]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
merge from gcc
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
aef6203b 3 2000, 2001, 2002, 2003, 2004, 2005
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
5c6af06e 317static const char *cpu_sub_arch_name = NULL;
a38cf1db 318
47926f60 319/* CPU feature flags. */
29b0f896 320static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 321
fddf5b5b
AM
322/* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324static unsigned int no_cond_jump_promotion = 0;
325
29b0f896
AM
326/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327symbolS *GOT_symbol;
328
a4447b93
RH
329/* The dwarf2 return column, adjusted for 32 or 64 bit. */
330unsigned int x86_dwarf2_return_column;
331
332/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333int x86_cie_data_alignment;
334
252b5132 335/* Interface to relax_segment.
fddf5b5b
AM
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
252b5132 339
47926f60 340/* Types. */
93c2a809
AM
341#define UNCOND_JUMP 0
342#define COND_JUMP 1
343#define COND_JUMP86 2
fddf5b5b 344
47926f60 345/* Sizes. */
252b5132
RH
346#define CODE16 1
347#define SMALL 0
29b0f896 348#define SMALL16 (SMALL | CODE16)
252b5132 349#define BIG 2
29b0f896 350#define BIG16 (BIG | CODE16)
252b5132
RH
351
352#ifndef INLINE
353#ifdef __GNUC__
354#define INLINE __inline__
355#else
356#define INLINE
357#endif
358#endif
359
fddf5b5b
AM
360#define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362#define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364#define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
366
367/* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375const relax_typeS md_relax_table[] =
376{
24eab124
AM
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
93c2a809 380 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 381 4) which index into the table to try if we can't fit into this one. */
252b5132 382
fddf5b5b 383 /* UNCOND_JUMP states. */
93c2a809
AM
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
252b5132 388 {0, 0, 4, 0},
93c2a809
AM
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
391 {0, 0, 2, 0},
392
93c2a809
AM
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
fddf5b5b 399 /* word conditionals add 3 bytes to frag:
93c2a809
AM
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
252b5132
RH
412};
413
e413e4e9
AM
414static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
5c6af06e
JB
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
e413e4e9
AM
438 {NULL, 0 }
439};
440
29b0f896
AM
441const pseudo_typeS md_pseudo_table[] =
442{
443#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445#else
446 {"align", s_align_ptwo, 0},
447#endif
448 {"arch", set_cpu_arch, 0},
449#ifndef I386COFF
450 {"bss", s_bss, 0},
451#endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
c6682705 464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 465 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
466#ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468#endif
29b0f896
AM
469 {0, 0, 0}
470};
471
472/* For interface with expression (). */
473extern char *input_line_pointer;
474
475/* Hash table for instruction mnemonic lookup. */
476static struct hash_control *op_hash;
477
478/* Hash table for register lookup. */
479static struct hash_control *reg_hash;
480\f
252b5132
RH
481void
482i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485{
ce8a8b2f
AM
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
252b5132
RH
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
c3332e24 549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
33fef721
JH
553 if (count <= 0 || count > 15)
554 return;
3e73aa7c 555
33fef721
JH
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
252b5132 559 {
33fef721
JH
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
252b5132 567 {
33fef721
JH
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
252b5132 577 }
252b5132 578 }
33fef721
JH
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
252b5132
RH
592}
593
252b5132
RH
594static INLINE unsigned int
595mode_from_disp_size (t)
596 unsigned int t;
597{
3e73aa7c 598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
599}
600
601static INLINE int
602fits_in_signed_byte (num)
847f7ad4 603 offsetT num;
252b5132
RH
604{
605 return (num >= -128) && (num <= 127);
47926f60 606}
252b5132
RH
607
608static INLINE int
609fits_in_unsigned_byte (num)
847f7ad4 610 offsetT num;
252b5132
RH
611{
612 return (num & 0xff) == num;
47926f60 613}
252b5132
RH
614
615static INLINE int
616fits_in_unsigned_word (num)
847f7ad4 617 offsetT num;
252b5132
RH
618{
619 return (num & 0xffff) == num;
47926f60 620}
252b5132
RH
621
622static INLINE int
623fits_in_signed_word (num)
847f7ad4 624 offsetT num;
252b5132
RH
625{
626 return (-32768 <= num) && (num <= 32767);
47926f60 627}
3e73aa7c
JH
628static INLINE int
629fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637#endif
638} /* fits_in_signed_long() */
639static INLINE int
640fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642{
643#ifndef BFD64
644 return 1;
645#else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647#endif
648} /* fits_in_unsigned_long() */
252b5132
RH
649
650static int
651smallest_imm_type (num)
847f7ad4 652 offsetT num;
252b5132 653{
a847613f 654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
3e73aa7c 662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 663 }
252b5132 664 return (fits_in_signed_byte (num)
3e73aa7c 665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 666 : fits_in_unsigned_byte (num)
3e73aa7c 667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
47926f60 675}
252b5132 676
847f7ad4
AM
677static offsetT
678offset_in_range (val, size)
679 offsetT val;
680 int size;
681{
508866be 682 addressT mask;
ba2adb93 683
847f7ad4
AM
684 switch (size)
685 {
508866be
L
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 688 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
689#ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691#endif
47926f60 692 default: abort ();
847f7ad4
AM
693 }
694
ba2adb93 695 /* If BFD64, sign extend val. */
3e73aa7c
JH
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 699
47926f60 700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709}
710
252b5132
RH
711/* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714static int
715add_prefix (prefix)
716 unsigned int prefix;
717{
718 int ret = 1;
719 int q;
720
29b0f896
AM
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
3e73aa7c
JH
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
252b5132 738
3e73aa7c
JH
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
252b5132 746
3e73aa7c
JH
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
252b5132 750
3e73aa7c
JH
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
252b5132 754
3e73aa7c
JH
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
252b5132 759
29b0f896 760 if (i.prefix[q] != 0)
252b5132
RH
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769}
770
771static void
3e73aa7c 772set_code_flag (value)
e5cb08ac 773 int value;
eecb386c 774{
3e73aa7c
JH
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
eecb386c
AM
786 stackop_size = '\0';
787}
788
789static void
3e73aa7c
JH
790set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
252b5132 792{
3e73aa7c
JH
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 796 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
797}
798
799static void
800set_intel_syntax (syntax_flag)
eecb386c 801 int syntax_flag;
252b5132
RH
802{
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
29b0f896 807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
47926f60 812 if (strcmp (string, "prefix") == 0)
252b5132 813 ask_naked_reg = 1;
47926f60 814 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
815 ask_naked_reg = -1;
816 else
d0b47220 817 as_bad (_("bad argument to syntax directive."));
252b5132
RH
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
c3332e24 821
252b5132
RH
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
f86103b7
AM
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
832}
833
e413e4e9
AM
834static void
835set_cpu_arch (dummy)
47926f60 836 int dummy ATTRIBUTE_UNUSED;
e413e4e9 837{
47926f60 838 SKIP_WHITESPACE ();
e413e4e9 839
29b0f896 840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
5c6af06e
JB
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
e413e4e9
AM
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
fddf5b5b
AM
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
29b0f896 878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
e413e4e9
AM
893 demand_empty_rest_of_line ();
894}
895
b9d79e03
JH
896unsigned long
897i386_mach ()
898{
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905}
b9d79e03 906\f
252b5132
RH
907void
908md_begin ()
909{
910 const char *hash_err;
911
47926f60 912 /* Initialize op_hash hash table. */
252b5132
RH
913 op_hash = hash_new ();
914
915 {
29b0f896
AM
916 const template *optab;
917 templates *core_optab;
252b5132 918
47926f60
KH
919 /* Setup for loop. */
920 optab = i386_optab;
252b5132
RH
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
47926f60 931 add to hash table; & begin anew. */
252b5132
RH
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
252b5132
RH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
47926f60 950 /* Initialize reg_hash hash table. */
252b5132
RH
951 reg_hash = hash_new ();
952 {
29b0f896 953 const reg_entry *regtab;
252b5132
RH
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
3e73aa7c
JH
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
252b5132
RH
964 }
965 }
966
47926f60 967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 968 {
29b0f896
AM
969 int c;
970 char *p;
252b5132
RH
971
972 for (c = 0; c < 256; c++)
973 {
3882b010 974 if (ISDIGIT (c))
252b5132
RH
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
3882b010 981 else if (ISLOWER (c))
252b5132
RH
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
3882b010 987 else if (ISUPPER (c))
252b5132 988 {
3882b010 989 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
3882b010 994 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003#ifdef LEX_AT
1004 identifier_chars['@'] = '@';
32137342
NC
1005#endif
1006#ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
252b5132 1009#endif
252b5132
RH
1010 digit_chars['-'] = '-';
1011 identifier_chars['_'] = '_';
1012 identifier_chars['.'] = '.';
1013
