]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
gas/
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b
AM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
b99bd4ef 28#include <string.h>
c19d1205 29#define NO_RELOC 0
b99bd4ef 30#include "as.h"
3882b010 31#include "safe-ctype.h"
b99bd4ef
NC
32
33/* Need TARGET_CPU. */
34#include "config.h"
35#include "subsegs.h"
36#include "obstack.h"
37#include "symbols.h"
38#include "listing.h"
39
f263249b
RE
40#include "opcode/arm.h"
41
b99bd4ef
NC
42#ifdef OBJ_ELF
43#include "elf/arm.h"
44#include "dwarf2dbg.h"
a394c00f 45#include "dw2gencfi.h"
b99bd4ef
NC
46#endif
47
7ed4c4c5 48/* XXX Set this to 1 after the next binutils release. */
03b1477f
RE
49#define WARN_DEPRECATED 0
50
7ed4c4c5
NC
51#ifdef OBJ_ELF
52/* Must be at least the size of the largest unwind opcode (currently two). */
53#define ARM_OPCODE_CHUNK_SIZE 8
54
55/* This structure holds the unwinding state. */
56
57static struct
58{
c19d1205
ZW
59 symbolS * proc_start;
60 symbolS * table_entry;
61 symbolS * personality_routine;
62 int personality_index;
7ed4c4c5 63 /* The segment containing the function. */
c19d1205
ZW
64 segT saved_seg;
65 subsegT saved_subseg;
7ed4c4c5
NC
66 /* Opcodes generated from this function. */
67 unsigned char * opcodes;
c19d1205
ZW
68 int opcode_count;
69 int opcode_alloc;
7ed4c4c5 70 /* The number of bytes pushed to the stack. */
c19d1205 71 offsetT frame_size;
7ed4c4c5
NC
72 /* We don't add stack adjustment opcodes immediately so that we can merge
73 multiple adjustments. We can also omit the final adjustment
74 when using a frame pointer. */
c19d1205 75 offsetT pending_offset;
7ed4c4c5 76 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
77 hold the reg+offset to use when restoring sp from a frame pointer. */
78 offsetT fp_offset;
79 int fp_reg;
7ed4c4c5 80 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 81 unsigned fp_used:1;
7ed4c4c5 82 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 83 unsigned sp_restored:1;
7ed4c4c5
NC
84} unwind;
85
84798bd6
JB
86/* Bit N indicates that an R_ARM_NONE relocation has been output for
87 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
88 emitted only once per section, to save unnecessary bloat. */
89static unsigned int marked_pr_dependency = 0;
90
7ed4c4c5
NC
91#endif /* OBJ_ELF */
92
33a392fb
PB
93enum arm_float_abi
94{
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98};
99
c19d1205 100/* Types of processor to assemble for. */
b89dddec
RE
101#define ARM_1 ARM_ARCH_V1
102#define ARM_2 ARM_ARCH_V2
103#define ARM_3 ARM_ARCH_V2S
104#define ARM_250 ARM_ARCH_V2S
105#define ARM_6 ARM_ARCH_V3
106#define ARM_7 ARM_ARCH_V3
107#define ARM_8 ARM_ARCH_V4
108#define ARM_9 ARM_ARCH_V4T
109#define ARM_STRONG ARM_ARCH_V4
c19d1205 110#define ARM_CPU_MASK 0x0000000f /* XXX? */
b99bd4ef
NC
111
112#ifndef CPU_DEFAULT
113#if defined __XSCALE__
b89dddec 114#define CPU_DEFAULT (ARM_ARCH_XSCALE)
b99bd4ef
NC
115#else
116#if defined __thumb__
c19d1205 117#define CPU_DEFAULT (ARM_ARCH_V5T)
b99bd4ef 118#else
c19d1205 119#define CPU_DEFAULT ARM_ANY
b99bd4ef
NC
120#endif
121#endif
122#endif
123
124#ifndef FPU_DEFAULT
c820d418
MM
125# ifdef TE_LINUX
126# define FPU_DEFAULT FPU_ARCH_FPA
127# elif defined (TE_NetBSD)
128# ifdef OBJ_ELF
129# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
130# else
131 /* Legacy a.out format. */
132# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
133# endif
4e7fd91e
PB
134# elif defined (TE_VXWORKS)
135# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
136# else
137 /* For backwards compatibility, default to FPA. */
138# define FPU_DEFAULT FPU_ARCH_FPA
139# endif
140#endif /* ifndef FPU_DEFAULT */
b99bd4ef 141
c19d1205 142#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 143
03b1477f 144static unsigned long cpu_variant;
b99bd4ef 145
b99bd4ef 146/* Flags stored in private area of BFD structure. */
c19d1205
ZW
147static int uses_apcs_26 = FALSE;
148static int atpcs = FALSE;
b34976b6
AM
149static int support_interwork = FALSE;
150static int uses_apcs_float = FALSE;
c19d1205 151static int pic_code = FALSE;
03b1477f
RE
152
153/* Variables that we set while parsing command-line options. Once all
154 options have been read we re-process these values to set the real
155 assembly flags. */
156static int legacy_cpu = -1;
157static int legacy_fpu = -1;
158
159static int mcpu_cpu_opt = -1;
160static int mcpu_fpu_opt = -1;
161static int march_cpu_opt = -1;
162static int march_fpu_opt = -1;
163static int mfpu_opt = -1;
33a392fb 164static int mfloat_abi_opt = -1;
7cc69913 165#ifdef OBJ_ELF
deeaaff8
DJ
166# ifdef EABI_DEFAULT
167static int meabi_flags = EABI_DEFAULT;
168# else
d507cf36 169static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 170# endif
7cc69913 171#endif
b99bd4ef 172
b99bd4ef 173#ifdef OBJ_ELF
c19d1205 174/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
175symbolS * GOT_symbol;
176#endif
177
178/* Size of relocation record. */
05d2d07e 179const int md_reloc_size = 8;
b99bd4ef
NC
180
181/* 0: assemble for ARM,
182 1: assemble for Thumb,
183 2: assemble for Thumb even though target CPU does not support thumb
184 instructions. */
185static int thumb_mode = 0;
186
c19d1205
ZW
187/* If unified_syntax is true, we are processing the new unified
188 ARM/Thumb syntax. Important differences from the old ARM mode:
189
190 - Immediate operands do not require a # prefix.
191 - Conditional affixes always appear at the end of the
192 instruction. (For backward compatibility, those instructions
193 that formerly had them in the middle, continue to accept them
194 there.)
195 - The IT instruction may appear, and if it does is validated
196 against subsequent conditional affixes. It does not generate
197 machine code.
198
199 Important differences from the old Thumb mode:
200
201 - Immediate operands do not require a # prefix.
202 - Most of the V6T2 instructions are only available in unified mode.
203 - The .N and .W suffixes are recognized and honored (it is an error
204 if they cannot be honored).
205 - All instructions set the flags if and only if they have an 's' affix.
206 - Conditional affixes may be used. They are validated against
207 preceding IT instructions. Unlike ARM mode, you cannot use a
208 conditional affix except in the scope of an IT instruction. */
209
210static bfd_boolean unified_syntax = FALSE;
b99bd4ef
NC
211
212struct arm_it
213{
c19d1205 214 const char * error;
b99bd4ef 215 unsigned long instruction;
c19d1205
ZW
216 int size;
217 int size_req;
218 int cond;
b99bd4ef
NC
219 struct
220 {
221 bfd_reloc_code_real_type type;
c19d1205
ZW
222 expressionS exp;
223 int pc_rel;
b99bd4ef 224 } reloc;
b99bd4ef 225
c19d1205
ZW
226 struct
227 {
228 unsigned reg;
229 unsigned imm;
230 unsigned present : 1; /* operand present */
231 unsigned isreg : 1; /* operand was a register */
232 unsigned immisreg : 1; /* .imm field is a second register */
233 unsigned hasreloc : 1; /* operand has relocation suffix */
234 unsigned writeback : 1; /* operand has trailing ! */
235 unsigned preind : 1; /* preindexed address */
236 unsigned postind : 1; /* postindexed address */
237 unsigned negative : 1; /* index register was negated */
238 unsigned shifted : 1; /* shift applied to operation */
239 unsigned shift_kind : 3; /* shift operation (enum shift_kind) */
240 } operands[6];
b99bd4ef
NC
241};
242
c19d1205 243static struct arm_it inst;
b99bd4ef
NC
244
245#define NUM_FLOAT_VALS 8
246
05d2d07e 247const char * fp_const[] =
b99bd4ef
NC
248{
249 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
250};
251
c19d1205 252/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
253#define MAX_LITTLENUMS 6
254
255LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
256
257#define FAIL (-1)
258#define SUCCESS (0)
259
260#define SUFF_S 1
261#define SUFF_D 2
262#define SUFF_E 3
263#define SUFF_P 4
264
c19d1205
ZW
265#define CP_T_X 0x00008000
266#define CP_T_Y 0x00400000
b99bd4ef 267
c19d1205
ZW
268#define CONDS_BIT 0x00100000
269#define LOAD_BIT 0x00100000
b99bd4ef
NC
270
271#define DOUBLE_LOAD_FLAG 0x00000001
272
273struct asm_cond
274{
c19d1205 275 const char * template;
b99bd4ef
NC
276 unsigned long value;
277};
278
c19d1205 279#define COND_ALWAYS 0xE
b99bd4ef 280
b99bd4ef
NC
281struct asm_psr
282{
b34976b6 283 const char *template;
b99bd4ef
NC
284 unsigned long field;
285};
286
2d2255b5 287/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
288#define SPSR_BIT (1 << 22)
289
c19d1205
ZW
290/* The individual PSR flag bits. */
291#define PSR_c (1 << 16)
292#define PSR_x (1 << 17)
293#define PSR_s (1 << 18)
294#define PSR_f (1 << 19)
b99bd4ef 295
c19d1205 296struct reloc_entry
bfae80f2 297{
c19d1205
ZW
298 char *name;
299 bfd_reloc_code_real_type reloc;
bfae80f2
RE
300};
301
302enum vfp_sp_reg_pos
303{
304 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn
305};
306
307enum vfp_ldstm_type
308{
309 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
310};
311
c19d1205
ZW
312/* ARM register categories. This includes coprocessor numbers and various
313 architecture extensions' registers. */
314enum arm_reg_type
bfae80f2 315{
c19d1205
ZW
316 REG_TYPE_RN,
317 REG_TYPE_CP,
318 REG_TYPE_CN,
319 REG_TYPE_FN,
320 REG_TYPE_VFS,
321 REG_TYPE_VFD,
322 REG_TYPE_VFC,
323 REG_TYPE_MVF,
324 REG_TYPE_MVD,
325 REG_TYPE_MVFX,
326 REG_TYPE_MVDX,
327 REG_TYPE_MVAX,
328 REG_TYPE_DSPSC,
329 REG_TYPE_MMXWR,
330 REG_TYPE_MMXWC,
331 REG_TYPE_MMXWCG,
332 REG_TYPE_XSCALE,
bfae80f2
RE
333};
334
6c43fab6
RE
335/* Structure for a hash table entry for a register. */
336struct reg_entry
337{
c19d1205
ZW
338 const char *name;
339 unsigned char number;
340 unsigned char type;
341 unsigned char builtin;
6c43fab6
RE
342};
343
c19d1205
ZW
344/* Diagnostics used when we don't get a register of the expected type. */
345const char *const reg_expected_msgs[] =
346{
347 N_("ARM register expected"),
348 N_("bad or missing co-processor number"),
349 N_("co-processor register expected"),
350 N_("FPA register expected"),
351 N_("VFP single precision register expected"),
352 N_("VFP double precision register expected"),
353 N_("VFP system register expected"),
354 N_("Maverick MVF register expected"),
355 N_("Maverick MVD register expected"),
356 N_("Maverick MVFX register expected"),
357 N_("Maverick MVDX register expected"),
358 N_("Maverick MVAX register expected"),
359 N_("Maverick DSPSC register expected"),
360 N_("iWMMXt data register expected"),
361 N_("iWMMXt control register expected"),
362 N_("iWMMXt scalar register expected"),
363 N_("XScale accumulator register expected"),
6c43fab6
RE
364};
365
c19d1205
ZW
366/* Some well known registers that we refer to directly elsewhere. */
367#define REG_SP 13
368#define REG_LR 14
369#define REG_PC 15
404ff6b5 370
b99bd4ef
NC
371/* ARM instructions take 4bytes in the object file, Thumb instructions
372 take 2: */
c19d1205 373#define INSN_SIZE 4
b99bd4ef
NC
374
375struct asm_opcode
376{
377 /* Basic string to match. */
c19d1205
ZW
378 const char *template;
379
380 /* Parameters to instruction. */
381 unsigned char operands[8];
382
383 /* Conditional tag - see opcode_lookup. */
384 unsigned int tag : 4;
b99bd4ef
NC
385
386 /* Basic instruction code. */
c19d1205 387 unsigned int avalue : 28;
b99bd4ef 388
c19d1205
ZW
389 /* Thumb-format instruction code. */
390 unsigned int tvalue;
b99bd4ef 391
90e4755a 392 /* Which architecture variant provides this instruction. */
c19d1205
ZW
393 unsigned long avariant;
394 unsigned long tvariant;
395
396 /* Function to call to encode instruction in ARM format. */
397 void (* aencode) (void);
b99bd4ef 398
c19d1205
ZW
399 /* Function to call to encode instruction in Thumb format. */
400 void (* tencode) (void);
b99bd4ef
NC
401};
402
a737bd4d
NC
403/* Defines for various bits that we will want to toggle. */
404#define INST_IMMEDIATE 0x02000000
405#define OFFSET_REG 0x02000000
c19d1205 406#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
407#define SHIFT_BY_REG 0x00000010
408#define PRE_INDEX 0x01000000
409#define INDEX_UP 0x00800000
410#define WRITE_BACK 0x00200000
411#define LDM_TYPE_2_OR_3 0x00400000
90e4755a 412
a737bd4d
NC
413#define LITERAL_MASK 0xf000f000
414#define OPCODE_MASK 0xfe1fffff
415#define V4_STR_BIT 0x00000020
90e4755a 416
a737bd4d 417#define DATA_OP_SHIFT 21
90e4755a 418
a737bd4d
NC
419/* Codes to distinguish the arithmetic instructions. */
420#define OPCODE_AND 0
421#define OPCODE_EOR 1
422#define OPCODE_SUB 2
423#define OPCODE_RSB 3
424#define OPCODE_ADD 4
425#define OPCODE_ADC 5
426#define OPCODE_SBC 6
427#define OPCODE_RSC 7
428#define OPCODE_TST 8
429#define OPCODE_TEQ 9
430#define OPCODE_CMP 10
431#define OPCODE_CMN 11
432#define OPCODE_ORR 12
433#define OPCODE_MOV 13
434#define OPCODE_BIC 14
435#define OPCODE_MVN 15
90e4755a 436
a737bd4d
NC
437#define T_OPCODE_MUL 0x4340
438#define T_OPCODE_TST 0x4200
439#define T_OPCODE_CMN 0x42c0
440#define T_OPCODE_NEG 0x4240
441#define T_OPCODE_MVN 0x43c0
90e4755a 442
a737bd4d
NC
443#define T_OPCODE_ADD_R3 0x1800
444#define T_OPCODE_SUB_R3 0x1a00
445#define T_OPCODE_ADD_HI 0x4400
446#define T_OPCODE_ADD_ST 0xb000
447#define T_OPCODE_SUB_ST 0xb080
448#define T_OPCODE_ADD_SP 0xa800
449#define T_OPCODE_ADD_PC 0xa000
450#define T_OPCODE_ADD_I8 0x3000
451#define T_OPCODE_SUB_I8 0x3800
452#define T_OPCODE_ADD_I3 0x1c00
453#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 454
a737bd4d
NC
455#define T_OPCODE_ASR_R 0x4100
456#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
457#define T_OPCODE_LSR_R 0x40c0
458#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
459#define T_OPCODE_ASR_I 0x1000
460#define T_OPCODE_LSL_I 0x0000
461#define T_OPCODE_LSR_I 0x0800
b99bd4ef 462
a737bd4d
NC
463#define T_OPCODE_MOV_I8 0x2000
464#define T_OPCODE_CMP_I8 0x2800
465#define T_OPCODE_CMP_LR 0x4280
466#define T_OPCODE_MOV_HR 0x4600
467#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 468
a737bd4d
NC
469#define T_OPCODE_LDR_PC 0x4800
470#define T_OPCODE_LDR_SP 0x9800
471#define T_OPCODE_STR_SP 0x9000
472#define T_OPCODE_LDR_IW 0x6800
473#define T_OPCODE_STR_IW 0x6000
474#define T_OPCODE_LDR_IH 0x8800
475#define T_OPCODE_STR_IH 0x8000
476#define T_OPCODE_LDR_IB 0x7800
477#define T_OPCODE_STR_IB 0x7000
478#define T_OPCODE_LDR_RW 0x5800
479#define T_OPCODE_STR_RW 0x5000
480#define T_OPCODE_LDR_RH 0x5a00
481#define T_OPCODE_STR_RH 0x5200
482#define T_OPCODE_LDR_RB 0x5c00
483#define T_OPCODE_STR_RB 0x5400
c9b604bd 484
a737bd4d
NC
485#define T_OPCODE_PUSH 0xb400
486#define T_OPCODE_POP 0xbc00
b99bd4ef 487
a737bd4d 488#define T_OPCODE_BRANCH 0xe7fe
b99bd4ef 489
a737bd4d 490#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 491#define THUMB_PP_PC_LR 0x0100
c19d1205
ZW
492#define THUMB_LOAD_BIT 0x0800
493
494#define BAD_ARGS _("bad arguments to instruction")
495#define BAD_PC _("r15 not allowed here")
496#define BAD_COND _("instruction cannot be conditional")
497#define BAD_OVERLAP _("registers may not be the same")
498#define BAD_HIREG _("lo register required")
499#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
500
501static struct hash_control *arm_ops_hsh;
502static struct hash_control *arm_cond_hsh;
503static struct hash_control *arm_shift_hsh;
504static struct hash_control *arm_psr_hsh;
505static struct hash_control *arm_reg_hsh;
506static struct hash_control *arm_reloc_hsh;
b99bd4ef 507
b99bd4ef
NC
508/* Stuff needed to resolve the label ambiguity
509 As:
510 ...
511 label: <insn>
512 may differ from:
513 ...
514 label:
c19d1205 515 <insn>
b99bd4ef
NC
516*/
517
518symbolS * last_label_seen;
b34976b6 519static int label_is_thumb_function_name = FALSE;
a737bd4d 520\f
3d0c9500
NC
521/* Literal pool structure. Held on a per-section
522 and per-sub-section basis. */
a737bd4d 523
c19d1205 524#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 525typedef struct literal_pool
b99bd4ef 526{
c19d1205
ZW
527 expressionS literals [MAX_LITERAL_POOL_SIZE];
528 unsigned int next_free_entry;
529 unsigned int id;
530 symbolS * symbol;
531 segT section;
532 subsegT sub_section;
61b5f74b 533 struct literal_pool * next;
3d0c9500 534} literal_pool;
b99bd4ef 535
3d0c9500
NC
536/* Pointer to a linked list of literal pools. */
537literal_pool * list_of_pools = NULL;
c19d1205
ZW
538\f
539/* Pure syntax. */
b99bd4ef 540
c19d1205
ZW
541/* This array holds the chars that always start a comment. If the
542 pre-processor is disabled, these aren't very useful. */
543const char comment_chars[] = "@";
3d0c9500 544
c19d1205
ZW
545/* This array holds the chars that only start a comment at the beginning of
546 a line. If the line seems to have the form '# 123 filename'
547 .line and .file directives will appear in the pre-processed output. */
548/* Note that input_file.c hand checks for '#' at the beginning of the
549 first line of the input file. This is because the compiler outputs
550 #NO_APP at the beginning of its output. */
551/* Also note that comments like this one will always work. */
552const char line_comment_chars[] = "#";
3d0c9500 553
c19d1205 554const char line_separator_chars[] = ";";
b99bd4ef 555
c19d1205
ZW
556/* Chars that can be used to separate mant
557 from exp in floating point numbers. */
558const char EXP_CHARS[] = "eE";
3d0c9500 559
c19d1205
ZW
560/* Chars that mean this number is a floating point constant. */
561/* As in 0f12.456 */
562/* or 0d1.2345e12 */
b99bd4ef 563
c19d1205 564const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 565
c19d1205
ZW
566/* Prefix characters that indicate the start of an immediate
567 value. */
568#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 569
c19d1205
ZW
570/* Separator character handling. */
571
572#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
573
574static inline int
575skip_past_char (char ** str, char c)
576{
577 if (**str == c)
578 {
579 (*str)++;
580 return SUCCESS;
3d0c9500 581 }
c19d1205
ZW
582 else
583 return FAIL;
584}
585#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 586
c19d1205
ZW
587/* Arithmetic expressions (possibly involving symbols). */
588
589/* Return TRUE if anything in the expression is a bignum. */
590
591static int
592walk_no_bignums (symbolS * sp)
593{
594 if (symbol_get_value_expression (sp)->X_op == O_big)
595 return 1;
596
597 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 598 {
c19d1205
ZW
599 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
600 || (symbol_get_value_expression (sp)->X_op_symbol
601 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
602 }
603
c19d1205 604 return 0;
3d0c9500
NC
605}
606
c19d1205
ZW
607static int in_my_get_expression = 0;
608
609/* Third argument to my_get_expression. */
610#define GE_NO_PREFIX 0
611#define GE_IMM_PREFIX 1
612#define GE_OPT_PREFIX 2
a737bd4d 613
b99bd4ef 614static int
c19d1205 615my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 616{
c19d1205
ZW
617 char * save_in;
618 segT seg;
b99bd4ef 619
c19d1205
ZW
620 /* In unified syntax, all prefixes are optional. */
621 if (unified_syntax)
622 prefix_mode = GE_OPT_PREFIX;
b99bd4ef 623
c19d1205 624 switch (prefix_mode)
b99bd4ef 625 {
c19d1205
ZW
626 case GE_NO_PREFIX: break;
627 case GE_IMM_PREFIX:
628 if (!is_immediate_prefix (**str))
629 {
630 inst.error = _("immediate expression requires a # prefix");
631 return FAIL;
632 }
633 (*str)++;
634 break;
635 case GE_OPT_PREFIX:
636 if (is_immediate_prefix (**str))
637 (*str)++;
638 break;
639 default: abort ();
640 }
b99bd4ef 641
c19d1205 642 memset (ep, 0, sizeof (expressionS));
b99bd4ef 643
c19d1205
ZW
644 save_in = input_line_pointer;
645 input_line_pointer = *str;
646 in_my_get_expression = 1;
647 seg = expression (ep);
648 in_my_get_expression = 0;
649
650 if (ep->X_op == O_illegal)
b99bd4ef 651 {
c19d1205
ZW
652 /* We found a bad expression in md_operand(). */
653 *str = input_line_pointer;
654 input_line_pointer = save_in;
655 if (inst.error == NULL)
656 inst.error = _("bad expression");
657 return 1;
658 }
b99bd4ef 659
c19d1205
ZW
660#ifdef OBJ_AOUT
661 if (seg != absolute_section
662 && seg != text_section
663 && seg != data_section
664 && seg != bss_section
665 && seg != undefined_section)
666 {
667 inst.error = _("bad segment");
668 *str = input_line_pointer;
669 input_line_pointer = save_in;
670 return 1;
b99bd4ef 671 }
c19d1205 672#endif
b99bd4ef 673
c19d1205
ZW
674 /* Get rid of any bignums now, so that we don't generate an error for which
675 we can't establish a line number later on. Big numbers are never valid
676 in instructions, which is where this routine is always called. */
677 if (ep->X_op == O_big
678 || (ep->X_add_symbol
679 && (walk_no_bignums (ep->X_add_symbol)
680 || (ep->X_op_symbol
681 && walk_no_bignums (ep->X_op_symbol)))))
682 {
683 inst.error = _("invalid constant");
684 *str = input_line_pointer;
685 input_line_pointer = save_in;
686 return 1;
687 }
b99bd4ef 688
c19d1205
ZW
689 *str = input_line_pointer;
690 input_line_pointer = save_in;
691 return 0;
b99bd4ef
NC
692}
693
c19d1205
ZW
694/* Turn a string in input_line_pointer into a floating point constant
695 of type TYPE, and store the appropriate bytes in *LITP. The number
696 of LITTLENUMS emitted is stored in *SIZEP. An error message is
697 returned, or NULL on OK.
b99bd4ef 698
c19d1205
ZW
699 Note that fp constants aren't represent in the normal way on the ARM.
700 In big endian mode, things are as expected. However, in little endian
701 mode fp constants are big-endian word-wise, and little-endian byte-wise
702 within the words. For example, (double) 1.1 in big endian mode is
703 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
704 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 705
c19d1205 706 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 707
c19d1205
ZW
708char *
709md_atof (int type, char * litP, int * sizeP)
710{
711 int prec;
712 LITTLENUM_TYPE words[MAX_LITTLENUMS];
713 char *t;
714 int i;
b99bd4ef 715
c19d1205
ZW
716 switch (type)
717 {
718 case 'f':
719 case 'F':
720 case 's':
721 case 'S':
722 prec = 2;
723 break;
b99bd4ef 724
c19d1205
ZW
725 case 'd':
726 case 'D':
727 case 'r':
728 case 'R':
729 prec = 4;
730 break;
b99bd4ef 731
c19d1205
ZW
732 case 'x':
733 case 'X':
734 prec = 6;
735 break;
b99bd4ef 736
c19d1205
ZW
737 case 'p':
738 case 'P':
739 prec = 6;
740 break;
a737bd4d 741
c19d1205
ZW
742 default:
743 *sizeP = 0;
744 return _("bad call to MD_ATOF()");
745 }
b99bd4ef 746
c19d1205
ZW
747 t = atof_ieee (input_line_pointer, type, words);
748 if (t)
749 input_line_pointer = t;
750 *sizeP = prec * 2;
b99bd4ef 751
c19d1205
ZW
752 if (target_big_endian)
753 {
754 for (i = 0; i < prec; i++)
755 {
756 md_number_to_chars (litP, (valueT) words[i], 2);
757 litP += 2;
758 }
759 }
760 else
761 {
762 if (cpu_variant & FPU_ARCH_VFP)
763 for (i = prec - 1; i >= 0; i--)
764 {
765 md_number_to_chars (litP, (valueT) words[i], 2);
766 litP += 2;
767 }
768 else
769 /* For a 4 byte float the order of elements in `words' is 1 0.
770 For an 8 byte float the order is 1 0 3 2. */
771 for (i = 0; i < prec; i += 2)
772 {
773 md_number_to_chars (litP, (valueT) words[i + 1], 2);
774 md_number_to_chars (litP + 2, (valueT) words[i], 2);
775 litP += 4;
776 }
777 }
b99bd4ef 778
c19d1205
ZW
779 return 0;
780}
b99bd4ef 781
c19d1205
ZW
782/* We handle all bad expressions here, so that we can report the faulty
783 instruction in the error message. */
784void
785md_operand (expressionS * expr)
786{
787 if (in_my_get_expression)
788 expr->X_op = O_illegal;
b99bd4ef
NC
789}
790
c19d1205 791/* Immediate values. */
b99bd4ef 792
c19d1205
ZW
793/* Generic immediate-value read function for use in directives.
794 Accepts anything that 'expression' can fold to a constant.
795 *val receives the number. */
796#ifdef OBJ_ELF
797static int
798immediate_for_directive (int *val)
b99bd4ef 799{
c19d1205
ZW
800 expressionS exp;
801 exp.X_op = O_illegal;
b99bd4ef 802
c19d1205
ZW
803 if (is_immediate_prefix (*input_line_pointer))
804 {
805 input_line_pointer++;
806 expression (&exp);
807 }
b99bd4ef 808
c19d1205
ZW
809 if (exp.X_op != O_constant)
810 {
811 as_bad (_("expected #constant"));
812 ignore_rest_of_line ();
813 return FAIL;
814 }
815 *val = exp.X_add_number;
816 return SUCCESS;
b99bd4ef 817}
c19d1205 818#endif
b99bd4ef 819
c19d1205 820/* Register parsing. */
b99bd4ef 821
c19d1205
ZW
822/* Generic register parser. CCP points to what should be the
823 beginning of a register name. If it is indeed a valid register
824 name, advance CCP over it and return the reg_entry structure;
825 otherwise return NULL. Does not issue diagnostics. */
826
827static struct reg_entry *
828arm_reg_parse_multi (char **ccp)
b99bd4ef 829{
c19d1205
ZW
830 char *start = *ccp;
831 char *p;
832 struct reg_entry *reg;
b99bd4ef 833
c19d1205
ZW
834#ifdef REGISTER_PREFIX
835 if (*start != REGISTER_PREFIX)
836 return FAIL;
837 start++;
838#endif
839#ifdef OPTIONAL_REGISTER_PREFIX
840 if (*start == OPTIONAL_REGISTER_PREFIX)
841 start++;
842#endif
b99bd4ef 843
c19d1205
ZW
844 p = start;
845 if (!ISALPHA (*p) || !is_name_beginner (*p))
846 return NULL;
b99bd4ef 847
c19d1205
ZW
848 do
849 p++;
850 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
851
852 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
853
854 if (!reg)
855 return NULL;
856
857 *ccp = p;
858 return reg;
b99bd4ef
NC
859}
860
c19d1205
ZW
861/* As above, but the register must be of type TYPE, and the return
862 value is the register number or NULL. */
863
b99bd4ef 864static int
c19d1205 865arm_reg_parse (char **ccp, enum arm_reg_type type)
b99bd4ef 866{
c19d1205
ZW
867 char *start = *ccp;
868 struct reg_entry *reg = arm_reg_parse_multi (ccp);
b99bd4ef 869
c19d1205
ZW
870 if (reg && reg->type == type)
871 return reg->number;
6057a28f 872
c19d1205
ZW
873 /* Alternative syntaxes are accepted for a few register classes. */
874 switch (type)
875 {
876 case REG_TYPE_MVF:
877 case REG_TYPE_MVD:
878 case REG_TYPE_MVFX:
879 case REG_TYPE_MVDX:
880 /* Generic coprocessor register names are allowed for these. */
881 if (reg->type == REG_TYPE_CN)
882 return reg->number;
883 break;
69b97547 884
c19d1205
ZW
885 case REG_TYPE_CP:
886 /* For backward compatibility, a bare number is valid here. */
887 {
888 unsigned long processor = strtoul (start, ccp, 10);
889 if (*ccp != start && processor <= 15)
890 return processor;
891 }
6057a28f 892
c19d1205
ZW
893 case REG_TYPE_MMXWC:
894 /* WC includes WCG. ??? I'm not sure this is true for all
895 instructions that take WC registers. */
896 if (reg->type == REG_TYPE_MMXWCG)
897 return reg->number;
6057a28f 898 break;
c19d1205 899
6057a28f 900 default:
c19d1205 901 break;
6057a28f
NC
902 }
903
c19d1205
ZW
904 *ccp = start;
905 return FAIL;
906}
69b97547 907
c19d1205
ZW
908/* Parse an ARM register list. Returns the bitmask, or FAIL. */
909static long
910parse_reg_list (char ** strp)
911{
912 char * str = * strp;
913 long range = 0;
914 int another_range;
a737bd4d 915
c19d1205
ZW
916 /* We come back here if we get ranges concatenated by '+' or '|'. */
917 do
6057a28f 918 {
c19d1205 919 another_range = 0;
a737bd4d 920
c19d1205
ZW
921 if (*str == '{')
922 {
923 int in_range = 0;
924 int cur_reg = -1;
a737bd4d 925
c19d1205
ZW
926 str++;
927 do
928 {
929 int reg;
6057a28f 930
c19d1205
ZW
931 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
932 {
933 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
934 return FAIL;
935 }
a737bd4d 936
c19d1205
ZW
937 if (in_range)
938 {
939 int i;
a737bd4d 940
c19d1205
ZW
941 if (reg <= cur_reg)
942 {
943 inst.error = _("bad range in register list");
944 return FAIL;
945 }
40a18ebd 946
c19d1205
ZW
947 for (i = cur_reg + 1; i < reg; i++)
948 {
949 if (range & (1 << i))
950 as_tsktsk
951 (_("Warning: duplicated register (r%d) in register list"),
952 i);
953 else
954 range |= 1 << i;
955 }
956 in_range = 0;
957 }
a737bd4d 958
c19d1205
ZW
959 if (range & (1 << reg))
960 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
961 reg);
962 else if (reg <= cur_reg)
963 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 964
c19d1205
ZW
965 range |= 1 << reg;
966 cur_reg = reg;
967 }
968 while (skip_past_comma (&str) != FAIL
969 || (in_range = 1, *str++ == '-'));
970 str--;
a737bd4d 971
c19d1205
ZW
972 if (*str++ != '}')
973 {
974 inst.error = _("missing `}'");
975 return FAIL;
976 }
977 }
978 else
979 {
980 expressionS expr;
40a18ebd 981
c19d1205
ZW
982 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
983 return FAIL;
40a18ebd 984
c19d1205
ZW
985 if (expr.X_op == O_constant)
986 {
987 if (expr.X_add_number
988 != (expr.X_add_number & 0x0000ffff))
989 {
990 inst.error = _("invalid register mask");
991 return FAIL;
992 }
a737bd4d 993
c19d1205
ZW
994 if ((range & expr.X_add_number) != 0)
995 {
996 int regno = range & expr.X_add_number;
a737bd4d 997
c19d1205
ZW
998 regno &= -regno;
999 regno = (1 << regno) - 1;
1000 as_tsktsk
1001 (_("Warning: duplicated register (r%d) in register list"),
1002 regno);
1003 }
a737bd4d 1004
c19d1205
ZW
1005 range |= expr.X_add_number;
1006 }
1007 else
1008 {
1009 if (inst.reloc.type != 0)
1010 {
1011 inst.error = _("expression too complex");
1012 return FAIL;
1013 }
a737bd4d 1014
c19d1205
ZW
1015 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1016 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1017 inst.reloc.pc_rel = 0;
1018 }
1019 }
a737bd4d 1020
c19d1205
ZW
1021 if (*str == '|' || *str == '+')
1022 {
1023 str++;
1024 another_range = 1;
1025 }
a737bd4d 1026 }
c19d1205 1027 while (another_range);
a737bd4d 1028
c19d1205
ZW
1029 *strp = str;
1030 return range;
a737bd4d
NC
1031}
1032
c19d1205
ZW
1033/* Parse a VFP register list. If the string is invalid return FAIL.
1034 Otherwise return the number of registers, and set PBASE to the first
1035 register. Double precision registers are matched if DP is nonzero. */
6057a28f 1036
c19d1205
ZW
1037static int
1038parse_vfp_reg_list (char **str, int *pbase, int dp)
6057a28f 1039{
c19d1205
ZW
1040 int base_reg;
1041 int new_base;
1042 int regtype;
1043 int max_regs;
1044 int count = 0;
1045 int warned = 0;
1046 unsigned long mask = 0;
a737bd4d 1047 int i;
6057a28f 1048
c19d1205
ZW
1049 if (**str != '{')
1050 return FAIL;
6057a28f 1051
c19d1205 1052 (*str)++;
6057a28f 1053
c19d1205 1054 if (dp)
a737bd4d 1055 {
c19d1205
ZW
1056 regtype = REG_TYPE_VFD;
1057 max_regs = 16;
1058 }
1059 else
1060 {
1061 regtype = REG_TYPE_VFS;
1062 max_regs = 32;
1063 }
6057a28f 1064
c19d1205 1065 base_reg = max_regs;
a737bd4d 1066
c19d1205
ZW
1067 do
1068 {
1069 new_base = arm_reg_parse (str, regtype);
1070 if (new_base == FAIL)
a737bd4d 1071 {
c19d1205
ZW
1072 inst.error = gettext (reg_expected_msgs[regtype]);
1073 return FAIL;
1074 }
a737bd4d 1075
c19d1205
ZW
1076 if (new_base < base_reg)
1077 base_reg = new_base;
a737bd4d 1078
c19d1205
ZW
1079 if (mask & (1 << new_base))
1080 {
1081 inst.error = _("invalid register list");
1082 return FAIL;
a737bd4d 1083 }
a737bd4d 1084
c19d1205
ZW
1085 if ((mask >> new_base) != 0 && ! warned)
1086 {
1087 as_tsktsk (_("register list not in ascending order"));
1088 warned = 1;
1089 }
0bbf2aa4 1090
c19d1205
ZW
1091 mask |= 1 << new_base;
1092 count++;
0bbf2aa4 1093
c19d1205
ZW
1094 if (**str == '-') /* We have the start of a range expression */
1095 {
1096 int high_range;
0bbf2aa4 1097
c19d1205 1098 (*str)++;
0bbf2aa4 1099
c19d1205
ZW
1100 if ((high_range = arm_reg_parse (str, regtype)) == FAIL)
1101 {
1102 inst.error = gettext (reg_expected_msgs[regtype]);
1103 return FAIL;
1104 }
0bbf2aa4 1105
c19d1205
ZW
1106 if (high_range <= new_base)
1107 {
1108 inst.error = _("register range not in ascending order");
1109 return FAIL;
1110 }
0bbf2aa4 1111
c19d1205 1112 for (new_base++; new_base <= high_range; new_base++)
0bbf2aa4 1113 {
c19d1205 1114 if (mask & (1 << new_base))
0bbf2aa4 1115 {
c19d1205
ZW
1116 inst.error = _("invalid register list");
1117 return FAIL;
0bbf2aa4 1118 }
c19d1205
ZW
1119
1120 mask |= 1 << new_base;
1121 count++;
0bbf2aa4 1122 }
0bbf2aa4 1123 }
0bbf2aa4 1124 }
c19d1205 1125 while (skip_past_comma (str) != FAIL);
0bbf2aa4 1126
c19d1205 1127 (*str)++;
0bbf2aa4 1128
c19d1205
ZW
1129 /* Sanity check -- should have raised a parse error above. */
1130 if (count == 0 || count > max_regs)
1131 abort ();
1132
1133 *pbase = base_reg;
1134
1135 /* Final test -- the registers must be consecutive. */
1136 mask >>= base_reg;
1137 for (i = 0; i < count; i++)
1138 {
1139 if ((mask & (1u << i)) == 0)
1140 {
1141 inst.error = _("non-contiguous register range");
1142 return FAIL;
1143 }
1144 }
1145
1146 return count;
b99bd4ef
NC
1147}
1148
c19d1205
ZW
1149/* Parse an explicit relocation suffix on an expression. This is
1150 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1151 arm_reloc_hsh contains no entries, so this function can only
1152 succeed if there is no () after the word. Returns -1 on error,
1153 BFD_RELOC_UNUSED if there wasn't any suffix. */
1154static int
1155parse_reloc (char **str)
b99bd4ef 1156{
c19d1205
ZW
1157 struct reloc_entry *r;
1158 char *p, *q;
b99bd4ef 1159
c19d1205
ZW
1160 if (**str != '(')
1161 return BFD_RELOC_UNUSED;
b99bd4ef 1162
c19d1205
ZW
1163 p = *str + 1;
1164 q = p;
1165
1166 while (*q && *q != ')' && *q != ',')
1167 q++;
1168 if (*q != ')')
1169 return -1;
1170
1171 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1172 return -1;
1173
1174 *str = q + 1;
1175 return r->reloc;
b99bd4ef
NC
1176}
1177
c19d1205
ZW
1178/* Directives: register aliases. */
1179
b99bd4ef 1180static void
c19d1205 1181insert_reg_alias (char *str, int number, int type)
b99bd4ef 1182{
c19d1205
ZW
1183 struct reg_entry *new;
1184 const char *name;
b99bd4ef 1185
c19d1205
ZW
1186 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1187 {
1188 if (new->builtin)
1189 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1190
c19d1205
ZW
1191 /* Only warn about a redefinition if it's not defined as the
1192 same register. */
1193 else if (new->number != number || new->type != type)
1194 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1195
c19d1205
ZW
1196 return;
1197 }
b99bd4ef 1198
c19d1205
ZW
1199 name = xstrdup (str);
1200 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1201
c19d1205
ZW
1202 new->name = name;
1203 new->number = number;
1204 new->type = type;
1205 new->builtin = FALSE;
b99bd4ef 1206
c19d1205
ZW
1207 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1208 abort ();
1209}
b99bd4ef 1210
c19d1205 1211/* Look for the .req directive. This is of the form:
b99bd4ef 1212
c19d1205 1213 new_register_name .req existing_register_name
b99bd4ef 1214
c19d1205
ZW
1215 If we find one, or if it looks sufficiently like one that we want to
1216 handle any error here, return non-zero. Otherwise return zero. */
b99bd4ef 1217
c19d1205
ZW
1218static int
1219create_register_alias (char * newname, char *p)
1220{
1221 struct reg_entry *old;
1222 char *oldname, *nbuf;
1223 size_t nlen;
b99bd4ef 1224
c19d1205
ZW
1225 /* The input scrubber ensures that whitespace after the mnemonic is
1226 collapsed to single spaces. */
1227 oldname = p;
1228 if (strncmp (oldname, " .req ", 6) != 0)
1229 return 0;
b99bd4ef 1230
c19d1205
ZW
1231 oldname += 6;
1232 if (*oldname == '\0')
1233 return 0;
b99bd4ef 1234
c19d1205
ZW
1235 old = hash_find (arm_reg_hsh, oldname);
1236 if (!old)
b99bd4ef 1237 {
c19d1205
ZW
1238 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1239 return 1;
b99bd4ef
NC
1240 }
1241
c19d1205
ZW
1242 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1243 the desired alias name, and p points to its end. If not, then
1244 the desired alias name is in the global original_case_string. */
1245#ifdef TC_CASE_SENSITIVE
1246 nlen = p - newname;
1247#else
1248 newname = original_case_string;
1249 nlen = strlen (newname);
1250#endif
b99bd4ef 1251
c19d1205
ZW
1252 nbuf = alloca (nlen + 1);
1253 memcpy (nbuf, newname, nlen);
1254 nbuf[nlen] = '\0';
b99bd4ef 1255
c19d1205
ZW
1256 /* Create aliases under the new name as stated; an all-lowercase
1257 version of the new name; and an all-uppercase version of the new
1258 name. */
1259 insert_reg_alias (nbuf, old->number, old->type);
b99bd4ef 1260
c19d1205
ZW
1261 for (p = nbuf; *p; p++)
1262 *p = TOUPPER (*p);
1263
1264 if (strncmp (nbuf, newname, nlen))
1265 insert_reg_alias (nbuf, old->number, old->type);
1266
1267 for (p = nbuf; *p; p++)
1268 *p = TOLOWER (*p);
1269
1270 if (strncmp (nbuf, newname, nlen))
1271 insert_reg_alias (nbuf, old->number, old->type);
1272
1273 return 1;
b99bd4ef
NC
1274}
1275
c19d1205
ZW
1276/* Should never be called, as .req goes between the alias and the
1277 register name, not at the beginning of the line. */
b99bd4ef 1278static void
c19d1205 1279s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 1280{
c19d1205
ZW
1281 as_bad (_("invalid syntax for .req directive"));
1282}
b99bd4ef 1283
c19d1205
ZW
1284/* The .unreq directive deletes an alias which was previously defined
1285 by .req. For example:
b99bd4ef 1286
c19d1205
ZW
1287 my_alias .req r11
1288 .unreq my_alias */
b99bd4ef
NC
1289
1290static void
c19d1205 1291s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 1292{
c19d1205
ZW
1293 char * name;
1294 char saved_char;
b99bd4ef 1295
c19d1205
ZW
1296 name = input_line_pointer;
1297
1298 while (*input_line_pointer != 0
1299 && *input_line_pointer != ' '
1300 && *input_line_pointer != '\n')
1301 ++input_line_pointer;
1302
1303 saved_char = *input_line_pointer;
1304 *input_line_pointer = 0;
1305
1306 if (!*name)
1307 as_bad (_("invalid syntax for .unreq directive"));
1308 else
1309 {
1310 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
1311
1312 if (!reg)
1313 as_bad (_("unknown register alias '%s'"), name);
1314 else if (reg->builtin)
1315 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1316 name);
1317 else
1318 {
1319 hash_delete (arm_reg_hsh, name);
1320 free ((char *) reg->name);
1321 free (reg);
1322 }
1323 }
b99bd4ef 1324
c19d1205 1325 *input_line_pointer = saved_char;
b99bd4ef
NC
1326 demand_empty_rest_of_line ();
1327}
1328
c19d1205
ZW
1329/* Directives: Instruction set selection. */
1330
1331#ifdef OBJ_ELF
1332/* This code is to handle mapping symbols as defined in the ARM ELF spec.
1333 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
1334 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1335 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1336
1337static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef
NC
1338
1339static void
c19d1205 1340mapping_state (enum mstate state)
b99bd4ef 1341{
a737bd4d 1342 symbolS * symbolP;
c19d1205
ZW
1343 const char * symname;
1344 int type;
b99bd4ef 1345
c19d1205
ZW
1346 if (mapstate == state)
1347 /* The mapping symbol has already been emitted.
1348 There is nothing else to do. */
1349 return;
b99bd4ef 1350
c19d1205 1351 mapstate = state;
b99bd4ef 1352
c19d1205 1353 switch (state)
b99bd4ef 1354 {
c19d1205
ZW
1355 case MAP_DATA:
1356 symname = "$d";
1357 type = BSF_NO_FLAGS;
1358 break;
1359 case MAP_ARM:
1360 symname = "$a";
1361 type = BSF_NO_FLAGS;
1362 break;
1363 case MAP_THUMB:
1364 symname = "$t";
1365 type = BSF_NO_FLAGS;
1366 break;
1367 case MAP_UNDEFINED:
1368 return;
1369 default:
1370 abort ();
1371 }
1372
1373 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1374
1375 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
1376 symbol_table_insert (symbolP);
1377 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1378
1379 switch (state)
1380 {
1381 case MAP_ARM:
1382 THUMB_SET_FUNC (symbolP, 0);
1383 ARM_SET_THUMB (symbolP, 0);
1384 ARM_SET_INTERWORK (symbolP, support_interwork);
1385 break;
1386
1387 case MAP_THUMB:
1388 THUMB_SET_FUNC (symbolP, 1);
1389 ARM_SET_THUMB (symbolP, 1);
1390 ARM_SET_INTERWORK (symbolP, support_interwork);
1391 break;
1392
1393 case MAP_DATA:
1394 default:
1395 return;
1396 }
1397}
1398#else
1399#define mapping_state(x) /* nothing */
1400#endif
1401
1402/* Find the real, Thumb encoded start of a Thumb function. */
1403
1404static symbolS *
1405find_real_start (symbolS * symbolP)
1406{
1407 char * real_start;
1408 const char * name = S_GET_NAME (symbolP);
1409 symbolS * new_target;
1410
1411 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
1412#define STUB_NAME ".real_start_of"
1413
1414 if (name == NULL)
1415 abort ();
1416
1417 /* Names that start with '.' are local labels, not function entry points.
1418 The compiler may generate BL instructions to these labels because it
1419 needs to perform a branch to a far away location. */
1420 if (name[0] == '.')
1421 return symbolP;
1422
1423 real_start = malloc (strlen (name) + strlen (STUB_NAME) + 1);
1424 sprintf (real_start, "%s%s", STUB_NAME, name);
1425
1426 new_target = symbol_find (real_start);
1427
1428 if (new_target == NULL)
1429 {
1430 as_warn ("Failed to find real start of function: %s\n", name);
1431 new_target = symbolP;
1432 }
1433
1434 free (real_start);
1435
1436 return new_target;
1437}
1438
1439static void
1440opcode_select (int width)
1441{
1442 switch (width)
1443 {
1444 case 16:
1445 if (! thumb_mode)
1446 {
1447 if (! (cpu_variant & ARM_EXT_V4T))
1448 as_bad (_("selected processor does not support THUMB opcodes"));
1449
1450 thumb_mode = 1;
1451 /* No need to force the alignment, since we will have been
1452 coming from ARM mode, which is word-aligned. */
1453 record_alignment (now_seg, 1);
1454 }
1455 mapping_state (MAP_THUMB);
1456 break;
1457
1458 case 32:
1459 if (thumb_mode)
1460 {
1461 if ((cpu_variant & ARM_ALL) == ARM_EXT_V4T)
1462 as_bad (_("selected processor does not support ARM opcodes"));
1463
1464 thumb_mode = 0;
1465
1466 if (!need_pass_2)
1467 frag_align (2, 0, 0);
1468
1469 record_alignment (now_seg, 1);
1470 }
1471 mapping_state (MAP_ARM);
1472 break;
1473
1474 default:
1475 as_bad (_("invalid instruction size selected (%d)"), width);
1476 }
1477}
1478
1479static void
1480s_arm (int ignore ATTRIBUTE_UNUSED)
1481{
1482 opcode_select (32);
1483 demand_empty_rest_of_line ();
1484}
1485
1486static void
1487s_thumb (int ignore ATTRIBUTE_UNUSED)
1488{
1489 opcode_select (16);
1490 demand_empty_rest_of_line ();
1491}
1492
1493static void
1494s_code (int unused ATTRIBUTE_UNUSED)
1495{
1496 int temp;
1497
1498 temp = get_absolute_expression ();
1499 switch (temp)
1500 {
1501 case 16:
1502 case 32:
1503 opcode_select (temp);
1504 break;
1505
1506 default:
1507 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
1508 }
1509}
1510
1511static void
1512s_force_thumb (int ignore ATTRIBUTE_UNUSED)
1513{
1514 /* If we are not already in thumb mode go into it, EVEN if
1515 the target processor does not support thumb instructions.
1516 This is used by gcc/config/arm/lib1funcs.asm for example
1517 to compile interworking support functions even if the
1518 target processor should not support interworking. */
1519 if (! thumb_mode)
1520 {
1521 thumb_mode = 2;
1522 record_alignment (now_seg, 1);
1523 }
1524
1525 demand_empty_rest_of_line ();
1526}
1527
1528static void
1529s_thumb_func (int ignore ATTRIBUTE_UNUSED)
1530{
1531 s_thumb (0);
1532
1533 /* The following label is the name/address of the start of a Thumb function.
