]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
PR gas/5175
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
ec2655a6 3 2004, 2005, 2006, 2007
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
720abc60 45#define WARN_DEPRECATED 1
03b1477f 46
7ed4c4c5
NC
47#ifdef OBJ_ELF
48/* Must be at least the size of the largest unwind opcode (currently two). */
49#define ARM_OPCODE_CHUNK_SIZE 8
50
51/* This structure holds the unwinding state. */
52
53static struct
54{
c19d1205
ZW
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
7ed4c4c5 59 /* The segment containing the function. */
c19d1205
ZW
60 segT saved_seg;
61 subsegT saved_subseg;
7ed4c4c5
NC
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
c19d1205
ZW
64 int opcode_count;
65 int opcode_alloc;
7ed4c4c5 66 /* The number of bytes pushed to the stack. */
c19d1205 67 offsetT frame_size;
7ed4c4c5
NC
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
c19d1205 71 offsetT pending_offset;
7ed4c4c5 72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
7ed4c4c5 76 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 77 unsigned fp_used:1;
7ed4c4c5 78 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 79 unsigned sp_restored:1;
7ed4c4c5
NC
80} unwind;
81
8b1ad454
NC
82/* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85static unsigned int marked_pr_dependency = 0;
86
87#endif /* OBJ_ELF */
88
4962c51a
MS
89/* Results from operand parsing worker functions. */
90
91typedef enum
92{
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96} parse_operand_result;
97
33a392fb
PB
98enum arm_float_abi
99{
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103};
104
c19d1205 105/* Types of processor to assemble for. */
b99bd4ef
NC
106#ifndef CPU_DEFAULT
107#if defined __XSCALE__
e74cfd16 108#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
109#else
110#if defined __thumb__
e74cfd16 111#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
112#endif
113#endif
114#endif
115
116#ifndef FPU_DEFAULT
c820d418
MM
117# ifdef TE_LINUX
118# define FPU_DEFAULT FPU_ARCH_FPA
119# elif defined (TE_NetBSD)
120# ifdef OBJ_ELF
121# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122# else
123 /* Legacy a.out format. */
124# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125# endif
4e7fd91e
PB
126# elif defined (TE_VXWORKS)
127# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
128# else
129 /* For backwards compatibility, default to FPA. */
130# define FPU_DEFAULT FPU_ARCH_FPA
131# endif
132#endif /* ifndef FPU_DEFAULT */
b99bd4ef 133
c19d1205 134#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 135
e74cfd16
PB
136static arm_feature_set cpu_variant;
137static arm_feature_set arm_arch_used;
138static arm_feature_set thumb_arch_used;
b99bd4ef 139
b99bd4ef 140/* Flags stored in private area of BFD structure. */
c19d1205
ZW
141static int uses_apcs_26 = FALSE;
142static int atpcs = FALSE;
b34976b6
AM
143static int support_interwork = FALSE;
144static int uses_apcs_float = FALSE;
c19d1205 145static int pic_code = FALSE;
03b1477f
RE
146
147/* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
e74cfd16
PB
150static const arm_feature_set *legacy_cpu = NULL;
151static const arm_feature_set *legacy_fpu = NULL;
152
153static const arm_feature_set *mcpu_cpu_opt = NULL;
154static const arm_feature_set *mcpu_fpu_opt = NULL;
155static const arm_feature_set *march_cpu_opt = NULL;
156static const arm_feature_set *march_fpu_opt = NULL;
157static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 158static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
159
160/* Constants for known architecture features. */
161static const arm_feature_set fpu_default = FPU_DEFAULT;
162static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
164static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
166static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171#ifdef CPU_DEFAULT
172static const arm_feature_set cpu_default = CPU_DEFAULT;
173#endif
174
175static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
e74cfd16
PB
199
200static const arm_feature_set arm_arch_any = ARM_ANY;
201static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
2d447fca
JM
205static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
207static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62
JB
219static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
e74cfd16 223
33a392fb 224static int mfloat_abi_opt = -1;
e74cfd16
PB
225/* Record user cpu selection for object attributes. */
226static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
227/* Must be long enough to hold any of the names in arm_cpus. */
228static char selected_cpu_name[16];
7cc69913 229#ifdef OBJ_ELF
deeaaff8
DJ
230# ifdef EABI_DEFAULT
231static int meabi_flags = EABI_DEFAULT;
232# else
d507cf36 233static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 234# endif
e1da3f5b
PB
235
236bfd_boolean
237arm_is_eabi(void)
238{
239 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
240}
7cc69913 241#endif
b99bd4ef 242
b99bd4ef 243#ifdef OBJ_ELF
c19d1205 244/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
245symbolS * GOT_symbol;
246#endif
247
b99bd4ef
NC
248/* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
251 instructions. */
252static int thumb_mode = 0;
253
c19d1205
ZW
254/* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
256
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
261 there.)
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
264 machine code.
265
266 Important differences from the old Thumb mode:
267
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
276
277static bfd_boolean unified_syntax = FALSE;
b99bd4ef 278
5287ad62
JB
279enum neon_el_type
280{
dcbf9037 281 NT_invtype,
5287ad62
JB
282 NT_untyped,
283 NT_integer,
284 NT_float,
285 NT_poly,
286 NT_signed,
dcbf9037 287 NT_unsigned
5287ad62
JB
288};
289
290struct neon_type_el
291{
292 enum neon_el_type type;
293 unsigned size;
294};
295
296#define NEON_MAX_TYPE_ELS 4
297
298struct neon_type
299{
300 struct neon_type_el el[NEON_MAX_TYPE_ELS];
301 unsigned elems;
302};
303
b99bd4ef
NC
304struct arm_it
305{
c19d1205 306 const char * error;
b99bd4ef 307 unsigned long instruction;
c19d1205
ZW
308 int size;
309 int size_req;
310 int cond;
037e8744
JB
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
313 appropriate. */
314 int uncond_value;
5287ad62 315 struct neon_type vectype;
0110f2b8
PB
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
318 unsigned long relax;
b99bd4ef
NC
319 struct
320 {
321 bfd_reloc_code_real_type type;
c19d1205
ZW
322 expressionS exp;
323 int pc_rel;
b99bd4ef 324 } reloc;
b99bd4ef 325
c19d1205
ZW
326 struct
327 {
328 unsigned reg;
ca3f61f7 329 signed int imm;
dcbf9037 330 struct neon_type_el vectype;
ca3f61f7
NC
331 unsigned present : 1; /* Operand present. */
332 unsigned isreg : 1; /* Operand was a register. */
333 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
334 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 336 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 340 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 341 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 342 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
343 unsigned hasreloc : 1; /* Operand has relocation suffix. */
344 unsigned writeback : 1; /* Operand has trailing ! */
345 unsigned preind : 1; /* Preindexed address. */
346 unsigned postind : 1; /* Postindexed address. */
347 unsigned negative : 1; /* Index register was negated. */
348 unsigned shifted : 1; /* Shift applied to operation. */
349 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 350 } operands[6];
b99bd4ef
NC
351};
352
c19d1205 353static struct arm_it inst;
b99bd4ef
NC
354
355#define NUM_FLOAT_VALS 8
356
05d2d07e 357const char * fp_const[] =
b99bd4ef
NC
358{
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
360};
361
c19d1205 362/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
363#define MAX_LITTLENUMS 6
364
365LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
366
367#define FAIL (-1)
368#define SUCCESS (0)
369
370#define SUFF_S 1
371#define SUFF_D 2
372#define SUFF_E 3
373#define SUFF_P 4
374
c19d1205
ZW
375#define CP_T_X 0x00008000
376#define CP_T_Y 0x00400000
b99bd4ef 377
c19d1205
ZW
378#define CONDS_BIT 0x00100000
379#define LOAD_BIT 0x00100000
b99bd4ef
NC
380
381#define DOUBLE_LOAD_FLAG 0x00000001
382
383struct asm_cond
384{
c19d1205 385 const char * template;
b99bd4ef
NC
386 unsigned long value;
387};
388
c19d1205 389#define COND_ALWAYS 0xE
b99bd4ef 390
b99bd4ef
NC
391struct asm_psr
392{
b34976b6 393 const char *template;
b99bd4ef
NC
394 unsigned long field;
395};
396
62b3e311
PB
397struct asm_barrier_opt
398{
399 const char *template;
400 unsigned long value;
401};
402
2d2255b5 403/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
404#define SPSR_BIT (1 << 22)
405
c19d1205
ZW
406/* The individual PSR flag bits. */
407#define PSR_c (1 << 16)
408#define PSR_x (1 << 17)
409#define PSR_s (1 << 18)
410#define PSR_f (1 << 19)
b99bd4ef 411
c19d1205 412struct reloc_entry
bfae80f2 413{
c19d1205
ZW
414 char *name;
415 bfd_reloc_code_real_type reloc;
bfae80f2
RE
416};
417
5287ad62 418enum vfp_reg_pos
bfae80f2 419{
5287ad62
JB
420 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
422};
423
424enum vfp_ldstm_type
425{
426 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
427};
428
dcbf9037
JB
429/* Bits for DEFINED field in neon_typed_alias. */
430#define NTA_HASTYPE 1
431#define NTA_HASINDEX 2
432
433struct neon_typed_alias
434{
435 unsigned char defined;
436 unsigned char index;
437 struct neon_type_el eltype;
438};
439
c19d1205
ZW
440/* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
442enum arm_reg_type
bfae80f2 443{
c19d1205
ZW
444 REG_TYPE_RN,
445 REG_TYPE_CP,
446 REG_TYPE_CN,
447 REG_TYPE_FN,
448 REG_TYPE_VFS,
449 REG_TYPE_VFD,
5287ad62 450 REG_TYPE_NQ,
037e8744 451 REG_TYPE_VFSD,
5287ad62 452 REG_TYPE_NDQ,
037e8744 453 REG_TYPE_NSDQ,
c19d1205
ZW
454 REG_TYPE_VFC,
455 REG_TYPE_MVF,
456 REG_TYPE_MVD,
457 REG_TYPE_MVFX,
458 REG_TYPE_MVDX,
459 REG_TYPE_MVAX,
460 REG_TYPE_DSPSC,
461 REG_TYPE_MMXWR,
462 REG_TYPE_MMXWC,
463 REG_TYPE_MMXWCG,
464 REG_TYPE_XSCALE,
bfae80f2
RE
465};
466
dcbf9037
JB
467/* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
471struct reg_entry
472{
dcbf9037
JB
473 const char *name;
474 unsigned char number;
475 unsigned char type;
476 unsigned char builtin;
477 struct neon_typed_alias *neon;
6c43fab6
RE
478};
479
c19d1205
ZW
480/* Diagnostics used when we don't get a register of the expected type. */
481const char *const reg_expected_msgs[] =
482{
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
5287ad62
JB
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
037e8744 490 N_("VFP single or double precision register expected"),
5287ad62 491 N_("Neon double or quad precision register expected"),
037e8744 492 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
6c43fab6
RE
504};
505
c19d1205
ZW
506/* Some well known registers that we refer to directly elsewhere. */
507#define REG_SP 13
508#define REG_LR 14
509#define REG_PC 15
404ff6b5 510
b99bd4ef
NC
511/* ARM instructions take 4bytes in the object file, Thumb instructions
512 take 2: */
c19d1205 513#define INSN_SIZE 4
b99bd4ef
NC
514
515struct asm_opcode
516{
517 /* Basic string to match. */
c19d1205
ZW
518 const char *template;
519
520 /* Parameters to instruction. */
521 unsigned char operands[8];
522
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag : 4;
b99bd4ef
NC
525
526 /* Basic instruction code. */
c19d1205 527 unsigned int avalue : 28;
b99bd4ef 528
c19d1205
ZW
529 /* Thumb-format instruction code. */
530 unsigned int tvalue;
b99bd4ef 531
90e4755a 532 /* Which architecture variant provides this instruction. */
e74cfd16
PB
533 const arm_feature_set *avariant;
534 const arm_feature_set *tvariant;
c19d1205
ZW
535
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode) (void);
b99bd4ef 538
c19d1205
ZW
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode) (void);
b99bd4ef
NC
541};
542
a737bd4d
NC
543/* Defines for various bits that we will want to toggle. */
544#define INST_IMMEDIATE 0x02000000
545#define OFFSET_REG 0x02000000
c19d1205 546#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
547#define SHIFT_BY_REG 0x00000010
548#define PRE_INDEX 0x01000000
549#define INDEX_UP 0x00800000
550#define WRITE_BACK 0x00200000
551#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 552#define CPSI_MMOD 0x00020000
90e4755a 553
a737bd4d
NC
554#define LITERAL_MASK 0xf000f000
555#define OPCODE_MASK 0xfe1fffff
556#define V4_STR_BIT 0x00000020
90e4755a 557
efd81785
PB
558#define T2_SUBS_PC_LR 0xf3de8f00
559
a737bd4d 560#define DATA_OP_SHIFT 21
90e4755a 561
ef8d22e6
PB
562#define T2_OPCODE_MASK 0xfe1fffff
563#define T2_DATA_OP_SHIFT 21
564
a737bd4d
NC
565/* Codes to distinguish the arithmetic instructions. */
566#define OPCODE_AND 0
567#define OPCODE_EOR 1
568#define OPCODE_SUB 2
569#define OPCODE_RSB 3
570#define OPCODE_ADD 4
571#define OPCODE_ADC 5
572#define OPCODE_SBC 6
573#define OPCODE_RSC 7
574#define OPCODE_TST 8
575#define OPCODE_TEQ 9
576#define OPCODE_CMP 10
577#define OPCODE_CMN 11
578#define OPCODE_ORR 12
579#define OPCODE_MOV 13
580#define OPCODE_BIC 14
581#define OPCODE_MVN 15
90e4755a 582
ef8d22e6
PB
583#define T2_OPCODE_AND 0
584#define T2_OPCODE_BIC 1
585#define T2_OPCODE_ORR 2
586#define T2_OPCODE_ORN 3
587#define T2_OPCODE_EOR 4
588#define T2_OPCODE_ADD 8
589#define T2_OPCODE_ADC 10
590#define T2_OPCODE_SBC 11
591#define T2_OPCODE_SUB 13
592#define T2_OPCODE_RSB 14
593
a737bd4d
NC
594#define T_OPCODE_MUL 0x4340
595#define T_OPCODE_TST 0x4200
596#define T_OPCODE_CMN 0x42c0
597#define T_OPCODE_NEG 0x4240
598#define T_OPCODE_MVN 0x43c0
90e4755a 599
a737bd4d
NC
600#define T_OPCODE_ADD_R3 0x1800
601#define T_OPCODE_SUB_R3 0x1a00
602#define T_OPCODE_ADD_HI 0x4400
603#define T_OPCODE_ADD_ST 0xb000
604#define T_OPCODE_SUB_ST 0xb080
605#define T_OPCODE_ADD_SP 0xa800
606#define T_OPCODE_ADD_PC 0xa000
607#define T_OPCODE_ADD_I8 0x3000
608#define T_OPCODE_SUB_I8 0x3800
609#define T_OPCODE_ADD_I3 0x1c00
610#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 611
a737bd4d
NC
612#define T_OPCODE_ASR_R 0x4100
613#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
614#define T_OPCODE_LSR_R 0x40c0
615#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
616#define T_OPCODE_ASR_I 0x1000
617#define T_OPCODE_LSL_I 0x0000
618#define T_OPCODE_LSR_I 0x0800
b99bd4ef 619
a737bd4d
NC
620#define T_OPCODE_MOV_I8 0x2000
621#define T_OPCODE_CMP_I8 0x2800
622#define T_OPCODE_CMP_LR 0x4280
623#define T_OPCODE_MOV_HR 0x4600
624#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 625
a737bd4d
NC
626#define T_OPCODE_LDR_PC 0x4800
627#define T_OPCODE_LDR_SP 0x9800
628#define T_OPCODE_STR_SP 0x9000
629#define T_OPCODE_LDR_IW 0x6800
630#define T_OPCODE_STR_IW 0x6000
631#define T_OPCODE_LDR_IH 0x8800
632#define T_OPCODE_STR_IH 0x8000
633#define T_OPCODE_LDR_IB 0x7800
634#define T_OPCODE_STR_IB 0x7000
635#define T_OPCODE_LDR_RW 0x5800
636#define T_OPCODE_STR_RW 0x5000
637#define T_OPCODE_LDR_RH 0x5a00
638#define T_OPCODE_STR_RH 0x5200
639#define T_OPCODE_LDR_RB 0x5c00
640#define T_OPCODE_STR_RB 0x5400
c9b604bd 641
a737bd4d
NC
642#define T_OPCODE_PUSH 0xb400
643#define T_OPCODE_POP 0xbc00
b99bd4ef 644
2fc8bdac 645#define T_OPCODE_BRANCH 0xe000
b99bd4ef 646
a737bd4d 647#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 648#define THUMB_PP_PC_LR 0x0100
c19d1205 649#define THUMB_LOAD_BIT 0x0800
53365c0d 650#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
651
652#define BAD_ARGS _("bad arguments to instruction")
653#define BAD_PC _("r15 not allowed here")
654#define BAD_COND _("instruction cannot be conditional")
655#define BAD_OVERLAP _("registers may not be the same")
656#define BAD_HIREG _("lo register required")
657#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 658#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
659#define BAD_BRANCH _("branch must be last instruction in IT block")
660#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 661#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
662
663static struct hash_control *arm_ops_hsh;
664static struct hash_control *arm_cond_hsh;
665static struct hash_control *arm_shift_hsh;
666static struct hash_control *arm_psr_hsh;
62b3e311 667static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
668static struct hash_control *arm_reg_hsh;
669static struct hash_control *arm_reloc_hsh;
62b3e311 670static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 671
b99bd4ef
NC
672/* Stuff needed to resolve the label ambiguity
673 As:
674 ...
675 label: <insn>
676 may differ from:
677 ...
678 label:
c19d1205 679 <insn>
b99bd4ef
NC
680*/
681
682symbolS * last_label_seen;
b34976b6 683static int label_is_thumb_function_name = FALSE;
a737bd4d 684\f
3d0c9500
NC
685/* Literal pool structure. Held on a per-section
686 and per-sub-section basis. */
a737bd4d 687
c19d1205 688#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 689typedef struct literal_pool
b99bd4ef 690{
c19d1205
ZW
691 expressionS literals [MAX_LITERAL_POOL_SIZE];
692 unsigned int next_free_entry;
693 unsigned int id;
694 symbolS * symbol;
695 segT section;
696 subsegT sub_section;
61b5f74b 697 struct literal_pool * next;
3d0c9500 698} literal_pool;
b99bd4ef 699
3d0c9500
NC
700/* Pointer to a linked list of literal pools. */
701literal_pool * list_of_pools = NULL;
e27ec89e
PB
702
703/* State variables for IT block handling. */
704static bfd_boolean current_it_mask = 0;
705static int current_cc;
706
c19d1205
ZW
707\f
708/* Pure syntax. */
b99bd4ef 709
c19d1205
ZW
710/* This array holds the chars that always start a comment. If the
711 pre-processor is disabled, these aren't very useful. */
712const char comment_chars[] = "@";
3d0c9500 713
c19d1205
ZW
714/* This array holds the chars that only start a comment at the beginning of
715 a line. If the line seems to have the form '# 123 filename'
716 .line and .file directives will appear in the pre-processed output. */
717/* Note that input_file.c hand checks for '#' at the beginning of the
718 first line of the input file. This is because the compiler outputs
719 #NO_APP at the beginning of its output. */
720/* Also note that comments like this one will always work. */
721const char line_comment_chars[] = "#";
3d0c9500 722
c19d1205 723const char line_separator_chars[] = ";";
b99bd4ef 724
c19d1205
ZW
725/* Chars that can be used to separate mant
726 from exp in floating point numbers. */
727const char EXP_CHARS[] = "eE";
3d0c9500 728
c19d1205
ZW
729/* Chars that mean this number is a floating point constant. */
730/* As in 0f12.456 */
731/* or 0d1.2345e12 */
b99bd4ef 732
c19d1205 733const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 734
c19d1205
ZW
735/* Prefix characters that indicate the start of an immediate
736 value. */
737#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 738
c19d1205
ZW
739/* Separator character handling. */
740
741#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
742
743static inline int
744skip_past_char (char ** str, char c)
745{
746 if (**str == c)
747 {
748 (*str)++;
749 return SUCCESS;
3d0c9500 750 }
c19d1205
ZW
751 else
752 return FAIL;
753}
754#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 755
c19d1205
ZW
756/* Arithmetic expressions (possibly involving symbols). */
757
758/* Return TRUE if anything in the expression is a bignum. */
759
760static int
761walk_no_bignums (symbolS * sp)
762{
763 if (symbol_get_value_expression (sp)->X_op == O_big)
764 return 1;
765
766 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 767 {
c19d1205
ZW
768 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
769 || (symbol_get_value_expression (sp)->X_op_symbol
770 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
771 }
772
c19d1205 773 return 0;
3d0c9500
NC
774}
775
c19d1205
ZW
776static int in_my_get_expression = 0;
777
778/* Third argument to my_get_expression. */
779#define GE_NO_PREFIX 0
780#define GE_IMM_PREFIX 1
781#define GE_OPT_PREFIX 2
5287ad62
JB
782/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
783 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
784#define GE_OPT_PREFIX_BIG 3
a737bd4d 785
b99bd4ef 786static int
c19d1205 787my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 788{
c19d1205
ZW
789 char * save_in;
790 segT seg;
b99bd4ef 791
c19d1205
ZW
792 /* In unified syntax, all prefixes are optional. */
793 if (unified_syntax)
5287ad62
JB
794 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
795 : GE_OPT_PREFIX;
b99bd4ef 796
c19d1205 797 switch (prefix_mode)
b99bd4ef 798 {
c19d1205
ZW
799 case GE_NO_PREFIX: break;
800 case GE_IMM_PREFIX:
801 if (!is_immediate_prefix (**str))
802 {
803 inst.error = _("immediate expression requires a # prefix");
804 return FAIL;
805 }
806 (*str)++;
807 break;
808 case GE_OPT_PREFIX:
5287ad62 809 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
810 if (is_immediate_prefix (**str))
811 (*str)++;
812 break;
813 default: abort ();
814 }
b99bd4ef 815
c19d1205 816 memset (ep, 0, sizeof (expressionS));
b99bd4ef 817
c19d1205
ZW
818 save_in = input_line_pointer;
819 input_line_pointer = *str;
820 in_my_get_expression = 1;
821 seg = expression (ep);
822 in_my_get_expression = 0;
823
824 if (ep->X_op == O_illegal)
b99bd4ef 825 {
c19d1205
ZW
826 /* We found a bad expression in md_operand(). */
827 *str = input_line_pointer;
828 input_line_pointer = save_in;
829 if (inst.error == NULL)
830 inst.error = _("bad expression");
831 return 1;
832 }
b99bd4ef 833
c19d1205
ZW
834#ifdef OBJ_AOUT
835 if (seg != absolute_section
836 && seg != text_section
837 && seg != data_section
838 && seg != bss_section
839 && seg != undefined_section)
840 {
841 inst.error = _("bad segment");
842 *str = input_line_pointer;
843 input_line_pointer = save_in;
844 return 1;
b99bd4ef 845 }
c19d1205 846#endif
b99bd4ef 847
c19d1205
ZW
848 /* Get rid of any bignums now, so that we don't generate an error for which
849 we can't establish a line number later on. Big numbers are never valid
850 in instructions, which is where this routine is always called. */
5287ad62
JB
851 if (prefix_mode != GE_OPT_PREFIX_BIG
852 && (ep->X_op == O_big
853 || (ep->X_add_symbol
854 && (walk_no_bignums (ep->X_add_symbol)
855 || (ep->X_op_symbol
856 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
857 {
858 inst.error = _("invalid constant");
859 *str = input_line_pointer;
860 input_line_pointer = save_in;
861 return 1;
862 }
b99bd4ef 863
c19d1205
ZW
864 *str = input_line_pointer;
865 input_line_pointer = save_in;
866 return 0;
b99bd4ef
NC
867}
868
c19d1205
ZW
869/* Turn a string in input_line_pointer into a floating point constant
870 of type TYPE, and store the appropriate bytes in *LITP. The number
871 of LITTLENUMS emitted is stored in *SIZEP. An error message is
872 returned, or NULL on OK.
b99bd4ef 873
c19d1205
ZW
874 Note that fp constants aren't represent in the normal way on the ARM.
875 In big endian mode, things are as expected. However, in little endian
876 mode fp constants are big-endian word-wise, and little-endian byte-wise
877 within the words. For example, (double) 1.1 in big endian mode is
878 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
879 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 880
c19d1205 881 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 882
c19d1205
ZW
883char *
884md_atof (int type, char * litP, int * sizeP)
885{
886 int prec;
887 LITTLENUM_TYPE words[MAX_LITTLENUMS];
888 char *t;
889 int i;
b99bd4ef 890
c19d1205
ZW
891 switch (type)
892 {
893 case 'f':
894 case 'F':
895 case 's':
896 case 'S':
897 prec = 2;
898 break;
b99bd4ef 899
c19d1205
ZW
900 case 'd':
901 case 'D':
902 case 'r':
903 case 'R':
904 prec = 4;
905 break;
b99bd4ef 906
c19d1205
ZW
907 case 'x':
908 case 'X':
499ac353 909 prec = 5;
c19d1205 910 break;
b99bd4ef 911
c19d1205
ZW
912 case 'p':
913 case 'P':
499ac353 914 prec = 5;
c19d1205 915 break;
a737bd4d 916
c19d1205
ZW
917 default:
918 *sizeP = 0;
499ac353 919 return _("Unrecognized or unsupported floating point constant");
c19d1205 920 }
b99bd4ef 921
c19d1205
ZW
922 t = atof_ieee (input_line_pointer, type, words);
923 if (t)
924 input_line_pointer = t;
499ac353 925 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 926
c19d1205
ZW
927 if (target_big_endian)
928 {
929 for (i = 0; i < prec; i++)
930 {
499ac353
NC
931 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
932 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
933 }
934 }
935 else
936 {
e74cfd16 937 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
938 for (i = prec - 1; i >= 0; i--)
939 {
499ac353
NC
940 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
941 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
942 }
943 else
944 /* For a 4 byte float the order of elements in `words' is 1 0.
945 For an 8 byte float the order is 1 0 3 2. */
946 for (i = 0; i < prec; i += 2)
947 {
499ac353
NC
948 md_number_to_chars (litP, (valueT) words[i + 1],
949 sizeof (LITTLENUM_TYPE));
950 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
951 (valueT) words[i], sizeof (LITTLENUM_TYPE));
952 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
953 }
954 }
b99bd4ef 955
499ac353 956 return NULL;
c19d1205 957}
b99bd4ef 958
c19d1205
ZW
959/* We handle all bad expressions here, so that we can report the faulty
960 instruction in the error message. */
961void
962md_operand (expressionS * expr)
963{
964 if (in_my_get_expression)
965 expr->X_op = O_illegal;
b99bd4ef
NC
966}
967
c19d1205 968/* Immediate values. */
b99bd4ef 969
c19d1205
ZW
970/* Generic immediate-value read function for use in directives.
971 Accepts anything that 'expression' can fold to a constant.
972 *val receives the number. */
973#ifdef OBJ_ELF
974static int
975immediate_for_directive (int *val)
b99bd4ef 976{
c19d1205
ZW
977 expressionS exp;
978 exp.X_op = O_illegal;
b99bd4ef 979
c19d1205
ZW
980 if (is_immediate_prefix (*input_line_pointer))
981 {
982 input_line_pointer++;
983 expression (&exp);
984 }
b99bd4ef 985
c19d1205
ZW
986 if (exp.X_op != O_constant)
987 {
988 as_bad (_("expected #constant"));
989 ignore_rest_of_line ();
990 return FAIL;
991 }
992 *val = exp.X_add_number;
993 return SUCCESS;
b99bd4ef 994}
c19d1205 995#endif
b99bd4ef 996
c19d1205 997/* Register parsing. */
b99bd4ef 998
c19d1205
ZW
999/* Generic register parser. CCP points to what should be the
1000 beginning of a register name. If it is indeed a valid register
1001 name, advance CCP over it and return the reg_entry structure;
1002 otherwise return NULL. Does not issue diagnostics. */
1003
1004static struct reg_entry *
1005arm_reg_parse_multi (char **ccp)
b99bd4ef 1006{
c19d1205
ZW
1007 char *start = *ccp;
1008 char *p;
1009 struct reg_entry *reg;
b99bd4ef 1010
c19d1205
ZW
1011#ifdef REGISTER_PREFIX
1012 if (*start != REGISTER_PREFIX)
01cfc07f 1013 return NULL;
c19d1205
ZW
1014 start++;
1015#endif
1016#ifdef OPTIONAL_REGISTER_PREFIX
1017 if (*start == OPTIONAL_REGISTER_PREFIX)
1018 start++;
1019#endif
b99bd4ef 1020
c19d1205
ZW
1021 p = start;
1022 if (!ISALPHA (*p) || !is_name_beginner (*p))
1023 return NULL;
b99bd4ef 1024
c19d1205
ZW
1025 do
1026 p++;
1027 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1028
1029 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1030
1031 if (!reg)
1032 return NULL;
1033
1034 *ccp = p;
1035 return reg;
b99bd4ef
NC
1036}
1037
1038static int
dcbf9037
JB
1039arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1040 enum arm_reg_type type)
b99bd4ef 1041{
c19d1205
ZW
1042 /* Alternative syntaxes are accepted for a few register classes. */
1043 switch (type)
1044 {
1045 case REG_TYPE_MVF:
1046 case REG_TYPE_MVD:
1047 case REG_TYPE_MVFX:
1048 case REG_TYPE_MVDX:
1049 /* Generic coprocessor register names are allowed for these. */
79134647 1050 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1051 return reg->number;
1052 break;
69b97547 1053
c19d1205
ZW
1054 case REG_TYPE_CP:
1055 /* For backward compatibility, a bare number is valid here. */
1056 {
1057 unsigned long processor = strtoul (start, ccp, 10);
1058 if (*ccp != start && processor <= 15)
1059 return processor;
1060 }
6057a28f 1061
c19d1205
ZW
1062 case REG_TYPE_MMXWC:
1063 /* WC includes WCG. ??? I'm not sure this is true for all
1064 instructions that take WC registers. */
79134647 1065 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1066 return reg->number;
6057a28f 1067 break;
c19d1205 1068
6057a28f 1069 default:
c19d1205 1070 break;
6057a28f
NC
1071 }
1072
dcbf9037
JB
1073 return FAIL;
1074}
1075
1076/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1077 return value is the register number or FAIL. */
1078
1079static int
1080arm_reg_parse (char **ccp, enum arm_reg_type type)
1081{
1082 char *start = *ccp;
1083 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1084 int ret;
1085
1086 /* Do not allow a scalar (reg+index) to parse as a register. */
1087 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1088 return FAIL;
1089
1090 if (reg && reg->type == type)
1091 return reg->number;
1092
1093 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1094 return ret;
1095
c19d1205
ZW
1096 *ccp = start;
1097 return FAIL;
1098}
69b97547 1099
dcbf9037
JB
1100/* Parse a Neon type specifier. *STR should point at the leading '.'
1101 character. Does no verification at this stage that the type fits the opcode
1102 properly. E.g.,
1103
1104 .i32.i32.s16
1105 .s32.f32
1106 .u16
1107
1108 Can all be legally parsed by this function.
1109
1110 Fills in neon_type struct pointer with parsed information, and updates STR
1111 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1112 type, FAIL if not. */
1113
1114static int
1115parse_neon_type (struct neon_type *type, char **str)
1116{
1117 char *ptr = *str;
1118
1119 if (type)
1120 type->elems = 0;
1121
1122 while (type->elems < NEON_MAX_TYPE_ELS)
1123 {
1124 enum neon_el_type thistype = NT_untyped;
1125 unsigned thissize = -1u;
1126
1127 if (*ptr != '.')
1128 break;
1129
1130 ptr++;
1131
1132 /* Just a size without an explicit type. */
1133 if (ISDIGIT (*ptr))
1134 goto parsesize;
1135
1136 switch (TOLOWER (*ptr))
1137 {
1138 case 'i': thistype = NT_integer; break;
1139 case 'f': thistype = NT_float; break;
1140 case 'p': thistype = NT_poly; break;
1141 case 's': thistype = NT_signed; break;
1142 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1143 case 'd':
1144 thistype = NT_float;
1145 thissize = 64;
1146 ptr++;
1147 goto done;
dcbf9037
JB
1148 default:
1149 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1150 return FAIL;
1151 }
1152
1153 ptr++;
1154
1155 /* .f is an abbreviation for .f32. */
1156 if (thistype == NT_float && !ISDIGIT (*ptr))
1157 thissize = 32;
1158 else
1159 {
1160 parsesize:
1161 thissize = strtoul (ptr, &ptr, 10);
1162
1163 if (thissize != 8 && thissize != 16 && thissize != 32
1164 && thissize != 64)
1165 {
1166 as_bad (_("bad size %d in type specifier"), thissize);
1167 return FAIL;
1168 }
1169 }
1170
037e8744 1171 done:
dcbf9037
JB
1172 if (type)
1173 {
1174 type->el[type->elems].type = thistype;
1175 type->el[type->elems].size = thissize;
1176 type->elems++;
1177 }
1178 }
1179
1180 /* Empty/missing type is not a successful parse. */
1181 if (type->elems == 0)
1182 return FAIL;
1183
1184 *str = ptr;
1185
1186 return SUCCESS;
1187}
1188
1189/* Errors may be set multiple times during parsing or bit encoding
1190 (particularly in the Neon bits), but usually the earliest error which is set
1191 will be the most meaningful. Avoid overwriting it with later (cascading)
1192 errors by calling this function. */
1193
1194static void
1195first_error (const char *err)
1196{
1197 if (!inst.error)
1198 inst.error = err;
1199}
1200
1201/* Parse a single type, e.g. ".s32", leading period included. */
1202static int
1203parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1204{
1205 char *str = *ccp;
1206 struct neon_type optype;
1207
1208 if (*str == '.')
1209 {
1210 if (parse_neon_type (&optype, &str) == SUCCESS)
1211 {
1212 if (optype.elems == 1)
1213 *vectype = optype.el[0];
1214 else
1215 {
1216 first_error (_("only one type should be specified for operand"));
1217 return FAIL;
1218 }
1219 }
1220 else
1221 {
1222 first_error (_("vector type expected"));
1223 return FAIL;
1224 }
1225 }
1226 else
1227 return FAIL;
1228
1229 *ccp = str;
1230
1231 return SUCCESS;
1232}
1233
1234/* Special meanings for indices (which have a range of 0-7), which will fit into
1235 a 4-bit integer. */
1236
1237#define NEON_ALL_LANES 15
1238#define NEON_INTERLEAVE_LANES 14
1239
1240/* Parse either a register or a scalar, with an optional type. Return the
1241 register number, and optionally fill in the actual type of the register
1242 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1243 type/index information in *TYPEINFO. */
1244
1245static int
1246parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1247 enum arm_reg_type *rtype,
1248 struct neon_typed_alias *typeinfo)
1249{
1250 char *str = *ccp;
1251 struct reg_entry *reg = arm_reg_parse_multi (&str);
1252 struct neon_typed_alias atype;
1253 struct neon_type_el parsetype;
1254
1255 atype.defined = 0;
1256 atype.index = -1;
1257 atype.eltype.type = NT_invtype;
1258 atype.eltype.size = -1;
1259
1260 /* Try alternate syntax for some types of register. Note these are mutually
1261 exclusive with the Neon syntax extensions. */
1262 if (reg == NULL)
1263 {
1264 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1265 if (altreg != FAIL)
1266 *ccp = str;
1267 if (typeinfo)
1268 *typeinfo = atype;
1269 return altreg;
1270 }
1271
037e8744
JB
1272 /* Undo polymorphism when a set of register types may be accepted. */
1273 if ((type == REG_TYPE_NDQ
1274 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1275 || (type == REG_TYPE_VFSD
1276 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1277 || (type == REG_TYPE_NSDQ
1278 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1279 || reg->type == REG_TYPE_NQ))
1280 || (type == REG_TYPE_MMXWC
1281 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1282 type = reg->type;
1283
1284 if (type != reg->type)
1285 return FAIL;
1286
1287 if (reg->neon)
1288 atype = *reg->neon;
1289
1290 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1291 {
1292 if ((atype.defined & NTA_HASTYPE) != 0)
1293 {
1294 first_error (_("can't redefine type for operand"));
1295 return FAIL;
1296 }
1297 atype.defined |= NTA_HASTYPE;
1298 atype.eltype = parsetype;
1299 }
1300
1301 if (skip_past_char (&str, '[') == SUCCESS)
1302 {
1303 if (type != REG_TYPE_VFD)
1304 {
1305 first_error (_("only D registers may be indexed"));
1306 return FAIL;
1307 }
1308
1309 if ((atype.defined & NTA_HASINDEX) != 0)
1310 {
1311 first_error (_("can't change index for operand"));
1312 return FAIL;
1313 }
1314
1315 atype.defined |= NTA_HASINDEX;
1316
1317 if (skip_past_char (&str, ']') == SUCCESS)
1318 atype.index = NEON_ALL_LANES;
1319 else
1320 {
1321 expressionS exp;
1322
1323 my_get_expression (&exp, &str, GE_NO_PREFIX);
1324
1325 if (exp.X_op != O_constant)
1326 {
1327 first_error (_("constant expression required"));
1328 return FAIL;
1329 }
1330
1331 if (skip_past_char (&str, ']') == FAIL)
1332 return FAIL;
1333
1334 atype.index = exp.X_add_number;
1335 }
1336 }
1337
1338 if (typeinfo)
1339 *typeinfo = atype;
1340
1341 if (rtype)
1342 *rtype = type;
1343
1344 *ccp = str;
1345
1346 return reg->number;
1347}
1348
1349/* Like arm_reg_parse, but allow allow the following extra features:
1350 - If RTYPE is non-zero, return the (possibly restricted) type of the
1351 register (e.g. Neon double or quad reg when either has been requested).
1352 - If this is a Neon vector type with additional type information, fill
1353 in the struct pointed to by VECTYPE (if non-NULL).
1354 This function will fault on encountering a scalar.
1355*/
1356
1357static int
1358arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1359 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1360{
1361 struct neon_typed_alias atype;
1362 char *str = *ccp;
1363 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1364
1365 if (reg == FAIL)
1366 return FAIL;
1367
1368 /* Do not allow a scalar (reg+index) to parse as a register. */
1369 if ((atype.defined & NTA_HASINDEX) != 0)
1370 {
1371 first_error (_("register operand expected, but got scalar"));
1372 return FAIL;
1373 }
1374
1375 if (vectype)
1376 *vectype = atype.eltype;
1377
1378 *ccp = str;
1379
1380 return reg;
1381}
1382
1383#define NEON_SCALAR_REG(X) ((X) >> 4)
1384#define NEON_SCALAR_INDEX(X) ((X) & 15)
1385
5287ad62
JB
1386/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1387 have enough information to be able to do a good job bounds-checking. So, we
1388 just do easy checks here, and do further checks later. */
1389
1390static int
dcbf9037 1391parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1392{
dcbf9037 1393 int reg;
5287ad62 1394 char *str = *ccp;
dcbf9037 1395 struct neon_typed_alias atype;
5287ad62 1396
dcbf9037 1397 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5287ad62 1398
dcbf9037 1399 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62
JB
1400 return FAIL;
1401
dcbf9037 1402 if (atype.index == NEON_ALL_LANES)
5287ad62 1403 {
dcbf9037 1404 first_error (_("scalar must have an index"));
5287ad62
JB
1405 return FAIL;
1406 }
dcbf9037 1407 else if (atype.index >= 64 / elsize)
5287ad62 1408 {
dcbf9037 1409 first_error (_("scalar index out of range"));
5287ad62
JB
1410 return FAIL;
1411 }
1412
dcbf9037
JB
1413 if (type)
1414 *type = atype.eltype;
5287ad62 1415
5287ad62
JB
1416 *ccp = str;
1417
dcbf9037 1418 return reg * 16 + atype.index;
5287ad62
JB
1419}
1420
c19d1205
ZW
1421/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1422static long
1423parse_reg_list (char ** strp)
1424{
1425 char * str = * strp;
1426 long range = 0;
1427 int another_range;
a737bd4d 1428
c19d1205
ZW
1429 /* We come back here if we get ranges concatenated by '+' or '|'. */
1430 do
6057a28f 1431 {
c19d1205 1432 another_range = 0;
a737bd4d 1433
c19d1205
ZW
1434 if (*str == '{')
1435 {
1436 int in_range = 0;
1437 int cur_reg = -1;
a737bd4d 1438
c19d1205
ZW
1439 str++;
1440 do
1441 {
1442 int reg;
6057a28f 1443
dcbf9037 1444 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1445 {
dcbf9037 1446 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1447 return FAIL;
1448 }
a737bd4d 1449
c19d1205
ZW
1450 if (in_range)
1451 {
1452 int i;
a737bd4d 1453
c19d1205
ZW
1454 if (reg <= cur_reg)
1455 {
dcbf9037 1456 first_error (_("bad range in register list"));
c19d1205
ZW
1457 return FAIL;
1458 }
40a18ebd 1459
c19d1205
ZW
1460 for (i = cur_reg + 1; i < reg; i++)
1461 {
1462 if (range & (1 << i))
1463 as_tsktsk
1464 (_("Warning: duplicated register (r%d) in register list"),
1465 i);
1466 else
1467 range |= 1 << i;
1468 }
1469 in_range = 0;
1470 }
a737bd4d 1471
c19d1205
ZW
1472 if (range & (1 << reg))
1473 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1474 reg);
1475 else if (reg <= cur_reg)
1476 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1477
c19d1205
ZW
1478 range |= 1 << reg;
1479 cur_reg = reg;
1480 }
1481 while (skip_past_comma (&str) != FAIL
1482 || (in_range = 1, *str++ == '-'));
1483 str--;
a737bd4d 1484
c19d1205
ZW
1485 if (*str++ != '}')
1486 {
dcbf9037 1487 first_error (_("missing `}'"));
c19d1205
ZW
1488 return FAIL;
1489 }
1490 }
1491 else
1492 {
1493 expressionS expr;
40a18ebd 1494
c19d1205
ZW
1495 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1496 return FAIL;
40a18ebd 1497
c19d1205
ZW
1498 if (expr.X_op == O_constant)
1499 {
1500 if (expr.X_add_number
1501 != (expr.X_add_number & 0x0000ffff))
1502 {
1503 inst.error = _("invalid register mask");
1504 return FAIL;
1505 }
a737bd4d 1506
c19d1205
ZW
1507 if ((range & expr.X_add_number) != 0)
1508 {
1509 int regno = range & expr.X_add_number;
a737bd4d 1510
c19d1205
ZW
1511 regno &= -regno;
1512 regno = (1 << regno) - 1;
1513 as_tsktsk
1514 (_("Warning: duplicated register (r%d) in register list"),
1515 regno);
1516 }
a737bd4d 1517
c19d1205
ZW
1518 range |= expr.X_add_number;
1519 }
1520 else
1521 {
1522 if (inst.reloc.type != 0)
1523 {
1524 inst.error = _("expression too complex");
1525 return FAIL;
1526 }
a737bd4d 1527
c19d1205
ZW
1528 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1529 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1530 inst.reloc.pc_rel = 0;
1531 }
1532 }
a737bd4d 1533
c19d1205
ZW
1534 if (*str == '|' || *str == '+')
1535 {
1536 str++;
1537 another_range = 1;
1538 }
a737bd4d 1539 }
c19d1205 1540 while (another_range);
a737bd4d 1541
c19d1205
ZW
1542 *strp = str;
1543 return range;
a737bd4d
NC
1544}
1545
5287ad62
JB
1546/* Types of registers in a list. */
1547
1548enum reg_list_els
1549{
1550 REGLIST_VFP_S,
1551 REGLIST_VFP_D,
1552 REGLIST_NEON_D
1553};
1554
c19d1205
ZW
1555/* Parse a VFP register list. If the string is invalid return FAIL.
1556 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1557 register. Parses registers of type ETYPE.
1558 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1559 - Q registers can be used to specify pairs of D registers
1560 - { } can be omitted from around a singleton register list
1561 FIXME: This is not implemented, as it would require backtracking in
1562 some cases, e.g.:
1563 vtbl.8 d3,d4,d5
1564 This could be done (the meaning isn't really ambiguous), but doesn't
1565 fit in well with the current parsing framework.
dcbf9037
JB
1566 - 32 D registers may be used (also true for VFPv3).
1567 FIXME: Types are ignored in these register lists, which is probably a
1568 bug. */
6057a28f 1569
c19d1205 1570static int
037e8744 1571parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1572{
037e8744 1573 char *str = *ccp;
c19d1205
ZW
1574 int base_reg;
1575 int new_base;
5287ad62
JB
1576 enum arm_reg_type regtype = 0;
1577 int max_regs = 0;
c19d1205
ZW
1578 int count = 0;
1579 int warned = 0;
1580 unsigned long mask = 0;
a737bd4d 1581 int i;
6057a28f 1582
037e8744 1583 if (*str != '{')
5287ad62
JB
1584 {
1585 inst.error = _("expecting {");
1586 return FAIL;
1587 }
6057a28f 1588
037e8744 1589 str++;
6057a28f 1590
5287ad62 1591 switch (etype)
c19d1205 1592 {
5287ad62 1593 case REGLIST_VFP_S:
c19d1205
ZW
1594 regtype = REG_TYPE_VFS;
1595 max_regs = 32;
5287ad62
JB
1596 break;
1597
1598 case REGLIST_VFP_D:
1599 regtype = REG_TYPE_VFD;
b7fc2769
JB
1600 break;
1601
1602 case REGLIST_NEON_D:
1603 regtype = REG_TYPE_NDQ;
1604 break;
1605 }
1606
1607 if (etype != REGLIST_VFP_S)
1608 {
5287ad62
JB
1609 /* VFPv3 allows 32 D registers. */
1610 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1611 {
1612 max_regs = 32;
1613 if (thumb_mode)
1614 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1615 fpu_vfp_ext_v3);
1616 else
1617 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1618 fpu_vfp_ext_v3);
1619 }
1620 else
1621 max_regs = 16;
c19d1205 1622 }
6057a28f 1623
c19d1205 1624 base_reg = max_regs;
a737bd4d 1625
c19d1205
ZW
1626 do
1627 {
5287ad62 1628 int setmask = 1, addregs = 1;
dcbf9037 1629
037e8744 1630 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1631
c19d1205 1632 if (new_base == FAIL)
a737bd4d 1633 {
dcbf9037 1634 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1635 return FAIL;
1636 }
dcbf9037 1637
b7fc2769
JB
1638 if (new_base >= max_regs)
1639 {
1640 first_error (_("register out of range in list"));
1641 return FAIL;
1642 }
1643
5287ad62
JB
1644 /* Note: a value of 2 * n is returned for the register Q<n>. */
1645 if (regtype == REG_TYPE_NQ)
1646 {
1647 setmask = 3;
1648 addregs = 2;
1649 }
1650
c19d1205
ZW
1651 if (new_base < base_reg)
1652 base_reg = new_base;
a737bd4d 1653
5287ad62 1654 if (mask & (setmask << new_base))
c19d1205 1655 {
dcbf9037 1656 first_error (_("invalid register list"));
c19d1205 1657 return FAIL;
a737bd4d 1658 }
a737bd4d 1659
c19d1205
ZW
1660 if ((mask >> new_base) != 0 && ! warned)
1661 {
1662 as_tsktsk (_("register list not in ascending order"));
1663 warned = 1;
1664 }
0bbf2aa4 1665
5287ad62
JB
1666 mask |= setmask << new_base;
1667 count += addregs;
0bbf2aa4 1668
037e8744 1669 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1670 {
1671 int high_range;
0bbf2aa4 1672
037e8744 1673 str++;
0bbf2aa4 1674
037e8744 1675 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1676 == FAIL)
c19d1205
ZW
1677 {
1678 inst.error = gettext (reg_expected_msgs[regtype]);
1679 return FAIL;
1680 }
0bbf2aa4 1681
b7fc2769
JB
1682 if (high_range >= max_regs)
1683 {
1684 first_error (_("register out of range in list"));
1685 return FAIL;
1686 }
1687
5287ad62
JB
1688 if (regtype == REG_TYPE_NQ)
1689 high_range = high_range + 1;
1690
c19d1205
ZW
1691 if (high_range <= new_base)
1692 {
1693 inst.error = _("register range not in ascending order");
1694 return FAIL;
1695 }
0bbf2aa4 1696
5287ad62 1697 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1698 {
5287ad62 1699 if (mask & (setmask << new_base))
0bbf2aa4 1700 {
c19d1205
ZW
1701 inst.error = _("invalid register list");
1702 return FAIL;
0bbf2aa4 1703 }
c19d1205 1704
5287ad62
JB
1705 mask |= setmask << new_base;
1706 count += addregs;
0bbf2aa4 1707 }
0bbf2aa4 1708 }
0bbf2aa4 1709 }
037e8744 1710 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1711
037e8744 1712 str++;
0bbf2aa4 1713
c19d1205
ZW
1714 /* Sanity check -- should have raised a parse error above. */
1715 if (count == 0 || count > max_regs)
1716 abort ();
1717
1718 *pbase = base_reg;
1719
1720 /* Final test -- the registers must be consecutive. */
1721 mask >>= base_reg;
1722 for (i = 0; i < count; i++)
1723 {
1724 if ((mask & (1u << i)) == 0)
1725 {
1726 inst.error = _("non-contiguous register range");
1727 return FAIL;
1728 }
1729 }
1730
037e8744
JB
1731 *ccp = str;
1732
c19d1205 1733 return count;
b99bd4ef
NC
1734}
1735
dcbf9037
JB
1736/* True if two alias types are the same. */
1737
1738static int
1739neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1740{
1741 if (!a && !b)
1742 return 1;
1743
1744 if (!a || !b)
1745 return 0;
1746
1747 if (a->defined != b->defined)
1748 return 0;
1749
1750 if ((a->defined & NTA_HASTYPE) != 0
1751 && (a->eltype.type != b->eltype.type
1752 || a->eltype.size != b->eltype.size))
1753 return 0;
1754
1755 if ((a->defined & NTA_HASINDEX) != 0
1756 && (a->index != b->index))
1757 return 0;
1758
1759 return 1;
1760}
1761
5287ad62
JB
1762/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1763 The base register is put in *PBASE.
dcbf9037 1764 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1765 the return value.
1766 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1767 Bits [6:5] encode the list length (minus one).
1768 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1769
5287ad62 1770#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1771#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1772#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1773
1774static int
dcbf9037
JB
1775parse_neon_el_struct_list (char **str, unsigned *pbase,
1776 struct neon_type_el *eltype)
5287ad62
JB
1777{
1778 char *ptr = *str;
1779 int base_reg = -1;
1780 int reg_incr = -1;
1781 int count = 0;
1782 int lane = -1;
1783 int leading_brace = 0;
1784 enum arm_reg_type rtype = REG_TYPE_NDQ;
1785 int addregs = 1;
1786 const char *const incr_error = "register stride must be 1 or 2";
1787 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1788 struct neon_typed_alias firsttype;
5287ad62
JB
1789
1790 if (skip_past_char (&ptr, '{') == SUCCESS)
1791 leading_brace = 1;
1792
1793 do
1794 {
dcbf9037
JB
1795 struct neon_typed_alias atype;
1796 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1797
5287ad62
JB
1798 if (getreg == FAIL)
1799 {
dcbf9037 1800 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1801 return FAIL;
1802 }
1803
1804 if (base_reg == -1)
1805 {
1806 base_reg = getreg;
1807 if (rtype == REG_TYPE_NQ)
1808 {
1809 reg_incr = 1;
1810 addregs = 2;
1811 }
dcbf9037 1812 firsttype = atype;
5287ad62
JB
1813 }
1814 else if (reg_incr == -1)
1815 {
1816 reg_incr = getreg - base_reg;
1817 if (reg_incr < 1 || reg_incr > 2)
1818 {
dcbf9037 1819 first_error (_(incr_error));
5287ad62
JB
1820 return FAIL;
1821 }
1822 }
1823 else if (getreg != base_reg + reg_incr * count)
1824 {
dcbf9037
JB
1825 first_error (_(incr_error));
1826 return FAIL;
1827 }
1828
1829 if (!neon_alias_types_same (&atype, &firsttype))
1830 {
1831 first_error (_(type_error));
5287ad62
JB
1832 return FAIL;
1833 }
1834
1835 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1836 modes. */
1837 if (ptr[0] == '-')
1838 {
dcbf9037 1839 struct neon_typed_alias htype;
5287ad62
JB
1840 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1841 if (lane == -1)
1842 lane = NEON_INTERLEAVE_LANES;
1843 else if (lane != NEON_INTERLEAVE_LANES)
1844 {
dcbf9037 1845 first_error (_(type_error));
5287ad62
JB
1846 return FAIL;
1847 }
1848 if (reg_incr == -1)
1849 reg_incr = 1;
1850 else if (reg_incr != 1)
1851 {
dcbf9037 1852 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1853 return FAIL;
1854 }
1855 ptr++;
dcbf9037 1856 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1857 if (hireg == FAIL)
1858 {
dcbf9037
JB
1859 first_error (_(reg_expected_msgs[rtype]));
1860 return FAIL;
1861 }
1862 if (!neon_alias_types_same (&htype, &firsttype))
1863 {
1864 first_error (_(type_error));
5287ad62
JB
1865 return FAIL;
1866 }
1867 count += hireg + dregs - getreg;
1868 continue;
1869 }
1870
1871 /* If we're using Q registers, we can't use [] or [n] syntax. */
1872 if (rtype == REG_TYPE_NQ)
1873 {
1874 count += 2;
1875 continue;
1876 }
1877
dcbf9037 1878 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1879 {
dcbf9037
JB
1880 if (lane == -1)
1881 lane = atype.index;
1882 else if (lane != atype.index)
5287ad62 1883 {
dcbf9037
JB
1884 first_error (_(type_error));
1885 return FAIL;
5287ad62
JB
1886 }
1887 }
1888 else if (lane == -1)
1889 lane = NEON_INTERLEAVE_LANES;
1890 else if (lane != NEON_INTERLEAVE_LANES)
1891 {
dcbf9037 1892 first_error (_(type_error));
5287ad62
JB
1893 return FAIL;
1894 }
1895 count++;
1896 }
1897 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1898
1899 /* No lane set by [x]. We must be interleaving structures. */
1900 if (lane == -1)
1901 lane = NEON_INTERLEAVE_LANES;
1902
1903 /* Sanity check. */
1904 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1905 || (count > 1 && reg_incr == -1))
1906 {
dcbf9037 1907 first_error (_("error parsing element/structure list"));
5287ad62
JB
1908 return FAIL;
1909 }
1910
1911 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1912 {
dcbf9037 1913 first_error (_("expected }"));
5287ad62
JB
1914 return FAIL;
1915 }
1916
1917 if (reg_incr == -1)
1918 reg_incr = 1;
1919
dcbf9037
JB
1920 if (eltype)
1921 *eltype = firsttype.eltype;
1922
5287ad62
JB
1923 *pbase = base_reg;
1924 *str = ptr;
1925
1926 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1927}
1928
c19d1205
ZW
1929/* Parse an explicit relocation suffix on an expression. This is
1930 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1931 arm_reloc_hsh contains no entries, so this function can only
1932 succeed if there is no () after the word. Returns -1 on error,
1933 BFD_RELOC_UNUSED if there wasn't any suffix. */
1934static int
1935parse_reloc (char **str)
b99bd4ef 1936{
c19d1205
ZW
1937 struct reloc_entry *r;
1938 char *p, *q;
b99bd4ef 1939
c19d1205
ZW
1940 if (**str != '(')
1941 return BFD_RELOC_UNUSED;
b99bd4ef 1942
c19d1205
ZW
1943 p = *str + 1;
1944 q = p;
1945
1946 while (*q && *q != ')' && *q != ',')
1947 q++;
1948 if (*q != ')')
1949 return -1;
1950
1951 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1952 return -1;
1953
1954 *str = q + 1;
1955 return r->reloc;
b99bd4ef
NC
1956}
1957
c19d1205
ZW
1958/* Directives: register aliases. */
1959
dcbf9037 1960static struct reg_entry *
c19d1205 1961insert_reg_alias (char *str, int number, int type)
b99bd4ef 1962{
c19d1205
ZW
1963 struct reg_entry *new;
1964 const char *name;
b99bd4ef 1965
c19d1205
ZW
1966 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1967 {
1968 if (new->builtin)
1969 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1970
c19d1205
ZW
1971 /* Only warn about a redefinition if it's not defined as the
1972 same register. */
1973 else if (new->number != number || new->type != type)
1974 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1975
d929913e 1976 return NULL;
c19d1205 1977 }
b99bd4ef 1978
c19d1205
ZW
1979 name = xstrdup (str);
1980 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1981
c19d1205
ZW
1982 new->name = name;
1983 new->number = number;
1984 new->type = type;
1985 new->builtin = FALSE;
dcbf9037 1986 new->neon = NULL;
b99bd4ef 1987
c19d1205
ZW
1988 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1989 abort ();
dcbf9037
JB
1990
1991 return new;
1992}
1993
1994static void
1995insert_neon_reg_alias (char *str, int number, int type,
1996 struct neon_typed_alias *atype)
1997{
1998 struct reg_entry *reg = insert_reg_alias (str, number, type);
1999
2000 if (!reg)
2001 {
2002 first_error (_("attempt to redefine typed alias"));
2003 return;
2004 }
2005
2006 if (atype)
2007 {
2008 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2009 *reg->neon = *atype;
2010 }
c19d1205 2011}
b99bd4ef 2012
c19d1205 2013/* Look for the .req directive. This is of the form:
b99bd4ef 2014
c19d1205 2015 new_register_name .req existing_register_name
b99bd4ef 2016
c19d1205 2017 If we find one, or if it looks sufficiently like one that we want to
d929913e 2018 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2019
d929913e 2020static bfd_boolean
c19d1205
ZW
2021create_register_alias (char * newname, char *p)
2022{
2023 struct reg_entry *old;
2024 char *oldname, *nbuf;
2025 size_t nlen;
b99bd4ef 2026
c19d1205
ZW
2027 /* The input scrubber ensures that whitespace after the mnemonic is
2028 collapsed to single spaces. */
2029 oldname = p;
2030 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2031 return FALSE;
b99bd4ef 2032
c19d1205
ZW
2033 oldname += 6;
2034 if (*oldname == '\0')
d929913e 2035 return FALSE;
b99bd4ef 2036
c19d1205
ZW
2037 old = hash_find (arm_reg_hsh, oldname);
2038 if (!old)
b99bd4ef 2039 {
c19d1205 2040 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2041 return TRUE;
b99bd4ef
NC
2042 }
2043
c19d1205
ZW
2044 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2045 the desired alias name, and p points to its end. If not, then
2046 the desired alias name is in the global original_case_string. */
2047#ifdef TC_CASE_SENSITIVE
2048 nlen = p - newname;
2049#else
2050 newname = original_case_string;
2051 nlen = strlen (newname);
2052#endif
b99bd4ef 2053
c19d1205
ZW
2054 nbuf = alloca (nlen + 1);
2055 memcpy (nbuf, newname, nlen);
2056 nbuf[nlen] = '\0';
b99bd4ef 2057
c19d1205
ZW
2058 /* Create aliases under the new name as stated; an all-lowercase
2059 version of the new name; and an all-uppercase version of the new
2060 name. */
d929913e
NC
2061 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2062 {
2063 for (p = nbuf; *p; p++)
2064 *p = TOUPPER (*p);
c19d1205 2065
d929913e
NC
2066 if (strncmp (nbuf, newname, nlen))
2067 {
2068 /* If this attempt to create an additional alias fails, do not bother
2069 trying to create the all-lower case alias. We will fail and issue
2070 a second, duplicate error message. This situation arises when the
2071 programmer does something like:
2072 foo .req r0
2073 Foo .req r1
2074 The second .req creates the "Foo" alias but then fails to create
2075 the artifical FOO alias because it has already been created by the
2076 first .req. */
2077 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2078 return TRUE;
2079 }
c19d1205 2080
d929913e
NC
2081 for (p = nbuf; *p; p++)
2082 *p = TOLOWER (*p);
c19d1205 2083
d929913e
NC
2084 if (strncmp (nbuf, newname, nlen))
2085 insert_reg_alias (nbuf, old->number, old->type);
2086 }
c19d1205 2087
d929913e 2088 return TRUE;
b99bd4ef
NC
2089}
2090
dcbf9037
JB
2091/* Create a Neon typed/indexed register alias using directives, e.g.:
2092 X .dn d5.s32[1]
2093 Y .qn 6.s16
2094 Z .dn d7
2095 T .dn Z[0]
2096 These typed registers can be used instead of the types specified after the
2097 Neon mnemonic, so long as all operands given have types. Types can also be
2098 specified directly, e.g.:
2099 vadd d0.s32, d1.s32, d2.s32
2100*/
2101
2102static int
2103create_neon_reg_alias (char *newname, char *p)
2104{
2105 enum arm_reg_type basetype;
2106 struct reg_entry *basereg;
2107 struct reg_entry mybasereg;
2108 struct neon_type ntype;
2109 struct neon_typed_alias typeinfo;
2110 char *namebuf, *nameend;
2111 int namelen;
2112
2113 typeinfo.defined = 0;
2114 typeinfo.eltype.type = NT_invtype;
2115 typeinfo.eltype.size = -1;
2116 typeinfo.index = -1;
2117
2118 nameend = p;
2119
2120 if (strncmp (p, " .dn ", 5) == 0)
2121 basetype = REG_TYPE_VFD;
2122 else if (strncmp (p, " .qn ", 5) == 0)
2123 basetype = REG_TYPE_NQ;
2124 else
2125 return 0;
2126
2127 p += 5;
2128
2129 if (*p == '\0')
2130 return 0;
2131
2132 basereg = arm_reg_parse_multi (&p);
2133
2134 if (basereg && basereg->type != basetype)
2135 {
2136 as_bad (_("bad type for register"));
2137 return 0;
2138 }
2139
2140 if (basereg == NULL)
2141 {
2142 expressionS exp;
2143 /* Try parsing as an integer. */
2144 my_get_expression (&exp, &p, GE_NO_PREFIX);
2145 if (exp.X_op != O_constant)
2146 {
2147 as_bad (_("expression must be constant"));
2148 return 0;
2149 }
2150 basereg = &mybasereg;
2151 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2152 : exp.X_add_number;
2153 basereg->neon = 0;
2154 }
2155
2156 if (basereg->neon)
2157 typeinfo = *basereg->neon;
2158
2159 if (parse_neon_type (&ntype, &p) == SUCCESS)
2160 {
2161 /* We got a type. */
2162 if (typeinfo.defined & NTA_HASTYPE)
2163 {
2164 as_bad (_("can't redefine the type of a register alias"));
2165 return 0;
2166 }
2167
2168 typeinfo.defined |= NTA_HASTYPE;
2169 if (ntype.elems != 1)
2170 {
2171 as_bad (_("you must specify a single type only"));
2172 return 0;
2173 }
2174 typeinfo.eltype = ntype.el[0];
2175 }
2176
2177 if (skip_past_char (&p, '[') == SUCCESS)
2178 {
2179 expressionS exp;
2180 /* We got a scalar index. */
2181
2182 if (typeinfo.defined & NTA_HASINDEX)
2183 {
2184 as_bad (_("can't redefine the index of a scalar alias"));
2185 return 0;
2186 }
2187
2188 my_get_expression (&exp, &p, GE_NO_PREFIX);
2189
2190 if (exp.X_op != O_constant)
2191 {
2192 as_bad (_("scalar index must be constant"));
2193 return 0;
2194 }
2195
2196 typeinfo.defined |= NTA_HASINDEX;
2197 typeinfo.index = exp.X_add_number;
2198
2199 if (skip_past_char (&p, ']') == FAIL)
2200 {
2201 as_bad (_("expecting ]"));
2202 return 0;
2203 }
2204 }
2205
2206 namelen = nameend - newname;
2207 namebuf = alloca (namelen + 1);
2208 strncpy (namebuf, newname, namelen);
2209 namebuf[namelen] = '\0';
2210
2211 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2212 typeinfo.defined != 0 ? &typeinfo : NULL);
2213
2214 /* Insert name in all uppercase. */
2215 for (p = namebuf; *p; p++)
2216 *p = TOUPPER (*p);
2217
2218 if (strncmp (namebuf, newname, namelen))
2219 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2220 typeinfo.defined != 0 ? &typeinfo : NULL);
2221
2222 /* Insert name in all lowercase. */
2223 for (p = namebuf; *p; p++)
2224 *p = TOLOWER (*p);
2225
2226 if (strncmp (namebuf, newname, namelen))
2227 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2228 typeinfo.defined != 0 ? &typeinfo : NULL);
2229
2230 return 1;
2231}
2232
c19d1205
ZW
2233/* Should never be called, as .req goes between the alias and the
2234 register name, not at the beginning of the line. */
b99bd4ef 2235static void
c19d1205 2236s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2237{
c19d1205
ZW
2238 as_bad (_("invalid syntax for .req directive"));
2239}
b99bd4ef 2240
dcbf9037
JB
2241static void
2242s_dn (int a ATTRIBUTE_UNUSED)
2243{
2244 as_bad (_("invalid syntax for .dn directive"));
2245}
2246
2247static void
2248s_qn (int a ATTRIBUTE_UNUSED)
2249{
2250 as_bad (_("invalid syntax for .qn directive"));
2251}
2252
c19d1205
ZW
2253/* The .unreq directive deletes an alias which was previously defined
2254 by .req. For example:
b99bd4ef 2255
c19d1205
ZW
2256 my_alias .req r11
2257 .unreq my_alias */
b99bd4ef
NC
2258
2259static void
c19d1205 2260s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2261{
c19d1205
ZW
2262 char * name;
2263 char saved_char;
b99bd4ef 2264
c19d1205
ZW
2265 name = input_line_pointer;
2266
2267 while (*input_line_pointer != 0
2268 && *input_line_pointer != ' '
2269 && *input_line_pointer != '\n')
2270 ++input_line_pointer;
2271
2272 saved_char = *input_line_pointer;
2273 *input_line_pointer = 0;
2274
2275 if (!*name)
2276 as_bad (_("invalid syntax for .unreq directive"));
2277 else
2278 {
2279 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2280
2281 if (!reg)
2282 as_bad (_("unknown register alias '%s'"), name);
2283 else if (reg->builtin)
2284 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2285 name);
2286 else
2287 {
d929913e
NC
2288 char * p;
2289 char * nbuf;
2290
c19d1205
ZW
2291 hash_delete (arm_reg_hsh, name);
2292 free ((char *) reg->name);
dcbf9037
JB
2293 if (reg->neon)
2294 free (reg->neon);
c19d1205 2295 free (reg);
d929913e
NC
2296
2297 /* Also locate the all upper case and all lower case versions.
2298 Do not complain if we cannot find one or the other as it
2299 was probably deleted above. */
2300
2301 nbuf = strdup (name);
2302 for (p = nbuf; *p; p++)
2303 *p = TOUPPER (*p);
2304 reg = hash_find (arm_reg_hsh, nbuf);
2305 if (reg)
2306 {
2307 hash_delete (arm_reg_hsh, nbuf);
2308 free ((char *) reg->name);
2309 if (reg->neon)
2310 free (reg->neon);
2311 free (reg);
2312 }
2313
2314 for (p = nbuf; *p; p++)
2315 *p = TOLOWER (*p);
2316 reg = hash_find (arm_reg_hsh, nbuf);
2317 if (reg)
2318 {
2319 hash_delete (arm_reg_hsh, nbuf);
2320 free ((char *) reg->name);
2321 if (reg->neon)
2322 free (reg->neon);
2323 free (reg);
2324 }
2325
2326 free (nbuf);
c19d1205
ZW
2327 }
2328 }
b99bd4ef 2329
c19d1205 2330 *input_line_pointer = saved_char;
b99bd4ef
NC
2331 demand_empty_rest_of_line ();
2332}
2333
c19d1205
ZW
2334/* Directives: Instruction set selection. */
2335
2336#ifdef OBJ_ELF
2337/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2338 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2339 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2340 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2341
2342static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2343
e821645d 2344void
c19d1205 2345mapping_state (enum mstate state)
b99bd4ef 2346{
a737bd4d 2347 symbolS * symbolP;
c19d1205
ZW
2348 const char * symname;
2349 int type;
b99bd4ef 2350
c19d1205
ZW
2351 if (mapstate == state)
2352 /* The mapping symbol has already been emitted.
2353 There is nothing else to do. */
2354 return;
b99bd4ef 2355
c19d1205 2356 mapstate = state;
b99bd4ef 2357
c19d1205 2358 switch (state)
b99bd4ef 2359 {
c19d1205
ZW
2360 case MAP_DATA:
2361 symname = "$d";
2362 type = BSF_NO_FLAGS;
2363 break;
2364 case MAP_ARM:
2365 symname = "$a";
2366 type = BSF_NO_FLAGS;
2367 break;
2368 case MAP_THUMB:
2369 symname = "$t";
2370 type = BSF_NO_FLAGS;
2371 break;
2372 case MAP_UNDEFINED:
2373 return;
2374 default:
2375 abort ();
2376 }
2377
2378 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2379
2380 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2381 symbol_table_insert (symbolP);
2382 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2383
2384 switch (state)
2385 {
2386 case MAP_ARM:
2387 THUMB_SET_FUNC (symbolP, 0);
2388 ARM_SET_THUMB (symbolP, 0);
2389 ARM_SET_INTERWORK (symbolP, support_interwork);
2390 break;
2391
2392 case MAP_THUMB:
2393 THUMB_SET_FUNC (symbolP, 1);
2394 ARM_SET_THUMB (symbolP, 1);
2395 ARM_SET_INTERWORK (symbolP, support_interwork);
2396 break;
2397
2398 case MAP_DATA:
2399 default:
2400 return;
2401 }
2402}
2403#else
2404#define mapping_state(x) /* nothing */
2405#endif
2406
2407/* Find the real, Thumb encoded start of a Thumb function. */
2408
2409static symbolS *
2410find_real_start (symbolS * symbolP)
2411{
2412 char * real_start;
2413 const char * name = S_GET_NAME (symbolP);
2414 symbolS * new_target;
2415
2416 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2417#define STUB_NAME ".real_start_of"
2418
2419 if (name == NULL)
2420 abort ();
2421
37f6032b
ZW
2422 /* The compiler may generate BL instructions to local labels because
2423 it needs to perform a branch to a far away location. These labels
2424 do not have a corresponding ".real_start_of" label. We check
2425 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2426 the ".real_start_of" convention for nonlocal branches. */
2427 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2428 return symbolP;
2429
37f6032b 2430 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2431 new_target = symbol_find (real_start);
2432
2433 if (new_target == NULL)
2434 {
bd3ba5d1 2435 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2436 new_target = symbolP;
2437 }
2438
c19d1205
ZW
2439 return new_target;
2440}
2441
2442static void
2443opcode_select (int width)
2444{
2445 switch (width)
2446 {
2447 case 16:
2448 if (! thumb_mode)
2449 {
e74cfd16 2450 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2451 as_bad (_("selected processor does not support THUMB opcodes"));
2452
2453 thumb_mode = 1;
2454 /* No need to force the alignment, since we will have been
2455 coming from ARM mode, which is word-aligned. */
2456 record_alignment (now_seg, 1);
2457 }
2458 mapping_state (MAP_THUMB);
2459 break;
2460
2461 case 32:
2462 if (thumb_mode)
2463 {
e74cfd16 2464 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2465 as_bad (_("selected processor does not support ARM opcodes"));
2466
2467 thumb_mode = 0;
2468
2469 if (!need_pass_2)
2470 frag_align (2, 0, 0);
2471
2472 record_alignment (now_seg, 1);
2473 }
2474 mapping_state (MAP_ARM);
2475 break;
2476
2477 default:
2478 as_bad (_("invalid instruction size selected (%d)"), width);
2479 }
2480}
2481
2482static void
2483s_arm (int ignore ATTRIBUTE_UNUSED)
2484{
2485 opcode_select (32);
2486 demand_empty_rest_of_line ();
2487}
2488
2489static void
2490s_thumb (int ignore ATTRIBUTE_UNUSED)
2491{
2492 opcode_select (16);
2493 demand_empty_rest_of_line ();
2494}
2495
2496static void
2497s_code (int unused ATTRIBUTE_UNUSED)
2498{
2499 int temp;
2500
2501 temp = get_absolute_expression ();
2502 switch (temp)
2503 {
2504 case 16:
2505 case 32:
2506 opcode_select (temp);
2507 break;
2508
2509 default:
2510 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2511 }
2512}
2513
2514static void
2515s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2516{
2517 /* If we are not already in thumb mode go into it, EVEN if
2518 the target processor does not support thumb instructions.
2519 This is used by gcc/config/arm/lib1funcs.asm for example
2520 to compile interworking support functions even if the
2521 target processor should not support interworking. */
2522 if (! thumb_mode)
2523 {
2524 thumb_mode = 2;
2525 record_alignment (now_seg, 1);
2526 }
2527
2528 demand_empty_rest_of_line ();
2529}
2530
2531static void
2532s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2533{
2534 s_thumb (0);
2535
2536 /* The following label is the name/address of the start of a Thumb function.
