.locsym_shndx = bfd_malloc (amt);
8141 if (finfo.locsym_shndx == NULL)
8142 goto error_return;
8143 }
8144
8145 if (elf_hash_table (info)->tls_sec)
8146 {
8147 bfd_vma base, end = 0;
8148 asection *sec;
8149
8150 for (sec = elf_hash_table (info)->tls_sec;
8151 sec && (sec->flags & SEC_THREAD_LOCAL);
8152 sec = sec->next)
8153 {
eea6121a 8154 bfd_vma size = sec->size;
c152c796
AM
8155
8156 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8157 {
8158 struct bfd_link_order *o;
8159
8423293d 8160 for (o = sec->map_head.link_order; o != NULL; o = o->next)
c152c796
AM
8161 if (size < o->offset + o->size)
8162 size = o->offset + o->size;
8163 }
8164 end = sec->vma + size;
8165 }
8166 base = elf_hash_table (info)->tls_sec->vma;
8167 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8168 elf_hash_table (info)->tls_size = end - base;
8169 }
8170
0b52efa6
PB
8171 /* Reorder SHF_LINK_ORDER sections. */
8172 for (o = abfd->sections; o != NULL; o = o->next)
8173 {
8174 if (!elf_fixup_link_order (abfd, o))
8175 return FALSE;
8176 }
8177
c152c796
AM
8178 /* Since ELF permits relocations to be against local symbols, we
8179 must have the local symbols available when we do the relocations.
8180 Since we would rather only read the local symbols once, and we
8181 would rather not keep them in memory, we handle all the
8182 relocations for a single input file at the same time.
8183
8184 Unfortunately, there is no way to know the total number of local
8185 symbols until we have seen all of them, and the local symbol
8186 indices precede the global symbol indices. This means that when
8187 we are generating relocatable output, and we see a reloc against
8188 a global symbol, we can not know the symbol index until we have
8189 finished examining all the local symbols to see which ones we are
8190 going to output. To deal with this, we keep the relocations in
8191 memory, and don't output them until the end of the link. This is
8192 an unfortunate waste of memory, but I don't see a good way around
8193 it. Fortunately, it only happens when performing a relocatable
8194 link, which is not the common case. FIXME: If keep_memory is set
8195 we could write the relocs out and then read them again; I don't
8196 know how bad the memory loss will be. */
8197
8198 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8199 sub->output_has_begun = FALSE;
8200 for (o = abfd->sections; o != NULL; o = o->next)
8201 {
8423293d 8202 for (p = o->map_head.link_order; p != NULL; p = p->next)
c152c796
AM
8203 {
8204 if (p->type == bfd_indirect_link_order
8205 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8206 == bfd_target_elf_flavour)
8207 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8208 {
8209 if (! sub->output_has_begun)
8210 {
8211 if (! elf_link_input_bfd (&finfo, sub))
8212 goto error_return;
8213 sub->output_has_begun = TRUE;
8214 }
8215 }
8216 else if (p->type == bfd_section_reloc_link_order
8217 || p->type == bfd_symbol_reloc_link_order)
8218 {
8219 if (! elf_reloc_link_order (abfd, info, o, p))
8220 goto error_return;
8221 }
8222 else
8223 {
8224 if (! _bfd_default_link_order (abfd, info, o, p))
8225 goto error_return;
8226 }
8227 }
8228 }
8229
8230 /* Output any global symbols that got converted to local in a
8231 version script or due to symbol visibility. We do this in a
8232 separate step since ELF requires all local symbols to appear
8233 prior to any global symbols. FIXME: We should only do this if
8234 some global symbols were, in fact, converted to become local.
8235 FIXME: Will this work correctly with the Irix 5 linker? */
8236 eoinfo.failed = FALSE;
8237 eoinfo.finfo = &finfo;
8238 eoinfo.localsyms = TRUE;
8239 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8240 &eoinfo);
8241 if (eoinfo.failed)
8242 return FALSE;
8243
8244 /* That wrote out all the local symbols. Finish up the symbol table
8245 with the global symbols. Even if we want to strip everything we
8246 can, we still need to deal with those global symbols that got
8247 converted to local in a version script. */
8248
8249 /* The sh_info field records the index of the first non local symbol. */
8250 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8251
8252 if (dynamic
8253 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8254 {
8255 Elf_Internal_Sym sym;
8256 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8257 long last_local = 0;
8258
8259 /* Write out the section symbols for the output sections. */
67687978 8260 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
c152c796
AM
8261 {
8262 asection *s;
8263
8264 sym.st_size = 0;
8265 sym.st_name = 0;
8266 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8267 sym.st_other = 0;
8268
8269 for (s = abfd->sections; s != NULL; s = s->next)
8270 {
8271 int indx;
8272 bfd_byte *dest;
8273 long dynindx;
8274
c152c796 8275 dynindx = elf_section_data (s)->dynindx;
8c37241b
JJ
8276 if (dynindx <= 0)
8277 continue;
8278 indx = elf_section_data (s)->this_idx;
c152c796
AM
8279 BFD_ASSERT (indx > 0);
8280 sym.st_shndx = indx;
8281 sym.st_value = s->vma;
8282 dest = dynsym + dynindx * bed->s->sizeof_sym;
8c37241b
JJ
8283 if (last_local < dynindx)
8284 last_local = dynindx;
c152c796
AM
8285 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8286 }
c152c796
AM
8287 }
8288
8289 /* Write out the local dynsyms. */
8290 if (elf_hash_table (info)->dynlocal)
8291 {
8292 struct elf_link_local_dynamic_entry *e;
8293 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8294 {
8295 asection *s;
8296 bfd_byte *dest;
8297
8298 sym.st_size = e->isym.st_size;
8299 sym.st_other = e->isym.st_other;
8300
8301 /* Copy the internal symbol as is.