1534 We need to know this for the interworking support. */
1535 label_is_thumb_function_name = TRUE;
1536}
1537
1538/* Perform a .set directive, but also mark the alias as
1539 being a thumb function. */
1540
1541static void
1542s_thumb_set (int equiv)
1543{
1544 /* XXX the following is a duplicate of the code for s_set() in read.c
1545 We cannot just call that code as we need to get at the symbol that
1546 is created. */
1547 char * name;
1548 char delim;
1549 char * end_name;
1550 symbolS * symbolP;
1551
1552 /* Especial apologies for the random logic:
1553 This just grew, and could be parsed much more simply!
1554 Dean - in haste. */
1555 name = input_line_pointer;
1556 delim = get_symbol_end ();
1557 end_name = input_line_pointer;
1558 *end_name = delim;
1559
1560 if (*input_line_pointer != ',')
1561 {
1562 *end_name = 0;
1563 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
1564 *end_name = delim;
1565 ignore_rest_of_line ();
1566 return;
1567 }
1568
1569 input_line_pointer++;
1570 *end_name = 0;
1571
1572 if (name[0] == '.' && name[1] == '\0')
1573 {
1574 /* XXX - this should not happen to .thumb_set. */
1575 abort ();
1576 }
1577
1578 if ((symbolP = symbol_find (name)) == NULL
1579 && (symbolP = md_undefined_symbol (name)) == NULL)
1580 {
1581#ifndef NO_LISTING
1582 /* When doing symbol listings, play games with dummy fragments living
1583 outside the normal fragment chain to record the file and line info
c19d1205 1584 for this symbol. */
b99bd4ef
NC
1585 if (listing & LISTING_SYMBOLS)
1586 {
1587 extern struct list_info_struct * listing_tail;
a737bd4d 1588 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
1589
1590 memset (dummy_frag, 0, sizeof (fragS));
1591 dummy_frag->fr_type = rs_fill;
1592 dummy_frag->line = listing_tail;
1593 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
1594 dummy_frag->fr_symbol = symbolP;
1595 }
1596 else
1597#endif
1598 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
1599
1600#ifdef OBJ_COFF
1601 /* "set" symbols are local unless otherwise specified. */
1602 SF_SET_LOCAL (symbolP);
1603#endif /* OBJ_COFF */
1604 } /* Make a new symbol. */
1605
1606 symbol_table_insert (symbolP);
1607
1608 * end_name = delim;
1609
1610 if (equiv
1611 && S_IS_DEFINED (symbolP)
1612 && S_GET_SEGMENT (symbolP) != reg_section)
1613 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
1614
1615 pseudo_set (symbolP);
1616
1617 demand_empty_rest_of_line ();
1618
c19d1205 1619 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
1620
1621 THUMB_SET_FUNC (symbolP, 1);
1622 ARM_SET_THUMB (symbolP, 1);
1623#if defined OBJ_ELF || defined OBJ_COFF
1624 ARM_SET_INTERWORK (symbolP, support_interwork);
1625#endif
1626}
1627
c19d1205 1628/* Directives: Mode selection. */
b99bd4ef 1629
c19d1205
ZW
1630/* .syntax [unified|divided] - choose the new unified syntax
1631 (same for Arm and Thumb encoding, modulo slight differences in what
1632 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 1633static void
c19d1205 1634s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 1635{
c19d1205
ZW
1636 char *name, delim;
1637
1638 name = input_line_pointer;
1639 delim = get_symbol_end ();
1640
1641 if (!strcasecmp (name, "unified"))
1642 unified_syntax = TRUE;
1643 else if (!strcasecmp (name, "divided"))
1644 unified_syntax = FALSE;
1645 else
1646 {
1647 as_bad (_("unrecognized syntax mode \"%s\""), name);
1648 return;
1649 }
1650 *input_line_pointer = delim;
b99bd4ef
NC
1651 demand_empty_rest_of_line ();
1652}
1653
c19d1205
ZW
1654/* Directives: sectioning and alignment. */
1655
1656/* Same as s_align_ptwo but align 0 => align 2. */
1657
b99bd4ef 1658static void
c19d1205 1659s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 1660{
a737bd4d 1661 int temp;
c19d1205
ZW
1662 long temp_fill;
1663 long max_alignment = 15;
b99bd4ef
NC
1664
1665 temp = get_absolute_expression ();
c19d1205
ZW
1666 if (temp > max_alignment)
1667 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
1668 else if (temp < 0)
b99bd4ef 1669 {
c19d1205
ZW
1670 as_bad (_("alignment negative. 0 assumed."));
1671 temp = 0;
1672 }
b99bd4ef 1673
c19d1205
ZW
1674 if (*input_line_pointer == ',')
1675 {
1676 input_line_pointer++;
1677 temp_fill = get_absolute_expression ();
b99bd4ef 1678 }
c19d1205
ZW
1679 else
1680 temp_fill = 0;
b99bd4ef 1681
c19d1205
ZW
1682 if (!temp)
1683 temp = 2;
b99bd4ef 1684
c19d1205
ZW
1685 /* Only make a frag if we HAVE to. */
1686 if (temp && !need_pass_2)
1687 frag_align (temp, (int) temp_fill, 0);
1688 demand_empty_rest_of_line ();
1689
1690 record_alignment (now_seg, temp);
b99bd4ef
NC
1691}
1692
c19d1205
ZW
1693static void
1694s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 1695{
c19d1205
ZW
1696 /* We don't support putting frags in the BSS segment, we fake it by
1697 marking in_bss, then looking at s_skip for clues. */
1698 subseg_set (bss_section, 0);
1699 demand_empty_rest_of_line ();
1700 mapping_state (MAP_DATA);
1701}
b99bd4ef 1702
c19d1205
ZW
1703static void
1704s_even (int ignore ATTRIBUTE_UNUSED)
1705{
1706 /* Never make frag if expect extra pass. */
1707 if (!need_pass_2)
1708 frag_align (1, 0, 0);
b99bd4ef 1709
c19d1205 1710 record_alignment (now_seg, 1);
b99bd4ef 1711
c19d1205 1712 demand_empty_rest_of_line ();
b99bd4ef
NC
1713}
1714
c19d1205 1715/* Directives: Literal pools. */
a737bd4d 1716
c19d1205
ZW
1717static literal_pool *
1718find_literal_pool (void)
a737bd4d 1719{
c19d1205 1720 literal_pool * pool;
a737bd4d 1721
c19d1205 1722 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 1723 {
c19d1205
ZW
1724 if (pool->section == now_seg
1725 && pool->sub_section == now_subseg)
1726 break;
a737bd4d
NC
1727 }
1728
c19d1205 1729 return pool;
a737bd4d
NC
1730}
1731
c19d1205
ZW
1732static literal_pool *
1733find_or_make_literal_pool (void)
a737bd4d 1734{
c19d1205
ZW
1735 /* Next literal pool ID number. */
1736 static unsigned int latest_pool_num = 1;
1737 literal_pool * pool;
a737bd4d 1738
c19d1205 1739 pool = find_literal_pool ();
a737bd4d 1740
c19d1205 1741 if (pool == NULL)
a737bd4d 1742 {
c19d1205
ZW
1743 /* Create a new pool. */
1744 pool = xmalloc (sizeof (* pool));
1745 if (! pool)
1746 return NULL;
a737bd4d 1747
c19d1205
ZW
1748 pool->next_free_entry = 0;
1749 pool->section = now_seg;
1750 pool->sub_section = now_subseg;
1751 pool->next = list_of_pools;
1752 pool->symbol = NULL;
1753
1754 /* Add it to the list. */
1755 list_of_pools = pool;
a737bd4d 1756 }
a737bd4d 1757
c19d1205
ZW
1758 /* New pools, and emptied pools, will have a NULL symbol. */
1759 if (pool->symbol == NULL)
a737bd4d 1760 {
c19d1205
ZW
1761 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1762 (valueT) 0, &zero_address_frag);
1763 pool->id = latest_pool_num ++;
a737bd4d
NC
1764 }
1765
c19d1205
ZW
1766 /* Done. */
1767 return pool;
a737bd4d
NC
1768}
1769
c19d1205
ZW
1770/* Add the literal in the global 'inst'
1771 structure to the relevent literal pool. */
b99bd4ef
NC
1772
1773static int
c19d1205 1774add_to_lit_pool (void)
b99bd4ef 1775{
c19d1205
ZW
1776 literal_pool * pool;
1777 unsigned int entry;
b99bd4ef 1778
c19d1205
ZW
1779 pool = find_or_make_literal_pool ();
1780
1781 /* Check if this literal value is already in the pool. */
1782 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 1783 {
c19d1205
ZW
1784 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1785 && (inst.reloc.exp.X_op == O_constant)
1786 && (pool->literals[entry].X_add_number
1787 == inst.reloc.exp.X_add_number)
1788 && (pool->literals[entry].X_unsigned
1789 == inst.reloc.exp.X_unsigned))
1790 break;
1791
1792 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1793 && (inst.reloc.exp.X_op == O_symbol)
1794 && (pool->literals[entry].X_add_number
1795 == inst.reloc.exp.X_add_number)
1796 && (pool->literals[entry].X_add_symbol
1797 == inst.reloc.exp.X_add_symbol)
1798 && (pool->literals[entry].X_op_symbol
1799 == inst.reloc.exp.X_op_symbol))
1800 break;
b99bd4ef
NC
1801 }
1802
c19d1205
ZW
1803 /* Do we need to create a new entry? */
1804 if (entry == pool->next_free_entry)
1805 {
1806 if (entry >= MAX_LITERAL_POOL_SIZE)
1807 {
1808 inst.error = _("literal pool overflow");
1809 return FAIL;
1810 }
1811
1812 pool->literals[entry] = inst.reloc.exp;
1813 pool->next_free_entry += 1;
1814 }
b99bd4ef 1815
c19d1205
ZW
1816 inst.reloc.exp.X_op = O_symbol;
1817 inst.reloc.exp.X_add_number = ((int) entry) * 4;
1818 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 1819
c19d1205 1820 return SUCCESS;
b99bd4ef
NC
1821}
1822
c19d1205
ZW
1823/* Can't use symbol_new here, so have to create a symbol and then at
1824 a later date assign it a value. Thats what these functions do. */
e16bb312 1825
c19d1205
ZW
1826static void
1827symbol_locate (symbolS * symbolP,
1828 const char * name, /* It is copied, the caller can modify. */
1829 segT segment, /* Segment identifier (SEG_<something>). */
1830 valueT valu, /* Symbol value. */
1831 fragS * frag) /* Associated fragment. */
1832{
1833 unsigned int name_length;
1834 char * preserved_copy_of_name;
e16bb312 1835
c19d1205
ZW
1836 name_length = strlen (name) + 1; /* +1 for \0. */
1837 obstack_grow (&notes, name, name_length);
1838 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 1839
c19d1205
ZW
1840#ifdef tc_canonicalize_symbol_name
1841 preserved_copy_of_name =
1842 tc_canonicalize_symbol_name (preserved_copy_of_name);
1843#endif
b99bd4ef 1844
c19d1205 1845 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 1846
c19d1205
ZW
1847 S_SET_SEGMENT (symbolP, segment);
1848 S_SET_VALUE (symbolP, valu);
1849 symbol_clear_list_pointers (symbolP);
b99bd4ef 1850
c19d1205 1851 symbol_set_frag (symbolP, frag);
b99bd4ef 1852
c19d1205
ZW
1853 /* Link to end of symbol chain. */
1854 {
1855 extern int symbol_table_frozen;
b99bd4ef 1856
c19d1205
ZW
1857 if (symbol_table_frozen)
1858 abort ();
1859 }
b99bd4ef 1860
c19d1205 1861 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 1862
c19d1205 1863 obj_symbol_new_hook (symbolP);
b99bd4ef 1864
c19d1205
ZW
1865#ifdef tc_symbol_new_hook
1866 tc_symbol_new_hook (symbolP);
1867#endif
1868
1869#ifdef DEBUG_SYMS
1870 verify_symbol_chain (symbol_rootP, symbol_lastP);
1871#endif /* DEBUG_SYMS */
b99bd4ef
NC
1872}
1873
b99bd4ef 1874
c19d1205
ZW
1875static void
1876s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 1877{
c19d1205
ZW
1878 unsigned int entry;
1879 literal_pool * pool;
1880 char sym_name[20];
b99bd4ef 1881
c19d1205
ZW
1882 pool = find_literal_pool ();
1883 if (pool == NULL
1884 || pool->symbol == NULL
1885 || pool->next_free_entry == 0)
1886 return;
b99bd4ef 1887
c19d1205 1888 mapping_state (MAP_DATA);
b99bd4ef 1889
c19d1205
ZW
1890 /* Align pool as you have word accesses.
1891 Only make a frag if we have to. */
1892 if (!need_pass_2)
1893 frag_align (2, 0, 0);
b99bd4ef 1894
c19d1205 1895 record_alignment (now_seg, 2);
b99bd4ef 1896
c19d1205 1897 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 1898
c19d1205
ZW
1899 symbol_locate (pool->symbol, sym_name, now_seg,
1900 (valueT) frag_now_fix (), frag_now);
1901 symbol_table_insert (pool->symbol);
b99bd4ef 1902
c19d1205 1903 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 1904
c19d1205
ZW
1905#if defined OBJ_COFF || defined OBJ_ELF
1906 ARM_SET_INTERWORK (pool->symbol, support_interwork);
1907#endif
6c43fab6 1908
c19d1205
ZW
1909 for (entry = 0; entry < pool->next_free_entry; entry ++)
1910 /* First output the expression in the instruction to the pool. */
1911 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 1912
c19d1205
ZW
1913 /* Mark the pool as empty. */
1914 pool->next_free_entry = 0;
1915 pool->symbol = NULL;
b99bd4ef
NC
1916}
1917
c19d1205
ZW
1918#ifdef OBJ_ELF
1919/* Forward declarations for functions below, in the MD interface
1920 section. */
1921static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
1922static valueT create_unwind_entry (int);
1923static void start_unwind_section (const segT, int);
1924static void add_unwind_opcode (valueT, int);
1925static void flush_pending_unwind (void);
b99bd4ef 1926
c19d1205 1927/* Directives: Data. */
b99bd4ef 1928
c19d1205
ZW
1929static void
1930s_arm_elf_cons (int nbytes)
1931{
1932 expressionS exp;
b99bd4ef 1933
c19d1205
ZW
1934#ifdef md_flush_pending_output
1935 md_flush_pending_output ();
1936#endif
b99bd4ef 1937
c19d1205 1938 if (is_it_end_of_statement ())
b99bd4ef 1939 {
c19d1205
ZW
1940 demand_empty_rest_of_line ();
1941 return;
b99bd4ef
NC
1942 }
1943
c19d1205
ZW
1944#ifdef md_cons_align
1945 md_cons_align (nbytes);
1946#endif
b99bd4ef 1947
c19d1205
ZW
1948 mapping_state (MAP_DATA);
1949 do
b99bd4ef 1950 {
c19d1205
ZW
1951 int reloc;
1952 char *base = input_line_pointer;
b99bd4ef 1953
c19d1205 1954 expression (& exp);
b99bd4ef 1955
c19d1205
ZW
1956 if (exp.X_op != O_symbol)
1957 emit_expr (&exp, (unsigned int) nbytes);
1958 else
1959 {
1960 char *before_reloc = input_line_pointer;
1961 reloc = parse_reloc (&input_line_pointer);
1962 if (reloc == -1)
1963 {
1964 as_bad (_("unrecognized relocation suffix"));
1965 ignore_rest_of_line ();
1966 return;
1967 }
1968 else if (reloc == BFD_RELOC_UNUSED)
1969 emit_expr (&exp, (unsigned int) nbytes);
1970 else
1971 {
1972 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
1973 int size = bfd_get_reloc_size (howto);
b99bd4ef 1974
c19d1205
ZW
1975 if (size > nbytes)
1976 as_bad ("%s relocations do not fit in %d bytes",
1977 howto->name, nbytes);
1978 else
1979 {
1980 /* We've parsed an expression stopping at O_symbol.
1981 But there may be more expression left now that we
1982 have parsed the relocation marker. Parse it again.
1983 XXX Surely there is a cleaner way to do this. */
1984 char *p = input_line_pointer;
1985 int offset;
1986 char *save_buf = alloca (input_line_pointer - base);
1987 memcpy (save_buf, base, input_line_pointer - base);
1988 memmove (base + (input_line_pointer - before_reloc),
1989 base, before_reloc - base);
1990
1991 input_line_pointer = base + (input_line_pointer-before_reloc);
1992 expression (&exp);
1993 memcpy (base, save_buf, p - base);
1994
1995 offset = nbytes - size;
1996 p = frag_more ((int) nbytes);
1997 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
1998 size, &exp, 0, reloc);
1999 }
2000 }
2001 }
b99bd4ef 2002 }
c19d1205 2003 while (*input_line_pointer++ == ',');
b99bd4ef 2004
c19d1205
ZW
2005 /* Put terminator back into stream. */
2006 input_line_pointer --;
2007 demand_empty_rest_of_line ();
b99bd4ef
NC
2008}
2009
b99bd4ef 2010
c19d1205 2011/* Parse a .rel31 directive. */
b99bd4ef 2012
c19d1205
ZW
2013static void
2014s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2015{
2016 expressionS exp;
2017 char *p;
2018 valueT highbit;
b99bd4ef 2019
c19d1205
ZW
2020 highbit = 0;
2021 if (*input_line_pointer == '1')
2022 highbit = 0x80000000;
2023 else if (*input_line_pointer != '0')
2024 as_bad (_("expected 0 or 1"));
b99bd4ef 2025
c19d1205
ZW
2026 input_line_pointer++;
2027 if (*input_line_pointer != ',')
2028 as_bad (_("missing comma"));
2029 input_line_pointer++;
b99bd4ef 2030
c19d1205
ZW
2031#ifdef md_flush_pending_output
2032 md_flush_pending_output ();
2033#endif
b99bd4ef 2034
c19d1205
ZW
2035#ifdef md_cons_align
2036 md_cons_align (4);
2037#endif
b99bd4ef 2038
c19d1205 2039 mapping_state (MAP_DATA);
b99bd4ef 2040
c19d1205 2041 expression (&exp);
b99bd4ef 2042
c19d1205
ZW
2043 p = frag_more (4);
2044 md_number_to_chars (p, highbit, 4);
2045 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2046 BFD_RELOC_ARM_PREL31);
b99bd4ef 2047
c19d1205 2048 demand_empty_rest_of_line ();
b99bd4ef
NC
2049}
2050
c19d1205 2051/* Directives: AEABI stack-unwind tables. */
b99bd4ef 2052
c19d1205 2053/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 2054
c19d1205
ZW
2055static void
2056s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
2057{
2058 demand_empty_rest_of_line ();
2059 /* Mark the start of the function. */
2060 unwind.proc_start = expr_build_dot ();
b99bd4ef 2061
c19d1205
ZW
2062 /* Reset the rest of the unwind info. */
2063 unwind.opcode_count = 0;
2064 unwind.table_entry = NULL;
2065 unwind.personality_routine = NULL;
2066 unwind.personality_index = -1;
2067 unwind.frame_size = 0;
2068 unwind.fp_offset = 0;
2069 unwind.fp_reg = 13;
2070 unwind.fp_used = 0;
2071 unwind.sp_restored = 0;
2072}
b99bd4ef 2073
b99bd4ef 2074
c19d1205
ZW
2075/* Parse a handlerdata directive. Creates the exception handling table entry
2076 for the function. */
b99bd4ef 2077
c19d1205
ZW
2078static void
2079s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
2080{
2081 demand_empty_rest_of_line ();
2082 if (unwind.table_entry)
2083 as_bad (_("dupicate .handlerdata directive"));
f02232aa 2084
c19d1205
ZW
2085 create_unwind_entry (1);
2086}
a737bd4d 2087
c19d1205 2088/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 2089
c19d1205
ZW
2090static void
2091s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
2092{
2093 long where;
2094 char *ptr;
2095 valueT val;
f02232aa 2096
c19d1205 2097 demand_empty_rest_of_line ();
f02232aa 2098
c19d1205
ZW
2099 /* Add eh table entry. */
2100 if (unwind.table_entry == NULL)
2101 val = create_unwind_entry (0);
2102 else
2103 val = 0;
f02232aa 2104
c19d1205
ZW
2105 /* Add index table entry. This is two words. */
2106 start_unwind_section (unwind.saved_seg, 1);
2107 frag_align (2, 0, 0);
2108 record_alignment (now_seg, 2);
b99bd4ef 2109
c19d1205
ZW
2110 ptr = frag_more (8);
2111 where = frag_now_fix () - 8;
f02232aa 2112
c19d1205
ZW
2113 /* Self relative offset of the function start. */
2114 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
2115 BFD_RELOC_ARM_PREL31);
f02232aa 2116
c19d1205
ZW
2117 /* Indicate dependency on EHABI-defined personality routines to the
2118 linker, if it hasn't been done already. */
2119 if (unwind.personality_index >= 0 && unwind.personality_index < 3
2120 && !(marked_pr_dependency & (1 << unwind.personality_index)))
2121 {
2122 static const char *const name[] = {
2123 "__aeabi_unwind_cpp_pr0",
2124 "__aeabi_unwind_cpp_pr1",
2125 "__aeabi_unwind_cpp_pr2"
2126 };
2127 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
2128 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
2129 marked_pr_dependency |= 1 << unwind.personality_index;
2130 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
2131 = marked_pr_dependency;
2132 }
f02232aa 2133
c19d1205
ZW
2134 if (val)
2135 /* Inline exception table entry. */
2136 md_number_to_chars (ptr + 4, val, 4);
2137 else
2138 /* Self relative offset of the table entry. */
2139 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
2140 BFD_RELOC_ARM_PREL31);
f02232aa 2141
c19d1205
ZW
2142 /* Restore the original section. */
2143 subseg_set (unwind.saved_seg, unwind.saved_subseg);
2144}
f02232aa 2145
f02232aa 2146
c19d1205 2147/* Parse an unwind_cantunwind directive. */
b99bd4ef 2148
c19d1205
ZW
2149static void
2150s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
2151{
2152 demand_empty_rest_of_line ();
2153 if (unwind.personality_routine || unwind.personality_index != -1)
2154 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 2155
c19d1205
ZW
2156 unwind.personality_index = -2;
2157}
b99bd4ef 2158
b99bd4ef 2159
c19d1205 2160/* Parse a personalityindex directive. */
b99bd4ef 2161
c19d1205
ZW
2162static void
2163s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
2164{
2165 expressionS exp;
b99bd4ef 2166
c19d1205
ZW
2167 if (unwind.personality_routine || unwind.personality_index != -1)
2168 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 2169
c19d1205 2170 expression (&exp);
b99bd4ef 2171
c19d1205
ZW
2172 if (exp.X_op != O_constant
2173 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 2174 {
c19d1205
ZW
2175 as_bad (_("bad personality routine number"));
2176 ignore_rest_of_line ();
2177 return;
b99bd4ef
NC
2178 }
2179
c19d1205 2180 unwind.personality_index = exp.X_add_number;
b99bd4ef 2181
c19d1205
ZW
2182 demand_empty_rest_of_line ();
2183}
e16bb312 2184
e16bb312 2185
c19d1205 2186/* Parse a personality directive. */
e16bb312 2187
c19d1205
ZW
2188static void
2189s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
2190{
2191 char *name, *p, c;
a737bd4d 2192
c19d1205
ZW
2193 if (unwind.personality_routine || unwind.personality_index != -1)
2194 as_bad (_("duplicate .personality directive"));
a737bd4d 2195
c19d1205
ZW
2196 name = input_line_pointer;
2197 c = get_symbol_end ();
2198 p = input_line_pointer;
2199 unwind.personality_routine = symbol_find_or_make (name);
2200 *p = c;
2201 demand_empty_rest_of_line ();
2202}
e16bb312 2203
e16bb312 2204
c19d1205 2205/* Parse a directive saving core registers. */
e16bb312 2206
c19d1205
ZW
2207static void
2208s_arm_unwind_save_core (void)
e16bb312 2209{
c19d1205
ZW
2210 valueT op;
2211 long range;
2212 int n;
e16bb312 2213
c19d1205
ZW
2214 range = parse_reg_list (&input_line_pointer);
2215 if (range == FAIL)
e16bb312 2216 {
c19d1205
ZW
2217 as_bad (_("expected register list"));
2218 ignore_rest_of_line ();
2219 return;
2220 }
e16bb312 2221
c19d1205 2222 demand_empty_rest_of_line ();
e16bb312 2223
c19d1205
ZW
2224 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
2225 into .unwind_save {..., sp...}. We aren't bothered about the value of
2226 ip because it is clobbered by calls. */
2227 if (unwind.sp_restored && unwind.fp_reg == 12
2228 && (range & 0x3000) == 0x1000)
2229 {
2230 unwind.opcode_count--;
2231 unwind.sp_restored = 0;
2232 range = (range | 0x2000) & ~0x1000;
2233 unwind.pending_offset = 0;
2234 }
e16bb312 2235
c19d1205
ZW
2236 /* See if we can use the short opcodes. These pop a block of upto 8
2237 registers starting with r4, plus maybe r14. */
2238 for (n = 0; n < 8; n++)
2239 {
2240 /* Break at the first non-saved register. */
2241 if ((range & (1 << (n + 4))) == 0)
2242 break;
e16bb312 2243 }
c19d1205
ZW
2244 /* See if there are any other bits set. */
2245 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
e16bb312 2246 {
c19d1205
ZW
2247 /* Use the long form. */
2248 op = 0x8000 | ((range >> 4) & 0xfff);
2249 add_unwind_opcode (op, 2);
e16bb312 2250 }
c19d1205 2251 else
0dd132b6 2252 {
c19d1205
ZW
2253 /* Use the short form. */
2254 if (range & 0x4000)
2255 op = 0xa8; /* Pop r14. */
0dd132b6 2256 else
c19d1205
ZW
2257 op = 0xa0; /* Do not pop r14. */
2258 op |= (n - 1);
2259 add_unwind_opcode (op, 1);
2260 }
0dd132b6 2261
c19d1205
ZW
2262 /* Pop r0-r3. */
2263 if (range & 0xf)
2264 {
2265 op = 0xb100 | (range & 0xf);
2266 add_unwind_opcode (op, 2);
0dd132b6
NC
2267 }
2268
c19d1205
ZW
2269 /* Record the number of bytes pushed. */
2270 for (n = 0; n < 16; n++)
2271 {
2272 if (range & (1 << n))
2273 unwind.frame_size += 4;
2274 }
0dd132b6
NC
2275}
2276
c19d1205
ZW
2277
2278/* Parse a directive saving FPA registers. */
b99bd4ef
NC
2279
2280static void
c19d1205 2281s_arm_unwind_save_fpa (int reg)
b99bd4ef 2282{
c19d1205
ZW
2283 expressionS exp;
2284 int num_regs;
2285 valueT op;
b99bd4ef 2286
c19d1205
ZW
2287 /* Get Number of registers to transfer. */
2288 if (skip_past_comma (&input_line_pointer) != FAIL)
2289 expression (&exp);
2290 else
2291 exp.X_op = O_illegal;
b99bd4ef 2292
c19d1205 2293 if (exp.X_op != O_constant)
b99bd4ef 2294 {
c19d1205
ZW
2295 as_bad (_("expected , <constant>"));
2296 ignore_rest_of_line ();
b99bd4ef
NC
2297 return;
2298 }
2299
c19d1205
ZW
2300 num_regs = exp.X_add_number;
2301
2302 if (num_regs < 1 || num_regs > 4)
b99bd4ef 2303 {
c19d1205
ZW
2304 as_bad (_("number of registers must be in the range [1:4]"));
2305 ignore_rest_of_line ();
b99bd4ef
NC
2306 return;
2307 }
2308
c19d1205 2309 demand_empty_rest_of_line ();
b99bd4ef 2310
c19d1205
ZW
2311 if (reg == 4)
2312 {
2313 /* Short form. */
2314 op = 0xb4 | (num_regs - 1);
2315 add_unwind_opcode (op, 1);
2316 }
b99bd4ef
NC
2317 else
2318 {
c19d1205
ZW
2319 /* Long form. */
2320 op = 0xc800 | (reg << 4) | (num_regs - 1);
2321 add_unwind_opcode (op, 2);
b99bd4ef 2322 }
c19d1205 2323 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
2324}
2325
c19d1205
ZW
2326
2327/* Parse a directive saving VFP registers. */
b99bd4ef
NC
2328
2329static void
c19d1205 2330s_arm_unwind_save_vfp (void)
b99bd4ef 2331{
c19d1205
ZW
2332 int count;
2333 int reg;
2334 valueT op;
b99bd4ef 2335
c19d1205
ZW
2336 count = parse_vfp_reg_list (&input_line_pointer, &reg, 1);
2337 if (count == FAIL)
b99bd4ef 2338 {
c19d1205
ZW
2339 as_bad (_("expected register list"));
2340 ignore_rest_of_line ();
b99bd4ef
NC
2341 return;
2342 }
2343
c19d1205 2344 demand_empty_rest_of_line ();
b99bd4ef 2345
c19d1205 2346 if (reg == 8)
b99bd4ef 2347 {
c19d1205
ZW
2348 /* Short form. */
2349 op = 0xb8 | (count - 1);
2350 add_unwind_opcode (op, 1);
b99bd4ef 2351 }
c19d1205 2352 else
b99bd4ef 2353 {
c19d1205
ZW
2354 /* Long form. */
2355 op = 0xb300 | (reg << 4) | (count - 1);
2356 add_unwind_opcode (op, 2);
b99bd4ef 2357 }
c19d1205
ZW
2358 unwind.frame_size += count * 8 + 4;
2359}
b99bd4ef 2360
b99bd4ef 2361
c19d1205
ZW
2362/* Parse a directive saving iWMMXt data registers. */
2363
2364static void
2365s_arm_unwind_save_mmxwr (void)
2366{
2367 int reg;
2368 int hi_reg;
2369 int i;
2370 unsigned mask = 0;
2371 valueT op;
b99bd4ef 2372
c19d1205
ZW
2373 if (*input_line_pointer == '{')
2374 input_line_pointer++;
b99bd4ef 2375
c19d1205 2376 do
b99bd4ef 2377 {
c19d1205 2378 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 2379
c19d1205 2380 if (reg == FAIL)
b99bd4ef 2381 {
c19d1205
ZW
2382 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2383 goto error;
b99bd4ef
NC
2384 }
2385
c19d1205
ZW
2386 if (mask >> reg)
2387 as_tsktsk (_("register list not in ascending order"));
2388 mask |= 1 << reg;
b99bd4ef 2389
c19d1205
ZW
2390 if (*input_line_pointer == '-')
2391 {
2392 input_line_pointer++;
2393 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
2394 if (hi_reg == FAIL)
2395 {
2396 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2397 goto error;
2398 }
2399 else if (reg >= hi_reg)
2400 {
2401 as_bad (_("bad register range"));
2402 goto error;
2403 }
2404 for (; reg < hi_reg; reg++)
2405 mask |= 1 << reg;
2406 }
2407 }
2408 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 2409
c19d1205
ZW
2410 if (*input_line_pointer == '}')
2411 input_line_pointer++;
b99bd4ef 2412
c19d1205 2413 demand_empty_rest_of_line ();
b99bd4ef 2414
c19d1205
ZW
2415 /* Generate any deferred opcodes becuuse we're going to be looking at
2416 the list. */
2417 flush_pending_unwind ();
b99bd4ef 2418
c19d1205 2419 for (i = 0; i < 16; i++)
b99bd4ef 2420 {
c19d1205
ZW
2421 if (mask & (1 << i))
2422 unwind.frame_size += 8;
b99bd4ef
NC
2423 }
2424
c19d1205
ZW
2425 /* Attempt to combine with a previous opcode. We do this because gcc
2426 likes to output separate unwind directives for a single block of
2427 registers. */
2428 if (unwind.opcode_count > 0)
b99bd4ef 2429 {
c19d1205
ZW
2430 i = unwind.opcodes[unwind.opcode_count - 1];
2431 if ((i & 0xf8) == 0xc0)
2432 {
2433 i &= 7;
2434 /* Only merge if the blocks are contiguous. */
2435 if (i < 6)
2436 {
2437 if ((mask & 0xfe00) == (1 << 9))
2438 {
2439 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
2440 unwind.opcode_count--;
2441 }
2442 }
2443 else if (i == 6 && unwind.opcode_count >= 2)
2444 {
2445 i = unwind.opcodes[unwind.opcode_count - 2];
2446 reg = i >> 4;
2447 i &= 0xf;
b99bd4ef 2448
c19d1205
ZW
2449 op = 0xffff << (reg - 1);
2450 if (reg > 0
2451 || ((mask & op) == (1u << (reg - 1))))
2452 {
2453 op = (1 << (reg + i + 1)) - 1;
2454 op &= ~((1 << reg) - 1);
2455 mask |= op;
2456 unwind.opcode_count -= 2;
2457 }
2458 }
2459 }
b99bd4ef
NC
2460 }
2461
c19d1205
ZW
2462 hi_reg = 15;
2463 /* We want to generate opcodes in the order the registers have been
2464 saved, ie. descending order. */
2465 for (reg = 15; reg >= -1; reg--)
b99bd4ef 2466 {
c19d1205
ZW
2467 /* Save registers in blocks. */
2468 if (reg < 0
2469 || !(mask & (1 << reg)))
2470 {
2471 /* We found an unsaved reg. Generate opcodes to save the
2472 preceeding block. */
2473 if (reg != hi_reg)
2474 {
2475 if (reg == 9)
2476 {
2477 /* Short form. */
2478 op = 0xc0 | (hi_reg - 10);
2479 add_unwind_opcode (op, 1);
2480 }
2481 else
2482 {
2483 /* Long form. */
2484 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
2485 add_unwind_opcode (op, 2);
2486 }
2487 }
2488 hi_reg = reg - 1;
2489 }
b99bd4ef
NC
2490 }
2491
c19d1205
ZW
2492 return;
2493error:
2494 ignore_rest_of_line ();
b99bd4ef
NC
2495}
2496
2497static void
c19d1205 2498s_arm_unwind_save_mmxwcg (void)
b99bd4ef 2499{
c19d1205
ZW
2500 int reg;
2501 int hi_reg;
2502 unsigned mask = 0;
2503 valueT op;
b99bd4ef 2504
c19d1205
ZW
2505 if (*input_line_pointer == '{')
2506 input_line_pointer++;
b99bd4ef 2507
c19d1205 2508 do
b99bd4ef 2509 {
c19d1205 2510 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 2511
c19d1205
ZW
2512 if (reg == FAIL)
2513 {
2514 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2515 goto error;
2516 }
b99bd4ef 2517
c19d1205
ZW
2518 reg -= 8;
2519 if (mask >> reg)
2520 as_tsktsk (_("register list not in ascending order"));
2521 mask |= 1 << reg;
b99bd4ef 2522
c19d1205
ZW
2523 if (*input_line_pointer == '-')
2524 {
2525 input_line_pointer++;
2526 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
2527 if (hi_reg == FAIL)
2528 {
2529 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2530 goto error;
2531 }
2532 else if (reg >= hi_reg)
2533 {
2534 as_bad (_("bad register range"));
2535 goto error;
2536 }
2537 for (; reg < hi_reg; reg++)
2538 mask |= 1 << reg;
2539 }
b99bd4ef 2540 }
c19d1205 2541 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 2542
c19d1205
ZW
2543 if (*input_line_pointer == '}')
2544 input_line_pointer++;
b99bd4ef 2545
c19d1205
ZW
2546 demand_empty_rest_of_line ();
2547
2548 /* Generate any deferred opcodes becuuse we're going to be looking at
2549 the list. */
2550 flush_pending_unwind ();
b99bd4ef 2551
c19d1205 2552 for (reg = 0; reg < 16; reg++)
b99bd4ef 2553 {
c19d1205
ZW
2554 if (mask & (1 << reg))
2555 unwind.frame_size += 4;
b99bd4ef 2556 }
c19d1205
ZW
2557 op = 0xc700 | mask;
2558 add_unwind_opcode (op, 2);
2559 return;
2560error:
2561 ignore_rest_of_line ();
b99bd4ef
NC
2562}
2563
c19d1205
ZW
2564
2565/* Parse an unwind_save directive. */
2566
b99bd4ef 2567static void
c19d1205 2568s_arm_unwind_save (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2569{
c19d1205
ZW
2570 char *peek;
2571 struct reg_entry *reg;
2572 bfd_boolean had_brace = FALSE;
b99bd4ef 2573
c19d1205
ZW
2574 /* Figure out what sort of save we have. */
2575 peek = input_line_pointer;
b99bd4ef 2576
c19d1205 2577 if (*peek == '{')
b99bd4ef 2578 {
c19d1205
ZW
2579 had_brace = TRUE;
2580 peek++;
b99bd4ef
NC
2581 }
2582
c19d1205 2583 reg = arm_reg_parse_multi (&peek);
b99bd4ef 2584
c19d1205 2585 if (!reg)
b99bd4ef 2586 {
c19d1205
ZW
2587 as_bad (_("register expected"));
2588 ignore_rest_of_line ();
b99bd4ef
NC
2589 return;
2590 }
2591
c19d1205 2592 switch (reg->type)
b99bd4ef 2593 {
c19d1205
ZW
2594 case REG_TYPE_FN:
2595 if (had_brace)
2596 {
2597 as_bad (_("FPA .unwind_save does not take a register list"));
2598 ignore_rest_of_line ();
2599 return;
2600 }
2601 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 2602 return;
c19d1205
ZW
2603
2604 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
2605 case REG_TYPE_VFD: s_arm_unwind_save_vfp (); return;
2606 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
2607 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
2608
2609 default:
2610 as_bad (_(".unwind_save does not support this kind of register"));
2611 ignore_rest_of_line ();
b99bd4ef 2612 }
c19d1205 2613}
b99bd4ef 2614
b99bd4ef 2615
c19d1205
ZW
2616/* Parse an unwind_movsp directive. */
2617
2618static void
2619s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
2620{
2621 int reg;
2622 valueT op;
2623
2624 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2625 if (reg == FAIL)
b99bd4ef 2626 {
c19d1205
ZW
2627 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
2628 ignore_rest_of_line ();
b99bd4ef
NC
2629 return;
2630 }
c19d1205 2631 demand_empty_rest_of_line ();
b99bd4ef 2632
c19d1205 2633 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 2634 {
c19d1205 2635 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
2636 return;
2637 }
2638
c19d1205
ZW
2639 if (unwind.fp_reg != REG_SP)
2640 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 2641
c19d1205
ZW
2642 /* Generate opcode to restore the value. */
2643 op = 0x90 | reg;
2644 add_unwind_opcode (op, 1);
2645
2646 /* Record the information for later. */
2647 unwind.fp_reg = reg;
2648 unwind.fp_offset = unwind.frame_size;
2649 unwind.sp_restored = 1;
b05fe5cf
ZW
2650}
2651
c19d1205
ZW
2652/* Parse an unwind_pad directive. */
2653
b05fe5cf 2654static void
c19d1205 2655s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 2656{
c19d1205 2657 int offset;
b05fe5cf 2658
c19d1205
ZW
2659 if (immediate_for_directive (&offset) == FAIL)
2660 return;
b99bd4ef 2661
c19d1205
ZW
2662 if (offset & 3)
2663 {
2664 as_bad (_("stack increment must be multiple of 4"));
2665 ignore_rest_of_line ();
2666 return;
2667 }
b99bd4ef 2668
c19d1205
ZW
2669 /* Don't generate any opcodes, just record the details for later. */
2670 unwind.frame_size += offset;
2671 unwind.pending_offset += offset;
2672
2673 demand_empty_rest_of_line ();
2674}
2675
2676/* Parse an unwind_setfp directive. */
2677
2678static void
2679s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2680{
c19d1205
ZW
2681 int sp_reg;
2682 int fp_reg;
2683 int offset;
2684
2685 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2686 if (skip_past_comma (&input_line_pointer) == FAIL)
2687 sp_reg = FAIL;
2688 else
2689 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 2690
c19d1205
ZW
2691 if (fp_reg == FAIL || sp_reg == FAIL)
2692 {
2693 as_bad (_("expected <reg>, <reg>"));
2694 ignore_rest_of_line ();
2695 return;
2696 }
b99bd4ef 2697
c19d1205
ZW
2698 /* Optional constant. */
2699 if (skip_past_comma (&input_line_pointer) != FAIL)
2700 {
2701 if (immediate_for_directive (&offset) == FAIL)
2702 return;
2703 }
2704 else
2705 offset = 0;
a737bd4d 2706
c19d1205 2707 demand_empty_rest_of_line ();
a737bd4d 2708
c19d1205 2709 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 2710 {
c19d1205
ZW
2711 as_bad (_("register must be either sp or set by a previous"
2712 "unwind_movsp directive"));
2713 return;
a737bd4d
NC
2714 }
2715
c19d1205
ZW
2716 /* Don't generate any opcodes, just record the information for later. */
2717 unwind.fp_reg = fp_reg;
2718 unwind.fp_used = 1;
2719 if (sp_reg == 13)
2720 unwind.fp_offset = unwind.frame_size - offset;
2721 else
2722 unwind.fp_offset -= offset;
a737bd4d
NC
2723}
2724
c19d1205
ZW
2725/* Parse an unwind_raw directive. */
2726
2727static void
2728s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 2729{
c19d1205
ZW
2730 expressionS exp;
2731 /* This is an arbitary limit. */
2732 unsigned char op[16];
2733 int count;
a737bd4d 2734
c19d1205
ZW
2735 expression (&exp);
2736 if (exp.X_op == O_constant
2737 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 2738 {
c19d1205
ZW
2739 unwind.frame_size += exp.X_add_number;
2740 expression (&exp);
2741 }
2742 else
2743 exp.X_op = O_illegal;
a737bd4d 2744
c19d1205
ZW
2745 if (exp.X_op != O_constant)
2746 {
2747 as_bad (_("expected <offset>, <opcode>"));
2748 ignore_rest_of_line ();
2749 return;
2750 }
a737bd4d 2751
c19d1205 2752 count = 0;
a737bd4d 2753
c19d1205
ZW
2754 /* Parse the opcode. */
2755 for (;;)
2756 {
2757 if (count >= 16)
2758 {
2759 as_bad (_("unwind opcode too long"));
2760 ignore_rest_of_line ();
a737bd4d 2761 }
c19d1205 2762 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 2763 {
c19d1205
ZW
2764 as_bad (_("invalid unwind opcode"));
2765 ignore_rest_of_line ();
2766 return;
a737bd4d 2767 }
c19d1205 2768 op[count++] = exp.X_add_number;
a737bd4d 2769
c19d1205
ZW
2770 /* Parse the next byte. */
2771 if (skip_past_comma (&input_line_pointer) == FAIL)
2772 break;
a737bd4d 2773
c19d1205
ZW
2774 expression (&exp);
2775 }
b99bd4ef 2776
c19d1205
ZW
2777 /* Add the opcode bytes in reverse order. */
2778 while (count--)
2779 add_unwind_opcode (op[count], 1);
b99bd4ef 2780
c19d1205 2781 demand_empty_rest_of_line ();
b99bd4ef 2782}
c19d1205 2783#endif /* OBJ_ELF */
b99bd4ef 2784
c19d1205
ZW
2785/* This table describes all the machine specific pseudo-ops the assembler
2786 has to support. The fields are:
2787 pseudo-op name without dot
2788 function to call to execute this pseudo-op
2789 Integer arg to pass to the function. */
b99bd4ef 2790
c19d1205 2791const pseudo_typeS md_pseudo_table[] =
b99bd4ef 2792{
c19d1205
ZW
2793 /* Never called because '.req' does not start a line. */
2794 { "req", s_req, 0 },
2795 { "unreq", s_unreq, 0 },
2796 { "bss", s_bss, 0 },
2797 { "align", s_align, 0 },
2798 { "arm", s_arm, 0 },
2799 { "thumb", s_thumb, 0 },
2800 { "code", s_code, 0 },
2801 { "force_thumb", s_force_thumb, 0 },
2802 { "thumb_func", s_thumb_func, 0 },
2803 { "thumb_set", s_thumb_set, 0 },
2804 { "even", s_even, 0 },
2805 { "ltorg", s_ltorg, 0 },
2806 { "pool", s_ltorg, 0 },
2807 { "syntax", s_syntax, 0 },
2808#ifdef OBJ_ELF
2809 { "word", s_arm_elf_cons, 4 },
2810 { "long", s_arm_elf_cons, 4 },
2811 { "rel31", s_arm_rel31, 0 },
2812 { "fnstart", s_arm_unwind_fnstart, 0 },
2813 { "fnend", s_arm_unwind_fnend, 0 },
2814 { "cantunwind", s_arm_unwind_cantunwind, 0 },
2815 { "personality", s_arm_unwind_personality, 0 },
2816 { "personalityindex", s_arm_unwind_personalityindex, 0 },
2817 { "handlerdata", s_arm_unwind_handlerdata, 0 },
2818 { "save", s_arm_unwind_save, 0 },
2819 { "movsp", s_arm_unwind_movsp, 0 },
2820 { "pad", s_arm_unwind_pad, 0 },
2821 { "setfp", s_arm_unwind_setfp, 0 },
2822 { "unwind_raw", s_arm_unwind_raw, 0 },
2823#else
2824 { "word", cons, 4},
2825#endif
2826 { "extend", float_cons, 'x' },
2827 { "ldouble", float_cons, 'x' },
2828 { "packed", float_cons, 'p' },
2829 { 0, 0, 0 }
2830};
2831\f
2832/* Parser functions used exclusively in instruction operands. */
b99bd4ef 2833
c19d1205
ZW
2834/* Generic immediate-value read function for use in insn parsing.
2835 STR points to the beginning of the immediate (the leading #);
2836 VAL receives the value; if the value is outside [MIN, MAX]
2837 issue an error. PREFIX_OPT is true if the immediate prefix is
2838 optional. */
b99bd4ef 2839
c19d1205
ZW
2840static int
2841parse_immediate (char **str, int *val, int min, int max,
2842 bfd_boolean prefix_opt)
2843{
2844 expressionS exp;
2845 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
2846 if (exp.X_op != O_constant)
b99bd4ef 2847 {
c19d1205
ZW
2848 inst.error = _("constant expression required");
2849 return FAIL;
2850 }
b99bd4ef 2851
c19d1205
ZW
2852 if (exp.X_add_number < min || exp.X_add_number > max)
2853 {
2854 inst.error = _("immediate value out of range");
2855 return FAIL;
2856 }
b99bd4ef 2857
c19d1205
ZW
2858 *val = exp.X_add_number;
2859 return SUCCESS;
2860}
b99bd4ef 2861
c19d1205
ZW
2862/* Returns the pseudo-register number of an FPA immediate constant,
2863 or FAIL if there isn't a valid constant here. */
b99bd4ef 2864
c19d1205
ZW
2865static int
2866parse_fpa_immediate (char ** str)
2867{
2868 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2869 char * save_in;
2870 expressionS exp;
2871 int i;
2872 int j;
b99bd4ef 2873
c19d1205
ZW
2874 /* First try and match exact strings, this is to guarantee
2875 that some formats will work even for cross assembly. */
b99bd4ef 2876
c19d1205
ZW
2877 for (i = 0; fp_const[i]; i++)
2878 {
2879 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 2880 {
c19d1205 2881 char *start = *str;
b99bd4ef 2882
c19d1205
ZW
2883 *str += strlen (fp_const[i]);
2884 if (is_end_of_line[(unsigned char) **str])
2885 return i + 8;
2886 *str = start;
2887 }
2888 }
b99bd4ef 2889
c19d1205
ZW
2890 /* Just because we didn't get a match doesn't mean that the constant
2891 isn't valid, just that it is in a format that we don't
2892 automatically recognize. Try parsing it with the standard
2893 expression routines. */
b99bd4ef 2894
c19d1205 2895 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 2896
c19d1205
ZW
2897 /* Look for a raw floating point number. */
2898 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
2899 && is_end_of_line[(unsigned char) *save_in])
2900 {
2901 for (i = 0; i < NUM_FLOAT_VALS; i++)
2902 {
2903 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 2904 {
c19d1205
ZW
2905 if (words[j] != fp_values[i][j])
2906 break;
b99bd4ef
NC
2907 }
2908
c19d1205 2909 if (j == MAX_LITTLENUMS)
b99bd4ef 2910 {
c19d1205
ZW
2911 *str = save_in;
2912 return i + 8;
b99bd4ef
NC
2913 }
2914 }
2915 }
b99bd4ef 2916
c19d1205
ZW
2917 /* Try and parse a more complex expression, this will probably fail
2918 unless the code uses a floating point prefix (eg "0f"). */
2919 save_in = input_line_pointer;
2920 input_line_pointer = *str;
2921 if (expression (&exp) == absolute_section
2922 && exp.X_op == O_big
2923 && exp.X_add_number < 0)
2924 {
2925 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
2926 Ditto for 15. */
2927 if (gen_to_words (words, 5, (long) 15) == 0)
2928 {
2929 for (i = 0; i < NUM_FLOAT_VALS; i++)
2930 {
2931 for (j = 0; j < MAX_LITTLENUMS; j++)
2932 {
2933 if (words[j] != fp_values[i][j])
2934 break;
2935 }
b99bd4ef 2936
c19d1205
ZW
2937 if (j == MAX_LITTLENUMS)
2938 {
2939 *str = input_line_pointer;
2940 input_line_pointer = save_in;
2941 return i + 8;
2942 }
2943 }
2944 }
b99bd4ef
NC
2945 }
2946
c19d1205
ZW
2947 *str = input_line_pointer;
2948 input_line_pointer = save_in;
2949 inst.error = _("invalid FPA immediate expression");
2950 return FAIL;
b99bd4ef
NC
2951}
2952
c19d1205
ZW
2953/* Shift operands. */
2954enum shift_kind
b99bd4ef 2955{
c19d1205
ZW
2956 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
2957};
b99bd4ef 2958
c19d1205
ZW
2959struct asm_shift_name
2960{
2961 const char *name;
2962 enum shift_kind kind;
2963};
b99bd4ef 2964
c19d1205
ZW
2965/* Third argument to parse_shift. */
2966enum parse_shift_mode
2967{
2968 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
2969 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
2970 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
2971 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
2972 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
2973};
b99bd4ef 2974
c19d1205
ZW
2975/* Parse a <shift> specifier on an ARM data processing instruction.
2976 This has three forms:
b99bd4ef 2977
c19d1205
ZW
2978 (LSL|LSR|ASL|ASR|ROR) Rs
2979 (LSL|LSR|ASL|ASR|ROR) #imm
2980 RRX
b99bd4ef 2981
c19d1205
ZW
2982 Note that ASL is assimilated to LSL in the instruction encoding, and
2983 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 2984
c19d1205
ZW
2985static int
2986parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 2987{
c19d1205
ZW
2988 const struct asm_shift_name *shift_name;
2989 enum shift_kind shift;
2990 char *s = *str;
2991 char *p = s;
2992 int reg;
b99bd4ef 2993
c19d1205
ZW
2994 for (p = *str; ISALPHA (*p); p++)
2995 ;
b99bd4ef 2996
c19d1205 2997 if (p == *str)
b99bd4ef 2998 {
c19d1205
ZW
2999 inst.error = _("shift expression expected");
3000 return FAIL;
b99bd4ef
NC
3001 }
3002
c19d1205
ZW
3003 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
3004
3005 if (shift_name == NULL)
b99bd4ef 3006 {
c19d1205
ZW
3007 inst.error = _("shift expression expected");
3008 return FAIL;
b99bd4ef
NC
3009 }
3010
c19d1205 3011 shift = shift_name->kind;
b99bd4ef 3012
c19d1205
ZW
3013 switch (mode)
3014 {
3015 case NO_SHIFT_RESTRICT:
3016 case SHIFT_IMMEDIATE: break;
b99bd4ef 3017
c19d1205
ZW
3018 case SHIFT_LSL_OR_ASR_IMMEDIATE:
3019 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
3020 {
3021 inst.error = _("'LSL' or 'ASR' required");
3022 return FAIL;
3023 }
3024 break;
b99bd4ef 3025
c19d1205
ZW
3026 case SHIFT_LSL_IMMEDIATE:
3027 if (shift != SHIFT_LSL)
3028 {
3029 inst.error = _("'LSL' required");
3030 return FAIL;
3031 }
3032 break;
b99bd4ef 3033
c19d1205
ZW
3034 case SHIFT_ASR_IMMEDIATE:
3035 if (shift != SHIFT_ASR)
3036 {
3037 inst.error = _("'ASR' required");
3038 return FAIL;
3039 }
3040 break;
b99bd4ef 3041
c19d1205
ZW
3042 default: abort ();
3043 }
b99bd4ef 3044
c19d1205
ZW
3045 if (shift != SHIFT_RRX)
3046 {
3047 /* Whitespace can appear here if the next thing is a bare digit. */
3048 skip_whitespace (p);
b99bd4ef 3049
c19d1205
ZW
3050 if (mode == NO_SHIFT_RESTRICT
3051 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3052 {
3053 inst.operands[i].imm = reg;
3054 inst.operands[i].immisreg = 1;
3055 }
3056 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3057 return FAIL;
3058 }
3059 inst.operands[i].shift_kind = shift;
3060 inst.operands[i].shifted = 1;
3061 *str = p;
3062 return SUCCESS;
b99bd4ef
NC
3063}
3064
c19d1205 3065/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 3066
c19d1205
ZW
3067 #<immediate>
3068 #<immediate>, <rotate>
3069 <Rm>
3070 <Rm>, <shift>
b99bd4ef 3071
c19d1205
ZW
3072 where <shift> is defined by parse_shift above, and <rotate> is a
3073 multiple of 2 between 0 and 30. Validation of immediate operands
3074 is deferred to md_apply_fix3. */
b99bd4ef 3075
c19d1205
ZW
3076static int
3077parse_shifter_operand (char **str, int i)
3078{
3079 int value;
3080 expressionS expr;
b99bd4ef 3081
c19d1205
ZW
3082 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
3083 {
3084 inst.operands[i].reg = value;
3085 inst.operands[i].isreg = 1;
b99bd4ef 3086
c19d1205
ZW
3087 /* parse_shift will override this if appropriate */
3088 inst.reloc.exp.X_op = O_constant;
3089 inst.reloc.exp.X_add_number = 0;
b99bd4ef 3090
c19d1205
ZW
3091 if (skip_past_comma (str) == FAIL)
3092 return SUCCESS;
b99bd4ef 3093
c19d1205
ZW
3094 /* Shift operation on register. */
3095 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
3096 }
3097
c19d1205
ZW
3098 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
3099 return FAIL;
b99bd4ef 3100
c19d1205 3101 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 3102 {
c19d1205
ZW
3103 /* #x, y -- ie explicit rotation by Y. */
3104 if (my_get_expression (&expr, str, GE_NO_PREFIX))
3105 return FAIL;
b99bd4ef 3106
c19d1205
ZW
3107 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
3108 {
3109 inst.error = _("constant expression expected");
3110 return FAIL;
3111 }
b99bd4ef 3112
c19d1205
ZW
3113 value = expr.X_add_number;
3114 if (value < 0 || value > 30 || value % 2 != 0)
3115 {
3116 inst.error = _("invalid rotation");
3117 return FAIL;
3118 }
3119 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
3120 {
3121 inst.error = _("invalid constant");
3122 return FAIL;
3123 }
09d92015 3124
c19d1205
ZW
3125 /* Convert to decoded value. md_apply_fix3 will put it back. */
3126 inst.reloc.exp.X_add_number
3127 = (((inst.reloc.exp.X_add_number << (32 - value))
3128 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
3129 }
3130
c19d1205
ZW
3131 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
3132 inst.reloc.pc_rel = 0;
3133 return SUCCESS;
09d92015
MM
3134}
3135
c19d1205
ZW
3136/* Parse all forms of an ARM address expression. Information is written
3137 to inst.operands[i] and/or inst.reloc.
09d92015 3138
c19d1205 3139 Preindexed addressing (.preind=1):
09d92015 3140
c19d1205
ZW
3141 [Rn, #offset] .reg=Rn .reloc.exp=offset
3142 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3143 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3144 .shift_kind=shift .reloc.exp=shift_imm
09d92015 3145
c19d1205 3146 These three may have a trailing ! which causes .writeback to be set also.