1014 for (p = operand_special_chars; *p != '\0'; p++)
1015 operand_chars[(unsigned char) *p] = *p;
1016 }
1017
1018#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1019 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1020 {
1021 record_alignment (text_section, 2);
1022 record_alignment (data_section, 2);
1023 record_alignment (bss_section, 2);
1024 }
1025#endif
a4447b93
RH
1026
1027 if (flag_code == CODE_64BIT)
1028 {
1029 x86_dwarf2_return_column = 16;
1030 x86_cie_data_alignment = -8;
1031 }
1032 else
1033 {
1034 x86_dwarf2_return_column = 8;
1035 x86_cie_data_alignment = -4;
1036 }
252b5132
RH
1037}
1038
1039void
1040i386_print_statistics (file)
1041 FILE *file;
1042{
1043 hash_print_statistics (file, "i386 opcode", op_hash);
1044 hash_print_statistics (file, "i386 register", reg_hash);
1045}
1046\f
252b5132
RH
1047#ifdef DEBUG386
1048
ce8a8b2f 1049/* Debugging routines for md_assemble. */
252b5132
RH
1050static void pi PARAMS ((char *, i386_insn *));
1051static void pte PARAMS ((template *));
1052static void pt PARAMS ((unsigned int));
1053static void pe PARAMS ((expressionS *));
1054static void ps PARAMS ((symbolS *));
1055
1056static void
1057pi (line, x)
1058 char *line;
1059 i386_insn *x;
1060{
09f131f2 1061 unsigned int i;
252b5132
RH
1062
1063 fprintf (stdout, "%s: template ", line);
1064 pte (&x->tm);
09f131f2
JH
1065 fprintf (stdout, " address: base %s index %s scale %x\n",
1066 x->base_reg ? x->base_reg->reg_name : "none",
1067 x->index_reg ? x->index_reg->reg_name : "none",
1068 x->log2_scale_factor);
1069 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1070 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1071 fprintf (stdout, " sib: base %x index %x scale %x\n",
1072 x->sib.base, x->sib.index, x->sib.scale);
1073 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1074 (x->rex & REX_MODE64) != 0,
1075 (x->rex & REX_EXTX) != 0,
1076 (x->rex & REX_EXTY) != 0,
1077 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1078 for (i = 0; i < x->operands; i++)
1079 {
1080 fprintf (stdout, " #%d: ", i + 1);
1081 pt (x->types[i]);
1082 fprintf (stdout, "\n");
1083 if (x->types[i]
3f4438ab 1084 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1085 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1086 if (x->types[i] & Imm)
520dc8e8 1087 pe (x->op[i].imms);
252b5132 1088 if (x->types[i] & Disp)
520dc8e8 1089 pe (x->op[i].disps);
252b5132
RH
1090 }
1091}
1092
1093static void
1094pte (t)
1095 template *t;
1096{
09f131f2 1097 unsigned int i;
252b5132 1098 fprintf (stdout, " %d operands ", t->operands);
47926f60 1099 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1100 if (t->extension_opcode != None)
1101 fprintf (stdout, "ext %x ", t->extension_opcode);
1102 if (t->opcode_modifier & D)
1103 fprintf (stdout, "D");
1104 if (t->opcode_modifier & W)
1105 fprintf (stdout, "W");
1106 fprintf (stdout, "\n");
1107 for (i = 0; i < t->operands; i++)
1108 {
1109 fprintf (stdout, " #%d type ", i + 1);
1110 pt (t->operand_types[i]);
1111 fprintf (stdout, "\n");
1112 }
1113}
1114
1115static void
1116pe (e)
1117 expressionS *e;
1118{
24eab124 1119 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1120 fprintf (stdout, " add_number %ld (%lx)\n",
1121 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1122 if (e->X_add_symbol)
1123 {
1124 fprintf (stdout, " add_symbol ");
1125 ps (e->X_add_symbol);
1126 fprintf (stdout, "\n");
1127 }
1128 if (e->X_op_symbol)
1129 {
1130 fprintf (stdout, " op_symbol ");
1131 ps (e->X_op_symbol);
1132 fprintf (stdout, "\n");
1133 }
1134}
1135
1136static void
1137ps (s)
1138 symbolS *s;
1139{
1140 fprintf (stdout, "%s type %s%s",
1141 S_GET_NAME (s),
1142 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1143 segment_name (S_GET_SEGMENT (s)));
1144}
1145
1146struct type_name
1147 {
1148 unsigned int mask;
1149 char *tname;
1150 }
1151
29b0f896 1152static const type_names[] =
252b5132
RH
1153{
1154 { Reg8, "r8" },
1155 { Reg16, "r16" },
1156 { Reg32, "r32" },
09f131f2 1157 { Reg64, "r64" },
252b5132
RH
1158 { Imm8, "i8" },
1159 { Imm8S, "i8s" },
1160 { Imm16, "i16" },
1161 { Imm32, "i32" },
09f131f2
JH
1162 { Imm32S, "i32s" },
1163 { Imm64, "i64" },
252b5132
RH
1164 { Imm1, "i1" },
1165 { BaseIndex, "BaseIndex" },
1166 { Disp8, "d8" },
1167 { Disp16, "d16" },
1168 { Disp32, "d32" },
09f131f2
JH
1169 { Disp32S, "d32s" },
1170 { Disp64, "d64" },
252b5132
RH
1171 { InOutPortReg, "InOutPortReg" },
1172 { ShiftCount, "ShiftCount" },
1173 { Control, "control reg" },
1174 { Test, "test reg" },
1175 { Debug, "debug reg" },
1176 { FloatReg, "FReg" },
1177 { FloatAcc, "FAcc" },
1178 { SReg2, "SReg2" },
1179 { SReg3, "SReg3" },
1180 { Acc, "Acc" },
1181 { JumpAbsolute, "Jump Absolute" },
1182 { RegMMX, "rMMX" },
3f4438ab 1183 { RegXMM, "rXMM" },
252b5132
RH
1184 { EsSeg, "es" },
1185 { 0, "" }
1186};
1187
1188static void
1189pt (t)
1190 unsigned int t;
1191{
29b0f896 1192 const struct type_name *ty;
252b5132 1193
09f131f2
JH
1194 for (ty = type_names; ty->mask; ty++)
1195 if (t & ty->mask)
1196 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1197 fflush (stdout);
1198}
1199
1200#endif /* DEBUG386 */
1201\f
29b0f896
AM
1202static bfd_reloc_code_real_type reloc
1203 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1204
1205static bfd_reloc_code_real_type
3e73aa7c 1206reloc (size, pcrel, sign, other)
252b5132
RH
1207 int size;
1208 int pcrel;
3e73aa7c 1209 int sign;
252b5132
RH
1210 bfd_reloc_code_real_type other;
1211{
47926f60
KH
1212 if (other != NO_RELOC)
1213 return other;
252b5132
RH
1214
1215 if (pcrel)
1216 {
3e73aa7c 1217 if (!sign)
e5cb08ac 1218 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1219 switch (size)
1220 {
1221 case 1: return BFD_RELOC_8_PCREL;
1222 case 2: return BFD_RELOC_16_PCREL;
1223 case 4: return BFD_RELOC_32_PCREL;
1224 }
d0b47220 1225 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1226 }
1227 else
1228 {
3e73aa7c 1229 if (sign)
e5cb08ac 1230 switch (size)
3e73aa7c
JH
1231 {
1232 case 4: return BFD_RELOC_X86_64_32S;
1233 }
1234 else
1235 switch (size)
1236 {
1237 case 1: return BFD_RELOC_8;
1238 case 2: return BFD_RELOC_16;
1239 case 4: return BFD_RELOC_32;
1240 case 8: return BFD_RELOC_64;
1241 }
1242 as_bad (_("can not do %s %d byte relocation"),
1243 sign ? "signed" : "unsigned", size);
252b5132
RH
1244 }
1245
bfb32b52 1246 abort ();
252b5132
RH
1247 return BFD_RELOC_NONE;
1248}
1249
47926f60
KH
1250/* Here we decide which fixups can be adjusted to make them relative to
1251 the beginning of the section instead of the symbol. Basically we need
1252 to make sure that the dynamic relocations are done correctly, so in
1253 some cases we force the original symbol to be used. */
1254
252b5132 1255int
c0c949c7 1256tc_i386_fix_adjustable (fixP)
31312f95 1257 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1258{
6d249963 1259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1260 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1261 return 1;
1262
a161fe53
AM
1263 /* Don't adjust pc-relative references to merge sections in 64-bit
1264 mode. */
1265 if (use_rela_relocations
1266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1267 && fixP->fx_pcrel)
252b5132 1268 return 0;
31312f95 1269
8d01d9a9
AJ
1270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1271 and changed later by validate_fix. */
1272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1274 return 0;
1275
ce8a8b2f 1276 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1277 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1278 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1279 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1280 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1281 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1288 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1289 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1290 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1296 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1297 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1298 return 0;
31312f95 1299#endif
252b5132
RH
1300 return 1;
1301}
252b5132 1302
29b0f896 1303static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1304
1305static int
252b5132 1306intel_float_operand (mnemonic)
29b0f896 1307 const char *mnemonic;
252b5132 1308{
9306ca4a
JB
1309 /* Note that the value returned is meaningful only for opcodes with (memory)
1310 operands, hence the code here is free to improperly handle opcodes that
1311 have no operands (for better performance and smaller code). */
1312
1313 if (mnemonic[0] != 'f')
1314 return 0; /* non-math */
1315
1316 switch (mnemonic[1])
1317 {
1318 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1319 the fs segment override prefix not currently handled because no
1320 call path can make opcodes without operands get here */
1321 case 'i':
1322 return 2 /* integer op */;
1323 case 'l':
1324 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1325 return 3; /* fldcw/fldenv */
1326 break;
1327 case 'n':
1328 if (mnemonic[2] != 'o' /* fnop */)
1329 return 3; /* non-waiting control op */
1330 break;
1331 case 'r':
1332 if (mnemonic[2] == 's')
1333 return 3; /* frstor/frstpm */
1334 break;
1335 case 's':
1336 if (mnemonic[2] == 'a')
1337 return 3; /* fsave */
1338 if (mnemonic[2] == 't')
1339 {
1340 switch (mnemonic[3])
1341 {
1342 case 'c': /* fstcw */
1343 case 'd': /* fstdw */
1344 case 'e': /* fstenv */
1345 case 's': /* fsts[gw] */
1346 return 3;
1347 }
1348 }
1349 break;
1350 case 'x':
1351 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1352 return 0; /* fxsave/fxrstor are not really math ops */
1353 break;
1354 }
252b5132 1355
9306ca4a 1356 return 1;
252b5132
RH
1357}
1358
1359/* This is the guts of the machine-dependent assembler. LINE points to a
1360 machine dependent instruction. This function is supposed to emit
1361 the frags/bytes it assembles to. */
1362
1363void
1364md_assemble (line)
1365 char *line;
1366{
252b5132 1367 int j;
252b5132
RH
1368 char mnemonic[MAX_MNEM_SIZE];
1369
47926f60 1370 /* Initialize globals. */
252b5132
RH
1371 memset (&i, '\0', sizeof (i));
1372 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1373 i.reloc[j] = NO_RELOC;
252b5132
RH
1374 memset (disp_expressions, '\0', sizeof (disp_expressions));
1375 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1376 save_stack_p = save_stack;
252b5132
RH
1377
1378 /* First parse an instruction mnemonic & call i386_operand for the operands.
