]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-aarch64.c
[LD][AARCH64]Add BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC Support.
[thirdparty/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
b90efa5b 3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
409
410/* Stuff needed to resolve the label ambiguity
411 As:
412 ...
413 label: <insn>
414 may differ from:
415 ...
416 label:
417 <insn> */
418
419static symbolS *last_label_seen;
420
421/* Literal pool structure. Held on a per-section
422 and per-sub-section basis. */
423
424#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
425typedef struct literal_expression
426{
427 expressionS exp;
428 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
429 LITTLENUM_TYPE * bignum;
430} literal_expression;
431
a06ea964
NC
432typedef struct literal_pool
433{
55d9b4c1 434 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
435 unsigned int next_free_entry;
436 unsigned int id;
437 symbolS *symbol;
438 segT section;
439 subsegT sub_section;
440 int size;
441 struct literal_pool *next;
442} literal_pool;
443
444/* Pointer to a linked list of literal pools. */
445static literal_pool *list_of_pools = NULL;
446\f
447/* Pure syntax. */
448
449/* This array holds the chars that always start a comment. If the
450 pre-processor is disabled, these aren't very useful. */
451const char comment_chars[] = "";
452
453/* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output. */
456/* Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output. */
459/* Also note that comments like this one will always work. */
460const char line_comment_chars[] = "#";
461
462const char line_separator_chars[] = ";";
463
464/* Chars that can be used to separate mant
465 from exp in floating point numbers. */
466const char EXP_CHARS[] = "eE";
467
468/* Chars that mean this number is a floating point constant. */
469/* As in 0f12.456 */
470/* or 0d1.2345e12 */
471
472const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
473
474/* Prefix character that indicates the start of an immediate value. */
475#define is_immediate_prefix(C) ((C) == '#')
476
477/* Separator character handling. */
478
479#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
480
481static inline bfd_boolean
482skip_past_char (char **str, char c)
483{
484 if (**str == c)
485 {
486 (*str)++;
487 return TRUE;
488 }
489 else
490 return FALSE;
491}
492
493#define skip_past_comma(str) skip_past_char (str, ',')
494
495/* Arithmetic expressions (possibly involving symbols). */
496
a06ea964
NC
497static bfd_boolean in_my_get_expression_p = FALSE;
498
499/* Third argument to my_get_expression. */
500#define GE_NO_PREFIX 0
501#define GE_OPT_PREFIX 1
502
503/* Return TRUE if the string pointed by *STR is successfully parsed
504 as an valid expression; *EP will be filled with the information of
505 such an expression. Otherwise return FALSE. */
506
507static bfd_boolean
508my_get_expression (expressionS * ep, char **str, int prefix_mode,
509 int reject_absent)
510{
511 char *save_in;
512 segT seg;
513 int prefix_present_p = 0;
514
515 switch (prefix_mode)
516 {
517 case GE_NO_PREFIX:
518 break;
519 case GE_OPT_PREFIX:
520 if (is_immediate_prefix (**str))
521 {
522 (*str)++;
523 prefix_present_p = 1;
524 }
525 break;
526 default:
527 abort ();
528 }
529
530 memset (ep, 0, sizeof (expressionS));
531
532 save_in = input_line_pointer;
533 input_line_pointer = *str;
534 in_my_get_expression_p = TRUE;
535 seg = expression (ep);
536 in_my_get_expression_p = FALSE;
537
538 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
539 {
540 /* We found a bad expression in md_operand(). */
541 *str = input_line_pointer;
542 input_line_pointer = save_in;
543 if (prefix_present_p && ! error_p ())
544 set_fatal_syntax_error (_("bad expression"));
545 else
546 set_first_syntax_error (_("bad expression"));
547 return FALSE;
548 }
549
550#ifdef OBJ_AOUT
551 if (seg != absolute_section
552 && seg != text_section
553 && seg != data_section
554 && seg != bss_section && seg != undefined_section)
555 {
556 set_syntax_error (_("bad segment"));
557 *str = input_line_pointer;
558 input_line_pointer = save_in;
559 return FALSE;
560 }
561#else
562 (void) seg;
563#endif
564
a06ea964
NC
565 *str = input_line_pointer;
566 input_line_pointer = save_in;
567 return TRUE;
568}
569
570/* Turn a string in input_line_pointer into a floating point constant
571 of type TYPE, and store the appropriate bytes in *LITP. The number
572 of LITTLENUMS emitted is stored in *SIZEP. An error message is
573 returned, or NULL on OK. */
574
575char *
576md_atof (int type, char *litP, int *sizeP)
577{
578 return ieee_md_atof (type, litP, sizeP, target_big_endian);
579}
580
581/* We handle all bad expressions here, so that we can report the faulty
582 instruction in the error message. */
583void
584md_operand (expressionS * exp)
585{
586 if (in_my_get_expression_p)
587 exp->X_op = O_illegal;
588}
589
590/* Immediate values. */
591
592/* Errors may be set multiple times during parsing or bit encoding
593 (particularly in the Neon bits), but usually the earliest error which is set
594 will be the most meaningful. Avoid overwriting it with later (cascading)
595 errors by calling this function. */
596
597static void
598first_error (const char *error)
599{
600 if (! error_p ())
601 set_syntax_error (error);
602}
603
604/* Similiar to first_error, but this function accepts formatted error
605 message. */
606static void
607first_error_fmt (const char *format, ...)
608{
609 va_list args;
610 enum
611 { size = 100 };
612 /* N.B. this single buffer will not cause error messages for different
613 instructions to pollute each other; this is because at the end of
614 processing of each assembly line, error message if any will be
615 collected by as_bad. */
616 static char buffer[size];
617
618 if (! error_p ())
619 {
3e0baa28 620 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
621 va_start (args, format);
622 ret = vsnprintf (buffer, size, format, args);
623 know (ret <= size - 1 && ret >= 0);
624 va_end (args);
625 set_syntax_error (buffer);
626 }
627}
628
629/* Register parsing. */
630
631/* Generic register parser which is called by other specialized
632 register parsers.
633 CCP points to what should be the beginning of a register name.
634 If it is indeed a valid register name, advance CCP over it and
635 return the reg_entry structure; otherwise return NULL.
636 It does not issue diagnostics. */
637
638static reg_entry *
639parse_reg (char **ccp)
640{
641 char *start = *ccp;
642 char *p;
643 reg_entry *reg;
644
645#ifdef REGISTER_PREFIX
646 if (*start != REGISTER_PREFIX)
647 return NULL;
648 start++;
649#endif
650
651 p = start;
652 if (!ISALPHA (*p) || !is_name_beginner (*p))
653 return NULL;
654
655 do
656 p++;
657 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
658
659 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
660
661 if (!reg)
662 return NULL;
663
664 *ccp = p;
665 return reg;
666}
667
668/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
669 return FALSE. */
670static bfd_boolean
671aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
672{
673 if (reg->type == type)
674 return TRUE;
675
676 switch (type)
677 {
678 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
679 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
680 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
681 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
682 case REG_TYPE_VN: /* Vector register. */
683 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
684 return ((reg_type_masks[reg->type] & reg_type_masks[type])
685 == reg_type_masks[reg->type]);
686 default:
687 as_fatal ("unhandled type %d", type);
688 abort ();
689 }
690}
691
692/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
693 Return the register number otherwise. *ISREG32 is set to one if the
694 register is 32-bit wide; *ISREGZERO is set to one if the register is
695 of type Z_32 or Z_64.
696 Note that this function does not issue any diagnostics. */
697
698static int
699aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
700 int *isreg32, int *isregzero)
701{
702 char *str = *ccp;
703 const reg_entry *reg = parse_reg (&str);
704
705 if (reg == NULL)
706 return PARSE_FAIL;
707
708 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
709 return PARSE_FAIL;
710
711 switch (reg->type)
712 {
713 case REG_TYPE_SP_32:
714 case REG_TYPE_SP_64:
715 if (reject_sp)
716 return PARSE_FAIL;
717 *isreg32 = reg->type == REG_TYPE_SP_32;
718 *isregzero = 0;
719 break;
720 case REG_TYPE_R_32:
721 case REG_TYPE_R_64:
722 *isreg32 = reg->type == REG_TYPE_R_32;
723 *isregzero = 0;
724 break;
725 case REG_TYPE_Z_32:
726 case REG_TYPE_Z_64:
727 if (reject_rz)
728 return PARSE_FAIL;
729 *isreg32 = reg->type == REG_TYPE_Z_32;
730 *isregzero = 1;
731 break;
732 default:
733 return PARSE_FAIL;
734 }
735
736 *ccp = str;
737
738 return reg->number;
739}
740
741/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
742 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
743 otherwise return FALSE.
744
745 Accept only one occurrence of:
746 8b 16b 4h 8h 2s 4s 1d 2d
747 b h s d q */
748static bfd_boolean
749parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
750{
751 char *ptr = *str;
752 unsigned width;
753 unsigned element_size;
754 enum neon_el_type type;
755
756 /* skip '.' */
757 ptr++;
758
759 if (!ISDIGIT (*ptr))
760 {
761 width = 0;
762 goto elt_size;
763 }
764 width = strtoul (ptr, &ptr, 10);
765 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
766 {
767 first_error_fmt (_("bad size %d in vector width specifier"), width);
768 return FALSE;
769 }
770
771elt_size:
772 switch (TOLOWER (*ptr))
773 {
774 case 'b':
775 type = NT_b;
776 element_size = 8;
777 break;
778 case 'h':
779 type = NT_h;
780 element_size = 16;
781 break;
782 case 's':
783 type = NT_s;
784 element_size = 32;
785 break;
786 case 'd':
787 type = NT_d;
788 element_size = 64;
789 break;
790 case 'q':
791 if (width == 1)
792 {
793 type = NT_q;
794 element_size = 128;
795 break;
796 }
797 /* fall through. */
798 default:
799 if (*ptr != '\0')
800 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
801 else
802 first_error (_("missing element size"));
803 return FALSE;
804 }
805 if (width != 0 && width * element_size != 64 && width * element_size != 128)
806 {
807 first_error_fmt (_
808 ("invalid element size %d and vector size combination %c"),
809 width, *ptr);
810 return FALSE;
811 }
812 ptr++;
813
814 parsed_type->type = type;
815 parsed_type->width = width;
816
817 *str = ptr;
818
819 return TRUE;
820}
821
822/* Parse a single type, e.g. ".8b", leading period included.
823 Only applicable to Vn registers.
824
825 Return TRUE on success; otherwise return FALSE. */
826static bfd_boolean
827parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
828{
829 char *str = *ccp;
830
831 if (*str == '.')
832 {
833 if (! parse_neon_type_for_operand (vectype, &str))
834 {
835 first_error (_("vector type expected"));
836 return FALSE;
837 }
838 }
839 else
840 return FALSE;
841
842 *ccp = str;
843
844 return TRUE;
845}
846
847/* Parse a register of the type TYPE.
848
849 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
850 name or the parsed register is not of TYPE.
851
852 Otherwise return the register number, and optionally fill in the actual
853 type of the register in *RTYPE when multiple alternatives were given, and
854 return the register shape and element index information in *TYPEINFO.
855
856 IN_REG_LIST should be set with TRUE if the caller is parsing a register
857 list. */
858
859static int
860parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
861 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
862{
863 char *str = *ccp;
864 const reg_entry *reg = parse_reg (&str);
865 struct neon_type_el atype;
866 struct neon_type_el parsetype;
867 bfd_boolean is_typed_vecreg = FALSE;
868
869 atype.defined = 0;
870 atype.type = NT_invtype;
871 atype.width = -1;
872 atype.index = 0;
873
874 if (reg == NULL)
875 {
876 if (typeinfo)
877 *typeinfo = atype;
878 set_default_error ();
879 return PARSE_FAIL;
880 }
881
882 if (! aarch64_check_reg_type (reg, type))
883 {
884 DEBUG_TRACE ("reg type check failed");
885 set_default_error ();
886 return PARSE_FAIL;
887 }
888 type = reg->type;
889
890 if (type == REG_TYPE_VN
891 && parse_neon_operand_type (&parsetype, &str))
892 {
893 /* Register if of the form Vn.[bhsdq]. */
894 is_typed_vecreg = TRUE;
895
896 if (parsetype.width == 0)
897 /* Expect index. In the new scheme we cannot have
898 Vn.[bhsdq] represent a scalar. Therefore any
899 Vn.[bhsdq] should have an index following it.
900 Except in reglists ofcourse. */
901 atype.defined |= NTA_HASINDEX;
902 else
903 atype.defined |= NTA_HASTYPE;
904
905 atype.type = parsetype.type;
906 atype.width = parsetype.width;
907 }
908
909 if (skip_past_char (&str, '['))
910 {
911 expressionS exp;
912
913 /* Reject Sn[index] syntax. */
914 if (!is_typed_vecreg)
915 {
916 first_error (_("this type of register can't be indexed"));
917 return PARSE_FAIL;
918 }
919
920 if (in_reg_list == TRUE)
921 {
922 first_error (_("index not allowed inside register list"));
923 return PARSE_FAIL;
924 }
925
926 atype.defined |= NTA_HASINDEX;
927
928 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
929
930 if (exp.X_op != O_constant)
931 {
932 first_error (_("constant expression required"));
933 return PARSE_FAIL;
934 }
935
936 if (! skip_past_char (&str, ']'))
937 return PARSE_FAIL;
938
939 atype.index = exp.X_add_number;
940 }
941 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
942 {
943 /* Indexed vector register expected. */
944 first_error (_("indexed vector register expected"));
945 return PARSE_FAIL;
946 }
947
948 /* A vector reg Vn should be typed or indexed. */
949 if (type == REG_TYPE_VN && atype.defined == 0)
950 {
951 first_error (_("invalid use of vector register"));
952 }
953
954 if (typeinfo)
955 *typeinfo = atype;
956
957 if (rtype)
958 *rtype = type;
959
960 *ccp = str;
961
962 return reg->number;
963}
964
965/* Parse register.
966
967 Return the register number on success; return PARSE_FAIL otherwise.
968
969 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
970 the register (e.g. NEON double or quad reg when either has been requested).
971
972 If this is a NEON vector register with additional type information, fill
973 in the struct pointed to by VECTYPE (if non-NULL).
974
975 This parser does not handle register list. */
976
977static int
978aarch64_reg_parse (char **ccp, aarch64_reg_type type,
979 aarch64_reg_type *rtype, struct neon_type_el *vectype)
980{
981 struct neon_type_el atype;
982 char *str = *ccp;
983 int reg = parse_typed_reg (&str, type, rtype, &atype,
984 /*in_reg_list= */ FALSE);
985
986 if (reg == PARSE_FAIL)
987 return PARSE_FAIL;
988
989 if (vectype)
990 *vectype = atype;
991
992 *ccp = str;
993
994 return reg;
995}
996
997static inline bfd_boolean
998eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
999{
1000 return
1001 e1.type == e2.type
1002 && e1.defined == e2.defined
1003 && e1.width == e2.width && e1.index == e2.index;
1004}
1005
1006/* This function parses the NEON register list. On success, it returns
1007 the parsed register list information in the following encoded format:
1008
1009 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1010 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1011
1012 The information of the register shape and/or index is returned in
1013 *VECTYPE.
1014
1015 It returns PARSE_FAIL if the register list is invalid.
1016
1017 The list contains one to four registers.
1018 Each register can be one of:
1019 <Vt>.<T>[<index>]
1020 <Vt>.<T>
1021 All <T> should be identical.
1022 All <index> should be identical.
1023 There are restrictions on <Vt> numbers which are checked later
1024 (by reg_list_valid_p). */
1025
1026static int
1027parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1028{
1029 char *str = *ccp;
1030 int nb_regs;
1031 struct neon_type_el typeinfo, typeinfo_first;
1032 int val, val_range;
1033 int in_range;
1034 int ret_val;
1035 int i;
1036 bfd_boolean error = FALSE;
1037 bfd_boolean expect_index = FALSE;
1038
1039 if (*str != '{')
1040 {
1041 set_syntax_error (_("expecting {"));
1042 return PARSE_FAIL;
1043 }
1044 str++;
1045
1046 nb_regs = 0;
1047 typeinfo_first.defined = 0;
1048 typeinfo_first.type = NT_invtype;
1049 typeinfo_first.width = -1;
1050 typeinfo_first.index = 0;
1051 ret_val = 0;
1052 val = -1;
1053 val_range = -1;
1054 in_range = 0;
1055 do
1056 {
1057 if (in_range)
1058 {
1059 str++; /* skip over '-' */
1060 val_range = val;
1061 }
1062 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1063 /*in_reg_list= */ TRUE);
1064 if (val == PARSE_FAIL)
1065 {
1066 set_first_syntax_error (_("invalid vector register in list"));
1067 error = TRUE;
1068 continue;
1069 }
1070 /* reject [bhsd]n */
1071 if (typeinfo.defined == 0)
1072 {
1073 set_first_syntax_error (_("invalid scalar register in list"));
1074 error = TRUE;
1075 continue;
1076 }
1077
1078 if (typeinfo.defined & NTA_HASINDEX)
1079 expect_index = TRUE;
1080
1081 if (in_range)
1082 {
1083 if (val < val_range)
1084 {
1085 set_first_syntax_error
1086 (_("invalid range in vector register list"));
1087 error = TRUE;
1088 }
1089 val_range++;
1090 }
1091 else
1092 {
1093 val_range = val;
1094 if (nb_regs == 0)
1095 typeinfo_first = typeinfo;
1096 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1097 {
1098 set_first_syntax_error
1099 (_("type mismatch in vector register list"));
1100 error = TRUE;
1101 }
1102 }
1103 if (! error)
1104 for (i = val_range; i <= val; i++)
1105 {
1106 ret_val |= i << (5 * nb_regs);
1107 nb_regs++;
1108 }
1109 in_range = 0;
1110 }
1111 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1112
1113 skip_whitespace (str);
1114 if (*str != '}')
1115 {
1116 set_first_syntax_error (_("end of vector register list not found"));
1117 error = TRUE;
1118 }
1119 str++;
1120
1121 skip_whitespace (str);
1122
1123 if (expect_index)
1124 {
1125 if (skip_past_char (&str, '['))
1126 {
1127 expressionS exp;
1128
1129 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1130 if (exp.X_op != O_constant)
1131 {
1132 set_first_syntax_error (_("constant expression required."));
1133 error = TRUE;
1134 }
1135 if (! skip_past_char (&str, ']'))
1136 error = TRUE;
1137 else
1138 typeinfo_first.index = exp.X_add_number;
1139 }
1140 else
1141 {
1142 set_first_syntax_error (_("expected index"));
1143 error = TRUE;
1144 }
1145 }
1146
1147 if (nb_regs > 4)
1148 {
1149 set_first_syntax_error (_("too many registers in vector register list"));
1150 error = TRUE;
1151 }
1152 else if (nb_regs == 0)
1153 {
1154 set_first_syntax_error (_("empty vector register list"));
1155 error = TRUE;
1156 }
1157
1158 *ccp = str;
1159 if (! error)
1160 *vectype = typeinfo_first;
1161
1162 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1163}
1164
1165/* Directives: register aliases. */
1166
1167static reg_entry *
1168insert_reg_alias (char *str, int number, aarch64_reg_type type)
1169{
1170 reg_entry *new;
1171 const char *name;
1172
1173 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1174 {
1175 if (new->builtin)
1176 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1177 str);
1178
1179 /* Only warn about a redefinition if it's not defined as the
1180 same register. */
1181 else if (new->number != number || new->type != type)
1182 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1183
1184 return NULL;
1185 }
1186
1187 name = xstrdup (str);
1188 new = xmalloc (sizeof (reg_entry));
1189
1190 new->name = name;
1191 new->number = number;
1192 new->type = type;
1193 new->builtin = FALSE;
1194
1195 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1196 abort ();
1197
1198 return new;
1199}
1200
1201/* Look for the .req directive. This is of the form:
1202
1203 new_register_name .req existing_register_name
1204
1205 If we find one, or if it looks sufficiently like one that we want to
1206 handle any error here, return TRUE. Otherwise return FALSE. */
1207
1208static bfd_boolean
1209create_register_alias (char *newname, char *p)
1210{
1211 const reg_entry *old;
1212 char *oldname, *nbuf;
1213 size_t nlen;
1214
1215 /* The input scrubber ensures that whitespace after the mnemonic is
1216 collapsed to single spaces. */
1217 oldname = p;
1218 if (strncmp (oldname, " .req ", 6) != 0)
1219 return FALSE;
1220
1221 oldname += 6;
1222 if (*oldname == '\0')
1223 return FALSE;
1224
1225 old = hash_find (aarch64_reg_hsh, oldname);
1226 if (!old)
1227 {
1228 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1229 return TRUE;
1230 }
1231
1232 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1233 the desired alias name, and p points to its end. If not, then
1234 the desired alias name is in the global original_case_string. */
1235#ifdef TC_CASE_SENSITIVE
1236 nlen = p - newname;
1237#else
1238 newname = original_case_string;
1239 nlen = strlen (newname);
1240#endif
1241
1242 nbuf = alloca (nlen + 1);
1243 memcpy (nbuf, newname, nlen);
1244 nbuf[nlen] = '\0';
1245
1246 /* Create aliases under the new name as stated; an all-lowercase
1247 version of the new name; and an all-uppercase version of the new
1248 name. */
1249 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1250 {
1251 for (p = nbuf; *p; p++)
1252 *p = TOUPPER (*p);
1253
1254 if (strncmp (nbuf, newname, nlen))
1255 {
1256 /* If this attempt to create an additional alias fails, do not bother
1257 trying to create the all-lower case alias. We will fail and issue
1258 a second, duplicate error message. This situation arises when the
1259 programmer does something like:
1260 foo .req r0
1261 Foo .req r1
1262 The second .req creates the "Foo" alias but then fails to create
1263 the artificial FOO alias because it has already been created by the
1264 first .req. */
1265 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1266 return TRUE;
1267 }
1268
1269 for (p = nbuf; *p; p++)
1270 *p = TOLOWER (*p);
1271
1272 if (strncmp (nbuf, newname, nlen))
1273 insert_reg_alias (nbuf, old->number, old->type);
1274 }
1275
1276 return TRUE;
1277}
1278
1279/* Should never be called, as .req goes between the alias and the
1280 register name, not at the beginning of the line. */
1281static void
1282s_req (int a ATTRIBUTE_UNUSED)
1283{
1284 as_bad (_("invalid syntax for .req directive"));
1285}
1286
1287/* The .unreq directive deletes an alias which was previously defined
1288 by .req. For example:
1289
1290 my_alias .req r11
1291 .unreq my_alias */
1292
1293static void
1294s_unreq (int a ATTRIBUTE_UNUSED)
1295{
1296 char *name;
1297 char saved_char;
1298
1299 name = input_line_pointer;
1300
1301 while (*input_line_pointer != 0
1302 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1303 ++input_line_pointer;
1304
1305 saved_char = *input_line_pointer;
1306 *input_line_pointer = 0;
1307
1308 if (!*name)
1309 as_bad (_("invalid syntax for .unreq directive"));
1310 else
1311 {
1312 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1313
1314 if (!reg)
1315 as_bad (_("unknown register alias '%s'"), name);
1316 else if (reg->builtin)
1317 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1318 name);
1319 else
1320 {
1321 char *p;
1322 char *nbuf;
1323
1324 hash_delete (aarch64_reg_hsh, name, FALSE);
1325 free ((char *) reg->name);
1326 free (reg);
1327
1328 /* Also locate the all upper case and all lower case versions.
1329 Do not complain if we cannot find one or the other as it
1330 was probably deleted above. */
1331
1332 nbuf = strdup (name);
1333 for (p = nbuf; *p; p++)
1334 *p = TOUPPER (*p);
1335 reg = hash_find (aarch64_reg_hsh, nbuf);
1336 if (reg)
1337 {
1338 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1339 free ((char *) reg->name);
1340 free (reg);
1341 }
1342
1343 for (p = nbuf; *p; p++)
1344 *p = TOLOWER (*p);
1345 reg = hash_find (aarch64_reg_hsh, nbuf);
1346 if (reg)
1347 {
1348 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1349 free ((char *) reg->name);
1350 free (reg);
1351 }
1352
1353 free (nbuf);
1354 }
1355 }
1356
1357 *input_line_pointer = saved_char;
1358 demand_empty_rest_of_line ();
1359}
1360
1361/* Directives: Instruction set selection. */
1362
1363#ifdef OBJ_ELF
1364/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1365 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1366 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1367 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1368
1369/* Create a new mapping symbol for the transition to STATE. */
1370
1371static void
1372make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1373{
1374 symbolS *symbolP;
1375 const char *symname;
1376 int type;
1377
1378 switch (state)
1379 {
1380 case MAP_DATA:
1381 symname = "$d";
1382 type = BSF_NO_FLAGS;
1383 break;
1384 case MAP_INSN:
1385 symname = "$x";
1386 type = BSF_NO_FLAGS;
1387 break;
1388 default:
1389 abort ();
1390 }
1391
1392 symbolP = symbol_new (symname, now_seg, value, frag);
1393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1394
1395 /* Save the mapping symbols for future reference. Also check that
1396 we do not place two mapping symbols at the same offset within a
1397 frag. We'll handle overlap between frags in
1398 check_mapping_symbols.
1399
1400 If .fill or other data filling directive generates zero sized data,
1401 the mapping symbol for the following code will have the same value
1402 as the one generated for the data filling directive. In this case,
1403 we replace the old symbol with the new one at the same address. */
1404 if (value == 0)
1405 {
1406 if (frag->tc_frag_data.first_map != NULL)
1407 {
1408 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1409 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1410 &symbol_lastP);
1411 }
1412 frag->tc_frag_data.first_map = symbolP;
1413 }
1414 if (frag->tc_frag_data.last_map != NULL)
1415 {
1416 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1417 S_GET_VALUE (symbolP));
1418 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1419 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1420 &symbol_lastP);
1421 }
1422 frag->tc_frag_data.last_map = symbolP;
1423}
1424
1425/* We must sometimes convert a region marked as code to data during
1426 code alignment, if an odd number of bytes have to be padded. The
1427 code mapping symbol is pushed to an aligned address. */
1428
1429static void
1430insert_data_mapping_symbol (enum mstate state,
1431 valueT value, fragS * frag, offsetT bytes)
1432{
1433 /* If there was already a mapping symbol, remove it. */
1434 if (frag->tc_frag_data.last_map != NULL
1435 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1436 frag->fr_address + value)
1437 {
1438 symbolS *symp = frag->tc_frag_data.last_map;
1439
1440 if (value == 0)
1441 {
1442 know (frag->tc_frag_data.first_map == symp);
1443 frag->tc_frag_data.first_map = NULL;
1444 }
1445 frag->tc_frag_data.last_map = NULL;
1446 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1447 }
1448
1449 make_mapping_symbol (MAP_DATA, value, frag);
1450 make_mapping_symbol (state, value + bytes, frag);
1451}
1452
1453static void mapping_state_2 (enum mstate state, int max_chars);
1454
1455/* Set the mapping state to STATE. Only call this when about to
1456 emit some STATE bytes to the file. */
1457
1458void
1459mapping_state (enum mstate state)
1460{
1461 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1462
a578ef7e
JW
1463 if (state == MAP_INSN)
1464 /* AArch64 instructions require 4-byte alignment. When emitting
1465 instructions into any section, record the appropriate section
1466 alignment. */
1467 record_alignment (now_seg, 2);
1468
448eb63d
RL
1469 if (mapstate == state)
1470 /* The mapping symbol has already been emitted.