09d92015 3147
c19d1205 3148 Postindexed addressing (.postind=1, .writeback=1):
09d92015 3149
c19d1205
ZW
3150 [Rn], #offset .reg=Rn .reloc.exp=offset
3151 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3152 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3153 .shift_kind=shift .reloc.exp=shift_imm
09d92015 3154
c19d1205 3155 Unindexed addressing (.preind=0, .postind=0):
09d92015 3156
c19d1205 3157 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 3158
c19d1205 3159 Other:
09d92015 3160
c19d1205
ZW
3161 [Rn]{!} shorthand for [Rn,#0]{!}
3162 =immediate .isreg=0 .reloc.exp=immediate
3163 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 3164
c19d1205
ZW
3165 It is the caller's responsibility to check for addressing modes not
3166 supported by the instruction, and to set inst.reloc.type. */
3167
3168static int
3169parse_address (char **str, int i)
09d92015 3170{
c19d1205
ZW
3171 char *p = *str;
3172 int reg;
09d92015 3173
c19d1205 3174 if (skip_past_char (&p, '[') == FAIL)
09d92015 3175 {
c19d1205
ZW
3176 if (skip_past_char (&p, '=') == FAIL)
3177 {
3178 /* bare address - translate to PC-relative offset */
3179 inst.reloc.pc_rel = 1;
3180 inst.operands[i].reg = REG_PC;
3181 inst.operands[i].isreg = 1;
3182 inst.operands[i].preind = 1;
3183 }
3184 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 3185
c19d1205
ZW
3186 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
3187 return FAIL;
09d92015 3188
c19d1205
ZW
3189 *str = p;
3190 return SUCCESS;
09d92015
MM
3191 }
3192
c19d1205 3193 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 3194 {
c19d1205
ZW
3195 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3196 return FAIL;
09d92015 3197 }
c19d1205
ZW
3198 inst.operands[i].reg = reg;
3199 inst.operands[i].isreg = 1;
09d92015 3200
c19d1205 3201 if (skip_past_comma (&p) == SUCCESS)
09d92015 3202 {
c19d1205 3203 inst.operands[i].preind = 1;
09d92015 3204
c19d1205
ZW
3205 if (*p == '+') p++;
3206 else if (*p == '-') p++, inst.operands[i].negative = 1;
3207
3208 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 3209 {
c19d1205
ZW
3210 inst.operands[i].imm = reg;
3211 inst.operands[i].immisreg = 1;
3212
3213 if (skip_past_comma (&p) == SUCCESS)
3214 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3215 return FAIL;
3216 }
3217 else
3218 {
3219 if (inst.operands[i].negative)
3220 {
3221 inst.operands[i].negative = 0;
3222 p--;
3223 }
3224 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3225 return FAIL;
09d92015
MM
3226 }
3227 }
3228
c19d1205 3229 if (skip_past_char (&p, ']') == FAIL)
09d92015 3230 {
c19d1205
ZW
3231 inst.error = _("']' expected");
3232 return FAIL;
09d92015
MM
3233 }
3234
c19d1205
ZW
3235 if (skip_past_char (&p, '!') == SUCCESS)
3236 inst.operands[i].writeback = 1;
09d92015 3237
c19d1205 3238 else if (skip_past_comma (&p) == SUCCESS)
09d92015 3239 {
c19d1205
ZW
3240 if (skip_past_char (&p, '{') == SUCCESS)
3241 {
3242 /* [Rn], {expr} - unindexed, with option */
3243 if (parse_immediate (&p, &inst.operands[i].imm,
3244 0, 255, TRUE) == FAIL)
3245 return FAIL;
09d92015 3246
c19d1205
ZW
3247 if (skip_past_char (&p, '}') == FAIL)
3248 {
3249 inst.error = _("'}' expected at end of 'option' field");
3250 return FAIL;
3251 }
3252 if (inst.operands[i].preind)
3253 {
3254 inst.error = _("cannot combine index with option");
3255 return FAIL;
3256 }
3257 *str = p;
3258 return SUCCESS;
09d92015 3259 }
c19d1205
ZW
3260 else
3261 {
3262 inst.operands[i].postind = 1;
3263 inst.operands[i].writeback = 1;
09d92015 3264
c19d1205
ZW
3265 if (inst.operands[i].preind)
3266 {
3267 inst.error = _("cannot combine pre- and post-indexing");
3268 return FAIL;
3269 }
09d92015 3270
c19d1205
ZW
3271 if (*p == '+') p++;
3272 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 3273
c19d1205
ZW
3274 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3275 {
3276 inst.operands[i].imm = reg;
3277 inst.operands[i].immisreg = 1;
a737bd4d 3278
c19d1205
ZW
3279 if (skip_past_comma (&p) == SUCCESS)
3280 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3281 return FAIL;
3282 }
3283 else
3284 {
3285 if (inst.operands[i].negative)
3286 {
3287 inst.operands[i].negative = 0;
3288 p--;
3289 }
3290 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3291 return FAIL;
3292 }
3293 }
a737bd4d
NC
3294 }
3295
c19d1205
ZW
3296 /* If at this point neither .preind nor .postind is set, we have a
3297 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
3298 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
3299 {
3300 inst.operands[i].preind = 1;
3301 inst.reloc.exp.X_op = O_constant;
3302 inst.reloc.exp.X_add_number = 0;
3303 }
3304 *str = p;
3305 return SUCCESS;
a737bd4d
NC
3306}
3307
c19d1205 3308/* Miscellaneous. */
a737bd4d 3309
c19d1205
ZW
3310/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
3311 or a bitmask suitable to be or-ed into the ARM msr instruction. */
3312static int
3313parse_psr (char **str)
09d92015 3314{
c19d1205
ZW
3315 char *p;
3316 unsigned long psr_field;
09d92015 3317
c19d1205
ZW
3318 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
3319 feature for ease of use and backwards compatibility. */
3320 p = *str;
3321 if (*p == 's' || *p == 'S')
3322 psr_field = SPSR_BIT;
3323 else if (*p == 'c' || *p == 'C')
3324 psr_field = 0;
3325 else
3326 goto error;
09d92015 3327
c19d1205
ZW
3328 p++;
3329 if (strncasecmp (p, "PSR", 3) != 0)
3330 goto error;
3331 p += 3;
09d92015 3332
c19d1205
ZW
3333 if (*p == '_')
3334 {
3335 /* A suffix follows. */
3336 const struct asm_psr *psr;
3337 char *start;
a737bd4d 3338
c19d1205
ZW
3339 p++;
3340 start = p;
a737bd4d 3341
c19d1205
ZW
3342 do
3343 p++;
3344 while (ISALNUM (*p) || *p == '_');
a737bd4d 3345
c19d1205
ZW
3346 psr = hash_find_n (arm_psr_hsh, start, p - start);
3347 if (!psr)
3348 goto error;
a737bd4d 3349
c19d1205 3350 psr_field |= psr->field;
a737bd4d 3351 }
c19d1205 3352 else
a737bd4d 3353 {
c19d1205
ZW
3354 if (ISALNUM (*p))
3355 goto error; /* Garbage after "[CS]PSR". */
3356
3357 psr_field |= (PSR_c | PSR_f);
a737bd4d 3358 }
c19d1205
ZW
3359 *str = p;
3360 return psr_field;
a737bd4d 3361
c19d1205
ZW
3362 error:
3363 inst.error = _("flag for {c}psr instruction expected");
3364 return FAIL;
a737bd4d
NC
3365}
3366
c19d1205
ZW
3367/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
3368 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 3369
c19d1205
ZW
3370static int
3371parse_cps_flags (char **str)
a737bd4d 3372{
c19d1205
ZW
3373 int val = 0;
3374 int saw_a_flag = 0;
3375 char *s = *str;
a737bd4d 3376
c19d1205
ZW
3377 for (;;)
3378 switch (*s++)
3379 {
3380 case '\0': case ',':
3381 goto done;
a737bd4d 3382
c19d1205
ZW
3383 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
3384 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
3385 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 3386
c19d1205
ZW
3387 default:
3388 inst.error = _("unrecognized CPS flag");
3389 return FAIL;
3390 }
a737bd4d 3391
c19d1205
ZW
3392 done:
3393 if (saw_a_flag == 0)
a737bd4d 3394 {
c19d1205
ZW
3395 inst.error = _("missing CPS flags");
3396 return FAIL;
a737bd4d 3397 }
a737bd4d 3398
c19d1205
ZW
3399 *str = s - 1;
3400 return val;
a737bd4d
NC
3401}
3402
c19d1205
ZW
3403/* Parse an endian specifier ("BE" or "LE", case insensitive);
3404 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
3405
3406static int
c19d1205 3407parse_endian_specifier (char **str)
a737bd4d 3408{
c19d1205
ZW
3409 int little_endian;
3410 char *s = *str;
a737bd4d 3411
c19d1205
ZW
3412 if (strncasecmp (s, "BE", 2))
3413 little_endian = 0;
3414 else if (strncasecmp (s, "LE", 2))
3415 little_endian = 1;
3416 else
a737bd4d 3417 {
c19d1205 3418 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
3419 return FAIL;
3420 }
3421
c19d1205 3422 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 3423 {
c19d1205 3424 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
3425 return FAIL;
3426 }
3427
c19d1205
ZW
3428 *str = s + 2;
3429 return little_endian;
3430}
a737bd4d 3431
c19d1205
ZW
3432/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
3433 value suitable for poking into the rotate field of an sxt or sxta
3434 instruction, or FAIL on error. */
3435
3436static int
3437parse_ror (char **str)
3438{
3439 int rot;
3440 char *s = *str;
3441
3442 if (strncasecmp (s, "ROR", 3) == 0)
3443 s += 3;
3444 else
a737bd4d 3445 {
c19d1205 3446 inst.error = _("missing rotation field after comma");
a737bd4d
NC
3447 return FAIL;
3448 }
c19d1205
ZW
3449
3450 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
3451 return FAIL;
3452
3453 switch (rot)
a737bd4d 3454 {
c19d1205
ZW
3455 case 0: *str = s; return 0x0;
3456 case 8: *str = s; return 0x1;
3457 case 16: *str = s; return 0x2;
3458 case 24: *str = s; return 0x3;
3459
3460 default:
3461 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
3462 return FAIL;
3463 }
c19d1205 3464}
a737bd4d 3465
c19d1205
ZW
3466/* Parse a conditional code (from conds[] below). The value returned is in the
3467 range 0 .. 14, or FAIL. */
3468static int
3469parse_cond (char **str)
3470{
3471 char *p, *q;
3472 const struct asm_cond *c;
a737bd4d 3473
c19d1205
ZW
3474 p = q = *str;
3475 while (ISALPHA (*q))
3476 q++;
a737bd4d 3477
c19d1205
ZW
3478 c = hash_find_n (arm_cond_hsh, p, q - p);
3479 if (!c)
a737bd4d 3480 {
c19d1205 3481 inst.error = _("condition required");
a737bd4d
NC
3482 return FAIL;
3483 }
3484
c19d1205
ZW
3485 *str = q;
3486 return c->value;
3487}
3488
3489/* Matcher codes for parse_operands. */
3490enum operand_parse_code
3491{
3492 OP_stop, /* end of line */
3493
3494 OP_RR, /* ARM register */
3495 OP_RRnpc, /* ARM register, not r15 */
3496 OP_RRnpcb, /* ARM register, not r15, in square brackets */
3497 OP_RRw, /* ARM register, not r15, optional trailing ! */
3498 OP_RCP, /* Coprocessor number */
3499 OP_RCN, /* Coprocessor register */
3500 OP_RF, /* FPA register */
3501 OP_RVS, /* VFP single precision register */
3502 OP_RVD, /* VFP double precision register */
3503 OP_RVC, /* VFP control register */
3504 OP_RMF, /* Maverick F register */
3505 OP_RMD, /* Maverick D register */
3506 OP_RMFX, /* Maverick FX register */
3507 OP_RMDX, /* Maverick DX register */
3508 OP_RMAX, /* Maverick AX register */
3509 OP_RMDS, /* Maverick DSPSC register */
3510 OP_RIWR, /* iWMMXt wR register */
3511 OP_RIWC, /* iWMMXt wC register */
3512 OP_RIWG, /* iWMMXt wCG register */
3513 OP_RXA, /* XScale accumulator register */
3514
3515 OP_REGLST, /* ARM register list */
3516 OP_VRSLST, /* VFP single-precision register list */
3517 OP_VRDLST, /* VFP double-precision register list */
3518
3519 OP_I7, /* immediate value 0 .. 7 */
3520 OP_I15, /* 0 .. 15 */
3521 OP_I16, /* 1 .. 16 */
3522 OP_I31, /* 0 .. 31 */
3523 OP_I31w, /* 0 .. 31, optional trailing ! */
3524 OP_I32, /* 1 .. 32 */
3525 OP_I63s, /* -64 .. 63 */
3526 OP_I255, /* 0 .. 255 */
3527 OP_Iffff, /* 0 .. 65535 */
3528
3529 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
3530 OP_I7b, /* 0 .. 7 */
3531 OP_I15b, /* 0 .. 15 */
3532 OP_I31b, /* 0 .. 31 */
3533
3534 OP_SH, /* shifter operand */
3535 OP_ADDR, /* Memory address expression (any mode) */
3536 OP_EXP, /* arbitrary expression */
3537 OP_EXPi, /* same, with optional immediate prefix */
3538 OP_EXPr, /* same, with optional relocation suffix */
3539
3540 OP_CPSF, /* CPS flags */
3541 OP_ENDI, /* Endianness specifier */
3542 OP_PSR, /* CPSR/SPSR mask for msr */
3543 OP_COND, /* conditional code */
3544
3545 OP_RRnpc_I0, /* ARM register or literal 0 */
3546 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
3547 OP_RR_EXi, /* ARM register or expression with imm prefix */
3548 OP_RF_IF, /* FPA register or immediate */
3549 OP_RIWR_RIWC, /* iWMMXt R or C reg */
3550
3551 /* Optional operands. */
3552 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
3553 OP_oI31b, /* 0 .. 31 */
3554 OP_oIffffb, /* 0 .. 65535 */
3555 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
3556
3557 OP_oRR, /* ARM register */
3558 OP_oRRnpc, /* ARM register, not the PC */
3559 OP_oSHll, /* LSL immediate */
3560 OP_oSHar, /* ASR immediate */
3561 OP_oSHllar, /* LSL or ASR immediate */
3562 OP_oROR, /* ROR 0/8/16/24 */
3563
3564 OP_FIRST_OPTIONAL = OP_oI7b
3565};
a737bd4d 3566
c19d1205
ZW
3567/* Generic instruction operand parser. This does no encoding and no
3568 semantic validation; it merely squirrels values away in the inst
3569 structure. Returns SUCCESS or FAIL depending on whether the
3570 specified grammar matched. */
3571static int
3572parse_operands (char *str, const char *pattern)
3573{
3574 unsigned const char *upat = pattern;
3575 char *backtrack_pos = 0;
3576 const char *backtrack_error = 0;
3577 int i, val, backtrack_index = 0;
3578
3579#define po_char_or_fail(chr) do { \
3580 if (skip_past_char (&str, chr) == FAIL) \
3581 goto bad_args; \
3582} while (0)
3583
3584#define po_reg_or_fail(regtype) do { \
3585 val = arm_reg_parse (&str, regtype); \
3586 if (val == FAIL) \
3587 { \
3588 inst.error = _(reg_expected_msgs[regtype]); \
3589 goto failure; \
3590 } \
3591 inst.operands[i].reg = val; \
3592 inst.operands[i].isreg = 1; \
3593} while (0)
3594
3595#define po_reg_or_goto(regtype, label) do { \
3596 val = arm_reg_parse (&str, regtype); \
3597 if (val == FAIL) \
3598 goto label; \
3599 \
3600 inst.operands[i].reg = val; \
3601 inst.operands[i].isreg = 1; \
3602} while (0)
3603
3604#define po_imm_or_fail(min, max, popt) do { \
3605 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
3606 goto failure; \
3607 inst.operands[i].imm = val; \
3608} while (0)
3609
3610#define po_misc_or_fail(expr) do { \
3611 if (expr) \
3612 goto failure; \
3613} while (0)
3614
3615 skip_whitespace (str);
3616
3617 for (i = 0; upat[i] != OP_stop; i++)
3618 {
3619 if (upat[i] >= OP_FIRST_OPTIONAL)
3620 {
3621 /* Remember where we are in case we need to backtrack. */
3622 assert (!backtrack_pos);
3623 backtrack_pos = str;
3624 backtrack_error = inst.error;
3625 backtrack_index = i;
3626 }
3627
3628 if (i > 0)
3629 po_char_or_fail (',');
3630
3631 switch (upat[i])
3632 {
3633 /* Registers */
3634 case OP_oRRnpc:
3635 case OP_RRnpc:
3636 case OP_oRR:
3637 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
3638 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
3639 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
3640 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
3641 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
3642 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
3643 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
3644 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
3645 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
3646 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
3647 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
3648 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
3649 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
3650 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
3651 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
3652 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
3653 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
3654
3655 case OP_RRnpcb:
3656 po_char_or_fail ('[');
3657 po_reg_or_fail (REG_TYPE_RN);
3658 po_char_or_fail (']');
3659 break;
a737bd4d 3660
c19d1205
ZW
3661 case OP_RRw:
3662 po_reg_or_fail (REG_TYPE_RN);
3663 if (skip_past_char (&str, '!') == SUCCESS)
3664 inst.operands[i].writeback = 1;
3665 break;
3666
3667 /* Immediates */
3668 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
3669 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
3670 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
3671 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
3672 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
3673 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
3674 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
3675 case OP_Iffff: po_imm_or_fail ( 0, 0xffff, FALSE); break;
3676
3677 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
3678 case OP_oI7b:
3679 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
3680 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
3681 case OP_oI31b:
3682 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
3683 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
3684
3685 /* Immediate variants */
3686 case OP_oI255c:
3687 po_char_or_fail ('{');
3688 po_imm_or_fail (0, 255, TRUE);
3689 po_char_or_fail ('}');
3690 break;
3691
3692 case OP_I31w:
3693 /* The expression parser chokes on a trailing !, so we have
3694 to find it first and zap it. */
3695 {
3696 char *s = str;
3697 while (*s && *s != ',')
3698 s++;
3699 if (s[-1] == '!')
3700 {
3701 s[-1] = '\0';
3702 inst.operands[i].writeback = 1;
3703 }
3704 po_imm_or_fail (0, 31, TRUE);
3705 if (str == s - 1)
3706 str = s;
3707 }
3708 break;
3709
3710 /* Expressions */
3711 case OP_EXPi: EXPi:
3712 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3713 GE_OPT_PREFIX));
3714 break;
3715
3716 case OP_EXP:
3717 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3718 GE_NO_PREFIX));
3719 break;
3720
3721 case OP_EXPr: EXPr:
3722 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3723 GE_NO_PREFIX));
3724 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 3725 {
c19d1205
ZW
3726 val = parse_reloc (&str);
3727 if (val == -1)
3728 {
3729 inst.error = _("unrecognized relocation suffix");
3730 goto failure;
3731 }
3732 else if (val != BFD_RELOC_UNUSED)
3733 {
3734 inst.operands[i].imm = val;
3735 inst.operands[i].hasreloc = 1;
3736 }
a737bd4d 3737 }
c19d1205 3738 break;
a737bd4d 3739
c19d1205
ZW
3740 /* Register or expression */
3741 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
3742 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 3743
c19d1205
ZW
3744 /* Register or immediate */
3745 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
3746 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 3747
c19d1205
ZW
3748 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
3749 IF:
3750 if (!is_immediate_prefix (*str))
3751 goto bad_args;
3752 str++;
3753 val = parse_fpa_immediate (&str);
3754 if (val == FAIL)
3755 goto failure;
3756 /* FPA immediates are encoded as registers 8-15.
3757 parse_fpa_immediate has already applied the offset. */
3758 inst.operands[i].reg = val;
3759 inst.operands[i].isreg = 1;
3760 break;
09d92015 3761
c19d1205
ZW
3762 /* Two kinds of register */
3763 case OP_RIWR_RIWC:
3764 {
3765 struct reg_entry *rege = arm_reg_parse_multi (&str);
3766 if (rege->type != REG_TYPE_MMXWR
3767 && rege->type != REG_TYPE_MMXWC
3768 && rege->type != REG_TYPE_MMXWCG)
3769 {
3770 inst.error = _("iWMMXt data or control register expected");
3771 goto failure;
3772 }
3773 inst.operands[i].reg = rege->number;
3774 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
3775 }
3776 break;
09d92015 3777
c19d1205
ZW
3778 /* Misc */
3779 case OP_CPSF: val = parse_cps_flags (&str); break;
3780 case OP_ENDI: val = parse_endian_specifier (&str); break;
3781 case OP_oROR: val = parse_ror (&str); break;
3782 case OP_PSR: val = parse_psr (&str); break;
3783 case OP_COND: val = parse_cond (&str); break;
3784
3785 /* Register lists */
3786 case OP_REGLST:
3787 val = parse_reg_list (&str);
3788 if (*str == '^')
3789 {
3790 inst.operands[1].writeback = 1;
3791 str++;
3792 }
3793 break;
09d92015 3794
c19d1205
ZW
3795 case OP_VRSLST:
3796 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 0);
3797 break;
09d92015 3798
c19d1205
ZW
3799 case OP_VRDLST:
3800 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 1);
3801 break;
a737bd4d 3802
c19d1205
ZW
3803 /* Addressing modes */
3804 case OP_ADDR:
3805 po_misc_or_fail (parse_address (&str, i));
3806 break;
09d92015 3807
c19d1205
ZW
3808 case OP_SH:
3809 po_misc_or_fail (parse_shifter_operand (&str, i));
3810 break;
09d92015 3811
c19d1205
ZW
3812 case OP_oSHll:
3813 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
3814 break;
09d92015 3815
c19d1205
ZW
3816 case OP_oSHar:
3817 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
3818 break;
09d92015 3819
c19d1205
ZW
3820 case OP_oSHllar:
3821 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
3822 break;
09d92015 3823
c19d1205
ZW
3824 default:
3825 as_fatal ("unhandled operand code %d", upat[i]);
3826 }
09d92015 3827
c19d1205
ZW
3828 /* Various value-based sanity checks and shared operations. We
3829 do not signal immediate failures for the register constraints;
3830 this allows a syntax error to take precedence. */
3831 switch (upat[i])
3832 {
3833 case OP_oRRnpc:
3834 case OP_RRnpc:
3835 case OP_RRnpcb:
3836 case OP_RRw:
3837 case OP_RRnpc_I0:
3838 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
3839 inst.error = BAD_PC;
3840 break;
09d92015 3841
c19d1205
ZW
3842 case OP_CPSF:
3843 case OP_ENDI:
3844 case OP_oROR:
3845 case OP_PSR:
3846 case OP_COND:
3847 case OP_REGLST:
3848 case OP_VRSLST:
3849 case OP_VRDLST:
3850 if (val == FAIL)
3851 goto failure;
3852 inst.operands[i].imm = val;
3853 break;
a737bd4d 3854
c19d1205
ZW
3855 default:
3856 break;
3857 }
09d92015 3858
c19d1205
ZW
3859 /* If we get here, this operand was successfully parsed. */
3860 inst.operands[i].present = 1;
3861 continue;
09d92015 3862
c19d1205 3863 bad_args:
09d92015 3864 inst.error = BAD_ARGS;
c19d1205
ZW
3865
3866 failure:
3867 if (!backtrack_pos)
3868 return FAIL;
3869
3870 /* Do not backtrack over a trailing optional argument that
3871 absorbed some text. We will only fail again, with the
3872 'garbage following instruction' error message, which is
3873 probably less helpful than the current one. */
3874 if (backtrack_index == i && backtrack_pos != str
3875 && upat[i+1] == OP_stop)
3876 return FAIL;
3877
3878 /* Try again, skipping the optional argument at backtrack_pos. */
3879 str = backtrack_pos;
3880 inst.error = backtrack_error;
3881 inst.operands[backtrack_index].present = 0;
3882 i = backtrack_index;
3883 backtrack_pos = 0;
09d92015 3884 }
09d92015 3885
c19d1205
ZW
3886 /* Check that we have parsed all the arguments. */
3887 if (*str != '\0' && !inst.error)
3888 inst.error = _("garbage following instruction");
09d92015 3889
c19d1205 3890 return inst.error ? FAIL : SUCCESS;
09d92015
MM
3891}
3892
c19d1205
ZW
3893#undef po_char_or_fail
3894#undef po_reg_or_fail
3895#undef po_reg_or_goto
3896#undef po_imm_or_fail
3897\f
3898/* Shorthand macro for instruction encoding functions issuing errors. */
3899#define constraint(expr, err) do { \
3900 if (expr) \
3901 { \
3902 inst.error = err; \
3903 return; \
3904 } \
3905} while (0)
3906
3907/* Functions for operand encoding. ARM, then Thumb. */
3908
3909#define rotate_left(v, n) (v << n | v >> (32 - n))
3910
3911/* If VAL can be encoded in the immediate field of an ARM instruction,
3912 return the encoded form. Otherwise, return FAIL. */
3913
3914static unsigned int
3915encode_arm_immediate (unsigned int val)
09d92015 3916{
c19d1205
ZW
3917 unsigned int a, i;
3918
3919 for (i = 0; i < 32; i += 2)
3920 if ((a = rotate_left (val, i)) <= 0xff)
3921 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
3922
3923 return FAIL;
09d92015
MM
3924}
3925
c19d1205
ZW
3926/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
3927 return the encoded form. Otherwise, return FAIL. */
3928static unsigned int
3929encode_thumb32_immediate (unsigned int val)
09d92015 3930{
c19d1205 3931 unsigned int a, i;
09d92015 3932
c19d1205
ZW
3933 if (val <= 255)
3934 return val;
a737bd4d 3935
c19d1205 3936 for (i = 0; i < 32; i++)
09d92015 3937 {
c19d1205
ZW
3938 a = rotate_left (val, i);
3939 if (a >= 128 && a <= 255)
3940 return (a & 0x7f) | (i << 7);
09d92015 3941 }
a737bd4d 3942
c19d1205
ZW
3943 a = val & 0xff;
3944 if (val == ((a << 16) | a))
3945 return 0x100 | a;
3946 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
3947 return 0x300 | a;
09d92015 3948
c19d1205
ZW
3949 a = val & 0xff00;
3950 if (val == ((a << 16) | a))
3951 return 0x200 | (a >> 8);
a737bd4d 3952
c19d1205 3953 return FAIL;
09d92015 3954}
c19d1205 3955/* Encode a VFP SP register number into inst.instruction. */
09d92015
MM
3956
3957static void
c19d1205 3958encode_arm_vfp_sp_reg (int reg, enum vfp_sp_reg_pos pos)
09d92015 3959{
c19d1205 3960 switch (pos)
09d92015 3961 {
c19d1205
ZW
3962 case VFP_REG_Sd:
3963 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
3964 break;
3965
3966 case VFP_REG_Sn:
3967 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
3968 break;
3969
3970 case VFP_REG_Sm:
3971 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
3972 break;
3973
3974 default:
3975 abort ();
09d92015 3976 }
09d92015
MM
3977}
3978
c19d1205
ZW
3979/* Encode a <shift> in an ARM-format instruction. The immediate,
3980 if any, is handled by md_apply_fix3. */
09d92015 3981static void
c19d1205 3982encode_arm_shift (int i)
09d92015 3983{
c19d1205
ZW
3984 if (inst.operands[i].shift_kind == SHIFT_RRX)
3985 inst.instruction |= SHIFT_ROR << 5;
3986 else
09d92015 3987 {
c19d1205
ZW
3988 inst.instruction |= inst.operands[i].shift_kind << 5;
3989 if (inst.operands[i].immisreg)
3990 {
3991 inst.instruction |= SHIFT_BY_REG;
3992 inst.instruction |= inst.operands[i].imm << 8;
3993 }
3994 else
3995 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 3996 }
c19d1205 3997}
09d92015 3998
c19d1205
ZW
3999static void
4000encode_arm_shifter_operand (int i)
4001{
4002 if (inst.operands[i].isreg)
09d92015 4003 {
c19d1205
ZW
4004 inst.instruction |= inst.operands[i].reg;
4005 encode_arm_shift (i);
09d92015 4006 }
c19d1205
ZW
4007 else
4008 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
4009}
4010
c19d1205 4011/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 4012static void
c19d1205 4013encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 4014{
c19d1205
ZW
4015 assert (inst.operands[i].isreg);
4016 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 4017
c19d1205 4018 if (inst.operands[i].preind)
09d92015 4019 {
c19d1205
ZW
4020 if (is_t)
4021 {
4022 inst.error = _("instruction does not accept preindexed addressing");
4023 return;
4024 }
4025 inst.instruction |= PRE_INDEX;
4026 if (inst.operands[i].writeback)
4027 inst.instruction |= WRITE_BACK;
09d92015 4028
c19d1205
ZW
4029 }
4030 else if (inst.operands[i].postind)
4031 {
4032 assert (inst.operands[i].writeback);
4033 if (is_t)
4034 inst.instruction |= WRITE_BACK;
4035 }
4036 else /* unindexed - only for coprocessor */
09d92015 4037 {
c19d1205 4038 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
4039 return;
4040 }
4041
c19d1205
ZW
4042 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
4043 && (((inst.instruction & 0x000f0000) >> 16)
4044 == ((inst.instruction & 0x0000f000) >> 12)))
4045 as_warn ((inst.instruction & LOAD_BIT)
4046 ? _("destination register same as write-back base")
4047 : _("source register same as write-back base"));
09d92015
MM
4048}
4049
c19d1205
ZW
4050/* inst.operands[i] was set up by parse_address. Encode it into an
4051 ARM-format mode 2 load or store instruction. If is_t is true,
4052 reject forms that cannot be used with a T instruction (i.e. not
4053 post-indexed). */
a737bd4d 4054static void
c19d1205 4055encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 4056{
c19d1205 4057 encode_arm_addr_mode_common (i, is_t);
a737bd4d 4058
c19d1205 4059 if (inst.operands[i].immisreg)
09d92015 4060 {
c19d1205
ZW
4061 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
4062 inst.instruction |= inst.operands[i].imm;
4063 if (!inst.operands[i].negative)
4064 inst.instruction |= INDEX_UP;
4065 if (inst.operands[i].shifted)
4066 {
4067 if (inst.operands[i].shift_kind == SHIFT_RRX)
4068 inst.instruction |= SHIFT_ROR << 5;
4069 else
4070 {
4071 inst.instruction |= inst.operands[i].shift_kind << 5;
4072 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
4073 }
4074 }
09d92015 4075 }
c19d1205 4076 else /* immediate offset in inst.reloc */
09d92015 4077 {
c19d1205
ZW
4078 if (inst.reloc.type == BFD_RELOC_UNUSED)
4079 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
4080 if (inst.reloc.pc_rel)
4081 inst.reloc.exp.X_add_number -= 8; /* pipeline offset */
09d92015 4082 }
09d92015
MM
4083}
4084
c19d1205
ZW
4085/* inst.operands[i] was set up by parse_address. Encode it into an
4086 ARM-format mode 3 load or store instruction. Reject forms that
4087 cannot be used with such instructions. If is_t is true, reject
4088 forms that cannot be used with a T instruction (i.e. not
4089 post-indexed). */
4090static void
4091encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 4092{
c19d1205 4093 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 4094 {
c19d1205
ZW
4095 inst.error = _("instruction does not accept scaled register index");
4096 return;
09d92015 4097 }
a737bd4d 4098
c19d1205 4099 encode_arm_addr_mode_common (i, is_t);
a737bd4d 4100
c19d1205
ZW
4101 if (inst.operands[i].immisreg)
4102 {
4103 inst.instruction |= inst.operands[i].imm;
4104 if (!inst.operands[i].negative)
4105 inst.instruction |= INDEX_UP;
4106 }
4107 else /* immediate offset in inst.reloc */
4108 {
4109 inst.instruction |= HWOFFSET_IMM;
4110 if (inst.reloc.type == BFD_RELOC_UNUSED)
4111 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
4112 if (inst.reloc.pc_rel)
4113 inst.reloc.exp.X_add_number -= 8; /* pipeline offset */
4114 }
a737bd4d
NC
4115}
4116
c19d1205
ZW
4117/* inst.operands[i] was set up by parse_address. Encode it into an
4118 ARM-format instruction. Reject all forms which cannot be encoded
4119 into a coprocessor load/store instruction. If wb_ok is false,
4120 reject use of writeback; if unind_ok is false, reject use of
4121 unindexed addressing. If reloc_override is not 0, use it instead
4122 of BFD_ARM_CP_OFF_IMM. */
09d92015 4123
c19d1205
ZW
4124static int
4125encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 4126{
c19d1205 4127 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 4128
c19d1205 4129 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 4130
c19d1205 4131 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 4132 {
c19d1205
ZW
4133 assert (!inst.operands[i].writeback);
4134 if (!unind_ok)
4135 {
4136 inst.error = _("instruction does not support unindexed addressing");
4137 return FAIL;
4138 }
4139 inst.instruction |= inst.operands[i].imm;
4140 inst.instruction |= INDEX_UP;
4141 return SUCCESS;
09d92015 4142 }
a737bd4d 4143
c19d1205
ZW
4144 if (inst.operands[i].preind)
4145 inst.instruction |= PRE_INDEX;
a737bd4d 4146
c19d1205 4147 if (inst.operands[i].writeback)
09d92015 4148 {
c19d1205
ZW
4149 if (inst.operands[i].reg == REG_PC)
4150 {
4151 inst.error = _("pc may not be used with write-back");
4152 return FAIL;
4153 }
4154 if (!wb_ok)
4155 {
4156 inst.error = _("instruction does not support writeback");
4157 return FAIL;
4158 }
4159 inst.instruction |= WRITE_BACK;
09d92015 4160 }
a737bd4d 4161
c19d1205
ZW
4162 if (reloc_override)
4163 inst.reloc.type = reloc_override;
09d92015 4164 else
c19d1205
ZW
4165 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
4166 if (inst.reloc.pc_rel)
4167 inst.reloc.exp.X_add_number -= 8;
4168 return SUCCESS;
4169}
a737bd4d 4170
c19d1205
ZW
4171/* inst.reloc.exp describes an "=expr" load pseudo-operation.
4172 Determine whether it can be performed with a move instruction; if
4173 it can, convert inst.instruction to that move instruction and
4174 return 1; if it can't, convert inst.instruction to a literal-pool
4175 load and return 0. If this is not a valid thing to do in the
4176 current context, set inst.error and return 1.
a737bd4d 4177
c19d1205
ZW
4178 inst.operands[i] describes the destination register. */
4179
4180static int
4181move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
4182{
4183 if ((inst.instruction & (thumb_p ? THUMB_LOAD_BIT : LOAD_BIT)) == 0)
09d92015 4184 {
c19d1205
ZW
4185 inst.error = _("invalid pseudo operation");
4186 return 1;
09d92015 4187 }
c19d1205 4188 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
4189 {
4190 inst.error = _("constant expression expected");
c19d1205 4191 return 1;
09d92015 4192 }
c19d1205 4193 if (inst.reloc.exp.X_op == O_constant)
09d92015 4194 {
c19d1205
ZW
4195 if (thumb_p)
4196 {
4197 if ((inst.reloc.exp.X_add_number & ~0xFF) == 0)
4198 {
4199 /* This can be done with a mov(1) instruction. */
4200 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
4201 inst.instruction |= inst.reloc.exp.X_add_number;
4202 return 1;
4203 }
4204 }
4205 else
4206 {
4207 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
4208 if (value != FAIL)
4209 {
4210 /* This can be done with a mov instruction. */
4211 inst.instruction &= LITERAL_MASK;
4212 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
4213 inst.instruction |= value & 0xfff;
4214 return 1;
4215 }
09d92015 4216
c19d1205
ZW
4217 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
4218 if (value != FAIL)
4219 {
4220 /* This can be done with a mvn instruction. */
4221 inst.instruction &= LITERAL_MASK;
4222 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
4223 inst.instruction |= value & 0xfff;
4224 return 1;
4225 }
4226 }
09d92015
MM
4227 }
4228
c19d1205
ZW
4229 if (add_to_lit_pool () == FAIL)
4230 {
4231 inst.error = _("literal pool insertion failed");
4232 return 1;
4233 }
4234 inst.operands[1].reg = REG_PC;
4235 inst.operands[1].isreg = 1;
4236 inst.operands[1].preind = 1;
4237 inst.reloc.pc_rel = 1;
4238 inst.reloc.type = (thumb_p
4239 ? BFD_RELOC_ARM_THUMB_OFFSET
4240 : (mode_3
4241 ? BFD_RELOC_ARM_HWLITERAL
4242 : BFD_RELOC_ARM_LITERAL));
4243 return 0;
09d92015
MM
4244}
4245
c19d1205
ZW
4246/* Functions for instruction encoding, sorted by subarchitecture.
4247 First some generics; their names are taken from the conventional
4248 bit positions for register arguments in ARM format instructions. */
09d92015 4249
a737bd4d 4250static void
c19d1205 4251do_noargs (void)
09d92015 4252{
c19d1205 4253}
a737bd4d 4254
c19d1205
ZW
4255static void
4256do_rd (void)
4257{
4258 inst.instruction |= inst.operands[0].reg << 12;
4259}
a737bd4d 4260
c19d1205
ZW
4261static void
4262do_rd_rm (void)
4263{
4264 inst.instruction |= inst.operands[0].reg << 12;
4265 inst.instruction |= inst.operands[1].reg;
4266}
09d92015 4267
c19d1205
ZW
4268static void
4269do_rd_rn (void)
4270{
4271 inst.instruction |= inst.operands[0].reg << 12;
4272 inst.instruction |= inst.operands[1].reg << 16;
4273}
a737bd4d 4274
c19d1205
ZW
4275static void
4276do_rn_rd (void)
4277{
4278 inst.instruction |= inst.operands[0].reg << 16;
4279 inst.instruction |= inst.operands[1].reg << 12;
4280}
09d92015 4281
c19d1205
ZW
4282static void
4283do_rd_rm_rn (void)
4284{
4285 inst.instruction |= inst.operands[0].reg << 12;
4286 inst.instruction |= inst.operands[1].reg;
4287 inst.instruction |= inst.operands[2].reg << 16;
4288}
09d92015 4289
c19d1205
ZW
4290static void
4291do_rd_rn_rm (void)
4292{
4293 inst.instruction |= inst.operands[0].reg << 12;
4294 inst.instruction |= inst.operands[1].reg << 16;
4295 inst.instruction |= inst.operands[2].reg;
4296}
a737bd4d 4297
c19d1205
ZW
4298static void
4299do_rm_rd_rn (void)
4300{
4301 inst.instruction |= inst.operands[0].reg;
4302 inst.instruction |= inst.operands[1].reg << 12;
4303 inst.instruction |= inst.operands[2].reg << 16;
4304}
09d92015 4305
c19d1205
ZW
4306static void
4307do_imm0 (void)
4308{
4309 inst.instruction |= inst.operands[0].imm;
4310}
09d92015 4311
c19d1205
ZW
4312static void
4313do_rd_cpaddr (void)
4314{
4315 inst.instruction |= inst.operands[0].reg << 12;
4316 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 4317}
a737bd4d 4318
c19d1205
ZW
4319/* ARM instructions, in alphabetical order by function name (except
4320 that wrapper functions appear immediately after the function they
4321 wrap). */
09d92015 4322
c19d1205
ZW
4323/* This is a pseudo-op of the form "adr rd, label" to be converted
4324 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
4325
4326static void
c19d1205 4327do_adr (void)
09d92015 4328{
c19d1205 4329 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 4330
c19d1205
ZW
4331 /* Frag hacking will turn this into a sub instruction if the offset turns
4332 out to be negative. */
4333 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4334#ifndef TE_WINCE
4335 inst.reloc.exp.X_add_number -= 8; /* PC relative adjust. */
4336#endif
4337 inst.reloc.pc_rel = 1;
4338}
b99bd4ef 4339
c19d1205
ZW
4340/* This is a pseudo-op of the form "adrl rd, label" to be converted
4341 into a relative address of the form:
4342 add rd, pc, #low(label-.-8)"
4343 add rd, rd, #high(label-.-8)" */
b99bd4ef 4344
c19d1205
ZW
4345static void
4346do_adrl (void)
4347{
4348 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 4349
c19d1205
ZW
4350 /* Frag hacking will turn this into a sub instruction if the offset turns
4351 out to be negative. */
4352 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
4353#ifndef TE_WINCE
4354 inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */
4355#endif
4356 inst.reloc.pc_rel = 1;
4357 inst.size = INSN_SIZE * 2;
b99bd4ef
NC
4358}
4359
b99bd4ef 4360static void
c19d1205 4361do_arit (void)
b99bd4ef 4362{
c19d1205
ZW
4363 if (!inst.operands[1].present)
4364 inst.operands[1].reg = inst.operands[0].reg;
4365 inst.instruction |= inst.operands[0].reg << 12;
4366 inst.instruction |= inst.operands[1].reg << 16;
4367 encode_arm_shifter_operand (2);
4368}
b99bd4ef 4369
c19d1205
ZW
4370static void
4371do_bfc (void)
4372{
4373 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
4374 constraint (msb > 32, _("bit-field extends past end of register"));
4375 /* The instruction encoding stores the LSB and MSB,
4376 not the LSB and width. */
4377 inst.instruction |= inst.operands[0].reg << 12;
4378 inst.instruction |= inst.operands[1].imm << 7;
4379 inst.instruction |= (msb - 1) << 16;
4380}
b99bd4ef 4381
c19d1205
ZW
4382static void
4383do_bfi (void)
4384{
4385 unsigned int msb;
b99bd4ef 4386
c19d1205
ZW
4387 /* #0 in second position is alternative syntax for bfc, which is
4388 the same instruction but with REG_PC in the Rm field. */
4389 if (!inst.operands[1].isreg)
4390 inst.operands[1].reg = REG_PC;
b99bd4ef 4391
c19d1205
ZW
4392 msb = inst.operands[2].imm + inst.operands[3].imm;
4393 constraint (msb > 32, _("bit-field extends past end of register"));
4394 /* The instruction encoding stores the LSB and MSB,
4395 not the LSB and width. */
4396 inst.instruction |= inst.operands[0].reg << 12;
4397 inst.instruction |= inst.operands[1].reg;
4398 inst.instruction |= inst.operands[2].imm << 7;
4399 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
4400}
4401
b99bd4ef 4402static void
c19d1205 4403do_bfx (void)
b99bd4ef 4404{
c19d1205
ZW
4405 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
4406 _("bit-field extends past end of register"));
4407 inst.instruction |= inst.operands[0].reg << 12;
4408 inst.instruction |= inst.operands[1].reg;
4409 inst.instruction |= inst.operands[2].imm << 7;
4410 inst.instruction |= (inst.operands[3].imm - 1) << 16;
4411}
09d92015 4412
c19d1205
ZW
4413/* ARM V5 breakpoint instruction (argument parse)
4414 BKPT <16 bit unsigned immediate>
4415 Instruction is not conditional.
4416 The bit pattern given in insns[] has the COND_ALWAYS condition,
4417 and it is an error if the caller tried to override that. */
b99bd4ef 4418
c19d1205
ZW
4419static void
4420do_bkpt (void)
4421{
4422 /* Top 12 of 16 bits to bits 19:8. */
4423 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 4424
c19d1205
ZW
4425 /* Bottom 4 of 16 bits to bits 3:0. */
4426 inst.instruction |= inst.operands[0].imm & 0xf;
4427}
09d92015 4428
c19d1205
ZW
4429static void
4430encode_branch (int default_reloc)
4431{
4432 if (inst.operands[0].hasreloc)
4433 {
4434 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
4435 _("the only suffix valid here is '(plt)'"));
4436 inst.reloc.type = BFD_RELOC_ARM_PLT32;
4437 inst.reloc.pc_rel = 0;
4438 }
b99bd4ef 4439 else
c19d1205
ZW
4440 {
4441 inst.reloc.type = default_reloc;
4442 inst.reloc.pc_rel = 1;
4443 }
b99bd4ef
NC
4444}
4445
b99bd4ef 4446static void
c19d1205 4447do_branch (void)
b99bd4ef 4448{
c19d1205
ZW
4449 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
4450}
b99bd4ef 4451
c19d1205
ZW
4452/* ARM V5 branch-link-exchange instruction (argument parse)
4453 BLX <target_addr> ie BLX(1)
4454 BLX{<condition>} <Rm> ie BLX(2)
4455 Unfortunately, there are two different opcodes for this mnemonic.
4456 So, the insns[].value is not used, and the code here zaps values
4457 into inst.instruction.
4458 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 4459
c19d1205
ZW
4460static void
4461do_blx (void)
4462{
4463 if (inst.operands[0].isreg)
b99bd4ef 4464 {
c19d1205
ZW
4465 /* Arg is a register; the opcode provided by insns[] is correct.
4466 It is not illegal to do "blx pc", just useless. */
4467 if (inst.operands[0].reg == REG_PC)
4468 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 4469
c19d1205
ZW
4470 inst.instruction |= inst.operands[0].reg;
4471 }
4472 else
b99bd4ef 4473 {
c19d1205
ZW
4474 /* Arg is an address; this instruction cannot be executed
4475 conditionally, and the opcode must be adjusted. */
4476 constraint (inst.cond != COND_ALWAYS, BAD_COND);
4477 inst.instruction = 0xfafffffe;
4478 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 4479 }
c19d1205
ZW
4480}
4481
4482static void
4483do_bx (void)
4484{
4485 if (inst.operands[0].reg == REG_PC)
4486 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 4487
c19d1205 4488 inst.instruction |= inst.operands[0].reg;
09d92015
MM
4489}
4490
c19d1205
ZW
4491
4492/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
4493
4494static void
c19d1205 4495do_bxj (void)
a737bd4d 4496{
c19d1205
ZW
4497 if (inst.operands[0].reg == REG_PC)
4498 as_tsktsk (_("use of r15 in bxj is not really useful"));
4499
4500 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
4501}
4502
c19d1205
ZW
4503/* Co-processor data operation:
4504 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
4505 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
4506static void
4507do_cdp (void)
4508{
4509 inst.instruction |= inst.operands[0].reg << 8;
4510 inst.instruction |= inst.operands[1].imm << 20;
4511 inst.instruction |= inst.operands[2].reg << 12;
4512 inst.instruction |= inst.operands[3].reg << 16;
4513 inst.instruction |= inst.operands[4].reg;
4514 inst.instruction |= inst.operands[5].imm << 5;
4515}
a737bd4d
NC
4516
4517static void
c19d1205 4518do_cmp (void)
a737bd4d 4519{
c19d1205
ZW
4520 inst.instruction |= inst.operands[0].reg << 16;
4521 encode_arm_shifter_operand (1);
a737bd4d
NC
4522}
4523
c19d1205
ZW
4524/* Transfer between coprocessor and ARM registers.
4525 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
4526 MRC2
4527 MCR{cond}
4528 MCR2
4529
4530 No special properties. */
09d92015
MM
4531
4532static void
c19d1205 4533do_co_reg (void)
09d92015 4534{
c19d1205
ZW
4535 inst.instruction |= inst.operands[0].reg << 8;
4536 inst.instruction |= inst.operands[1].imm << 21;
4537 inst.instruction |= inst.operands[2].reg << 12;
4538 inst.instruction |= inst.operands[3].reg << 16;
4539 inst.instruction |= inst.operands[4].reg;
4540 inst.instruction |= inst.operands[5].imm << 5;
4541}
09d92015 4542
c19d1205
ZW
4543/* Transfer between coprocessor register and pair of ARM registers.
4544 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
4545 MCRR2
4546 MRRC{cond}
4547 MRRC2
b99bd4ef 4548
c19d1205 4549 Two XScale instructions are special cases of these:
09d92015 4550
c19d1205
ZW
4551 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
4552 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 4553
c19d1205 4554 Result unpredicatable if Rd or Rn is R15. */
a737bd4d 4555
c19d1205
ZW
4556static void
4557do_co_reg2c (void)
4558{
4559 inst.instruction |= inst.operands[0].reg << 8;
4560 inst.instruction |= inst.operands[1].imm << 4;
4561 inst.instruction |= inst.operands[2].reg << 12;
4562 inst.instruction |= inst.operands[3].reg << 16;
4563 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
4564}
4565
c19d1205
ZW
4566static void
4567do_cpsi (void)
4568{
4569 inst.instruction |= inst.operands[0].imm << 6;
4570 inst.instruction |= inst.operands[1].imm;
4571}
b99bd4ef
NC
4572
4573static void
c19d1205 4574do_it (void)
b99bd4ef 4575{
c19d1205
ZW
4576 /* There is no IT instruction in ARM mode. We
4577 process it but do not generate code for it. */
4578 inst.size = 0;
09d92015 4579}
b99bd4ef 4580
09d92015 4581static void
c19d1205 4582do_ldmstm (void)
ea6ef066 4583{
c19d1205
ZW
4584 int base_reg = inst.operands[0].reg;
4585 int range = inst.operands[1].imm;
ea6ef066 4586
c19d1205
ZW
4587 inst.instruction |= base_reg << 16;
4588 inst.instruction |= range;
ea6ef066 4589
c19d1205
ZW
4590 if (inst.operands[1].writeback)
4591 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 4592
c19d1205 4593 if (inst.operands[0].writeback)
ea6ef066 4594 {
c19d1205
ZW
4595 inst.instruction |= WRITE_BACK;
4596 /* Check for unpredictable uses of writeback. */
4597 if (inst.instruction & LOAD_BIT)
09d92015 4598 {
c19d1205
ZW
4599 /* Not allowed in LDM type 2. */
4600 if ((inst.instruction & LDM_TYPE_2_OR_3)
4601 && ((range & (1 << REG_PC)) == 0))
4602 as_warn (_("writeback of base register is UNPREDICTABLE"));
4603 /* Only allowed if base reg not in list for other types. */
4604 else if (range & (1 << base_reg))
4605 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
4606 }
4607 else /* STM. */
4608 {
4609 /* Not allowed for type 2. */
4610 if (inst.instruction & LDM_TYPE_2_OR_3)
4611 as_warn (_("writeback of base register is UNPREDICTABLE"));
4612 /* Only allowed if base reg not in list, or first in list. */
4613 else if ((range & (1 << base_reg))
4614 && (range & ((1 << base_reg) - 1)))
4615 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 4616 }
ea6ef066 4617 }
a737bd4d
NC
4618}
4619
c19d1205
ZW
4620/* ARMv5TE load-consecutive (argument parse)
4621 Mode is like LDRH.
4622
4623 LDRccD R, mode
4624 STRccD R, mode. */
4625
a737bd4d 4626static void
c19d1205 4627do_ldrd (void)
a737bd4d 4628{
c19d1205
ZW
4629 constraint (inst.operands[0].reg % 2 != 0,
4630 _("first destination register must be even"));
4631 constraint (inst.operands[1].present
4632 && inst.operands[1].reg != inst.operands[0].reg + 1,
4633 _("can only load two consecutive registers"));
4634 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
4635 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 4636
c19d1205
ZW
4637 if (!inst.operands[1].present)
4638 inst.operands[1].reg = inst.operands[0].reg + 1;
4639
4640 if (inst.instruction & LOAD_BIT)
a737bd4d 4641 {
c19d1205
ZW
4642 /* encode_arm_addr_mode_3 will diagnose overlap between the base
4643 register and the first register written; we have to diagnose
4644 overlap between the base and the second register written here. */
ea6ef066 4645
c19d1205
ZW
4646 if (inst.operands[2].reg == inst.operands[1].reg
4647 && (inst.operands[2].writeback || inst.operands[2].postind))
4648 as_warn (_("base register written back, and overlaps "
4649 "second destination register"));
b05fe5cf 4650
c19d1205
ZW
4651 /* For an index-register load, the index register must not overlap the
4652 destination (even if not write-back). */
4653 else if (inst.operands[2].immisreg
4654 && (inst.operands[2].imm == inst.operands[0].reg
4655 || inst.operands[2].imm == inst.operands[1].reg))
4656 as_warn (_("index register overlaps destination register"));
b05fe5cf 4657 }
c19d1205
ZW
4658
4659 inst.instruction |= inst.operands[0].reg << 12;
4660 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
4661}
4662
4663static void
c19d1205 4664do_ldrex (void)
b05fe5cf 4665{
c19d1205
ZW
4666 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
4667 || inst.operands[1].postind || inst.operands[1].writeback
4668 || inst.operands[1].immisreg || inst.operands[1].shifted
4669 || inst.operands[1].negative,
4670 _("instruction does not accept this addressing mode"));
b05fe5cf 4671
c19d1205 4672 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
b05fe5cf 4673
c19d1205
ZW
4674 constraint (inst.reloc.exp.X_op != O_constant
4675 || inst.reloc.exp.X_add_number != 0,
4676 _("offset must be zero in ARM encoding"));
b05fe5cf 4677
c19d1205
ZW
4678 inst.instruction |= inst.operands[0].reg << 12;
4679 inst.instruction |= inst.operands[1].reg << 16;
4680 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
4681}
4682
4683static void
c19d1205 4684do_ldrexd (void)
b05fe5cf 4685{
c19d1205
ZW
4686 constraint (inst.operands[0].reg % 2 != 0,
4687 _("even register required"));
4688 constraint (inst.operands[1].present
4689 && inst.operands[1].reg != inst.operands[0].reg + 1,
4690 _("can only load two consecutive registers"));
4691 /* If op 1 were present and equal to PC, this function wouldn't
4692 have been called in the first place. */
4693 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 4694
c19d1205
ZW
4695 inst.instruction |= inst.operands[0].reg << 12;
4696 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
4697}
4698
4699static void
c19d1205 4700do_ldst (void)
b05fe5cf 4701{
c19d1205
ZW
4702 inst.instruction |= inst.operands[0].reg << 12;
4703 if (!inst.operands[1].isreg)
4704 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 4705 return;
c19d1205 4706 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
4707}
4708
4709static void
c19d1205 4710do_ldstt (void)
b05fe5cf 4711{
c19d1205
ZW
4712 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
4713 reject [Rn,...]. */
4714 if (inst.operands[1].preind)
b05fe5cf 4715 {
c19d1205
ZW
4716 constraint (inst.reloc.exp.X_op != O_constant ||
4717 inst.reloc.exp.X_add_number != 0,
4718 _("this instruction requires a post-indexed address"));
b05fe5cf 4719
c19d1205
ZW
4720 inst.operands[1].preind = 0;
4721 inst.operands[1].postind = 1;
4722 inst.operands[1].writeback = 1;
b05fe5cf 4723 }
c19d1205
ZW
4724 inst.instruction |= inst.operands[0].reg << 12;
4725 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
4726}
b05fe5cf 4727
c19d1205 4728/* Halfword and signed-byte load/store operations. */
b05fe5cf 4729
c19d1205
ZW
4730static void
4731do_ldstv4 (void)
4732{
4733 inst.instruction |= inst.operands[0].reg << 12;
4734 if (!inst.operands[1].isreg)
4735 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 4736 return;
c19d1205 4737 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
4738}
4739
4740static void
c19d1205 4741do_ldsttv4 (void)
b05fe5cf 4742{
c19d1205
ZW
4743 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
4744 reject [Rn,...]. */
4745 if (inst.operands[1].preind)
b05fe5cf 4746 {
c19d1205
ZW
4747 constraint (inst.reloc.exp.X_op != O_constant ||
4748 inst.reloc.exp.X_add_number != 0,
4749 _("this instruction requires a post-indexed address"));
b05fe5cf 4750
c19d1205
ZW
4751 inst.operands[1].preind = 0;
4752 inst.operands[1].postind = 1;
4753 inst.operands[1].writeback = 1;
b05fe5cf 4754 }
c19d1205
ZW
4755 inst.instruction |= inst.operands[0].reg << 12;
4756 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
4757}
b05fe5cf 4758
c19d1205
ZW
4759/* Co-processor register load/store.