8302 Note that we saved a word of storage and overwrote
8303 the original st_name with the dynstr_index. */
8304 sym = e->isym;
8305
8306 if (e->isym.st_shndx != SHN_UNDEF
8307 && (e->isym.st_shndx < SHN_LORESERVE
8308 || e->isym.st_shndx > SHN_HIRESERVE))
8309 {
8310 s = bfd_section_from_elf_index (e->input_bfd,
8311 e->isym.st_shndx);
8312
8313 sym.st_shndx =
8314 elf_section_data (s->output_section)->this_idx;
8315 sym.st_value = (s->output_section->vma
8316 + s->output_offset
8317 + e->isym.st_value);
8318 }
8319
8320 if (last_local < e->dynindx)
8321 last_local = e->dynindx;
8322
8323 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8324 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8325 }
8326 }
8327
8328 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8329 last_local + 1;
8330 }
8331
8332 /* We get the global symbols from the hash table. */
8333 eoinfo.failed = FALSE;
8334 eoinfo.localsyms = FALSE;
8335 eoinfo.finfo = &finfo;
8336 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8337 &eoinfo);
8338 if (eoinfo.failed)
8339 return FALSE;
8340
8341 /* If backend needs to output some symbols not present in the hash
8342 table, do it now. */
8343 if (bed->elf_backend_output_arch_syms)
8344 {
8345 typedef bfd_boolean (*out_sym_func)
8346 (void *, const char *, Elf_Internal_Sym *, asection *,
8347 struct elf_link_hash_entry *);
8348
8349 if (! ((*bed->elf_backend_output_arch_syms)
8350 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8351 return FALSE;
8352 }
8353
8354 /* Flush all symbols to the file. */
8355 if (! elf_link_flush_output_syms (&finfo, bed))
8356 return FALSE;
8357
8358 /* Now we know the size of the symtab section. */
8359 off += symtab_hdr->sh_size;
8360
8361 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8362 if (symtab_shndx_hdr->sh_name != 0)
8363 {
8364 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8365 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8366 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8367 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8368 symtab_shndx_hdr->sh_size = amt;
8369
8370 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8371 off, TRUE);
8372
8373 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8374 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8375 return FALSE;
8376 }
8377
8378
8379 /* Finish up and write out the symbol string table (.strtab)
8380 section. */
8381 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8382 /* sh_name was set in prep_headers. */
8383 symstrtab_hdr->sh_type = SHT_STRTAB;
8384 symstrtab_hdr->sh_flags = 0;
8385 symstrtab_hdr->sh_addr = 0;
8386 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8387 symstrtab_hdr->sh_entsize = 0;
8388 symstrtab_hdr->sh_link = 0;
8389 symstrtab_hdr->sh_info = 0;
8390 /* sh_offset is set just below. */
8391 symstrtab_hdr->sh_addralign = 1;
8392
8393 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8394 elf_tdata (abfd)->next_file_pos = off;
8395
8396 if (bfd_get_symcount (abfd) > 0)
8397 {
8398 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8399 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8400 return FALSE;
8401 }
8402
8403 /* Adjust the relocs to have the correct symbol indices. */
8404 for (o = abfd->sections; o != NULL; o = o->next)
8405 {
8406 if ((o->flags & SEC_RELOC) == 0)
8407 continue;
8408
8409 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8410 elf_section_data (o)->rel_count,
8411 elf_section_data (o)->rel_hashes);
8412 if (elf_section_data (o)->rel_hdr2 != NULL)
8413 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8414 elf_section_data (o)->rel_count2,
8415 (elf_section_data (o)->rel_hashes
8416 + elf_section_data (o)->rel_count));
8417
8418 /* Set the reloc_count field to 0 to prevent write_relocs from
8419 trying to swap the relocs out itself. */
8420 o->reloc_count = 0;
8421 }
8422
8423 if (dynamic && info->combreloc && dynobj != NULL)
8424 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8425
8426 /* If we are linking against a dynamic object, or generating a
8427 shared library, finish up the dynamic linking information. */
8428 if (dynamic)
8429 {
8430 bfd_byte *dyncon, *dynconend;
8431
8432 /* Fix up .dynamic entries. */
8433 o = bfd_get_section_by_name (dynobj, ".dynamic");
8434 BFD_ASSERT (o != NULL);
8435
8436 dyncon = o->contents;
eea6121a 8437 dynconend = o->contents + o->size;
c152c796
AM
8438 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8439 {
8440 Elf_Internal_Dyn dyn;
8441 const char *name;
8442 unsigned int type;
8443
8444 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8445
8446 switch (dyn.d_tag)
8447 {
8448 default:
8449 continue;
8450 case DT_NULL:
8451 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8452 {
8453 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8454 {
8455 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8456 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8457 default: continue;
8458 }
8459 dyn.d_un.d_val = relativecount;
8460 relativecount = 0;
8461 break;
8462 }
8463 continue;
8464
8465 case DT_INIT:
8466 name = info->init_function;
8467 goto get_sym;
8468 case DT_FINI:
8469 name = info->fini_function;
8470 get_sym:
8471 {
8472 struct elf_link_hash_entry *h;
8473
8474 h = elf_link_hash_lookup (elf_hash_table (info), name,
8475 FALSE, FALSE, TRUE);
8476 if (h != NULL
8477 && (h->root.type == bfd_link_hash_defined
8478 || h->root.type == bfd_link_hash_defweak))
8479 {
8480 dyn.d_un.d_val = h->root.u.def.value;
8481 o = h->root.u.def.section;
8482 if (o->output_section != NULL)
8483 dyn.d_un.d_val += (o->output_section->vma
8484 + o->output_offset);
8485 else
8486 {
8487 /* The symbol is imported from another shared
8488 library and does not apply to this one. */
8489 dyn.d_un.d_val = 0;
8490 }
8491 break;
8492 }
8493 }
8494 continue;
8495
8496 case DT_PREINIT_ARRAYSZ:
8497 name = ".preinit_array";
8498 goto get_size;
8499 case DT_INIT_ARRAYSZ:
8500 name = ".init_array";
8501 goto get_size;
8502 case DT_FINI_ARRAYSZ:
8503 name = ".fini_array";
8504 get_size:
8505 o = bfd_get_section_by_name (abfd, name);
8506 if (o == NULL)
8507 {
8508 (*_bfd_error_handler)
d003868e 8509 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8510 goto error_return;
8511 }
eea6121a 8512 if (o->size == 0)
c152c796
AM
8513 (*_bfd_error_handler)
8514 (_("warning: %s section has zero size"), name);
eea6121a 8515 dyn.d_un.d_val = o->size;
c152c796
AM
8516 break;