1471 There is nothing else to do. */
1472 return;
1473
c1baaddf 1474#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1475 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1476 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1477 evaluated later in the next else. */
a06ea964 1478 return;
c1baaddf
RL
1479 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1480 {
1481 /* Only add the symbol if the offset is > 0:
1482 if we're at the first frag, check it's size > 0;
1483 if we're not at the first frag, then for sure
1484 the offset is > 0. */
1485 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1486 const int add_symbol = (frag_now != frag_first)
1487 || (frag_now_fix () > 0);
1488
1489 if (add_symbol)
1490 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1491 }
1492#undef TRANSITION
a06ea964
NC
1493
1494 mapping_state_2 (state, 0);
a06ea964
NC
1495}
1496
1497/* Same as mapping_state, but MAX_CHARS bytes have already been
1498 allocated. Put the mapping symbol that far back. */
1499
1500static void
1501mapping_state_2 (enum mstate state, int max_chars)
1502{
1503 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1504
1505 if (!SEG_NORMAL (now_seg))
1506 return;
1507
1508 if (mapstate == state)
1509 /* The mapping symbol has already been emitted.
1510 There is nothing else to do. */
1511 return;
1512
1513 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1514 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1515}
1516#else
1517#define mapping_state(x) /* nothing */
1518#define mapping_state_2(x, y) /* nothing */
1519#endif
1520
1521/* Directives: sectioning and alignment. */
1522
1523static void
1524s_bss (int ignore ATTRIBUTE_UNUSED)
1525{
1526 /* We don't support putting frags in the BSS segment, we fake it by
1527 marking in_bss, then looking at s_skip for clues. */
1528 subseg_set (bss_section, 0);
1529 demand_empty_rest_of_line ();
1530 mapping_state (MAP_DATA);
1531}
1532
1533static void
1534s_even (int ignore ATTRIBUTE_UNUSED)
1535{
1536 /* Never make frag if expect extra pass. */
1537 if (!need_pass_2)
1538 frag_align (1, 0, 0);
1539
1540 record_alignment (now_seg, 1);
1541
1542 demand_empty_rest_of_line ();
1543}
1544
1545/* Directives: Literal pools. */
1546
1547static literal_pool *
1548find_literal_pool (int size)
1549{
1550 literal_pool *pool;
1551
1552 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1553 {
1554 if (pool->section == now_seg
1555 && pool->sub_section == now_subseg && pool->size == size)
1556 break;
1557 }
1558
1559 return pool;
1560}
1561
1562static literal_pool *
1563find_or_make_literal_pool (int size)
1564{
1565 /* Next literal pool ID number. */
1566 static unsigned int latest_pool_num = 1;
1567 literal_pool *pool;
1568
1569 pool = find_literal_pool (size);
1570
1571 if (pool == NULL)
1572 {
1573 /* Create a new pool. */
1574 pool = xmalloc (sizeof (*pool));
1575 if (!pool)
1576 return NULL;
1577
1578 /* Currently we always put the literal pool in the current text
1579 section. If we were generating "small" model code where we
1580 knew that all code and initialised data was within 1MB then
1581 we could output literals to mergeable, read-only data
1582 sections. */
1583
1584 pool->next_free_entry = 0;
1585 pool->section = now_seg;
1586 pool->sub_section = now_subseg;
1587 pool->size = size;
1588 pool->next = list_of_pools;
1589 pool->symbol = NULL;
1590
1591 /* Add it to the list. */
1592 list_of_pools = pool;
1593 }
1594
1595 /* New pools, and emptied pools, will have a NULL symbol. */
1596 if (pool->symbol == NULL)
1597 {
1598 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1599 (valueT) 0, &zero_address_frag);
1600 pool->id = latest_pool_num++;
1601 }
1602
1603 /* Done. */
1604 return pool;
1605}
1606
1607/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1608 Return TRUE on success, otherwise return FALSE. */
1609static bfd_boolean
1610add_to_lit_pool (expressionS *exp, int size)
1611{
1612 literal_pool *pool;
1613 unsigned int entry;
1614
1615 pool = find_or_make_literal_pool (size);
1616
1617 /* Check if this literal value is already in the pool. */
1618 for (entry = 0; entry < pool->next_free_entry; entry++)
1619 {
55d9b4c1
NC
1620 expressionS * litexp = & pool->literals[entry].exp;
1621
1622 if ((litexp->X_op == exp->X_op)
a06ea964 1623 && (exp->X_op == O_constant)
55d9b4c1
NC
1624 && (litexp->X_add_number == exp->X_add_number)
1625 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1626 break;
1627
55d9b4c1 1628 if ((litexp->X_op == exp->X_op)
a06ea964 1629 && (exp->X_op == O_symbol)
55d9b4c1
NC
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_add_symbol == exp->X_add_symbol)
1632 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1633 break;
1634 }
1635
1636 /* Do we need to create a new entry? */
1637 if (entry == pool->next_free_entry)
1638 {
1639 if (entry >= MAX_LITERAL_POOL_SIZE)
1640 {
1641 set_syntax_error (_("literal pool overflow"));
1642 return FALSE;
1643 }
1644
55d9b4c1 1645 pool->literals[entry].exp = *exp;
a06ea964 1646 pool->next_free_entry += 1;
55d9b4c1
NC
1647 if (exp->X_op == O_big)
1648 {
1649 /* PR 16688: Bignums are held in a single global array. We must
1650 copy and preserve that value now, before it is overwritten. */
1651 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1652 memcpy (pool->literals[entry].bignum, generic_bignum,
1653 CHARS_PER_LITTLENUM * exp->X_add_number);
1654 }
1655 else
1656 pool->literals[entry].bignum = NULL;
a06ea964
NC
1657 }
1658
1659 exp->X_op = O_symbol;
1660 exp->X_add_number = ((int) entry) * size;
1661 exp->X_add_symbol = pool->symbol;
1662
1663 return TRUE;
1664}
1665
1666/* Can't use symbol_new here, so have to create a symbol and then at
1667 a later date assign it a value. Thats what these functions do. */
1668
1669static void
1670symbol_locate (symbolS * symbolP,
1671 const char *name,/* It is copied, the caller can modify. */
1672 segT segment, /* Segment identifier (SEG_<something>). */
1673 valueT valu, /* Symbol value. */
1674 fragS * frag) /* Associated fragment. */
1675{
e57e6ddc 1676 size_t name_length;
a06ea964
NC
1677 char *preserved_copy_of_name;
1678
1679 name_length = strlen (name) + 1; /* +1 for \0. */
1680 obstack_grow (&notes, name, name_length);
1681 preserved_copy_of_name = obstack_finish (&notes);
1682
1683#ifdef tc_canonicalize_symbol_name
1684 preserved_copy_of_name =
1685 tc_canonicalize_symbol_name (preserved_copy_of_name);
1686#endif
1687
1688 S_SET_NAME (symbolP, preserved_copy_of_name);
1689
1690 S_SET_SEGMENT (symbolP, segment);
1691 S_SET_VALUE (symbolP, valu);
1692 symbol_clear_list_pointers (symbolP);
1693
1694 symbol_set_frag (symbolP, frag);
1695
1696 /* Link to end of symbol chain. */
1697 {
1698 extern int symbol_table_frozen;
1699
1700 if (symbol_table_frozen)
1701 abort ();
1702 }
1703
1704 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1705
1706 obj_symbol_new_hook (symbolP);
1707
1708#ifdef tc_symbol_new_hook
1709 tc_symbol_new_hook (symbolP);
1710#endif
1711
1712#ifdef DEBUG_SYMS
1713 verify_symbol_chain (symbol_rootP, symbol_lastP);
1714#endif /* DEBUG_SYMS */
1715}
1716
1717
1718static void
1719s_ltorg (int ignored ATTRIBUTE_UNUSED)
1720{
1721 unsigned int entry;
1722 literal_pool *pool;
1723 char sym_name[20];
1724 int align;
1725
67a32447 1726 for (align = 2; align <= 4; align++)
a06ea964
NC
1727 {
1728 int size = 1 << align;
1729
1730 pool = find_literal_pool (size);
1731 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1732 continue;
1733
1734 mapping_state (MAP_DATA);
1735
1736 /* Align pool as you have word accesses.
1737 Only make a frag if we have to. */
1738 if (!need_pass_2)
1739 frag_align (align, 0, 0);
1740
1741 record_alignment (now_seg, align);
1742
1743 sprintf (sym_name, "$$lit_\002%x", pool->id);
1744
1745 symbol_locate (pool->symbol, sym_name, now_seg,
1746 (valueT) frag_now_fix (), frag_now);
1747 symbol_table_insert (pool->symbol);
1748
1749 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1750 {
1751 expressionS * exp = & pool->literals[entry].exp;
1752
1753 if (exp->X_op == O_big)
1754 {
1755 /* PR 16688: Restore the global bignum value. */
1756 gas_assert (pool->literals[entry].bignum != NULL);
1757 memcpy (generic_bignum, pool->literals[entry].bignum,
1758 CHARS_PER_LITTLENUM * exp->X_add_number);
1759 }
1760
1761 /* First output the expression in the instruction to the pool. */
1762 emit_expr (exp, size); /* .word|.xword */
1763
1764 if (exp->X_op == O_big)
1765 {
1766 free (pool->literals[entry].bignum);
1767 pool->literals[entry].bignum = NULL;
1768 }
1769 }
a06ea964
NC
1770
1771 /* Mark the pool as empty. */
1772 pool->next_free_entry = 0;
1773 pool->symbol = NULL;
1774 }
1775}
1776
1777#ifdef OBJ_ELF
1778/* Forward declarations for functions below, in the MD interface
1779 section. */
1780static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1781static struct reloc_table_entry * find_reloc_table_entry (char **);
1782
1783/* Directives: Data. */
1784/* N.B. the support for relocation suffix in this directive needs to be
1785 implemented properly. */
1786
1787static void
1788s_aarch64_elf_cons (int nbytes)
1789{
1790 expressionS exp;
1791
1792#ifdef md_flush_pending_output
1793 md_flush_pending_output ();
1794#endif
1795
1796 if (is_it_end_of_statement ())
1797 {
1798 demand_empty_rest_of_line ();
1799 return;
1800 }
1801
1802#ifdef md_cons_align
1803 md_cons_align (nbytes);
1804#endif
1805
1806 mapping_state (MAP_DATA);
1807 do
1808 {
1809 struct reloc_table_entry *reloc;
1810
1811 expression (&exp);
1812
1813 if (exp.X_op != O_symbol)
1814 emit_expr (&exp, (unsigned int) nbytes);
1815 else
1816 {
1817 skip_past_char (&input_line_pointer, '#');
1818 if (skip_past_char (&input_line_pointer, ':'))
1819 {
1820 reloc = find_reloc_table_entry (&input_line_pointer);
1821 if (reloc == NULL)
1822 as_bad (_("unrecognized relocation suffix"));
1823 else
1824 as_bad (_("unimplemented relocation suffix"));
1825 ignore_rest_of_line ();
1826 return;
1827 }
1828 else
1829 emit_expr (&exp, (unsigned int) nbytes);
1830 }
1831 }
1832 while (*input_line_pointer++ == ',');
1833
1834 /* Put terminator back into stream. */
1835 input_line_pointer--;
1836 demand_empty_rest_of_line ();
1837}
1838
1839#endif /* OBJ_ELF */
1840
1841/* Output a 32-bit word, but mark as an instruction. */
1842
1843static void
1844s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1845{
1846 expressionS exp;
1847
1848#ifdef md_flush_pending_output
1849 md_flush_pending_output ();
1850#endif
1851
1852 if (is_it_end_of_statement ())
1853 {
1854 demand_empty_rest_of_line ();
1855 return;
1856 }
1857
a97902de 1858 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1859 MAP_DATA symbol pending. So we only align the address during
1860 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1861 For other sections, this is not guaranteed. */
c1baaddf 1862 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1863 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1864 frag_align_code (2, 0);
c1baaddf 1865
a06ea964
NC
1866#ifdef OBJ_ELF
1867 mapping_state (MAP_INSN);
1868#endif
1869
1870 do
1871 {
1872 expression (&exp);
1873 if (exp.X_op != O_constant)
1874 {
1875 as_bad (_("constant expression required"));
1876 ignore_rest_of_line ();
1877 return;
1878 }
1879
1880 if (target_big_endian)
1881 {
1882 unsigned int val = exp.X_add_number;
1883 exp.X_add_number = SWAP_32 (val);
1884 }
1885 emit_expr (&exp, 4);
1886 }
1887 while (*input_line_pointer++ == ',');
1888
1889 /* Put terminator back into stream. */
1890 input_line_pointer--;
1891 demand_empty_rest_of_line ();
1892}
1893
1894#ifdef OBJ_ELF
1895/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1896
1897static void
1898s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1899{
1900 expressionS exp;
1901
1902 /* Since we're just labelling the code, there's no need to define a
1903 mapping symbol. */
1904 expression (&exp);
1905 /* Make sure there is enough room in this frag for the following
1906 blr. This trick only works if the blr follows immediately after
1907 the .tlsdesc directive. */
1908 frag_grow (4);
1909 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1910 BFD_RELOC_AARCH64_TLSDESC_CALL);
1911
1912 demand_empty_rest_of_line ();
1913}
1914#endif /* OBJ_ELF */
1915
1916static void s_aarch64_arch (int);
1917static void s_aarch64_cpu (int);
ae527cd8 1918static void s_aarch64_arch_extension (int);
a06ea964
NC
1919
1920/* This table describes all the machine specific pseudo-ops the assembler
1921 has to support. The fields are:
1922 pseudo-op name without dot
1923 function to call to execute this pseudo-op
1924 Integer arg to pass to the function. */
1925
1926const pseudo_typeS md_pseudo_table[] = {
1927 /* Never called because '.req' does not start a line. */
1928 {"req", s_req, 0},
1929 {"unreq", s_unreq, 0},
1930 {"bss", s_bss, 0},
1931 {"even", s_even, 0},
1932 {"ltorg", s_ltorg, 0},
1933 {"pool", s_ltorg, 0},
1934 {"cpu", s_aarch64_cpu, 0},
1935 {"arch", s_aarch64_arch, 0},
ae527cd8 1936 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1937 {"inst", s_aarch64_inst, 0},
1938#ifdef OBJ_ELF
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1944#endif
1945 {0, 0, 0}
1946};
1947\f
1948
1949/* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1961static bfd_boolean
1962reg_name_p (char *str, aarch64_reg_type reg_type)
1963{
1964 int reg;
1965
1966 /* Prevent the diagnostics state from being spoiled. */
1967 if (error_p ())
1968 return FALSE;
1969
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1971
1972 /* Clear the parsing error that may be set by the reg parser. */
1973 clear_error ();
1974
1975 if (reg == PARSE_FAIL)
1976 return FALSE;
1977
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1980 return TRUE;
1981
1982 return FALSE;
1983}
1984
1985/* Parser functions used exclusively in instruction operands. */
1986
1987/* Parse an immediate expression which may not be constant.
1988
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1993 string. */
1994
1995static bfd_boolean
1996parse_immediate_expression (char **str, expressionS *exp)
1997{
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
1999 {
2000 set_recoverable_error (_("immediate operand required"));
2001 return FALSE;
2002 }
2003
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2005
2006 if (exp->X_op == O_absent)
2007 {
2008 set_fatal_syntax_error (_("missing immediate expression"));
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2018
2019 Return TRUE on success; otherwise return FALSE. */
2020
2021static bfd_boolean
2022parse_constant_immediate (char **str, int64_t * val)
2023{
2024 expressionS exp;
2025
2026 if (! parse_immediate_expression (str, &exp))
2027 return FALSE;
2028
2029 if (exp.X_op != O_constant)
2030 {
2031 set_syntax_error (_("constant expression required"));
2032 return FALSE;
2033 }
2034
2035 *val = exp.X_add_number;
2036 return TRUE;
2037}
2038
2039static uint32_t
2040encode_imm_float_bits (uint32_t imm)
2041{
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2044}
2045
62b0d0d5
YZ
2046/* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2052
a06ea964
NC
2053static bfd_boolean
2054aarch64_imm_float_p (uint32_t imm)
2055{
62b0d0d5
YZ
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2058 format:
2059
2060 3 32222222 2221111111111
a06ea964 2061 1 09876543 21098765432109876543210
62b0d0d5
YZ
2062 n Eeeeeexx xxxx0000000000000000000
2063
2064 where n, e and each x are either 0 or 1 independently, with
2065 E == ~ e. */
a06ea964 2066
62b0d0d5
YZ
2067 uint32_t pattern;
2068
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
a06ea964 2072 else
62b0d0d5
YZ
2073 pattern = 0x40000000;
2074
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2077}
2078
62b0d0d5
YZ
2079/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2080
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2085
2086 Otherwise return FALSE. */
2087
a06ea964 2088static bfd_boolean
62b0d0d5
YZ
2089aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2090{
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2093 format:
2094
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2098
2099 where n, e and each x are either 0 or 1 independently, with
2100 E == ~ e. */
2101
2102 uint32_t pattern;
2103 uint32_t high32 = imm >> 32;
2104
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2107 return FALSE;
2108
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2112 else
2113 pattern = 0x40000000;
2114
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2117 {
2118 /* Convert to the single-precision encoding.
2119 i.e. convert
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2121 to
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2125 return TRUE;
2126 }
2127 else
2128 return FALSE;
2129}
2130
2131/* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2136
2137 N.B. 0.0 is accepted by this function. */
2138
2139static bfd_boolean
2140parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2141{
2142 char *str = *ccp;
2143 char *fpnum;
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
62b0d0d5
YZ
2146 int64_t val = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
a06ea964
NC
2149
2150 skip_past_char (&str, '#');
2151
a06ea964
NC
2152 fpnum = str;
2153 skip_whitespace (fpnum);
2154
2155 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2156 {
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2161 goto invalid_fp;
2162
2163 if (dp_p)
2164 {
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2166 goto invalid_fp;
2167 }
2168 else if ((uint64_t) val > 0xffffffff)
2169 goto invalid_fp;
2170 else
2171 fpword = val;
2172
2173 hex_p = TRUE;
2174 }
a06ea964
NC
2175 else
2176 {
62b0d0d5
YZ
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
a06ea964
NC
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2182 {
2183 found_fpchar = 1;
2184 break;
2185 }
2186
2187 if (!found_fpchar)
2188 return FALSE;
2189 }
2190
62b0d0d5 2191 if (! hex_p)
a06ea964 2192 {
a06ea964
NC
2193 int i;
2194
62b0d0d5
YZ
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2196 goto invalid_fp;
2197
a06ea964
NC
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2200 {
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2202 fpword |= words[i];
2203 }
62b0d0d5 2204 }
a06ea964 2205
62b0d0d5
YZ
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2207 {
2208 *immed = fpword;
a06ea964 2209 *ccp = str;
a06ea964
NC
2210 return TRUE;
2211 }
2212
2213invalid_fp:
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2215 return FALSE;
2216}
2217
2218/* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2220 instructions.
2221
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2226
2227static bfd_boolean
2228parse_big_immediate (char **str, int64_t *imm)
2229{
2230 char *ptr = *str;
2231
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2233 {
2234 set_syntax_error (_("immediate operand required"));
2235 return FALSE;
2236 }
2237
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2239
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2242
2243 *str = ptr;
2244
2245 return TRUE;
2246}
2247
2248/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2251
2252static inline void
2253aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2256{
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2261};
2262
2263/* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2265
2266static inline bfd_boolean
2267aarch64_gas_internal_fixup_p (void)
2268{
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2270}
2271
2272/* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2277static inline void
2278assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2280 int addr_off_p,
2281 int need_libopcodes_p,
2282 int skip_p)
2283{
2284 if (reloc->exp.X_op == O_constant)
2285 {
2286 if (addr_off_p)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2288 else
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2291 }
2292 else
2293 {
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2299 }
2300}
2301
2302/* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2306
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2309
2310struct reloc_table_entry
2311{
2312 const char *name;
2313 int pc_rel;
6f4a313b 2314 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2315 bfd_reloc_code_real_type adrp_type;
2316 bfd_reloc_code_real_type movw_type;
2317 bfd_reloc_code_real_type add_type;
2318 bfd_reloc_code_real_type ldst_type;
74ad790c 2319 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2320};
2321
2322static struct reloc_table_entry reloc_table[] = {
2323 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2324 {"lo12", 0,
6f4a313b 2325 0, /* adr_type */
a06ea964
NC
2326 0,
2327 0,
2328 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2329 BFD_RELOC_AARCH64_LDST_LO12,
2330 0},
a06ea964
NC
2331
2332 /* Higher 21 bits of pc-relative page offset: ADRP */
2333 {"pg_hi21", 1,
6f4a313b 2334 0, /* adr_type */
a06ea964
NC
2335 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2336 0,
2337 0,
74ad790c 2338 0,
a06ea964
NC
2339 0},
2340
2341 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2342 {"pg_hi21_nc", 1,
6f4a313b 2343 0, /* adr_type */
a06ea964
NC
2344 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2345 0,
2346 0,
74ad790c 2347 0,
a06ea964
NC
2348 0},
2349
2350 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2351 {"abs_g0", 0,
6f4a313b 2352 0, /* adr_type */
a06ea964
NC
2353 0,
2354 BFD_RELOC_AARCH64_MOVW_G0,
2355 0,
74ad790c 2356 0,
a06ea964
NC
2357 0},
2358
2359 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2360 {"abs_g0_s", 0,
6f4a313b 2361 0, /* adr_type */
a06ea964
NC
2362 0,
2363 BFD_RELOC_AARCH64_MOVW_G0_S,
2364 0,
74ad790c 2365 0,
a06ea964
NC
2366 0},
2367
2368 /* Less significant bits 0-15 of address/value: MOVK, no check */
2369 {"abs_g0_nc", 0,
6f4a313b 2370 0, /* adr_type */
a06ea964
NC
2371 0,
2372 BFD_RELOC_AARCH64_MOVW_G0_NC,
2373 0,
74ad790c 2374 0,
a06ea964
NC
2375 0},
2376
2377 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2378 {"abs_g1", 0,
6f4a313b 2379 0, /* adr_type */
a06ea964
NC
2380 0,
2381 BFD_RELOC_AARCH64_MOVW_G1,
2382 0,
74ad790c 2383 0,
a06ea964
NC
2384 0},
2385
2386 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2387 {"abs_g1_s", 0,
6f4a313b 2388 0, /* adr_type */
a06ea964
NC
2389 0,
2390 BFD_RELOC_AARCH64_MOVW_G1_S,
2391 0,
74ad790c 2392 0,
a06ea964
NC
2393 0},
2394
2395 /* Less significant bits 16-31 of address/value: MOVK, no check */
2396 {"abs_g1_nc", 0,
6f4a313b 2397 0, /* adr_type */
a06ea964
NC
2398 0,
2399 BFD_RELOC_AARCH64_MOVW_G1_NC,
2400 0,
74ad790c 2401 0,
a06ea964
NC
2402 0},
2403
2404 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2405 {"abs_g2", 0,
6f4a313b 2406 0, /* adr_type */
a06ea964
NC
2407 0,
2408 BFD_RELOC_AARCH64_MOVW_G2,
2409 0,
74ad790c 2410 0,
a06ea964
NC
2411 0},
2412
2413 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2414 {"abs_g2_s", 0,
6f4a313b 2415 0, /* adr_type */
a06ea964
NC
2416 0,
2417 BFD_RELOC_AARCH64_MOVW_G2_S,
2418 0,
74ad790c 2419 0,
a06ea964
NC
2420 0},
2421
2422 /* Less significant bits 32-47 of address/value: MOVK, no check */
2423 {"abs_g2_nc", 0,
6f4a313b 2424 0, /* adr_type */
a06ea964
NC
2425 0,
2426 BFD_RELOC_AARCH64_MOVW_G2_NC,
2427 0,
74ad790c 2428 0,
a06ea964
NC
2429 0},
2430
2431 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2432 {"abs_g3", 0,
6f4a313b 2433 0, /* adr_type */
a06ea964
NC
2434 0,
2435 BFD_RELOC_AARCH64_MOVW_G3,
2436 0,
74ad790c 2437 0,
a06ea964 2438 0},
4aa2c5e2 2439
a06ea964
NC
2440 /* Get to the page containing GOT entry for a symbol. */
2441 {"got", 1,
6f4a313b 2442 0, /* adr_type */
a06ea964
NC
2443 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2444 0,
2445 0,
74ad790c 2446 0,
4aa2c5e2
MS
2447 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2448
a06ea964
NC
2449 /* 12 bit offset into the page containing GOT entry for that symbol. */
2450 {"got_lo12", 0,
6f4a313b 2451 0, /* adr_type */
a06ea964
NC
2452 0,
2453 0,
2454 0,
74ad790c
MS
2455 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2456 0},
a06ea964 2457
ca632371
RL
2458 /* 0-15 bits of address/value: MOVk, no check. */
2459 {"gotoff_g0_nc", 0,
2460 0, /* adr_type */
2461 0,
2462 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2463 0,
2464 0,
2465 0},
2466
654248e7
RL
2467 /* Most significant bits 16-31 of address/value: MOVZ. */
2468 {"gotoff_g1", 0,
2469 0, /* adr_type */
2470 0,
2471 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2472 0,
2473 0,
2474 0},
2475
87f5fbcc
RL
2476 /* 15 bit offset into the page containing GOT entry for that symbol. */
2477 {"gotoff_lo15", 0,
2478 0, /* adr_type */
2479 0,
2480 0,
2481 0,
2482 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2483 0},
2484
a06ea964
NC
2485 /* Get to the page containing GOT TLS entry for a symbol */
2486 {"tlsgd", 0,
3c12b054 2487 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2488 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2489 0,
2490 0,
74ad790c 2491 0,
a06ea964
NC
2492 0},
2493
2494 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2495 {"tlsgd_lo12", 0,
6f4a313b 2496 0, /* adr_type */
a06ea964
NC
2497 0,
2498 0,
2499 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2500 0,
a06ea964
NC
2501 0},
2502
2503 /* Get to the page containing GOT TLS entry for a symbol */
2504 {"tlsdesc", 0,
389b8029 2505 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2506 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2507 0,
2508 0,
74ad790c 2509 0,
1ada945d 2510 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2511
2512 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2513 {"tlsdesc_lo12", 0,
6f4a313b 2514 0, /* adr_type */
a06ea964
NC
2515 0,
2516 0,
2517 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2518 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2519 0},
a06ea964 2520
6c37fedc
JW
2521 /* Get to the page containing GOT TLS entry for a symbol.