2537 We need to know this for the interworking support. */
2538 label_is_thumb_function_name = TRUE;
2539}
2540
2541/* Perform a .set directive, but also mark the alias as
2542 being a thumb function. */
2543
2544static void
2545s_thumb_set (int equiv)
2546{
2547 /* XXX the following is a duplicate of the code for s_set() in read.c
2548 We cannot just call that code as we need to get at the symbol that
2549 is created. */
2550 char * name;
2551 char delim;
2552 char * end_name;
2553 symbolS * symbolP;
2554
2555 /* Especial apologies for the random logic:
2556 This just grew, and could be parsed much more simply!
2557 Dean - in haste. */
2558 name = input_line_pointer;
2559 delim = get_symbol_end ();
2560 end_name = input_line_pointer;
2561 *end_name = delim;
2562
2563 if (*input_line_pointer != ',')
2564 {
2565 *end_name = 0;
2566 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2567 *end_name = delim;
2568 ignore_rest_of_line ();
2569 return;
2570 }
2571
2572 input_line_pointer++;
2573 *end_name = 0;
2574
2575 if (name[0] == '.' && name[1] == '\0')
2576 {
2577 /* XXX - this should not happen to .thumb_set. */
2578 abort ();
2579 }
2580
2581 if ((symbolP = symbol_find (name)) == NULL
2582 && (symbolP = md_undefined_symbol (name)) == NULL)
2583 {
2584#ifndef NO_LISTING
2585 /* When doing symbol listings, play games with dummy fragments living
2586 outside the normal fragment chain to record the file and line info
c19d1205 2587 for this symbol. */
b99bd4ef
NC
2588 if (listing & LISTING_SYMBOLS)
2589 {
2590 extern struct list_info_struct * listing_tail;
a737bd4d 2591 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2592
2593 memset (dummy_frag, 0, sizeof (fragS));
2594 dummy_frag->fr_type = rs_fill;
2595 dummy_frag->line = listing_tail;
2596 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2597 dummy_frag->fr_symbol = symbolP;
2598 }
2599 else
2600#endif
2601 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2602
2603#ifdef OBJ_COFF
2604 /* "set" symbols are local unless otherwise specified. */
2605 SF_SET_LOCAL (symbolP);
2606#endif /* OBJ_COFF */
2607 } /* Make a new symbol. */
2608
2609 symbol_table_insert (symbolP);
2610
2611 * end_name = delim;
2612
2613 if (equiv
2614 && S_IS_DEFINED (symbolP)
2615 && S_GET_SEGMENT (symbolP) != reg_section)
2616 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2617
2618 pseudo_set (symbolP);
2619
2620 demand_empty_rest_of_line ();
2621
c19d1205 2622 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2623
2624 THUMB_SET_FUNC (symbolP, 1);
2625 ARM_SET_THUMB (symbolP, 1);
2626#if defined OBJ_ELF || defined OBJ_COFF
2627 ARM_SET_INTERWORK (symbolP, support_interwork);
2628#endif
2629}
2630
c19d1205 2631/* Directives: Mode selection. */
b99bd4ef 2632
c19d1205
ZW
2633/* .syntax [unified|divided] - choose the new unified syntax
2634 (same for Arm and Thumb encoding, modulo slight differences in what
2635 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2636static void
c19d1205 2637s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2638{
c19d1205
ZW
2639 char *name, delim;
2640
2641 name = input_line_pointer;
2642 delim = get_symbol_end ();
2643
2644 if (!strcasecmp (name, "unified"))
2645 unified_syntax = TRUE;
2646 else if (!strcasecmp (name, "divided"))
2647 unified_syntax = FALSE;
2648 else
2649 {
2650 as_bad (_("unrecognized syntax mode \"%s\""), name);
2651 return;
2652 }
2653 *input_line_pointer = delim;
b99bd4ef
NC
2654 demand_empty_rest_of_line ();
2655}
2656
c19d1205
ZW
2657/* Directives: sectioning and alignment. */
2658
2659/* Same as s_align_ptwo but align 0 => align 2. */
2660
b99bd4ef 2661static void
c19d1205 2662s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2663{
a737bd4d 2664 int temp;
dce323d1 2665 bfd_boolean fill_p;
c19d1205
ZW
2666 long temp_fill;
2667 long max_alignment = 15;
b99bd4ef
NC
2668
2669 temp = get_absolute_expression ();
c19d1205
ZW
2670 if (temp > max_alignment)
2671 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2672 else if (temp < 0)
b99bd4ef 2673 {
c19d1205
ZW
2674 as_bad (_("alignment negative. 0 assumed."));
2675 temp = 0;
2676 }
b99bd4ef 2677
c19d1205
ZW
2678 if (*input_line_pointer == ',')
2679 {
2680 input_line_pointer++;
2681 temp_fill = get_absolute_expression ();
dce323d1 2682 fill_p = TRUE;
b99bd4ef 2683 }
c19d1205 2684 else
dce323d1
PB
2685 {
2686 fill_p = FALSE;
2687 temp_fill = 0;
2688 }
b99bd4ef 2689
c19d1205
ZW
2690 if (!temp)
2691 temp = 2;
b99bd4ef 2692
c19d1205
ZW
2693 /* Only make a frag if we HAVE to. */
2694 if (temp && !need_pass_2)
dce323d1
PB
2695 {
2696 if (!fill_p && subseg_text_p (now_seg))
2697 frag_align_code (temp, 0);
2698 else
2699 frag_align (temp, (int) temp_fill, 0);
2700 }
c19d1205
ZW
2701 demand_empty_rest_of_line ();
2702
2703 record_alignment (now_seg, temp);
b99bd4ef
NC
2704}
2705
c19d1205
ZW
2706static void
2707s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2708{
c19d1205
ZW
2709 /* We don't support putting frags in the BSS segment, we fake it by
2710 marking in_bss, then looking at s_skip for clues. */
2711 subseg_set (bss_section, 0);
2712 demand_empty_rest_of_line ();
2713 mapping_state (MAP_DATA);
2714}
b99bd4ef 2715
c19d1205
ZW
2716static void
2717s_even (int ignore ATTRIBUTE_UNUSED)
2718{
2719 /* Never make frag if expect extra pass. */
2720 if (!need_pass_2)
2721 frag_align (1, 0, 0);
b99bd4ef 2722
c19d1205 2723 record_alignment (now_seg, 1);
b99bd4ef 2724
c19d1205 2725 demand_empty_rest_of_line ();
b99bd4ef
NC
2726}
2727
c19d1205 2728/* Directives: Literal pools. */
a737bd4d 2729
c19d1205
ZW
2730static literal_pool *
2731find_literal_pool (void)
a737bd4d 2732{
c19d1205 2733 literal_pool * pool;
a737bd4d 2734
c19d1205 2735 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2736 {
c19d1205
ZW
2737 if (pool->section == now_seg
2738 && pool->sub_section == now_subseg)
2739 break;
a737bd4d
NC
2740 }
2741
c19d1205 2742 return pool;
a737bd4d
NC
2743}
2744
c19d1205
ZW
2745static literal_pool *
2746find_or_make_literal_pool (void)
a737bd4d 2747{
c19d1205
ZW
2748 /* Next literal pool ID number. */
2749 static unsigned int latest_pool_num = 1;
2750 literal_pool * pool;
a737bd4d 2751
c19d1205 2752 pool = find_literal_pool ();
a737bd4d 2753
c19d1205 2754 if (pool == NULL)
a737bd4d 2755 {
c19d1205
ZW
2756 /* Create a new pool. */
2757 pool = xmalloc (sizeof (* pool));
2758 if (! pool)
2759 return NULL;
a737bd4d 2760
c19d1205
ZW
2761 pool->next_free_entry = 0;
2762 pool->section = now_seg;
2763 pool->sub_section = now_subseg;
2764 pool->next = list_of_pools;
2765 pool->symbol = NULL;
2766
2767 /* Add it to the list. */
2768 list_of_pools = pool;
a737bd4d 2769 }
a737bd4d 2770
c19d1205
ZW
2771 /* New pools, and emptied pools, will have a NULL symbol. */
2772 if (pool->symbol == NULL)
a737bd4d 2773 {
c19d1205
ZW
2774 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2775 (valueT) 0, &zero_address_frag);
2776 pool->id = latest_pool_num ++;
a737bd4d
NC
2777 }
2778
c19d1205
ZW
2779 /* Done. */
2780 return pool;
a737bd4d
NC
2781}
2782
c19d1205
ZW
2783/* Add the literal in the global 'inst'
2784 structure to the relevent literal pool. */
b99bd4ef
NC
2785
2786static int
c19d1205 2787add_to_lit_pool (void)
b99bd4ef 2788{
c19d1205
ZW
2789 literal_pool * pool;
2790 unsigned int entry;
b99bd4ef 2791
c19d1205
ZW
2792 pool = find_or_make_literal_pool ();
2793
2794 /* Check if this literal value is already in the pool. */
2795 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2796 {
c19d1205
ZW
2797 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2798 && (inst.reloc.exp.X_op == O_constant)
2799 && (pool->literals[entry].X_add_number
2800 == inst.reloc.exp.X_add_number)
2801 && (pool->literals[entry].X_unsigned
2802 == inst.reloc.exp.X_unsigned))
2803 break;
2804
2805 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2806 && (inst.reloc.exp.X_op == O_symbol)
2807 && (pool->literals[entry].X_add_number
2808 == inst.reloc.exp.X_add_number)
2809 && (pool->literals[entry].X_add_symbol
2810 == inst.reloc.exp.X_add_symbol)
2811 && (pool->literals[entry].X_op_symbol
2812 == inst.reloc.exp.X_op_symbol))
2813 break;
b99bd4ef
NC
2814 }
2815
c19d1205
ZW
2816 /* Do we need to create a new entry? */
2817 if (entry == pool->next_free_entry)
2818 {
2819 if (entry >= MAX_LITERAL_POOL_SIZE)
2820 {
2821 inst.error = _("literal pool overflow");
2822 return FAIL;
2823 }
2824
2825 pool->literals[entry] = inst.reloc.exp;
2826 pool->next_free_entry += 1;
2827 }
b99bd4ef 2828
c19d1205
ZW
2829 inst.reloc.exp.X_op = O_symbol;
2830 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2831 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2832
c19d1205 2833 return SUCCESS;
b99bd4ef
NC
2834}
2835
c19d1205
ZW
2836/* Can't use symbol_new here, so have to create a symbol and then at
2837 a later date assign it a value. Thats what these functions do. */
e16bb312 2838
c19d1205
ZW
2839static void
2840symbol_locate (symbolS * symbolP,
2841 const char * name, /* It is copied, the caller can modify. */
2842 segT segment, /* Segment identifier (SEG_<something>). */
2843 valueT valu, /* Symbol value. */
2844 fragS * frag) /* Associated fragment. */
2845{
2846 unsigned int name_length;
2847 char * preserved_copy_of_name;
e16bb312 2848
c19d1205
ZW
2849 name_length = strlen (name) + 1; /* +1 for \0. */
2850 obstack_grow (&notes, name, name_length);
2851 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2852
c19d1205
ZW
2853#ifdef tc_canonicalize_symbol_name
2854 preserved_copy_of_name =
2855 tc_canonicalize_symbol_name (preserved_copy_of_name);
2856#endif
b99bd4ef 2857
c19d1205 2858 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2859
c19d1205
ZW
2860 S_SET_SEGMENT (symbolP, segment);
2861 S_SET_VALUE (symbolP, valu);
2862 symbol_clear_list_pointers (symbolP);
b99bd4ef 2863
c19d1205 2864 symbol_set_frag (symbolP, frag);
b99bd4ef 2865
c19d1205
ZW
2866 /* Link to end of symbol chain. */
2867 {
2868 extern int symbol_table_frozen;
b99bd4ef 2869
c19d1205
ZW
2870 if (symbol_table_frozen)
2871 abort ();
2872 }
b99bd4ef 2873
c19d1205 2874 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2875
c19d1205 2876 obj_symbol_new_hook (symbolP);
b99bd4ef 2877
c19d1205
ZW
2878#ifdef tc_symbol_new_hook
2879 tc_symbol_new_hook (symbolP);
2880#endif
2881
2882#ifdef DEBUG_SYMS
2883 verify_symbol_chain (symbol_rootP, symbol_lastP);
2884#endif /* DEBUG_SYMS */
b99bd4ef
NC
2885}
2886
b99bd4ef 2887
c19d1205
ZW
2888static void
2889s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2890{
c19d1205
ZW
2891 unsigned int entry;
2892 literal_pool * pool;
2893 char sym_name[20];
b99bd4ef 2894
c19d1205
ZW
2895 pool = find_literal_pool ();
2896 if (pool == NULL
2897 || pool->symbol == NULL
2898 || pool->next_free_entry == 0)
2899 return;
b99bd4ef 2900
c19d1205 2901 mapping_state (MAP_DATA);
b99bd4ef 2902
c19d1205
ZW
2903 /* Align pool as you have word accesses.
2904 Only make a frag if we have to. */
2905 if (!need_pass_2)
2906 frag_align (2, 0, 0);
b99bd4ef 2907
c19d1205 2908 record_alignment (now_seg, 2);
b99bd4ef 2909
c19d1205 2910 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2911
c19d1205
ZW
2912 symbol_locate (pool->symbol, sym_name, now_seg,
2913 (valueT) frag_now_fix (), frag_now);
2914 symbol_table_insert (pool->symbol);
b99bd4ef 2915
c19d1205 2916 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2917
c19d1205
ZW
2918#if defined OBJ_COFF || defined OBJ_ELF
2919 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2920#endif
6c43fab6 2921
c19d1205
ZW
2922 for (entry = 0; entry < pool->next_free_entry; entry ++)
2923 /* First output the expression in the instruction to the pool. */
2924 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2925
c19d1205
ZW
2926 /* Mark the pool as empty. */
2927 pool->next_free_entry = 0;
2928 pool->symbol = NULL;
b99bd4ef
NC
2929}
2930
c19d1205
ZW
2931#ifdef OBJ_ELF
2932/* Forward declarations for functions below, in the MD interface
2933 section. */
2934static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2935static valueT create_unwind_entry (int);
2936static void start_unwind_section (const segT, int);
2937static void add_unwind_opcode (valueT, int);
2938static void flush_pending_unwind (void);
b99bd4ef 2939
c19d1205 2940/* Directives: Data. */
b99bd4ef 2941
c19d1205
ZW
2942static void
2943s_arm_elf_cons (int nbytes)
2944{
2945 expressionS exp;
b99bd4ef 2946
c19d1205
ZW
2947#ifdef md_flush_pending_output
2948 md_flush_pending_output ();
2949#endif
b99bd4ef 2950
c19d1205 2951 if (is_it_end_of_statement ())
b99bd4ef 2952 {
c19d1205
ZW
2953 demand_empty_rest_of_line ();
2954 return;
b99bd4ef
NC
2955 }
2956
c19d1205
ZW
2957#ifdef md_cons_align
2958 md_cons_align (nbytes);
2959#endif
b99bd4ef 2960
c19d1205
ZW
2961 mapping_state (MAP_DATA);
2962 do
b99bd4ef 2963 {
c19d1205
ZW
2964 int reloc;
2965 char *base = input_line_pointer;
b99bd4ef 2966
c19d1205 2967 expression (& exp);
b99bd4ef 2968
c19d1205
ZW
2969 if (exp.X_op != O_symbol)
2970 emit_expr (&exp, (unsigned int) nbytes);
2971 else
2972 {
2973 char *before_reloc = input_line_pointer;
2974 reloc = parse_reloc (&input_line_pointer);
2975 if (reloc == -1)
2976 {
2977 as_bad (_("unrecognized relocation suffix"));
2978 ignore_rest_of_line ();
2979 return;
2980 }
2981 else if (reloc == BFD_RELOC_UNUSED)
2982 emit_expr (&exp, (unsigned int) nbytes);
2983 else
2984 {
2985 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2986 int size = bfd_get_reloc_size (howto);
b99bd4ef 2987
2fc8bdac
ZW
2988 if (reloc == BFD_RELOC_ARM_PLT32)
2989 {
2990 as_bad (_("(plt) is only valid on branch targets"));
2991 reloc = BFD_RELOC_UNUSED;
2992 size = 0;
2993 }
2994
c19d1205 2995 if (size > nbytes)
2fc8bdac 2996 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
2997 howto->name, nbytes);
2998 else
2999 {
3000 /* We've parsed an expression stopping at O_symbol.
3001 But there may be more expression left now that we
3002 have parsed the relocation marker. Parse it again.
3003 XXX Surely there is a cleaner way to do this. */
3004 char *p = input_line_pointer;
3005 int offset;
3006 char *save_buf = alloca (input_line_pointer - base);
3007 memcpy (save_buf, base, input_line_pointer - base);
3008 memmove (base + (input_line_pointer - before_reloc),
3009 base, before_reloc - base);
3010
3011 input_line_pointer = base + (input_line_pointer-before_reloc);
3012 expression (&exp);
3013 memcpy (base, save_buf, p - base);
3014
3015 offset = nbytes - size;
3016 p = frag_more ((int) nbytes);
3017 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3018 size, &exp, 0, reloc);
3019 }
3020 }
3021 }
b99bd4ef 3022 }
c19d1205 3023 while (*input_line_pointer++ == ',');
b99bd4ef 3024
c19d1205
ZW
3025 /* Put terminator back into stream. */
3026 input_line_pointer --;
3027 demand_empty_rest_of_line ();
b99bd4ef
NC
3028}
3029
b99bd4ef 3030
c19d1205 3031/* Parse a .rel31 directive. */
b99bd4ef 3032
c19d1205
ZW
3033static void
3034s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3035{
3036 expressionS exp;
3037 char *p;
3038 valueT highbit;
b99bd4ef 3039
c19d1205
ZW
3040 highbit = 0;
3041 if (*input_line_pointer == '1')
3042 highbit = 0x80000000;
3043 else if (*input_line_pointer != '0')
3044 as_bad (_("expected 0 or 1"));
b99bd4ef 3045
c19d1205
ZW
3046 input_line_pointer++;
3047 if (*input_line_pointer != ',')
3048 as_bad (_("missing comma"));
3049 input_line_pointer++;
b99bd4ef 3050
c19d1205
ZW
3051#ifdef md_flush_pending_output
3052 md_flush_pending_output ();
3053#endif
b99bd4ef 3054
c19d1205
ZW
3055#ifdef md_cons_align
3056 md_cons_align (4);
3057#endif
b99bd4ef 3058
c19d1205 3059 mapping_state (MAP_DATA);
b99bd4ef 3060
c19d1205 3061 expression (&exp);
b99bd4ef 3062
c19d1205
ZW
3063 p = frag_more (4);
3064 md_number_to_chars (p, highbit, 4);
3065 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3066 BFD_RELOC_ARM_PREL31);
b99bd4ef 3067
c19d1205 3068 demand_empty_rest_of_line ();
b99bd4ef
NC
3069}
3070
c19d1205 3071/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3072
c19d1205 3073/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3074
c19d1205
ZW
3075static void
3076s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3077{
3078 demand_empty_rest_of_line ();
3079 /* Mark the start of the function. */
3080 unwind.proc_start = expr_build_dot ();
b99bd4ef 3081
c19d1205
ZW
3082 /* Reset the rest of the unwind info. */
3083 unwind.opcode_count = 0;
3084 unwind.table_entry = NULL;
3085 unwind.personality_routine = NULL;
3086 unwind.personality_index = -1;
3087 unwind.frame_size = 0;
3088 unwind.fp_offset = 0;
3089 unwind.fp_reg = 13;
3090 unwind.fp_used = 0;
3091 unwind.sp_restored = 0;
3092}
b99bd4ef 3093
b99bd4ef 3094
c19d1205
ZW
3095/* Parse a handlerdata directive. Creates the exception handling table entry
3096 for the function. */
b99bd4ef 3097
c19d1205
ZW
3098static void
3099s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3100{
3101 demand_empty_rest_of_line ();
3102 if (unwind.table_entry)
6decc662 3103 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3104
c19d1205
ZW
3105 create_unwind_entry (1);
3106}
a737bd4d 3107
c19d1205 3108/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3109
c19d1205
ZW
3110static void
3111s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3112{
3113 long where;
3114 char *ptr;
3115 valueT val;
f02232aa 3116
c19d1205 3117 demand_empty_rest_of_line ();
f02232aa 3118
c19d1205
ZW
3119 /* Add eh table entry. */
3120 if (unwind.table_entry == NULL)
3121 val = create_unwind_entry (0);
3122 else
3123 val = 0;
f02232aa 3124
c19d1205
ZW
3125 /* Add index table entry. This is two words. */
3126 start_unwind_section (unwind.saved_seg, 1);
3127 frag_align (2, 0, 0);
3128 record_alignment (now_seg, 2);
b99bd4ef 3129
c19d1205
ZW
3130 ptr = frag_more (8);
3131 where = frag_now_fix () - 8;
f02232aa 3132
c19d1205
ZW
3133 /* Self relative offset of the function start. */
3134 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3135 BFD_RELOC_ARM_PREL31);
f02232aa 3136
c19d1205
ZW
3137 /* Indicate dependency on EHABI-defined personality routines to the
3138 linker, if it hasn't been done already. */
3139 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3140 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3141 {
3142 static const char *const name[] = {
3143 "__aeabi_unwind_cpp_pr0",
3144 "__aeabi_unwind_cpp_pr1",
3145 "__aeabi_unwind_cpp_pr2"
3146 };
3147 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3148 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3149 marked_pr_dependency |= 1 << unwind.personality_index;
3150 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3151 = marked_pr_dependency;
3152 }
f02232aa 3153
c19d1205
ZW
3154 if (val)
3155 /* Inline exception table entry. */
3156 md_number_to_chars (ptr + 4, val, 4);
3157 else
3158 /* Self relative offset of the table entry. */
3159 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3160 BFD_RELOC_ARM_PREL31);
f02232aa 3161
c19d1205
ZW
3162 /* Restore the original section. */
3163 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3164}
f02232aa 3165
f02232aa 3166
c19d1205 3167/* Parse an unwind_cantunwind directive. */
b99bd4ef 3168
c19d1205
ZW
3169static void
3170s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3171{
3172 demand_empty_rest_of_line ();
3173 if (unwind.personality_routine || unwind.personality_index != -1)
3174 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3175
c19d1205
ZW
3176 unwind.personality_index = -2;
3177}
b99bd4ef 3178
b99bd4ef 3179
c19d1205 3180/* Parse a personalityindex directive. */
b99bd4ef 3181
c19d1205
ZW
3182static void
3183s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3184{
3185 expressionS exp;
b99bd4ef 3186
c19d1205
ZW
3187 if (unwind.personality_routine || unwind.personality_index != -1)
3188 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3189
c19d1205 3190 expression (&exp);
b99bd4ef 3191
c19d1205
ZW
3192 if (exp.X_op != O_constant
3193 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3194 {
c19d1205
ZW
3195 as_bad (_("bad personality routine number"));
3196 ignore_rest_of_line ();
3197 return;
b99bd4ef
NC
3198 }
3199
c19d1205 3200 unwind.personality_index = exp.X_add_number;
b99bd4ef 3201
c19d1205
ZW
3202 demand_empty_rest_of_line ();
3203}
e16bb312 3204
e16bb312 3205
c19d1205 3206/* Parse a personality directive. */
e16bb312 3207
c19d1205
ZW
3208static void
3209s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3210{
3211 char *name, *p, c;
a737bd4d 3212
c19d1205
ZW
3213 if (unwind.personality_routine || unwind.personality_index != -1)
3214 as_bad (_("duplicate .personality directive"));
a737bd4d 3215
c19d1205
ZW
3216 name = input_line_pointer;
3217 c = get_symbol_end ();
3218 p = input_line_pointer;
3219 unwind.personality_routine = symbol_find_or_make (name);
3220 *p = c;
3221 demand_empty_rest_of_line ();
3222}
e16bb312 3223
e16bb312 3224
c19d1205 3225/* Parse a directive saving core registers. */
e16bb312 3226
c19d1205
ZW
3227static void
3228s_arm_unwind_save_core (void)
e16bb312 3229{
c19d1205
ZW
3230 valueT op;
3231 long range;
3232 int n;
e16bb312 3233
c19d1205
ZW
3234 range = parse_reg_list (&input_line_pointer);
3235 if (range == FAIL)
e16bb312 3236 {
c19d1205
ZW
3237 as_bad (_("expected register list"));
3238 ignore_rest_of_line ();
3239 return;
3240 }
e16bb312 3241
c19d1205 3242 demand_empty_rest_of_line ();
e16bb312 3243
c19d1205
ZW
3244 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3245 into .unwind_save {..., sp...}. We aren't bothered about the value of
3246 ip because it is clobbered by calls. */
3247 if (unwind.sp_restored && unwind.fp_reg == 12
3248 && (range & 0x3000) == 0x1000)
3249 {
3250 unwind.opcode_count--;
3251 unwind.sp_restored = 0;
3252 range = (range | 0x2000) & ~0x1000;
3253 unwind.pending_offset = 0;
3254 }
e16bb312 3255
01ae4198
DJ
3256 /* Pop r4-r15. */
3257 if (range & 0xfff0)
c19d1205 3258 {
01ae4198
DJ
3259 /* See if we can use the short opcodes. These pop a block of up to 8
3260 registers starting with r4, plus maybe r14. */
3261 for (n = 0; n < 8; n++)
3262 {
3263 /* Break at the first non-saved register. */
3264 if ((range & (1 << (n + 4))) == 0)
3265 break;
3266 }
3267 /* See if there are any other bits set. */
3268 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3269 {
3270 /* Use the long form. */
3271 op = 0x8000 | ((range >> 4) & 0xfff);
3272 add_unwind_opcode (op, 2);
3273 }
0dd132b6 3274 else
01ae4198
DJ
3275 {
3276 /* Use the short form. */
3277 if (range & 0x4000)
3278 op = 0xa8; /* Pop r14. */
3279 else
3280 op = 0xa0; /* Do not pop r14. */
3281 op |= (n - 1);
3282 add_unwind_opcode (op, 1);
3283 }
c19d1205 3284 }
0dd132b6 3285
c19d1205
ZW
3286 /* Pop r0-r3. */
3287 if (range & 0xf)
3288 {
3289 op = 0xb100 | (range & 0xf);
3290 add_unwind_opcode (op, 2);
0dd132b6
NC
3291 }
3292
c19d1205
ZW
3293 /* Record the number of bytes pushed. */
3294 for (n = 0; n < 16; n++)
3295 {
3296 if (range & (1 << n))
3297 unwind.frame_size += 4;
3298 }
0dd132b6
NC
3299}
3300
c19d1205
ZW
3301
3302/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3303
3304static void
c19d1205 3305s_arm_unwind_save_fpa (int reg)
b99bd4ef 3306{
c19d1205
ZW
3307 expressionS exp;
3308 int num_regs;
3309 valueT op;
b99bd4ef 3310
c19d1205
ZW
3311 /* Get Number of registers to transfer. */
3312 if (skip_past_comma (&input_line_pointer) != FAIL)
3313 expression (&exp);
3314 else
3315 exp.X_op = O_illegal;
b99bd4ef 3316
c19d1205 3317 if (exp.X_op != O_constant)
b99bd4ef 3318 {
c19d1205
ZW
3319 as_bad (_("expected , <constant>"));
3320 ignore_rest_of_line ();
b99bd4ef
NC
3321 return;
3322 }
3323
c19d1205
ZW
3324 num_regs = exp.X_add_number;
3325
3326 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3327 {
c19d1205
ZW
3328 as_bad (_("number of registers must be in the range [1:4]"));
3329 ignore_rest_of_line ();
b99bd4ef
NC
3330 return;
3331 }
3332
c19d1205 3333 demand_empty_rest_of_line ();
b99bd4ef 3334
c19d1205
ZW
3335 if (reg == 4)
3336 {
3337 /* Short form. */
3338 op = 0xb4 | (num_regs - 1);
3339 add_unwind_opcode (op, 1);
3340 }
b99bd4ef
NC
3341 else
3342 {
c19d1205
ZW
3343 /* Long form. */
3344 op = 0xc800 | (reg << 4) | (num_regs - 1);
3345 add_unwind_opcode (op, 2);
b99bd4ef 3346 }
c19d1205 3347 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3348}
3349
c19d1205 3350
fa073d69
MS
3351/* Parse a directive saving VFP registers for ARMv6 and above. */
3352
3353static void
3354s_arm_unwind_save_vfp_armv6 (void)
3355{
3356 int count;
3357 unsigned int start;
3358 valueT op;
3359 int num_vfpv3_regs = 0;
3360 int num_regs_below_16;
3361
3362 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3363 if (count == FAIL)
3364 {
3365 as_bad (_("expected register list"));
3366 ignore_rest_of_line ();
3367 return;
3368 }
3369
3370 demand_empty_rest_of_line ();
3371
3372 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3373 than FSTMX/FLDMX-style ones). */
3374
3375 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3376 if (start >= 16)
3377 num_vfpv3_regs = count;
3378 else if (start + count > 16)
3379 num_vfpv3_regs = start + count - 16;
3380
3381 if (num_vfpv3_regs > 0)
3382 {
3383 int start_offset = start > 16 ? start - 16 : 0;
3384 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3385 add_unwind_opcode (op, 2);
3386 }
3387
3388 /* Generate opcode for registers numbered in the range 0 .. 15. */
3389 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3390 assert (num_regs_below_16 + num_vfpv3_regs == count);
3391 if (num_regs_below_16 > 0)
3392 {
3393 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3394 add_unwind_opcode (op, 2);
3395 }
3396
3397 unwind.frame_size += count * 8;
3398}
3399
3400
3401/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3402
3403static void
c19d1205 3404s_arm_unwind_save_vfp (void)
b99bd4ef 3405{
c19d1205 3406 int count;
ca3f61f7 3407 unsigned int reg;
c19d1205 3408 valueT op;
b99bd4ef 3409
5287ad62 3410 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3411 if (count == FAIL)
b99bd4ef 3412 {
c19d1205
ZW
3413 as_bad (_("expected register list"));
3414 ignore_rest_of_line ();
b99bd4ef
NC
3415 return;
3416 }
3417
c19d1205 3418 demand_empty_rest_of_line ();
b99bd4ef 3419
c19d1205 3420 if (reg == 8)
b99bd4ef 3421 {
c19d1205
ZW
3422 /* Short form. */
3423 op = 0xb8 | (count - 1);
3424 add_unwind_opcode (op, 1);
b99bd4ef 3425 }
c19d1205 3426 else
b99bd4ef 3427 {
c19d1205
ZW
3428 /* Long form. */
3429 op = 0xb300 | (reg << 4) | (count - 1);
3430 add_unwind_opcode (op, 2);
b99bd4ef 3431 }
c19d1205
ZW
3432 unwind.frame_size += count * 8 + 4;
3433}
b99bd4ef 3434
b99bd4ef 3435
c19d1205
ZW
3436/* Parse a directive saving iWMMXt data registers. */
3437
3438static void
3439s_arm_unwind_save_mmxwr (void)
3440{
3441 int reg;
3442 int hi_reg;
3443 int i;
3444 unsigned mask = 0;
3445 valueT op;
b99bd4ef 3446
c19d1205
ZW
3447 if (*input_line_pointer == '{')
3448 input_line_pointer++;
b99bd4ef 3449
c19d1205 3450 do
b99bd4ef 3451 {
dcbf9037 3452 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3453
c19d1205 3454 if (reg == FAIL)
b99bd4ef 3455 {
c19d1205
ZW
3456 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3457 goto error;
b99bd4ef
NC
3458 }
3459
c19d1205
ZW
3460 if (mask >> reg)
3461 as_tsktsk (_("register list not in ascending order"));
3462 mask |= 1 << reg;
b99bd4ef 3463
c19d1205
ZW
3464 if (*input_line_pointer == '-')
3465 {
3466 input_line_pointer++;
dcbf9037 3467 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3468 if (hi_reg == FAIL)
3469 {
3470 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3471 goto error;
3472 }
3473 else if (reg >= hi_reg)
3474 {
3475 as_bad (_("bad register range"));
3476 goto error;
3477 }
3478 for (; reg < hi_reg; reg++)
3479 mask |= 1 << reg;
3480 }
3481 }
3482 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3483
c19d1205
ZW
3484 if (*input_line_pointer == '}')
3485 input_line_pointer++;
b99bd4ef 3486
c19d1205 3487 demand_empty_rest_of_line ();
b99bd4ef 3488
708587a4 3489 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3490 the list. */
3491 flush_pending_unwind ();
b99bd4ef 3492
c19d1205 3493 for (i = 0; i < 16; i++)
b99bd4ef 3494 {
c19d1205
ZW
3495 if (mask & (1 << i))
3496 unwind.frame_size += 8;
b99bd4ef
NC
3497 }
3498
c19d1205
ZW
3499 /* Attempt to combine with a previous opcode. We do this because gcc
3500 likes to output separate unwind directives for a single block of
3501 registers. */
3502 if (unwind.opcode_count > 0)
b99bd4ef 3503 {
c19d1205
ZW
3504 i = unwind.opcodes[unwind.opcode_count - 1];
3505 if ((i & 0xf8) == 0xc0)
3506 {
3507 i &= 7;
3508 /* Only merge if the blocks are contiguous. */
3509 if (i < 6)
3510 {
3511 if ((mask & 0xfe00) == (1 << 9))
3512 {
3513 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3514 unwind.opcode_count--;
3515 }
3516 }
3517 else if (i == 6 && unwind.opcode_count >= 2)
3518 {
3519 i = unwind.opcodes[unwind.opcode_count - 2];
3520 reg = i >> 4;
3521 i &= 0xf;
b99bd4ef 3522
c19d1205
ZW
3523 op = 0xffff << (reg - 1);
3524 if (reg > 0
87a1fd79 3525 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3526 {
3527 op = (1 << (reg + i + 1)) - 1;
3528 op &= ~((1 << reg) - 1);
3529 mask |= op;
3530 unwind.opcode_count -= 2;
3531 }
3532 }
3533 }
b99bd4ef
NC
3534 }
3535
c19d1205
ZW
3536 hi_reg = 15;
3537 /* We want to generate opcodes in the order the registers have been
3538 saved, ie. descending order. */
3539 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3540 {
c19d1205
ZW
3541 /* Save registers in blocks. */
3542 if (reg < 0
3543 || !(mask & (1 << reg)))
3544 {
3545 /* We found an unsaved reg. Generate opcodes to save the
3546 preceeding block. */
3547 if (reg != hi_reg)
3548 {
3549 if (reg == 9)
3550 {
3551 /* Short form. */
3552 op = 0xc0 | (hi_reg - 10);
3553 add_unwind_opcode (op, 1);
3554 }
3555 else
3556 {
3557 /* Long form. */
3558 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3559 add_unwind_opcode (op, 2);
3560 }
3561 }
3562 hi_reg = reg - 1;
3563 }
b99bd4ef
NC
3564 }
3565
c19d1205
ZW
3566 return;
3567error:
3568 ignore_rest_of_line ();
b99bd4ef
NC
3569}
3570
3571static void
c19d1205 3572s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3573{
c19d1205
ZW
3574 int reg;
3575 int hi_reg;
3576 unsigned mask = 0;
3577 valueT op;
b99bd4ef 3578
c19d1205
ZW
3579 if (*input_line_pointer == '{')
3580 input_line_pointer++;
b99bd4ef 3581
c19d1205 3582 do
b99bd4ef 3583 {
dcbf9037 3584 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3585
c19d1205
ZW
3586 if (reg == FAIL)
3587 {
3588 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3589 goto error;
3590 }
b99bd4ef 3591
c19d1205
ZW
3592 reg -= 8;
3593 if (mask >> reg)
3594 as_tsktsk (_("register list not in ascending order"));
3595 mask |= 1 << reg;
b99bd4ef 3596
c19d1205
ZW
3597 if (*input_line_pointer == '-')
3598 {
3599 input_line_pointer++;
dcbf9037 3600 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3601 if (hi_reg == FAIL)
3602 {
3603 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3604 goto error;
3605 }
3606 else if (reg >= hi_reg)
3607 {
3608 as_bad (_("bad register range"));
3609 goto error;
3610 }
3611 for (; reg < hi_reg; reg++)
3612 mask |= 1 << reg;
3613 }
b99bd4ef 3614 }
c19d1205 3615 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3616
c19d1205
ZW
3617 if (*input_line_pointer == '}')
3618 input_line_pointer++;
b99bd4ef 3619
c19d1205
ZW
3620 demand_empty_rest_of_line ();
3621
708587a4 3622 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3623 the list. */
3624 flush_pending_unwind ();
b99bd4ef 3625
c19d1205 3626 for (reg = 0; reg < 16; reg++)
b99bd4ef 3627 {
c19d1205
ZW
3628 if (mask & (1 << reg))
3629 unwind.frame_size += 4;
b99bd4ef 3630 }
c19d1205
ZW
3631 op = 0xc700 | mask;
3632 add_unwind_opcode (op, 2);
3633 return;
3634error:
3635 ignore_rest_of_line ();
b99bd4ef
NC
3636}
3637
c19d1205 3638
fa073d69
MS
3639/* Parse an unwind_save directive.
3640 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3641
b99bd4ef 3642static void
fa073d69 3643s_arm_unwind_save (int arch_v6)
b99bd4ef 3644{
c19d1205
ZW
3645 char *peek;
3646 struct reg_entry *reg;
3647 bfd_boolean had_brace = FALSE;
b99bd4ef 3648
c19d1205
ZW
3649 /* Figure out what sort of save we have. */
3650 peek = input_line_pointer;
b99bd4ef 3651
c19d1205 3652 if (*peek == '{')
b99bd4ef 3653 {
c19d1205
ZW
3654 had_brace = TRUE;
3655 peek++;
b99bd4ef
NC
3656 }
3657
c19d1205 3658 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3659
c19d1205 3660 if (!reg)
b99bd4ef 3661 {
c19d1205
ZW
3662 as_bad (_("register expected"));
3663 ignore_rest_of_line ();
b99bd4ef
NC
3664 return;
3665 }
3666
c19d1205 3667 switch (reg->type)
b99bd4ef 3668 {
c19d1205
ZW
3669 case REG_TYPE_FN:
3670 if (had_brace)
3671 {
3672 as_bad (_("FPA .unwind_save does not take a register list"));
3673 ignore_rest_of_line ();
3674 return;
3675 }
3676 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3677 return;
c19d1205
ZW
3678
3679 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3680 case REG_TYPE_VFD:
3681 if (arch_v6)
3682 s_arm_unwind_save_vfp_armv6 ();
3683 else
3684 s_arm_unwind_save_vfp ();
3685 return;
c19d1205
ZW
3686 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3687 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3688
3689 default:
3690 as_bad (_(".unwind_save does not support this kind of register"));
3691 ignore_rest_of_line ();
b99bd4ef 3692 }
c19d1205 3693}
b99bd4ef 3694
b99bd4ef 3695
c19d1205
ZW
3696/* Parse an unwind_movsp directive. */
3697
3698static void
3699s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3700{
3701 int reg;
3702 valueT op;
4fa3602b 3703 int offset;
c19d1205 3704
dcbf9037 3705 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3706 if (reg == FAIL)
b99bd4ef 3707 {
c19d1205
ZW
3708 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3709 ignore_rest_of_line ();
b99bd4ef
NC
3710 return;
3711 }
4fa3602b
PB
3712
3713 /* Optional constant. */
3714 if (skip_past_comma (&input_line_pointer) != FAIL)
3715 {
3716 if (immediate_for_directive (&offset) == FAIL)
3717 return;
3718 }
3719 else
3720 offset = 0;
3721
c19d1205 3722 demand_empty_rest_of_line ();
b99bd4ef 3723
c19d1205 3724 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3725 {
c19d1205 3726 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3727 return;
3728 }
3729
c19d1205
ZW
3730 if (unwind.fp_reg != REG_SP)
3731 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3732
c19d1205
ZW
3733 /* Generate opcode to restore the value. */
3734 op = 0x90 | reg;
3735 add_unwind_opcode (op, 1);
3736
3737 /* Record the information for later. */
3738 unwind.fp_reg = reg;
4fa3602b 3739 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3740 unwind.sp_restored = 1;
b05fe5cf
ZW
3741}
3742
c19d1205
ZW
3743/* Parse an unwind_pad directive. */
3744
b05fe5cf 3745static void
c19d1205 3746s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3747{
c19d1205 3748 int offset;
b05fe5cf 3749
c19d1205
ZW
3750 if (immediate_for_directive (&offset) == FAIL)
3751 return;
b99bd4ef 3752
c19d1205
ZW
3753 if (offset & 3)
3754 {
3755 as_bad (_("stack increment must be multiple of 4"));
3756 ignore_rest_of_line ();
3757 return;
3758 }
b99bd4ef 3759
c19d1205
ZW
3760 /* Don't generate any opcodes, just record the details for later. */
3761 unwind.frame_size += offset;
3762 unwind.pending_offset += offset;
3763
3764 demand_empty_rest_of_line ();
3765}
3766
3767/* Parse an unwind_setfp directive. */
3768
3769static void
3770s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3771{
c19d1205
ZW
3772 int sp_reg;
3773 int fp_reg;
3774 int offset;
3775
dcbf9037 3776 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3777 if (skip_past_comma (&input_line_pointer) == FAIL)
3778 sp_reg = FAIL;
3779 else
dcbf9037 3780 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3781
c19d1205
ZW
3782 if (fp_reg == FAIL || sp_reg == FAIL)
3783 {
3784 as_bad (_("expected <reg>, <reg>"));
3785 ignore_rest_of_line ();
3786 return;
3787 }
b99bd4ef 3788
c19d1205
ZW
3789 /* Optional constant. */
3790 if (skip_past_comma (&input_line_pointer) != FAIL)
3791 {
3792 if (immediate_for_directive (&offset) == FAIL)
3793 return;
3794 }
3795 else
3796 offset = 0;
a737bd4d 3797
c19d1205 3798 demand_empty_rest_of_line ();
a737bd4d 3799
c19d1205 3800 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3801 {
c19d1205
ZW
3802 as_bad (_("register must be either sp or set by a previous"
3803 "unwind_movsp directive"));
3804 return;
a737bd4d
NC
3805 }
3806
c19d1205
ZW
3807 /* Don't generate any opcodes, just record the information for later. */
3808 unwind.fp_reg = fp_reg;
3809 unwind.fp_used = 1;
3810 if (sp_reg == 13)
3811 unwind.fp_offset = unwind.frame_size - offset;
3812 else
3813 unwind.fp_offset -= offset;
a737bd4d
NC
3814}
3815
c19d1205
ZW
3816/* Parse an unwind_raw directive. */
3817
3818static void
3819s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3820{
c19d1205 3821 expressionS exp;
708587a4 3822 /* This is an arbitrary limit. */
c19d1205
ZW
3823 unsigned char op[16];
3824 int count;
a737bd4d 3825
c19d1205
ZW
3826 expression (&exp);
3827 if (exp.X_op == O_constant
3828 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3829 {
c19d1205
ZW
3830 unwind.frame_size += exp.X_add_number;
3831 expression (&exp);
3832 }
3833 else
3834 exp.X_op = O_illegal;
a737bd4d 3835
c19d1205
ZW
3836 if (exp.X_op != O_constant)
3837 {
3838 as_bad (_("expected <offset>, <opcode>"));
3839 ignore_rest_of_line ();
3840 return;
3841 }
a737bd4d 3842
c19d1205 3843 count = 0;
a737bd4d 3844
c19d1205
ZW
3845 /* Parse the opcode. */
3846 for (;;)
3847 {
3848 if (count >= 16)
3849 {
3850 as_bad (_("unwind opcode too long"));
3851 ignore_rest_of_line ();
a737bd4d 3852 }
c19d1205 3853 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3854 {
c19d1205
ZW
3855 as_bad (_("invalid unwind opcode"));
3856 ignore_rest_of_line ();
3857 return;
a737bd4d 3858 }
c19d1205 3859 op[count++] = exp.X_add_number;
a737bd4d 3860
c19d1205
ZW
3861 /* Parse the next byte. */
3862 if (skip_past_comma (&input_line_pointer) == FAIL)
3863 break;
a737bd4d 3864
c19d1205
ZW
3865 expression (&exp);
3866 }
b99bd4ef 3867
c19d1205
ZW
3868 /* Add the opcode bytes in reverse order. */
3869 while (count--)
3870 add_unwind_opcode (op[count], 1);
b99bd4ef 3871
c19d1205 3872 demand_empty_rest_of_line ();
b99bd4ef 3873}
ee065d83
PB
3874
3875
3876/* Parse a .eabi_attribute directive. */
3877
3878static void
3879s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3880{
104d59d1 3881 s_vendor_attribute (OBJ_ATTR_PROC);
ee065d83 3882}
8463be01 3883#endif /* OBJ_ELF */
ee065d83
PB
3884
3885static void s_arm_arch (int);
7a1d4c38 3886static void s_arm_object_arch (int);
ee065d83
PB
3887static void s_arm_cpu (int);
3888static void s_arm_fpu (int);
b99bd4ef 3889
f0927246
NC
3890#ifdef TE_PE
3891
3892static void
3893pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3894{
3895 expressionS exp;
3896
3897 do
3898 {
3899 expression (&exp);
3900 if (exp.X_op == O_symbol)
3901 exp.X_op = O_secrel;
3902
3903 emit_expr (&exp, 4);
3904 }
3905 while (*input_line_pointer++ == ',');
3906
3907 input_line_pointer--;
3908 demand_empty_rest_of_line ();
3909}
3910#endif /* TE_PE */
3911
c19d1205
ZW
3912/* This table describes all the machine specific pseudo-ops the assembler
3913 has to support. The fields are:
3914 pseudo-op name without dot
3915 function to call to execute this pseudo-op
3916 Integer arg to pass to the function. */
b99bd4ef 3917
c19d1205 3918const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3919{
c19d1205
ZW
3920 /* Never called because '.req' does not start a line. */
3921 { "req", s_req, 0 },
dcbf9037
JB
3922 /* Following two are likewise never called. */
3923 { "dn", s_dn, 0 },
3924 { "qn", s_qn, 0 },
c19d1205
ZW
3925 { "unreq", s_unreq, 0 },
3926 { "bss", s_bss, 0 },
3927 { "align", s_align, 0 },
3928 { "arm", s_arm, 0 },
3929 { "thumb", s_thumb, 0 },
3930 { "code", s_code, 0 },
3931 { "force_thumb", s_force_thumb, 0 },
3932 { "thumb_func", s_thumb_func, 0 },
3933 { "thumb_set", s_thumb_set, 0 },
3934 { "even", s_even, 0 },
3935 { "ltorg", s_ltorg, 0 },
3936 { "pool", s_ltorg, 0 },
3937 { "syntax", s_syntax, 0 },
8463be01
PB
3938 { "cpu", s_arm_cpu, 0 },
3939 { "arch", s_arm_arch, 0 },
7a1d4c38 3940 { "object_arch", s_arm_object_arch, 0 },
8463be01 3941 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3942#ifdef OBJ_ELF
3943 { "word", s_arm_elf_cons, 4 },
3944 { "long", s_arm_elf_cons, 4 },
3945 { "rel31", s_arm_rel31, 0 },
3946 { "fnstart", s_arm_unwind_fnstart, 0 },
3947 { "fnend", s_arm_unwind_fnend, 0 },
3948 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3949 { "personality", s_arm_unwind_personality, 0 },
3950 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3951 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3952 { "save", s_arm_unwind_save, 0 },
fa073d69 3953 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3954 { "movsp", s_arm_unwind_movsp, 0 },
3955 { "pad", s_arm_unwind_pad, 0 },
3956 { "setfp", s_arm_unwind_setfp, 0 },
3957 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3958 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3959#else
3960 { "word", cons, 4},
f0927246
NC
3961
3962 /* These are used for dwarf. */
3963 {"2byte", cons, 2},
3964 {"4byte", cons, 4},
3965 {"8byte", cons, 8},
3966 /* These are used for dwarf2. */
3967 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3968 { "loc", dwarf2_directive_loc, 0 },
3969 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3970#endif
3971 { "extend", float_cons, 'x' },
3972 { "ldouble", float_cons, 'x' },
3973 { "packed", float_cons, 'p' },
f0927246
NC
3974#ifdef TE_PE
3975 {"secrel32", pe_directive_secrel, 0},
3976#endif
c19d1205
ZW
3977 { 0, 0, 0 }
3978};
3979\f
3980/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3981
c19d1205
ZW
3982/* Generic immediate-value read function for use in insn parsing.
3983 STR points to the beginning of the immediate (the leading #);
3984 VAL receives the value; if the value is outside [MIN, MAX]
3985 issue an error. PREFIX_OPT is true if the immediate prefix is
3986 optional. */
b99bd4ef 3987
c19d1205
ZW
3988static int
3989parse_immediate (char **str, int *val, int min, int max,
3990 bfd_boolean prefix_opt)
3991{
3992 expressionS exp;
3993 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3994 if (exp.X_op != O_constant)
b99bd4ef 3995 {
c19d1205
ZW
3996 inst.error = _("constant expression required");
3997 return FAIL;
3998 }
b99bd4ef 3999
c19d1205
ZW
4000 if (exp.X_add_number < min || exp.X_add_number > max)
4001 {
4002 inst.error = _("immediate value out of range");
4003 return FAIL;
4004 }
b99bd4ef 4005
c19d1205
ZW
4006 *val = exp.X_add_number;
4007 return SUCCESS;
4008}
b99bd4ef 4009
5287ad62 4010/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4011 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4012 instructions. Puts the result directly in inst.operands[i]. */
4013
4014static int
4015parse_big_immediate (char **str, int i)
4016{
4017 expressionS exp;
4018 char *ptr = *str;
4019
4020 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4021
4022 if (exp.X_op == O_constant)
036dc3f7
PB
4023 {
4024 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4025 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4026 O_constant. We have to be careful not to break compilation for
4027 32-bit X_add_number, though. */
4028 if ((exp.X_add_number & ~0xffffffffl) != 0)
4029 {
4030 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4031 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4032 inst.operands[i].regisimm = 1;
4033 }
4034 }
5287ad62
JB
4035 else if (exp.X_op == O_big
4036 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4037 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4038 {
4039 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4040 /* Bignums have their least significant bits in
4041 generic_bignum[0]. Make sure we put 32 bits in imm and
4042 32 bits in reg, in a (hopefully) portable way. */
4043 assert (parts != 0);
4044 inst.operands[i].imm = 0;
4045 for (j = 0; j < parts; j++, idx++)
4046 inst.operands[i].imm |= generic_bignum[idx]
4047 << (LITTLENUM_NUMBER_OF_BITS * j);
4048 inst.operands[i].reg = 0;
4049 for (j = 0; j < parts; j++, idx++)
4050 inst.operands[i].reg |= generic_bignum[idx]
4051 << (LITTLENUM_NUMBER_OF_BITS * j);
4052 inst.operands[i].regisimm = 1;
4053 }
4054 else
4055 return FAIL;
4056
4057 *str = ptr;
4058
4059 return SUCCESS;
4060}
4061
c19d1205
ZW
4062/* Returns the pseudo-register number of an FPA immediate constant,
4063 or FAIL if there isn't a valid constant here. */
b99bd4ef 4064
c19d1205
ZW
4065static int
4066parse_fpa_immediate (char ** str)
4067{
4068 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4069 char * save_in;
4070 expressionS exp;
4071 int i;
4072 int j;
b99bd4ef 4073
c19d1205
ZW
4074 /* First try and match exact strings, this is to guarantee
4075 that some formats will work even for cross assembly. */
b99bd4ef 4076
c19d1205
ZW
4077 for (i = 0; fp_const[i]; i++)
4078 {
4079 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4080 {
c19d1205 4081 char *start = *str;
b99bd4ef 4082
c19d1205
ZW
4083 *str += strlen (fp_const[i]);
4084 if (is_end_of_line[(unsigned char) **str])
4085 return i + 8;
4086 *str = start;
4087 }
4088 }
b99bd4ef 4089
c19d1205
ZW
4090 /* Just because we didn't get a match doesn't mean that the constant
4091 isn't valid, just that it is in a format that we don't
4092 automatically recognize. Try parsing it with the standard
4093 expression routines. */
b99bd4ef 4094
c19d1205 4095 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4096
c19d1205
ZW
4097 /* Look for a raw floating point number. */
4098 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4099 && is_end_of_line[(unsigned char) *save_in])
4100 {
4101 for (i = 0; i < NUM_FLOAT_VALS; i++)
4102 {
4103 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4104 {
c19d1205
ZW
4105 if (words[j] != fp_values[i][j])
4106 break;
b99bd4ef
NC
4107 }
4108
c19d1205 4109 if (j == MAX_LITTLENUMS)
b99bd4ef 4110 {
c19d1205
ZW
4111 *str = save_in;
4112 return i + 8;
b99bd4ef
NC
4113 }
4114 }
4115 }
b99bd4ef 4116
c19d1205
ZW
4117 /* Try and parse a more complex expression, this will probably fail
4118 unless the code uses a floating point prefix (eg "0f"). */
4119 save_in = input_line_pointer;
4120 input_line_pointer = *str;
4121 if (expression (&exp) == absolute_section
4122 && exp.X_op == O_big
4123 && exp.X_add_number < 0)
4124 {
4125 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4126 Ditto for 15. */
4127 if (gen_to_words (words, 5, (long) 15) == 0)
4128 {
4129 for (i = 0; i < NUM_FLOAT_VALS; i++)
4130 {
4131 for (j = 0; j < MAX_LITTLENUMS; j++)
4132 {
4133 if (words[j] != fp_values[i][j])
4134 break;
4135 }
b99bd4ef 4136
c19d1205
ZW
4137 if (j == MAX_LITTLENUMS)
4138 {
4139 *str = input_line_pointer;
4140 input_line_pointer = save_in;
4141 return i + 8;
4142 }
4143 }
4144 }
b99bd4ef
NC
4145 }
4146
c19d1205
ZW
4147 *str = input_line_pointer;
4148 input_line_pointer = save_in;
4149 inst.error = _("invalid FPA immediate expression");
4150 return FAIL;
b99bd4ef
NC
4151}
4152
136da414
JB
4153/* Returns 1 if a number has "quarter-precision" float format
4154 0baBbbbbbc defgh000 00000000 00000000. */
4155
4156static int
4157is_quarter_float (unsigned imm)
4158{
4159 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4160 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4161}
4162
4163/* Parse an 8-bit "quarter-precision" floating point number of the form:
4164 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4165 The zero and minus-zero cases need special handling, since they can't be
4166 encoded in the "quarter-precision" float format, but can nonetheless be
4167 loaded as integer constants. */
136da414
JB
4168
4169static unsigned
4170parse_qfloat_immediate (char **ccp, int *immed)
4171{
4172 char *str = *ccp;
c96612cc 4173 char *fpnum;
136da414 4174 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4175 int found_fpchar = 0;
136da414
JB
4176
4177 skip_past_char (&str, '#');
4178
c96612cc
JB
4179 /* We must not accidentally parse an integer as a floating-point number. Make
4180 sure that the value we parse is not an integer by checking for special
4181 characters '.' or 'e'.
4182 FIXME: This is a horrible hack, but doing better is tricky because type
4183 information isn't in a very usable state at parse time. */
4184 fpnum = str;
4185 skip_whitespace (fpnum);
4186
4187 if (strncmp (fpnum, "0x", 2) == 0)
4188 return FAIL;
4189 else
4190 {
4191 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4192 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4193 {
4194 found_fpchar = 1;
4195 break;
4196 }
4197
4198 if (!found_fpchar)
4199 return FAIL;
4200 }
4201
136da414
JB
4202 if ((str = atof_ieee (str, 's', words)) != NULL)
4203 {
4204 unsigned fpword = 0;
4205 int i;
4206
4207 /* Our FP word must be 32 bits (single-precision FP). */
4208 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4209 {
4210 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4211 fpword |= words[i];
4212 }
4213
c96612cc 4214 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4215 *immed = fpword;
4216 else
4217 return FAIL;
4218
4219 *ccp = str;
4220
4221 return SUCCESS;
4222 }
4223
4224 return FAIL;
4225}
4226
c19d1205
ZW
4227/* Shift operands. */
4228enum shift_kind
b99bd4ef 4229{
c19d1205
ZW
4230 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4231};
b99bd4ef 4232
c19d1205
ZW
4233struct asm_shift_name
4234{
4235 const char *name;
4236 enum shift_kind kind;
4237};
b99bd4ef 4238
c19d1205
ZW
4239/* Third argument to parse_shift. */
4240enum parse_shift_mode
4241{
4242 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4243 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4244 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4245 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4246 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4247};
b99bd4ef 4248
c19d1205
ZW
4249/* Parse a <shift> specifier on an ARM data processing instruction.
4250 This has three forms:
b99bd4ef 4251
c19d1205
ZW
4252 (LSL|LSR|ASL|ASR|ROR) Rs
4253 (LSL|LSR|ASL|ASR|ROR) #imm
4254 RRX
b99bd4ef 4255
c19d1205
ZW
4256 Note that ASL is assimilated to LSL in the instruction encoding, and
4257 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4258
c19d1205
ZW
4259static int
4260parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4261{
c19d1205
ZW
4262 const struct asm_shift_name *shift_name;
4263 enum shift_kind shift;
4264 char *s = *str;
4265 char *p = s;
4266 int reg;
b99bd4ef 4267
c19d1205
ZW
4268 for (p = *str; ISALPHA (*p); p++)
4269 ;
b99bd4ef 4270
c19d1205 4271 if (p == *str)
b99bd4ef 4272 {
c19d1205
ZW
4273 inst.error = _("shift expression expected");
4274 return FAIL;
b99bd4ef
NC
4275 }
4276
c19d1205
ZW
4277 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4278
4279 if (shift_name == NULL)
b99bd4ef 4280 {
c19d1205
ZW
4281 inst.error = _("shift expression expected");
4282 return FAIL;
b99bd4ef
NC
4283 }
4284
c19d1205 4285 shift = shift_name->kind;
b99bd4ef 4286
c19d1205
ZW
4287 switch (mode)
4288 {
4289 case NO_SHIFT_RESTRICT:
4290 case SHIFT_IMMEDIATE: break;
b99bd4ef 4291
c19d1205
ZW
4292 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4293 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4294 {
4295 inst.error = _("'LSL' or 'ASR' required");
4296 return FAIL;
4297 }
4298 break;
b99bd4ef 4299
c19d1205
ZW
4300 case SHIFT_LSL_IMMEDIATE:
4301 if (shift != SHIFT_LSL)
4302 {
4303 inst.error = _("'LSL' required");
4304 return FAIL;
4305 }
4306 break;
b99bd4ef 4307
c19d1205
ZW
4308 case SHIFT_ASR_IMMEDIATE:
4309 if (shift != SHIFT_ASR)
4310 {
4311 inst.error = _("'ASR' required");
4312 return FAIL;
4313 }
4314 break;
b99bd4ef 4315
c19d1205
ZW
4316 default: abort ();
4317 }
b99bd4ef 4318
c19d1205
ZW
4319 if (shift != SHIFT_RRX)
4320 {
4321 /* Whitespace can appear here if the next thing is a bare digit. */
4322 skip_whitespace (p);
b99bd4ef 4323
c19d1205 4324 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4325 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4326 {
4327 inst.operands[i].imm = reg;
4328 inst.operands[i].immisreg = 1;
4329 }
4330 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4331 return FAIL;
4332 }
4333 inst.operands[i].shift_kind = shift;
4334 inst.operands[i].shifted = 1;
4335 *str = p;
4336 return SUCCESS;
b99bd4ef
NC
4337}
4338
c19d1205 4339/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4340
c19d1205
ZW
4341 #<immediate>
4342 #<immediate>, <rotate>
4343 <Rm>
4344 <Rm>, <shift>
b99bd4ef 4345
c19d1205
ZW
4346 where <shift> is defined by parse_shift above, and <rotate> is a
4347 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4348 is deferred to md_apply_fix. */
b99bd4ef 4349
c19d1205
ZW
4350static int
4351parse_shifter_operand (char **str, int i)
4352{
4353 int value;
4354 expressionS expr;
b99bd4ef 4355
dcbf9037 4356 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4357 {
4358 inst.operands[i].reg = value;
4359 inst.operands[i].isreg = 1;
b99bd4ef 4360
c19d1205
ZW
4361 /* parse_shift will override this if appropriate */
4362 inst.reloc.exp.X_op = O_constant;
4363 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4364
c19d1205
ZW
4365 if (skip_past_comma (str) == FAIL)
4366 return SUCCESS;
b99bd4ef 4367
c19d1205
ZW
4368 /* Shift operation on register. */
4369 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4370 }
4371
c19d1205
ZW
4372 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4373 return FAIL;
b99bd4ef 4374
c19d1205 4375 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4376 {
c19d1205
ZW
4377 /* #x, y -- ie explicit rotation by Y. */
4378 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4379 return FAIL;
b99bd4ef 4380
c19d1205
ZW
4381 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4382 {
4383 inst.error = _("constant expression expected");
4384 return FAIL;
4385 }
b99bd4ef 4386
c19d1205
ZW
4387 value = expr.X_add_number;
4388 if (value < 0 || value > 30 || value % 2 != 0)
4389 {
4390 inst.error = _("invalid rotation");
4391 return FAIL;
4392 }
4393 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4394 {
4395 inst.error = _("invalid constant");
4396 return FAIL;
4397 }
09d92015 4398
55cf6793 4399 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4400 inst.reloc.exp.X_add_number
4401 = (((inst.reloc.exp.X_add_number << (32 - value))
4402 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4403 }
4404
c19d1205
ZW
4405 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4406 inst.reloc.pc_rel = 0;
4407 return SUCCESS;
09d92015
MM
4408}
4409
4962c51a
MS
4410/* Group relocation information. Each entry in the table contains the
4411 textual name of the relocation as may appear in assembler source
4412 and must end with a colon.
4413 Along with this textual name are the relocation codes to be used if
4414 the corresponding instruction is an ALU instruction (ADD or SUB only),
4415 an LDR, an LDRS, or an LDC. */
4416
4417struct group_reloc_table_entry
4418{
4419 const char *name;
4420 int alu_code;
4421 int ldr_code;
4422 int ldrs_code;
4423 int ldc_code;
4424};
4425
4426typedef enum
4427{
4428 /* Varieties of non-ALU group relocation. */
4429
4430 GROUP_LDR,
4431 GROUP_LDRS,
4432 GROUP_LDC
4433} group_reloc_type;
4434
4435static struct group_reloc_table_entry group_reloc_table[] =
4436 { /* Program counter relative: */
4437 { "pc_g0_nc",
4438 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4439 0, /* LDR */
4440 0, /* LDRS */
4441 0 }, /* LDC */
4442 { "pc_g0",
4443 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4444 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4445 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4446 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4447 { "pc_g1_nc",
4448 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4449 0, /* LDR */
4450 0, /* LDRS */
4451 0 }, /* LDC */
4452 { "pc_g1",
4453 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4454 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4455 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4456 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4457 { "pc_g2",
4458 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4459 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4460 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4461 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4462 /* Section base relative */
4463 { "sb_g0_nc",
4464 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4465 0, /* LDR */
4466 0, /* LDRS */
4467 0 }, /* LDC */
4468 { "sb_g0",
4469 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4470 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4471 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4472 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4473 { "sb_g1_nc",
4474 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4475 0, /* LDR */
4476 0, /* LDRS */
4477 0 }, /* LDC */
4478 { "sb_g1",
4479 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4480 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4481 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4482 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4483 { "sb_g2",
4484 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4485 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4486 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4487 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4488
4489/* Given the address of a pointer pointing to the textual name of a group
4490 relocation as may appear in assembler source, attempt to find its details
4491 in group_reloc_table. The pointer will be updated to the character after
4492 the trailing colon. On failure, FAIL will be returned; SUCCESS
4493 otherwise. On success, *entry will be updated to point at the relevant
4494 group_reloc_table entry. */
4495
4496static int
4497find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4498{
4499 unsigned int i;
4500 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4501 {
4502 int length = strlen (group_reloc_table[i].name);
4503
4504 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4505 (*str)[length] == ':')
4506 {
4507 *out = &group_reloc_table[i];
4508 *str += (length + 1);
4509 return SUCCESS;
4510 }
4511 }
4512
4513 return FAIL;
4514}
4515
4516/* Parse a <shifter_operand> for an ARM data processing instruction
4517 (as for parse_shifter_operand) where group relocations are allowed:
4518
4519 #<immediate>
4520 #<immediate>, <rotate>
4521 #:<group_reloc>:<expression>
4522 <Rm>
4523 <Rm>, <shift>
4524
4525 where <group_reloc> is one of the strings defined in group_reloc_table.
4526 The hashes are optional.
4527
4528 Everything else is as for parse_shifter_operand. */
4529
4530static parse_operand_result
4531parse_shifter_operand_group_reloc (char **str, int i)
4532{
4533 /* Determine if we have the sequence of characters #: or just :
4534 coming next. If we do, then we check for a group relocation.
4535 If we don't, punt the whole lot to parse_shifter_operand. */
4536
4537 if (((*str)[0] == '#' && (*str)[1] == ':')
4538 || (*str)[0] == ':')
4539 {
4540 struct group_reloc_table_entry *entry;
4541
4542 if ((*str)[0] == '#')
4543 (*str) += 2;
4544 else
4545 (*str)++;
4546
4547 /* Try to parse a group relocation. Anything else is an error. */
4548 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4549 {
4550 inst.error = _("unknown group relocation");
4551 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4552 }
4553
4554 /* We now have the group relocation table entry corresponding to
4555 the name in the assembler source. Next, we parse the expression. */
4556 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4557 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4558
4559 /* Record the relocation type (always the ALU variant here). */
4560 inst.reloc.type = entry->alu_code;
4561 assert (inst.reloc.type != 0);
4562
4563 return PARSE_OPERAND_SUCCESS;
4564 }
4565 else
4566 return parse_shifter_operand (str, i) == SUCCESS
4567 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4568
4569 /* Never reached. */
4570}
4571
c19d1205
ZW
4572/* Parse all forms of an ARM address expression. Information is written
4573 to inst.operands[i] and/or inst.reloc.
09d92015 4574
c19d1205 4575 Preindexed addressing (.preind=1):
09d92015 4576
c19d1205
ZW
4577 [Rn, #offset] .reg=Rn .reloc.exp=offset
4578 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4579 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4580 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4581
c19d1205 4582 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4583
c19d1205 4584 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4585
c19d1205
ZW
4586 [Rn], #offset .reg=Rn .reloc.exp=offset
4587 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4588 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4589 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4590
c19d1205 4591 Unindexed addressing (.preind=0, .postind=0):
09d92015 4592
c19d1205 4593 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4594
c19d1205 4595 Other:
09d92015 4596
c19d1205
ZW
4597 [Rn]{!} shorthand for [Rn,#0]{!}
4598 =immediate .isreg=0 .reloc.exp=immediate
4599 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4600
c19d1205
ZW
4601 It is the caller's responsibility to check for addressing modes not
4602 supported by the instruction, and to set inst.reloc.type. */
4603
4962c51a
MS
4604static parse_operand_result
4605parse_address_main (char **str, int i, int group_relocations,
4606 group_reloc_type group_type)
09d92015 4607{
c19d1205
ZW
4608 char *p = *str;
4609 int reg;
09d92015 4610
c19d1205 4611 if (skip_past_char (&p, '[') == FAIL)
09d92015 4612 {
c19d1205
ZW
4613 if (skip_past_char (&p, '=') == FAIL)
4614 {
4615 /* bare address - translate to PC-relative offset */
4616 inst.reloc.pc_rel = 1;
4617 inst.operands[i].reg = REG_PC;
4618 inst.operands[i].isreg = 1;
4619 inst.operands[i].preind = 1;
4620 }
4621 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4622
c19d1205 4623 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4624 return PARSE_OPERAND_FAIL;
09d92015 4625
c19d1205 4626 *str = p;
4962c51a 4627 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4628 }
4629
dcbf9037 4630 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4631 {
c19d1205 4632 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4633 return PARSE_OPERAND_FAIL;
09d92015 4634 }
c19d1205
ZW
4635 inst.operands[i].reg = reg;
4636 inst.operands[i].isreg = 1;
09d92015 4637
c19d1205 4638 if (skip_past_comma (&p) == SUCCESS)
09d92015 4639 {
c19d1205 4640 inst.operands[i].preind = 1;
09d92015 4641
c19d1205
ZW
4642 if (*p == '+') p++;
4643 else if (*p == '-') p++, inst.operands[i].negative = 1;
4644
dcbf9037 4645 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4646 {
c19d1205
ZW
4647 inst.operands[i].imm = reg;
4648 inst.operands[i].immisreg = 1;
4649
4650 if (skip_past_comma (&p) == SUCCESS)
4651 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4652 return PARSE_OPERAND_FAIL;
c19d1205 4653 }
5287ad62
JB
4654 else if (skip_past_char (&p, ':') == SUCCESS)
4655 {
4656 /* FIXME: '@' should be used here, but it's filtered out by generic
4657 code before we get to see it here. This may be subject to
4658 change. */
4659 expressionS exp;
4660 my_get_expression (&exp, &p, GE_NO_PREFIX);
4661 if (exp.X_op != O_constant)
4662 {
4663 inst.error = _("alignment must be constant");
4962c51a 4664 return PARSE_OPERAND_FAIL;
5287ad62
JB
4665 }
4666 inst.operands[i].imm = exp.X_add_number << 8;
4667 inst.operands[i].immisalign = 1;
4668 /* Alignments are not pre-indexes. */
4669 inst.operands[i].preind = 0;
4670 }
c19d1205
ZW
4671 else
4672 {
4673 if (inst.operands[i].negative)
4674 {
4675 inst.operands[i].negative = 0;
4676 p--;
4677 }
4962c51a
MS
4678
4679 if (group_relocations &&
4680 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4681
4682 {
4683 struct group_reloc_table_entry *entry;
4684
4685 /* Skip over the #: or : sequence. */
4686 if (*p == '#')
4687 p += 2;
4688 else
4689 p++;
4690
4691 /* Try to parse a group relocation. Anything else is an
4692 error. */
4693 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4694 {
4695 inst.error = _("unknown group relocation");
4696 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4697 }
4698
4699 /* We now have the group relocation table entry corresponding to
4700 the name in the assembler source. Next, we parse the
4701 expression. */
4702 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4703 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4704
4705 /* Record the relocation type. */
4706 switch (group_type)
4707 {
4708 case GROUP_LDR:
4709 inst.reloc.type = entry->ldr_code;
4710 break;
4711
4712 case GROUP_LDRS:
4713 inst.reloc.type = entry->ldrs_code;
4714 break;
4715
4716 case GROUP_LDC:
4717 inst.reloc.type = entry->ldc_code;
4718 break;
4719
4720 default:
4721 assert (0);
4722 }
4723
4724 if (inst.reloc.type == 0)
4725 {
4726 inst.error = _("this group relocation is not allowed on this instruction");
4727 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4728 }
4729 }
4730 else
4731 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4732 return PARSE_OPERAND_FAIL;
09d92015
MM
4733 }
4734 }
4735
c19d1205 4736 if (skip_past_char (&p, ']') == FAIL)
09d92015 4737 {
c19d1205 4738 inst.error = _("']' expected");
4962c51a 4739 return PARSE_OPERAND_FAIL;
09d92015
MM
4740 }
4741
c19d1205
ZW
4742 if (skip_past_char (&p, '!') == SUCCESS)
4743 inst.operands[i].writeback = 1;
09d92015 4744
c19d1205 4745 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4746 {
c19d1205
ZW
4747 if (skip_past_char (&p, '{') == SUCCESS)
4748 {
4749 /* [Rn], {expr} - unindexed, with option */
4750 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4751 0, 255, TRUE) == FAIL)
4962c51a 4752 return PARSE_OPERAND_FAIL;
09d92015 4753
c19d1205
ZW
4754 if (skip_past_char (&p, '}') == FAIL)
4755 {
4756 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4757 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4758 }
4759 if (inst.operands[i].preind)
4760 {
4761 inst.error = _("cannot combine index with option");
4962c51a 4762 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4763 }
4764 *str = p;
4962c51a 4765 return PARSE_OPERAND_SUCCESS;
09d92015 4766 }
c19d1205
ZW
4767 else
4768 {
4769 inst.operands[i].postind = 1;
4770 inst.operands[i].writeback = 1;
09d92015 4771
c19d1205
ZW
4772 if (inst.operands[i].preind)
4773 {
4774 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4775 return PARSE_OPERAND_FAIL;
c19d1205 4776 }
09d92015 4777
c19d1205
ZW
4778 if (*p == '+') p++;
4779 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4780
dcbf9037 4781 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4782 {
5287ad62
JB
4783 /* We might be using the immediate for alignment already. If we
4784 are, OR the register number into the low-order bits. */
4785 if (inst.operands[i].immisalign)
4786 inst.operands[i].imm |= reg;
4787 else
4788 inst.operands[i].imm = reg;
c19d1205 4789 inst.operands[i].immisreg = 1;
a737bd4d 4790
c19d1205
ZW
4791 if (skip_past_comma (&p) == SUCCESS)
4792 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4793 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4794 }
4795 else
4796 {
4797 if (inst.operands[i].negative)
4798 {
4799 inst.operands[i].negative = 0;
4800 p--;
4801 }
4802 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4803 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4804 }
4805 }
a737bd4d
NC
4806 }
4807
c19d1205
ZW
4808 /* If at this point neither .preind nor .postind is set, we have a
4809 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4810 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4811 {
4812 inst.operands[i].preind = 1;
4813 inst.reloc.exp.X_op = O_constant;
4814 inst.reloc.exp.X_add_number = 0;
4815 }
4816 *str = p;
4962c51a
MS
4817 return PARSE_OPERAND_SUCCESS;
4818}
4819
4820static int
4821parse_address (char **str, int i)
4822{
4823 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4824 ? SUCCESS : FAIL;
4825}
4826
4827static parse_operand_result
4828parse_address_group_reloc (char **str, int i, group_reloc_type type)
4829{
4830 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4831}
4832
b6895b4f
PB
4833/* Parse an operand for a MOVW or MOVT instruction. */
4834static int
4835parse_half (char **str)
4836{
4837 char * p;
4838
4839 p = *str;
4840 skip_past_char (&p, '#');
4841 if (strncasecmp (p, ":lower16:", 9) == 0)
4842 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4843 else if (strncasecmp (p, ":upper16:", 9) == 0)
4844 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4845
4846 if (inst.reloc.type != BFD_RELOC_UNUSED)
4847 {
4848 p += 9;
4849 skip_whitespace(p);
4850 }
4851
4852 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4853 return FAIL;
4854
4855 if (inst.reloc.type == BFD_RELOC_UNUSED)
4856 {
4857 if (inst.reloc.exp.X_op != O_constant)
4858 {
4859 inst.error = _("constant expression expected");
4860 return FAIL;
4861 }
4862 if (inst.reloc.exp.X_add_number < 0
4863 || inst.reloc.exp.X_add_number > 0xffff)
4864 {
4865 inst.error = _("immediate value out of range");
4866 return FAIL;
4867 }
4868 }
4869 *str = p;
4870 return SUCCESS;
4871}
4872
c19d1205 4873/* Miscellaneous. */
a737bd4d 4874
c19d1205
ZW
4875/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4876 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4877static int
4878parse_psr (char **str)
09d92015 4879{
c19d1205
ZW
4880 char *p;
4881 unsigned long psr_field;
62b3e311
PB
4882 const struct asm_psr *psr;
4883 char *start;
09d92015 4884
c19d1205
ZW
4885 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4886 feature for ease of use and backwards compatibility. */
4887 p = *str;
62b3e311 4888 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4889 psr_field = SPSR_BIT;
62b3e311 4890 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4891 psr_field = 0;
4892 else
62b3e311
PB
4893 {
4894 start = p;
4895 do
4896 p++;
4897 while (ISALNUM (*p) || *p == '_');
4898
4899 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4900 if (!psr)
4901 return FAIL;
09d92015 4902
62b3e311
PB
4903 *str = p;
4904 return psr->field;
4905 }
09d92015 4906
62b3e311 4907 p += 4;
c19d1205
ZW
4908 if (*p == '_')
4909 {
4910 /* A suffix follows. */
c19d1205
ZW
4911 p++;
4912 start = p;
a737bd4d 4913
c19d1205
ZW
4914 do
4915 p++;
4916 while (ISALNUM (*p) || *p == '_');
a737bd4d 4917
c19d1205
ZW
4918 psr = hash_find_n (arm_psr_hsh, start, p - start);
4919 if (!psr)
4920 goto error;
a737bd4d 4921
c19d1205 4922 psr_field |= psr->field;
a737bd4d 4923 }
c19d1205 4924 else
a737bd4d 4925 {
c19d1205
ZW
4926 if (ISALNUM (*p))
4927 goto error; /* Garbage after "[CS]PSR". */
4928
4929 psr_field |= (PSR_c | PSR_f);
a737bd4d 4930 }
c19d1205
ZW
4931 *str = p;
4932 return psr_field;
a737bd4d 4933
c19d1205
ZW
4934 error:
4935 inst.error = _("flag for {c}psr instruction expected");
4936 return FAIL;
a737bd4d
NC
4937}
4938
c19d1205
ZW
4939/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4940 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4941
c19d1205
ZW
4942static int
4943parse_cps_flags (char **str)
a737bd4d 4944{
c19d1205
ZW
4945 int val = 0;
4946 int saw_a_flag = 0;
4947 char *s = *str;
a737bd4d 4948
c19d1205
ZW
4949 for (;;)
4950 switch (*s++)
4951 {
4952 case '\0': case ',':
4953 goto done;
a737bd4d 4954
c19d1205
ZW
4955 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4956 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4957 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4958
c19d1205
ZW
4959 default:
4960 inst.error = _("unrecognized CPS flag");
4961 return FAIL;
4962 }
a737bd4d 4963
c19d1205
ZW
4964 done:
4965 if (saw_a_flag == 0)
a737bd4d 4966 {
c19d1205
ZW
4967 inst.error = _("missing CPS flags");
4968 return FAIL;
a737bd4d 4969 }
a737bd4d 4970
c19d1205
ZW
4971 *str = s - 1;
4972 return val;
a737bd4d
NC
4973}
4974
c19d1205
ZW
4975/* Parse an endian specifier ("BE" or "LE", case insensitive);
4976 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4977
4978static int
c19d1205 4979parse_endian_specifier (char **str)
a737bd4d 4980{
c19d1205
ZW
4981 int little_endian;
4982 char *s = *str;
a737bd4d 4983
c19d1205
ZW
4984 if (strncasecmp (s, "BE", 2))
4985 little_endian = 0;
4986 else if (strncasecmp (s, "LE", 2))
4987 little_endian = 1;
4988 else
a737bd4d 4989 {
c19d1205 4990 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4991 return FAIL;
4992 }
4993
c19d1205 4994 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 4995 {
c19d1205 4996 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
4997 return FAIL;
4998 }
4999
c19d1205
ZW
5000 *str = s + 2;
5001 return little_endian;
5002}
a737bd4d 5003
c19d1205
ZW
5004/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5005 value suitable for poking into the rotate field of an sxt or sxta
5006 instruction, or FAIL on error. */
5007
5008static int
5009parse_ror (char **str)
5010{
5011 int rot;
5012 char *s = *str;
5013
5014 if (strncasecmp (s, "ROR", 3) == 0)
5015 s += 3;
5016 else
a737bd4d 5017 {
c19d1205 5018 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5019 return FAIL;
5020 }
c19d1205
ZW
5021
5022 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5023 return FAIL;
5024
5025 switch (rot)
a737bd4d 5026 {
c19d1205
ZW
5027 case 0: *str = s; return 0x0;
5028 case 8: *str = s; return 0x1;
5029 case 16: *str = s; return 0x2;
5030 case 24: *str = s; return 0x3;
5031
5032 default:
5033 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5034 return FAIL;
5035 }
c19d1205 5036}
a737bd4d 5037
c19d1205
ZW
5038/* Parse a conditional code (from conds[] below). The value returned is in the
5039 range 0 .. 14, or FAIL. */
5040static int
5041parse_cond (char **str)
5042{
5043 char *p, *q;
5044 const struct asm_cond *c;
a737bd4d 5045
c19d1205
ZW
5046 p = q = *str;
5047 while (ISALPHA (*q))
5048 q++;
a737bd4d 5049
c19d1205
ZW
5050 c = hash_find_n (arm_cond_hsh, p, q - p);
5051 if (!c)
a737bd4d 5052 {
c19d1205 5053 inst.error = _("condition required");
a737bd4d
NC
5054 return FAIL;
5055 }
5056
c19d1205
ZW
5057 *str = q;
5058 return c->value;
5059}
5060
62b3e311
PB
5061/* Parse an option for a barrier instruction. Returns the encoding for the
5062 option, or FAIL. */
5063static int
5064parse_barrier (char **str)
5065{
5066 char *p, *q;
5067 const struct asm_barrier_opt *o;
5068
5069 p = q = *str;
5070 while (ISALPHA (*q))
5071 q++;
5072
5073 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5074 if (!o)
5075 return FAIL;
5076
5077 *str = q;
5078 return o->value;
5079}
5080
92e90b6e
PB
5081/* Parse the operands of a table branch instruction. Similar to a memory
5082 operand. */
5083static int
5084parse_tb (char **str)
5085{
5086 char * p = *str;
5087 int reg;
5088
5089 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5090 {
5091 inst.error = _("'[' expected");
5092 return FAIL;
5093 }
92e90b6e 5094
dcbf9037 5095 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5096 {
5097 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5098 return FAIL;
5099 }
5100 inst.operands[0].reg = reg;
5101
5102 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5103 {
5104 inst.error = _("',' expected");
5105 return FAIL;
5106 }
92e90b6e 5107
dcbf9037 5108 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5109 {
5110 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5111 return FAIL;
5112 }
5113 inst.operands[0].imm = reg;
5114
5115 if (skip_past_comma (&p) == SUCCESS)
5116 {
5117 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5118 return FAIL;
5119 if (inst.reloc.exp.X_add_number != 1)
5120 {
5121 inst.error = _("invalid shift");
5122 return FAIL;
5123 }
5124 inst.operands[0].shifted = 1;
5125 }
5126
5127 if (skip_past_char (&p, ']') == FAIL)
5128 {
5129 inst.error = _("']' expected");
5130 return FAIL;
5131 }
5132 *str = p;
5133 return SUCCESS;
5134}
5135
5287ad62
JB
5136/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5137 information on the types the operands can take and how they are encoded.
037e8744
JB
5138 Up to four operands may be read; this function handles setting the
5139 ".present" field for each read operand itself.