8517
8518 case DT_PREINIT_ARRAY:
8519 name = ".preinit_array";
8520 goto get_vma;
8521 case DT_INIT_ARRAY:
8522 name = ".init_array";
8523 goto get_vma;
8524 case DT_FINI_ARRAY:
8525 name = ".fini_array";
8526 goto get_vma;
8527
8528 case DT_HASH:
8529 name = ".hash";
8530 goto get_vma;
8531 case DT_STRTAB:
8532 name = ".dynstr";
8533 goto get_vma;
8534 case DT_SYMTAB:
8535 name = ".dynsym";
8536 goto get_vma;
8537 case DT_VERDEF:
8538 name = ".gnu.version_d";
8539 goto get_vma;
8540 case DT_VERNEED:
8541 name = ".gnu.version_r";
8542 goto get_vma;
8543 case DT_VERSYM:
8544 name = ".gnu.version";
8545 get_vma:
8546 o = bfd_get_section_by_name (abfd, name);
8547 if (o == NULL)
8548 {
8549 (*_bfd_error_handler)
d003868e 8550 (_("%B: could not find output section %s"), abfd, name);
c152c796
AM
8551 goto error_return;
8552 }
8553 dyn.d_un.d_ptr = o->vma;
8554 break;
8555
8556 case DT_REL:
8557 case DT_RELA:
8558 case DT_RELSZ:
8559 case DT_RELASZ:
8560 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8561 type = SHT_REL;
8562 else
8563 type = SHT_RELA;
8564 dyn.d_un.d_val = 0;
8565 for (i = 1; i < elf_numsections (abfd); i++)
8566 {
8567 Elf_Internal_Shdr *hdr;
8568
8569 hdr = elf_elfsections (abfd)[i];
8570 if (hdr->sh_type == type
8571 && (hdr->sh_flags & SHF_ALLOC) != 0)
8572 {
8573 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8574 dyn.d_un.d_val += hdr->sh_size;
8575 else
8576 {
8577 if (dyn.d_un.d_val == 0
8578 || hdr->sh_addr < dyn.d_un.d_val)
8579 dyn.d_un.d_val = hdr->sh_addr;
8580 }
8581 }
8582 }
8583 break;
8584 }
8585 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8586 }
8587 }
8588
8589 /* If we have created any dynamic sections, then output them. */
8590 if (dynobj != NULL)
8591 {
8592 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8593 goto error_return;
8594
8595 for (o = dynobj->sections; o != NULL; o = o->next)
8596 {
8597 if ((o->flags & SEC_HAS_CONTENTS) == 0
eea6121a 8598 || o->size == 0
c152c796
AM
8599 || o->output_section == bfd_abs_section_ptr)
8600 continue;
8601 if ((o->flags & SEC_LINKER_CREATED) == 0)
8602 {
8603 /* At this point, we are only interested in sections
8604 created by _bfd_elf_link_create_dynamic_sections. */
8605 continue;
8606 }
3722b82f
AM
8607 if (elf_hash_table (info)->stab_info.stabstr == o)
8608 continue;
eea6121a
AM
8609 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8610 continue;
c152c796
AM
8611 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8612 != SHT_STRTAB)
8613 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8614 {
8615 if (! bfd_set_section_contents (abfd, o->output_section,
8616 o->contents,
8617 (file_ptr) o->output_offset,
eea6121a 8618 o->size))
c152c796
AM
8619 goto error_return;
8620 }
8621 else
8622 {
8623 /* The contents of the .dynstr section are actually in a
8624 stringtab. */
8625 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8626 if (bfd_seek (abfd, off, SEEK_SET) != 0
8627 || ! _bfd_elf_strtab_emit (abfd,
8628 elf_hash_table (info)->dynstr))
8629 goto error_return;
8630 }
8631 }
8632 }
8633
8634 if (info->relocatable)
8635 {
8636 bfd_boolean failed = FALSE;
8637
8638 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8639 if (failed)
8640 goto error_return;
8641 }
8642
8643 /* If we have optimized stabs strings, output them. */
3722b82f 8644 if (elf_hash_table (info)->stab_info.stabstr != NULL)
c152c796
AM
8645 {
8646 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8647 goto error_return;
8648 }
8649
8650 if (info->eh_frame_hdr)
8651 {
8652 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8653 goto error_return;
8654 }
8655
8656 if (finfo.symstrtab != NULL)
8657 _bfd_stringtab_free (finfo.symstrtab);
8658 if (finfo.contents != NULL)
8659 free (finfo.contents);
8660 if (finfo.external_relocs != NULL)
8661 free (finfo.external_relocs);
8662 if (finfo.internal_relocs != NULL)
8663 free (finfo.internal_relocs);
8664 if (finfo.external_syms != NULL)
8665 free (finfo.external_syms);
8666 if (finfo.locsym_shndx != NULL)
8667 free (finfo.locsym_shndx);
8668 if (finfo.internal_syms != NULL)
8669 free (finfo.internal_syms);
8670 if (finfo.indices != NULL)
8671 free (finfo.indices);
8672 if (finfo.sections != NULL)
8673 free (finfo.sections);
8674 if (finfo.symbuf != NULL)
8675 free (finfo.symbuf);
8676 if (finfo.symshndxbuf != NULL)
8677 free (finfo.symshndxbuf);
8678 for (o = abfd->sections; o != NULL; o = o->next)
8679 {
8680 if ((o->flags & SEC_RELOC) != 0
8681 && elf_section_data (o)->rel_hashes != NULL)
8682 free (elf_section_data (o)->rel_hashes);
8683 }
8684
8685 elf_tdata (abfd)->linker = TRUE;
8686
8687 return TRUE;
8688
8689 error_return:
8690 if (finfo.symstrtab != NULL)
8691 _bfd_stringtab_free (finfo.symstrtab);
8692 if (finfo.contents != NULL)
8693 free (finfo.contents);
8694 if (finfo.external_relocs != NULL)
8695 free (finfo.external_relocs);
8696 if (finfo.internal_relocs != NULL)
8697 free (finfo.internal_relocs);
8698 if (finfo.external_syms != NULL)
8699 free (finfo.external_syms);
8700 if (finfo.locsym_shndx != NULL)
8701 free (finfo.locsym_shndx);
8702 if (finfo.internal_syms != NULL)
8703 free (finfo.internal_syms);
8704 if (finfo.indices != NULL)
8705 free (finfo.indices);
8706 if (finfo.sections != NULL)
8707 free (finfo.sections);
8708 if (finfo.symbuf != NULL)
8709 free (finfo.symbuf);
8710 if (finfo.symshndxbuf != NULL)
8711 free (finfo.symshndxbuf);
8712 for (o = abfd->sections; o != NULL; o = o->next)
8713 {
8714 if ((o->flags & SEC_RELOC) != 0
8715 && elf_section_data (o)->rel_hashes != NULL)
8716 free (elf_section_data (o)->rel_hashes);
8717 }
8718
8719 return FALSE;
8720}
8721\f
8722/* Garbage collect unused sections. */
8723
8724/* The mark phase of garbage collection. For a given section, mark
8725 it and any sections in this section's group, and all the sections
8726 which define symbols to which it refers. */
8727
8728typedef asection * (*gc_mark_hook_fn)
8729 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8730 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8731
ccfa59ea
AM
8732bfd_boolean
8733_bfd_elf_gc_mark (struct bfd_link_info *info,
8734 asection *sec,
8735 gc_mark_hook_fn gc_mark_hook)
c152c796
AM
8736{
8737 bfd_boolean ret;
39c2f51b 8738 bfd_boolean is_eh;
c152c796
AM
8739 asection *group_sec;
8740
8741 sec->gc_mark = 1;
8742
8743 /* Mark all the sections in the group. */
8744 group_sec = elf_section_data (sec)->next_in_group;