2522 The same as GD, we allocate two consecutive GOT slots
2523 for module index and module offset, the only difference
2524 with GD is the module offset should be intialized to
2525 zero without any outstanding runtime relocation. */
2526 {"tlsldm", 0,
2527 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2528 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2529 0,
2530 0,
2531 0,
2532 0},
2533
a12fad50
JW
2534 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2535 {"tlsldm_lo12_nc", 0,
2536 0, /* adr_type */
2537 0,
2538 0,
2539 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2540 0,
2541 0},
2542
70151fb5
JW
2543 /* 12 bit offset into the module TLS base address. */
2544 {"dtprel_lo12", 0,
2545 0, /* adr_type */
2546 0,
2547 0,
2548 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2549 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2550 0},
2551
13289c10
JW
2552 /* Same as dtprel_lo12, no overflow check. */
2553 {"dtprel_lo12_nc", 0,
2554 0, /* adr_type */
2555 0,
2556 0,
2557 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2558 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2559 0},
2560
49df5539
JW
2561 /* bits[23:12] of offset to the module TLS base address. */
2562 {"dtprel_hi12", 0,
2563 0, /* adr_type */
2564 0,
2565 0,
2566 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2567 0,
2568 0},
2569
2570 /* bits[15:0] of offset to the module TLS base address. */
2571 {"dtprel_g0", 0,
2572 0, /* adr_type */
2573 0,
2574 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2575 0,
2576 0,
2577 0},
2578
2579 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2580 {"dtprel_g0_nc", 0,
2581 0, /* adr_type */
2582 0,
2583 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2584 0,
2585 0,
2586 0},
2587
2588 /* bits[31:16] of offset to the module TLS base address. */
2589 {"dtprel_g1", 0,
2590 0, /* adr_type */
2591 0,
2592 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2593 0,
2594 0,
2595 0},
2596
2597 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2598 {"dtprel_g1_nc", 0,
2599 0, /* adr_type */
2600 0,
2601 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2602 0,
2603 0,
2604 0},
2605
2606 /* bits[47:32] of offset to the module TLS base address. */
2607 {"dtprel_g2", 0,
2608 0, /* adr_type */
2609 0,
2610 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2611 0,
2612 0,
2613 0},
2614
a06ea964
NC
2615 /* Get to the page containing GOT TLS entry for a symbol */
2616 {"gottprel", 0,
6f4a313b 2617 0, /* adr_type */
a06ea964
NC
2618 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2619 0,
2620 0,
74ad790c 2621 0,
043bf05a 2622 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2623
2624 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2625 {"gottprel_lo12", 0,
6f4a313b 2626 0, /* adr_type */
a06ea964
NC
2627 0,
2628 0,
2629 0,
74ad790c
MS
2630 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2631 0},
a06ea964
NC
2632
2633 /* Get tp offset for a symbol. */
2634 {"tprel", 0,
6f4a313b 2635 0, /* adr_type */
a06ea964
NC
2636 0,
2637 0,
2638 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2639 0,
a06ea964
NC
2640 0},
2641
2642 /* Get tp offset for a symbol. */
2643 {"tprel_lo12", 0,
6f4a313b 2644 0, /* adr_type */
a06ea964
NC
2645 0,
2646 0,
2647 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2648 0,
a06ea964
NC
2649 0},
2650
2651 /* Get tp offset for a symbol. */
2652 {"tprel_hi12", 0,
6f4a313b 2653 0, /* adr_type */
a06ea964
NC
2654 0,
2655 0,
2656 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2657 0,
a06ea964
NC
2658 0},
2659
2660 /* Get tp offset for a symbol. */
2661 {"tprel_lo12_nc", 0,
6f4a313b 2662 0, /* adr_type */
a06ea964
NC
2663 0,
2664 0,
2665 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2666 0,
a06ea964
NC
2667 0},
2668
2669 /* Most significant bits 32-47 of address/value: MOVZ. */
2670 {"tprel_g2", 0,
6f4a313b 2671 0, /* adr_type */
a06ea964
NC
2672 0,
2673 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2674 0,
74ad790c 2675 0,
a06ea964
NC
2676 0},
2677
2678 /* Most significant bits 16-31 of address/value: MOVZ. */
2679 {"tprel_g1", 0,
6f4a313b 2680 0, /* adr_type */
a06ea964
NC
2681 0,
2682 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2683 0,
74ad790c 2684 0,
a06ea964
NC
2685 0},
2686
2687 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2688 {"tprel_g1_nc", 0,
6f4a313b 2689 0, /* adr_type */
a06ea964
NC
2690 0,
2691 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2692 0,
74ad790c 2693 0,
a06ea964
NC
2694 0},
2695
2696 /* Most significant bits 0-15 of address/value: MOVZ. */
2697 {"tprel_g0", 0,
6f4a313b 2698 0, /* adr_type */
a06ea964
NC
2699 0,
2700 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2701 0,
74ad790c 2702 0,
a06ea964
NC
2703 0},
2704
2705 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2706 {"tprel_g0_nc", 0,
6f4a313b 2707 0, /* adr_type */
a06ea964
NC
2708 0,
2709 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2710 0,
74ad790c 2711 0,
a06ea964 2712 0},
a921b5bd
JW
2713
2714 /* 15bit offset from got entry to base address of GOT table. */
2715 {"gotpage_lo15", 0,
2716 0,
2717 0,
2718 0,
2719 0,
2720 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2721 0},
3d715ce4
JW
2722
2723 /* 14bit offset from got entry to base address of GOT table. */
2724 {"gotpage_lo14", 0,
2725 0,
2726 0,
2727 0,
2728 0,
2729 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2730 0},
a06ea964
NC
2731};
2732
2733/* Given the address of a pointer pointing to the textual name of a
2734 relocation as may appear in assembler source, attempt to find its
2735 details in reloc_table. The pointer will be updated to the character
2736 after the trailing colon. On failure, NULL will be returned;
2737 otherwise return the reloc_table_entry. */
2738
2739static struct reloc_table_entry *
2740find_reloc_table_entry (char **str)
2741{
2742 unsigned int i;
2743 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2744 {
2745 int length = strlen (reloc_table[i].name);
2746
2747 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2748 && (*str)[length] == ':')
2749 {
2750 *str += (length + 1);
2751 return &reloc_table[i];
2752 }
2753 }
2754
2755 return NULL;
2756}
2757
2758/* Mode argument to parse_shift and parser_shifter_operand. */
2759enum parse_shift_mode
2760{
2761 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2762 "#imm{,lsl #n}" */
2763 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2764 "#imm" */
2765 SHIFTED_LSL, /* bare "lsl #n" */
2766 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2767 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2768};
2769
2770/* Parse a <shift> operator on an AArch64 data processing instruction.
2771 Return TRUE on success; otherwise return FALSE. */
2772static bfd_boolean
2773parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2774{
2775 const struct aarch64_name_value_pair *shift_op;
2776 enum aarch64_modifier_kind kind;
2777 expressionS exp;
2778 int exp_has_prefix;
2779 char *s = *str;
2780 char *p = s;
2781
2782 for (p = *str; ISALPHA (*p); p++)
2783 ;
2784
2785 if (p == *str)
2786 {
2787 set_syntax_error (_("shift expression expected"));
2788 return FALSE;
2789 }
2790
2791 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2792
2793 if (shift_op == NULL)
2794 {
2795 set_syntax_error (_("shift operator expected"));
2796 return FALSE;
2797 }
2798
2799 kind = aarch64_get_operand_modifier (shift_op);
2800
2801 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2802 {
2803 set_syntax_error (_("invalid use of 'MSL'"));
2804 return FALSE;
2805 }
2806
2807 switch (mode)
2808 {
2809 case SHIFTED_LOGIC_IMM:
2810 if (aarch64_extend_operator_p (kind) == TRUE)
2811 {
2812 set_syntax_error (_("extending shift is not permitted"));
2813 return FALSE;
2814 }
2815 break;
2816
2817 case SHIFTED_ARITH_IMM:
2818 if (kind == AARCH64_MOD_ROR)
2819 {
2820 set_syntax_error (_("'ROR' shift is not permitted"));
2821 return FALSE;
2822 }
2823 break;
2824
2825 case SHIFTED_LSL:
2826 if (kind != AARCH64_MOD_LSL)
2827 {
2828 set_syntax_error (_("only 'LSL' shift is permitted"));
2829 return FALSE;
2830 }
2831 break;
2832
2833 case SHIFTED_REG_OFFSET:
2834 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2835 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2836 {
2837 set_fatal_syntax_error
2838 (_("invalid shift for the register offset addressing mode"));
2839 return FALSE;
2840 }
2841 break;
2842
2843 case SHIFTED_LSL_MSL:
2844 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2845 {
2846 set_syntax_error (_("invalid shift operator"));
2847 return FALSE;
2848 }
2849 break;
2850
2851 default:
2852 abort ();
2853 }
2854
2855 /* Whitespace can appear here if the next thing is a bare digit. */
2856 skip_whitespace (p);
2857
2858 /* Parse shift amount. */
2859 exp_has_prefix = 0;
2860 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2861 exp.X_op = O_absent;
2862 else
2863 {
2864 if (is_immediate_prefix (*p))
2865 {
2866 p++;
2867 exp_has_prefix = 1;
2868 }
2869 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2870 }
2871 if (exp.X_op == O_absent)
2872 {
2873 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2874 {
2875 set_syntax_error (_("missing shift amount"));
2876 return FALSE;
2877 }
2878 operand->shifter.amount = 0;
2879 }
2880 else if (exp.X_op != O_constant)
2881 {
2882 set_syntax_error (_("constant shift amount required"));
2883 return FALSE;
2884 }
2885 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2886 {
2887 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2888 return FALSE;
2889 }
2890 else
2891 {
2892 operand->shifter.amount = exp.X_add_number;
2893 operand->shifter.amount_present = 1;
2894 }
2895
2896 operand->shifter.operator_present = 1;
2897 operand->shifter.kind = kind;
2898
2899 *str = p;
2900 return TRUE;
2901}
2902
2903/* Parse a <shifter_operand> for a data processing instruction:
2904
2905 #<immediate>
2906 #<immediate>, LSL #imm
2907
2908 Validation of immediate operands is deferred to md_apply_fix.
2909
2910 Return TRUE on success; otherwise return FALSE. */
2911
2912static bfd_boolean
2913parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2914 enum parse_shift_mode mode)
2915{
2916 char *p;
2917
2918 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2919 return FALSE;
2920
2921 p = *str;
2922
2923 /* Accept an immediate expression. */
2924 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2925 return FALSE;
2926
2927 /* Accept optional LSL for arithmetic immediate values. */
2928 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2929 if (! parse_shift (&p, operand, SHIFTED_LSL))
2930 return FALSE;
2931
2932 /* Not accept any shifter for logical immediate values. */
2933 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2934 && parse_shift (&p, operand, mode))
2935 {
2936 set_syntax_error (_("unexpected shift operator"));
2937 return FALSE;
2938 }
2939
2940 *str = p;
2941 return TRUE;
2942}
2943
2944/* Parse a <shifter_operand> for a data processing instruction:
2945
2946 <Rm>
2947 <Rm>, <shift>
2948 #<immediate>
2949 #<immediate>, LSL #imm
2950
2951 where <shift> is handled by parse_shift above, and the last two
2952 cases are handled by the function above.
2953
2954 Validation of immediate operands is deferred to md_apply_fix.
2955
2956 Return TRUE on success; otherwise return FALSE. */
2957
2958static bfd_boolean
2959parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2960 enum parse_shift_mode mode)
2961{
2962 int reg;
2963 int isreg32, isregzero;
2964 enum aarch64_operand_class opd_class
2965 = aarch64_get_operand_class (operand->type);
2966
2967 if ((reg =
2968 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2969 {
2970 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2971 {
2972 set_syntax_error (_("unexpected register in the immediate operand"));
2973 return FALSE;
2974 }
2975
2976 if (!isregzero && reg == REG_SP)
2977 {
2978 set_syntax_error (BAD_SP);
2979 return FALSE;
2980 }
2981
2982 operand->reg.regno = reg;
2983 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2984
2985 /* Accept optional shift operation on register. */
2986 if (! skip_past_comma (str))
2987 return TRUE;
2988
2989 if (! parse_shift (str, operand, mode))
2990 return FALSE;
2991
2992 return TRUE;
2993 }
2994 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2995 {
2996 set_syntax_error
2997 (_("integer register expected in the extended/shifted operand "
2998 "register"));
2999 return FALSE;
3000 }
3001
3002 /* We have a shifted immediate variable. */
3003 return parse_shifter_operand_imm (str, operand, mode);
3004}
3005
3006/* Return TRUE on success; return FALSE otherwise. */
3007
3008static bfd_boolean
3009parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3010 enum parse_shift_mode mode)
3011{
3012 char *p = *str;
3013
3014 /* Determine if we have the sequence of characters #: or just :
3015 coming next. If we do, then we check for a :rello: relocation
3016 modifier. If we don't, punt the whole lot to
3017 parse_shifter_operand. */
3018
3019 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3020 {
3021 struct reloc_table_entry *entry;
3022
3023 if (p[0] == '#')
3024 p += 2;
3025 else
3026 p++;
3027 *str = p;
3028
3029 /* Try to parse a relocation. Anything else is an error. */
3030 if (!(entry = find_reloc_table_entry (str)))
3031 {
3032 set_syntax_error (_("unknown relocation modifier"));
3033 return FALSE;
3034 }
3035
3036 if (entry->add_type == 0)
3037 {
3038 set_syntax_error
3039 (_("this relocation modifier is not allowed on this instruction"));
3040 return FALSE;
3041 }
3042
3043 /* Save str before we decompose it. */
3044 p = *str;
3045
3046 /* Next, we parse the expression. */
3047 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3048 return FALSE;
3049
3050 /* Record the relocation type (use the ADD variant here). */
3051 inst.reloc.type = entry->add_type;
3052 inst.reloc.pc_rel = entry->pc_rel;
3053
3054 /* If str is empty, we've reached the end, stop here. */
3055 if (**str == '\0')
3056 return TRUE;
3057
55d9b4c1 3058 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3059 recover the variable name and continue parsing for the shifter. */
3060 *str = p;
3061 return parse_shifter_operand_imm (str, operand, mode);
3062 }
3063
3064 return parse_shifter_operand (str, operand, mode);
3065}
3066
3067/* Parse all forms of an address expression. Information is written
3068 to *OPERAND and/or inst.reloc.
3069
3070 The A64 instruction set has the following addressing modes:
3071
3072 Offset
3073 [base] // in SIMD ld/st structure
3074 [base{,#0}] // in ld/st exclusive
3075 [base{,#imm}]
3076 [base,Xm{,LSL #imm}]
3077 [base,Xm,SXTX {#imm}]
3078 [base,Wm,(S|U)XTW {#imm}]
3079 Pre-indexed
3080 [base,#imm]!
3081 Post-indexed
3082 [base],#imm
3083 [base],Xm // in SIMD ld/st structure
3084 PC-relative (literal)
3085 label
3086 =immediate
3087
3088 (As a convenience, the notation "=immediate" is permitted in conjunction
3089 with the pc-relative literal load instructions to automatically place an
3090 immediate value or symbolic address in a nearby literal pool and generate
3091 a hidden label which references it.)
3092
3093 Upon a successful parsing, the address structure in *OPERAND will be
3094 filled in the following way:
3095
3096 .base_regno = <base>
3097 .offset.is_reg // 1 if the offset is a register
3098 .offset.imm = <imm>
3099 .offset.regno = <Rm>
3100
3101 For different addressing modes defined in the A64 ISA:
3102
3103 Offset
3104 .pcrel=0; .preind=1; .postind=0; .writeback=0
3105 Pre-indexed
3106 .pcrel=0; .preind=1; .postind=0; .writeback=1
3107 Post-indexed
3108 .pcrel=0; .preind=0; .postind=1; .writeback=1
3109 PC-relative (literal)
3110 .pcrel=1; .preind=1; .postind=0; .writeback=0
3111
3112 The shift/extension information, if any, will be stored in .shifter.
3113
3114 It is the caller's responsibility to check for addressing modes not
3115 supported by the instruction, and to set inst.reloc.type. */
3116
3117static bfd_boolean
3118parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
3119 int accept_reg_post_index)
3120{
3121 char *p = *str;
3122 int reg;
3123 int isreg32, isregzero;
3124 expressionS *exp = &inst.reloc.exp;
3125
3126 if (! skip_past_char (&p, '['))
3127 {
3128 /* =immediate or label. */
3129 operand->addr.pcrel = 1;
3130 operand->addr.preind = 1;
3131
f41aef5f
RE
3132 /* #:<reloc_op>:<symbol> */
3133 skip_past_char (&p, '#');
3134 if (reloc && skip_past_char (&p, ':'))
3135 {
6f4a313b 3136 bfd_reloc_code_real_type ty;
f41aef5f
RE
3137 struct reloc_table_entry *entry;
3138
3139 /* Try to parse a relocation modifier. Anything else is
3140 an error. */
3141 entry = find_reloc_table_entry (&p);
3142 if (! entry)
3143 {
3144 set_syntax_error (_("unknown relocation modifier"));
3145 return FALSE;
3146 }
3147
6f4a313b
MS
3148 switch (operand->type)
3149 {
3150 case AARCH64_OPND_ADDR_PCREL21:
3151 /* adr */
3152 ty = entry->adr_type;
3153 break;
3154
3155 default:
74ad790c 3156 ty = entry->ld_literal_type;
6f4a313b
MS
3157 break;
3158 }
3159
3160 if (ty == 0)
f41aef5f
RE
3161 {
3162 set_syntax_error
3163 (_("this relocation modifier is not allowed on this "
3164 "instruction"));
3165 return FALSE;
3166 }
3167
3168 /* #:<reloc_op>: */
3169 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3170 {
3171 set_syntax_error (_("invalid relocation expression"));
3172 return FALSE;
3173 }
a06ea964 3174
f41aef5f 3175 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3176 /* Record the relocation type. */
3177 inst.reloc.type = ty;
f41aef5f
RE
3178 inst.reloc.pc_rel = entry->pc_rel;
3179 }
3180 else
a06ea964 3181 {
f41aef5f
RE
3182
3183 if (skip_past_char (&p, '='))
3184 /* =immediate; need to generate the literal in the literal pool. */
3185 inst.gen_lit_pool = 1;
3186
3187 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3188 {
3189 set_syntax_error (_("invalid address"));
3190 return FALSE;
3191 }
a06ea964
NC
3192 }
3193
3194 *str = p;
3195 return TRUE;
3196 }
3197
3198 /* [ */
3199
3200 /* Accept SP and reject ZR */
3201 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3202 if (reg == PARSE_FAIL || isreg32)
3203 {
3204 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3205 return FALSE;
3206 }
3207 operand->addr.base_regno = reg;
3208
3209 /* [Xn */
3210 if (skip_past_comma (&p))
3211 {
3212 /* [Xn, */
3213 operand->addr.preind = 1;
3214
3215 /* Reject SP and accept ZR */
3216 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3217 if (reg != PARSE_FAIL)
3218 {
3219 /* [Xn,Rm */
3220 operand->addr.offset.regno = reg;
3221 operand->addr.offset.is_reg = 1;
3222 /* Shifted index. */
3223 if (skip_past_comma (&p))
3224 {
3225 /* [Xn,Rm, */
3226 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3227 /* Use the diagnostics set in parse_shift, so not set new
3228 error message here. */
3229 return FALSE;
3230 }
3231 /* We only accept:
3232 [base,Xm{,LSL #imm}]
3233 [base,Xm,SXTX {#imm}]
3234 [base,Wm,(S|U)XTW {#imm}] */
3235 if (operand->shifter.kind == AARCH64_MOD_NONE
3236 || operand->shifter.kind == AARCH64_MOD_LSL
3237 || operand->shifter.kind == AARCH64_MOD_SXTX)
3238 {
3239 if (isreg32)
3240 {
3241 set_syntax_error (_("invalid use of 32-bit register offset"));
3242 return FALSE;
3243 }
3244 }
3245 else if (!isreg32)
3246 {
3247 set_syntax_error (_("invalid use of 64-bit register offset"));
3248 return FALSE;
3249 }
3250 }
3251 else
3252 {
3253 /* [Xn,#:<reloc_op>:<symbol> */
3254 skip_past_char (&p, '#');
3255 if (reloc && skip_past_char (&p, ':'))
3256 {
3257 struct reloc_table_entry *entry;
3258
3259 /* Try to parse a relocation modifier. Anything else is
3260 an error. */
3261 if (!(entry = find_reloc_table_entry (&p)))
3262 {
3263 set_syntax_error (_("unknown relocation modifier"));
3264 return FALSE;
3265 }
3266
3267 if (entry->ldst_type == 0)
3268 {
3269 set_syntax_error
3270 (_("this relocation modifier is not allowed on this "
3271 "instruction"));
3272 return FALSE;
3273 }
3274
3275 /* [Xn,#:<reloc_op>: */
3276 /* We now have the group relocation table entry corresponding to
3277 the name in the assembler source. Next, we parse the
3278 expression. */
3279 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3280 {
3281 set_syntax_error (_("invalid relocation expression"));
3282 return FALSE;
3283 }
3284
3285 /* [Xn,#:<reloc_op>:<expr> */
3286 /* Record the load/store relocation type. */
3287 inst.reloc.type = entry->ldst_type;
3288 inst.reloc.pc_rel = entry->pc_rel;
3289 }
3290 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3291 {
3292 set_syntax_error (_("invalid expression in the address"));
3293 return FALSE;
3294 }
3295 /* [Xn,<expr> */
3296 }
3297 }
3298
3299 if (! skip_past_char (&p, ']'))
3300 {
3301 set_syntax_error (_("']' expected"));
3302 return FALSE;
3303 }
3304
3305 if (skip_past_char (&p, '!'))
3306 {
3307 if (operand->addr.preind && operand->addr.offset.is_reg)
3308 {
3309 set_syntax_error (_("register offset not allowed in pre-indexed "
3310 "addressing mode"));
3311 return FALSE;
3312 }
3313 /* [Xn]! */
3314 operand->addr.writeback = 1;
3315 }
3316 else if (skip_past_comma (&p))
3317 {
3318 /* [Xn], */
3319 operand->addr.postind = 1;
3320 operand->addr.writeback = 1;
3321
3322 if (operand->addr.preind)
3323 {
3324 set_syntax_error (_("cannot combine pre- and post-indexing"));
3325 return FALSE;
3326 }
3327
3328 if (accept_reg_post_index
3329 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3330 &isregzero)) != PARSE_FAIL)
3331 {
3332 /* [Xn],Xm */
3333 if (isreg32)
3334 {
3335 set_syntax_error (_("invalid 32-bit register offset"));
3336 return FALSE;
3337 }
3338 operand->addr.offset.regno = reg;
3339 operand->addr.offset.is_reg = 1;
3340 }
3341 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3342 {
3343 /* [Xn],#expr */
3344 set_syntax_error (_("invalid expression in the address"));
3345 return FALSE;
3346 }
3347 }
3348
3349 /* If at this point neither .preind nor .postind is set, we have a
3350 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3351 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3352 {
3353 if (operand->addr.writeback)
3354 {
3355 /* Reject [Rn]! */
3356 set_syntax_error (_("missing offset in the pre-indexed address"));
3357 return FALSE;
3358 }
3359 operand->addr.preind = 1;
3360 inst.reloc.exp.X_op = O_constant;
3361 inst.reloc.exp.X_add_number = 0;
3362 }
3363
3364 *str = p;
3365 return TRUE;
3366}
3367
3368/* Return TRUE on success; otherwise return FALSE. */
3369static bfd_boolean
3370parse_address (char **str, aarch64_opnd_info *operand,
3371 int accept_reg_post_index)
3372{
3373 return parse_address_main (str, operand, 0, accept_reg_post_index);
3374}
3375
3376/* Return TRUE on success; otherwise return FALSE. */
3377static bfd_boolean
3378parse_address_reloc (char **str, aarch64_opnd_info *operand)
3379{
3380 return parse_address_main (str, operand, 1, 0);
3381}
3382
3383/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3384 Return TRUE on success; otherwise return FALSE. */
3385static bfd_boolean
3386parse_half (char **str, int *internal_fixup_p)
3387{
3388 char *p, *saved;
3389 int dummy;
3390
3391 p = *str;
3392 skip_past_char (&p, '#');
3393
3394 gas_assert (internal_fixup_p);
3395 *internal_fixup_p = 0;
3396
3397 if (*p == ':')
3398 {
3399 struct reloc_table_entry *entry;
3400
3401 /* Try to parse a relocation. Anything else is an error. */
3402 ++p;
3403 if (!(entry = find_reloc_table_entry (&p)))
3404 {
3405 set_syntax_error (_("unknown relocation modifier"));
3406 return FALSE;
3407 }
3408
3409 if (entry->movw_type == 0)
3410 {
3411 set_syntax_error
3412 (_("this relocation modifier is not allowed on this instruction"));
3413 return FALSE;
3414 }
3415
3416 inst.reloc.type = entry->movw_type;
3417 }
3418 else
3419 *internal_fixup_p = 1;
3420
3421 /* Avoid parsing a register as a general symbol. */
3422 saved = p;
3423 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3424 return FALSE;
3425 p = saved;
3426
3427 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3428 return FALSE;
3429
3430 *str = p;
3431 return TRUE;
3432}
3433
3434/* Parse an operand for an ADRP instruction:
3435 ADRP <Xd>, <label>
3436 Return TRUE on success; otherwise return FALSE. */
3437
3438static bfd_boolean
3439parse_adrp (char **str)
3440{
3441 char *p;
3442
3443 p = *str;
3444 if (*p == ':')
3445 {
3446 struct reloc_table_entry *entry;
3447
3448 /* Try to parse a relocation. Anything else is an error. */
3449 ++p;
3450 if (!(entry = find_reloc_table_entry (&p)))
3451 {
3452 set_syntax_error (_("unknown relocation modifier"));
3453 return FALSE;
3454 }
3455
3456 if (entry->adrp_type == 0)
3457 {
3458 set_syntax_error
3459 (_("this relocation modifier is not allowed on this instruction"));
3460 return FALSE;
3461 }
3462
3463 inst.reloc.type = entry->adrp_type;
3464 }
3465 else
3466 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3467
3468 inst.reloc.pc_rel = 1;
3469
3470 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3471 return FALSE;
3472
3473 *str = p;
3474 return TRUE;
3475}
3476
3477/* Miscellaneous. */
3478
3479/* Parse an option for a preload instruction. Returns the encoding for the
3480 option, or PARSE_FAIL. */
3481
3482static int
3483parse_pldop (char **str)
3484{
3485 char *p, *q;
3486 const struct aarch64_name_value_pair *o;
3487
3488 p = q = *str;
3489 while (ISALNUM (*q))
3490 q++;
3491
3492 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3493 if (!o)
3494 return PARSE_FAIL;
3495
3496 *str = q;
3497 return o->value;
3498}
3499
3500/* Parse an option for a barrier instruction. Returns the encoding for the
3501 option, or PARSE_FAIL. */
3502
3503static int
3504parse_barrier (char **str)
3505{
3506 char *p, *q;
3507 const asm_barrier_opt *o;
3508
3509 p = q = *str;
3510 while (ISALPHA (*q))
3511 q++;
3512
3513 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3514 if (!o)
3515 return PARSE_FAIL;
3516
3517 *str = q;
3518 return o->value;
3519}
3520
3521/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3522 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3523
3524 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3525 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3526
3527 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3528 field, otherwise as a system register.