1379 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1380 start of a (possibly prefixed) mnemonic. */
252b5132 1381
29b0f896
AM
1382 line = parse_insn (line, mnemonic);
1383 if (line == NULL)
1384 return;
252b5132 1385
29b0f896
AM
1386 line = parse_operands (line, mnemonic);
1387 if (line == NULL)
1388 return;
252b5132 1389
29b0f896
AM
1390 /* Now we've parsed the mnemonic into a set of templates, and have the
1391 operands at hand. */
1392
1393 /* All intel opcodes have reversed operands except for "bound" and
1394 "enter". We also don't reverse intersegment "jmp" and "call"
1395 instructions with 2 immediate operands so that the immediate segment
1396 precedes the offset, as it does when in AT&T mode. "enter" and the
1397 intersegment "jmp" and "call" instructions are the only ones that
1398 have two immediate operands. */
1399 if (intel_syntax && i.operands > 1
1400 && (strcmp (mnemonic, "bound") != 0)
1401 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1402 swap_operands ();
1403
1404 if (i.imm_operands)
1405 optimize_imm ();
1406
1407 if (i.disp_operands)
1408 optimize_disp ();
1409
1410 /* Next, we find a template that matches the given insn,
1411 making sure the overlap of the given operands types is consistent
1412 with the template operand types. */
252b5132 1413
29b0f896
AM
1414 if (!match_template ())
1415 return;
252b5132 1416
cd61ebfe
AM
1417 if (intel_syntax)
1418 {
1419 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1420 if (SYSV386_COMPAT
1421 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1422 i.tm.base_opcode ^= FloatR;
1423
1424 /* Zap movzx and movsx suffix. The suffix may have been set from
1425 "word ptr" or "byte ptr" on the source operand, but we'll use
1426 the suffix later to choose the destination register. */
1427 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1428 {
1429 if (i.reg_operands < 2
1430 && !i.suffix
1431 && (~i.tm.opcode_modifier
1432 & (No_bSuf
1433 | No_wSuf
1434 | No_lSuf
1435 | No_sSuf
1436 | No_xSuf
1437 | No_qSuf)))
1438 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1439
1440 i.suffix = 0;
1441 }
cd61ebfe 1442 }
24eab124 1443
29b0f896
AM
1444 if (i.tm.opcode_modifier & FWait)
1445 if (!add_prefix (FWAIT_OPCODE))
1446 return;
252b5132 1447
29b0f896
AM
1448 /* Check string instruction segment overrides. */
1449 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1450 {
1451 if (!check_string ())
5dd0794d 1452 return;
29b0f896 1453 }
5dd0794d 1454
29b0f896
AM
1455 if (!process_suffix ())
1456 return;
e413e4e9 1457
29b0f896
AM
1458 /* Make still unresolved immediate matches conform to size of immediate
1459 given in i.suffix. */
1460 if (!finalize_imm ())
1461 return;
252b5132 1462
29b0f896
AM
1463 if (i.types[0] & Imm1)
1464 i.imm_operands = 0; /* kludge for shift insns. */
1465 if (i.types[0] & ImplicitRegister)
1466 i.reg_operands--;
1467 if (i.types[1] & ImplicitRegister)
1468 i.reg_operands--;
1469 if (i.types[2] & ImplicitRegister)
1470 i.reg_operands--;
252b5132 1471
29b0f896
AM
1472 if (i.tm.opcode_modifier & ImmExt)
1473 {
02fc3089
L
1474 expressionS *exp;
1475
ca164297
L
1476 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1477 {
67c1ffbe 1478 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1479 operands with an opcode suffix which is coded in the same
1480 place as an 8-bit immediate field would be. Here we check
1481 those operands and remove them afterwards. */
1482 unsigned int x;
1483
a4622f40 1484 for (x = 0; x < i.operands; x++)
ca164297
L
1485 if (i.op[x].regs->reg_num != x)
1486 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1487 i.op[x].regs->reg_name, x + 1, i.tm.name);
1488 i.operands = 0;
1489 }
1490
29b0f896
AM
1491 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1492 opcode suffix which is coded in the same place as an 8-bit
1493 immediate field would be. Here we fake an 8-bit immediate
1494 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1495
29b0f896 1496 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1497
29b0f896
AM
1498 exp = &im_expressions[i.imm_operands++];
1499 i.op[i.operands].imms = exp;
1500 i.types[i.operands++] = Imm8;
1501 exp->X_op = O_constant;
1502 exp->X_add_number = i.tm.extension_opcode;
1503 i.tm.extension_opcode = None;
1504 }
252b5132 1505
29b0f896
AM
1506 /* For insns with operands there are more diddles to do to the opcode. */
1507 if (i.operands)
1508 {
1509 if (!process_operands ())
1510 return;
1511 }
1512 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1513 {
1514 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1515 as_warn (_("translating to `%sp'"), i.tm.name);
1516 }
252b5132 1517
29b0f896
AM
1518 /* Handle conversion of 'int $3' --> special int3 insn. */
1519 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1520 {
1521 i.tm.base_opcode = INT3_OPCODE;
1522 i.imm_operands = 0;
1523 }
252b5132 1524
29b0f896
AM
1525 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1526 && i.op[0].disps->X_op == O_constant)
1527 {
1528 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1529 the absolute address given by the constant. Since ix86 jumps and
1530 calls are pc relative, we need to generate a reloc. */
1531 i.op[0].disps->X_add_symbol = &abs_symbol;
1532 i.op[0].disps->X_op = O_symbol;
1533 }
252b5132 1534
29b0f896
AM
1535 if ((i.tm.opcode_modifier & Rex64) != 0)
1536 i.rex |= REX_MODE64;
252b5132 1537
29b0f896
AM
1538 /* For 8 bit registers we need an empty rex prefix. Also if the
1539 instruction already has a prefix, we need to convert old
1540 registers to new ones. */
773f551c 1541
29b0f896
AM
1542 if (((i.types[0] & Reg8) != 0
1543 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1544 || ((i.types[1] & Reg8) != 0
1545 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1546 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1547 && i.rex != 0))
1548 {
1549 int x;
726c5dcd 1550
29b0f896
AM
1551 i.rex |= REX_OPCODE;
1552 for (x = 0; x < 2; x++)
1553 {
1554 /* Look for 8 bit operand that uses old registers. */
1555 if ((i.types[x] & Reg8) != 0
1556 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1557 {
29b0f896
AM
1558 /* In case it is "hi" register, give up. */
1559 if (i.op[x].regs->reg_num > 3)
0477af35 1560 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1561 i.op[x].regs->reg_name);
773f551c 1562
29b0f896
AM
1563 /* Otherwise it is equivalent to the extended register.
1564 Since the encoding doesn't change this is merely
1565 cosmetic cleanup for debug output. */
1566
1567 i.op[x].regs = i.op[x].regs + 8;
773f551c 1568 }
29b0f896
AM
1569 }
1570 }
773f551c 1571
29b0f896
AM
1572 if (i.rex != 0)
1573 add_prefix (REX_OPCODE | i.rex);
1574
1575 /* We are ready to output the insn. */
1576 output_insn ();
1577}
1578
1579static char *
1580parse_insn (line, mnemonic)
1581 char *line;
1582 char *mnemonic;
1583{
1584 char *l = line;
1585 char *token_start = l;
1586 char *mnem_p;
5c6af06e
JB
1587 int supported;
1588 const template *t;
29b0f896
AM
1589
1590 /* Non-zero if we found a prefix only acceptable with string insns. */
1591 const char *expecting_string_instruction = NULL;
45288df1 1592
29b0f896
AM
1593 while (1)
1594 {
1595 mnem_p = mnemonic;
1596 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1597 {
1598 mnem_p++;
1599 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1600 {
29b0f896
AM
1601 as_bad (_("no such instruction: `%s'"), token_start);
1602 return NULL;
1603 }
1604 l++;
1605 }
1606 if (!is_space_char (*l)
1607 && *l != END_OF_INSN
1608 && *l != PREFIX_SEPARATOR
1609 && *l != ',')
1610 {
1611 as_bad (_("invalid character %s in mnemonic"),
1612 output_invalid (*l));
1613 return NULL;
1614 }
1615 if (token_start == l)
1616 {
1617 if (*l == PREFIX_SEPARATOR)
1618 as_bad (_("expecting prefix; got nothing"));
1619 else
1620 as_bad (_("expecting mnemonic; got nothing"));
1621 return NULL;
1622 }
45288df1 1623
29b0f896
AM
1624 /* Look up instruction (or prefix) via hash table. */
1625 current_templates = hash_find (op_hash, mnemonic);
47926f60 1626
29b0f896
AM
1627 if (*l != END_OF_INSN
1628 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1629 && current_templates
1630 && (current_templates->start->opcode_modifier & IsPrefix))
1631 {
1632 /* If we are in 16-bit mode, do not allow addr16 or data16.
1633 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1634 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1635 && flag_code != CODE_64BIT
1636 && (((current_templates->start->opcode_modifier & Size32) != 0)
1637 ^ (flag_code == CODE_16BIT)))
1638 {
1639 as_bad (_("redundant %s prefix"),
1640 current_templates->start->name);
1641 return NULL;
45288df1 1642 }
29b0f896
AM
1643 /* Add prefix, checking for repeated prefixes. */
1644 switch (add_prefix (current_templates->start->base_opcode))
1645 {
1646 case 0:
1647 return NULL;
1648 case 2:
1649 expecting_string_instruction = current_templates->start->name;
1650 break;
1651 }
1652 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1653 token_start = ++l;
1654 }
1655 else
1656 break;
1657 }
45288df1 1658
29b0f896
AM
1659 if (!current_templates)
1660 {
1661 /* See if we can get a match by trimming off a suffix. */
1662 switch (mnem_p[-1])
1663 {
1664 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1665 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1666 i.suffix = SHORT_MNEM_SUFFIX;
1667 else
29b0f896
AM
1668 case BYTE_MNEM_SUFFIX:
1669 case QWORD_MNEM_SUFFIX:
1670 i.suffix = mnem_p[-1];
1671 mnem_p[-1] = '\0';
1672 current_templates = hash_find (op_hash, mnemonic);
1673 break;
1674 case SHORT_MNEM_SUFFIX:
1675 case LONG_MNEM_SUFFIX:
1676 if (!intel_syntax)
1677 {
1678 i.suffix = mnem_p[-1];
1679 mnem_p[-1] = '\0';
1680 current_templates = hash_find (op_hash, mnemonic);
1681 }
1682 break;
252b5132 1683
29b0f896
AM
1684 /* Intel Syntax. */
1685 case 'd':
1686 if (intel_syntax)
1687 {
9306ca4a 1688 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1689 i.suffix = SHORT_MNEM_SUFFIX;
1690 else
1691 i.suffix = LONG_MNEM_SUFFIX;
1692 mnem_p[-1] = '\0';
1693 current_templates = hash_find (op_hash, mnemonic);
1694 }
1695 break;
1696 }
1697 if (!current_templates)
1698 {
1699 as_bad (_("no such instruction: `%s'"), token_start);
1700 return NULL;
1701 }
1702 }
252b5132 1703
29b0f896
AM
1704 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1705 {
1706 /* Check for a branch hint. We allow ",pt" and ",pn" for
1707 predict taken and predict not taken respectively.