8745 if (group_sec && !group_sec->gc_mark)
ccfa59ea 8746 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
c152c796
AM
8747 return FALSE;
8748
8749 /* Look through the section relocs. */
8750 ret = TRUE;
39c2f51b 8751 is_eh = strcmp (sec->name, ".eh_frame") == 0;
c152c796
AM
8752 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8753 {
8754 Elf_Internal_Rela *relstart, *rel, *relend;
8755 Elf_Internal_Shdr *symtab_hdr;
8756 struct elf_link_hash_entry **sym_hashes;
8757 size_t nlocsyms;
8758 size_t extsymoff;
8759 bfd *input_bfd = sec->owner;
8760 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8761 Elf_Internal_Sym *isym = NULL;
8762 int r_sym_shift;
8763
8764 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8765 sym_hashes = elf_sym_hashes (input_bfd);
8766
8767 /* Read the local symbols. */
8768 if (elf_bad_symtab (input_bfd))
8769 {
8770 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8771 extsymoff = 0;
8772 }
8773 else
8774 extsymoff = nlocsyms = symtab_hdr->sh_info;
8775
8776 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8777 if (isym == NULL && nlocsyms != 0)
8778 {
8779 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8780 NULL, NULL, NULL);
8781 if (isym == NULL)
8782 return FALSE;
8783 }
8784
8785 /* Read the relocations. */
8786 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8787 info->keep_memory);
8788 if (relstart == NULL)
8789 {
8790 ret = FALSE;
8791 goto out1;
8792 }
8793 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8794
8795 if (bed->s->arch_size == 32)
8796 r_sym_shift = 8;
8797 else
8798 r_sym_shift = 32;
8799
8800 for (rel = relstart; rel < relend; rel++)
8801 {
8802 unsigned long r_symndx;
8803 asection *rsec;
8804 struct elf_link_hash_entry *h;
8805
8806 r_symndx = rel->r_info >> r_sym_shift;
8807 if (r_symndx == 0)
8808 continue;
8809
8810 if (r_symndx >= nlocsyms
8811 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8812 {
8813 h = sym_hashes[r_symndx - extsymoff];
20f0a1ad
AM
8814 while (h->root.type == bfd_link_hash_indirect
8815 || h->root.type == bfd_link_hash_warning)
8816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
c152c796
AM
8817 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8818 }
8819 else
8820 {
8821 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8822 }
8823
8824 if (rsec && !rsec->gc_mark)
8825 {
8826 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8827 rsec->gc_mark = 1;
39c2f51b
AM
8828 else if (is_eh)
8829 rsec->gc_mark_from_eh = 1;
ccfa59ea 8830 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
c152c796
AM
8831 {
8832 ret = FALSE;
8833 goto out2;
8834 }
8835 }
8836 }
8837
8838 out2:
8839 if (elf_section_data (sec)->relocs != relstart)
8840 free (relstart);
8841 out1:
8842 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8843 {
8844 if (! info->keep_memory)
8845 free (isym);
8846 else
8847 symtab_hdr->contents = (unsigned char *) isym;
8848 }
8849 }
8850
8851 return ret;
8852}
8853
8854/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8855
ccabcbe5
AM
8856struct elf_gc_sweep_symbol_info {
8857 struct bfd_link_info *info;
8858 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
8859 bfd_boolean);
8860};
8861
c152c796 8862static bfd_boolean
ccabcbe5 8863elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
c152c796 8864{
c152c796
AM
8865 if (h->root.type == bfd_link_hash_warning)
8866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8867
ccabcbe5
AM
8868 if ((h->root.type == bfd_link_hash_defined
8869 || h->root.type == bfd_link_hash_defweak)
8870 && !h->root.u.def.section->gc_mark
8871 && !(h->root.u.def.section->owner->flags & DYNAMIC))
8872 {
8873 struct elf_gc_sweep_symbol_info *inf = data;
8874 (*inf->hide_symbol) (inf->info, h, TRUE);
8875 }
c152c796
AM
8876
8877 return TRUE;
8878}
8879
8880/* The sweep phase of garbage collection. Remove all garbage sections. */
8881
8882typedef bfd_boolean (*gc_sweep_hook_fn)
8883 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8884
8885static bfd_boolean
ccabcbe5 8886elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
c152c796
AM
8887{
8888 bfd *sub;
ccabcbe5
AM
8889 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8890 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
8891 unsigned long section_sym_count;
8892 struct elf_gc_sweep_symbol_info sweep_info;
c152c796
AM
8893
8894 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8895 {
8896 asection *o;
8897
8898 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8899 continue;
8900
8901 for (o = sub->sections; o != NULL; o = o->next)
8902 {
7c2c8505
AM
8903 /* Keep debug and special sections. */
8904 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8905 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
c152c796
AM
8906 o->gc_mark = 1;
8907
8908 if (o->gc_mark)
8909 continue;
8910
8911 /* Skip sweeping sections already excluded. */
8912 if (o->flags & SEC_EXCLUDE)
8913 continue;
8914
8915 /* Since this is early in the link process, it is simple
8916 to remove a section from the output. */
8917 o->flags |= SEC_EXCLUDE;
8918
8919 /* But we also have to update some of the relocation
8920 info we collected before. */
8921 if (gc_sweep_hook
e8aaee2a
AM
8922 && (o->flags & SEC_RELOC) != 0
8923 && o->reloc_count > 0
8924 && !bfd_is_abs_section (o->output_section))
c152c796
AM
8925 {
8926 Elf_Internal_Rela *internal_relocs;
8927 bfd_boolean r;
8928
8929 internal_relocs
8930 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8931 info->keep_memory);
8932 if (internal_relocs == NULL)
8933 return FALSE;
8934
8935 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8936
8937 if (elf_section_data (o)->relocs != internal_relocs)
8938 free (internal_relocs);
8939
8940 if (!r)
8941 return FALSE;
8942 }
8943 }
8944 }
8945
8946 /* Remove the symbols that were in the swept sections from the dynamic
8947 symbol table. GCFIXME: Anyone know how to get them out of the
8948 static symbol table as well? */
ccabcbe5
AM
8949 sweep_info.info = info;
8950 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
8951 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
8952 &sweep_info);
c152c796 8953
ccabcbe5 8954 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
c152c796
AM
8955 return TRUE;
8956}
8957
8958/* Propagate collected vtable information. This is called through
8959 elf_link_hash_traverse. */
8960
8961static bfd_boolean
8962elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8963{
8964 if (h->root.type == bfd_link_hash_warning)