5287ad62
JB
5140 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5141 else returns FAIL. */
5142
5143static int
5144parse_neon_mov (char **str, int *which_operand)
5145{
5146 int i = *which_operand, val;
5147 enum arm_reg_type rtype;
5148 char *ptr = *str;
dcbf9037 5149 struct neon_type_el optype;
5287ad62 5150
dcbf9037 5151 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5152 {
5153 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5154 inst.operands[i].reg = val;
5155 inst.operands[i].isscalar = 1;
dcbf9037 5156 inst.operands[i].vectype = optype;
5287ad62
JB
5157 inst.operands[i++].present = 1;
5158
5159 if (skip_past_comma (&ptr) == FAIL)
5160 goto wanted_comma;
5161
dcbf9037 5162 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62
JB
5163 goto wanted_arm;
5164
5165 inst.operands[i].reg = val;
5166 inst.operands[i].isreg = 1;
5167 inst.operands[i].present = 1;
5168 }
037e8744 5169 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5170 != FAIL)
5287ad62
JB
5171 {
5172 /* Cases 0, 1, 2, 3, 5 (D only). */
5173 if (skip_past_comma (&ptr) == FAIL)
5174 goto wanted_comma;
5175
5176 inst.operands[i].reg = val;
5177 inst.operands[i].isreg = 1;
5178 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5179 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5180 inst.operands[i].isvec = 1;
dcbf9037 5181 inst.operands[i].vectype = optype;
5287ad62
JB
5182 inst.operands[i++].present = 1;
5183
dcbf9037 5184 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5185 {
037e8744
JB
5186 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5187 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5188 inst.operands[i].reg = val;
5189 inst.operands[i].isreg = 1;
037e8744 5190 inst.operands[i].present = 1;
5287ad62
JB
5191
5192 if (rtype == REG_TYPE_NQ)
5193 {
dcbf9037 5194 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5195 return FAIL;
5196 }
037e8744
JB
5197 else if (rtype != REG_TYPE_VFS)
5198 {
5199 i++;
5200 if (skip_past_comma (&ptr) == FAIL)
5201 goto wanted_comma;
5202 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5203 goto wanted_arm;
5204 inst.operands[i].reg = val;
5205 inst.operands[i].isreg = 1;
5206 inst.operands[i].present = 1;
5207 }
5287ad62 5208 }
136da414 5209 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
136da414 5210 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
037e8744
JB
5211 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5212 Case 10: VMOV.F32 <Sd>, #<imm>
5213 Case 11: VMOV.F64 <Dd>, #<imm> */
c96612cc 5214 inst.operands[i].immisfloat = 1;
5287ad62 5215 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5287ad62
JB
5216 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5217 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
037e8744
JB
5218 ;
5219 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5220 &optype)) != FAIL)
5287ad62
JB
5221 {
5222 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5223 Case 1: VMOV<c><q> <Dd>, <Dm>
5224 Case 8: VMOV.F32 <Sd>, <Sm>
5225 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5226
5227 inst.operands[i].reg = val;
5228 inst.operands[i].isreg = 1;
5229 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5230 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5231 inst.operands[i].isvec = 1;
dcbf9037 5232 inst.operands[i].vectype = optype;
5287ad62 5233 inst.operands[i].present = 1;
037e8744
JB
5234
5235 if (skip_past_comma (&ptr) == SUCCESS)
5236 {
5237 /* Case 15. */
5238 i++;
5239
5240 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5241 goto wanted_arm;
5242
5243 inst.operands[i].reg = val;
5244 inst.operands[i].isreg = 1;
5245 inst.operands[i++].present = 1;
5246
5247 if (skip_past_comma (&ptr) == FAIL)
5248 goto wanted_comma;
5249
5250 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5251 goto wanted_arm;
5252
5253 inst.operands[i].reg = val;
5254 inst.operands[i].isreg = 1;
5255 inst.operands[i++].present = 1;
5256 }
5287ad62
JB
5257 }
5258 else
5259 {
dcbf9037 5260 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5261 return FAIL;
5262 }
5263 }
dcbf9037 5264 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5265 {
5266 /* Cases 6, 7. */
5267 inst.operands[i].reg = val;
5268 inst.operands[i].isreg = 1;
5269 inst.operands[i++].present = 1;
5270
5271 if (skip_past_comma (&ptr) == FAIL)
5272 goto wanted_comma;
5273
dcbf9037 5274 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5275 {
5276 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5277 inst.operands[i].reg = val;
5278 inst.operands[i].isscalar = 1;
5279 inst.operands[i].present = 1;
dcbf9037 5280 inst.operands[i].vectype = optype;
5287ad62 5281 }
dcbf9037 5282 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5283 {
5284 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5285 inst.operands[i].reg = val;
5286 inst.operands[i].isreg = 1;
5287 inst.operands[i++].present = 1;
5288
5289 if (skip_past_comma (&ptr) == FAIL)
5290 goto wanted_comma;
5291
037e8744 5292 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5293 == FAIL)
5287ad62 5294 {
037e8744 5295 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5296 return FAIL;
5297 }
5298
5299 inst.operands[i].reg = val;
5300 inst.operands[i].isreg = 1;
037e8744
JB
5301 inst.operands[i].isvec = 1;
5302 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5303 inst.operands[i].vectype = optype;
5287ad62 5304 inst.operands[i].present = 1;
037e8744
JB
5305
5306 if (rtype == REG_TYPE_VFS)
5307 {
5308 /* Case 14. */
5309 i++;
5310 if (skip_past_comma (&ptr) == FAIL)
5311 goto wanted_comma;
5312 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5313 &optype)) == FAIL)
5314 {
5315 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5316 return FAIL;
5317 }
5318 inst.operands[i].reg = val;
5319 inst.operands[i].isreg = 1;
5320 inst.operands[i].isvec = 1;
5321 inst.operands[i].issingle = 1;
5322 inst.operands[i].vectype = optype;
5323 inst.operands[i].present = 1;
5324 }
5325 }
5326 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5327 != FAIL)
5328 {
5329 /* Case 13. */
5330 inst.operands[i].reg = val;
5331 inst.operands[i].isreg = 1;
5332 inst.operands[i].isvec = 1;
5333 inst.operands[i].issingle = 1;
5334 inst.operands[i].vectype = optype;
5335 inst.operands[i++].present = 1;
5287ad62
JB
5336 }
5337 }
5338 else
5339 {
dcbf9037 5340 first_error (_("parse error"));
5287ad62
JB
5341 return FAIL;
5342 }
5343
5344 /* Successfully parsed the operands. Update args. */
5345 *which_operand = i;
5346 *str = ptr;
5347 return SUCCESS;
5348
5349 wanted_comma:
dcbf9037 5350 first_error (_("expected comma"));
5287ad62
JB
5351 return FAIL;
5352
5353 wanted_arm:
dcbf9037 5354 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5355 return FAIL;
5287ad62
JB
5356}
5357
c19d1205
ZW
5358/* Matcher codes for parse_operands. */
5359enum operand_parse_code
5360{
5361 OP_stop, /* end of line */
5362
5363 OP_RR, /* ARM register */
5364 OP_RRnpc, /* ARM register, not r15 */
5365 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5366 OP_RRw, /* ARM register, not r15, optional trailing ! */
5367 OP_RCP, /* Coprocessor number */
5368 OP_RCN, /* Coprocessor register */
5369 OP_RF, /* FPA register */
5370 OP_RVS, /* VFP single precision register */
5287ad62
JB
5371 OP_RVD, /* VFP double precision register (0..15) */
5372 OP_RND, /* Neon double precision register (0..31) */
5373 OP_RNQ, /* Neon quad precision register */
037e8744 5374 OP_RVSD, /* VFP single or double precision register */
5287ad62 5375 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5376 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5377 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5378 OP_RVC, /* VFP control register */
5379 OP_RMF, /* Maverick F register */
5380 OP_RMD, /* Maverick D register */
5381 OP_RMFX, /* Maverick FX register */
5382 OP_RMDX, /* Maverick DX register */
5383 OP_RMAX, /* Maverick AX register */
5384 OP_RMDS, /* Maverick DSPSC register */
5385 OP_RIWR, /* iWMMXt wR register */
5386 OP_RIWC, /* iWMMXt wC register */
5387 OP_RIWG, /* iWMMXt wCG register */
5388 OP_RXA, /* XScale accumulator register */
5389
5390 OP_REGLST, /* ARM register list */
5391 OP_VRSLST, /* VFP single-precision register list */
5392 OP_VRDLST, /* VFP double-precision register list */
037e8744 5393 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5394 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5395 OP_NSTRLST, /* Neon element/structure list */
5396
5397 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5398 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5399 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5400 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5401 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5402 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5403 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5404 OP_VMOV, /* Neon VMOV operands. */
5405 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5406 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5407 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5408
5409 OP_I0, /* immediate zero */
c19d1205
ZW
5410 OP_I7, /* immediate value 0 .. 7 */
5411 OP_I15, /* 0 .. 15 */
5412 OP_I16, /* 1 .. 16 */
5287ad62 5413 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5414 OP_I31, /* 0 .. 31 */
5415 OP_I31w, /* 0 .. 31, optional trailing ! */
5416 OP_I32, /* 1 .. 32 */
5287ad62
JB
5417 OP_I32z, /* 0 .. 32 */
5418 OP_I63, /* 0 .. 63 */
c19d1205 5419 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5420 OP_I64, /* 1 .. 64 */
5421 OP_I64z, /* 0 .. 64 */
c19d1205 5422 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5423
5424 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5425 OP_I7b, /* 0 .. 7 */
5426 OP_I15b, /* 0 .. 15 */
5427 OP_I31b, /* 0 .. 31 */
5428
5429 OP_SH, /* shifter operand */
4962c51a 5430 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5431 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5432 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5433 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5434 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5435 OP_EXP, /* arbitrary expression */
5436 OP_EXPi, /* same, with optional immediate prefix */
5437 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5438 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5439
5440 OP_CPSF, /* CPS flags */
5441 OP_ENDI, /* Endianness specifier */
5442 OP_PSR, /* CPSR/SPSR mask for msr */
5443 OP_COND, /* conditional code */
92e90b6e 5444 OP_TB, /* Table branch. */
c19d1205 5445
037e8744
JB
5446 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5447 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5448
c19d1205
ZW
5449 OP_RRnpc_I0, /* ARM register or literal 0 */
5450 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5451 OP_RR_EXi, /* ARM register or expression with imm prefix */
5452 OP_RF_IF, /* FPA register or immediate */
5453 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5454 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5455
5456 /* Optional operands. */
5457 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5458 OP_oI31b, /* 0 .. 31 */
5287ad62 5459 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5460 OP_oIffffb, /* 0 .. 65535 */
5461 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5462
5463 OP_oRR, /* ARM register */
5464 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5465 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5466 OP_oRND, /* Optional Neon double precision register */
5467 OP_oRNQ, /* Optional Neon quad precision register */
5468 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5469 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5470 OP_oSHll, /* LSL immediate */
5471 OP_oSHar, /* ASR immediate */
5472 OP_oSHllar, /* LSL or ASR immediate */
5473 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5474 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5475
5476 OP_FIRST_OPTIONAL = OP_oI7b
5477};
a737bd4d 5478
c19d1205
ZW
5479/* Generic instruction operand parser. This does no encoding and no
5480 semantic validation; it merely squirrels values away in the inst
5481 structure. Returns SUCCESS or FAIL depending on whether the
5482 specified grammar matched. */
5483static int
ca3f61f7 5484parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5485{
5486 unsigned const char *upat = pattern;
5487 char *backtrack_pos = 0;
5488 const char *backtrack_error = 0;
5489 int i, val, backtrack_index = 0;
5287ad62 5490 enum arm_reg_type rtype;
4962c51a 5491 parse_operand_result result;
c19d1205
ZW
5492
5493#define po_char_or_fail(chr) do { \
5494 if (skip_past_char (&str, chr) == FAIL) \
5495 goto bad_args; \
5496} while (0)
5497
dcbf9037
JB
5498#define po_reg_or_fail(regtype) do { \
5499 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5500 &inst.operands[i].vectype); \
5501 if (val == FAIL) \
5502 { \
5503 first_error (_(reg_expected_msgs[regtype])); \
5504 goto failure; \
5505 } \
5506 inst.operands[i].reg = val; \
5507 inst.operands[i].isreg = 1; \
5508 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5509 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5510 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5511 || rtype == REG_TYPE_VFD \
5512 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5513} while (0)
5514
dcbf9037
JB
5515#define po_reg_or_goto(regtype, label) do { \
5516 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5517 &inst.operands[i].vectype); \
5518 if (val == FAIL) \
5519 goto label; \
5520 \
5521 inst.operands[i].reg = val; \
5522 inst.operands[i].isreg = 1; \
5523 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5524 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5525 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5526 || rtype == REG_TYPE_VFD \
5527 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5528} while (0)
5529
5530#define po_imm_or_fail(min, max, popt) do { \
5531 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5532 goto failure; \
5533 inst.operands[i].imm = val; \
5534} while (0)
5535
dcbf9037
JB
5536#define po_scalar_or_goto(elsz, label) do { \
5537 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5538 if (val == FAIL) \
5539 goto label; \
5540 inst.operands[i].reg = val; \
5541 inst.operands[i].isscalar = 1; \
5287ad62
JB
5542} while (0)
5543
c19d1205
ZW
5544#define po_misc_or_fail(expr) do { \
5545 if (expr) \
5546 goto failure; \
5547} while (0)
5548
4962c51a
MS
5549#define po_misc_or_fail_no_backtrack(expr) do { \
5550 result = expr; \
5551 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5552 backtrack_pos = 0; \
5553 if (result != PARSE_OPERAND_SUCCESS) \
5554 goto failure; \
5555} while (0)
5556
c19d1205
ZW
5557 skip_whitespace (str);
5558
5559 for (i = 0; upat[i] != OP_stop; i++)
5560 {
5561 if (upat[i] >= OP_FIRST_OPTIONAL)
5562 {
5563 /* Remember where we are in case we need to backtrack. */
5564 assert (!backtrack_pos);
5565 backtrack_pos = str;
5566 backtrack_error = inst.error;
5567 backtrack_index = i;
5568 }
5569
b6702015 5570 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5571 po_char_or_fail (',');
5572
5573 switch (upat[i])
5574 {
5575 /* Registers */
5576 case OP_oRRnpc:
5577 case OP_RRnpc:
5578 case OP_oRR:
5579 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5580 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5581 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5582 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5583 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5584 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5585 case OP_oRND:
5586 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5587 case OP_RVC:
5588 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5589 break;
5590 /* Also accept generic coprocessor regs for unknown registers. */
5591 coproc_reg:
5592 po_reg_or_fail (REG_TYPE_CN);
5593 break;
c19d1205
ZW
5594 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5595 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5596 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5597 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5598 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5599 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5600 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5601 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5602 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5603 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5604 case OP_oRNQ:
5605 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5606 case OP_oRNDQ:
5607 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5608 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5609 case OP_oRNSDQ:
5610 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5611
5612 /* Neon scalar. Using an element size of 8 means that some invalid
5613 scalars are accepted here, so deal with those in later code. */
5614 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5615
5616 /* WARNING: We can expand to two operands here. This has the potential
5617 to totally confuse the backtracking mechanism! It will be OK at
5618 least as long as we don't try to use optional args as well,
5619 though. */
5620 case OP_NILO:
5621 {
5622 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5623 inst.operands[i].present = 1;
5287ad62
JB
5624 i++;
5625 skip_past_comma (&str);
5626 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5627 break;
5628 one_reg_only:
5629 /* Optional register operand was omitted. Unfortunately, it's in
5630 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5631 here (this is a bit grotty). */
5632 inst.operands[i] = inst.operands[i-1];
5633 inst.operands[i-1].present = 0;
5634 break;
5635 try_imm:
036dc3f7
PB
5636 /* There's a possibility of getting a 64-bit immediate here, so
5637 we need special handling. */
5638 if (parse_big_immediate (&str, i) == FAIL)
5639 {
5640 inst.error = _("immediate value is out of range");
5641 goto failure;
5642 }
5287ad62
JB
5643 }
5644 break;
5645
5646 case OP_RNDQ_I0:
5647 {
5648 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5649 break;
5650 try_imm0:
5651 po_imm_or_fail (0, 0, TRUE);
5652 }
5653 break;
5654
037e8744
JB
5655 case OP_RVSD_I0:
5656 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5657 break;
5658
5287ad62
JB
5659 case OP_RR_RNSC:
5660 {
5661 po_scalar_or_goto (8, try_rr);
5662 break;
5663 try_rr:
5664 po_reg_or_fail (REG_TYPE_RN);
5665 }
5666 break;
5667
037e8744
JB
5668 case OP_RNSDQ_RNSC:
5669 {
5670 po_scalar_or_goto (8, try_nsdq);
5671 break;
5672 try_nsdq:
5673 po_reg_or_fail (REG_TYPE_NSDQ);
5674 }
5675 break;
5676
5287ad62
JB
5677 case OP_RNDQ_RNSC:
5678 {
5679 po_scalar_or_goto (8, try_ndq);
5680 break;
5681 try_ndq:
5682 po_reg_or_fail (REG_TYPE_NDQ);
5683 }
5684 break;
5685
5686 case OP_RND_RNSC:
5687 {
5688 po_scalar_or_goto (8, try_vfd);
5689 break;
5690 try_vfd:
5691 po_reg_or_fail (REG_TYPE_VFD);
5692 }
5693 break;
5694
5695 case OP_VMOV:
5696 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5697 not careful then bad things might happen. */
5698 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5699 break;
5700
5701 case OP_RNDQ_IMVNb:
5702 {
5703 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5704 break;
5705 try_mvnimm:
5706 /* There's a possibility of getting a 64-bit immediate here, so
5707 we need special handling. */
5708 if (parse_big_immediate (&str, i) == FAIL)
5709 {
5710 inst.error = _("immediate value is out of range");
5711 goto failure;
5712 }
5713 }
5714 break;
5715
5716 case OP_RNDQ_I63b:
5717 {
5718 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5719 break;
5720 try_shimm:
5721 po_imm_or_fail (0, 63, TRUE);
5722 }
5723 break;
c19d1205
ZW
5724
5725 case OP_RRnpcb:
5726 po_char_or_fail ('[');
5727 po_reg_or_fail (REG_TYPE_RN);
5728 po_char_or_fail (']');
5729 break;
a737bd4d 5730
c19d1205 5731 case OP_RRw:
b6702015 5732 case OP_oRRw:
c19d1205
ZW
5733 po_reg_or_fail (REG_TYPE_RN);
5734 if (skip_past_char (&str, '!') == SUCCESS)
5735 inst.operands[i].writeback = 1;
5736 break;
5737
5738 /* Immediates */
5739 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5740 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5741 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5742 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5743 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5744 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5745 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5746 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5747 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5748 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5749 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5750 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5751
5752 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5753 case OP_oI7b:
5754 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5755 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5756 case OP_oI31b:
5757 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5758 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5759 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5760
5761 /* Immediate variants */
5762 case OP_oI255c:
5763 po_char_or_fail ('{');
5764 po_imm_or_fail (0, 255, TRUE);
5765 po_char_or_fail ('}');
5766 break;
5767
5768 case OP_I31w:
5769 /* The expression parser chokes on a trailing !, so we have
5770 to find it first and zap it. */
5771 {
5772 char *s = str;
5773 while (*s && *s != ',')
5774 s++;
5775 if (s[-1] == '!')
5776 {
5777 s[-1] = '\0';
5778 inst.operands[i].writeback = 1;
5779 }
5780 po_imm_or_fail (0, 31, TRUE);
5781 if (str == s - 1)
5782 str = s;
5783 }
5784 break;
5785
5786 /* Expressions */
5787 case OP_EXPi: EXPi:
5788 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5789 GE_OPT_PREFIX));
5790 break;
5791
5792 case OP_EXP:
5793 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5794 GE_NO_PREFIX));
5795 break;
5796
5797 case OP_EXPr: EXPr:
5798 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5799 GE_NO_PREFIX));
5800 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5801 {
c19d1205
ZW
5802 val = parse_reloc (&str);
5803 if (val == -1)
5804 {
5805 inst.error = _("unrecognized relocation suffix");
5806 goto failure;
5807 }
5808 else if (val != BFD_RELOC_UNUSED)
5809 {
5810 inst.operands[i].imm = val;
5811 inst.operands[i].hasreloc = 1;
5812 }
a737bd4d 5813 }
c19d1205 5814 break;
a737bd4d 5815
b6895b4f
PB
5816 /* Operand for MOVW or MOVT. */
5817 case OP_HALF:
5818 po_misc_or_fail (parse_half (&str));
5819 break;
5820
c19d1205
ZW
5821 /* Register or expression */
5822 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5823 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5824
c19d1205
ZW
5825 /* Register or immediate */
5826 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5827 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5828
c19d1205
ZW
5829 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5830 IF:
5831 if (!is_immediate_prefix (*str))
5832 goto bad_args;
5833 str++;
5834 val = parse_fpa_immediate (&str);
5835 if (val == FAIL)
5836 goto failure;
5837 /* FPA immediates are encoded as registers 8-15.
5838 parse_fpa_immediate has already applied the offset. */
5839 inst.operands[i].reg = val;
5840 inst.operands[i].isreg = 1;
5841 break;
09d92015 5842
2d447fca
JM
5843 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5844 I32z: po_imm_or_fail (0, 32, FALSE); break;
5845
c19d1205
ZW
5846 /* Two kinds of register */
5847 case OP_RIWR_RIWC:
5848 {
5849 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5850 if (!rege
5851 || (rege->type != REG_TYPE_MMXWR
5852 && rege->type != REG_TYPE_MMXWC
5853 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5854 {
5855 inst.error = _("iWMMXt data or control register expected");
5856 goto failure;
5857 }
5858 inst.operands[i].reg = rege->number;
5859 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5860 }
5861 break;
09d92015 5862
41adaa5c
JM
5863 case OP_RIWC_RIWG:
5864 {
5865 struct reg_entry *rege = arm_reg_parse_multi (&str);
5866 if (!rege
5867 || (rege->type != REG_TYPE_MMXWC
5868 && rege->type != REG_TYPE_MMXWCG))
5869 {
5870 inst.error = _("iWMMXt control register expected");
5871 goto failure;
5872 }
5873 inst.operands[i].reg = rege->number;
5874 inst.operands[i].isreg = 1;
5875 }
5876 break;
5877
c19d1205
ZW
5878 /* Misc */
5879 case OP_CPSF: val = parse_cps_flags (&str); break;
5880 case OP_ENDI: val = parse_endian_specifier (&str); break;
5881 case OP_oROR: val = parse_ror (&str); break;
5882 case OP_PSR: val = parse_psr (&str); break;
5883 case OP_COND: val = parse_cond (&str); break;
62b3e311 5884 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5885
037e8744
JB
5886 case OP_RVC_PSR:
5887 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5888 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5889 break;
5890 try_psr:
5891 val = parse_psr (&str);
5892 break;
5893
5894 case OP_APSR_RR:
5895 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5896 break;
5897 try_apsr:
5898 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5899 instruction). */
5900 if (strncasecmp (str, "APSR_", 5) == 0)
5901 {
5902 unsigned found = 0;
5903 str += 5;
5904 while (found < 15)
5905 switch (*str++)
5906 {
5907 case 'c': found = (found & 1) ? 16 : found | 1; break;
5908 case 'n': found = (found & 2) ? 16 : found | 2; break;
5909 case 'z': found = (found & 4) ? 16 : found | 4; break;
5910 case 'v': found = (found & 8) ? 16 : found | 8; break;
5911 default: found = 16;
5912 }
5913 if (found != 15)
5914 goto failure;
5915 inst.operands[i].isvec = 1;
5916 }
5917 else
5918 goto failure;
5919 break;
5920
92e90b6e
PB
5921 case OP_TB:
5922 po_misc_or_fail (parse_tb (&str));
5923 break;
5924
c19d1205
ZW
5925 /* Register lists */
5926 case OP_REGLST:
5927 val = parse_reg_list (&str);
5928 if (*str == '^')
5929 {
5930 inst.operands[1].writeback = 1;
5931 str++;
5932 }
5933 break;
09d92015 5934
c19d1205 5935 case OP_VRSLST:
5287ad62 5936 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5937 break;
09d92015 5938
c19d1205 5939 case OP_VRDLST:
5287ad62 5940 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5941 break;
a737bd4d 5942
037e8744
JB
5943 case OP_VRSDLST:
5944 /* Allow Q registers too. */
5945 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5946 REGLIST_NEON_D);
5947 if (val == FAIL)
5948 {
5949 inst.error = NULL;
5950 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5951 REGLIST_VFP_S);
5952 inst.operands[i].issingle = 1;
5953 }
5954 break;
5955
5287ad62
JB
5956 case OP_NRDLST:
5957 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5958 REGLIST_NEON_D);
5959 break;
5960
5961 case OP_NSTRLST:
dcbf9037
JB
5962 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5963 &inst.operands[i].vectype);
5287ad62
JB
5964 break;
5965
c19d1205
ZW
5966 /* Addressing modes */
5967 case OP_ADDR:
5968 po_misc_or_fail (parse_address (&str, i));
5969 break;
09d92015 5970
4962c51a
MS
5971 case OP_ADDRGLDR:
5972 po_misc_or_fail_no_backtrack (
5973 parse_address_group_reloc (&str, i, GROUP_LDR));
5974 break;
5975
5976 case OP_ADDRGLDRS:
5977 po_misc_or_fail_no_backtrack (
5978 parse_address_group_reloc (&str, i, GROUP_LDRS));
5979 break;
5980
5981 case OP_ADDRGLDC:
5982 po_misc_or_fail_no_backtrack (
5983 parse_address_group_reloc (&str, i, GROUP_LDC));
5984 break;
5985
c19d1205
ZW
5986 case OP_SH:
5987 po_misc_or_fail (parse_shifter_operand (&str, i));
5988 break;
09d92015 5989
4962c51a
MS
5990 case OP_SHG:
5991 po_misc_or_fail_no_backtrack (
5992 parse_shifter_operand_group_reloc (&str, i));
5993 break;
5994
c19d1205
ZW
5995 case OP_oSHll:
5996 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5997 break;
09d92015 5998
c19d1205
ZW
5999 case OP_oSHar:
6000 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6001 break;
09d92015 6002
c19d1205
ZW
6003 case OP_oSHllar:
6004 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6005 break;
09d92015 6006
c19d1205 6007 default:
bd3ba5d1 6008 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6009 }
09d92015 6010
c19d1205
ZW
6011 /* Various value-based sanity checks and shared operations. We
6012 do not signal immediate failures for the register constraints;
6013 this allows a syntax error to take precedence. */
6014 switch (upat[i])
6015 {
6016 case OP_oRRnpc:
6017 case OP_RRnpc:
6018 case OP_RRnpcb:
6019 case OP_RRw:
b6702015 6020 case OP_oRRw:
c19d1205
ZW
6021 case OP_RRnpc_I0:
6022 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6023 inst.error = BAD_PC;
6024 break;
09d92015 6025
c19d1205
ZW
6026 case OP_CPSF:
6027 case OP_ENDI:
6028 case OP_oROR:
6029 case OP_PSR:
037e8744 6030 case OP_RVC_PSR:
c19d1205 6031 case OP_COND:
62b3e311 6032 case OP_oBARRIER:
c19d1205
ZW
6033 case OP_REGLST:
6034 case OP_VRSLST:
6035 case OP_VRDLST:
037e8744 6036 case OP_VRSDLST:
5287ad62
JB
6037 case OP_NRDLST:
6038 case OP_NSTRLST:
c19d1205
ZW
6039 if (val == FAIL)
6040 goto failure;
6041 inst.operands[i].imm = val;
6042 break;
a737bd4d 6043
c19d1205
ZW
6044 default:
6045 break;
6046 }
09d92015 6047
c19d1205
ZW
6048 /* If we get here, this operand was successfully parsed. */
6049 inst.operands[i].present = 1;
6050 continue;
09d92015 6051
c19d1205 6052 bad_args:
09d92015 6053 inst.error = BAD_ARGS;
c19d1205
ZW
6054
6055 failure:
6056 if (!backtrack_pos)
d252fdde
PB
6057 {
6058 /* The parse routine should already have set inst.error, but set a
6059 defaut here just in case. */
6060 if (!inst.error)
6061 inst.error = _("syntax error");
6062 return FAIL;
6063 }
c19d1205
ZW
6064
6065 /* Do not backtrack over a trailing optional argument that
6066 absorbed some text. We will only fail again, with the
6067 'garbage following instruction' error message, which is
6068 probably less helpful than the current one. */
6069 if (backtrack_index == i && backtrack_pos != str
6070 && upat[i+1] == OP_stop)
d252fdde
PB
6071 {
6072 if (!inst.error)
6073 inst.error = _("syntax error");
6074 return FAIL;
6075 }
c19d1205
ZW
6076
6077 /* Try again, skipping the optional argument at backtrack_pos. */
6078 str = backtrack_pos;
6079 inst.error = backtrack_error;
6080 inst.operands[backtrack_index].present = 0;
6081 i = backtrack_index;
6082 backtrack_pos = 0;
09d92015 6083 }
09d92015 6084
c19d1205
ZW
6085 /* Check that we have parsed all the arguments. */
6086 if (*str != '\0' && !inst.error)
6087 inst.error = _("garbage following instruction");
09d92015 6088
c19d1205 6089 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6090}
6091
c19d1205
ZW
6092#undef po_char_or_fail
6093#undef po_reg_or_fail
6094#undef po_reg_or_goto
6095#undef po_imm_or_fail
5287ad62 6096#undef po_scalar_or_fail
c19d1205
ZW
6097\f
6098/* Shorthand macro for instruction encoding functions issuing errors. */
6099#define constraint(expr, err) do { \
6100 if (expr) \
6101 { \
6102 inst.error = err; \
6103 return; \
6104 } \
6105} while (0)
6106
6107/* Functions for operand encoding. ARM, then Thumb. */
6108
6109#define rotate_left(v, n) (v << n | v >> (32 - n))
6110
6111/* If VAL can be encoded in the immediate field of an ARM instruction,
6112 return the encoded form. Otherwise, return FAIL. */
6113
6114static unsigned int
6115encode_arm_immediate (unsigned int val)
09d92015 6116{
c19d1205
ZW
6117 unsigned int a, i;
6118
6119 for (i = 0; i < 32; i += 2)
6120 if ((a = rotate_left (val, i)) <= 0xff)
6121 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6122
6123 return FAIL;
09d92015
MM
6124}
6125
c19d1205
ZW
6126/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6127 return the encoded form. Otherwise, return FAIL. */
6128static unsigned int
6129encode_thumb32_immediate (unsigned int val)
09d92015 6130{
c19d1205 6131 unsigned int a, i;
09d92015 6132
9c3c69f2 6133 if (val <= 0xff)
c19d1205 6134 return val;
a737bd4d 6135
9c3c69f2 6136 for (i = 1; i <= 24; i++)
09d92015 6137 {
9c3c69f2
PB
6138 a = val >> i;
6139 if ((val & ~(0xff << i)) == 0)
6140 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6141 }
a737bd4d 6142
c19d1205
ZW
6143 a = val & 0xff;
6144 if (val == ((a << 16) | a))
6145 return 0x100 | a;
6146 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6147 return 0x300 | a;
09d92015 6148
c19d1205
ZW
6149 a = val & 0xff00;
6150 if (val == ((a << 16) | a))
6151 return 0x200 | (a >> 8);
a737bd4d 6152
c19d1205 6153 return FAIL;
09d92015 6154}
5287ad62 6155/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6156
6157static void
5287ad62
JB
6158encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6159{
6160 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6161 && reg > 15)
6162 {
6163 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6164 {
6165 if (thumb_mode)
6166 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6167 fpu_vfp_ext_v3);
6168 else
6169 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6170 fpu_vfp_ext_v3);
6171 }
6172 else
6173 {
dcbf9037 6174 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6175 return;
6176 }
6177 }
6178
c19d1205 6179 switch (pos)
09d92015 6180 {
c19d1205
ZW
6181 case VFP_REG_Sd:
6182 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6183 break;
6184
6185 case VFP_REG_Sn:
6186 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6187 break;
6188
6189 case VFP_REG_Sm:
6190 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6191 break;
6192
5287ad62
JB
6193 case VFP_REG_Dd:
6194 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6195 break;
6196
6197 case VFP_REG_Dn:
6198 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6199 break;
6200
6201 case VFP_REG_Dm:
6202 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6203 break;
6204
c19d1205
ZW
6205 default:
6206 abort ();
09d92015 6207 }
09d92015
MM
6208}
6209
c19d1205 6210/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6211 if any, is handled by md_apply_fix. */
09d92015 6212static void
c19d1205 6213encode_arm_shift (int i)
09d92015 6214{
c19d1205
ZW
6215 if (inst.operands[i].shift_kind == SHIFT_RRX)
6216 inst.instruction |= SHIFT_ROR << 5;
6217 else
09d92015 6218 {
c19d1205
ZW
6219 inst.instruction |= inst.operands[i].shift_kind << 5;
6220 if (inst.operands[i].immisreg)
6221 {
6222 inst.instruction |= SHIFT_BY_REG;
6223 inst.instruction |= inst.operands[i].imm << 8;
6224 }
6225 else
6226 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6227 }
c19d1205 6228}
09d92015 6229
c19d1205
ZW
6230static void
6231encode_arm_shifter_operand (int i)
6232{
6233 if (inst.operands[i].isreg)
09d92015 6234 {
c19d1205
ZW
6235 inst.instruction |= inst.operands[i].reg;
6236 encode_arm_shift (i);
09d92015 6237 }
c19d1205
ZW
6238 else
6239 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6240}
6241
c19d1205 6242/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6243static void
c19d1205 6244encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6245{
c19d1205
ZW
6246 assert (inst.operands[i].isreg);
6247 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6248
c19d1205 6249 if (inst.operands[i].preind)
09d92015 6250 {
c19d1205
ZW
6251 if (is_t)
6252 {
6253 inst.error = _("instruction does not accept preindexed addressing");
6254 return;
6255 }
6256 inst.instruction |= PRE_INDEX;
6257 if (inst.operands[i].writeback)
6258 inst.instruction |= WRITE_BACK;
09d92015 6259
c19d1205
ZW
6260 }
6261 else if (inst.operands[i].postind)
6262 {
6263 assert (inst.operands[i].writeback);
6264 if (is_t)
6265 inst.instruction |= WRITE_BACK;
6266 }
6267 else /* unindexed - only for coprocessor */
09d92015 6268 {
c19d1205 6269 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6270 return;
6271 }
6272
c19d1205
ZW
6273 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6274 && (((inst.instruction & 0x000f0000) >> 16)
6275 == ((inst.instruction & 0x0000f000) >> 12)))
6276 as_warn ((inst.instruction & LOAD_BIT)
6277 ? _("destination register same as write-back base")
6278 : _("source register same as write-back base"));
09d92015
MM
6279}
6280
c19d1205
ZW
6281/* inst.operands[i] was set up by parse_address. Encode it into an
6282 ARM-format mode 2 load or store instruction. If is_t is true,
6283 reject forms that cannot be used with a T instruction (i.e. not
6284 post-indexed). */
a737bd4d 6285static void
c19d1205 6286encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6287{
c19d1205 6288 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6289
c19d1205 6290 if (inst.operands[i].immisreg)
09d92015 6291 {
c19d1205
ZW
6292 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6293 inst.instruction |= inst.operands[i].imm;
6294 if (!inst.operands[i].negative)
6295 inst.instruction |= INDEX_UP;
6296 if (inst.operands[i].shifted)
6297 {
6298 if (inst.operands[i].shift_kind == SHIFT_RRX)
6299 inst.instruction |= SHIFT_ROR << 5;
6300 else
6301 {
6302 inst.instruction |= inst.operands[i].shift_kind << 5;
6303 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6304 }
6305 }
09d92015 6306 }
c19d1205 6307 else /* immediate offset in inst.reloc */
09d92015 6308 {
c19d1205
ZW
6309 if (inst.reloc.type == BFD_RELOC_UNUSED)
6310 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6311 }
09d92015
MM
6312}
6313
c19d1205
ZW
6314/* inst.operands[i] was set up by parse_address. Encode it into an
6315 ARM-format mode 3 load or store instruction. Reject forms that
6316 cannot be used with such instructions. If is_t is true, reject
6317 forms that cannot be used with a T instruction (i.e. not
6318 post-indexed). */
6319static void
6320encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6321{
c19d1205 6322 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6323 {
c19d1205
ZW
6324 inst.error = _("instruction does not accept scaled register index");
6325 return;
09d92015 6326 }
a737bd4d 6327
c19d1205 6328 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6329
c19d1205
ZW
6330 if (inst.operands[i].immisreg)
6331 {
6332 inst.instruction |= inst.operands[i].imm;
6333 if (!inst.operands[i].negative)
6334 inst.instruction |= INDEX_UP;
6335 }
6336 else /* immediate offset in inst.reloc */
6337 {
6338 inst.instruction |= HWOFFSET_IMM;
6339 if (inst.reloc.type == BFD_RELOC_UNUSED)
6340 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6341 }
a737bd4d
NC
6342}
6343
c19d1205
ZW
6344/* inst.operands[i] was set up by parse_address. Encode it into an
6345 ARM-format instruction. Reject all forms which cannot be encoded
6346 into a coprocessor load/store instruction. If wb_ok is false,
6347 reject use of writeback; if unind_ok is false, reject use of
6348 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6349 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6350 (in which case it is preserved). */
09d92015 6351
c19d1205
ZW
6352static int
6353encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6354{
c19d1205 6355 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6356
c19d1205 6357 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6358
c19d1205 6359 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6360 {
c19d1205
ZW
6361 assert (!inst.operands[i].writeback);
6362 if (!unind_ok)
6363 {
6364 inst.error = _("instruction does not support unindexed addressing");
6365 return FAIL;
6366 }
6367 inst.instruction |= inst.operands[i].imm;
6368 inst.instruction |= INDEX_UP;
6369 return SUCCESS;
09d92015 6370 }
a737bd4d 6371
c19d1205
ZW
6372 if (inst.operands[i].preind)
6373 inst.instruction |= PRE_INDEX;
a737bd4d 6374
c19d1205 6375 if (inst.operands[i].writeback)
09d92015 6376 {
c19d1205
ZW
6377 if (inst.operands[i].reg == REG_PC)
6378 {
6379 inst.error = _("pc may not be used with write-back");
6380 return FAIL;
6381 }
6382 if (!wb_ok)
6383 {
6384 inst.error = _("instruction does not support writeback");
6385 return FAIL;
6386 }
6387 inst.instruction |= WRITE_BACK;
09d92015 6388 }
a737bd4d 6389
c19d1205
ZW
6390 if (reloc_override)
6391 inst.reloc.type = reloc_override;
4962c51a
MS
6392 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6393 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6394 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6395 {
6396 if (thumb_mode)
6397 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6398 else
6399 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6400 }
6401
c19d1205
ZW
6402 return SUCCESS;
6403}
a737bd4d 6404
c19d1205
ZW
6405/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6406 Determine whether it can be performed with a move instruction; if
6407 it can, convert inst.instruction to that move instruction and
6408 return 1; if it can't, convert inst.instruction to a literal-pool
6409 load and return 0. If this is not a valid thing to do in the
6410 current context, set inst.error and return 1.
a737bd4d 6411
c19d1205
ZW
6412 inst.operands[i] describes the destination register. */
6413
6414static int
6415move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6416{
53365c0d
PB
6417 unsigned long tbit;
6418
6419 if (thumb_p)
6420 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6421 else
6422 tbit = LOAD_BIT;
6423
6424 if ((inst.instruction & tbit) == 0)
09d92015 6425 {
c19d1205
ZW
6426 inst.error = _("invalid pseudo operation");
6427 return 1;
09d92015 6428 }
c19d1205 6429 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6430 {
6431 inst.error = _("constant expression expected");
c19d1205 6432 return 1;
09d92015 6433 }
c19d1205 6434 if (inst.reloc.exp.X_op == O_constant)
09d92015 6435 {
c19d1205
ZW
6436 if (thumb_p)
6437 {
53365c0d 6438 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6439 {
6440 /* This can be done with a mov(1) instruction. */
6441 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6442 inst.instruction |= inst.reloc.exp.X_add_number;
6443 return 1;
6444 }
6445 }
6446 else
6447 {
6448 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6449 if (value != FAIL)
6450 {
6451 /* This can be done with a mov instruction. */
6452 inst.instruction &= LITERAL_MASK;
6453 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6454 inst.instruction |= value & 0xfff;
6455 return 1;
6456 }
09d92015 6457
c19d1205
ZW
6458 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6459 if (value != FAIL)
6460 {
6461 /* This can be done with a mvn instruction. */
6462 inst.instruction &= LITERAL_MASK;
6463 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6464 inst.instruction |= value & 0xfff;
6465 return 1;
6466 }
6467 }
09d92015
MM
6468 }
6469
c19d1205
ZW
6470 if (add_to_lit_pool () == FAIL)
6471 {
6472 inst.error = _("literal pool insertion failed");
6473 return 1;
6474 }
6475 inst.operands[1].reg = REG_PC;
6476 inst.operands[1].isreg = 1;
6477 inst.operands[1].preind = 1;
6478 inst.reloc.pc_rel = 1;
6479 inst.reloc.type = (thumb_p
6480 ? BFD_RELOC_ARM_THUMB_OFFSET
6481 : (mode_3
6482 ? BFD_RELOC_ARM_HWLITERAL
6483 : BFD_RELOC_ARM_LITERAL));
6484 return 0;
09d92015
MM
6485}
6486
c19d1205
ZW
6487/* Functions for instruction encoding, sorted by subarchitecture.
6488 First some generics; their names are taken from the conventional
6489 bit positions for register arguments in ARM format instructions. */
09d92015 6490
a737bd4d 6491static void
c19d1205 6492do_noargs (void)
09d92015 6493{
c19d1205 6494}
a737bd4d 6495
c19d1205
ZW
6496static void
6497do_rd (void)
6498{
6499 inst.instruction |= inst.operands[0].reg << 12;
6500}
a737bd4d 6501
c19d1205
ZW
6502static void
6503do_rd_rm (void)
6504{
6505 inst.instruction |= inst.operands[0].reg << 12;
6506 inst.instruction |= inst.operands[1].reg;
6507}
09d92015 6508
c19d1205
ZW
6509static void
6510do_rd_rn (void)
6511{
6512 inst.instruction |= inst.operands[0].reg << 12;
6513 inst.instruction |= inst.operands[1].reg << 16;
6514}
a737bd4d 6515
c19d1205
ZW
6516static void
6517do_rn_rd (void)
6518{
6519 inst.instruction |= inst.operands[0].reg << 16;
6520 inst.instruction |= inst.operands[1].reg << 12;
6521}
09d92015 6522
c19d1205
ZW
6523static void
6524do_rd_rm_rn (void)
6525{
9a64e435 6526 unsigned Rn = inst.operands[2].reg;
708587a4 6527 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6528 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6529 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6530 _("Rn must not overlap other operands"));
c19d1205
ZW
6531 inst.instruction |= inst.operands[0].reg << 12;
6532 inst.instruction |= inst.operands[1].reg;
9a64e435 6533 inst.instruction |= Rn << 16;
c19d1205 6534}
09d92015 6535
c19d1205
ZW
6536static void
6537do_rd_rn_rm (void)
6538{
6539 inst.instruction |= inst.operands[0].reg << 12;
6540 inst.instruction |= inst.operands[1].reg << 16;
6541 inst.instruction |= inst.operands[2].reg;
6542}
a737bd4d 6543
c19d1205
ZW
6544static void
6545do_rm_rd_rn (void)
6546{
6547 inst.instruction |= inst.operands[0].reg;
6548 inst.instruction |= inst.operands[1].reg << 12;
6549 inst.instruction |= inst.operands[2].reg << 16;
6550}
09d92015 6551
c19d1205
ZW
6552static void
6553do_imm0 (void)
6554{
6555 inst.instruction |= inst.operands[0].imm;
6556}
09d92015 6557
c19d1205
ZW
6558static void
6559do_rd_cpaddr (void)
6560{
6561 inst.instruction |= inst.operands[0].reg << 12;
6562 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6563}
a737bd4d 6564
c19d1205
ZW
6565/* ARM instructions, in alphabetical order by function name (except
6566 that wrapper functions appear immediately after the function they
6567 wrap). */
09d92015 6568
c19d1205
ZW
6569/* This is a pseudo-op of the form "adr rd, label" to be converted
6570 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6571
6572static void
c19d1205 6573do_adr (void)
09d92015 6574{
c19d1205 6575 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6576
c19d1205
ZW
6577 /* Frag hacking will turn this into a sub instruction if the offset turns
6578 out to be negative. */
6579 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6580 inst.reloc.pc_rel = 1;
2fc8bdac 6581 inst.reloc.exp.X_add_number -= 8;
c19d1205 6582}
b99bd4ef 6583
c19d1205
ZW
6584/* This is a pseudo-op of the form "adrl rd, label" to be converted
6585 into a relative address of the form:
6586 add rd, pc, #low(label-.-8)"
6587 add rd, rd, #high(label-.-8)" */
b99bd4ef 6588
c19d1205
ZW
6589static void
6590do_adrl (void)
6591{
6592 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6593
c19d1205
ZW
6594 /* Frag hacking will turn this into a sub instruction if the offset turns
6595 out to be negative. */
6596 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6597 inst.reloc.pc_rel = 1;
6598 inst.size = INSN_SIZE * 2;
2fc8bdac 6599 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6600}
6601
b99bd4ef 6602static void
c19d1205 6603do_arit (void)
b99bd4ef 6604{
c19d1205
ZW
6605 if (!inst.operands[1].present)
6606 inst.operands[1].reg = inst.operands[0].reg;
6607 inst.instruction |= inst.operands[0].reg << 12;
6608 inst.instruction |= inst.operands[1].reg << 16;
6609 encode_arm_shifter_operand (2);
6610}
b99bd4ef 6611
62b3e311
PB
6612static void
6613do_barrier (void)
6614{
6615 if (inst.operands[0].present)
6616 {
6617 constraint ((inst.instruction & 0xf0) != 0x40
6618 && inst.operands[0].imm != 0xf,
bd3ba5d1 6619 _("bad barrier type"));
62b3e311
PB
6620 inst.instruction |= inst.operands[0].imm;
6621 }
6622 else
6623 inst.instruction |= 0xf;
6624}
6625
c19d1205
ZW
6626static void
6627do_bfc (void)
6628{
6629 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6630 constraint (msb > 32, _("bit-field extends past end of register"));
6631 /* The instruction encoding stores the LSB and MSB,
6632 not the LSB and width. */
6633 inst.instruction |= inst.operands[0].reg << 12;
6634 inst.instruction |= inst.operands[1].imm << 7;
6635 inst.instruction |= (msb - 1) << 16;
6636}
b99bd4ef 6637
c19d1205
ZW
6638static void
6639do_bfi (void)
6640{
6641 unsigned int msb;
b99bd4ef 6642
c19d1205
ZW
6643 /* #0 in second position is alternative syntax for bfc, which is
6644 the same instruction but with REG_PC in the Rm field. */
6645 if (!inst.operands[1].isreg)
6646 inst.operands[1].reg = REG_PC;
b99bd4ef 6647
c19d1205
ZW
6648 msb = inst.operands[2].imm + inst.operands[3].imm;
6649 constraint (msb > 32, _("bit-field extends past end of register"));
6650 /* The instruction encoding stores the LSB and MSB,
6651 not the LSB and width. */
6652 inst.instruction |= inst.operands[0].reg << 12;
6653 inst.instruction |= inst.operands[1].reg;
6654 inst.instruction |= inst.operands[2].imm << 7;
6655 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6656}
6657
b99bd4ef 6658static void
c19d1205 6659do_bfx (void)
b99bd4ef 6660{
c19d1205
ZW
6661 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6662 _("bit-field extends past end of register"));
6663 inst.instruction |= inst.operands[0].reg << 12;
6664 inst.instruction |= inst.operands[1].reg;
6665 inst.instruction |= inst.operands[2].imm << 7;
6666 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6667}
09d92015 6668
c19d1205
ZW
6669/* ARM V5 breakpoint instruction (argument parse)
6670 BKPT <16 bit unsigned immediate>
6671 Instruction is not conditional.
6672 The bit pattern given in insns[] has the COND_ALWAYS condition,
6673 and it is an error if the caller tried to override that. */
b99bd4ef 6674
c19d1205
ZW
6675static void
6676do_bkpt (void)
6677{
6678 /* Top 12 of 16 bits to bits 19:8. */
6679 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6680
c19d1205
ZW
6681 /* Bottom 4 of 16 bits to bits 3:0. */
6682 inst.instruction |= inst.operands[0].imm & 0xf;
6683}
09d92015 6684
c19d1205
ZW
6685static void
6686encode_branch (int default_reloc)
6687{
6688 if (inst.operands[0].hasreloc)
6689 {
6690 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6691 _("the only suffix valid here is '(plt)'"));
6692 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6693 }
b99bd4ef 6694 else
c19d1205
ZW
6695 {
6696 inst.reloc.type = default_reloc;
c19d1205 6697 }
2fc8bdac 6698 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6699}
6700
b99bd4ef 6701static void
c19d1205 6702do_branch (void)
b99bd4ef 6703{
39b41c9c
PB
6704#ifdef OBJ_ELF
6705 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6706 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6707 else
6708#endif
6709 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6710}
6711
6712static void
6713do_bl (void)
6714{
6715#ifdef OBJ_ELF
6716 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6717 {
6718 if (inst.cond == COND_ALWAYS)
6719 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6720 else
6721 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6722 }
6723 else
6724#endif
6725 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6726}
b99bd4ef 6727
c19d1205
ZW
6728/* ARM V5 branch-link-exchange instruction (argument parse)
6729 BLX <target_addr> ie BLX(1)
6730 BLX{<condition>} <Rm> ie BLX(2)
6731 Unfortunately, there are two different opcodes for this mnemonic.
6732 So, the insns[].value is not used, and the code here zaps values
6733 into inst.instruction.
6734 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6735
c19d1205
ZW
6736static void
6737do_blx (void)
6738{
6739 if (inst.operands[0].isreg)
b99bd4ef 6740 {
c19d1205
ZW
6741 /* Arg is a register; the opcode provided by insns[] is correct.
6742 It is not illegal to do "blx pc", just useless. */
6743 if (inst.operands[0].reg == REG_PC)
6744 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6745
c19d1205
ZW
6746 inst.instruction |= inst.operands[0].reg;
6747 }
6748 else
b99bd4ef 6749 {
c19d1205
ZW
6750 /* Arg is an address; this instruction cannot be executed
6751 conditionally, and the opcode must be adjusted. */
6752 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6753 inst.instruction = 0xfa000000;
39b41c9c
PB
6754#ifdef OBJ_ELF
6755 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6756 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6757 else
6758#endif
6759 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6760 }
c19d1205
ZW
6761}
6762
6763static void
6764do_bx (void)
6765{
6766 if (inst.operands[0].reg == REG_PC)
6767 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6768
c19d1205 6769 inst.instruction |= inst.operands[0].reg;
09d92015
MM
6770}
6771
c19d1205
ZW
6772
6773/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6774
6775static void
c19d1205 6776do_bxj (void)
a737bd4d 6777{
c19d1205
ZW
6778 if (inst.operands[0].reg == REG_PC)
6779 as_tsktsk (_("use of r15 in bxj is not really useful"));
6780
6781 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6782}
6783
c19d1205
ZW
6784/* Co-processor data operation:
6785 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6786 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6787static void
6788do_cdp (void)
6789{
6790 inst.instruction |= inst.operands[0].reg << 8;
6791 inst.instruction |= inst.operands[1].imm << 20;
6792 inst.instruction |= inst.operands[2].reg << 12;
6793 inst.instruction |= inst.operands[3].reg << 16;
6794 inst.instruction |= inst.operands[4].reg;
6795 inst.instruction |= inst.operands[5].imm << 5;
6796}
a737bd4d
NC
6797
6798static void
c19d1205 6799do_cmp (void)
a737bd4d 6800{
c19d1205
ZW
6801 inst.instruction |= inst.operands[0].reg << 16;
6802 encode_arm_shifter_operand (1);
a737bd4d
NC
6803}
6804
c19d1205
ZW
6805/* Transfer between coprocessor and ARM registers.
6806 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6807 MRC2
6808 MCR{cond}
6809 MCR2
6810
6811 No special properties. */
09d92015
MM
6812
6813static void
c19d1205 6814do_co_reg (void)
09d92015 6815{
c19d1205
ZW
6816 inst.instruction |= inst.operands[0].reg << 8;
6817 inst.instruction |= inst.operands[1].imm << 21;
6818 inst.instruction |= inst.operands[2].reg << 12;
6819 inst.instruction |= inst.operands[3].reg << 16;
6820 inst.instruction |= inst.operands[4].reg;
6821 inst.instruction |= inst.operands[5].imm << 5;
6822}
09d92015 6823
c19d1205
ZW
6824/* Transfer between coprocessor register and pair of ARM registers.
6825 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6826 MCRR2
6827 MRRC{cond}
6828 MRRC2
b99bd4ef 6829
c19d1205 6830 Two XScale instructions are special cases of these:
09d92015 6831
c19d1205
ZW
6832 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6833 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6834
c19d1205 6835 Result unpredicatable if Rd or Rn is R15. */
a737bd4d 6836
c19d1205
ZW
6837static void
6838do_co_reg2c (void)
6839{
6840 inst.instruction |= inst.operands[0].reg << 8;
6841 inst.instruction |= inst.operands[1].imm << 4;
6842 inst.instruction |= inst.operands[2].reg << 12;
6843 inst.instruction |= inst.operands[3].reg << 16;
6844 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6845}
6846
c19d1205
ZW
6847static void
6848do_cpsi (void)
6849{
6850 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6851 if (inst.operands[1].present)
6852 {
6853 inst.instruction |= CPSI_MMOD;
6854 inst.instruction |= inst.operands[1].imm;
6855 }
c19d1205 6856}
b99bd4ef 6857
62b3e311
PB
6858static void
6859do_dbg (void)
6860{
6861 inst.instruction |= inst.operands[0].imm;
6862}
6863
b99bd4ef 6864static void
c19d1205 6865do_it (void)
b99bd4ef 6866{
c19d1205
ZW
6867 /* There is no IT instruction in ARM mode. We
6868 process it but do not generate code for it. */
6869 inst.size = 0;
09d92015 6870}
b99bd4ef 6871
09d92015 6872static void
c19d1205 6873do_ldmstm (void)
ea6ef066 6874{
c19d1205
ZW
6875 int base_reg = inst.operands[0].reg;
6876 int range = inst.operands[1].imm;
ea6ef066 6877
c19d1205
ZW
6878 inst.instruction |= base_reg << 16;
6879 inst.instruction |= range;
ea6ef066 6880
c19d1205
ZW
6881 if (inst.operands[1].writeback)
6882 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6883
c19d1205 6884 if (inst.operands[0].writeback)
ea6ef066 6885 {
c19d1205
ZW
6886 inst.instruction |= WRITE_BACK;
6887 /* Check for unpredictable uses of writeback. */
6888 if (inst.instruction & LOAD_BIT)
09d92015 6889 {
c19d1205
ZW
6890 /* Not allowed in LDM type 2. */
6891 if ((inst.instruction & LDM_TYPE_2_OR_3)
6892 && ((range & (1 << REG_PC)) == 0))
6893 as_warn (_("writeback of base register is UNPREDICTABLE"));
6894 /* Only allowed if base reg not in list for other types. */
6895 else if (range & (1 << base_reg))
6896 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6897 }
6898 else /* STM. */
6899 {
6900 /* Not allowed for type 2. */
6901 if (inst.instruction & LDM_TYPE_2_OR_3)
6902 as_warn (_("writeback of base register is UNPREDICTABLE"));
6903 /* Only allowed if base reg not in list, or first in list. */
6904 else if ((range & (1 << base_reg))
6905 && (range & ((1 << base_reg) - 1)))
6906 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6907 }
ea6ef066 6908 }
a737bd4d
NC
6909}
6910
c19d1205
ZW
6911/* ARMv5TE load-consecutive (argument parse)
6912 Mode is like LDRH.
6913
6914 LDRccD R, mode
6915 STRccD R, mode. */
6916
a737bd4d 6917static void
c19d1205 6918do_ldrd (void)
a737bd4d 6919{
c19d1205
ZW
6920 constraint (inst.operands[0].reg % 2 != 0,
6921 _("first destination register must be even"));
6922 constraint (inst.operands[1].present
6923 && inst.operands[1].reg != inst.operands[0].reg + 1,
6924 _("can only load two consecutive registers"));
6925 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6926 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6927
c19d1205
ZW
6928 if (!inst.operands[1].present)
6929 inst.operands[1].reg = inst.operands[0].reg + 1;
6930
6931 if (inst.instruction & LOAD_BIT)
a737bd4d 6932 {
c19d1205
ZW
6933 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6934 register and the first register written; we have to diagnose
6935 overlap between the base and the second register written here. */
ea6ef066 6936
c19d1205
ZW
6937 if (inst.operands[2].reg == inst.operands[1].reg
6938 && (inst.operands[2].writeback || inst.operands[2].postind))
6939 as_warn (_("base register written back, and overlaps "
6940 "second destination register"));
b05fe5cf 6941
c19d1205
ZW
6942 /* For an index-register load, the index register must not overlap the
6943 destination (even if not write-back). */
6944 else if (inst.operands[2].immisreg
ca3f61f7
NC
6945 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6946 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6947 as_warn (_("index register overlaps destination register"));
b05fe5cf 6948 }
c19d1205
ZW
6949
6950 inst.instruction |= inst.operands[0].reg << 12;
6951 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6952}
6953
6954static void
c19d1205 6955do_ldrex (void)
b05fe5cf 6956{
c19d1205
ZW
6957 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6958 || inst.operands[1].postind || inst.operands[1].writeback
6959 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6960 || inst.operands[1].negative
6961 /* This can arise if the programmer has written
6962 strex rN, rM, foo
6963 or if they have mistakenly used a register name as the last
6964 operand, eg:
6965 strex rN, rM, rX
6966 It is very difficult to distinguish between these two cases
6967 because "rX" might actually be a label. ie the register
6968 name has been occluded by a symbol of the same name. So we
6969 just generate a general 'bad addressing mode' type error
6970 message and leave it up to the programmer to discover the
6971 true cause and fix their mistake. */
6972 || (inst.operands[1].reg == REG_PC),
6973 BAD_ADDR_MODE);
b05fe5cf 6974
c19d1205
ZW
6975 constraint (inst.reloc.exp.X_op != O_constant
6976 || inst.reloc.exp.X_add_number != 0,
6977 _("offset must be zero in ARM encoding"));
b05fe5cf 6978
c19d1205
ZW
6979 inst.instruction |= inst.operands[0].reg << 12;
6980 inst.instruction |= inst.operands[1].reg << 16;
6981 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
6982}
6983
6984static void
c19d1205 6985do_ldrexd (void)
b05fe5cf 6986{
c19d1205
ZW
6987 constraint (inst.operands[0].reg % 2 != 0,
6988 _("even register required"));
6989 constraint (inst.operands[1].present
6990 && inst.operands[1].reg != inst.operands[0].reg + 1,
6991 _("can only load two consecutive registers"));
6992 /* If op 1 were present and equal to PC, this function wouldn't
6993 have been called in the first place. */
6994 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 6995
c19d1205
ZW
6996 inst.instruction |= inst.operands[0].reg << 12;
6997 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
6998}
6999
7000static void
c19d1205 7001do_ldst (void)
b05fe5cf 7002{
c19d1205
ZW
7003 inst.instruction |= inst.operands[0].reg << 12;
7004 if (!inst.operands[1].isreg)
7005 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7006 return;
c19d1205 7007 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7008}
7009
7010static void
c19d1205 7011do_ldstt (void)
b05fe5cf 7012{
c19d1205
ZW
7013 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7014 reject [Rn,...]. */
7015 if (inst.operands[1].preind)
b05fe5cf 7016 {
bd3ba5d1
NC
7017 constraint (inst.reloc.exp.X_op != O_constant
7018 || inst.reloc.exp.X_add_number != 0,
c19d1205 7019 _("this instruction requires a post-indexed address"));
b05fe5cf 7020
c19d1205
ZW
7021 inst.operands[1].preind = 0;
7022 inst.operands[1].postind = 1;
7023 inst.operands[1].writeback = 1;
b05fe5cf 7024 }
c19d1205
ZW
7025 inst.instruction |= inst.operands[0].reg << 12;
7026 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7027}
b05fe5cf 7028
c19d1205 7029/* Halfword and signed-byte load/store operations. */
b05fe5cf 7030
c19d1205
ZW
7031static void
7032do_ldstv4 (void)
7033{
7034 inst.instruction |= inst.operands[0].reg << 12;
7035 if (!inst.operands[1].isreg)
7036 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7037 return;
c19d1205 7038 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7039}
7040
7041static void
c19d1205 7042do_ldsttv4 (void)
b05fe5cf 7043{
c19d1205
ZW
7044 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7045 reject [Rn,...]. */
7046 if (inst.operands[1].preind)
b05fe5cf 7047 {
bd3ba5d1
NC
7048 constraint (inst.reloc.exp.X_op != O_constant
7049 || inst.reloc.exp.X_add_number != 0,
c19d1205 7050 _("this instruction requires a post-indexed address"));
b05fe5cf 7051
c19d1205
ZW
7052 inst.operands[1].preind = 0;
7053 inst.operands[1].postind = 1;
7054 inst.operands[1].writeback = 1;
b05fe5cf 7055 }
c19d1205
ZW
7056 inst.instruction |= inst.operands[0].reg << 12;
7057 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7058}
b05fe5cf 7059
c19d1205
ZW
7060/* Co-processor register load/store.
7061 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7062static void
7063do_lstc (void)
7064{
7065 inst.instruction |= inst.operands[0].reg << 8;
7066 inst.instruction |= inst.operands[1].reg << 12;
7067 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7068}
7069
b05fe5cf 7070static void
c19d1205 7071do_mlas (void)
b05fe5cf 7072{
8fb9d7b9 7073 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7074 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7075 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7076 && !(inst.instruction & 0x00400000))
8fb9d7b9 7077 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7078
c19d1205
ZW
7079 inst.instruction |= inst.operands[0].reg << 16;
7080 inst.instruction |= inst.operands[1].reg;
7081 inst.instruction |= inst.operands[2].reg << 8;
7082 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7083}
b05fe5cf 7084
c19d1205
ZW
7085static void
7086do_mov (void)
7087{
7088 inst.instruction |= inst.operands[0].reg << 12;
7089 encode_arm_shifter_operand (1);
7090}
b05fe5cf 7091
c19d1205
ZW
7092/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7093static void
7094do_mov16 (void)
7095{
b6895b4f
PB
7096 bfd_vma imm;
7097 bfd_boolean top;
7098
7099 top = (inst.instruction & 0x00400000) != 0;
7100 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7101 _(":lower16: not allowed this instruction"));
7102 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7103 _(":upper16: not allowed instruction"));
c19d1205 7104 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7105 if (inst.reloc.type == BFD_RELOC_UNUSED)
7106 {
7107 imm = inst.reloc.exp.X_add_number;
7108 /* The value is in two pieces: 0:11, 16:19. */
7109 inst.instruction |= (imm & 0x00000fff);
7110 inst.instruction |= (imm & 0x0000f000) << 4;
7111 }
b05fe5cf 7112}
b99bd4ef 7113
037e8744
JB
7114static void do_vfp_nsyn_opcode (const char *);
7115
7116static int
7117do_vfp_nsyn_mrs (void)
7118{
7119 if (inst.operands[0].isvec)
7120 {
7121 if (inst.operands[1].reg != 1)
7122 first_error (_("operand 1 must be FPSCR"));
7123 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7124 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7125 do_vfp_nsyn_opcode ("fmstat");
7126 }
7127 else if (inst.operands[1].isvec)
7128 do_vfp_nsyn_opcode ("fmrx");
7129 else
7130 return FAIL;
7131
7132 return SUCCESS;
7133}
7134
7135static int
7136do_vfp_nsyn_msr (void)
7137{
7138 if (inst.operands[0].isvec)
7139 do_vfp_nsyn_opcode ("fmxr");
7140 else
7141 return FAIL;
7142
7143 return SUCCESS;
7144}
7145
b99bd4ef 7146static void
c19d1205 7147do_mrs (void)
b99bd4ef 7148{
037e8744
JB
7149 if (do_vfp_nsyn_mrs () == SUCCESS)
7150 return;
7151
c19d1205
ZW
7152 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7153 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7154 != (PSR_c|PSR_f),
7155 _("'CPSR' or 'SPSR' expected"));
7156 inst.instruction |= inst.operands[0].reg << 12;
7157 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7158}
b99bd4ef 7159
c19d1205
ZW
7160/* Two possible forms:
7161 "{C|S}PSR_<field>, Rm",
7162 "{C|S}PSR_f, #expression". */
b99bd4ef 7163
c19d1205
ZW
7164static void
7165do_msr (void)
7166{
037e8744
JB
7167 if (do_vfp_nsyn_msr () == SUCCESS)
7168 return;
7169
c19d1205
ZW
7170 inst.instruction |= inst.operands[0].imm;
7171 if (inst.operands[1].isreg)
7172 inst.instruction |= inst.operands[1].reg;
7173 else
b99bd4ef 7174 {
c19d1205
ZW
7175 inst.instruction |= INST_IMMEDIATE;
7176 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7177 inst.reloc.pc_rel = 0;
b99bd4ef 7178 }
b99bd4ef
NC
7179}
7180
c19d1205
ZW
7181static void
7182do_mul (void)
a737bd4d 7183{
c19d1205
ZW
7184 if (!inst.operands[2].present)
7185 inst.operands[2].reg = inst.operands[0].reg;
7186 inst.instruction |= inst.operands[0].reg << 16;
7187 inst.instruction |= inst.operands[1].reg;
7188 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7189
8fb9d7b9
MS
7190 if (inst.operands[0].reg == inst.operands[1].reg
7191 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7192 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7193}
7194
c19d1205
ZW
7195/* Long Multiply Parser
7196 UMULL RdLo, RdHi, Rm, Rs
7197 SMULL RdLo, RdHi, Rm, Rs
7198 UMLAL RdLo, RdHi, Rm, Rs
7199 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7200
7201static void
c19d1205 7202do_mull (void)
b99bd4ef 7203{
c19d1205
ZW
7204 inst.instruction |= inst.operands[0].reg << 12;
7205 inst.instruction |= inst.operands[1].reg << 16;
7206 inst.instruction |= inst.operands[2].reg;
7207 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7208
c19d1205
ZW
7209 /* rdhi, rdlo and rm must all be different. */
7210 if (inst.operands[0].reg == inst.operands[1].reg
7211 || inst.operands[0].reg == inst.operands[2].reg
7212 || inst.operands[1].reg == inst.operands[2].reg)
7213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7214}
b99bd4ef 7215
c19d1205
ZW
7216static void
7217do_nop (void)
7218{
7219 if (inst.operands[0].present)
7220 {
7221 /* Architectural NOP hints are CPSR sets with no bits selected. */
7222 inst.instruction &= 0xf0000000;
7223 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7224 }
b99bd4ef
NC
7225}
7226
c19d1205
ZW
7227/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7228 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7229 Condition defaults to COND_ALWAYS.
7230 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7231
7232static void
c19d1205 7233do_pkhbt (void)
b99bd4ef 7234{
c19d1205
ZW
7235 inst.instruction |= inst.operands[0].reg << 12;
7236 inst.instruction |= inst.operands[1].reg << 16;
7237 inst.instruction |= inst.operands[2].reg;
7238 if (inst.operands[3].present)
7239 encode_arm_shift (3);
7240}
b99bd4ef 7241
c19d1205 7242/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7243
c19d1205
ZW
7244static void
7245do_pkhtb (void)
7246{
7247 if (!inst.operands[3].present)
b99bd4ef 7248 {
c19d1205
ZW
7249 /* If the shift specifier is omitted, turn the instruction
7250 into pkhbt rd, rm, rn. */
7251 inst.instruction &= 0xfff00010;
7252 inst.instruction |= inst.operands[0].reg << 12;
7253 inst.instruction |= inst.operands[1].reg;
7254 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7255 }
7256 else
7257 {
c19d1205
ZW
7258 inst.instruction |= inst.operands[0].reg << 12;
7259 inst.instruction |= inst.operands[1].reg << 16;
7260 inst.instruction |= inst.operands[2].reg;
7261 encode_arm_shift (3);
b99bd4ef
NC
7262 }
7263}
7264
c19d1205
ZW
7265/* ARMv5TE: Preload-Cache
7266
7267 PLD <addr_mode>
7268
7269 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7270
7271static void
c19d1205 7272do_pld (void)
b99bd4ef 7273{
c19d1205
ZW
7274 constraint (!inst.operands[0].isreg,
7275 _("'[' expected after PLD mnemonic"));
7276 constraint (inst.operands[0].postind,
7277 _("post-indexed expression used in preload instruction"));
7278 constraint (inst.operands[0].writeback,
7279 _("writeback used in preload instruction"));
7280 constraint (!inst.operands[0].preind,
7281 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7282 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7283}
b99bd4ef 7284
62b3e311
PB
7285/* ARMv7: PLI <addr_mode> */
7286static void
7287do_pli (void)
7288{
7289 constraint (!inst.operands[0].isreg,
7290 _("'[' expected after PLI mnemonic"));
7291 constraint (inst.operands[0].postind,
7292 _("post-indexed expression used in preload instruction"));
7293 constraint (inst.operands[0].writeback,
7294 _("writeback used in preload instruction"));
7295 constraint (!inst.operands[0].preind,
7296 _("unindexed addressing used in preload instruction"));
7297 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7298 inst.instruction &= ~PRE_INDEX;
7299}
7300
c19d1205
ZW
7301static void
7302do_push_pop (void)
7303{
7304 inst.operands[1] = inst.operands[0];
7305 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7306 inst.operands[0].isreg = 1;
7307 inst.operands[0].writeback = 1;
7308 inst.operands[0].reg = REG_SP;
7309 do_ldmstm ();
7310}
b99bd4ef 7311
c19d1205
ZW
7312/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7313 word at the specified address and the following word
7314 respectively.
7315 Unconditionally executed.
7316 Error if Rn is R15. */
b99bd4ef 7317
c19d1205
ZW
7318static void
7319do_rfe (void)
7320{
7321 inst.instruction |= inst.operands[0].reg << 16;
7322 if (inst.operands[0].writeback)
7323 inst.instruction |= WRITE_BACK;
7324}
b99bd4ef 7325
c19d1205 7326/* ARM V6 ssat (argument parse). */
b99bd4ef 7327
c19d1205
ZW
7328static void
7329do_ssat (void)
7330{
7331 inst.instruction |= inst.operands[0].reg << 12;
7332 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7333 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7334
c19d1205
ZW
7335 if (inst.operands[3].present)
7336 encode_arm_shift (3);
b99bd4ef
NC
7337}
7338
c19d1205 7339/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7340
7341static void
c19d1205 7342do_usat (void)
b99bd4ef 7343{
c19d1205
ZW
7344 inst.instruction |= inst.operands[0].reg << 12;
7345 inst.instruction |= inst.operands[1].imm << 16;
7346 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7347
c19d1205
ZW
7348 if (inst.operands[3].present)
7349 encode_arm_shift (3);
b99bd4ef
NC
7350}
7351
c19d1205 7352/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7353
7354static void
c19d1205 7355do_ssat16 (void)
09d92015 7356{
c19d1205
ZW
7357 inst.instruction |= inst.operands[0].reg << 12;
7358 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7359 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7360}
7361
c19d1205
ZW
7362static void
7363do_usat16 (void)
a737bd4d 7364{
c19d1205
ZW
7365 inst.instruction |= inst.operands[0].reg << 12;
7366 inst.instruction |= inst.operands[1].imm << 16;
7367 inst.instruction |= inst.operands[2].reg;
7368}
a737bd4d 7369
c19d1205
ZW
7370/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7371 preserving the other bits.
a737bd4d 7372
c19d1205
ZW
7373 setend <endian_specifier>, where <endian_specifier> is either
7374 BE or LE. */
a737bd4d 7375
c19d1205
ZW
7376static void
7377do_setend (void)
7378{
7379 if (inst.operands[0].imm)
7380 inst.instruction |= 0x200;
a737bd4d
NC
7381}
7382
7383static void
c19d1205 7384do_shift (void)
a737bd4d 7385{
c19d1205
ZW
7386 unsigned int Rm = (inst.operands[1].present
7387 ? inst.operands[1].reg
7388 : inst.operands[0].reg);
a737bd4d 7389
c19d1205
ZW
7390 inst.instruction |= inst.operands[0].reg << 12;
7391 inst.instruction |= Rm;
7392 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7393 {
c19d1205
ZW
7394 inst.instruction |= inst.operands[2].reg << 8;
7395 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7396 }
7397 else
c19d1205 7398 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7399}
7400
09d92015 7401static void
3eb17e6b 7402do_smc (void)
09d92015 7403{
3eb17e6b 7404 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7405 inst.reloc.pc_rel = 0;
09d92015
MM
7406}
7407
09d92015 7408static void
c19d1205 7409do_swi (void)
09d92015 7410{
c19d1205
ZW
7411 inst.reloc.type = BFD_RELOC_ARM_SWI;
7412 inst.reloc.pc_rel = 0;
09d92015
MM
7413}
7414
c19d1205
ZW
7415/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7416 SMLAxy{cond} Rd,Rm,Rs,Rn
7417 SMLAWy{cond} Rd,Rm,Rs,Rn
7418 Error if any register is R15. */
e16bb312 7419
c19d1205
ZW
7420static void
7421do_smla (void)
e16bb312 7422{
c19d1205
ZW
7423 inst.instruction |= inst.operands[0].reg << 16;
7424 inst.instruction |= inst.operands[1].reg;
7425 inst.instruction |= inst.operands[2].reg << 8;
7426 inst.instruction |= inst.operands[3].reg << 12;
7427}
a737bd4d 7428
c19d1205
ZW
7429/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7430 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7431 Error if any register is R15.
7432 Warning if Rdlo == Rdhi. */
a737bd4d 7433
c19d1205
ZW
7434static void
7435do_smlal (void)
7436{
7437 inst.instruction |= inst.operands[0].reg << 12;
7438 inst.instruction |= inst.operands[1].reg << 16;
7439 inst.instruction |= inst.operands[2].reg;
7440 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7441
c19d1205
ZW
7442 if (inst.operands[0].reg == inst.operands[1].reg)
7443 as_tsktsk (_("rdhi and rdlo must be different"));
7444}
a737bd4d 7445
c19d1205
ZW
7446/* ARM V5E (El Segundo) signed-multiply (argument parse)
7447 SMULxy{cond} Rd,Rm,Rs
7448 Error if any register is R15. */
a737bd4d 7449
c19d1205
ZW
7450static void
7451do_smul (void)
7452{
7453 inst.instruction |= inst.operands[0].reg << 16;
7454 inst.instruction |= inst.operands[1].reg;
7455 inst.instruction |= inst.operands[2].reg << 8;
7456}
a737bd4d 7457
b6702015
PB
7458/* ARM V6 srs (argument parse). The variable fields in the encoding are
7459 the same for both ARM and Thumb-2. */
a737bd4d 7460
c19d1205
ZW
7461static void
7462do_srs (void)
7463{
b6702015
PB
7464 int reg;
7465
7466 if (inst.operands[0].present)
7467 {
7468 reg = inst.operands[0].reg;
7469 constraint (reg != 13, _("SRS base register must be r13"));
7470 }
7471 else
7472 reg = 13;
7473
7474 inst.instruction |= reg << 16;
7475 inst.instruction |= inst.operands[1].imm;
7476 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7477 inst.instruction |= WRITE_BACK;
7478}
a737bd4d 7479
c19d1205 7480/* ARM V6 strex (argument parse). */
a737bd4d 7481
c19d1205
ZW
7482static void
7483do_strex (void)
7484{
7485 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7486 || inst.operands[2].postind || inst.operands[2].writeback
7487 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7488 || inst.operands[2].negative
7489 /* See comment in do_ldrex(). */
7490 || (inst.operands[2].reg == REG_PC),
7491 BAD_ADDR_MODE);
a737bd4d 7492
c19d1205
ZW
7493 constraint (inst.operands[0].reg == inst.operands[1].reg
7494 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7495
c19d1205
ZW
7496 constraint (inst.reloc.exp.X_op != O_constant
7497 || inst.reloc.exp.X_add_number != 0,
7498 _("offset must be zero in ARM encoding"));
a737bd4d 7499
c19d1205
ZW
7500 inst.instruction |= inst.operands[0].reg << 12;
7501 inst.instruction |= inst.operands[1].reg;
7502 inst.instruction |= inst.operands[2].reg << 16;
7503 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7504}
7505
7506static void
c19d1205 7507do_strexd (void)
e16bb312 7508{
c19d1205
ZW
7509 constraint (inst.operands[1].reg % 2 != 0,
7510 _("even register required"));
7511 constraint (inst.operands[2].present
7512 && inst.operands[2].reg != inst.operands[1].reg + 1,
7513 _("can only store two consecutive registers"));
7514 /* If op 2 were present and equal to PC, this function wouldn't
7515 have been called in the first place. */
7516 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7517
c19d1205
ZW
7518 constraint (inst.operands[0].reg == inst.operands[1].reg
7519 || inst.operands[0].reg == inst.operands[1].reg + 1
7520 || inst.operands[0].reg == inst.operands[3].reg,
7521 BAD_OVERLAP);
e16bb312 7522
c19d1205
ZW
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg;
7525 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7526}
7527
c19d1205
ZW
7528/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7529 extends it to 32-bits, and adds the result to a value in another
7530 register. You can specify a rotation by 0, 8, 16, or 24 bits
7531 before extracting the 16-bit value.
7532 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7533 Condition defaults to COND_ALWAYS.