1708 I'm not sure that branch hints actually do anything on loop
1709 and jcxz insns (JumpByte) for current Pentium4 chips. They
1710 may work in the future and it doesn't hurt to accept them
1711 now. */
1712 if (l[0] == ',' && l[1] == 'p')
1713 {
1714 if (l[2] == 't')
1715 {
1716 if (!add_prefix (DS_PREFIX_OPCODE))
1717 return NULL;
1718 l += 3;
1719 }
1720 else if (l[2] == 'n')
1721 {
1722 if (!add_prefix (CS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 }
1727 }
1728 /* Any other comma loses. */
1729 if (*l == ',')
1730 {
1731 as_bad (_("invalid character %s in mnemonic"),
1732 output_invalid (*l));
1733 return NULL;
1734 }
252b5132 1735
29b0f896 1736 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
1737 supported = 0;
1738 for (t = current_templates->start; t < current_templates->end; ++t)
1739 {
1740 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1741 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1742 supported |= 1;
1743 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1744 supported |= 2;
1745 }
1746 if (!(supported & 2))
1747 {
1748 as_bad (flag_code == CODE_64BIT
1749 ? _("`%s' is not supported in 64-bit mode")
1750 : _("`%s' is only supported in 64-bit mode"),
1751 current_templates->start->name);
1752 return NULL;
1753 }
1754 if (!(supported & 1))
29b0f896 1755 {
5c6af06e
JB
1756 as_warn (_("`%s' is not supported on `%s%s'"),
1757 current_templates->start->name,
1758 cpu_arch_name,
1759 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
1760 }
1761 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1762 {
1763 as_warn (_("use .code16 to ensure correct addressing mode"));
1764 }
252b5132 1765
29b0f896
AM
1766 /* Check for rep/repne without a string instruction. */
1767 if (expecting_string_instruction
1768 && !(current_templates->start->opcode_modifier & IsString))
1769 {
1770 as_bad (_("expecting string instruction after `%s'"),
1771 expecting_string_instruction);
1772 return NULL;
1773 }
252b5132 1774
29b0f896
AM
1775 return l;
1776}
252b5132 1777
29b0f896
AM
1778static char *
1779parse_operands (l, mnemonic)
1780 char *l;
1781 const char *mnemonic;
1782{
1783 char *token_start;
3138f287 1784
29b0f896
AM
1785 /* 1 if operand is pending after ','. */
1786 unsigned int expecting_operand = 0;
252b5132 1787
29b0f896
AM
1788 /* Non-zero if operand parens not balanced. */
1789 unsigned int paren_not_balanced;
1790
1791 while (*l != END_OF_INSN)
1792 {
1793 /* Skip optional white space before operand. */
1794 if (is_space_char (*l))
1795 ++l;
1796 if (!is_operand_char (*l) && *l != END_OF_INSN)
1797 {
1798 as_bad (_("invalid character %s before operand %d"),
1799 output_invalid (*l),
1800 i.operands + 1);
1801 return NULL;
1802 }
1803 token_start = l; /* after white space */
1804 paren_not_balanced = 0;
1805 while (paren_not_balanced || *l != ',')
1806 {
1807 if (*l == END_OF_INSN)
1808 {
1809 if (paren_not_balanced)
1810 {
1811 if (!intel_syntax)
1812 as_bad (_("unbalanced parenthesis in operand %d."),
1813 i.operands + 1);
1814 else
1815 as_bad (_("unbalanced brackets in operand %d."),
1816 i.operands + 1);
1817 return NULL;
1818 }
1819 else
1820 break; /* we are done */
1821 }
1822 else if (!is_operand_char (*l) && !is_space_char (*l))
1823 {
1824 as_bad (_("invalid character %s in operand %d"),
1825 output_invalid (*l),
1826 i.operands + 1);
1827 return NULL;
1828 }
1829 if (!intel_syntax)
1830 {
1831 if (*l == '(')
1832 ++paren_not_balanced;
1833 if (*l == ')')
1834 --paren_not_balanced;
1835 }
1836 else
1837 {
1838 if (*l == '[')
1839 ++paren_not_balanced;
1840 if (*l == ']')
1841 --paren_not_balanced;
1842 }
1843 l++;
1844 }
1845 if (l != token_start)
1846 { /* Yes, we've read in another operand. */
1847 unsigned int operand_ok;
1848 this_operand = i.operands++;
1849 if (i.operands > MAX_OPERANDS)
1850 {
1851 as_bad (_("spurious operands; (%d operands/instruction max)"),
1852 MAX_OPERANDS);
1853 return NULL;
1854 }
1855 /* Now parse operand adding info to 'i' as we go along. */
1856 END_STRING_AND_SAVE (l);
1857
1858 if (intel_syntax)
1859 operand_ok =
1860 i386_intel_operand (token_start,
1861 intel_float_operand (mnemonic));
1862 else
1863 operand_ok = i386_operand (token_start);
1864
1865 RESTORE_END_STRING (l);
1866 if (!operand_ok)
1867 return NULL;
1868 }
1869 else
1870 {
1871 if (expecting_operand)
1872 {
1873 expecting_operand_after_comma:
1874 as_bad (_("expecting operand after ','; got nothing"));
1875 return NULL;
1876 }
1877 if (*l == ',')
1878 {
1879 as_bad (_("expecting operand before ','; got nothing"));
1880 return NULL;
1881 }
1882 }
7f3f1ea2 1883
29b0f896
AM
1884 /* Now *l must be either ',' or END_OF_INSN. */
1885 if (*l == ',')
1886 {
1887 if (*++l == END_OF_INSN)
1888 {
1889 /* Just skip it, if it's \n complain. */
1890 goto expecting_operand_after_comma;
1891 }
1892 expecting_operand = 1;
1893 }
1894 }
1895 return l;
1896}
7f3f1ea2 1897
29b0f896
AM
1898static void
1899swap_operands ()
1900{
1901 union i386_op temp_op;
1902 unsigned int temp_type;
f86103b7 1903 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1904 int xchg1 = 0;
1905 int xchg2 = 0;
252b5132 1906
29b0f896
AM
1907 if (i.operands == 2)
1908 {
1909 xchg1 = 0;
1910 xchg2 = 1;
1911 }
1912 else if (i.operands == 3)
1913 {
1914 xchg1 = 0;
1915 xchg2 = 2;
1916 }
1917 temp_type = i.types[xchg2];
1918 i.types[xchg2] = i.types[xchg1];
1919 i.types[xchg1] = temp_type;
1920 temp_op = i.op[xchg2];
1921 i.op[xchg2] = i.op[xchg1];
1922 i.op[xchg1] = temp_op;
1923 temp_reloc = i.reloc[xchg2];
1924 i.reloc[xchg2] = i.reloc[xchg1];
1925 i.reloc[xchg1] = temp_reloc;
1926
1927 if (i.mem_operands == 2)
1928 {
1929 const seg_entry *temp_seg;
1930 temp_seg = i.seg[0];
1931 i.seg[0] = i.seg[1];
1932 i.seg[1] = temp_seg;
1933 }
1934}
252b5132 1935
29b0f896
AM
1936/* Try to ensure constant immediates are represented in the smallest
1937 opcode possible. */
1938static void
1939optimize_imm ()
1940{
1941 char guess_suffix = 0;
1942 int op;
252b5132 1943
29b0f896
AM
1944 if (i.suffix)
1945 guess_suffix = i.suffix;
1946 else if (i.reg_operands)
1947 {
1948 /* Figure out a suffix from the last register operand specified.
1949 We can't do this properly yet, ie. excluding InOutPortReg,
1950 but the following works for instructions with immediates.
1951 In any case, we can't set i.suffix yet. */
1952 for (op = i.operands; --op >= 0;)
1953 if (i.types[op] & Reg)
252b5132 1954 {
29b0f896
AM
1955 if (i.types[op] & Reg8)
1956 guess_suffix = BYTE_MNEM_SUFFIX;
1957 else if (i.types[op] & Reg16)
1958 guess_suffix = WORD_MNEM_SUFFIX;
1959 else if (i.types[op] & Reg32)
1960 guess_suffix = LONG_MNEM_SUFFIX;
1961 else if (i.types[op] & Reg64)
1962 guess_suffix = QWORD_MNEM_SUFFIX;
1963 break;
252b5132 1964 }
29b0f896
AM
1965 }
1966 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1967 guess_suffix = WORD_MNEM_SUFFIX;
1968
1969 for (op = i.operands; --op >= 0;)
1970 if (i.types[op] & Imm)
1971 {
1972 switch (i.op[op].imms->X_op)
252b5132 1973 {
29b0f896
AM
1974 case O_constant:
1975 /* If a suffix is given, this operand may be shortened. */
1976 switch (guess_suffix)
252b5132 1977 {
29b0f896
AM
1978 case LONG_MNEM_SUFFIX:
1979 i.types[op] |= Imm32 | Imm64;
1980 break;
1981 case WORD_MNEM_SUFFIX:
1982 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1983 break;
1984 case BYTE_MNEM_SUFFIX:
1985 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1986 break;
252b5132 1987 }
252b5132 1988
29b0f896
AM
1989 /* If this operand is at most 16 bits, convert it
1990 to a signed 16 bit number before trying to see
1991 whether it will fit in an even smaller size.