4760 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
4761static void
4762do_lstc (void)
4763{
4764 inst.instruction |= inst.operands[0].reg << 8;
4765 inst.instruction |= inst.operands[1].reg << 12;
4766 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
4767}
4768
b05fe5cf 4769static void
c19d1205 4770do_mlas (void)
b05fe5cf 4771{
c19d1205
ZW
4772 /* This restriction does not apply to mls (nor to mla in v6, but
4773 that's hard to detect at present). */
4774 if (inst.operands[0].reg == inst.operands[1].reg
4775 && !(inst.instruction & 0x00400000))
4776 as_tsktsk (_("rd and rm should be different in mla"));
b05fe5cf 4777
c19d1205
ZW
4778 inst.instruction |= inst.operands[0].reg << 16;
4779 inst.instruction |= inst.operands[1].reg;
4780 inst.instruction |= inst.operands[2].reg << 8;
4781 inst.instruction |= inst.operands[3].reg << 12;
b05fe5cf 4782
c19d1205 4783}
b05fe5cf 4784
c19d1205
ZW
4785static void
4786do_mov (void)
4787{
4788 inst.instruction |= inst.operands[0].reg << 12;
4789 encode_arm_shifter_operand (1);
4790}
b05fe5cf 4791
c19d1205
ZW
4792/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
4793static void
4794do_mov16 (void)
4795{
4796 inst.instruction |= inst.operands[0].reg << 12;
b05fe5cf 4797 /* The value is in two pieces: 0:11, 16:19. */
c19d1205
ZW
4798 inst.instruction |= (inst.operands[1].imm & 0x00000fff);
4799 inst.instruction |= (inst.operands[1].imm & 0x0000f000) << 4;
b05fe5cf 4800}
b99bd4ef
NC
4801
4802static void
c19d1205 4803do_mrs (void)
b99bd4ef 4804{
c19d1205
ZW
4805 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
4806 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
4807 != (PSR_c|PSR_f),
4808 _("'CPSR' or 'SPSR' expected"));
4809 inst.instruction |= inst.operands[0].reg << 12;
4810 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
4811}
b99bd4ef 4812
c19d1205
ZW
4813/* Two possible forms:
4814 "{C|S}PSR_<field>, Rm",
4815 "{C|S}PSR_f, #expression". */
b99bd4ef 4816
c19d1205
ZW
4817static void
4818do_msr (void)
4819{
4820 inst.instruction |= inst.operands[0].imm;
4821 if (inst.operands[1].isreg)
4822 inst.instruction |= inst.operands[1].reg;
4823 else
b99bd4ef 4824 {
c19d1205
ZW
4825 inst.instruction |= INST_IMMEDIATE;
4826 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4827 inst.reloc.pc_rel = 0;
b99bd4ef 4828 }
b99bd4ef
NC
4829}
4830
c19d1205
ZW
4831static void
4832do_mul (void)
a737bd4d 4833{
c19d1205
ZW
4834 if (!inst.operands[2].present)
4835 inst.operands[2].reg = inst.operands[0].reg;
4836 inst.instruction |= inst.operands[0].reg << 16;
4837 inst.instruction |= inst.operands[1].reg;
4838 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 4839
c19d1205
ZW
4840 if (inst.operands[0].reg == inst.operands[1].reg)
4841 as_tsktsk (_("rd and rm should be different in mul"));
a737bd4d
NC
4842}
4843
c19d1205
ZW
4844/* Long Multiply Parser
4845 UMULL RdLo, RdHi, Rm, Rs
4846 SMULL RdLo, RdHi, Rm, Rs
4847 UMLAL RdLo, RdHi, Rm, Rs
4848 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
4849
4850static void
c19d1205 4851do_mull (void)
b99bd4ef 4852{
c19d1205
ZW
4853 inst.instruction |= inst.operands[0].reg << 12;
4854 inst.instruction |= inst.operands[1].reg << 16;
4855 inst.instruction |= inst.operands[2].reg;
4856 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 4857
c19d1205
ZW
4858 /* rdhi, rdlo and rm must all be different. */
4859 if (inst.operands[0].reg == inst.operands[1].reg
4860 || inst.operands[0].reg == inst.operands[2].reg
4861 || inst.operands[1].reg == inst.operands[2].reg)
4862 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
4863}
b99bd4ef 4864
c19d1205
ZW
4865static void
4866do_nop (void)
4867{
4868 if (inst.operands[0].present)
4869 {
4870 /* Architectural NOP hints are CPSR sets with no bits selected. */
4871 inst.instruction &= 0xf0000000;
4872 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
4873 }
b99bd4ef
NC
4874}
4875
c19d1205
ZW
4876/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
4877 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
4878 Condition defaults to COND_ALWAYS.
4879 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
4880
4881static void
c19d1205 4882do_pkhbt (void)
b99bd4ef 4883{
c19d1205
ZW
4884 inst.instruction |= inst.operands[0].reg << 12;
4885 inst.instruction |= inst.operands[1].reg << 16;
4886 inst.instruction |= inst.operands[2].reg;
4887 if (inst.operands[3].present)
4888 encode_arm_shift (3);
4889}
b99bd4ef 4890
c19d1205 4891/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 4892
c19d1205
ZW
4893static void
4894do_pkhtb (void)
4895{
4896 if (!inst.operands[3].present)
b99bd4ef 4897 {
c19d1205
ZW
4898 /* If the shift specifier is omitted, turn the instruction
4899 into pkhbt rd, rm, rn. */
4900 inst.instruction &= 0xfff00010;
4901 inst.instruction |= inst.operands[0].reg << 12;
4902 inst.instruction |= inst.operands[1].reg;
4903 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
4904 }
4905 else
4906 {
c19d1205
ZW
4907 inst.instruction |= inst.operands[0].reg << 12;
4908 inst.instruction |= inst.operands[1].reg << 16;
4909 inst.instruction |= inst.operands[2].reg;
4910 encode_arm_shift (3);
b99bd4ef
NC
4911 }
4912}
4913
c19d1205
ZW
4914/* ARMv5TE: Preload-Cache
4915
4916 PLD <addr_mode>
4917
4918 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
4919
4920static void
c19d1205 4921do_pld (void)
b99bd4ef 4922{
c19d1205
ZW
4923 constraint (!inst.operands[0].isreg,
4924 _("'[' expected after PLD mnemonic"));
4925 constraint (inst.operands[0].postind,
4926 _("post-indexed expression used in preload instruction"));
4927 constraint (inst.operands[0].writeback,
4928 _("writeback used in preload instruction"));
4929 constraint (!inst.operands[0].preind,
4930 _("unindexed addressing used in preload instruction"));
4931 inst.instruction |= inst.operands[0].reg;
4932 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
4933}
b99bd4ef 4934
c19d1205
ZW
4935static void
4936do_push_pop (void)
4937{
4938 inst.operands[1] = inst.operands[0];
4939 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
4940 inst.operands[0].isreg = 1;
4941 inst.operands[0].writeback = 1;
4942 inst.operands[0].reg = REG_SP;
4943 do_ldmstm ();
4944}
b99bd4ef 4945
c19d1205
ZW
4946/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
4947 word at the specified address and the following word
4948 respectively.
4949 Unconditionally executed.
4950 Error if Rn is R15. */
b99bd4ef 4951
c19d1205
ZW
4952static void
4953do_rfe (void)
4954{
4955 inst.instruction |= inst.operands[0].reg << 16;
4956 if (inst.operands[0].writeback)
4957 inst.instruction |= WRITE_BACK;
4958}
b99bd4ef 4959
c19d1205 4960/* ARM V6 ssat (argument parse). */
b99bd4ef 4961
c19d1205
ZW
4962static void
4963do_ssat (void)
4964{
4965 inst.instruction |= inst.operands[0].reg << 12;
4966 inst.instruction |= (inst.operands[1].imm - 1) << 16;
4967 inst.instruction |= inst.operands[2].reg;
b99bd4ef 4968
c19d1205
ZW
4969 if (inst.operands[3].present)
4970 encode_arm_shift (3);
b99bd4ef
NC
4971}
4972
c19d1205 4973/* ARM V6 usat (argument parse). */
b99bd4ef
NC
4974
4975static void
c19d1205 4976do_usat (void)
b99bd4ef 4977{
c19d1205
ZW
4978 inst.instruction |= inst.operands[0].reg << 12;
4979 inst.instruction |= inst.operands[1].imm << 16;
4980 inst.instruction |= inst.operands[2].reg;
b99bd4ef 4981
c19d1205
ZW
4982 if (inst.operands[3].present)
4983 encode_arm_shift (3);
b99bd4ef
NC
4984}
4985
c19d1205 4986/* ARM V6 ssat16 (argument parse). */
09d92015
MM
4987
4988static void
c19d1205 4989do_ssat16 (void)
09d92015 4990{
c19d1205
ZW
4991 inst.instruction |= inst.operands[0].reg << 12;
4992 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
4993 inst.instruction |= inst.operands[2].reg;
09d92015
MM
4994}
4995
c19d1205
ZW
4996static void
4997do_usat16 (void)
a737bd4d 4998{
c19d1205
ZW
4999 inst.instruction |= inst.operands[0].reg << 12;
5000 inst.instruction |= inst.operands[1].imm << 16;
5001 inst.instruction |= inst.operands[2].reg;
5002}
a737bd4d 5003
c19d1205
ZW
5004/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
5005 preserving the other bits.
a737bd4d 5006
c19d1205
ZW
5007 setend <endian_specifier>, where <endian_specifier> is either
5008 BE or LE. */
a737bd4d 5009
c19d1205
ZW
5010static void
5011do_setend (void)
5012{
5013 if (inst.operands[0].imm)
5014 inst.instruction |= 0x200;
a737bd4d
NC
5015}
5016
5017static void
c19d1205 5018do_shift (void)
a737bd4d 5019{
c19d1205
ZW
5020 unsigned int Rm = (inst.operands[1].present
5021 ? inst.operands[1].reg
5022 : inst.operands[0].reg);
a737bd4d 5023
c19d1205
ZW
5024 inst.instruction |= inst.operands[0].reg << 12;
5025 inst.instruction |= Rm;
5026 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 5027 {
c19d1205
ZW
5028 constraint (inst.operands[0].reg != Rm,
5029 _("source1 and dest must be same register"));
5030 inst.instruction |= inst.operands[2].reg << 8;
5031 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
5032 }
5033 else
c19d1205 5034 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
5035}
5036
09d92015 5037static void
c19d1205 5038do_smi (void)
09d92015 5039{
c19d1205
ZW
5040 inst.reloc.type = BFD_RELOC_ARM_SMI;
5041 inst.reloc.pc_rel = 0;
09d92015
MM
5042}
5043
09d92015 5044static void
c19d1205 5045do_swi (void)
09d92015 5046{
c19d1205
ZW
5047 inst.reloc.type = BFD_RELOC_ARM_SWI;
5048 inst.reloc.pc_rel = 0;
09d92015
MM
5049}
5050
c19d1205
ZW
5051/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
5052 SMLAxy{cond} Rd,Rm,Rs,Rn
5053 SMLAWy{cond} Rd,Rm,Rs,Rn
5054 Error if any register is R15. */
e16bb312 5055
c19d1205
ZW
5056static void
5057do_smla (void)
e16bb312 5058{
c19d1205
ZW
5059 inst.instruction |= inst.operands[0].reg << 16;
5060 inst.instruction |= inst.operands[1].reg;
5061 inst.instruction |= inst.operands[2].reg << 8;
5062 inst.instruction |= inst.operands[3].reg << 12;
5063}
a737bd4d 5064
c19d1205
ZW
5065/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
5066 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
5067 Error if any register is R15.
5068 Warning if Rdlo == Rdhi. */
a737bd4d 5069
c19d1205
ZW
5070static void
5071do_smlal (void)
5072{
5073 inst.instruction |= inst.operands[0].reg << 12;
5074 inst.instruction |= inst.operands[1].reg << 16;
5075 inst.instruction |= inst.operands[2].reg;
5076 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 5077
c19d1205
ZW
5078 if (inst.operands[0].reg == inst.operands[1].reg)
5079 as_tsktsk (_("rdhi and rdlo must be different"));
5080}
a737bd4d 5081
c19d1205
ZW
5082/* ARM V5E (El Segundo) signed-multiply (argument parse)
5083 SMULxy{cond} Rd,Rm,Rs
5084 Error if any register is R15. */
a737bd4d 5085
c19d1205
ZW
5086static void
5087do_smul (void)
5088{
5089 inst.instruction |= inst.operands[0].reg << 16;
5090 inst.instruction |= inst.operands[1].reg;
5091 inst.instruction |= inst.operands[2].reg << 8;
5092}
a737bd4d 5093
c19d1205 5094/* ARM V6 srs (argument parse). */
a737bd4d 5095
c19d1205
ZW
5096static void
5097do_srs (void)
5098{
5099 inst.instruction |= inst.operands[0].imm;
5100 if (inst.operands[0].writeback)
5101 inst.instruction |= WRITE_BACK;
5102}
a737bd4d 5103
c19d1205 5104/* ARM V6 strex (argument parse). */
a737bd4d 5105
c19d1205
ZW
5106static void
5107do_strex (void)
5108{
5109 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
5110 || inst.operands[2].postind || inst.operands[2].writeback
5111 || inst.operands[2].immisreg || inst.operands[2].shifted
5112 || inst.operands[2].negative,
5113 _("instruction does not accept this addressing mode"));
e16bb312 5114
c19d1205 5115 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
a737bd4d 5116
c19d1205
ZW
5117 constraint (inst.operands[0].reg == inst.operands[1].reg
5118 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 5119
c19d1205
ZW
5120 constraint (inst.reloc.exp.X_op != O_constant
5121 || inst.reloc.exp.X_add_number != 0,
5122 _("offset must be zero in ARM encoding"));
a737bd4d 5123
c19d1205
ZW
5124 inst.instruction |= inst.operands[0].reg << 12;
5125 inst.instruction |= inst.operands[1].reg;
5126 inst.instruction |= inst.operands[2].reg << 16;
5127 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
5128}
5129
5130static void
c19d1205 5131do_strexd (void)
e16bb312 5132{
c19d1205
ZW
5133 constraint (inst.operands[1].reg % 2 != 0,
5134 _("even register required"));
5135 constraint (inst.operands[2].present
5136 && inst.operands[2].reg != inst.operands[1].reg + 1,
5137 _("can only store two consecutive registers"));
5138 /* If op 2 were present and equal to PC, this function wouldn't
5139 have been called in the first place. */
5140 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 5141
c19d1205
ZW
5142 constraint (inst.operands[0].reg == inst.operands[1].reg
5143 || inst.operands[0].reg == inst.operands[1].reg + 1
5144 || inst.operands[0].reg == inst.operands[3].reg,
5145 BAD_OVERLAP);
e16bb312 5146
c19d1205
ZW
5147 inst.instruction |= inst.operands[0].reg << 12;
5148 inst.instruction |= inst.operands[1].reg;
5149 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
5150}
5151
c19d1205
ZW
5152/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
5153 extends it to 32-bits, and adds the result to a value in another
5154 register. You can specify a rotation by 0, 8, 16, or 24 bits
5155 before extracting the 16-bit value.
5156 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
5157 Condition defaults to COND_ALWAYS.
5158 Error if any register uses R15. */
5159
e16bb312 5160static void
c19d1205 5161do_sxtah (void)
e16bb312 5162{
c19d1205
ZW
5163 inst.instruction |= inst.operands[0].reg << 12;
5164 inst.instruction |= inst.operands[1].reg << 16;
5165 inst.instruction |= inst.operands[2].reg;
5166 inst.instruction |= inst.operands[3].imm << 10;
5167}
e16bb312 5168
c19d1205 5169/* ARM V6 SXTH.
e16bb312 5170
c19d1205
ZW
5171 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
5172 Condition defaults to COND_ALWAYS.
5173 Error if any register uses R15. */
e16bb312
NC
5174
5175static void
c19d1205 5176do_sxth (void)
e16bb312 5177{
c19d1205
ZW
5178 inst.instruction |= inst.operands[0].reg << 12;
5179 inst.instruction |= inst.operands[1].reg;
5180 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 5181}
c19d1205
ZW
5182\f
5183/* VFP instructions. In a logical order: SP variant first, monad
5184 before dyad, arithmetic then move then load/store. */
e16bb312
NC
5185
5186static void
c19d1205 5187do_vfp_sp_monadic (void)
e16bb312 5188{
c19d1205
ZW
5189 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5190 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
5191}
5192
5193static void
c19d1205 5194do_vfp_sp_dyadic (void)
e16bb312 5195{
c19d1205
ZW
5196 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5197 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
5198 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
5199}
5200
5201static void
c19d1205 5202do_vfp_sp_compare_z (void)
e16bb312 5203{
c19d1205 5204 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
5205}
5206
5207static void
c19d1205 5208do_vfp_dp_sp_cvt (void)
e16bb312 5209{
c19d1205
ZW
5210 inst.instruction |= inst.operands[0].reg << 12;
5211 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
5212}
5213
5214static void
c19d1205 5215do_vfp_sp_dp_cvt (void)
e16bb312 5216{
c19d1205
ZW
5217 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5218 inst.instruction |= inst.operands[1].reg;
e16bb312
NC
5219}
5220
5221static void
c19d1205 5222do_vfp_reg_from_sp (void)
e16bb312 5223{
c19d1205
ZW
5224 inst.instruction |= inst.operands[0].reg << 12;
5225 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
5226}
5227
5228static void
c19d1205 5229do_vfp_reg2_from_sp2 (void)
e16bb312 5230{
c19d1205
ZW
5231 constraint (inst.operands[2].imm != 2,
5232 _("only two consecutive VFP SP registers allowed here"));
5233 inst.instruction |= inst.operands[0].reg << 12;
5234 inst.instruction |= inst.operands[1].reg << 16;
5235 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
5236}
5237
5238static void
c19d1205 5239do_vfp_sp_from_reg (void)
e16bb312 5240{
c19d1205
ZW
5241 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sn);
5242 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
5243}
5244
5245static void
c19d1205 5246do_vfp_sp2_from_reg2 (void)
e16bb312 5247{
c19d1205
ZW
5248 constraint (inst.operands[0].imm != 2,
5249 _("only two consecutive VFP SP registers allowed here"));
5250 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sm);
5251 inst.instruction |= inst.operands[1].reg << 12;
5252 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
5253}
5254
5255static void
c19d1205 5256do_vfp_sp_ldst (void)
e16bb312 5257{
c19d1205
ZW
5258 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5259 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
5260}
5261
5262static void
c19d1205 5263do_vfp_dp_ldst (void)
e16bb312 5264{
c19d1205
ZW
5265 inst.instruction |= inst.operands[0].reg << 12;
5266 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
5267}
5268
c19d1205 5269
e16bb312 5270static void
c19d1205 5271vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 5272{
c19d1205
ZW
5273 if (inst.operands[0].writeback)
5274 inst.instruction |= WRITE_BACK;
5275 else
5276 constraint (ldstm_type != VFP_LDSTMIA,
5277 _("this addressing mode requires base-register writeback"));
5278 inst.instruction |= inst.operands[0].reg << 16;
5279 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sd);
5280 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
5281}
5282
5283static void
c19d1205 5284vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 5285{
c19d1205 5286 int count;
e16bb312 5287
c19d1205
ZW
5288 if (inst.operands[0].writeback)
5289 inst.instruction |= WRITE_BACK;
5290 else
5291 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
5292 _("this addressing mode requires base-register writeback"));
e16bb312 5293
c19d1205
ZW
5294 inst.instruction |= inst.operands[0].reg << 16;
5295 inst.instruction |= inst.operands[1].reg << 12;
e16bb312 5296
c19d1205
ZW
5297 count = inst.operands[1].imm << 1;
5298 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
5299 count += 1;
e16bb312 5300
c19d1205 5301 inst.instruction |= count;
e16bb312
NC
5302}
5303
5304static void
c19d1205 5305do_vfp_sp_ldstmia (void)
e16bb312 5306{
c19d1205 5307 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
5308}
5309
5310static void
c19d1205 5311do_vfp_sp_ldstmdb (void)
e16bb312 5312{
c19d1205 5313 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
5314}
5315
5316static void
c19d1205 5317do_vfp_dp_ldstmia (void)
e16bb312 5318{
c19d1205 5319 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
5320}
5321
5322static void
c19d1205 5323do_vfp_dp_ldstmdb (void)
e16bb312 5324{
c19d1205 5325 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
5326}
5327
5328static void
c19d1205 5329do_vfp_xp_ldstmia (void)
e16bb312 5330{
c19d1205
ZW
5331 vfp_dp_ldstm (VFP_LDSTMIAX);
5332}
e16bb312 5333
c19d1205
ZW
5334static void
5335do_vfp_xp_ldstmdb (void)
5336{
5337 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 5338}
c19d1205
ZW
5339\f
5340/* FPA instructions. Also in a logical order. */
e16bb312 5341
c19d1205
ZW
5342static void
5343do_fpa_cmp (void)
5344{
5345 inst.instruction |= inst.operands[0].reg << 16;
5346 inst.instruction |= inst.operands[1].reg;
5347}
b99bd4ef
NC
5348
5349static void
c19d1205 5350do_fpa_ldmstm (void)
b99bd4ef 5351{
c19d1205
ZW
5352 inst.instruction |= inst.operands[0].reg << 12;
5353 switch (inst.operands[1].imm)
5354 {
5355 case 1: inst.instruction |= CP_T_X; break;
5356 case 2: inst.instruction |= CP_T_Y; break;
5357 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
5358 case 4: break;
5359 default: abort ();
5360 }
b99bd4ef 5361
c19d1205
ZW
5362 if (inst.instruction & (PRE_INDEX | INDEX_UP))
5363 {
5364 /* The instruction specified "ea" or "fd", so we can only accept
5365 [Rn]{!}. The instruction does not really support stacking or
5366 unstacking, so we have to emulate these by setting appropriate
5367 bits and offsets. */
5368 constraint (inst.reloc.exp.X_op != O_constant
5369 || inst.reloc.exp.X_add_number != 0,
5370 _("this instruction does not support indexing"));
b99bd4ef 5371
c19d1205
ZW
5372 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
5373 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 5374
c19d1205
ZW
5375 if (!(inst.instruction & INDEX_UP))
5376 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 5377
c19d1205
ZW
5378 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
5379 {
5380 inst.operands[2].preind = 0;
5381 inst.operands[2].postind = 1;
5382 }
5383 }
b99bd4ef 5384
c19d1205 5385 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 5386}
c19d1205
ZW
5387\f
5388/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 5389
c19d1205
ZW
5390static void
5391do_iwmmxt_tandorc (void)
5392{
5393 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
5394}
b99bd4ef 5395
c19d1205
ZW
5396static void
5397do_iwmmxt_textrc (void)
5398{
5399 inst.instruction |= inst.operands[0].reg << 12;
5400 inst.instruction |= inst.operands[1].imm;
5401}
b99bd4ef
NC
5402
5403static void
c19d1205 5404do_iwmmxt_textrm (void)
b99bd4ef 5405{
c19d1205
ZW
5406 inst.instruction |= inst.operands[0].reg << 12;
5407 inst.instruction |= inst.operands[1].reg << 16;
5408 inst.instruction |= inst.operands[2].imm;
5409}
b99bd4ef 5410
c19d1205
ZW
5411static void
5412do_iwmmxt_tinsr (void)
5413{
5414 inst.instruction |= inst.operands[0].reg << 16;
5415 inst.instruction |= inst.operands[1].reg << 12;
5416 inst.instruction |= inst.operands[2].imm;
5417}
b99bd4ef 5418
c19d1205
ZW
5419static void
5420do_iwmmxt_tmia (void)
5421{
5422 inst.instruction |= inst.operands[0].reg << 5;
5423 inst.instruction |= inst.operands[1].reg;
5424 inst.instruction |= inst.operands[2].reg << 12;
5425}
b99bd4ef 5426
c19d1205
ZW
5427static void
5428do_iwmmxt_waligni (void)
5429{
5430 inst.instruction |= inst.operands[0].reg << 12;
5431 inst.instruction |= inst.operands[1].reg << 16;
5432 inst.instruction |= inst.operands[2].reg;
5433 inst.instruction |= inst.operands[3].imm << 20;
5434}
b99bd4ef 5435
c19d1205
ZW
5436static void
5437do_iwmmxt_wmov (void)
5438{
5439 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
5440 inst.instruction |= inst.operands[0].reg << 12;
5441 inst.instruction |= inst.operands[1].reg << 16;
5442 inst.instruction |= inst.operands[1].reg;
5443}
b99bd4ef 5444
c19d1205
ZW
5445static void
5446do_iwmmxt_wldstbh (void)
5447{
5448 inst.instruction |= inst.operands[0].reg << 12;
5449 inst.reloc.exp.X_add_number *= 4;
5450 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_CP_OFF_IMM_S2);
b99bd4ef
NC
5451}
5452
c19d1205
ZW
5453static void
5454do_iwmmxt_wldstw (void)
5455{
5456 /* RIWR_RIWC clears .isreg for a control register. */
5457 if (!inst.operands[0].isreg)
5458 {
5459 constraint (inst.cond != COND_ALWAYS, BAD_COND);
5460 inst.instruction |= 0xf0000000;
5461 }
b99bd4ef 5462
c19d1205
ZW
5463 inst.instruction |= inst.operands[0].reg << 12;
5464 encode_arm_cp_address (1, TRUE, TRUE, 0);
5465}
b99bd4ef
NC
5466
5467static void
c19d1205 5468do_iwmmxt_wldstd (void)
b99bd4ef 5469{
c19d1205
ZW
5470 inst.instruction |= inst.operands[0].reg << 12;
5471 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_CP_OFF_IMM_S2);
5472}
b99bd4ef 5473
c19d1205
ZW
5474static void
5475do_iwmmxt_wshufh (void)
5476{
5477 inst.instruction |= inst.operands[0].reg << 12;
5478 inst.instruction |= inst.operands[1].reg << 16;
5479 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
5480 inst.instruction |= (inst.operands[2].imm & 0x0f);
5481}
b99bd4ef 5482
c19d1205
ZW
5483static void
5484do_iwmmxt_wzero (void)
5485{
5486 /* WZERO reg is an alias for WANDN reg, reg, reg. */
5487 inst.instruction |= inst.operands[0].reg;
5488 inst.instruction |= inst.operands[0].reg << 12;
5489 inst.instruction |= inst.operands[0].reg << 16;
5490}
5491\f
5492/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
5493 operations first, then control, shift, and load/store. */
b99bd4ef 5494
c19d1205 5495/* Insns like "foo X,Y,Z". */
b99bd4ef 5496
c19d1205
ZW
5497static void
5498do_mav_triple (void)
5499{
5500 inst.instruction |= inst.operands[0].reg << 16;
5501 inst.instruction |= inst.operands[1].reg;
5502 inst.instruction |= inst.operands[2].reg << 12;
5503}
b99bd4ef 5504
c19d1205
ZW
5505/* Insns like "foo W,X,Y,Z".
5506 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 5507
c19d1205
ZW
5508static void
5509do_mav_quad (void)
5510{
5511 inst.instruction |= inst.operands[0].reg << 5;
5512 inst.instruction |= inst.operands[1].reg << 12;
5513 inst.instruction |= inst.operands[2].reg << 16;
5514 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
5515}
5516
c19d1205
ZW
5517/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
5518static void
5519do_mav_dspsc (void)
a737bd4d 5520{
c19d1205
ZW
5521 inst.instruction |= inst.operands[1].reg << 12;
5522}
a737bd4d 5523
c19d1205
ZW
5524/* Maverick shift immediate instructions.
5525 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
5526 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 5527
c19d1205
ZW
5528static void
5529do_mav_shift (void)
5530{
5531 int imm = inst.operands[2].imm;
a737bd4d 5532
c19d1205
ZW
5533 inst.instruction |= inst.operands[0].reg << 12;
5534 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 5535
c19d1205
ZW
5536 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
5537 Bits 5-7 of the insn should have bits 4-6 of the immediate.
5538 Bit 4 should be 0. */
5539 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 5540
c19d1205
ZW
5541 inst.instruction |= imm;
5542}
5543\f
5544/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 5545
c19d1205
ZW
5546/* Xscale multiply-accumulate (argument parse)
5547 MIAcc acc0,Rm,Rs
5548 MIAPHcc acc0,Rm,Rs
5549 MIAxycc acc0,Rm,Rs. */
a737bd4d 5550
c19d1205
ZW
5551static void
5552do_xsc_mia (void)
5553{
5554 inst.instruction |= inst.operands[1].reg;
5555 inst.instruction |= inst.operands[2].reg << 12;
5556}
a737bd4d 5557
c19d1205 5558/* Xscale move-accumulator-register (argument parse)
a737bd4d 5559
c19d1205 5560 MARcc acc0,RdLo,RdHi. */
b99bd4ef 5561
c19d1205
ZW
5562static void
5563do_xsc_mar (void)
5564{
5565 inst.instruction |= inst.operands[1].reg << 12;
5566 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
5567}
5568
c19d1205 5569/* Xscale move-register-accumulator (argument parse)
b99bd4ef 5570
c19d1205 5571 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
5572
5573static void
c19d1205 5574do_xsc_mra (void)
b99bd4ef 5575{
c19d1205
ZW
5576 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
5577 inst.instruction |= inst.operands[0].reg << 12;
5578 inst.instruction |= inst.operands[1].reg << 16;
5579}
5580\f
5581/* Encoding functions relevant only to Thumb. */
b99bd4ef 5582
c19d1205
ZW
5583/* inst.operands[i] is a shifted-register operand; encode
5584 it into inst.instruction in the format used by Thumb32. */
5585
5586static void
5587encode_thumb32_shifted_operand (int i)
5588{
5589 unsigned int value = inst.reloc.exp.X_add_number;
5590 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 5591
c19d1205
ZW
5592 inst.instruction |= inst.operands[i].reg;
5593 if (shift == SHIFT_RRX)
5594 inst.instruction |= SHIFT_ROR << 4;
5595 else
b99bd4ef 5596 {
c19d1205
ZW
5597 constraint (inst.reloc.exp.X_op != O_constant,
5598 _("expression too complex"));
5599
5600 constraint (value > 32
5601 || (value == 32 && (shift == SHIFT_LSL
5602 || shift == SHIFT_ROR)),
5603 _("shift expression is too large"));
5604
5605 if (value == 0)
5606 shift = SHIFT_LSL;
5607 else if (value == 32)
5608 value = 0;
5609
5610 inst.instruction |= shift << 4;
5611 inst.instruction |= (value & 0x1c) << 10;
5612 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 5613 }
c19d1205 5614}
b99bd4ef 5615
b99bd4ef 5616
c19d1205
ZW
5617/* inst.operands[i] was set up by parse_address. Encode it into a
5618 Thumb32 format load or store instruction. Reject forms that cannot
5619 be used with such instructions. If is_t is true, reject forms that
5620 cannot be used with a T instruction; if is_d is true, reject forms
5621 that cannot be used with a D instruction. */
b99bd4ef 5622
c19d1205
ZW
5623static void
5624encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
5625{
5626 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
5627
5628 constraint (!inst.operands[i].isreg,
5629 _("Thumb does not support the ldr =N pseudo-operation"));
b99bd4ef 5630
c19d1205
ZW
5631 inst.instruction |= inst.operands[i].reg << 16;
5632 if (inst.operands[i].immisreg)
b99bd4ef 5633 {
c19d1205
ZW
5634 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
5635 constraint (is_t || is_d, _("cannot use register index with this instruction"));
5636 constraint (inst.operands[i].negative,
5637 _("Thumb does not support negative register indexing"));
5638 constraint (inst.operands[i].postind,
5639 _("Thumb does not support register post-indexing"));
5640 constraint (inst.operands[i].writeback,
5641 _("Thumb does not support register indexing with writeback"));
5642 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
5643 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 5644
c19d1205
ZW
5645 inst.instruction |= inst.operands[1].imm;
5646 if (inst.operands[i].shifted)
b99bd4ef 5647 {
c19d1205
ZW
5648 constraint (inst.reloc.exp.X_op != O_constant,
5649 _("expression too complex"));
5650 constraint (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 3,
5651 _("shift out of range"));
5652 inst.instruction |= inst.reloc.exp.X_op << 4;
5653 }
5654 inst.reloc.type = BFD_RELOC_UNUSED;
5655 }
5656 else if (inst.operands[i].preind)
5657 {
5658 constraint (is_pc && inst.operands[i].writeback,
5659 _("cannot use writeback with PC-relative addressing"));
5660 constraint (is_t && inst.operands[1].writeback,
5661 _("cannot use writeback with this instruction"));
5662
5663 if (is_d)
5664 {
5665 inst.instruction |= 0x01000000;
5666 if (inst.operands[i].writeback)
5667 inst.instruction |= 0x00200000;
b99bd4ef 5668 }
c19d1205 5669 else
b99bd4ef 5670 {
c19d1205
ZW
5671 inst.instruction |= 0x00000c00;
5672 if (inst.operands[i].writeback)
5673 inst.instruction |= 0x00000100;
b99bd4ef 5674 }
c19d1205
ZW
5675 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
5676 inst.reloc.pc_rel = is_pc;
b99bd4ef 5677 }
c19d1205 5678 else if (inst.operands[i].postind)
b99bd4ef 5679 {
c19d1205
ZW
5680 assert (inst.operands[i].writeback);
5681 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
5682 constraint (is_t, _("cannot use post-indexing with this instruction"));
5683
5684 if (is_d)
5685 inst.instruction |= 0x00200000;
5686 else
5687 inst.instruction |= 0x00000900;
5688 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
5689 }
5690 else /* unindexed - only for coprocessor */
5691 inst.error = _("instruction does not accept unindexed addressing");
5692}
5693
5694/* Table of Thumb instructions which exist in both 16- and 32-bit
5695 encodings (the latter only in post-V6T2 cores). The index is the
5696 value used in the insns table below. When there is more than one
5697 possible 16-bit encoding for the instruction, this table always
5698 holds variant (1). */
5699#define T16_32_TAB \
5700 X(adc, 4140, eb400000), \
5701 X(adcs, 4140, eb500000), \
5702 X(add, 1c00, eb000000), \
5703 X(adds, 1c00, eb100000), \
5704 X(and, 4000, ea000000), \
5705 X(ands, 4000, ea100000), \
5706 X(asr, 1000, fa40f000), \
5707 X(asrs, 1000, fa50f000), \
5708 X(bic, 4380, ea200000), \
5709 X(bics, 4380, ea300000), \
5710 X(cmn, 42c0, eb100f00), \
5711 X(cmp, 2800, ebb00f00), \
5712 X(cpsie, b660, f3af8400), \
5713 X(cpsid, b670, f3af8600), \
5714 X(cpy, 4600, ea4f0000), \
5715 X(eor, 4040, ea800000), \
5716 X(eors, 4040, ea900000), \
5717 X(ldmia, c800, e8900000), \
5718 X(ldr, 6800, f8500000), \
5719 X(ldrb, 7800, f8100000), \
5720 X(ldrh, 8800, f8300000), \
5721 X(ldrsb, 5600, f9100000), \
5722 X(ldrsh, 5e00, f9300000), \
5723 X(lsl, 0000, fa00f000), \
5724 X(lsls, 0000, fa10f000), \
5725 X(lsr, 0800, fa20f000), \
5726 X(lsrs, 0800, fa30f000), \
5727 X(mov, 2000, ea4f0000), \
5728 X(movs, 2000, ea5f0000), \
5729 X(mul, 4340, fb00f000), \
5730 X(muls, 4340, ffffffff), /* no 32b muls */ \
5731 X(mvn, 43c0, ea6f0000), \
5732 X(mvns, 43c0, ea7f0000), \
5733 X(neg, 4240, f1c00000), /* rsb #0 */ \
5734 X(negs, 4240, f1d00000), /* rsbs #0 */ \
5735 X(orr, 4300, ea400000), \
5736 X(orrs, 4300, ea500000), \
5737 X(pop, bc00, e8ad0000), /* ldmia sp!,... */ \
5738 X(push, b400, e8bd0000), /* stmia sp!,... */ \
5739 X(rev, ba00, fa90f080), \
5740 X(rev16, ba40, fa90f090), \
5741 X(revsh, bac0, fa90f0b0), \
5742 X(ror, 41c0, fa60f000), \
5743 X(rors, 41c0, fa70f000), \
5744 X(sbc, 4180, eb600000), \
5745 X(sbcs, 4180, eb700000), \
5746 X(stmia, c000, e8800000), \
5747 X(str, 6000, f8400000), \
5748 X(strb, 7000, f8000000), \
5749 X(strh, 8000, f8200000), \
5750 X(sub, 1e00, eba00000), \
5751 X(subs, 1e00, ebb00000), \
5752 X(sxtb, b240, fa4ff080), \
5753 X(sxth, b200, fa0ff080), \
5754 X(tst, 4200, ea100f00), \
5755 X(uxtb, b2c0, fa5ff080), \
5756 X(uxth, b280, fa1ff080), \
5757 X(nop, bf00, f3af8000), \
5758 X(yield, bf10, f3af8001), \
5759 X(wfe, bf20, f3af8002), \
5760 X(wfi, bf30, f3af8003), \
5761 X(sev, bf40, f3af9004), /* typo, 8004? */
5762
5763/* To catch errors in encoding functions, the codes are all offset by
5764 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
5765 as 16-bit instructions. */
5766#define X(a,b,c) T_MNEM_##a
5767enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
5768#undef X
5769
5770#define X(a,b,c) 0x##b
5771static const unsigned short thumb_op16[] = { T16_32_TAB };
5772#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
5773#undef X
5774
5775#define X(a,b,c) 0x##c
5776static const unsigned int thumb_op32[] = { T16_32_TAB };
5777#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
5778#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
5779#undef X
5780#undef T16_32_TAB
5781
5782/* Thumb instruction encoders, in alphabetical order. */
5783
5784/* Parse an add or subtract instruction. We get here with inst.instruction
5785 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
5786
5787static void
5788do_t_add_sub (void)
5789{
5790 int Rd, Rs, Rn;
5791
5792 Rd = inst.operands[0].reg;
5793 Rs = (inst.operands[1].present
5794 ? inst.operands[1].reg /* Rd, Rs, foo */
5795 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
5796
5797 if (unified_syntax)
5798 {
5799 if (!inst.operands[2].isreg)
b99bd4ef 5800 {
c19d1205
ZW
5801 /* For an immediate, we always generate a 32-bit opcode;
5802 section relaxation will shrink it later if possible. */
5803 inst.instruction = THUMB_OP32 (inst.instruction);
5804 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
5805 inst.instruction |= inst.operands[0].reg << 8;
5806 inst.instruction |= inst.operands[1].reg << 16;
5807 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 5808 }
c19d1205
ZW
5809 else
5810 {
5811 Rn = inst.operands[2].reg;
5812 /* See if we can do this with a 16-bit instruction. */
5813 if (!inst.operands[2].shifted && inst.size_req != 4)
5814 {
5815 if (Rd <= 7 && Rn <= 7 && Rn <= 7
5816 && (inst.instruction == T_MNEM_adds
5817 || inst.instruction == T_MNEM_subs))
5818 {
5819 inst.instruction = (inst.instruction == T_MNEM_adds
5820 ? T_OPCODE_ADD_R3
5821 : T_OPCODE_SUB_R3);
5822 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
5823 return;
5824 }
b99bd4ef 5825
c19d1205
ZW
5826 if (inst.instruction == T_MNEM_add)
5827 {
5828 if (Rd == Rs)
5829 {
5830 inst.instruction = T_OPCODE_ADD_HI;
5831 inst.instruction |= (Rd & 8) << 4;
5832 inst.instruction |= (Rd & 7);
5833 inst.instruction |= Rn << 3;
5834 return;
5835 }
5836 /* ... because addition is commutative! */
5837 else if (Rd == Rn)
5838 {
5839 inst.instruction = T_OPCODE_ADD_HI;
5840 inst.instruction |= (Rd & 8) << 4;
5841 inst.instruction |= (Rd & 7);
5842 inst.instruction |= Rs << 3;
5843 return;
5844 }
5845 }
5846 }
5847 /* If we get here, it can't be done in 16 bits. */
5848 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
5849 _("shift must be constant"));
5850 inst.instruction = THUMB_OP32 (inst.instruction);
5851 inst.instruction |= Rd << 8;
5852 inst.instruction |= Rs << 16;
5853 encode_thumb32_shifted_operand (2);
5854 }
5855 }
5856 else
5857 {
5858 constraint (inst.instruction == T_MNEM_adds
5859 || inst.instruction == T_MNEM_subs,
5860 BAD_THUMB32);
b99bd4ef 5861
c19d1205 5862 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 5863 {
c19d1205
ZW
5864 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
5865 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
5866 BAD_HIREG);
5867
5868 inst.instruction = (inst.instruction == T_MNEM_add
5869 ? 0x0000 : 0x8000);
5870 inst.instruction |= (Rd << 4) | Rs;
5871 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
5872 return;
5873 }
5874
c19d1205
ZW
5875 Rn = inst.operands[2].reg;
5876 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 5877
c19d1205
ZW
5878 /* We now have Rd, Rs, and Rn set to registers. */
5879 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 5880 {
c19d1205
ZW
5881 /* Can't do this for SUB. */
5882 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
5883 inst.instruction = T_OPCODE_ADD_HI;
5884 inst.instruction |= (Rd & 8) << 4;
5885 inst.instruction |= (Rd & 7);
5886 if (Rs == Rd)
5887 inst.instruction |= Rn << 3;
5888 else if (Rn == Rd)
5889 inst.instruction |= Rs << 3;
5890 else
5891 constraint (1, _("dest must overlap one source register"));
5892 }
5893 else
5894 {
5895 inst.instruction = (inst.instruction == T_MNEM_add
5896 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
5897 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 5898 }
b99bd4ef 5899 }
b99bd4ef
NC
5900}
5901
c19d1205
ZW
5902static void
5903do_t_adr (void)
5904{
5905 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
5906 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
5907 inst.reloc.pc_rel = 1;
b99bd4ef 5908
c19d1205
ZW
5909 inst.instruction |= inst.operands[0].reg << 4;
5910}
b99bd4ef 5911
c19d1205
ZW
5912/* Arithmetic instructions for which there is just one 16-bit
5913 instruction encoding, and it allows only two low registers.
5914 For maximal compatibility with ARM syntax, we allow three register
5915 operands even when Thumb-32 instructions are not available, as long
5916 as the first two are identical. For instance, both "sbc r0,r1" and
5917 "sbc r0,r0,r1" are allowed. */
b99bd4ef 5918static void
c19d1205 5919do_t_arit3 (void)
b99bd4ef 5920{
c19d1205 5921 int Rd, Rs, Rn;
b99bd4ef 5922
c19d1205
ZW
5923 Rd = inst.operands[0].reg;
5924 Rs = (inst.operands[1].present
5925 ? inst.operands[1].reg /* Rd, Rs, foo */
5926 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
5927 Rn = inst.operands[2].reg;
b99bd4ef 5928
c19d1205 5929 if (unified_syntax)
b99bd4ef 5930 {
c19d1205
ZW
5931 if (!inst.operands[2].isreg)
5932 {
5933 /* For an immediate, we always generate a 32-bit opcode;
5934 section relaxation will shrink it later if possible. */
5935 inst.instruction = THUMB_OP32 (inst.instruction);
5936 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
5937 inst.instruction |= Rd << 8;
5938 inst.instruction |= Rs << 16;
5939 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
5940 }
5941 else
5942 {
5943 /* See if we can do this with a 16-bit instruction. */
5944 if (THUMB_SETS_FLAGS (inst.instruction)
5945 && !inst.operands[2].shifted
5946 && inst.size_req != 4
5947 && Rd == Rs)
5948 {
5949 inst.instruction = THUMB_OP16 (inst.instruction);
5950 inst.instruction |= Rd;
5951 inst.instruction |= Rn << 3;
5952 return;
5953 }
b99bd4ef 5954
c19d1205
ZW
5955 /* If we get here, it can't be done in 16 bits. */
5956 constraint (inst.operands[2].shifted
5957 && inst.operands[2].immisreg,
5958 _("shift must be constant"));
5959 inst.instruction = THUMB_OP32 (inst.instruction);
5960 inst.instruction |= Rd << 8;
5961 inst.instruction |= Rs << 16;
5962 encode_thumb32_shifted_operand (2);
5963 }
a737bd4d 5964 }
c19d1205 5965 else
b99bd4ef 5966 {
c19d1205
ZW
5967 /* On its face this is a lie - the instruction does set the
5968 flags. However, the only supported mnemonic in this mode
5969 says it doesn't. */
5970 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 5971
c19d1205
ZW
5972 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
5973 _("unshifted register required"));
5974 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
5975 constraint (Rd != Rs,
5976 _("dest and source1 must be the same register"));
a737bd4d 5977
c19d1205
ZW
5978 inst.instruction = THUMB_OP16 (inst.instruction);
5979 inst.instruction |= Rd;
5980 inst.instruction |= Rn << 3;
b99bd4ef 5981 }
a737bd4d 5982}
b99bd4ef 5983
c19d1205
ZW
5984/* Similarly, but for instructions where the arithmetic operation is
5985 commutative, so we can allow either of them to be different from
5986 the destination operand in a 16-bit instruction. For instance, all
5987 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
5988 accepted. */
5989static void
5990do_t_arit3c (void)
a737bd4d 5991{
c19d1205 5992 int Rd, Rs, Rn;
b99bd4ef 5993
c19d1205
ZW
5994 Rd = inst.operands[0].reg;
5995 Rs = (inst.operands[1].present
5996 ? inst.operands[1].reg /* Rd, Rs, foo */
5997 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
5998 Rn = inst.operands[2].reg;
a737bd4d 5999
c19d1205 6000 if (unified_syntax)
a737bd4d 6001 {
c19d1205 6002 if (!inst.operands[2].isreg)
b99bd4ef 6003 {
c19d1205
ZW
6004 /* For an immediate, we always generate a 32-bit opcode;
6005 section relaxation will shrink it later if possible. */
6006 inst.instruction = THUMB_OP32 (inst.instruction);
6007 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6008 inst.instruction |= Rd << 8;
6009 inst.instruction |= Rs << 16;
6010 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 6011 }
c19d1205 6012 else
a737bd4d 6013 {
c19d1205
ZW
6014 /* See if we can do this with a 16-bit instruction. */
6015 if (THUMB_SETS_FLAGS (inst.instruction)
6016 && !inst.operands[2].shifted
6017 && inst.size_req != 4)
a737bd4d 6018 {
c19d1205 6019 if (Rd == Rs)
a737bd4d 6020 {
c19d1205
ZW
6021 inst.instruction = THUMB_OP16 (inst.instruction);
6022 inst.instruction |= Rd;
6023 inst.instruction |= Rn << 3;
6024 return;
a737bd4d 6025 }
c19d1205 6026 if (Rd == Rn)
a737bd4d 6027 {
c19d1205
ZW
6028 inst.instruction = THUMB_OP16 (inst.instruction);
6029 inst.instruction |= Rd;
6030 inst.instruction |= Rs << 3;
6031 return;
a737bd4d
NC
6032 }
6033 }
c19d1205
ZW
6034
6035 /* If we get here, it can't be done in 16 bits. */
6036 constraint (inst.operands[2].shifted
6037 && inst.operands[2].immisreg,
6038 _("shift must be constant"));
6039 inst.instruction = THUMB_OP32 (inst.instruction);
6040 inst.instruction |= Rd << 8;
6041 inst.instruction |= Rs << 16;
6042 encode_thumb32_shifted_operand (2);
a737bd4d 6043 }
b99bd4ef 6044 }
c19d1205
ZW
6045 else
6046 {
6047 /* On its face this is a lie - the instruction does set the
6048 flags. However, the only supported mnemonic in this mode
6049 says it doesn't. */
6050 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 6051
c19d1205
ZW
6052 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
6053 _("unshifted register required"));
6054 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
6055
6056 inst.instruction = THUMB_OP16 (inst.instruction);
6057 inst.instruction |= Rd;
6058
6059 if (Rd == Rs)
6060 inst.instruction |= Rn << 3;
6061 else if (Rd == Rn)
6062 inst.instruction |= Rs << 3;
6063 else
6064 constraint (1, _("dest must overlap one source register"));
6065 }
a737bd4d
NC
6066}
6067
c19d1205
ZW
6068static void
6069do_t_bfc (void)
a737bd4d 6070{
c19d1205
ZW
6071 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6072 constraint (msb > 32, _("bit-field extends past end of register"));
6073 /* The instruction encoding stores the LSB and MSB,
6074 not the LSB and width. */
6075 inst.instruction |= inst.operands[0].reg << 8;
6076 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
6077 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
6078 inst.instruction |= msb - 1;
b99bd4ef
NC
6079}
6080
c19d1205
ZW
6081static void
6082do_t_bfi (void)
b99bd4ef 6083{
c19d1205 6084 unsigned int msb;
b99bd4ef 6085
c19d1205
ZW
6086 /* #0 in second position is alternative syntax for bfc, which is
6087 the same instruction but with REG_PC in the Rm field. */
6088 if (!inst.operands[1].isreg)
6089 inst.operands[1].reg = REG_PC;
b99bd4ef 6090
c19d1205
ZW
6091 msb = inst.operands[2].imm + inst.operands[3].imm;
6092 constraint (msb > 32, _("bit-field extends past end of register"));
6093 /* The instruction encoding stores the LSB and MSB,
6094 not the LSB and width. */
6095 inst.instruction |= inst.operands[0].reg << 8;
6096 inst.instruction |= inst.operands[1].reg << 16;
6097 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6098 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6099 inst.instruction |= msb - 1;
b99bd4ef
NC
6100}
6101
c19d1205
ZW
6102static void
6103do_t_bfx (void)
b99bd4ef 6104{
c19d1205
ZW
6105 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6106 _("bit-field extends past end of register"));
6107 inst.instruction |= inst.operands[0].reg << 8;
6108 inst.instruction |= inst.operands[1].reg << 16;
6109 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6110 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6111 inst.instruction |= inst.operands[3].imm - 1;
6112}
b99bd4ef 6113
c19d1205
ZW
6114/* ARM V5 Thumb BLX (argument parse)
6115 BLX <target_addr> which is BLX(1)
6116 BLX <Rm> which is BLX(2)
6117 Unfortunately, there are two different opcodes for this mnemonic.
6118 So, the insns[].value is not used, and the code here zaps values
6119 into inst.instruction.