7534 Error if any register uses R15. */
7535
e16bb312 7536static void
c19d1205 7537do_sxtah (void)
e16bb312 7538{
c19d1205
ZW
7539 inst.instruction |= inst.operands[0].reg << 12;
7540 inst.instruction |= inst.operands[1].reg << 16;
7541 inst.instruction |= inst.operands[2].reg;
7542 inst.instruction |= inst.operands[3].imm << 10;
7543}
e16bb312 7544
c19d1205 7545/* ARM V6 SXTH.
e16bb312 7546
c19d1205
ZW
7547 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7548 Condition defaults to COND_ALWAYS.
7549 Error if any register uses R15. */
e16bb312
NC
7550
7551static void
c19d1205 7552do_sxth (void)
e16bb312 7553{
c19d1205
ZW
7554 inst.instruction |= inst.operands[0].reg << 12;
7555 inst.instruction |= inst.operands[1].reg;
7556 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7557}
c19d1205
ZW
7558\f
7559/* VFP instructions. In a logical order: SP variant first, monad
7560 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7561
7562static void
c19d1205 7563do_vfp_sp_monadic (void)
e16bb312 7564{
5287ad62
JB
7565 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7566 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7567}
7568
7569static void
c19d1205 7570do_vfp_sp_dyadic (void)
e16bb312 7571{
5287ad62
JB
7572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7573 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7574 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7575}
7576
7577static void
c19d1205 7578do_vfp_sp_compare_z (void)
e16bb312 7579{
5287ad62 7580 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7581}
7582
7583static void
c19d1205 7584do_vfp_dp_sp_cvt (void)
e16bb312 7585{
5287ad62
JB
7586 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7587 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7588}
7589
7590static void
c19d1205 7591do_vfp_sp_dp_cvt (void)
e16bb312 7592{
5287ad62
JB
7593 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7594 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7595}
7596
7597static void
c19d1205 7598do_vfp_reg_from_sp (void)
e16bb312 7599{
c19d1205 7600 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7601 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7602}
7603
7604static void
c19d1205 7605do_vfp_reg2_from_sp2 (void)
e16bb312 7606{
c19d1205
ZW
7607 constraint (inst.operands[2].imm != 2,
7608 _("only two consecutive VFP SP registers allowed here"));
7609 inst.instruction |= inst.operands[0].reg << 12;
7610 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7611 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7612}
7613
7614static void
c19d1205 7615do_vfp_sp_from_reg (void)
e16bb312 7616{
5287ad62 7617 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7618 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7619}
7620
7621static void
c19d1205 7622do_vfp_sp2_from_reg2 (void)
e16bb312 7623{
c19d1205
ZW
7624 constraint (inst.operands[0].imm != 2,
7625 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7626 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7627 inst.instruction |= inst.operands[1].reg << 12;
7628 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7629}
7630
7631static void
c19d1205 7632do_vfp_sp_ldst (void)
e16bb312 7633{
5287ad62 7634 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7635 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7636}
7637
7638static void
c19d1205 7639do_vfp_dp_ldst (void)
e16bb312 7640{
5287ad62 7641 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7642 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7643}
7644
c19d1205 7645
e16bb312 7646static void
c19d1205 7647vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7648{
c19d1205
ZW
7649 if (inst.operands[0].writeback)
7650 inst.instruction |= WRITE_BACK;
7651 else
7652 constraint (ldstm_type != VFP_LDSTMIA,
7653 _("this addressing mode requires base-register writeback"));
7654 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7655 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7656 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7657}
7658
7659static void
c19d1205 7660vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7661{
c19d1205 7662 int count;
e16bb312 7663
c19d1205
ZW
7664 if (inst.operands[0].writeback)
7665 inst.instruction |= WRITE_BACK;
7666 else
7667 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7668 _("this addressing mode requires base-register writeback"));
e16bb312 7669
c19d1205 7670 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7671 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7672
c19d1205
ZW
7673 count = inst.operands[1].imm << 1;
7674 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7675 count += 1;
e16bb312 7676
c19d1205 7677 inst.instruction |= count;
e16bb312
NC
7678}
7679
7680static void
c19d1205 7681do_vfp_sp_ldstmia (void)
e16bb312 7682{
c19d1205 7683 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7684}
7685
7686static void
c19d1205 7687do_vfp_sp_ldstmdb (void)
e16bb312 7688{
c19d1205 7689 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7690}
7691
7692static void
c19d1205 7693do_vfp_dp_ldstmia (void)
e16bb312 7694{
c19d1205 7695 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7696}
7697
7698static void
c19d1205 7699do_vfp_dp_ldstmdb (void)
e16bb312 7700{
c19d1205 7701 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7702}
7703
7704static void
c19d1205 7705do_vfp_xp_ldstmia (void)
e16bb312 7706{
c19d1205
ZW
7707 vfp_dp_ldstm (VFP_LDSTMIAX);
7708}
e16bb312 7709
c19d1205
ZW
7710static void
7711do_vfp_xp_ldstmdb (void)
7712{
7713 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7714}
5287ad62
JB
7715
7716static void
7717do_vfp_dp_rd_rm (void)
7718{
7719 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7720 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7721}
7722
7723static void
7724do_vfp_dp_rn_rd (void)
7725{
7726 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7727 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7728}
7729
7730static void
7731do_vfp_dp_rd_rn (void)
7732{
7733 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7734 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7735}
7736
7737static void
7738do_vfp_dp_rd_rn_rm (void)
7739{
7740 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7741 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7742 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7743}
7744
7745static void
7746do_vfp_dp_rd (void)
7747{
7748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7749}
7750
7751static void
7752do_vfp_dp_rm_rd_rn (void)
7753{
7754 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7755 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7756 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7757}
7758
7759/* VFPv3 instructions. */
7760static void
7761do_vfp_sp_const (void)
7762{
7763 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7764 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7765 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7766}
7767
7768static void
7769do_vfp_dp_const (void)
7770{
7771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7772 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7773 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7774}
7775
7776static void
7777vfp_conv (int srcsize)
7778{
7779 unsigned immbits = srcsize - inst.operands[1].imm;
7780 inst.instruction |= (immbits & 1) << 5;
7781 inst.instruction |= (immbits >> 1);
7782}
7783
7784static void
7785do_vfp_sp_conv_16 (void)
7786{
7787 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7788 vfp_conv (16);
7789}
7790
7791static void
7792do_vfp_dp_conv_16 (void)
7793{
7794 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7795 vfp_conv (16);
7796}
7797
7798static void
7799do_vfp_sp_conv_32 (void)
7800{
7801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7802 vfp_conv (32);
7803}
7804
7805static void
7806do_vfp_dp_conv_32 (void)
7807{
7808 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7809 vfp_conv (32);
7810}
7811
c19d1205
ZW
7812\f
7813/* FPA instructions. Also in a logical order. */
e16bb312 7814
c19d1205
ZW
7815static void
7816do_fpa_cmp (void)
7817{
7818 inst.instruction |= inst.operands[0].reg << 16;
7819 inst.instruction |= inst.operands[1].reg;
7820}
b99bd4ef
NC
7821
7822static void
c19d1205 7823do_fpa_ldmstm (void)
b99bd4ef 7824{
c19d1205
ZW
7825 inst.instruction |= inst.operands[0].reg << 12;
7826 switch (inst.operands[1].imm)
7827 {
7828 case 1: inst.instruction |= CP_T_X; break;
7829 case 2: inst.instruction |= CP_T_Y; break;
7830 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7831 case 4: break;
7832 default: abort ();
7833 }
b99bd4ef 7834
c19d1205
ZW
7835 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7836 {
7837 /* The instruction specified "ea" or "fd", so we can only accept
7838 [Rn]{!}. The instruction does not really support stacking or
7839 unstacking, so we have to emulate these by setting appropriate
7840 bits and offsets. */
7841 constraint (inst.reloc.exp.X_op != O_constant
7842 || inst.reloc.exp.X_add_number != 0,
7843 _("this instruction does not support indexing"));
b99bd4ef 7844
c19d1205
ZW
7845 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7846 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7847
c19d1205
ZW
7848 if (!(inst.instruction & INDEX_UP))
7849 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7850
c19d1205
ZW
7851 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7852 {
7853 inst.operands[2].preind = 0;
7854 inst.operands[2].postind = 1;
7855 }
7856 }
b99bd4ef 7857
c19d1205 7858 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7859}
037e8744 7860
c19d1205
ZW
7861\f
7862/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7863
c19d1205
ZW
7864static void
7865do_iwmmxt_tandorc (void)
7866{
7867 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7868}
b99bd4ef 7869
c19d1205
ZW
7870static void
7871do_iwmmxt_textrc (void)
7872{
7873 inst.instruction |= inst.operands[0].reg << 12;
7874 inst.instruction |= inst.operands[1].imm;
7875}
b99bd4ef
NC
7876
7877static void
c19d1205 7878do_iwmmxt_textrm (void)
b99bd4ef 7879{
c19d1205
ZW
7880 inst.instruction |= inst.operands[0].reg << 12;
7881 inst.instruction |= inst.operands[1].reg << 16;
7882 inst.instruction |= inst.operands[2].imm;
7883}
b99bd4ef 7884
c19d1205
ZW
7885static void
7886do_iwmmxt_tinsr (void)
7887{
7888 inst.instruction |= inst.operands[0].reg << 16;
7889 inst.instruction |= inst.operands[1].reg << 12;
7890 inst.instruction |= inst.operands[2].imm;
7891}
b99bd4ef 7892
c19d1205
ZW
7893static void
7894do_iwmmxt_tmia (void)
7895{
7896 inst.instruction |= inst.operands[0].reg << 5;
7897 inst.instruction |= inst.operands[1].reg;
7898 inst.instruction |= inst.operands[2].reg << 12;
7899}
b99bd4ef 7900
c19d1205
ZW
7901static void
7902do_iwmmxt_waligni (void)
7903{
7904 inst.instruction |= inst.operands[0].reg << 12;
7905 inst.instruction |= inst.operands[1].reg << 16;
7906 inst.instruction |= inst.operands[2].reg;
7907 inst.instruction |= inst.operands[3].imm << 20;
7908}
b99bd4ef 7909
2d447fca
JM
7910static void
7911do_iwmmxt_wmerge (void)
7912{
7913 inst.instruction |= inst.operands[0].reg << 12;
7914 inst.instruction |= inst.operands[1].reg << 16;
7915 inst.instruction |= inst.operands[2].reg;
7916 inst.instruction |= inst.operands[3].imm << 21;
7917}
7918
c19d1205
ZW
7919static void
7920do_iwmmxt_wmov (void)
7921{
7922 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7923 inst.instruction |= inst.operands[0].reg << 12;
7924 inst.instruction |= inst.operands[1].reg << 16;
7925 inst.instruction |= inst.operands[1].reg;
7926}
b99bd4ef 7927
c19d1205
ZW
7928static void
7929do_iwmmxt_wldstbh (void)
7930{
8f06b2d8 7931 int reloc;
c19d1205 7932 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
7933 if (thumb_mode)
7934 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7935 else
7936 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7937 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7938}
7939
c19d1205
ZW
7940static void
7941do_iwmmxt_wldstw (void)
7942{
7943 /* RIWR_RIWC clears .isreg for a control register. */
7944 if (!inst.operands[0].isreg)
7945 {
7946 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7947 inst.instruction |= 0xf0000000;
7948 }
b99bd4ef 7949
c19d1205
ZW
7950 inst.instruction |= inst.operands[0].reg << 12;
7951 encode_arm_cp_address (1, TRUE, TRUE, 0);
7952}
b99bd4ef
NC
7953
7954static void
c19d1205 7955do_iwmmxt_wldstd (void)
b99bd4ef 7956{
c19d1205 7957 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
7958 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7959 && inst.operands[1].immisreg)
7960 {
7961 inst.instruction &= ~0x1a000ff;
7962 inst.instruction |= (0xf << 28);
7963 if (inst.operands[1].preind)
7964 inst.instruction |= PRE_INDEX;
7965 if (!inst.operands[1].negative)
7966 inst.instruction |= INDEX_UP;
7967 if (inst.operands[1].writeback)
7968 inst.instruction |= WRITE_BACK;
7969 inst.instruction |= inst.operands[1].reg << 16;
7970 inst.instruction |= inst.reloc.exp.X_add_number << 4;
7971 inst.instruction |= inst.operands[1].imm;
7972 }
7973 else
7974 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 7975}
b99bd4ef 7976
c19d1205
ZW
7977static void
7978do_iwmmxt_wshufh (void)
7979{
7980 inst.instruction |= inst.operands[0].reg << 12;
7981 inst.instruction |= inst.operands[1].reg << 16;
7982 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7983 inst.instruction |= (inst.operands[2].imm & 0x0f);
7984}
b99bd4ef 7985
c19d1205
ZW
7986static void
7987do_iwmmxt_wzero (void)
7988{
7989 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7990 inst.instruction |= inst.operands[0].reg;
7991 inst.instruction |= inst.operands[0].reg << 12;
7992 inst.instruction |= inst.operands[0].reg << 16;
7993}
2d447fca
JM
7994
7995static void
7996do_iwmmxt_wrwrwr_or_imm5 (void)
7997{
7998 if (inst.operands[2].isreg)
7999 do_rd_rn_rm ();
8000 else {
8001 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8002 _("immediate operand requires iWMMXt2"));
8003 do_rd_rn ();
8004 if (inst.operands[2].imm == 0)
8005 {
8006 switch ((inst.instruction >> 20) & 0xf)
8007 {
8008 case 4:
8009 case 5:
8010 case 6:
8011 case 7:
8012 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8013 inst.operands[2].imm = 16;
8014 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8015 break;
8016 case 8:
8017 case 9:
8018 case 10:
8019 case 11:
8020 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8021 inst.operands[2].imm = 32;
8022 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8023 break;
8024 case 12:
8025 case 13:
8026 case 14:
8027 case 15:
8028 {
8029 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8030 unsigned long wrn;
8031 wrn = (inst.instruction >> 16) & 0xf;
8032 inst.instruction &= 0xff0fff0f;
8033 inst.instruction |= wrn;
8034 /* Bail out here; the instruction is now assembled. */
8035 return;
8036 }
8037 }
8038 }
8039 /* Map 32 -> 0, etc. */
8040 inst.operands[2].imm &= 0x1f;
8041 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8042 }
8043}
c19d1205
ZW
8044\f
8045/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8046 operations first, then control, shift, and load/store. */
b99bd4ef 8047
c19d1205 8048/* Insns like "foo X,Y,Z". */
b99bd4ef 8049
c19d1205
ZW
8050static void
8051do_mav_triple (void)
8052{
8053 inst.instruction |= inst.operands[0].reg << 16;
8054 inst.instruction |= inst.operands[1].reg;
8055 inst.instruction |= inst.operands[2].reg << 12;
8056}
b99bd4ef 8057
c19d1205
ZW
8058/* Insns like "foo W,X,Y,Z".
8059 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8060
c19d1205
ZW
8061static void
8062do_mav_quad (void)
8063{
8064 inst.instruction |= inst.operands[0].reg << 5;
8065 inst.instruction |= inst.operands[1].reg << 12;
8066 inst.instruction |= inst.operands[2].reg << 16;
8067 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8068}
8069
c19d1205
ZW
8070/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8071static void
8072do_mav_dspsc (void)
a737bd4d 8073{
c19d1205
ZW
8074 inst.instruction |= inst.operands[1].reg << 12;
8075}
a737bd4d 8076
c19d1205
ZW
8077/* Maverick shift immediate instructions.
8078 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8079 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8080
c19d1205
ZW
8081static void
8082do_mav_shift (void)
8083{
8084 int imm = inst.operands[2].imm;
a737bd4d 8085
c19d1205
ZW
8086 inst.instruction |= inst.operands[0].reg << 12;
8087 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8088
c19d1205
ZW
8089 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8090 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8091 Bit 4 should be 0. */
8092 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8093
c19d1205
ZW
8094 inst.instruction |= imm;
8095}
8096\f
8097/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8098
c19d1205
ZW
8099/* Xscale multiply-accumulate (argument parse)
8100 MIAcc acc0,Rm,Rs
8101 MIAPHcc acc0,Rm,Rs
8102 MIAxycc acc0,Rm,Rs. */
a737bd4d 8103
c19d1205
ZW
8104static void
8105do_xsc_mia (void)
8106{
8107 inst.instruction |= inst.operands[1].reg;
8108 inst.instruction |= inst.operands[2].reg << 12;
8109}
a737bd4d 8110
c19d1205 8111/* Xscale move-accumulator-register (argument parse)
a737bd4d 8112
c19d1205 8113 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8114
c19d1205
ZW
8115static void
8116do_xsc_mar (void)
8117{
8118 inst.instruction |= inst.operands[1].reg << 12;
8119 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8120}
8121
c19d1205 8122/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8123
c19d1205 8124 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8125
8126static void
c19d1205 8127do_xsc_mra (void)
b99bd4ef 8128{
c19d1205
ZW
8129 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 inst.instruction |= inst.operands[1].reg << 16;
8132}
8133\f
8134/* Encoding functions relevant only to Thumb. */
b99bd4ef 8135
c19d1205
ZW
8136/* inst.operands[i] is a shifted-register operand; encode
8137 it into inst.instruction in the format used by Thumb32. */
8138
8139static void
8140encode_thumb32_shifted_operand (int i)
8141{
8142 unsigned int value = inst.reloc.exp.X_add_number;
8143 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8144
9c3c69f2
PB
8145 constraint (inst.operands[i].immisreg,
8146 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8147 inst.instruction |= inst.operands[i].reg;
8148 if (shift == SHIFT_RRX)
8149 inst.instruction |= SHIFT_ROR << 4;
8150 else
b99bd4ef 8151 {
c19d1205
ZW
8152 constraint (inst.reloc.exp.X_op != O_constant,
8153 _("expression too complex"));
8154
8155 constraint (value > 32
8156 || (value == 32 && (shift == SHIFT_LSL
8157 || shift == SHIFT_ROR)),
8158 _("shift expression is too large"));
8159
8160 if (value == 0)
8161 shift = SHIFT_LSL;
8162 else if (value == 32)
8163 value = 0;
8164
8165 inst.instruction |= shift << 4;
8166 inst.instruction |= (value & 0x1c) << 10;
8167 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8168 }
c19d1205 8169}
b99bd4ef 8170
b99bd4ef 8171
c19d1205
ZW
8172/* inst.operands[i] was set up by parse_address. Encode it into a
8173 Thumb32 format load or store instruction. Reject forms that cannot
8174 be used with such instructions. If is_t is true, reject forms that
8175 cannot be used with a T instruction; if is_d is true, reject forms
8176 that cannot be used with a D instruction. */
b99bd4ef 8177
c19d1205
ZW
8178static void
8179encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8180{
8181 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8182
8183 constraint (!inst.operands[i].isreg,
53365c0d 8184 _("Instruction does not support =N addresses"));
b99bd4ef 8185
c19d1205
ZW
8186 inst.instruction |= inst.operands[i].reg << 16;
8187 if (inst.operands[i].immisreg)
b99bd4ef 8188 {
c19d1205
ZW
8189 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8190 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8191 constraint (inst.operands[i].negative,
8192 _("Thumb does not support negative register indexing"));
8193 constraint (inst.operands[i].postind,
8194 _("Thumb does not support register post-indexing"));
8195 constraint (inst.operands[i].writeback,
8196 _("Thumb does not support register indexing with writeback"));
8197 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8198 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8199
f40d1643 8200 inst.instruction |= inst.operands[i].imm;
c19d1205 8201 if (inst.operands[i].shifted)
b99bd4ef 8202 {
c19d1205
ZW
8203 constraint (inst.reloc.exp.X_op != O_constant,
8204 _("expression too complex"));
9c3c69f2
PB
8205 constraint (inst.reloc.exp.X_add_number < 0
8206 || inst.reloc.exp.X_add_number > 3,
c19d1205 8207 _("shift out of range"));
9c3c69f2 8208 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8209 }
8210 inst.reloc.type = BFD_RELOC_UNUSED;
8211 }
8212 else if (inst.operands[i].preind)
8213 {
8214 constraint (is_pc && inst.operands[i].writeback,
8215 _("cannot use writeback with PC-relative addressing"));
f40d1643 8216 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8217 _("cannot use writeback with this instruction"));
8218
8219 if (is_d)
8220 {
8221 inst.instruction |= 0x01000000;
8222 if (inst.operands[i].writeback)
8223 inst.instruction |= 0x00200000;
b99bd4ef 8224 }
c19d1205 8225 else
b99bd4ef 8226 {
c19d1205
ZW
8227 inst.instruction |= 0x00000c00;
8228 if (inst.operands[i].writeback)
8229 inst.instruction |= 0x00000100;
b99bd4ef 8230 }
c19d1205 8231 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8232 }
c19d1205 8233 else if (inst.operands[i].postind)
b99bd4ef 8234 {
c19d1205
ZW
8235 assert (inst.operands[i].writeback);
8236 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8237 constraint (is_t, _("cannot use post-indexing with this instruction"));
8238
8239 if (is_d)
8240 inst.instruction |= 0x00200000;
8241 else
8242 inst.instruction |= 0x00000900;
8243 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8244 }
8245 else /* unindexed - only for coprocessor */
8246 inst.error = _("instruction does not accept unindexed addressing");
8247}
8248
8249/* Table of Thumb instructions which exist in both 16- and 32-bit
8250 encodings (the latter only in post-V6T2 cores). The index is the
8251 value used in the insns table below. When there is more than one
8252 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8253 holds variant (1).
8254 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8255#define T16_32_TAB \
8256 X(adc, 4140, eb400000), \
8257 X(adcs, 4140, eb500000), \
8258 X(add, 1c00, eb000000), \
8259 X(adds, 1c00, eb100000), \
0110f2b8
PB
8260 X(addi, 0000, f1000000), \
8261 X(addis, 0000, f1100000), \
8262 X(add_pc,000f, f20f0000), \
8263 X(add_sp,000d, f10d0000), \
e9f89963 8264 X(adr, 000f, f20f0000), \
c19d1205
ZW
8265 X(and, 4000, ea000000), \
8266 X(ands, 4000, ea100000), \
8267 X(asr, 1000, fa40f000), \
8268 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8269 X(b, e000, f000b000), \
8270 X(bcond, d000, f0008000), \
c19d1205
ZW
8271 X(bic, 4380, ea200000), \
8272 X(bics, 4380, ea300000), \
8273 X(cmn, 42c0, eb100f00), \
8274 X(cmp, 2800, ebb00f00), \
8275 X(cpsie, b660, f3af8400), \
8276 X(cpsid, b670, f3af8600), \
8277 X(cpy, 4600, ea4f0000), \
155257ea 8278 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8279 X(eor, 4040, ea800000), \
8280 X(eors, 4040, ea900000), \
0110f2b8 8281 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8282 X(ldmia, c800, e8900000), \
8283 X(ldr, 6800, f8500000), \
8284 X(ldrb, 7800, f8100000), \
8285 X(ldrh, 8800, f8300000), \
8286 X(ldrsb, 5600, f9100000), \
8287 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8288 X(ldr_pc,4800, f85f0000), \
8289 X(ldr_pc2,4800, f85f0000), \
8290 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8291 X(lsl, 0000, fa00f000), \
8292 X(lsls, 0000, fa10f000), \
8293 X(lsr, 0800, fa20f000), \
8294 X(lsrs, 0800, fa30f000), \
8295 X(mov, 2000, ea4f0000), \
8296 X(movs, 2000, ea5f0000), \
8297 X(mul, 4340, fb00f000), \
8298 X(muls, 4340, ffffffff), /* no 32b muls */ \
8299 X(mvn, 43c0, ea6f0000), \
8300 X(mvns, 43c0, ea7f0000), \
8301 X(neg, 4240, f1c00000), /* rsb #0 */ \
8302 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8303 X(orr, 4300, ea400000), \
8304 X(orrs, 4300, ea500000), \
e9f89963
PB
8305 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8306 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8307 X(rev, ba00, fa90f080), \
8308 X(rev16, ba40, fa90f090), \
8309 X(revsh, bac0, fa90f0b0), \
8310 X(ror, 41c0, fa60f000), \
8311 X(rors, 41c0, fa70f000), \
8312 X(sbc, 4180, eb600000), \
8313 X(sbcs, 4180, eb700000), \
8314 X(stmia, c000, e8800000), \
8315 X(str, 6000, f8400000), \
8316 X(strb, 7000, f8000000), \
8317 X(strh, 8000, f8200000), \
0110f2b8 8318 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8319 X(sub, 1e00, eba00000), \
8320 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8321 X(subi, 8000, f1a00000), \
8322 X(subis, 8000, f1b00000), \
c19d1205
ZW
8323 X(sxtb, b240, fa4ff080), \
8324 X(sxth, b200, fa0ff080), \
8325 X(tst, 4200, ea100f00), \
8326 X(uxtb, b2c0, fa5ff080), \
8327 X(uxth, b280, fa1ff080), \
8328 X(nop, bf00, f3af8000), \
8329 X(yield, bf10, f3af8001), \
8330 X(wfe, bf20, f3af8002), \
8331 X(wfi, bf30, f3af8003), \
8332 X(sev, bf40, f3af9004), /* typo, 8004? */
8333
8334/* To catch errors in encoding functions, the codes are all offset by
8335 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8336 as 16-bit instructions. */
8337#define X(a,b,c) T_MNEM_##a
8338enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8339#undef X
8340
8341#define X(a,b,c) 0x##b
8342static const unsigned short thumb_op16[] = { T16_32_TAB };
8343#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8344#undef X
8345
8346#define X(a,b,c) 0x##c
8347static const unsigned int thumb_op32[] = { T16_32_TAB };
8348#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8349#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8350#undef X
8351#undef T16_32_TAB
8352
8353/* Thumb instruction encoders, in alphabetical order. */
8354
92e90b6e
PB
8355/* ADDW or SUBW. */
8356static void
8357do_t_add_sub_w (void)
8358{
8359 int Rd, Rn;
8360
8361 Rd = inst.operands[0].reg;
8362 Rn = inst.operands[1].reg;
8363
8364 constraint (Rd == 15, _("PC not allowed as destination"));
8365 inst.instruction |= (Rn << 16) | (Rd << 8);
8366 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8367}
8368
c19d1205
ZW
8369/* Parse an add or subtract instruction. We get here with inst.instruction
8370 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8371
8372static void
8373do_t_add_sub (void)
8374{
8375 int Rd, Rs, Rn;
8376
8377 Rd = inst.operands[0].reg;
8378 Rs = (inst.operands[1].present
8379 ? inst.operands[1].reg /* Rd, Rs, foo */
8380 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8381
8382 if (unified_syntax)
8383 {
0110f2b8
PB
8384 bfd_boolean flags;
8385 bfd_boolean narrow;
8386 int opcode;
8387
8388 flags = (inst.instruction == T_MNEM_adds
8389 || inst.instruction == T_MNEM_subs);
8390 if (flags)
8391 narrow = (current_it_mask == 0);
8392 else
8393 narrow = (current_it_mask != 0);
c19d1205 8394 if (!inst.operands[2].isreg)
b99bd4ef 8395 {
16805f35
PB
8396 int add;
8397
8398 add = (inst.instruction == T_MNEM_add
8399 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8400 opcode = 0;
8401 if (inst.size_req != 4)
8402 {
0110f2b8
PB
8403 /* Attempt to use a narrow opcode, with relaxation if
8404 appropriate. */
8405 if (Rd == REG_SP && Rs == REG_SP && !flags)
8406 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8407 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8408 opcode = T_MNEM_add_sp;
8409 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8410 opcode = T_MNEM_add_pc;
8411 else if (Rd <= 7 && Rs <= 7 && narrow)
8412 {
8413 if (flags)
8414 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8415 else
8416 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8417 }
8418 if (opcode)
8419 {
8420 inst.instruction = THUMB_OP16(opcode);
8421 inst.instruction |= (Rd << 4) | Rs;
8422 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8423 if (inst.size_req != 2)
8424 inst.relax = opcode;
8425 }
8426 else
8427 constraint (inst.size_req == 2, BAD_HIREG);
8428 }
8429 if (inst.size_req == 4
8430 || (inst.size_req != 2 && !opcode))
8431 {
efd81785
PB
8432 if (Rd == REG_PC)
8433 {
8434 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8435 _("only SUBS PC, LR, #const allowed"));
8436 constraint (inst.reloc.exp.X_op != O_constant,
8437 _("expression too complex"));
8438 constraint (inst.reloc.exp.X_add_number < 0
8439 || inst.reloc.exp.X_add_number > 0xff,
8440 _("immediate value out of range"));
8441 inst.instruction = T2_SUBS_PC_LR
8442 | inst.reloc.exp.X_add_number;
8443 inst.reloc.type = BFD_RELOC_UNUSED;
8444 return;
8445 }
8446 else if (Rs == REG_PC)
16805f35
PB
8447 {
8448 /* Always use addw/subw. */
8449 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8450 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8451 }
8452 else
8453 {
8454 inst.instruction = THUMB_OP32 (inst.instruction);
8455 inst.instruction = (inst.instruction & 0xe1ffffff)
8456 | 0x10000000;
8457 if (flags)
8458 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8459 else
8460 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8461 }
dc4503c6
PB
8462 inst.instruction |= Rd << 8;
8463 inst.instruction |= Rs << 16;
0110f2b8 8464 }
b99bd4ef 8465 }
c19d1205
ZW
8466 else
8467 {
8468 Rn = inst.operands[2].reg;
8469 /* See if we can do this with a 16-bit instruction. */
8470 if (!inst.operands[2].shifted && inst.size_req != 4)
8471 {
e27ec89e
PB
8472 if (Rd > 7 || Rs > 7 || Rn > 7)
8473 narrow = FALSE;
8474
8475 if (narrow)
c19d1205 8476 {
e27ec89e
PB
8477 inst.instruction = ((inst.instruction == T_MNEM_adds
8478 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8479 ? T_OPCODE_ADD_R3
8480 : T_OPCODE_SUB_R3);
8481 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8482 return;
8483 }
b99bd4ef 8484
c19d1205
ZW
8485 if (inst.instruction == T_MNEM_add)
8486 {
8487 if (Rd == Rs)
8488 {
8489 inst.instruction = T_OPCODE_ADD_HI;
8490 inst.instruction |= (Rd & 8) << 4;
8491 inst.instruction |= (Rd & 7);
8492 inst.instruction |= Rn << 3;
8493 return;
8494 }
8495 /* ... because addition is commutative! */
8496 else if (Rd == Rn)
8497 {
8498 inst.instruction = T_OPCODE_ADD_HI;
8499 inst.instruction |= (Rd & 8) << 4;
8500 inst.instruction |= (Rd & 7);
8501 inst.instruction |= Rs << 3;
8502 return;
8503 }
8504 }
8505 }
8506 /* If we get here, it can't be done in 16 bits. */
8507 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8508 _("shift must be constant"));
8509 inst.instruction = THUMB_OP32 (inst.instruction);
8510 inst.instruction |= Rd << 8;
8511 inst.instruction |= Rs << 16;
8512 encode_thumb32_shifted_operand (2);
8513 }
8514 }
8515 else
8516 {
8517 constraint (inst.instruction == T_MNEM_adds
8518 || inst.instruction == T_MNEM_subs,
8519 BAD_THUMB32);
b99bd4ef 8520
c19d1205 8521 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8522 {
c19d1205
ZW
8523 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8524 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8525 BAD_HIREG);
8526
8527 inst.instruction = (inst.instruction == T_MNEM_add
8528 ? 0x0000 : 0x8000);
8529 inst.instruction |= (Rd << 4) | Rs;
8530 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8531 return;
8532 }
8533
c19d1205
ZW
8534 Rn = inst.operands[2].reg;
8535 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8536
c19d1205
ZW
8537 /* We now have Rd, Rs, and Rn set to registers. */
8538 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8539 {
c19d1205
ZW
8540 /* Can't do this for SUB. */
8541 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8542 inst.instruction = T_OPCODE_ADD_HI;
8543 inst.instruction |= (Rd & 8) << 4;
8544 inst.instruction |= (Rd & 7);
8545 if (Rs == Rd)
8546 inst.instruction |= Rn << 3;
8547 else if (Rn == Rd)
8548 inst.instruction |= Rs << 3;
8549 else
8550 constraint (1, _("dest must overlap one source register"));
8551 }
8552 else
8553 {
8554 inst.instruction = (inst.instruction == T_MNEM_add
8555 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8556 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8557 }
b99bd4ef 8558 }
b99bd4ef
NC
8559}
8560
c19d1205
ZW
8561static void
8562do_t_adr (void)
8563{
0110f2b8
PB
8564 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8565 {
8566 /* Defer to section relaxation. */
8567 inst.relax = inst.instruction;
8568 inst.instruction = THUMB_OP16 (inst.instruction);
8569 inst.instruction |= inst.operands[0].reg << 4;
8570 }
8571 else if (unified_syntax && inst.size_req != 2)
e9f89963 8572 {
0110f2b8 8573 /* Generate a 32-bit opcode. */
e9f89963
PB
8574 inst.instruction = THUMB_OP32 (inst.instruction);
8575 inst.instruction |= inst.operands[0].reg << 8;
8576 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8577 inst.reloc.pc_rel = 1;
8578 }
8579 else
8580 {
0110f2b8 8581 /* Generate a 16-bit opcode. */
e9f89963
PB
8582 inst.instruction = THUMB_OP16 (inst.instruction);
8583 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8584 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8585 inst.reloc.pc_rel = 1;
b99bd4ef 8586
e9f89963
PB
8587 inst.instruction |= inst.operands[0].reg << 4;
8588 }
c19d1205 8589}
b99bd4ef 8590
c19d1205
ZW
8591/* Arithmetic instructions for which there is just one 16-bit
8592 instruction encoding, and it allows only two low registers.
8593 For maximal compatibility with ARM syntax, we allow three register
8594 operands even when Thumb-32 instructions are not available, as long
8595 as the first two are identical. For instance, both "sbc r0,r1" and
8596 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8597static void
c19d1205 8598do_t_arit3 (void)
b99bd4ef 8599{
c19d1205 8600 int Rd, Rs, Rn;
b99bd4ef 8601
c19d1205
ZW
8602 Rd = inst.operands[0].reg;
8603 Rs = (inst.operands[1].present
8604 ? inst.operands[1].reg /* Rd, Rs, foo */
8605 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8606 Rn = inst.operands[2].reg;
b99bd4ef 8607
c19d1205 8608 if (unified_syntax)
b99bd4ef 8609 {
c19d1205
ZW
8610 if (!inst.operands[2].isreg)
8611 {
8612 /* For an immediate, we always generate a 32-bit opcode;
8613 section relaxation will shrink it later if possible. */
8614 inst.instruction = THUMB_OP32 (inst.instruction);
8615 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8616 inst.instruction |= Rd << 8;
8617 inst.instruction |= Rs << 16;
8618 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8619 }
8620 else
8621 {
e27ec89e
PB
8622 bfd_boolean narrow;
8623
c19d1205 8624 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8625 if (THUMB_SETS_FLAGS (inst.instruction))
8626 narrow = current_it_mask == 0;
8627 else
8628 narrow = current_it_mask != 0;
8629
8630 if (Rd > 7 || Rn > 7 || Rs > 7)
8631 narrow = FALSE;
8632 if (inst.operands[2].shifted)
8633 narrow = FALSE;
8634 if (inst.size_req == 4)
8635 narrow = FALSE;
8636
8637 if (narrow
c19d1205
ZW
8638 && Rd == Rs)
8639 {
8640 inst.instruction = THUMB_OP16 (inst.instruction);
8641 inst.instruction |= Rd;
8642 inst.instruction |= Rn << 3;
8643 return;
8644 }
b99bd4ef 8645
c19d1205
ZW
8646 /* If we get here, it can't be done in 16 bits. */
8647 constraint (inst.operands[2].shifted
8648 && inst.operands[2].immisreg,
8649 _("shift must be constant"));
8650 inst.instruction = THUMB_OP32 (inst.instruction);
8651 inst.instruction |= Rd << 8;
8652 inst.instruction |= Rs << 16;
8653 encode_thumb32_shifted_operand (2);
8654 }
a737bd4d 8655 }
c19d1205 8656 else
b99bd4ef 8657 {
c19d1205
ZW
8658 /* On its face this is a lie - the instruction does set the
8659 flags. However, the only supported mnemonic in this mode
8660 says it doesn't. */
8661 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8662
c19d1205
ZW
8663 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8664 _("unshifted register required"));
8665 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8666 constraint (Rd != Rs,
8667 _("dest and source1 must be the same register"));
a737bd4d 8668
c19d1205
ZW
8669 inst.instruction = THUMB_OP16 (inst.instruction);
8670 inst.instruction |= Rd;
8671 inst.instruction |= Rn << 3;
b99bd4ef 8672 }
a737bd4d 8673}
b99bd4ef 8674
c19d1205
ZW
8675/* Similarly, but for instructions where the arithmetic operation is
8676 commutative, so we can allow either of them to be different from
8677 the destination operand in a 16-bit instruction. For instance, all
8678 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8679 accepted. */
8680static void
8681do_t_arit3c (void)
a737bd4d 8682{
c19d1205 8683 int Rd, Rs, Rn;
b99bd4ef 8684
c19d1205
ZW
8685 Rd = inst.operands[0].reg;
8686 Rs = (inst.operands[1].present
8687 ? inst.operands[1].reg /* Rd, Rs, foo */
8688 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8689 Rn = inst.operands[2].reg;
a737bd4d 8690
c19d1205 8691 if (unified_syntax)
a737bd4d 8692 {
c19d1205 8693 if (!inst.operands[2].isreg)
b99bd4ef 8694 {
c19d1205
ZW
8695 /* For an immediate, we always generate a 32-bit opcode;
8696 section relaxation will shrink it later if possible. */
8697 inst.instruction = THUMB_OP32 (inst.instruction);
8698 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8699 inst.instruction |= Rd << 8;
8700 inst.instruction |= Rs << 16;
8701 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8702 }
c19d1205 8703 else
a737bd4d 8704 {
e27ec89e
PB
8705 bfd_boolean narrow;
8706
c19d1205 8707 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8708 if (THUMB_SETS_FLAGS (inst.instruction))
8709 narrow = current_it_mask == 0;
8710 else
8711 narrow = current_it_mask != 0;
8712
8713 if (Rd > 7 || Rn > 7 || Rs > 7)
8714 narrow = FALSE;
8715 if (inst.operands[2].shifted)
8716 narrow = FALSE;
8717 if (inst.size_req == 4)
8718 narrow = FALSE;
8719
8720 if (narrow)
a737bd4d 8721 {
c19d1205 8722 if (Rd == Rs)
a737bd4d 8723 {
c19d1205
ZW
8724 inst.instruction = THUMB_OP16 (inst.instruction);
8725 inst.instruction |= Rd;
8726 inst.instruction |= Rn << 3;
8727 return;
a737bd4d 8728 }
c19d1205 8729 if (Rd == Rn)
a737bd4d 8730 {
c19d1205
ZW
8731 inst.instruction = THUMB_OP16 (inst.instruction);
8732 inst.instruction |= Rd;
8733 inst.instruction |= Rs << 3;
8734 return;
a737bd4d
NC
8735 }
8736 }
c19d1205
ZW
8737
8738 /* If we get here, it can't be done in 16 bits. */
8739 constraint (inst.operands[2].shifted
8740 && inst.operands[2].immisreg,
8741 _("shift must be constant"));
8742 inst.instruction = THUMB_OP32 (inst.instruction);
8743 inst.instruction |= Rd << 8;
8744 inst.instruction |= Rs << 16;
8745 encode_thumb32_shifted_operand (2);
a737bd4d 8746 }
b99bd4ef 8747 }
c19d1205
ZW
8748 else
8749 {
8750 /* On its face this is a lie - the instruction does set the
8751 flags. However, the only supported mnemonic in this mode
8752 says it doesn't. */
8753 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8754
c19d1205
ZW
8755 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8756 _("unshifted register required"));
8757 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8758
8759 inst.instruction = THUMB_OP16 (inst.instruction);
8760 inst.instruction |= Rd;
8761
8762 if (Rd == Rs)
8763 inst.instruction |= Rn << 3;
8764 else if (Rd == Rn)
8765 inst.instruction |= Rs << 3;
8766 else
8767 constraint (1, _("dest must overlap one source register"));
8768 }
a737bd4d
NC
8769}
8770
62b3e311
PB
8771static void
8772do_t_barrier (void)
8773{
8774 if (inst.operands[0].present)
8775 {
8776 constraint ((inst.instruction & 0xf0) != 0x40
8777 && inst.operands[0].imm != 0xf,
bd3ba5d1 8778 _("bad barrier type"));
62b3e311
PB
8779 inst.instruction |= inst.operands[0].imm;
8780 }
8781 else
8782 inst.instruction |= 0xf;
8783}
8784
c19d1205
ZW
8785static void
8786do_t_bfc (void)
a737bd4d 8787{
c19d1205
ZW
8788 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8789 constraint (msb > 32, _("bit-field extends past end of register"));
8790 /* The instruction encoding stores the LSB and MSB,
8791 not the LSB and width. */
8792 inst.instruction |= inst.operands[0].reg << 8;
8793 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8794 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8795 inst.instruction |= msb - 1;
b99bd4ef
NC
8796}
8797
c19d1205
ZW
8798static void
8799do_t_bfi (void)
b99bd4ef 8800{
c19d1205 8801 unsigned int msb;
b99bd4ef 8802
c19d1205
ZW
8803 /* #0 in second position is alternative syntax for bfc, which is
8804 the same instruction but with REG_PC in the Rm field. */
8805 if (!inst.operands[1].isreg)
8806 inst.operands[1].reg = REG_PC;
b99bd4ef 8807
c19d1205
ZW
8808 msb = inst.operands[2].imm + inst.operands[3].imm;
8809 constraint (msb > 32, _("bit-field extends past end of register"));
8810 /* The instruction encoding stores the LSB and MSB,
8811 not the LSB and width. */
8812 inst.instruction |= inst.operands[0].reg << 8;
8813 inst.instruction |= inst.operands[1].reg << 16;
8814 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8815 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8816 inst.instruction |= msb - 1;
b99bd4ef
NC
8817}
8818
c19d1205
ZW
8819static void
8820do_t_bfx (void)
b99bd4ef 8821{
c19d1205
ZW
8822 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8823 _("bit-field extends past end of register"));
8824 inst.instruction |= inst.operands[0].reg << 8;
8825 inst.instruction |= inst.operands[1].reg << 16;
8826 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8827 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8828 inst.instruction |= inst.operands[3].imm - 1;
8829}
b99bd4ef 8830
c19d1205
ZW
8831/* ARM V5 Thumb BLX (argument parse)
8832 BLX <target_addr> which is BLX(1)
8833 BLX <Rm> which is BLX(2)
8834 Unfortunately, there are two different opcodes for this mnemonic.
8835 So, the insns[].value is not used, and the code here zaps values
8836 into inst.instruction.
b99bd4ef 8837
c19d1205
ZW
8838 ??? How to take advantage of the additional two bits of displacement
8839 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8840
c19d1205
ZW
8841static void
8842do_t_blx (void)
8843{
dfa9f0d5 8844 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8845 if (inst.operands[0].isreg)
8846 /* We have a register, so this is BLX(2). */
8847 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8848 else
8849 {
c19d1205 8850 /* No register. This must be BLX(1). */
2fc8bdac 8851 inst.instruction = 0xf000e800;
39b41c9c
PB
8852#ifdef OBJ_ELF
8853 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8854 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8855 else
8856#endif
8857 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8858 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8859 }
8860}
8861
c19d1205
ZW
8862static void
8863do_t_branch (void)
b99bd4ef 8864{
0110f2b8 8865 int opcode;
dfa9f0d5
PB
8866 int cond;
8867
8868 if (current_it_mask)
8869 {
8870 /* Conditional branches inside IT blocks are encoded as unconditional
8871 branches. */
8872 cond = COND_ALWAYS;
8873 /* A branch must be the last instruction in an IT block. */
8874 constraint (current_it_mask != 0x10, BAD_BRANCH);
8875 }
8876 else
8877 cond = inst.cond;
8878
8879 if (cond != COND_ALWAYS)
0110f2b8
PB
8880 opcode = T_MNEM_bcond;
8881 else
8882 opcode = inst.instruction;
8883
8884 if (unified_syntax && inst.size_req == 4)
c19d1205 8885 {
0110f2b8 8886 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8887 if (cond == COND_ALWAYS)
0110f2b8 8888 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8889 else
8890 {
dfa9f0d5
PB
8891 assert (cond != 0xF);
8892 inst.instruction |= cond << 22;
c19d1205
ZW
8893 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8894 }
8895 }
b99bd4ef
NC
8896 else
8897 {
0110f2b8 8898 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8899 if (cond == COND_ALWAYS)
c19d1205
ZW
8900 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8901 else
b99bd4ef 8902 {
dfa9f0d5 8903 inst.instruction |= cond << 8;
c19d1205 8904 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8905 }
0110f2b8
PB
8906 /* Allow section relaxation. */
8907 if (unified_syntax && inst.size_req != 2)
8908 inst.relax = opcode;
b99bd4ef 8909 }
c19d1205
ZW
8910
8911 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8912}
8913
8914static void
c19d1205 8915do_t_bkpt (void)
b99bd4ef 8916{
dfa9f0d5
PB
8917 constraint (inst.cond != COND_ALWAYS,
8918 _("instruction is always unconditional"));
c19d1205 8919 if (inst.operands[0].present)
b99bd4ef 8920 {
c19d1205
ZW
8921 constraint (inst.operands[0].imm > 255,
8922 _("immediate value out of range"));
8923 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8924 }
b99bd4ef
NC
8925}
8926
8927static void
c19d1205 8928do_t_branch23 (void)
b99bd4ef 8929{
dfa9f0d5 8930 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8931 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8932 inst.reloc.pc_rel = 1;
8933
c19d1205
ZW
8934 /* If the destination of the branch is a defined symbol which does not have
8935 the THUMB_FUNC attribute, then we must be calling a function which has
8936 the (interfacearm) attribute. We look for the Thumb entry point to that
8937 function and change the branch to refer to that function instead. */
8938 if ( inst.reloc.exp.X_op == O_symbol
8939 && inst.reloc.exp.X_add_symbol != NULL
8940 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8941 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8942 inst.reloc.exp.X_add_symbol =
8943 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8944}
8945
8946static void
c19d1205 8947do_t_bx (void)
90e4755a 8948{
dfa9f0d5 8949 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8950 inst.instruction |= inst.operands[0].reg << 3;
8951 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8952 should cause the alignment to be checked once it is known. This is
8953 because BX PC only works if the instruction is word aligned. */
8954}
90e4755a 8955
c19d1205
ZW
8956static void
8957do_t_bxj (void)
8958{
dfa9f0d5 8959 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8960 if (inst.operands[0].reg == REG_PC)
8961 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8962
c19d1205 8963 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
8964}
8965
8966static void
c19d1205 8967do_t_clz (void)
90e4755a 8968{
c19d1205
ZW
8969 inst.instruction |= inst.operands[0].reg << 8;
8970 inst.instruction |= inst.operands[1].reg << 16;
8971 inst.instruction |= inst.operands[1].reg;
8972}
90e4755a 8973
dfa9f0d5
PB
8974static void
8975do_t_cps (void)
8976{
8977 constraint (current_it_mask, BAD_NOT_IT);
8978 inst.instruction |= inst.operands[0].imm;
8979}
8980
c19d1205
ZW
8981static void
8982do_t_cpsi (void)
8983{
dfa9f0d5 8984 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 8985 if (unified_syntax
62b3e311
PB
8986 && (inst.operands[1].present || inst.size_req == 4)
8987 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 8988 {
c19d1205
ZW
8989 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8990 inst.instruction = 0xf3af8000;
8991 inst.instruction |= imod << 9;
8992 inst.instruction |= inst.operands[0].imm << 5;
8993 if (inst.operands[1].present)
8994 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 8995 }
c19d1205 8996 else
90e4755a 8997 {
62b3e311
PB
8998 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8999 && (inst.operands[0].imm & 4),
9000 _("selected processor does not support 'A' form "
9001 "of this instruction"));
9002 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9003 _("Thumb does not support the 2-argument "
9004 "form of this instruction"));
9005 inst.instruction |= inst.operands[0].imm;
90e4755a 9006 }
90e4755a
RE
9007}
9008
c19d1205
ZW
9009/* THUMB CPY instruction (argument parse). */
9010
90e4755a 9011static void
c19d1205 9012do_t_cpy (void)
90e4755a 9013{
c19d1205 9014 if (inst.size_req == 4)
90e4755a 9015 {
c19d1205
ZW
9016 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9017 inst.instruction |= inst.operands[0].reg << 8;
9018 inst.instruction |= inst.operands[1].reg;
90e4755a 9019 }
c19d1205 9020 else
90e4755a 9021 {
c19d1205
ZW
9022 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9023 inst.instruction |= (inst.operands[0].reg & 0x7);
9024 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9025 }
90e4755a
RE
9026}
9027
90e4755a 9028static void
25fe350b 9029do_t_cbz (void)
90e4755a 9030{
dfa9f0d5 9031 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9032 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9033 inst.instruction |= inst.operands[0].reg;
9034 inst.reloc.pc_rel = 1;
9035 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9036}
90e4755a 9037
62b3e311
PB
9038static void
9039do_t_dbg (void)
9040{
9041 inst.instruction |= inst.operands[0].imm;
9042}
9043
9044static void
9045do_t_div (void)
9046{
9047 if (!inst.operands[1].present)
9048 inst.operands[1].reg = inst.operands[0].reg;
9049 inst.instruction |= inst.operands[0].reg << 8;
9050 inst.instruction |= inst.operands[1].reg << 16;
9051 inst.instruction |= inst.operands[2].reg;
9052}
9053
c19d1205
ZW
9054static void
9055do_t_hint (void)
9056{
9057 if (unified_syntax && inst.size_req == 4)
9058 inst.instruction = THUMB_OP32 (inst.instruction);
9059 else
9060 inst.instruction = THUMB_OP16 (inst.instruction);
9061}
90e4755a 9062
c19d1205
ZW
9063static void
9064do_t_it (void)
9065{
9066 unsigned int cond = inst.operands[0].imm;
e27ec89e 9067
dfa9f0d5 9068 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9069 current_it_mask = (inst.instruction & 0xf) | 0x10;
9070 current_cc = cond;
9071
9072 /* If the condition is a negative condition, invert the mask. */
c19d1205 9073 if ((cond & 0x1) == 0x0)
90e4755a 9074 {
c19d1205 9075 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9076
c19d1205
ZW
9077 if ((mask & 0x7) == 0)
9078 /* no conversion needed */;
9079 else if ((mask & 0x3) == 0)
e27ec89e
PB
9080 mask ^= 0x8;
9081 else if ((mask & 0x1) == 0)
9082 mask ^= 0xC;
c19d1205 9083 else
e27ec89e 9084 mask ^= 0xE;
90e4755a 9085
e27ec89e
PB
9086 inst.instruction &= 0xfff0;
9087 inst.instruction |= mask;
c19d1205 9088 }
90e4755a 9089
c19d1205
ZW
9090 inst.instruction |= cond << 4;
9091}
90e4755a 9092
3c707909
PB
9093/* Helper function used for both push/pop and ldm/stm. */
9094static void
9095encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9096{
9097 bfd_boolean load;
9098
9099 load = (inst.instruction & (1 << 20)) != 0;
9100
9101 if (mask & (1 << 13))
9102 inst.error = _("SP not allowed in register list");
9103 if (load)
9104 {
9105 if (mask & (1 << 14)
9106 && mask & (1 << 15))
9107 inst.error = _("LR and PC should not both be in register list");
9108
9109 if ((mask & (1 << base)) != 0
9110 && writeback)
9111 as_warn (_("base register should not be in register list "
9112 "when written back"));
9113 }
9114 else
9115 {
9116 if (mask & (1 << 15))
9117 inst.error = _("PC not allowed in register list");
9118
9119 if (mask & (1 << base))
9120 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9121 }
9122
9123 if ((mask & (mask - 1)) == 0)
9124 {
9125 /* Single register transfers implemented as str/ldr. */
9126 if (writeback)
9127 {
9128 if (inst.instruction & (1 << 23))
9129 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9130 else
9131 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9132 }
9133 else
9134 {
9135 if (inst.instruction & (1 << 23))
9136 inst.instruction = 0x00800000; /* ia -> [base] */
9137 else
9138 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9139 }
9140
9141 inst.instruction |= 0xf8400000;
9142 if (load)
9143 inst.instruction |= 0x00100000;
9144
9145 mask = ffs(mask) - 1;
9146 mask <<= 12;
9147 }
9148 else if (writeback)
9149 inst.instruction |= WRITE_BACK;
9150
9151 inst.instruction |= mask;
9152 inst.instruction |= base << 16;
9153}
9154
c19d1205
ZW
9155static void
9156do_t_ldmstm (void)
9157{
9158 /* This really doesn't seem worth it. */
9159 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9160 _("expression too complex"));
9161 constraint (inst.operands[1].writeback,
9162 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9163
c19d1205
ZW
9164 if (unified_syntax)
9165 {
3c707909
PB
9166 bfd_boolean narrow;
9167 unsigned mask;
9168
9169 narrow = FALSE;
c19d1205
ZW
9170 /* See if we can use a 16-bit instruction. */
9171 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9172 && inst.size_req != 4
3c707909 9173 && !(inst.operands[1].imm & ~0xff))
90e4755a 9174 {
3c707909 9175 mask = 1 << inst.operands[0].reg;
90e4755a 9176
3c707909
PB
9177 if (inst.operands[0].reg <= 7
9178 && (inst.instruction == T_MNEM_stmia
9179 ? inst.operands[0].writeback
9180 : (inst.operands[0].writeback
9181 == !(inst.operands[1].imm & mask))))
90e4755a 9182 {
3c707909
PB
9183 if (inst.instruction == T_MNEM_stmia
9184 && (inst.operands[1].imm & mask)
9185 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9186 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9187 inst.operands[0].reg);
3c707909
PB
9188
9189 inst.instruction = THUMB_OP16 (inst.instruction);
9190 inst.instruction |= inst.operands[0].reg << 8;
9191 inst.instruction |= inst.operands[1].imm;
9192 narrow = TRUE;
90e4755a 9193 }
3c707909
PB
9194 else if (inst.operands[0] .reg == REG_SP
9195 && inst.operands[0].writeback)
90e4755a 9196 {
3c707909
PB
9197 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9198 ? T_MNEM_push : T_MNEM_pop);
9199 inst.instruction |= inst.operands[1].imm;
9200 narrow = TRUE;
90e4755a 9201 }
3c707909
PB
9202 }
9203
9204 if (!narrow)
9205 {
c19d1205
ZW
9206 if (inst.instruction < 0xffff)
9207 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909
PB
9208
9209 encode_thumb2_ldmstm(inst.operands[0].reg, inst.operands[1].imm,
9210 inst.operands[0].writeback);
90e4755a
RE
9211 }
9212 }
c19d1205 9213 else
90e4755a 9214 {
c19d1205
ZW
9215 constraint (inst.operands[0].reg > 7
9216 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9217 constraint (inst.instruction != T_MNEM_ldmia
9218 && inst.instruction != T_MNEM_stmia,
9219 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9220 if (inst.instruction == T_MNEM_stmia)
f03698e6 9221 {
c19d1205
ZW
9222 if (!inst.operands[0].writeback)
9223 as_warn (_("this instruction will write back the base register"));
9224 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9225 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9226 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9227 inst.operands[0].reg);
f03698e6 9228 }
c19d1205 9229 else
90e4755a 9230 {
c19d1205
ZW
9231 if (!inst.operands[0].writeback
9232 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9233 as_warn (_("this instruction will write back the base register"));
9234 else if (inst.operands[0].writeback
9235 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9236 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9237 }
9238
c19d1205
ZW
9239 inst.instruction = THUMB_OP16 (inst.instruction);
9240 inst.instruction |= inst.operands[0].reg << 8;
9241 inst.instruction |= inst.operands[1].imm;
9242 }
9243}
e28cd48c 9244
c19d1205
ZW
9245static void
9246do_t_ldrex (void)
9247{
9248 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9249 || inst.operands[1].postind || inst.operands[1].writeback
9250 || inst.operands[1].immisreg || inst.operands[1].shifted
9251 || inst.operands[1].negative,
01cfc07f 9252 BAD_ADDR_MODE);
e28cd48c 9253
c19d1205
ZW
9254 inst.instruction |= inst.operands[0].reg << 12;
9255 inst.instruction |= inst.operands[1].reg << 16;
9256 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9257}
e28cd48c 9258
c19d1205
ZW
9259static void
9260do_t_ldrexd (void)
9261{
9262 if (!inst.operands[1].present)
1cac9012 9263 {
c19d1205
ZW
9264 constraint (inst.operands[0].reg == REG_LR,
9265 _("r14 not allowed as first register "
9266 "when second register is omitted"));
9267 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9268 }
c19d1205
ZW
9269 constraint (inst.operands[0].reg == inst.operands[1].reg,
9270 BAD_OVERLAP);
b99bd4ef 9271
c19d1205
ZW
9272 inst.instruction |= inst.operands[0].reg << 12;
9273 inst.instruction |= inst.operands[1].reg << 8;
9274 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9275}
9276
9277static void
c19d1205 9278do_t_ldst (void)
b99bd4ef 9279{
0110f2b8
PB
9280 unsigned long opcode;
9281 int Rn;
9282
9283 opcode = inst.instruction;
c19d1205 9284 if (unified_syntax)
b99bd4ef 9285 {
53365c0d
PB
9286 if (!inst.operands[1].isreg)
9287 {
9288 if (opcode <= 0xffff)
9289 inst.instruction = THUMB_OP32 (opcode);
9290 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9291 return;
9292 }
0110f2b8
PB
9293 if (inst.operands[1].isreg
9294 && !inst.operands[1].writeback
c19d1205
ZW
9295 && !inst.operands[1].shifted && !inst.operands[1].postind
9296 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9297 && opcode <= 0xffff
9298 && inst.size_req != 4)
c19d1205 9299 {
0110f2b8
PB
9300 /* Insn may have a 16-bit form. */
9301 Rn = inst.operands[1].reg;
9302 if (inst.operands[1].immisreg)
9303 {
9304 inst.instruction = THUMB_OP16 (opcode);
9305 /* [Rn, Ri] */
9306 if (Rn <= 7 && inst.operands[1].imm <= 7)
9307 goto op16;
9308 }
9309 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9310 && opcode != T_MNEM_ldrsb)
9311 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9312 || (Rn == REG_SP && opcode == T_MNEM_str))
9313 {
9314 /* [Rn, #const] */
9315 if (Rn > 7)
9316 {
9317 if (Rn == REG_PC)
9318 {
9319 if (inst.reloc.pc_rel)
9320 opcode = T_MNEM_ldr_pc2;
9321 else
9322 opcode = T_MNEM_ldr_pc;
9323 }
9324 else
9325 {
9326 if (opcode == T_MNEM_ldr)
9327 opcode = T_MNEM_ldr_sp;
9328 else
9329 opcode = T_MNEM_str_sp;
9330 }
9331 inst.instruction = inst.operands[0].reg << 8;
9332 }
9333 else
9334 {
9335 inst.instruction = inst.operands[0].reg;
9336 inst.instruction |= inst.operands[1].reg << 3;
9337 }
9338 inst.instruction |= THUMB_OP16 (opcode);
9339 if (inst.size_req == 2)
9340 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9341 else
9342 inst.relax = opcode;
9343 return;
9344 }
c19d1205 9345 }
0110f2b8
PB
9346 /* Definitely a 32-bit variant. */
9347 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9348 inst.instruction |= inst.operands[0].reg << 12;
9349 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9350 return;
9351 }
9352
c19d1205
ZW
9353 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9354
9355 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9356 {
c19d1205
ZW
9357 /* Only [Rn,Rm] is acceptable. */
9358 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9359 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9360 || inst.operands[1].postind || inst.operands[1].shifted
9361 || inst.operands[1].negative,
9362 _("Thumb does not support this addressing mode"));
9363 inst.instruction = THUMB_OP16 (inst.instruction);
9364 goto op16;
b99bd4ef 9365 }
c19d1205
ZW
9366
9367 inst.instruction = THUMB_OP16 (inst.instruction);
9368 if (!inst.operands[1].isreg)
9369 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9370 return;
b99bd4ef 9371
c19d1205
ZW
9372 constraint (!inst.operands[1].preind
9373 || inst.operands[1].shifted
9374 || inst.operands[1].writeback,
9375 _("Thumb does not support this addressing mode"));
9376 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9377 {
c19d1205
ZW
9378 constraint (inst.instruction & 0x0600,
9379 _("byte or halfword not valid for base register"));
9380 constraint (inst.operands[1].reg == REG_PC
9381 && !(inst.instruction & THUMB_LOAD_BIT),
9382 _("r15 based store not allowed"));
9383 constraint (inst.operands[1].immisreg,
9384 _("invalid base register for register offset"));
b99bd4ef 9385
c19d1205
ZW
9386 if (inst.operands[1].reg == REG_PC)
9387 inst.instruction = T_OPCODE_LDR_PC;
9388 else if (inst.instruction & THUMB_LOAD_BIT)
9389 inst.instruction = T_OPCODE_LDR_SP;
9390 else
9391 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9392
c19d1205
ZW
9393 inst.instruction |= inst.operands[0].reg << 8;
9394 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9395 return;
9396 }
90e4755a 9397
c19d1205
ZW
9398 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9399 if (!inst.operands[1].immisreg)
9400 {
9401 /* Immediate offset. */
9402 inst.instruction |= inst.operands[0].reg;
9403 inst.instruction |= inst.operands[1].reg << 3;
9404 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9405 return;
9406 }
90e4755a 9407
c19d1205
ZW
9408 /* Register offset. */
9409 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9410 constraint (inst.operands[1].negative,
9411 _("Thumb does not support this addressing mode"));
90e4755a 9412
c19d1205
ZW
9413 op16:
9414 switch (inst.instruction)
9415 {
9416 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9417 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9418 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9419 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9420 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9421 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9422 case 0x5600 /* ldrsb */:
9423 case 0x5e00 /* ldrsh */: break;
9424 default: abort ();
9425 }
90e4755a 9426
c19d1205
ZW
9427 inst.instruction |= inst.operands[0].reg;
9428 inst.instruction |= inst.operands[1].reg << 3;
9429 inst.instruction |= inst.operands[1].imm << 6;
9430}
90e4755a 9431
c19d1205
ZW
9432static void
9433do_t_ldstd (void)
9434{
9435 if (!inst.operands[1].present)
b99bd4ef 9436 {
c19d1205
ZW
9437 inst.operands[1].reg = inst.operands[0].reg + 1;
9438 constraint (inst.operands[0].reg == REG_LR,
9439 _("r14 not allowed here"));
b99bd4ef 9440 }
c19d1205
ZW
9441 inst.instruction |= inst.operands[0].reg << 12;
9442 inst.instruction |= inst.operands[1].reg << 8;
9443 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9444
b99bd4ef
NC
9445}
9446
c19d1205
ZW
9447static void
9448do_t_ldstt (void)
9449{
9450 inst.instruction |= inst.operands[0].reg << 12;
9451 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9452}
a737bd4d 9453
b99bd4ef 9454static void
c19d1205 9455do_t_mla (void)
b99bd4ef 9456{
c19d1205
ZW
9457 inst.instruction |= inst.operands[0].reg << 8;
9458 inst.instruction |= inst.operands[1].reg << 16;
9459 inst.instruction |= inst.operands[2].reg;
9460 inst.instruction |= inst.operands[3].reg << 12;
9461}
b99bd4ef 9462
c19d1205
ZW
9463static void
9464do_t_mlal (void)
9465{
9466 inst.instruction |= inst.operands[0].reg << 12;
9467 inst.instruction |= inst.operands[1].reg << 8;
9468 inst.instruction |= inst.operands[2].reg << 16;
9469 inst.instruction |= inst.operands[3].reg;
9470}
b99bd4ef 9471
c19d1205
ZW
9472static void
9473do_t_mov_cmp (void)
9474{
9475 if (unified_syntax)
b99bd4ef 9476 {
c19d1205
ZW
9477 int r0off = (inst.instruction == T_MNEM_mov
9478 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9479 unsigned long opcode;
3d388997
PB
9480 bfd_boolean narrow;
9481 bfd_boolean low_regs;
9482
9483 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 9484 opcode = inst.instruction;
3d388997 9485 if (current_it_mask)
0110f2b8 9486 narrow = opcode != T_MNEM_movs;
3d388997 9487 else
0110f2b8 9488 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9489 if (inst.size_req == 4
9490 || inst.operands[1].shifted)
9491 narrow = FALSE;
9492
efd81785
PB
9493 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9494 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9495 && !inst.operands[1].shifted
9496 && inst.operands[0].reg == REG_PC
9497 && inst.operands[1].reg == REG_LR)
9498 {
9499 inst.instruction = T2_SUBS_PC_LR;
9500 return;
9501 }
9502
c19d1205
ZW
9503 if (!inst.operands[1].isreg)
9504 {
0110f2b8
PB
9505 /* Immediate operand. */
9506 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9507 narrow = 0;
9508 if (low_regs && narrow)
9509 {
9510 inst.instruction = THUMB_OP16 (opcode);
9511 inst.instruction |= inst.operands[0].reg << 8;
9512 if (inst.size_req == 2)
9513 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9514 else
9515 inst.relax = opcode;
9516 }
9517 else
9518 {
9519 inst.instruction = THUMB_OP32 (inst.instruction);
9520 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9521 inst.instruction |= inst.operands[0].reg << r0off;
9522 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9523 }
c19d1205 9524 }
728ca7c9
PB
9525 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9526 && (inst.instruction == T_MNEM_mov
9527 || inst.instruction == T_MNEM_movs))
9528 {
9529 /* Register shifts are encoded as separate shift instructions. */
9530 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9531
9532 if (current_it_mask)
9533 narrow = !flags;
9534 else
9535 narrow = flags;
9536
9537 if (inst.size_req == 4)
9538 narrow = FALSE;
9539
9540 if (!low_regs || inst.operands[1].imm > 7)
9541 narrow = FALSE;
9542
9543 if (inst.operands[0].reg != inst.operands[1].reg)
9544 narrow = FALSE;
9545
9546 switch (inst.operands[1].shift_kind)
9547 {
9548 case SHIFT_LSL:
9549 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9550 break;
9551 case SHIFT_ASR:
9552 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9553 break;
9554 case SHIFT_LSR:
9555 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9556 break;
9557 case SHIFT_ROR:
9558 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9559 break;
9560 default:
9561 abort();
9562 }
9563
9564 inst.instruction = opcode;
9565 if (narrow)
9566 {
9567 inst.instruction |= inst.operands[0].reg;
9568 inst.instruction |= inst.operands[1].imm << 3;
9569 }
9570 else
9571 {
9572 if (flags)
9573 inst.instruction |= CONDS_BIT;
9574
9575 inst.instruction |= inst.operands[0].reg << 8;
9576 inst.instruction |= inst.operands[1].reg << 16;
9577 inst.instruction |= inst.operands[1].imm;
9578 }
9579 }
3d388997 9580 else if (!narrow)
c19d1205 9581 {
728ca7c9
PB
9582 /* Some mov with immediate shift have narrow variants.
9583 Register shifts are handled above. */
9584 if (low_regs && inst.operands[1].shifted
9585 && (inst.instruction == T_MNEM_mov
9586 || inst.instruction == T_MNEM_movs))
9587 {
9588 if (current_it_mask)
9589 narrow = (inst.instruction == T_MNEM_mov);
9590 else
9591 narrow = (inst.instruction == T_MNEM_movs);
9592 }
9593
9594 if (narrow)
9595 {
9596 switch (inst.operands[1].shift_kind)
9597 {
9598 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9599 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9600 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9601 default: narrow = FALSE; break;
9602 }
9603 }
9604
9605 if (narrow)
9606 {
9607 inst.instruction |= inst.operands[0].reg;
9608 inst.instruction |= inst.operands[1].reg << 3;
9609 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9610 }
9611 else
9612 {
9613 inst.instruction = THUMB_OP32 (inst.instruction);
9614 inst.instruction |= inst.operands[0].reg << r0off;
9615 encode_thumb32_shifted_operand (1);
9616 }
c19d1205
ZW
9617 }
9618 else
9619 switch (inst.instruction)
9620 {
9621 case T_MNEM_mov:
9622 inst.instruction = T_OPCODE_MOV_HR;
9623 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9624 inst.instruction |= (inst.operands[0].reg & 0x7);
9625 inst.instruction |= inst.operands[1].reg << 3;
9626 break;
b99bd4ef 9627
c19d1205
ZW
9628 case T_MNEM_movs:
9629 /* We know we have low registers at this point.