1992 This allows a 16-bit operand such as $0xffe0 to
1993 be recognised as within Imm8S range. */
1994 if ((i.types[op] & Imm16)
1995 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1996 {
29b0f896
AM
1997 i.op[op].imms->X_add_number =
1998 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1999 }
2000 if ((i.types[op] & Imm32)
2001 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2002 == 0))
2003 {
2004 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2005 ^ ((offsetT) 1 << 31))
2006 - ((offsetT) 1 << 31));
2007 }
2008 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2009
29b0f896
AM
2010 /* We must avoid matching of Imm32 templates when 64bit
2011 only immediate is available. */
2012 if (guess_suffix == QWORD_MNEM_SUFFIX)
2013 i.types[op] &= ~Imm32;
2014 break;
252b5132 2015
29b0f896
AM
2016 case O_absent:
2017 case O_register:
2018 abort ();
2019
2020 /* Symbols and expressions. */
2021 default:
2022 /* Convert symbolic operand to proper sizes for matching. */
2023 switch (guess_suffix)
2024 {
2025 case QWORD_MNEM_SUFFIX:
2026 i.types[op] = Imm64 | Imm32S;
2027 break;
2028 case LONG_MNEM_SUFFIX:
20f0a1fc 2029 i.types[op] = Imm32;
29b0f896
AM
2030 break;
2031 case WORD_MNEM_SUFFIX:
20f0a1fc 2032 i.types[op] = Imm16;
29b0f896
AM
2033 break;
2034 case BYTE_MNEM_SUFFIX:
20f0a1fc 2035 i.types[op] = Imm8 | Imm8S;
29b0f896 2036 break;
252b5132 2037 }
29b0f896 2038 break;
252b5132 2039 }
29b0f896
AM
2040 }
2041}
47926f60 2042
29b0f896
AM
2043/* Try to use the smallest displacement type too. */
2044static void
2045optimize_disp ()
2046{
2047 int op;
3e73aa7c 2048
29b0f896
AM
2049 for (op = i.operands; --op >= 0;)
2050 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 2051 {
29b0f896
AM
2052 offsetT disp = i.op[op].disps->X_add_number;
2053
2054 if (i.types[op] & Disp16)
252b5132 2055 {
29b0f896
AM
2056 /* We know this operand is at most 16 bits, so
2057 convert to a signed 16 bit number before trying
2058 to see whether it will fit in an even smaller
2059 size. */
2060
2061 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 2062 }
29b0f896 2063 else if (i.types[op] & Disp32)
252b5132 2064 {
29b0f896
AM
2065 /* We know this operand is at most 32 bits, so convert to a
2066 signed 32 bit number before trying to see whether it will
2067 fit in an even smaller size. */
2068 disp &= (((offsetT) 2 << 31) - 1);
2069 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 2070 }
29b0f896 2071 if (flag_code == CODE_64BIT)
252b5132 2072 {
29b0f896
AM
2073 if (fits_in_signed_long (disp))
2074 i.types[op] |= Disp32S;
2075 if (fits_in_unsigned_long (disp))
2076 i.types[op] |= Disp32;
252b5132 2077 }
29b0f896
AM
2078 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2079 && fits_in_signed_byte (disp))
2080 i.types[op] |= Disp8;
252b5132 2081 }
29b0f896
AM
2082}
2083
2084static int
2085match_template ()
2086{
2087 /* Points to template once we've found it. */
2088 const template *t;
2089 unsigned int overlap0, overlap1, overlap2;
2090 unsigned int found_reverse_match;
2091 int suffix_check;
2092
2093#define MATCH(overlap, given, template) \
2094 ((overlap & ~JumpAbsolute) \
2095 && (((given) & (BaseIndex | JumpAbsolute)) \
2096 == ((overlap) & (BaseIndex | JumpAbsolute))))
2097
2098 /* If given types r0 and r1 are registers they must be of the same type
2099 unless the expected operand type register overlap is null.
2100 Note that Acc in a template matches every size of reg. */
2101#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2102 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2103 || ((g0) & Reg) == ((g1) & Reg) \
2104 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2105
2106 overlap0 = 0;
2107 overlap1 = 0;
2108 overlap2 = 0;
2109 found_reverse_match = 0;
2110 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2111 ? No_bSuf
2112 : (i.suffix == WORD_MNEM_SUFFIX
2113 ? No_wSuf
2114 : (i.suffix == SHORT_MNEM_SUFFIX
2115 ? No_sSuf
2116 : (i.suffix == LONG_MNEM_SUFFIX
2117 ? No_lSuf
2118 : (i.suffix == QWORD_MNEM_SUFFIX
2119 ? No_qSuf
2120 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2121 ? No_xSuf : 0))))));
2122
20f0a1fc
NC
2123 t = current_templates->start;
2124 if (i.suffix == QWORD_MNEM_SUFFIX
2125 && flag_code != CODE_64BIT
9306ca4a
JB
2126 && (intel_syntax
2127 ? !(t->opcode_modifier & IgnoreSize)
2128 && !intel_float_operand (t->name)
2129 : intel_float_operand (t->name) != 2)
20f0a1fc
NC
2130 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2131 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2132 && (t->base_opcode != 0x0fc7
2133 || t->extension_opcode != 1 /* cmpxchg8b */))
2134 t = current_templates->end;
2135 for (; t < current_templates->end; t++)
29b0f896
AM
2136 {
2137 /* Must have right number of operands. */
2138 if (i.operands != t->operands)
2139 continue;
2140
2141 /* Check the suffix, except for some instructions in intel mode. */
2142 if ((t->opcode_modifier & suffix_check)
2143 && !(intel_syntax
9306ca4a 2144 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2145 continue;
2146
2147 /* Do not verify operands when there are none. */
2148 else if (!t->operands)
2149 {
2150 if (t->cpu_flags & ~cpu_arch_flags)
2151 continue;
2152 /* We've found a match; break out of loop. */
2153 break;
2154 }
252b5132 2155
29b0f896
AM
2156 overlap0 = i.types[0] & t->operand_types[0];
2157 switch (t->operands)
2158 {
2159 case 1:
2160 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2161 continue;
2162 break;
2163 case 2:
2164 case 3:
2165 overlap1 = i.types[1] & t->operand_types[1];
2166 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2167 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2168 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2169 t->operand_types[0],
2170 overlap1, i.types[1],
2171 t->operand_types[1]))
2172 {
2173 /* Check if other direction is valid ... */
2174 if ((t->opcode_modifier & (D | FloatD)) == 0)
2175 continue;
2176
2177 /* Try reversing direction of operands. */
2178 overlap0 = i.types[0] & t->operand_types[1];
2179 overlap1 = i.types[1] & t->operand_types[0];
2180 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2181 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2182 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2183 t->operand_types[1],
2184 overlap1, i.types[1],
2185 t->operand_types[0]))
2186 {
2187 /* Does not match either direction. */
2188 continue;
2189 }
2190 /* found_reverse_match holds which of D or FloatDR
2191 we've found. */
2192 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2193 }
2194 /* Found a forward 2 operand match here. */
2195 else if (t->operands == 3)
2196 {
2197 /* Here we make use of the fact that there are no
2198 reverse match 3 operand instructions, and all 3
2199 operand instructions only need to be checked for
2200 register consistency between operands 2 and 3. */
2201 overlap2 = i.types[2] & t->operand_types[2];
2202 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2203 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2204 t->operand_types[1],
2205 overlap2, i.types[2],
2206 t->operand_types[2]))
2207
2208 continue;
2209 }
2210 /* Found either forward/reverse 2 or 3 operand match here:
2211 slip through to break. */
2212 }
2213 if (t->cpu_flags & ~cpu_arch_flags)
2214 {
2215 found_reverse_match = 0;
2216 continue;
2217 }
2218 /* We've found a match; break out of loop. */
2219 break;
2220 }
2221
2222 if (t == current_templates->end)
2223 {
2224 /* We found no match. */
2225 as_bad (_("suffix or operands invalid for `%s'"),
2226 current_templates->start->name);
2227 return 0;
2228 }
252b5132 2229
29b0f896
AM
2230 if (!quiet_warnings)
2231 {
2232 if (!intel_syntax
2233 && ((i.types[0] & JumpAbsolute)
2234 != (t->operand_types[0] & JumpAbsolute)))
2235 {
2236 as_warn (_("indirect %s without `*'"), t->name);
2237 }
2238
2239 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2240 == (IsPrefix | IgnoreSize))
2241 {
2242 /* Warn them that a data or address size prefix doesn't
2243 affect assembly of the next line of code. */
2244 as_warn (_("stand-alone `%s' prefix"), t->name);
2245 }
2246 }
2247
2248 /* Copy the template we found. */
2249 i.tm = *t;
2250 if (found_reverse_match)
2251 {
2252 /* If we found a reverse match we must alter the opcode
2253 direction bit. found_reverse_match holds bits to change
2254 (different for int & float insns). */
2255
2256 i.tm.base_opcode ^= found_reverse_match;
2257
2258 i.tm.operand_types[0] = t->operand_types[1];
2259 i.tm.operand_types[1] = t->operand_types[0];
2260 }
2261
2262 return 1;
2263}
2264
2265static int
2266check_string ()
2267{
2268 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2269 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2270 {
2271 if (i.seg[0] != NULL && i.seg[0] != &es)
2272 {
2273 as_bad (_("`%s' operand %d must use `%%es' segment"),
2274 i.tm.name,
2275 mem_op + 1);
2276 return 0;
2277 }
2278 /* There's only ever one segment override allowed per instruction.