b99bd4ef 6120
c19d1205
ZW
6121 ??? How to take advantage of the additional two bits of displacement
6122 available in Thumb32 mode? Need new relocation? */
b99bd4ef 6123
c19d1205
ZW
6124static void
6125do_t_blx (void)
6126{
6127 if (inst.operands[0].isreg)
6128 /* We have a register, so this is BLX(2). */
6129 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
6130 else
6131 {
c19d1205
ZW
6132 /* No register. This must be BLX(1). */
6133 inst.instruction = 0xf7ffeffe;
6134 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
6135 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6136 }
6137}
6138
c19d1205
ZW
6139static void
6140do_t_branch (void)
b99bd4ef 6141{
c19d1205
ZW
6142 if (unified_syntax && inst.size_req != 2)
6143 {
6144 if (inst.cond == COND_ALWAYS)
6145 {
6146 inst.instruction = 0xf7ffbffe;
6147 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
6148 }
6149 else
6150 {
6151 assert (inst.cond != 0xF);
6152 inst.instruction = (inst.cond << 22) | 0xf43faffe;
6153 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
6154 }
6155 }
b99bd4ef
NC
6156 else
6157 {
c19d1205
ZW
6158 if (inst.cond == COND_ALWAYS)
6159 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
6160 else
b99bd4ef 6161 {
c19d1205
ZW
6162 inst.instruction = 0xd0fe | (inst.cond << 8);
6163 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 6164 }
b99bd4ef 6165 }
c19d1205
ZW
6166
6167 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6168}
6169
6170static void
c19d1205 6171do_t_bkpt (void)
b99bd4ef 6172{
c19d1205 6173 if (inst.operands[0].present)
b99bd4ef 6174 {
c19d1205
ZW
6175 constraint (inst.operands[0].imm > 255,
6176 _("immediate value out of range"));
6177 inst.instruction |= inst.operands[0].imm;
b99bd4ef 6178 }
b99bd4ef
NC
6179}
6180
6181static void
c19d1205 6182do_t_branch23 (void)
b99bd4ef 6183{
c19d1205 6184 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
6185 inst.reloc.pc_rel = 1;
6186
c19d1205
ZW
6187 /* If the destination of the branch is a defined symbol which does not have
6188 the THUMB_FUNC attribute, then we must be calling a function which has
6189 the (interfacearm) attribute. We look for the Thumb entry point to that
6190 function and change the branch to refer to that function instead. */
6191 if ( inst.reloc.exp.X_op == O_symbol
6192 && inst.reloc.exp.X_add_symbol != NULL
6193 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
6194 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
6195 inst.reloc.exp.X_add_symbol =
6196 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
6197}
6198
6199static void
c19d1205 6200do_t_bx (void)
90e4755a 6201{
c19d1205
ZW
6202 inst.instruction |= inst.operands[0].reg << 3;
6203 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
6204 should cause the alignment to be checked once it is known. This is
6205 because BX PC only works if the instruction is word aligned. */
6206}
90e4755a 6207
c19d1205
ZW
6208static void
6209do_t_bxj (void)
6210{
6211 if (inst.operands[0].reg == REG_PC)
6212 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 6213
c19d1205 6214 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
6215}
6216
6217static void
c19d1205 6218do_t_clz (void)
90e4755a 6219{
c19d1205
ZW
6220 inst.instruction |= inst.operands[0].reg << 8;
6221 inst.instruction |= inst.operands[1].reg << 16;
6222 inst.instruction |= inst.operands[1].reg;
6223}
90e4755a 6224
c19d1205
ZW
6225static void
6226do_t_cpsi (void)
6227{
6228 if (unified_syntax
6229 && (inst.operands[1].present || inst.size_req == 4))
90e4755a 6230 {
c19d1205
ZW
6231 unsigned int imod = (inst.instruction & 0x0030) >> 4;
6232 inst.instruction = 0xf3af8000;
6233 inst.instruction |= imod << 9;
6234 inst.instruction |= inst.operands[0].imm << 5;
6235 if (inst.operands[1].present)
6236 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 6237 }
c19d1205 6238 else
90e4755a 6239 {
c19d1205
ZW
6240 constraint (inst.operands[1].present,
6241 _("Thumb does not support the 2-argument "
6242 "form of this instruction"));
6243 inst.instruction |= inst.operands[0].imm;
90e4755a 6244 }
90e4755a
RE
6245}
6246
c19d1205
ZW
6247/* THUMB CPY instruction (argument parse). */
6248
90e4755a 6249static void
c19d1205 6250do_t_cpy (void)
90e4755a 6251{
c19d1205 6252 if (inst.size_req == 4)
90e4755a 6253 {
c19d1205
ZW
6254 inst.instruction = THUMB_OP32 (T_MNEM_mov);
6255 inst.instruction |= inst.operands[0].reg << 8;
6256 inst.instruction |= inst.operands[1].reg;
90e4755a 6257 }
c19d1205 6258 else
90e4755a 6259 {
c19d1205
ZW
6260 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6261 inst.instruction |= (inst.operands[0].reg & 0x7);
6262 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 6263 }
90e4755a
RE
6264}
6265
90e4755a 6266static void
c19d1205 6267do_t_czb (void)
90e4755a 6268{
c19d1205
ZW
6269 constraint (inst.operands[0].reg > 7, BAD_HIREG);
6270 inst.instruction |= inst.operands[0].reg;
6271 inst.reloc.pc_rel = 1;
6272 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
6273}
90e4755a 6274
c19d1205
ZW
6275static void
6276do_t_hint (void)
6277{
6278 if (unified_syntax && inst.size_req == 4)
6279 inst.instruction = THUMB_OP32 (inst.instruction);
6280 else
6281 inst.instruction = THUMB_OP16 (inst.instruction);
6282}
90e4755a 6283
c19d1205
ZW
6284static void
6285do_t_it (void)
6286{
6287 unsigned int cond = inst.operands[0].imm;
6288 if ((cond & 0x1) == 0x0)
90e4755a 6289 {
c19d1205
ZW
6290 unsigned int mask = inst.instruction & 0x000f;
6291 inst.instruction &= 0xfff0;
90e4755a 6292
c19d1205
ZW
6293 if ((mask & 0x7) == 0)
6294 /* no conversion needed */;
6295 else if ((mask & 0x3) == 0)
6296 mask = (~(mask & 0x8) & 0x8) | 0x4;
6297 else if ((mask & 1) == 0)
6298 mask = (~(mask & 0xC) & 0xC) | 0x2;
6299 else
6300 mask = (~(mask & 0xE) & 0xE) | 0x1;
90e4755a 6301
c19d1205
ZW
6302 inst.instruction |= (mask & 0xF);
6303 }
90e4755a 6304
c19d1205
ZW
6305 inst.instruction |= cond << 4;
6306}
90e4755a 6307
c19d1205
ZW
6308static void
6309do_t_ldmstm (void)
6310{
6311 /* This really doesn't seem worth it. */
6312 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
6313 _("expression too complex"));
6314 constraint (inst.operands[1].writeback,
6315 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 6316
c19d1205
ZW
6317 if (unified_syntax)
6318 {
6319 /* See if we can use a 16-bit instruction. */
6320 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
6321 && inst.size_req != 4
6322 && inst.operands[0].reg <= 7
6323 && !(inst.operands[1].imm & ~0xff)
6324 && (inst.instruction == T_MNEM_stmia
6325 ? inst.operands[0].writeback
6326 : (inst.operands[0].writeback
6327 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
90e4755a 6328 {
c19d1205
ZW
6329 if (inst.instruction == T_MNEM_stmia
6330 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
6331 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6332 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6333 inst.operands[0].reg);
90e4755a 6334
c19d1205
ZW
6335 inst.instruction = THUMB_OP16 (inst.instruction);
6336 inst.instruction |= inst.operands[0].reg << 8;
6337 inst.instruction |= inst.operands[1].imm;
6338 }
6339 else
6340 {
6341 if (inst.operands[1].imm & (1 << 13))
6342 as_warn (_("SP should not be in register list"));
6343 if (inst.instruction == T_MNEM_stmia)
90e4755a 6344 {
c19d1205
ZW
6345 if (inst.operands[1].imm & (1 << 15))
6346 as_warn (_("PC should not be in register list"));
6347 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
6348 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6349 inst.operands[0].reg);
90e4755a
RE
6350 }
6351 else
6352 {
c19d1205
ZW
6353 if (inst.operands[1].imm & (1 << 14)
6354 && inst.operands[1].imm & (1 << 15))
6355 as_warn (_("LR and PC should not both be in register list"));
6356 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6357 && inst.operands[0].writeback)
6358 as_warn (_("base register should not be in register list "
6359 "when written back"));
90e4755a 6360 }
c19d1205
ZW
6361 if (inst.instruction < 0xffff)
6362 inst.instruction = THUMB_OP32 (inst.instruction);
6363 inst.instruction |= inst.operands[0].reg << 16;
6364 inst.instruction |= inst.operands[1].imm;
6365 if (inst.operands[0].writeback)
6366 inst.instruction |= WRITE_BACK;
90e4755a
RE
6367 }
6368 }
c19d1205 6369 else
90e4755a 6370 {
c19d1205
ZW
6371 constraint (inst.operands[0].reg > 7
6372 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
6373 if (inst.instruction == T_MNEM_stmia)
f03698e6 6374 {
c19d1205
ZW
6375 if (!inst.operands[0].writeback)
6376 as_warn (_("this instruction will write back the base register"));
6377 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6378 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6379 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6380 inst.operands[0].reg);
f03698e6 6381 }
c19d1205 6382 else
90e4755a 6383 {
c19d1205
ZW
6384 if (!inst.operands[0].writeback
6385 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
6386 as_warn (_("this instruction will write back the base register"));
6387 else if (inst.operands[0].writeback
6388 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
6389 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
6390 }
6391
c19d1205
ZW
6392 inst.instruction = THUMB_OP16 (inst.instruction);
6393 inst.instruction |= inst.operands[0].reg << 8;
6394 inst.instruction |= inst.operands[1].imm;
6395 }
6396}
e28cd48c 6397
c19d1205
ZW
6398static void
6399do_t_ldrex (void)
6400{
6401 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6402 || inst.operands[1].postind || inst.operands[1].writeback
6403 || inst.operands[1].immisreg || inst.operands[1].shifted
6404 || inst.operands[1].negative,
6405 _("instruction does not accept this addressing mode"));
e28cd48c 6406
c19d1205
ZW
6407 inst.instruction |= inst.operands[0].reg << 12;
6408 inst.instruction |= inst.operands[1].reg << 16;
6409 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
6410}
e28cd48c 6411
c19d1205
ZW
6412static void
6413do_t_ldrexd (void)
6414{
6415 if (!inst.operands[1].present)
1cac9012 6416 {
c19d1205
ZW
6417 constraint (inst.operands[0].reg == REG_LR,
6418 _("r14 not allowed as first register "
6419 "when second register is omitted"));
6420 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 6421 }
c19d1205
ZW
6422 constraint (inst.operands[0].reg == inst.operands[1].reg,
6423 BAD_OVERLAP);
b99bd4ef 6424
c19d1205
ZW
6425 inst.instruction |= inst.operands[0].reg << 12;
6426 inst.instruction |= inst.operands[1].reg << 8;
6427 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
6428}
6429
6430static void
c19d1205 6431do_t_ldst (void)
b99bd4ef 6432{
c19d1205 6433 if (unified_syntax)
b99bd4ef 6434 {
c19d1205
ZW
6435 /* Generation of 16-bit instructions for anything other than
6436 Rd, [Rn, Ri] is deferred to section relaxation time. */
6437 if (inst.operands[1].isreg && inst.operands[1].immisreg
6438 && !inst.operands[1].shifted && !inst.operands[1].postind
6439 && !inst.operands[1].negative && inst.operands[0].reg <= 7
6440 && inst.operands[1].reg <= 7 && inst.operands[1].imm <= 7
6441 && inst.instruction <= 0xffff)
6442 {
6443 inst.instruction = THUMB_OP16 (inst.instruction);
6444 goto op16;
6445 }
6446
6447 inst.instruction = THUMB_OP32 (inst.instruction);
6448 inst.instruction |= inst.operands[0].reg << 12;
6449 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
6450 return;
6451 }
6452
c19d1205
ZW
6453 constraint (inst.operands[0].reg > 7, BAD_HIREG);
6454
6455 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 6456 {
c19d1205
ZW
6457 /* Only [Rn,Rm] is acceptable. */
6458 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
6459 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
6460 || inst.operands[1].postind || inst.operands[1].shifted
6461 || inst.operands[1].negative,
6462 _("Thumb does not support this addressing mode"));
6463 inst.instruction = THUMB_OP16 (inst.instruction);
6464 goto op16;
b99bd4ef 6465 }
c19d1205
ZW
6466
6467 inst.instruction = THUMB_OP16 (inst.instruction);
6468 if (!inst.operands[1].isreg)
6469 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
6470 return;
b99bd4ef 6471
c19d1205
ZW
6472 constraint (!inst.operands[1].preind
6473 || inst.operands[1].shifted
6474 || inst.operands[1].writeback,
6475 _("Thumb does not support this addressing mode"));
6476 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 6477 {
c19d1205
ZW
6478 constraint (inst.instruction & 0x0600,
6479 _("byte or halfword not valid for base register"));
6480 constraint (inst.operands[1].reg == REG_PC
6481 && !(inst.instruction & THUMB_LOAD_BIT),
6482 _("r15 based store not allowed"));
6483 constraint (inst.operands[1].immisreg,
6484 _("invalid base register for register offset"));
b99bd4ef 6485
c19d1205
ZW
6486 if (inst.operands[1].reg == REG_PC)
6487 inst.instruction = T_OPCODE_LDR_PC;
6488 else if (inst.instruction & THUMB_LOAD_BIT)
6489 inst.instruction = T_OPCODE_LDR_SP;
6490 else
6491 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 6492
c19d1205
ZW
6493 inst.instruction |= inst.operands[0].reg << 8;
6494 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
6495 return;
6496 }
90e4755a 6497
c19d1205
ZW
6498 constraint (inst.operands[1].reg > 7, BAD_HIREG);
6499 if (!inst.operands[1].immisreg)
6500 {
6501 /* Immediate offset. */
6502 inst.instruction |= inst.operands[0].reg;
6503 inst.instruction |= inst.operands[1].reg << 3;
6504 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
6505 return;
6506 }
90e4755a 6507
c19d1205
ZW
6508 /* Register offset. */
6509 constraint (inst.operands[1].imm > 7, BAD_HIREG);
6510 constraint (inst.operands[1].negative,
6511 _("Thumb does not support this addressing mode"));
90e4755a 6512
c19d1205
ZW
6513 op16:
6514 switch (inst.instruction)
6515 {
6516 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
6517 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
6518 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
6519 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
6520 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
6521 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
6522 case 0x5600 /* ldrsb */:
6523 case 0x5e00 /* ldrsh */: break;
6524 default: abort ();
6525 }
90e4755a 6526
c19d1205
ZW
6527 inst.instruction |= inst.operands[0].reg;
6528 inst.instruction |= inst.operands[1].reg << 3;
6529 inst.instruction |= inst.operands[1].imm << 6;
6530}
90e4755a 6531
c19d1205
ZW
6532static void
6533do_t_ldstd (void)
6534{
6535 if (!inst.operands[1].present)
b99bd4ef 6536 {
c19d1205
ZW
6537 inst.operands[1].reg = inst.operands[0].reg + 1;
6538 constraint (inst.operands[0].reg == REG_LR,
6539 _("r14 not allowed here"));
b99bd4ef 6540 }
c19d1205
ZW
6541 inst.instruction |= inst.operands[0].reg << 12;
6542 inst.instruction |= inst.operands[1].reg << 8;
6543 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
6544
b99bd4ef
NC
6545}
6546
c19d1205
ZW
6547static void
6548do_t_ldstt (void)
6549{
6550 inst.instruction |= inst.operands[0].reg << 12;
6551 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
6552}
a737bd4d 6553
b99bd4ef 6554static void
c19d1205 6555do_t_mla (void)
b99bd4ef 6556{
c19d1205
ZW
6557 inst.instruction |= inst.operands[0].reg << 8;
6558 inst.instruction |= inst.operands[1].reg << 16;
6559 inst.instruction |= inst.operands[2].reg;
6560 inst.instruction |= inst.operands[3].reg << 12;
6561}
b99bd4ef 6562
c19d1205
ZW
6563static void
6564do_t_mlal (void)
6565{
6566 inst.instruction |= inst.operands[0].reg << 12;
6567 inst.instruction |= inst.operands[1].reg << 8;
6568 inst.instruction |= inst.operands[2].reg << 16;
6569 inst.instruction |= inst.operands[3].reg;
6570}
b99bd4ef 6571
c19d1205
ZW
6572static void
6573do_t_mov_cmp (void)
6574{
6575 if (unified_syntax)
b99bd4ef 6576 {
c19d1205
ZW
6577 int r0off = (inst.instruction == T_MNEM_mov
6578 || inst.instruction == T_MNEM_movs) ? 8 : 16;
6579 if (!inst.operands[1].isreg)
6580 {
6581 /* For an immediate, we always generate a 32-bit opcode;
6582 section relaxation will shrink it later if possible. */
6583 inst.instruction = THUMB_OP32 (inst.instruction);
6584 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6585 inst.instruction |= inst.operands[0].reg << r0off;
6586 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6587 }
6588 else if (inst.size_req == 4
6589 || inst.operands[1].shifted
6590 || (inst.instruction == T_MNEM_movs
6591 && (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)))
6592 {
6593 inst.instruction = THUMB_OP32 (inst.instruction);
6594 inst.instruction |= inst.operands[0].reg << r0off;
6595 encode_thumb32_shifted_operand (1);
6596 }
6597 else
6598 switch (inst.instruction)
6599 {
6600 case T_MNEM_mov:
6601 inst.instruction = T_OPCODE_MOV_HR;
6602 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6603 inst.instruction |= (inst.operands[0].reg & 0x7);
6604 inst.instruction |= inst.operands[1].reg << 3;
6605 break;
b99bd4ef 6606
c19d1205
ZW
6607 case T_MNEM_movs:
6608 /* We know we have low registers at this point.
6609 Generate ADD Rd, Rs, #0. */
6610 inst.instruction = T_OPCODE_ADD_I3;
6611 inst.instruction |= inst.operands[0].reg;
6612 inst.instruction |= inst.operands[1].reg << 3;
6613 break;
6614
6615 case T_MNEM_cmp:
6616 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7)
6617 {
6618 inst.instruction = T_OPCODE_CMP_LR;
6619 inst.instruction |= inst.operands[0].reg;
6620 inst.instruction |= inst.operands[1].reg << 3;
6621 }
6622 else
6623 {
6624 inst.instruction = T_OPCODE_CMP_HR;
6625 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6626 inst.instruction |= (inst.operands[0].reg & 0x7);
6627 inst.instruction |= inst.operands[1].reg << 3;
6628 }
6629 break;
6630 }
b99bd4ef
NC
6631 return;
6632 }
6633
c19d1205
ZW
6634 inst.instruction = THUMB_OP16 (inst.instruction);
6635 if (inst.operands[1].isreg)
b99bd4ef 6636 {
c19d1205 6637 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 6638 {
c19d1205
ZW
6639 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
6640 since a MOV instruction produces unpredictable results. */
6641 if (inst.instruction == T_OPCODE_MOV_I8)
6642 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 6643 else
c19d1205 6644 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 6645
c19d1205
ZW
6646 inst.instruction |= inst.operands[0].reg;
6647 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
6648 }
6649 else
6650 {
c19d1205
ZW
6651 if (inst.instruction == T_OPCODE_MOV_I8)
6652 inst.instruction = T_OPCODE_MOV_HR;
6653 else
6654 inst.instruction = T_OPCODE_CMP_HR;
6655 do_t_cpy ();
b99bd4ef
NC
6656 }
6657 }
c19d1205 6658 else
b99bd4ef 6659 {
c19d1205
ZW
6660 constraint (inst.operands[0].reg > 7,
6661 _("only lo regs allowed with immediate"));
6662 inst.instruction |= inst.operands[0].reg << 8;
6663 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
6664 }
6665}
b99bd4ef 6666
c19d1205
ZW
6667static void
6668do_t_mov16 (void)
6669{
6670 inst.instruction |= inst.operands[0].reg << 8;
6671 inst.instruction |= (inst.operands[1].imm & 0xf000) << 4;
6672 inst.instruction |= (inst.operands[1].imm & 0x0800) << 15;
6673 inst.instruction |= (inst.operands[1].imm & 0x0700) << 4;
6674 inst.instruction |= (inst.operands[1].imm & 0x00ff);
6675}
b99bd4ef 6676
c19d1205
ZW
6677static void
6678do_t_mvn_tst (void)
6679{
6680 if (unified_syntax)
6681 {
6682 int r0off = (inst.instruction == T_MNEM_mvn
6683 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
6684 if (!inst.operands[1].isreg)
b99bd4ef 6685 {
c19d1205
ZW
6686 /* For an immediate, we always generate a 32-bit opcode;
6687 section relaxation will shrink it later if possible. */
6688 if (inst.instruction < 0xffff)
6689 inst.instruction = THUMB_OP32 (inst.instruction);
6690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6691 inst.instruction |= inst.operands[0].reg << r0off;
6692 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 6693 }
c19d1205 6694 else
b99bd4ef 6695 {
c19d1205
ZW
6696 /* See if we can do this with a 16-bit instruction. */
6697 if (inst.instruction < 0xffff
6698 && THUMB_SETS_FLAGS (inst.instruction)
6699 && !inst.operands[1].shifted
6700 && inst.operands[0].reg <= 7
6701 && inst.operands[1].reg <= 7
6702 && inst.size_req != 4)
b99bd4ef 6703 {
c19d1205
ZW
6704 inst.instruction = THUMB_OP16 (inst.instruction);
6705 inst.instruction |= inst.operands[0].reg;
6706 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 6707 }
c19d1205 6708 else
b99bd4ef 6709 {
c19d1205
ZW
6710 constraint (inst.operands[1].shifted
6711 && inst.operands[1].immisreg,
6712 _("shift must be constant"));
6713 if (inst.instruction < 0xffff)
6714 inst.instruction = THUMB_OP32 (inst.instruction);
6715 inst.instruction |= inst.operands[0].reg << r0off;
6716 encode_thumb32_shifted_operand (1);
b99bd4ef 6717 }
b99bd4ef
NC
6718 }
6719 }
6720 else
6721 {
c19d1205
ZW
6722 constraint (inst.instruction > 0xffff
6723 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
6724 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
6725 _("unshifted register required"));
6726 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
6727 BAD_HIREG);
b99bd4ef 6728
c19d1205
ZW
6729 inst.instruction = THUMB_OP16 (inst.instruction);
6730 inst.instruction |= inst.operands[0].reg;
6731 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 6732 }
b99bd4ef
NC
6733}
6734
b05fe5cf 6735static void
c19d1205 6736do_t_mrs (void)
b05fe5cf 6737{
c19d1205
ZW
6738 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
6739 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
6740 != (PSR_c|PSR_f),
6741 _("'CPSR' or 'SPSR' expected"));
6742 inst.instruction |= inst.operands[0].reg << 8;
6743 inst.instruction |= (inst.operands[1].imm & SPSR_BIT) >> 2;
6744}
b05fe5cf 6745
c19d1205
ZW
6746static void
6747do_t_msr (void)
6748{
6749 constraint (!inst.operands[1].isreg,
6750 _("Thumb encoding does not support an immediate here"));
6751 inst.instruction |= (inst.operands[0].imm & SPSR_BIT) >> 2;
6752 inst.instruction |= (inst.operands[0].imm & ~SPSR_BIT) >> 8;
6753 inst.instruction |= inst.operands[1].reg << 16;
6754}
b05fe5cf 6755
c19d1205
ZW
6756static void
6757do_t_mul (void)
6758{
6759 if (!inst.operands[2].present)
6760 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 6761
c19d1205
ZW
6762 /* There is no 32-bit MULS and no 16-bit MUL. */
6763 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 6764 {
c19d1205
ZW
6765 inst.instruction = THUMB_OP32 (inst.instruction);
6766 inst.instruction |= inst.operands[0].reg << 8;
6767 inst.instruction |= inst.operands[1].reg << 16;
6768 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 6769 }
c19d1205 6770 else
b05fe5cf 6771 {
c19d1205
ZW
6772 constraint (!unified_syntax
6773 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
6774 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
6775 BAD_HIREG);
b05fe5cf 6776
c19d1205
ZW
6777 inst.instruction = THUMB_OP16 (inst.instruction);
6778 inst.instruction |= inst.operands[0].reg;
b05fe5cf 6779
c19d1205
ZW
6780 if (inst.operands[0].reg == inst.operands[1].reg)
6781 inst.instruction |= inst.operands[2].reg << 3;
6782 else if (inst.operands[0].reg == inst.operands[2].reg)
6783 inst.instruction |= inst.operands[1].reg << 3;
6784 else
6785 constraint (1, _("dest must overlap one source register"));
6786 }
6787}
b05fe5cf 6788
c19d1205
ZW
6789static void
6790do_t_mull (void)
6791{
6792 inst.instruction |= inst.operands[0].reg << 12;
6793 inst.instruction |= inst.operands[1].reg << 8;
6794 inst.instruction |= inst.operands[2].reg << 16;
6795 inst.instruction |= inst.operands[3].reg;
b05fe5cf 6796
c19d1205
ZW
6797 if (inst.operands[0].reg == inst.operands[1].reg)
6798 as_tsktsk (_("rdhi and rdlo must be different"));
6799}
b05fe5cf 6800
c19d1205
ZW
6801static void
6802do_t_nop (void)
6803{
6804 if (unified_syntax)
6805 {
6806 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 6807 {
c19d1205
ZW
6808 inst.instruction = THUMB_OP32 (inst.instruction);
6809 inst.instruction |= inst.operands[0].imm;
6810 }
6811 else
6812 {
6813 inst.instruction = THUMB_OP16 (inst.instruction);
6814 inst.instruction |= inst.operands[0].imm << 4;
6815 }
6816 }
6817 else
6818 {
6819 constraint (inst.operands[0].present,
6820 _("Thumb does not support NOP with hints"));
6821 inst.instruction = 0x46c0;
6822 }
6823}
b05fe5cf 6824
c19d1205
ZW
6825static void
6826do_t_neg (void)
6827{
6828 if (unified_syntax)
6829 {
6830 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7
6831 || !THUMB_SETS_FLAGS (inst.instruction)
6832 || inst.size_req == 4)
6833 {
6834 inst.instruction = THUMB_OP32 (inst.instruction);
6835 inst.instruction |= inst.operands[0].reg << 8;
6836 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
6837 }
6838 else
6839 {
c19d1205
ZW
6840 inst.instruction = THUMB_OP16 (inst.instruction);
6841 inst.instruction |= inst.operands[0].reg;
6842 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
6843 }
6844 }
6845 else
6846 {
c19d1205
ZW
6847 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
6848 BAD_HIREG);
6849 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
6850
6851 inst.instruction = THUMB_OP16 (inst.instruction);
6852 inst.instruction |= inst.operands[0].reg;
6853 inst.instruction |= inst.operands[1].reg << 3;
6854 }
6855}
6856
6857static void
6858do_t_pkhbt (void)
6859{
6860 inst.instruction |= inst.operands[0].reg << 8;
6861 inst.instruction |= inst.operands[1].reg << 16;
6862 inst.instruction |= inst.operands[2].reg;
6863 if (inst.operands[3].present)
6864 {
6865 unsigned int val = inst.reloc.exp.X_add_number;
6866 constraint (inst.reloc.exp.X_op != O_constant,
6867 _("expression too complex"));
6868 inst.instruction |= (val & 0x1c) << 10;
6869 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 6870 }
c19d1205 6871}
b05fe5cf 6872
c19d1205
ZW
6873static void
6874do_t_pkhtb (void)
6875{
6876 if (!inst.operands[3].present)
6877 inst.instruction &= ~0x00000020;
6878 do_t_pkhbt ();
b05fe5cf
ZW
6879}
6880
c19d1205
ZW
6881static void
6882do_t_pld (void)
6883{
6884 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
6885}
b05fe5cf 6886
c19d1205
ZW
6887static void
6888do_t_push_pop (void)
b99bd4ef 6889{
c19d1205
ZW
6890 constraint (inst.operands[0].writeback,
6891 _("push/pop do not support {reglist}^"));
6892 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
6893 _("expression too complex"));
b99bd4ef 6894
c19d1205
ZW
6895 if ((inst.operands[0].imm & ~0xff) == 0)
6896 inst.instruction = THUMB_OP16 (inst.instruction);
6897 else if ((inst.instruction == T_MNEM_push
6898 && (inst.operands[0].imm & ~0xff) == 1 << REG_LR)
6899 || (inst.instruction == T_MNEM_pop
6900 && (inst.operands[0].imm & ~0xff) == 1 << REG_PC))
b99bd4ef 6901 {
c19d1205
ZW
6902 inst.instruction = THUMB_OP16 (inst.instruction);
6903 inst.instruction |= THUMB_PP_PC_LR;
6904 inst.operands[0].imm &= 0xff;
6905 }
6906 else if (unified_syntax)
6907 {
6908 if (inst.operands[1].imm & (1 << 13))
6909 as_warn (_("SP should not be in register list"));
6910 if (inst.instruction == T_MNEM_push)
b99bd4ef 6911 {
c19d1205
ZW
6912 if (inst.operands[1].imm & (1 << 15))
6913 as_warn (_("PC should not be in register list"));
6914 }
6915 else
6916 {
6917 if (inst.operands[1].imm & (1 << 14)
6918 && inst.operands[1].imm & (1 << 15))
6919 as_warn (_("LR and PC should not both be in register list"));
6920 }
b99bd4ef 6921
c19d1205
ZW
6922 inst.instruction = THUMB_OP32 (inst.instruction);
6923 }
6924 else
6925 {
6926 inst.error = _("invalid register list to push/pop instruction");
6927 return;
6928 }
b99bd4ef 6929
c19d1205
ZW
6930 inst.instruction |= inst.operands[0].imm;
6931}
b99bd4ef 6932
c19d1205
ZW
6933static void
6934do_t_rbit (void)
6935{
6936 inst.instruction |= inst.operands[0].reg << 8;
6937 inst.instruction |= inst.operands[1].reg << 16;
6938}
b99bd4ef 6939
c19d1205
ZW
6940static void
6941do_t_rev (void)
6942{
6943 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
6944 && inst.size_req != 4)
6945 {
6946 inst.instruction = THUMB_OP16 (inst.instruction);
6947 inst.instruction |= inst.operands[0].reg;
6948 inst.instruction |= inst.operands[1].reg << 3;
6949 }
6950 else if (unified_syntax)
6951 {
6952 inst.instruction = THUMB_OP32 (inst.instruction);
6953 inst.instruction |= inst.operands[0].reg << 8;
6954 inst.instruction |= inst.operands[1].reg << 16;
6955 inst.instruction |= inst.operands[1].reg;
6956 }
6957 else
6958 inst.error = BAD_HIREG;
6959}
b99bd4ef 6960
c19d1205
ZW
6961static void
6962do_t_rsb (void)
6963{
6964 int Rd, Rs;
b99bd4ef 6965
c19d1205
ZW
6966 Rd = inst.operands[0].reg;
6967 Rs = (inst.operands[1].present
6968 ? inst.operands[1].reg /* Rd, Rs, foo */
6969 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 6970
c19d1205
ZW
6971 inst.instruction |= Rd << 8;
6972 inst.instruction |= Rs << 16;
6973 if (!inst.operands[2].isreg)
6974 {
6975 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6976 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6977 }
6978 else
6979 encode_thumb32_shifted_operand (2);
6980}
b99bd4ef 6981
c19d1205
ZW
6982static void
6983do_t_setend (void)
6984{
6985 if (inst.operands[0].imm)
6986 inst.instruction |= 0x8;
6987}
b99bd4ef 6988
c19d1205
ZW
6989static void
6990do_t_shift (void)
6991{
6992 if (!inst.operands[1].present)
6993 inst.operands[1].reg = inst.operands[0].reg;
6994
6995 if (unified_syntax)
6996 {
6997 if (inst.operands[0].reg > 7
6998 || inst.operands[1].reg > 7
6999 || !THUMB_SETS_FLAGS (inst.instruction)
7000 || (!inst.operands[2].isreg && inst.instruction == T_MNEM_rors)
7001 || (inst.operands[2].isreg && inst.operands[1].reg != inst.operands[0].reg)
7002 || inst.size_req == 4)
7003 {
7004 if (inst.operands[2].isreg)
b99bd4ef 7005 {
c19d1205
ZW
7006 inst.instruction = THUMB_OP32 (inst.instruction);
7007 inst.instruction |= inst.operands[0].reg << 8;
7008 inst.instruction |= inst.operands[1].reg << 16;
7009 inst.instruction |= inst.operands[2].reg;
7010 }
7011 else
7012 {
7013 inst.operands[1].shifted = 1;
7014 switch (inst.instruction)
7015 {
7016 case T_MNEM_asr:
7017 case T_MNEM_asrs: inst.operands[1].shift_kind = SHIFT_ASR; break;
7018 case T_MNEM_lsl:
7019 case T_MNEM_lsls: inst.operands[1].shift_kind = SHIFT_LSL; break;
7020 case T_MNEM_lsr:
7021 case T_MNEM_lsrs: inst.operands[1].shift_kind = SHIFT_LSR; break;
7022 case T_MNEM_ror:
7023 case T_MNEM_rors: inst.operands[1].shift_kind = SHIFT_ROR; break;
7024 default: abort ();
7025 }
7026
7027 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
7028 ? T_MNEM_movs : T_MNEM_mov);
7029 inst.instruction |= inst.operands[0].reg << 8;
7030 encode_thumb32_shifted_operand (1);
7031 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
7032 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
7033 }
7034 }
7035 else
7036 {
c19d1205 7037 if (inst.operands[2].isreg)
b99bd4ef 7038 {
c19d1205 7039 switch (inst.instruction)
b99bd4ef 7040 {
c19d1205
ZW
7041 case T_MNEM_asrs: inst.instruction = T_OPCODE_ASR_R; break;
7042 case T_MNEM_lsls: inst.instruction = T_OPCODE_LSL_R; break;
7043 case T_MNEM_lsrs: inst.instruction = T_OPCODE_LSR_R; break;
7044 case T_MNEM_rors: inst.instruction = T_OPCODE_ROR_R; break;
7045 default: abort ();
b99bd4ef 7046 }
c19d1205
ZW
7047
7048 inst.instruction |= inst.operands[0].reg;
7049 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
7050 }
7051 else
7052 {
c19d1205 7053 switch (inst.instruction)
b99bd4ef 7054 {
c19d1205
ZW
7055 case T_MNEM_asrs: inst.instruction = T_OPCODE_ASR_I; break;
7056 case T_MNEM_lsls: inst.instruction = T_OPCODE_LSL_I; break;
7057 case T_MNEM_lsrs: inst.instruction = T_OPCODE_LSR_I; break;
7058 default: abort ();
b99bd4ef 7059 }
c19d1205
ZW
7060 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7061 inst.instruction |= inst.operands[0].reg;
7062 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
7063 }
7064 }
c19d1205
ZW
7065 }
7066 else
7067 {
7068 constraint (inst.operands[0].reg > 7
7069 || inst.operands[1].reg > 7, BAD_HIREG);
7070 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 7071
c19d1205
ZW
7072 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
7073 {
7074 constraint (inst.operands[2].reg > 7, BAD_HIREG);
7075 constraint (inst.operands[0].reg != inst.operands[1].reg,
7076 _("source1 and dest must be same register"));
b99bd4ef 7077
c19d1205
ZW
7078 switch (inst.instruction)
7079 {
7080 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
7081 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
7082 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
7083 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
7084 default: abort ();
7085 }
7086
7087 inst.instruction |= inst.operands[0].reg;
7088 inst.instruction |= inst.operands[2].reg << 3;
7089 }
7090 else
b99bd4ef 7091 {
c19d1205
ZW
7092 switch (inst.instruction)
7093 {
7094 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
7095 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
7096 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
7097 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
7098 default: abort ();
7099 }
7100 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7101 inst.instruction |= inst.operands[0].reg;
7102 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
7103 }
7104 }
b99bd4ef
NC
7105}
7106
7107static void
c19d1205 7108do_t_simd (void)
b99bd4ef 7109{
c19d1205
ZW
7110 inst.instruction |= inst.operands[0].reg << 8;
7111 inst.instruction |= inst.operands[1].reg << 16;
7112 inst.instruction |= inst.operands[2].reg;
7113}
b99bd4ef 7114
c19d1205
ZW
7115static void
7116do_t_smi (void)
7117{
7118 unsigned int value = inst.reloc.exp.X_add_number;
7119 constraint (inst.reloc.exp.X_op != O_constant,
7120 _("expression too complex"));
7121 inst.reloc.type = BFD_RELOC_UNUSED;
7122 inst.instruction |= (value & 0xf000) >> 12;
7123 inst.instruction |= (value & 0x0ff0);
7124 inst.instruction |= (value & 0x000f) << 16;
7125}
b99bd4ef 7126
c19d1205
ZW
7127static void
7128do_t_ssat (void)
7129{
7130 inst.instruction |= inst.operands[0].reg << 8;
7131 inst.instruction |= inst.operands[1].imm - 1;
7132 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 7133
c19d1205 7134 if (inst.operands[3].present)
b99bd4ef 7135 {
c19d1205
ZW
7136 constraint (inst.reloc.exp.X_op != O_constant,
7137 _("expression too complex"));
b99bd4ef 7138
c19d1205 7139 if (inst.reloc.exp.X_add_number != 0)
6189168b 7140 {
c19d1205
ZW
7141 if (inst.operands[3].shift_kind == SHIFT_ASR)
7142 inst.instruction |= 0x00200000; /* sh bit */
7143 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7144 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 7145 }
c19d1205 7146 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 7147 }
b99bd4ef
NC
7148}
7149
0dd132b6 7150static void
c19d1205 7151do_t_ssat16 (void)
0dd132b6 7152{
c19d1205
ZW
7153 inst.instruction |= inst.operands[0].reg << 8;
7154 inst.instruction |= inst.operands[1].imm - 1;
7155 inst.instruction |= inst.operands[2].reg << 16;
7156}
0dd132b6 7157
c19d1205
ZW
7158static void
7159do_t_strex (void)
7160{
7161 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7162 || inst.operands[2].postind || inst.operands[2].writeback
7163 || inst.operands[2].immisreg || inst.operands[2].shifted
7164 || inst.operands[2].negative,
7165 _("instruction does not accept this addressing mode"));
0dd132b6 7166
c19d1205
ZW
7167 inst.instruction |= inst.operands[0].reg << 8;
7168 inst.instruction |= inst.operands[1].reg << 12;
7169 inst.instruction |= inst.operands[2].reg << 16;
7170 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
7171}
7172
b99bd4ef 7173static void
c19d1205 7174do_t_strexd (void)
b99bd4ef 7175{
c19d1205
ZW
7176 if (!inst.operands[2].present)
7177 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 7178
c19d1205
ZW
7179 constraint (inst.operands[0].reg == inst.operands[1].reg
7180 || inst.operands[0].reg == inst.operands[2].reg
7181 || inst.operands[0].reg == inst.operands[3].reg
7182 || inst.operands[1].reg == inst.operands[2].reg,
7183 BAD_OVERLAP);
b99bd4ef 7184
c19d1205
ZW
7185 inst.instruction |= inst.operands[0].reg;
7186 inst.instruction |= inst.operands[1].reg << 12;
7187 inst.instruction |= inst.operands[2].reg << 8;
7188 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
7189}
7190
7191static void
c19d1205 7192do_t_sxtah (void)
b99bd4ef 7193{
c19d1205
ZW
7194 inst.instruction |= inst.operands[0].reg << 8;
7195 inst.instruction |= inst.operands[1].reg << 16;
7196 inst.instruction |= inst.operands[2].reg;
7197 inst.instruction |= inst.operands[3].imm << 4;
7198}
b99bd4ef 7199
c19d1205
ZW
7200static void
7201do_t_sxth (void)
7202{
7203 if (inst.instruction <= 0xffff && inst.size_req != 4
7204 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
7205 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 7206 {
c19d1205
ZW
7207 inst.instruction = THUMB_OP16 (inst.instruction);
7208 inst.instruction |= inst.operands[0].reg;
7209 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 7210 }
c19d1205 7211 else if (unified_syntax)
b99bd4ef 7212 {
c19d1205
ZW
7213 if (inst.instruction <= 0xffff)
7214 inst.instruction = THUMB_OP32 (inst.instruction);
7215 inst.instruction |= inst.operands[0].reg << 8;
7216 inst.instruction |= inst.operands[1].reg;
7217 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 7218 }
c19d1205 7219 else
b99bd4ef 7220 {
c19d1205
ZW
7221 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
7222 _("Thumb encoding does not support rotation"));
7223 constraint (1, BAD_HIREG);
b99bd4ef 7224 }
c19d1205 7225}
b99bd4ef 7226
c19d1205
ZW
7227static void
7228do_t_swi (void)
7229{
7230 inst.reloc.type = BFD_RELOC_ARM_SWI;
7231}
b99bd4ef 7232
c19d1205
ZW
7233static void
7234do_t_usat (void)
7235{
7236 inst.instruction |= inst.operands[0].reg << 8;
7237 inst.instruction |= inst.operands[1].imm;
7238 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 7239
c19d1205 7240 if (inst.operands[3].present)
b99bd4ef 7241 {
c19d1205
ZW
7242 constraint (inst.reloc.exp.X_op != O_constant,
7243 _("expression too complex"));
7244 if (inst.reloc.exp.X_add_number != 0)
7245 {
7246 if (inst.operands[3].shift_kind == SHIFT_ASR)
7247 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 7248
c19d1205
ZW
7249 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7250 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
7251 }
7252 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 7253 }
b99bd4ef
NC
7254}
7255
7256static void
c19d1205 7257do_t_usat16 (void)
b99bd4ef 7258{
c19d1205
ZW
7259 inst.instruction |= inst.operands[0].reg << 8;
7260 inst.instruction |= inst.operands[1].imm;
7261 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 7262}
c19d1205
ZW
7263\f
7264/* Overall per-instruction processing. */
7265
7266/* We need to be able to fix up arbitrary expressions in some statements.
7267 This is so that we can handle symbols that are an arbitrary distance from
7268 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
7269 which returns part of an address in a form which will be valid for
7270 a data instruction. We do this by pushing the expression into a symbol
7271 in the expr_section, and creating a fix for that. */
b99bd4ef
NC
7272
7273static void
c19d1205
ZW
7274fix_new_arm (fragS * frag,
7275 int where,
7276 short int size,
7277 expressionS * exp,
7278 int pc_rel,
7279 int reloc)
b99bd4ef 7280{
c19d1205 7281 fixS * new_fix;
b99bd4ef 7282
c19d1205 7283 switch (exp->X_op)
b99bd4ef 7284 {
c19d1205
ZW
7285 case O_constant:
7286 case O_symbol:
7287 case O_add:
7288 case O_subtract:
7289 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
7290 break;
b99bd4ef 7291
c19d1205
ZW
7292 default:
7293 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
7294 pc_rel, reloc);
7295 break;
b99bd4ef
NC
7296 }
7297
c19d1205
ZW
7298 /* Mark whether the fix is to a THUMB instruction, or an ARM
7299 instruction. */
7300 new_fix->tc_fix_data = (PTR) thumb_mode;
b99bd4ef
NC
7301}
7302
7303static void
c19d1205 7304output_inst (const char * str)
b99bd4ef 7305{
c19d1205 7306 char * to = NULL;
b99bd4ef 7307
c19d1205 7308 if (inst.error)
b99bd4ef 7309 {
c19d1205 7310 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
7311 return;
7312 }
c19d1205
ZW
7313 if (inst.size == 0)
7314 return;
b99bd4ef 7315
c19d1205
ZW
7316 to = frag_more (inst.size);
7317
7318 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 7319 {
c19d1205
ZW
7320 assert (inst.size == (2 * THUMB_SIZE));
7321 md_number_to_chars (to, inst.instruction >> 16, THUMB_SIZE);
7322 md_number_to_chars (to + THUMB_SIZE, inst.instruction, THUMB_SIZE);
b99bd4ef 7323 }
c19d1205 7324 else if (inst.size > INSN_SIZE)
b99bd4ef 7325 {
c19d1205
ZW
7326 assert (inst.size == (2 * INSN_SIZE));
7327 md_number_to_chars (to, inst.instruction, INSN_SIZE);
7328 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 7329 }
c19d1205
ZW
7330 else
7331 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 7332
c19d1205
ZW
7333 if (inst.reloc.type != BFD_RELOC_UNUSED)
7334 fix_new_arm (frag_now, to - frag_now->fr_literal,
7335 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
7336 inst.reloc.type);
b99bd4ef 7337
c19d1205
ZW
7338#ifdef OBJ_ELF
7339 dwarf2_emit_insn (inst.size);
7340#endif
7341}
b99bd4ef 7342
c19d1205
ZW
7343/* Tag values used in struct asm_opcode's tag field. */
7344enum opcode_tag
7345{
7346 OT_unconditional, /* Instruction cannot be conditionalized.
7347 The ARM condition field is still 0xE. */
7348 OT_unconditionalF, /* Instruction cannot be conditionalized
7349 and carries 0xF in its ARM condition field. */
7350 OT_csuffix, /* Instruction takes a conditional suffix. */
7351 OT_cinfix3, /* Instruction takes a conditional infix,
7352 beginning at character index 3. (In
7353 unified mode, it becomes a suffix.) */
7354 OT_csuf_or_in3, /* Instruction takes either a conditional
7355 suffix or an infix at character index 3.
7356 (In unified mode, a suffix only. */
7357 OT_odd_infix_unc, /* This is the unconditional variant of an
7358 instruction that takes a conditional infix
7359 at an unusual position. In unified mode,
7360 this variant will accept a suffix. */
7361 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
7362 are the conditional variants of instructions that
7363 take conditional infixes in unusual positions.
7364 The infix appears at character index
7365 (tag - OT_odd_infix_0). These are not accepted
7366 in unified mode. */
7367};
b99bd4ef 7368
c19d1205
ZW
7369/* Subroutine of md_assemble, responsible for looking up the primary
7370 opcode from the mnemonic the user wrote. STR points to the
7371 beginning of the mnemonic.
7372
7373 This is not simply a hash table lookup, because of conditional
7374 variants. Most instructions have conditional variants, which are
7375 expressed with a _conditional affix_ to the mnemonic. If we were
7376 to encode each conditional variant as a literal string in the opcode
7377 table, it would have approximately 20,000 entries.
7378
7379 Most mnemonics take this affix as a suffix, and in unified syntax,
7380 'most' is upgraded to 'all'. However, in the divided syntax, some
7381 instructions take the affix as an infix, notably the s-variants of
7382 the arithmetic instructions. Of those instructions, all but six
7383 have the infix appear after the third character of the mnemonic.
7384
7385 Accordingly, the algorithm for looking up primary opcodes given
7386 an identifier is:
7387
7388 1. Look up the identifier in the opcode table.
7389 If we find a match, go to step U.
7390
7391 2. Look up the last two characters of the identifier in the
7392 conditions table. If we find a match, look up the first N-2
7393 characters of the identifier in the opcode table. If we
7394 find a match, go to step CE.
7395
7396 3. Look up the fourth and fifth characters of the identifier in
7397 the conditions table. If we find a match, extract those
7398 characters from the identifier, and look up the remaining
7399 characters in the opcode table. If we find a match, go
7400 to step CM.
7401
7402 4. Fail.
7403
7404 U. Examine the tag field of the opcode structure, in case this is
7405 one of the six instructions with its conditional infix in an
7406 unusual place. If it is, the tag tells us where to find the
7407 infix; look it up in the conditions table and set inst.cond
7408 accordingly. Otherwise, this is an unconditional instruction.
7409 Again set inst.cond accordingly. Return the opcode structure.
7410
7411 CE. Examine the tag field to make sure this is an instruction that
7412 should receive a conditional suffix. If it is not, fail.
7413 Otherwise, set inst.cond from the suffix we already looked up,
7414 and return the opcode structure.
7415
7416 CM. Examine the tag field to make sure this is an instruction that
7417 should receive a conditional infix after the third character.
7418 If it is not, fail. Otherwise, undo the edits to the current
7419 line of input and proceed as for case CE. */
7420
7421static const struct asm_opcode *
7422opcode_lookup (char **str)
7423{
7424 char *end, *base;
7425 char *affix;
7426 const struct asm_opcode *opcode;
7427 const struct asm_cond *cond;
7428
7429 /* Scan up to the end of the mnemonic, which must end in white space,
7430 '.' (in unified mode only), or end of string. */
7431 for (base = end = *str; *end != '\0'; end++)
7432 if (*end == ' ' || (unified_syntax && *end == '.'))
7433 break;
b99bd4ef 7434
c19d1205
ZW
7435 if (end == base)
7436 return 0;
b99bd4ef 7437
c19d1205
ZW
7438 /* Handle a possible width suffix. */
7439 if (end[0] == '.')
b99bd4ef 7440 {
c19d1205
ZW
7441 if (end[1] == 'w' && (end[2] == ' ' || end[2] == '\0'))
7442 inst.size_req = 4;
7443 else if (end[1] == 'n' && (end[2] == ' ' || end[2] == '\0'))
7444 inst.size_req = 2;
7445 else
7446 return 0;
b99bd4ef 7447
c19d1205 7448 *str = end + 2;
b99bd4ef 7449 }
c19d1205
ZW
7450 else
7451 *str = end;
b99bd4ef 7452
c19d1205
ZW
7453 /* Look for unaffixed or special-case affixed mnemonic. */
7454 opcode = hash_find_n (arm_ops_hsh, base, end - base);
7455 if (opcode)
b99bd4ef 7456 {
c19d1205
ZW
7457 /* step U */
7458 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 7459 {
c19d1205
ZW
7460 inst.cond = COND_ALWAYS;
7461 return opcode;
b99bd4ef 7462 }
b99bd4ef 7463
c19d1205
ZW
7464 if (unified_syntax)
7465 as_warn (_("conditional infixes are deprecated in unified syntax"));
7466 affix = base + (opcode->tag - OT_odd_infix_0);
7467 cond = hash_find_n (arm_cond_hsh, affix, 2);
7468 assert (cond);
b99bd4ef 7469
c19d1205
ZW
7470 inst.cond = cond->value;
7471 return opcode;
7472 }
b99bd4ef 7473
c19d1205
ZW
7474 /* Cannot have a conditional suffix on a mnemonic of less than two
7475 characters. */
7476 if (end - base < 3)
7477 return 0;
b99bd4ef 7478
c19d1205
ZW
7479 /* Look for suffixed mnemonic. */
7480 affix = end - 2;
7481 cond = hash_find_n (arm_cond_hsh, affix, 2);
7482 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
7483 if (opcode && cond)
7484 {
7485 /* step CE */
7486 switch (opcode->tag)
7487 {
7488 case OT_cinfix3:
7489 case OT_odd_infix_unc:
7490 if (!unified_syntax)
7491 return 0;
7492 /* else fall through */
7493
7494 case OT_csuffix:
7495 case OT_csuf_or_in3:
7496 inst.cond = cond->value;
7497 return opcode;
7498
7499 case OT_unconditional:
7500 case OT_unconditionalF:
7501 /* delayed diagnostic */
7502 inst.error = BAD_COND;
7503 inst.cond = COND_ALWAYS;
7504 return opcode;
b99bd4ef 7505
c19d1205
ZW
7506 default:
7507 return 0;
7508 }
7509 }
b99bd4ef 7510
c19d1205
ZW
7511 /* Cannot have a usual-position infix on a mnemonic of less than
7512 six characters (five would be a suffix). */
7513 if (end - base < 6)
7514 return 0;
b99bd4ef 7515
c19d1205
ZW
7516 /* Look for infixed mnemonic in the usual position. */
7517 affix = base + 3;
7518 cond = hash_find_n (arm_cond_hsh, affix, 2);
7519 if (cond)
b99bd4ef 7520 {
c19d1205
ZW
7521 char save[2];
7522 memcpy (save, affix, 2);
7523 memmove (affix, affix + 2, (end - affix) - 2);
7524 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
7525 memmove (affix + 2, affix, (end - affix) - 2);
7526 memcpy (affix, save, 2);
b99bd4ef 7527 }
c19d1205 7528 if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_csuf_or_in3))
b99bd4ef 7529 {
c19d1205
ZW
7530 /* step CM */
7531 if (unified_syntax)
7532 as_warn (_("conditional infixes are deprecated in unified syntax"));
7533
7534 inst.cond = cond->value;
7535 return opcode;
b99bd4ef
NC
7536 }
7537
c19d1205 7538 return 0;
b99bd4ef
NC
7539}
7540
c19d1205
ZW
7541void
7542md_assemble (char *str)
b99bd4ef 7543{
c19d1205
ZW
7544 char *p = str;
7545 const struct asm_opcode * opcode;
b99bd4ef 7546
c19d1205
ZW
7547 /* Align the previous label if needed. */
7548 if (last_label_seen != NULL)
b99bd4ef 7549 {
c19d1205
ZW
7550 symbol_set_frag (last_label_seen, frag_now);
7551 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
7552 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
7553 }
7554
c19d1205
ZW
7555 memset (&inst, '\0', sizeof (inst));
7556 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 7557
c19d1205
ZW
7558 opcode = opcode_lookup (&p);
7559 if (!opcode)
b99bd4ef 7560 {
c19d1205
ZW
7561 /* It wasn't an instruction, but it might be a register alias of
7562 the form alias .req reg. */
7563 if (!create_register_alias (str, p))
7564 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 7565
b99bd4ef
NC
7566 return;
7567 }
7568
c19d1205 7569 if (thumb_mode)
b99bd4ef 7570 {
c19d1205
ZW
7571 /* Check that this instruction is supported for this CPU. */
7572 if (thumb_mode == 1 && (opcode->tvariant & cpu_variant) == 0)
b99bd4ef 7573 {
c19d1205 7574 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
7575 return;
7576 }
c19d1205
ZW
7577 if (inst.cond != COND_ALWAYS && !unified_syntax
7578 && opcode->tencode != do_t_branch)
b99bd4ef 7579 {
c19d1205 7580 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
7581 return;
7582 }
7583
c19d1205
ZW
7584 mapping_state (MAP_THUMB);
7585 inst.instruction = opcode->tvalue;
7586
7587 if (!parse_operands (p, opcode->operands))
7588 opcode->tencode ();
7589
7590 if (!inst.error)
b99bd4ef 7591 {
c19d1205
ZW
7592 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
7593 inst.size = (inst.instruction > 0xffff ? 4 : 2);
7594 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 7595 {
c19d1205 7596 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
7597 return;
7598 }
7599 }
c19d1205
ZW
7600 }
7601 else
7602 {
7603 /* Check that this instruction is supported for this CPU. */
7604 if ((opcode->avariant & cpu_variant) == 0)
b99bd4ef 7605 {
c19d1205
ZW
7606 as_bad (_("selected processor does not support `%s'"), str);
7607 return;
b99bd4ef 7608 }
c19d1205 7609 if (inst.size_req)
b99bd4ef 7610 {
c19d1205
ZW
7611 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
7612 return;
b99bd4ef
NC
7613 }
7614
c19d1205
ZW
7615 mapping_state (MAP_ARM);
7616 inst.instruction = opcode->avalue;
7617 if (opcode->tag == OT_unconditionalF)
7618 inst.instruction |= 0xF << 28;
7619 else
7620 inst.instruction |= inst.cond << 28;
7621 inst.size = INSN_SIZE;
7622 if (!parse_operands (p, opcode->operands))
7623 opcode->aencode ();
b99bd4ef 7624 }
c19d1205
ZW
7625 output_inst (str);
7626}
b99bd4ef 7627
c19d1205
ZW
7628/* Various frobbings of labels and their addresses. */
7629
7630void
7631arm_start_line_hook (void)
7632{
7633 last_label_seen = NULL;
b99bd4ef
NC
7634}
7635
c19d1205
ZW
7636void
7637arm_frob_label (symbolS * sym)
b99bd4ef 7638{
c19d1205 7639 last_label_seen = sym;
b99bd4ef 7640
c19d1205 7641 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 7642
c19d1205
ZW
7643#if defined OBJ_COFF || defined OBJ_ELF
7644 ARM_SET_INTERWORK (sym, support_interwork);
7645#endif
b99bd4ef 7646
c19d1205
ZW
7647 /* Note - do not allow local symbols (.Lxxx) to be labeled
7648 as Thumb functions. This is because these labels, whilst
7649 they exist inside Thumb code, are not the entry points for
7650 possible ARM->Thumb calls. Also, these labels can be used
7651 as part of a computed goto or switch statement. eg gcc
7652 can generate code that looks like this:
b99bd4ef 7653
c19d1205
ZW
7654 ldr r2, [pc, .Laaa]
7655 lsl r3, r3, #2
7656 ldr r2, [r3, r2]
7657 mov pc, r2
b99bd4ef 7658
c19d1205
ZW
7659 .Lbbb: .word .Lxxx
7660 .Lccc: .word .Lyyy
7661 ..etc...