3529*/
a06ea964
NC
3530
3531static int
72ca8fad
MW
3532parse_sys_reg (char **str, struct hash_control *sys_regs,
3533 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3534{
3535 char *p, *q;
3536 char buf[32];
49eec193 3537 const aarch64_sys_reg *o;
a06ea964
NC
3538 int value;
3539
3540 p = buf;
3541 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3542 if (p < buf + 31)
3543 *p++ = TOLOWER (*q);
3544 *p = '\0';
3545 /* Assert that BUF be large enough. */
3546 gas_assert (p - buf == q - *str);
3547
3548 o = hash_find (sys_regs, buf);
3549 if (!o)
3550 {
3551 if (!imple_defined_p)
3552 return PARSE_FAIL;
3553 else
3554 {
df7b4545 3555 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3556 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3557
3558 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3559 != 5)
a06ea964 3560 return PARSE_FAIL;
df7b4545 3561 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3562 return PARSE_FAIL;
3563 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3564 }
3565 }
3566 else
49eec193 3567 {
72ca8fad
MW
3568 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3569 as_bad (_("selected processor does not support PSTATE field "
3570 "name '%s'"), buf);
3571 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3572 as_bad (_("selected processor does not support system register "
3573 "name '%s'"), buf);
9a73e520 3574 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3575 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3576 "removed in a future release"), buf);
49eec193
YZ
3577 value = o->value;
3578 }
a06ea964
NC
3579
3580 *str = q;
3581 return value;
3582}
3583
3584/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3585 for the option, or NULL. */
3586
3587static const aarch64_sys_ins_reg *
3588parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3589{
3590 char *p, *q;
3591 char buf[32];
3592 const aarch64_sys_ins_reg *o;
3593
3594 p = buf;
3595 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3596 if (p < buf + 31)
3597 *p++ = TOLOWER (*q);
3598 *p = '\0';
3599
3600 o = hash_find (sys_ins_regs, buf);
3601 if (!o)
3602 return NULL;
3603
3604 *str = q;
3605 return o;
3606}
3607\f
3608#define po_char_or_fail(chr) do { \
3609 if (! skip_past_char (&str, chr)) \
3610 goto failure; \
3611} while (0)
3612
3613#define po_reg_or_fail(regtype) do { \
3614 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3615 if (val == PARSE_FAIL) \
3616 { \
3617 set_default_error (); \
3618 goto failure; \
3619 } \
3620 } while (0)
3621
3622#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3623 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3624 &isreg32, &isregzero); \
3625 if (val == PARSE_FAIL) \
3626 { \
3627 set_default_error (); \
3628 goto failure; \
3629 } \
3630 info->reg.regno = val; \
3631 if (isreg32) \
3632 info->qualifier = AARCH64_OPND_QLF_W; \
3633 else \
3634 info->qualifier = AARCH64_OPND_QLF_X; \
3635 } while (0)
3636
3637#define po_imm_nc_or_fail() do { \
3638 if (! parse_constant_immediate (&str, &val)) \
3639 goto failure; \
3640 } while (0)
3641
3642#define po_imm_or_fail(min, max) do { \
3643 if (! parse_constant_immediate (&str, &val)) \
3644 goto failure; \
3645 if (val < min || val > max) \
3646 { \
3647 set_fatal_syntax_error (_("immediate value out of range "\
3648#min " to "#max)); \
3649 goto failure; \
3650 } \
3651 } while (0)
3652
3653#define po_misc_or_fail(expr) do { \
3654 if (!expr) \
3655 goto failure; \
3656 } while (0)
3657\f
3658/* encode the 12-bit imm field of Add/sub immediate */
3659static inline uint32_t
3660encode_addsub_imm (uint32_t imm)
3661{
3662 return imm << 10;
3663}
3664
3665/* encode the shift amount field of Add/sub immediate */
3666static inline uint32_t
3667encode_addsub_imm_shift_amount (uint32_t cnt)
3668{
3669 return cnt << 22;
3670}
3671
3672
3673/* encode the imm field of Adr instruction */
3674static inline uint32_t
3675encode_adr_imm (uint32_t imm)
3676{
3677 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3678 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3679}
3680
3681/* encode the immediate field of Move wide immediate */
3682static inline uint32_t
3683encode_movw_imm (uint32_t imm)
3684{
3685 return imm << 5;
3686}
3687
3688/* encode the 26-bit offset of unconditional branch */
3689static inline uint32_t
3690encode_branch_ofs_26 (uint32_t ofs)
3691{
3692 return ofs & ((1 << 26) - 1);
3693}
3694
3695/* encode the 19-bit offset of conditional branch and compare & branch */
3696static inline uint32_t
3697encode_cond_branch_ofs_19 (uint32_t ofs)
3698{
3699 return (ofs & ((1 << 19) - 1)) << 5;
3700}
3701
3702/* encode the 19-bit offset of ld literal */
3703static inline uint32_t
3704encode_ld_lit_ofs_19 (uint32_t ofs)
3705{
3706 return (ofs & ((1 << 19) - 1)) << 5;
3707}
3708
3709/* Encode the 14-bit offset of test & branch. */
3710static inline uint32_t
3711encode_tst_branch_ofs_14 (uint32_t ofs)
3712{
3713 return (ofs & ((1 << 14) - 1)) << 5;
3714}
3715
3716/* Encode the 16-bit imm field of svc/hvc/smc. */
3717static inline uint32_t
3718encode_svc_imm (uint32_t imm)
3719{
3720 return imm << 5;
3721}
3722
3723/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3724static inline uint32_t
3725reencode_addsub_switch_add_sub (uint32_t opcode)
3726{
3727 return opcode ^ (1 << 30);
3728}
3729
3730static inline uint32_t
3731reencode_movzn_to_movz (uint32_t opcode)
3732{
3733 return opcode | (1 << 30);
3734}
3735
3736static inline uint32_t
3737reencode_movzn_to_movn (uint32_t opcode)
3738{
3739 return opcode & ~(1 << 30);
3740}
3741
3742/* Overall per-instruction processing. */
3743
3744/* We need to be able to fix up arbitrary expressions in some statements.
3745 This is so that we can handle symbols that are an arbitrary distance from
3746 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3747 which returns part of an address in a form which will be valid for
3748 a data instruction. We do this by pushing the expression into a symbol
3749 in the expr_section, and creating a fix for that. */
3750
3751static fixS *
3752fix_new_aarch64 (fragS * frag,
3753 int where,
3754 short int size, expressionS * exp, int pc_rel, int reloc)
3755{
3756 fixS *new_fix;
3757
3758 switch (exp->X_op)
3759 {
3760 case O_constant:
3761 case O_symbol:
3762 case O_add:
3763 case O_subtract:
3764 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3765 break;
3766
3767 default:
3768 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3769 pc_rel, reloc);
3770 break;
3771 }
3772 return new_fix;
3773}
3774\f
3775/* Diagnostics on operands errors. */
3776
a52e6fd3
YZ
3777/* By default, output verbose error message.
3778 Disable the verbose error message by -mno-verbose-error. */
3779static int verbose_error_p = 1;
a06ea964
NC
3780
3781#ifdef DEBUG_AARCH64
3782/* N.B. this is only for the purpose of debugging. */
3783const char* operand_mismatch_kind_names[] =
3784{
3785 "AARCH64_OPDE_NIL",
3786 "AARCH64_OPDE_RECOVERABLE",
3787 "AARCH64_OPDE_SYNTAX_ERROR",
3788 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3789 "AARCH64_OPDE_INVALID_VARIANT",
3790 "AARCH64_OPDE_OUT_OF_RANGE",
3791 "AARCH64_OPDE_UNALIGNED",
3792 "AARCH64_OPDE_REG_LIST",
3793 "AARCH64_OPDE_OTHER_ERROR",
3794};
3795#endif /* DEBUG_AARCH64 */
3796
3797/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3798
3799 When multiple errors of different kinds are found in the same assembly
3800 line, only the error of the highest severity will be picked up for
3801 issuing the diagnostics. */
3802
3803static inline bfd_boolean
3804operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3805 enum aarch64_operand_error_kind rhs)
3806{
3807 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3808 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3809 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3810 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3811 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3812 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3813 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3814 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3815 return lhs > rhs;
3816}
3817
3818/* Helper routine to get the mnemonic name from the assembly instruction
3819 line; should only be called for the diagnosis purpose, as there is
3820 string copy operation involved, which may affect the runtime
3821 performance if used in elsewhere. */
3822
3823static const char*
3824get_mnemonic_name (const char *str)
3825{
3826 static char mnemonic[32];
3827 char *ptr;
3828
3829 /* Get the first 15 bytes and assume that the full name is included. */
3830 strncpy (mnemonic, str, 31);
3831 mnemonic[31] = '\0';
3832
3833 /* Scan up to the end of the mnemonic, which must end in white space,
3834 '.', or end of string. */
3835 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3836 ;
3837
3838 *ptr = '\0';
3839
3840 /* Append '...' to the truncated long name. */
3841 if (ptr - mnemonic == 31)
3842 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3843
3844 return mnemonic;
3845}
3846
3847static void
3848reset_aarch64_instruction (aarch64_instruction *instruction)
3849{
3850 memset (instruction, '\0', sizeof (aarch64_instruction));
3851 instruction->reloc.type = BFD_RELOC_UNUSED;
3852}
3853
3854/* Data strutures storing one user error in the assembly code related to
3855 operands. */
3856
3857struct operand_error_record
3858{
3859 const aarch64_opcode *opcode;
3860 aarch64_operand_error detail;
3861 struct operand_error_record *next;
3862};
3863
3864typedef struct operand_error_record operand_error_record;
3865
3866struct operand_errors
3867{
3868 operand_error_record *head;
3869 operand_error_record *tail;
3870};
3871
3872typedef struct operand_errors operand_errors;
3873
3874/* Top-level data structure reporting user errors for the current line of
3875 the assembly code.
3876 The way md_assemble works is that all opcodes sharing the same mnemonic
3877 name are iterated to find a match to the assembly line. In this data
3878 structure, each of the such opcodes will have one operand_error_record
3879 allocated and inserted. In other words, excessive errors related with
3880 a single opcode are disregarded. */
3881operand_errors operand_error_report;
3882
3883/* Free record nodes. */
3884static operand_error_record *free_opnd_error_record_nodes = NULL;
3885
3886/* Initialize the data structure that stores the operand mismatch
3887 information on assembling one line of the assembly code. */
3888static void
3889init_operand_error_report (void)
3890{
3891 if (operand_error_report.head != NULL)
3892 {
3893 gas_assert (operand_error_report.tail != NULL);
3894 operand_error_report.tail->next = free_opnd_error_record_nodes;
3895 free_opnd_error_record_nodes = operand_error_report.head;
3896 operand_error_report.head = NULL;
3897 operand_error_report.tail = NULL;
3898 return;
3899 }
3900 gas_assert (operand_error_report.tail == NULL);
3901}
3902
3903/* Return TRUE if some operand error has been recorded during the
3904 parsing of the current assembly line using the opcode *OPCODE;
3905 otherwise return FALSE. */
3906static inline bfd_boolean
3907opcode_has_operand_error_p (const aarch64_opcode *opcode)
3908{
3909 operand_error_record *record = operand_error_report.head;
3910 return record && record->opcode == opcode;
3911}
3912
3913/* Add the error record *NEW_RECORD to operand_error_report. The record's
3914 OPCODE field is initialized with OPCODE.
3915 N.B. only one record for each opcode, i.e. the maximum of one error is
3916 recorded for each instruction template. */
3917
3918static void
3919add_operand_error_record (const operand_error_record* new_record)
3920{
3921 const aarch64_opcode *opcode = new_record->opcode;
3922 operand_error_record* record = operand_error_report.head;
3923
3924 /* The record may have been created for this opcode. If not, we need
3925 to prepare one. */
3926 if (! opcode_has_operand_error_p (opcode))
3927 {
3928 /* Get one empty record. */
3929 if (free_opnd_error_record_nodes == NULL)
3930 {
3931 record = xmalloc (sizeof (operand_error_record));
3932 if (record == NULL)
3933 abort ();
3934 }
3935 else
3936 {
3937 record = free_opnd_error_record_nodes;
3938 free_opnd_error_record_nodes = record->next;
3939 }
3940 record->opcode = opcode;
3941 /* Insert at the head. */
3942 record->next = operand_error_report.head;
3943 operand_error_report.head = record;
3944 if (operand_error_report.tail == NULL)
3945 operand_error_report.tail = record;
3946 }
3947 else if (record->detail.kind != AARCH64_OPDE_NIL
3948 && record->detail.index <= new_record->detail.index
3949 && operand_error_higher_severity_p (record->detail.kind,
3950 new_record->detail.kind))
3951 {
3952 /* In the case of multiple errors found on operands related with a
3953 single opcode, only record the error of the leftmost operand and
3954 only if the error is of higher severity. */
3955 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3956 " the existing error %s on operand %d",
3957 operand_mismatch_kind_names[new_record->detail.kind],
3958 new_record->detail.index,
3959 operand_mismatch_kind_names[record->detail.kind],
3960 record->detail.index);
3961 return;
3962 }
3963
3964 record->detail = new_record->detail;
3965}
3966
3967static inline void
3968record_operand_error_info (const aarch64_opcode *opcode,
3969 aarch64_operand_error *error_info)
3970{
3971 operand_error_record record;
3972 record.opcode = opcode;
3973 record.detail = *error_info;
3974 add_operand_error_record (&record);
3975}
3976
3977/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3978 error message *ERROR, for operand IDX (count from 0). */
3979
3980static void
3981record_operand_error (const aarch64_opcode *opcode, int idx,
3982 enum aarch64_operand_error_kind kind,
3983 const char* error)
3984{
3985 aarch64_operand_error info;
3986 memset(&info, 0, sizeof (info));
3987 info.index = idx;
3988 info.kind = kind;
3989 info.error = error;
3990 record_operand_error_info (opcode, &info);
3991}
3992
3993static void
3994record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3995 enum aarch64_operand_error_kind kind,
3996 const char* error, const int *extra_data)
3997{
3998 aarch64_operand_error info;
3999 info.index = idx;
4000 info.kind = kind;
4001 info.error = error;
4002 info.data[0] = extra_data[0];
4003 info.data[1] = extra_data[1];
4004 info.data[2] = extra_data[2];
4005 record_operand_error_info (opcode, &info);
4006}
4007
4008static void
4009record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4010 const char* error, int lower_bound,
4011 int upper_bound)
4012{
4013 int data[3] = {lower_bound, upper_bound, 0};
4014 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4015 error, data);
4016}
4017
4018/* Remove the operand error record for *OPCODE. */
4019static void ATTRIBUTE_UNUSED
4020remove_operand_error_record (const aarch64_opcode *opcode)
4021{
4022 if (opcode_has_operand_error_p (opcode))
4023 {
4024 operand_error_record* record = operand_error_report.head;
4025 gas_assert (record != NULL && operand_error_report.tail != NULL);
4026 operand_error_report.head = record->next;
4027 record->next = free_opnd_error_record_nodes;
4028 free_opnd_error_record_nodes = record;
4029 if (operand_error_report.head == NULL)
4030 {
4031 gas_assert (operand_error_report.tail == record);
4032 operand_error_report.tail = NULL;
4033 }
4034 }
4035}
4036
4037/* Given the instruction in *INSTR, return the index of the best matched
4038 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4039
4040 Return -1 if there is no qualifier sequence; return the first match
4041 if there is multiple matches found. */
4042
4043static int
4044find_best_match (const aarch64_inst *instr,
4045 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4046{
4047 int i, num_opnds, max_num_matched, idx;
4048
4049 num_opnds = aarch64_num_of_operands (instr->opcode);
4050 if (num_opnds == 0)
4051 {
4052 DEBUG_TRACE ("no operand");
4053 return -1;
4054 }
4055
4056 max_num_matched = 0;
4057 idx = -1;
4058
4059 /* For each pattern. */
4060 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4061 {
4062 int j, num_matched;
4063 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4064
4065 /* Most opcodes has much fewer patterns in the list. */
4066 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4067 {
4068 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4069 if (i != 0 && idx == -1)
4070 /* If nothing has been matched, return the 1st sequence. */
4071 idx = 0;
4072 break;
4073 }
4074
4075 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4076 if (*qualifiers == instr->operands[j].qualifier)
4077 ++num_matched;
4078
4079 if (num_matched > max_num_matched)
4080 {
4081 max_num_matched = num_matched;
4082 idx = i;
4083 }
4084 }
4085
4086 DEBUG_TRACE ("return with %d", idx);
4087 return idx;
4088}
4089
4090/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4091 corresponding operands in *INSTR. */
4092
4093static inline void
4094assign_qualifier_sequence (aarch64_inst *instr,
4095 const aarch64_opnd_qualifier_t *qualifiers)
4096{
4097 int i = 0;
4098 int num_opnds = aarch64_num_of_operands (instr->opcode);
4099 gas_assert (num_opnds);
4100 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4101 instr->operands[i].qualifier = *qualifiers;
4102}
4103
4104/* Print operands for the diagnosis purpose. */
4105
4106static void
4107print_operands (char *buf, const aarch64_opcode *opcode,
4108 const aarch64_opnd_info *opnds)
4109{
4110 int i;
4111
4112 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4113 {
4114 const size_t size = 128;
4115 char str[size];
4116
4117 /* We regard the opcode operand info more, however we also look into
4118 the inst->operands to support the disassembling of the optional
4119 operand.
4120 The two operand code should be the same in all cases, apart from
4121 when the operand can be optional. */
4122 if (opcode->operands[i] == AARCH64_OPND_NIL
4123 || opnds[i].type == AARCH64_OPND_NIL)
4124 break;
4125
4126 /* Generate the operand string in STR. */
4127 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4128
4129 /* Delimiter. */
4130 if (str[0] != '\0')
4131 strcat (buf, i == 0 ? " " : ",");
4132
4133 /* Append the operand string. */
4134 strcat (buf, str);
4135 }
4136}
4137
4138/* Send to stderr a string as information. */
4139
4140static void
4141output_info (const char *format, ...)
4142{
4143 char *file;
4144 unsigned int line;
4145 va_list args;
4146
4147 as_where (&file, &line);
4148 if (file)
4149 {
4150 if (line != 0)
4151 fprintf (stderr, "%s:%u: ", file, line);
4152 else
4153 fprintf (stderr, "%s: ", file);
4154 }
4155 fprintf (stderr, _("Info: "));
4156 va_start (args, format);
4157 vfprintf (stderr, format, args);
4158 va_end (args);
4159 (void) putc ('\n', stderr);
4160}
4161
4162/* Output one operand error record. */
4163
4164static void
4165output_operand_error_record (const operand_error_record *record, char *str)
4166{
28f013d5
JB
4167 const aarch64_operand_error *detail = &record->detail;
4168 int idx = detail->index;
a06ea964 4169 const aarch64_opcode *opcode = record->opcode;
28f013d5 4170 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4171 : AARCH64_OPND_NIL);
a06ea964
NC
4172
4173 switch (detail->kind)
4174 {
4175 case AARCH64_OPDE_NIL:
4176 gas_assert (0);
4177 break;
4178
4179 case AARCH64_OPDE_SYNTAX_ERROR:
4180 case AARCH64_OPDE_RECOVERABLE:
4181 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4182 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4183 /* Use the prepared error message if there is, otherwise use the
4184 operand description string to describe the error. */
4185 if (detail->error != NULL)
4186 {
28f013d5 4187 if (idx < 0)
a06ea964
NC
4188 as_bad (_("%s -- `%s'"), detail->error, str);
4189 else
4190 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4191 detail->error, idx + 1, str);
a06ea964
NC
4192 }
4193 else
28f013d5
JB
4194 {
4195 gas_assert (idx >= 0);
4196 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4197 aarch64_get_operand_desc (opd_code), str);
28f013d5 4198 }
a06ea964
NC
4199 break;
4200
4201 case AARCH64_OPDE_INVALID_VARIANT:
4202 as_bad (_("operand mismatch -- `%s'"), str);
4203 if (verbose_error_p)
4204 {
4205 /* We will try to correct the erroneous instruction and also provide
4206 more information e.g. all other valid variants.
4207
4208 The string representation of the corrected instruction and other
4209 valid variants are generated by
4210
4211 1) obtaining the intermediate representation of the erroneous
4212 instruction;
4213 2) manipulating the IR, e.g. replacing the operand qualifier;
4214 3) printing out the instruction by calling the printer functions
4215 shared with the disassembler.
4216
4217 The limitation of this method is that the exact input assembly
4218 line cannot be accurately reproduced in some cases, for example an
4219 optional operand present in the actual assembly line will be
4220 omitted in the output; likewise for the optional syntax rules,
4221 e.g. the # before the immediate. Another limitation is that the
4222 assembly symbols and relocation operations in the assembly line
4223 currently cannot be printed out in the error report. Last but not
4224 least, when there is other error(s) co-exist with this error, the
4225 'corrected' instruction may be still incorrect, e.g. given
4226 'ldnp h0,h1,[x0,#6]!'
4227 this diagnosis will provide the version:
4228 'ldnp s0,s1,[x0,#6]!'
4229 which is still not right. */
4230 size_t len = strlen (get_mnemonic_name (str));
4231 int i, qlf_idx;
4232 bfd_boolean result;
4233 const size_t size = 2048;
4234 char buf[size];
4235 aarch64_inst *inst_base = &inst.base;
4236 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4237
4238 /* Init inst. */
4239 reset_aarch64_instruction (&inst);
4240 inst_base->opcode = opcode;
4241
4242 /* Reset the error report so that there is no side effect on the
4243 following operand parsing. */
4244 init_operand_error_report ();
4245
4246 /* Fill inst. */
4247 result = parse_operands (str + len, opcode)
4248 && programmer_friendly_fixup (&inst);
4249 gas_assert (result);
4250 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4251 NULL, NULL);
4252 gas_assert (!result);
4253
4254 /* Find the most matched qualifier sequence. */
4255 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4256 gas_assert (qlf_idx > -1);
4257
4258 /* Assign the qualifiers. */
4259 assign_qualifier_sequence (inst_base,
4260 opcode->qualifiers_list[qlf_idx]);
4261
4262 /* Print the hint. */
4263 output_info (_(" did you mean this?"));
4264 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4265 print_operands (buf, opcode, inst_base->operands);
4266 output_info (_(" %s"), buf);
4267
4268 /* Print out other variant(s) if there is any. */
4269 if (qlf_idx != 0 ||
4270 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4271 output_info (_(" other valid variant(s):"));
4272
4273 /* For each pattern. */
4274 qualifiers_list = opcode->qualifiers_list;
4275 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4276 {
4277 /* Most opcodes has much fewer patterns in the list.
4278 First NIL qualifier indicates the end in the list. */
4279 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4280 break;
4281
4282 if (i != qlf_idx)
4283 {
4284 /* Mnemonics name. */
4285 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4286
4287 /* Assign the qualifiers. */
4288 assign_qualifier_sequence (inst_base, *qualifiers_list);
4289
4290 /* Print instruction. */
4291 print_operands (buf, opcode, inst_base->operands);
4292
4293 output_info (_(" %s"), buf);
4294 }
4295 }
4296 }
4297 break;
4298
4299 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4300 if (detail->data[0] != detail->data[1])
4301 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4302 detail->error ? detail->error : _("immediate value"),
28f013d5 4303 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4304 else
4305 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4306 detail->error ? detail->error : _("immediate value"),
28f013d5 4307 detail->data[0], idx + 1, str);
a06ea964
NC
4308 break;
4309
4310 case AARCH64_OPDE_REG_LIST:
4311 if (detail->data[0] == 1)
4312 as_bad (_("invalid number of registers in the list; "
4313 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4314 idx + 1, str);
a06ea964
NC
4315 else
4316 as_bad (_("invalid number of registers in the list; "
4317 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4318 detail->data[0], idx + 1, str);
a06ea964
NC
4319 break;
4320
4321 case AARCH64_OPDE_UNALIGNED:
4322 as_bad (_("immediate value should be a multiple of "
4323 "%d at operand %d -- `%s'"),
28f013d5 4324 detail->data[0], idx + 1, str);
a06ea964
NC
4325 break;
4326
4327 default:
4328 gas_assert (0);
4329 break;
4330 }
4331}
4332
4333/* Process and output the error message about the operand mismatching.