2279 This instruction possibly has a legal segment override on the
2280 second operand, so copy the segment to where non-string
2281 instructions store it, allowing common code. */
2282 i.seg[0] = i.seg[1];
2283 }
2284 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2285 {
2286 if (i.seg[1] != NULL && i.seg[1] != &es)
2287 {
2288 as_bad (_("`%s' operand %d must use `%%es' segment"),
2289 i.tm.name,
2290 mem_op + 2);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295}
2296
2297static int
543613e9 2298process_suffix (void)
29b0f896
AM
2299{
2300 /* If matched instruction specifies an explicit instruction mnemonic
2301 suffix, use it. */
2302 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2303 {
2304 if (i.tm.opcode_modifier & Size16)
2305 i.suffix = WORD_MNEM_SUFFIX;
2306 else if (i.tm.opcode_modifier & Size64)
2307 i.suffix = QWORD_MNEM_SUFFIX;
2308 else
2309 i.suffix = LONG_MNEM_SUFFIX;
2310 }
2311 else if (i.reg_operands)
2312 {
2313 /* If there's no instruction mnemonic suffix we try to invent one
2314 based on register operands. */
2315 if (!i.suffix)
2316 {
2317 /* We take i.suffix from the last register operand specified,
2318 Destination register type is more significant than source
2319 register type. */
2320 int op;
543613e9 2321
29b0f896
AM
2322 for (op = i.operands; --op >= 0;)
2323 if ((i.types[op] & Reg)
2324 && !(i.tm.operand_types[op] & InOutPortReg))
2325 {
2326 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2327 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2328 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2329 LONG_MNEM_SUFFIX);
2330 break;
2331 }
2332 }
2333 else if (i.suffix == BYTE_MNEM_SUFFIX)
2334 {
2335 if (!check_byte_reg ())
2336 return 0;
2337 }
2338 else if (i.suffix == LONG_MNEM_SUFFIX)
2339 {
2340 if (!check_long_reg ())
2341 return 0;
2342 }
2343 else if (i.suffix == QWORD_MNEM_SUFFIX)
2344 {
2345 if (!check_qword_reg ())
2346 return 0;
2347 }
2348 else if (i.suffix == WORD_MNEM_SUFFIX)
2349 {
2350 if (!check_word_reg ())
2351 return 0;
2352 }
2353 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2354 /* Do nothing if the instruction is going to ignore the prefix. */
2355 ;
2356 else
2357 abort ();
2358 }
9306ca4a
JB
2359 else if ((i.tm.opcode_modifier & DefaultSize)
2360 && !i.suffix
2361 /* exclude fldenv/frstor/fsave/fstenv */
2362 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2363 {
2364 i.suffix = stackop_size;
2365 }
9306ca4a
JB
2366 else if (intel_syntax
2367 && !i.suffix
2368 && ((i.tm.operand_types[0] & JumpAbsolute)
2369 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2370 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2371 && i.tm.extension_opcode <= 3)))
2372 {
2373 switch (flag_code)
2374 {
2375 case CODE_64BIT:
2376 if (!(i.tm.opcode_modifier & No_qSuf))
2377 {
2378 i.suffix = QWORD_MNEM_SUFFIX;
2379 break;
2380 }
2381 case CODE_32BIT:
2382 if (!(i.tm.opcode_modifier & No_lSuf))
2383 i.suffix = LONG_MNEM_SUFFIX;
2384 break;
2385 case CODE_16BIT:
2386 if (!(i.tm.opcode_modifier & No_wSuf))
2387 i.suffix = WORD_MNEM_SUFFIX;
2388 break;
2389 }
2390 }
252b5132 2391
9306ca4a 2392 if (!i.suffix)
29b0f896 2393 {
9306ca4a
JB
2394 if (!intel_syntax)
2395 {
2396 if (i.tm.opcode_modifier & W)
2397 {
2398 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2399 return 0;
2400 }
2401 }
2402 else
2403 {
2404 unsigned int suffixes = ~i.tm.opcode_modifier
2405 & (No_bSuf
2406 | No_wSuf
2407 | No_lSuf
2408 | No_sSuf
2409 | No_xSuf
2410 | No_qSuf);
2411
2412 if ((i.tm.opcode_modifier & W)
2413 || ((suffixes & (suffixes - 1))
2414 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2415 {
2416 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2417 return 0;
2418 }
2419 }
29b0f896 2420 }
252b5132 2421
9306ca4a
JB
2422 /* Change the opcode based on the operand size given by i.suffix;
2423 We don't need to change things for byte insns. */
2424
29b0f896
AM
2425 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2426 {
2427 /* It's not a byte, select word/dword operation. */
2428 if (i.tm.opcode_modifier & W)
2429 {
2430 if (i.tm.opcode_modifier & ShortForm)
2431 i.tm.base_opcode |= 8;
2432 else
2433 i.tm.base_opcode |= 1;
2434 }
0f3f3d8b 2435
29b0f896
AM
2436 /* Now select between word & dword operations via the operand
2437 size prefix, except for instructions that will ignore this
2438 prefix anyway. */
2439 if (i.suffix != QWORD_MNEM_SUFFIX
9306ca4a
JB
2440 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2441 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
9146926a
AM
2442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2443 || (flag_code == CODE_64BIT
2444 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2445 {
2446 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2447
29b0f896
AM
2448 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2449 prefix = ADDR_PREFIX_OPCODE;
252b5132 2450
29b0f896
AM
2451 if (!add_prefix (prefix))
2452 return 0;
24eab124 2453 }
252b5132 2454
29b0f896
AM
2455 /* Set mode64 for an operand. */
2456 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2457 && flag_code == CODE_64BIT
29b0f896 2458 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2459 i.rex |= REX_MODE64;
3e73aa7c 2460
29b0f896
AM
2461 /* Size floating point instruction. */
2462 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2463 if (i.tm.opcode_modifier & FloatMF)
2464 i.tm.base_opcode ^= 4;
29b0f896 2465 }
7ecd2f8b 2466
29b0f896
AM
2467 return 1;
2468}
3e73aa7c 2469
29b0f896 2470static int
543613e9 2471check_byte_reg (void)
29b0f896
AM
2472{
2473 int op;
543613e9 2474
29b0f896
AM
2475 for (op = i.operands; --op >= 0;)
2476 {
2477 /* If this is an eight bit register, it's OK. If it's the 16 or
2478 32 bit version of an eight bit register, we will just use the
2479 low portion, and that's OK too. */
2480 if (i.types[op] & Reg8)
2481 continue;
2482
2483 /* movzx and movsx should not generate this warning. */
2484 if (intel_syntax
2485 && (i.tm.base_opcode == 0xfb7
2486 || i.tm.base_opcode == 0xfb6
2487 || i.tm.base_opcode == 0x63
2488 || i.tm.base_opcode == 0xfbe
2489 || i.tm.base_opcode == 0xfbf))
2490 continue;
2491
65ec77d2 2492 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
29b0f896
AM
2493 {
2494 /* Prohibit these changes in the 64bit mode, since the
2495 lowering is more complicated. */
2496 if (flag_code == CODE_64BIT
2497 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2498 {
0f3f3d8b 2499 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2500 i.op[op].regs->reg_name,
2501 i.suffix);
2502 return 0;
2503 }
2504#if REGISTER_WARNINGS
2505 if (!quiet_warnings
2506 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2507 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2508 (i.op[op].regs + (i.types[op] & Reg16
2509 ? REGNAM_AL - REGNAM_AX
2510 : REGNAM_AL - REGNAM_EAX))->reg_name,
2511 i.op[op].regs->reg_name,
2512 i.suffix);
2513#endif
2514 continue;
2515 }
2516 /* Any other register is bad. */
2517 if (i.types[op] & (Reg | RegMMX | RegXMM
2518 | SReg2 | SReg3
2519 | Control | Debug | Test
2520 | FloatReg | FloatAcc))
2521 {
2522 as_bad (_("`%%%s' not allowed with `%s%c'"),
2523 i.op[op].regs->reg_name,
2524 i.tm.name,
2525 i.suffix);
2526 return 0;
2527 }
2528 }
2529 return 1;
2530}
2531
2532static int
2533check_long_reg ()
2534{
2535 int op;
2536
2537 for (op = i.operands; --op >= 0;)
2538 /* Reject eight bit registers, except where the template requires
2539 them. (eg. movzb) */
2540 if ((i.types[op] & Reg8) != 0
2541 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2542 {
2543 as_bad (_("`%%%s' not allowed with `%s%c'"),
2544 i.op[op].regs->reg_name,
2545 i.tm.name,
2546 i.suffix);
2547 return 0;
2548 }
2549 /* Warn if the e prefix on a general reg is missing. */
2550 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2551 && (i.types[op] & Reg16) != 0
2552 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2553 {
2554 /* Prohibit these changes in the 64bit mode, since the
2555 lowering is more complicated. */
2556 if (flag_code == CODE_64BIT)
252b5132 2557 {
0f3f3d8b 2558 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2559 i.op[op].regs->reg_name,
2560 i.suffix);
2561 return 0;
252b5132 2562 }
29b0f896
AM
2563#if REGISTER_WARNINGS
2564 else
2565 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2566 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2567 i.op[op].regs->reg_name,
2568 i.suffix);
2569#endif
252b5132 2570 }
29b0f896
AM
2571 /* Warn if the r prefix on a general reg is missing. */
2572 else if ((i.types[op] & Reg64) != 0
2573 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2574 {
0f3f3d8b 2575 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2576 i.op[op].regs->reg_name,
2577 i.suffix);
2578 return 0;
2579 }
2580 return 1;
2581}
252b5132 2582
29b0f896
AM
2583static int
2584check_qword_reg ()
2585{
2586 int op;
252b5132 2587
29b0f896
AM
2588 for (op = i.operands; --op >= 0; )
2589 /* Reject eight bit registers, except where the template requires
2590 them. (eg. movzb) */
2591 if ((i.types[op] & Reg8) != 0
2592 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2593 {
2594 as_bad (_("`%%%s' not allowed with `%s%c'"),
2595 i.op[op].regs->reg_name,
2596 i.tm.name,
2597 i.suffix);
2598 return 0;
2599 }
2600 /* Warn if the e prefix on a general reg is missing. */
2601 else if (((i.types[op] & Reg16) != 0
2602 || (i.types[op] & Reg32) != 0)
2603 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2604 {
2605 /* Prohibit these changes in the 64bit mode, since the
2606 lowering is more complicated. */
0f3f3d8b 2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2608 i.op[op].regs->reg_name,
2609 i.suffix);
2610 return 0;
252b5132 2611 }
29b0f896
AM
2612 return 1;
2613}