8965 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8966
8967 /* Those that are not vtables. */
f6e332e6 8968 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
8969 return TRUE;
8970
8971 /* Those vtables that do not have parents, we cannot merge. */
f6e332e6 8972 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
c152c796
AM
8973 return TRUE;
8974
8975 /* If we've already been done, exit. */
f6e332e6 8976 if (h->vtable->used && h->vtable->used[-1])
c152c796
AM
8977 return TRUE;
8978
8979 /* Make sure the parent's table is up to date. */
f6e332e6 8980 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
c152c796 8981
f6e332e6 8982 if (h->vtable->used == NULL)
c152c796
AM
8983 {
8984 /* None of this table's entries were referenced. Re-use the
8985 parent's table. */
f6e332e6
AM
8986 h->vtable->used = h->vtable->parent->vtable->used;
8987 h->vtable->size = h->vtable->parent->vtable->size;
c152c796
AM
8988 }
8989 else
8990 {
8991 size_t n;
8992 bfd_boolean *cu, *pu;
8993
8994 /* Or the parent's entries into ours. */
f6e332e6 8995 cu = h->vtable->used;
c152c796 8996 cu[-1] = TRUE;
f6e332e6 8997 pu = h->vtable->parent->vtable->used;
c152c796
AM
8998 if (pu != NULL)
8999 {
9000 const struct elf_backend_data *bed;
9001 unsigned int log_file_align;
9002
9003 bed = get_elf_backend_data (h->root.u.def.section->owner);
9004 log_file_align = bed->s->log_file_align;
f6e332e6 9005 n = h->vtable->parent->vtable->size >> log_file_align;
c152c796
AM
9006 while (n--)
9007 {
9008 if (*pu)
9009 *cu = TRUE;
9010 pu++;
9011 cu++;
9012 }
9013 }
9014 }
9015
9016 return TRUE;
9017}
9018
9019static bfd_boolean
9020elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9021{
9022 asection *sec;
9023 bfd_vma hstart, hend;
9024 Elf_Internal_Rela *relstart, *relend, *rel;
9025 const struct elf_backend_data *bed;
9026 unsigned int log_file_align;
9027
9028 if (h->root.type == bfd_link_hash_warning)
9029 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9030
9031 /* Take care of both those symbols that do not describe vtables as
9032 well as those that are not loaded. */
f6e332e6 9033 if (h->vtable == NULL || h->vtable->parent == NULL)
c152c796
AM
9034 return TRUE;
9035
9036 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9037 || h->root.type == bfd_link_hash_defweak);
9038
9039 sec = h->root.u.def.section;
9040 hstart = h->root.u.def.value;
9041 hend = hstart + h->size;
9042
9043 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9044 if (!relstart)
9045 return *(bfd_boolean *) okp = FALSE;
9046 bed = get_elf_backend_data (sec->owner);
9047 log_file_align = bed->s->log_file_align;
9048
9049 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9050
9051 for (rel = relstart; rel < relend; ++rel)
9052 if (rel->r_offset >= hstart && rel->r_offset < hend)
9053 {
9054 /* If the entry is in use, do nothing. */
f6e332e6
AM
9055 if (h->vtable->used
9056 && (rel->r_offset - hstart) < h->vtable->size)
c152c796
AM
9057 {
9058 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
f6e332e6 9059 if (h->vtable->used[entry])
c152c796
AM
9060 continue;
9061 }
9062 /* Otherwise, kill it. */
9063 rel->r_offset = rel->r_info = rel->r_addend = 0;
9064 }
9065
9066 return TRUE;
9067}
9068
87538722
AM
9069/* Mark sections containing dynamically referenced symbols. When
9070 building shared libraries, we must assume that any visible symbol is
9071 referenced. */
715df9b8
EB
9072
9073static bfd_boolean
87538722 9074elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
715df9b8 9075{
87538722
AM
9076 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9077
715df9b8
EB
9078 if (h->root.type == bfd_link_hash_warning)
9079 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9080
9081 if ((h->root.type == bfd_link_hash_defined
9082 || h->root.type == bfd_link_hash_defweak)
87538722
AM
9083 && (h->ref_dynamic
9084 || (info->shared
9085 && h->def_regular
9086 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
9087 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
715df9b8
EB
9088 h->root.u.def.section->flags |= SEC_KEEP;
9089
9090 return TRUE;
9091}
3b36f7e6 9092
c152c796
AM
9093/* Do mark and sweep of unused sections. */
9094
9095bfd_boolean
9096bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9097{
9098 bfd_boolean ok = TRUE;
9099 bfd *sub;
9100 asection * (*gc_mark_hook)
9101 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9102 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9103
9104 if (!get_elf_backend_data (abfd)->can_gc_sections
9105 || info->relocatable
9106 || info->emitrelocations
715df9b8 9107 || !is_elf_hash_table (info->hash))
c152c796
AM
9108 {
9109 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9110 return TRUE;
9111 }
9112
9113 /* Apply transitive closure to the vtable entry usage info. */
9114 elf_link_hash_traverse (elf_hash_table (info),
9115 elf_gc_propagate_vtable_entries_used,
9116 &ok);
9117 if (!ok)
9118 return FALSE;
9119
9120 /* Kill the vtable relocations that were not used. */
9121 elf_link_hash_traverse (elf_hash_table (info),
9122 elf_gc_smash_unused_vtentry_relocs,
9123 &ok);
9124 if (!ok)
9125 return FALSE;
9126
715df9b8
EB
9127 /* Mark dynamically referenced symbols. */
9128 if (elf_hash_table (info)->dynamic_sections_created)
9129 elf_link_hash_traverse (elf_hash_table (info),
9130 elf_gc_mark_dynamic_ref_symbol,
87538722 9131 info);
c152c796 9132
715df9b8 9133 /* Grovel through relocs to find out who stays ... */
c152c796
AM
9134 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9135 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9136 {
9137 asection *o;
9138
9139 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9140 continue;
9141
9142 for (o = sub->sections; o != NULL; o = o->next)
39c2f51b
AM
9143 if ((o->flags & SEC_KEEP) != 0 && !o->gc_mark)
9144 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9145 return FALSE;
c152c796
AM
9146 }
9147
9e8cc8b4
AM
9148 /* ... again for sections marked from eh_frame. */
9149 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9150 {
9151 asection *o;
9152
9153 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9154 continue;
9155
9156 /* Keep .gcc_except_table.* if the associated .text.* is
9157 marked. This isn't very nice, but the proper solution,
9158 splitting .eh_frame up and using comdat doesn't pan out
9159 easily due to needing special relocs to handle the
9160 difference of two symbols in separate sections.