4334
4335 When this function is called, the operand error information had
4336 been collected for an assembly line and there will be multiple
4337 errors in the case of mulitple instruction templates; output the
4338 error message that most closely describes the problem. */
4339
4340static void
4341output_operand_error_report (char *str)
4342{
4343 int largest_error_pos;
4344 const char *msg = NULL;
4345 enum aarch64_operand_error_kind kind;
4346 operand_error_record *curr;
4347 operand_error_record *head = operand_error_report.head;
4348 operand_error_record *record = NULL;
4349
4350 /* No error to report. */
4351 if (head == NULL)
4352 return;
4353
4354 gas_assert (head != NULL && operand_error_report.tail != NULL);
4355
4356 /* Only one error. */
4357 if (head == operand_error_report.tail)
4358 {
4359 DEBUG_TRACE ("single opcode entry with error kind: %s",
4360 operand_mismatch_kind_names[head->detail.kind]);
4361 output_operand_error_record (head, str);
4362 return;
4363 }
4364
4365 /* Find the error kind of the highest severity. */
4366 DEBUG_TRACE ("multiple opcode entres with error kind");
4367 kind = AARCH64_OPDE_NIL;
4368 for (curr = head; curr != NULL; curr = curr->next)
4369 {
4370 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4371 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4372 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4373 kind = curr->detail.kind;
4374 }
4375 gas_assert (kind != AARCH64_OPDE_NIL);
4376
4377 /* Pick up one of errors of KIND to report. */
4378 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4379 for (curr = head; curr != NULL; curr = curr->next)
4380 {
4381 if (curr->detail.kind != kind)
4382 continue;
4383 /* If there are multiple errors, pick up the one with the highest
4384 mismatching operand index. In the case of multiple errors with
4385 the equally highest operand index, pick up the first one or the
4386 first one with non-NULL error message. */
4387 if (curr->detail.index > largest_error_pos
4388 || (curr->detail.index == largest_error_pos && msg == NULL
4389 && curr->detail.error != NULL))
4390 {
4391 largest_error_pos = curr->detail.index;
4392 record = curr;
4393 msg = record->detail.error;
4394 }
4395 }
4396
4397 gas_assert (largest_error_pos != -2 && record != NULL);
4398 DEBUG_TRACE ("Pick up error kind %s to report",
4399 operand_mismatch_kind_names[record->detail.kind]);
4400
4401 /* Output. */
4402 output_operand_error_record (record, str);
4403}
4404\f
4405/* Write an AARCH64 instruction to buf - always little-endian. */
4406static void
4407put_aarch64_insn (char *buf, uint32_t insn)
4408{
4409 unsigned char *where = (unsigned char *) buf;
4410 where[0] = insn;
4411 where[1] = insn >> 8;
4412 where[2] = insn >> 16;
4413 where[3] = insn >> 24;
4414}
4415
4416static uint32_t
4417get_aarch64_insn (char *buf)
4418{
4419 unsigned char *where = (unsigned char *) buf;
4420 uint32_t result;
4421 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4422 return result;
4423}
4424
4425static void
4426output_inst (struct aarch64_inst *new_inst)
4427{
4428 char *to = NULL;
4429
4430 to = frag_more (INSN_SIZE);
4431
4432 frag_now->tc_frag_data.recorded = 1;
4433
4434 put_aarch64_insn (to, inst.base.value);
4435
4436 if (inst.reloc.type != BFD_RELOC_UNUSED)
4437 {
4438 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4439 INSN_SIZE, &inst.reloc.exp,
4440 inst.reloc.pc_rel,
4441 inst.reloc.type);
4442 DEBUG_TRACE ("Prepared relocation fix up");
4443 /* Don't check the addend value against the instruction size,
4444 that's the job of our code in md_apply_fix(). */
4445 fixp->fx_no_overflow = 1;
4446 if (new_inst != NULL)
4447 fixp->tc_fix_data.inst = new_inst;
4448 if (aarch64_gas_internal_fixup_p ())
4449 {
4450 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4451 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4452 fixp->fx_addnumber = inst.reloc.flags;
4453 }
4454 }
4455
4456 dwarf2_emit_insn (INSN_SIZE);
4457}
4458
4459/* Link together opcodes of the same name. */
4460
4461struct templates
4462{
4463 aarch64_opcode *opcode;
4464 struct templates *next;
4465};
4466
4467typedef struct templates templates;
4468
4469static templates *
4470lookup_mnemonic (const char *start, int len)
4471{
4472 templates *templ = NULL;
4473
4474 templ = hash_find_n (aarch64_ops_hsh, start, len);
4475 return templ;
4476}
4477
4478/* Subroutine of md_assemble, responsible for looking up the primary
4479 opcode from the mnemonic the user wrote. STR points to the
4480 beginning of the mnemonic. */
4481
4482static templates *
4483opcode_lookup (char **str)
4484{
4485 char *end, *base;
4486 const aarch64_cond *cond;
4487 char condname[16];
4488 int len;
4489
4490 /* Scan up to the end of the mnemonic, which must end in white space,
4491 '.', or end of string. */
4492 for (base = end = *str; is_part_of_name(*end); end++)
4493 if (*end == '.')
4494 break;
4495
4496 if (end == base)
4497 return 0;
4498
4499 inst.cond = COND_ALWAYS;
4500
4501 /* Handle a possible condition. */
4502 if (end[0] == '.')
4503 {
4504 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4505 if (cond)
4506 {
4507 inst.cond = cond->value;
4508 *str = end + 3;
4509 }
4510 else
4511 {
4512 *str = end;
4513 return 0;
4514 }
4515 }
4516 else
4517 *str = end;
4518
4519 len = end - base;
4520
4521 if (inst.cond == COND_ALWAYS)
4522 {
4523 /* Look for unaffixed mnemonic. */
4524 return lookup_mnemonic (base, len);
4525 }
4526 else if (len <= 13)
4527 {
4528 /* append ".c" to mnemonic if conditional */
4529 memcpy (condname, base, len);
4530 memcpy (condname + len, ".c", 2);
4531 base = condname;
4532 len += 2;
4533 return lookup_mnemonic (base, len);
4534 }
4535
4536 return NULL;
4537}
4538
4539/* Internal helper routine converting a vector neon_type_el structure
4540 *VECTYPE to a corresponding operand qualifier. */
4541
4542static inline aarch64_opnd_qualifier_t
4543vectype_to_qualifier (const struct neon_type_el *vectype)
4544{
4545 /* Element size in bytes indexed by neon_el_type. */
4546 const unsigned char ele_size[5]
4547 = {1, 2, 4, 8, 16};
4548
4549 if (!vectype->defined || vectype->type == NT_invtype)
4550 goto vectype_conversion_fail;
4551
4552 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4553
4554 if (vectype->defined & NTA_HASINDEX)
4555 /* Vector element register. */
4556 return AARCH64_OPND_QLF_S_B + vectype->type;
4557 else
4558 {
4559 /* Vector register. */
4560 int reg_size = ele_size[vectype->type] * vectype->width;
4561 unsigned offset;
4562 if (reg_size != 16 && reg_size != 8)
4563 goto vectype_conversion_fail;
4564 /* The conversion is calculated based on the relation of the order of
4565 qualifiers to the vector element size and vector register size. */
4566 offset = (vectype->type == NT_q)
4567 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4568 gas_assert (offset <= 8);
4569 return AARCH64_OPND_QLF_V_8B + offset;
4570 }
4571
4572vectype_conversion_fail:
4573 first_error (_("bad vector arrangement type"));
4574 return AARCH64_OPND_QLF_NIL;
4575}
4576
4577/* Process an optional operand that is found omitted from the assembly line.
4578 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4579 instruction's opcode entry while IDX is the index of this omitted operand.
4580 */
4581
4582static void
4583process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4584 int idx, aarch64_opnd_info *operand)
4585{
4586 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4587 gas_assert (optional_operand_p (opcode, idx));
4588 gas_assert (!operand->present);
4589
4590 switch (type)
4591 {
4592 case AARCH64_OPND_Rd:
4593 case AARCH64_OPND_Rn:
4594 case AARCH64_OPND_Rm:
4595 case AARCH64_OPND_Rt:
4596 case AARCH64_OPND_Rt2:
4597 case AARCH64_OPND_Rs:
4598 case AARCH64_OPND_Ra:
4599 case AARCH64_OPND_Rt_SYS:
4600 case AARCH64_OPND_Rd_SP:
4601 case AARCH64_OPND_Rn_SP:
4602 case AARCH64_OPND_Fd:
4603 case AARCH64_OPND_Fn:
4604 case AARCH64_OPND_Fm:
4605 case AARCH64_OPND_Fa:
4606 case AARCH64_OPND_Ft:
4607 case AARCH64_OPND_Ft2:
4608 case AARCH64_OPND_Sd:
4609 case AARCH64_OPND_Sn:
4610 case AARCH64_OPND_Sm:
4611 case AARCH64_OPND_Vd:
4612 case AARCH64_OPND_Vn:
4613 case AARCH64_OPND_Vm:
4614 case AARCH64_OPND_VdD1:
4615 case AARCH64_OPND_VnD1:
4616 operand->reg.regno = default_value;
4617 break;
4618
4619 case AARCH64_OPND_Ed:
4620 case AARCH64_OPND_En:
4621 case AARCH64_OPND_Em:
4622 operand->reglane.regno = default_value;
4623 break;
4624
4625 case AARCH64_OPND_IDX:
4626 case AARCH64_OPND_BIT_NUM:
4627 case AARCH64_OPND_IMMR:
4628 case AARCH64_OPND_IMMS:
4629 case AARCH64_OPND_SHLL_IMM:
4630 case AARCH64_OPND_IMM_VLSL:
4631 case AARCH64_OPND_IMM_VLSR:
4632 case AARCH64_OPND_CCMP_IMM:
4633 case AARCH64_OPND_FBITS:
4634 case AARCH64_OPND_UIMM4:
4635 case AARCH64_OPND_UIMM3_OP1:
4636 case AARCH64_OPND_UIMM3_OP2:
4637 case AARCH64_OPND_IMM:
4638 case AARCH64_OPND_WIDTH:
4639 case AARCH64_OPND_UIMM7:
4640 case AARCH64_OPND_NZCV:
4641 operand->imm.value = default_value;
4642 break;
4643
4644 case AARCH64_OPND_EXCEPTION:
4645 inst.reloc.type = BFD_RELOC_UNUSED;
4646 break;
4647
4648 case AARCH64_OPND_BARRIER_ISB:
4649 operand->barrier = aarch64_barrier_options + default_value;
4650
4651 default:
4652 break;
4653 }
4654}
4655
4656/* Process the relocation type for move wide instructions.
4657 Return TRUE on success; otherwise return FALSE. */
4658
4659static bfd_boolean
4660process_movw_reloc_info (void)
4661{
4662 int is32;
4663 unsigned shift;
4664
4665 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4666
4667 if (inst.base.opcode->op == OP_MOVK)
4668 switch (inst.reloc.type)
4669 {
4670 case BFD_RELOC_AARCH64_MOVW_G0_S:
4671 case BFD_RELOC_AARCH64_MOVW_G1_S:
4672 case BFD_RELOC_AARCH64_MOVW_G2_S:
4673 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4674 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4675 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4676 set_syntax_error
4677 (_("the specified relocation type is not allowed for MOVK"));
4678 return FALSE;
4679 default:
4680 break;
4681 }
4682
4683 switch (inst.reloc.type)
4684 {
4685 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4686 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4687 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 4688 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
49df5539
JW
4689 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
4690 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
4691 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4692 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4693 shift = 0;
4694 break;
4695 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4696 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4697 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 4698 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
49df5539
JW
4699 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
4700 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
4701 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4702 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4703 shift = 16;
4704 break;
4705 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4706 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4707 case BFD_RELOC_AARCH64_MOVW_G2_S:
49df5539 4708 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
4709 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4710 if (is32)
4711 {
4712 set_fatal_syntax_error
4713 (_("the specified relocation type is not allowed for 32-bit "
4714 "register"));
4715 return FALSE;
4716 }
4717 shift = 32;
4718 break;
4719 case BFD_RELOC_AARCH64_MOVW_G3:
4720 if (is32)
4721 {
4722 set_fatal_syntax_error
4723 (_("the specified relocation type is not allowed for 32-bit "
4724 "register"));
4725 return FALSE;
4726 }
4727 shift = 48;
4728 break;
4729 default:
4730 /* More cases should be added when more MOVW-related relocation types
4731 are supported in GAS. */
4732 gas_assert (aarch64_gas_internal_fixup_p ());
4733 /* The shift amount should have already been set by the parser. */
4734 return TRUE;
4735 }
4736 inst.base.operands[1].shifter.amount = shift;
4737 return TRUE;
4738}
4739
4740/* A primitive log caculator. */
4741
4742static inline unsigned int
4743get_logsz (unsigned int size)
4744{
4745 const unsigned char ls[16] =
4746 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4747 if (size > 16)
4748 {
4749 gas_assert (0);
4750 return -1;
4751 }
4752 gas_assert (ls[size - 1] != (unsigned char)-1);
4753 return ls[size - 1];
4754}
4755
4756/* Determine and return the real reloc type code for an instruction
4757 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4758
4759static inline bfd_reloc_code_real_type
4760ldst_lo12_determine_real_reloc_type (void)
4761{
4c562523 4762 unsigned logsz;
a06ea964
NC
4763 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4764 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4765
4c562523
JW
4766 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
4767 {
4768 BFD_RELOC_AARCH64_LDST8_LO12,
4769 BFD_RELOC_AARCH64_LDST16_LO12,
4770 BFD_RELOC_AARCH64_LDST32_LO12,
4771 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 4772 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
4773 },
4774 {
4775 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
4776 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
4777 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
4778 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
4779 BFD_RELOC_AARCH64_NONE
4780 },
4781 {
4782 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
4783 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
4784 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
4785 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
4786 BFD_RELOC_AARCH64_NONE
4787 }
a06ea964
NC
4788 };
4789
4c562523
JW
4790 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
4791 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4792 || (inst.reloc.type
4793 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
a06ea964
NC
4794 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4795
4796 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4797 opd1_qlf =
4798 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4799 1, opd0_qlf, 0);
4800 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4801
4802 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523
JW
4803 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4804 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
4805 gas_assert (logsz <= 3);
4806 else
4807 gas_assert (logsz <= 4);
a06ea964 4808
4c562523
JW
4809 /* In reloc.c, these pseudo relocation types should be defined in similar
4810 order as above reloc_ldst_lo12 array. Because the array index calcuation
4811 below relies on this. */
4812 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
4813}
4814
4815/* Check whether a register list REGINFO is valid. The registers must be
4816 numbered in increasing order (modulo 32), in increments of one or two.
4817
4818 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4819 increments of two.
4820
4821 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4822
4823static bfd_boolean
4824reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4825{
4826 uint32_t i, nb_regs, prev_regno, incr;
4827
4828 nb_regs = 1 + (reginfo & 0x3);
4829 reginfo >>= 2;
4830 prev_regno = reginfo & 0x1f;
4831 incr = accept_alternate ? 2 : 1;
4832
4833 for (i = 1; i < nb_regs; ++i)
4834 {
4835 uint32_t curr_regno;
4836 reginfo >>= 5;
4837 curr_regno = reginfo & 0x1f;
4838 if (curr_regno != ((prev_regno + incr) & 0x1f))
4839 return FALSE;
4840 prev_regno = curr_regno;
4841 }
4842
4843 return TRUE;
4844}
4845
4846/* Generic instruction operand parser. This does no encoding and no
4847 semantic validation; it merely squirrels values away in the inst
4848 structure. Returns TRUE or FALSE depending on whether the
4849 specified grammar matched. */
4850
4851static bfd_boolean
4852parse_operands (char *str, const aarch64_opcode *opcode)
4853{
4854 int i;
4855 char *backtrack_pos = 0;
4856 const enum aarch64_opnd *operands = opcode->operands;
4857
4858 clear_error ();
4859 skip_whitespace (str);
4860
4861 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4862 {
4863 int64_t val;
4864 int isreg32, isregzero;
4865 int comma_skipped_p = 0;
4866 aarch64_reg_type rtype;
4867 struct neon_type_el vectype;
4868 aarch64_opnd_info *info = &inst.base.operands[i];
4869
4870 DEBUG_TRACE ("parse operand %d", i);
4871
4872 /* Assign the operand code. */
4873 info->type = operands[i];
4874
4875 if (optional_operand_p (opcode, i))
4876 {
4877 /* Remember where we are in case we need to backtrack. */
4878 gas_assert (!backtrack_pos);
4879 backtrack_pos = str;
4880 }
4881
4882 /* Expect comma between operands; the backtrack mechanizm will take
4883 care of cases of omitted optional operand. */
4884 if (i > 0 && ! skip_past_char (&str, ','))
4885 {
4886 set_syntax_error (_("comma expected between operands"));
4887 goto failure;
4888 }
4889 else
4890 comma_skipped_p = 1;
4891
4892 switch (operands[i])
4893 {
4894 case AARCH64_OPND_Rd:
4895 case AARCH64_OPND_Rn:
4896 case AARCH64_OPND_Rm:
4897 case AARCH64_OPND_Rt:
4898 case AARCH64_OPND_Rt2:
4899 case AARCH64_OPND_Rs:
4900 case AARCH64_OPND_Ra:
4901 case AARCH64_OPND_Rt_SYS:
ee804238 4902 case AARCH64_OPND_PAIRREG:
a06ea964
NC
4903 po_int_reg_or_fail (1, 0);
4904 break;
4905
4906 case AARCH64_OPND_Rd_SP:
4907 case AARCH64_OPND_Rn_SP:
4908 po_int_reg_or_fail (0, 1);
4909 break;
4910
4911 case AARCH64_OPND_Rm_EXT:
4912 case AARCH64_OPND_Rm_SFT:
4913 po_misc_or_fail (parse_shifter_operand
4914 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4915 ? SHIFTED_ARITH_IMM
4916 : SHIFTED_LOGIC_IMM)));
4917 if (!info->shifter.operator_present)
4918 {
4919 /* Default to LSL if not present. Libopcodes prefers shifter
4920 kind to be explicit. */
4921 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4922 info->shifter.kind = AARCH64_MOD_LSL;
4923 /* For Rm_EXT, libopcodes will carry out further check on whether
4924 or not stack pointer is used in the instruction (Recall that
4925 "the extend operator is not optional unless at least one of
4926 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4927 }
4928 break;
4929
4930 case AARCH64_OPND_Fd:
4931 case AARCH64_OPND_Fn:
4932 case AARCH64_OPND_Fm:
4933 case AARCH64_OPND_Fa:
4934 case AARCH64_OPND_Ft:
4935 case AARCH64_OPND_Ft2:
4936 case AARCH64_OPND_Sd:
4937 case AARCH64_OPND_Sn:
4938 case AARCH64_OPND_Sm:
4939 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4940 if (val == PARSE_FAIL)
4941 {
4942 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4943 goto failure;
4944 }
4945 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4946
4947 info->reg.regno = val;
4948 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4949 break;
4950
4951 case AARCH64_OPND_Vd:
4952 case AARCH64_OPND_Vn:
4953 case AARCH64_OPND_Vm:
4954 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4955 if (val == PARSE_FAIL)
4956 {
4957 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4958 goto failure;
4959 }
4960 if (vectype.defined & NTA_HASINDEX)
4961 goto failure;
4962
4963 info->reg.regno = val;
4964 info->qualifier = vectype_to_qualifier (&vectype);
4965 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4966 goto failure;
4967 break;
4968
4969 case AARCH64_OPND_VdD1:
4970 case AARCH64_OPND_VnD1:
4971 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4972 if (val == PARSE_FAIL)
4973 {
4974 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4975 goto failure;
4976 }
4977 if (vectype.type != NT_d || vectype.index != 1)
4978 {
4979 set_fatal_syntax_error
4980 (_("the top half of a 128-bit FP/SIMD register is expected"));
4981 goto failure;
4982 }
4983 info->reg.regno = val;
4984 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4985 here; it is correct for the purpose of encoding/decoding since
4986 only the register number is explicitly encoded in the related
4987 instructions, although this appears a bit hacky. */
4988 info->qualifier = AARCH64_OPND_QLF_S_D;
4989 break;
4990
4991 case AARCH64_OPND_Ed:
4992 case AARCH64_OPND_En:
4993 case AARCH64_OPND_Em:
4994 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4995 if (val == PARSE_FAIL)
4996 {
4997 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4998 goto failure;
4999 }
5000 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5001 goto failure;
5002
5003 info->reglane.regno = val;
5004 info->reglane.index = vectype.index;
5005 info->qualifier = vectype_to_qualifier (&vectype);
5006 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5007 goto failure;
5008 break;
5009
5010 case AARCH64_OPND_LVn:
5011 case AARCH64_OPND_LVt:
5012 case AARCH64_OPND_LVt_AL:
5013 case AARCH64_OPND_LEt:
5014 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
5015 goto failure;
5016 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5017 {
5018 set_fatal_syntax_error (_("invalid register list"));
5019 goto failure;
5020 }
5021 info->reglist.first_regno = (val >> 2) & 0x1f;
5022 info->reglist.num_regs = (val & 0x3) + 1;
5023 if (operands[i] == AARCH64_OPND_LEt)
5024 {
5025 if (!(vectype.defined & NTA_HASINDEX))
5026 goto failure;
5027 info->reglist.has_index = 1;
5028 info->reglist.index = vectype.index;
5029 }
5030 else if (!(vectype.defined & NTA_HASTYPE))
5031 goto failure;
5032 info->qualifier = vectype_to_qualifier (&vectype);
5033 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5034 goto failure;
5035 break;
5036
5037 case AARCH64_OPND_Cn:
5038 case AARCH64_OPND_Cm:
5039 po_reg_or_fail (REG_TYPE_CN);
5040 if (val > 15)
5041 {
5042 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5043 goto failure;
5044 }
5045 inst.base.operands[i].reg.regno = val;
5046 break;
5047
5048 case AARCH64_OPND_SHLL_IMM:
5049 case AARCH64_OPND_IMM_VLSR:
5050 po_imm_or_fail (1, 64);
5051 info->imm.value = val;
5052 break;
5053
5054 case AARCH64_OPND_CCMP_IMM:
5055 case AARCH64_OPND_FBITS:
5056 case AARCH64_OPND_UIMM4:
5057 case AARCH64_OPND_UIMM3_OP1:
5058 case AARCH64_OPND_UIMM3_OP2:
5059 case AARCH64_OPND_IMM_VLSL:
5060 case AARCH64_OPND_IMM:
5061 case AARCH64_OPND_WIDTH:
5062 po_imm_nc_or_fail ();
5063 info->imm.value = val;
5064 break;
5065
5066 case AARCH64_OPND_UIMM7:
5067 po_imm_or_fail (0, 127);
5068 info->imm.value = val;
5069 break;
5070
5071 case AARCH64_OPND_IDX:
5072 case AARCH64_OPND_BIT_NUM:
5073 case AARCH64_OPND_IMMR:
5074 case AARCH64_OPND_IMMS:
5075 po_imm_or_fail (0, 63);
5076 info->imm.value = val;
5077 break;
5078
5079 case AARCH64_OPND_IMM0:
5080 po_imm_nc_or_fail ();
5081 if (val != 0)
5082 {
5083 set_fatal_syntax_error (_("immediate zero expected"));
5084 goto failure;
5085 }
5086 info->imm.value = 0;
5087 break;
5088
5089 case AARCH64_OPND_FPIMM0:
5090 {
5091 int qfloat;
5092 bfd_boolean res1 = FALSE, res2 = FALSE;
5093 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5094 it is probably not worth the effort to support it. */
62b0d0d5 5095 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
5096 && !(res2 = parse_constant_immediate (&str, &val)))
5097 goto failure;
5098 if ((res1 && qfloat == 0) || (res2 && val == 0))
5099 {
5100 info->imm.value = 0;
5101 info->imm.is_fp = 1;
5102 break;
5103 }
5104 set_fatal_syntax_error (_("immediate zero expected"));
5105 goto failure;
5106 }
5107
5108 case AARCH64_OPND_IMM_MOV:
5109 {
5110 char *saved = str;
8db49cc2
WN
5111 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5112 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5113 goto failure;
5114 str = saved;
5115 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5116 GE_OPT_PREFIX, 1));
5117 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5118 later. fix_mov_imm_insn will try to determine a machine
5119 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5120 message if the immediate cannot be moved by a single
5121 instruction. */
5122 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5123 inst.base.operands[i].skip = 1;
5124 }
5125 break;
5126
5127 case AARCH64_OPND_SIMD_IMM:
5128 case AARCH64_OPND_SIMD_IMM_SFT:
5129 if (! parse_big_immediate (&str, &val))
5130 goto failure;
5131 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5132 /* addr_off_p */ 0,
5133 /* need_libopcodes_p */ 1,
5134 /* skip_p */ 1);
5135 /* Parse shift.
5136 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5137 shift, we don't check it here; we leave the checking to
5138 the libopcodes (operand_general_constraint_met_p). By
5139 doing this, we achieve better diagnostics. */
5140 if (skip_past_comma (&str)
5141 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5142 goto failure;
5143 if (!info->shifter.operator_present
5144 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5145 {
5146 /* Default to LSL if not present. Libopcodes prefers shifter
5147 kind to be explicit. */
5148 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5149 info->shifter.kind = AARCH64_MOD_LSL;
5150 }
5151 break;
5152
5153 case AARCH64_OPND_FPIMM:
5154 case AARCH64_OPND_SIMD_FPIMM:
5155 {
5156 int qfloat;
62b0d0d5
YZ
5157 bfd_boolean dp_p
5158 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5159 == 8);
5160 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5161 goto failure;
5162 if (qfloat == 0)
5163 {
5164 set_fatal_syntax_error (_("invalid floating-point constant"));
5165 goto failure;
5166 }
5167 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5168 inst.base.operands[i].imm.is_fp = 1;
5169 }
5170 break;
5171
5172 case AARCH64_OPND_LIMM:
5173 po_misc_or_fail (parse_shifter_operand (&str, info,
5174 SHIFTED_LOGIC_IMM));
5175 if (info->shifter.operator_present)
5176 {
5177 set_fatal_syntax_error
5178 (_("shift not allowed for bitmask immediate"));
5179 goto failure;
5180 }
5181 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5182 /* addr_off_p */ 0,
5183 /* need_libopcodes_p */ 1,
5184 /* skip_p */ 1);
5185 break;
5186
5187 case AARCH64_OPND_AIMM:
5188 if (opcode->op == OP_ADD)
5189 /* ADD may have relocation types. */
5190 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5191 SHIFTED_ARITH_IMM));
5192 else
5193 po_misc_or_fail (parse_shifter_operand (&str, info,
5194 SHIFTED_ARITH_IMM));
5195 switch (inst.reloc.type)
5196 {
5197 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5198 info->shifter.amount = 12;
5199 break;
5200 case BFD_RELOC_UNUSED:
5201 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5202 if (info->shifter.kind != AARCH64_MOD_NONE)
5203 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5204 inst.reloc.pc_rel = 0;
5205 break;
5206 default:
5207 break;
5208 }
5209 info->imm.value = 0;
5210 if (!info->shifter.operator_present)
5211 {
5212 /* Default to LSL if not present. Libopcodes prefers shifter
5213 kind to be explicit. */
5214 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5215 info->shifter.kind = AARCH64_MOD_LSL;
5216 }
5217 break;
5218
5219 case AARCH64_OPND_HALF:
5220 {
5221 /* #<imm16> or relocation. */
5222 int internal_fixup_p;
5223 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5224 if (internal_fixup_p)
5225 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5226 skip_whitespace (str);
5227 if (skip_past_comma (&str))
5228 {
5229 /* {, LSL #<shift>} */
5230 if (! aarch64_gas_internal_fixup_p ())
5231 {
5232 set_fatal_syntax_error (_("can't mix relocation modifier "
5233 "with explicit shift"));
5234 goto failure;
5235 }
5236 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5237 }
5238 else
5239 inst.base.operands[i].shifter.amount = 0;
5240 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5241 inst.base.operands[i].imm.value = 0;
5242 if (! process_movw_reloc_info ())
5243 goto failure;
5244 }
5245 break;
5246
5247 case AARCH64_OPND_EXCEPTION:
5248 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5249 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5250 /* addr_off_p */ 0,
5251 /* need_libopcodes_p */ 0,
5252 /* skip_p */ 1);
5253 break;
5254
5255 case AARCH64_OPND_NZCV:
5256 {
5257 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5258 if (nzcv != NULL)
5259 {
5260 str += 4;
5261 info->imm.value = nzcv->value;
5262 break;
5263 }
5264 po_imm_or_fail (0, 15);
5265 info->imm.value = val;
5266 }
5267 break;
5268
5269 case AARCH64_OPND_COND:
68a64283 5270 case AARCH64_OPND_COND1:
a06ea964
NC
5271 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5272 str += 2;
5273 if (info->cond == NULL)
5274 {
5275 set_syntax_error (_("invalid condition"));
5276 goto failure;
5277 }
68a64283
YZ
5278 else if (operands[i] == AARCH64_OPND_COND1
5279 && (info->cond->value & 0xe) == 0xe)
5280 {
5281 /* Not allow AL or NV. */
5282 set_default_error ();
5283 goto failure;
5284 }
a06ea964
NC
5285 break;
5286
5287 case AARCH64_OPND_ADDR_ADRP:
5288 po_misc_or_fail (parse_adrp (&str));
5289 /* Clear the value as operand needs to be relocated. */
5290 info->imm.value = 0;
5291 break;
5292
5293 case AARCH64_OPND_ADDR_PCREL14:
5294 case AARCH64_OPND_ADDR_PCREL19:
5295 case AARCH64_OPND_ADDR_PCREL21:
5296 case AARCH64_OPND_ADDR_PCREL26:
5297 po_misc_or_fail (parse_address_reloc (&str, info));
5298 if (!info->addr.pcrel)
5299 {
5300 set_syntax_error (_("invalid pc-relative address"));
5301 goto failure;
5302 }
5303 if (inst.gen_lit_pool
5304 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5305 {
5306 /* Only permit "=value" in the literal load instructions.