252b5132 2614
29b0f896
AM
2615static int
2616check_word_reg ()
2617{
2618 int op;
2619 for (op = i.operands; --op >= 0;)
2620 /* Reject eight bit registers, except where the template requires
2621 them. (eg. movzb) */
2622 if ((i.types[op] & Reg8) != 0
2623 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2624 {
2625 as_bad (_("`%%%s' not allowed with `%s%c'"),
2626 i.op[op].regs->reg_name,
2627 i.tm.name,
2628 i.suffix);
2629 return 0;
2630 }
2631 /* Warn if the e prefix on a general reg is present. */
2632 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2633 && (i.types[op] & Reg32) != 0
2634 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2635 {
29b0f896
AM
2636 /* Prohibit these changes in the 64bit mode, since the
2637 lowering is more complicated. */
2638 if (flag_code == CODE_64BIT)
252b5132 2639 {
0f3f3d8b 2640 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2641 i.op[op].regs->reg_name,
2642 i.suffix);
2643 return 0;
252b5132 2644 }
29b0f896
AM
2645 else
2646#if REGISTER_WARNINGS
2647 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2648 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2649 i.op[op].regs->reg_name,
2650 i.suffix);
2651#endif
2652 }
2653 return 1;
2654}
252b5132 2655
29b0f896
AM
2656static int
2657finalize_imm ()
2658{
2659 unsigned int overlap0, overlap1, overlap2;
2660
2661 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2662 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2663 && overlap0 != Imm8 && overlap0 != Imm8S
2664 && overlap0 != Imm16 && overlap0 != Imm32S
2665 && overlap0 != Imm32 && overlap0 != Imm64)
2666 {
2667 if (i.suffix)
2668 {
2669 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2670 ? Imm8 | Imm8S
2671 : (i.suffix == WORD_MNEM_SUFFIX
2672 ? Imm16
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2674 ? Imm64 | Imm32S
2675 : Imm32)));
2676 }
2677 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2678 || overlap0 == (Imm16 | Imm32)
2679 || overlap0 == (Imm16 | Imm32S))
2680 {
2681 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2682 ? Imm16 : Imm32S);
2683 }
2684 if (overlap0 != Imm8 && overlap0 != Imm8S
2685 && overlap0 != Imm16 && overlap0 != Imm32S
2686 && overlap0 != Imm32 && overlap0 != Imm64)
2687 {
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2689 return 0;
2690 }
2691 }
2692 i.types[0] = overlap0;
2693
2694 overlap1 = i.types[1] & i.tm.operand_types[1];
37edbb65 2695 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
29b0f896
AM
2696 && overlap1 != Imm8 && overlap1 != Imm8S
2697 && overlap1 != Imm16 && overlap1 != Imm32S
2698 && overlap1 != Imm32 && overlap1 != Imm64)
2699 {
2700 if (i.suffix)
2701 {
2702 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2703 ? Imm8 | Imm8S
2704 : (i.suffix == WORD_MNEM_SUFFIX
2705 ? Imm16
2706 : (i.suffix == QWORD_MNEM_SUFFIX
2707 ? Imm64 | Imm32S
2708 : Imm32)));
2709 }
2710 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2711 || overlap1 == (Imm16 | Imm32)
2712 || overlap1 == (Imm16 | Imm32S))
2713 {
2714 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2715 ? Imm16 : Imm32S);
2716 }
2717 if (overlap1 != Imm8 && overlap1 != Imm8S
2718 && overlap1 != Imm16 && overlap1 != Imm32S
2719 && overlap1 != Imm32 && overlap1 != Imm64)
2720 {
2721 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2722 return 0;
2723 }
2724 }
2725 i.types[1] = overlap1;
2726
2727 overlap2 = i.types[2] & i.tm.operand_types[2];
2728 assert ((overlap2 & Imm) == 0);
2729 i.types[2] = overlap2;
2730
2731 return 1;
2732}
2733
2734static int
2735process_operands ()
2736{
2737 /* Default segment register this instruction will use for memory
2738 accesses. 0 means unknown. This is only for optimizing out
2739 unnecessary segment overrides. */
2740 const seg_entry *default_seg = 0;
2741
2742 /* The imul $imm, %reg instruction is converted into
2743 imul $imm, %reg, %reg, and the clr %reg instruction
2744 is converted into xor %reg, %reg. */
2745 if (i.tm.opcode_modifier & regKludge)
2746 {
2747 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2748 /* Pretend we saw the extra register operand. */
2749 assert (i.op[first_reg_op + 1].regs == 0);
2750 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2751 i.types[first_reg_op + 1] = i.types[first_reg_op];
2752 i.reg_operands = 2;
2753 }
2754
2755 if (i.tm.opcode_modifier & ShortForm)
2756 {
2757 /* The register or float register operand is in operand 0 or 1. */
2758 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2759 /* Register goes in low 3 bits of opcode. */
2760 i.tm.base_opcode |= i.op[op].regs->reg_num;
2761 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2762 i.rex |= REX_EXTZ;
2763 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2764 {
2765 /* Warn about some common errors, but press on regardless.
2766 The first case can be generated by gcc (<= 2.8.1). */
2767 if (i.operands == 2)
2768 {
2769 /* Reversed arguments on faddp, fsubp, etc. */
2770 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2771 i.op[1].regs->reg_name,
2772 i.op[0].regs->reg_name);
2773 }
2774 else
2775 {
2776 /* Extraneous `l' suffix on fp insn. */
2777 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2778 i.op[0].regs->reg_name);
2779 }
2780 }
2781 }
2782 else if (i.tm.opcode_modifier & Modrm)
2783 {
2784 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2785 must be put into the modrm byte). Now, we make the modrm and
2786 index base bytes based on all the info we've collected. */
29b0f896
AM
2787
2788 default_seg = build_modrm_byte ();
2789 }
2790 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2791 {
2792 if (i.tm.base_opcode == POP_SEG_SHORT
2793 && i.op[0].regs->reg_num == 1)
2794 {
2795 as_bad (_("you can't `pop %%cs'"));
2796 return 0;
2797 }
2798 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2799 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2800 i.rex |= REX_EXTZ;
2801 }
2802 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2803 {
2804 default_seg = &ds;
2805 }
2806 else if ((i.tm.opcode_modifier & IsString) != 0)
2807 {
2808 /* For the string instructions that allow a segment override
2809 on one of their operands, the default segment is ds. */
2810 default_seg = &ds;
2811 }
2812
52271982
AM
2813 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2814 as_warn (_("segment override on `lea' is ineffectual"));
2815
2816 /* If a segment was explicitly specified, and the specified segment
2817 is not the default, use an opcode prefix to select it. If we
2818 never figured out what the default segment is, then default_seg
2819 will be zero at this point, and the specified segment prefix will
2820 always be used. */
29b0f896
AM
2821 if ((i.seg[0]) && (i.seg[0] != default_seg))
2822 {
2823 if (!add_prefix (i.seg[0]->seg_prefix))
2824 return 0;
2825 }
2826 return 1;
2827}
2828
2829static const seg_entry *
2830build_modrm_byte ()
2831{
2832 const seg_entry *default_seg = 0;
2833
2834 /* i.reg_operands MUST be the number of real register operands;
2835 implicit registers do not count. */
2836 if (i.reg_operands == 2)
2837 {
2838 unsigned int source, dest;
2839 source = ((i.types[0]
2840 & (Reg | RegMMX | RegXMM
2841 | SReg2 | SReg3
2842 | Control | Debug | Test))
2843 ? 0 : 1);
2844 dest = source + 1;
2845
2846 i.rm.mode = 3;
2847 /* One of the register operands will be encoded in the i.tm.reg
2848 field, the other in the combined i.tm.mode and i.tm.regmem
2849 fields. If no form of this instruction supports a memory
2850 destination operand, then we assume the source operand may
2851 sometimes be a memory operand and so we need to store the
2852 destination in the i.rm.reg field. */
2853 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2854 {
2855 i.rm.reg = i.op[dest].regs->reg_num;
2856 i.rm.regmem = i.op[source].regs->reg_num;
2857 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2858 i.rex |= REX_EXTX;
2859 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2860 i.rex |= REX_EXTZ;
2861 }
2862 else
2863 {
2864 i.rm.reg = i.op[source].regs->reg_num;
2865 i.rm.regmem = i.op[dest].regs->reg_num;
2866 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2867 i.rex |= REX_EXTZ;
2868 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2869 i.rex |= REX_EXTX;
2870 }
c4a530c5
JB
2871 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
2872 {
2873 if (!((i.types[0] | i.types[1]) & Control))
2874 abort ();
2875 i.rex &= ~(REX_EXTX | REX_EXTZ);
2876 add_prefix (LOCK_PREFIX_OPCODE);
2877 }
29b0f896
AM
2878 }
2879 else
2880 { /* If it's not 2 reg operands... */
2881 if (i.mem_operands)
2882 {
2883 unsigned int fake_zero_displacement = 0;
2884 unsigned int op = ((i.types[0] & AnyMem)
2885 ? 0
2886 : (i.types[1] & AnyMem) ? 1 : 2);
2887
2888 default_seg = &ds;
2889
2890 if (i.base_reg == 0)
2891 {
2892 i.rm.mode = 0;
2893 if (!i.disp_operands)
2894 fake_zero_displacement = 1;
2895 if (i.index_reg == 0)
2896 {
2897 /* Operand is just <disp> */
20f0a1fc 2898 if (flag_code == CODE_64BIT)
29b0f896
AM
2899 {
2900 /* 64bit mode overwrites the 32bit absolute
2901 addressing by RIP relative addressing and
2902 absolute addressing is encoded by one of the
2903 redundant SIB forms. */
2904 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2905 i.sib.base = NO_BASE_REGISTER;
2906 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2907 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2908 }
2909 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2910 {
2911 i.rm.regmem = NO_BASE_REGISTER_16;
2912 i.types[op] = Disp16;
2913 }
2914 else
2915 {
2916 i.rm.regmem = NO_BASE_REGISTER;
2917 i.types[op] = Disp32;
29b0f896
AM
2918 }
2919 }
2920 else /* !i.base_reg && i.index_reg */
2921 {
2922 i.sib.index = i.index_reg->reg_num;
2923 i.sib.base = NO_BASE_REGISTER;