9630 Generate ADD Rd, Rs, #0. */
9631 inst.instruction = T_OPCODE_ADD_I3;
9632 inst.instruction |= inst.operands[0].reg;
9633 inst.instruction |= inst.operands[1].reg << 3;
9634 break;
9635
9636 case T_MNEM_cmp:
3d388997 9637 if (low_regs)
c19d1205
ZW
9638 {
9639 inst.instruction = T_OPCODE_CMP_LR;
9640 inst.instruction |= inst.operands[0].reg;
9641 inst.instruction |= inst.operands[1].reg << 3;
9642 }
9643 else
9644 {
9645 inst.instruction = T_OPCODE_CMP_HR;
9646 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9647 inst.instruction |= (inst.operands[0].reg & 0x7);
9648 inst.instruction |= inst.operands[1].reg << 3;
9649 }
9650 break;
9651 }
b99bd4ef
NC
9652 return;
9653 }
9654
c19d1205
ZW
9655 inst.instruction = THUMB_OP16 (inst.instruction);
9656 if (inst.operands[1].isreg)
b99bd4ef 9657 {
c19d1205 9658 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 9659 {
c19d1205
ZW
9660 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9661 since a MOV instruction produces unpredictable results. */
9662 if (inst.instruction == T_OPCODE_MOV_I8)
9663 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9664 else
c19d1205 9665 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9666
c19d1205
ZW
9667 inst.instruction |= inst.operands[0].reg;
9668 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9669 }
9670 else
9671 {
c19d1205
ZW
9672 if (inst.instruction == T_OPCODE_MOV_I8)
9673 inst.instruction = T_OPCODE_MOV_HR;
9674 else
9675 inst.instruction = T_OPCODE_CMP_HR;
9676 do_t_cpy ();
b99bd4ef
NC
9677 }
9678 }
c19d1205 9679 else
b99bd4ef 9680 {
c19d1205
ZW
9681 constraint (inst.operands[0].reg > 7,
9682 _("only lo regs allowed with immediate"));
9683 inst.instruction |= inst.operands[0].reg << 8;
9684 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9685 }
9686}
b99bd4ef 9687
c19d1205
ZW
9688static void
9689do_t_mov16 (void)
9690{
b6895b4f
PB
9691 bfd_vma imm;
9692 bfd_boolean top;
9693
9694 top = (inst.instruction & 0x00800000) != 0;
9695 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9696 {
9697 constraint (top, _(":lower16: not allowed this instruction"));
9698 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9699 }
9700 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9701 {
9702 constraint (!top, _(":upper16: not allowed this instruction"));
9703 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9704 }
9705
c19d1205 9706 inst.instruction |= inst.operands[0].reg << 8;
b6895b4f
PB
9707 if (inst.reloc.type == BFD_RELOC_UNUSED)
9708 {
9709 imm = inst.reloc.exp.X_add_number;
9710 inst.instruction |= (imm & 0xf000) << 4;
9711 inst.instruction |= (imm & 0x0800) << 15;
9712 inst.instruction |= (imm & 0x0700) << 4;
9713 inst.instruction |= (imm & 0x00ff);
9714 }
c19d1205 9715}
b99bd4ef 9716
c19d1205
ZW
9717static void
9718do_t_mvn_tst (void)
9719{
9720 if (unified_syntax)
9721 {
9722 int r0off = (inst.instruction == T_MNEM_mvn
9723 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9724 bfd_boolean narrow;
9725
9726 if (inst.size_req == 4
9727 || inst.instruction > 0xffff
9728 || inst.operands[1].shifted
9729 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9730 narrow = FALSE;
9731 else if (inst.instruction == T_MNEM_cmn)
9732 narrow = TRUE;
9733 else if (THUMB_SETS_FLAGS (inst.instruction))
9734 narrow = (current_it_mask == 0);
9735 else
9736 narrow = (current_it_mask != 0);
9737
c19d1205 9738 if (!inst.operands[1].isreg)
b99bd4ef 9739 {
c19d1205
ZW
9740 /* For an immediate, we always generate a 32-bit opcode;
9741 section relaxation will shrink it later if possible. */
9742 if (inst.instruction < 0xffff)
9743 inst.instruction = THUMB_OP32 (inst.instruction);
9744 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9745 inst.instruction |= inst.operands[0].reg << r0off;
9746 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9747 }
c19d1205 9748 else
b99bd4ef 9749 {
c19d1205 9750 /* See if we can do this with a 16-bit instruction. */
3d388997 9751 if (narrow)
b99bd4ef 9752 {
c19d1205
ZW
9753 inst.instruction = THUMB_OP16 (inst.instruction);
9754 inst.instruction |= inst.operands[0].reg;
9755 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9756 }
c19d1205 9757 else
b99bd4ef 9758 {
c19d1205
ZW
9759 constraint (inst.operands[1].shifted
9760 && inst.operands[1].immisreg,
9761 _("shift must be constant"));
9762 if (inst.instruction < 0xffff)
9763 inst.instruction = THUMB_OP32 (inst.instruction);
9764 inst.instruction |= inst.operands[0].reg << r0off;
9765 encode_thumb32_shifted_operand (1);
b99bd4ef 9766 }
b99bd4ef
NC
9767 }
9768 }
9769 else
9770 {
c19d1205
ZW
9771 constraint (inst.instruction > 0xffff
9772 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9773 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9774 _("unshifted register required"));
9775 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9776 BAD_HIREG);
b99bd4ef 9777
c19d1205
ZW
9778 inst.instruction = THUMB_OP16 (inst.instruction);
9779 inst.instruction |= inst.operands[0].reg;
9780 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9781 }
b99bd4ef
NC
9782}
9783
b05fe5cf 9784static void
c19d1205 9785do_t_mrs (void)
b05fe5cf 9786{
62b3e311 9787 int flags;
037e8744
JB
9788
9789 if (do_vfp_nsyn_mrs () == SUCCESS)
9790 return;
9791
62b3e311
PB
9792 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9793 if (flags == 0)
9794 {
9795 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9796 _("selected processor does not support "
9797 "requested special purpose register"));
9798 }
9799 else
9800 {
9801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9802 _("selected processor does not support "
9803 "requested special purpose register %x"));
9804 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9805 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9806 _("'CPSR' or 'SPSR' expected"));
9807 }
9808
c19d1205 9809 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
9810 inst.instruction |= (flags & SPSR_BIT) >> 2;
9811 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 9812}
b05fe5cf 9813
c19d1205
ZW
9814static void
9815do_t_msr (void)
9816{
62b3e311
PB
9817 int flags;
9818
037e8744
JB
9819 if (do_vfp_nsyn_msr () == SUCCESS)
9820 return;
9821
c19d1205
ZW
9822 constraint (!inst.operands[1].isreg,
9823 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
9824 flags = inst.operands[0].imm;
9825 if (flags & ~0xff)
9826 {
9827 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9828 _("selected processor does not support "
9829 "requested special purpose register"));
9830 }
9831 else
9832 {
9833 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9834 _("selected processor does not support "
9835 "requested special purpose register"));
9836 flags |= PSR_f;
9837 }
9838 inst.instruction |= (flags & SPSR_BIT) >> 2;
9839 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9840 inst.instruction |= (flags & 0xff);
c19d1205
ZW
9841 inst.instruction |= inst.operands[1].reg << 16;
9842}
b05fe5cf 9843
c19d1205
ZW
9844static void
9845do_t_mul (void)
9846{
9847 if (!inst.operands[2].present)
9848 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 9849
c19d1205
ZW
9850 /* There is no 32-bit MULS and no 16-bit MUL. */
9851 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 9852 {
c19d1205
ZW
9853 inst.instruction = THUMB_OP32 (inst.instruction);
9854 inst.instruction |= inst.operands[0].reg << 8;
9855 inst.instruction |= inst.operands[1].reg << 16;
9856 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 9857 }
c19d1205 9858 else
b05fe5cf 9859 {
c19d1205
ZW
9860 constraint (!unified_syntax
9861 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9862 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9863 BAD_HIREG);
b05fe5cf 9864
c19d1205
ZW
9865 inst.instruction = THUMB_OP16 (inst.instruction);
9866 inst.instruction |= inst.operands[0].reg;
b05fe5cf 9867
c19d1205
ZW
9868 if (inst.operands[0].reg == inst.operands[1].reg)
9869 inst.instruction |= inst.operands[2].reg << 3;
9870 else if (inst.operands[0].reg == inst.operands[2].reg)
9871 inst.instruction |= inst.operands[1].reg << 3;
9872 else
9873 constraint (1, _("dest must overlap one source register"));
9874 }
9875}
b05fe5cf 9876
c19d1205
ZW
9877static void
9878do_t_mull (void)
9879{
9880 inst.instruction |= inst.operands[0].reg << 12;
9881 inst.instruction |= inst.operands[1].reg << 8;
9882 inst.instruction |= inst.operands[2].reg << 16;
9883 inst.instruction |= inst.operands[3].reg;
b05fe5cf 9884
c19d1205
ZW
9885 if (inst.operands[0].reg == inst.operands[1].reg)
9886 as_tsktsk (_("rdhi and rdlo must be different"));
9887}
b05fe5cf 9888
c19d1205
ZW
9889static void
9890do_t_nop (void)
9891{
9892 if (unified_syntax)
9893 {
9894 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 9895 {
c19d1205
ZW
9896 inst.instruction = THUMB_OP32 (inst.instruction);
9897 inst.instruction |= inst.operands[0].imm;
9898 }
9899 else
9900 {
9901 inst.instruction = THUMB_OP16 (inst.instruction);
9902 inst.instruction |= inst.operands[0].imm << 4;
9903 }
9904 }
9905 else
9906 {
9907 constraint (inst.operands[0].present,
9908 _("Thumb does not support NOP with hints"));
9909 inst.instruction = 0x46c0;
9910 }
9911}
b05fe5cf 9912
c19d1205
ZW
9913static void
9914do_t_neg (void)
9915{
9916 if (unified_syntax)
9917 {
3d388997
PB
9918 bfd_boolean narrow;
9919
9920 if (THUMB_SETS_FLAGS (inst.instruction))
9921 narrow = (current_it_mask == 0);
9922 else
9923 narrow = (current_it_mask != 0);
9924 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9925 narrow = FALSE;
9926 if (inst.size_req == 4)
9927 narrow = FALSE;
9928
9929 if (!narrow)
c19d1205
ZW
9930 {
9931 inst.instruction = THUMB_OP32 (inst.instruction);
9932 inst.instruction |= inst.operands[0].reg << 8;
9933 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
9934 }
9935 else
9936 {
c19d1205
ZW
9937 inst.instruction = THUMB_OP16 (inst.instruction);
9938 inst.instruction |= inst.operands[0].reg;
9939 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
9940 }
9941 }
9942 else
9943 {
c19d1205
ZW
9944 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9945 BAD_HIREG);
9946 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9947
9948 inst.instruction = THUMB_OP16 (inst.instruction);
9949 inst.instruction |= inst.operands[0].reg;
9950 inst.instruction |= inst.operands[1].reg << 3;
9951 }
9952}
9953
9954static void
9955do_t_pkhbt (void)
9956{
9957 inst.instruction |= inst.operands[0].reg << 8;
9958 inst.instruction |= inst.operands[1].reg << 16;
9959 inst.instruction |= inst.operands[2].reg;
9960 if (inst.operands[3].present)
9961 {
9962 unsigned int val = inst.reloc.exp.X_add_number;
9963 constraint (inst.reloc.exp.X_op != O_constant,
9964 _("expression too complex"));
9965 inst.instruction |= (val & 0x1c) << 10;
9966 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 9967 }
c19d1205 9968}
b05fe5cf 9969
c19d1205
ZW
9970static void
9971do_t_pkhtb (void)
9972{
9973 if (!inst.operands[3].present)
9974 inst.instruction &= ~0x00000020;
9975 do_t_pkhbt ();
b05fe5cf
ZW
9976}
9977
c19d1205
ZW
9978static void
9979do_t_pld (void)
9980{
9981 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9982}
b05fe5cf 9983
c19d1205
ZW
9984static void
9985do_t_push_pop (void)
b99bd4ef 9986{
e9f89963
PB
9987 unsigned mask;
9988
c19d1205
ZW
9989 constraint (inst.operands[0].writeback,
9990 _("push/pop do not support {reglist}^"));
9991 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9992 _("expression too complex"));
b99bd4ef 9993
e9f89963
PB
9994 mask = inst.operands[0].imm;
9995 if ((mask & ~0xff) == 0)
3c707909 9996 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 9997 else if ((inst.instruction == T_MNEM_push
e9f89963 9998 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 9999 || (inst.instruction == T_MNEM_pop
e9f89963 10000 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10001 {
c19d1205
ZW
10002 inst.instruction = THUMB_OP16 (inst.instruction);
10003 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10004 inst.instruction |= mask & 0xff;
c19d1205
ZW
10005 }
10006 else if (unified_syntax)
10007 {
3c707909
PB
10008 inst.instruction = THUMB_OP32 (inst.instruction);
10009 encode_thumb2_ldmstm(13, mask, TRUE);
c19d1205
ZW
10010 }
10011 else
10012 {
10013 inst.error = _("invalid register list to push/pop instruction");
10014 return;
10015 }
c19d1205 10016}
b99bd4ef 10017
c19d1205
ZW
10018static void
10019do_t_rbit (void)
10020{
10021 inst.instruction |= inst.operands[0].reg << 8;
10022 inst.instruction |= inst.operands[1].reg << 16;
10023}
b99bd4ef 10024
c19d1205
ZW
10025static void
10026do_t_rev (void)
10027{
10028 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10029 && inst.size_req != 4)
10030 {
10031 inst.instruction = THUMB_OP16 (inst.instruction);
10032 inst.instruction |= inst.operands[0].reg;
10033 inst.instruction |= inst.operands[1].reg << 3;
10034 }
10035 else if (unified_syntax)
10036 {
10037 inst.instruction = THUMB_OP32 (inst.instruction);
10038 inst.instruction |= inst.operands[0].reg << 8;
10039 inst.instruction |= inst.operands[1].reg << 16;
10040 inst.instruction |= inst.operands[1].reg;
10041 }
10042 else
10043 inst.error = BAD_HIREG;
10044}
b99bd4ef 10045
c19d1205
ZW
10046static void
10047do_t_rsb (void)
10048{
10049 int Rd, Rs;
b99bd4ef 10050
c19d1205
ZW
10051 Rd = inst.operands[0].reg;
10052 Rs = (inst.operands[1].present
10053 ? inst.operands[1].reg /* Rd, Rs, foo */
10054 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10055
c19d1205
ZW
10056 inst.instruction |= Rd << 8;
10057 inst.instruction |= Rs << 16;
10058 if (!inst.operands[2].isreg)
10059 {
026d3abb
PB
10060 bfd_boolean narrow;
10061
10062 if ((inst.instruction & 0x00100000) != 0)
10063 narrow = (current_it_mask == 0);
10064 else
10065 narrow = (current_it_mask != 0);
10066
10067 if (Rd > 7 || Rs > 7)
10068 narrow = FALSE;
10069
10070 if (inst.size_req == 4 || !unified_syntax)
10071 narrow = FALSE;
10072
10073 if (inst.reloc.exp.X_op != O_constant
10074 || inst.reloc.exp.X_add_number != 0)
10075 narrow = FALSE;
10076
10077 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10078 relaxation, but it doesn't seem worth the hassle. */
10079 if (narrow)
10080 {
10081 inst.reloc.type = BFD_RELOC_UNUSED;
10082 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10083 inst.instruction |= Rs << 3;
10084 inst.instruction |= Rd;
10085 }
10086 else
10087 {
10088 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10089 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10090 }
c19d1205
ZW
10091 }
10092 else
10093 encode_thumb32_shifted_operand (2);
10094}
b99bd4ef 10095
c19d1205
ZW
10096static void
10097do_t_setend (void)
10098{
dfa9f0d5 10099 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
10100 if (inst.operands[0].imm)
10101 inst.instruction |= 0x8;
10102}
b99bd4ef 10103
c19d1205
ZW
10104static void
10105do_t_shift (void)
10106{
10107 if (!inst.operands[1].present)
10108 inst.operands[1].reg = inst.operands[0].reg;
10109
10110 if (unified_syntax)
10111 {
3d388997
PB
10112 bfd_boolean narrow;
10113 int shift_kind;
10114
10115 switch (inst.instruction)
10116 {
10117 case T_MNEM_asr:
10118 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10119 case T_MNEM_lsl:
10120 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10121 case T_MNEM_lsr:
10122 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10123 case T_MNEM_ror:
10124 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10125 default: abort ();
10126 }
10127
10128 if (THUMB_SETS_FLAGS (inst.instruction))
10129 narrow = (current_it_mask == 0);
10130 else
10131 narrow = (current_it_mask != 0);
10132 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10133 narrow = FALSE;
10134 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10135 narrow = FALSE;
10136 if (inst.operands[2].isreg
10137 && (inst.operands[1].reg != inst.operands[0].reg
10138 || inst.operands[2].reg > 7))
10139 narrow = FALSE;
10140 if (inst.size_req == 4)
10141 narrow = FALSE;
10142
10143 if (!narrow)
c19d1205
ZW
10144 {
10145 if (inst.operands[2].isreg)
b99bd4ef 10146 {
c19d1205
ZW
10147 inst.instruction = THUMB_OP32 (inst.instruction);
10148 inst.instruction |= inst.operands[0].reg << 8;
10149 inst.instruction |= inst.operands[1].reg << 16;
10150 inst.instruction |= inst.operands[2].reg;
10151 }
10152 else
10153 {
10154 inst.operands[1].shifted = 1;
3d388997 10155 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10156 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10157 ? T_MNEM_movs : T_MNEM_mov);
10158 inst.instruction |= inst.operands[0].reg << 8;
10159 encode_thumb32_shifted_operand (1);
10160 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10161 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10162 }
10163 }
10164 else
10165 {
c19d1205 10166 if (inst.operands[2].isreg)
b99bd4ef 10167 {
3d388997 10168 switch (shift_kind)
b99bd4ef 10169 {
3d388997
PB
10170 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10171 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10172 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10173 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10174 default: abort ();
b99bd4ef 10175 }
c19d1205
ZW
10176
10177 inst.instruction |= inst.operands[0].reg;
10178 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10179 }
10180 else
10181 {
3d388997 10182 switch (shift_kind)
b99bd4ef 10183 {
3d388997
PB
10184 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10185 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10186 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10187 default: abort ();
b99bd4ef 10188 }
c19d1205
ZW
10189 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10190 inst.instruction |= inst.operands[0].reg;
10191 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10192 }
10193 }
c19d1205
ZW
10194 }
10195 else
10196 {
10197 constraint (inst.operands[0].reg > 7
10198 || inst.operands[1].reg > 7, BAD_HIREG);
10199 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10200
c19d1205
ZW
10201 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10202 {
10203 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10204 constraint (inst.operands[0].reg != inst.operands[1].reg,
10205 _("source1 and dest must be same register"));
b99bd4ef 10206
c19d1205
ZW
10207 switch (inst.instruction)
10208 {
10209 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10210 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10211 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10212 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10213 default: abort ();
10214 }
10215
10216 inst.instruction |= inst.operands[0].reg;
10217 inst.instruction |= inst.operands[2].reg << 3;
10218 }
10219 else
b99bd4ef 10220 {
c19d1205
ZW
10221 switch (inst.instruction)
10222 {
10223 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10224 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10225 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10226 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10227 default: abort ();
10228 }
10229 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10230 inst.instruction |= inst.operands[0].reg;
10231 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10232 }
10233 }
b99bd4ef
NC
10234}
10235
10236static void
c19d1205 10237do_t_simd (void)
b99bd4ef 10238{
c19d1205
ZW
10239 inst.instruction |= inst.operands[0].reg << 8;
10240 inst.instruction |= inst.operands[1].reg << 16;
10241 inst.instruction |= inst.operands[2].reg;
10242}
b99bd4ef 10243
c19d1205 10244static void
3eb17e6b 10245do_t_smc (void)
c19d1205
ZW
10246{
10247 unsigned int value = inst.reloc.exp.X_add_number;
10248 constraint (inst.reloc.exp.X_op != O_constant,
10249 _("expression too complex"));
10250 inst.reloc.type = BFD_RELOC_UNUSED;
10251 inst.instruction |= (value & 0xf000) >> 12;
10252 inst.instruction |= (value & 0x0ff0);
10253 inst.instruction |= (value & 0x000f) << 16;
10254}
b99bd4ef 10255
c19d1205
ZW
10256static void
10257do_t_ssat (void)
10258{
10259 inst.instruction |= inst.operands[0].reg << 8;
10260 inst.instruction |= inst.operands[1].imm - 1;
10261 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10262
c19d1205 10263 if (inst.operands[3].present)
b99bd4ef 10264 {
c19d1205
ZW
10265 constraint (inst.reloc.exp.X_op != O_constant,
10266 _("expression too complex"));
b99bd4ef 10267
c19d1205 10268 if (inst.reloc.exp.X_add_number != 0)
6189168b 10269 {
c19d1205
ZW
10270 if (inst.operands[3].shift_kind == SHIFT_ASR)
10271 inst.instruction |= 0x00200000; /* sh bit */
10272 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10273 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10274 }
c19d1205 10275 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10276 }
b99bd4ef
NC
10277}
10278
0dd132b6 10279static void
c19d1205 10280do_t_ssat16 (void)
0dd132b6 10281{
c19d1205
ZW
10282 inst.instruction |= inst.operands[0].reg << 8;
10283 inst.instruction |= inst.operands[1].imm - 1;
10284 inst.instruction |= inst.operands[2].reg << 16;
10285}
0dd132b6 10286
c19d1205
ZW
10287static void
10288do_t_strex (void)
10289{
10290 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10291 || inst.operands[2].postind || inst.operands[2].writeback
10292 || inst.operands[2].immisreg || inst.operands[2].shifted
10293 || inst.operands[2].negative,
01cfc07f 10294 BAD_ADDR_MODE);
0dd132b6 10295
c19d1205
ZW
10296 inst.instruction |= inst.operands[0].reg << 8;
10297 inst.instruction |= inst.operands[1].reg << 12;
10298 inst.instruction |= inst.operands[2].reg << 16;
10299 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10300}
10301
b99bd4ef 10302static void
c19d1205 10303do_t_strexd (void)
b99bd4ef 10304{
c19d1205
ZW
10305 if (!inst.operands[2].present)
10306 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10307
c19d1205
ZW
10308 constraint (inst.operands[0].reg == inst.operands[1].reg
10309 || inst.operands[0].reg == inst.operands[2].reg
10310 || inst.operands[0].reg == inst.operands[3].reg
10311 || inst.operands[1].reg == inst.operands[2].reg,
10312 BAD_OVERLAP);
b99bd4ef 10313
c19d1205
ZW
10314 inst.instruction |= inst.operands[0].reg;
10315 inst.instruction |= inst.operands[1].reg << 12;
10316 inst.instruction |= inst.operands[2].reg << 8;
10317 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10318}
10319
10320static void
c19d1205 10321do_t_sxtah (void)
b99bd4ef 10322{
c19d1205
ZW
10323 inst.instruction |= inst.operands[0].reg << 8;
10324 inst.instruction |= inst.operands[1].reg << 16;
10325 inst.instruction |= inst.operands[2].reg;
10326 inst.instruction |= inst.operands[3].imm << 4;
10327}
b99bd4ef 10328
c19d1205
ZW
10329static void
10330do_t_sxth (void)
10331{
10332 if (inst.instruction <= 0xffff && inst.size_req != 4
10333 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10334 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10335 {
c19d1205
ZW
10336 inst.instruction = THUMB_OP16 (inst.instruction);
10337 inst.instruction |= inst.operands[0].reg;
10338 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 10339 }
c19d1205 10340 else if (unified_syntax)
b99bd4ef 10341 {
c19d1205
ZW
10342 if (inst.instruction <= 0xffff)
10343 inst.instruction = THUMB_OP32 (inst.instruction);
10344 inst.instruction |= inst.operands[0].reg << 8;
10345 inst.instruction |= inst.operands[1].reg;
10346 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10347 }
c19d1205 10348 else
b99bd4ef 10349 {
c19d1205
ZW
10350 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10351 _("Thumb encoding does not support rotation"));
10352 constraint (1, BAD_HIREG);
b99bd4ef 10353 }
c19d1205 10354}
b99bd4ef 10355
c19d1205
ZW
10356static void
10357do_t_swi (void)
10358{
10359 inst.reloc.type = BFD_RELOC_ARM_SWI;
10360}
b99bd4ef 10361
92e90b6e
PB
10362static void
10363do_t_tb (void)
10364{
10365 int half;
10366
10367 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10368 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10369 constraint (inst.operands[0].immisreg,
10370 _("instruction requires register index"));
92e90b6e
PB
10371 constraint (inst.operands[0].imm == 15,
10372 _("PC is not a valid index register"));
10373 constraint (!half && inst.operands[0].shifted,
10374 _("instruction does not allow shifted index"));
92e90b6e
PB
10375 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10376}
10377
c19d1205
ZW
10378static void
10379do_t_usat (void)
10380{
10381 inst.instruction |= inst.operands[0].reg << 8;
10382 inst.instruction |= inst.operands[1].imm;
10383 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10384
c19d1205 10385 if (inst.operands[3].present)
b99bd4ef 10386 {
c19d1205
ZW
10387 constraint (inst.reloc.exp.X_op != O_constant,
10388 _("expression too complex"));
10389 if (inst.reloc.exp.X_add_number != 0)
10390 {
10391 if (inst.operands[3].shift_kind == SHIFT_ASR)
10392 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10393
c19d1205
ZW
10394 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10395 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10396 }
10397 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10398 }
b99bd4ef
NC
10399}
10400
10401static void
c19d1205 10402do_t_usat16 (void)
b99bd4ef 10403{
c19d1205
ZW
10404 inst.instruction |= inst.operands[0].reg << 8;
10405 inst.instruction |= inst.operands[1].imm;
10406 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10407}
c19d1205 10408
5287ad62
JB
10409/* Neon instruction encoder helpers. */
10410
10411/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10412
5287ad62
JB
10413/* An "invalid" code for the following tables. */
10414#define N_INV -1u
10415
10416struct neon_tab_entry
b99bd4ef 10417{
5287ad62
JB
10418 unsigned integer;
10419 unsigned float_or_poly;
10420 unsigned scalar_or_imm;
10421};
10422
10423/* Map overloaded Neon opcodes to their respective encodings. */
10424#define NEON_ENC_TAB \
10425 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10426 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10427 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10428 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10429 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10430 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10431 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10432 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10433 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10434 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10435 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10436 /* Register variants of the following two instructions are encoded as
10437 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10438 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10439 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10440 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10441 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10442 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10443 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10444 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10445 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10446 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10447 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10448 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10449 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10450 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10451 X(vshl, 0x0000400, N_INV, 0x0800510), \
10452 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10453 X(vand, 0x0000110, N_INV, 0x0800030), \
10454 X(vbic, 0x0100110, N_INV, 0x0800030), \
10455 X(veor, 0x1000110, N_INV, N_INV), \
10456 X(vorn, 0x0300110, N_INV, 0x0800010), \
10457 X(vorr, 0x0200110, N_INV, 0x0800010), \
10458 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10459 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10460 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10461 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10462 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10463 X(vst1, 0x0000000, 0x0800000, N_INV), \
10464 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10465 X(vst2, 0x0000100, 0x0800100, N_INV), \
10466 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10467 X(vst3, 0x0000200, 0x0800200, N_INV), \
10468 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10469 X(vst4, 0x0000300, 0x0800300, N_INV), \
10470 X(vmovn, 0x1b20200, N_INV, N_INV), \
10471 X(vtrn, 0x1b20080, N_INV, N_INV), \
10472 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10473 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10474 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10475 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10476 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10477 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10478 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10479 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10480 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10481
10482enum neon_opc
10483{
10484#define X(OPC,I,F,S) N_MNEM_##OPC
10485NEON_ENC_TAB
10486#undef X
10487};
b99bd4ef 10488
5287ad62
JB
10489static const struct neon_tab_entry neon_enc_tab[] =
10490{
10491#define X(OPC,I,F,S) { (I), (F), (S) }
10492NEON_ENC_TAB
10493#undef X
10494};
b99bd4ef 10495
5287ad62
JB
10496#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10497#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10498#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10499#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10500#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10501#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10502#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10503#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10504#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10505#define NEON_ENC_SINGLE(X) \
10506 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10507#define NEON_ENC_DOUBLE(X) \
10508 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10509
037e8744
JB
10510/* Define shapes for instruction operands. The following mnemonic characters
10511 are used in this table:
5287ad62 10512
037e8744 10513 F - VFP S<n> register
5287ad62
JB
10514 D - Neon D<n> register
10515 Q - Neon Q<n> register
10516 I - Immediate
10517 S - Scalar
10518 R - ARM register
10519 L - D<n> register list
037e8744
JB
10520
10521 This table is used to generate various data:
10522 - enumerations of the form NS_DDR to be used as arguments to
10523 neon_select_shape.
10524 - a table classifying shapes into single, double, quad, mixed.
10525 - a table used to drive neon_select_shape.
5287ad62 10526*/
b99bd4ef 10527
037e8744
JB
10528#define NEON_SHAPE_DEF \
10529 X(3, (D, D, D), DOUBLE), \
10530 X(3, (Q, Q, Q), QUAD), \
10531 X(3, (D, D, I), DOUBLE), \
10532 X(3, (Q, Q, I), QUAD), \
10533 X(3, (D, D, S), DOUBLE), \
10534 X(3, (Q, Q, S), QUAD), \
10535 X(2, (D, D), DOUBLE), \
10536 X(2, (Q, Q), QUAD), \
10537 X(2, (D, S), DOUBLE), \
10538 X(2, (Q, S), QUAD), \
10539 X(2, (D, R), DOUBLE), \
10540 X(2, (Q, R), QUAD), \
10541 X(2, (D, I), DOUBLE), \
10542 X(2, (Q, I), QUAD), \
10543 X(3, (D, L, D), DOUBLE), \
10544 X(2, (D, Q), MIXED), \
10545 X(2, (Q, D), MIXED), \
10546 X(3, (D, Q, I), MIXED), \
10547 X(3, (Q, D, I), MIXED), \
10548 X(3, (Q, D, D), MIXED), \
10549 X(3, (D, Q, Q), MIXED), \
10550 X(3, (Q, Q, D), MIXED), \
10551 X(3, (Q, D, S), MIXED), \
10552 X(3, (D, Q, S), MIXED), \
10553 X(4, (D, D, D, I), DOUBLE), \
10554 X(4, (Q, Q, Q, I), QUAD), \
10555 X(2, (F, F), SINGLE), \
10556 X(3, (F, F, F), SINGLE), \
10557 X(2, (F, I), SINGLE), \
10558 X(2, (F, D), MIXED), \
10559 X(2, (D, F), MIXED), \
10560 X(3, (F, F, I), MIXED), \
10561 X(4, (R, R, F, F), SINGLE), \
10562 X(4, (F, F, R, R), SINGLE), \
10563 X(3, (D, R, R), DOUBLE), \
10564 X(3, (R, R, D), DOUBLE), \
10565 X(2, (S, R), SINGLE), \
10566 X(2, (R, S), SINGLE), \
10567 X(2, (F, R), SINGLE), \
10568 X(2, (R, F), SINGLE)
10569
10570#define S2(A,B) NS_##A##B
10571#define S3(A,B,C) NS_##A##B##C
10572#define S4(A,B,C,D) NS_##A##B##C##D
10573
10574#define X(N, L, C) S##N L
10575
5287ad62
JB
10576enum neon_shape
10577{
037e8744
JB
10578 NEON_SHAPE_DEF,
10579 NS_NULL
5287ad62 10580};
b99bd4ef 10581
037e8744
JB
10582#undef X
10583#undef S2
10584#undef S3
10585#undef S4
10586
10587enum neon_shape_class
10588{
10589 SC_SINGLE,
10590 SC_DOUBLE,
10591 SC_QUAD,
10592 SC_MIXED
10593};
10594
10595#define X(N, L, C) SC_##C
10596
10597static enum neon_shape_class neon_shape_class[] =
10598{
10599 NEON_SHAPE_DEF
10600};
10601
10602#undef X
10603
10604enum neon_shape_el
10605{
10606 SE_F,
10607 SE_D,
10608 SE_Q,
10609 SE_I,
10610 SE_S,
10611 SE_R,
10612 SE_L
10613};
10614
10615/* Register widths of above. */
10616static unsigned neon_shape_el_size[] =
10617{
10618 32,
10619 64,
10620 128,
10621 0,
10622 32,
10623 32,
10624 0
10625};
10626
10627struct neon_shape_info
10628{
10629 unsigned els;
10630 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10631};
10632
10633#define S2(A,B) { SE_##A, SE_##B }
10634#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10635#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10636
10637#define X(N, L, C) { N, S##N L }
10638
10639static struct neon_shape_info neon_shape_tab[] =
10640{
10641 NEON_SHAPE_DEF
10642};
10643
10644#undef X
10645#undef S2
10646#undef S3
10647#undef S4
10648
5287ad62
JB
10649/* Bit masks used in type checking given instructions.
10650 'N_EQK' means the type must be the same as (or based on in some way) the key
10651 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10652 set, various other bits can be set as well in order to modify the meaning of
10653 the type constraint. */
10654
10655enum neon_type_mask
10656{
10657 N_S8 = 0x000001,
10658 N_S16 = 0x000002,
10659 N_S32 = 0x000004,
10660 N_S64 = 0x000008,
10661 N_U8 = 0x000010,
10662 N_U16 = 0x000020,
10663 N_U32 = 0x000040,
10664 N_U64 = 0x000080,
10665 N_I8 = 0x000100,
10666 N_I16 = 0x000200,
10667 N_I32 = 0x000400,
10668 N_I64 = 0x000800,
10669 N_8 = 0x001000,
10670 N_16 = 0x002000,
10671 N_32 = 0x004000,
10672 N_64 = 0x008000,
10673 N_P8 = 0x010000,
10674 N_P16 = 0x020000,
10675 N_F32 = 0x040000,
037e8744
JB
10676 N_F64 = 0x080000,
10677 N_KEY = 0x100000, /* key element (main type specifier). */
10678 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10679 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
5287ad62
JB
10680 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10681 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10682 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10683 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10684 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10685 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
dcbf9037 10686 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 10687 N_UTYP = 0,
037e8744 10688 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
10689};
10690
dcbf9037
JB
10691#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10692
5287ad62
JB
10693#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10694#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10695#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10696#define N_SUF_32 (N_SU_32 | N_F32)
10697#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10698#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10699
10700/* Pass this as the first type argument to neon_check_type to ignore types
10701 altogether. */
10702#define N_IGNORE_TYPE (N_KEY | N_EQK)
10703
037e8744
JB
10704/* Select a "shape" for the current instruction (describing register types or
10705 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10706 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10707 function of operand parsing, so this function doesn't need to be called.
10708 Shapes should be listed in order of decreasing length. */
5287ad62
JB
10709
10710static enum neon_shape
037e8744 10711neon_select_shape (enum neon_shape shape, ...)
5287ad62 10712{
037e8744
JB
10713 va_list ap;
10714 enum neon_shape first_shape = shape;
5287ad62
JB
10715
10716 /* Fix missing optional operands. FIXME: we don't know at this point how
10717 many arguments we should have, so this makes the assumption that we have
10718 > 1. This is true of all current Neon opcodes, I think, but may not be
10719 true in the future. */
10720 if (!inst.operands[1].present)
10721 inst.operands[1] = inst.operands[0];
10722
037e8744 10723 va_start (ap, shape);
5287ad62 10724
037e8744
JB
10725 for (; shape != NS_NULL; shape = va_arg (ap, int))
10726 {
10727 unsigned j;
10728 int matches = 1;
10729
10730 for (j = 0; j < neon_shape_tab[shape].els; j++)
10731 {
10732 if (!inst.operands[j].present)
10733 {
10734 matches = 0;
10735 break;
10736 }
10737
10738 switch (neon_shape_tab[shape].el[j])
10739 {
10740 case SE_F:
10741 if (!(inst.operands[j].isreg
10742 && inst.operands[j].isvec
10743 && inst.operands[j].issingle
10744 && !inst.operands[j].isquad))
10745 matches = 0;
10746 break;
10747
10748 case SE_D:
10749 if (!(inst.operands[j].isreg
10750 && inst.operands[j].isvec
10751 && !inst.operands[j].isquad
10752 && !inst.operands[j].issingle))
10753 matches = 0;
10754 break;
10755
10756 case SE_R:
10757 if (!(inst.operands[j].isreg
10758 && !inst.operands[j].isvec))
10759 matches = 0;
10760 break;
10761
10762 case SE_Q:
10763 if (!(inst.operands[j].isreg
10764 && inst.operands[j].isvec
10765 && inst.operands[j].isquad
10766 && !inst.operands[j].issingle))
10767 matches = 0;
10768 break;
10769
10770 case SE_I:
10771 if (!(!inst.operands[j].isreg
10772 && !inst.operands[j].isscalar))
10773 matches = 0;
10774 break;
10775
10776 case SE_S:
10777 if (!(!inst.operands[j].isreg
10778 && inst.operands[j].isscalar))
10779 matches = 0;
10780 break;
10781
10782 case SE_L:
10783 break;
10784 }
10785 }
10786 if (matches)
5287ad62 10787 break;
037e8744 10788 }
5287ad62 10789
037e8744 10790 va_end (ap);
5287ad62 10791
037e8744
JB
10792 if (shape == NS_NULL && first_shape != NS_NULL)
10793 first_error (_("invalid instruction shape"));
5287ad62 10794
037e8744
JB
10795 return shape;
10796}
5287ad62 10797
037e8744
JB
10798/* True if SHAPE is predominantly a quadword operation (most of the time, this
10799 means the Q bit should be set). */
10800
10801static int
10802neon_quad (enum neon_shape shape)
10803{
10804 return neon_shape_class[shape] == SC_QUAD;
5287ad62 10805}
037e8744 10806
5287ad62
JB
10807static void
10808neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10809 unsigned *g_size)
10810{
10811 /* Allow modification to be made to types which are constrained to be
10812 based on the key element, based on bits set alongside N_EQK. */
10813 if ((typebits & N_EQK) != 0)
10814 {
10815 if ((typebits & N_HLF) != 0)
10816 *g_size /= 2;
10817 else if ((typebits & N_DBL) != 0)
10818 *g_size *= 2;
10819 if ((typebits & N_SGN) != 0)
10820 *g_type = NT_signed;
10821 else if ((typebits & N_UNS) != 0)
10822 *g_type = NT_unsigned;
10823 else if ((typebits & N_INT) != 0)
10824 *g_type = NT_integer;
10825 else if ((typebits & N_FLT) != 0)
10826 *g_type = NT_float;
dcbf9037
JB
10827 else if ((typebits & N_SIZ) != 0)
10828 *g_type = NT_untyped;
5287ad62
JB
10829 }
10830}
10831
10832/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10833 operand type, i.e. the single type specified in a Neon instruction when it
10834 is the only one given. */
10835
10836static struct neon_type_el
10837neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10838{
10839 struct neon_type_el dest = *key;
10840
10841 assert ((thisarg & N_EQK) != 0);
10842
10843 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10844
10845 return dest;
10846}
10847
10848/* Convert Neon type and size into compact bitmask representation. */
10849
10850static enum neon_type_mask
10851type_chk_of_el_type (enum neon_el_type type, unsigned size)
10852{
10853 switch (type)
10854 {
10855 case NT_untyped:
10856 switch (size)
10857 {
10858 case 8: return N_8;
10859 case 16: return N_16;
10860 case 32: return N_32;
10861 case 64: return N_64;
10862 default: ;
10863 }
10864 break;
10865
10866 case NT_integer:
10867 switch (size)
10868 {
10869 case 8: return N_I8;
10870 case 16: return N_I16;
10871 case 32: return N_I32;
10872 case 64: return N_I64;
10873 default: ;
10874 }
10875 break;
10876
10877 case NT_float:
037e8744
JB
10878 switch (size)
10879 {
10880 case 32: return N_F32;
10881 case 64: return N_F64;
10882 default: ;
10883 }
5287ad62
JB
10884 break;
10885
10886 case NT_poly:
10887 switch (size)
10888 {
10889 case 8: return N_P8;
10890 case 16: return N_P16;
10891 default: ;
10892 }
10893 break;
10894
10895 case NT_signed:
10896 switch (size)
10897 {
10898 case 8: return N_S8;
10899 case 16: return N_S16;
10900 case 32: return N_S32;
10901 case 64: return N_S64;
10902 default: ;
10903 }
10904 break;
10905
10906 case NT_unsigned:
10907 switch (size)
10908 {
10909 case 8: return N_U8;
10910 case 16: return N_U16;
10911 case 32: return N_U32;
10912 case 64: return N_U64;
10913 default: ;
10914 }
10915 break;
10916
10917 default: ;
10918 }
10919
10920 return N_UTYP;
10921}
10922
10923/* Convert compact Neon bitmask type representation to a type and size. Only
10924 handles the case where a single bit is set in the mask. */
10925
dcbf9037 10926static int
5287ad62
JB
10927el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10928 enum neon_type_mask mask)
10929{
dcbf9037
JB
10930 if ((mask & N_EQK) != 0)
10931 return FAIL;
10932
5287ad62
JB
10933 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10934 *size = 8;
dcbf9037 10935 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 10936 *size = 16;
dcbf9037 10937 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 10938 *size = 32;
037e8744 10939 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 10940 *size = 64;
dcbf9037
JB
10941 else
10942 return FAIL;
10943
5287ad62
JB
10944 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10945 *type = NT_signed;
dcbf9037 10946 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 10947 *type = NT_unsigned;
dcbf9037 10948 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 10949 *type = NT_integer;
dcbf9037 10950 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 10951 *type = NT_untyped;
dcbf9037 10952 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 10953 *type = NT_poly;
037e8744 10954 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 10955 *type = NT_float;
dcbf9037
JB
10956 else
10957 return FAIL;
10958
10959 return SUCCESS;
5287ad62
JB
10960}
10961
10962/* Modify a bitmask of allowed types. This is only needed for type
10963 relaxation. */
10964
10965static unsigned
10966modify_types_allowed (unsigned allowed, unsigned mods)
10967{
10968 unsigned size;
10969 enum neon_el_type type;
10970 unsigned destmask;
10971 int i;
10972
10973 destmask = 0;
10974
10975 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10976 {
dcbf9037
JB
10977 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10978 {
10979 neon_modify_type_size (mods, &type, &size);
10980 destmask |= type_chk_of_el_type (type, size);
10981 }
5287ad62
JB
10982 }
10983
10984 return destmask;
10985}
10986
10987/* Check type and return type classification.
10988 The manual states (paraphrase): If one datatype is given, it indicates the
10989 type given in:
10990 - the second operand, if there is one
10991 - the operand, if there is no second operand
10992 - the result, if there are no operands.
10993 This isn't quite good enough though, so we use a concept of a "key" datatype
10994 which is set on a per-instruction basis, which is the one which matters when
10995 only one data type is written.
10996 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 10997 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
10998
10999static struct neon_type_el
11000neon_check_type (unsigned els, enum neon_shape ns, ...)
11001{
11002 va_list ap;
11003 unsigned i, pass, key_el = 0;
11004 unsigned types[NEON_MAX_TYPE_ELS];
11005 enum neon_el_type k_type = NT_invtype;
11006 unsigned k_size = -1u;
11007 struct neon_type_el badtype = {NT_invtype, -1};
11008 unsigned key_allowed = 0;
11009
11010 /* Optional registers in Neon instructions are always (not) in operand 1.
11011 Fill in the missing operand here, if it was omitted. */
11012 if (els > 1 && !inst.operands[1].present)
11013 inst.operands[1] = inst.operands[0];
11014
11015 /* Suck up all the varargs. */
11016 va_start (ap, ns);
11017 for (i = 0; i < els; i++)
11018 {
11019 unsigned thisarg = va_arg (ap, unsigned);
11020 if (thisarg == N_IGNORE_TYPE)
11021 {
11022 va_end (ap);
11023 return badtype;
11024 }
11025 types[i] = thisarg;
11026 if ((thisarg & N_KEY) != 0)
11027 key_el = i;
11028 }
11029 va_end (ap);
11030
dcbf9037
JB
11031 if (inst.vectype.elems > 0)
11032 for (i = 0; i < els; i++)
11033 if (inst.operands[i].vectype.type != NT_invtype)
11034 {
11035 first_error (_("types specified in both the mnemonic and operands"));
11036 return badtype;
11037 }
11038
5287ad62
JB
11039 /* Duplicate inst.vectype elements here as necessary.
11040 FIXME: No idea if this is exactly the same as the ARM assembler,
11041 particularly when an insn takes one register and one non-register
11042 operand. */
11043 if (inst.vectype.elems == 1 && els > 1)
11044 {
11045 unsigned j;
11046 inst.vectype.elems = els;
11047 inst.vectype.el[key_el] = inst.vectype.el[0];
11048 for (j = 0; j < els; j++)
dcbf9037
JB
11049 if (j != key_el)
11050 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11051 types[j]);
11052 }
11053 else if (inst.vectype.elems == 0 && els > 0)
11054 {
11055 unsigned j;
11056 /* No types were given after the mnemonic, so look for types specified
11057 after each operand. We allow some flexibility here; as long as the
11058 "key" operand has a type, we can infer the others. */
11059 for (j = 0; j < els; j++)
11060 if (inst.operands[j].vectype.type != NT_invtype)
11061 inst.vectype.el[j] = inst.operands[j].vectype;
11062
11063 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11064 {
dcbf9037
JB
11065 for (j = 0; j < els; j++)
11066 if (inst.operands[j].vectype.type == NT_invtype)
11067 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11068 types[j]);
11069 }
11070 else
11071 {
11072 first_error (_("operand types can't be inferred"));
11073 return badtype;
5287ad62
JB
11074 }
11075 }
11076 else if (inst.vectype.elems != els)
11077 {
dcbf9037 11078 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
11079 return badtype;
11080 }
11081
11082 for (pass = 0; pass < 2; pass++)
11083 {
11084 for (i = 0; i < els; i++)
11085 {
11086 unsigned thisarg = types[i];
11087 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11088 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11089 enum neon_el_type g_type = inst.vectype.el[i].type;
11090 unsigned g_size = inst.vectype.el[i].size;
11091
11092 /* Decay more-specific signed & unsigned types to sign-insensitive
11093 integer types if sign-specific variants are unavailable. */
11094 if ((g_type == NT_signed || g_type == NT_unsigned)
11095 && (types_allowed & N_SU_ALL) == 0)
11096 g_type = NT_integer;
11097
11098 /* If only untyped args are allowed, decay any more specific types to
11099 them. Some instructions only care about signs for some element
11100 sizes, so handle that properly. */
11101 if ((g_size == 8 && (types_allowed & N_8) != 0)
11102 || (g_size == 16 && (types_allowed & N_16) != 0)
11103 || (g_size == 32 && (types_allowed & N_32) != 0)
11104 || (g_size == 64 && (types_allowed & N_64) != 0))
11105 g_type = NT_untyped;
11106
11107 if (pass == 0)
11108 {
11109 if ((thisarg & N_KEY) != 0)
11110 {
11111 k_type = g_type;
11112 k_size = g_size;
11113 key_allowed = thisarg & ~N_KEY;
11114 }
11115 }
11116 else
11117 {
037e8744
JB
11118 if ((thisarg & N_VFP) != 0)
11119 {
11120 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11121 unsigned regwidth = neon_shape_el_size[regshape], match;
11122
11123 /* In VFP mode, operands must match register widths. If we
11124 have a key operand, use its width, else use the width of
11125 the current operand. */
11126 if (k_size != -1u)
11127 match = k_size;
11128 else
11129 match = g_size;
11130
11131 if (regwidth != match)
11132 {
11133 first_error (_("operand size must match register width"));
11134 return badtype;
11135 }
11136 }
11137
5287ad62
JB
11138 if ((thisarg & N_EQK) == 0)
11139 {
11140 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11141
11142 if ((given_type & types_allowed) == 0)
11143 {
dcbf9037 11144 first_error (_("bad type in Neon instruction"));
5287ad62
JB
11145 return badtype;
11146 }
11147 }
11148 else
11149 {
11150 enum neon_el_type mod_k_type = k_type;
11151 unsigned mod_k_size = k_size;
11152 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11153 if (g_type != mod_k_type || g_size != mod_k_size)
11154 {
dcbf9037 11155 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
11156 return badtype;
11157 }
11158 }
11159 }
11160 }
11161 }
11162
11163 return inst.vectype.el[key_el];
11164}
11165
037e8744 11166/* Neon-style VFP instruction forwarding. */
5287ad62 11167
037e8744
JB
11168/* Thumb VFP instructions have 0xE in the condition field. */
11169
11170static void
11171do_vfp_cond_or_thumb (void)
5287ad62
JB
11172{
11173 if (thumb_mode)
037e8744 11174 inst.instruction |= 0xe0000000;
5287ad62 11175 else
037e8744 11176 inst.instruction |= inst.cond << 28;
5287ad62
JB
11177}
11178
037e8744
JB
11179/* Look up and encode a simple mnemonic, for use as a helper function for the
11180 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11181 etc. It is assumed that operand parsing has already been done, and that the
11182 operands are in the form expected by the given opcode (this isn't necessarily
11183 the same as the form in which they were parsed, hence some massaging must
11184 take place before this function is called).
11185 Checks current arch version against that in the looked-up opcode. */
5287ad62 11186
037e8744
JB
11187static void
11188do_vfp_nsyn_opcode (const char *opname)
5287ad62 11189{
037e8744
JB
11190 const struct asm_opcode *opcode;
11191
11192 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11193
037e8744
JB
11194 if (!opcode)
11195 abort ();
5287ad62 11196
037e8744
JB
11197 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11198 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11199 _(BAD_FPU));
5287ad62 11200
037e8744
JB
11201 if (thumb_mode)
11202 {
11203 inst.instruction = opcode->tvalue;
11204 opcode->tencode ();
11205 }
11206 else
11207 {
11208 inst.instruction = (inst.cond << 28) | opcode->avalue;
11209 opcode->aencode ();
11210 }
11211}
5287ad62
JB
11212
11213static void
037e8744 11214do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11215{
037e8744
JB
11216 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11217
11218 if (rs == NS_FFF)
11219 {
11220 if (is_add)
11221 do_vfp_nsyn_opcode ("fadds");
11222 else
11223 do_vfp_nsyn_opcode ("fsubs");
11224 }
11225 else
11226 {
11227 if (is_add)
11228 do_vfp_nsyn_opcode ("faddd");
11229 else
11230 do_vfp_nsyn_opcode ("fsubd");
11231 }
11232}
11233
11234/* Check operand types to see if this is a VFP instruction, and if so call
11235 PFN (). */
11236
11237static int
11238try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11239{
11240 enum neon_shape rs;
11241 struct neon_type_el et;
11242
11243 switch (args)
11244 {
11245 case 2:
11246 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11247 et = neon_check_type (2, rs,
11248 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11249 break;
11250
11251 case 3:
11252 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11253 et = neon_check_type (3, rs,
11254 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11255 break;
11256
11257 default:
11258 abort ();
11259 }
11260
11261 if (et.type != NT_invtype)
11262 {
11263 pfn (rs);
11264 return SUCCESS;
11265 }
11266 else
11267 inst.error = NULL;
11268
11269 return FAIL;
11270}
11271
11272static void
11273do_vfp_nsyn_mla_mls (enum neon_shape rs)
11274{
11275 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11276
11277 if (rs == NS_FFF)
11278 {
11279 if (is_mla)
11280 do_vfp_nsyn_opcode ("fmacs");
11281 else
11282 do_vfp_nsyn_opcode ("fmscs");
11283 }
11284 else
11285 {
11286 if (is_mla)
11287 do_vfp_nsyn_opcode ("fmacd");
11288 else
11289 do_vfp_nsyn_opcode ("fmscd");
11290 }
11291}
11292
11293static void
11294do_vfp_nsyn_mul (enum neon_shape rs)
11295{
11296 if (rs == NS_FFF)
11297 do_vfp_nsyn_opcode ("fmuls");
11298 else
11299 do_vfp_nsyn_opcode ("fmuld");
11300}
11301
11302static void
11303do_vfp_nsyn_abs_neg (enum neon_shape rs)
11304{
11305 int is_neg = (inst.instruction & 0x80) != 0;
11306 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11307
11308 if (rs == NS_FF)
11309 {
11310 if (is_neg)
11311 do_vfp_nsyn_opcode ("fnegs");
11312 else
11313 do_vfp_nsyn_opcode ("fabss");
11314 }
11315 else
11316 {
11317 if (is_neg)
11318 do_vfp_nsyn_opcode ("fnegd");
11319 else
11320 do_vfp_nsyn_opcode ("fabsd");
11321 }
11322}
11323
11324/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11325 insns belong to Neon, and are handled elsewhere. */
11326
11327static void
11328do_vfp_nsyn_ldm_stm (int is_dbmode)
11329{
11330 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11331 if (is_ldm)
11332 {
11333 if (is_dbmode)
11334 do_vfp_nsyn_opcode ("fldmdbs");
11335 else
11336 do_vfp_nsyn_opcode ("fldmias");
11337 }
11338 else
11339 {
11340 if (is_dbmode)
11341 do_vfp_nsyn_opcode ("fstmdbs");
11342 else
11343 do_vfp_nsyn_opcode ("fstmias");
11344 }
11345}
11346
037e8744
JB
11347static void
11348do_vfp_nsyn_sqrt (void)
11349{
11350 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11351 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11352
11353 if (rs == NS_FF)
11354 do_vfp_nsyn_opcode ("fsqrts");
11355 else
11356 do_vfp_nsyn_opcode ("fsqrtd");
11357}
11358
11359static void
11360do_vfp_nsyn_div (void)
11361{
11362 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11363 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11364 N_F32 | N_F64 | N_KEY | N_VFP);
11365
11366 if (rs == NS_FFF)
11367 do_vfp_nsyn_opcode ("fdivs");
11368 else
11369 do_vfp_nsyn_opcode ("fdivd");
11370}
11371
11372static void
11373do_vfp_nsyn_nmul (void)
11374{
11375 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11376 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11377 N_F32 | N_F64 | N_KEY | N_VFP);
11378
11379 if (rs == NS_FFF)
11380 {
11381 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11382 do_vfp_sp_dyadic ();
11383 }
11384 else
11385 {
11386 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11387 do_vfp_dp_rd_rn_rm ();
11388 }
11389 do_vfp_cond_or_thumb ();
11390}
11391
11392static void
11393do_vfp_nsyn_cmp (void)
11394{
11395 if (inst.operands[1].isreg)
11396 {
11397 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11398 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11399
11400 if (rs == NS_FF)
11401 {
11402 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11403 do_vfp_sp_monadic ();
11404 }
11405 else
11406 {
11407 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11408 do_vfp_dp_rd_rm ();
11409 }
11410 }
11411 else
11412 {
11413 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11414 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11415
11416 switch (inst.instruction & 0x0fffffff)
11417 {
11418 case N_MNEM_vcmp:
11419 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11420 break;
11421 case N_MNEM_vcmpe:
11422 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11423 break;
11424 default:
11425 abort ();
11426 }
11427
11428 if (rs == NS_FI)
11429 {
11430 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11431 do_vfp_sp_compare_z ();
11432 }
11433 else
11434 {
11435 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11436 do_vfp_dp_rd ();
11437 }
11438 }
11439 do_vfp_cond_or_thumb ();
11440}
11441
11442static void
11443nsyn_insert_sp (void)
11444{
11445 inst.operands[1] = inst.operands[0];
11446 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11447 inst.operands[0].reg = 13;
11448 inst.operands[0].isreg = 1;
11449 inst.operands[0].writeback = 1;
11450 inst.operands[0].present = 1;
11451}
11452
11453static void
11454do_vfp_nsyn_push (void)
11455{
11456 nsyn_insert_sp ();
11457 if (inst.operands[1].issingle)
11458 do_vfp_nsyn_opcode ("fstmdbs");
11459 else
11460 do_vfp_nsyn_opcode ("fstmdbd");
11461}
11462
11463static void
11464do_vfp_nsyn_pop (void)
11465{
11466 nsyn_insert_sp ();
11467 if (inst.operands[1].issingle)
22b5b651 11468 do_vfp_nsyn_opcode ("fldmias");
037e8744 11469 else
22b5b651 11470 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11471}
11472
11473/* Fix up Neon data-processing instructions, ORing in the correct bits for
11474 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11475
11476static unsigned
11477neon_dp_fixup (unsigned i)
11478{
11479 if (thumb_mode)
11480 {
11481 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11482 if (i & (1 << 24))
11483 i |= 1 << 28;
11484
11485 i &= ~(1 << 24);
11486
11487 i |= 0xef000000;
11488 }
11489 else
11490 i |= 0xf2000000;
11491
11492 return i;
11493}
11494
11495/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11496 (0, 1, 2, 3). */
11497
11498static unsigned
11499neon_logbits (unsigned x)
11500{
11501 return ffs (x) - 4;
11502}
11503
11504#define LOW4(R) ((R) & 0xf)
11505#define HI1(R) (((R) >> 4) & 1)
11506
11507/* Encode insns with bit pattern:
11508
11509 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11510 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11511
11512 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11513 different meaning for some instruction. */
11514
11515static void
11516neon_three_same (int isquad, int ubit, int size)
11517{
11518 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11519 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11520 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11521 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11522 inst.instruction |= LOW4 (inst.operands[2].reg);
11523 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11524 inst.instruction |= (isquad != 0) << 6;
11525 inst.instruction |= (ubit != 0) << 24;
11526 if (size != -1)
11527 inst.instruction |= neon_logbits (size) << 20;
11528
11529 inst.instruction = neon_dp_fixup (inst.instruction);
11530}
11531
11532/* Encode instructions of the form:
11533
11534 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11535 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11536
11537 Don't write size if SIZE == -1. */
11538
11539static void
11540neon_two_same (int qbit, int ubit, int size)
11541{
11542 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11543 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11544 inst.instruction |= LOW4 (inst.operands[1].reg);
11545 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11546 inst.instruction |= (qbit != 0) << 6;
11547 inst.instruction |= (ubit != 0) << 24;
11548
11549 if (size != -1)
11550 inst.instruction |= neon_logbits (size) << 18;
11551
11552 inst.instruction = neon_dp_fixup (inst.instruction);
11553}
11554
11555/* Neon instruction encoders, in approximate order of appearance. */
11556
11557static void
11558do_neon_dyadic_i_su (void)
11559{
037e8744 11560 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11561 struct neon_type_el et = neon_check_type (3, rs,
11562 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 11563 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11564}
11565
11566static void
11567do_neon_dyadic_i64_su (void)
11568{
037e8744 11569 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11570 struct neon_type_el et = neon_check_type (3, rs,
11571 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 11572 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11573}
11574
11575static void
11576neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11577 unsigned immbits)
11578{
11579 unsigned size = et.size >> 3;
11580 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11581 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11582 inst.instruction |= LOW4 (inst.operands[1].reg);
11583 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11584 inst.instruction |= (isquad != 0) << 6;
11585 inst.instruction |= immbits << 16;
11586 inst.instruction |= (size >> 3) << 7;
11587 inst.instruction |= (size & 0x7) << 19;
11588 if (write_ubit)
11589 inst.instruction |= (uval != 0) << 24;
11590
11591 inst.instruction = neon_dp_fixup (inst.instruction);
11592}
11593
11594static void
11595do_neon_shl_imm (void)
11596{
11597 if (!inst.operands[2].isreg)
11598 {
037e8744 11599 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11600 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11601 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11602 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
11603 }
11604 else
11605 {
037e8744 11606 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11607 struct neon_type_el et = neon_check_type (3, rs,
11608 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11609 unsigned int tmp;
11610
11611 /* VSHL/VQSHL 3-register variants have syntax such as:
11612 vshl.xx Dd, Dm, Dn
11613 whereas other 3-register operations encoded by neon_three_same have
11614 syntax like:
11615 vadd.xx Dd, Dn, Dm
11616 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11617 here. */
11618 tmp = inst.operands[2].reg;
11619 inst.operands[2].reg = inst.operands[1].reg;
11620 inst.operands[1].reg = tmp;
5287ad62 11621 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11622 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11623 }
11624}
11625
11626static void
11627do_neon_qshl_imm (void)
11628{
11629 if (!inst.operands[2].isreg)
11630 {
037e8744 11631 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 11632 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 11633
5287ad62 11634 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11635 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
11636 inst.operands[2].imm);
11637 }
11638 else
11639 {
037e8744 11640 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11641 struct neon_type_el et = neon_check_type (3, rs,
11642 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11643 unsigned int tmp;
11644
11645 /* See note in do_neon_shl_imm. */
11646 tmp = inst.operands[2].reg;
11647 inst.operands[2].reg = inst.operands[1].reg;
11648 inst.operands[1].reg = tmp;
5287ad62 11649 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11650 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11651 }
11652}
11653
627907b7
JB
11654static void
11655do_neon_rshl (void)
11656{
11657 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11658 struct neon_type_el et = neon_check_type (3, rs,
11659 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11660 unsigned int tmp;
11661
11662 tmp = inst.operands[2].reg;
11663 inst.operands[2].reg = inst.operands[1].reg;
11664 inst.operands[1].reg = tmp;
11665 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11666}
11667
5287ad62
JB
11668static int
11669neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11670{
036dc3f7
PB
11671 /* Handle .I8 pseudo-instructions. */
11672 if (size == 8)
5287ad62 11673 {
5287ad62
JB
11674 /* Unfortunately, this will make everything apart from zero out-of-range.
11675 FIXME is this the intended semantics? There doesn't seem much point in
11676 accepting .I8 if so. */
11677 immediate |= immediate << 8;
11678 size = 16;
036dc3f7
PB
11679 }
11680
11681 if (size >= 32)
11682 {
11683 if (immediate == (immediate & 0x000000ff))
11684 {
11685 *immbits = immediate;
11686 return 0x1;
11687 }
11688 else if (immediate == (immediate & 0x0000ff00))
11689 {
11690 *immbits = immediate >> 8;
11691 return 0x3;
11692 }
11693 else if (immediate == (immediate & 0x00ff0000))
11694 {
11695 *immbits = immediate >> 16;
11696 return 0x5;
11697 }
11698 else if (immediate == (immediate & 0xff000000))
11699 {
11700 *immbits = immediate >> 24;
11701 return 0x7;
11702 }
11703 if ((immediate & 0xffff) != (immediate >> 16))
11704 goto bad_immediate;
11705 immediate &= 0xffff;
5287ad62
JB
11706 }
11707
11708 if (immediate == (immediate & 0x000000ff))
11709 {
11710 *immbits = immediate;
036dc3f7 11711 return 0x9;
5287ad62
JB
11712 }
11713 else if (immediate == (immediate & 0x0000ff00))
11714 {
11715 *immbits = immediate >> 8;
036dc3f7 11716 return 0xb;
5287ad62
JB
11717 }
11718
11719 bad_immediate:
dcbf9037 11720 first_error (_("immediate value out of range"));
5287ad62
JB
11721 return FAIL;
11722}
11723
11724/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11725 A, B, C, D. */
11726
11727static int
11728neon_bits_same_in_bytes (unsigned imm)
11729{
11730 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11731 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11732 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11733 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11734}
11735
11736/* For immediate of above form, return 0bABCD. */
11737
11738static unsigned
11739neon_squash_bits (unsigned imm)
11740{
11741 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11742 | ((imm & 0x01000000) >> 21);
11743}
11744
136da414 11745/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
11746
11747static unsigned
11748neon_qfloat_bits (unsigned imm)
11749{
136da414 11750 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
11751}
11752
11753/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11754 the instruction. *OP is passed as the initial value of the op field, and
11755 may be set to a different value depending on the constant (i.e.
11756 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
036dc3f7
PB
11757 MVN). If the immediate looks like a repeated parttern then also
11758 try smaller element sizes. */
5287ad62
JB
11759
11760static int
c96612cc
JB
11761neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11762 unsigned *immbits, int *op, int size,
11763 enum neon_el_type type)
5287ad62 11764{
c96612cc
JB
11765 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11766 float. */
11767 if (type == NT_float && !float_p)
11768 return FAIL;
11769
136da414
JB
11770 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11771 {
11772 if (size != 32 || *op == 1)
11773 return FAIL;
11774 *immbits = neon_qfloat_bits (immlo);
11775 return 0xf;
11776 }
036dc3f7
PB
11777
11778 if (size == 64)
5287ad62 11779 {
036dc3f7
PB
11780 if (neon_bits_same_in_bytes (immhi)
11781 && neon_bits_same_in_bytes (immlo))
11782 {
11783 if (*op == 1)
11784 return FAIL;
11785 *immbits = (neon_squash_bits (immhi) << 4)
11786 | neon_squash_bits (immlo);
11787 *op = 1;
11788 return 0xe;
11789 }
11790
11791 if (immhi != immlo)
11792 return FAIL;
5287ad62 11793 }
036dc3f7
PB
11794
11795 if (size >= 32)
5287ad62 11796 {
036dc3f7
PB
11797 if (immlo == (immlo & 0x000000ff))
11798 {
11799 *immbits = immlo;
11800 return 0x0;
11801 }
11802 else if (immlo == (immlo & 0x0000ff00))
11803 {
11804 *immbits = immlo >> 8;
11805 return 0x2;
11806 }
11807 else if (immlo == (immlo & 0x00ff0000))
11808 {
11809 *immbits = immlo >> 16;
11810 return 0x4;
11811 }
11812 else if (immlo == (immlo & 0xff000000))
11813 {
11814 *immbits = immlo >> 24;
11815 return 0x6;
11816 }
11817 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11818 {
11819 *immbits = (immlo >> 8) & 0xff;
11820 return 0xc;
11821 }
11822 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11823 {
11824 *immbits = (immlo >> 16) & 0xff;
11825 return 0xd;
11826 }
11827
11828 if ((immlo & 0xffff) != (immlo >> 16))
11829 return FAIL;
11830 immlo &= 0xffff;
5287ad62 11831 }
036dc3f7
PB
11832
11833 if (size >= 16)
5287ad62 11834 {
036dc3f7
PB
11835 if (immlo == (immlo & 0x000000ff))
11836 {
11837 *immbits = immlo;
11838 return 0x8;
11839 }
11840 else if (immlo == (immlo & 0x0000ff00))
11841 {
11842 *immbits = immlo >> 8;
11843 return 0xa;
11844 }
11845
11846 if ((immlo & 0xff) != (immlo >> 8))
11847 return FAIL;
11848 immlo &= 0xff;
5287ad62 11849 }
036dc3f7
PB
11850
11851 if (immlo == (immlo & 0x000000ff))
5287ad62 11852 {
036dc3f7
PB
11853 /* Don't allow MVN with 8-bit immediate. */
11854 if (*op == 1)
11855 return FAIL;
11856 *immbits = immlo;
11857 return 0xe;
5287ad62 11858 }
5287ad62
JB
11859
11860 return FAIL;
11861}
11862
11863/* Write immediate bits [7:0] to the following locations:
11864
11865 |28/24|23 19|18 16|15 4|3 0|
11866 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11867
11868 This function is used by VMOV/VMVN/VORR/VBIC. */
11869
11870static void
11871neon_write_immbits (unsigned immbits)
11872{
11873 inst.instruction |= immbits & 0xf;
11874 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11875 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11876}
11877
11878/* Invert low-order SIZE bits of XHI:XLO. */
11879
11880static void
11881neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11882{
11883 unsigned immlo = xlo ? *xlo : 0;
11884 unsigned immhi = xhi ? *xhi : 0;
11885
11886 switch (size)
11887 {
11888 case 8:
11889 immlo = (~immlo) & 0xff;
11890 break;
11891
11892 case 16:
11893 immlo = (~immlo) & 0xffff;
11894 break;
11895
11896 case 64:
11897 immhi = (~immhi) & 0xffffffff;
11898 /* fall through. */
11899
11900 case 32:
11901 immlo = (~immlo) & 0xffffffff;
11902 break;
11903
11904 default:
11905 abort ();
11906 }
11907
11908 if (xlo)
11909 *xlo = immlo;
11910
11911 if (xhi)
11912 *xhi = immhi;
11913}
11914
11915static void
11916do_neon_logic (void)
11917{
11918 if (inst.operands[2].present && inst.operands[2].isreg)
11919 {
037e8744 11920 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11921 neon_check_type (3, rs, N_IGNORE_TYPE);
11922 /* U bit and size field were set as part of the bitmask. */
11923 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11924 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11925 }
11926 else
11927 {
037e8744
JB
11928 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11929 struct neon_type_el et = neon_check_type (2, rs,
11930 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
11931 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11932 unsigned immbits;
11933 int cmode;
11934
11935 if (et.type == NT_invtype)
11936 return;
11937
11938 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11939
036dc3f7
PB
11940 immbits = inst.operands[1].imm;
11941 if (et.size == 64)
11942 {
11943 /* .i64 is a pseudo-op, so the immediate must be a repeating
11944 pattern. */
11945 if (immbits != (inst.operands[1].regisimm ?
11946 inst.operands[1].reg : 0))
11947 {
11948 /* Set immbits to an invalid constant. */
11949 immbits = 0xdeadbeef;
11950 }
11951 }
11952
5287ad62
JB
11953 switch (opcode)
11954 {
11955 case N_MNEM_vbic:
036dc3f7 11956 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62
JB
11957 break;
11958
11959 case N_MNEM_vorr:
036dc3f7 11960 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62
JB
11961 break;
11962
11963 case N_MNEM_vand:
11964 /* Pseudo-instruction for VBIC. */
5287ad62
JB
11965 neon_invert_size (&immbits, 0, et.size);
11966 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11967 break;
11968
11969 case N_MNEM_vorn:
11970 /* Pseudo-instruction for VORR. */
5287ad62
JB
11971 neon_invert_size (&immbits, 0, et.size);
11972 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11973 break;
11974
11975 default:
11976 abort ();
11977 }
11978
11979 if (cmode == FAIL)
11980 return;
11981
037e8744 11982 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11983 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11984 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11985 inst.instruction |= cmode << 8;
11986 neon_write_immbits (immbits);
11987
11988 inst.instruction = neon_dp_fixup (inst.instruction);
11989 }
11990}
11991
11992static void
11993do_neon_bitfield (void)
11994{
037e8744 11995 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 11996 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 11997 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11998}
11999
12000static void
dcbf9037
JB
12001neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12002 unsigned destbits)
5287ad62 12003{
037e8744 12004 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12005 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12006 types | N_KEY);
5287ad62
JB
12007 if (et.type == NT_float)
12008 {
12009 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12010 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12011 }
12012 else
12013 {
12014 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12015 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12016 }
12017}
12018
12019static void
12020do_neon_dyadic_if_su (void)
12021{
dcbf9037 12022 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12023}
12024
12025static void
12026do_neon_dyadic_if_su_d (void)
12027{
12028 /* This version only allow D registers, but that constraint is enforced during
12029 operand parsing so we don't need to do anything extra here. */
dcbf9037 12030 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12031}
12032
5287ad62
JB
12033static void
12034do_neon_dyadic_if_i_d (void)
12035{
428e3f1f
PB
12036 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12037 affected if we specify unsigned args. */
12038 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12039}
12040
037e8744
JB
12041enum vfp_or_neon_is_neon_bits
12042{
12043 NEON_CHECK_CC = 1,
12044 NEON_CHECK_ARCH = 2
12045};
12046
12047/* Call this function if an instruction which may have belonged to the VFP or
12048 Neon instruction sets, but turned out to be a Neon instruction (due to the
12049 operand types involved, etc.). We have to check and/or fix-up a couple of
12050 things:
12051
12052 - Make sure the user hasn't attempted to make a Neon instruction
12053 conditional.
12054 - Alter the value in the condition code field if necessary.
12055 - Make sure that the arch supports Neon instructions.
12056
12057 Which of these operations take place depends on bits from enum
12058 vfp_or_neon_is_neon_bits.
12059
12060 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12061 current instruction's condition is COND_ALWAYS, the condition field is
12062 changed to inst.uncond_value. This is necessary because instructions shared
12063 between VFP and Neon may be conditional for the VFP variants only, and the
12064 unconditional Neon version must have, e.g., 0xF in the condition field. */
12065
12066static int
12067vfp_or_neon_is_neon (unsigned check)
12068{
12069 /* Conditions are always legal in Thumb mode (IT blocks). */
12070 if (!thumb_mode && (check & NEON_CHECK_CC))
12071 {
12072 if (inst.cond != COND_ALWAYS)
12073 {
12074 first_error (_(BAD_COND));
12075 return FAIL;
12076 }
12077 if (inst.uncond_value != -1)
12078 inst.instruction |= inst.uncond_value << 28;
12079 }
12080
12081 if ((check & NEON_CHECK_ARCH)
12082 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12083 {
12084 first_error (_(BAD_FPU));
12085 return FAIL;
12086 }
12087
12088 return SUCCESS;
12089}
12090
5287ad62
JB
12091static void
12092do_neon_addsub_if_i (void)
12093{
037e8744
JB
12094 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12095 return;
12096
12097 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12098 return;
12099
5287ad62
JB
12100 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12101 affected if we specify unsigned args. */
dcbf9037 12102 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
12103}
12104
12105/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12106 result to be:
12107 V<op> A,B (A is operand 0, B is operand 2)
12108 to mean:
12109 V<op> A,B,A
12110 not:
12111 V<op> A,B,B
12112 so handle that case specially. */
12113
12114static void
12115neon_exchange_operands (void)
12116{
12117 void *scratch = alloca (sizeof (inst.operands[0]));
12118 if (inst.operands[1].present)
12119 {
12120 /* Swap operands[1] and operands[2]. */
12121 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12122 inst.operands[1] = inst.operands[2];
12123 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12124 }
12125 else
12126 {
12127 inst.operands[1] = inst.operands[2];
12128 inst.operands[2] = inst.operands[0];
12129 }
12130}
12131
12132static void
12133neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12134{
12135 if (inst.operands[2].isreg)
12136 {
12137 if (invert)
12138 neon_exchange_operands ();
dcbf9037 12139 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
12140 }
12141 else
12142 {
037e8744 12143 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
12144 struct neon_type_el et = neon_check_type (2, rs,
12145 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
12146
12147 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12148 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12149 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12150 inst.instruction |= LOW4 (inst.operands[1].reg);
12151 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12152 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12153 inst.instruction |= (et.type == NT_float) << 10;
12154 inst.instruction |= neon_logbits (et.size) << 18;
12155
12156 inst.instruction = neon_dp_fixup (inst.instruction);
12157 }
12158}
12159
12160static void
12161do_neon_cmp (void)
12162{
12163 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12164}
12165
12166static void
12167do_neon_cmp_inv (void)
12168{
12169 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12170}
12171
12172static void
12173do_neon_ceq (void)
12174{
12175 neon_compare (N_IF_32, N_IF_32, FALSE);
12176}
12177
12178/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12179 scalars, which are encoded in 5 bits, M : Rm.
12180 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12181 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12182 index in M. */
12183
12184static unsigned
12185neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12186{
dcbf9037
JB
12187 unsigned regno = NEON_SCALAR_REG (scalar);
12188 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12189
12190 switch (elsize)
12191 {
12192 case 16:
12193 if (regno > 7 || elno > 3)
12194 goto bad_scalar;
12195 return regno | (elno << 3);
12196
12197 case 32:
12198 if (regno > 15 || elno > 1)
12199 goto bad_scalar;
12200 return regno | (elno << 4);
12201
12202 default:
12203 bad_scalar:
dcbf9037 12204 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12205 }
12206
12207 return 0;
12208}
12209
12210/* Encode multiply / multiply-accumulate scalar instructions. */
12211
12212static void
12213neon_mul_mac (struct neon_type_el et, int ubit)
12214{
dcbf9037
JB
12215 unsigned scalar;
12216
12217 /* Give a more helpful error message if we have an invalid type. */
12218 if (et.type == NT_invtype)
12219 return;
12220
12221 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12222 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12223 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12224 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12225 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12226 inst.instruction |= LOW4 (scalar);
12227 inst.instruction |= HI1 (scalar) << 5;
12228 inst.instruction |= (et.type == NT_float) << 8;
12229 inst.instruction |= neon_logbits (et.size) << 20;
12230 inst.instruction |= (ubit != 0) << 24;
12231
12232 inst.instruction = neon_dp_fixup (inst.instruction);
12233}
12234
12235static void
12236do_neon_mac_maybe_scalar (void)
12237{
037e8744
JB
12238 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12239 return;
12240
12241 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12242 return;
12243
5287ad62
JB
12244 if (inst.operands[2].isscalar)
12245 {
037e8744 12246 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12247 struct neon_type_el et = neon_check_type (3, rs,
12248 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12249 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12250 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12251 }
12252 else
428e3f1f
PB
12253 {
12254 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12255 affected if we specify unsigned args. */
12256 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12257 }
5287ad62
JB
12258}
12259
12260static void
12261do_neon_tst (void)
12262{
037e8744 12263 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12264 struct neon_type_el et = neon_check_type (3, rs,
12265 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12266 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12267}
12268
12269/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12270 same types as the MAC equivalents. The polynomial type for this instruction
12271 is encoded the same as the integer type. */
12272
12273static void
12274do_neon_mul (void)
12275{
037e8744
JB
12276 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12277 return;
12278
12279 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12280 return;
12281
5287ad62
JB
12282 if (inst.operands[2].isscalar)
12283 do_neon_mac_maybe_scalar ();
12284 else
dcbf9037 12285 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12286}
12287
12288static void
12289do_neon_qdmulh (void)
12290{
12291 if (inst.operands[2].isscalar)
12292 {
037e8744 12293 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12294 struct neon_type_el et = neon_check_type (3, rs,
12295 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12296 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12297 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12298 }
12299 else
12300 {
037e8744 12301 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12302 struct neon_type_el et = neon_check_type (3, rs,
12303 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12304 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12305 /* The U bit (rounding) comes from bit mask. */
037e8744 12306 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12307 }
12308}
12309
12310static void
12311do_neon_fcmp_absolute (void)
12312{
037e8744 12313 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12314 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12315 /* Size field comes from bit mask. */
037e8744 12316 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12317}
12318
12319static void
12320do_neon_fcmp_absolute_inv (void)
12321{
12322 neon_exchange_operands ();
12323 do_neon_fcmp_absolute ();
12324}
12325
12326static void
12327do_neon_step (void)
12328{
037e8744 12329 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12330 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12331 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12332}
12333
12334static void
12335do_neon_abs_neg (void)
12336{
037e8744
JB
12337 enum neon_shape rs;
12338 struct neon_type_el et;
12339
12340 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12341 return;
12342
12343 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12344 return;
12345
12346 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12347 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12348
5287ad62
JB
12349 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12350 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12351 inst.instruction |= LOW4 (inst.operands[1].reg);
12352 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12353 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12354 inst.instruction |= (et.type == NT_float) << 10;
12355 inst.instruction |= neon_logbits (et.size) << 18;
12356
12357 inst.instruction = neon_dp_fixup (inst.instruction);
12358}
12359
12360static void
12361do_neon_sli (void)
12362{
037e8744 12363 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12364 struct neon_type_el et = neon_check_type (2, rs,
12365 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12366 int imm = inst.operands[2].imm;
12367 constraint (imm < 0 || (unsigned)imm >= et.size,
12368 _("immediate out of range for insert"));
037e8744 12369 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12370}
12371
12372static void
12373do_neon_sri (void)
12374{
037e8744 12375 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12376 struct neon_type_el et = neon_check_type (2, rs,
12377 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12378 int imm = inst.operands[2].imm;
12379 constraint (imm < 1 || (unsigned)imm > et.size,
12380 _("immediate out of range for insert"));
037e8744 12381 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12382}
12383
12384static void
12385do_neon_qshlu_imm (void)
12386{
037e8744 12387 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12388 struct neon_type_el et = neon_check_type (2, rs,
12389 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12390 int imm = inst.operands[2].imm;
12391 constraint (imm < 0 || (unsigned)imm >= et.size,
12392 _("immediate out of range for shift"));
12393 /* Only encodes the 'U present' variant of the instruction.