7662 .Laaa: .word Lbbb
b99bd4ef 7663
c19d1205
ZW
7664 The first instruction loads the address of the jump table.
7665 The second instruction converts a table index into a byte offset.
7666 The third instruction gets the jump address out of the table.
7667 The fourth instruction performs the jump.
b99bd4ef 7668
c19d1205
ZW
7669 If the address stored at .Laaa is that of a symbol which has the
7670 Thumb_Func bit set, then the linker will arrange for this address
7671 to have the bottom bit set, which in turn would mean that the
7672 address computation performed by the third instruction would end
7673 up with the bottom bit set. Since the ARM is capable of unaligned
7674 word loads, the instruction would then load the incorrect address
7675 out of the jump table, and chaos would ensue. */
7676 if (label_is_thumb_function_name
7677 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
7678 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 7679 {
c19d1205
ZW
7680 /* When the address of a Thumb function is taken the bottom
7681 bit of that address should be set. This will allow
7682 interworking between Arm and Thumb functions to work
7683 correctly. */
b99bd4ef 7684
c19d1205 7685 THUMB_SET_FUNC (sym, 1);
b99bd4ef 7686
c19d1205 7687 label_is_thumb_function_name = FALSE;
b99bd4ef 7688 }
b99bd4ef
NC
7689}
7690
c19d1205
ZW
7691int
7692arm_data_in_code (void)
b99bd4ef 7693{
c19d1205 7694 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 7695 {
c19d1205
ZW
7696 *input_line_pointer = '/';
7697 input_line_pointer += 5;
7698 *input_line_pointer = 0;
7699 return 1;
b99bd4ef
NC
7700 }
7701
c19d1205 7702 return 0;
b99bd4ef
NC
7703}
7704
c19d1205
ZW
7705char *
7706arm_canonicalize_symbol_name (char * name)
b99bd4ef 7707{
c19d1205 7708 int len;
b99bd4ef 7709
c19d1205
ZW
7710 if (thumb_mode && (len = strlen (name)) > 5
7711 && streq (name + len - 5, "/data"))
7712 *(name + len - 5) = 0;
b99bd4ef 7713
c19d1205 7714 return name;
b99bd4ef 7715}
c19d1205
ZW
7716\f
7717/* Table of all register names defined by default. The user can
7718 define additional names with .req. Note that all register names
7719 should appear in both upper and lowercase variants. Some registers
7720 also have mixed-case names. */
b99bd4ef 7721
c19d1205
ZW
7722#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
7723#define REGNUM(p,n,t) REGDEF(p##n, n, t)
7724#define REGSET(p,t) \
7725 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
7726 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
7727 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
7728 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7ed4c4c5 7729
c19d1205 7730static const struct reg_entry reg_names[] =
7ed4c4c5 7731{
c19d1205
ZW
7732 /* ARM integer registers. */
7733 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 7734
c19d1205
ZW
7735 /* ATPCS synonyms. */
7736 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
7737 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
7738 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 7739
c19d1205
ZW
7740 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
7741 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
7742 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 7743
c19d1205
ZW
7744 /* Well-known aliases. */
7745 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
7746 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
7747
7748 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
7749 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
7750
7751 /* Coprocessor numbers. */
7752 REGSET(p, CP), REGSET(P, CP),
7753
7754 /* Coprocessor register numbers. The "cr" variants are for backward
7755 compatibility. */
7756 REGSET(c, CN), REGSET(C, CN),
7757 REGSET(cr, CN), REGSET(CR, CN),
7758
7759 /* FPA registers. */
7760 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
7761 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
7762
7763 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
7764 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
7765
7766 /* VFP SP registers. */
7767 REGSET(s,VFS),
7768 REGNUM(s,16,VFS), REGNUM(s,17,VFS), REGNUM(s,18,VFS), REGNUM(s,19,VFS),
7769 REGNUM(s,20,VFS), REGNUM(s,21,VFS), REGNUM(s,22,VFS), REGNUM(s,23,VFS),
7770 REGNUM(s,24,VFS), REGNUM(s,25,VFS), REGNUM(s,26,VFS), REGNUM(s,27,VFS),
7771 REGNUM(s,28,VFS), REGNUM(s,29,VFS), REGNUM(s,30,VFS), REGNUM(s,31,VFS),
7772
7773 REGSET(S,VFS),
7774 REGNUM(S,16,VFS), REGNUM(S,17,VFS), REGNUM(S,18,VFS), REGNUM(S,19,VFS),
7775 REGNUM(S,20,VFS), REGNUM(S,21,VFS), REGNUM(S,22,VFS), REGNUM(S,23,VFS),
7776 REGNUM(S,24,VFS), REGNUM(S,25,VFS), REGNUM(S,26,VFS), REGNUM(S,27,VFS),
7777 REGNUM(S,28,VFS), REGNUM(S,29,VFS), REGNUM(S,30,VFS), REGNUM(S,31,VFS),
7778
7779 /* VFP DP Registers. */
7780 REGSET(d,VFD), REGSET(D,VFS),
7781
7782 /* VFP control registers. */
7783 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
7784 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
7785
7786 /* Maverick DSP coprocessor registers. */
7787 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
7788 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
7789
7790 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
7791 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
7792 REGDEF(dspsc,0,DSPSC),
7793
7794 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
7795 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
7796 REGDEF(DSPSC,0,DSPSC),
7797
7798 /* iWMMXt data registers - p0, c0-15. */
7799 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
7800
7801 /* iWMMXt control registers - p1, c0-3. */
7802 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
7803 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
7804 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
7805 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
7806
7807 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
7808 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
7809 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
7810 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
7811 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
7812
7813 /* XScale accumulator registers. */
7814 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
7815};
7816#undef REGDEF
7817#undef REGNUM
7818#undef REGSET
7ed4c4c5 7819
c19d1205
ZW
7820/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
7821 within psr_required_here. */
7822static const struct asm_psr psrs[] =
7823{
7824 /* Backward compatibility notation. Note that "all" is no longer
7825 truly all possible PSR bits. */
7826 {"all", PSR_c | PSR_f},
7827 {"flg", PSR_f},
7828 {"ctl", PSR_c},
7829
7830 /* Individual flags. */
7831 {"f", PSR_f},
7832 {"c", PSR_c},
7833 {"x", PSR_x},
7834 {"s", PSR_s},
7835 /* Combinations of flags. */
7836 {"fs", PSR_f | PSR_s},
7837 {"fx", PSR_f | PSR_x},
7838 {"fc", PSR_f | PSR_c},
7839 {"sf", PSR_s | PSR_f},
7840 {"sx", PSR_s | PSR_x},
7841 {"sc", PSR_s | PSR_c},
7842 {"xf", PSR_x | PSR_f},
7843 {"xs", PSR_x | PSR_s},
7844 {"xc", PSR_x | PSR_c},
7845 {"cf", PSR_c | PSR_f},
7846 {"cs", PSR_c | PSR_s},
7847 {"cx", PSR_c | PSR_x},
7848 {"fsx", PSR_f | PSR_s | PSR_x},
7849 {"fsc", PSR_f | PSR_s | PSR_c},
7850 {"fxs", PSR_f | PSR_x | PSR_s},
7851 {"fxc", PSR_f | PSR_x | PSR_c},
7852 {"fcs", PSR_f | PSR_c | PSR_s},
7853 {"fcx", PSR_f | PSR_c | PSR_x},
7854 {"sfx", PSR_s | PSR_f | PSR_x},
7855 {"sfc", PSR_s | PSR_f | PSR_c},
7856 {"sxf", PSR_s | PSR_x | PSR_f},
7857 {"sxc", PSR_s | PSR_x | PSR_c},
7858 {"scf", PSR_s | PSR_c | PSR_f},
7859 {"scx", PSR_s | PSR_c | PSR_x},
7860 {"xfs", PSR_x | PSR_f | PSR_s},
7861 {"xfc", PSR_x | PSR_f | PSR_c},
7862 {"xsf", PSR_x | PSR_s | PSR_f},
7863 {"xsc", PSR_x | PSR_s | PSR_c},
7864 {"xcf", PSR_x | PSR_c | PSR_f},
7865 {"xcs", PSR_x | PSR_c | PSR_s},
7866 {"cfs", PSR_c | PSR_f | PSR_s},
7867 {"cfx", PSR_c | PSR_f | PSR_x},
7868 {"csf", PSR_c | PSR_s | PSR_f},
7869 {"csx", PSR_c | PSR_s | PSR_x},
7870 {"cxf", PSR_c | PSR_x | PSR_f},
7871 {"cxs", PSR_c | PSR_x | PSR_s},
7872 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
7873 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
7874 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
7875 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
7876 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
7877 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
7878 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
7879 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
7880 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
7881 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
7882 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
7883 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
7884 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
7885 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
7886 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
7887 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
7888 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
7889 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
7890 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
7891 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
7892 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
7893 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
7894 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
7895 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
7896};
7897
7898/* Table of all shift-in-operand names. */
7899static const struct asm_shift_name shift_names [] =
b99bd4ef 7900{
c19d1205
ZW
7901 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
7902 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
7903 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
7904 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
7905 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
7906 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
7907};
b99bd4ef 7908
c19d1205
ZW
7909/* Table of all explicit relocation names. */
7910#ifdef OBJ_ELF
7911static struct reloc_entry reloc_names[] =
7912{
7913 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
7914 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
7915 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
7916 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
7917 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
7918 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
7919 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
7920 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
7921 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
7922 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
7923 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
7924};
7925#endif
b99bd4ef 7926
c19d1205
ZW
7927/* Table of all conditional affixes. 0xF is not defined as a condition code. */
7928static const struct asm_cond conds[] =
7929{
7930 {"eq", 0x0},
7931 {"ne", 0x1},
7932 {"cs", 0x2}, {"hs", 0x2},
7933 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
7934 {"mi", 0x4},
7935 {"pl", 0x5},
7936 {"vs", 0x6},
7937 {"vc", 0x7},
7938 {"hi", 0x8},
7939 {"ls", 0x9},
7940 {"ge", 0xa},
7941 {"lt", 0xb},
7942 {"gt", 0xc},
7943 {"le", 0xd},
7944 {"al", 0xe}
7945};
bfae80f2 7946
c19d1205
ZW
7947/* Table of ARM-format instructions. */
7948
7949/* Macros for gluing together operand strings. N.B. In all cases
7950 other than OPS0, the trailing OP_stop comes from default
7951 zero-initialization of the unspecified elements of the array. */
7952#define OPS0() { OP_stop, }
7953#define OPS1(a) { OP_##a, }
7954#define OPS2(a,b) { OP_##a,OP_##b, }
7955#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
7956#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
7957#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
7958#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
7959
7960/* These macros abstract out the exact format of the mnemonic table and
7961 save some repeated characters. */
7962
7963/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
7964#define TxCE(mnem, op, top, nops, ops, ae, te) \
7965 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
7966 do_##te ? THUMB_VARIANT : 0, do_##ae, do_##te }
7967
7968/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
7969 a T_MNEM_xyz enumerator. */
7970#define TCE(mnem, aop, top, nops, ops, ae, te) \
7971 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
7972#define tCE(mnem, aop, top, nops, ops, ae, te) \
7973 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
7974
7975/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
7976 infix after the third character. */
7977#define TxC3(mnem, op, top, nops, ops, ae, te) \
7978 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
7979 do_##te ? THUMB_VARIANT : 0, do_##ae, do_##te }
7980#define TC3(mnem, aop, top, nops, ops, ae, te) \
7981 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
7982#define tC3(mnem, aop, top, nops, ops, ae, te) \
7983 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
7984
7985/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
7986 appear in the condition table. */
7987#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
7988 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
7989 0x##op, top, ARM_VARIANT, do_##te ? THUMB_VARIANT : 0, do_##ae, do_##te }
7990
7991#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
7992 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
7993 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
7994 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
7995 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
7996 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
7997 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
7998 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
7999 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
8000 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
8001 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
8002 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
8003 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
8004 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
8005 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
8006 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
8007 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
8008 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
8009 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
8010 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
8011
8012#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
8013 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
8014#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
8015 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
8016
8017/* Mnemonic that cannot be conditionalized. The ARM condition-code
8018 field is still 0xE. */
8019#define TUE(mnem, op, top, nops, ops, ae, te) \
8020 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
8021 do_##te ? THUMB_VARIANT : 0, do_##ae, do_##te }
8022
8023/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
8024 condition code field. */
8025#define TUF(mnem, op, top, nops, ops, ae, te) \
8026 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
8027 do_##te ? THUMB_VARIANT : 0, do_##ae, do_##te }
8028
8029/* ARM-only variants of all the above. */
8030#define CE(mnem, op, nops, ops, ae) TCE(mnem, op, 0, nops, ops, ae, 0)
8031#define C3(mnem, op, nops, ops, ae) TC3(mnem, op, 0, nops, ops, ae, 0)
8032#define CM(m1,m2, op, nops, ops, ae) TCM(m1,m2, op, 0, nops, ops, ae, 0)
8033#define UE(mnem, op, nops, ops, ae) TUE(mnem, op, 0, nops, ops, ae, 0)
8034#define UF(mnem, op, nops, ops, ae) TUF(mnem, op, 0, nops, ops, ae, 0)
8035#define do_0 0
8036
8037/* Thumb-only, unconditional. */
8038#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
8039
8040/* ARM-only, takes either a suffix or a position-3 infix
8041 (for an FPA corner case). */
8042#define C3E(mnem, op, nops, ops, ae) \
8043 { #mnem, OPS##nops ops, OT_csuf_or_in3, 0x##op, 0, ARM_VARIANT, 0, do_##ae, 0 }
bfae80f2 8044
c19d1205 8045static const struct asm_opcode insns[] =
bfae80f2 8046{
c19d1205
ZW
8047#define ARM_VARIANT ARM_EXT_V1 /* Core ARM Instructions. */
8048#define THUMB_VARIANT ARM_EXT_V4T
8049 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
8050 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
8051 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
8052 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
8053 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
8054 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
8055 tCE(add, 0800000, add, 3, (RR, oRR, SH), arit, t_add_sub),
8056 tC3(adds, 0900000, adds, 3, (RR, oRR, SH), arit, t_add_sub),
8057 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
8058 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
8059 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
8060 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
8061 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
8062 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
8063 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
8064 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
8065
8066 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
8067 for setting PSR flag bits. They are obsolete in V6 and do not
8068 have Thumb equivalents. */
8069 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8070 tC3(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8071 C3(tstp, 110f000, 2, (RR, SH), cmp),
8072 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8073 tC3(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8074 C3(cmpp, 150f000, 2, (RR, SH), cmp),
8075 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8076 tC3(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8077 C3(cmnp, 170f000, 2, (RR, SH), cmp),
8078
8079 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
8080 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
8081 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
8082 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
8083
8084 tCE(ldr, 4100000, ldr, 2, (RR, ADDR), ldst, t_ldst),
8085 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDR), ldst, t_ldst),
8086 tCE(str, 4000000, str, 2, (RR, ADDR), ldst, t_ldst),
8087 tC3(strb, 4400000, strb, 2, (RR, ADDR), ldst, t_ldst),
8088
8089 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8090 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8091 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8092 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8093
8094 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
8095#ifdef TE_WINCE
8096 /* XXX This is the wrong place to do this. Think multi-arch. */
8097 TCE(b, a000000, e7fe, 1, (EXPr), branch, t_branch),
8098 TCE(bl, b000000, f7fffffe, 1, (EXPr), branch, t_branch23),
8099#else
8100 TCE(b, afffffe, e7fe, 1, (EXPr), branch, t_branch),
8101 TCE(bl, bfffffe, f7fffffe, 1, (EXPr), branch, t_branch23),
8102#endif
bfae80f2 8103
c19d1205
ZW
8104 /* Pseudo ops. */
8105 TCE(adr, 28f0000, 000f, 2, (RR, EXP), adr, t_adr),
8106 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
8107 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
8108
8109 /* Thumb-compatibility pseudo ops. */
8110 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
8111 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
8112 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
8113 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
8114 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
8115 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
8116 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
8117 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
8118 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
8119 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
8120 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
8121 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
8122
8123#undef THUMB_VARIANT
8124#define THUMB_VARIANT ARM_EXT_V6
8125 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
8126
8127 /* V1 instructions with no Thumb analogue prior to V6T2. */
8128#undef THUMB_VARIANT
8129#define THUMB_VARIANT ARM_EXT_V6T2
8130 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
8131 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
8132 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
8133 TC3(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
8134 C3(teqp, 130f000, 2, (RR, SH), cmp),
8135
8136 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
8137 TC3(ldrbt, 4700000, f8300e00, 2, (RR, ADDR), ldstt, t_ldstt),
8138 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
8139 TC3(strbt, 4600000, f8200e00, 2, (RR, ADDR), ldstt, t_ldstt),
8140
8141 TC3(stmdb, 9000000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8142 TC3(stmfd, 9000000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8143
8144 TC3(ldmdb, 9100000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8145 TC3(ldmea, 9100000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8146
8147 /* V1 instructions with no Thumb analogue at all. */
8148 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
8149 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
8150
8151 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
8152 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
8153 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
8154 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
8155 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
8156 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
8157 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
8158 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
8159
8160#undef ARM_VARIANT
8161#define ARM_VARIANT ARM_EXT_V2 /* ARM 2 - multiplies. */
8162#undef THUMB_VARIANT
8163#define THUMB_VARIANT ARM_EXT_V4T
8164 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
8165 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
8166
8167#undef THUMB_VARIANT
8168#define THUMB_VARIANT ARM_EXT_V6T2
8169 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
8170 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
8171
8172 /* Generic coprocessor instructions. */
8173 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
8174 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDR), lstc, lstc),
8175 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDR), lstc, lstc),
8176 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDR), lstc, lstc),
8177 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDR), lstc, lstc),
8178 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8179 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8180
8181#undef ARM_VARIANT
8182#define ARM_VARIANT ARM_EXT_V2S /* ARM 3 - swp instructions. */
8183 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
8184 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
8185
8186#undef ARM_VARIANT
8187#define ARM_VARIANT ARM_EXT_V3 /* ARM 6 Status register instructions. */
8188 TCE(mrs, 10f0000, f3ef8000, 2, (RR, PSR), mrs, t_mrs),
8189 TCE(msr, 120f000, f3808000, 2, (PSR, RR_EXi), msr, t_msr),
8190
8191#undef ARM_VARIANT
8192#define ARM_VARIANT ARM_EXT_V3M /* ARM 7M long multiplies. */
8193 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8194 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8195 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8196 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8197 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8198 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8199 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8200 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8201
8202#undef ARM_VARIANT
8203#define ARM_VARIANT ARM_EXT_V4 /* ARM Architecture 4. */
8204#undef THUMB_VARIANT
8205#define THUMB_VARIANT ARM_EXT_V4T
8206 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDR), ldstv4, t_ldst),
8207 tC3(strh, 00000b0, strh, 2, (RR, ADDR), ldstv4, t_ldst),
8208 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
8209 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
8210 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
8211 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
8212
8213#undef ARM_VARIANT
8214#define ARM_VARIANT ARM_EXT_V4T|ARM_EXT_V5
8215 /* ARM Architecture 4T. */
8216 /* Note: bx (and blx) are required on V5, even if the processor does
8217 not support Thumb. */
8218 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
8219
8220#undef ARM_VARIANT
8221#define ARM_VARIANT ARM_EXT_V5 /* ARM Architecture 5T. */
8222#undef THUMB_VARIANT
8223#define THUMB_VARIANT ARM_EXT_V5T
8224 /* Note: blx has 2 variants; the .value coded here is for
8225 BLX(2). Only this variant has conditional execution. */
8226 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
8227 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
8228
8229#undef THUMB_VARIANT
8230#define THUMB_VARIANT ARM_EXT_V6T2
8231 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
8232 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDR), lstc, lstc),
8233 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDR), lstc, lstc),
8234 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDR), lstc, lstc),
8235 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDR), lstc, lstc),
8236 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
8237 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8238 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8239
8240#undef ARM_VARIANT
8241#define ARM_VARIANT ARM_EXT_V5ExP /* ARM Architecture 5TExP. */
8242 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8243 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8244 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8245 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8246
8247 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8248 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8249
8250 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8251 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8252 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8253 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8254
8255 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8256 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8257 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8258 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8259
8260 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8261 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8262
8263 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8264 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8265 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8266 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8267
8268#undef ARM_VARIANT
8269#define ARM_VARIANT ARM_EXT_V5E /* ARM Architecture 5TE. */
8270 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
8271 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
8272 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
8273
8274 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8275 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8276
8277#undef ARM_VARIANT
8278#define ARM_VARIANT ARM_EXT_V5J /* ARM Architecture 5TEJ. */
8279 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
8280
8281#undef ARM_VARIANT
8282#define ARM_VARIANT ARM_EXT_V6 /* ARM V6. */
8283#undef THUMB_VARIANT
8284#define THUMB_VARIANT ARM_EXT_V6
8285 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
8286 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
8287 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8288 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8289 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8290 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8291 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8292 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8293 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8294 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
8295
8296#undef THUMB_VARIANT
8297#define THUMB_VARIANT ARM_EXT_V6T2
8298 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, imm0),
8299 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
8300 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8301 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8302 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
8303 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
8304 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8305 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8306 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8307 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8308 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8309 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8310 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8311 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8312 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8313 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8314 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8315 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8316 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8317 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8318 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8319 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8320 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8321 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8322 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8323 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8324 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8325 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8326 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8327 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8328 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8329 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8330 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8331 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8332 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8333 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8334 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8335 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8336 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8337 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8338 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8339 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8340 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
8341 UF(rfeib, 9900a00, 1, (RRw), rfe),
8342 UF(rfeda, 8100a00, 1, (RRw), rfe),
8343 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
8344 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
8345 UF(rfefa, 9900a00, 1, (RRw), rfe),
8346 UF(rfeea, 8100a00, 1, (RRw), rfe),
8347 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
8348 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8349 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8350 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8351 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8352 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8353 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8354 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8355 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8356 TCE(sel, 68000b0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8357 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8358 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8359 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8360 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8361 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8362 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8363 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8364 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8365 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8366 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8367 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8368 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8369 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8370 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8371 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8372 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8373 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8374 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8375 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
8376 UF(srsib, 9cd0500, 1, (I31w), srs),
8377 UF(srsda, 84d0500, 1, (I31w), srs),
8378 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
8379 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
8380 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
8381 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
8382 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
8383 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8384 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8385 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
8386 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
8387
8388#undef ARM_VARIANT
8389#define ARM_VARIANT ARM_EXT_V6K
8390#undef THUMB_VARIANT
8391#define THUMB_VARIANT ARM_EXT_V6K
8392 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
8393 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
8394 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
8395 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
8396
8397#undef THUMB_VARIANT
8398#define THUMB_VARIANT ARM_EXT_V6T2
8399 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
8400 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
8401 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
8402 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
8403 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
8404 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
8405 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
8406
8407#undef ARM_VARIANT
8408#define ARM_VARIANT ARM_EXT_V6Z
8409 TCE(smi, 1600070, f7f08000, 1, (EXPi), smi, t_smi),
8410
8411#undef ARM_VARIANT
8412#define ARM_VARIANT ARM_EXT_V6T2
8413 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
8414 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
8415 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
8416 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
8417
8418 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
8419 TCE(movw, 3000000, f2400000, 2, (RRnpc, Iffff), mov16, t_mov16),
8420 TCE(movt, 3400000, f2c00000, 2, (RRnpc, Iffff), mov16, t_mov16),
8421 TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
8422
8423 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8424 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8425 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8426 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8427
8428 UT(cbnz, b900, 2, (RR, EXP), t_czb),
8429 UT(cbz, b100, 2, (RR, EXP), t_czb),
8430 /* ARM does not really have an IT instruction. */
8431 TUE(it, 0, bf08, 1, (COND), it, t_it),
8432 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
8433 TUE(ite, 0, bf04, 1, (COND), it, t_it),
8434 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
8435 TUE(itet, 0, bf06, 1, (COND), it, t_it),
8436 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
8437 TUE(itee, 0, bf02, 1, (COND), it, t_it),
8438 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
8439 TUE(itett, 0, bf07, 1, (COND), it, t_it),
8440 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
8441 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
8442 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
8443 TUE(itete, 0, bf05, 1, (COND), it, t_it),
8444 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
8445 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
8446
8447#undef ARM_VARIANT
8448#define ARM_VARIANT FPU_FPA_EXT_V1 /* Core FPA instruction set (V1). */
8449 CE(wfs, e200110, 1, (RR), rd),
8450 CE(rfs, e300110, 1, (RR), rd),
8451 CE(wfc, e400110, 1, (RR), rd),
8452 CE(rfc, e500110, 1, (RR), rd),
8453
8454 C3(ldfs, c100100, 2, (RF, ADDR), rd_cpaddr),
8455 C3(ldfd, c108100, 2, (RF, ADDR), rd_cpaddr),
8456 C3(ldfe, c500100, 2, (RF, ADDR), rd_cpaddr),
8457 C3(ldfp, c508100, 2, (RF, ADDR), rd_cpaddr),
8458
8459 C3(stfs, c000100, 2, (RF, ADDR), rd_cpaddr),
8460 C3(stfd, c008100, 2, (RF, ADDR), rd_cpaddr),
8461 C3(stfe, c400100, 2, (RF, ADDR), rd_cpaddr),
8462 C3(stfp, c408100, 2, (RF, ADDR), rd_cpaddr),
8463
8464 C3(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
8465 C3(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
8466 C3(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
8467 C3(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
8468 C3(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
8469 C3(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
8470 C3(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
8471 C3(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
8472 C3(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
8473 C3(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
8474 C3(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
8475 C3(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
8476
8477 C3(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
8478 C3(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
8479 C3(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
8480 C3(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
8481 C3(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
8482 C3(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
8483 C3(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
8484 C3(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
8485 C3(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
8486 C3(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
8487 C3(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
8488 C3(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
8489
8490 C3(abss, e208100, 2, (RF, RF_IF), rd_rm),
8491 C3(abssp, e208120, 2, (RF, RF_IF), rd_rm),
8492 C3(abssm, e208140, 2, (RF, RF_IF), rd_rm),
8493 C3(abssz, e208160, 2, (RF, RF_IF), rd_rm),
8494 C3(absd, e208180, 2, (RF, RF_IF), rd_rm),
8495 C3(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
8496 C3(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
8497 C3(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
8498 C3(abse, e288100, 2, (RF, RF_IF), rd_rm),
8499 C3(absep, e288120, 2, (RF, RF_IF), rd_rm),
8500 C3(absem, e288140, 2, (RF, RF_IF), rd_rm),
8501 C3(absez, e288160, 2, (RF, RF_IF), rd_rm),
8502
8503 C3(rnds, e308100, 2, (RF, RF_IF), rd_rm),
8504 C3(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
8505 C3(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
8506 C3(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
8507 C3(rndd, e308180, 2, (RF, RF_IF), rd_rm),
8508 C3(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
8509 C3(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
8510 C3(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
8511 C3(rnde, e388100, 2, (RF, RF_IF), rd_rm),
8512 C3(rndep, e388120, 2, (RF, RF_IF), rd_rm),
8513 C3(rndem, e388140, 2, (RF, RF_IF), rd_rm),
8514 C3(rndez, e388160, 2, (RF, RF_IF), rd_rm),
8515
8516 C3(sqts, e408100, 2, (RF, RF_IF), rd_rm),
8517 C3(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
8518 C3(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
8519 C3(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
8520 C3(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
8521 C3(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
8522 C3(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
8523 C3(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
8524 C3(sqte, e488100, 2, (RF, RF_IF), rd_rm),
8525 C3(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
8526 C3(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
8527 C3(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
8528
8529 C3(logs, e508100, 2, (RF, RF_IF), rd_rm),
8530 C3(logsp, e508120, 2, (RF, RF_IF), rd_rm),
8531 C3(logsm, e508140, 2, (RF, RF_IF), rd_rm),
8532 C3(logsz, e508160, 2, (RF, RF_IF), rd_rm),
8533 C3(logd, e508180, 2, (RF, RF_IF), rd_rm),
8534 C3(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
8535 C3(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
8536 C3(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
8537 C3(loge, e588100, 2, (RF, RF_IF), rd_rm),
8538 C3(logep, e588120, 2, (RF, RF_IF), rd_rm),
8539 C3(logem, e588140, 2, (RF, RF_IF), rd_rm),
8540 C3(logez, e588160, 2, (RF, RF_IF), rd_rm),
8541
8542 C3(lgns, e608100, 2, (RF, RF_IF), rd_rm),
8543 C3(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
8544 C3(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
8545 C3(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
8546 C3(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
8547 C3(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
8548 C3(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
8549 C3(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
8550 C3(lgne, e688100, 2, (RF, RF_IF), rd_rm),
8551 C3(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
8552 C3(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
8553 C3(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
8554
8555 C3(exps, e708100, 2, (RF, RF_IF), rd_rm),
8556 C3(expsp, e708120, 2, (RF, RF_IF), rd_rm),
8557 C3(expsm, e708140, 2, (RF, RF_IF), rd_rm),
8558 C3(expsz, e708160, 2, (RF, RF_IF), rd_rm),
8559 C3(expd, e708180, 2, (RF, RF_IF), rd_rm),
8560 C3(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
8561 C3(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
8562 C3(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
8563 C3(expe, e788100, 2, (RF, RF_IF), rd_rm),
8564 C3(expep, e788120, 2, (RF, RF_IF), rd_rm),
8565 C3(expem, e788140, 2, (RF, RF_IF), rd_rm),
8566 C3(expdz, e788160, 2, (RF, RF_IF), rd_rm),
8567
8568 C3(sins, e808100, 2, (RF, RF_IF), rd_rm),
8569 C3(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
8570 C3(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
8571 C3(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
8572 C3(sind, e808180, 2, (RF, RF_IF), rd_rm),
8573 C3(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
8574 C3(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
8575 C3(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
8576 C3(sine, e888100, 2, (RF, RF_IF), rd_rm),
8577 C3(sinep, e888120, 2, (RF, RF_IF), rd_rm),
8578 C3(sinem, e888140, 2, (RF, RF_IF), rd_rm),
8579 C3(sinez, e888160, 2, (RF, RF_IF), rd_rm),
8580
8581 C3(coss, e908100, 2, (RF, RF_IF), rd_rm),
8582 C3(cossp, e908120, 2, (RF, RF_IF), rd_rm),
8583 C3(cossm, e908140, 2, (RF, RF_IF), rd_rm),
8584 C3(cossz, e908160, 2, (RF, RF_IF), rd_rm),
8585 C3(cosd, e908180, 2, (RF, RF_IF), rd_rm),
8586 C3(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
8587 C3(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
8588 C3(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
8589 C3(cose, e988100, 2, (RF, RF_IF), rd_rm),
8590 C3(cosep, e988120, 2, (RF, RF_IF), rd_rm),
8591 C3(cosem, e988140, 2, (RF, RF_IF), rd_rm),
8592 C3(cosez, e988160, 2, (RF, RF_IF), rd_rm),
8593
8594 C3(tans, ea08100, 2, (RF, RF_IF), rd_rm),
8595 C3(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
8596 C3(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
8597 C3(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
8598 C3(tand, ea08180, 2, (RF, RF_IF), rd_rm),
8599 C3(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
8600 C3(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
8601 C3(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
8602 C3(tane, ea88100, 2, (RF, RF_IF), rd_rm),
8603 C3(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
8604 C3(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
8605 C3(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
8606
8607 C3(asns, eb08100, 2, (RF, RF_IF), rd_rm),
8608 C3(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
8609 C3(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
8610 C3(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
8611 C3(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
8612 C3(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
8613 C3(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
8614 C3(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
8615 C3(asne, eb88100, 2, (RF, RF_IF), rd_rm),
8616 C3(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
8617 C3(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
8618 C3(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
8619
8620 C3(acss, ec08100, 2, (RF, RF_IF), rd_rm),
8621 C3(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
8622 C3(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
8623 C3(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
8624 C3(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
8625 C3(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
8626 C3(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
8627 C3(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
8628 C3(acse, ec88100, 2, (RF, RF_IF), rd_rm),
8629 C3(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
8630 C3(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
8631 C3(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
8632
8633 C3(atns, ed08100, 2, (RF, RF_IF), rd_rm),
8634 C3(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
8635 C3(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
8636 C3(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
8637 C3(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
8638 C3(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
8639 C3(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
8640 C3(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
8641 C3(atne, ed88100, 2, (RF, RF_IF), rd_rm),
8642 C3(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
8643 C3(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
8644 C3(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
8645
8646 C3(urds, ee08100, 2, (RF, RF_IF), rd_rm),
8647 C3(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
8648 C3(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
8649 C3(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
8650 C3(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
8651 C3(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
8652 C3(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
8653 C3(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
8654 C3(urde, ee88100, 2, (RF, RF_IF), rd_rm),
8655 C3(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
8656 C3(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
8657 C3(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
8658
8659 C3(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
8660 C3(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
8661 C3(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
8662 C3(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
8663 C3(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
8664 C3(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
8665 C3(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
8666 C3(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
8667 C3(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
8668 C3(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
8669 C3(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
8670 C3(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
8671
8672 C3(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
8673 C3(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
8674 C3(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
8675 C3(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
8676 C3(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
8677 C3(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8678 C3(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8679 C3(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8680 C3(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
8681 C3(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
8682 C3(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
8683 C3(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
8684
8685 C3(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
8686 C3(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
8687 C3(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
8688 C3(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
8689 C3(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
8690 C3(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8691 C3(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8692 C3(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8693 C3(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
8694 C3(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
8695 C3(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
8696 C3(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
8697
8698 C3(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
8699 C3(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
8700 C3(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
8701 C3(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
8702 C3(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
8703 C3(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8704 C3(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8705 C3(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8706 C3(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
8707 C3(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
8708 C3(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
8709 C3(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
8710
8711 C3(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
8712 C3(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
8713 C3(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
8714 C3(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
8715 C3(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
8716 C3(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8717 C3(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8718 C3(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8719 C3(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
8720 C3(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
8721 C3(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
8722 C3(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
8723
8724 C3(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
8725 C3(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
8726 C3(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
8727 C3(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
8728 C3(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
8729 C3(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8730 C3(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8731 C3(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8732 C3(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
8733 C3(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
8734 C3(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
8735 C3(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
8736
8737 C3(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
8738 C3(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
8739 C3(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
8740 C3(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
8741 C3(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
8742 C3(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8743 C3(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8744 C3(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8745 C3(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
8746 C3(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
8747 C3(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
8748 C3(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
8749
8750 C3(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
8751 C3(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
8752 C3(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
8753 C3(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
8754 C3(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
8755 C3(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8756 C3(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8757 C3(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8758 C3(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
8759 C3(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
8760 C3(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
8761 C3(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
8762
8763 C3(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
8764 C3(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
8765 C3(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
8766 C3(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
8767 C3(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
8768 C3(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8769 C3(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8770 C3(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8771 C3(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
8772 C3(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
8773 C3(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
8774 C3(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
8775
8776 C3(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
8777 C3(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
8778 C3(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
8779 C3(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
8780 C3(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
8781 C3(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8782 C3(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8783 C3(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8784 C3(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
8785 C3(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
8786 C3(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
8787 C3(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
8788
8789 C3(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
8790 C3(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
8791 C3(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
8792 C3(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
8793 C3(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
8794 C3(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8795 C3(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8796 C3(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8797 C3(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
8798 C3(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
8799 C3(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
8800 C3(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
8801
8802 C3(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
8803 C3(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
8804 C3(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
8805 C3(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
8806 C3(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
8807 C3(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8808 C3(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8809 C3(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8810 C3(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
8811 C3(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
8812 C3(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
8813 C3(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8814
8815 C3(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
8816 C3(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
8817 C3(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
8818 C3(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
8819 C3(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
8820 C3(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8821 C3(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8822 C3(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8823 C3(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
8824 C3(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
8825 C3(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
8826 C3(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8827
8828 C3(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
8829 C3(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
8830 C3(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
8831 C3(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
8832 C3(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
8833 C3(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
8834 C3(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
8835 C3(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
8836 C3(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
8837 C3(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
8838 C3(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
8839 C3(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8840
8841 CE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
8842 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8843 CE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
8844 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
8845
8846 C3(flts, e000110, 2, (RF, RR), rn_rd),
8847 C3(fltsp, e000130, 2, (RF, RR), rn_rd),
8848 C3(fltsm, e000150, 2, (RF, RR), rn_rd),
8849 C3(fltsz, e000170, 2, (RF, RR), rn_rd),
8850 C3(fltd, e000190, 2, (RF, RR), rn_rd),
8851 C3(fltdp, e0001b0, 2, (RF, RR), rn_rd),
8852 C3(fltdm, e0001d0, 2, (RF, RR), rn_rd),
8853 C3(fltdz, e0001f0, 2, (RF, RR), rn_rd),
8854 C3(flte, e080110, 2, (RF, RR), rn_rd),
8855 C3(fltep, e080130, 2, (RF, RR), rn_rd),
8856 C3(fltem, e080150, 2, (RF, RR), rn_rd),
8857 C3(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 8858
c19d1205
ZW
8859 /* The implementation of the FIX instruction is broken on some
8860 assemblers, in that it accepts a precision specifier as well as a
8861 rounding specifier, despite the fact that this is meaningless.
8862 To be more compatible, we accept it as well, though of course it
8863 does not set any bits. */
8864 CE(fix, e100110, 2, (RR, RF), rd_rm),
8865 C3(fixp, e100130, 2, (RR, RF), rd_rm),
8866 C3(fixm, e100150, 2, (RR, RF), rd_rm),
8867 C3(fixz, e100170, 2, (RR, RF), rd_rm),
8868 C3(fixsp, e100130, 2, (RR, RF), rd_rm),
8869 C3(fixsm, e100150, 2, (RR, RF), rd_rm),
8870 C3(fixsz, e100170, 2, (RR, RF), rd_rm),
8871 C3(fixdp, e100130, 2, (RR, RF), rd_rm),
8872 C3(fixdm, e100150, 2, (RR, RF), rd_rm),
8873 C3(fixdz, e100170, 2, (RR, RF), rd_rm),
8874 C3(fixep, e100130, 2, (RR, RF), rd_rm),
8875 C3(fixem, e100150, 2, (RR, RF), rd_rm),
8876 C3(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 8877
c19d1205
ZW
8878 /* Instructions that were new with the real FPA, call them V2. */
8879#undef ARM_VARIANT
8880#define ARM_VARIANT FPU_FPA_EXT_V2
8881 CE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8882 C3(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8883 C3(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8884 CE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8885 C3(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8886 C3(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8887
8888#undef ARM_VARIANT
8889#define ARM_VARIANT FPU_VFP_EXT_V1xD /* VFP V1xD (single precision). */
8890 /* Moves and type conversions. */
8891 CE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
8892 CE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
8893 CE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
8894 CE(fmstat, ef1fa10, 0, (), noargs),
8895 CE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
8896 CE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
8897 CE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
8898 CE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
8899 CE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
8900 CE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
8901 CE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
8902 CE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
8903
8904 /* Memory operations. */
8905 CE(flds, d100a00, 2, (RVS, ADDR), vfp_sp_ldst),
8906 CE(fsts, d000a00, 2, (RVS, ADDR), vfp_sp_ldst),
8907 CE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
8908 CE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
8909 CE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
8910 CE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
8911 CE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
8912 CE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
8913 CE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
8914 CE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
8915 CE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
8916 CE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
8917 CE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
8918 CE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
8919 CE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
8920 CE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
8921 CE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
8922 CE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 8923
c19d1205
ZW
8924 /* Monadic operations. */
8925 CE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
8926 CE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
8927 CE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
8928
8929 /* Dyadic operations. */
8930 CE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8931 CE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8932 CE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8933 CE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8934 CE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8935 CE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8936 CE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8937 CE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
8938 CE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 8939
c19d1205
ZW
8940 /* Comparisons. */
8941 CE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
8942 CE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
8943 CE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
8944 CE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 8945
c19d1205
ZW
8946#undef ARM_VARIANT
8947#define ARM_VARIANT FPU_VFP_EXT_V1 /* VFP V1 (Double precision). */
8948 /* Moves and type conversions. */
8949 CE(fcpyd, eb00b40, 2, (RVD, RVD), rd_rm),
8950 CE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
8951 CE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
8952 CE(fmdhr, e200b10, 2, (RVD, RR), rn_rd),
8953 CE(fmdlr, e000b10, 2, (RVD, RR), rn_rd),
8954 CE(fmrdh, e300b10, 2, (RR, RVD), rd_rn),
8955 CE(fmrdl, e100b10, 2, (RR, RVD), rd_rn),
8956 CE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
8957 CE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
8958 CE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
8959 CE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
8960 CE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
8961 CE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
8962
8963 /* Memory operations. */
8964 CE(fldd, d100b00, 2, (RVD, ADDR), vfp_dp_ldst),
8965 CE(fstd, d000b00, 2, (RVD, ADDR), vfp_dp_ldst),
8966 CE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
8967 CE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
8968 CE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
8969 CE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
8970 CE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
8971 CE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
8972 CE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
8973 CE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 8974
c19d1205
ZW
8975 /* Monadic operations. */
8976 CE(fabsd, eb00bc0, 2, (RVD, RVD), rd_rm),
8977 CE(fnegd, eb10b40, 2, (RVD, RVD), rd_rm),
8978 CE(fsqrtd, eb10bc0, 2, (RVD, RVD), rd_rm),
8979
8980 /* Dyadic operations. */
8981 CE(faddd, e300b00, 3, (RVD, RVD, RVD), rd_rn_rm),
8982 CE(fsubd, e300b40, 3, (RVD, RVD, RVD), rd_rn_rm),
8983 CE(fmuld, e200b00, 3, (RVD, RVD, RVD), rd_rn_rm),
8984 CE(fdivd, e800b00, 3, (RVD, RVD, RVD), rd_rn_rm),
8985 CE(fmacd, e000b00, 3, (RVD, RVD, RVD), rd_rn_rm),
8986 CE(fmscd, e100b00, 3, (RVD, RVD, RVD), rd_rn_rm),
8987 CE(fnmuld, e200b40, 3, (RVD, RVD, RVD), rd_rn_rm),
8988 CE(fnmacd, e000b40, 3, (RVD, RVD, RVD), rd_rn_rm),
8989 CE(fnmscd, e100b40, 3, (RVD, RVD, RVD), rd_rn_rm),
b99bd4ef 8990
c19d1205
ZW
8991 /* Comparisons. */
8992 CE(fcmpd, eb40b40, 2, (RVD, RVD), rd_rm),
8993 CE(fcmpzd, eb50b40, 1, (RVD), rd),
8994 CE(fcmped, eb40bc0, 2, (RVD, RVD), rd_rm),
8995 CE(fcmpezd, eb50bc0, 1, (RVD), rd),
8996
8997#undef ARM_VARIANT
8998#define ARM_VARIANT FPU_VFP_EXT_V2
8999 CE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
9000 CE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
9001 CE(fmdrr, c400b10, 3, (RVD, RR, RR), rm_rd_rn),
9002 CE(fmrrd, c500b10, 3, (RR, RR, RVD), rd_rn_rm),
9003
9004#undef ARM_VARIANT
9005#define ARM_VARIANT ARM_CEXT_XSCALE /* Intel XScale extensions. */
9006 CE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9007 CE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9008 CE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9009 CE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9010 CE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9011 CE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9012 CE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
9013 CE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
9014
9015#undef ARM_VARIANT
9016#define ARM_VARIANT ARM_CEXT_IWMMXT /* Intel Wireless MMX technology. */
9017 CE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
9018 CE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
9019 CE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
9020 CE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
9021 CE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
9022 CE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
9023 CE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
9024 CE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
9025 CE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
9026 CE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9027 CE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9028 CE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9029 CE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9030 CE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9031 CE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9032 CE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9033 CE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9034 CE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9035 CE(tmcr, e000110, 2, (RIWC, RR), rn_rd),
9036 CE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
9037 CE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9038 CE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9039 CE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9040 CE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9041 CE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9042 CE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9043 CE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
9044 CE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
9045 CE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
9046 CE(tmrc, e100110, 2, (RR, RIWC), rd_rn),
9047 CE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
9048 CE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
9049 CE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
9050 CE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
9051 CE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
9052 CE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
9053 CE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
9054 CE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9055 CE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9056 CE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9057 CE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9058 CE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9059 CE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9060 CE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9061 CE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9062 CE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9063 CE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
9064 CE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9065 CE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9066 CE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9067 CE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9068 CE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9069 CE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9070 CE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9071 CE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9072 CE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9073 CE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9074 CE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9075 CE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9076 CE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9077 CE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9078 CE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9079 CE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9080 CE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9081 CE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9082 CE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9083 CE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9084 CE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9085 CE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
9086 CE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
9087 CE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9088 CE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9089 CE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9090 CE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9091 CE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9092 CE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9093 CE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9094 CE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9095 CE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9096 CE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9097 CE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9098 CE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9099 CE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9100 CE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9101 CE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9102 CE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9103 CE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9104 CE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9105 CE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
9106 CE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9107 CE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9108 CE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9109 CE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9110 CE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9111 CE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9112 CE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9113 CE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9114 CE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9115 CE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9116 CE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9117 CE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9118 CE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9119 CE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9120 CE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9121 CE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9122 CE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9123 CE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9124 CE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9125 CE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9126 CE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9127 CE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
9128 CE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9129 CE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9130 CE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9131 CE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9132 CE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9133 CE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9134 CE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9135 CE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9136 CE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9137 CE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9138 CE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9139 CE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9140 CE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9141 CE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9142 CE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9143 CE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9144 CE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9145 CE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9146 CE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9147 CE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9148 CE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
9149 CE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
9150 CE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9151 CE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9152 CE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9153 CE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9154 CE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9155 CE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9156 CE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9157 CE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9158 CE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9159 CE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
9160 CE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
9161 CE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
9162 CE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
9163 CE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
9164 CE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
9165 CE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9166 CE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9167 CE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9168 CE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
9169 CE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
9170 CE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
9171 CE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
9172 CE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
9173 CE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
9174 CE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9175 CE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9176 CE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9177 CE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9178 CE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
9179
9180#undef ARM_VARIANT
9181#define ARM_VARIANT ARM_CEXT_MAVERICK /* Cirrus Maverick instructions. */
9182 CE(cfldrs, c100400, 2, (RMF, ADDR), rd_cpaddr),
9183 CE(cfldrd, c500400, 2, (RMD, ADDR), rd_cpaddr),
9184 CE(cfldr32, c100500, 2, (RMFX, ADDR), rd_cpaddr),
9185 CE(cfldr64, c500500, 2, (RMDX, ADDR), rd_cpaddr),
9186 CE(cfstrs, c000400, 2, (RMF, ADDR), rd_cpaddr),
9187 CE(cfstrd, c400400, 2, (RMD, ADDR), rd_cpaddr),
9188 CE(cfstr32, c000500, 2, (RMFX, ADDR), rd_cpaddr),
9189 CE(cfstr64, c400500, 2, (RMDX, ADDR), rd_cpaddr),
9190 CE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
9191 CE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
9192 CE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
9193 CE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
9194 CE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
9195 CE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
9196 CE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
9197 CE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
9198 CE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
9199 CE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
9200 CE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
9201 CE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
9202 CE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
9203 CE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
9204 CE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
9205 CE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
9206 CE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
9207 CE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
9208 CE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
9209 CE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
9210 CE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
9211 CE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
9212 CE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
9213 CE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
9214 CE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
9215 CE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
9216 CE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
9217 CE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
9218 CE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
9219 CE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
9220 CE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
9221 CE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
9222 CE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
9223 CE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
9224 CE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
9225 CE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
9226 CE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
9227 CE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
9228 CE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
9229 CE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
9230 CE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
9231 CE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
9232 CE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
9233 CE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
9234 CE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
9235 CE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
9236 CE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
9237 CE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
9238 CE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
9239 CE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
9240 CE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
9241 CE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
9242 CE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
9243 CE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
9244 CE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
9245 CE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
9246 CE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9247 CE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9248 CE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9249 CE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9250 CE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9251 CE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9252 CE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9253 CE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9254 CE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
9255 CE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
9256 CE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
9257 CE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
9258};
9259#undef ARM_VARIANT
9260#undef THUMB_VARIANT
9261#undef TCE
9262#undef TCM
9263#undef TUE
9264#undef TUF
9265#undef TCC
9266#undef CE
9267#undef CM
9268#undef UE
9269#undef UF
9270#undef UT
9271#undef OPS0
9272#undef OPS1
9273#undef OPS2
9274#undef OPS3
9275#undef OPS4
9276#undef OPS5
9277#undef OPS6
9278#undef do_0
9279\f
9280/* MD interface: bits in the object file. */
bfae80f2 9281
c19d1205
ZW
9282/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
9283 for use in the a.out file, and stores them in the array pointed to by buf.