9161 Don't keep code sections referenced by .eh_frame. */
9162 for (o = sub->sections; o != NULL; o = o->next)
9163 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
9164 {
9165 if (strncmp (o->name, ".gcc_except_table.", 18) == 0)
9166 {
9167 unsigned long len;
9168 char *fn_name;
9169 asection *fn_text;
9170
9171 len = strlen (o->name + 18) + 1;
9172 fn_name = bfd_malloc (len + 6);
9173 if (fn_name == NULL)
9174 return FALSE;
9175 memcpy (fn_name, ".text.", 6);
9176 memcpy (fn_name + 6, o->name + 18, len);
9177 fn_text = bfd_get_section_by_name (sub, fn_name);
9178 free (fn_name);
9179 if (fn_text == NULL || !fn_text->gc_mark)
9180 continue;
9181 }
9182
9183 /* If not using specially named exception table section,
9184 then keep whatever we are using. */
9185 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9186 return FALSE;
9187 }
9188 }
9189
c152c796 9190 /* ... and mark SEC_EXCLUDE for those that go. */
ccabcbe5 9191 return elf_gc_sweep (abfd, info);
c152c796
AM
9192}
9193\f
9194/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9195
9196bfd_boolean
9197bfd_elf_gc_record_vtinherit (bfd *abfd,
9198 asection *sec,
9199 struct elf_link_hash_entry *h,
9200 bfd_vma offset)
9201{
9202 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9203 struct elf_link_hash_entry **search, *child;
9204 bfd_size_type extsymcount;
9205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9206
9207 /* The sh_info field of the symtab header tells us where the
9208 external symbols start. We don't care about the local symbols at
9209 this point. */
9210 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9211 if (!elf_bad_symtab (abfd))
9212 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9213
9214 sym_hashes = elf_sym_hashes (abfd);
9215 sym_hashes_end = sym_hashes + extsymcount;
9216
9217 /* Hunt down the child symbol, which is in this section at the same
9218 offset as the relocation. */
9219 for (search = sym_hashes; search != sym_hashes_end; ++search)
9220 {
9221 if ((child = *search) != NULL
9222 && (child->root.type == bfd_link_hash_defined
9223 || child->root.type == bfd_link_hash_defweak)
9224 && child->root.u.def.section == sec
9225 && child->root.u.def.value == offset)
9226 goto win;
9227 }
9228
d003868e
AM
9229 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9230 abfd, sec, (unsigned long) offset);
c152c796
AM
9231 bfd_set_error (bfd_error_invalid_operation);
9232 return FALSE;
9233
9234 win:
f6e332e6
AM
9235 if (!child->vtable)
9236 {
9237 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9238 if (!child->vtable)
9239 return FALSE;
9240 }
c152c796
AM
9241 if (!h)
9242 {
9243 /* This *should* only be the absolute section. It could potentially
9244 be that someone has defined a non-global vtable though, which
9245 would be bad. It isn't worth paging in the local symbols to be
9246 sure though; that case should simply be handled by the assembler. */
9247
f6e332e6 9248 child->vtable->parent = (struct elf_link_hash_entry *) -1;
c152c796
AM
9249 }
9250 else
f6e332e6 9251 child->vtable->parent = h;
c152c796
AM
9252
9253 return TRUE;
9254}
9255
9256/* Called from check_relocs to record the existence of a VTENTRY reloc. */
9257
9258bfd_boolean
9259bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9260 asection *sec ATTRIBUTE_UNUSED,
9261 struct elf_link_hash_entry *h,
9262 bfd_vma addend)
9263{
9264 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9265 unsigned int log_file_align = bed->s->log_file_align;
9266
f6e332e6
AM
9267 if (!h->vtable)
9268 {
9269 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9270 if (!h->vtable)
9271 return FALSE;
9272 }
9273
9274 if (addend >= h->vtable->size)
c152c796
AM
9275 {
9276 size_t size, bytes, file_align;
f6e332e6 9277 bfd_boolean *ptr = h->vtable->used;
c152c796
AM
9278
9279 /* While the symbol is undefined, we have to be prepared to handle
9280 a zero size. */
9281 file_align = 1 << log_file_align;
9282 if (h->root.type == bfd_link_hash_undefined)
9283 size = addend + file_align;
9284 else
9285 {
9286 size = h->size;
9287 if (addend >= size)
9288 {
9289 /* Oops! We've got a reference past the defined end of
9290 the table. This is probably a bug -- shall we warn? */
9291 size = addend + file_align;
9292 }
9293 }
9294 size = (size + file_align - 1) & -file_align;
9295
9296 /* Allocate one extra entry for use as a "done" flag for the
9297 consolidation pass. */
9298 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9299
9300 if (ptr)
9301 {
9302 ptr = bfd_realloc (ptr - 1, bytes);
9303
9304 if (ptr != NULL)
9305 {
9306 size_t oldbytes;
9307
f6e332e6 9308 oldbytes = (((h->vtable->size >> log_file_align) + 1)
c152c796
AM
9309 * sizeof (bfd_boolean));
9310 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9311 }
9312 }
9313 else
9314 ptr = bfd_zmalloc (bytes);
9315
9316 if (ptr == NULL)
9317 return FALSE;
9318
9319 /* And arrange for that done flag to be at index -1. */
f6e332e6
AM
9320 h->vtable->used = ptr + 1;
9321 h->vtable->size = size;
c152c796
AM
9322 }
9323
f6e332e6 9324 h->vtable->used[addend >> log_file_align] = TRUE;
c152c796
AM
9325
9326 return TRUE;
9327}
9328
9329struct alloc_got_off_arg {
9330 bfd_vma gotoff;
9331 unsigned int got_elt_size;
9332};
9333
9334/* We need a special top-level link routine to convert got reference counts
9335 to real got offsets. */
9336
9337static bfd_boolean
9338elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9339{
9340 struct alloc_got_off_arg *gofarg = arg;
9341
9342 if (h->root.type == bfd_link_hash_warning)
9343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9344
9345 if (h->got.refcount > 0)
9346 {
9347 h->got.offset = gofarg->gotoff;
9348 gofarg->gotoff += gofarg->got_elt_size;
9349 }
9350 else
9351 h->got.offset = (bfd_vma) -1;
9352
9353 return TRUE;
9354}
9355
9356/* And an accompanying bit to work out final got entry offsets once
9357 we're done. Should be called from final_link. */
9358
9359bfd_boolean
9360bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9361 struct bfd_link_info *info)
9362{
9363 bfd *i;
9364 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9365 bfd_vma gotoff;
9366 unsigned int got_elt_size = bed->s->arch_size / 8;
9367 struct alloc_got_off_arg gofarg;
9368
9369 if (! is_elf_hash_table (info->hash))
9370 return FALSE;
9371
9372 /* The GOT offset is relative to the .got section, but the GOT header is
9373 put into the .got.plt section, if the backend uses it. */
9374 if (bed->want_got_plt)
9375 gotoff = 0;
9376 else
9377 gotoff = bed->got_header_size;
9378
9379 /* Do the local .got entries first. */
9380 for (i = info->input_bfds; i; i = i->link_next)
9381 {
9382 bfd_signed_vma *local_got;
9383 bfd_size_type j, locsymcount;
9384 Elf_Internal_Shdr *symtab_hdr;
9385
9386 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9387 continue;
9388
9389 local_got = elf_local_got_refcounts (i);
9390 if (!local_got)
9391 continue;
9392
9393 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9394 if (elf_bad_symtab (i))
9395 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9396 else
9397 locsymcount = symtab_hdr->sh_info;
9398
9399 for (j = 0; j < locsymcount; ++j)
9400 {
9401 if (local_got[j] > 0)
9402 {
9403 local_got[j] = gotoff;
9404 gotoff += got_elt_size;
9405 }
9406 else
9407 local_got[j] = (bfd_vma) -1;
9408 }
9409 }
9410
9411 /* Then the global .got entries. .plt refcounts are handled by
9412 adjust_dynamic_symbol */
9413 gofarg.gotoff = gotoff;
9414 gofarg.got_elt_size = got_elt_size;
9415 elf_link_hash_traverse (elf_hash_table (info),
9416 elf_gc_allocate_got_offsets,
9417 &gofarg);
9418 return TRUE;
9419}
9420
9421/* Many folk need no more in the way of final link than this, once
9422 got entry reference counting is enabled. */
9423
9424bfd_boolean
9425bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9426{
9427 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9428 return FALSE;
9429
9430 /* Invoke the regular ELF backend linker to do all the work. */
9431 return bfd_elf_final_link (abfd, info);
9432}
9433
9434bfd_boolean
9435bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9436{
9437 struct elf_reloc_cookie *rcookie = cookie;
9438
9439 if (rcookie->bad_symtab)
9440 rcookie->rel = rcookie->rels;
9441
9442 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9443 {
9444 unsigned long r_symndx;
9445
9446 if (! rcookie->bad_symtab)
9447 if (rcookie->rel->r_offset > offset)
9448 return FALSE;
9449 if (rcookie->rel->r_offset != offset)
9450 continue;
9451
9452 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9453 if (r_symndx == SHN_UNDEF)
9454 return TRUE;
9455
9456 if (r_symndx >= rcookie->locsymcount
9457 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9458 {
9459 struct elf_link_hash_entry *h;
9460
9461 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9462
9463 while (h->root.type == bfd_link_hash_indirect
9464 || h->root.type == bfd_link_hash_warning)
9465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9466
9467 if ((h->root.type == bfd_link_hash_defined
9468 || h->root.type == bfd_link_hash_defweak)
9469 && elf_discarded_section (h->root.u.def.section))
9470 return TRUE;
9471 else
9472 return FALSE;
9473 }
9474 else
9475 {
9476 /* It's not a relocation against a global symbol,
9477 but it could be a relocation against a local
9478 symbol for a discarded section. */
9479 asection *isec;
9480 Elf_Internal_Sym *isym;
9481
9482 /* Need to: get the symbol; get the section. */
9483 isym = &rcookie->locsyms[r_symndx];
9484 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9485 {
9486 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9487 if (isec != NULL && elf_discarded_section (isec))
9488 return TRUE;
9489 }
9490 }
9491 return FALSE;
9492 }
9493 return FALSE;
9494}
9495
9496/* Discard unneeded references to discarded sections.