12394 In this case, signed types have OP (bit 8) set to 0.
12395 Unsigned types have OP set to 1. */
12396 inst.instruction |= (et.type == NT_unsigned) << 8;
12397 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12398 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12399}
12400
12401static void
12402do_neon_qmovn (void)
12403{
12404 struct neon_type_el et = neon_check_type (2, NS_DQ,
12405 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12406 /* Saturating move where operands can be signed or unsigned, and the
12407 destination has the same signedness. */
12408 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12409 if (et.type == NT_unsigned)
12410 inst.instruction |= 0xc0;
12411 else
12412 inst.instruction |= 0x80;
12413 neon_two_same (0, 1, et.size / 2);
12414}
12415
12416static void
12417do_neon_qmovun (void)
12418{
12419 struct neon_type_el et = neon_check_type (2, NS_DQ,
12420 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12421 /* Saturating move with unsigned results. Operands must be signed. */
12422 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12423 neon_two_same (0, 1, et.size / 2);
12424}
12425
12426static void
12427do_neon_rshift_sat_narrow (void)
12428{
12429 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12430 or unsigned. If operands are unsigned, results must also be unsigned. */
12431 struct neon_type_el et = neon_check_type (2, NS_DQI,
12432 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12433 int imm = inst.operands[2].imm;
12434 /* This gets the bounds check, size encoding and immediate bits calculation
12435 right. */
12436 et.size /= 2;
12437
12438 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12439 VQMOVN.I<size> <Dd>, <Qm>. */
12440 if (imm == 0)
12441 {
12442 inst.operands[2].present = 0;
12443 inst.instruction = N_MNEM_vqmovn;
12444 do_neon_qmovn ();
12445 return;
12446 }
12447
12448 constraint (imm < 1 || (unsigned)imm > et.size,
12449 _("immediate out of range"));
12450 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12451}
12452
12453static void
12454do_neon_rshift_sat_narrow_u (void)
12455{
12456 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12457 or unsigned. If operands are unsigned, results must also be unsigned. */
12458 struct neon_type_el et = neon_check_type (2, NS_DQI,
12459 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12460 int imm = inst.operands[2].imm;
12461 /* This gets the bounds check, size encoding and immediate bits calculation
12462 right. */
12463 et.size /= 2;
12464
12465 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12466 VQMOVUN.I<size> <Dd>, <Qm>. */
12467 if (imm == 0)
12468 {
12469 inst.operands[2].present = 0;
12470 inst.instruction = N_MNEM_vqmovun;
12471 do_neon_qmovun ();
12472 return;
12473 }
12474
12475 constraint (imm < 1 || (unsigned)imm > et.size,
12476 _("immediate out of range"));
12477 /* FIXME: The manual is kind of unclear about what value U should have in
12478 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12479 must be 1. */
12480 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12481}
12482
12483static void
12484do_neon_movn (void)
12485{
12486 struct neon_type_el et = neon_check_type (2, NS_DQ,
12487 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12488 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12489 neon_two_same (0, 1, et.size / 2);
12490}
12491
12492static void
12493do_neon_rshift_narrow (void)
12494{
12495 struct neon_type_el et = neon_check_type (2, NS_DQI,
12496 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12497 int imm = inst.operands[2].imm;
12498 /* This gets the bounds check, size encoding and immediate bits calculation
12499 right. */
12500 et.size /= 2;
12501
12502 /* If immediate is zero then we are a pseudo-instruction for
12503 VMOVN.I<size> <Dd>, <Qm> */
12504 if (imm == 0)
12505 {
12506 inst.operands[2].present = 0;
12507 inst.instruction = N_MNEM_vmovn;
12508 do_neon_movn ();
12509 return;
12510 }
12511
12512 constraint (imm < 1 || (unsigned)imm > et.size,
12513 _("immediate out of range for narrowing operation"));
12514 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12515}
12516
12517static void
12518do_neon_shll (void)
12519{
12520 /* FIXME: Type checking when lengthening. */
12521 struct neon_type_el et = neon_check_type (2, NS_QDI,
12522 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12523 unsigned imm = inst.operands[2].imm;
12524
12525 if (imm == et.size)
12526 {
12527 /* Maximum shift variant. */
12528 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12529 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12530 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12531 inst.instruction |= LOW4 (inst.operands[1].reg);
12532 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12533 inst.instruction |= neon_logbits (et.size) << 18;
12534
12535 inst.instruction = neon_dp_fixup (inst.instruction);
12536 }
12537 else
12538 {
12539 /* A more-specific type check for non-max versions. */
12540 et = neon_check_type (2, NS_QDI,
12541 N_EQK | N_DBL, N_SU_32 | N_KEY);
12542 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12543 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12544 }
12545}
12546
037e8744 12547/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
12548 the current instruction is. */
12549
12550static int
12551neon_cvt_flavour (enum neon_shape rs)
12552{
037e8744
JB
12553#define CVT_VAR(C,X,Y) \
12554 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12555 if (et.type != NT_invtype) \
12556 { \
12557 inst.error = NULL; \
12558 return (C); \
5287ad62
JB
12559 }
12560 struct neon_type_el et;
037e8744
JB
12561 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12562 || rs == NS_FF) ? N_VFP : 0;
12563 /* The instruction versions which take an immediate take one register
12564 argument, which is extended to the width of the full register. Thus the
12565 "source" and "destination" registers must have the same width. Hack that
12566 here by making the size equal to the key (wider, in this case) operand. */
12567 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5287ad62
JB
12568
12569 CVT_VAR (0, N_S32, N_F32);
12570 CVT_VAR (1, N_U32, N_F32);
12571 CVT_VAR (2, N_F32, N_S32);
12572 CVT_VAR (3, N_F32, N_U32);
12573
037e8744
JB
12574 whole_reg = N_VFP;
12575
12576 /* VFP instructions. */
12577 CVT_VAR (4, N_F32, N_F64);
12578 CVT_VAR (5, N_F64, N_F32);
12579 CVT_VAR (6, N_S32, N_F64 | key);
12580 CVT_VAR (7, N_U32, N_F64 | key);
12581 CVT_VAR (8, N_F64 | key, N_S32);
12582 CVT_VAR (9, N_F64 | key, N_U32);
12583 /* VFP instructions with bitshift. */
12584 CVT_VAR (10, N_F32 | key, N_S16);
12585 CVT_VAR (11, N_F32 | key, N_U16);
12586 CVT_VAR (12, N_F64 | key, N_S16);
12587 CVT_VAR (13, N_F64 | key, N_U16);
12588 CVT_VAR (14, N_S16, N_F32 | key);
12589 CVT_VAR (15, N_U16, N_F32 | key);
12590 CVT_VAR (16, N_S16, N_F64 | key);
12591 CVT_VAR (17, N_U16, N_F64 | key);
12592
5287ad62
JB
12593 return -1;
12594#undef CVT_VAR
12595}
12596
037e8744
JB
12597/* Neon-syntax VFP conversions. */
12598
5287ad62 12599static void
037e8744 12600do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 12601{
037e8744
JB
12602 const char *opname = 0;
12603
12604 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 12605 {
037e8744
JB
12606 /* Conversions with immediate bitshift. */
12607 const char *enc[] =
12608 {
12609 "ftosls",
12610 "ftouls",
12611 "fsltos",
12612 "fultos",
12613 NULL,
12614 NULL,
12615 "ftosld",
12616 "ftould",
12617 "fsltod",
12618 "fultod",
12619 "fshtos",
12620 "fuhtos",
12621 "fshtod",
12622 "fuhtod",
12623 "ftoshs",
12624 "ftouhs",
12625 "ftoshd",
12626 "ftouhd"
12627 };
12628
12629 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12630 {
12631 opname = enc[flavour];
12632 constraint (inst.operands[0].reg != inst.operands[1].reg,
12633 _("operands 0 and 1 must be the same register"));
12634 inst.operands[1] = inst.operands[2];
12635 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12636 }
5287ad62
JB
12637 }
12638 else
12639 {
037e8744
JB
12640 /* Conversions without bitshift. */
12641 const char *enc[] =
12642 {
12643 "ftosis",
12644 "ftouis",
12645 "fsitos",
12646 "fuitos",
12647 "fcvtsd",
12648 "fcvtds",
12649 "ftosid",
12650 "ftouid",
12651 "fsitod",
12652 "fuitod"
12653 };
12654
12655 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12656 opname = enc[flavour];
12657 }
12658
12659 if (opname)
12660 do_vfp_nsyn_opcode (opname);
12661}
12662
12663static void
12664do_vfp_nsyn_cvtz (void)
12665{
12666 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12667 int flavour = neon_cvt_flavour (rs);
12668 const char *enc[] =
12669 {
12670 "ftosizs",
12671 "ftouizs",
12672 NULL,
12673 NULL,
12674 NULL,
12675 NULL,
12676 "ftosizd",
12677 "ftouizd"
12678 };
12679
12680 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12681 do_vfp_nsyn_opcode (enc[flavour]);
12682}
12683
12684static void
12685do_neon_cvt (void)
12686{
12687 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12688 NS_FD, NS_DF, NS_FF, NS_NULL);
12689 int flavour = neon_cvt_flavour (rs);
12690
12691 /* VFP rather than Neon conversions. */
12692 if (flavour >= 4)
12693 {
12694 do_vfp_nsyn_cvt (rs, flavour);
12695 return;
12696 }
12697
12698 switch (rs)
12699 {
12700 case NS_DDI:
12701 case NS_QQI:
12702 {
12703 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12704 return;
12705
12706 /* Fixed-point conversion with #0 immediate is encoded as an
12707 integer conversion. */
12708 if (inst.operands[2].present && inst.operands[2].imm == 0)
12709 goto int_encode;
12710 unsigned immbits = 32 - inst.operands[2].imm;
12711 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12712 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12713 if (flavour != -1)
12714 inst.instruction |= enctab[flavour];
12715 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12717 inst.instruction |= LOW4 (inst.operands[1].reg);
12718 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12719 inst.instruction |= neon_quad (rs) << 6;
12720 inst.instruction |= 1 << 21;
12721 inst.instruction |= immbits << 16;
12722
12723 inst.instruction = neon_dp_fixup (inst.instruction);
12724 }
12725 break;
12726
12727 case NS_DD:
12728 case NS_QQ:
12729 int_encode:
12730 {
12731 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12732
12733 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12734
12735 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12736 return;
12737
12738 if (flavour != -1)
12739 inst.instruction |= enctab[flavour];
12740
12741 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12742 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12743 inst.instruction |= LOW4 (inst.operands[1].reg);
12744 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12745 inst.instruction |= neon_quad (rs) << 6;
12746 inst.instruction |= 2 << 18;
12747
12748 inst.instruction = neon_dp_fixup (inst.instruction);
12749 }
12750 break;
12751
12752 default:
12753 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12754 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 12755 }
5287ad62
JB
12756}
12757
12758static void
12759neon_move_immediate (void)
12760{
037e8744
JB
12761 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12762 struct neon_type_el et = neon_check_type (2, rs,
12763 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 12764 unsigned immlo, immhi = 0, immbits;
c96612cc 12765 int op, cmode, float_p;
5287ad62 12766
037e8744
JB
12767 constraint (et.type == NT_invtype,
12768 _("operand size must be specified for immediate VMOV"));
12769
5287ad62
JB
12770 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12771 op = (inst.instruction & (1 << 5)) != 0;
12772
12773 immlo = inst.operands[1].imm;
12774 if (inst.operands[1].regisimm)
12775 immhi = inst.operands[1].reg;
12776
12777 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12778 _("immediate has bits set outside the operand size"));
12779
c96612cc
JB
12780 float_p = inst.operands[1].immisfloat;
12781
12782 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 12783 et.size, et.type)) == FAIL)
5287ad62
JB
12784 {
12785 /* Invert relevant bits only. */
12786 neon_invert_size (&immlo, &immhi, et.size);
12787 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12788 with one or the other; those cases are caught by
12789 neon_cmode_for_move_imm. */
12790 op = !op;
c96612cc
JB
12791 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12792 &op, et.size, et.type)) == FAIL)
5287ad62 12793 {
dcbf9037 12794 first_error (_("immediate out of range"));
5287ad62
JB
12795 return;
12796 }
12797 }
12798
12799 inst.instruction &= ~(1 << 5);
12800 inst.instruction |= op << 5;
12801
12802 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12803 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 12804 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12805 inst.instruction |= cmode << 8;
12806
12807 neon_write_immbits (immbits);
12808}
12809
12810static void
12811do_neon_mvn (void)
12812{
12813 if (inst.operands[1].isreg)
12814 {
037e8744 12815 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12816
12817 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12818 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12819 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12820 inst.instruction |= LOW4 (inst.operands[1].reg);
12821 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12822 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12823 }
12824 else
12825 {
12826 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12827 neon_move_immediate ();
12828 }
12829
12830 inst.instruction = neon_dp_fixup (inst.instruction);
12831}
12832
12833/* Encode instructions of form:
12834
12835 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12836 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12837
12838*/
12839
12840static void
12841neon_mixed_length (struct neon_type_el et, unsigned size)
12842{
12843 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12844 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12845 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12846 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12847 inst.instruction |= LOW4 (inst.operands[2].reg);
12848 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12849 inst.instruction |= (et.type == NT_unsigned) << 24;
12850 inst.instruction |= neon_logbits (size) << 20;
12851
12852 inst.instruction = neon_dp_fixup (inst.instruction);
12853}
12854
12855static void
12856do_neon_dyadic_long (void)
12857{
12858 /* FIXME: Type checking for lengthening op. */
12859 struct neon_type_el et = neon_check_type (3, NS_QDD,
12860 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12861 neon_mixed_length (et, et.size);
12862}
12863
12864static void
12865do_neon_abal (void)
12866{
12867 struct neon_type_el et = neon_check_type (3, NS_QDD,
12868 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12869 neon_mixed_length (et, et.size);
12870}
12871
12872static void
12873neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12874{
12875 if (inst.operands[2].isscalar)
12876 {
dcbf9037
JB
12877 struct neon_type_el et = neon_check_type (3, NS_QDS,
12878 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
12879 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12880 neon_mul_mac (et, et.type == NT_unsigned);
12881 }
12882 else
12883 {
12884 struct neon_type_el et = neon_check_type (3, NS_QDD,
12885 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12886 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12887 neon_mixed_length (et, et.size);
12888 }
12889}
12890
12891static void
12892do_neon_mac_maybe_scalar_long (void)
12893{
12894 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12895}
12896
12897static void
12898do_neon_dyadic_wide (void)
12899{
12900 struct neon_type_el et = neon_check_type (3, NS_QQD,
12901 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12902 neon_mixed_length (et, et.size);
12903}
12904
12905static void
12906do_neon_dyadic_narrow (void)
12907{
12908 struct neon_type_el et = neon_check_type (3, NS_QDD,
12909 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
12910 /* Operand sign is unimportant, and the U bit is part of the opcode,
12911 so force the operand type to integer. */
12912 et.type = NT_integer;
5287ad62
JB
12913 neon_mixed_length (et, et.size / 2);
12914}
12915
12916static void
12917do_neon_mul_sat_scalar_long (void)
12918{
12919 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12920}
12921
12922static void
12923do_neon_vmull (void)
12924{
12925 if (inst.operands[2].isscalar)
12926 do_neon_mac_maybe_scalar_long ();
12927 else
12928 {
12929 struct neon_type_el et = neon_check_type (3, NS_QDD,
12930 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12931 if (et.type == NT_poly)
12932 inst.instruction = NEON_ENC_POLY (inst.instruction);
12933 else
12934 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12935 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12936 zero. Should be OK as-is. */
12937 neon_mixed_length (et, et.size);
12938 }
12939}
12940
12941static void
12942do_neon_ext (void)
12943{
037e8744 12944 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
12945 struct neon_type_el et = neon_check_type (3, rs,
12946 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12947 unsigned imm = (inst.operands[3].imm * et.size) / 8;
3b8d421e 12948 constraint (imm >= (neon_quad (rs) ? 16 : 8), _("shift out of range"));
5287ad62
JB
12949 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12950 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12951 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12952 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12953 inst.instruction |= LOW4 (inst.operands[2].reg);
12954 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 12955 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12956 inst.instruction |= imm << 8;
12957
12958 inst.instruction = neon_dp_fixup (inst.instruction);
12959}
12960
12961static void
12962do_neon_rev (void)
12963{
037e8744 12964 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12965 struct neon_type_el et = neon_check_type (2, rs,
12966 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12967 unsigned op = (inst.instruction >> 7) & 3;
12968 /* N (width of reversed regions) is encoded as part of the bitmask. We
12969 extract it here to check the elements to be reversed are smaller.
12970 Otherwise we'd get a reserved instruction. */
12971 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12972 assert (elsize != 0);
12973 constraint (et.size >= elsize,
12974 _("elements must be smaller than reversal region"));
037e8744 12975 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12976}
12977
12978static void
12979do_neon_dup (void)
12980{
12981 if (inst.operands[1].isscalar)
12982 {
037e8744 12983 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
12984 struct neon_type_el et = neon_check_type (2, rs,
12985 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 12986 unsigned sizebits = et.size >> 3;
dcbf9037 12987 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 12988 int logsize = neon_logbits (et.size);
dcbf9037 12989 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
12990
12991 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12992 return;
12993
5287ad62
JB
12994 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12995 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12996 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12997 inst.instruction |= LOW4 (dm);
12998 inst.instruction |= HI1 (dm) << 5;
037e8744 12999 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13000 inst.instruction |= x << 17;
13001 inst.instruction |= sizebits << 16;
13002
13003 inst.instruction = neon_dp_fixup (inst.instruction);
13004 }
13005 else
13006 {
037e8744
JB
13007 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13008 struct neon_type_el et = neon_check_type (2, rs,
13009 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
13010 /* Duplicate ARM register to lanes of vector. */
13011 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13012 switch (et.size)
13013 {
13014 case 8: inst.instruction |= 0x400000; break;
13015 case 16: inst.instruction |= 0x000020; break;
13016 case 32: inst.instruction |= 0x000000; break;
13017 default: break;
13018 }
13019 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13020 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13021 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 13022 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
13023 /* The encoding for this instruction is identical for the ARM and Thumb
13024 variants, except for the condition field. */
037e8744 13025 do_vfp_cond_or_thumb ();
5287ad62
JB
13026 }
13027}
13028
13029/* VMOV has particularly many variations. It can be one of:
13030 0. VMOV<c><q> <Qd>, <Qm>
13031 1. VMOV<c><q> <Dd>, <Dm>
13032 (Register operations, which are VORR with Rm = Rn.)
13033 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13034 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13035 (Immediate loads.)
13036 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13037 (ARM register to scalar.)
13038 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13039 (Two ARM registers to vector.)
13040 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13041 (Scalar to ARM register.)
13042 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13043 (Vector to two ARM registers.)
037e8744
JB
13044 8. VMOV.F32 <Sd>, <Sm>
13045 9. VMOV.F64 <Dd>, <Dm>
13046 (VFP register moves.)
13047 10. VMOV.F32 <Sd>, #imm
13048 11. VMOV.F64 <Dd>, #imm
13049 (VFP float immediate load.)
13050 12. VMOV <Rd>, <Sm>
13051 (VFP single to ARM reg.)
13052 13. VMOV <Sd>, <Rm>
13053 (ARM reg to VFP single.)
13054 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13055 (Two ARM regs to two VFP singles.)
13056 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13057 (Two VFP singles to two ARM regs.)
5287ad62 13058
037e8744
JB
13059 These cases can be disambiguated using neon_select_shape, except cases 1/9
13060 and 3/11 which depend on the operand type too.
5287ad62
JB
13061
13062 All the encoded bits are hardcoded by this function.
13063
b7fc2769
JB
13064 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13065 Cases 5, 7 may be used with VFPv2 and above.
13066
5287ad62
JB
13067 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13068 can specify a type where it doesn't make sense to, and is ignored).
13069*/
13070
13071static void
13072do_neon_mov (void)
13073{
037e8744
JB
13074 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13075 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13076 NS_NULL);
13077 struct neon_type_el et;
13078 const char *ldconst = 0;
5287ad62 13079
037e8744 13080 switch (rs)
5287ad62 13081 {
037e8744
JB
13082 case NS_DD: /* case 1/9. */
13083 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13084 /* It is not an error here if no type is given. */
13085 inst.error = NULL;
13086 if (et.type == NT_float && et.size == 64)
5287ad62 13087 {
037e8744
JB
13088 do_vfp_nsyn_opcode ("fcpyd");
13089 break;
5287ad62 13090 }
037e8744 13091 /* fall through. */
5287ad62 13092
037e8744
JB
13093 case NS_QQ: /* case 0/1. */
13094 {
13095 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13096 return;
13097 /* The architecture manual I have doesn't explicitly state which
13098 value the U bit should have for register->register moves, but
13099 the equivalent VORR instruction has U = 0, so do that. */
13100 inst.instruction = 0x0200110;
13101 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13102 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13103 inst.instruction |= LOW4 (inst.operands[1].reg);
13104 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13105 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13106 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13107 inst.instruction |= neon_quad (rs) << 6;
13108
13109 inst.instruction = neon_dp_fixup (inst.instruction);
13110 }
13111 break;
13112
13113 case NS_DI: /* case 3/11. */
13114 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13115 inst.error = NULL;
13116 if (et.type == NT_float && et.size == 64)
5287ad62 13117 {
037e8744
JB
13118 /* case 11 (fconstd). */
13119 ldconst = "fconstd";
13120 goto encode_fconstd;
5287ad62 13121 }
037e8744
JB
13122 /* fall through. */
13123
13124 case NS_QI: /* case 2/3. */
13125 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13126 return;
13127 inst.instruction = 0x0800010;
13128 neon_move_immediate ();
13129 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62
JB
13130 break;
13131
037e8744
JB
13132 case NS_SR: /* case 4. */
13133 {
13134 unsigned bcdebits = 0;
13135 struct neon_type_el et = neon_check_type (2, NS_NULL,
13136 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13137 int logsize = neon_logbits (et.size);
13138 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13139 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13140
13141 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13142 _(BAD_FPU));
13143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13144 && et.size != 32, _(BAD_FPU));
13145 constraint (et.type == NT_invtype, _("bad type for scalar"));
13146 constraint (x >= 64 / et.size, _("scalar index out of range"));
13147
13148 switch (et.size)
13149 {
13150 case 8: bcdebits = 0x8; break;
13151 case 16: bcdebits = 0x1; break;
13152 case 32: bcdebits = 0x0; break;
13153 default: ;
13154 }
13155
13156 bcdebits |= x << logsize;
13157
13158 inst.instruction = 0xe000b10;
13159 do_vfp_cond_or_thumb ();
13160 inst.instruction |= LOW4 (dn) << 16;
13161 inst.instruction |= HI1 (dn) << 7;
13162 inst.instruction |= inst.operands[1].reg << 12;
13163 inst.instruction |= (bcdebits & 3) << 5;
13164 inst.instruction |= (bcdebits >> 2) << 21;
13165 }
13166 break;
13167
13168 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13170 _(BAD_FPU));
b7fc2769 13171
037e8744
JB
13172 inst.instruction = 0xc400b10;
13173 do_vfp_cond_or_thumb ();
13174 inst.instruction |= LOW4 (inst.operands[0].reg);
13175 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13176 inst.instruction |= inst.operands[1].reg << 12;
13177 inst.instruction |= inst.operands[2].reg << 16;
13178 break;
13179
13180 case NS_RS: /* case 6. */
13181 {
13182 struct neon_type_el et = neon_check_type (2, NS_NULL,
13183 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13184 unsigned logsize = neon_logbits (et.size);
13185 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13186 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13187 unsigned abcdebits = 0;
13188
13189 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13190 _(BAD_FPU));
13191 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13192 && et.size != 32, _(BAD_FPU));
13193 constraint (et.type == NT_invtype, _("bad type for scalar"));
13194 constraint (x >= 64 / et.size, _("scalar index out of range"));
13195
13196 switch (et.size)
13197 {
13198 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13199 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13200 case 32: abcdebits = 0x00; break;
13201 default: ;
13202 }
13203
13204 abcdebits |= x << logsize;
13205 inst.instruction = 0xe100b10;
13206 do_vfp_cond_or_thumb ();
13207 inst.instruction |= LOW4 (dn) << 16;
13208 inst.instruction |= HI1 (dn) << 7;
13209 inst.instruction |= inst.operands[0].reg << 12;
13210 inst.instruction |= (abcdebits & 3) << 5;
13211 inst.instruction |= (abcdebits >> 2) << 21;
13212 }
13213 break;
13214
13215 case NS_RRD: /* case 7 (fmrrd). */
13216 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13217 _(BAD_FPU));
13218
13219 inst.instruction = 0xc500b10;
13220 do_vfp_cond_or_thumb ();
13221 inst.instruction |= inst.operands[0].reg << 12;
13222 inst.instruction |= inst.operands[1].reg << 16;
13223 inst.instruction |= LOW4 (inst.operands[2].reg);
13224 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13225 break;
13226
13227 case NS_FF: /* case 8 (fcpys). */
13228 do_vfp_nsyn_opcode ("fcpys");
13229 break;
13230
13231 case NS_FI: /* case 10 (fconsts). */
13232 ldconst = "fconsts";
13233 encode_fconstd:
13234 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13235 {
037e8744
JB
13236 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13237 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13238 }
13239 else
037e8744
JB
13240 first_error (_("immediate out of range"));
13241 break;
13242
13243 case NS_RF: /* case 12 (fmrs). */
13244 do_vfp_nsyn_opcode ("fmrs");
13245 break;
13246
13247 case NS_FR: /* case 13 (fmsr). */
13248 do_vfp_nsyn_opcode ("fmsr");
13249 break;
13250
13251 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13252 (one of which is a list), but we have parsed four. Do some fiddling to
13253 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13254 expect. */
13255 case NS_RRFF: /* case 14 (fmrrs). */
13256 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13257 _("VFP registers must be adjacent"));
13258 inst.operands[2].imm = 2;
13259 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13260 do_vfp_nsyn_opcode ("fmrrs");
13261 break;
13262
13263 case NS_FFRR: /* case 15 (fmsrr). */
13264 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13265 _("VFP registers must be adjacent"));
13266 inst.operands[1] = inst.operands[2];
13267 inst.operands[2] = inst.operands[3];
13268 inst.operands[0].imm = 2;
13269 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13270 do_vfp_nsyn_opcode ("fmsrr");
5287ad62
JB
13271 break;
13272
13273 default:
13274 abort ();
13275 }
13276}
13277
13278static void
13279do_neon_rshift_round_imm (void)
13280{
037e8744 13281 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13282 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13283 int imm = inst.operands[2].imm;
13284
13285 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13286 if (imm == 0)
13287 {
13288 inst.operands[2].present = 0;
13289 do_neon_mov ();
13290 return;
13291 }
13292
13293 constraint (imm < 1 || (unsigned)imm > et.size,
13294 _("immediate out of range for shift"));
037e8744 13295 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13296 et.size - imm);
13297}
13298
13299static void
13300do_neon_movl (void)
13301{
13302 struct neon_type_el et = neon_check_type (2, NS_QD,
13303 N_EQK | N_DBL, N_SU_32 | N_KEY);
13304 unsigned sizebits = et.size >> 3;
13305 inst.instruction |= sizebits << 19;
13306 neon_two_same (0, et.type == NT_unsigned, -1);
13307}
13308
13309static void
13310do_neon_trn (void)
13311{
037e8744 13312 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13313 struct neon_type_el et = neon_check_type (2, rs,
13314 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13315 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13316 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13317}
13318
13319static void
13320do_neon_zip_uzp (void)
13321{
037e8744 13322 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13323 struct neon_type_el et = neon_check_type (2, rs,
13324 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13325 if (rs == NS_DD && et.size == 32)
13326 {
13327 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13328 inst.instruction = N_MNEM_vtrn;
13329 do_neon_trn ();
13330 return;
13331 }
037e8744 13332 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13333}
13334
13335static void
13336do_neon_sat_abs_neg (void)
13337{
037e8744 13338 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13339 struct neon_type_el et = neon_check_type (2, rs,
13340 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13341 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13342}
13343
13344static void
13345do_neon_pair_long (void)
13346{
037e8744 13347 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13348 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13349 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13350 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13351 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13352}
13353
13354static void
13355do_neon_recip_est (void)
13356{
037e8744 13357 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13358 struct neon_type_el et = neon_check_type (2, rs,
13359 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13360 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13361 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13362}
13363
13364static void
13365do_neon_cls (void)
13366{
037e8744 13367 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13368 struct neon_type_el et = neon_check_type (2, rs,
13369 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13370 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13371}
13372
13373static void
13374do_neon_clz (void)
13375{
037e8744 13376 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13377 struct neon_type_el et = neon_check_type (2, rs,
13378 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13379 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13380}
13381
13382static void
13383do_neon_cnt (void)
13384{
037e8744 13385 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13386 struct neon_type_el et = neon_check_type (2, rs,
13387 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13388 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13389}
13390
13391static void
13392do_neon_swp (void)
13393{
037e8744
JB
13394 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13395 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13396}
13397
13398static void
13399do_neon_tbl_tbx (void)
13400{
13401 unsigned listlenbits;
dcbf9037 13402 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5287ad62
JB
13403
13404 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13405 {
dcbf9037 13406 first_error (_("bad list length for table lookup"));
5287ad62
JB
13407 return;
13408 }
13409
13410 listlenbits = inst.operands[1].imm - 1;
13411 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13412 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13413 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13414 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13415 inst.instruction |= LOW4 (inst.operands[2].reg);
13416 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13417 inst.instruction |= listlenbits << 8;
13418
13419 inst.instruction = neon_dp_fixup (inst.instruction);
13420}
13421
13422static void
13423do_neon_ldm_stm (void)
13424{
13425 /* P, U and L bits are part of bitmask. */
13426 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13427 unsigned offsetbits = inst.operands[1].imm * 2;
13428
037e8744
JB
13429 if (inst.operands[1].issingle)
13430 {
13431 do_vfp_nsyn_ldm_stm (is_dbmode);
13432 return;
13433 }
13434
5287ad62
JB
13435 constraint (is_dbmode && !inst.operands[0].writeback,
13436 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13437
13438 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13439 _("register list must contain at least 1 and at most 16 "
13440 "registers"));
13441
13442 inst.instruction |= inst.operands[0].reg << 16;
13443 inst.instruction |= inst.operands[0].writeback << 21;
13444 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13445 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13446
13447 inst.instruction |= offsetbits;
13448
037e8744 13449 do_vfp_cond_or_thumb ();
5287ad62
JB
13450}
13451
13452static void
13453do_neon_ldr_str (void)
13454{
5287ad62
JB
13455 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13456
037e8744
JB
13457 if (inst.operands[0].issingle)
13458 {
cd2f129f
JB
13459 if (is_ldr)
13460 do_vfp_nsyn_opcode ("flds");
13461 else
13462 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13463 }
13464 else
5287ad62 13465 {
cd2f129f
JB
13466 if (is_ldr)
13467 do_vfp_nsyn_opcode ("fldd");
5287ad62 13468 else
cd2f129f 13469 do_vfp_nsyn_opcode ("fstd");
5287ad62 13470 }
5287ad62
JB
13471}
13472
13473/* "interleave" version also handles non-interleaving register VLD1/VST1
13474 instructions. */
13475
13476static void
13477do_neon_ld_st_interleave (void)
13478{
037e8744 13479 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
13480 N_8 | N_16 | N_32 | N_64);
13481 unsigned alignbits = 0;
13482 unsigned idx;
13483 /* The bits in this table go:
13484 0: register stride of one (0) or two (1)
13485 1,2: register list length, minus one (1, 2, 3, 4).
13486 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13487 We use -1 for invalid entries. */
13488 const int typetable[] =
13489 {
13490 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13491 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13492 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13493 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13494 };
13495 int typebits;
13496
dcbf9037
JB
13497 if (et.type == NT_invtype)
13498 return;
13499
5287ad62
JB
13500 if (inst.operands[1].immisalign)
13501 switch (inst.operands[1].imm >> 8)
13502 {
13503 case 64: alignbits = 1; break;
13504 case 128:
13505 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13506 goto bad_alignment;
13507 alignbits = 2;
13508 break;
13509 case 256:
13510 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13511 goto bad_alignment;
13512 alignbits = 3;
13513 break;
13514 default:
13515 bad_alignment:
dcbf9037 13516 first_error (_("bad alignment"));
5287ad62
JB
13517 return;
13518 }
13519
13520 inst.instruction |= alignbits << 4;
13521 inst.instruction |= neon_logbits (et.size) << 6;
13522
13523 /* Bits [4:6] of the immediate in a list specifier encode register stride
13524 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13525 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13526 up the right value for "type" in a table based on this value and the given
13527 list style, then stick it back. */
13528 idx = ((inst.operands[0].imm >> 4) & 7)
13529 | (((inst.instruction >> 8) & 3) << 3);
13530
13531 typebits = typetable[idx];
13532
13533 constraint (typebits == -1, _("bad list type for instruction"));
13534
13535 inst.instruction &= ~0xf00;
13536 inst.instruction |= typebits << 8;
13537}
13538
13539/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13540 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13541 otherwise. The variable arguments are a list of pairs of legal (size, align)
13542 values, terminated with -1. */
13543
13544static int
13545neon_alignment_bit (int size, int align, int *do_align, ...)
13546{
13547 va_list ap;
13548 int result = FAIL, thissize, thisalign;
13549
13550 if (!inst.operands[1].immisalign)
13551 {
13552 *do_align = 0;
13553 return SUCCESS;
13554 }
13555
13556 va_start (ap, do_align);
13557
13558 do
13559 {
13560 thissize = va_arg (ap, int);
13561 if (thissize == -1)
13562 break;
13563 thisalign = va_arg (ap, int);
13564
13565 if (size == thissize && align == thisalign)
13566 result = SUCCESS;
13567 }
13568 while (result != SUCCESS);
13569
13570 va_end (ap);
13571
13572 if (result == SUCCESS)
13573 *do_align = 1;
13574 else
dcbf9037 13575 first_error (_("unsupported alignment for instruction"));
5287ad62
JB
13576
13577 return result;
13578}
13579
13580static void
13581do_neon_ld_st_lane (void)
13582{
037e8744 13583 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13584 int align_good, do_align = 0;
13585 int logsize = neon_logbits (et.size);
13586 int align = inst.operands[1].imm >> 8;
13587 int n = (inst.instruction >> 8) & 3;
13588 int max_el = 64 / et.size;
13589
dcbf9037
JB
13590 if (et.type == NT_invtype)
13591 return;
13592
5287ad62
JB
13593 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13594 _("bad list length"));
13595 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13596 _("scalar index out of range"));
13597 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13598 && et.size == 8,
13599 _("stride of 2 unavailable when element size is 8"));
13600
13601 switch (n)
13602 {
13603 case 0: /* VLD1 / VST1. */
13604 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13605 32, 32, -1);
13606 if (align_good == FAIL)
13607 return;
13608 if (do_align)
13609 {
13610 unsigned alignbits = 0;
13611 switch (et.size)
13612 {
13613 case 16: alignbits = 0x1; break;
13614 case 32: alignbits = 0x3; break;
13615 default: ;
13616 }
13617 inst.instruction |= alignbits << 4;
13618 }
13619 break;
13620
13621 case 1: /* VLD2 / VST2. */
13622 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13623 32, 64, -1);
13624 if (align_good == FAIL)
13625 return;
13626 if (do_align)
13627 inst.instruction |= 1 << 4;
13628 break;
13629
13630 case 2: /* VLD3 / VST3. */
13631 constraint (inst.operands[1].immisalign,
13632 _("can't use alignment with this instruction"));
13633 break;
13634
13635 case 3: /* VLD4 / VST4. */
13636 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13637 16, 64, 32, 64, 32, 128, -1);
13638 if (align_good == FAIL)
13639 return;
13640 if (do_align)
13641 {
13642 unsigned alignbits = 0;
13643 switch (et.size)
13644 {
13645 case 8: alignbits = 0x1; break;
13646 case 16: alignbits = 0x1; break;
13647 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13648 default: ;
13649 }
13650 inst.instruction |= alignbits << 4;
13651 }
13652 break;
13653
13654 default: ;
13655 }
13656
13657 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13658 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13659 inst.instruction |= 1 << (4 + logsize);
13660
13661 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13662 inst.instruction |= logsize << 10;
13663}
13664
13665/* Encode single n-element structure to all lanes VLD<n> instructions. */
13666
13667static void
13668do_neon_ld_dup (void)
13669{
037e8744 13670 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13671 int align_good, do_align = 0;
13672
dcbf9037
JB
13673 if (et.type == NT_invtype)
13674 return;
13675
5287ad62
JB
13676 switch ((inst.instruction >> 8) & 3)
13677 {
13678 case 0: /* VLD1. */
13679 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13680 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13681 &do_align, 16, 16, 32, 32, -1);
13682 if (align_good == FAIL)
13683 return;
13684 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13685 {
13686 case 1: break;
13687 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 13688 default: first_error (_("bad list length")); return;
5287ad62
JB
13689 }
13690 inst.instruction |= neon_logbits (et.size) << 6;
13691 break;
13692
13693 case 1: /* VLD2. */
13694 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13695 &do_align, 8, 16, 16, 32, 32, 64, -1);
13696 if (align_good == FAIL)
13697 return;
13698 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13699 _("bad list length"));
13700 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13701 inst.instruction |= 1 << 5;
13702 inst.instruction |= neon_logbits (et.size) << 6;
13703 break;
13704
13705 case 2: /* VLD3. */
13706 constraint (inst.operands[1].immisalign,
13707 _("can't use alignment with this instruction"));
13708 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13709 _("bad list length"));
13710 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13711 inst.instruction |= 1 << 5;
13712 inst.instruction |= neon_logbits (et.size) << 6;
13713 break;
13714
13715 case 3: /* VLD4. */
13716 {
13717 int align = inst.operands[1].imm >> 8;
13718 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13719 16, 64, 32, 64, 32, 128, -1);
13720 if (align_good == FAIL)
13721 return;
13722 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13723 _("bad list length"));
13724 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13725 inst.instruction |= 1 << 5;
13726 if (et.size == 32 && align == 128)
13727 inst.instruction |= 0x3 << 6;
13728 else
13729 inst.instruction |= neon_logbits (et.size) << 6;
13730 }
13731 break;
13732
13733 default: ;
13734 }
13735
13736 inst.instruction |= do_align << 4;
13737}
13738
13739/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13740 apart from bits [11:4]. */
13741
13742static void
13743do_neon_ldx_stx (void)
13744{
13745 switch (NEON_LANE (inst.operands[0].imm))
13746 {
13747 case NEON_INTERLEAVE_LANES:
13748 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13749 do_neon_ld_st_interleave ();
13750 break;
13751
13752 case NEON_ALL_LANES:
13753 inst.instruction = NEON_ENC_DUP (inst.instruction);
13754 do_neon_ld_dup ();
13755 break;
13756
13757 default:
13758 inst.instruction = NEON_ENC_LANE (inst.instruction);
13759 do_neon_ld_st_lane ();
13760 }
13761
13762 /* L bit comes from bit mask. */
13763 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13764 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13765 inst.instruction |= inst.operands[1].reg << 16;
13766
13767 if (inst.operands[1].postind)
13768 {
13769 int postreg = inst.operands[1].imm & 0xf;
13770 constraint (!inst.operands[1].immisreg,
13771 _("post-index must be a register"));
13772 constraint (postreg == 0xd || postreg == 0xf,
13773 _("bad register for post-index"));
13774 inst.instruction |= postreg;
13775 }
13776 else if (inst.operands[1].writeback)
13777 {
13778 inst.instruction |= 0xd;
13779 }
13780 else
13781 inst.instruction |= 0xf;
13782
13783 if (thumb_mode)
13784 inst.instruction |= 0xf9000000;
13785 else
13786 inst.instruction |= 0xf4000000;
13787}
13788
13789\f
13790/* Overall per-instruction processing. */
13791
13792/* We need to be able to fix up arbitrary expressions in some statements.
13793 This is so that we can handle symbols that are an arbitrary distance from
13794 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13795 which returns part of an address in a form which will be valid for
13796 a data instruction. We do this by pushing the expression into a symbol
13797 in the expr_section, and creating a fix for that. */
13798
13799static void
13800fix_new_arm (fragS * frag,
13801 int where,
13802 short int size,
13803 expressionS * exp,
13804 int pc_rel,
13805 int reloc)
13806{
13807 fixS * new_fix;
13808
13809 switch (exp->X_op)
13810 {
13811 case O_constant:
13812 case O_symbol:
13813 case O_add:
13814 case O_subtract:
13815 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13816 break;
13817
13818 default:
13819 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13820 pc_rel, reloc);
13821 break;
13822 }
13823
13824 /* Mark whether the fix is to a THUMB instruction, or an ARM
13825 instruction. */
13826 new_fix->tc_fix_data = thumb_mode;
13827}
13828
13829/* Create a frg for an instruction requiring relaxation. */
13830static void
13831output_relax_insn (void)
13832{
13833 char * to;
13834 symbolS *sym;
0110f2b8
PB
13835 int offset;
13836
6e1cb1a6
PB
13837 /* The size of the instruction is unknown, so tie the debug info to the
13838 start of the instruction. */
13839 dwarf2_emit_insn (0);
6e1cb1a6 13840
0110f2b8
PB
13841 switch (inst.reloc.exp.X_op)
13842 {
13843 case O_symbol:
13844 sym = inst.reloc.exp.X_add_symbol;
13845 offset = inst.reloc.exp.X_add_number;
13846 break;
13847 case O_constant:
13848 sym = NULL;
13849 offset = inst.reloc.exp.X_add_number;
13850 break;
13851 default:
13852 sym = make_expr_symbol (&inst.reloc.exp);
13853 offset = 0;
13854 break;
13855 }
13856 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13857 inst.relax, sym, offset, NULL/*offset, opcode*/);
13858 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
13859}
13860
13861/* Write a 32-bit thumb instruction to buf. */
13862static void
13863put_thumb32_insn (char * buf, unsigned long insn)
13864{
13865 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13866 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13867}
13868
b99bd4ef 13869static void
c19d1205 13870output_inst (const char * str)
b99bd4ef 13871{
c19d1205 13872 char * to = NULL;
b99bd4ef 13873
c19d1205 13874 if (inst.error)
b99bd4ef 13875 {
c19d1205 13876 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
13877 return;
13878 }
0110f2b8
PB
13879 if (inst.relax) {
13880 output_relax_insn();
13881 return;
13882 }
c19d1205
ZW
13883 if (inst.size == 0)
13884 return;
b99bd4ef 13885
c19d1205
ZW
13886 to = frag_more (inst.size);
13887
13888 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 13889 {
c19d1205 13890 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 13891 put_thumb32_insn (to, inst.instruction);
b99bd4ef 13892 }
c19d1205 13893 else if (inst.size > INSN_SIZE)
b99bd4ef 13894 {
c19d1205
ZW
13895 assert (inst.size == (2 * INSN_SIZE));
13896 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13897 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 13898 }
c19d1205
ZW
13899 else
13900 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 13901
c19d1205
ZW
13902 if (inst.reloc.type != BFD_RELOC_UNUSED)
13903 fix_new_arm (frag_now, to - frag_now->fr_literal,
13904 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13905 inst.reloc.type);
b99bd4ef 13906
c19d1205 13907 dwarf2_emit_insn (inst.size);
c19d1205 13908}
b99bd4ef 13909
c19d1205
ZW
13910/* Tag values used in struct asm_opcode's tag field. */
13911enum opcode_tag
13912{
13913 OT_unconditional, /* Instruction cannot be conditionalized.
13914 The ARM condition field is still 0xE. */
13915 OT_unconditionalF, /* Instruction cannot be conditionalized
13916 and carries 0xF in its ARM condition field. */
13917 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
13918 OT_csuffixF, /* Some forms of the instruction take a conditional
13919 suffix, others place 0xF where the condition field
13920 would be. */
c19d1205
ZW
13921 OT_cinfix3, /* Instruction takes a conditional infix,
13922 beginning at character index 3. (In
13923 unified mode, it becomes a suffix.) */
088fa78e
KH
13924 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13925 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
13926 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13927 character index 3, even in unified mode. Used for
13928 legacy instructions where suffix and infix forms
13929 may be ambiguous. */
c19d1205 13930 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 13931 suffix or an infix at character index 3. */
c19d1205
ZW
13932 OT_odd_infix_unc, /* This is the unconditional variant of an
13933 instruction that takes a conditional infix
13934 at an unusual position. In unified mode,
13935 this variant will accept a suffix. */
13936 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13937 are the conditional variants of instructions that
13938 take conditional infixes in unusual positions.
13939 The infix appears at character index
13940 (tag - OT_odd_infix_0). These are not accepted
13941 in unified mode. */
13942};
b99bd4ef 13943
c19d1205
ZW
13944/* Subroutine of md_assemble, responsible for looking up the primary
13945 opcode from the mnemonic the user wrote. STR points to the
13946 beginning of the mnemonic.
13947
13948 This is not simply a hash table lookup, because of conditional
13949 variants. Most instructions have conditional variants, which are
13950 expressed with a _conditional affix_ to the mnemonic. If we were
13951 to encode each conditional variant as a literal string in the opcode
13952 table, it would have approximately 20,000 entries.
13953
13954 Most mnemonics take this affix as a suffix, and in unified syntax,
13955 'most' is upgraded to 'all'. However, in the divided syntax, some
13956 instructions take the affix as an infix, notably the s-variants of
13957 the arithmetic instructions. Of those instructions, all but six
13958 have the infix appear after the third character of the mnemonic.
13959
13960 Accordingly, the algorithm for looking up primary opcodes given
13961 an identifier is:
13962
13963 1. Look up the identifier in the opcode table.
13964 If we find a match, go to step U.
13965
13966 2. Look up the last two characters of the identifier in the
13967 conditions table. If we find a match, look up the first N-2
13968 characters of the identifier in the opcode table. If we
13969 find a match, go to step CE.
13970
13971 3. Look up the fourth and fifth characters of the identifier in
13972 the conditions table. If we find a match, extract those
13973 characters from the identifier, and look up the remaining
13974 characters in the opcode table. If we find a match, go
13975 to step CM.
13976
13977 4. Fail.
13978
13979 U. Examine the tag field of the opcode structure, in case this is
13980 one of the six instructions with its conditional infix in an
13981 unusual place. If it is, the tag tells us where to find the
13982 infix; look it up in the conditions table and set inst.cond
13983 accordingly. Otherwise, this is an unconditional instruction.
13984 Again set inst.cond accordingly. Return the opcode structure.
13985
13986 CE. Examine the tag field to make sure this is an instruction that
13987 should receive a conditional suffix. If it is not, fail.
13988 Otherwise, set inst.cond from the suffix we already looked up,
13989 and return the opcode structure.
13990
13991 CM. Examine the tag field to make sure this is an instruction that
13992 should receive a conditional infix after the third character.
13993 If it is not, fail. Otherwise, undo the edits to the current
13994 line of input and proceed as for case CE. */
13995
13996static const struct asm_opcode *
13997opcode_lookup (char **str)
13998{
13999 char *end, *base;
14000 char *affix;
14001 const struct asm_opcode *opcode;
14002 const struct asm_cond *cond;
e3cb604e 14003 char save[2];
267d2029
JB
14004 bfd_boolean neon_supported;
14005
14006 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
14007
14008 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 14009 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 14010 for (base = end = *str; *end != '\0'; end++)
267d2029 14011 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 14012 break;
b99bd4ef 14013
c19d1205
ZW
14014 if (end == base)
14015 return 0;
b99bd4ef 14016
5287ad62 14017 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 14018 if (end[0] == '.')
b99bd4ef 14019 {
5287ad62
JB
14020 int offset = 2;
14021
267d2029
JB
14022 /* The .w and .n suffixes are only valid if the unified syntax is in
14023 use. */
14024 if (unified_syntax && end[1] == 'w')
c19d1205 14025 inst.size_req = 4;
267d2029 14026 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
14027 inst.size_req = 2;
14028 else
5287ad62
JB
14029 offset = 0;
14030
14031 inst.vectype.elems = 0;
14032
14033 *str = end + offset;
b99bd4ef 14034
5287ad62
JB
14035 if (end[offset] == '.')
14036 {
267d2029
JB
14037 /* See if we have a Neon type suffix (possible in either unified or
14038 non-unified ARM syntax mode). */
dcbf9037 14039 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
14040 return 0;
14041 }
14042 else if (end[offset] != '\0' && end[offset] != ' ')
14043 return 0;
b99bd4ef 14044 }
c19d1205
ZW
14045 else
14046 *str = end;
b99bd4ef 14047
c19d1205
ZW
14048 /* Look for unaffixed or special-case affixed mnemonic. */
14049 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14050 if (opcode)
b99bd4ef 14051 {
c19d1205
ZW
14052 /* step U */
14053 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 14054 {
c19d1205
ZW
14055 inst.cond = COND_ALWAYS;
14056 return opcode;
b99bd4ef 14057 }
b99bd4ef 14058
c19d1205
ZW
14059 if (unified_syntax)
14060 as_warn (_("conditional infixes are deprecated in unified syntax"));
14061 affix = base + (opcode->tag - OT_odd_infix_0);
14062 cond = hash_find_n (arm_cond_hsh, affix, 2);
14063 assert (cond);
b99bd4ef 14064
c19d1205
ZW
14065 inst.cond = cond->value;
14066 return opcode;
14067 }
b99bd4ef 14068
c19d1205
ZW
14069 /* Cannot have a conditional suffix on a mnemonic of less than two
14070 characters. */
14071 if (end - base < 3)
14072 return 0;
b99bd4ef 14073
c19d1205
ZW
14074 /* Look for suffixed mnemonic. */
14075 affix = end - 2;
14076 cond = hash_find_n (arm_cond_hsh, affix, 2);
14077 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14078 if (opcode && cond)
14079 {
14080 /* step CE */
14081 switch (opcode->tag)
14082 {
e3cb604e
PB
14083 case OT_cinfix3_legacy:
14084 /* Ignore conditional suffixes matched on infix only mnemonics. */
14085 break;
14086
c19d1205 14087 case OT_cinfix3:
088fa78e 14088 case OT_cinfix3_deprecated:
c19d1205
ZW
14089 case OT_odd_infix_unc:
14090 if (!unified_syntax)
e3cb604e 14091 return 0;
c19d1205
ZW
14092 /* else fall through */
14093
14094 case OT_csuffix:
037e8744 14095 case OT_csuffixF:
c19d1205
ZW
14096 case OT_csuf_or_in3:
14097 inst.cond = cond->value;
14098 return opcode;
14099
14100 case OT_unconditional:
14101 case OT_unconditionalF:
dfa9f0d5
PB
14102 if (thumb_mode)
14103 {
14104 inst.cond = cond->value;
14105 }
14106 else
14107 {
14108 /* delayed diagnostic */
14109 inst.error = BAD_COND;
14110 inst.cond = COND_ALWAYS;
14111 }
c19d1205 14112 return opcode;
b99bd4ef 14113
c19d1205
ZW
14114 default:
14115 return 0;
14116 }
14117 }
b99bd4ef 14118
c19d1205
ZW
14119 /* Cannot have a usual-position infix on a mnemonic of less than
14120 six characters (five would be a suffix). */
14121 if (end - base < 6)
14122 return 0;
b99bd4ef 14123
c19d1205
ZW
14124 /* Look for infixed mnemonic in the usual position. */
14125 affix = base + 3;
14126 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
14127 if (!cond)
14128 return 0;
14129
14130 memcpy (save, affix, 2);
14131 memmove (affix, affix + 2, (end - affix) - 2);
14132 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14133 memmove (affix + 2, affix, (end - affix) - 2);
14134 memcpy (affix, save, 2);
14135
088fa78e
KH
14136 if (opcode
14137 && (opcode->tag == OT_cinfix3
14138 || opcode->tag == OT_cinfix3_deprecated
14139 || opcode->tag == OT_csuf_or_in3
14140 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 14141 {
c19d1205 14142 /* step CM */
088fa78e
KH
14143 if (unified_syntax
14144 && (opcode->tag == OT_cinfix3
14145 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
14146 as_warn (_("conditional infixes are deprecated in unified syntax"));
14147
14148 inst.cond = cond->value;
14149 return opcode;
b99bd4ef
NC
14150 }
14151
c19d1205 14152 return 0;
b99bd4ef
NC
14153}
14154
c19d1205
ZW
14155void
14156md_assemble (char *str)
b99bd4ef 14157{
c19d1205
ZW
14158 char *p = str;
14159 const struct asm_opcode * opcode;
b99bd4ef 14160
c19d1205
ZW
14161 /* Align the previous label if needed. */
14162 if (last_label_seen != NULL)
b99bd4ef 14163 {
c19d1205
ZW
14164 symbol_set_frag (last_label_seen, frag_now);
14165 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14166 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14167 }
14168
c19d1205
ZW
14169 memset (&inst, '\0', sizeof (inst));
14170 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14171
c19d1205
ZW
14172 opcode = opcode_lookup (&p);
14173 if (!opcode)
b99bd4ef 14174 {
c19d1205 14175 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14176 the form alias .req reg, or a Neon .dn/.qn directive. */
14177 if (!create_register_alias (str, p)
14178 && !create_neon_reg_alias (str, p))
c19d1205 14179 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14180
b99bd4ef
NC
14181 return;
14182 }
14183
088fa78e
KH
14184 if (opcode->tag == OT_cinfix3_deprecated)
14185 as_warn (_("s suffix on comparison instruction is deprecated"));
14186
037e8744
JB
14187 /* The value which unconditional instructions should have in place of the
14188 condition field. */
14189 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14190
c19d1205 14191 if (thumb_mode)
b99bd4ef 14192 {
e74cfd16 14193 arm_feature_set variant;
8f06b2d8
PB
14194
14195 variant = cpu_variant;
14196 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14197 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14198 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14199 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14200 if (!opcode->tvariant
14201 || (thumb_mode == 1
14202 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14203 {
c19d1205 14204 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14205 return;
14206 }
c19d1205
ZW
14207 if (inst.cond != COND_ALWAYS && !unified_syntax
14208 && opcode->tencode != do_t_branch)
b99bd4ef 14209 {
c19d1205 14210 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14211 return;
14212 }
14213
076d447c
PB
14214 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14215 {
14216 /* Implicit require narrow instructions on Thumb-1. This avoids
14217 relaxation accidentally introducing Thumb-2 instructions. */
14218 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23)
14219 inst.size_req = 2;
14220 }
14221
e27ec89e
PB
14222 /* Check conditional suffixes. */
14223 if (current_it_mask)
14224 {
14225 int cond;
14226 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14227 current_it_mask <<= 1;
14228 current_it_mask &= 0x1f;
14229 /* The BKPT instruction is unconditional even in an IT block. */
14230 if (!inst.error
14231 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14232 {
14233 as_bad (_("incorrect condition in IT block"));
14234 return;
14235 }
e27ec89e
PB
14236 }
14237 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14238 {
6decc662 14239 as_bad (_("thumb conditional instruction not in IT block"));
e27ec89e
PB
14240 return;
14241 }
14242
c19d1205
ZW
14243 mapping_state (MAP_THUMB);
14244 inst.instruction = opcode->tvalue;
14245
14246 if (!parse_operands (p, opcode->operands))
14247 opcode->tencode ();
14248
e27ec89e
PB
14249 /* Clear current_it_mask at the end of an IT block. */
14250 if (current_it_mask == 0x10)
14251 current_it_mask = 0;
14252
0110f2b8 14253 if (!(inst.error || inst.relax))
b99bd4ef 14254 {
c19d1205
ZW
14255 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14256 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14257 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14258 {
c19d1205 14259 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14260 return;
14261 }
14262 }
076d447c
PB
14263
14264 /* Something has gone badly wrong if we try to relax a fixed size
14265 instruction. */
14266 assert (inst.size_req == 0 || !inst.relax);
14267
e74cfd16
PB
14268 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14269 *opcode->tvariant);
ee065d83 14270 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14271 set those bits when Thumb-2 32-bit instructions are seen. ie.
ee065d83
PB
14272 anything other than bl/blx.
14273 This is overly pessimistic for relaxable instructions. */
14274 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14275 || inst.relax)
e74cfd16
PB
14276 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14277 arm_ext_v6t2);
c19d1205 14278 }
3e9e4fcf 14279 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
14280 {
14281 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14282 if (!opcode->avariant ||
14283 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
b99bd4ef 14284 {
c19d1205
ZW
14285 as_bad (_("selected processor does not support `%s'"), str);
14286 return;
b99bd4ef 14287 }
c19d1205 14288 if (inst.size_req)
b99bd4ef 14289 {
c19d1205
ZW
14290 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14291 return;
b99bd4ef
NC
14292 }
14293
c19d1205
ZW
14294 mapping_state (MAP_ARM);
14295 inst.instruction = opcode->avalue;
14296 if (opcode->tag == OT_unconditionalF)
14297 inst.instruction |= 0xF << 28;
14298 else
14299 inst.instruction |= inst.cond << 28;
14300 inst.size = INSN_SIZE;
14301 if (!parse_operands (p, opcode->operands))
14302 opcode->aencode ();
ee065d83
PB
14303 /* Arm mode bx is marked as both v4T and v5 because it's still required
14304 on a hypothetical non-thumb v5 core. */
e74cfd16
PB
14305 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14306 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14307 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14308 else
e74cfd16
PB
14309 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14310 *opcode->avariant);
b99bd4ef 14311 }
3e9e4fcf
JB
14312 else
14313 {
14314 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14315 "-- `%s'"), str);
14316 return;
14317 }
c19d1205
ZW
14318 output_inst (str);
14319}
b99bd4ef 14320
c19d1205
ZW
14321/* Various frobbings of labels and their addresses. */
14322
14323void
14324arm_start_line_hook (void)
14325{
14326 last_label_seen = NULL;
b99bd4ef
NC
14327}
14328
c19d1205
ZW
14329void
14330arm_frob_label (symbolS * sym)
b99bd4ef 14331{
c19d1205 14332 last_label_seen = sym;
b99bd4ef 14333
c19d1205 14334 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14335
c19d1205
ZW
14336#if defined OBJ_COFF || defined OBJ_ELF
14337 ARM_SET_INTERWORK (sym, support_interwork);
14338#endif
b99bd4ef 14339
c19d1205
ZW
14340 /* Note - do not allow local symbols (.Lxxx) to be labeled
14341 as Thumb functions. This is because these labels, whilst
14342 they exist inside Thumb code, are not the entry points for
14343 possible ARM->Thumb calls. Also, these labels can be used
14344 as part of a computed goto or switch statement. eg gcc
14345 can generate code that looks like this:
b99bd4ef 14346
c19d1205
ZW
14347 ldr r2, [pc, .Laaa]
14348 lsl r3, r3, #2
14349 ldr r2, [r3, r2]
14350 mov pc, r2
b99bd4ef 14351
c19d1205
ZW
14352 .Lbbb: .word .Lxxx
14353 .Lccc: .word .Lyyy
14354 ..etc...
14355 .Laaa: .word Lbbb
b99bd4ef 14356
c19d1205
ZW
14357 The first instruction loads the address of the jump table.
14358 The second instruction converts a table index into a byte offset.
14359 The third instruction gets the jump address out of the table.
14360 The fourth instruction performs the jump.
b99bd4ef 14361
c19d1205
ZW
14362 If the address stored at .Laaa is that of a symbol which has the
14363 Thumb_Func bit set, then the linker will arrange for this address
14364 to have the bottom bit set, which in turn would mean that the
14365 address computation performed by the third instruction would end
14366 up with the bottom bit set. Since the ARM is capable of unaligned
14367 word loads, the instruction would then load the incorrect address
14368 out of the jump table, and chaos would ensue. */
14369 if (label_is_thumb_function_name
14370 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14371 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14372 {
c19d1205
ZW
14373 /* When the address of a Thumb function is taken the bottom
14374 bit of that address should be set. This will allow
14375 interworking between Arm and Thumb functions to work
14376 correctly. */
b99bd4ef 14377
c19d1205 14378 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14379
c19d1205 14380 label_is_thumb_function_name = FALSE;
b99bd4ef 14381 }
07a53e5c 14382
07a53e5c 14383 dwarf2_emit_label (sym);
b99bd4ef
NC
14384}
14385
c19d1205
ZW
14386int
14387arm_data_in_code (void)
b99bd4ef 14388{
c19d1205 14389 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14390 {
c19d1205
ZW
14391 *input_line_pointer = '/';
14392 input_line_pointer += 5;
14393 *input_line_pointer = 0;
14394 return 1;
b99bd4ef
NC
14395 }
14396
c19d1205 14397 return 0;
b99bd4ef
NC
14398}
14399
c19d1205
ZW
14400char *
14401arm_canonicalize_symbol_name (char * name)
b99bd4ef 14402{
c19d1205 14403 int len;
b99bd4ef 14404
c19d1205
ZW
14405 if (thumb_mode && (len = strlen (name)) > 5
14406 && streq (name + len - 5, "/data"))
14407 *(name + len - 5) = 0;
b99bd4ef 14408
c19d1205 14409 return name;
b99bd4ef 14410}
c19d1205
ZW
14411\f
14412/* Table of all register names defined by default. The user can
14413 define additional names with .req. Note that all register names
14414 should appear in both upper and lowercase variants. Some registers
14415 also have mixed-case names. */
b99bd4ef 14416
dcbf9037 14417#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14418#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14419#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14420#define REGSET(p,t) \
14421 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14422 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14423 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14424 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14425#define REGSETH(p,t) \
14426 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14427 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14428 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14429 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14430#define REGSET2(p,t) \
14431 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14432 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14433 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14434 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14435
c19d1205 14436static const struct reg_entry reg_names[] =
7ed4c4c5 14437{
c19d1205
ZW
14438 /* ARM integer registers. */
14439 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14440
c19d1205
ZW
14441 /* ATPCS synonyms. */
14442 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14443 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14444 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14445
c19d1205
ZW
14446 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14447 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14448 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14449
c19d1205
ZW
14450 /* Well-known aliases. */
14451 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14452 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14453
14454 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14455 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14456
14457 /* Coprocessor numbers. */
14458 REGSET(p, CP), REGSET(P, CP),
14459
14460 /* Coprocessor register numbers. The "cr" variants are for backward
14461 compatibility. */
14462 REGSET(c, CN), REGSET(C, CN),
14463 REGSET(cr, CN), REGSET(CR, CN),
14464
14465 /* FPA registers. */
14466 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14467 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14468
14469 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14470 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14471
14472 /* VFP SP registers. */
5287ad62
JB
14473 REGSET(s,VFS), REGSET(S,VFS),
14474 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
14475
14476 /* VFP DP Registers. */
5287ad62
JB
14477 REGSET(d,VFD), REGSET(D,VFD),
14478 /* Extra Neon DP registers. */
14479 REGSETH(d,VFD), REGSETH(D,VFD),
14480
14481 /* Neon QP registers. */
14482 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
14483
14484 /* VFP control registers. */
14485 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14486 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
14487 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14488 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14489 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14490 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
14491
14492 /* Maverick DSP coprocessor registers. */
14493 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14494 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14495
14496 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14497 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14498 REGDEF(dspsc,0,DSPSC),
14499
14500 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14501 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14502 REGDEF(DSPSC,0,DSPSC),
14503
14504 /* iWMMXt data registers - p0, c0-15. */
14505 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14506
14507 /* iWMMXt control registers - p1, c0-3. */
14508 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14509 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14510 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14511 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14512
14513 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14514 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14515 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14516 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14517 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14518
14519 /* XScale accumulator registers. */
14520 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14521};
14522#undef REGDEF
14523#undef REGNUM
14524#undef REGSET
7ed4c4c5 14525
c19d1205
ZW
14526/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14527 within psr_required_here. */
14528static const struct asm_psr psrs[] =
14529{
14530 /* Backward compatibility notation. Note that "all" is no longer
14531 truly all possible PSR bits. */
14532 {"all", PSR_c | PSR_f},
14533 {"flg", PSR_f},
14534 {"ctl", PSR_c},
14535
14536 /* Individual flags. */
14537 {"f", PSR_f},
14538 {"c", PSR_c},
14539 {"x", PSR_x},
14540 {"s", PSR_s},
14541 /* Combinations of flags. */
14542 {"fs", PSR_f | PSR_s},
14543 {"fx", PSR_f | PSR_x},
14544 {"fc", PSR_f | PSR_c},
14545 {"sf", PSR_s | PSR_f},
14546 {"sx", PSR_s | PSR_x},
14547 {"sc", PSR_s | PSR_c},
14548 {"xf", PSR_x | PSR_f},
14549 {"xs", PSR_x | PSR_s},
14550 {"xc", PSR_x | PSR_c},
14551 {"cf", PSR_c | PSR_f},
14552 {"cs", PSR_c | PSR_s},
14553 {"cx", PSR_c | PSR_x},
14554 {"fsx", PSR_f | PSR_s | PSR_x},
14555 {"fsc", PSR_f | PSR_s | PSR_c},
14556 {"fxs", PSR_f | PSR_x | PSR_s},
14557 {"fxc", PSR_f | PSR_x | PSR_c},
14558 {"fcs", PSR_f | PSR_c | PSR_s},
14559 {"fcx", PSR_f | PSR_c | PSR_x},
14560 {"sfx", PSR_s | PSR_f | PSR_x},
14561 {"sfc", PSR_s | PSR_f | PSR_c},
14562 {"sxf", PSR_s | PSR_x | PSR_f},
14563 {"sxc", PSR_s | PSR_x | PSR_c},
14564 {"scf", PSR_s | PSR_c | PSR_f},
14565 {"scx", PSR_s | PSR_c | PSR_x},
14566 {"xfs", PSR_x | PSR_f | PSR_s},
14567 {"xfc", PSR_x | PSR_f | PSR_c},
14568 {"xsf", PSR_x | PSR_s | PSR_f},
14569 {"xsc", PSR_x | PSR_s | PSR_c},
14570 {"xcf", PSR_x | PSR_c | PSR_f},
14571 {"xcs", PSR_x | PSR_c | PSR_s},
14572 {"cfs", PSR_c | PSR_f | PSR_s},
14573 {"cfx", PSR_c | PSR_f | PSR_x},
14574 {"csf", PSR_c | PSR_s | PSR_f},
14575 {"csx", PSR_c | PSR_s | PSR_x},
14576 {"cxf", PSR_c | PSR_x | PSR_f},
14577 {"cxs", PSR_c | PSR_x | PSR_s},
14578 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14579 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14580 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14581 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14582 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14583 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14584 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14585 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14586 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14587 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14588 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14589 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14590 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14591 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14592 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14593 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14594 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14595 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14596 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14597 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14598 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14599 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14600 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14601 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14602};
14603
62b3e311
PB
14604/* Table of V7M psr names. */
14605static const struct asm_psr v7m_psrs[] =
14606{
2b744c99
PB
14607 {"apsr", 0 }, {"APSR", 0 },
14608 {"iapsr", 1 }, {"IAPSR", 1 },
14609 {"eapsr", 2 }, {"EAPSR", 2 },
14610 {"psr", 3 }, {"PSR", 3 },
14611 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14612 {"ipsr", 5 }, {"IPSR", 5 },
14613 {"epsr", 6 }, {"EPSR", 6 },
14614 {"iepsr", 7 }, {"IEPSR", 7 },
14615 {"msp", 8 }, {"MSP", 8 },
14616 {"psp", 9 }, {"PSP", 9 },
14617 {"primask", 16}, {"PRIMASK", 16},
14618 {"basepri", 17}, {"BASEPRI", 17},
14619 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14620 {"faultmask", 19}, {"FAULTMASK", 19},
14621 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
14622};
14623
c19d1205
ZW
14624/* Table of all shift-in-operand names. */
14625static const struct asm_shift_name shift_names [] =
b99bd4ef 14626{
c19d1205
ZW
14627 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14628 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14629 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14630 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14631 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14632 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14633};
b99bd4ef 14634
c19d1205
ZW
14635/* Table of all explicit relocation names. */
14636#ifdef OBJ_ELF
14637static struct reloc_entry reloc_names[] =
14638{
14639 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14640 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14641 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14642 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14643 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14644 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14645 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14646 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14647 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14648 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14649 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14650};
14651#endif
b99bd4ef 14652
c19d1205
ZW
14653/* Table of all conditional affixes. 0xF is not defined as a condition code. */
14654static const struct asm_cond conds[] =
14655{
14656 {"eq", 0x0},
14657 {"ne", 0x1},
14658 {"cs", 0x2}, {"hs", 0x2},
14659 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14660 {"mi", 0x4},
14661 {"pl", 0x5},
14662 {"vs", 0x6},
14663 {"vc", 0x7},
14664 {"hi", 0x8},
14665 {"ls", 0x9},
14666 {"ge", 0xa},
14667 {"lt", 0xb},
14668 {"gt", 0xc},
14669 {"le", 0xd},
14670 {"al", 0xe}
14671};
bfae80f2 14672
62b3e311
PB
14673static struct asm_barrier_opt barrier_opt_names[] =
14674{
14675 { "sy", 0xf },
14676 { "un", 0x7 },
14677 { "st", 0xe },
14678 { "unst", 0x6 }
14679};
14680
c19d1205
ZW
14681/* Table of ARM-format instructions. */
14682
14683/* Macros for gluing together operand strings. N.B. In all cases
14684 other than OPS0, the trailing OP_stop comes from default
14685 zero-initialization of the unspecified elements of the array. */
14686#define OPS0() { OP_stop, }
14687#define OPS1(a) { OP_##a, }
14688#define OPS2(a,b) { OP_##a,OP_##b, }
14689#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14690#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14691#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14692#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14693
14694/* These macros abstract out the exact format of the mnemonic table and
14695 save some repeated characters. */
14696
14697/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14698#define TxCE(mnem, op, top, nops, ops, ae, te) \
14699 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 14700 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14701
14702/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14703 a T_MNEM_xyz enumerator. */
14704#define TCE(mnem, aop, top, nops, ops, ae, te) \
14705 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14706#define tCE(mnem, aop, top, nops, ops, ae, te) \
14707 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14708
14709/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14710 infix after the third character. */
14711#define TxC3(mnem, op, top, nops, ops, ae, te) \
14712 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 14713 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
14714#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14715 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14716 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14717#define TC3(mnem, aop, top, nops, ops, ae, te) \
14718 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
14719#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14720 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
14721#define tC3(mnem, aop, top, nops, ops, ae, te) \
14722 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
14723#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14724 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
14725
14726/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14727 appear in the condition table. */
14728#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14729 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 14730 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14731
14732#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14733 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14734 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14735 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14736 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14737 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14738 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14739 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14740 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14741 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14742 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14743 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14744 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14745 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14746 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14747 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14748 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14749 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14750 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14751 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14752
14753#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14754 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14755#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14756 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14757
14758/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
14759 field is still 0xE. Many of the Thumb variants can be executed
14760 conditionally, so this is checked separately. */
c19d1205
ZW
14761#define TUE(mnem, op, top, nops, ops, ae, te) \
14762 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14763 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14764
14765/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14766 condition code field. */
14767#define TUF(mnem, op, top, nops, ops, ae, te) \
14768 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14769 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14770
14771/* ARM-only variants of all the above. */
6a86118a
NC
14772#define CE(mnem, op, nops, ops, ae) \
14773 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14774
14775#define C3(mnem, op, nops, ops, ae) \
14776 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14777
e3cb604e
PB
14778/* Legacy mnemonics that always have conditional infix after the third
14779 character. */
14780#define CL(mnem, op, nops, ops, ae) \
14781 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14782 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14783
8f06b2d8
PB
14784/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14785#define cCE(mnem, op, nops, ops, ae) \
14786 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14787
e3cb604e
PB
14788/* Legacy coprocessor instructions where conditional infix and conditional
14789 suffix are ambiguous. For consistency this includes all FPA instructions,
14790 not just the potentially ambiguous ones. */
14791#define cCL(mnem, op, nops, ops, ae) \
14792 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14793 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14794
14795/* Coprocessor, takes either a suffix or a position-3 infix
14796 (for an FPA corner case). */
14797#define C3E(mnem, op, nops, ops, ae) \
14798 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14799 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 14800
6a86118a
NC
14801#define xCM_(m1, m2, m3, op, nops, ops, ae) \
14802 { #m1 #m2 #m3, OPS##nops ops, \
14803 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14804 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14805
14806#define CM(m1, m2, op, nops, ops, ae) \
14807 xCM_(m1, , m2, op, nops, ops, ae), \
14808 xCM_(m1, eq, m2, op, nops, ops, ae), \
14809 xCM_(m1, ne, m2, op, nops, ops, ae), \
14810 xCM_(m1, cs, m2, op, nops, ops, ae), \
14811 xCM_(m1, hs, m2, op, nops, ops, ae), \
14812 xCM_(m1, cc, m2, op, nops, ops, ae), \
14813 xCM_(m1, ul, m2, op, nops, ops, ae), \
14814 xCM_(m1, lo, m2, op, nops, ops, ae), \
14815 xCM_(m1, mi, m2, op, nops, ops, ae), \
14816 xCM_(m1, pl, m2, op, nops, ops, ae), \
14817 xCM_(m1, vs, m2, op, nops, ops, ae), \
14818 xCM_(m1, vc, m2, op, nops, ops, ae), \
14819 xCM_(m1, hi, m2, op, nops, ops, ae), \
14820 xCM_(m1, ls, m2, op, nops, ops, ae), \
14821 xCM_(m1, ge, m2, op, nops, ops, ae), \
14822 xCM_(m1, lt, m2, op, nops, ops, ae), \
14823 xCM_(m1, gt, m2, op, nops, ops, ae), \
14824 xCM_(m1, le, m2, op, nops, ops, ae), \
14825 xCM_(m1, al, m2, op, nops, ops, ae)
14826
14827#define UE(mnem, op, nops, ops, ae) \
14828 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14829
14830#define UF(mnem, op, nops, ops, ae) \
14831 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14832
5287ad62
JB
14833/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14834 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14835 use the same encoding function for each. */
14836#define NUF(mnem, op, nops, ops, enc) \
14837 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14838 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14839
14840/* Neon data processing, version which indirects through neon_enc_tab for
14841 the various overloaded versions of opcodes. */
14842#define nUF(mnem, op, nops, ops, enc) \
14843 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14844 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14845
14846/* Neon insn with conditional suffix for the ARM version, non-overloaded
14847 version. */
037e8744
JB
14848#define NCE_tag(mnem, op, nops, ops, enc, tag) \
14849 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
14850 THUMB_VARIANT, do_##enc, do_##enc }
14851
037e8744
JB
14852#define NCE(mnem, op, nops, ops, enc) \
14853 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14854
14855#define NCEF(mnem, op, nops, ops, enc) \
14856 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14857
5287ad62 14858/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
14859#define nCE_tag(mnem, op, nops, ops, enc, tag) \
14860 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
14861 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14862
037e8744
JB
14863#define nCE(mnem, op, nops, ops, enc) \
14864 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14865
14866#define nCEF(mnem, op, nops, ops, enc) \
14867 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14868
c19d1205
ZW
14869#define do_0 0
14870
14871/* Thumb-only, unconditional. */
14872#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14873
c19d1205 14874static const struct asm_opcode insns[] =
bfae80f2 14875{
e74cfd16
PB
14876#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14877#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14878 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14879 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14880 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14881 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14882 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14883 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
14884 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14885 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
14886 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14887 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14888 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14889 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14890 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14891 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14892 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14893 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14894
14895 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14896 for setting PSR flag bits. They are obsolete in V6 and do not
14897 have Thumb equivalents. */
14898 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14899 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14900 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 14901 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 14902 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 14903 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 14904 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14905 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14906 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
14907
14908 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14909 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14910 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14911 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14912
4962c51a
MS
14913 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14914 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14915 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14916 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 14917
f5208ef2 14918 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14919 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14920 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 14921 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14922 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14923 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14924
14925 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 14926 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 14927 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 14928 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 14929
c19d1205 14930 /* Pseudo ops. */
e9f89963 14931 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
14932 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14933 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
14934
14935 /* Thumb-compatibility pseudo ops. */
14936 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14937 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14938 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14939 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14940 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 14941 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
14942 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14943 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14944 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14945 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14946 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14947 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14948
16a4cf17
PB
14949 /* These may simplify to neg. */
14950 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14951 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14952
c19d1205 14953#undef THUMB_VARIANT
e74cfd16 14954#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 14955 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
14956
14957 /* V1 instructions with no Thumb analogue prior to V6T2. */
14958#undef THUMB_VARIANT
e74cfd16 14959#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 14960 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14961 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14962 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
14963
14964 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14965 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14966 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14967 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14968
9c3c69f2
PB
14969 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14970 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 14971
9c3c69f2
PB
14972 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14973 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14974
14975 /* V1 instructions with no Thumb analogue at all. */
14976 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14977 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14978
14979 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14980 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14981 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14982 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14983 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14984 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14985 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14986 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14987
14988#undef ARM_VARIANT
e74cfd16 14989#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 14990#undef THUMB_VARIANT
e74cfd16 14991#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14992 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14993 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14994
14995#undef THUMB_VARIANT
e74cfd16 14996#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14997 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14998 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14999
15000 /* Generic coprocessor instructions. */
15001 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
15002 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15003 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15004 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15005 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15006 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15007 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15008
15009#undef ARM_VARIANT
e74cfd16 15010#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
15011 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15012 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15013
15014#undef ARM_VARIANT
e74cfd16 15015#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
037e8744
JB
15016 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15017 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
15018
15019#undef ARM_VARIANT
e74cfd16 15020#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
c19d1205
ZW
15021 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15022 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15023 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15024 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15025 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15026 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15027 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15028 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15029
15030#undef ARM_VARIANT
e74cfd16 15031#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 15032#undef THUMB_VARIANT
e74cfd16 15033#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
15034 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15035 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15036 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15037 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15038 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15039 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
15040
15041#undef ARM_VARIANT
e74cfd16 15042#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
15043 /* ARM Architecture 4T. */
15044 /* Note: bx (and blx) are required on V5, even if the processor does
15045 not support Thumb. */
15046 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15047
15048#undef ARM_VARIANT
e74cfd16 15049#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 15050#undef THUMB_VARIANT
e74cfd16 15051#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
15052 /* Note: blx has 2 variants; the .value coded here is for
15053 BLX(2). Only this variant has conditional execution. */
15054 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15055 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15056
15057#undef THUMB_VARIANT
e74cfd16 15058#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15059 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
15060 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15061 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15062 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15063 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15064 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15065 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15066 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15067
15068#undef ARM_VARIANT
e74cfd16 15069#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
15070 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15071 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15072 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15073 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15074
15075 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15076 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15077
15078 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15079 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15080 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15081 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15082
15083 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15084 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15085 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15086 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15087
15088 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15089 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15090
15091 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15092 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15093 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15094 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15095
15096#undef ARM_VARIANT
e74cfd16 15097#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 15098 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
79d49516
PB
15099 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15100 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
15101
15102 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15103 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15104
15105#undef ARM_VARIANT
e74cfd16 15106#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
15107 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15108
15109#undef ARM_VARIANT
e74cfd16 15110#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 15111#undef THUMB_VARIANT
e74cfd16 15112#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
15113 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15114 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15115 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15116 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15117 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15118 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15119 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15120 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15121 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15122 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15123
15124#undef THUMB_VARIANT
e74cfd16 15125#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15126 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
91568d08 15127 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
c19d1205
ZW
15128 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15129 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
15130
15131 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15132 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15133
15134/* ARM V6 not included in V7M (eg. integer SIMD). */
15135#undef THUMB_VARIANT
15136#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 15137 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
15138 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15139 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15140 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15141 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15142 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15143 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15144 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15145 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15146 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15147 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15148 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15149 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15150 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15151 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15152 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15153 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15154 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15155 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15156 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15157 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15158 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15159 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15160 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15161 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15162 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15163 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15164 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15165 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15166 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15167 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15168 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15169 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15170 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15171 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15172 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15173 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15174 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15175 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15176 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15177 UF(rfeib, 9900a00, 1, (RRw), rfe),
15178 UF(rfeda, 8100a00, 1, (RRw), rfe),
15179 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15180 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15181 UF(rfefa, 9900a00, 1, (RRw), rfe),
15182 UF(rfeea, 8100a00, 1, (RRw), rfe),
15183 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15184 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15185 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15186 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15187 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15188 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15189 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15190 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15191 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15192 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15193 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15194 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15195 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15196 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15197 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15198 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15199 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15200 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15201 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15202 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15203 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15204 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15205 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15206 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15207 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15208 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15209 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15210 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15211 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15212 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15213 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15214 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205 15215 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
c19d1205
ZW
15216 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15217 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15218 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15219 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15220
15221#undef ARM_VARIANT
e74cfd16 15222#define ARM_VARIANT &arm_ext_v6k
c19d1205 15223#undef THUMB_VARIANT
e74cfd16 15224#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15225 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15226 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15227 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15228 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15229
ebdca51a
PB
15230#undef THUMB_VARIANT
15231#define THUMB_VARIANT &arm_ext_v6_notm
15232 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15233 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15234
c19d1205 15235#undef THUMB_VARIANT
e74cfd16 15236#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15237 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15238 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15239 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15240 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15241 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15242
15243#undef ARM_VARIANT
e74cfd16 15244#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15245 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15246
15247#undef ARM_VARIANT
e74cfd16 15248#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15249 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15250 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15251 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15252 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15253
15254 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15255 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15256 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15257 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15258
15259 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15260 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15261 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15262 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15263
25fe350b
MS
15264 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15265 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15266 /* ARM does not really have an IT instruction, so always allow it. */
15267#undef ARM_VARIANT
15268#define ARM_VARIANT &arm_ext_v1
c19d1205
ZW
15269 TUE(it, 0, bf08, 1, (COND), it, t_it),
15270 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15271 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15272 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15273 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15274 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15275 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15276 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15277 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15278 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15279 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15280 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15281 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15282 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15283 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15284
92e90b6e
PB
15285 /* Thumb2 only instructions. */
15286#undef ARM_VARIANT
e74cfd16 15287#define ARM_VARIANT NULL
92e90b6e
PB
15288
15289 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15290 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15291 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15292 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15293
62b3e311
PB
15294 /* Thumb-2 hardware division instructions (R and M profiles only). */
15295#undef THUMB_VARIANT
15296#define THUMB_VARIANT &arm_ext_div
15297 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15298 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15299
15300 /* ARM V7 instructions. */
15301#undef ARM_VARIANT
15302#define ARM_VARIANT &arm_ext_v7
15303#undef THUMB_VARIANT
15304#define THUMB_VARIANT &arm_ext_v7
15305 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15306 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15307 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15308 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15309 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15310
c19d1205 15311#undef ARM_VARIANT
e74cfd16 15312#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15313 cCE(wfs, e200110, 1, (RR), rd),
15314 cCE(rfs, e300110, 1, (RR), rd),
15315 cCE(wfc, e400110, 1, (RR), rd),
15316 cCE(rfc, e500110, 1, (RR), rd),
15317
4962c51a
MS
15318 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15319 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15320 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15321 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15322
4962c51a
MS
15323 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15324 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15325 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15326 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15327
15328 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15329 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15330 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15331 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15332 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15333 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15334 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15335 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15336 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15337 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15338 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15339 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15340
15341 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15342 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15343 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15344 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15345 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15346 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15347 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15348 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15349 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15350 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15351 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15352 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15353
15354 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15355 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15356 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15357 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15358 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15359 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15360 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15361 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15362 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15363 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15364 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15365 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15366
15367 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15368 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15369 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15370 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15371 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15372 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15373 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15374 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15375 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15376 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15377 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15378 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15379
15380 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15381 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15382 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15383 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15384 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15385 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15386 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15387 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15388 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15389 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15390 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15391 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15392
15393 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15394 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15395 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15396 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15397 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15398 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15399 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15400 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15401 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15402 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15403 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15404 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15405
15406 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15407 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15408 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15409 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15410 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15411 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15412 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15413 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15414 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15415 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15416 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15417 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15418
15419 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15420 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15421 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15422 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15423 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15424 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15425 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15426 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15427 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15428 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15429 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15430 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15431
15432 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15433 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15434 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15435 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15436 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15437 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15438 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15439 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15440 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15441 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15442 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15443 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15444
15445 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15446 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15447 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15448 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15449 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15450 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15451 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15452 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15453 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15454 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15455 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15456 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15457
15458 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15459 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15460 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15461 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15462 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15463 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15464 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15465 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15466 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15467 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15468 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15469 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15470
15471 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15472 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15473 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15474 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15475 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15476 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15477 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15478 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15479 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15480 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15481 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15482 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15483
15484 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15485 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15486 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15487 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15488 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15489 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15490 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15491 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15492 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15493 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15494 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15495 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15496
15497 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15498 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15499 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15500 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15501 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15502 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15503 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15504 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15505 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15506 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15507 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15508 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15509
15510 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15511 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15512 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15513 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15514 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15515 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15516 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15517 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15518 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15519 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15520 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15521 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15522
15523 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15524 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15525 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15526 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15527 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15528 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15529 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15530 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15531 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15532 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15533 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15534 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15535
15536 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15537 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15538 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15539 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15540 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15541 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15542 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15543 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15544 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15545 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15546 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15547 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15548
15549 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15550 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15551 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15552 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15553 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15554 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15555 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15556 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15557 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15558 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15559 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15560 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15561
15562 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15563 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15564 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15565 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15566 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15567 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15568 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15569 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15570 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15571 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15572 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15573 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15574
15575 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15576 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15577 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15578 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15579 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15580 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15581 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15582 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15583 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15584 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15585 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15586 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15587
15588 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15589 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15590 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15591 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15592 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15593 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15594 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15595 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15596 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15597 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15598 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15599 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15600
15601 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15602 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15603 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15604 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15605 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15606 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15607 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15608 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15609 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15610 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15611 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15612 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15613
15614 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15615 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15616 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15617 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15618 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15619 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15620 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15621 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15622 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15623 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15624 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15625 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15626
15627 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15628 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15629 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15630 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15631 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15632 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15633 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15634 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15635 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15636 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15637 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15638 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15639
15640 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15641 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15642 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15643 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15644 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15645 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15646 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15647 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15648 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15649 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15650 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15651 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15652
15653 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15654 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15655 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15656 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15657 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15658 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15659 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15660 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15661 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15662 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15663 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15664 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15665
15666 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15670 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15671 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15672 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15673 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15677 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15678
15679 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15683 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15684 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15685 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15686 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15690 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15691
15692 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15696 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15697 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15698 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15699 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15700 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15701 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15702 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15703 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
15704
15705 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 15706 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 15707 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
15708 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15709
e3cb604e
PB
15710 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15711 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15712 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15713 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15714 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15715 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15716 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15717 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15718 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15719 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15720 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15721 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 15722
c19d1205
ZW
15723 /* The implementation of the FIX instruction is broken on some
15724 assemblers, in that it accepts a precision specifier as well as a
15725 rounding specifier, despite the fact that this is meaningless.