5307 The literal will be generated by programmer_friendly_fixup. */
5308 set_syntax_error (_("invalid use of \"=immediate\""));
5309 goto failure;
5310 }
5311 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5312 {
5313 set_syntax_error (_("unrecognized relocation suffix"));
5314 goto failure;
5315 }
5316 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5317 {
5318 info->imm.value = inst.reloc.exp.X_add_number;
5319 inst.reloc.type = BFD_RELOC_UNUSED;
5320 }
5321 else
5322 {
5323 info->imm.value = 0;
f41aef5f
RE
5324 if (inst.reloc.type == BFD_RELOC_UNUSED)
5325 switch (opcode->iclass)
5326 {
5327 case compbranch:
5328 case condbranch:
5329 /* e.g. CBZ or B.COND */
5330 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5331 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5332 break;
5333 case testbranch:
5334 /* e.g. TBZ */
5335 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5336 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5337 break;
5338 case branch_imm:
5339 /* e.g. B or BL */
5340 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5341 inst.reloc.type =
5342 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5343 : BFD_RELOC_AARCH64_JUMP26;
5344 break;
5345 case loadlit:
5346 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5347 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5348 break;
5349 case pcreladdr:
5350 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5351 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5352 break;
5353 default:
5354 gas_assert (0);
5355 abort ();
5356 }
a06ea964
NC
5357 inst.reloc.pc_rel = 1;
5358 }
5359 break;
5360
5361 case AARCH64_OPND_ADDR_SIMPLE:
5362 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5363 /* [<Xn|SP>{, #<simm>}] */
5364 po_char_or_fail ('[');
5365 po_reg_or_fail (REG_TYPE_R64_SP);
5366 /* Accept optional ", #0". */
5367 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5368 && skip_past_char (&str, ','))
5369 {
5370 skip_past_char (&str, '#');
5371 if (! skip_past_char (&str, '0'))
5372 {
5373 set_fatal_syntax_error
5374 (_("the optional immediate offset can only be 0"));
5375 goto failure;
5376 }
5377 }
5378 po_char_or_fail (']');
5379 info->addr.base_regno = val;
5380 break;
5381
5382 case AARCH64_OPND_ADDR_REGOFF:
5383 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5384 po_misc_or_fail (parse_address (&str, info, 0));
5385 if (info->addr.pcrel || !info->addr.offset.is_reg
5386 || !info->addr.preind || info->addr.postind
5387 || info->addr.writeback)
5388 {
5389 set_syntax_error (_("invalid addressing mode"));
5390 goto failure;
5391 }
5392 if (!info->shifter.operator_present)
5393 {
5394 /* Default to LSL if not present. Libopcodes prefers shifter
5395 kind to be explicit. */
5396 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5397 info->shifter.kind = AARCH64_MOD_LSL;
5398 }
5399 /* Qualifier to be deduced by libopcodes. */
5400 break;
5401
5402 case AARCH64_OPND_ADDR_SIMM7:
5403 po_misc_or_fail (parse_address (&str, info, 0));
5404 if (info->addr.pcrel || info->addr.offset.is_reg
5405 || (!info->addr.preind && !info->addr.postind))
5406 {
5407 set_syntax_error (_("invalid addressing mode"));
5408 goto failure;
5409 }
5410 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5411 /* addr_off_p */ 1,
5412 /* need_libopcodes_p */ 1,
5413 /* skip_p */ 0);
5414 break;
5415
5416 case AARCH64_OPND_ADDR_SIMM9:
5417 case AARCH64_OPND_ADDR_SIMM9_2:
5418 po_misc_or_fail (parse_address_reloc (&str, info));
5419 if (info->addr.pcrel || info->addr.offset.is_reg
5420 || (!info->addr.preind && !info->addr.postind)
5421 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5422 && info->addr.writeback))
5423 {
5424 set_syntax_error (_("invalid addressing mode"));
5425 goto failure;
5426 }
5427 if (inst.reloc.type != BFD_RELOC_UNUSED)
5428 {
5429 set_syntax_error (_("relocation not allowed"));
5430 goto failure;
5431 }
5432 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5433 /* addr_off_p */ 1,
5434 /* need_libopcodes_p */ 1,
5435 /* skip_p */ 0);
5436 break;
5437
5438 case AARCH64_OPND_ADDR_UIMM12:
5439 po_misc_or_fail (parse_address_reloc (&str, info));
5440 if (info->addr.pcrel || info->addr.offset.is_reg
5441 || !info->addr.preind || info->addr.writeback)
5442 {
5443 set_syntax_error (_("invalid addressing mode"));
5444 goto failure;
5445 }
5446 if (inst.reloc.type == BFD_RELOC_UNUSED)
5447 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
5448 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5449 || (inst.reloc.type
5450 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
5451 || (inst.reloc.type
5452 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
a06ea964
NC
5453 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5454 /* Leave qualifier to be determined by libopcodes. */
5455 break;
5456
5457 case AARCH64_OPND_SIMD_ADDR_POST:
5458 /* [<Xn|SP>], <Xm|#<amount>> */
5459 po_misc_or_fail (parse_address (&str, info, 1));
5460 if (!info->addr.postind || !info->addr.writeback)
5461 {
5462 set_syntax_error (_("invalid addressing mode"));
5463 goto failure;
5464 }
5465 if (!info->addr.offset.is_reg)
5466 {
5467 if (inst.reloc.exp.X_op == O_constant)
5468 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5469 else
5470 {
5471 set_fatal_syntax_error
5472 (_("writeback value should be an immediate constant"));
5473 goto failure;
5474 }
5475 }
5476 /* No qualifier. */
5477 break;
5478
5479 case AARCH64_OPND_SYSREG:
72ca8fad 5480 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5481 == PARSE_FAIL)
a06ea964 5482 {
a203d9b7
YZ
5483 set_syntax_error (_("unknown or missing system register name"));
5484 goto failure;
a06ea964 5485 }
a203d9b7 5486 inst.base.operands[i].sysreg = val;
a06ea964
NC
5487 break;
5488
5489 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5490 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5491 == PARSE_FAIL)
a06ea964
NC
5492 {
5493 set_syntax_error (_("unknown or missing PSTATE field name"));
5494 goto failure;
5495 }
5496 inst.base.operands[i].pstatefield = val;
5497 break;
5498
5499 case AARCH64_OPND_SYSREG_IC:
5500 inst.base.operands[i].sysins_op =
5501 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5502 goto sys_reg_ins;
5503 case AARCH64_OPND_SYSREG_DC:
5504 inst.base.operands[i].sysins_op =
5505 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5506 goto sys_reg_ins;
5507 case AARCH64_OPND_SYSREG_AT:
5508 inst.base.operands[i].sysins_op =
5509 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5510 goto sys_reg_ins;
5511 case AARCH64_OPND_SYSREG_TLBI:
5512 inst.base.operands[i].sysins_op =
5513 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5514sys_reg_ins:
5515 if (inst.base.operands[i].sysins_op == NULL)
5516 {
5517 set_fatal_syntax_error ( _("unknown or missing operation name"));
5518 goto failure;
5519 }
5520 break;
5521
5522 case AARCH64_OPND_BARRIER:
5523 case AARCH64_OPND_BARRIER_ISB:
5524 val = parse_barrier (&str);
5525 if (val != PARSE_FAIL
5526 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5527 {
5528 /* ISB only accepts options name 'sy'. */
5529 set_syntax_error
5530 (_("the specified option is not accepted in ISB"));
5531 /* Turn off backtrack as this optional operand is present. */
5532 backtrack_pos = 0;
5533 goto failure;
5534 }
5535 /* This is an extension to accept a 0..15 immediate. */
5536 if (val == PARSE_FAIL)
5537 po_imm_or_fail (0, 15);
5538 info->barrier = aarch64_barrier_options + val;
5539 break;
5540
5541 case AARCH64_OPND_PRFOP:
5542 val = parse_pldop (&str);
5543 /* This is an extension to accept a 0..31 immediate. */
5544 if (val == PARSE_FAIL)
5545 po_imm_or_fail (0, 31);
5546 inst.base.operands[i].prfop = aarch64_prfops + val;
5547 break;
5548
5549 default:
5550 as_fatal (_("unhandled operand code %d"), operands[i]);
5551 }
5552
5553 /* If we get here, this operand was successfully parsed. */
5554 inst.base.operands[i].present = 1;
5555 continue;
5556
5557failure:
5558 /* The parse routine should already have set the error, but in case
5559 not, set a default one here. */
5560 if (! error_p ())
5561 set_default_error ();
5562
5563 if (! backtrack_pos)
5564 goto parse_operands_return;
5565
f4c51f60
JW
5566 {
5567 /* We reach here because this operand is marked as optional, and
5568 either no operand was supplied or the operand was supplied but it
5569 was syntactically incorrect. In the latter case we report an
5570 error. In the former case we perform a few more checks before
5571 dropping through to the code to insert the default operand. */
5572
5573 char *tmp = backtrack_pos;
5574 char endchar = END_OF_INSN;
5575
5576 if (i != (aarch64_num_of_operands (opcode) - 1))
5577 endchar = ',';
5578 skip_past_char (&tmp, ',');
5579
5580 if (*tmp != endchar)
5581 /* The user has supplied an operand in the wrong format. */
5582 goto parse_operands_return;
5583
5584 /* Make sure there is not a comma before the optional operand.
5585 For example the fifth operand of 'sys' is optional:
5586
5587 sys #0,c0,c0,#0, <--- wrong
5588 sys #0,c0,c0,#0 <--- correct. */
5589 if (comma_skipped_p && i && endchar == END_OF_INSN)
5590 {
5591 set_fatal_syntax_error
5592 (_("unexpected comma before the omitted optional operand"));
5593 goto parse_operands_return;
5594 }
5595 }
5596
a06ea964
NC
5597 /* Reaching here means we are dealing with an optional operand that is
5598 omitted from the assembly line. */
5599 gas_assert (optional_operand_p (opcode, i));
5600 info->present = 0;
5601 process_omitted_operand (operands[i], opcode, i, info);
5602
5603 /* Try again, skipping the optional operand at backtrack_pos. */
5604 str = backtrack_pos;
5605 backtrack_pos = 0;
5606
a06ea964
NC
5607 /* Clear any error record after the omitted optional operand has been
5608 successfully handled. */
5609 clear_error ();
5610 }
5611
5612 /* Check if we have parsed all the operands. */
5613 if (*str != '\0' && ! error_p ())
5614 {
5615 /* Set I to the index of the last present operand; this is
5616 for the purpose of diagnostics. */
5617 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5618 ;
5619 set_fatal_syntax_error
5620 (_("unexpected characters following instruction"));
5621 }
5622
5623parse_operands_return:
5624
5625 if (error_p ())
5626 {
5627 DEBUG_TRACE ("parsing FAIL: %s - %s",
5628 operand_mismatch_kind_names[get_error_kind ()],
5629 get_error_message ());
5630 /* Record the operand error properly; this is useful when there
5631 are multiple instruction templates for a mnemonic name, so that
5632 later on, we can select the error that most closely describes
5633 the problem. */
5634 record_operand_error (opcode, i, get_error_kind (),
5635 get_error_message ());
5636 return FALSE;
5637 }
5638 else
5639 {
5640 DEBUG_TRACE ("parsing SUCCESS");
5641 return TRUE;
5642 }
5643}
5644
5645/* It does some fix-up to provide some programmer friendly feature while
5646 keeping the libopcodes happy, i.e. libopcodes only accepts
5647 the preferred architectural syntax.
5648 Return FALSE if there is any failure; otherwise return TRUE. */
5649
5650static bfd_boolean
5651programmer_friendly_fixup (aarch64_instruction *instr)
5652{
5653 aarch64_inst *base = &instr->base;
5654 const aarch64_opcode *opcode = base->opcode;
5655 enum aarch64_op op = opcode->op;
5656 aarch64_opnd_info *operands = base->operands;
5657
5658 DEBUG_TRACE ("enter");
5659
5660 switch (opcode->iclass)
5661 {
5662 case testbranch:
5663 /* TBNZ Xn|Wn, #uimm6, label
5664 Test and Branch Not Zero: conditionally jumps to label if bit number
5665 uimm6 in register Xn is not zero. The bit number implies the width of
5666 the register, which may be written and should be disassembled as Wn if
5667 uimm is less than 32. */
5668 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5669 {
5670 if (operands[1].imm.value >= 32)
5671 {
5672 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5673 0, 31);
5674 return FALSE;
5675 }
5676 operands[0].qualifier = AARCH64_OPND_QLF_X;
5677 }
5678 break;
5679 case loadlit:
5680 /* LDR Wt, label | =value
5681 As a convenience assemblers will typically permit the notation
5682 "=value" in conjunction with the pc-relative literal load instructions
5683 to automatically place an immediate value or symbolic address in a
5684 nearby literal pool and generate a hidden label which references it.
5685 ISREG has been set to 0 in the case of =value. */
5686 if (instr->gen_lit_pool
5687 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5688 {
5689 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5690 if (op == OP_LDRSW_LIT)
5691 size = 4;
5692 if (instr->reloc.exp.X_op != O_constant
67a32447 5693 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5694 && instr->reloc.exp.X_op != O_symbol)
5695 {
5696 record_operand_error (opcode, 1,
5697 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5698 _("constant expression expected"));
5699 return FALSE;
5700 }
5701 if (! add_to_lit_pool (&instr->reloc.exp, size))
5702 {
5703 record_operand_error (opcode, 1,
5704 AARCH64_OPDE_OTHER_ERROR,
5705 _("literal pool insertion failed"));
5706 return FALSE;
5707 }
5708 }
5709 break;
a06ea964
NC
5710 case log_shift:
5711 case bitfield:
5712 /* UXT[BHW] Wd, Wn
5713 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5714 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5715 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5716 A programmer-friendly assembler should accept a destination Xd in
5717 place of Wd, however that is not the preferred form for disassembly.
5718 */
5719 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5720 && operands[1].qualifier == AARCH64_OPND_QLF_W
5721 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5722 operands[0].qualifier = AARCH64_OPND_QLF_W;
5723 break;
5724
5725 case addsub_ext:
5726 {
5727 /* In the 64-bit form, the final register operand is written as Wm
5728 for all but the (possibly omitted) UXTX/LSL and SXTX
5729 operators.
5730 As a programmer-friendly assembler, we accept e.g.
5731 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5732 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5733 int idx = aarch64_operand_index (opcode->operands,
5734 AARCH64_OPND_Rm_EXT);
5735 gas_assert (idx == 1 || idx == 2);
5736 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5737 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5738 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5739 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5740 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5741 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5742 }
5743 break;
5744
5745 default:
5746 break;
5747 }
5748
5749 DEBUG_TRACE ("exit with SUCCESS");
5750 return TRUE;
5751}
5752
5c47e525 5753/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5754
5755static void
5756warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5757{
5758 aarch64_inst *base = &instr->base;
5759 const aarch64_opcode *opcode = base->opcode;
5760 const aarch64_opnd_info *opnds = base->operands;
5761 switch (opcode->iclass)
5762 {
5763 case ldst_pos:
5764 case ldst_imm9:
5765 case ldst_unscaled:
5766 case ldst_unpriv:
5c47e525
RE
5767 /* Loading/storing the base register is unpredictable if writeback. */
5768 if ((aarch64_get_operand_class (opnds[0].type)
5769 == AARCH64_OPND_CLASS_INT_REG)
5770 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5771 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5772 && opnds[1].addr.writeback)
5c47e525 5773 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5774 break;
5775 case ldstpair_off:
5776 case ldstnapair_offs:
5777 case ldstpair_indexed:
5c47e525
RE
5778 /* Loading/storing the base register is unpredictable if writeback. */
5779 if ((aarch64_get_operand_class (opnds[0].type)
5780 == AARCH64_OPND_CLASS_INT_REG)
5781 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5782 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5783 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5784 && opnds[2].addr.writeback)
5c47e525
RE
5785 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5786 /* Load operations must load different registers. */
54a28c4c
JW
5787 if ((opcode->opcode & (1 << 22))
5788 && opnds[0].reg.regno == opnds[1].reg.regno)
5789 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5790 break;
5791 default:
5792 break;
5793 }
5794}
5795
a06ea964
NC
5796/* A wrapper function to interface with libopcodes on encoding and
5797 record the error message if there is any.
5798
5799 Return TRUE on success; otherwise return FALSE. */
5800
5801static bfd_boolean
5802do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5803 aarch64_insn *code)
5804{
5805 aarch64_operand_error error_info;
5806 error_info.kind = AARCH64_OPDE_NIL;
5807 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5808 return TRUE;
5809 else
5810 {
5811 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5812 record_operand_error_info (opcode, &error_info);
5813 return FALSE;
5814 }
5815}
5816
5817#ifdef DEBUG_AARCH64
5818static inline void
5819dump_opcode_operands (const aarch64_opcode *opcode)
5820{
5821 int i = 0;
5822 while (opcode->operands[i] != AARCH64_OPND_NIL)
5823 {
5824 aarch64_verbose ("\t\t opnd%d: %s", i,
5825 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5826 ? aarch64_get_operand_name (opcode->operands[i])
5827 : aarch64_get_operand_desc (opcode->operands[i]));
5828 ++i;
5829 }
5830}
5831#endif /* DEBUG_AARCH64 */
5832
5833/* This is the guts of the machine-dependent assembler. STR points to a
5834 machine dependent instruction. This function is supposed to emit
5835 the frags/bytes it assembles to. */
5836
5837void
5838md_assemble (char *str)
5839{
5840 char *p = str;
5841 templates *template;
5842 aarch64_opcode *opcode;
5843 aarch64_inst *inst_base;
5844 unsigned saved_cond;
5845
5846 /* Align the previous label if needed. */
5847 if (last_label_seen != NULL)
5848 {
5849 symbol_set_frag (last_label_seen, frag_now);
5850 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5851 S_SET_SEGMENT (last_label_seen, now_seg);
5852 }
5853
5854 inst.reloc.type = BFD_RELOC_UNUSED;
5855
5856 DEBUG_TRACE ("\n\n");
5857 DEBUG_TRACE ("==============================");
5858 DEBUG_TRACE ("Enter md_assemble with %s", str);
5859
5860 template = opcode_lookup (&p);
5861 if (!template)
5862 {
5863 /* It wasn't an instruction, but it might be a register alias of
5864 the form alias .req reg directive. */
5865 if (!create_register_alias (str, p))
5866 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5867 str);
5868 return;
5869 }
5870
5871 skip_whitespace (p);
5872 if (*p == ',')
5873 {
5874 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5875 get_mnemonic_name (str), str);
5876 return;
5877 }
5878
5879 init_operand_error_report ();
5880
eb9d6cc9
RL
5881 /* Sections are assumed to start aligned. In executable section, there is no
5882 MAP_DATA symbol pending. So we only align the address during
5883 MAP_DATA --> MAP_INSN transition.
5884 For other sections, this is not guaranteed. */
5885 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
5886 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
5887 frag_align_code (2, 0);
5888
a06ea964
NC
5889 saved_cond = inst.cond;
5890 reset_aarch64_instruction (&inst);
5891 inst.cond = saved_cond;
5892
5893 /* Iterate through all opcode entries with the same mnemonic name. */
5894 do
5895 {
5896 opcode = template->opcode;
5897
5898 DEBUG_TRACE ("opcode %s found", opcode->name);
5899#ifdef DEBUG_AARCH64
5900 if (debug_dump)
5901 dump_opcode_operands (opcode);
5902#endif /* DEBUG_AARCH64 */
5903
a06ea964
NC
5904 mapping_state (MAP_INSN);
5905
5906 inst_base = &inst.base;
5907 inst_base->opcode = opcode;
5908
5909 /* Truly conditionally executed instructions, e.g. b.cond. */
5910 if (opcode->flags & F_COND)
5911 {
5912 gas_assert (inst.cond != COND_ALWAYS);
5913 inst_base->cond = get_cond_from_value (inst.cond);
5914 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5915 }
5916 else if (inst.cond != COND_ALWAYS)
5917 {
5918 /* It shouldn't arrive here, where the assembly looks like a
5919 conditional instruction but the found opcode is unconditional. */
5920 gas_assert (0);
5921 continue;
5922 }
5923
5924 if (parse_operands (p, opcode)
5925 && programmer_friendly_fixup (&inst)
5926 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5927 {
3f06bfce
YZ
5928 /* Check that this instruction is supported for this CPU. */
5929 if (!opcode->avariant
5930 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5931 {
5932 as_bad (_("selected processor does not support `%s'"), str);
5933 return;
5934 }
5935
54a28c4c
JW
5936 warn_unpredictable_ldst (&inst, str);
5937
a06ea964
NC
5938 if (inst.reloc.type == BFD_RELOC_UNUSED
5939 || !inst.reloc.need_libopcodes_p)
5940 output_inst (NULL);
5941 else
5942 {
5943 /* If there is relocation generated for the instruction,
5944 store the instruction information for the future fix-up. */
5945 struct aarch64_inst *copy;
5946 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5947 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5948 abort ();
5949 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5950 output_inst (copy);
5951 }
5952 return;
5953 }
5954
5955 template = template->next;
5956 if (template != NULL)
5957 {
5958 reset_aarch64_instruction (&inst);
5959 inst.cond = saved_cond;
5960 }
5961 }
5962 while (template != NULL);
5963
5964 /* Issue the error messages if any. */
5965 output_operand_error_report (str);
5966}
5967
5968/* Various frobbings of labels and their addresses. */
5969
5970void
5971aarch64_start_line_hook (void)
5972{
5973 last_label_seen = NULL;
5974}
5975
5976void
5977aarch64_frob_label (symbolS * sym)
5978{
5979 last_label_seen = sym;
5980
5981 dwarf2_emit_label (sym);
5982}
5983
5984int
5985aarch64_data_in_code (void)
5986{
5987 if (!strncmp (input_line_pointer + 1, "data:", 5))
5988 {
5989 *input_line_pointer = '/';
5990 input_line_pointer += 5;
5991 *input_line_pointer = 0;
5992 return 1;
5993 }
5994
5995 return 0;
5996}
5997
5998char *
5999aarch64_canonicalize_symbol_name (char *name)
6000{
6001 int len;
6002
6003 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6004 *(name + len - 5) = 0;
6005
6006 return name;
6007}
6008\f
6009/* Table of all register names defined by default. The user can
6010 define additional names with .req. Note that all register names
6011 should appear in both upper and lowercase variants. Some registers
6012 also have mixed-case names. */
6013
6014#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6015#define REGNUM(p,n,t) REGDEF(p##n, n, t)
6016#define REGSET31(p,t) \
6017 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6018 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6019 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6020 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
6021 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6022 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6023 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6024 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6025#define REGSET(p,t) \
6026 REGSET31(p,t), REGNUM(p,31,t)
6027
6028/* These go into aarch64_reg_hsh hash-table. */
6029static const reg_entry reg_names[] = {
6030 /* Integer registers. */
6031 REGSET31 (x, R_64), REGSET31 (X, R_64),
6032 REGSET31 (w, R_32), REGSET31 (W, R_32),
6033
6034 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6035 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6036
6037 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6038 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6039
6040 /* Coprocessor register numbers. */
6041 REGSET (c, CN), REGSET (C, CN),
6042
6043 /* Floating-point single precision registers. */
6044 REGSET (s, FP_S), REGSET (S, FP_S),
6045
6046 /* Floating-point double precision registers. */
6047 REGSET (d, FP_D), REGSET (D, FP_D),
6048
6049 /* Floating-point half precision registers. */
6050 REGSET (h, FP_H), REGSET (H, FP_H),
6051
6052 /* Floating-point byte precision registers. */
6053 REGSET (b, FP_B), REGSET (B, FP_B),
6054
6055 /* Floating-point quad precision registers. */
6056 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6057
6058 /* FP/SIMD registers. */
6059 REGSET (v, VN), REGSET (V, VN),
6060};
6061
6062#undef REGDEF
6063#undef REGNUM
6064#undef REGSET
6065
6066#define N 1
6067#define n 0
6068#define Z 1
6069#define z 0
6070#define C 1
6071#define c 0
6072#define V 1
6073#define v 0
6074#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6075static const asm_nzcv nzcv_names[] = {
6076 {"nzcv", B (n, z, c, v)},
6077 {"nzcV", B (n, z, c, V)},
6078 {"nzCv", B (n, z, C, v)},
6079 {"nzCV", B (n, z, C, V)},
6080 {"nZcv", B (n, Z, c, v)},
6081 {"nZcV", B (n, Z, c, V)},
6082 {"nZCv", B (n, Z, C, v)},
6083 {"nZCV", B (n, Z, C, V)},
6084 {"Nzcv", B (N, z, c, v)},
6085 {"NzcV", B (N, z, c, V)},
6086 {"NzCv", B (N, z, C, v)},
6087 {"NzCV", B (N, z, C, V)},
6088 {"NZcv", B (N, Z, c, v)},
6089 {"NZcV", B (N, Z, c, V)},
6090 {"NZCv", B (N, Z, C, v)},
6091 {"NZCV", B (N, Z, C, V)}
6092};
6093
6094#undef N
6095#undef n
6096#undef Z
6097#undef z
6098#undef C
6099#undef c
6100#undef V
6101#undef v
6102#undef B
6103\f
6104/* MD interface: bits in the object file. */
6105
6106/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6107 for use in the a.out file, and stores them in the array pointed to by buf.
6108 This knows about the endian-ness of the target machine and does
6109 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6110 2 (short) and 4 (long) Floating numbers are put out as a series of
6111 LITTLENUMS (shorts, here at least). */
6112
6113void
6114md_number_to_chars (char *buf, valueT val, int n)
6115{
6116 if (target_big_endian)
6117 number_to_chars_bigendian (buf, val, n);
6118 else
6119 number_to_chars_littleendian (buf, val, n);
6120}
6121
6122/* MD interface: Sections. */
6123
6124/* Estimate the size of a frag before relaxing. Assume everything fits in
6125 4 bytes. */
6126
6127int
6128md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6129{
6130 fragp->fr_var = 4;
6131 return 4;
6132}
6133
6134/* Round up a section size to the appropriate boundary. */
6135
6136valueT
6137md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6138{
6139 return size;
6140}
6141
6142/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6143 of an rs_align_code fragment.
6144
6145 Here we fill the frag with the appropriate info for padding the
6146 output stream. The resulting frag will consist of a fixed (fr_fix)
6147 and of a repeating (fr_var) part.