9497 Returns TRUE if any section's size was changed. */
9498/* This function assumes that the relocations are in sorted order,
9499 which is true for all known assemblers. */
9500
9501bfd_boolean
9502bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9503{
9504 struct elf_reloc_cookie cookie;
9505 asection *stab, *eh;
9506 Elf_Internal_Shdr *symtab_hdr;
9507 const struct elf_backend_data *bed;
9508 bfd *abfd;
9509 unsigned int count;
9510 bfd_boolean ret = FALSE;
9511
9512 if (info->traditional_format
9513 || !is_elf_hash_table (info->hash))
9514 return FALSE;
9515
9516 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9517 {
9518 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9519 continue;
9520
9521 bed = get_elf_backend_data (abfd);
9522
9523 if ((abfd->flags & DYNAMIC) != 0)
9524 continue;
9525
9526 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9527 if (info->relocatable
9528 || (eh != NULL
eea6121a 9529 && (eh->size == 0
c152c796
AM
9530 || bfd_is_abs_section (eh->output_section))))
9531 eh = NULL;
9532
9533 stab = bfd_get_section_by_name (abfd, ".stab");
9534 if (stab != NULL
eea6121a 9535 && (stab->size == 0
c152c796
AM
9536 || bfd_is_abs_section (stab->output_section)
9537 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9538 stab = NULL;
9539
9540 if (stab == NULL
9541 && eh == NULL
9542 && bed->elf_backend_discard_info == NULL)
9543 continue;
9544
9545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9546 cookie.abfd = abfd;
9547 cookie.sym_hashes = elf_sym_hashes (abfd);
9548 cookie.bad_symtab = elf_bad_symtab (abfd);
9549 if (cookie.bad_symtab)
9550 {
9551 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9552 cookie.extsymoff = 0;
9553 }
9554 else
9555 {
9556 cookie.locsymcount = symtab_hdr->sh_info;
9557 cookie.extsymoff = symtab_hdr->sh_info;
9558 }
9559
9560 if (bed->s->arch_size == 32)
9561 cookie.r_sym_shift = 8;
9562 else
9563 cookie.r_sym_shift = 32;
9564
9565 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9566 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9567 {
9568 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9569 cookie.locsymcount, 0,
9570 NULL, NULL, NULL);
9571 if (cookie.locsyms == NULL)
9572 return FALSE;
9573 }
9574
9575 if (stab != NULL)
9576 {
9577 cookie.rels = NULL;
9578 count = stab->reloc_count;
9579 if (count != 0)
9580 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9581 info->keep_memory);
9582 if (cookie.rels != NULL)
9583 {
9584 cookie.rel = cookie.rels;
9585 cookie.relend = cookie.rels;
9586 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9587 if (_bfd_discard_section_stabs (abfd, stab,
9588 elf_section_data (stab)->sec_info,
9589 bfd_elf_reloc_symbol_deleted_p,
9590 &cookie))
9591 ret = TRUE;
9592 if (elf_section_data (stab)->relocs != cookie.rels)
9593 free (cookie.rels);
9594 }
9595 }
9596
9597 if (eh != NULL)
9598 {
9599 cookie.rels = NULL;
9600 count = eh->reloc_count;
9601 if (count != 0)
9602 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9603 info->keep_memory);
9604 cookie.rel = cookie.rels;
9605 cookie.relend = cookie.rels;
9606 if (cookie.rels != NULL)
9607 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9608
9609 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9610 bfd_elf_reloc_symbol_deleted_p,
9611 &cookie))
9612 ret = TRUE;
9613
9614 if (cookie.rels != NULL
9615 && elf_section_data (eh)->relocs != cookie.rels)
9616 free (cookie.rels);
9617 }
9618
9619 if (bed->elf_backend_discard_info != NULL
9620 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9621 ret = TRUE;
9622
9623 if (cookie.locsyms != NULL
9624 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9625 {
9626 if (! info->keep_memory)
9627 free (cookie.locsyms);
9628 else
9629 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9630 }
9631 }
9632
9633 if (info->eh_frame_hdr
9634 && !info->relocatable
9635 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9636 ret = TRUE;
9637
9638 return ret;
9639}
082b7297
L
9640
9641void
9642_bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9643{
9644 flagword flags;
6d2cd210 9645 const char *name, *p;
082b7297
L
9646 struct bfd_section_already_linked *l;
9647 struct bfd_section_already_linked_hash_entry *already_linked_list;
3d7f7666
L
9648 asection *group;
9649
9650 /* A single member comdat group section may be discarded by a
9651 linkonce section. See below. */
9652 if (sec->output_section == bfd_abs_section_ptr)
9653 return;
082b7297
L
9654
9655 flags = sec->flags;
3d7f7666
L
9656
9657 /* Check if it belongs to a section group. */
9658 group = elf_sec_group (sec);
9659
9660 /* Return if it isn't a linkonce section nor a member of a group. A
9661 comdat group section also has SEC_LINK_ONCE set. */
9662 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
082b7297
L
9663 return;
9664
3d7f7666
L
9665 if (group)
9666 {
9667 /* If this is the member of a single member comdat group, check if
9668 the group should be discarded. */
9669 if (elf_next_in_group (sec) == sec
9670 && (group->flags & SEC_LINK_ONCE) != 0)
9671 sec = group;
9672 else
9673 return;
9674 }
9675
082b7297
L
9676 /* FIXME: When doing a relocatable link, we may have trouble
9677 copying relocations in other sections that refer to local symbols
9678 in the section being discarded. Those relocations will have to
9679 be converted somehow; as of this writing I'm not sure that any of
9680 the backends handle that correctly.