15726 To be more compatible, we accept it as well, though of course it
15727 does not set any bits. */
8f06b2d8 15728 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
15729 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15730 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15731 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15732 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15733 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15734 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15735 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15736 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15737 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15738 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15739 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15740 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 15741
c19d1205
ZW
15742 /* Instructions that were new with the real FPA, call them V2. */
15743#undef ARM_VARIANT
e74cfd16 15744#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 15745 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15746 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15747 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 15748 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15749 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15750 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
15751
15752#undef ARM_VARIANT
e74cfd16 15753#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 15754 /* Moves and type conversions. */
8f06b2d8
PB
15755 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15756 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15757 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15758 cCE(fmstat, ef1fa10, 0, (), noargs),
15759 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15760 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15761 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15762 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15763 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15764 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15765 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15766 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
15767
15768 /* Memory operations. */
4962c51a
MS
15769 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15770 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
15771 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15772 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15773 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15774 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15775 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15776 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15777 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15778 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15779 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15780 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15781 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15782 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15783 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15784 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15785 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15786 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 15787
c19d1205 15788 /* Monadic operations. */
8f06b2d8
PB
15789 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15790 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15791 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
15792
15793 /* Dyadic operations. */
8f06b2d8
PB
15794 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15795 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15796 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15797 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15798 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15799 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15800 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15801 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15802 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 15803
c19d1205 15804 /* Comparisons. */
8f06b2d8
PB
15805 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15806 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15807 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15808 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 15809
c19d1205 15810#undef ARM_VARIANT
e74cfd16 15811#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 15812 /* Moves and type conversions. */
5287ad62 15813 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
15814 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15815 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
15816 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15817 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15818 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15819 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
15820 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15821 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15822 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15823 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15824 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15825 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
15826
15827 /* Memory operations. */
4962c51a
MS
15828 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15829 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
15830 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15831 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15832 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15833 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15834 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15835 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15836 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15837 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 15838
c19d1205 15839 /* Monadic operations. */
5287ad62
JB
15840 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15841 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15842 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
15843
15844 /* Dyadic operations. */
5287ad62
JB
15845 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15846 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15847 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15848 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15849 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15850 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15851 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15852 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15853 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 15854
c19d1205 15855 /* Comparisons. */
5287ad62
JB
15856 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15857 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15858 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15859 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
15860
15861#undef ARM_VARIANT
e74cfd16 15862#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
15863 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15864 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
15865 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15866 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15867
037e8744
JB
15868/* Instructions which may belong to either the Neon or VFP instruction sets.
15869 Individual encoder functions perform additional architecture checks. */
15870#undef ARM_VARIANT
15871#define ARM_VARIANT &fpu_vfp_ext_v1xd
15872#undef THUMB_VARIANT
15873#define THUMB_VARIANT &fpu_vfp_ext_v1xd
15874 /* These mnemonics are unique to VFP. */
15875 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15876 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15877 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15878 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15879 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15880 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15881 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15882 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15883 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15884 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15885
15886 /* Mnemonics shared by Neon and VFP. */
15887 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15888 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15889 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15890
15891 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15892 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15893
15894 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15895 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15896
15897 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15898 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15899 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15900 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15901 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15902 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
15903 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15904 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
15905
15906 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15907
15908 /* NOTE: All VMOV encoding is special-cased! */
15909 NCE(vmov, 0, 1, (VMOV), neon_mov),
15910 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15911
5287ad62
JB
15912#undef THUMB_VARIANT
15913#define THUMB_VARIANT &fpu_neon_ext_v1
15914#undef ARM_VARIANT
15915#define ARM_VARIANT &fpu_neon_ext_v1
15916 /* Data processing with three registers of the same length. */
15917 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15918 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15919 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15920 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15921 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15922 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15923 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15924 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15925 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15926 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15927 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15928 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15929 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15930 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
15931 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15932 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15933 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15934 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
15935 /* If not immediate, fall back to neon_dyadic_i64_su.
15936 shl_imm should accept I8 I16 I32 I64,
15937 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15938 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15939 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15940 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15941 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15942 /* Logic ops, types optional & ignored. */
15943 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15944 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15945 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15946 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15947 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15948 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15949 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15950 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15951 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15952 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15953 /* Bitfield ops, untyped. */
15954 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15955 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15956 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15957 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15958 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15959 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15960 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15961 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15962 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15963 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15964 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15965 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15966 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15967 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15968 back to neon_dyadic_if_su. */
15969 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15970 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15971 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15972 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15973 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15974 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15975 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15976 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 15977 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
15978 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15979 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15980 /* As above, D registers only. */
15981 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15982 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15983 /* Int and float variants, signedness unimportant. */
5287ad62 15984 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
15985 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15986 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15987 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 15988 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
15989 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15990 /* vtst takes sizes 8, 16, 32. */
15991 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15992 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15993 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 15994 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
15995 /* VQD{R}MULH takes S16 S32. */
15996 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15997 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15998 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15999 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16000 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16001 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16002 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16003 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
16004 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16005 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16006 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16007 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
16008 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16009 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16010 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16011 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16012
16013 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 16014 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
16015 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16016
16017 /* Data processing with two registers and a shift amount. */
16018 /* Right shifts, and variants with rounding.
16019 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16020 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16021 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16022 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16023 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16024 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16025 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16026 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16027 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16028 /* Shift and insert. Sizes accepted 8 16 32 64. */
16029 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16030 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16031 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16032 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16033 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16034 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16035 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16036 /* Right shift immediate, saturating & narrowing, with rounding variants.
16037 Types accepted S16 S32 S64 U16 U32 U64. */
16038 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16039 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16040 /* As above, unsigned. Types accepted S16 S32 S64. */
16041 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16042 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16043 /* Right shift narrowing. Types accepted I16 I32 I64. */
16044 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16045 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16046 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16047 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16048 /* CVT with optional immediate for fixed-point variant. */
037e8744 16049 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 16050
5287ad62
JB
16051 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16052 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16053
16054 /* Data processing, three registers of different lengths. */
16055 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16056 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16057 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16058 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16059 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16060 /* If not scalar, fall back to neon_dyadic_long.
16061 Vector types as above, scalar types S16 S32 U16 U32. */
16062 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16063 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16064 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16065 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16066 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16067 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16068 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16069 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16070 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16071 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16072 /* Saturating doubling multiplies. Types S16 S32. */
16073 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16074 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16075 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16076 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16077 S16 S32 U16 U32. */
16078 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16079
16080 /* Extract. Size 8. */
3b8d421e
PB
16081 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16082 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
16083
16084 /* Two registers, miscellaneous. */
16085 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16086 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16087 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16088 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16089 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16090 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16091 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16092 /* Vector replicate. Sizes 8 16 32. */
16093 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16094 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16095 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16096 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16097 /* VMOVN. Types I16 I32 I64. */
16098 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16099 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16100 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16101 /* VQMOVUN. Types S16 S32 S64. */
16102 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16103 /* VZIP / VUZP. Sizes 8 16 32. */
16104 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16105 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16106 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16107 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16108 /* VQABS / VQNEG. Types S8 S16 S32. */
16109 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16110 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16111 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16112 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16113 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16114 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16115 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16116 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16117 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16118 /* Reciprocal estimates. Types U32 F32. */
16119 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16120 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16121 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16122 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16123 /* VCLS. Types S8 S16 S32. */
16124 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16125 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16126 /* VCLZ. Types I8 I16 I32. */
16127 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16128 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16129 /* VCNT. Size 8. */
16130 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16131 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16132 /* Two address, untyped. */
16133 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16134 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16135 /* VTRN. Sizes 8 16 32. */
16136 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16137 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16138
16139 /* Table lookup. Size 8. */
16140 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16141 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16142
b7fc2769
JB
16143#undef THUMB_VARIANT
16144#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16145#undef ARM_VARIANT
16146#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
16147 /* Neon element/structure load/store. */
16148 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16149 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16150 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16151 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16152 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16153 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16154 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16155 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16156
16157#undef THUMB_VARIANT
16158#define THUMB_VARIANT &fpu_vfp_ext_v3
16159#undef ARM_VARIANT
16160#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
16161 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16162 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16163 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16164 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16165 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16166 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16167 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16168 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16169 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16170 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16171 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16172 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16173 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16174 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16175 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16176 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16177 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16178 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 16179
5287ad62 16180#undef THUMB_VARIANT
c19d1205 16181#undef ARM_VARIANT
e74cfd16 16182#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
16183 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16184 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16185 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16186 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16187 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16188 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16189 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16190 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16191
16192#undef ARM_VARIANT
e74cfd16 16193#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16194 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16195 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16196 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16197 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16198 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16199 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16200 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16201 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16202 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16203 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16204 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16205 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16206 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16207 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16208 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16209 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16210 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16211 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16212 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16213 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16214 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16215 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16216 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16217 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16218 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16219 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16220 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16221 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16222 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16223 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16224 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16225 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16226 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16227 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16228 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16229 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16230 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16231 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16232 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16233 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16234 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16235 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16236 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16237 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16238 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16239 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16240 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16241 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16242 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16243 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16244 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16245 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16246 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16247 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16248 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16249 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16250 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16251 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16252 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16253 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16254 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16255 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16256 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16257 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16258 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16259 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16260 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16261 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16262 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16263 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16264 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16265 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16266 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16267 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16268 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16269 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16270 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16271 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16272 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16273 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16274 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16275 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16276 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16277 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16278 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16279 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16280 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16281 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16282 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16283 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16284 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16285 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16286 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16287 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16288 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16289 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16290 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16291 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16292 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16293 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16294 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16295 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16296 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16297 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16298 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16299 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16300 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16301 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16302 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16303 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16304 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16305 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16306 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16307 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16308 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16309 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16310 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16311 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16312 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16313 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16314 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16315 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16316 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16317 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16318 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16319 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16320 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16321 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16322 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16323 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16324 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16325 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16326 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16327 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16328 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16329 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16330 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16331 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16332 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16333 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16334 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16335 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16336 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16337 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16338 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16339 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16340 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16341 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16342 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16343 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16344 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16345 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16346 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16347 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16348 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16349 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16350 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16351 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16352 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16353 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16354 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16355 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16356
2d447fca
JM
16357#undef ARM_VARIANT
16358#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16359 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16360 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16361 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16362 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16363 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16364 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16365 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16366 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16367 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16368 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16369 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16370 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16371 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16372 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16373 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16374 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16375 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16376 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16377 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16378 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16379 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16380 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16381 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16382 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16383 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16384 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16385 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16386 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16387 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16388 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16392 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16393 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16394 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16395 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16396 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16397 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16398 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16402 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16403 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16404 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16405 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16406 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16407 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16408 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16410 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16411 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16412 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16413 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16414 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16415 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16416
c19d1205 16417#undef ARM_VARIANT
e74cfd16 16418#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
16419 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16420 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16421 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16422 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16423 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16424 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16425 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16426 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
16427 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16428 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16429 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16430 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16431 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16432 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16433 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16434 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16435 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16436 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16437 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16438 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16439 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16440 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16441 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16442 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16443 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16444 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16445 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16446 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16447 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16448 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16449 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16450 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16451 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16452 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16453 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16454 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16455 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16456 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16457 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16458 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16459 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16460 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16461 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16462 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16463 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16464 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16465 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16466 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16467 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16468 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16469 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16470 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16471 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16472 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16473 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16474 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16475 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16476 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16477 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16478 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16479 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16480 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16481 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16482 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16483 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16484 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16485 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16486 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16487 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16488 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16489 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16490 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16491 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16492 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16493 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16494 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
16495};
16496#undef ARM_VARIANT
16497#undef THUMB_VARIANT
16498#undef TCE
16499#undef TCM
16500#undef TUE
16501#undef TUF
16502#undef TCC
8f06b2d8 16503#undef cCE
e3cb604e
PB
16504#undef cCL
16505#undef C3E
c19d1205
ZW
16506#undef CE
16507#undef CM
16508#undef UE
16509#undef UF
16510#undef UT
5287ad62
JB
16511#undef NUF
16512#undef nUF
16513#undef NCE
16514#undef nCE
c19d1205
ZW
16515#undef OPS0
16516#undef OPS1
16517#undef OPS2
16518#undef OPS3
16519#undef OPS4
16520#undef OPS5
16521#undef OPS6
16522#undef do_0
16523\f
16524/* MD interface: bits in the object file. */
bfae80f2 16525
c19d1205
ZW
16526/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16527 for use in the a.out file, and stores them in the array pointed to by buf.
16528 This knows about the endian-ness of the target machine and does
16529 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16530 2 (short) and 4 (long) Floating numbers are put out as a series of
16531 LITTLENUMS (shorts, here at least). */
b99bd4ef 16532
c19d1205
ZW
16533void
16534md_number_to_chars (char * buf, valueT val, int n)
16535{
16536 if (target_big_endian)
16537 number_to_chars_bigendian (buf, val, n);
16538 else
16539 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
16540}
16541
c19d1205
ZW
16542static valueT
16543md_chars_to_number (char * buf, int n)
bfae80f2 16544{
c19d1205
ZW
16545 valueT result = 0;
16546 unsigned char * where = (unsigned char *) buf;
bfae80f2 16547
c19d1205 16548 if (target_big_endian)
b99bd4ef 16549 {
c19d1205
ZW
16550 while (n--)
16551 {
16552 result <<= 8;
16553 result |= (*where++ & 255);
16554 }
b99bd4ef 16555 }
c19d1205 16556 else
b99bd4ef 16557 {
c19d1205
ZW
16558 while (n--)
16559 {
16560 result <<= 8;
16561 result |= (where[n] & 255);
16562 }
bfae80f2 16563 }
b99bd4ef 16564
c19d1205 16565 return result;
bfae80f2 16566}
b99bd4ef 16567
c19d1205 16568/* MD interface: Sections. */
b99bd4ef 16569
0110f2b8
PB
16570/* Estimate the size of a frag before relaxing. Assume everything fits in
16571 2 bytes. */
16572
c19d1205 16573int
0110f2b8 16574md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
16575 segT segtype ATTRIBUTE_UNUSED)
16576{
0110f2b8
PB
16577 fragp->fr_var = 2;
16578 return 2;
16579}
16580
16581/* Convert a machine dependent frag. */
16582
16583void
16584md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16585{
16586 unsigned long insn;
16587 unsigned long old_op;
16588 char *buf;
16589 expressionS exp;
16590 fixS *fixp;
16591 int reloc_type;
16592 int pc_rel;
16593 int opcode;
16594
16595 buf = fragp->fr_literal + fragp->fr_fix;
16596
16597 old_op = bfd_get_16(abfd, buf);
16598 if (fragp->fr_symbol) {
16599 exp.X_op = O_symbol;
16600 exp.X_add_symbol = fragp->fr_symbol;
16601 } else {
16602 exp.X_op = O_constant;
16603 }
16604 exp.X_add_number = fragp->fr_offset;
16605 opcode = fragp->fr_subtype;
16606 switch (opcode)
16607 {
16608 case T_MNEM_ldr_pc:
16609 case T_MNEM_ldr_pc2:
16610 case T_MNEM_ldr_sp:
16611 case T_MNEM_str_sp:
16612 case T_MNEM_ldr:
16613 case T_MNEM_ldrb:
16614 case T_MNEM_ldrh:
16615 case T_MNEM_str:
16616 case T_MNEM_strb:
16617 case T_MNEM_strh:
16618 if (fragp->fr_var == 4)
16619 {
16620 insn = THUMB_OP32(opcode);
16621 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16622 {
16623 insn |= (old_op & 0x700) << 4;
16624 }
16625 else
16626 {
16627 insn |= (old_op & 7) << 12;
16628 insn |= (old_op & 0x38) << 13;
16629 }
16630 insn |= 0x00000c00;
16631 put_thumb32_insn (buf, insn);
16632 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16633 }
16634 else
16635 {
16636 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16637 }
16638 pc_rel = (opcode == T_MNEM_ldr_pc2);
16639 break;
16640 case T_MNEM_adr:
16641 if (fragp->fr_var == 4)
16642 {
16643 insn = THUMB_OP32 (opcode);
16644 insn |= (old_op & 0xf0) << 4;
16645 put_thumb32_insn (buf, insn);
16646 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16647 }
16648 else
16649 {
16650 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16651 exp.X_add_number -= 4;
16652 }
16653 pc_rel = 1;
16654 break;
16655 case T_MNEM_mov:
16656 case T_MNEM_movs:
16657 case T_MNEM_cmp:
16658 case T_MNEM_cmn:
16659 if (fragp->fr_var == 4)
16660 {
16661 int r0off = (opcode == T_MNEM_mov
16662 || opcode == T_MNEM_movs) ? 0 : 8;
16663 insn = THUMB_OP32 (opcode);
16664 insn = (insn & 0xe1ffffff) | 0x10000000;
16665 insn |= (old_op & 0x700) << r0off;
16666 put_thumb32_insn (buf, insn);
16667 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16668 }
16669 else
16670 {
16671 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16672 }
16673 pc_rel = 0;
16674 break;
16675 case T_MNEM_b:
16676 if (fragp->fr_var == 4)
16677 {
16678 insn = THUMB_OP32(opcode);
16679 put_thumb32_insn (buf, insn);
16680 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16681 }
16682 else
16683 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16684 pc_rel = 1;
16685 break;
16686 case T_MNEM_bcond:
16687 if (fragp->fr_var == 4)
16688 {
16689 insn = THUMB_OP32(opcode);
16690 insn |= (old_op & 0xf00) << 14;
16691 put_thumb32_insn (buf, insn);
16692 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16693 }
16694 else
16695 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16696 pc_rel = 1;
16697 break;
16698 case T_MNEM_add_sp:
16699 case T_MNEM_add_pc:
16700 case T_MNEM_inc_sp:
16701 case T_MNEM_dec_sp:
16702 if (fragp->fr_var == 4)
16703 {
16704 /* ??? Choose between add and addw. */
16705 insn = THUMB_OP32 (opcode);
16706 insn |= (old_op & 0xf0) << 4;
16707 put_thumb32_insn (buf, insn);
16805f35
PB
16708 if (opcode == T_MNEM_add_pc)
16709 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16710 else
16711 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
16712 }
16713 else
16714 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16715 pc_rel = 0;
16716 break;
16717
16718 case T_MNEM_addi:
16719 case T_MNEM_addis:
16720 case T_MNEM_subi:
16721 case T_MNEM_subis:
16722 if (fragp->fr_var == 4)
16723 {
16724 insn = THUMB_OP32 (opcode);
16725 insn |= (old_op & 0xf0) << 4;
16726 insn |= (old_op & 0xf) << 16;
16727 put_thumb32_insn (buf, insn);
16805f35
PB
16728 if (insn & (1 << 20))
16729 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16730 else
16731 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
16732 }
16733 else
16734 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16735 pc_rel = 0;
16736 break;
16737 default:
16738 abort();
16739 }
16740 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16741 reloc_type);
16742 fixp->fx_file = fragp->fr_file;
16743 fixp->fx_line = fragp->fr_line;
16744 fragp->fr_fix += fragp->fr_var;
16745}
16746
16747/* Return the size of a relaxable immediate operand instruction.
16748 SHIFT and SIZE specify the form of the allowable immediate. */
16749static int
16750relax_immediate (fragS *fragp, int size, int shift)
16751{
16752 offsetT offset;
16753 offsetT mask;
16754 offsetT low;
16755
16756 /* ??? Should be able to do better than this. */
16757 if (fragp->fr_symbol)
16758 return 4;
16759
16760 low = (1 << shift) - 1;
16761 mask = (1 << (shift + size)) - (1 << shift);
16762 offset = fragp->fr_offset;
16763 /* Force misaligned offsets to 32-bit variant. */
16764 if (offset & low)
5e77afaa 16765 return 4;
0110f2b8
PB
16766 if (offset & ~mask)
16767 return 4;
16768 return 2;
16769}
16770
5e77afaa
PB
16771/* Get the address of a symbol during relaxation. */
16772static addressT
16773relaxed_symbol_addr(fragS *fragp, long stretch)
16774{
16775 fragS *sym_frag;
16776 addressT addr;
16777 symbolS *sym;
16778
16779 sym = fragp->fr_symbol;
16780 sym_frag = symbol_get_frag (sym);
16781 know (S_GET_SEGMENT (sym) != absolute_section
16782 || sym_frag == &zero_address_frag);
16783 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16784
16785 /* If frag has yet to be reached on this pass, assume it will
16786 move by STRETCH just as we did. If this is not so, it will
16787 be because some frag between grows, and that will force
16788 another pass. */
16789
16790 if (stretch != 0
16791 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
16792 {
16793 fragS *f;
16794
16795 /* Adjust stretch for any alignment frag. Note that if have
16796 been expanding the earlier code, the symbol may be
16797 defined in what appears to be an earlier frag. FIXME:
16798 This doesn't handle the fr_subtype field, which specifies
16799 a maximum number of bytes to skip when doing an
16800 alignment. */
16801 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16802 {
16803 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16804 {
16805 if (stretch < 0)
16806 stretch = - ((- stretch)
16807 & ~ ((1 << (int) f->fr_offset) - 1));
16808 else
16809 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16810 if (stretch == 0)
16811 break;
16812 }
16813 }
16814 if (f != NULL)
16815 addr += stretch;
16816 }
5e77afaa
PB
16817
16818 return addr;
16819}
16820
0110f2b8
PB
16821/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16822 load. */
16823static int
5e77afaa 16824relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
16825{
16826 addressT addr;
16827 offsetT val;
16828
16829 /* Assume worst case for symbols not known to be in the same section. */
16830 if (!S_IS_DEFINED(fragp->fr_symbol)
16831 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16832 return 4;
16833
5e77afaa 16834 val = relaxed_symbol_addr(fragp, stretch);
0110f2b8
PB
16835 addr = fragp->fr_address + fragp->fr_fix;
16836 addr = (addr + 4) & ~3;
5e77afaa 16837 /* Force misaligned targets to 32-bit variant. */
0110f2b8 16838 if (val & 3)
5e77afaa 16839 return 4;
0110f2b8
PB
16840 val -= addr;
16841 if (val < 0 || val > 1020)
16842 return 4;
16843 return 2;
16844}
16845
16846/* Return the size of a relaxable add/sub immediate instruction. */
16847static int
16848relax_addsub (fragS *fragp, asection *sec)
16849{
16850 char *buf;
16851 int op;
16852
16853 buf = fragp->fr_literal + fragp->fr_fix;
16854 op = bfd_get_16(sec->owner, buf);
16855 if ((op & 0xf) == ((op >> 4) & 0xf))
16856 return relax_immediate (fragp, 8, 0);
16857 else
16858 return relax_immediate (fragp, 3, 0);
16859}
16860
16861
16862/* Return the size of a relaxable branch instruction. BITS is the
16863 size of the offset field in the narrow instruction. */
16864
16865static int
5e77afaa 16866relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
16867{
16868 addressT addr;
16869 offsetT val;
16870 offsetT limit;
16871
16872 /* Assume worst case for symbols not known to be in the same section. */
16873 if (!S_IS_DEFINED(fragp->fr_symbol)
16874 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16875 return 4;
16876
5e77afaa 16877 val = relaxed_symbol_addr(fragp, stretch);
0110f2b8
PB
16878 addr = fragp->fr_address + fragp->fr_fix + 4;
16879 val -= addr;
16880
16881 /* Offset is a signed value *2 */
16882 limit = 1 << bits;
16883 if (val >= limit || val < -limit)
16884 return 4;
16885 return 2;
16886}
16887
16888
16889/* Relax a machine dependent frag. This returns the amount by which
16890 the current size of the frag should change. */
16891
16892int
5e77afaa 16893arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
16894{
16895 int oldsize;
16896 int newsize;
16897
16898 oldsize = fragp->fr_var;
16899 switch (fragp->fr_subtype)
16900 {
16901 case T_MNEM_ldr_pc2:
5e77afaa 16902 newsize = relax_adr(fragp, sec, stretch);
0110f2b8
PB
16903 break;
16904 case T_MNEM_ldr_pc:
16905 case T_MNEM_ldr_sp:
16906 case T_MNEM_str_sp:
16907 newsize = relax_immediate(fragp, 8, 2);
16908 break;
16909 case T_MNEM_ldr:
16910 case T_MNEM_str:
16911 newsize = relax_immediate(fragp, 5, 2);
16912 break;
16913 case T_MNEM_ldrh:
16914 case T_MNEM_strh:
16915 newsize = relax_immediate(fragp, 5, 1);
16916 break;
16917 case T_MNEM_ldrb:
16918 case T_MNEM_strb:
16919 newsize = relax_immediate(fragp, 5, 0);
16920 break;
16921 case T_MNEM_adr:
5e77afaa 16922 newsize = relax_adr(fragp, sec, stretch);
0110f2b8
PB
16923 break;
16924 case T_MNEM_mov:
16925 case T_MNEM_movs:
16926 case T_MNEM_cmp:
16927 case T_MNEM_cmn:
16928 newsize = relax_immediate(fragp, 8, 0);
16929 break;
16930 case T_MNEM_b:
5e77afaa 16931 newsize = relax_branch(fragp, sec, 11, stretch);
0110f2b8
PB
16932 break;
16933 case T_MNEM_bcond:
5e77afaa 16934 newsize = relax_branch(fragp, sec, 8, stretch);
0110f2b8
PB
16935 break;
16936 case T_MNEM_add_sp:
16937 case T_MNEM_add_pc:
16938 newsize = relax_immediate (fragp, 8, 2);
16939 break;
16940 case T_MNEM_inc_sp:
16941 case T_MNEM_dec_sp:
16942 newsize = relax_immediate (fragp, 7, 2);
16943 break;
16944 case T_MNEM_addi:
16945 case T_MNEM_addis:
16946 case T_MNEM_subi:
16947 case T_MNEM_subis:
16948 newsize = relax_addsub (fragp, sec);
16949 break;
16950 default:
16951 abort();
16952 }
5e77afaa
PB
16953
16954 fragp->fr_var = newsize;
16955 /* Freeze wide instructions that are at or before the same location as
16956 in the previous pass. This avoids infinite loops.
16957 Don't freeze them unconditionally because targets may be artificialy
16958 misaligned by the expansion of preceeding frags. */
16959 if (stretch <= 0 && newsize > 2)
0110f2b8 16960 {
0110f2b8
PB
16961 md_convert_frag (sec->owner, sec, fragp);
16962 frag_wane(fragp);
0110f2b8 16963 }
5e77afaa 16964
0110f2b8 16965 return newsize - oldsize;
c19d1205 16966}
b99bd4ef 16967
c19d1205 16968/* Round up a section size to the appropriate boundary. */
b99bd4ef 16969
c19d1205
ZW
16970valueT
16971md_section_align (segT segment ATTRIBUTE_UNUSED,
16972 valueT size)
16973{
f0927246
NC
16974#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16975 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16976 {
16977 /* For a.out, force the section size to be aligned. If we don't do
16978 this, BFD will align it for us, but it will not write out the
16979 final bytes of the section. This may be a bug in BFD, but it is
16980 easier to fix it here since that is how the other a.out targets
16981 work. */
16982 int align;
16983
16984 align = bfd_get_section_alignment (stdoutput, segment);
16985 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16986 }
c19d1205 16987#endif
f0927246
NC
16988
16989 return size;
bfae80f2 16990}
b99bd4ef 16991
c19d1205
ZW
16992/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16993 of an rs_align_code fragment. */
16994
16995void
16996arm_handle_align (fragS * fragP)
bfae80f2 16997{
c19d1205
ZW
16998 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16999 static char const thumb_noop[2] = { 0xc0, 0x46 };
17000 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
17001 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17002
17003 int bytes, fix, noop_size;
17004 char * p;
17005 const char * noop;
bfae80f2 17006
c19d1205 17007 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
17008 return;
17009
c19d1205
ZW
17010 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17011 p = fragP->fr_literal + fragP->fr_fix;
17012 fix = 0;
bfae80f2 17013
c19d1205
ZW
17014 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17015 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 17016
c19d1205 17017 if (fragP->tc_frag_data)
a737bd4d 17018 {
c19d1205
ZW
17019 if (target_big_endian)
17020 noop = thumb_bigend_noop;
17021 else
17022 noop = thumb_noop;
17023 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
17024 }
17025 else
17026 {
c19d1205
ZW
17027 if (target_big_endian)
17028 noop = arm_bigend_noop;
17029 else
17030 noop = arm_noop;
17031 noop_size = sizeof (arm_noop);
7ed4c4c5 17032 }
a737bd4d 17033
c19d1205 17034 if (bytes & (noop_size - 1))
7ed4c4c5 17035 {
c19d1205
ZW
17036 fix = bytes & (noop_size - 1);
17037 memset (p, 0, fix);
17038 p += fix;
17039 bytes -= fix;
a737bd4d 17040 }
a737bd4d 17041
c19d1205 17042 while (bytes >= noop_size)
a737bd4d 17043 {
c19d1205
ZW
17044 memcpy (p, noop, noop_size);
17045 p += noop_size;
17046 bytes -= noop_size;
17047 fix += noop_size;
a737bd4d
NC
17048 }
17049
c19d1205
ZW
17050 fragP->fr_fix += fix;
17051 fragP->fr_var = noop_size;
a737bd4d
NC
17052}
17053
c19d1205
ZW
17054/* Called from md_do_align. Used to create an alignment
17055 frag in a code section. */
17056
17057void
17058arm_frag_align_code (int n, int max)
bfae80f2 17059{
c19d1205 17060 char * p;
7ed4c4c5 17061
c19d1205
ZW
17062 /* We assume that there will never be a requirement
17063 to support alignments greater than 32 bytes. */
17064 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17065 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 17066
c19d1205
ZW
17067 p = frag_var (rs_align_code,
17068 MAX_MEM_FOR_RS_ALIGN_CODE,
17069 1,
17070 (relax_substateT) max,
17071 (symbolS *) NULL,
17072 (offsetT) n,
17073 (char *) NULL);
17074 *p = 0;
17075}
bfae80f2 17076
c19d1205 17077/* Perform target specific initialisation of a frag. */
bfae80f2 17078
c19d1205
ZW
17079void
17080arm_init_frag (fragS * fragP)
17081{
17082 /* Record whether this frag is in an ARM or a THUMB area. */
17083 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
17084}
17085
c19d1205
ZW
17086#ifdef OBJ_ELF
17087/* When we change sections we need to issue a new mapping symbol. */
17088
17089void
17090arm_elf_change_section (void)
bfae80f2 17091{
c19d1205
ZW
17092 flagword flags;
17093 segment_info_type *seginfo;
bfae80f2 17094
c19d1205
ZW
17095 /* Link an unlinked unwind index table section to the .text section. */
17096 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17097 && elf_linked_to_section (now_seg) == NULL)
17098 elf_linked_to_section (now_seg) = text_section;
17099
17100 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
17101 return;
17102
c19d1205
ZW
17103 flags = bfd_get_section_flags (stdoutput, now_seg);
17104
17105 /* We can ignore sections that only contain debug info. */
17106 if ((flags & SEC_ALLOC) == 0)
17107 return;
bfae80f2 17108
c19d1205
ZW
17109 seginfo = seg_info (now_seg);
17110 mapstate = seginfo->tc_segment_info_data.mapstate;
17111 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
17112}
17113
c19d1205
ZW
17114int
17115arm_elf_section_type (const char * str, size_t len)
e45d0630 17116{
c19d1205
ZW
17117 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17118 return SHT_ARM_EXIDX;
e45d0630 17119
c19d1205
ZW
17120 return -1;
17121}
17122\f
17123/* Code to deal with unwinding tables. */
e45d0630 17124
c19d1205 17125static void add_unwind_adjustsp (offsetT);
e45d0630 17126
c19d1205 17127/* Cenerate and deferred unwind frame offset. */
e45d0630 17128
bfae80f2 17129static void
c19d1205 17130flush_pending_unwind (void)
bfae80f2 17131{
c19d1205 17132 offsetT offset;
bfae80f2 17133
c19d1205
ZW
17134 offset = unwind.pending_offset;
17135 unwind.pending_offset = 0;
17136 if (offset != 0)
17137 add_unwind_adjustsp (offset);
bfae80f2
RE
17138}
17139
c19d1205
ZW
17140/* Add an opcode to this list for this function. Two-byte opcodes should
17141 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17142 order. */
17143
bfae80f2 17144static void
c19d1205 17145add_unwind_opcode (valueT op, int length)
bfae80f2 17146{
c19d1205
ZW
17147 /* Add any deferred stack adjustment. */
17148 if (unwind.pending_offset)
17149 flush_pending_unwind ();
bfae80f2 17150
c19d1205 17151 unwind.sp_restored = 0;
bfae80f2 17152
c19d1205 17153 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 17154 {
c19d1205
ZW
17155 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17156 if (unwind.opcodes)
17157 unwind.opcodes = xrealloc (unwind.opcodes,
17158 unwind.opcode_alloc);
17159 else
17160 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 17161 }
c19d1205 17162 while (length > 0)
bfae80f2 17163 {
c19d1205
ZW
17164 length--;
17165 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17166 op >>= 8;
17167 unwind.opcode_count++;
bfae80f2 17168 }
bfae80f2
RE
17169}
17170
c19d1205
ZW
17171/* Add unwind opcodes to adjust the stack pointer. */
17172
bfae80f2 17173static void
c19d1205 17174add_unwind_adjustsp (offsetT offset)
bfae80f2 17175{
c19d1205 17176 valueT op;
bfae80f2 17177
c19d1205 17178 if (offset > 0x200)
bfae80f2 17179 {
c19d1205
ZW
17180 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17181 char bytes[5];
17182 int n;
17183 valueT o;
bfae80f2 17184
c19d1205
ZW
17185 /* Long form: 0xb2, uleb128. */
17186 /* This might not fit in a word so add the individual bytes,
17187 remembering the list is built in reverse order. */
17188 o = (valueT) ((offset - 0x204) >> 2);
17189 if (o == 0)
17190 add_unwind_opcode (0, 1);
bfae80f2 17191
c19d1205
ZW
17192 /* Calculate the uleb128 encoding of the offset. */
17193 n = 0;
17194 while (o)
17195 {
17196 bytes[n] = o & 0x7f;
17197 o >>= 7;
17198 if (o)
17199 bytes[n] |= 0x80;
17200 n++;
17201 }
17202 /* Add the insn. */
17203 for (; n; n--)
17204 add_unwind_opcode (bytes[n - 1], 1);
17205 add_unwind_opcode (0xb2, 1);
17206 }
17207 else if (offset > 0x100)
bfae80f2 17208 {
c19d1205
ZW
17209 /* Two short opcodes. */
17210 add_unwind_opcode (0x3f, 1);
17211 op = (offset - 0x104) >> 2;
17212 add_unwind_opcode (op, 1);
bfae80f2 17213 }
c19d1205
ZW
17214 else if (offset > 0)
17215 {
17216 /* Short opcode. */
17217 op = (offset - 4) >> 2;
17218 add_unwind_opcode (op, 1);
17219 }
17220 else if (offset < 0)
bfae80f2 17221 {
c19d1205
ZW
17222 offset = -offset;
17223 while (offset > 0x100)
bfae80f2 17224 {
c19d1205
ZW
17225 add_unwind_opcode (0x7f, 1);
17226 offset -= 0x100;
bfae80f2 17227 }
c19d1205
ZW
17228 op = ((offset - 4) >> 2) | 0x40;
17229 add_unwind_opcode (op, 1);
bfae80f2 17230 }
bfae80f2
RE
17231}
17232
c19d1205
ZW
17233/* Finish the list of unwind opcodes for this function. */
17234static void
17235finish_unwind_opcodes (void)
bfae80f2 17236{
c19d1205 17237 valueT op;
bfae80f2 17238
c19d1205 17239 if (unwind.fp_used)
bfae80f2 17240 {
708587a4 17241 /* Adjust sp as necessary. */
c19d1205
ZW
17242 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17243 flush_pending_unwind ();
bfae80f2 17244
c19d1205
ZW
17245 /* After restoring sp from the frame pointer. */
17246 op = 0x90 | unwind.fp_reg;
17247 add_unwind_opcode (op, 1);
17248 }
17249 else
17250 flush_pending_unwind ();
bfae80f2
RE
17251}
17252
bfae80f2 17253
c19d1205
ZW
17254/* Start an exception table entry. If idx is nonzero this is an index table
17255 entry. */
bfae80f2
RE
17256
17257static void
c19d1205 17258start_unwind_section (const segT text_seg, int idx)
bfae80f2 17259{
c19d1205
ZW
17260 const char * text_name;
17261 const char * prefix;
17262 const char * prefix_once;
17263 const char * group_name;
17264 size_t prefix_len;
17265 size_t text_len;
17266 char * sec_name;
17267 size_t sec_name_len;
17268 int type;
17269 int flags;
17270 int linkonce;
bfae80f2 17271
c19d1205 17272 if (idx)
bfae80f2 17273 {
c19d1205
ZW
17274 prefix = ELF_STRING_ARM_unwind;
17275 prefix_once = ELF_STRING_ARM_unwind_once;
17276 type = SHT_ARM_EXIDX;
bfae80f2 17277 }
c19d1205 17278 else
bfae80f2 17279 {
c19d1205
ZW
17280 prefix = ELF_STRING_ARM_unwind_info;
17281 prefix_once = ELF_STRING_ARM_unwind_info_once;
17282 type = SHT_PROGBITS;
bfae80f2
RE
17283 }
17284
c19d1205
ZW
17285 text_name = segment_name (text_seg);
17286 if (streq (text_name, ".text"))
17287 text_name = "";
17288
17289 if (strncmp (text_name, ".gnu.linkonce.t.",
17290 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17291 {
c19d1205
ZW
17292 prefix = prefix_once;
17293 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17294 }
17295
c19d1205
ZW
17296 prefix_len = strlen (prefix);
17297 text_len = strlen (text_name);
17298 sec_name_len = prefix_len + text_len;
17299 sec_name = xmalloc (sec_name_len + 1);
17300 memcpy (sec_name, prefix, prefix_len);
17301 memcpy (sec_name + prefix_len, text_name, text_len);
17302 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17303
c19d1205
ZW
17304 flags = SHF_ALLOC;
17305 linkonce = 0;
17306 group_name = 0;
bfae80f2 17307
c19d1205
ZW
17308 /* Handle COMDAT group. */
17309 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17310 {
c19d1205
ZW
17311 group_name = elf_group_name (text_seg);
17312 if (group_name == NULL)
17313 {
bd3ba5d1 17314 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
17315 segment_name (text_seg));
17316 ignore_rest_of_line ();
17317 return;
17318 }
17319 flags |= SHF_GROUP;
17320 linkonce = 1;
bfae80f2
RE
17321 }
17322
c19d1205 17323 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17324
c19d1205
ZW
17325 /* Set the setion link for index tables. */
17326 if (idx)
17327 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17328}
17329
bfae80f2 17330
c19d1205
ZW
17331/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17332 personality routine data. Returns zero, or the index table value for
17333 and inline entry. */
17334
17335static valueT
17336create_unwind_entry (int have_data)
bfae80f2 17337{
c19d1205
ZW
17338 int size;
17339 addressT where;
17340 char *ptr;
17341 /* The current word of data. */
17342 valueT data;
17343 /* The number of bytes left in this word. */
17344 int n;
bfae80f2 17345
c19d1205 17346 finish_unwind_opcodes ();
bfae80f2 17347
c19d1205
ZW
17348 /* Remember the current text section. */
17349 unwind.saved_seg = now_seg;
17350 unwind.saved_subseg = now_subseg;
bfae80f2 17351
c19d1205 17352 start_unwind_section (now_seg, 0);
bfae80f2 17353
c19d1205 17354 if (unwind.personality_routine == NULL)
bfae80f2 17355 {
c19d1205
ZW
17356 if (unwind.personality_index == -2)
17357 {
17358 if (have_data)
17359 as_bad (_("handerdata in cantunwind frame"));
17360 return 1; /* EXIDX_CANTUNWIND. */
17361 }
bfae80f2 17362
c19d1205
ZW
17363 /* Use a default personality routine if none is specified. */
17364 if (unwind.personality_index == -1)
17365 {
17366 if (unwind.opcode_count > 3)
17367 unwind.personality_index = 1;
17368 else
17369 unwind.personality_index = 0;
17370 }
bfae80f2 17371
c19d1205
ZW
17372 /* Space for the personality routine entry. */
17373 if (unwind.personality_index == 0)
17374 {
17375 if (unwind.opcode_count > 3)
17376 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 17377
c19d1205
ZW
17378 if (!have_data)
17379 {
17380 /* All the data is inline in the index table. */
17381 data = 0x80;
17382 n = 3;
17383 while (unwind.opcode_count > 0)
17384 {
17385 unwind.opcode_count--;
17386 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17387 n--;
17388 }
bfae80f2 17389
c19d1205
ZW
17390 /* Pad with "finish" opcodes. */
17391 while (n--)
17392 data = (data << 8) | 0xb0;
bfae80f2 17393
c19d1205
ZW
17394 return data;
17395 }
17396 size = 0;
17397 }
17398 else
17399 /* We get two opcodes "free" in the first word. */
17400 size = unwind.opcode_count - 2;
17401 }
17402 else
17403 /* An extra byte is required for the opcode count. */
17404 size = unwind.opcode_count + 1;
bfae80f2 17405
c19d1205
ZW
17406 size = (size + 3) >> 2;
17407 if (size > 0xff)
17408 as_bad (_("too many unwind opcodes"));
bfae80f2 17409
c19d1205
ZW
17410 frag_align (2, 0, 0);
17411 record_alignment (now_seg, 2);
17412 unwind.table_entry = expr_build_dot ();
17413
17414 /* Allocate the table entry. */
17415 ptr = frag_more ((size << 2) + 4);
17416 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 17417
c19d1205 17418 switch (unwind.personality_index)
bfae80f2 17419 {
c19d1205
ZW
17420 case -1:
17421 /* ??? Should this be a PLT generating relocation? */
17422 /* Custom personality routine. */
17423 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17424 BFD_RELOC_ARM_PREL31);
bfae80f2 17425
c19d1205
ZW
17426 where += 4;
17427 ptr += 4;
bfae80f2 17428
c19d1205
ZW
17429 /* Set the first byte to the number of additional words. */
17430 data = size - 1;
17431 n = 3;
17432 break;
bfae80f2 17433
c19d1205
ZW
17434 /* ABI defined personality routines. */
17435 case 0:
17436 /* Three opcodes bytes are packed into the first word. */
17437 data = 0x80;
17438 n = 3;
17439 break;
bfae80f2 17440
c19d1205
ZW
17441 case 1:
17442 case 2:
17443 /* The size and first two opcode bytes go in the first word. */
17444 data = ((0x80 + unwind.personality_index) << 8) | size;
17445 n = 2;
17446 break;
bfae80f2 17447
c19d1205
ZW
17448 default:
17449 /* Should never happen. */
17450 abort ();
17451 }
bfae80f2 17452
c19d1205
ZW
17453 /* Pack the opcodes into words (MSB first), reversing the list at the same
17454 time. */
17455 while (unwind.opcode_count > 0)
17456 {
17457 if (n == 0)
17458 {
17459 md_number_to_chars (ptr, data, 4);
17460 ptr += 4;
17461 n = 4;
17462 data = 0;
17463 }
17464 unwind.opcode_count--;
17465 n--;
17466 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17467 }
17468
17469 /* Finish off the last word. */
17470 if (n < 4)
17471 {
17472 /* Pad with "finish" opcodes. */
17473 while (n--)
17474 data = (data << 8) | 0xb0;
17475
17476 md_number_to_chars (ptr, data, 4);
17477 }
17478
17479 if (!have_data)
17480 {
17481 /* Add an empty descriptor if there is no user-specified data. */
17482 ptr = frag_more (4);
17483 md_number_to_chars (ptr, 0, 4);
17484 }
17485
17486 return 0;
bfae80f2
RE
17487}
17488
f0927246
NC
17489
17490/* Initialize the DWARF-2 unwind information for this procedure. */
17491
17492void
17493tc_arm_frame_initial_instructions (void)
17494{
17495 cfi_add_CFA_def_cfa (REG_SP, 0);
17496}
17497#endif /* OBJ_ELF */
17498
c19d1205
ZW
17499/* Convert REGNAME to a DWARF-2 register number. */
17500
17501int
1df69f4f 17502tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 17503{
1df69f4f 17504 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
17505
17506 if (reg == FAIL)
17507 return -1;
17508
17509 return reg;
bfae80f2
RE
17510}
17511
f0927246 17512#ifdef TE_PE
c19d1205 17513void
f0927246 17514tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 17515{
f0927246 17516 expressionS expr;
bfae80f2 17517
f0927246
NC
17518 expr.X_op = O_secrel;
17519 expr.X_add_symbol = symbol;
17520 expr.X_add_number = 0;
17521 emit_expr (&expr, size);
17522}
17523#endif
bfae80f2 17524
c19d1205 17525/* MD interface: Symbol and relocation handling. */
bfae80f2 17526
2fc8bdac
ZW
17527/* Return the address within the segment that a PC-relative fixup is
17528 relative to. For ARM, PC-relative fixups applied to instructions
17529 are generally relative to the location of the fixup plus 8 bytes.
17530 Thumb branches are offset by 4, and Thumb loads relative to PC
17531 require special handling. */
bfae80f2 17532
c19d1205 17533long
2fc8bdac 17534md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 17535{
2fc8bdac
ZW
17536 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17537
17538 /* If this is pc-relative and we are going to emit a relocation
17539 then we just want to put out any pipeline compensation that the linker
53baae48
NC
17540 will need. Otherwise we want to use the calculated base.
17541 For WinCE we skip the bias for externals as well, since this
17542 is how the MS ARM-CE assembler behaves and we want to be compatible. */
2fc8bdac
ZW
17543 if (fixP->fx_pcrel
17544 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
17545 || (arm_force_relocation (fixP)
17546#ifdef TE_WINCE
17547 && !S_IS_EXTERNAL (fixP->fx_addsy)
17548#endif
17549 )))
2fc8bdac 17550 base = 0;
bfae80f2 17551
c19d1205 17552 switch (fixP->fx_r_type)
bfae80f2 17553 {
2fc8bdac
ZW
17554 /* PC relative addressing on the Thumb is slightly odd as the
17555 bottom two bits of the PC are forced to zero for the
17556 calculation. This happens *after* application of the
17557 pipeline offset. However, Thumb adrl already adjusts for
17558 this, so we need not do it again. */
c19d1205 17559 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 17560 return base & ~3;
c19d1205
ZW
17561
17562 case BFD_RELOC_ARM_THUMB_OFFSET:
17563 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 17564 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 17565 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 17566 return (base + 4) & ~3;
c19d1205 17567
2fc8bdac
ZW
17568 /* Thumb branches are simply offset by +4. */
17569 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17570 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17571 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17572 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17573 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17574 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17575 case BFD_RELOC_THUMB_PCREL_BLX:
17576 return base + 4;
bfae80f2 17577
2fc8bdac
ZW
17578 /* ARM mode branches are offset by +8. However, the Windows CE
17579 loader expects the relocation not to take this into account. */
17580 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
17581 case BFD_RELOC_ARM_PCREL_CALL:
17582 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
17583 case BFD_RELOC_ARM_PCREL_BLX:
17584 case BFD_RELOC_ARM_PLT32:
c19d1205 17585#ifdef TE_WINCE
53baae48
NC
17586 /* When handling fixups immediately, because we have already
17587 discovered the value of a symbol, or the address of the frag involved
17588 we must account for the offset by +8, as the OS loader will never see the reloc.
17589 see fixup_segment() in write.c
17590 The S_IS_EXTERNAL test handles the case of global symbols.
17591 Those need the calculated base, not just the pipe compensation the linker will need. */
17592 if (fixP->fx_pcrel
17593 && fixP->fx_addsy != NULL
17594 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17595 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17596 return base + 8;
2fc8bdac 17597 return base;
c19d1205 17598#else
2fc8bdac 17599 return base + 8;
c19d1205 17600#endif
2fc8bdac
ZW
17601
17602 /* ARM mode loads relative to PC are also offset by +8. Unlike
17603 branches, the Windows CE loader *does* expect the relocation
17604 to take this into account. */
17605 case BFD_RELOC_ARM_OFFSET_IMM:
17606 case BFD_RELOC_ARM_OFFSET_IMM8:
17607 case BFD_RELOC_ARM_HWLITERAL:
17608 case BFD_RELOC_ARM_LITERAL:
17609 case BFD_RELOC_ARM_CP_OFF_IMM:
17610 return base + 8;
17611
17612
17613 /* Other PC-relative relocations are un-offset. */
17614 default:
17615 return base;
17616 }
bfae80f2
RE
17617}
17618
c19d1205
ZW
17619/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17620 Otherwise we have no need to default values of symbols. */
17621
17622symbolS *
17623md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 17624{
c19d1205
ZW
17625#ifdef OBJ_ELF
17626 if (name[0] == '_' && name[1] == 'G'
17627 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17628 {
17629 if (!GOT_symbol)
17630 {
17631 if (symbol_find (name))
bd3ba5d1 17632 as_bad (_("GOT already in the symbol table"));
bfae80f2 17633
c19d1205
ZW
17634 GOT_symbol = symbol_new (name, undefined_section,
17635 (valueT) 0, & zero_address_frag);
17636 }
bfae80f2 17637
c19d1205 17638 return GOT_symbol;
bfae80f2 17639 }
c19d1205 17640#endif
bfae80f2 17641
c19d1205 17642 return 0;
bfae80f2
RE
17643}
17644
55cf6793 17645/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
17646 computed as two separate immediate values, added together. We
17647 already know that this value cannot be computed by just one ARM
17648 instruction. */
17649
17650static unsigned int
17651validate_immediate_twopart (unsigned int val,
17652 unsigned int * highpart)
bfae80f2 17653{
c19d1205
ZW
17654 unsigned int a;
17655 unsigned int i;
bfae80f2 17656
c19d1205
ZW
17657 for (i = 0; i < 32; i += 2)
17658 if (((a = rotate_left (val, i)) & 0xff) != 0)
17659 {
17660 if (a & 0xff00)
17661 {
17662 if (a & ~ 0xffff)
17663 continue;
17664 * highpart = (a >> 8) | ((i + 24) << 7);
17665 }
17666 else if (a & 0xff0000)
17667 {
17668 if (a & 0xff000000)
17669 continue;
17670 * highpart = (a >> 16) | ((i + 16) << 7);
17671 }
17672 else
17673 {
17674 assert (a & 0xff000000);
17675 * highpart = (a >> 24) | ((i + 8) << 7);
17676 }
bfae80f2 17677
c19d1205
ZW
17678 return (a & 0xff) | (i << 7);
17679 }
bfae80f2 17680
c19d1205 17681 return FAIL;
bfae80f2
RE
17682}
17683
c19d1205
ZW
17684static int
17685validate_offset_imm (unsigned int val, int hwse)
17686{
17687 if ((hwse && val > 255) || val > 4095)
17688 return FAIL;
17689 return val;
17690}
bfae80f2 17691
55cf6793 17692/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
17693 negative immediate constant by altering the instruction. A bit of
17694 a hack really.
17695 MOV <-> MVN
17696 AND <-> BIC
17697 ADC <-> SBC
17698 by inverting the second operand, and
17699 ADD <-> SUB
17700 CMP <-> CMN
17701 by negating the second operand. */
bfae80f2 17702
c19d1205
ZW
17703static int
17704negate_data_op (unsigned long * instruction,
17705 unsigned long value)
bfae80f2 17706{
c19d1205
ZW
17707 int op, new_inst;
17708 unsigned long negated, inverted;
bfae80f2 17709
c19d1205
ZW
17710 negated = encode_arm_immediate (-value);
17711 inverted = encode_arm_immediate (~value);
bfae80f2 17712
c19d1205
ZW
17713 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17714 switch (op)
bfae80f2 17715 {
c19d1205
ZW
17716 /* First negates. */
17717 case OPCODE_SUB: /* ADD <-> SUB */
17718 new_inst = OPCODE_ADD;
17719 value = negated;
17720 break;
bfae80f2 17721
c19d1205
ZW
17722 case OPCODE_ADD:
17723 new_inst = OPCODE_SUB;
17724 value = negated;
17725 break;
bfae80f2 17726
c19d1205
ZW
17727 case OPCODE_CMP: /* CMP <-> CMN */
17728 new_inst = OPCODE_CMN;
17729 value = negated;
17730 break;
bfae80f2 17731
c19d1205
ZW
17732 case OPCODE_CMN:
17733 new_inst = OPCODE_CMP;
17734 value = negated;
17735 break;
bfae80f2 17736
c19d1205
ZW
17737 /* Now Inverted ops. */
17738 case OPCODE_MOV: /* MOV <-> MVN */
17739 new_inst = OPCODE_MVN;
17740 value = inverted;
17741 break;
bfae80f2 17742
c19d1205
ZW
17743 case OPCODE_MVN:
17744 new_inst = OPCODE_MOV;
17745 value = inverted;
17746 break;
bfae80f2 17747
c19d1205
ZW
17748 case OPCODE_AND: /* AND <-> BIC */
17749 new_inst = OPCODE_BIC;
17750 value = inverted;
17751 break;
bfae80f2 17752
c19d1205
ZW
17753 case OPCODE_BIC:
17754 new_inst = OPCODE_AND;
17755 value = inverted;
17756 break;
bfae80f2 17757
c19d1205
ZW
17758 case OPCODE_ADC: /* ADC <-> SBC */
17759 new_inst = OPCODE_SBC;
17760 value = inverted;
17761 break;
bfae80f2 17762
c19d1205
ZW
17763 case OPCODE_SBC:
17764 new_inst = OPCODE_ADC;
17765 value = inverted;
17766 break;
bfae80f2 17767
c19d1205
ZW
17768 /* We cannot do anything. */
17769 default:
17770 return FAIL;
b99bd4ef
NC
17771 }
17772
c19d1205
ZW
17773 if (value == (unsigned) FAIL)
17774 return FAIL;
17775
17776 *instruction &= OPCODE_MASK;
17777 *instruction |= new_inst << DATA_OP_SHIFT;
17778 return value;
b99bd4ef
NC
17779}
17780
ef8d22e6
PB
17781/* Like negate_data_op, but for Thumb-2. */
17782
17783static unsigned int
16dd5e42 17784thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
17785{
17786 int op, new_inst;
17787 int rd;
16dd5e42 17788 unsigned int negated, inverted;
ef8d22e6
PB
17789
17790 negated = encode_thumb32_immediate (-value);
17791 inverted = encode_thumb32_immediate (~value);
17792
17793 rd = (*instruction >> 8) & 0xf;
17794 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17795 switch (op)
17796 {
17797 /* ADD <-> SUB. Includes CMP <-> CMN. */
17798 case T2_OPCODE_SUB:
17799 new_inst = T2_OPCODE_ADD;
17800 value = negated;
17801 break;
17802
17803 case T2_OPCODE_ADD:
17804 new_inst = T2_OPCODE_SUB;
17805 value = negated;
17806 break;
17807
17808 /* ORR <-> ORN. Includes MOV <-> MVN. */
17809 case T2_OPCODE_ORR:
17810 new_inst = T2_OPCODE_ORN;
17811 value = inverted;
17812 break;
17813
17814 case T2_OPCODE_ORN:
17815 new_inst = T2_OPCODE_ORR;
17816 value = inverted;
17817 break;
17818
17819 /* AND <-> BIC. TST has no inverted equivalent. */
17820 case T2_OPCODE_AND:
17821 new_inst = T2_OPCODE_BIC;
17822 if (rd == 15)
17823 value = FAIL;
17824 else
17825 value = inverted;
17826 break;
17827
17828 case T2_OPCODE_BIC:
17829 new_inst = T2_OPCODE_AND;
17830 value = inverted;
17831 break;
17832
17833 /* ADC <-> SBC */
17834 case T2_OPCODE_ADC:
17835 new_inst = T2_OPCODE_SBC;
17836 value = inverted;
17837 break;
17838
17839 case T2_OPCODE_SBC:
17840 new_inst = T2_OPCODE_ADC;
17841 value = inverted;
17842 break;
17843
17844 /* We cannot do anything. */
17845 default:
17846 return FAIL;
17847 }
17848
16dd5e42 17849 if (value == (unsigned int)FAIL)
ef8d22e6
PB
17850 return FAIL;
17851
17852 *instruction &= T2_OPCODE_MASK;
17853 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17854 return value;
17855}
17856
8f06b2d8
PB
17857/* Read a 32-bit thumb instruction from buf. */
17858static unsigned long
17859get_thumb32_insn (char * buf)
17860{
17861 unsigned long insn;
17862 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17863 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17864
17865 return insn;
17866}
17867
a8bc6c78
PB
17868
17869/* We usually want to set the low bit on the address of thumb function
17870 symbols. In particular .word foo - . should have the low bit set.
17871 Generic code tries to fold the difference of two symbols to
17872 a constant. Prevent this and force a relocation when the first symbols
17873 is a thumb function. */
17874int
17875arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17876{
17877 if (op == O_subtract
17878 && l->X_op == O_symbol
17879 && r->X_op == O_symbol
17880 && THUMB_IS_FUNC (l->X_add_symbol))
17881 {
17882 l->X_op = O_subtract;
17883 l->X_op_symbol = r->X_add_symbol;
17884 l->X_add_number -= r->X_add_number;
17885 return 1;
17886 }
17887 /* Process as normal. */
17888 return 0;
17889}
17890
c19d1205 17891void
55cf6793 17892md_apply_fix (fixS * fixP,
c19d1205
ZW
17893 valueT * valP,
17894 segT seg)
17895{
17896 offsetT value = * valP;
17897 offsetT newval;
17898 unsigned int newimm;
17899 unsigned long temp;
17900 int sign;
17901 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 17902
c19d1205 17903 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 17904
c19d1205 17905 /* Note whether this will delete the relocation. */
4962c51a 17906
c19d1205
ZW
17907 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17908 fixP->fx_done = 1;
b99bd4ef 17909
adbaf948
ZW
17910 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17911 consistency with the behavior on 32-bit hosts. Remember value
17912 for emit_reloc. */
17913 value &= 0xffffffff;
17914 value ^= 0x80000000;
17915 value -= 0x80000000;
17916
17917 *valP = value;
c19d1205 17918 fixP->fx_addnumber = value;
b99bd4ef 17919
adbaf948
ZW
17920 /* Same treatment for fixP->fx_offset. */
17921 fixP->fx_offset &= 0xffffffff;
17922 fixP->fx_offset ^= 0x80000000;
17923 fixP->fx_offset -= 0x80000000;
17924
c19d1205 17925 switch (fixP->fx_r_type)
b99bd4ef 17926 {
c19d1205
ZW
17927 case BFD_RELOC_NONE:
17928 /* This will need to go in the object file. */
17929 fixP->fx_done = 0;
17930 break;
b99bd4ef 17931
c19d1205
ZW
17932 case BFD_RELOC_ARM_IMMEDIATE:
17933 /* We claim that this fixup has been processed here,
17934 even if in fact we generate an error because we do
17935 not have a reloc for it, so tc_gen_reloc will reject it. */
17936 fixP->fx_done = 1;
b99bd4ef 17937
c19d1205
ZW
17938 if (fixP->fx_addsy
17939 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 17940 {
c19d1205
ZW
17941 as_bad_where (fixP->fx_file, fixP->fx_line,
17942 _("undefined symbol %s used as an immediate value"),
17943 S_GET_NAME (fixP->fx_addsy));
17944 break;
b99bd4ef
NC
17945 }
17946
c19d1205
ZW
17947 newimm = encode_arm_immediate (value);
17948 temp = md_chars_to_number (buf, INSN_SIZE);
17949
17950 /* If the instruction will fail, see if we can fix things up by
17951 changing the opcode. */
17952 if (newimm == (unsigned int) FAIL
17953 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 17954 {
c19d1205
ZW
17955 as_bad_where (fixP->fx_file, fixP->fx_line,
17956 _("invalid constant (%lx) after fixup"),
17957 (unsigned long) value);
17958 break;
b99bd4ef 17959 }
b99bd4ef 17960
c19d1205
ZW
17961 newimm |= (temp & 0xfffff000);
17962 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17963 break;
b99bd4ef 17964
c19d1205
ZW
17965 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17966 {
17967 unsigned int highpart = 0;
17968 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 17969
c19d1205
ZW
17970 newimm = encode_arm_immediate (value);
17971 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 17972
c19d1205
ZW
17973 /* If the instruction will fail, see if we can fix things up by
17974 changing the opcode. */
17975 if (newimm == (unsigned int) FAIL
17976 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17977 {
17978 /* No ? OK - try using two ADD instructions to generate
17979 the value. */
17980 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 17981
c19d1205
ZW
17982 /* Yes - then make sure that the second instruction is
17983 also an add. */
17984 if (newimm != (unsigned int) FAIL)
17985 newinsn = temp;
17986 /* Still No ? Try using a negated value. */
17987 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17988 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17989 /* Otherwise - give up. */
17990 else
17991 {
17992 as_bad_where (fixP->fx_file, fixP->fx_line,
17993 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17994 (long) value);
17995 break;
17996 }
b99bd4ef 17997
c19d1205
ZW
17998 /* Replace the first operand in the 2nd instruction (which
17999 is the PC) with the destination register. We have
18000 already added in the PC in the first instruction and we
18001 do not want to do it again. */
18002 newinsn &= ~ 0xf0000;
18003 newinsn |= ((newinsn & 0x0f000) << 4);
18004 }
b99bd4ef 18005
c19d1205
ZW
18006 newimm |= (temp & 0xfffff000);
18007 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 18008
c19d1205
ZW
18009 highpart |= (newinsn & 0xfffff000);
18010 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18011 }
18012 break;
b99bd4ef 18013
c19d1205 18014 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18015 if (!fixP->fx_done && seg->use_rela_p)
18016 value = 0;
18017
c19d1205
ZW
18018 case BFD_RELOC_ARM_LITERAL:
18019 sign = value >= 0;
b99bd4ef 18020
c19d1205
ZW
18021 if (value < 0)
18022 value = - value;
b99bd4ef 18023
c19d1205 18024 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 18025 {
c19d1205
ZW
18026 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18027 as_bad_where (fixP->fx_file, fixP->fx_line,
18028 _("invalid literal constant: pool needs to be closer"));
18029 else
18030 as_bad_where (fixP->fx_file, fixP->fx_line,
18031 _("bad immediate value for offset (%ld)"),
18032 (long) value);
18033 break;
f03698e6
RE
18034 }
18035
c19d1205
ZW
18036 newval = md_chars_to_number (buf, INSN_SIZE);
18037 newval &= 0xff7ff000;
18038 newval |= value | (sign ? INDEX_UP : 0);
18039 md_number_to_chars (buf, newval, INSN_SIZE);
18040 break;
b99bd4ef 18041
c19d1205
ZW
18042 case BFD_RELOC_ARM_OFFSET_IMM8:
18043 case BFD_RELOC_ARM_HWLITERAL:
18044 sign = value >= 0;
b99bd4ef 18045
c19d1205
ZW
18046 if (value < 0)
18047 value = - value;
b99bd4ef 18048
c19d1205 18049 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 18050 {
c19d1205
ZW
18051 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18052 as_bad_where (fixP->fx_file, fixP->fx_line,
18053 _("invalid literal constant: pool needs to be closer"));
18054 else
f9d4405b 18055 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
18056 (long) value);
18057 break;
b99bd4ef
NC
18058 }
18059
c19d1205
ZW
18060 newval = md_chars_to_number (buf, INSN_SIZE);
18061 newval &= 0xff7ff0f0;
18062 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18063 md_number_to_chars (buf, newval, INSN_SIZE);
18064 break;
b99bd4ef 18065
c19d1205
ZW
18066 case BFD_RELOC_ARM_T32_OFFSET_U8:
18067 if (value < 0 || value > 1020 || value % 4 != 0)
18068 as_bad_where (fixP->fx_file, fixP->fx_line,
18069 _("bad immediate value for offset (%ld)"), (long) value);
18070 value /= 4;
b99bd4ef 18071
c19d1205 18072 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
18073 newval |= value;
18074 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18075 break;
b99bd4ef 18076
c19d1205
ZW
18077 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18078 /* This is a complicated relocation used for all varieties of Thumb32
18079 load/store instruction with immediate offset:
18080
18081 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18082 *4, optional writeback(W)
18083 (doubleword load/store)
18084
18085 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18086 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18087 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18088 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18089 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18090
18091 Uppercase letters indicate bits that are already encoded at
18092 this point. Lowercase letters are our problem. For the
18093 second block of instructions, the secondary opcode nybble
18094 (bits 8..11) is present, and bit 23 is zero, even if this is
18095 a PC-relative operation. */
18096 newval = md_chars_to_number (buf, THUMB_SIZE);
18097 newval <<= 16;
18098 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 18099
c19d1205 18100 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 18101 {
c19d1205
ZW
18102 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18103 if (value >= 0)
18104 newval |= (1 << 23);
18105 else
18106 value = -value;
18107 if (value % 4 != 0)
18108 {
18109 as_bad_where (fixP->fx_file, fixP->fx_line,
18110 _("offset not a multiple of 4"));
18111 break;
18112 }
18113 value /= 4;
216d22bc 18114 if (value > 0xff)
c19d1205
ZW
18115 {
18116 as_bad_where (fixP->fx_file, fixP->fx_line,
18117 _("offset out of range"));
18118 break;
18119 }
18120 newval &= ~0xff;
b99bd4ef 18121 }
c19d1205 18122 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 18123 {
c19d1205
ZW
18124 /* PC-relative, 12-bit offset. */
18125 if (value >= 0)
18126 newval |= (1 << 23);
18127 else
18128 value = -value;
216d22bc 18129 if (value > 0xfff)
c19d1205
ZW
18130 {
18131 as_bad_where (fixP->fx_file, fixP->fx_line,
18132 _("offset out of range"));
18133 break;
18134 }
18135 newval &= ~0xfff;
b99bd4ef 18136 }
c19d1205 18137 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 18138 {
c19d1205
ZW
18139 /* Writeback: 8-bit, +/- offset. */
18140 if (value >= 0)
18141 newval |= (1 << 9);
18142 else
18143 value = -value;
216d22bc 18144 if (value > 0xff)
c19d1205
ZW
18145 {
18146 as_bad_where (fixP->fx_file, fixP->fx_line,
18147 _("offset out of range"));
18148 break;
18149 }
18150 newval &= ~0xff;
b99bd4ef 18151 }
c19d1205 18152 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 18153 {
c19d1205 18154 /* T-instruction: positive 8-bit offset. */
216d22bc 18155 if (value < 0 || value > 0xff)
b99bd4ef 18156 {
c19d1205
ZW
18157 as_bad_where (fixP->fx_file, fixP->fx_line,
18158 _("offset out of range"));
18159 break;
b99bd4ef 18160 }
c19d1205
ZW
18161 newval &= ~0xff;
18162 newval |= value;
b99bd4ef
NC
18163 }
18164 else
b99bd4ef 18165 {
c19d1205
ZW
18166 /* Positive 12-bit or negative 8-bit offset. */
18167 int limit;
18168 if (value >= 0)
b99bd4ef 18169 {
c19d1205
ZW
18170 newval |= (1 << 23);
18171 limit = 0xfff;
18172 }
18173 else
18174 {
18175 value = -value;
18176 limit = 0xff;
18177 }
18178 if (value > limit)
18179 {
18180 as_bad_where (fixP->fx_file, fixP->fx_line,
18181 _("offset out of range"));
18182 break;
b99bd4ef 18183 }
c19d1205 18184 newval &= ~limit;
b99bd4ef 18185 }
b99bd4ef 18186
c19d1205
ZW
18187 newval |= value;
18188 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18189 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18190 break;
404ff6b5 18191
c19d1205
ZW
18192 case BFD_RELOC_ARM_SHIFT_IMM:
18193 newval = md_chars_to_number (buf, INSN_SIZE);
18194 if (((unsigned long) value) > 32
18195 || (value == 32
18196 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18197 {
18198 as_bad_where (fixP->fx_file, fixP->fx_line,
18199 _("shift expression is too large"));
18200 break;
18201 }
404ff6b5 18202
c19d1205
ZW
18203 if (value == 0)
18204 /* Shifts of zero must be done as lsl. */
18205 newval &= ~0x60;
18206 else if (value == 32)
18207 value = 0;
18208 newval &= 0xfffff07f;
18209 newval |= (value & 0x1f) << 7;
18210 md_number_to_chars (buf, newval, INSN_SIZE);
18211 break;
404ff6b5 18212
c19d1205 18213 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18214 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18215 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18216 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18217 /* We claim that this fixup has been processed here,
18218 even if in fact we generate an error because we do
18219 not have a reloc for it, so tc_gen_reloc will reject it. */
18220 fixP->fx_done = 1;
404ff6b5 18221
c19d1205
ZW
18222 if (fixP->fx_addsy
18223 && ! S_IS_DEFINED (fixP->fx_addsy))
18224 {
18225 as_bad_where (fixP->fx_file, fixP->fx_line,
18226 _("undefined symbol %s used as an immediate value"),
18227 S_GET_NAME (fixP->fx_addsy));
18228 break;
18229 }
404ff6b5 18230
c19d1205
ZW
18231 newval = md_chars_to_number (buf, THUMB_SIZE);
18232 newval <<= 16;
18233 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18234
16805f35
PB
18235 newimm = FAIL;
18236 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18237 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18238 {
18239 newimm = encode_thumb32_immediate (value);
18240 if (newimm == (unsigned int) FAIL)
18241 newimm = thumb32_negate_data_op (&newval, value);
18242 }
16805f35
PB
18243 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18244 && newimm == (unsigned int) FAIL)
92e90b6e 18245 {
16805f35
PB
18246 /* Turn add/sum into addw/subw. */
18247 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18248 newval = (newval & 0xfeffffff) | 0x02000000;
18249
e9f89963
PB
18250 /* 12 bit immediate for addw/subw. */
18251 if (value < 0)
18252 {
18253 value = -value;
18254 newval ^= 0x00a00000;
18255 }
92e90b6e
PB
18256 if (value > 0xfff)
18257 newimm = (unsigned int) FAIL;
18258 else
18259 newimm = value;
18260 }
cc8a6dd0 18261
c19d1205 18262 if (newimm == (unsigned int)FAIL)
3631a3c8 18263 {
c19d1205
ZW
18264 as_bad_where (fixP->fx_file, fixP->fx_line,
18265 _("invalid constant (%lx) after fixup"),
18266 (unsigned long) value);
18267 break;
3631a3c8
NC
18268 }
18269
c19d1205
ZW
18270 newval |= (newimm & 0x800) << 15;
18271 newval |= (newimm & 0x700) << 4;
18272 newval |= (newimm & 0x0ff);
cc8a6dd0 18273
c19d1205
ZW
18274 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18275 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18276 break;
a737bd4d 18277
3eb17e6b 18278 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18279 if (((unsigned long) value) > 0xffff)
18280 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18281 _("invalid smc expression"));
2fc8bdac 18282 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18283 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18284 md_number_to_chars (buf, newval, INSN_SIZE);
18285 break;
a737bd4d 18286
c19d1205 18287 case BFD_RELOC_ARM_SWI:
adbaf948 18288 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18289 {
18290 if (((unsigned long) value) > 0xff)
18291 as_bad_where (fixP->fx_file, fixP->fx_line,
18292 _("invalid swi expression"));
2fc8bdac 18293 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18294 newval |= value;
18295 md_number_to_chars (buf, newval, THUMB_SIZE);
18296 }
18297 else
18298 {
18299 if (((unsigned long) value) > 0x00ffffff)
18300 as_bad_where (fixP->fx_file, fixP->fx_line,
18301 _("invalid swi expression"));
2fc8bdac 18302 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18303 newval |= value;
18304 md_number_to_chars (buf, newval, INSN_SIZE);
18305 }
18306 break;
a737bd4d 18307
c19d1205
ZW
18308 case BFD_RELOC_ARM_MULTI:
18309 if (((unsigned long) value) > 0xffff)
18310 as_bad_where (fixP->fx_file, fixP->fx_line,
18311 _("invalid expression in load/store multiple"));
18312 newval = value | md_chars_to_number (buf, INSN_SIZE);
18313 md_number_to_chars (buf, newval, INSN_SIZE);
18314 break;
a737bd4d 18315
c19d1205 18316#ifdef OBJ_ELF
39b41c9c
PB
18317 case BFD_RELOC_ARM_PCREL_CALL:
18318 newval = md_chars_to_number (buf, INSN_SIZE);
18319 if ((newval & 0xf0000000) == 0xf0000000)
18320 temp = 1;
18321 else
18322 temp = 3;
18323 goto arm_branch_common;
18324
18325 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18326 case BFD_RELOC_ARM_PLT32:
c19d1205 18327#endif
39b41c9c
PB
18328 case BFD_RELOC_ARM_PCREL_BRANCH:
18329 temp = 3;
18330 goto arm_branch_common;
a737bd4d 18331
39b41c9c
PB
18332 case BFD_RELOC_ARM_PCREL_BLX:
18333 temp = 1;
18334 arm_branch_common:
c19d1205 18335 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
18336 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18337 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18338 also be be clear. */
18339 if (value & temp)
c19d1205 18340 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
18341 _("misaligned branch destination"));
18342 if ((value & (offsetT)0xfe000000) != (offsetT)0
18343 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18344 as_bad_where (fixP->fx_file, fixP->fx_line,
18345 _("branch out of range"));
a737bd4d 18346
2fc8bdac 18347 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18348 {
2fc8bdac
ZW
18349 newval = md_chars_to_number (buf, INSN_SIZE);
18350 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
18351 /* Set the H bit on BLX instructions. */
18352 if (temp == 1)
18353 {
18354 if (value & 2)
18355 newval |= 0x01000000;
18356 else
18357 newval &= ~0x01000000;
18358 }
2fc8bdac 18359 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 18360 }
c19d1205 18361 break;
a737bd4d 18362
25fe350b
MS
18363 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18364 /* CBZ can only branch forward. */
a737bd4d 18365
738755b0
MS
18366 /* Attempts to use CBZ to branch to the next instruction
18367 (which, strictly speaking, are prohibited) will be turned into
18368 no-ops.