6148
6149 The fixed content is always emitted before the repeating content and
6150 these two parts are used as follows in constructing the output:
6151 - the fixed part will be used to align to a valid instruction word
6152 boundary, in case that we start at a misaligned address; as no
6153 executable instruction can live at the misaligned location, we
6154 simply fill with zeros;
6155 - the variable part will be used to cover the remaining padding and
6156 we fill using the AArch64 NOP instruction.
6157
6158 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6159 enough storage space for up to 3 bytes for padding the back to a valid
6160 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6161
6162void
6163aarch64_handle_align (fragS * fragP)
6164{
6165 /* NOP = d503201f */
6166 /* AArch64 instructions are always little-endian. */
6167 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
6168
6169 int bytes, fix, noop_size;
6170 char *p;
a06ea964
NC
6171
6172 if (fragP->fr_type != rs_align_code)
6173 return;
6174
6175 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6176 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6177
6178#ifdef OBJ_ELF
6179 gas_assert (fragP->tc_frag_data.recorded);
6180#endif
6181
a06ea964 6182 noop_size = sizeof (aarch64_noop);
a06ea964 6183
f803aa8e
DPT
6184 fix = bytes & (noop_size - 1);
6185 if (fix)
a06ea964 6186 {
a06ea964
NC
6187#ifdef OBJ_ELF
6188 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6189#endif
6190 memset (p, 0, fix);
6191 p += fix;
f803aa8e 6192 fragP->fr_fix += fix;
a06ea964
NC
6193 }
6194
f803aa8e
DPT
6195 if (noop_size)
6196 memcpy (p, aarch64_noop, noop_size);
6197 fragP->fr_var = noop_size;
a06ea964
NC
6198}
6199
6200/* Perform target specific initialisation of a frag.
6201 Note - despite the name this initialisation is not done when the frag
6202 is created, but only when its type is assigned. A frag can be created
6203 and used a long time before its type is set, so beware of assuming that
6204 this initialisationis performed first. */
6205
6206#ifndef OBJ_ELF
6207void
6208aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6209 int max_chars ATTRIBUTE_UNUSED)
6210{
6211}
6212
6213#else /* OBJ_ELF is defined. */
6214void
6215aarch64_init_frag (fragS * fragP, int max_chars)
6216{
6217 /* Record a mapping symbol for alignment frags. We will delete this
6218 later if the alignment ends up empty. */
6219 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6220 fragP->tc_frag_data.recorded = 1;
6221
6222 switch (fragP->fr_type)
a06ea964 6223 {
c7ad08e6
RL
6224 case rs_align:
6225 case rs_align_test:
6226 case rs_fill:
6227 mapping_state_2 (MAP_DATA, max_chars);
6228 break;
6229 case rs_align_code:
6230 mapping_state_2 (MAP_INSN, max_chars);
6231 break;
6232 default:
6233 break;
a06ea964
NC
6234 }
6235}
6236\f
6237/* Initialize the DWARF-2 unwind information for this procedure. */
6238
6239void
6240tc_aarch64_frame_initial_instructions (void)
6241{
6242 cfi_add_CFA_def_cfa (REG_SP, 0);
6243}
6244#endif /* OBJ_ELF */
6245
6246/* Convert REGNAME to a DWARF-2 register number. */
6247
6248int
6249tc_aarch64_regname_to_dw2regnum (char *regname)
6250{
6251 const reg_entry *reg = parse_reg (&regname);
6252 if (reg == NULL)
6253 return -1;
6254
6255 switch (reg->type)
6256 {
6257 case REG_TYPE_SP_32:
6258 case REG_TYPE_SP_64:
6259 case REG_TYPE_R_32:
6260 case REG_TYPE_R_64:
a2cac51c
RH
6261 return reg->number;
6262
a06ea964
NC
6263 case REG_TYPE_FP_B:
6264 case REG_TYPE_FP_H:
6265 case REG_TYPE_FP_S:
6266 case REG_TYPE_FP_D:
6267 case REG_TYPE_FP_Q:
a2cac51c
RH
6268 return reg->number + 64;
6269
a06ea964
NC
6270 default:
6271 break;
6272 }
6273 return -1;
6274}
6275
cec5225b
YZ
6276/* Implement DWARF2_ADDR_SIZE. */
6277
6278int
6279aarch64_dwarf2_addr_size (void)
6280{
6281#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6282 if (ilp32_p)
6283 return 4;
6284#endif
6285 return bfd_arch_bits_per_address (stdoutput) / 8;
6286}
6287
a06ea964
NC
6288/* MD interface: Symbol and relocation handling. */
6289
6290/* Return the address within the segment that a PC-relative fixup is
6291 relative to. For AArch64 PC-relative fixups applied to instructions
6292 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6293
6294long
6295md_pcrel_from_section (fixS * fixP, segT seg)
6296{
6297 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6298
6299 /* If this is pc-relative and we are going to emit a relocation
6300 then we just want to put out any pipeline compensation that the linker
6301 will need. Otherwise we want to use the calculated base. */
6302 if (fixP->fx_pcrel
6303 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6304 || aarch64_force_relocation (fixP)))
6305 base = 0;
6306
6307 /* AArch64 should be consistent for all pc-relative relocations. */
6308 return base + AARCH64_PCREL_OFFSET;
6309}
6310
6311/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6312 Otherwise we have no need to default values of symbols. */
6313
6314symbolS *
6315md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6316{
6317#ifdef OBJ_ELF
6318 if (name[0] == '_' && name[1] == 'G'
6319 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6320 {
6321 if (!GOT_symbol)
6322 {
6323 if (symbol_find (name))
6324 as_bad (_("GOT already in the symbol table"));
6325
6326 GOT_symbol = symbol_new (name, undefined_section,
6327 (valueT) 0, &zero_address_frag);
6328 }
6329
6330 return GOT_symbol;
6331 }
6332#endif
6333
6334 return 0;
6335}
6336
6337/* Return non-zero if the indicated VALUE has overflowed the maximum
6338 range expressible by a unsigned number with the indicated number of
6339 BITS. */
6340
6341static bfd_boolean
6342unsigned_overflow (valueT value, unsigned bits)
6343{
6344 valueT lim;
6345 if (bits >= sizeof (valueT) * 8)
6346 return FALSE;
6347 lim = (valueT) 1 << bits;
6348 return (value >= lim);
6349}
6350
6351
6352/* Return non-zero if the indicated VALUE has overflowed the maximum
6353 range expressible by an signed number with the indicated number of
6354 BITS. */
6355
6356static bfd_boolean
6357signed_overflow (offsetT value, unsigned bits)
6358{
6359 offsetT lim;
6360 if (bits >= sizeof (offsetT) * 8)
6361 return FALSE;
6362 lim = (offsetT) 1 << (bits - 1);
6363 return (value < -lim || value >= lim);
6364}
6365
6366/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6367 unsigned immediate offset load/store instruction, try to encode it as
6368 an unscaled, 9-bit, signed immediate offset load/store instruction.
6369 Return TRUE if it is successful; otherwise return FALSE.
6370
6371 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6372 in response to the standard LDR/STR mnemonics when the immediate offset is
6373 unambiguous, i.e. when it is negative or unaligned. */
6374
6375static bfd_boolean
6376try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6377{
6378 int idx;
6379 enum aarch64_op new_op;
6380 const aarch64_opcode *new_opcode;
6381
6382 gas_assert (instr->opcode->iclass == ldst_pos);
6383
6384 switch (instr->opcode->op)
6385 {
6386 case OP_LDRB_POS:new_op = OP_LDURB; break;
6387 case OP_STRB_POS: new_op = OP_STURB; break;
6388 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6389 case OP_LDRH_POS: new_op = OP_LDURH; break;
6390 case OP_STRH_POS: new_op = OP_STURH; break;
6391 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6392 case OP_LDR_POS: new_op = OP_LDUR; break;
6393 case OP_STR_POS: new_op = OP_STUR; break;
6394 case OP_LDRF_POS: new_op = OP_LDURV; break;
6395 case OP_STRF_POS: new_op = OP_STURV; break;
6396 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6397 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6398 default: new_op = OP_NIL; break;
6399 }
6400
6401 if (new_op == OP_NIL)
6402 return FALSE;
6403
6404 new_opcode = aarch64_get_opcode (new_op);
6405 gas_assert (new_opcode != NULL);
6406
6407 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6408 instr->opcode->op, new_opcode->op);
6409
6410 aarch64_replace_opcode (instr, new_opcode);
6411
6412 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6413 qualifier matching may fail because the out-of-date qualifier will
6414 prevent the operand being updated with a new and correct qualifier. */
6415 idx = aarch64_operand_index (instr->opcode->operands,
6416 AARCH64_OPND_ADDR_SIMM9);
6417 gas_assert (idx == 1);
6418 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6419
6420 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6421
6422 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6423 return FALSE;
6424
6425 return TRUE;
6426}
6427
6428/* Called by fix_insn to fix a MOV immediate alias instruction.
6429
6430 Operand for a generic move immediate instruction, which is an alias
6431 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6432 a 32-bit/64-bit immediate value into general register. An assembler error
6433 shall result if the immediate cannot be created by a single one of these
6434 instructions. If there is a choice, then to ensure reversability an
6435 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6436
6437static void
6438fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6439{
6440 const aarch64_opcode *opcode;
6441
6442 /* Need to check if the destination is SP/ZR. The check has to be done
6443 before any aarch64_replace_opcode. */
6444 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6445 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6446
6447 instr->operands[1].imm.value = value;
6448 instr->operands[1].skip = 0;
6449
6450 if (try_mov_wide_p)
6451 {
6452 /* Try the MOVZ alias. */
6453 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6454 aarch64_replace_opcode (instr, opcode);
6455 if (aarch64_opcode_encode (instr->opcode, instr,
6456 &instr->value, NULL, NULL))
6457 {
6458 put_aarch64_insn (buf, instr->value);
6459 return;
6460 }
6461 /* Try the MOVK alias. */
6462 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6463 aarch64_replace_opcode (instr, opcode);
6464 if (aarch64_opcode_encode (instr->opcode, instr,
6465 &instr->value, NULL, NULL))
6466 {
6467 put_aarch64_insn (buf, instr->value);
6468 return;
6469 }
6470 }
6471
6472 if (try_mov_bitmask_p)
6473 {
6474 /* Try the ORR alias. */
6475 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6476 aarch64_replace_opcode (instr, opcode);
6477 if (aarch64_opcode_encode (instr->opcode, instr,
6478 &instr->value, NULL, NULL))
6479 {
6480 put_aarch64_insn (buf, instr->value);
6481 return;
6482 }
6483 }
6484
6485 as_bad_where (fixP->fx_file, fixP->fx_line,
6486 _("immediate cannot be moved by a single instruction"));
6487}
6488
6489/* An instruction operand which is immediate related may have symbol used
6490 in the assembly, e.g.
6491
6492 mov w0, u32
6493 .set u32, 0x00ffff00
6494
6495 At the time when the assembly instruction is parsed, a referenced symbol,
6496 like 'u32' in the above example may not have been seen; a fixS is created
6497 in such a case and is handled here after symbols have been resolved.
6498 Instruction is fixed up with VALUE using the information in *FIXP plus
6499 extra information in FLAGS.
6500
6501 This function is called by md_apply_fix to fix up instructions that need
6502 a fix-up described above but does not involve any linker-time relocation. */
6503
6504static void
6505fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6506{
6507 int idx;
6508 uint32_t insn;
6509 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6510 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6511 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6512
6513 if (new_inst)
6514 {
6515 /* Now the instruction is about to be fixed-up, so the operand that
6516 was previously marked as 'ignored' needs to be unmarked in order
6517 to get the encoding done properly. */
6518 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6519 new_inst->operands[idx].skip = 0;
6520 }
6521
6522 gas_assert (opnd != AARCH64_OPND_NIL);
6523
6524 switch (opnd)
6525 {
6526 case AARCH64_OPND_EXCEPTION:
6527 if (unsigned_overflow (value, 16))
6528 as_bad_where (fixP->fx_file, fixP->fx_line,
6529 _("immediate out of range"));
6530 insn = get_aarch64_insn (buf);
6531 insn |= encode_svc_imm (value);
6532 put_aarch64_insn (buf, insn);
6533 break;
6534
6535 case AARCH64_OPND_AIMM:
6536 /* ADD or SUB with immediate.
6537 NOTE this assumes we come here with a add/sub shifted reg encoding
6538 3 322|2222|2 2 2 21111 111111
6539 1 098|7654|3 2 1 09876 543210 98765 43210
6540 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6541 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6542 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6543 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6544 ->
6545 3 322|2222|2 2 221111111111
6546 1 098|7654|3 2 109876543210 98765 43210
6547 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6548 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6549 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6550 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6551 Fields sf Rn Rd are already set. */
6552 insn = get_aarch64_insn (buf);
6553 if (value < 0)
6554 {
6555 /* Add <-> sub. */
6556 insn = reencode_addsub_switch_add_sub (insn);
6557 value = -value;
6558 }
6559
6560 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6561 && unsigned_overflow (value, 12))
6562 {
6563 /* Try to shift the value by 12 to make it fit. */
6564 if (((value >> 12) << 12) == value
6565 && ! unsigned_overflow (value, 12 + 12))
6566 {
6567 value >>= 12;
6568 insn |= encode_addsub_imm_shift_amount (1);
6569 }
6570 }
6571
6572 if (unsigned_overflow (value, 12))
6573 as_bad_where (fixP->fx_file, fixP->fx_line,
6574 _("immediate out of range"));
6575
6576 insn |= encode_addsub_imm (value);
6577
6578 put_aarch64_insn (buf, insn);
6579 break;
6580
6581 case AARCH64_OPND_SIMD_IMM:
6582 case AARCH64_OPND_SIMD_IMM_SFT:
6583 case AARCH64_OPND_LIMM:
6584 /* Bit mask immediate. */
6585 gas_assert (new_inst != NULL);
6586 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6587 new_inst->operands[idx].imm.value = value;
6588 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6589 &new_inst->value, NULL, NULL))
6590 put_aarch64_insn (buf, new_inst->value);
6591 else
6592 as_bad_where (fixP->fx_file, fixP->fx_line,
6593 _("invalid immediate"));
6594 break;
6595
6596 case AARCH64_OPND_HALF:
6597 /* 16-bit unsigned immediate. */
6598 if (unsigned_overflow (value, 16))
6599 as_bad_where (fixP->fx_file, fixP->fx_line,
6600 _("immediate out of range"));
6601 insn = get_aarch64_insn (buf);
6602 insn |= encode_movw_imm (value & 0xffff);
6603 put_aarch64_insn (buf, insn);
6604 break;
6605
6606 case AARCH64_OPND_IMM_MOV:
6607 /* Operand for a generic move immediate instruction, which is
6608 an alias instruction that generates a single MOVZ, MOVN or ORR
6609 instruction to loads a 32-bit/64-bit immediate value into general
6610 register. An assembler error shall result if the immediate cannot be
6611 created by a single one of these instructions. If there is a choice,
6612 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6613 and MOVZ or MOVN to ORR. */
6614 gas_assert (new_inst != NULL);
6615 fix_mov_imm_insn (fixP, buf, new_inst, value);
6616 break;
6617
6618 case AARCH64_OPND_ADDR_SIMM7:
6619 case AARCH64_OPND_ADDR_SIMM9:
6620 case AARCH64_OPND_ADDR_SIMM9_2:
6621 case AARCH64_OPND_ADDR_UIMM12:
6622 /* Immediate offset in an address. */
6623 insn = get_aarch64_insn (buf);
6624
6625 gas_assert (new_inst != NULL && new_inst->value == insn);
6626 gas_assert (new_inst->opcode->operands[1] == opnd
6627 || new_inst->opcode->operands[2] == opnd);
6628
6629 /* Get the index of the address operand. */
6630 if (new_inst->opcode->operands[1] == opnd)
6631 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6632 idx = 1;
6633 else
6634 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6635 idx = 2;
6636
6637 /* Update the resolved offset value. */
6638 new_inst->operands[idx].addr.offset.imm = value;
6639
6640 /* Encode/fix-up. */
6641 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6642 &new_inst->value, NULL, NULL))
6643 {
6644 put_aarch64_insn (buf, new_inst->value);
6645 break;
6646 }
6647 else if (new_inst->opcode->iclass == ldst_pos
6648 && try_to_encode_as_unscaled_ldst (new_inst))
6649 {
6650 put_aarch64_insn (buf, new_inst->value);
6651 break;
6652 }
6653
6654 as_bad_where (fixP->fx_file, fixP->fx_line,
6655 _("immediate offset out of range"));
6656 break;
6657
6658 default:
6659 gas_assert (0);
6660 as_fatal (_("unhandled operand code %d"), opnd);
6661 }
6662}
6663
6664/* Apply a fixup (fixP) to segment data, once it has been determined
6665 by our caller that we have all the info we need to fix it up.
6666
6667 Parameter valP is the pointer to the value of the bits. */
6668
6669void
6670md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6671{
6672 offsetT value = *valP;
6673 uint32_t insn;
6674 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6675 int scale;
6676 unsigned flags = fixP->fx_addnumber;
6677
6678 DEBUG_TRACE ("\n\n");
6679 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6680 DEBUG_TRACE ("Enter md_apply_fix");
6681
6682 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6683
6684 /* Note whether this will delete the relocation. */
6685
6686 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6687 fixP->fx_done = 1;
6688
6689 /* Process the relocations. */
6690 switch (fixP->fx_r_type)
6691 {
6692 case BFD_RELOC_NONE:
6693 /* This will need to go in the object file. */
6694 fixP->fx_done = 0;
6695 break;
6696
6697 case BFD_RELOC_8:
6698 case BFD_RELOC_8_PCREL:
6699 if (fixP->fx_done || !seg->use_rela_p)
6700 md_number_to_chars (buf, value, 1);
6701 break;
6702
6703 case BFD_RELOC_16:
6704 case BFD_RELOC_16_PCREL:
6705 if (fixP->fx_done || !seg->use_rela_p)
6706 md_number_to_chars (buf, value, 2);
6707 break;
6708
6709 case BFD_RELOC_32:
6710 case BFD_RELOC_32_PCREL:
6711 if (fixP->fx_done || !seg->use_rela_p)
6712 md_number_to_chars (buf, value, 4);
6713 break;
6714
6715 case BFD_RELOC_64:
6716 case BFD_RELOC_64_PCREL:
6717 if (fixP->fx_done || !seg->use_rela_p)
6718 md_number_to_chars (buf, value, 8);
6719 break;
6720
6721 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6722 /* We claim that these fixups have been processed here, even if
6723 in fact we generate an error because we do not have a reloc
6724 for them, so tc_gen_reloc() will reject them. */
6725 fixP->fx_done = 1;
6726 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6727 {
6728 as_bad_where (fixP->fx_file, fixP->fx_line,
6729 _("undefined symbol %s used as an immediate value"),
6730 S_GET_NAME (fixP->fx_addsy));
6731 goto apply_fix_return;
6732 }
6733 fix_insn (fixP, flags, value);
6734 break;
6735
6736 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6737 if (fixP->fx_done || !seg->use_rela_p)
6738 {
89d2a2a3
MS
6739 if (value & 3)
6740 as_bad_where (fixP->fx_file, fixP->fx_line,
6741 _("pc-relative load offset not word aligned"));
6742 if (signed_overflow (value, 21))
6743 as_bad_where (fixP->fx_file, fixP->fx_line,
6744 _("pc-relative load offset out of range"));
a06ea964
NC
6745 insn = get_aarch64_insn (buf);
6746 insn |= encode_ld_lit_ofs_19 (value >> 2);
6747 put_aarch64_insn (buf, insn);
6748 }
6749 break;
6750
6751 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6752 if (fixP->fx_done || !seg->use_rela_p)
6753 {
89d2a2a3
MS
6754 if (signed_overflow (value, 21))
6755 as_bad_where (fixP->fx_file, fixP->fx_line,
6756 _("pc-relative address offset out of range"));
a06ea964
NC
6757 insn = get_aarch64_insn (buf);
6758 insn |= encode_adr_imm (value);
6759 put_aarch64_insn (buf, insn);
6760 }
6761 break;
6762
6763 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6764 if (fixP->fx_done || !seg->use_rela_p)
6765 {
89d2a2a3
MS
6766 if (value & 3)
6767 as_bad_where (fixP->fx_file, fixP->fx_line,
6768 _("conditional branch target not word aligned"));
6769 if (signed_overflow (value, 21))
6770 as_bad_where (fixP->fx_file, fixP->fx_line,
6771 _("conditional branch out of range"));
a06ea964
NC
6772 insn = get_aarch64_insn (buf);
6773 insn |= encode_cond_branch_ofs_19 (value >> 2);
6774 put_aarch64_insn (buf, insn);
6775 }
6776 break;
6777
6778 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6779 if (fixP->fx_done || !seg->use_rela_p)
6780 {
89d2a2a3
MS
6781 if (value & 3)
6782 as_bad_where (fixP->fx_file, fixP->fx_line,
6783 _("conditional branch target not word aligned"));
6784 if (signed_overflow (value, 16))
6785 as_bad_where (fixP->fx_file, fixP->fx_line,
6786 _("conditional branch out of range"));
a06ea964
NC
6787 insn = get_aarch64_insn (buf);
6788 insn |= encode_tst_branch_ofs_14 (value >> 2);
6789 put_aarch64_insn (buf, insn);
6790 }
6791 break;
6792
a06ea964 6793 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6794 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6795 if (fixP->fx_done || !seg->use_rela_p)
6796 {
89d2a2a3
MS
6797 if (value & 3)
6798 as_bad_where (fixP->fx_file, fixP->fx_line,
6799 _("branch target not word aligned"));
6800 if (signed_overflow (value, 28))
6801 as_bad_where (fixP->fx_file, fixP->fx_line,
6802 _("branch out of range"));
a06ea964
NC
6803 insn = get_aarch64_insn (buf);
6804 insn |= encode_branch_ofs_26 (value >> 2);
6805 put_aarch64_insn (buf, insn);
6806 }
6807 break;
6808
6809 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6810 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6811 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 6812 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
a06ea964
NC
6813 scale = 0;
6814 goto movw_common;
6815 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6816 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6817 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 6818 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
6819 scale = 16;
6820 goto movw_common;
6821 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6822 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6823 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
6824 scale = 32;
6825 goto movw_common;
6826 case BFD_RELOC_AARCH64_MOVW_G3:
6827 scale = 48;
6828 movw_common:
6829 if (fixP->fx_done || !seg->use_rela_p)
6830 {
6831 insn = get_aarch64_insn (buf);
6832
6833 if (!fixP->fx_done)
6834 {
6835 /* REL signed addend must fit in 16 bits */
6836 if (signed_overflow (value, 16))
6837 as_bad_where (fixP->fx_file, fixP->fx_line,
6838 _("offset out of range"));
6839 }
6840 else
6841 {
6842 /* Check for overflow and scale. */
6843 switch (fixP->fx_r_type)
6844 {
6845 case BFD_RELOC_AARCH64_MOVW_G0:
6846 case BFD_RELOC_AARCH64_MOVW_G1:
6847 case BFD_RELOC_AARCH64_MOVW_G2:
6848 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 6849 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
6850 if (unsigned_overflow (value, scale + 16))
6851 as_bad_where (fixP->fx_file, fixP->fx_line,
6852 _("unsigned value out of range"));
6853 break;
6854 case BFD_RELOC_AARCH64_MOVW_G0_S:
6855 case BFD_RELOC_AARCH64_MOVW_G1_S:
6856 case BFD_RELOC_AARCH64_MOVW_G2_S:
6857 /* NOTE: We can only come here with movz or movn. */
6858 if (signed_overflow (value, scale + 16))
6859 as_bad_where (fixP->fx_file, fixP->fx_line,
6860 _("signed value out of range"));
6861 if (value < 0)
6862 {
6863 /* Force use of MOVN. */
6864 value = ~value;
6865 insn = reencode_movzn_to_movn (insn);
6866 }
6867 else
6868 {
6869 /* Force use of MOVZ. */
6870 insn = reencode_movzn_to_movz (insn);
6871 }
6872 break;
6873 default:
6874 /* Unchecked relocations. */
6875 break;
6876 }
6877 value >>= scale;
6878 }
6879
6880 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6881 insn |= encode_movw_imm (value & 0xffff);
6882
6883 put_aarch64_insn (buf, insn);
6884 }
6885 break;
6886
a6bb11b2
YZ
6887 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6888 fixP->fx_r_type = (ilp32_p
6889 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6890 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6891 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6892 /* Should always be exported to object file, see
6893 aarch64_force_relocation(). */
6894 gas_assert (!fixP->fx_done);
6895 gas_assert (seg->use_rela_p);
6896 break;
6897
6898 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6899 fixP->fx_r_type = (ilp32_p
6900 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6901 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6902 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6903 /* Should always be exported to object file, see
6904 aarch64_force_relocation(). */
6905 gas_assert (!fixP->fx_done);
6906 gas_assert (seg->use_rela_p);
6907 break;
6908
2c0a3565
MS
6909 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6910 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 6911 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
6912 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6913 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 6914 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 6915 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6916 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 6917 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 6918 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6919 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6920 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 6921 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
49df5539 6922 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 6923 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 6924 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 6925 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 6926 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 6927 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
6928 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6929 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6930 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6931 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6932 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6933 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6934 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6935 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
6936 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6937 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6938 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6939 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6940 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 6941 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6942 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6943 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6944 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6945 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6946 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6947 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6948 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6949 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6950 /* Should always be exported to object file, see
6951 aarch64_force_relocation(). */
6952 gas_assert (!fixP->fx_done);
6953 gas_assert (seg->use_rela_p);
6954 break;
6955
a6bb11b2
YZ
6956 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6957 /* Should always be exported to object file, see
6958 aarch64_force_relocation(). */
6959 fixP->fx_r_type = (ilp32_p
6960 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6961 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6962 gas_assert (!fixP->fx_done);
6963 gas_assert (seg->use_rela_p);
6964 break;
6965
a06ea964 6966 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
6967 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6968 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6969 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6970 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6971 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 6972 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 6973 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 6974 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
6975 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6976 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
6977 case BFD_RELOC_AARCH64_LDST16_LO12:
6978 case BFD_RELOC_AARCH64_LDST32_LO12:
6979 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 6980 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
6981 /* Should always be exported to object file, see
6982 aarch64_force_relocation(). */
6983 gas_assert (!fixP->fx_done);
6984 gas_assert (seg->use_rela_p);
6985 break;
6986
6987 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 6988 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 6989 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
6990 break;
6991
b97e87cc
NC
6992 case BFD_RELOC_UNUSED:
6993 /* An error will already have been reported. */
6994 break;
6995
a06ea964
NC
6996 default:
6997 as_bad_where (fixP->fx_file, fixP->fx_line,
6998 _("unexpected %s fixup"),
6999 bfd_get_reloc_code_name (fixP->fx_r_type));
7000 break;
7001 }
7002
7003apply_fix_return:
7004 /* Free the allocated the struct aarch64_inst.