9284 This knows about the endian-ness of the target machine and does
9285 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
9286 2 (short) and 4 (long) Floating numbers are put out as a series of
9287 LITTLENUMS (shorts, here at least). */
b99bd4ef 9288
c19d1205
ZW
9289void
9290md_number_to_chars (char * buf, valueT val, int n)
9291{
9292 if (target_big_endian)
9293 number_to_chars_bigendian (buf, val, n);
9294 else
9295 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
9296}
9297
c19d1205
ZW
9298static valueT
9299md_chars_to_number (char * buf, int n)
bfae80f2 9300{
c19d1205
ZW
9301 valueT result = 0;
9302 unsigned char * where = (unsigned char *) buf;
bfae80f2 9303
c19d1205 9304 if (target_big_endian)
b99bd4ef 9305 {
c19d1205
ZW
9306 while (n--)
9307 {
9308 result <<= 8;
9309 result |= (*where++ & 255);
9310 }
b99bd4ef 9311 }
c19d1205 9312 else
b99bd4ef 9313 {
c19d1205
ZW
9314 while (n--)
9315 {
9316 result <<= 8;
9317 result |= (where[n] & 255);
9318 }
bfae80f2 9319 }
b99bd4ef 9320
c19d1205 9321 return result;
bfae80f2 9322}
b99bd4ef 9323
c19d1205 9324/* MD interface: Sections. */
b99bd4ef 9325
c19d1205
ZW
9326int
9327md_estimate_size_before_relax (fragS * fragP ATTRIBUTE_UNUSED,
9328 segT segtype ATTRIBUTE_UNUSED)
9329{
9330 as_fatal (_("md_estimate_size_before_relax\n"));
9331 return 1;
9332}
b99bd4ef 9333
c19d1205 9334/* Round up a section size to the appropriate boundary. */
b99bd4ef 9335
c19d1205
ZW
9336valueT
9337md_section_align (segT segment ATTRIBUTE_UNUSED,
9338 valueT size)
9339{
9340#ifdef OBJ_ELF
9341 return size;
9342#else
9343 /* Round all sects to multiple of 4. */
9344 return (size + 3) & ~3;
9345#endif
bfae80f2 9346}
b99bd4ef 9347
c19d1205
ZW
9348/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
9349 of an rs_align_code fragment. */
9350
9351void
9352arm_handle_align (fragS * fragP)
bfae80f2 9353{
c19d1205
ZW
9354 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
9355 static char const thumb_noop[2] = { 0xc0, 0x46 };
9356 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
9357 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
9358
9359 int bytes, fix, noop_size;
9360 char * p;
9361 const char * noop;
bfae80f2 9362
c19d1205 9363 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
9364 return;
9365
c19d1205
ZW
9366 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
9367 p = fragP->fr_literal + fragP->fr_fix;
9368 fix = 0;
bfae80f2 9369
c19d1205
ZW
9370 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
9371 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 9372
c19d1205 9373 if (fragP->tc_frag_data)
a737bd4d 9374 {
c19d1205
ZW
9375 if (target_big_endian)
9376 noop = thumb_bigend_noop;
9377 else
9378 noop = thumb_noop;
9379 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
9380 }
9381 else
9382 {
c19d1205
ZW
9383 if (target_big_endian)
9384 noop = arm_bigend_noop;
9385 else
9386 noop = arm_noop;
9387 noop_size = sizeof (arm_noop);
7ed4c4c5 9388 }
a737bd4d 9389
c19d1205 9390 if (bytes & (noop_size - 1))
7ed4c4c5 9391 {
c19d1205
ZW
9392 fix = bytes & (noop_size - 1);
9393 memset (p, 0, fix);
9394 p += fix;
9395 bytes -= fix;
a737bd4d 9396 }
a737bd4d 9397
c19d1205 9398 while (bytes >= noop_size)
a737bd4d 9399 {
c19d1205
ZW
9400 memcpy (p, noop, noop_size);
9401 p += noop_size;
9402 bytes -= noop_size;
9403 fix += noop_size;
a737bd4d
NC
9404 }
9405
c19d1205
ZW
9406 fragP->fr_fix += fix;
9407 fragP->fr_var = noop_size;
a737bd4d
NC
9408}
9409
c19d1205
ZW
9410/* Called from md_do_align. Used to create an alignment
9411 frag in a code section. */
9412
9413void
9414arm_frag_align_code (int n, int max)
bfae80f2 9415{
c19d1205 9416 char * p;
7ed4c4c5 9417
c19d1205
ZW
9418 /* We assume that there will never be a requirement
9419 to support alignments greater than 32 bytes. */
9420 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
9421 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 9422
c19d1205
ZW
9423 p = frag_var (rs_align_code,
9424 MAX_MEM_FOR_RS_ALIGN_CODE,
9425 1,
9426 (relax_substateT) max,
9427 (symbolS *) NULL,
9428 (offsetT) n,
9429 (char *) NULL);
9430 *p = 0;
9431}
bfae80f2 9432
c19d1205 9433/* Perform target specific initialisation of a frag. */
bfae80f2 9434
c19d1205
ZW
9435void
9436arm_init_frag (fragS * fragP)
9437{
9438 /* Record whether this frag is in an ARM or a THUMB area. */
9439 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
9440}
9441
c19d1205
ZW
9442#ifdef OBJ_ELF
9443/* When we change sections we need to issue a new mapping symbol. */
9444
9445void
9446arm_elf_change_section (void)
bfae80f2 9447{
c19d1205
ZW
9448 flagword flags;
9449 segment_info_type *seginfo;
bfae80f2 9450
c19d1205
ZW
9451 /* Link an unlinked unwind index table section to the .text section. */
9452 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
9453 && elf_linked_to_section (now_seg) == NULL)
9454 elf_linked_to_section (now_seg) = text_section;
9455
9456 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
9457 return;
9458
c19d1205
ZW
9459 flags = bfd_get_section_flags (stdoutput, now_seg);
9460
9461 /* We can ignore sections that only contain debug info. */
9462 if ((flags & SEC_ALLOC) == 0)
9463 return;
bfae80f2 9464
c19d1205
ZW
9465 seginfo = seg_info (now_seg);
9466 mapstate = seginfo->tc_segment_info_data.mapstate;
9467 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
9468}
9469
c19d1205
ZW
9470int
9471arm_elf_section_type (const char * str, size_t len)
e45d0630 9472{
c19d1205
ZW
9473 if (len == 5 && strncmp (str, "exidx", 5) == 0)
9474 return SHT_ARM_EXIDX;
e45d0630 9475
c19d1205
ZW
9476 return -1;
9477}
9478\f
9479/* Code to deal with unwinding tables. */
e45d0630 9480
c19d1205 9481static void add_unwind_adjustsp (offsetT);
e45d0630 9482
c19d1205 9483/* Cenerate and deferred unwind frame offset. */
e45d0630 9484
bfae80f2 9485static void
c19d1205 9486flush_pending_unwind (void)
bfae80f2 9487{
c19d1205 9488 offsetT offset;
bfae80f2 9489
c19d1205
ZW
9490 offset = unwind.pending_offset;
9491 unwind.pending_offset = 0;
9492 if (offset != 0)
9493 add_unwind_adjustsp (offset);
bfae80f2
RE
9494}
9495
c19d1205
ZW
9496/* Add an opcode to this list for this function. Two-byte opcodes should
9497 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
9498 order. */
9499
bfae80f2 9500static void
c19d1205 9501add_unwind_opcode (valueT op, int length)
bfae80f2 9502{
c19d1205
ZW
9503 /* Add any deferred stack adjustment. */
9504 if (unwind.pending_offset)
9505 flush_pending_unwind ();
bfae80f2 9506
c19d1205 9507 unwind.sp_restored = 0;
bfae80f2 9508
c19d1205 9509 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 9510 {
c19d1205
ZW
9511 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
9512 if (unwind.opcodes)
9513 unwind.opcodes = xrealloc (unwind.opcodes,
9514 unwind.opcode_alloc);
9515 else
9516 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 9517 }
c19d1205 9518 while (length > 0)
bfae80f2 9519 {
c19d1205
ZW
9520 length--;
9521 unwind.opcodes[unwind.opcode_count] = op & 0xff;
9522 op >>= 8;
9523 unwind.opcode_count++;
bfae80f2 9524 }
bfae80f2
RE
9525}
9526
c19d1205
ZW
9527/* Add unwind opcodes to adjust the stack pointer. */
9528
bfae80f2 9529static void
c19d1205 9530add_unwind_adjustsp (offsetT offset)
bfae80f2 9531{
c19d1205 9532 valueT op;
bfae80f2 9533
c19d1205 9534 if (offset > 0x200)
bfae80f2 9535 {
c19d1205
ZW
9536 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
9537 char bytes[5];
9538 int n;
9539 valueT o;
bfae80f2 9540
c19d1205
ZW
9541 /* Long form: 0xb2, uleb128. */
9542 /* This might not fit in a word so add the individual bytes,
9543 remembering the list is built in reverse order. */
9544 o = (valueT) ((offset - 0x204) >> 2);
9545 if (o == 0)
9546 add_unwind_opcode (0, 1);
bfae80f2 9547
c19d1205
ZW
9548 /* Calculate the uleb128 encoding of the offset. */
9549 n = 0;
9550 while (o)
9551 {
9552 bytes[n] = o & 0x7f;
9553 o >>= 7;
9554 if (o)
9555 bytes[n] |= 0x80;
9556 n++;
9557 }
9558 /* Add the insn. */
9559 for (; n; n--)
9560 add_unwind_opcode (bytes[n - 1], 1);
9561 add_unwind_opcode (0xb2, 1);
9562 }
9563 else if (offset > 0x100)
bfae80f2 9564 {
c19d1205
ZW
9565 /* Two short opcodes. */
9566 add_unwind_opcode (0x3f, 1);
9567 op = (offset - 0x104) >> 2;
9568 add_unwind_opcode (op, 1);
bfae80f2 9569 }
c19d1205
ZW
9570 else if (offset > 0)
9571 {
9572 /* Short opcode. */
9573 op = (offset - 4) >> 2;
9574 add_unwind_opcode (op, 1);
9575 }
9576 else if (offset < 0)
bfae80f2 9577 {
c19d1205
ZW
9578 offset = -offset;
9579 while (offset > 0x100)
bfae80f2 9580 {
c19d1205
ZW
9581 add_unwind_opcode (0x7f, 1);
9582 offset -= 0x100;
bfae80f2 9583 }
c19d1205
ZW
9584 op = ((offset - 4) >> 2) | 0x40;
9585 add_unwind_opcode (op, 1);
bfae80f2 9586 }
bfae80f2
RE
9587}
9588
c19d1205
ZW
9589/* Finish the list of unwind opcodes for this function. */
9590static void
9591finish_unwind_opcodes (void)
bfae80f2 9592{
c19d1205 9593 valueT op;
bfae80f2 9594
c19d1205 9595 if (unwind.fp_used)
bfae80f2 9596 {
c19d1205
ZW
9597 /* Adjust sp as neccessary. */
9598 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
9599 flush_pending_unwind ();
bfae80f2 9600
c19d1205
ZW
9601 /* After restoring sp from the frame pointer. */
9602 op = 0x90 | unwind.fp_reg;
9603 add_unwind_opcode (op, 1);
9604 }
9605 else
9606 flush_pending_unwind ();
bfae80f2
RE
9607}
9608
bfae80f2 9609
c19d1205
ZW
9610/* Start an exception table entry. If idx is nonzero this is an index table
9611 entry. */
bfae80f2
RE
9612
9613static void
c19d1205 9614start_unwind_section (const segT text_seg, int idx)
bfae80f2 9615{
c19d1205
ZW
9616 const char * text_name;
9617 const char * prefix;
9618 const char * prefix_once;
9619 const char * group_name;
9620 size_t prefix_len;
9621 size_t text_len;
9622 char * sec_name;
9623 size_t sec_name_len;
9624 int type;
9625 int flags;
9626 int linkonce;
bfae80f2 9627
c19d1205 9628 if (idx)
bfae80f2 9629 {
c19d1205
ZW
9630 prefix = ELF_STRING_ARM_unwind;
9631 prefix_once = ELF_STRING_ARM_unwind_once;
9632 type = SHT_ARM_EXIDX;
bfae80f2 9633 }
c19d1205 9634 else
bfae80f2 9635 {
c19d1205
ZW
9636 prefix = ELF_STRING_ARM_unwind_info;
9637 prefix_once = ELF_STRING_ARM_unwind_info_once;
9638 type = SHT_PROGBITS;
bfae80f2
RE
9639 }
9640
c19d1205
ZW
9641 text_name = segment_name (text_seg);
9642 if (streq (text_name, ".text"))
9643 text_name = "";
9644
9645 if (strncmp (text_name, ".gnu.linkonce.t.",
9646 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 9647 {
c19d1205
ZW
9648 prefix = prefix_once;
9649 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
9650 }
9651
c19d1205
ZW
9652 prefix_len = strlen (prefix);
9653 text_len = strlen (text_name);
9654 sec_name_len = prefix_len + text_len;
9655 sec_name = xmalloc (sec_name_len + 1);
9656 memcpy (sec_name, prefix, prefix_len);
9657 memcpy (sec_name + prefix_len, text_name, text_len);
9658 sec_name[prefix_len + text_len] = '\0';
bfae80f2 9659
c19d1205
ZW
9660 flags = SHF_ALLOC;
9661 linkonce = 0;
9662 group_name = 0;
bfae80f2 9663
c19d1205
ZW
9664 /* Handle COMDAT group. */
9665 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 9666 {
c19d1205
ZW
9667 group_name = elf_group_name (text_seg);
9668 if (group_name == NULL)
9669 {
9670 as_bad ("Group section `%s' has no group signature",
9671 segment_name (text_seg));
9672 ignore_rest_of_line ();
9673 return;
9674 }
9675 flags |= SHF_GROUP;
9676 linkonce = 1;
bfae80f2
RE
9677 }
9678
c19d1205 9679 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 9680
c19d1205
ZW
9681 /* Set the setion link for index tables. */
9682 if (idx)
9683 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
9684}
9685
bfae80f2 9686
c19d1205
ZW
9687/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
9688 personality routine data. Returns zero, or the index table value for
9689 and inline entry. */
9690
9691static valueT
9692create_unwind_entry (int have_data)
bfae80f2 9693{
c19d1205
ZW
9694 int size;
9695 addressT where;
9696 char *ptr;
9697 /* The current word of data. */
9698 valueT data;
9699 /* The number of bytes left in this word. */
9700 int n;
bfae80f2 9701
c19d1205 9702 finish_unwind_opcodes ();
bfae80f2 9703
c19d1205
ZW
9704 /* Remember the current text section. */
9705 unwind.saved_seg = now_seg;
9706 unwind.saved_subseg = now_subseg;
bfae80f2 9707
c19d1205 9708 start_unwind_section (now_seg, 0);
bfae80f2 9709
c19d1205 9710 if (unwind.personality_routine == NULL)
bfae80f2 9711 {
c19d1205
ZW
9712 if (unwind.personality_index == -2)
9713 {
9714 if (have_data)
9715 as_bad (_("handerdata in cantunwind frame"));
9716 return 1; /* EXIDX_CANTUNWIND. */
9717 }
bfae80f2 9718
c19d1205
ZW
9719 /* Use a default personality routine if none is specified. */
9720 if (unwind.personality_index == -1)
9721 {
9722 if (unwind.opcode_count > 3)
9723 unwind.personality_index = 1;
9724 else
9725 unwind.personality_index = 0;
9726 }
bfae80f2 9727
c19d1205
ZW
9728 /* Space for the personality routine entry. */
9729 if (unwind.personality_index == 0)
9730 {
9731 if (unwind.opcode_count > 3)
9732 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 9733
c19d1205
ZW
9734 if (!have_data)
9735 {
9736 /* All the data is inline in the index table. */
9737 data = 0x80;
9738 n = 3;
9739 while (unwind.opcode_count > 0)
9740 {
9741 unwind.opcode_count--;
9742 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
9743 n--;
9744 }
bfae80f2 9745
c19d1205
ZW
9746 /* Pad with "finish" opcodes. */
9747 while (n--)
9748 data = (data << 8) | 0xb0;
bfae80f2 9749
c19d1205
ZW
9750 return data;
9751 }
9752 size = 0;
9753 }
9754 else
9755 /* We get two opcodes "free" in the first word. */
9756 size = unwind.opcode_count - 2;
9757 }
9758 else
9759 /* An extra byte is required for the opcode count. */
9760 size = unwind.opcode_count + 1;
bfae80f2 9761
c19d1205
ZW
9762 size = (size + 3) >> 2;
9763 if (size > 0xff)
9764 as_bad (_("too many unwind opcodes"));
bfae80f2 9765
c19d1205
ZW
9766 frag_align (2, 0, 0);
9767 record_alignment (now_seg, 2);
9768 unwind.table_entry = expr_build_dot ();
9769
9770 /* Allocate the table entry. */
9771 ptr = frag_more ((size << 2) + 4);
9772 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 9773
c19d1205 9774 switch (unwind.personality_index)
bfae80f2 9775 {
c19d1205
ZW
9776 case -1:
9777 /* ??? Should this be a PLT generating relocation? */
9778 /* Custom personality routine. */
9779 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
9780 BFD_RELOC_ARM_PREL31);
bfae80f2 9781
c19d1205
ZW
9782 where += 4;
9783 ptr += 4;
bfae80f2 9784
c19d1205
ZW
9785 /* Set the first byte to the number of additional words. */
9786 data = size - 1;
9787 n = 3;
9788 break;
bfae80f2 9789
c19d1205
ZW
9790 /* ABI defined personality routines. */
9791 case 0:
9792 /* Three opcodes bytes are packed into the first word. */
9793 data = 0x80;
9794 n = 3;
9795 break;
bfae80f2 9796
c19d1205
ZW
9797 case 1:
9798 case 2:
9799 /* The size and first two opcode bytes go in the first word. */
9800 data = ((0x80 + unwind.personality_index) << 8) | size;
9801 n = 2;
9802 break;
bfae80f2 9803
c19d1205
ZW
9804 default:
9805 /* Should never happen. */
9806 abort ();
9807 }
bfae80f2 9808
c19d1205
ZW
9809 /* Pack the opcodes into words (MSB first), reversing the list at the same
9810 time. */
9811 while (unwind.opcode_count > 0)
9812 {
9813 if (n == 0)
9814 {
9815 md_number_to_chars (ptr, data, 4);
9816 ptr += 4;
9817 n = 4;
9818 data = 0;
9819 }
9820 unwind.opcode_count--;
9821 n--;
9822 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
9823 }
9824
9825 /* Finish off the last word. */
9826 if (n < 4)
9827 {
9828 /* Pad with "finish" opcodes. */
9829 while (n--)
9830 data = (data << 8) | 0xb0;
9831
9832 md_number_to_chars (ptr, data, 4);
9833 }
9834
9835 if (!have_data)
9836 {
9837 /* Add an empty descriptor if there is no user-specified data. */
9838 ptr = frag_more (4);
9839 md_number_to_chars (ptr, 0, 4);
9840 }
9841
9842 return 0;
bfae80f2
RE
9843}
9844
c19d1205
ZW
9845/* Convert REGNAME to a DWARF-2 register number. */
9846
9847int
9848tc_arm_regname_to_dw2regnum (const char *regname)
bfae80f2 9849{
c19d1205
ZW
9850 int reg = arm_reg_parse ((char **) &regname, REG_TYPE_RN);
9851
9852 if (reg == FAIL)
9853 return -1;
9854
9855 return reg;
bfae80f2
RE
9856}
9857
c19d1205
ZW
9858/* Initialize the DWARF-2 unwind information for this procedure. */
9859
9860void
9861tc_arm_frame_initial_instructions (void)
bfae80f2 9862{
c19d1205 9863 cfi_add_CFA_def_cfa (REG_SP, 0);
bfae80f2 9864}
c19d1205 9865#endif /* OBJ_ELF */
bfae80f2 9866
bfae80f2 9867
c19d1205 9868/* MD interface: Symbol and relocation handling. */
bfae80f2 9869
c19d1205
ZW
9870/* The knowledge of the PC's pipeline offset is built into the insns
9871 themselves. */
bfae80f2 9872
c19d1205
ZW
9873long
9874md_pcrel_from (fixS * fixP)
bfae80f2 9875{
c19d1205
ZW
9876 if (fixP->fx_addsy
9877 && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section
9878 && fixP->fx_subsy == NULL)
9879 return 0;
bfae80f2 9880
c19d1205
ZW
9881 /* PC relative addressing on the Thumb is slightly odd as the bottom
9882 two bits of the PC are forced to zero for the calculation. This
9883 happens *after* application of the pipeline offset. However,
9884 Thumb adrl already adjusts for this, so we need not do it again. */
9885 switch (fixP->fx_r_type)
bfae80f2 9886 {
c19d1205
ZW
9887 case BFD_RELOC_ARM_THUMB_ADD:
9888 return (fixP->fx_where + fixP->fx_frag->fr_address) & ~3;
9889
9890 case BFD_RELOC_ARM_THUMB_OFFSET:
9891 case BFD_RELOC_ARM_T32_OFFSET_IMM:
9892 return (fixP->fx_where + fixP->fx_frag->fr_address + 4) & ~3;
9893
9894 default:
9895 break;
bfae80f2
RE
9896 }
9897
c19d1205
ZW
9898#ifdef TE_WINCE
9899 /* The pattern was adjusted to accommodate CE's off-by-one fixups,
9900 so we un-adjust here to compensate for the accommodation. */
9901 return fixP->fx_where + fixP->fx_frag->fr_address + 8;
9902#else
9903 return fixP->fx_where + fixP->fx_frag->fr_address;
9904#endif
bfae80f2
RE
9905}
9906
c19d1205
ZW
9907/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
9908 Otherwise we have no need to default values of symbols. */
9909
9910symbolS *
9911md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 9912{
c19d1205
ZW
9913#ifdef OBJ_ELF
9914 if (name[0] == '_' && name[1] == 'G'
9915 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
9916 {
9917 if (!GOT_symbol)
9918 {
9919 if (symbol_find (name))
9920 as_bad ("GOT already in the symbol table");
bfae80f2 9921
c19d1205
ZW
9922 GOT_symbol = symbol_new (name, undefined_section,
9923 (valueT) 0, & zero_address_frag);
9924 }
bfae80f2 9925
c19d1205 9926 return GOT_symbol;
bfae80f2 9927 }
c19d1205 9928#endif
bfae80f2 9929
c19d1205 9930 return 0;
bfae80f2
RE
9931}
9932
c19d1205
ZW
9933/* Subroutine of md_apply_fix3. Check to see if an immediate can be
9934 computed as two separate immediate values, added together. We
9935 already know that this value cannot be computed by just one ARM
9936 instruction. */
9937
9938static unsigned int
9939validate_immediate_twopart (unsigned int val,
9940 unsigned int * highpart)
bfae80f2 9941{
c19d1205
ZW
9942 unsigned int a;
9943 unsigned int i;
bfae80f2 9944
c19d1205
ZW
9945 for (i = 0; i < 32; i += 2)
9946 if (((a = rotate_left (val, i)) & 0xff) != 0)
9947 {
9948 if (a & 0xff00)
9949 {
9950 if (a & ~ 0xffff)
9951 continue;
9952 * highpart = (a >> 8) | ((i + 24) << 7);
9953 }
9954 else if (a & 0xff0000)
9955 {
9956 if (a & 0xff000000)
9957 continue;
9958 * highpart = (a >> 16) | ((i + 16) << 7);
9959 }
9960 else
9961 {
9962 assert (a & 0xff000000);
9963 * highpart = (a >> 24) | ((i + 8) << 7);
9964 }
bfae80f2 9965
c19d1205
ZW
9966 return (a & 0xff) | (i << 7);
9967 }
bfae80f2 9968
c19d1205 9969 return FAIL;
bfae80f2
RE
9970}
9971
c19d1205
ZW
9972static int
9973validate_offset_imm (unsigned int val, int hwse)
9974{
9975 if ((hwse && val > 255) || val > 4095)
9976 return FAIL;
9977 return val;
9978}
bfae80f2 9979
c19d1205
ZW
9980/* Subroutine of md_apply_fix3. Do those data_ops which can take a
9981 negative immediate constant by altering the instruction. A bit of
9982 a hack really.
9983 MOV <-> MVN
9984 AND <-> BIC
9985 ADC <-> SBC
9986 by inverting the second operand, and
9987 ADD <-> SUB
9988 CMP <-> CMN
9989 by negating the second operand. */
bfae80f2 9990
c19d1205
ZW
9991static int
9992negate_data_op (unsigned long * instruction,
9993 unsigned long value)
bfae80f2 9994{
c19d1205
ZW
9995 int op, new_inst;
9996 unsigned long negated, inverted;
bfae80f2 9997
c19d1205
ZW
9998 negated = encode_arm_immediate (-value);
9999 inverted = encode_arm_immediate (~value);
bfae80f2 10000
c19d1205
ZW
10001 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
10002 switch (op)
bfae80f2 10003 {
c19d1205
ZW
10004 /* First negates. */
10005 case OPCODE_SUB: /* ADD <-> SUB */
10006 new_inst = OPCODE_ADD;
10007 value = negated;
10008 break;
bfae80f2 10009
c19d1205
ZW
10010 case OPCODE_ADD:
10011 new_inst = OPCODE_SUB;
10012 value = negated;
10013 break;
bfae80f2 10014
c19d1205
ZW
10015 case OPCODE_CMP: /* CMP <-> CMN */
10016 new_inst = OPCODE_CMN;
10017 value = negated;
10018 break;
bfae80f2 10019
c19d1205
ZW
10020 case OPCODE_CMN:
10021 new_inst = OPCODE_CMP;
10022 value = negated;
10023 break;
bfae80f2 10024
c19d1205
ZW
10025 /* Now Inverted ops. */
10026 case OPCODE_MOV: /* MOV <-> MVN */
10027 new_inst = OPCODE_MVN;
10028 value = inverted;
10029 break;
bfae80f2 10030
c19d1205
ZW
10031 case OPCODE_MVN:
10032 new_inst = OPCODE_MOV;
10033 value = inverted;
10034 break;
bfae80f2 10035
c19d1205
ZW
10036 case OPCODE_AND: /* AND <-> BIC */
10037 new_inst = OPCODE_BIC;
10038 value = inverted;
10039 break;
bfae80f2 10040
c19d1205
ZW
10041 case OPCODE_BIC:
10042 new_inst = OPCODE_AND;
10043 value = inverted;
10044 break;
bfae80f2 10045
c19d1205
ZW
10046 case OPCODE_ADC: /* ADC <-> SBC */
10047 new_inst = OPCODE_SBC;
10048 value = inverted;
10049 break;
bfae80f2 10050
c19d1205
ZW
10051 case OPCODE_SBC:
10052 new_inst = OPCODE_ADC;
10053 value = inverted;
10054 break;
bfae80f2 10055
c19d1205
ZW
10056 /* We cannot do anything. */
10057 default:
10058 return FAIL;
b99bd4ef
NC
10059 }
10060
c19d1205
ZW
10061 if (value == (unsigned) FAIL)
10062 return FAIL;
10063
10064 *instruction &= OPCODE_MASK;
10065 *instruction |= new_inst << DATA_OP_SHIFT;
10066 return value;
b99bd4ef
NC
10067}
10068
c19d1205
ZW
10069void
10070md_apply_fix3 (fixS * fixP,
10071 valueT * valP,
10072 segT seg)
10073{
10074 offsetT value = * valP;
10075 offsetT newval;
10076 unsigned int newimm;
10077 unsigned long temp;
10078 int sign;
10079 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
10080 /* The double cast here prevents warnings about converting a pointer
10081 to an integer of different size. We know the value is 0, 1, or 2. */
10082 int fix_is_thumb = (int) (size_t) fixP->tc_fix_data;
b99bd4ef 10083
c19d1205 10084 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 10085
c19d1205
ZW
10086 /* Note whether this will delete the relocation. */
10087 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
10088 fixP->fx_done = 1;
b99bd4ef 10089
c19d1205
ZW
10090 /* If this symbol is in a different section then we need to leave it for
10091 the linker to deal with. Unfortunately, md_pcrel_from can't tell,
10092 so we have to undo its effects here. */
10093 if (fixP->fx_pcrel)
b99bd4ef 10094 {
c19d1205
ZW
10095 if (fixP->fx_addsy != NULL
10096 && S_IS_DEFINED (fixP->fx_addsy)
10097 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
10098 value += md_pcrel_from (fixP);
b99bd4ef
NC
10099 }
10100
c19d1205
ZW
10101 /* Remember value for emit_reloc. */
10102 fixP->fx_addnumber = value;
b99bd4ef 10103
c19d1205 10104 switch (fixP->fx_r_type)
b99bd4ef 10105 {
c19d1205
ZW
10106 case BFD_RELOC_NONE:
10107 /* This will need to go in the object file. */
10108 fixP->fx_done = 0;
10109 break;
b99bd4ef 10110
c19d1205
ZW
10111 case BFD_RELOC_ARM_IMMEDIATE:
10112 /* We claim that this fixup has been processed here,
10113 even if in fact we generate an error because we do
10114 not have a reloc for it, so tc_gen_reloc will reject it. */
10115 fixP->fx_done = 1;
b99bd4ef 10116
c19d1205
ZW
10117 if (fixP->fx_addsy
10118 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 10119 {
c19d1205
ZW
10120 as_bad_where (fixP->fx_file, fixP->fx_line,
10121 _("undefined symbol %s used as an immediate value"),
10122 S_GET_NAME (fixP->fx_addsy));
10123 break;
b99bd4ef
NC
10124 }
10125
c19d1205
ZW
10126 newimm = encode_arm_immediate (value);
10127 temp = md_chars_to_number (buf, INSN_SIZE);
10128
10129 /* If the instruction will fail, see if we can fix things up by
10130 changing the opcode. */
10131 if (newimm == (unsigned int) FAIL
10132 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 10133 {
c19d1205
ZW
10134 as_bad_where (fixP->fx_file, fixP->fx_line,
10135 _("invalid constant (%lx) after fixup"),
10136 (unsigned long) value);
10137 break;
b99bd4ef 10138 }
b99bd4ef 10139
c19d1205
ZW
10140 newimm |= (temp & 0xfffff000);
10141 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
10142 break;
b99bd4ef 10143
c19d1205
ZW
10144 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
10145 {
10146 unsigned int highpart = 0;
10147 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 10148
c19d1205
ZW
10149 newimm = encode_arm_immediate (value);
10150 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 10151
c19d1205
ZW
10152 /* If the instruction will fail, see if we can fix things up by
10153 changing the opcode. */
10154 if (newimm == (unsigned int) FAIL
10155 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
10156 {
10157 /* No ? OK - try using two ADD instructions to generate
10158 the value. */
10159 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 10160
c19d1205
ZW
10161 /* Yes - then make sure that the second instruction is
10162 also an add. */
10163 if (newimm != (unsigned int) FAIL)
10164 newinsn = temp;
10165 /* Still No ? Try using a negated value. */
10166 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
10167 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
10168 /* Otherwise - give up. */
10169 else
10170 {
10171 as_bad_where (fixP->fx_file, fixP->fx_line,
10172 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
10173 (long) value);
10174 break;
10175 }
b99bd4ef 10176
c19d1205
ZW
10177 /* Replace the first operand in the 2nd instruction (which
10178 is the PC) with the destination register. We have
10179 already added in the PC in the first instruction and we
10180 do not want to do it again. */
10181 newinsn &= ~ 0xf0000;
10182 newinsn |= ((newinsn & 0x0f000) << 4);
10183 }
b99bd4ef 10184
c19d1205
ZW
10185 newimm |= (temp & 0xfffff000);
10186 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 10187
c19d1205
ZW
10188 highpart |= (newinsn & 0xfffff000);
10189 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
10190 }
10191 break;
b99bd4ef 10192
c19d1205
ZW
10193 case BFD_RELOC_ARM_OFFSET_IMM:
10194 case BFD_RELOC_ARM_LITERAL:
10195 sign = value >= 0;
b99bd4ef 10196
c19d1205
ZW
10197 if (value < 0)
10198 value = - value;
b99bd4ef 10199
c19d1205 10200 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 10201 {
c19d1205
ZW
10202 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
10203 as_bad_where (fixP->fx_file, fixP->fx_line,
10204 _("invalid literal constant: pool needs to be closer"));
10205 else
10206 as_bad_where (fixP->fx_file, fixP->fx_line,
10207 _("bad immediate value for offset (%ld)"),
10208 (long) value);
10209 break;
f03698e6
RE
10210 }
10211
c19d1205
ZW
10212 newval = md_chars_to_number (buf, INSN_SIZE);
10213 newval &= 0xff7ff000;
10214 newval |= value | (sign ? INDEX_UP : 0);
10215 md_number_to_chars (buf, newval, INSN_SIZE);
10216 break;
b99bd4ef 10217
c19d1205
ZW
10218 case BFD_RELOC_ARM_OFFSET_IMM8:
10219 case BFD_RELOC_ARM_HWLITERAL:
10220 sign = value >= 0;
b99bd4ef 10221
c19d1205
ZW
10222 if (value < 0)
10223 value = - value;
b99bd4ef 10224
c19d1205 10225 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 10226 {
c19d1205
ZW
10227 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
10228 as_bad_where (fixP->fx_file, fixP->fx_line,
10229 _("invalid literal constant: pool needs to be closer"));
10230 else
10231 as_bad (_("bad immediate value for half-word offset (%ld)"),
10232 (long) value);
10233 break;
b99bd4ef
NC
10234 }
10235
c19d1205
ZW
10236 newval = md_chars_to_number (buf, INSN_SIZE);
10237 newval &= 0xff7ff0f0;
10238 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
10239 md_number_to_chars (buf, newval, INSN_SIZE);
10240 break;
b99bd4ef 10241
c19d1205
ZW
10242 case BFD_RELOC_ARM_T32_OFFSET_U8:
10243 if (value < 0 || value > 1020 || value % 4 != 0)
10244 as_bad_where (fixP->fx_file, fixP->fx_line,
10245 _("bad immediate value for offset (%ld)"), (long) value);
10246 value /= 4;
b99bd4ef 10247
c19d1205
ZW
10248 newval = md_chars_to_number (buf+2, THUMB_SIZE);
10249 newval &= 0xff00;
10250 newval |= value;
10251 md_number_to_chars (buf+2, newval, THUMB_SIZE);
10252 break;
b99bd4ef 10253
c19d1205
ZW
10254 case BFD_RELOC_ARM_T32_OFFSET_IMM:
10255 /* This is a complicated relocation used for all varieties of Thumb32
10256 load/store instruction with immediate offset:
10257
10258 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
10259 *4, optional writeback(W)
10260 (doubleword load/store)
10261
10262 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
10263 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
10264 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
10265 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
10266 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
10267
10268 Uppercase letters indicate bits that are already encoded at
10269 this point. Lowercase letters are our problem. For the
10270 second block of instructions, the secondary opcode nybble
10271 (bits 8..11) is present, and bit 23 is zero, even if this is
10272 a PC-relative operation. */
10273 newval = md_chars_to_number (buf, THUMB_SIZE);
10274 newval <<= 16;
10275 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 10276
c19d1205 10277 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 10278 {
c19d1205
ZW
10279 /* Doubleword load/store: 8-bit offset, scaled by 4. */
10280 if (value >= 0)
10281 newval |= (1 << 23);
10282 else
10283 value = -value;
10284 if (value % 4 != 0)
10285 {
10286 as_bad_where (fixP->fx_file, fixP->fx_line,
10287 _("offset not a multiple of 4"));
10288 break;
10289 }
10290 value /= 4;
10291 if (value >= 0xff)
10292 {
10293 as_bad_where (fixP->fx_file, fixP->fx_line,
10294 _("offset out of range"));
10295 break;
10296 }
10297 newval &= ~0xff;
b99bd4ef 10298 }
c19d1205 10299 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 10300 {
c19d1205
ZW
10301 /* PC-relative, 12-bit offset. */
10302 if (value >= 0)
10303 newval |= (1 << 23);
10304 else
10305 value = -value;
10306 if (value >= 0xfff)
10307 {
10308 as_bad_where (fixP->fx_file, fixP->fx_line,
10309 _("offset out of range"));
10310 break;
10311 }
10312 newval &= ~0xfff;
b99bd4ef 10313 }
c19d1205 10314 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 10315 {
c19d1205
ZW
10316 /* Writeback: 8-bit, +/- offset. */
10317 if (value >= 0)
10318 newval |= (1 << 9);
10319 else
10320 value = -value;
10321 if (value >= 0xff)
10322 {
10323 as_bad_where (fixP->fx_file, fixP->fx_line,
10324 _("offset out of range"));
10325 break;
10326 }
10327 newval &= ~0xff;
b99bd4ef 10328 }
c19d1205 10329 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 10330 {
c19d1205
ZW
10331 /* T-instruction: positive 8-bit offset. */
10332 if (value < 0 || value >= 0xff)
b99bd4ef 10333 {
c19d1205
ZW
10334 as_bad_where (fixP->fx_file, fixP->fx_line,
10335 _("offset out of range"));
10336 break;
b99bd4ef 10337 }
c19d1205
ZW
10338 newval &= ~0xff;
10339 newval |= value;
b99bd4ef
NC
10340 }
10341 else
b99bd4ef 10342 {
c19d1205
ZW
10343 /* Positive 12-bit or negative 8-bit offset. */
10344 int limit;
10345 if (value >= 0)
b99bd4ef 10346 {
c19d1205
ZW
10347 newval |= (1 << 23);
10348 limit = 0xfff;
10349 }
10350 else
10351 {
10352 value = -value;
10353 limit = 0xff;
10354 }
10355 if (value > limit)
10356 {
10357 as_bad_where (fixP->fx_file, fixP->fx_line,
10358 _("offset out of range"));
10359 break;
b99bd4ef 10360 }
c19d1205 10361 newval &= ~limit;
b99bd4ef 10362 }
b99bd4ef 10363
c19d1205
ZW
10364 newval |= value;
10365 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
10366 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
10367 break;
404ff6b5 10368
c19d1205
ZW
10369 case BFD_RELOC_ARM_SHIFT_IMM:
10370 newval = md_chars_to_number (buf, INSN_SIZE);
10371 if (((unsigned long) value) > 32
10372 || (value == 32
10373 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
10374 {
10375 as_bad_where (fixP->fx_file, fixP->fx_line,
10376 _("shift expression is too large"));
10377 break;
10378 }
404ff6b5 10379
c19d1205
ZW
10380 if (value == 0)
10381 /* Shifts of zero must be done as lsl. */
10382 newval &= ~0x60;
10383 else if (value == 32)
10384 value = 0;
10385 newval &= 0xfffff07f;
10386 newval |= (value & 0x1f) << 7;
10387 md_number_to_chars (buf, newval, INSN_SIZE);
10388 break;
404ff6b5 10389
c19d1205
ZW
10390 case BFD_RELOC_ARM_T32_IMMEDIATE:
10391 /* We claim that this fixup has been processed here,
10392 even if in fact we generate an error because we do
10393 not have a reloc for it, so tc_gen_reloc will reject it. */
10394 fixP->fx_done = 1;
404ff6b5 10395
c19d1205
ZW
10396 if (fixP->fx_addsy
10397 && ! S_IS_DEFINED (fixP->fx_addsy))
10398 {
10399 as_bad_where (fixP->fx_file, fixP->fx_line,
10400 _("undefined symbol %s used as an immediate value"),
10401 S_GET_NAME (fixP->fx_addsy));
10402 break;
10403 }
404ff6b5 10404
c19d1205
ZW
10405 newval = md_chars_to_number (buf, THUMB_SIZE);
10406 newval <<= 16;
10407 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 10408
c19d1205 10409 newimm = encode_thumb32_immediate (value);
cc8a6dd0 10410
c19d1205
ZW
10411 /* FUTURE: Implement analogue of negate_data_op for T32. */
10412 if (newimm == (unsigned int)FAIL)
3631a3c8 10413 {
c19d1205
ZW
10414 as_bad_where (fixP->fx_file, fixP->fx_line,
10415 _("invalid constant (%lx) after fixup"),
10416 (unsigned long) value);
10417 break;
3631a3c8
NC
10418 }
10419
c19d1205
ZW
10420 newval &= 0xfbff8f00;
10421 newval |= (newimm & 0x800) << 15;
10422 newval |= (newimm & 0x700) << 4;
10423 newval |= (newimm & 0x0ff);
cc8a6dd0 10424
c19d1205
ZW
10425 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
10426 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
10427 break;
a737bd4d 10428
c19d1205
ZW
10429 case BFD_RELOC_ARM_SMI:
10430 if (((unsigned long) value) > 0xffff)
10431 as_bad_where (fixP->fx_file, fixP->fx_line,
10432 _("invalid smi expression"));
10433 newval = md_chars_to_number (buf, INSN_SIZE) & 0xfff000f0;
10434 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
10435 md_number_to_chars (buf, newval, INSN_SIZE);
10436 break;
a737bd4d 10437
c19d1205
ZW
10438 case BFD_RELOC_ARM_SWI:
10439 if (fix_is_thumb)
10440 {
10441 if (((unsigned long) value) > 0xff)
10442 as_bad_where (fixP->fx_file, fixP->fx_line,
10443 _("invalid swi expression"));
10444 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xff00;
10445 newval |= value;
10446 md_number_to_chars (buf, newval, THUMB_SIZE);
10447 }
10448 else
10449 {
10450 if (((unsigned long) value) > 0x00ffffff)
10451 as_bad_where (fixP->fx_file, fixP->fx_line,
10452 _("invalid swi expression"));
10453 newval = md_chars_to_number (buf, INSN_SIZE) & 0xff000000;
10454 newval |= value;
10455 md_number_to_chars (buf, newval, INSN_SIZE);
10456 }
10457 break;
a737bd4d 10458
c19d1205
ZW
10459 case BFD_RELOC_ARM_MULTI:
10460 if (((unsigned long) value) > 0xffff)
10461 as_bad_where (fixP->fx_file, fixP->fx_line,
10462 _("invalid expression in load/store multiple"));
10463 newval = value | md_chars_to_number (buf, INSN_SIZE);
10464 md_number_to_chars (buf, newval, INSN_SIZE);
10465 break;
a737bd4d 10466
c19d1205
ZW
10467 case BFD_RELOC_ARM_PCREL_BRANCH:
10468 newval = md_chars_to_number (buf, INSN_SIZE);
a737bd4d 10469
c19d1205
ZW
10470 /* Sign-extend a 24-bit number. */
10471#define SEXT24(x) ((((x) & 0xffffff) ^ (~ 0x7fffff)) + 0x800000)
a737bd4d 10472
c19d1205
ZW
10473#ifdef OBJ_ELF
10474 value = fixP->fx_offset;
10475#endif
a737bd4d 10476
c19d1205
ZW
10477 /* We are going to store value (shifted right by two) in the
10478 instruction, in a 24 bit, signed field Thus we need to check
10479 that none of the top 8 bits of the shifted value (top 7 bits of
10480 the unshifted, unsigned value) are set, or that they are all set. */
10481 if ((value & ~ ((offsetT) 0x1ffffff)) != 0
10482 && ((value & ~ ((offsetT) 0x1ffffff)) != ~ ((offsetT) 0x1ffffff)))
10483 {
10484#ifdef OBJ_ELF
10485 /* Normally we would be stuck at this point, since we cannot store
10486 the absolute address that is the destination of the branch in the
10487 24 bits of the branch instruction. If however, we happen to know
10488 that the destination of the branch is in the same section as the
10489 branch instruction itself, then we can compute the relocation for
10490 ourselves and not have to bother the linker with it.
a737bd4d 10491
c19d1205
ZW
10492 FIXME: The test for OBJ_ELF is only here because I have not
10493 worked out how to do this for OBJ_COFF. */
10494 if (fixP->fx_addsy != NULL
10495 && S_IS_DEFINED (fixP->fx_addsy)
10496 && S_GET_SEGMENT (fixP->fx_addsy) == seg)
10497 {
10498 /* Get pc relative value to go into the branch. */
10499 value = * valP;
a737bd4d 10500
c19d1205
ZW
10501 /* Permit a backward branch provided that enough bits
10502 are set. Allow a forwards branch, provided that
10503 enough bits are clear. */
10504 if ( (value & ~ ((offsetT) 0x1ffffff)) == ~ ((offsetT) 0x1ffffff)
10505 || (value & ~ ((offsetT) 0x1ffffff)) == 0)
10506 fixP->fx_done = 1;
10507 }
a737bd4d 10508
c19d1205
ZW
10509 if (! fixP->fx_done)
10510#endif
10511 as_bad_where (fixP->fx_file, fixP->fx_line,
10512 _("GAS can't handle same-section branch dest >= 0x04000000"));
10513 }
a737bd4d 10514
c19d1205
ZW
10515 value >>= 2;
10516 value += SEXT24 (newval);
a737bd4d 10517
c19d1205
ZW
10518 if ( (value & ~ ((offsetT) 0xffffff)) != 0
10519 && ((value & ~ ((offsetT) 0xffffff)) != ~ ((offsetT) 0xffffff)))
10520 as_bad_where (fixP->fx_file, fixP->fx_line,
10521 _("out of range branch"));
a737bd4d 10522
c19d1205
ZW
10523 if (seg->use_rela_p && !fixP->fx_done)
10524 {
10525 /* Must unshift the value before storing it in the addend. */
10526 value <<= 2;
10527#ifdef OBJ_ELF
10528 fixP->fx_offset = value;
10529#endif
10530 fixP->fx_addnumber = value;
10531 newval = newval & 0xff000000;
10532 }
10533 else
10534 newval = (value & 0x00ffffff) | (newval & 0xff000000);
10535 md_number_to_chars (buf, newval, INSN_SIZE);
10536 break;
a737bd4d 10537
c19d1205
ZW
10538 case BFD_RELOC_ARM_PCREL_BLX:
10539 {
10540 offsetT hbit;
10541 newval = md_chars_to_number (buf, INSN_SIZE);
a737bd4d 10542
c19d1205
ZW
10543#ifdef OBJ_ELF
10544 value = fixP->fx_offset;
10545#endif
10546 hbit = (value >> 1) & 1;
10547 value = (value >> 2) & 0x00ffffff;
10548 value = (value + (newval & 0x00ffffff)) & 0x00ffffff;
a737bd4d 10549
c19d1205
ZW
10550 if (seg->use_rela_p && !fixP->fx_done)
10551 {
10552 /* Must sign-extend and unshift the value before storing
10553 it in the addend. */
10554 value = SEXT24 (value);
10555 value = (value << 2) | hbit;
10556#ifdef OBJ_ELF
10557 fixP->fx_offset = value;
10558#endif
10559 fixP->fx_addnumber = value;
10560 newval = newval & 0xfe000000;
10561 }
10562 else
10563 newval = value | (newval & 0xfe000000) | (hbit << 24);
10564 md_number_to_chars (buf, newval, INSN_SIZE);
10565 }
10566 break;
a737bd4d 10567
c19d1205
ZW
10568 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
10569 newval = md_chars_to_number (buf, THUMB_SIZE);
10570 {
10571 addressT diff = ((newval & 0x00f8) >> 2) | (newval & 0x0200) >> 3;
10572 /* This one does not have the offset encoded in the pattern. */
10573 value = value + diff - 4;
10574 /* CZB can only branch forward. */
10575 if (value & ~0x7e)
10576 as_bad_where (fixP->fx_file, fixP->fx_line,
10577 _("branch out of range"));
a737bd4d 10578
c19d1205
ZW
10579 newval &= 0xfd07;
10580 if (seg->use_rela_p && !fixP->fx_done)
10581 {
10582#ifdef OBJ_ELF
10583 fixP->fx_offset = value;
10584#endif
10585 fixP->fx_addnumber = value;
10586 }
10587 else
10588 newval |= ((value & 0x2e) << 2) | ((value & 0x40) << 3);
10589 }
10590 md_number_to_chars (buf, newval, THUMB_SIZE);
10591 break;
a737bd4d 10592
c19d1205
ZW
10593 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
10594 newval = md_chars_to_number (buf, THUMB_SIZE);
10595 {
10596 addressT diff = (newval & 0xff) << 1;
10597 if (diff & 0x100)
10598 diff |= ~0xff;
a737bd4d 10599
c19d1205
ZW
10600 value += diff;
10601 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
10602 as_bad_where (fixP->fx_file, fixP->fx_line,
10603 _("branch out of range"));
10604 if (seg->use_rela_p && !fixP->fx_done)
10605 {
10606#ifdef OBJ_ELF
10607 fixP->fx_offset = value;
10608#endif
10609 fixP->fx_addnumber = value;
10610 newval = newval & 0xff00;
10611 }
10612 else
10613 newval = (newval & 0xff00) | ((value & 0x1ff) >> 1);
10614 }
10615 md_number_to_chars (buf, newval, THUMB_SIZE);
10616 break;
a737bd4d 10617
c19d1205
ZW
10618 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
10619 newval = md_chars_to_number (buf, THUMB_SIZE);
10620 {
10621 addressT diff = (newval & 0x7ff) << 1;
10622 if (diff & 0x800)
10623 diff |= ~0x7ff;
a737bd4d 10624
c19d1205
ZW
10625 value += diff;
10626 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
10627 as_bad_where (fixP->fx_file, fixP->fx_line,
10628 _("branch out of range"));
10629 if (seg->use_rela_p && !fixP->fx_done)
10630 {
10631#ifdef OBJ_ELF
10632 fixP->fx_offset = value;
10633#endif
10634 fixP->fx_addnumber = value;
10635 newval = newval & 0xf800;
10636 }
10637 else
10638 newval = (newval & 0xf800) | ((value & 0xfff) >> 1);
10639 }
10640 md_number_to_chars (buf, newval, THUMB_SIZE);
10641 break;
a737bd4d 10642
c19d1205
ZW
10643 case BFD_RELOC_THUMB_PCREL_BRANCH20:
10644 {
10645 offsetT newval2;
10646 addressT diff, S, J1, J2, lo, hi;
a737bd4d 10647
c19d1205
ZW
10648 newval = md_chars_to_number (buf, THUMB_SIZE);
10649 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
a737bd4d 10650
c19d1205
ZW
10651 S = !(newval & 0x0400); /* flipped - 0=negative */
10652 hi = (newval & 0x003f);
10653 J1 = (newval2 & 0x2000) >> 13;
10654 J2 = (newval2 & 0x0800) >> 11;
10655 lo = (newval2 & 0x07ff);
a737bd4d 10656
c19d1205
ZW
10657 diff = ((S << 20) | (J2 << 19) | (J1 << 18) | (hi << 12) | (lo << 1));
10658 diff -= (1 << 20); /* sign extend */
10659 value += diff;
404ff6b5 10660
c19d1205
ZW
10661 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
10662 as_bad_where (fixP->fx_file, fixP->fx_line,
10663 _("conditional branch out of range"));
404ff6b5 10664
c19d1205
ZW
10665 newval = newval & 0xfbc0;
10666 newval2 = newval2 & 0xd000;
10667 if (seg->use_rela_p && !fixP->fx_done)
10668 {
10669#ifdef OBJ_ELF
10670 fixP->fx_offset = value;
10671#endif
10672 fixP->fx_addnumber = value;
10673 }
10674 else
10675 {
10676 S = (value & 0x00100000) >> 20;
10677 J2 = (value & 0x00080000) >> 19;
10678 J1 = (value & 0x00040000) >> 18;
10679 hi = (value & 0x0003f000) >> 12;
10680 lo = (value & 0x00000ffe) >> 1;
10681
10682 newval = newval | (S << 10) | hi;
10683 newval2 = newval2 | (J1 << 13) | (J2 << 11) | lo;
10684 }
6c43fab6 10685
c19d1205
ZW
10686 md_number_to_chars (buf, newval, THUMB_SIZE);
10687 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
10688 }
10689 break;
6c43fab6 10690
c19d1205
ZW
10691 case BFD_RELOC_THUMB_PCREL_BLX:
10692 case BFD_RELOC_THUMB_PCREL_BRANCH23:
10693 {
10694 offsetT newval2;
10695 addressT diff;
404ff6b5 10696
c19d1205
ZW
10697 newval = md_chars_to_number (buf, THUMB_SIZE);
10698 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
10699 diff = ((newval & 0x7ff) << 12) | ((newval2 & 0x7ff) << 1);
10700 if (diff & 0x400000)
10701 diff |= ~0x3fffff;
10702#ifdef OBJ_ELF
10703 value = fixP->fx_offset;
10704#endif
10705 value += diff;
404ff6b5 10706
c19d1205
ZW
10707 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
10708 as_bad_where (fixP->fx_file, fixP->fx_line,
10709 _("branch with link out of range"));
404ff6b5 10710
c19d1205
ZW
10711 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
10712 /* For a BLX instruction, make sure that the relocation is rounded up
10713 to a word boundary. This follows the semantics of the instruction
10714 which specifies that bit 1 of the target address will come from bit
10715 1 of the base address. */
10716 value = (value + 1) & ~ 1;
404ff6b5 10717
c19d1205
ZW
10718 if (seg->use_rela_p && !fixP->fx_done)
10719 {
10720#ifdef OBJ_ELF
10721 fixP->fx_offset = value;
10722#endif
10723 fixP->fx_addnumber = value;
10724 newval = newval & 0xf800;
10725 newval2 = newval2 & 0xf800;
10726 }
10727 else
10728 {
10729 newval = (newval & 0xf800) | ((value & 0x7fffff) >> 12);
10730 newval2 = (newval2 & 0xf800) | ((value & 0xfff) >> 1);
10731 }
10732 md_number_to_chars (buf, newval, THUMB_SIZE);
10733 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
10734 }
10735 break;
404ff6b5 10736
c19d1205
ZW
10737 case BFD_RELOC_8:
10738 if (seg->use_rela_p && !fixP->fx_done)
10739 break;
10740 if (fixP->fx_done || fixP->fx_pcrel)
10741 md_number_to_chars (buf, value, 1);
10742#ifdef OBJ_ELF
10743 else
10744 {
10745 value = fixP->fx_offset;
10746 md_number_to_chars (buf, value, 1);
10747 }
10748#endif
10749 break;
404ff6b5 10750
c19d1205
ZW
10751 case BFD_RELOC_THUMB_PCREL_BRANCH25:
10752 {
10753 offsetT newval2;
10754 addressT diff, S, I1, I2, lo, hi;
6c43fab6 10755
c19d1205
ZW
10756 newval = md_chars_to_number (buf, THUMB_SIZE);
10757 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
6c43fab6 10758
c19d1205
ZW
10759 S = (newval & 0x0400) >> 10;
10760 hi = (newval & 0x03ff);
10761 I1 = (newval2 & 0x2000) >> 13;
10762 I2 = (newval2 & 0x0800) >> 11;
10763 lo = (newval2 & 0x07ff);
6c43fab6 10764
c19d1205
ZW
10765 I1 = !(I1 ^ S);
10766 I2 = !(I2 ^ S);
10767 S = !S;
6c43fab6 10768
c19d1205
ZW
10769 diff = ((S << 24) | (I1 << 23) | (I2 << 22) | (hi << 12) | (lo << 1));
10770 diff -= (1 << 24); /* sign extend */
10771 value += diff;
6c43fab6 10772
c19d1205
ZW
10773 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
10774 as_bad_where (fixP->fx_file, fixP->fx_line,
10775 _("branch out of range"));
6c43fab6 10776
c19d1205
ZW
10777 newval = newval & 0xf800;
10778 newval2 = newval2 & 0xd000;
10779 if (seg->use_rela_p && !fixP->fx_done)
10780 {
10781#ifdef OBJ_ELF
10782 fixP->fx_offset = value;
10783#endif
10784 fixP->fx_addnumber = value;
10785 }
10786 else
10787 {
10788 S = (value & 0x01000000) >> 24;
10789 I1 = (value & 0x00800000) >> 23;
10790 I2 = (value & 0x00400000) >> 22;
10791 hi = (value & 0x003ff000) >> 12;
10792 lo = (value & 0x00000ffe) >> 1;
a737bd4d 10793
c19d1205
ZW
10794 I1 = !(I1 ^ S);
10795 I2 = !(I2 ^ S);
a737bd4d 10796
c19d1205
ZW
10797 newval = newval | (S << 10) | hi;
10798 newval2 = newval2 | (I1 << 13) | (I2 << 11) | lo;
10799 }
10800 md_number_to_chars (buf, newval, THUMB_SIZE);
10801 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
10802 }
10803 break;
a737bd4d 10804
c19d1205
ZW
10805 case BFD_RELOC_16:
10806 if (seg->use_rela_p && !fixP->fx_done)
10807 break;
10808 if (fixP->fx_done || fixP->fx_pcrel)
10809 md_number_to_chars (buf, value, 2);
10810#ifdef OBJ_ELF
10811 else
10812 {
10813 value = fixP->fx_offset;
10814 md_number_to_chars (buf, value, 2);
10815 }
10816#endif
10817 break;
a737bd4d 10818
c19d1205
ZW
10819#ifdef OBJ_ELF
10820 case BFD_RELOC_ARM_TLS_GD32:
10821 case BFD_RELOC_ARM_TLS_LE32:
10822 case BFD_RELOC_ARM_TLS_IE32:
10823 case BFD_RELOC_ARM_TLS_LDM32:
10824 case BFD_RELOC_ARM_TLS_LDO32:
10825 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10826 /* fall through */
6c43fab6 10827
c19d1205
ZW
10828 case BFD_RELOC_ARM_GOT32:
10829 case BFD_RELOC_ARM_GOTOFF:
10830 case BFD_RELOC_ARM_TARGET2:
10831 if (seg->use_rela_p && !fixP->fx_done)
10832 break;
10833 md_number_to_chars (buf, 0, 4);
10834 break;
10835#endif
6c43fab6 10836
c19d1205
ZW
10837 case BFD_RELOC_RVA:
10838 case BFD_RELOC_32:
10839 case BFD_RELOC_ARM_TARGET1:
10840 case BFD_RELOC_ARM_ROSEGREL32:
10841 case BFD_RELOC_ARM_SBREL32:
10842 case BFD_RELOC_32_PCREL:
10843 if (seg->use_rela_p && !fixP->fx_done)
10844 break;
10845 if (fixP->fx_done || fixP->fx_pcrel)
10846 md_number_to_chars (buf, value, 4);
10847#ifdef OBJ_ELF
10848 else
10849 {
10850 value = fixP->fx_offset;
10851 md_number_to_chars (buf, value, 4);
10852 }
10853#endif
10854 break;
6c43fab6 10855
c19d1205
ZW
10856#ifdef OBJ_ELF
10857 case BFD_RELOC_ARM_PREL31:
10858 if (fixP->fx_done || fixP->fx_pcrel)
10859 {
10860 newval = md_chars_to_number (buf, 4) & 0x80000000;
10861 if ((value ^ (value >> 1)) & 0x40000000)
10862 {
10863 as_bad_where (fixP->fx_file, fixP->fx_line,
10864 _("rel31 relocation overflow"));
10865 }
10866 newval |= value & 0x7fffffff;
10867 md_number_to_chars (buf, newval, 4);
10868 }
10869 break;
a737bd4d 10870
c19d1205
ZW
10871 case BFD_RELOC_ARM_PLT32:
10872 /* It appears the instruction is fully prepared at this point. */
10873 break;
10874#endif
a737bd4d 10875
c19d1205
ZW
10876 case BFD_RELOC_ARM_CP_OFF_IMM:
10877 if (value < -1023 || value > 1023 || (value & 3))
10878 as_bad_where (fixP->fx_file, fixP->fx_line,
10879 _("co-processor offset out of range"));
10880 cp_off_common:
10881 sign = value >= 0;
10882 if (value < 0)
10883 value = -value;
10884 newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00;
10885 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
10886 if (value == 0)
10887 newval &= ~WRITE_BACK;
10888 md_number_to_chars (buf, newval, INSN_SIZE);
10889 break;
a737bd4d 10890
c19d1205
ZW
10891 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
10892 if (value < -255 || value > 255)
10893 as_bad_where (fixP->fx_file, fixP->fx_line,
10894 _("co-processor offset out of range"));
10895 goto cp_off_common;
6c43fab6 10896
c19d1205
ZW
10897 case BFD_RELOC_ARM_THUMB_OFFSET:
10898 newval = md_chars_to_number (buf, THUMB_SIZE);
10899 /* Exactly what ranges, and where the offset is inserted depends
10900 on the type of instruction, we can establish this from the
10901 top 4 bits. */
10902 switch (newval >> 12)
10903 {
10904 case 4: /* PC load. */
10905 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
10906 forced to zero for these loads; md_pcrel_from has already
10907 compensated for this. */
10908 if (value & 3)
10909 as_bad_where (fixP->fx_file, fixP->fx_line,
10910 _("invalid offset, target not word aligned (0x%08lX)"),
10911 (((unsigned int) fixP->fx_frag->fr_address
10912 + (unsigned int) fixP->fx_where) & ~3) + value);
a737bd4d 10913
c19d1205
ZW
10914 if (value & ~0x3fc)
10915 as_bad_where (fixP->fx_file, fixP->fx_line,
10916 _("invalid offset, value too big (0x%08lX)"),
10917 (long) value);
a737bd4d 10918
c19d1205
ZW
10919 newval |= value >> 2;
10920 break;
a737bd4d 10921
c19d1205
ZW
10922 case 9: /* SP load/store. */
10923 if (value & ~0x3fc)
10924 as_bad_where (fixP->fx_file, fixP->fx_line,
10925 _("invalid offset, value too big (0x%08lX)"),
10926 (long) value);
10927 newval |= value >> 2;
10928 break;
6c43fab6 10929
c19d1205
ZW
10930 case 6: /* Word load/store. */
10931 if (value & ~0x7c)
10932 as_bad_where (fixP->fx_file, fixP->fx_line,
10933 _("invalid offset, value too big (0x%08lX)"),
10934 (long) value);
10935 newval |= value << 4; /* 6 - 2. */
10936 break;
a737bd4d 10937
c19d1205
ZW
10938 case 7: /* Byte load/store. */
10939 if (value & ~0x1f)
10940 as_bad_where (fixP->fx_file, fixP->fx_line,
10941 _("invalid offset, value too big (0x%08lX)"),
10942 (long) value);
10943 newval |= value << 6;
10944 break;
a737bd4d 10945
c19d1205
ZW
10946 case 8: /* Halfword load/store. */
10947 if (value & ~0x3e)
10948 as_bad_where (fixP->fx_file, fixP->fx_line,
10949 _("invalid offset, value too big (0x%08lX)"),
10950 (long) value);
10951 newval |= value << 5; /* 6 - 1. */
10952 break;
a737bd4d 10953
c19d1205
ZW
10954 default:
10955 as_bad_where (fixP->fx_file, fixP->fx_line,
10956 "Unable to process relocation for thumb opcode: %lx",
10957 (unsigned long) newval);
10958 break;
10959 }
10960 md_number_to_chars (buf, newval, THUMB_SIZE);
10961 break;
a737bd4d 10962
c19d1205
ZW
10963 case BFD_RELOC_ARM_THUMB_ADD:
10964 /* This is a complicated relocation, since we use it for all of
10965 the following immediate relocations:
a737bd4d 10966
c19d1205
ZW
10967 3bit ADD/SUB
10968 8bit ADD/SUB
10969 9bit ADD/SUB SP word-aligned
10970 10bit ADD PC/SP word-aligned
a737bd4d 10971
c19d1205
ZW
10972 The type of instruction being processed is encoded in the
10973 instruction field:
a737bd4d 10974
c19d1205
ZW
10975 0x8000 SUB
10976 0x00F0 Rd
10977 0x000F Rs
10978 */
10979 newval = md_chars_to_number (buf, THUMB_SIZE);
10980 {
10981 int rd = (newval >> 4) & 0xf;
10982 int rs = newval & 0xf;
10983 int subtract = !!(newval & 0x8000);
a737bd4d 10984
c19d1205
ZW
10985 /* Check for HI regs, only very restricted cases allowed:
10986 Adjusting SP, and using PC or SP to get an address. */
10987 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
10988 || (rs > 7 && rs != REG_SP && rs != REG_PC))
10989 as_bad_where (fixP->fx_file, fixP->fx_line,
10990 _("invalid Hi register with immediate"));
a737bd4d 10991
c19d1205
ZW
10992 /* If value is negative, choose the opposite instruction. */
10993 if (value < 0)
10994 {
10995 value = -value;
10996 subtract = !subtract;
10997 if (value < 0)
10998 as_bad_where (fixP->fx_file, fixP->fx_line,
10999 _("immediate value out of range"));
11000 }
a737bd4d 11001
c19d1205
ZW
11002 if (rd == REG_SP)
11003 {
11004 if (value & ~0x1fc)
11005 as_bad_where (fixP->fx_file, fixP->fx_line,
11006 _("invalid immediate for stack address calculation"));
11007 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
11008 newval |= value >> 2;
11009 }
11010 else if (rs == REG_PC || rs == REG_SP)
11011 {
11012 if (subtract || value & ~0x3fc)
11013 as_bad_where (fixP->fx_file, fixP->fx_line,
11014 _("invalid immediate for address calculation (value = 0x%08lX)"),
11015 (unsigned long) value);
11016 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
11017 newval |= rd << 8;
11018 newval |= value >> 2;
11019 }
11020 else if (rs == rd)
11021 {
11022 if (value & ~0xff)
11023 as_bad_where (fixP->fx_file, fixP->fx_line,
11024 _("immediate value out of range"));
11025 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
11026 newval |= (rd << 8) | value;
11027 }
11028 else
11029 {
11030 if (value & ~0x7)
11031 as_bad_where (fixP->fx_file, fixP->fx_line,
11032 _("immediate value out of range"));
11033 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
11034 newval |= rd | (rs << 3) | (value << 6);
11035 }
11036 }
11037 md_number_to_chars (buf, newval, THUMB_SIZE);
11038 break;
a737bd4d 11039
c19d1205
ZW
11040 case BFD_RELOC_ARM_THUMB_IMM:
11041 newval = md_chars_to_number (buf, THUMB_SIZE);
11042 if (value < 0 || value > 255)
11043 as_bad_where (fixP->fx_file, fixP->fx_line,
11044 _("invalid immediate: %ld is too large"),
11045 (long) value);
11046 newval |= value;
11047 md_number_to_chars (buf, newval, THUMB_SIZE);
11048 break;
a737bd4d 11049
c19d1205
ZW
11050 case BFD_RELOC_ARM_THUMB_SHIFT:
11051 /* 5bit shift value (0..32). LSL cannot take 32. */
11052 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
11053 temp = newval & 0xf800;
11054 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
11055 as_bad_where (fixP->fx_file, fixP->fx_line,
11056 _("invalid shift value: %ld"), (long) value);
11057 /* Shifts of zero must be encoded as LSL. */
11058 if (value == 0)
11059 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
11060 /* Shifts of 32 are encoded as zero. */
11061 else if (value == 32)
11062 value = 0;
11063 newval |= value << 6;
11064 md_number_to_chars (buf, newval, THUMB_SIZE);
11065 break;
a737bd4d 11066
c19d1205
ZW
11067 case BFD_RELOC_VTABLE_INHERIT:
11068 case BFD_RELOC_VTABLE_ENTRY:
11069 fixP->fx_done = 0;
11070 return;
6c43fab6 11071
c19d1205
ZW
11072 case BFD_RELOC_UNUSED:
11073 default:
11074 as_bad_where (fixP->fx_file, fixP->fx_line,
11075 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
11076 }
6c43fab6
RE
11077}
11078
c19d1205
ZW
11079/* Translate internal representation of relocation info to BFD target
11080 format. */
a737bd4d 11081
c19d1205
ZW
11082arelent *
11083tc_gen_reloc (asection * section ATTRIBUTE_UNUSED,
11084 fixS * fixp)
a737bd4d 11085{
c19d1205
ZW
11086 arelent * reloc;
11087 bfd_reloc_code_real_type code;
a737bd4d 11088
c19d1205 11089 reloc = xmalloc (sizeof (arelent));
a737bd4d 11090
c19d1205
ZW
11091 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
11092 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11093 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 11094
c19d1205
ZW
11095 /* @@ Why fx_addnumber sometimes and fx_offset other times? */
11096#ifndef OBJ_ELF
11097 if (fixp->fx_pcrel == 0)
11098 reloc->addend = fixp->fx_offset;
11099 else
11100 reloc->addend = fixp->fx_offset = reloc->address;
11101#else /* OBJ_ELF */
11102 reloc->addend = fixp->fx_offset;
11103#endif
a737bd4d 11104
c19d1205 11105 switch (fixp->fx_r_type)
a737bd4d 11106 {
c19d1205
ZW
11107 case BFD_RELOC_8:
11108 if (fixp->fx_pcrel)
11109 {
11110 code = BFD_RELOC_8_PCREL;
11111 break;
11112 }
a737bd4d 11113
c19d1205
ZW
11114 case BFD_RELOC_16:
11115 if (fixp->fx_pcrel)
11116 {
11117 code = BFD_RELOC_16_PCREL;
11118 break;
11119 }
6c43fab6 11120
c19d1205
ZW
11121 case BFD_RELOC_32:
11122 if (fixp->fx_pcrel)
11123 {
11124 code = BFD_RELOC_32_PCREL;
11125 break;
11126 }
a737bd4d 11127
c19d1205
ZW
11128 case BFD_RELOC_NONE:
11129 case BFD_RELOC_ARM_PCREL_BRANCH:
11130 case BFD_RELOC_ARM_PCREL_BLX:
11131 case BFD_RELOC_RVA:
11132 case BFD_RELOC_THUMB_PCREL_BRANCH7:
11133 case BFD_RELOC_THUMB_PCREL_BRANCH9:
11134 case BFD_RELOC_THUMB_PCREL_BRANCH12:
11135 case BFD_RELOC_THUMB_PCREL_BRANCH20:
11136 case BFD_RELOC_THUMB_PCREL_BRANCH23:
11137 case BFD_RELOC_THUMB_PCREL_BRANCH25:
11138 case BFD_RELOC_THUMB_PCREL_BLX:
11139 case BFD_RELOC_VTABLE_ENTRY:
11140 case BFD_RELOC_VTABLE_INHERIT:
11141 code = fixp->fx_r_type;
11142 break;
a737bd4d 11143
c19d1205
ZW
11144 case BFD_RELOC_ARM_LITERAL:
11145 case BFD_RELOC_ARM_HWLITERAL:
11146 /* If this is called then the a literal has
11147 been referenced across a section boundary. */
11148 as_bad_where (fixp->fx_file, fixp->fx_line,
11149 _("literal referenced across section boundary"));
11150 return NULL;
a737bd4d 11151
c19d1205
ZW
11152#ifdef OBJ_ELF
11153 case BFD_RELOC_ARM_GOT32:
11154 case BFD_RELOC_ARM_GOTOFF:
11155 case BFD_RELOC_ARM_PLT32:
11156 case BFD_RELOC_ARM_TARGET1:
11157 case BFD_RELOC_ARM_ROSEGREL32:
11158 case BFD_RELOC_ARM_SBREL32:
11159 case BFD_RELOC_ARM_PREL31:
11160 case BFD_RELOC_ARM_TARGET2:
11161 case BFD_RELOC_ARM_TLS_LE32:
11162 case BFD_RELOC_ARM_TLS_LDO32:
11163 code = fixp->fx_r_type;
11164 break;
a737bd4d 11165
c19d1205
ZW
11166 case BFD_RELOC_ARM_TLS_GD32:
11167 case BFD_RELOC_ARM_TLS_IE32:
11168 case BFD_RELOC_ARM_TLS_LDM32:
11169 /* BFD will include the symbol's address in the addend.