9681
9682 It is tempting to instead not discard link once sections when
9683 doing a relocatable link (technically, they should be discarded
9684 whenever we are building constructors). However, that fails,
9685 because the linker winds up combining all the link once sections
9686 into a single large link once section, which defeats the purpose
9687 of having link once sections in the first place.
9688
9689 Also, not merging link once sections in a relocatable link
9690 causes trouble for MIPS ELF, which relies on link once semantics
9691 to handle the .reginfo section correctly. */
9692
9693 name = bfd_get_section_name (abfd, sec);
9694
6d2cd210
JJ
9695 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9696 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9697 p++;
9698 else
9699 p = name;
9700
9701 already_linked_list = bfd_section_already_linked_table_lookup (p);
082b7297
L
9702
9703 for (l = already_linked_list->entry; l != NULL; l = l->next)
9704 {
9705 /* We may have 3 different sections on the list: group section,
9706 comdat section and linkonce section. SEC may be a linkonce or
9707 group section. We match a group section with a group section,
9708 a linkonce section with a linkonce section, and ignore comdat
9709 section. */
3d7f7666 9710 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
6d2cd210 9711 && strcmp (name, l->sec->name) == 0
082b7297
L
9712 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9713 {
9714 /* The section has already been linked. See if we should
6d2cd210 9715 issue a warning. */
082b7297
L
9716 switch (flags & SEC_LINK_DUPLICATES)
9717 {
9718 default:
9719 abort ();
9720
9721 case SEC_LINK_DUPLICATES_DISCARD:
9722 break;
9723
9724 case SEC_LINK_DUPLICATES_ONE_ONLY:
9725 (*_bfd_error_handler)
c93625e2 9726 (_("%B: ignoring duplicate section `%A'"),
d003868e 9727 abfd, sec);
082b7297
L
9728 break;
9729
9730 case SEC_LINK_DUPLICATES_SAME_SIZE:
9731 if (sec->size != l->sec->size)
9732 (*_bfd_error_handler)
c93625e2 9733 (_("%B: duplicate section `%A' has different size"),
d003868e 9734 abfd, sec);
082b7297 9735 break;
ea5158d8
DJ
9736
9737 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9738 if (sec->size != l->sec->size)
9739 (*_bfd_error_handler)
c93625e2 9740 (_("%B: duplicate section `%A' has different size"),
ea5158d8
DJ
9741 abfd, sec);
9742 else if (sec->size != 0)
9743 {
9744 bfd_byte *sec_contents, *l_sec_contents;
9745
9746 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9747 (*_bfd_error_handler)
c93625e2 9748 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9749 abfd, sec);
9750 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9751 &l_sec_contents))
9752 (*_bfd_error_handler)
c93625e2 9753 (_("%B: warning: could not read contents of section `%A'"),
ea5158d8
DJ
9754 l->sec->owner, l->sec);
9755 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9756 (*_bfd_error_handler)
c93625e2 9757 (_("%B: warning: duplicate section `%A' has different contents"),
ea5158d8
DJ
9758 abfd, sec);
9759
9760 if (sec_contents)
9761 free (sec_contents);
9762 if (l_sec_contents)
9763 free (l_sec_contents);
9764 }
9765 break;
082b7297
L
9766 }
9767
9768 /* Set the output_section field so that lang_add_section
9769 does not create a lang_input_section structure for this
9770 section. Since there might be a symbol in the section
9771 being discarded, we must retain a pointer to the section
9772 which we are really going to use. */
9773 sec->output_section = bfd_abs_section_ptr;
9774 sec->kept_section = l->sec;
3b36f7e6 9775
082b7297 9776 if (flags & SEC_GROUP)
3d7f7666
L
9777 {
9778 asection *first = elf_next_in_group (sec);
9779 asection *s = first;
9780
9781 while (s != NULL)
9782 {
9783 s->output_section = bfd_abs_section_ptr;
9784 /* Record which group discards it. */
9785 s->kept_section = l->sec;
9786 s = elf_next_in_group (s);
9787 /* These lists are circular. */
9788 if (s == first)
9789 break;
9790 }
9791 }
082b7297
L
9792
9793 return;
9794 }
9795 }
9796
3d7f7666
L
9797 if (group)
9798 {
9799 /* If this is the member of a single member comdat group and the
9800 group hasn't be discarded, we check if it matches a linkonce
9801 section. We only record the discarded comdat group. Otherwise
9802 the undiscarded group will be discarded incorrectly later since
9803 itself has been recorded. */
6d2cd210
JJ
9804 for (l = already_linked_list->entry; l != NULL; l = l->next)
9805 if ((l->sec->flags & SEC_GROUP) == 0
9806 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9807 && bfd_elf_match_symbols_in_sections (l->sec,
9808 elf_next_in_group (sec)))
9809 {
9810 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9811 elf_next_in_group (sec)->kept_section = l->sec;
9812 group->output_section = bfd_abs_section_ptr;
9813 break;
9814 }
9815 if (l == NULL)
3d7f7666
L
9816 return;
9817 }
9818 else
9819 /* There is no direct match. But for linkonce section, we should
9820 check if there is a match with comdat group member. We always
9821 record the linkonce section, discarded or not. */
6d2cd210
JJ
9822 for (l = already_linked_list->entry; l != NULL; l = l->next)
9823 if (l->sec->flags & SEC_GROUP)
9824 {
9825 asection *first = elf_next_in_group (l->sec);
9826
9827 if (first != NULL
9828 && elf_next_in_group (first) == first
9829 && bfd_elf_match_symbols_in_sections (first, sec))
9830 {
9831 sec->output_section = bfd_abs_section_ptr;
9832 sec->kept_section = l->sec;
9833 break;
9834 }
9835 }
9836
082b7297
L
9837 /* This is the first section with this name. Record it. */
9838 bfd_section_already_linked_table_insert (already_linked_list, sec);
9839}
81e1b023 9840
a4d8e49b
L
9841bfd_boolean
9842_bfd_elf_common_definition (Elf_Internal_Sym *sym)
9843{
9844 return sym->st_shndx == SHN_COMMON;
9845}
9846
9847unsigned int
9848_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
9849{
9850 return SHN_COMMON;
9851}
9852
9853asection *
9854_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
9855{
9856 return bfd_com_section_ptr;
9857}