7005 N.B. currently there are very limited number of fix-up types actually use
7006 this field, so the impact on the performance should be minimal . */
7007 if (fixP->tc_fix_data.inst != NULL)
7008 free (fixP->tc_fix_data.inst);
7009
7010 return;
7011}
7012
7013/* Translate internal representation of relocation info to BFD target
7014 format. */
7015
7016arelent *
7017tc_gen_reloc (asection * section, fixS * fixp)
7018{
7019 arelent *reloc;
7020 bfd_reloc_code_real_type code;
7021
7022 reloc = xmalloc (sizeof (arelent));
7023
7024 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
7025 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7026 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7027
7028 if (fixp->fx_pcrel)
7029 {
7030 if (section->use_rela_p)
7031 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7032 else
7033 fixp->fx_offset = reloc->address;
7034 }
7035 reloc->addend = fixp->fx_offset;
7036
7037 code = fixp->fx_r_type;
7038 switch (code)
7039 {
7040 case BFD_RELOC_16:
7041 if (fixp->fx_pcrel)
7042 code = BFD_RELOC_16_PCREL;
7043 break;
7044
7045 case BFD_RELOC_32:
7046 if (fixp->fx_pcrel)
7047 code = BFD_RELOC_32_PCREL;
7048 break;
7049
7050 case BFD_RELOC_64:
7051 if (fixp->fx_pcrel)
7052 code = BFD_RELOC_64_PCREL;
7053 break;
7054
7055 default:
7056 break;
7057 }
7058
7059 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7060 if (reloc->howto == NULL)
7061 {
7062 as_bad_where (fixp->fx_file, fixp->fx_line,
7063 _
7064 ("cannot represent %s relocation in this object file format"),
7065 bfd_get_reloc_code_name (code));
7066 return NULL;
7067 }
7068
7069 return reloc;
7070}
7071
7072/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7073
7074void
7075cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7076{
7077 bfd_reloc_code_real_type type;
7078 int pcrel = 0;
7079
7080 /* Pick a reloc.
7081 FIXME: @@ Should look at CPU word size. */
7082 switch (size)
7083 {
7084 case 1:
7085 type = BFD_RELOC_8;
7086 break;
7087 case 2:
7088 type = BFD_RELOC_16;
7089 break;
7090 case 4:
7091 type = BFD_RELOC_32;
7092 break;
7093 case 8:
7094 type = BFD_RELOC_64;
7095 break;
7096 default:
7097 as_bad (_("cannot do %u-byte relocation"), size);
7098 type = BFD_RELOC_UNUSED;
7099 break;
7100 }
7101
7102 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7103}
7104
7105int
7106aarch64_force_relocation (struct fix *fixp)
7107{
7108 switch (fixp->fx_r_type)
7109 {
7110 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7111 /* Perform these "immediate" internal relocations
7112 even if the symbol is extern or weak. */
7113 return 0;
7114
a6bb11b2 7115 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
7116 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7117 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
7118 /* Pseudo relocs that need to be fixed up according to
7119 ilp32_p. */
7120 return 0;
7121
2c0a3565
MS
7122 case BFD_RELOC_AARCH64_ADD_LO12:
7123 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7124 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7125 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7126 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7127 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7128 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7129 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7130 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
7131 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7132 case BFD_RELOC_AARCH64_LDST128_LO12:
7133 case BFD_RELOC_AARCH64_LDST16_LO12:
7134 case BFD_RELOC_AARCH64_LDST32_LO12:
7135 case BFD_RELOC_AARCH64_LDST64_LO12:
7136 case BFD_RELOC_AARCH64_LDST8_LO12:
7137 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7138 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7139 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7140 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7141 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7142 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7143 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7144 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7145 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
a06ea964 7146 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7147 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7148 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7149 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
49df5539 7150 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7151 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7152 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7153 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7154 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7155 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7156 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7157 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7158 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7159 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7160 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7161 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7162 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7163 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7164 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7165 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7166 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7167 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7168 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7169 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7170 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7171 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7172 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7173 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7174 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7175 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7176 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7177 /* Always leave these relocations for the linker. */
7178 return 1;
7179
7180 default:
7181 break;
7182 }
7183
7184 return generic_force_reloc (fixp);
7185}
7186
7187#ifdef OBJ_ELF
7188
7189const char *
7190elf64_aarch64_target_format (void)
7191{
7192 if (target_big_endian)
cec5225b 7193 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7194 else
cec5225b 7195 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7196}
7197
7198void
7199aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7200{
7201 elf_frob_symbol (symp, puntp);
7202}
7203#endif
7204
7205/* MD interface: Finalization. */
7206
7207/* A good place to do this, although this was probably not intended
7208 for this kind of use. We need to dump the literal pool before
7209 references are made to a null symbol pointer. */
7210
7211void
7212aarch64_cleanup (void)
7213{
7214 literal_pool *pool;
7215
7216 for (pool = list_of_pools; pool; pool = pool->next)
7217 {
7218 /* Put it at the end of the relevant section. */
7219 subseg_set (pool->section, pool->sub_section);
7220 s_ltorg (0);
7221 }
7222}
7223
7224#ifdef OBJ_ELF
7225/* Remove any excess mapping symbols generated for alignment frags in
7226 SEC. We may have created a mapping symbol before a zero byte
7227 alignment; remove it if there's a mapping symbol after the
7228 alignment. */
7229static void
7230check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7231 void *dummy ATTRIBUTE_UNUSED)
7232{
7233 segment_info_type *seginfo = seg_info (sec);
7234 fragS *fragp;
7235
7236 if (seginfo == NULL || seginfo->frchainP == NULL)
7237 return;
7238
7239 for (fragp = seginfo->frchainP->frch_root;
7240 fragp != NULL; fragp = fragp->fr_next)
7241 {
7242 symbolS *sym = fragp->tc_frag_data.last_map;
7243 fragS *next = fragp->fr_next;
7244
7245 /* Variable-sized frags have been converted to fixed size by
7246 this point. But if this was variable-sized to start with,
7247 there will be a fixed-size frag after it. So don't handle
7248 next == NULL. */
7249 if (sym == NULL || next == NULL)
7250 continue;
7251
7252 if (S_GET_VALUE (sym) < next->fr_address)
7253 /* Not at the end of this frag. */
7254 continue;
7255 know (S_GET_VALUE (sym) == next->fr_address);
7256
7257 do
7258 {
7259 if (next->tc_frag_data.first_map != NULL)
7260 {
7261 /* Next frag starts with a mapping symbol. Discard this
7262 one. */
7263 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7264 break;
7265 }
7266
7267 if (next->fr_next == NULL)
7268 {
7269 /* This mapping symbol is at the end of the section. Discard
7270 it. */
7271 know (next->fr_fix == 0 && next->fr_var == 0);
7272 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7273 break;
7274 }
7275
7276 /* As long as we have empty frags without any mapping symbols,
7277 keep looking. */
7278 /* If the next frag is non-empty and does not start with a
7279 mapping symbol, then this mapping symbol is required. */
7280 if (next->fr_address != next->fr_next->fr_address)
7281 break;
7282
7283 next = next->fr_next;
7284 }
7285 while (next != NULL);
7286 }
7287}
7288#endif
7289
7290/* Adjust the symbol table. */
7291
7292void
7293aarch64_adjust_symtab (void)
7294{
7295#ifdef OBJ_ELF
7296 /* Remove any overlapping mapping symbols generated by alignment frags. */
7297 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7298 /* Now do generic ELF adjustments. */
7299 elf_adjust_symtab ();
7300#endif
7301}
7302
7303static void
7304checked_hash_insert (struct hash_control *table, const char *key, void *value)
7305{
7306 const char *hash_err;
7307
7308 hash_err = hash_insert (table, key, value);
7309 if (hash_err)
7310 printf ("Internal Error: Can't hash %s\n", key);
7311}
7312
7313static void
7314fill_instruction_hash_table (void)
7315{
7316 aarch64_opcode *opcode = aarch64_opcode_table;
7317
7318 while (opcode->name != NULL)
7319 {
7320 templates *templ, *new_templ;
7321 templ = hash_find (aarch64_ops_hsh, opcode->name);
7322
7323 new_templ = (templates *) xmalloc (sizeof (templates));
7324 new_templ->opcode = opcode;
7325 new_templ->next = NULL;
7326
7327 if (!templ)
7328 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7329 else
7330 {
7331 new_templ->next = templ->next;
7332 templ->next = new_templ;
7333 }
7334 ++opcode;
7335 }
7336}
7337
7338static inline void
7339convert_to_upper (char *dst, const char *src, size_t num)
7340{
7341 unsigned int i;
7342 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7343 *dst = TOUPPER (*src);
7344 *dst = '\0';
7345}
7346
7347/* Assume STR point to a lower-case string, allocate, convert and return
7348 the corresponding upper-case string. */
7349static inline const char*
7350get_upper_str (const char *str)
7351{
7352 char *ret;
7353 size_t len = strlen (str);
7354 if ((ret = xmalloc (len + 1)) == NULL)
7355 abort ();
7356 convert_to_upper (ret, str, len);
7357 return ret;
7358}
7359
7360/* MD interface: Initialization. */
7361
7362void
7363md_begin (void)
7364{
7365 unsigned mach;
7366 unsigned int i;
7367
7368 if ((aarch64_ops_hsh = hash_new ()) == NULL
7369 || (aarch64_cond_hsh = hash_new ()) == NULL
7370 || (aarch64_shift_hsh = hash_new ()) == NULL
7371 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7372 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7373 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7374 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7375 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7376 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7377 || (aarch64_reg_hsh = hash_new ()) == NULL
7378 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7379 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7380 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7381 as_fatal (_("virtual memory exhausted"));
7382
7383 fill_instruction_hash_table ();
7384
7385 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7386 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7387 (void *) (aarch64_sys_regs + i));
7388
7389 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7390 checked_hash_insert (aarch64_pstatefield_hsh,
7391 aarch64_pstatefields[i].name,
7392 (void *) (aarch64_pstatefields + i));
7393
7394 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7395 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7396 aarch64_sys_regs_ic[i].template,
7397 (void *) (aarch64_sys_regs_ic + i));
7398
7399 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7400 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7401 aarch64_sys_regs_dc[i].template,
7402 (void *) (aarch64_sys_regs_dc + i));
7403
7404 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7405 checked_hash_insert (aarch64_sys_regs_at_hsh,
7406 aarch64_sys_regs_at[i].template,
7407 (void *) (aarch64_sys_regs_at + i));
7408
7409 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7410 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7411 aarch64_sys_regs_tlbi[i].template,
7412 (void *) (aarch64_sys_regs_tlbi + i));
7413
7414 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7415 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7416 (void *) (reg_names + i));
7417
7418 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7419 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7420 (void *) (nzcv_names + i));
7421
7422 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7423 {
7424 const char *name = aarch64_operand_modifiers[i].name;
7425 checked_hash_insert (aarch64_shift_hsh, name,
7426 (void *) (aarch64_operand_modifiers + i));
7427 /* Also hash the name in the upper case. */
7428 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7429 (void *) (aarch64_operand_modifiers + i));
7430 }
7431
7432 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7433 {
7434 unsigned int j;
7435 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7436 the same condition code. */
7437 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7438 {
7439 const char *name = aarch64_conds[i].names[j];
7440 if (name == NULL)
7441 break;
7442 checked_hash_insert (aarch64_cond_hsh, name,
7443 (void *) (aarch64_conds + i));
7444 /* Also hash the name in the upper case. */
7445 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7446 (void *) (aarch64_conds + i));
7447 }
7448 }
7449
7450 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7451 {
7452 const char *name = aarch64_barrier_options[i].name;
7453 /* Skip xx00 - the unallocated values of option. */
7454 if ((i & 0x3) == 0)
7455 continue;
7456 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7457 (void *) (aarch64_barrier_options + i));
7458 /* Also hash the name in the upper case. */
7459 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7460 (void *) (aarch64_barrier_options + i));
7461 }
7462
7463 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7464 {
7465 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7466 /* Skip the unallocated hint encodings. */
7467 if (name == NULL)
a06ea964
NC
7468 continue;
7469 checked_hash_insert (aarch64_pldop_hsh, name,
7470 (void *) (aarch64_prfops + i));
7471 /* Also hash the name in the upper case. */
7472 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7473 (void *) (aarch64_prfops + i));
7474 }
7475
7476 /* Set the cpu variant based on the command-line options. */
7477 if (!mcpu_cpu_opt)
7478 mcpu_cpu_opt = march_cpu_opt;
7479
7480 if (!mcpu_cpu_opt)
7481 mcpu_cpu_opt = &cpu_default;
7482
7483 cpu_variant = *mcpu_cpu_opt;
7484
7485 /* Record the CPU type. */
cec5225b 7486 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7487
7488 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7489}
7490
7491/* Command line processing. */
7492
7493const char *md_shortopts = "m:";
7494
7495#ifdef AARCH64_BI_ENDIAN
7496#define OPTION_EB (OPTION_MD_BASE + 0)
7497#define OPTION_EL (OPTION_MD_BASE + 1)
7498#else
7499#if TARGET_BYTES_BIG_ENDIAN
7500#define OPTION_EB (OPTION_MD_BASE + 0)
7501#else
7502#define OPTION_EL (OPTION_MD_BASE + 1)
7503#endif
7504#endif
7505
7506struct option md_longopts[] = {
7507#ifdef OPTION_EB
7508 {"EB", no_argument, NULL, OPTION_EB},
7509#endif
7510#ifdef OPTION_EL
7511 {"EL", no_argument, NULL, OPTION_EL},
7512#endif
7513 {NULL, no_argument, NULL, 0}
7514};
7515
7516size_t md_longopts_size = sizeof (md_longopts);
7517
7518struct aarch64_option_table
7519{
7520 char *option; /* Option name to match. */
7521 char *help; /* Help information. */
7522 int *var; /* Variable to change. */
7523 int value; /* What to change it to. */
7524 char *deprecated; /* If non-null, print this message. */
7525};
7526
7527static struct aarch64_option_table aarch64_opts[] = {
7528 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7529 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7530 NULL},
7531#ifdef DEBUG_AARCH64
7532 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7533#endif /* DEBUG_AARCH64 */
7534 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7535 NULL},
a52e6fd3
YZ
7536 {"mno-verbose-error", N_("do not output verbose error messages"),
7537 &verbose_error_p, 0, NULL},
a06ea964
NC
7538 {NULL, NULL, NULL, 0, NULL}
7539};
7540
7541struct aarch64_cpu_option_table
7542{
7543 char *name;
7544 const aarch64_feature_set value;
7545 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7546 case. */
7547 const char *canonical_name;
7548};
7549
7550/* This list should, at a minimum, contain all the cpu names
7551 recognized by GCC. */
7552static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7553 {"all", AARCH64_ANY, NULL},
aa31c464
JW
7554 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7555 AARCH64_FEATURE_CRC), "Cortex-A53"},
7556 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7557 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7558 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7559 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7560 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7561 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7562 "Samsung Exynos M1"},
faade851
JW
7563 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7564 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7565 "Cavium ThunderX"},
070cb956
PT
7566 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7567 in earlier releases and is superseded by 'xgene1' in all
7568 tools. */
9877c63c 7569 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7570 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7571 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7572 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7573 {"generic", AARCH64_ARCH_V8, NULL},
7574
a06ea964
NC
7575 {NULL, AARCH64_ARCH_NONE, NULL}
7576};
7577
7578struct aarch64_arch_option_table
7579{
7580 char *name;
7581 const aarch64_feature_set value;
7582};
7583
7584/* This list should, at a minimum, contain all the architecture names
7585 recognized by GCC. */
7586static const struct aarch64_arch_option_table aarch64_archs[] = {
7587 {"all", AARCH64_ANY},
5a1ad39d 7588 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7589 {"armv8.1-a", AARCH64_ARCH_V8_1},
a06ea964
NC
7590 {NULL, AARCH64_ARCH_NONE}
7591};
7592
7593/* ISA extensions. */
7594struct aarch64_option_cpu_value_table
7595{
7596 char *name;
7597 const aarch64_feature_set value;
7598};
7599
7600static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7601 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7602 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7603 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7604 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7605 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7606 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7607 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
9e1f0fa7
MW
7608 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7609 | AARCH64_FEATURE_RDMA, 0)},
a06ea964
NC
7610 {NULL, AARCH64_ARCH_NONE}
7611};
7612
7613struct aarch64_long_option_table
7614{
7615 char *option; /* Substring to match. */
7616 char *help; /* Help information. */
7617 int (*func) (char *subopt); /* Function to decode sub-option. */
7618 char *deprecated; /* If non-null, print this message. */
7619};
7620
7621static int
ae527cd8
JB
7622aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7623 bfd_boolean ext_only)
a06ea964
NC
7624{
7625 /* We insist on extensions being added before being removed. We achieve
7626 this by using the ADDING_VALUE variable to indicate whether we are
7627 adding an extension (1) or removing it (0) and only allowing it to
7628 change in the order -1 -> 1 -> 0. */
7629 int adding_value = -1;
7630 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7631
7632 /* Copy the feature set, so that we can modify it. */
7633 *ext_set = **opt_p;
7634 *opt_p = ext_set;
7635
7636 while (str != NULL && *str != 0)
7637 {
7638 const struct aarch64_option_cpu_value_table *opt;
ae527cd8 7639 char *ext = NULL;
a06ea964
NC
7640 int optlen;
7641
ae527cd8 7642 if (!ext_only)
a06ea964 7643 {
ae527cd8
JB
7644 if (*str != '+')
7645 {
7646 as_bad (_("invalid architectural extension"));
7647 return 0;
7648 }
a06ea964 7649
ae527cd8
JB
7650 ext = strchr (++str, '+');
7651 }
a06ea964
NC
7652
7653 if (ext != NULL)
7654 optlen = ext - str;
7655 else
7656 optlen = strlen (str);
7657
7658 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7659 {
7660 if (adding_value != 0)
7661 adding_value = 0;
7662 optlen -= 2;
7663 str += 2;
7664 }
7665 else if (optlen > 0)
7666 {
7667 if (adding_value == -1)
7668 adding_value = 1;
7669 else if (adding_value != 1)
7670 {
7671 as_bad (_("must specify extensions to add before specifying "
7672 "those to remove"));
7673 return FALSE;
7674 }
7675 }
7676
7677 if (optlen == 0)
7678 {
7679 as_bad (_("missing architectural extension"));
7680 return 0;
7681 }
7682
7683 gas_assert (adding_value != -1);
7684
7685 for (opt = aarch64_features; opt->name != NULL; opt++)
7686 if (strncmp (opt->name, str, optlen) == 0)
7687 {
7688 /* Add or remove the extension. */
7689 if (adding_value)
7690 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7691 else
7692 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7693 break;
7694 }
7695
7696 if (opt->name == NULL)
7697 {
7698 as_bad (_("unknown architectural extension `%s'"), str);
7699 return 0;
7700 }
7701
7702 str = ext;
7703 };
7704
7705 return 1;
7706}
7707
7708static int
7709aarch64_parse_cpu (char *str)
7710{
7711 const struct aarch64_cpu_option_table *opt;
7712 char *ext = strchr (str, '+');
7713 size_t optlen;
7714
7715 if (ext != NULL)
7716 optlen = ext - str;
7717 else
7718 optlen = strlen (str);
7719
7720 if (optlen == 0)
7721 {
7722 as_bad (_("missing cpu name `%s'"), str);
7723 return 0;
7724 }
7725
7726 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7727 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7728 {
7729 mcpu_cpu_opt = &opt->value;
7730 if (ext != NULL)
ae527cd8 7731 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7732
7733 return 1;
7734 }
7735
7736 as_bad (_("unknown cpu `%s'"), str);
7737 return 0;
7738}
7739
7740static int
7741aarch64_parse_arch (char *str)
7742{
7743 const struct aarch64_arch_option_table *opt;
7744 char *ext = strchr (str, '+');
7745 size_t optlen;
7746
7747 if (ext != NULL)
7748 optlen = ext - str;
7749 else
7750 optlen = strlen (str);
7751
7752 if (optlen == 0)
7753 {
7754 as_bad (_("missing architecture name `%s'"), str);
7755 return 0;
7756 }
7757
7758 for (opt = aarch64_archs; opt->name != NULL; opt++)
7759 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7760 {
7761 march_cpu_opt = &opt->value;
7762 if (ext != NULL)
ae527cd8 7763 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7764
7765 return 1;
7766 }
7767
7768 as_bad (_("unknown architecture `%s'\n"), str);
7769 return 0;
7770}
7771
69091a2c
YZ
7772/* ABIs. */
7773struct aarch64_option_abi_value_table
7774{
7775 char *name;
7776 enum aarch64_abi_type value;
7777};
7778
7779static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7780 {"ilp32", AARCH64_ABI_ILP32},
7781 {"lp64", AARCH64_ABI_LP64},
7782 {NULL, 0}
7783};
7784
7785static int
7786aarch64_parse_abi (char *str)
7787{
7788 const struct aarch64_option_abi_value_table *opt;
7789 size_t optlen = strlen (str);
7790
7791 if (optlen == 0)
7792 {
7793 as_bad (_("missing abi name `%s'"), str);
7794 return 0;
7795 }
7796
7797 for (opt = aarch64_abis; opt->name != NULL; opt++)
7798 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7799 {
7800 aarch64_abi = opt->value;
7801 return 1;
7802 }
7803
7804 as_bad (_("unknown abi `%s'\n"), str);
7805 return 0;
7806}
7807
a06ea964 7808static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
7809#ifdef OBJ_ELF
7810 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7811 aarch64_parse_abi, NULL},
7812#endif /* OBJ_ELF */
a06ea964
NC
7813 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7814 aarch64_parse_cpu, NULL},
7815 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7816 aarch64_parse_arch, NULL},
7817 {NULL, NULL, 0, NULL}
7818};
7819
7820int
7821md_parse_option (int c, char *arg)
7822{
7823 struct aarch64_option_table *opt;
7824 struct aarch64_long_option_table *lopt;
7825
7826 switch (c)
7827 {
7828#ifdef OPTION_EB
7829 case OPTION_EB:
7830 target_big_endian = 1;
7831 break;
7832#endif
7833
7834#ifdef OPTION_EL
7835 case OPTION_EL:
7836 target_big_endian = 0;
7837 break;
7838#endif
7839
7840 case 'a':
7841 /* Listing option. Just ignore these, we don't support additional
7842 ones. */
7843 return 0;
7844
7845 default:
7846 for (opt = aarch64_opts; opt->option != NULL; opt++)
7847 {
7848 if (c == opt->option[0]
7849 && ((arg == NULL && opt->option[1] == 0)
7850 || streq (arg, opt->option + 1)))
7851 {
7852 /* If the option is deprecated, tell the user. */
7853 if (opt->deprecated != NULL)
7854 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7855 arg ? arg : "", _(opt->deprecated));
7856
7857 if (opt->var != NULL)
7858 *opt->var = opt->value;
7859
7860 return 1;
7861 }
7862 }
7863
7864 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7865 {
7866 /* These options are expected to have an argument. */
7867 if (c == lopt->option[0]
7868 && arg != NULL
7869 && strncmp (arg, lopt->option + 1,
7870 strlen (lopt->option + 1)) == 0)
7871 {
7872 /* If the option is deprecated, tell the user. */
7873 if (lopt->deprecated != NULL)
7874 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7875 _(lopt->deprecated));
7876
7877 /* Call the sup-option parser. */
7878 return lopt->func (arg + strlen (lopt->option) - 1);
7879 }
7880 }
7881
7882 return 0;
7883 }
7884
7885 return 1;
7886}
7887
7888void
7889md_show_usage (FILE * fp)
7890{
7891 struct aarch64_option_table *opt;
7892 struct aarch64_long_option_table *lopt;
7893
7894 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7895
7896 for (opt = aarch64_opts; opt->option != NULL; opt++)
7897 if (opt->help != NULL)
7898 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7899
7900 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7901 if (lopt->help != NULL)
7902 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7903
7904#ifdef OPTION_EB
7905 fprintf (fp, _("\
7906 -EB assemble code for a big-endian cpu\n"));
7907#endif
7908
7909#ifdef OPTION_EL
7910 fprintf (fp, _("\
7911 -EL assemble code for a little-endian cpu\n"));
7912#endif
7913}
7914
7915/* Parse a .cpu directive. */
7916
7917static void
7918s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7919{
7920 const struct aarch64_cpu_option_table *opt;
7921 char saved_char;
7922 char *name;
7923 char *ext;
7924 size_t optlen;
7925
7926 name = input_line_pointer;
7927 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7928 input_line_pointer++;
7929 saved_char = *input_line_pointer;
7930 *input_line_pointer = 0;
7931
7932 ext = strchr (name, '+');
7933
7934 if (ext != NULL)
7935 optlen = ext - name;
7936 else
7937 optlen = strlen (name);
7938
7939 /* Skip the first "all" entry. */
7940 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7941 if (strlen (opt->name) == optlen
7942 && strncmp (name, opt->name, optlen) == 0)
7943 {
7944 mcpu_cpu_opt = &opt->value;
7945 if (ext != NULL)
ae527cd8 7946 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7947 return;
7948
7949 cpu_variant = *mcpu_cpu_opt;
7950
7951 *input_line_pointer = saved_char;
7952 demand_empty_rest_of_line ();
7953 return;
7954 }
7955 as_bad (_("unknown cpu `%s'"), name);
7956 *input_line_pointer = saved_char;
7957 ignore_rest_of_line ();
7958}
7959
7960
7961/* Parse a .arch directive. */
7962
7963static void
7964s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7965{
7966 const struct aarch64_arch_option_table *opt;
7967 char saved_char;
7968 char *name;
7969 char *ext;
7970 size_t optlen;
7971
7972 name = input_line_pointer;
7973 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7974 input_line_pointer++;
7975 saved_char = *input_line_pointer;
7976 *input_line_pointer = 0;
7977
7978 ext = strchr (name, '+');
7979
7980 if (ext != NULL)
7981 optlen = ext - name;
7982 else
7983 optlen = strlen (name);
7984
7985 /* Skip the first "all" entry. */
7986 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7987 if (strlen (opt->name) == optlen
7988 && strncmp (name, opt->name, optlen) == 0)
7989 {
7990 mcpu_cpu_opt = &opt->value;
7991 if (ext != NULL)
ae527cd8 7992 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
7993 return;
7994
7995 cpu_variant = *mcpu_cpu_opt;
7996
7997 *input_line_pointer = saved_char;
7998 demand_empty_rest_of_line ();
7999 return;
8000 }
8001
8002 as_bad (_("unknown architecture `%s'\n"), name);
8003 *input_line_pointer = saved_char;
8004 ignore_rest_of_line ();
8005}
8006
ae527cd8
JB
8007/* Parse a .arch_extension directive. */
8008
8009static void
8010s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8011{
8012 char saved_char;
8013 char *ext = input_line_pointer;;
8014
8015 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8016 input_line_pointer++;
8017 saved_char = *input_line_pointer;
8018 *input_line_pointer = 0;
8019
8020 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8021 return;
8022
8023 cpu_variant = *mcpu_cpu_opt;
8024
8025 *input_line_pointer = saved_char;
8026 demand_empty_rest_of_line ();
8027}
8028
a06ea964
NC
8029/* Copy symbol information. */
8030
8031void
8032aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8033{
8034 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8035}