11170 But we don't want that, so subtract it out again here. */
11171 if (!S_IS_COMMON (fixp->fx_addsy))
11172 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
11173 code = fixp->fx_r_type;
11174 break;
11175#endif
a737bd4d 11176
c19d1205
ZW
11177 case BFD_RELOC_ARM_IMMEDIATE:
11178 as_bad_where (fixp->fx_file, fixp->fx_line,
11179 _("internal relocation (type: IMMEDIATE) not fixed up"));
11180 return NULL;
a737bd4d 11181
c19d1205
ZW
11182 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
11183 as_bad_where (fixp->fx_file, fixp->fx_line,
11184 _("ADRL used for a symbol not defined in the same file"));
11185 return NULL;
a737bd4d 11186
c19d1205
ZW
11187 case BFD_RELOC_ARM_OFFSET_IMM:
11188 if (fixp->fx_addsy != NULL
11189 && !S_IS_DEFINED (fixp->fx_addsy)
11190 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 11191 {
c19d1205
ZW
11192 as_bad_where (fixp->fx_file, fixp->fx_line,
11193 _("undefined local label `%s'"),
11194 S_GET_NAME (fixp->fx_addsy));
11195 return NULL;
a737bd4d
NC
11196 }
11197
c19d1205
ZW
11198 as_bad_where (fixp->fx_file, fixp->fx_line,
11199 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
11200 return NULL;
a737bd4d 11201
c19d1205
ZW
11202 default:
11203 {
11204 char * type;
6c43fab6 11205
c19d1205
ZW
11206 switch (fixp->fx_r_type)
11207 {
11208 case BFD_RELOC_NONE: type = "NONE"; break;
11209 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
11210 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
11211 case BFD_RELOC_ARM_SMI: type = "SMI"; break;
11212 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
11213 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
11214 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
11215 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
11216 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
11217 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
11218 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
11219 default: type = _("<unknown>"); break;
11220 }
11221 as_bad_where (fixp->fx_file, fixp->fx_line,
11222 _("cannot represent %s relocation in this object file format"),
11223 type);
11224 return NULL;
11225 }
a737bd4d 11226 }
6c43fab6 11227
c19d1205
ZW
11228#ifdef OBJ_ELF
11229 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
11230 && GOT_symbol
11231 && fixp->fx_addsy == GOT_symbol)
11232 {
11233 code = BFD_RELOC_ARM_GOTPC;
11234 reloc->addend = fixp->fx_offset = reloc->address;
11235 }
11236#endif
6c43fab6 11237
c19d1205 11238 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 11239
c19d1205
ZW
11240 if (reloc->howto == NULL)
11241 {
11242 as_bad_where (fixp->fx_file, fixp->fx_line,
11243 _("cannot represent %s relocation in this object file format"),
11244 bfd_get_reloc_code_name (code));
11245 return NULL;
11246 }
6c43fab6 11247
c19d1205
ZW
11248 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
11249 vtable entry to be used in the relocation's section offset. */
11250 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11251 reloc->address = fixp->fx_offset;
6c43fab6 11252
c19d1205 11253 return reloc;
6c43fab6
RE
11254}
11255
c19d1205 11256/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 11257
c19d1205
ZW
11258void
11259cons_fix_new_arm (fragS * frag,
11260 int where,
11261 int size,
11262 expressionS * exp)
6c43fab6 11263{
c19d1205
ZW
11264 bfd_reloc_code_real_type type;
11265 int pcrel = 0;
6c43fab6 11266
c19d1205
ZW
11267 /* Pick a reloc.
11268 FIXME: @@ Should look at CPU word size. */
11269 switch (size)
11270 {
11271 case 1:
11272 type = BFD_RELOC_8;
11273 break;
11274 case 2:
11275 type = BFD_RELOC_16;
11276 break;
11277 case 4:
11278 default:
11279 type = BFD_RELOC_32;
11280 break;
11281 case 8:
11282 type = BFD_RELOC_64;
11283 break;
11284 }
6c43fab6 11285
c19d1205
ZW
11286 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
11287}
6c43fab6 11288
c19d1205
ZW
11289#if defined OBJ_COFF || defined OBJ_ELF
11290void
11291arm_validate_fix (fixS * fixP)
6c43fab6 11292{
c19d1205
ZW
11293 /* If the destination of the branch is a defined symbol which does not have
11294 the THUMB_FUNC attribute, then we must be calling a function which has
11295 the (interfacearm) attribute. We look for the Thumb entry point to that
11296 function and change the branch to refer to that function instead. */
11297 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
11298 && fixP->fx_addsy != NULL
11299 && S_IS_DEFINED (fixP->fx_addsy)
11300 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 11301 {
c19d1205 11302 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 11303 }
c19d1205
ZW
11304}
11305#endif
6c43fab6 11306
c19d1205
ZW
11307int
11308arm_force_relocation (struct fix * fixp)
11309{
11310#if defined (OBJ_COFF) && defined (TE_PE)
11311 if (fixp->fx_r_type == BFD_RELOC_RVA)
11312 return 1;
11313#endif
11314#ifdef OBJ_ELF
11315 if (fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH
11316 || fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BLX
11317 || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX
11318 || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23)
11319 return 1;
11320#endif
6c43fab6 11321
c19d1205
ZW
11322 /* Resolve these relocations even if the symbol is extern or weak. */
11323 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
11324 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
11325 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
11326 return 0;
a737bd4d 11327
c19d1205 11328 return generic_force_reloc (fixp);
404ff6b5
AH
11329}
11330
c19d1205
ZW
11331#ifdef OBJ_COFF
11332/* This is a little hack to help the gas/arm/adrl.s test. It prevents
11333 local labels from being added to the output symbol table when they
11334 are used with the ADRL pseudo op. The ADRL relocation should always
11335 be resolved before the binbary is emitted, so it is safe to say that
11336 it is adjustable. */
404ff6b5 11337
c19d1205
ZW
11338bfd_boolean
11339arm_fix_adjustable (fixS * fixP)
404ff6b5 11340{
c19d1205
ZW
11341 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
11342 return 1;
11343 return 0;
404ff6b5 11344}
c19d1205 11345#endif
404ff6b5 11346
c19d1205
ZW
11347#ifdef OBJ_ELF
11348/* Relocations against Thumb function names must be left unadjusted,
11349 so that the linker can use this information to correctly set the
11350 bottom bit of their addresses. The MIPS version of this function
11351 also prevents relocations that are mips-16 specific, but I do not
11352 know why it does this.
404ff6b5 11353
c19d1205
ZW
11354 FIXME:
11355 There is one other problem that ought to be addressed here, but
11356 which currently is not: Taking the address of a label (rather
11357 than a function) and then later jumping to that address. Such
11358 addresses also ought to have their bottom bit set (assuming that
11359 they reside in Thumb code), but at the moment they will not. */
404ff6b5 11360
c19d1205
ZW
11361bfd_boolean
11362arm_fix_adjustable (fixS * fixP)
404ff6b5 11363{
c19d1205
ZW
11364 if (fixP->fx_addsy == NULL)
11365 return 1;
404ff6b5 11366
c19d1205
ZW
11367 if (THUMB_IS_FUNC (fixP->fx_addsy)
11368 && fixP->fx_subsy == NULL)
11369 return 0;
a737bd4d 11370
c19d1205
ZW
11371 /* We need the symbol name for the VTABLE entries. */
11372 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
11373 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11374 return 0;
404ff6b5 11375
c19d1205
ZW
11376 /* Don't allow symbols to be discarded on GOT related relocs. */
11377 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
11378 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
11379 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
11380 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
11381 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
11382 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
11383 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
11384 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
11385 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
11386 return 0;
a737bd4d 11387
c19d1205 11388 return 1;
a737bd4d 11389}
404ff6b5 11390
c19d1205
ZW
11391const char *
11392elf32_arm_target_format (void)
404ff6b5 11393{
c19d1205
ZW
11394#ifdef TE_SYMBIAN
11395 return (target_big_endian
11396 ? "elf32-bigarm-symbian"
11397 : "elf32-littlearm-symbian");
11398#elif defined (TE_VXWORKS)
11399 return (target_big_endian
11400 ? "elf32-bigarm-vxworks"
11401 : "elf32-littlearm-vxworks");
11402#else
11403 if (target_big_endian)
11404 return "elf32-bigarm";
11405 else
11406 return "elf32-littlearm";
11407#endif
404ff6b5
AH
11408}
11409
c19d1205
ZW
11410void
11411armelf_frob_symbol (symbolS * symp,
11412 int * puntp)
404ff6b5 11413{
c19d1205
ZW
11414 elf_frob_symbol (symp, puntp);
11415}
11416#endif
404ff6b5 11417
c19d1205 11418/* MD interface: Finalization. */
a737bd4d 11419
c19d1205
ZW
11420/* A good place to do this, although this was probably not intended
11421 for this kind of use. We need to dump the literal pool before
11422 references are made to a null symbol pointer. */
a737bd4d 11423
c19d1205
ZW
11424void
11425arm_cleanup (void)
11426{
11427 literal_pool * pool;
a737bd4d 11428
c19d1205
ZW
11429 for (pool = list_of_pools; pool; pool = pool->next)
11430 {
11431 /* Put it at the end of the relevent section. */
11432 subseg_set (pool->section, pool->sub_section);
11433#ifdef OBJ_ELF
11434 arm_elf_change_section ();
11435#endif
11436 s_ltorg (0);
11437 }
404ff6b5
AH
11438}
11439
c19d1205
ZW
11440/* Adjust the symbol table. This marks Thumb symbols as distinct from
11441 ARM ones. */
404ff6b5 11442
c19d1205
ZW
11443void
11444arm_adjust_symtab (void)
404ff6b5 11445{
c19d1205
ZW
11446#ifdef OBJ_COFF
11447 symbolS * sym;
404ff6b5 11448
c19d1205
ZW
11449 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
11450 {
11451 if (ARM_IS_THUMB (sym))
11452 {
11453 if (THUMB_IS_FUNC (sym))
11454 {
11455 /* Mark the symbol as a Thumb function. */
11456 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
11457 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
11458 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 11459
c19d1205
ZW
11460 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
11461 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
11462 else
11463 as_bad (_("%s: unexpected function type: %d"),
11464 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
11465 }
11466 else switch (S_GET_STORAGE_CLASS (sym))
11467 {
11468 case C_EXT:
11469 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
11470 break;
11471 case C_STAT:
11472 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
11473 break;
11474 case C_LABEL:
11475 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
11476 break;
11477 default:
11478 /* Do nothing. */
11479 break;
11480 }
11481 }
a737bd4d 11482
c19d1205
ZW
11483 if (ARM_IS_INTERWORK (sym))
11484 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 11485 }
c19d1205
ZW
11486#endif
11487#ifdef OBJ_ELF
11488 symbolS * sym;
11489 char bind;
404ff6b5 11490
c19d1205 11491 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 11492 {
c19d1205
ZW
11493 if (ARM_IS_THUMB (sym))
11494 {
11495 elf_symbol_type * elf_sym;
404ff6b5 11496
c19d1205
ZW
11497 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
11498 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 11499
c19d1205
ZW
11500 if (! bfd_is_arm_mapping_symbol_name (elf_sym->symbol.name))
11501 {
11502 /* If it's a .thumb_func, declare it as so,
11503 otherwise tag label as .code 16. */
11504 if (THUMB_IS_FUNC (sym))
11505 elf_sym->internal_elf_sym.st_info =
11506 ELF_ST_INFO (bind, STT_ARM_TFUNC);
11507 else
11508 elf_sym->internal_elf_sym.st_info =
11509 ELF_ST_INFO (bind, STT_ARM_16BIT);
11510 }
11511 }
11512 }
11513#endif
404ff6b5
AH
11514}
11515
c19d1205 11516/* MD interface: Initialization. */
404ff6b5 11517
a737bd4d 11518static void
c19d1205 11519set_constant_flonums (void)
a737bd4d 11520{
c19d1205 11521 int i;
404ff6b5 11522
c19d1205
ZW
11523 for (i = 0; i < NUM_FLOAT_VALS; i++)
11524 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
11525 abort ();
a737bd4d 11526}
404ff6b5 11527
c19d1205
ZW
11528void
11529md_begin (void)
a737bd4d 11530{
c19d1205
ZW
11531 unsigned mach;
11532 unsigned int i;
404ff6b5 11533
c19d1205
ZW
11534 if ( (arm_ops_hsh = hash_new ()) == NULL
11535 || (arm_cond_hsh = hash_new ()) == NULL
11536 || (arm_shift_hsh = hash_new ()) == NULL
11537 || (arm_psr_hsh = hash_new ()) == NULL
11538 || (arm_reg_hsh = hash_new ()) == NULL
11539 || (arm_reloc_hsh = hash_new ()) == NULL)
11540 as_fatal (_("virtual memory exhausted"));
11541
11542 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
11543 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
11544 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
11545 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
11546 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
11547 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
11548 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
11549 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
11550 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
11551 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
11552#ifdef OBJ_ELF
11553 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
11554 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
11555#endif
11556
11557 set_constant_flonums ();
404ff6b5 11558
c19d1205
ZW
11559 /* Set the cpu variant based on the command-line options. We prefer
11560 -mcpu= over -march= if both are set (as for GCC); and we prefer
11561 -mfpu= over any other way of setting the floating point unit.
11562 Use of legacy options with new options are faulted. */
11563 if (legacy_cpu != -1)
404ff6b5 11564 {
c19d1205
ZW
11565 if (mcpu_cpu_opt != -1 || march_cpu_opt != -1)
11566 as_bad (_("use of old and new-style options to set CPU type"));
11567
11568 mcpu_cpu_opt = legacy_cpu;
404ff6b5 11569 }
c19d1205
ZW
11570 else if (mcpu_cpu_opt == -1)
11571 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 11572
c19d1205
ZW
11573 if (legacy_fpu != -1)
11574 {
11575 if (mfpu_opt != -1)
11576 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
11577
11578 mfpu_opt = legacy_fpu;
11579 }
11580 else if (mfpu_opt == -1)
11581 {
c19d1205 11582#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
11583 /* Some environments specify a default FPU. If they don't, infer it
11584 from the processor. */
03b1477f
RE
11585 if (mcpu_fpu_opt != -1)
11586 mfpu_opt = mcpu_fpu_opt;
11587 else
11588 mfpu_opt = march_fpu_opt;
39c2da32
RE
11589#else
11590 mfpu_opt = FPU_DEFAULT;
11591#endif
03b1477f
RE
11592 }
11593
11594 if (mfpu_opt == -1)
11595 {
11596 if (mcpu_cpu_opt == -1)
11597 mfpu_opt = FPU_DEFAULT;
11598 else if (mcpu_cpu_opt & ARM_EXT_V5)
11599 mfpu_opt = FPU_ARCH_VFP_V2;
11600 else
11601 mfpu_opt = FPU_ARCH_FPA;
11602 }
11603
11604 if (mcpu_cpu_opt == -1)
11605 mcpu_cpu_opt = CPU_DEFAULT;
11606
11607 cpu_variant = mcpu_cpu_opt | mfpu_opt;
11608
f17c130b 11609#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 11610 {
7cc69913
NC
11611 unsigned int flags = 0;
11612
11613#if defined OBJ_ELF
11614 flags = meabi_flags;
d507cf36
PB
11615
11616 switch (meabi_flags)
33a392fb 11617 {
d507cf36 11618 case EF_ARM_EABI_UNKNOWN:
7cc69913 11619#endif
d507cf36
PB
11620 /* Set the flags in the private structure. */
11621 if (uses_apcs_26) flags |= F_APCS26;
11622 if (support_interwork) flags |= F_INTERWORK;
11623 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 11624 if (pic_code) flags |= F_PIC;
d507cf36
PB
11625 if ((cpu_variant & FPU_ANY) == FPU_NONE
11626 || (cpu_variant & FPU_ANY) == FPU_ARCH_VFP) /* VFP layout only. */
7cc69913
NC
11627 flags |= F_SOFT_FLOAT;
11628
d507cf36
PB
11629 switch (mfloat_abi_opt)
11630 {
11631 case ARM_FLOAT_ABI_SOFT:
11632 case ARM_FLOAT_ABI_SOFTFP:
11633 flags |= F_SOFT_FLOAT;
11634 break;
33a392fb 11635
d507cf36
PB
11636 case ARM_FLOAT_ABI_HARD:
11637 if (flags & F_SOFT_FLOAT)
11638 as_bad (_("hard-float conflicts with specified fpu"));
11639 break;
11640 }
03b1477f 11641
c19d1205 11642 /* Using VFP conventions (even if soft-float). */
7cc69913
NC
11643 if (cpu_variant & FPU_VFP_EXT_NONE)
11644 flags |= F_VFP_FLOAT;
f17c130b 11645
fde78edd 11646#if defined OBJ_ELF
d507cf36
PB
11647 if (cpu_variant & FPU_ARCH_MAVERICK)
11648 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
11649 break;
11650
8cb51566 11651 case EF_ARM_EABI_VER4:
c19d1205 11652 /* No additional flags to set. */
d507cf36
PB
11653 break;
11654
11655 default:
11656 abort ();
11657 }
7cc69913 11658#endif
b99bd4ef
NC
11659 bfd_set_private_flags (stdoutput, flags);
11660
11661 /* We have run out flags in the COFF header to encode the
11662 status of ATPCS support, so instead we create a dummy,
c19d1205 11663 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
11664 if (atpcs)
11665 {
11666 asection * sec;
11667
11668 sec = bfd_make_section (stdoutput, ".arm.atpcs");
11669
11670 if (sec != NULL)
11671 {
11672 bfd_set_section_flags
11673 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
11674 bfd_set_section_size (stdoutput, sec, 0);
11675 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
11676 }
11677 }
7cc69913 11678 }
f17c130b 11679#endif
b99bd4ef
NC
11680
11681 /* Record the CPU type as well. */
11682 switch (cpu_variant & ARM_CPU_MASK)
11683 {
11684 case ARM_2:
11685 mach = bfd_mach_arm_2;
11686 break;
11687
c19d1205 11688 case ARM_3: /* Also ARM_250. */
b99bd4ef
NC
11689 mach = bfd_mach_arm_2a;
11690 break;
11691
c19d1205 11692 case ARM_6: /* Also ARM_7. */
b89dddec
RE
11693 mach = bfd_mach_arm_3;
11694 break;
11695
b99bd4ef 11696 default:
5a6c6817 11697 mach = bfd_mach_arm_unknown;
b99bd4ef 11698 break;
b99bd4ef
NC
11699 }
11700
11701 /* Catch special cases. */
e16bb312
NC
11702 if (cpu_variant & ARM_CEXT_IWMMXT)
11703 mach = bfd_mach_arm_iWMMXt;
11704 else if (cpu_variant & ARM_CEXT_XSCALE)
b99bd4ef 11705 mach = bfd_mach_arm_XScale;
fde78edd
NC
11706 else if (cpu_variant & ARM_CEXT_MAVERICK)
11707 mach = bfd_mach_arm_ep9312;
b99bd4ef
NC
11708 else if (cpu_variant & ARM_EXT_V5E)
11709 mach = bfd_mach_arm_5TE;
11710 else if (cpu_variant & ARM_EXT_V5)
11711 {
b89dddec 11712 if (cpu_variant & ARM_EXT_V4T)
b99bd4ef
NC
11713 mach = bfd_mach_arm_5T;
11714 else
11715 mach = bfd_mach_arm_5;
11716 }
b89dddec 11717 else if (cpu_variant & ARM_EXT_V4)
b99bd4ef 11718 {
b89dddec 11719 if (cpu_variant & ARM_EXT_V4T)
b99bd4ef
NC
11720 mach = bfd_mach_arm_4T;
11721 else
11722 mach = bfd_mach_arm_4;
11723 }
b89dddec 11724 else if (cpu_variant & ARM_EXT_V3M)
b99bd4ef
NC
11725 mach = bfd_mach_arm_3M;
11726
11727 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
11728}
11729
c19d1205 11730/* Command line processing. */
b99bd4ef 11731
c19d1205
ZW
11732/* md_parse_option
11733 Invocation line includes a switch not recognized by the base assembler.
11734 See if it's a processor-specific option.
b99bd4ef 11735
c19d1205
ZW
11736 This routine is somewhat complicated by the need for backwards
11737 compatibility (since older releases of gcc can't be changed).
11738 The new options try to make the interface as compatible as
11739 possible with GCC.
b99bd4ef 11740
c19d1205 11741 New options (supported) are:
b99bd4ef 11742
c19d1205
ZW
11743 -mcpu=<cpu name> Assemble for selected processor
11744 -march=<architecture name> Assemble for selected architecture
11745 -mfpu=<fpu architecture> Assemble for selected FPU.
11746 -EB/-mbig-endian Big-endian
11747 -EL/-mlittle-endian Little-endian
11748 -k Generate PIC code
11749 -mthumb Start in Thumb mode
11750 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 11751
c19d1205 11752 For now we will also provide support for:
b99bd4ef 11753
c19d1205
ZW
11754 -mapcs-32 32-bit Program counter
11755 -mapcs-26 26-bit Program counter
11756 -macps-float Floats passed in FP registers
11757 -mapcs-reentrant Reentrant code
11758 -matpcs
11759 (sometime these will probably be replaced with -mapcs=<list of options>
11760 and -matpcs=<list of options>)
b99bd4ef 11761
c19d1205
ZW
11762 The remaining options are only supported for back-wards compatibility.
11763 Cpu variants, the arm part is optional:
11764 -m[arm]1 Currently not supported.
11765 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
11766 -m[arm]3 Arm 3 processor
11767 -m[arm]6[xx], Arm 6 processors
11768 -m[arm]7[xx][t][[d]m] Arm 7 processors
11769 -m[arm]8[10] Arm 8 processors
11770 -m[arm]9[20][tdmi] Arm 9 processors
11771 -mstrongarm[110[0]] StrongARM processors
11772 -mxscale XScale processors
11773 -m[arm]v[2345[t[e]]] Arm architectures
11774 -mall All (except the ARM1)
11775 FP variants:
11776 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
11777 -mfpe-old (No float load/store multiples)
11778 -mvfpxd VFP Single precision
11779 -mvfp All VFP
11780 -mno-fpu Disable all floating point instructions
b99bd4ef 11781
c19d1205
ZW
11782 The following CPU names are recognized:
11783 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
11784 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
11785 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
11786 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
11787 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
11788 arm10t arm10e, arm1020t, arm1020e, arm10200e,
11789 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 11790
c19d1205 11791 */
b99bd4ef 11792
c19d1205 11793const char * md_shortopts = "m:k";
b99bd4ef 11794
c19d1205
ZW
11795#ifdef ARM_BI_ENDIAN
11796#define OPTION_EB (OPTION_MD_BASE + 0)
11797#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 11798#else
c19d1205
ZW
11799#if TARGET_BYTES_BIG_ENDIAN
11800#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 11801#else
c19d1205
ZW
11802#define OPTION_EL (OPTION_MD_BASE + 1)
11803#endif
b99bd4ef 11804#endif
b99bd4ef 11805
c19d1205 11806struct option md_longopts[] =
b99bd4ef 11807{
c19d1205
ZW
11808#ifdef OPTION_EB
11809 {"EB", no_argument, NULL, OPTION_EB},
11810#endif
11811#ifdef OPTION_EL
11812 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 11813#endif
c19d1205
ZW
11814 {NULL, no_argument, NULL, 0}
11815};
b99bd4ef 11816
c19d1205 11817size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 11818
c19d1205 11819struct arm_option_table
b99bd4ef 11820{
c19d1205
ZW
11821 char *option; /* Option name to match. */
11822 char *help; /* Help information. */
11823 int *var; /* Variable to change. */
11824 int value; /* What to change it to. */
11825 char *deprecated; /* If non-null, print this message. */
11826};
b99bd4ef 11827
c19d1205
ZW
11828struct arm_option_table arm_opts[] =
11829{
11830 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
11831 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
11832 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
11833 &support_interwork, 1, NULL},
11834 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
11835 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
11836 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
11837 1, NULL},
11838 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
11839 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
11840 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
11841 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
11842 NULL},
b99bd4ef 11843
c19d1205
ZW
11844 /* These are recognized by the assembler, but have no affect on code. */
11845 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
11846 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
b99bd4ef 11847
c19d1205
ZW
11848 /* DON'T add any new processors to this list -- we want the whole list
11849 to go away... Add them to the processors table instead. */
11850 {"marm1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
11851 {"m1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
11852 {"marm2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
11853 {"m2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
11854 {"marm250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
11855 {"m250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
11856 {"marm3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
11857 {"m3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
11858 {"marm6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
11859 {"m6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
11860 {"marm600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
11861 {"m600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
11862 {"marm610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
11863 {"m610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
11864 {"marm620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
11865 {"m620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
11866 {"marm7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
11867 {"m7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
11868 {"marm70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
11869 {"m70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
11870 {"marm700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
11871 {"m700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
11872 {"marm700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
11873 {"m700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
11874 {"marm710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
11875 {"m710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
11876 {"marm710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
11877 {"m710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
11878 {"marm720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
11879 {"m720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
11880 {"marm7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
11881 {"m7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
11882 {"marm7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
11883 {"m7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
11884 {"marm7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
11885 {"m7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
11886 {"marm7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
11887 {"m7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
11888 {"marm7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
11889 {"m7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
11890 {"marm7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
11891 {"m7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
11892 {"marm7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
11893 {"m7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
11894 {"marm7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
11895 {"m7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
11896 {"marm7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11897 {"m7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11898 {"marm7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11899 {"m7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
11900 {"marm710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
11901 {"m710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
11902 {"marm720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
11903 {"m720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
11904 {"marm740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
11905 {"m740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
11906 {"marm8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
11907 {"m8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
11908 {"marm810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
11909 {"m810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
11910 {"marm9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
11911 {"m9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
11912 {"marm9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
11913 {"m9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
11914 {"marm920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
11915 {"m920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
11916 {"marm940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
11917 {"m940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
11918 {"mstrongarm", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
11919 {"mstrongarm110", NULL, &legacy_cpu, ARM_ARCH_V4,
11920 N_("use -mcpu=strongarm110")},
11921 {"mstrongarm1100", NULL, &legacy_cpu, ARM_ARCH_V4,
11922 N_("use -mcpu=strongarm1100")},
11923 {"mstrongarm1110", NULL, &legacy_cpu, ARM_ARCH_V4,
11924 N_("use -mcpu=strongarm1110")},
11925 {"mxscale", NULL, &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
11926 {"miwmmxt", NULL, &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
11927 {"mall", NULL, &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 11928
c19d1205
ZW
11929 /* Architecture variants -- don't add any more to this list either. */
11930 {"mv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
11931 {"marmv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
11932 {"mv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
11933 {"marmv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
11934 {"mv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
11935 {"marmv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
11936 {"mv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
11937 {"marmv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
11938 {"mv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
11939 {"marmv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
11940 {"mv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
11941 {"marmv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
11942 {"mv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
11943 {"marmv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
11944 {"mv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
11945 {"marmv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
11946 {"mv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
11947 {"marmv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 11948
c19d1205
ZW
11949 /* Floating point variants -- don't add any more to this list either. */
11950 {"mfpe-old", NULL, &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
11951 {"mfpa10", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
11952 {"mfpa11", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
11953 {"mno-fpu", NULL, &legacy_fpu, 0,
11954 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 11955
c19d1205
ZW
11956 {NULL, NULL, NULL, 0, NULL}
11957};
7ed4c4c5 11958
c19d1205 11959struct arm_cpu_option_table
7ed4c4c5 11960{
c19d1205
ZW
11961 char *name;
11962 int value;
11963 /* For some CPUs we assume an FPU unless the user explicitly sets
11964 -mfpu=... */
11965 int default_fpu;
11966};
7ed4c4c5 11967
c19d1205
ZW
11968/* This list should, at a minimum, contain all the cpu names
11969 recognized by GCC. */
11970static struct arm_cpu_option_table arm_cpus[] =
11971{
11972 {"all", ARM_ANY, FPU_ARCH_FPA},
11973 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA},
11974 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA},
11975 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA},
11976 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA},
11977 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA},
11978 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA},
11979 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA},
11980 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA},
11981 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA},
11982 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA},
11983 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA},
11984 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA},
11985 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA},
11986 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA},
11987 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA},
11988 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA},
11989 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA},
11990 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA},
11991 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA},
11992 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA},
11993 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA},
11994 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA},
11995 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA},
11996 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA},
11997 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA},
11998 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA},
11999 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA},
12000 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12001 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
12002 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA},
12003 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA},
12004 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA},
12005 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA},
12006 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA},
12007 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA},
12008 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA},
12009 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA},
12010 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA},
12011 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA},
12012 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12013 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12014 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12015 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
12016 /* For V5 or later processors we default to using VFP; but the user
12017 should really set the FPU type explicitly. */
12018 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12019 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12020 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12021 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12022 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12023 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12024 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12025 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12026 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12027 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
12028 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12029 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12030 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
12031 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12032 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12033 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12034 {"arm1136js", ARM_ARCH_V6, FPU_NONE},
12035 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE},
12036 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2},
12037 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2},
12038 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2},
12039 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE},
12040 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE},
12041 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2},
12042 /* ??? XSCALE is really an architecture. */
12043 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
12044 /* ??? iwmmxt is not a processor. */
12045 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2},
12046 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
12047 /* Maverick */
12048 {"ep9312", ARM_ARCH_V4T | ARM_CEXT_MAVERICK, FPU_ARCH_MAVERICK},
12049 {NULL, 0, 0}
12050};
7ed4c4c5 12051
c19d1205 12052struct arm_arch_option_table
7ed4c4c5 12053{
c19d1205
ZW
12054 char *name;
12055 int value;
12056 int default_fpu;
12057};
7ed4c4c5 12058
c19d1205
ZW
12059/* This list should, at a minimum, contain all the architecture names
12060 recognized by GCC. */
12061static struct arm_arch_option_table arm_archs[] =
12062{
12063 {"all", ARM_ANY, FPU_ARCH_FPA},
12064 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
12065 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
12066 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
12067 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
12068 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
12069 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
12070 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
12071 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
12072 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12073 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
12074 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
12075 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
12076 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
12077 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
12078 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
12079 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
12080 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
12081 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
12082 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
12083 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
12084 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
12085 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
12086 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
12087 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
12088 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
12089 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
12090 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
12091 {NULL, 0, 0}
12092};
7ed4c4c5 12093
c19d1205
ZW
12094/* ISA extensions in the co-processor space. */
12095struct arm_option_value_table
12096{
12097 char *name;
12098 int value;
12099};
7ed4c4c5 12100
c19d1205
ZW
12101static struct arm_option_value_table arm_extensions[] =
12102{
12103 {"maverick", ARM_CEXT_MAVERICK},
12104 {"xscale", ARM_CEXT_XSCALE},
12105 {"iwmmxt", ARM_CEXT_IWMMXT},
12106 {NULL, 0}
12107};
7ed4c4c5 12108
c19d1205
ZW
12109/* This list should, at a minimum, contain all the fpu names
12110 recognized by GCC. */
12111static struct arm_option_value_table arm_fpus[] =
12112{
12113 {"softfpa", FPU_NONE},
12114 {"fpe", FPU_ARCH_FPE},
12115 {"fpe2", FPU_ARCH_FPE},
12116 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
12117 {"fpa", FPU_ARCH_FPA},
12118 {"fpa10", FPU_ARCH_FPA},
12119 {"fpa11", FPU_ARCH_FPA},
12120 {"arm7500fe", FPU_ARCH_FPA},
12121 {"softvfp", FPU_ARCH_VFP},
12122 {"softvfp+vfp", FPU_ARCH_VFP_V2},
12123 {"vfp", FPU_ARCH_VFP_V2},
12124 {"vfp9", FPU_ARCH_VFP_V2},
12125 {"vfp10", FPU_ARCH_VFP_V2},
12126 {"vfp10-r0", FPU_ARCH_VFP_V1},
12127 {"vfpxd", FPU_ARCH_VFP_V1xD},
12128 {"arm1020t", FPU_ARCH_VFP_V1},
12129 {"arm1020e", FPU_ARCH_VFP_V2},
12130 {"arm1136jfs", FPU_ARCH_VFP_V2},
12131 {"arm1136jf-s", FPU_ARCH_VFP_V2},
12132 {"maverick", FPU_ARCH_MAVERICK},
12133 {NULL, 0}
12134};
7ed4c4c5 12135
c19d1205
ZW
12136static struct arm_option_value_table arm_float_abis[] =
12137{
12138 {"hard", ARM_FLOAT_ABI_HARD},
12139 {"softfp", ARM_FLOAT_ABI_SOFTFP},
12140 {"soft", ARM_FLOAT_ABI_SOFT},
12141 {NULL, 0}
12142};
7ed4c4c5 12143
c19d1205
ZW
12144#ifdef OBJ_ELF
12145/* We only know how to output GNU and ver 4 (AAELF) formats. */
12146static struct arm_option_value_table arm_eabis[] =
12147{
12148 {"gnu", EF_ARM_EABI_UNKNOWN},
12149 {"4", EF_ARM_EABI_VER4},
12150 {NULL, 0}
12151};
12152#endif
7ed4c4c5 12153
c19d1205
ZW
12154struct arm_long_option_table
12155{
12156 char * option; /* Substring to match. */
12157 char * help; /* Help information. */
12158 int (* func) (char * subopt); /* Function to decode sub-option. */
12159 char * deprecated; /* If non-null, print this message. */
12160};
7ed4c4c5
NC
12161
12162static int
c19d1205 12163arm_parse_extension (char * str, int * opt_p)
7ed4c4c5 12164{
c19d1205 12165 while (str != NULL && *str != 0)
7ed4c4c5 12166 {
c19d1205
ZW
12167 struct arm_option_value_table * opt;
12168 char * ext;
12169 int optlen;
7ed4c4c5 12170
c19d1205
ZW
12171 if (*str != '+')
12172 {
12173 as_bad (_("invalid architectural extension"));
12174 return 0;
12175 }
7ed4c4c5 12176
c19d1205
ZW
12177 str++;
12178 ext = strchr (str, '+');
7ed4c4c5 12179
c19d1205
ZW
12180 if (ext != NULL)
12181 optlen = ext - str;
12182 else
12183 optlen = strlen (str);
7ed4c4c5 12184
c19d1205
ZW
12185 if (optlen == 0)
12186 {
12187 as_bad (_("missing architectural extension"));
12188 return 0;
12189 }
7ed4c4c5 12190
c19d1205
ZW
12191 for (opt = arm_extensions; opt->name != NULL; opt++)
12192 if (strncmp (opt->name, str, optlen) == 0)
12193 {
12194 *opt_p |= opt->value;
12195 break;
12196 }
7ed4c4c5 12197
c19d1205
ZW
12198 if (opt->name == NULL)
12199 {
12200 as_bad (_("unknown architectural extnsion `%s'"), str);
12201 return 0;
12202 }
7ed4c4c5 12203
c19d1205
ZW
12204 str = ext;
12205 };
7ed4c4c5 12206
c19d1205
ZW
12207 return 1;
12208}
7ed4c4c5 12209
c19d1205
ZW
12210static int
12211arm_parse_cpu (char * str)
7ed4c4c5 12212{
c19d1205
ZW
12213 struct arm_cpu_option_table * opt;
12214 char * ext = strchr (str, '+');
12215 int optlen;
7ed4c4c5 12216
c19d1205
ZW
12217 if (ext != NULL)
12218 optlen = ext - str;
7ed4c4c5 12219 else
c19d1205 12220 optlen = strlen (str);
7ed4c4c5 12221
c19d1205 12222 if (optlen == 0)
7ed4c4c5 12223 {
c19d1205
ZW
12224 as_bad (_("missing cpu name `%s'"), str);
12225 return 0;
7ed4c4c5
NC
12226 }
12227
c19d1205
ZW
12228 for (opt = arm_cpus; opt->name != NULL; opt++)
12229 if (strncmp (opt->name, str, optlen) == 0)
12230 {
12231 mcpu_cpu_opt = opt->value;
12232 mcpu_fpu_opt = opt->default_fpu;
7ed4c4c5 12233
c19d1205
ZW
12234 if (ext != NULL)
12235 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 12236
c19d1205
ZW
12237 return 1;
12238 }
7ed4c4c5 12239
c19d1205
ZW
12240 as_bad (_("unknown cpu `%s'"), str);
12241 return 0;
7ed4c4c5
NC
12242}
12243
c19d1205
ZW
12244static int
12245arm_parse_arch (char * str)
7ed4c4c5 12246{
c19d1205
ZW
12247 struct arm_arch_option_table *opt;
12248 char *ext = strchr (str, '+');
12249 int optlen;
7ed4c4c5 12250
c19d1205
ZW
12251 if (ext != NULL)
12252 optlen = ext - str;
7ed4c4c5 12253 else
c19d1205 12254 optlen = strlen (str);
7ed4c4c5 12255
c19d1205 12256 if (optlen == 0)
7ed4c4c5 12257 {
c19d1205
ZW
12258 as_bad (_("missing architecture name `%s'"), str);
12259 return 0;
7ed4c4c5
NC
12260 }
12261
7ed4c4c5 12262
c19d1205
ZW
12263 for (opt = arm_archs; opt->name != NULL; opt++)
12264 if (streq (opt->name, str))
12265 {
12266 march_cpu_opt = opt->value;
12267 march_fpu_opt = opt->default_fpu;
7ed4c4c5 12268
c19d1205
ZW
12269 if (ext != NULL)
12270 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 12271
c19d1205
ZW
12272 return 1;
12273 }
12274
12275 as_bad (_("unknown architecture `%s'\n"), str);
12276 return 0;
7ed4c4c5 12277}
eb043451 12278
c19d1205
ZW
12279static int
12280arm_parse_fpu (char * str)
12281{
12282 struct arm_option_value_table * opt;
b99bd4ef 12283
c19d1205
ZW
12284 for (opt = arm_fpus; opt->name != NULL; opt++)
12285 if (streq (opt->name, str))
12286 {
12287 mfpu_opt = opt->value;
12288 return 1;
12289 }
b99bd4ef 12290
c19d1205
ZW
12291 as_bad (_("unknown floating point format `%s'\n"), str);
12292 return 0;
12293}
12294
12295static int
12296arm_parse_float_abi (char * str)
b99bd4ef 12297{
c19d1205 12298 struct arm_option_value_table * opt;
b99bd4ef 12299
c19d1205
ZW
12300 for (opt = arm_float_abis; opt->name != NULL; opt++)
12301 if (streq (opt->name, str))
12302 {
12303 mfloat_abi_opt = opt->value;
12304 return 1;
12305 }
cc8a6dd0 12306
c19d1205
ZW
12307 as_bad (_("unknown floating point abi `%s'\n"), str);
12308 return 0;
12309}
b99bd4ef 12310
c19d1205
ZW
12311#ifdef OBJ_ELF
12312static int
12313arm_parse_eabi (char * str)
12314{
12315 struct arm_option_value_table *opt;
cc8a6dd0 12316
c19d1205
ZW
12317 for (opt = arm_eabis; opt->name != NULL; opt++)
12318 if (streq (opt->name, str))
12319 {
12320 meabi_flags = opt->value;
12321 return 1;
12322 }
12323 as_bad (_("unknown EABI `%s'\n"), str);
12324 return 0;
12325}
12326#endif
cc8a6dd0 12327
c19d1205
ZW
12328struct arm_long_option_table arm_long_opts[] =
12329{
12330 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
12331 arm_parse_cpu, NULL},
12332 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
12333 arm_parse_arch, NULL},
12334 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
12335 arm_parse_fpu, NULL},
12336 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
12337 arm_parse_float_abi, NULL},
12338#ifdef OBJ_ELF
12339 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
12340 arm_parse_eabi, NULL},
12341#endif
12342 {NULL, NULL, 0, NULL}
12343};
cc8a6dd0 12344
c19d1205
ZW
12345int
12346md_parse_option (int c, char * arg)
12347{
12348 struct arm_option_table *opt;
12349 struct arm_long_option_table *lopt;
b99bd4ef 12350
c19d1205 12351 switch (c)
b99bd4ef 12352 {
c19d1205
ZW
12353#ifdef OPTION_EB
12354 case OPTION_EB:
12355 target_big_endian = 1;
12356 break;
12357#endif
cc8a6dd0 12358
c19d1205
ZW
12359#ifdef OPTION_EL
12360 case OPTION_EL:
12361 target_big_endian = 0;
12362 break;
12363#endif
b99bd4ef 12364
c19d1205
ZW
12365 case 'a':
12366 /* Listing option. Just ignore these, we don't support additional
12367 ones. */
12368 return 0;
b99bd4ef 12369
c19d1205
ZW
12370 default:
12371 for (opt = arm_opts; opt->option != NULL; opt++)
12372 {
12373 if (c == opt->option[0]
12374 && ((arg == NULL && opt->option[1] == 0)
12375 || streq (arg, opt->option + 1)))
12376 {
12377#if WARN_DEPRECATED
12378 /* If the option is deprecated, tell the user. */
12379 if (opt->deprecated != NULL)
12380 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
12381 arg ? arg : "", _(opt->deprecated));
12382#endif
b99bd4ef 12383
c19d1205
ZW
12384 if (opt->var != NULL)
12385 *opt->var = opt->value;
cc8a6dd0 12386
c19d1205
ZW
12387 return 1;
12388 }
12389 }
b99bd4ef 12390
c19d1205
ZW
12391 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
12392 {
12393 /* These options are expected to have an argument. */
12394 if (c == lopt->option[0]
12395 && arg != NULL
12396 && strncmp (arg, lopt->option + 1,
12397 strlen (lopt->option + 1)) == 0)
12398 {
12399#if WARN_DEPRECATED
12400 /* If the option is deprecated, tell the user. */
12401 if (lopt->deprecated != NULL)
12402 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
12403 _(lopt->deprecated));
12404#endif
b99bd4ef 12405
c19d1205
ZW
12406 /* Call the sup-option parser. */
12407 return lopt->func (arg + strlen (lopt->option) - 1);
12408 }
12409 }
a737bd4d 12410
c19d1205
ZW
12411 return 0;
12412 }
a394c00f 12413
c19d1205
ZW
12414 return 1;
12415}
a394c00f 12416
c19d1205
ZW
12417void
12418md_show_usage (FILE * fp)
a394c00f 12419{
c19d1205
ZW
12420 struct arm_option_table *opt;
12421 struct arm_long_option_table *lopt;
a394c00f 12422
c19d1205 12423 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 12424
c19d1205
ZW
12425 for (opt = arm_opts; opt->option != NULL; opt++)
12426 if (opt->help != NULL)
12427 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 12428
c19d1205
ZW
12429 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
12430 if (lopt->help != NULL)
12431 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 12432
c19d1205
ZW
12433#ifdef OPTION_EB
12434 fprintf (fp, _("\
12435 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
12436#endif
12437
c19d1205
ZW
12438#ifdef OPTION_EL
12439 fprintf (fp, _("\
12440 -EL assemble code for a little-endian cpu\n"));
a737bd4d 12441#endif
c19d1205 12442}