18369
18370 FIXME: It may be better to remove the instruction completely and
18371 perform relaxation. */
18372 if (value == -2)
2fc8bdac
ZW
18373 {
18374 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 18375 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
18376 md_number_to_chars (buf, newval, THUMB_SIZE);
18377 }
738755b0
MS
18378 else
18379 {
18380 if (value & ~0x7e)
18381 as_bad_where (fixP->fx_file, fixP->fx_line,
18382 _("branch out of range"));
18383
18384 if (fixP->fx_done || !seg->use_rela_p)
18385 {
18386 newval = md_chars_to_number (buf, THUMB_SIZE);
18387 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18388 md_number_to_chars (buf, newval, THUMB_SIZE);
18389 }
18390 }
c19d1205 18391 break;
a737bd4d 18392
c19d1205 18393 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
18394 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18395 as_bad_where (fixP->fx_file, fixP->fx_line,
18396 _("branch out of range"));
a737bd4d 18397
2fc8bdac
ZW
18398 if (fixP->fx_done || !seg->use_rela_p)
18399 {
18400 newval = md_chars_to_number (buf, THUMB_SIZE);
18401 newval |= (value & 0x1ff) >> 1;
18402 md_number_to_chars (buf, newval, THUMB_SIZE);
18403 }
c19d1205 18404 break;
a737bd4d 18405
c19d1205 18406 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
18407 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18408 as_bad_where (fixP->fx_file, fixP->fx_line,
18409 _("branch out of range"));
a737bd4d 18410
2fc8bdac
ZW
18411 if (fixP->fx_done || !seg->use_rela_p)
18412 {
18413 newval = md_chars_to_number (buf, THUMB_SIZE);
18414 newval |= (value & 0xfff) >> 1;
18415 md_number_to_chars (buf, newval, THUMB_SIZE);
18416 }
c19d1205 18417 break;
a737bd4d 18418
c19d1205 18419 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
18420 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18421 as_bad_where (fixP->fx_file, fixP->fx_line,
18422 _("conditional branch out of range"));
404ff6b5 18423
2fc8bdac
ZW
18424 if (fixP->fx_done || !seg->use_rela_p)
18425 {
18426 offsetT newval2;
18427 addressT S, J1, J2, lo, hi;
404ff6b5 18428
2fc8bdac
ZW
18429 S = (value & 0x00100000) >> 20;
18430 J2 = (value & 0x00080000) >> 19;
18431 J1 = (value & 0x00040000) >> 18;
18432 hi = (value & 0x0003f000) >> 12;
18433 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18434
2fc8bdac
ZW
18435 newval = md_chars_to_number (buf, THUMB_SIZE);
18436 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18437 newval |= (S << 10) | hi;
18438 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18439 md_number_to_chars (buf, newval, THUMB_SIZE);
18440 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18441 }
c19d1205 18442 break;
6c43fab6 18443
c19d1205
ZW
18444 case BFD_RELOC_THUMB_PCREL_BLX:
18445 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
18446 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18447 as_bad_where (fixP->fx_file, fixP->fx_line,
18448 _("branch out of range"));
404ff6b5 18449
2fc8bdac
ZW
18450 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18451 /* For a BLX instruction, make sure that the relocation is rounded up
18452 to a word boundary. This follows the semantics of the instruction
18453 which specifies that bit 1 of the target address will come from bit
18454 1 of the base address. */
18455 value = (value + 1) & ~ 1;
404ff6b5 18456
2fc8bdac 18457 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18458 {
2fc8bdac
ZW
18459 offsetT newval2;
18460
18461 newval = md_chars_to_number (buf, THUMB_SIZE);
18462 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18463 newval |= (value & 0x7fffff) >> 12;
18464 newval2 |= (value & 0xfff) >> 1;
18465 md_number_to_chars (buf, newval, THUMB_SIZE);
18466 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 18467 }
c19d1205 18468 break;
404ff6b5 18469
c19d1205 18470 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
18471 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18472 as_bad_where (fixP->fx_file, fixP->fx_line,
18473 _("branch out of range"));
6c43fab6 18474
2fc8bdac
ZW
18475 if (fixP->fx_done || !seg->use_rela_p)
18476 {
18477 offsetT newval2;
18478 addressT S, I1, I2, lo, hi;
6c43fab6 18479
2fc8bdac
ZW
18480 S = (value & 0x01000000) >> 24;
18481 I1 = (value & 0x00800000) >> 23;
18482 I2 = (value & 0x00400000) >> 22;
18483 hi = (value & 0x003ff000) >> 12;
18484 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18485
2fc8bdac
ZW
18486 I1 = !(I1 ^ S);
18487 I2 = !(I2 ^ S);
a737bd4d 18488
2fc8bdac
ZW
18489 newval = md_chars_to_number (buf, THUMB_SIZE);
18490 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18491 newval |= (S << 10) | hi;
18492 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18493 md_number_to_chars (buf, newval, THUMB_SIZE);
18494 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18495 }
18496 break;
a737bd4d 18497
2fc8bdac
ZW
18498 case BFD_RELOC_8:
18499 if (fixP->fx_done || !seg->use_rela_p)
18500 md_number_to_chars (buf, value, 1);
c19d1205 18501 break;
a737bd4d 18502
c19d1205 18503 case BFD_RELOC_16:
2fc8bdac 18504 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18505 md_number_to_chars (buf, value, 2);
c19d1205 18506 break;
a737bd4d 18507
c19d1205
ZW
18508#ifdef OBJ_ELF
18509 case BFD_RELOC_ARM_TLS_GD32:
18510 case BFD_RELOC_ARM_TLS_LE32:
18511 case BFD_RELOC_ARM_TLS_IE32:
18512 case BFD_RELOC_ARM_TLS_LDM32:
18513 case BFD_RELOC_ARM_TLS_LDO32:
18514 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18515 /* fall through */
6c43fab6 18516
c19d1205
ZW
18517 case BFD_RELOC_ARM_GOT32:
18518 case BFD_RELOC_ARM_GOTOFF:
18519 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
18520 if (fixP->fx_done || !seg->use_rela_p)
18521 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
18522 break;
18523#endif
6c43fab6 18524
c19d1205
ZW
18525 case BFD_RELOC_RVA:
18526 case BFD_RELOC_32:
18527 case BFD_RELOC_ARM_TARGET1:
18528 case BFD_RELOC_ARM_ROSEGREL32:
18529 case BFD_RELOC_ARM_SBREL32:
18530 case BFD_RELOC_32_PCREL:
f0927246
NC
18531#ifdef TE_PE
18532 case BFD_RELOC_32_SECREL:
18533#endif
2fc8bdac 18534 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
18535#ifdef TE_WINCE
18536 /* For WinCE we only do this for pcrel fixups. */
18537 if (fixP->fx_done || fixP->fx_pcrel)
18538#endif
18539 md_number_to_chars (buf, value, 4);
c19d1205 18540 break;
6c43fab6 18541
c19d1205
ZW
18542#ifdef OBJ_ELF
18543 case BFD_RELOC_ARM_PREL31:
2fc8bdac 18544 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
18545 {
18546 newval = md_chars_to_number (buf, 4) & 0x80000000;
18547 if ((value ^ (value >> 1)) & 0x40000000)
18548 {
18549 as_bad_where (fixP->fx_file, fixP->fx_line,
18550 _("rel31 relocation overflow"));
18551 }
18552 newval |= value & 0x7fffffff;
18553 md_number_to_chars (buf, newval, 4);
18554 }
18555 break;
c19d1205 18556#endif
a737bd4d 18557
c19d1205 18558 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 18559 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
18560 if (value < -1023 || value > 1023 || (value & 3))
18561 as_bad_where (fixP->fx_file, fixP->fx_line,
18562 _("co-processor offset out of range"));
18563 cp_off_common:
18564 sign = value >= 0;
18565 if (value < 0)
18566 value = -value;
8f06b2d8
PB
18567 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18568 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18569 newval = md_chars_to_number (buf, INSN_SIZE);
18570 else
18571 newval = get_thumb32_insn (buf);
18572 newval &= 0xff7fff00;
c19d1205 18573 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
18574 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18575 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18576 md_number_to_chars (buf, newval, INSN_SIZE);
18577 else
18578 put_thumb32_insn (buf, newval);
c19d1205 18579 break;
a737bd4d 18580
c19d1205 18581 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 18582 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
18583 if (value < -255 || value > 255)
18584 as_bad_where (fixP->fx_file, fixP->fx_line,
18585 _("co-processor offset out of range"));
df7849c5 18586 value *= 4;
c19d1205 18587 goto cp_off_common;
6c43fab6 18588
c19d1205
ZW
18589 case BFD_RELOC_ARM_THUMB_OFFSET:
18590 newval = md_chars_to_number (buf, THUMB_SIZE);
18591 /* Exactly what ranges, and where the offset is inserted depends
18592 on the type of instruction, we can establish this from the
18593 top 4 bits. */
18594 switch (newval >> 12)
18595 {
18596 case 4: /* PC load. */
18597 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18598 forced to zero for these loads; md_pcrel_from has already
18599 compensated for this. */
18600 if (value & 3)
18601 as_bad_where (fixP->fx_file, fixP->fx_line,
18602 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
18603 (((unsigned long) fixP->fx_frag->fr_address
18604 + (unsigned long) fixP->fx_where) & ~3)
18605 + (unsigned long) value);
a737bd4d 18606
c19d1205
ZW
18607 if (value & ~0x3fc)
18608 as_bad_where (fixP->fx_file, fixP->fx_line,
18609 _("invalid offset, value too big (0x%08lX)"),
18610 (long) value);
a737bd4d 18611
c19d1205
ZW
18612 newval |= value >> 2;
18613 break;
a737bd4d 18614
c19d1205
ZW
18615 case 9: /* SP load/store. */
18616 if (value & ~0x3fc)
18617 as_bad_where (fixP->fx_file, fixP->fx_line,
18618 _("invalid offset, value too big (0x%08lX)"),
18619 (long) value);
18620 newval |= value >> 2;
18621 break;
6c43fab6 18622
c19d1205
ZW
18623 case 6: /* Word load/store. */
18624 if (value & ~0x7c)
18625 as_bad_where (fixP->fx_file, fixP->fx_line,
18626 _("invalid offset, value too big (0x%08lX)"),
18627 (long) value);
18628 newval |= value << 4; /* 6 - 2. */
18629 break;
a737bd4d 18630
c19d1205
ZW
18631 case 7: /* Byte load/store. */
18632 if (value & ~0x1f)
18633 as_bad_where (fixP->fx_file, fixP->fx_line,
18634 _("invalid offset, value too big (0x%08lX)"),
18635 (long) value);
18636 newval |= value << 6;
18637 break;
a737bd4d 18638
c19d1205
ZW
18639 case 8: /* Halfword load/store. */
18640 if (value & ~0x3e)
18641 as_bad_where (fixP->fx_file, fixP->fx_line,
18642 _("invalid offset, value too big (0x%08lX)"),
18643 (long) value);
18644 newval |= value << 5; /* 6 - 1. */
18645 break;
a737bd4d 18646
c19d1205
ZW
18647 default:
18648 as_bad_where (fixP->fx_file, fixP->fx_line,
18649 "Unable to process relocation for thumb opcode: %lx",
18650 (unsigned long) newval);
18651 break;
18652 }
18653 md_number_to_chars (buf, newval, THUMB_SIZE);
18654 break;
a737bd4d 18655
c19d1205
ZW
18656 case BFD_RELOC_ARM_THUMB_ADD:
18657 /* This is a complicated relocation, since we use it for all of
18658 the following immediate relocations:
a737bd4d 18659
c19d1205
ZW
18660 3bit ADD/SUB
18661 8bit ADD/SUB
18662 9bit ADD/SUB SP word-aligned
18663 10bit ADD PC/SP word-aligned
a737bd4d 18664
c19d1205
ZW
18665 The type of instruction being processed is encoded in the
18666 instruction field:
a737bd4d 18667
c19d1205
ZW
18668 0x8000 SUB
18669 0x00F0 Rd
18670 0x000F Rs
18671 */
18672 newval = md_chars_to_number (buf, THUMB_SIZE);
18673 {
18674 int rd = (newval >> 4) & 0xf;
18675 int rs = newval & 0xf;
18676 int subtract = !!(newval & 0x8000);
a737bd4d 18677
c19d1205
ZW
18678 /* Check for HI regs, only very restricted cases allowed:
18679 Adjusting SP, and using PC or SP to get an address. */
18680 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18681 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18682 as_bad_where (fixP->fx_file, fixP->fx_line,
18683 _("invalid Hi register with immediate"));
a737bd4d 18684
c19d1205
ZW
18685 /* If value is negative, choose the opposite instruction. */
18686 if (value < 0)
18687 {
18688 value = -value;
18689 subtract = !subtract;
18690 if (value < 0)
18691 as_bad_where (fixP->fx_file, fixP->fx_line,
18692 _("immediate value out of range"));
18693 }
a737bd4d 18694
c19d1205
ZW
18695 if (rd == REG_SP)
18696 {
18697 if (value & ~0x1fc)
18698 as_bad_where (fixP->fx_file, fixP->fx_line,
18699 _("invalid immediate for stack address calculation"));
18700 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18701 newval |= value >> 2;
18702 }
18703 else if (rs == REG_PC || rs == REG_SP)
18704 {
18705 if (subtract || value & ~0x3fc)
18706 as_bad_where (fixP->fx_file, fixP->fx_line,
18707 _("invalid immediate for address calculation (value = 0x%08lX)"),
18708 (unsigned long) value);
18709 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18710 newval |= rd << 8;
18711 newval |= value >> 2;
18712 }
18713 else if (rs == rd)
18714 {
18715 if (value & ~0xff)
18716 as_bad_where (fixP->fx_file, fixP->fx_line,
18717 _("immediate value out of range"));
18718 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18719 newval |= (rd << 8) | value;
18720 }
18721 else
18722 {
18723 if (value & ~0x7)
18724 as_bad_where (fixP->fx_file, fixP->fx_line,
18725 _("immediate value out of range"));
18726 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18727 newval |= rd | (rs << 3) | (value << 6);
18728 }
18729 }
18730 md_number_to_chars (buf, newval, THUMB_SIZE);
18731 break;
a737bd4d 18732
c19d1205
ZW
18733 case BFD_RELOC_ARM_THUMB_IMM:
18734 newval = md_chars_to_number (buf, THUMB_SIZE);
18735 if (value < 0 || value > 255)
18736 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 18737 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
18738 (long) value);
18739 newval |= value;
18740 md_number_to_chars (buf, newval, THUMB_SIZE);
18741 break;
a737bd4d 18742
c19d1205
ZW
18743 case BFD_RELOC_ARM_THUMB_SHIFT:
18744 /* 5bit shift value (0..32). LSL cannot take 32. */
18745 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18746 temp = newval & 0xf800;
18747 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18748 as_bad_where (fixP->fx_file, fixP->fx_line,
18749 _("invalid shift value: %ld"), (long) value);
18750 /* Shifts of zero must be encoded as LSL. */
18751 if (value == 0)
18752 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18753 /* Shifts of 32 are encoded as zero. */
18754 else if (value == 32)
18755 value = 0;
18756 newval |= value << 6;
18757 md_number_to_chars (buf, newval, THUMB_SIZE);
18758 break;
a737bd4d 18759
c19d1205
ZW
18760 case BFD_RELOC_VTABLE_INHERIT:
18761 case BFD_RELOC_VTABLE_ENTRY:
18762 fixP->fx_done = 0;
18763 return;
6c43fab6 18764
b6895b4f
PB
18765 case BFD_RELOC_ARM_MOVW:
18766 case BFD_RELOC_ARM_MOVT:
18767 case BFD_RELOC_ARM_THUMB_MOVW:
18768 case BFD_RELOC_ARM_THUMB_MOVT:
18769 if (fixP->fx_done || !seg->use_rela_p)
18770 {
18771 /* REL format relocations are limited to a 16-bit addend. */
18772 if (!fixP->fx_done)
18773 {
18774 if (value < -0x1000 || value > 0xffff)
18775 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 18776 _("offset out of range"));
b6895b4f
PB
18777 }
18778 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18779 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18780 {
18781 value >>= 16;
18782 }
18783
18784 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18785 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18786 {
18787 newval = get_thumb32_insn (buf);
18788 newval &= 0xfbf08f00;
18789 newval |= (value & 0xf000) << 4;
18790 newval |= (value & 0x0800) << 15;
18791 newval |= (value & 0x0700) << 4;
18792 newval |= (value & 0x00ff);
18793 put_thumb32_insn (buf, newval);
18794 }
18795 else
18796 {
18797 newval = md_chars_to_number (buf, 4);
18798 newval &= 0xfff0f000;
18799 newval |= value & 0x0fff;
18800 newval |= (value & 0xf000) << 4;
18801 md_number_to_chars (buf, newval, 4);
18802 }
18803 }
18804 return;
18805
4962c51a
MS
18806 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18807 case BFD_RELOC_ARM_ALU_PC_G0:
18808 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18809 case BFD_RELOC_ARM_ALU_PC_G1:
18810 case BFD_RELOC_ARM_ALU_PC_G2:
18811 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18812 case BFD_RELOC_ARM_ALU_SB_G0:
18813 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18814 case BFD_RELOC_ARM_ALU_SB_G1:
18815 case BFD_RELOC_ARM_ALU_SB_G2:
18816 assert (!fixP->fx_done);
18817 if (!seg->use_rela_p)
18818 {
18819 bfd_vma insn;
18820 bfd_vma encoded_addend;
18821 bfd_vma addend_abs = abs (value);
18822
18823 /* Check that the absolute value of the addend can be
18824 expressed as an 8-bit constant plus a rotation. */
18825 encoded_addend = encode_arm_immediate (addend_abs);
18826 if (encoded_addend == (unsigned int) FAIL)
18827 as_bad_where (fixP->fx_file, fixP->fx_line,
18828 _("the offset 0x%08lX is not representable"),
495bde8e 18829 (unsigned long) addend_abs);
4962c51a
MS
18830
18831 /* Extract the instruction. */
18832 insn = md_chars_to_number (buf, INSN_SIZE);
18833
18834 /* If the addend is positive, use an ADD instruction.
18835 Otherwise use a SUB. Take care not to destroy the S bit. */
18836 insn &= 0xff1fffff;
18837 if (value < 0)
18838 insn |= 1 << 22;
18839 else
18840 insn |= 1 << 23;
18841
18842 /* Place the encoded addend into the first 12 bits of the
18843 instruction. */
18844 insn &= 0xfffff000;
18845 insn |= encoded_addend;
18846
18847 /* Update the instruction. */
18848 md_number_to_chars (buf, insn, INSN_SIZE);
18849 }
18850 break;
18851
18852 case BFD_RELOC_ARM_LDR_PC_G0:
18853 case BFD_RELOC_ARM_LDR_PC_G1:
18854 case BFD_RELOC_ARM_LDR_PC_G2:
18855 case BFD_RELOC_ARM_LDR_SB_G0:
18856 case BFD_RELOC_ARM_LDR_SB_G1:
18857 case BFD_RELOC_ARM_LDR_SB_G2:
18858 assert (!fixP->fx_done);
18859 if (!seg->use_rela_p)
18860 {
18861 bfd_vma insn;
18862 bfd_vma addend_abs = abs (value);
18863
18864 /* Check that the absolute value of the addend can be
18865 encoded in 12 bits. */
18866 if (addend_abs >= 0x1000)
18867 as_bad_where (fixP->fx_file, fixP->fx_line,
18868 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 18869 (unsigned long) addend_abs);
4962c51a
MS
18870
18871 /* Extract the instruction. */
18872 insn = md_chars_to_number (buf, INSN_SIZE);
18873
18874 /* If the addend is negative, clear bit 23 of the instruction.
18875 Otherwise set it. */
18876 if (value < 0)
18877 insn &= ~(1 << 23);
18878 else
18879 insn |= 1 << 23;
18880
18881 /* Place the absolute value of the addend into the first 12 bits
18882 of the instruction. */
18883 insn &= 0xfffff000;
18884 insn |= addend_abs;
18885
18886 /* Update the instruction. */
18887 md_number_to_chars (buf, insn, INSN_SIZE);
18888 }
18889 break;
18890
18891 case BFD_RELOC_ARM_LDRS_PC_G0:
18892 case BFD_RELOC_ARM_LDRS_PC_G1:
18893 case BFD_RELOC_ARM_LDRS_PC_G2:
18894 case BFD_RELOC_ARM_LDRS_SB_G0:
18895 case BFD_RELOC_ARM_LDRS_SB_G1:
18896 case BFD_RELOC_ARM_LDRS_SB_G2:
18897 assert (!fixP->fx_done);
18898 if (!seg->use_rela_p)
18899 {
18900 bfd_vma insn;
18901 bfd_vma addend_abs = abs (value);
18902
18903 /* Check that the absolute value of the addend can be
18904 encoded in 8 bits. */
18905 if (addend_abs >= 0x100)
18906 as_bad_where (fixP->fx_file, fixP->fx_line,
18907 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 18908 (unsigned long) addend_abs);
4962c51a
MS
18909
18910 /* Extract the instruction. */
18911 insn = md_chars_to_number (buf, INSN_SIZE);
18912
18913 /* If the addend is negative, clear bit 23 of the instruction.
18914 Otherwise set it. */
18915 if (value < 0)
18916 insn &= ~(1 << 23);
18917 else
18918 insn |= 1 << 23;
18919
18920 /* Place the first four bits of the absolute value of the addend
18921 into the first 4 bits of the instruction, and the remaining
18922 four into bits 8 .. 11. */
18923 insn &= 0xfffff0f0;
18924 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18925
18926 /* Update the instruction. */
18927 md_number_to_chars (buf, insn, INSN_SIZE);
18928 }
18929 break;
18930
18931 case BFD_RELOC_ARM_LDC_PC_G0:
18932 case BFD_RELOC_ARM_LDC_PC_G1:
18933 case BFD_RELOC_ARM_LDC_PC_G2:
18934 case BFD_RELOC_ARM_LDC_SB_G0:
18935 case BFD_RELOC_ARM_LDC_SB_G1:
18936 case BFD_RELOC_ARM_LDC_SB_G2:
18937 assert (!fixP->fx_done);
18938 if (!seg->use_rela_p)
18939 {
18940 bfd_vma insn;
18941 bfd_vma addend_abs = abs (value);
18942
18943 /* Check that the absolute value of the addend is a multiple of
18944 four and, when divided by four, fits in 8 bits. */
18945 if (addend_abs & 0x3)
18946 as_bad_where (fixP->fx_file, fixP->fx_line,
18947 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 18948 (unsigned long) addend_abs);
4962c51a
MS
18949
18950 if ((addend_abs >> 2) > 0xff)
18951 as_bad_where (fixP->fx_file, fixP->fx_line,
18952 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 18953 (unsigned long) addend_abs);
4962c51a
MS
18954
18955 /* Extract the instruction. */
18956 insn = md_chars_to_number (buf, INSN_SIZE);
18957
18958 /* If the addend is negative, clear bit 23 of the instruction.
18959 Otherwise set it. */
18960 if (value < 0)
18961 insn &= ~(1 << 23);
18962 else
18963 insn |= 1 << 23;
18964
18965 /* Place the addend (divided by four) into the first eight
18966 bits of the instruction. */
18967 insn &= 0xfffffff0;
18968 insn |= addend_abs >> 2;
18969
18970 /* Update the instruction. */
18971 md_number_to_chars (buf, insn, INSN_SIZE);
18972 }
18973 break;
18974
c19d1205
ZW
18975 case BFD_RELOC_UNUSED:
18976 default:
18977 as_bad_where (fixP->fx_file, fixP->fx_line,
18978 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18979 }
6c43fab6
RE
18980}
18981
c19d1205
ZW
18982/* Translate internal representation of relocation info to BFD target
18983 format. */
a737bd4d 18984
c19d1205 18985arelent *
00a97672 18986tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 18987{
c19d1205
ZW
18988 arelent * reloc;
18989 bfd_reloc_code_real_type code;
a737bd4d 18990
c19d1205 18991 reloc = xmalloc (sizeof (arelent));
a737bd4d 18992
c19d1205
ZW
18993 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18994 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18995 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 18996
2fc8bdac 18997 if (fixp->fx_pcrel)
00a97672
RS
18998 {
18999 if (section->use_rela_p)
19000 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19001 else
19002 fixp->fx_offset = reloc->address;
19003 }
c19d1205 19004 reloc->addend = fixp->fx_offset;
a737bd4d 19005
c19d1205 19006 switch (fixp->fx_r_type)
a737bd4d 19007 {
c19d1205
ZW
19008 case BFD_RELOC_8:
19009 if (fixp->fx_pcrel)
19010 {
19011 code = BFD_RELOC_8_PCREL;
19012 break;
19013 }
a737bd4d 19014
c19d1205
ZW
19015 case BFD_RELOC_16:
19016 if (fixp->fx_pcrel)
19017 {
19018 code = BFD_RELOC_16_PCREL;
19019 break;
19020 }
6c43fab6 19021
c19d1205
ZW
19022 case BFD_RELOC_32:
19023 if (fixp->fx_pcrel)
19024 {
19025 code = BFD_RELOC_32_PCREL;
19026 break;
19027 }
a737bd4d 19028
b6895b4f
PB
19029 case BFD_RELOC_ARM_MOVW:
19030 if (fixp->fx_pcrel)
19031 {
19032 code = BFD_RELOC_ARM_MOVW_PCREL;
19033 break;
19034 }
19035
19036 case BFD_RELOC_ARM_MOVT:
19037 if (fixp->fx_pcrel)
19038 {
19039 code = BFD_RELOC_ARM_MOVT_PCREL;
19040 break;
19041 }
19042
19043 case BFD_RELOC_ARM_THUMB_MOVW:
19044 if (fixp->fx_pcrel)
19045 {
19046 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19047 break;
19048 }
19049
19050 case BFD_RELOC_ARM_THUMB_MOVT:
19051 if (fixp->fx_pcrel)
19052 {
19053 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19054 break;
19055 }
19056
c19d1205
ZW
19057 case BFD_RELOC_NONE:
19058 case BFD_RELOC_ARM_PCREL_BRANCH:
19059 case BFD_RELOC_ARM_PCREL_BLX:
19060 case BFD_RELOC_RVA:
19061 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19062 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19063 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19064 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19065 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19066 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19067 case BFD_RELOC_THUMB_PCREL_BLX:
19068 case BFD_RELOC_VTABLE_ENTRY:
19069 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
19070#ifdef TE_PE
19071 case BFD_RELOC_32_SECREL:
19072#endif
c19d1205
ZW
19073 code = fixp->fx_r_type;
19074 break;
a737bd4d 19075
c19d1205
ZW
19076 case BFD_RELOC_ARM_LITERAL:
19077 case BFD_RELOC_ARM_HWLITERAL:
19078 /* If this is called then the a literal has
19079 been referenced across a section boundary. */
19080 as_bad_where (fixp->fx_file, fixp->fx_line,
19081 _("literal referenced across section boundary"));
19082 return NULL;
a737bd4d 19083
c19d1205
ZW
19084#ifdef OBJ_ELF
19085 case BFD_RELOC_ARM_GOT32:
19086 case BFD_RELOC_ARM_GOTOFF:
19087 case BFD_RELOC_ARM_PLT32:
19088 case BFD_RELOC_ARM_TARGET1:
19089 case BFD_RELOC_ARM_ROSEGREL32:
19090 case BFD_RELOC_ARM_SBREL32:
19091 case BFD_RELOC_ARM_PREL31:
19092 case BFD_RELOC_ARM_TARGET2:
19093 case BFD_RELOC_ARM_TLS_LE32:
19094 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
19095 case BFD_RELOC_ARM_PCREL_CALL:
19096 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
19097 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19098 case BFD_RELOC_ARM_ALU_PC_G0:
19099 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19100 case BFD_RELOC_ARM_ALU_PC_G1:
19101 case BFD_RELOC_ARM_ALU_PC_G2:
19102 case BFD_RELOC_ARM_LDR_PC_G0:
19103 case BFD_RELOC_ARM_LDR_PC_G1:
19104 case BFD_RELOC_ARM_LDR_PC_G2:
19105 case BFD_RELOC_ARM_LDRS_PC_G0:
19106 case BFD_RELOC_ARM_LDRS_PC_G1:
19107 case BFD_RELOC_ARM_LDRS_PC_G2:
19108 case BFD_RELOC_ARM_LDC_PC_G0:
19109 case BFD_RELOC_ARM_LDC_PC_G1:
19110 case BFD_RELOC_ARM_LDC_PC_G2:
19111 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19112 case BFD_RELOC_ARM_ALU_SB_G0:
19113 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19114 case BFD_RELOC_ARM_ALU_SB_G1:
19115 case BFD_RELOC_ARM_ALU_SB_G2:
19116 case BFD_RELOC_ARM_LDR_SB_G0:
19117 case BFD_RELOC_ARM_LDR_SB_G1:
19118 case BFD_RELOC_ARM_LDR_SB_G2:
19119 case BFD_RELOC_ARM_LDRS_SB_G0:
19120 case BFD_RELOC_ARM_LDRS_SB_G1:
19121 case BFD_RELOC_ARM_LDRS_SB_G2:
19122 case BFD_RELOC_ARM_LDC_SB_G0:
19123 case BFD_RELOC_ARM_LDC_SB_G1:
19124 case BFD_RELOC_ARM_LDC_SB_G2:
c19d1205
ZW
19125 code = fixp->fx_r_type;
19126 break;
a737bd4d 19127
c19d1205
ZW
19128 case BFD_RELOC_ARM_TLS_GD32:
19129 case BFD_RELOC_ARM_TLS_IE32:
19130 case BFD_RELOC_ARM_TLS_LDM32:
19131 /* BFD will include the symbol's address in the addend.
19132 But we don't want that, so subtract it out again here. */
19133 if (!S_IS_COMMON (fixp->fx_addsy))
19134 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19135 code = fixp->fx_r_type;
19136 break;
19137#endif
a737bd4d 19138
c19d1205
ZW
19139 case BFD_RELOC_ARM_IMMEDIATE:
19140 as_bad_where (fixp->fx_file, fixp->fx_line,
19141 _("internal relocation (type: IMMEDIATE) not fixed up"));
19142 return NULL;
a737bd4d 19143
c19d1205
ZW
19144 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19145 as_bad_where (fixp->fx_file, fixp->fx_line,
19146 _("ADRL used for a symbol not defined in the same file"));
19147 return NULL;
a737bd4d 19148
c19d1205 19149 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19150 if (section->use_rela_p)
19151 {
19152 code = fixp->fx_r_type;
19153 break;
19154 }
19155
c19d1205
ZW
19156 if (fixp->fx_addsy != NULL
19157 && !S_IS_DEFINED (fixp->fx_addsy)
19158 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 19159 {
c19d1205
ZW
19160 as_bad_where (fixp->fx_file, fixp->fx_line,
19161 _("undefined local label `%s'"),
19162 S_GET_NAME (fixp->fx_addsy));
19163 return NULL;
a737bd4d
NC
19164 }
19165
c19d1205
ZW
19166 as_bad_where (fixp->fx_file, fixp->fx_line,
19167 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19168 return NULL;
a737bd4d 19169
c19d1205
ZW
19170 default:
19171 {
19172 char * type;
6c43fab6 19173
c19d1205
ZW
19174 switch (fixp->fx_r_type)
19175 {
19176 case BFD_RELOC_NONE: type = "NONE"; break;
19177 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19178 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 19179 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
19180 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19181 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19182 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 19183 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
19184 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19185 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19186 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19187 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19188 default: type = _("<unknown>"); break;
19189 }
19190 as_bad_where (fixp->fx_file, fixp->fx_line,
19191 _("cannot represent %s relocation in this object file format"),
19192 type);
19193 return NULL;
19194 }
a737bd4d 19195 }
6c43fab6 19196
c19d1205
ZW
19197#ifdef OBJ_ELF
19198 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19199 && GOT_symbol
19200 && fixp->fx_addsy == GOT_symbol)
19201 {
19202 code = BFD_RELOC_ARM_GOTPC;
19203 reloc->addend = fixp->fx_offset = reloc->address;
19204 }
19205#endif
6c43fab6 19206
c19d1205 19207 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 19208
c19d1205
ZW
19209 if (reloc->howto == NULL)
19210 {
19211 as_bad_where (fixp->fx_file, fixp->fx_line,
19212 _("cannot represent %s relocation in this object file format"),
19213 bfd_get_reloc_code_name (code));
19214 return NULL;
19215 }
6c43fab6 19216
c19d1205
ZW
19217 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19218 vtable entry to be used in the relocation's section offset. */
19219 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19220 reloc->address = fixp->fx_offset;
6c43fab6 19221
c19d1205 19222 return reloc;
6c43fab6
RE
19223}
19224
c19d1205 19225/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19226
c19d1205
ZW
19227void
19228cons_fix_new_arm (fragS * frag,
19229 int where,
19230 int size,
19231 expressionS * exp)
6c43fab6 19232{
c19d1205
ZW
19233 bfd_reloc_code_real_type type;
19234 int pcrel = 0;
6c43fab6 19235
c19d1205
ZW
19236 /* Pick a reloc.
19237 FIXME: @@ Should look at CPU word size. */
19238 switch (size)
19239 {
19240 case 1:
19241 type = BFD_RELOC_8;
19242 break;
19243 case 2:
19244 type = BFD_RELOC_16;
19245 break;
19246 case 4:
19247 default:
19248 type = BFD_RELOC_32;
19249 break;
19250 case 8:
19251 type = BFD_RELOC_64;
19252 break;
19253 }
6c43fab6 19254
f0927246
NC
19255#ifdef TE_PE
19256 if (exp->X_op == O_secrel)
19257 {
19258 exp->X_op = O_symbol;
19259 type = BFD_RELOC_32_SECREL;
19260 }
19261#endif
19262
c19d1205
ZW
19263 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19264}
6c43fab6 19265
c19d1205
ZW
19266#if defined OBJ_COFF || defined OBJ_ELF
19267void
19268arm_validate_fix (fixS * fixP)
6c43fab6 19269{
c19d1205
ZW
19270 /* If the destination of the branch is a defined symbol which does not have
19271 the THUMB_FUNC attribute, then we must be calling a function which has
19272 the (interfacearm) attribute. We look for the Thumb entry point to that
19273 function and change the branch to refer to that function instead. */
19274 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19275 && fixP->fx_addsy != NULL
19276 && S_IS_DEFINED (fixP->fx_addsy)
19277 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19278 {
c19d1205 19279 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19280 }
c19d1205
ZW
19281}
19282#endif
6c43fab6 19283
c19d1205
ZW
19284int
19285arm_force_relocation (struct fix * fixp)
19286{
19287#if defined (OBJ_COFF) && defined (TE_PE)
19288 if (fixp->fx_r_type == BFD_RELOC_RVA)
19289 return 1;
19290#endif
6c43fab6 19291
c19d1205
ZW
19292 /* Resolve these relocations even if the symbol is extern or weak. */
19293 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19294 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19295 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19296 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19297 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19298 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19299 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19300 return 0;
a737bd4d 19301
4962c51a
MS
19302 /* Always leave these relocations for the linker. */
19303 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19304 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19305 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19306 return 1;
19307
f0291e4c
PB
19308 /* Always generate relocations against function symbols. */
19309 if (fixp->fx_r_type == BFD_RELOC_32
19310 && fixp->fx_addsy
19311 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19312 return 1;
19313
c19d1205 19314 return generic_force_reloc (fixp);
404ff6b5
AH
19315}
19316
0ffdc86c 19317#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19318/* Relocations against function names must be left unadjusted,
19319 so that the linker can use this information to generate interworking
19320 stubs. The MIPS version of this function
c19d1205
ZW
19321 also prevents relocations that are mips-16 specific, but I do not
19322 know why it does this.
404ff6b5 19323
c19d1205
ZW
19324 FIXME:
19325 There is one other problem that ought to be addressed here, but
19326 which currently is not: Taking the address of a label (rather
19327 than a function) and then later jumping to that address. Such
19328 addresses also ought to have their bottom bit set (assuming that
19329 they reside in Thumb code), but at the moment they will not. */
404ff6b5 19330
c19d1205
ZW
19331bfd_boolean
19332arm_fix_adjustable (fixS * fixP)
404ff6b5 19333{
c19d1205
ZW
19334 if (fixP->fx_addsy == NULL)
19335 return 1;
404ff6b5 19336
e28387c3
PB
19337 /* Preserve relocations against symbols with function type. */
19338 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19339 return 0;
19340
c19d1205
ZW
19341 if (THUMB_IS_FUNC (fixP->fx_addsy)
19342 && fixP->fx_subsy == NULL)
19343 return 0;
a737bd4d 19344
c19d1205
ZW
19345 /* We need the symbol name for the VTABLE entries. */
19346 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19347 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19348 return 0;
404ff6b5 19349
c19d1205
ZW
19350 /* Don't allow symbols to be discarded on GOT related relocs. */
19351 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19352 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19353 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19354 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19355 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19356 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19357 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19358 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19359 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19360 return 0;
a737bd4d 19361
4962c51a
MS
19362 /* Similarly for group relocations. */
19363 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19364 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19365 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19366 return 0;
19367
c19d1205 19368 return 1;
a737bd4d 19369}
0ffdc86c
NC
19370#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19371
19372#ifdef OBJ_ELF
404ff6b5 19373
c19d1205
ZW
19374const char *
19375elf32_arm_target_format (void)
404ff6b5 19376{
c19d1205
ZW
19377#ifdef TE_SYMBIAN
19378 return (target_big_endian
19379 ? "elf32-bigarm-symbian"
19380 : "elf32-littlearm-symbian");
19381#elif defined (TE_VXWORKS)
19382 return (target_big_endian
19383 ? "elf32-bigarm-vxworks"
19384 : "elf32-littlearm-vxworks");
19385#else
19386 if (target_big_endian)
19387 return "elf32-bigarm";
19388 else
19389 return "elf32-littlearm";
19390#endif
404ff6b5
AH
19391}
19392
c19d1205
ZW
19393void
19394armelf_frob_symbol (symbolS * symp,
19395 int * puntp)
404ff6b5 19396{
c19d1205
ZW
19397 elf_frob_symbol (symp, puntp);
19398}
19399#endif
404ff6b5 19400
c19d1205 19401/* MD interface: Finalization. */
a737bd4d 19402
c19d1205
ZW
19403/* A good place to do this, although this was probably not intended
19404 for this kind of use. We need to dump the literal pool before
19405 references are made to a null symbol pointer. */
a737bd4d 19406
c19d1205
ZW
19407void
19408arm_cleanup (void)
19409{
19410 literal_pool * pool;
a737bd4d 19411
c19d1205
ZW
19412 for (pool = list_of_pools; pool; pool = pool->next)
19413 {
19414 /* Put it at the end of the relevent section. */
19415 subseg_set (pool->section, pool->sub_section);
19416#ifdef OBJ_ELF
19417 arm_elf_change_section ();
19418#endif
19419 s_ltorg (0);
19420 }
404ff6b5
AH
19421}
19422
c19d1205
ZW
19423/* Adjust the symbol table. This marks Thumb symbols as distinct from
19424 ARM ones. */
404ff6b5 19425
c19d1205
ZW
19426void
19427arm_adjust_symtab (void)
404ff6b5 19428{
c19d1205
ZW
19429#ifdef OBJ_COFF
19430 symbolS * sym;
404ff6b5 19431
c19d1205
ZW
19432 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19433 {
19434 if (ARM_IS_THUMB (sym))
19435 {
19436 if (THUMB_IS_FUNC (sym))
19437 {
19438 /* Mark the symbol as a Thumb function. */
19439 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19440 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19441 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 19442
c19d1205
ZW
19443 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19444 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19445 else
19446 as_bad (_("%s: unexpected function type: %d"),
19447 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19448 }
19449 else switch (S_GET_STORAGE_CLASS (sym))
19450 {
19451 case C_EXT:
19452 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19453 break;
19454 case C_STAT:
19455 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19456 break;
19457 case C_LABEL:
19458 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19459 break;
19460 default:
19461 /* Do nothing. */
19462 break;
19463 }
19464 }
a737bd4d 19465
c19d1205
ZW
19466 if (ARM_IS_INTERWORK (sym))
19467 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 19468 }
c19d1205
ZW
19469#endif
19470#ifdef OBJ_ELF
19471 symbolS * sym;
19472 char bind;
404ff6b5 19473
c19d1205 19474 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 19475 {
c19d1205
ZW
19476 if (ARM_IS_THUMB (sym))
19477 {
19478 elf_symbol_type * elf_sym;
404ff6b5 19479
c19d1205
ZW
19480 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19481 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 19482
b0796911
PB
19483 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19484 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
19485 {
19486 /* If it's a .thumb_func, declare it as so,
19487 otherwise tag label as .code 16. */
19488 if (THUMB_IS_FUNC (sym))
19489 elf_sym->internal_elf_sym.st_info =
19490 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 19491 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
19492 elf_sym->internal_elf_sym.st_info =
19493 ELF_ST_INFO (bind, STT_ARM_16BIT);
19494 }
19495 }
19496 }
19497#endif
404ff6b5
AH
19498}
19499
c19d1205 19500/* MD interface: Initialization. */
404ff6b5 19501
a737bd4d 19502static void
c19d1205 19503set_constant_flonums (void)
a737bd4d 19504{
c19d1205 19505 int i;
404ff6b5 19506
c19d1205
ZW
19507 for (i = 0; i < NUM_FLOAT_VALS; i++)
19508 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19509 abort ();
a737bd4d 19510}
404ff6b5 19511
3e9e4fcf
JB
19512/* Auto-select Thumb mode if it's the only available instruction set for the
19513 given architecture. */
19514
19515static void
19516autoselect_thumb_from_cpu_variant (void)
19517{
19518 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19519 opcode_select (16);
19520}
19521
c19d1205
ZW
19522void
19523md_begin (void)
a737bd4d 19524{
c19d1205
ZW
19525 unsigned mach;
19526 unsigned int i;
404ff6b5 19527
c19d1205
ZW
19528 if ( (arm_ops_hsh = hash_new ()) == NULL
19529 || (arm_cond_hsh = hash_new ()) == NULL
19530 || (arm_shift_hsh = hash_new ()) == NULL
19531 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 19532 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 19533 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
19534 || (arm_reloc_hsh = hash_new ()) == NULL
19535 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
19536 as_fatal (_("virtual memory exhausted"));
19537
19538 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19539 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19540 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19541 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19542 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19543 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19544 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19545 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
62b3e311
PB
19546 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19547 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
c19d1205
ZW
19548 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19549 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
62b3e311
PB
19550 for (i = 0;
19551 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19552 i++)
19553 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19554 (PTR) (barrier_opt_names + i));
c19d1205
ZW
19555#ifdef OBJ_ELF
19556 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19557 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19558#endif
19559
19560 set_constant_flonums ();
404ff6b5 19561
c19d1205
ZW
19562 /* Set the cpu variant based on the command-line options. We prefer
19563 -mcpu= over -march= if both are set (as for GCC); and we prefer
19564 -mfpu= over any other way of setting the floating point unit.
19565 Use of legacy options with new options are faulted. */
e74cfd16 19566 if (legacy_cpu)
404ff6b5 19567 {
e74cfd16 19568 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
19569 as_bad (_("use of old and new-style options to set CPU type"));
19570
19571 mcpu_cpu_opt = legacy_cpu;
404ff6b5 19572 }
e74cfd16 19573 else if (!mcpu_cpu_opt)
c19d1205 19574 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 19575
e74cfd16 19576 if (legacy_fpu)
c19d1205 19577 {
e74cfd16 19578 if (mfpu_opt)
c19d1205 19579 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
19580
19581 mfpu_opt = legacy_fpu;
19582 }
e74cfd16 19583 else if (!mfpu_opt)
03b1477f 19584 {
c19d1205 19585#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
19586 /* Some environments specify a default FPU. If they don't, infer it
19587 from the processor. */
e74cfd16 19588 if (mcpu_fpu_opt)
03b1477f
RE
19589 mfpu_opt = mcpu_fpu_opt;
19590 else
19591 mfpu_opt = march_fpu_opt;
39c2da32 19592#else
e74cfd16 19593 mfpu_opt = &fpu_default;
39c2da32 19594#endif
03b1477f
RE
19595 }
19596
e74cfd16 19597 if (!mfpu_opt)
03b1477f 19598 {
493cb6ef 19599 if (mcpu_cpu_opt != NULL)
e74cfd16 19600 mfpu_opt = &fpu_default;
493cb6ef 19601 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 19602 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 19603 else
e74cfd16 19604 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
19605 }
19606
ee065d83 19607#ifdef CPU_DEFAULT
e74cfd16 19608 if (!mcpu_cpu_opt)
ee065d83 19609 {
e74cfd16
PB
19610 mcpu_cpu_opt = &cpu_default;
19611 selected_cpu = cpu_default;
ee065d83 19612 }
e74cfd16
PB
19613#else
19614 if (mcpu_cpu_opt)
19615 selected_cpu = *mcpu_cpu_opt;
ee065d83 19616 else
e74cfd16 19617 mcpu_cpu_opt = &arm_arch_any;
ee065d83 19618#endif
03b1477f 19619
e74cfd16 19620 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 19621
3e9e4fcf
JB
19622 autoselect_thumb_from_cpu_variant ();
19623
e74cfd16 19624 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 19625
f17c130b 19626#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 19627 {
7cc69913
NC
19628 unsigned int flags = 0;
19629
19630#if defined OBJ_ELF
19631 flags = meabi_flags;
d507cf36
PB
19632
19633 switch (meabi_flags)
33a392fb 19634 {
d507cf36 19635 case EF_ARM_EABI_UNKNOWN:
7cc69913 19636#endif
d507cf36
PB
19637 /* Set the flags in the private structure. */
19638 if (uses_apcs_26) flags |= F_APCS26;
19639 if (support_interwork) flags |= F_INTERWORK;
19640 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 19641 if (pic_code) flags |= F_PIC;
e74cfd16 19642 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
19643 flags |= F_SOFT_FLOAT;
19644
d507cf36
PB
19645 switch (mfloat_abi_opt)
19646 {
19647 case ARM_FLOAT_ABI_SOFT:
19648 case ARM_FLOAT_ABI_SOFTFP:
19649 flags |= F_SOFT_FLOAT;
19650 break;
33a392fb 19651
d507cf36
PB
19652 case ARM_FLOAT_ABI_HARD:
19653 if (flags & F_SOFT_FLOAT)
19654 as_bad (_("hard-float conflicts with specified fpu"));
19655 break;
19656 }
03b1477f 19657
e74cfd16
PB
19658 /* Using pure-endian doubles (even if soft-float). */
19659 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 19660 flags |= F_VFP_FLOAT;
f17c130b 19661
fde78edd 19662#if defined OBJ_ELF
e74cfd16 19663 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 19664 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
19665 break;
19666
8cb51566 19667 case EF_ARM_EABI_VER4:
3a4a14e9 19668 case EF_ARM_EABI_VER5:
c19d1205 19669 /* No additional flags to set. */
d507cf36
PB
19670 break;
19671
19672 default:
19673 abort ();
19674 }
7cc69913 19675#endif
b99bd4ef
NC
19676 bfd_set_private_flags (stdoutput, flags);
19677
19678 /* We have run out flags in the COFF header to encode the
19679 status of ATPCS support, so instead we create a dummy,
c19d1205 19680 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
19681 if (atpcs)
19682 {
19683 asection * sec;
19684
19685 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19686
19687 if (sec != NULL)
19688 {
19689 bfd_set_section_flags
19690 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19691 bfd_set_section_size (stdoutput, sec, 0);
19692 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19693 }
19694 }
7cc69913 19695 }
f17c130b 19696#endif
b99bd4ef
NC
19697
19698 /* Record the CPU type as well. */
2d447fca
JM
19699 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19700 mach = bfd_mach_arm_iWMMXt2;
19701 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 19702 mach = bfd_mach_arm_iWMMXt;
e74cfd16 19703 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 19704 mach = bfd_mach_arm_XScale;
e74cfd16 19705 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 19706 mach = bfd_mach_arm_ep9312;
e74cfd16 19707 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 19708 mach = bfd_mach_arm_5TE;
e74cfd16 19709 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 19710 {
e74cfd16 19711 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19712 mach = bfd_mach_arm_5T;
19713 else
19714 mach = bfd_mach_arm_5;
19715 }
e74cfd16 19716 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 19717 {
e74cfd16 19718 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19719 mach = bfd_mach_arm_4T;
19720 else
19721 mach = bfd_mach_arm_4;
19722 }
e74cfd16 19723 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 19724 mach = bfd_mach_arm_3M;
e74cfd16
PB
19725 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19726 mach = bfd_mach_arm_3;
19727 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19728 mach = bfd_mach_arm_2a;
19729 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19730 mach = bfd_mach_arm_2;
19731 else
19732 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
19733
19734 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19735}
19736
c19d1205 19737/* Command line processing. */
b99bd4ef 19738
c19d1205
ZW
19739/* md_parse_option
19740 Invocation line includes a switch not recognized by the base assembler.
19741 See if it's a processor-specific option.
b99bd4ef 19742
c19d1205
ZW
19743 This routine is somewhat complicated by the need for backwards
19744 compatibility (since older releases of gcc can't be changed).
19745 The new options try to make the interface as compatible as
19746 possible with GCC.
b99bd4ef 19747
c19d1205 19748 New options (supported) are:
b99bd4ef 19749
c19d1205
ZW
19750 -mcpu=<cpu name> Assemble for selected processor
19751 -march=<architecture name> Assemble for selected architecture
19752 -mfpu=<fpu architecture> Assemble for selected FPU.
19753 -EB/-mbig-endian Big-endian
19754 -EL/-mlittle-endian Little-endian
19755 -k Generate PIC code
19756 -mthumb Start in Thumb mode
19757 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 19758
c19d1205 19759 For now we will also provide support for:
b99bd4ef 19760
c19d1205
ZW
19761 -mapcs-32 32-bit Program counter
19762 -mapcs-26 26-bit Program counter
19763 -macps-float Floats passed in FP registers
19764 -mapcs-reentrant Reentrant code
19765 -matpcs
19766 (sometime these will probably be replaced with -mapcs=<list of options>
19767 and -matpcs=<list of options>)
b99bd4ef 19768
c19d1205
ZW
19769 The remaining options are only supported for back-wards compatibility.
19770 Cpu variants, the arm part is optional:
19771 -m[arm]1 Currently not supported.
19772 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19773 -m[arm]3 Arm 3 processor
19774 -m[arm]6[xx], Arm 6 processors
19775 -m[arm]7[xx][t][[d]m] Arm 7 processors
19776 -m[arm]8[10] Arm 8 processors
19777 -m[arm]9[20][tdmi] Arm 9 processors
19778 -mstrongarm[110[0]] StrongARM processors
19779 -mxscale XScale processors
19780 -m[arm]v[2345[t[e]]] Arm architectures
19781 -mall All (except the ARM1)
19782 FP variants:
19783 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19784 -mfpe-old (No float load/store multiples)
19785 -mvfpxd VFP Single precision
19786 -mvfp All VFP
19787 -mno-fpu Disable all floating point instructions
b99bd4ef 19788
c19d1205
ZW
19789 The following CPU names are recognized:
19790 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19791 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19792 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19793 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19794 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19795 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19796 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 19797
c19d1205 19798 */
b99bd4ef 19799
c19d1205 19800const char * md_shortopts = "m:k";
b99bd4ef 19801
c19d1205
ZW
19802#ifdef ARM_BI_ENDIAN
19803#define OPTION_EB (OPTION_MD_BASE + 0)
19804#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 19805#else
c19d1205
ZW
19806#if TARGET_BYTES_BIG_ENDIAN
19807#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 19808#else
c19d1205
ZW
19809#define OPTION_EL (OPTION_MD_BASE + 1)
19810#endif
b99bd4ef 19811#endif
b99bd4ef 19812
c19d1205 19813struct option md_longopts[] =
b99bd4ef 19814{
c19d1205
ZW
19815#ifdef OPTION_EB
19816 {"EB", no_argument, NULL, OPTION_EB},
19817#endif
19818#ifdef OPTION_EL
19819 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 19820#endif
c19d1205
ZW
19821 {NULL, no_argument, NULL, 0}
19822};
b99bd4ef 19823
c19d1205 19824size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 19825
c19d1205 19826struct arm_option_table
b99bd4ef 19827{
c19d1205
ZW
19828 char *option; /* Option name to match. */
19829 char *help; /* Help information. */
19830 int *var; /* Variable to change. */
19831 int value; /* What to change it to. */
19832 char *deprecated; /* If non-null, print this message. */
19833};
b99bd4ef 19834
c19d1205
ZW
19835struct arm_option_table arm_opts[] =
19836{
19837 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19838 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19839 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19840 &support_interwork, 1, NULL},
19841 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19842 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19843 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19844 1, NULL},
19845 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19846 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19847 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19848 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19849 NULL},
b99bd4ef 19850
c19d1205
ZW
19851 /* These are recognized by the assembler, but have no affect on code. */
19852 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19853 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
e74cfd16
PB
19854 {NULL, NULL, NULL, 0, NULL}
19855};
19856
19857struct arm_legacy_option_table
19858{
19859 char *option; /* Option name to match. */
19860 const arm_feature_set **var; /* Variable to change. */
19861 const arm_feature_set value; /* What to change it to. */
19862 char *deprecated; /* If non-null, print this message. */
19863};
b99bd4ef 19864
e74cfd16
PB
19865const struct arm_legacy_option_table arm_legacy_opts[] =
19866{
c19d1205
ZW
19867 /* DON'T add any new processors to this list -- we want the whole list
19868 to go away... Add them to the processors table instead. */
e74cfd16
PB
19869 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19870 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19871 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19872 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19873 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19874 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19875 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19876 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19877 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19878 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19879 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19880 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19881 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19882 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19883 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19884 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19885 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19886 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19887 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19888 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19889 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19890 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19891 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19892 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19893 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19894 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19895 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19896 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19897 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19898 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19899 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19900 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19901 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19902 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19903 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19904 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19905 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19906 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19907 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19908 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19909 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19910 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19911 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19912 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19913 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19914 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19915 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19916 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19917 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19918 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19919 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19920 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19921 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19922 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19923 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19924 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19925 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19926 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19927 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19928 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19929 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19930 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19931 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19932 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19933 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19934 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19935 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19936 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19937 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19938 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19939 N_("use -mcpu=strongarm110")},
e74cfd16 19940 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19941 N_("use -mcpu=strongarm1100")},
e74cfd16 19942 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19943 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
19944 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19945 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19946 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 19947
c19d1205 19948 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
19949 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19950 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19951 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19952 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19953 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19954 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19955 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19956 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19957 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19958 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19959 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19960 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19961 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19962 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19963 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19964 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19965 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19966 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 19967
c19d1205 19968 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
19969 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19970 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19971 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19972 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 19973 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 19974
e74cfd16 19975 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 19976};
7ed4c4c5 19977
c19d1205 19978struct arm_cpu_option_table
7ed4c4c5 19979{
c19d1205 19980 char *name;
e74cfd16 19981 const arm_feature_set value;
c19d1205
ZW
19982 /* For some CPUs we assume an FPU unless the user explicitly sets
19983 -mfpu=... */
e74cfd16 19984 const arm_feature_set default_fpu;
ee065d83
PB
19985 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19986 case. */
19987 const char *canonical_name;
c19d1205 19988};
7ed4c4c5 19989
c19d1205
ZW
19990/* This list should, at a minimum, contain all the cpu names
19991 recognized by GCC. */
e74cfd16 19992static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 19993{
ee065d83
PB
19994 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19995 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19996 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19997 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19998 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19999 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20000 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20001 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20002 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20003 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20004 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20005 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20006 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20007 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20008 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20009 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20010 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20011 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20012 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20013 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20014 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20015 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20016 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20017 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20018 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20019 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20020 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20021 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20022 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20023 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20024 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20025 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20026 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20027 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20028 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20029 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20030 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20031 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20032 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20033 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20034 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20035 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20036 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20037 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
c19d1205
ZW
20038 /* For V5 or later processors we default to using VFP; but the user
20039 should really set the FPU type explicitly. */
ee065d83
PB
20040 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20041 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20042 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20043 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20044 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20045 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20046 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20047 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20048 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20049 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20050 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20051 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20052 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20053 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20054 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20055 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20056 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20057 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20058 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20059 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20060 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20061 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20062 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20063 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20064 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20065 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20066 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20067 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20068 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20069 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20070 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
20071 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20072 | FPU_NEON_EXT_V1),
20073 NULL},
62b3e311
PB
20074 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20075 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
c19d1205 20076 /* ??? XSCALE is really an architecture. */
ee065d83 20077 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20078 /* ??? iwmmxt is not a processor. */
ee065d83 20079 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 20080 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 20081 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20082 /* Maverick */
e74cfd16
PB
20083 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20084 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 20085};
7ed4c4c5 20086
c19d1205 20087struct arm_arch_option_table
7ed4c4c5 20088{
c19d1205 20089 char *name;
e74cfd16
PB
20090 const arm_feature_set value;
20091 const arm_feature_set default_fpu;
c19d1205 20092};
7ed4c4c5 20093
c19d1205
ZW
20094/* This list should, at a minimum, contain all the architecture names
20095 recognized by GCC. */
e74cfd16 20096static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
20097{
20098 {"all", ARM_ANY, FPU_ARCH_FPA},
20099 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20100 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20101 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20102 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20103 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20104 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20105 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20106 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20107 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20108 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20109 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20110 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20111 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20112 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20113 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20114 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20115 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20116 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20117 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20118 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20119 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20120 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20121 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20122 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20123 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
62b3e311 20124 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
20125 /* The official spelling of the ARMv7 profile variants is the dashed form.
20126 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
20127 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20128 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20129 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
20130 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20131 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20132 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
20133 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20134 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 20135 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 20136 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 20137};
7ed4c4c5 20138
c19d1205 20139/* ISA extensions in the co-processor space. */
e74cfd16 20140struct arm_option_cpu_value_table
c19d1205
ZW
20141{
20142 char *name;
e74cfd16 20143 const arm_feature_set value;
c19d1205 20144};
7ed4c4c5 20145
e74cfd16 20146static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 20147{
e74cfd16
PB
20148 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20149 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20150 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 20151 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 20152 {NULL, ARM_ARCH_NONE}
c19d1205 20153};
7ed4c4c5 20154
c19d1205
ZW
20155/* This list should, at a minimum, contain all the fpu names
20156 recognized by GCC. */
e74cfd16 20157static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
20158{
20159 {"softfpa", FPU_NONE},
20160 {"fpe", FPU_ARCH_FPE},
20161 {"fpe2", FPU_ARCH_FPE},
20162 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20163 {"fpa", FPU_ARCH_FPA},
20164 {"fpa10", FPU_ARCH_FPA},
20165 {"fpa11", FPU_ARCH_FPA},
20166 {"arm7500fe", FPU_ARCH_FPA},
20167 {"softvfp", FPU_ARCH_VFP},
20168 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20169 {"vfp", FPU_ARCH_VFP_V2},
20170 {"vfp9", FPU_ARCH_VFP_V2},
5287ad62 20171 {"vfp3", FPU_ARCH_VFP_V3},
c19d1205
ZW
20172 {"vfp10", FPU_ARCH_VFP_V2},
20173 {"vfp10-r0", FPU_ARCH_VFP_V1},
20174 {"vfpxd", FPU_ARCH_VFP_V1xD},
20175 {"arm1020t", FPU_ARCH_VFP_V1},
20176 {"arm1020e", FPU_ARCH_VFP_V2},
20177 {"arm1136jfs", FPU_ARCH_VFP_V2},
20178 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20179 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 20180 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
e74cfd16
PB
20181 {NULL, ARM_ARCH_NONE}
20182};
20183
20184struct arm_option_value_table
20185{
20186 char *name;
20187 long value;
c19d1205 20188};
7ed4c4c5 20189
e74cfd16 20190static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
20191{
20192 {"hard", ARM_FLOAT_ABI_HARD},
20193 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20194 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 20195 {NULL, 0}
c19d1205 20196};
7ed4c4c5 20197
c19d1205 20198#ifdef OBJ_ELF
3a4a14e9 20199/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 20200static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
20201{
20202 {"gnu", EF_ARM_EABI_UNKNOWN},
20203 {"4", EF_ARM_EABI_VER4},
3a4a14e9 20204 {"5", EF_ARM_EABI_VER5},
e74cfd16 20205 {NULL, 0}
c19d1205
ZW
20206};
20207#endif
7ed4c4c5 20208
c19d1205
ZW
20209struct arm_long_option_table
20210{
20211 char * option; /* Substring to match. */
20212 char * help; /* Help information. */
20213 int (* func) (char * subopt); /* Function to decode sub-option. */
20214 char * deprecated; /* If non-null, print this message. */
20215};
7ed4c4c5
NC
20216
20217static int
e74cfd16 20218arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20219{
e74cfd16
PB
20220 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20221
20222 /* Copy the feature set, so that we can modify it. */
20223 *ext_set = **opt_p;
20224 *opt_p = ext_set;
20225
c19d1205 20226 while (str != NULL && *str != 0)
7ed4c4c5 20227 {
e74cfd16 20228 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20229 char * ext;
20230 int optlen;
7ed4c4c5 20231
c19d1205
ZW
20232 if (*str != '+')
20233 {
20234 as_bad (_("invalid architectural extension"));
20235 return 0;
20236 }
7ed4c4c5 20237
c19d1205
ZW
20238 str++;
20239 ext = strchr (str, '+');
7ed4c4c5 20240
c19d1205
ZW
20241 if (ext != NULL)
20242 optlen = ext - str;
20243 else
20244 optlen = strlen (str);
7ed4c4c5 20245
c19d1205
ZW
20246 if (optlen == 0)
20247 {
20248 as_bad (_("missing architectural extension"));
20249 return 0;
20250 }
7ed4c4c5 20251
c19d1205
ZW
20252 for (opt = arm_extensions; opt->name != NULL; opt++)
20253 if (strncmp (opt->name, str, optlen) == 0)
20254 {
e74cfd16 20255 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20256 break;
20257 }
7ed4c4c5 20258
c19d1205
ZW
20259 if (opt->name == NULL)
20260 {
20261 as_bad (_("unknown architectural extnsion `%s'"), str);
20262 return 0;
20263 }
7ed4c4c5 20264
c19d1205
ZW
20265 str = ext;
20266 };
7ed4c4c5 20267
c19d1205
ZW
20268 return 1;
20269}
7ed4c4c5 20270
c19d1205
ZW
20271static int
20272arm_parse_cpu (char * str)
7ed4c4c5 20273{
e74cfd16 20274 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20275 char * ext = strchr (str, '+');
20276 int optlen;
7ed4c4c5 20277
c19d1205
ZW
20278 if (ext != NULL)
20279 optlen = ext - str;
7ed4c4c5 20280 else
c19d1205 20281 optlen = strlen (str);
7ed4c4c5 20282
c19d1205 20283 if (optlen == 0)
7ed4c4c5 20284 {
c19d1205
ZW
20285 as_bad (_("missing cpu name `%s'"), str);
20286 return 0;
7ed4c4c5
NC
20287 }
20288
c19d1205
ZW
20289 for (opt = arm_cpus; opt->name != NULL; opt++)
20290 if (strncmp (opt->name, str, optlen) == 0)
20291 {
e74cfd16
PB
20292 mcpu_cpu_opt = &opt->value;
20293 mcpu_fpu_opt = &opt->default_fpu;
ee065d83
PB
20294 if (opt->canonical_name)
20295 strcpy(selected_cpu_name, opt->canonical_name);
20296 else
20297 {
20298 int i;
20299 for (i = 0; i < optlen; i++)
20300 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20301 selected_cpu_name[i] = 0;
20302 }
7ed4c4c5 20303
c19d1205
ZW
20304 if (ext != NULL)
20305 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 20306
c19d1205
ZW
20307 return 1;
20308 }
7ed4c4c5 20309
c19d1205
ZW
20310 as_bad (_("unknown cpu `%s'"), str);
20311 return 0;
7ed4c4c5
NC
20312}
20313
c19d1205
ZW
20314static int
20315arm_parse_arch (char * str)
7ed4c4c5 20316{
e74cfd16 20317 const struct arm_arch_option_table *opt;
c19d1205
ZW
20318 char *ext = strchr (str, '+');
20319 int optlen;
7ed4c4c5 20320
c19d1205
ZW
20321 if (ext != NULL)
20322 optlen = ext - str;
7ed4c4c5 20323 else
c19d1205 20324 optlen = strlen (str);
7ed4c4c5 20325
c19d1205 20326 if (optlen == 0)
7ed4c4c5 20327 {
c19d1205
ZW
20328 as_bad (_("missing architecture name `%s'"), str);
20329 return 0;
7ed4c4c5
NC
20330 }
20331
c19d1205
ZW
20332 for (opt = arm_archs; opt->name != NULL; opt++)
20333 if (streq (opt->name, str))
20334 {
e74cfd16
PB
20335 march_cpu_opt = &opt->value;
20336 march_fpu_opt = &opt->default_fpu;
ee065d83 20337 strcpy(selected_cpu_name, opt->name);
7ed4c4c5 20338
c19d1205
ZW
20339 if (ext != NULL)
20340 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 20341
c19d1205
ZW
20342 return 1;
20343 }
20344
20345 as_bad (_("unknown architecture `%s'\n"), str);
20346 return 0;
7ed4c4c5 20347}
eb043451 20348
c19d1205
ZW
20349static int
20350arm_parse_fpu (char * str)
20351{
e74cfd16 20352 const struct arm_option_cpu_value_table * opt;
b99bd4ef 20353
c19d1205
ZW
20354 for (opt = arm_fpus; opt->name != NULL; opt++)
20355 if (streq (opt->name, str))
20356 {
e74cfd16 20357 mfpu_opt = &opt->value;
c19d1205
ZW
20358 return 1;
20359 }
b99bd4ef 20360
c19d1205
ZW
20361 as_bad (_("unknown floating point format `%s'\n"), str);
20362 return 0;
20363}
20364
20365static int
20366arm_parse_float_abi (char * str)
b99bd4ef 20367{
e74cfd16 20368 const struct arm_option_value_table * opt;
b99bd4ef 20369
c19d1205
ZW
20370 for (opt = arm_float_abis; opt->name != NULL; opt++)
20371 if (streq (opt->name, str))
20372 {
20373 mfloat_abi_opt = opt->value;
20374 return 1;
20375 }
cc8a6dd0 20376
c19d1205
ZW
20377 as_bad (_("unknown floating point abi `%s'\n"), str);
20378 return 0;
20379}
b99bd4ef 20380
c19d1205
ZW
20381#ifdef OBJ_ELF
20382static int
20383arm_parse_eabi (char * str)
20384{
e74cfd16 20385 const struct arm_option_value_table *opt;
cc8a6dd0 20386
c19d1205
ZW
20387 for (opt = arm_eabis; opt->name != NULL; opt++)
20388 if (streq (opt->name, str))
20389 {
20390 meabi_flags = opt->value;
20391 return 1;
20392 }
20393 as_bad (_("unknown EABI `%s'\n"), str);
20394 return 0;
20395}
20396#endif
cc8a6dd0 20397
c19d1205
ZW
20398struct arm_long_option_table arm_long_opts[] =
20399{
20400 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20401 arm_parse_cpu, NULL},
20402 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20403 arm_parse_arch, NULL},
20404 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20405 arm_parse_fpu, NULL},
20406 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20407 arm_parse_float_abi, NULL},
20408#ifdef OBJ_ELF
20409 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20410 arm_parse_eabi, NULL},
20411#endif
20412 {NULL, NULL, 0, NULL}
20413};
cc8a6dd0 20414
c19d1205
ZW
20415int
20416md_parse_option (int c, char * arg)
20417{
20418 struct arm_option_table *opt;
e74cfd16 20419 const struct arm_legacy_option_table *fopt;
c19d1205 20420 struct arm_long_option_table *lopt;
b99bd4ef 20421
c19d1205 20422 switch (c)
b99bd4ef 20423 {
c19d1205
ZW
20424#ifdef OPTION_EB
20425 case OPTION_EB:
20426 target_big_endian = 1;
20427 break;
20428#endif
cc8a6dd0 20429
c19d1205
ZW
20430#ifdef OPTION_EL
20431 case OPTION_EL:
20432 target_big_endian = 0;
20433 break;
20434#endif
b99bd4ef 20435
c19d1205
ZW
20436 case 'a':
20437 /* Listing option. Just ignore these, we don't support additional
20438 ones. */
20439 return 0;
b99bd4ef 20440
c19d1205
ZW
20441 default:
20442 for (opt = arm_opts; opt->option != NULL; opt++)
20443 {
20444 if (c == opt->option[0]
20445 && ((arg == NULL && opt->option[1] == 0)
20446 || streq (arg, opt->option + 1)))
20447 {
20448#if WARN_DEPRECATED
20449 /* If the option is deprecated, tell the user. */
20450 if (opt->deprecated != NULL)
20451 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20452 arg ? arg : "", _(opt->deprecated));
20453#endif
b99bd4ef 20454
c19d1205
ZW
20455 if (opt->var != NULL)
20456 *opt->var = opt->value;
cc8a6dd0 20457
c19d1205
ZW
20458 return 1;
20459 }
20460 }
b99bd4ef 20461
e74cfd16
PB
20462 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20463 {
20464 if (c == fopt->option[0]
20465 && ((arg == NULL && fopt->option[1] == 0)
20466 || streq (arg, fopt->option + 1)))
20467 {
20468#if WARN_DEPRECATED
20469 /* If the option is deprecated, tell the user. */
20470 if (fopt->deprecated != NULL)
20471 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20472 arg ? arg : "", _(fopt->deprecated));
20473#endif
20474
20475 if (fopt->var != NULL)
20476 *fopt->var = &fopt->value;
20477
20478 return 1;
20479 }
20480 }
20481
c19d1205
ZW
20482 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20483 {
20484 /* These options are expected to have an argument. */
20485 if (c == lopt->option[0]
20486 && arg != NULL
20487 && strncmp (arg, lopt->option + 1,
20488 strlen (lopt->option + 1)) == 0)
20489 {
20490#if WARN_DEPRECATED
20491 /* If the option is deprecated, tell the user. */
20492 if (lopt->deprecated != NULL)
20493 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20494 _(lopt->deprecated));
20495#endif
b99bd4ef 20496
c19d1205
ZW
20497 /* Call the sup-option parser. */
20498 return lopt->func (arg + strlen (lopt->option) - 1);
20499 }
20500 }
a737bd4d 20501
c19d1205
ZW
20502 return 0;
20503 }
a394c00f 20504
c19d1205
ZW
20505 return 1;
20506}
a394c00f 20507
c19d1205
ZW
20508void
20509md_show_usage (FILE * fp)
a394c00f 20510{
c19d1205
ZW
20511 struct arm_option_table *opt;
20512 struct arm_long_option_table *lopt;
a394c00f 20513
c19d1205 20514 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 20515
c19d1205
ZW
20516 for (opt = arm_opts; opt->option != NULL; opt++)
20517 if (opt->help != NULL)
20518 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 20519
c19d1205
ZW
20520 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20521 if (lopt->help != NULL)
20522 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 20523
c19d1205
ZW
20524#ifdef OPTION_EB
20525 fprintf (fp, _("\
20526 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
20527#endif
20528
c19d1205
ZW
20529#ifdef OPTION_EL
20530 fprintf (fp, _("\
20531 -EL assemble code for a little-endian cpu\n"));
a737bd4d 20532#endif
c19d1205 20533}
ee065d83
PB
20534
20535
20536#ifdef OBJ_ELF
62b3e311
PB
20537typedef struct
20538{
20539 int val;
20540 arm_feature_set flags;
20541} cpu_arch_ver_table;
20542
20543/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20544 least features first. */
20545static const cpu_arch_ver_table cpu_arch_ver[] =
20546{
20547 {1, ARM_ARCH_V4},
20548 {2, ARM_ARCH_V4T},
20549 {3, ARM_ARCH_V5},
20550 {4, ARM_ARCH_V5TE},
20551 {5, ARM_ARCH_V5TEJ},
20552 {6, ARM_ARCH_V6},
20553 {7, ARM_ARCH_V6Z},
20554 {8, ARM_ARCH_V6K},
20555 {9, ARM_ARCH_V6T2},
20556 {10, ARM_ARCH_V7A},
20557 {10, ARM_ARCH_V7R},
20558 {10, ARM_ARCH_V7M},
20559 {0, ARM_ARCH_NONE}
20560};
20561
ee065d83
PB
20562/* Set the public EABI object attributes. */
20563static void
20564aeabi_set_public_attributes (void)
20565{
20566 int arch;
e74cfd16 20567 arm_feature_set flags;
62b3e311
PB
20568 arm_feature_set tmp;
20569 const cpu_arch_ver_table *p;
ee065d83
PB
20570
20571 /* Choose the architecture based on the capabilities of the requested cpu
20572 (if any) and/or the instructions actually used. */
e74cfd16
PB
20573 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20574 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20575 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
20576 /*Allow the user to override the reported architecture. */
20577 if (object_arch)
20578 {
20579 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20580 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20581 }
20582
62b3e311
PB
20583 tmp = flags;
20584 arch = 0;
20585 for (p = cpu_arch_ver; p->val; p++)
20586 {
20587 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20588 {
20589 arch = p->val;
20590 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20591 }
20592 }
ee065d83
PB
20593
20594 /* Tag_CPU_name. */
20595 if (selected_cpu_name[0])
20596 {
20597 char *p;
20598
20599 p = selected_cpu_name;
20600 if (strncmp(p, "armv", 4) == 0)
20601 {
20602 int i;
20603
20604 p += 4;
20605 for (i = 0; p[i]; i++)
20606 p[i] = TOUPPER (p[i]);
20607 }
104d59d1 20608 bfd_elf_add_proc_attr_string (stdoutput, 5, p);
ee065d83
PB
20609 }
20610 /* Tag_CPU_arch. */
104d59d1 20611 bfd_elf_add_proc_attr_int (stdoutput, 6, arch);
62b3e311
PB
20612 /* Tag_CPU_arch_profile. */
20613 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
104d59d1 20614 bfd_elf_add_proc_attr_int (stdoutput, 7, 'A');
62b3e311 20615 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
104d59d1 20616 bfd_elf_add_proc_attr_int (stdoutput, 7, 'R');
62b3e311 20617 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
104d59d1 20618 bfd_elf_add_proc_attr_int (stdoutput, 7, 'M');
ee065d83 20619 /* Tag_ARM_ISA_use. */
e74cfd16 20620 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
104d59d1 20621 bfd_elf_add_proc_attr_int (stdoutput, 8, 1);
ee065d83 20622 /* Tag_THUMB_ISA_use. */
e74cfd16 20623 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
104d59d1 20624 bfd_elf_add_proc_attr_int (stdoutput, 9,
e74cfd16 20625 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
ee065d83 20626 /* Tag_VFP_arch. */
5287ad62
JB
20627 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20628 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
104d59d1 20629 bfd_elf_add_proc_attr_int (stdoutput, 10, 3);
5287ad62
JB
20630 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20631 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
104d59d1 20632 bfd_elf_add_proc_attr_int (stdoutput, 10, 2);
5287ad62
JB
20633 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20634 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20635 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20636 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
104d59d1 20637 bfd_elf_add_proc_attr_int (stdoutput, 10, 1);
ee065d83 20638 /* Tag_WMMX_arch. */
e74cfd16
PB
20639 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20640 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
104d59d1 20641 bfd_elf_add_proc_attr_int (stdoutput, 11, 1);
5287ad62
JB
20642 /* Tag_NEON_arch. */
20643 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20644 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
104d59d1 20645 bfd_elf_add_proc_attr_int (stdoutput, 12, 1);
ee065d83
PB
20646}
20647
104d59d1 20648/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
20649void
20650arm_md_end (void)
20651{
ee065d83
PB
20652 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20653 return;
20654
20655 aeabi_set_public_attributes ();
ee065d83 20656}
8463be01 20657#endif /* OBJ_ELF */
ee065d83
PB
20658
20659
20660/* Parse a .cpu directive. */
20661
20662static void
20663s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20664{
e74cfd16 20665 const struct arm_cpu_option_table *opt;
ee065d83
PB
20666 char *name;
20667 char saved_char;
20668
20669 name = input_line_pointer;
20670 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20671 input_line_pointer++;
20672 saved_char = *input_line_pointer;
20673 *input_line_pointer = 0;
20674
20675 /* Skip the first "all" entry. */
20676 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20677 if (streq (opt->name, name))
20678 {
e74cfd16
PB
20679 mcpu_cpu_opt = &opt->value;
20680 selected_cpu = opt->value;
ee065d83
PB
20681 if (opt->canonical_name)
20682 strcpy(selected_cpu_name, opt->canonical_name);
20683 else
20684 {
20685 int i;
20686 for (i = 0; opt->name[i]; i++)
20687 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20688 selected_cpu_name[i] = 0;
20689 }
e74cfd16 20690 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20691 *input_line_pointer = saved_char;
20692 demand_empty_rest_of_line ();
20693 return;
20694 }
20695 as_bad (_("unknown cpu `%s'"), name);
20696 *input_line_pointer = saved_char;
20697 ignore_rest_of_line ();
20698}
20699
20700
20701/* Parse a .arch directive. */
20702
20703static void
20704s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20705{
e74cfd16 20706 const struct arm_arch_option_table *opt;
ee065d83
PB
20707 char saved_char;
20708 char *name;
20709
20710 name = input_line_pointer;
20711 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20712 input_line_pointer++;
20713 saved_char = *input_line_pointer;
20714 *input_line_pointer = 0;
20715
20716 /* Skip the first "all" entry. */
20717 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20718 if (streq (opt->name, name))
20719 {
e74cfd16
PB
20720 mcpu_cpu_opt = &opt->value;
20721 selected_cpu = opt->value;
ee065d83 20722 strcpy(selected_cpu_name, opt->name);
e74cfd16 20723 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20724 *input_line_pointer = saved_char;
20725 demand_empty_rest_of_line ();
20726 return;
20727 }
20728
20729 as_bad (_("unknown architecture `%s'\n"), name);
20730 *input_line_pointer = saved_char;
20731 ignore_rest_of_line ();
20732}
20733
20734
7a1d4c38
PB
20735/* Parse a .object_arch directive. */
20736
20737static void
20738s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20739{
20740 const struct arm_arch_option_table *opt;
20741 char saved_char;
20742 char *name;
20743
20744 name = input_line_pointer;
20745 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20746 input_line_pointer++;
20747 saved_char = *input_line_pointer;
20748 *input_line_pointer = 0;
20749
20750 /* Skip the first "all" entry. */
20751 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20752 if (streq (opt->name, name))
20753 {
20754 object_arch = &opt->value;
20755 *input_line_pointer = saved_char;
20756 demand_empty_rest_of_line ();
20757 return;
20758 }
20759
20760 as_bad (_("unknown architecture `%s'\n"), name);
20761 *input_line_pointer = saved_char;
20762 ignore_rest_of_line ();
20763}
20764
20765
ee065d83
PB
20766/* Parse a .fpu directive. */
20767
20768static void
20769s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20770{
e74cfd16 20771 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
20772 char saved_char;
20773 char *name;
20774
20775 name = input_line_pointer;
20776 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20777 input_line_pointer++;
20778 saved_char = *input_line_pointer;
20779 *input_line_pointer = 0;
20780
20781 for (opt = arm_fpus; opt->name != NULL; opt++)
20782 if (streq (opt->name, name))
20783 {
e74cfd16
PB
20784 mfpu_opt = &opt->value;
20785 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20786 *input_line_pointer = saved_char;
20787 demand_empty_rest_of_line ();
20788 return;
20789 }
20790
20791 as_bad (_("unknown floating point format `%s'\n"), name);
20792 *input_line_pointer = saved_char;
20793 ignore_rest_of_line ();
20794}
ee065d83 20795
794ba86a
DJ
20796/* Copy symbol information. */
20797void
20798arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20799{
20800 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20801}