2924 i.sib.scale = i.log2_scale_factor;
2925 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2926 i.types[op] &= ~Disp;
2927 if (flag_code != CODE_64BIT)
2928 i.types[op] |= Disp32; /* Must be 32 bit */
2929 else
2930 i.types[op] |= Disp32S;
2931 if ((i.index_reg->reg_flags & RegRex) != 0)
2932 i.rex |= REX_EXTY;
2933 }
2934 }
2935 /* RIP addressing for 64bit mode. */
2936 else if (i.base_reg->reg_type == BaseIndex)
2937 {
2938 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2939 i.types[op] &= ~ Disp;
29b0f896
AM
2940 i.types[op] |= Disp32S;
2941 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2942 if (! i.disp_operands)
2943 fake_zero_displacement = 1;
29b0f896
AM
2944 }
2945 else if (i.base_reg->reg_type & Reg16)
2946 {
2947 switch (i.base_reg->reg_num)
2948 {
2949 case 3: /* (%bx) */
2950 if (i.index_reg == 0)
2951 i.rm.regmem = 7;
2952 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2953 i.rm.regmem = i.index_reg->reg_num - 6;
2954 break;
2955 case 5: /* (%bp) */
2956 default_seg = &ss;
2957 if (i.index_reg == 0)
2958 {
2959 i.rm.regmem = 6;
2960 if ((i.types[op] & Disp) == 0)
2961 {
2962 /* fake (%bp) into 0(%bp) */
2963 i.types[op] |= Disp8;
252b5132 2964 fake_zero_displacement = 1;
29b0f896
AM
2965 }
2966 }
2967 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2968 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2969 break;
2970 default: /* (%si) -> 4 or (%di) -> 5 */
2971 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2972 }
2973 i.rm.mode = mode_from_disp_size (i.types[op]);
2974 }
2975 else /* i.base_reg and 32/64 bit mode */
2976 {
2977 if (flag_code == CODE_64BIT
2978 && (i.types[op] & Disp))
20f0a1fc
NC
2979 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2980
29b0f896
AM
2981 i.rm.regmem = i.base_reg->reg_num;
2982 if ((i.base_reg->reg_flags & RegRex) != 0)
2983 i.rex |= REX_EXTZ;
2984 i.sib.base = i.base_reg->reg_num;
2985 /* x86-64 ignores REX prefix bit here to avoid decoder
2986 complications. */
2987 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2988 {
2989 default_seg = &ss;
2990 if (i.disp_operands == 0)
2991 {
2992 fake_zero_displacement = 1;
2993 i.types[op] |= Disp8;
2994 }
2995 }
2996 else if (i.base_reg->reg_num == ESP_REG_NUM)
2997 {
2998 default_seg = &ss;
2999 }
3000 i.sib.scale = i.log2_scale_factor;
3001 if (i.index_reg == 0)
3002 {
3003 /* <disp>(%esp) becomes two byte modrm with no index
3004 register. We've already stored the code for esp
3005 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3006 Any base register besides %esp will not use the
3007 extra modrm byte. */
3008 i.sib.index = NO_INDEX_REGISTER;
3009#if !SCALE1_WHEN_NO_INDEX
3010 /* Another case where we force the second modrm byte. */
3011 if (i.log2_scale_factor)
3012 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3013#endif
29b0f896
AM
3014 }
3015 else
3016 {
3017 i.sib.index = i.index_reg->reg_num;
3018 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3019 if ((i.index_reg->reg_flags & RegRex) != 0)
3020 i.rex |= REX_EXTY;
3021 }
3022 i.rm.mode = mode_from_disp_size (i.types[op]);
3023 }
252b5132 3024
29b0f896
AM
3025 if (fake_zero_displacement)
3026 {
3027 /* Fakes a zero displacement assuming that i.types[op]
3028 holds the correct displacement size. */
3029 expressionS *exp;
3030
3031 assert (i.op[op].disps == 0);
3032 exp = &disp_expressions[i.disp_operands++];
3033 i.op[op].disps = exp;
3034 exp->X_op = O_constant;
3035 exp->X_add_number = 0;
3036 exp->X_add_symbol = (symbolS *) 0;
3037 exp->X_op_symbol = (symbolS *) 0;
3038 }
3039 }
252b5132 3040
29b0f896
AM
3041 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3042 (if any) based on i.tm.extension_opcode. Again, we must be
3043 careful to make sure that segment/control/debug/test/MMX
3044 registers are coded into the i.rm.reg field. */
3045 if (i.reg_operands)
3046 {
3047 unsigned int op =
3048 ((i.types[0]
3049 & (Reg | RegMMX | RegXMM
3050 | SReg2 | SReg3
3051 | Control | Debug | Test))
3052 ? 0
3053 : ((i.types[1]
3054 & (Reg | RegMMX | RegXMM
3055 | SReg2 | SReg3
3056 | Control | Debug | Test))
3057 ? 1
3058 : 2));
3059 /* If there is an extension opcode to put here, the register
3060 number must be put into the regmem field. */
3061 if (i.tm.extension_opcode != None)
3062 {
3063 i.rm.regmem = i.op[op].regs->reg_num;
3064 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3065 i.rex |= REX_EXTZ;
3066 }
3067 else
3068 {
3069 i.rm.reg = i.op[op].regs->reg_num;
3070 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3071 i.rex |= REX_EXTX;
3072 }
252b5132 3073
29b0f896
AM
3074 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3075 must set it to 3 to indicate this is a register operand
3076 in the regmem field. */
3077 if (!i.mem_operands)
3078 i.rm.mode = 3;
3079 }
252b5132 3080
29b0f896
AM
3081 /* Fill in i.rm.reg field with extension opcode (if any). */
3082 if (i.tm.extension_opcode != None)
3083 i.rm.reg = i.tm.extension_opcode;
3084 }
3085 return default_seg;
3086}
252b5132 3087
29b0f896
AM
3088static void
3089output_branch ()
3090{
3091 char *p;
3092 int code16;
3093 int prefix;
3094 relax_substateT subtype;
3095 symbolS *sym;
3096 offsetT off;
3097
3098 code16 = 0;
3099 if (flag_code == CODE_16BIT)
3100 code16 = CODE16;
3101
3102 prefix = 0;
3103 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3104 {
29b0f896
AM
3105 prefix = 1;
3106 i.prefixes -= 1;
3107 code16 ^= CODE16;
252b5132 3108 }
29b0f896
AM
3109 /* Pentium4 branch hints. */
3110 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3111 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3112 {
29b0f896
AM
3113 prefix++;
3114 i.prefixes--;
3115 }
3116 if (i.prefix[REX_PREFIX] != 0)
3117 {
3118 prefix++;
3119 i.prefixes--;
2f66722d
AM
3120 }
3121
29b0f896
AM
3122 if (i.prefixes != 0 && !intel_syntax)
3123 as_warn (_("skipping prefixes on this instruction"));
3124
3125 /* It's always a symbol; End frag & setup for relax.
3126 Make sure there is enough room in this frag for the largest
3127 instruction we may generate in md_convert_frag. This is 2
3128 bytes for the opcode and room for the prefix and largest
3129 displacement. */
3130 frag_grow (prefix + 2 + 4);
3131 /* Prefix and 1 opcode byte go in fr_fix. */
3132 p = frag_more (prefix + 1);
3133 if (i.prefix[DATA_PREFIX] != 0)
3134 *p++ = DATA_PREFIX_OPCODE;
3135 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3136 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3137 *p++ = i.prefix[SEG_PREFIX];
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
3140 *p = i.tm.base_opcode;
3141
3142 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3143 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3144 else if ((cpu_arch_flags & Cpu386) != 0)
3145 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3146 else
3147 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3148 subtype |= code16;
3e73aa7c 3149
29b0f896
AM
3150 sym = i.op[0].disps->X_add_symbol;
3151 off = i.op[0].disps->X_add_number;
3e73aa7c 3152
29b0f896
AM
3153 if (i.op[0].disps->X_op != O_constant
3154 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3155 {
29b0f896
AM
3156 /* Handle complex expressions. */
3157 sym = make_expr_symbol (i.op[0].disps);
3158 off = 0;
3159 }
3e73aa7c 3160
29b0f896
AM
3161 /* 1 possible extra opcode + 4 byte displacement go in var part.
3162 Pass reloc in fr_var. */
3163 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3164}
3e73aa7c 3165
29b0f896
AM
3166static void
3167output_jump ()
3168{
3169 char *p;
3170 int size;
3e02c1cc 3171 fixS *fixP;
29b0f896
AM
3172
3173 if (i.tm.opcode_modifier & JumpByte)
3174 {
3175 /* This is a loop or jecxz type instruction. */
3176 size = 1;
3177 if (i.prefix[ADDR_PREFIX] != 0)
3178 {
3179 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3180 i.prefixes -= 1;
3181 }
3182 /* Pentium4 branch hints. */
3183 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3184 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3185 {
3186 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3187 i.prefixes--;
3e73aa7c
JH
3188 }
3189 }
29b0f896
AM
3190 else
3191 {
3192 int code16;
3e73aa7c 3193
29b0f896
AM
3194 code16 = 0;
3195 if (flag_code == CODE_16BIT)
3196 code16 = CODE16;
3e73aa7c 3197
29b0f896
AM
3198 if (i.prefix[DATA_PREFIX] != 0)
3199 {
3200 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3201 i.prefixes -= 1;
3202 code16 ^= CODE16;
3203 }
252b5132 3204
29b0f896
AM
3205 size = 4;
3206 if (code16)
3207 size = 2;
3208 }
9fcc94b6 3209
29b0f896
AM
3210 if (i.prefix[REX_PREFIX] != 0)
3211 {
3212 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3213 i.prefixes -= 1;
3214 }
252b5132 3215
29b0f896
AM
3216 if (i.prefixes != 0 && !intel_syntax)
3217 as_warn (_("skipping prefixes on this instruction"));
e0890092 3218
29b0f896
AM
3219 p = frag_more (1 + size);
3220 *p++ = i.tm.base_opcode;
e0890092 3221
3e02c1cc
AM
3222 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3223 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3224
3225 /* All jumps handled here are signed, but don't use a signed limit
3226 check for 32 and 16 bit jumps as we want to allow wrap around at
3227 4G and 64k respectively. */
3228 if (size == 1)
3229 fixP->fx_signed = 1;
29b0f896 3230}
e0890092 3231
29b0f896
AM
3232static void
3233output_interseg_jump ()
3234{
3235 char *p;
3236 int size;
3237 int prefix;
3238 int code16;
252b5132 3239
29b0f896
AM
3240 code16 = 0;
3241 if (flag_code == CODE_16BIT)
3242 code16 = CODE16;
a217f122 3243
29b0f896
AM
3244 prefix = 0;
3245 if (i.prefix[DATA_PREFIX] != 0)
3246 {
3247 prefix = 1;
3248 i.prefixes -= 1;
3249 code16 ^= CODE16;
3250 }
3251 if (i.prefix[REX_PREFIX] != 0)
3252 {
3253 prefix++;
3254 i.prefixes -= 1;
3255 }
252b5132 3256
29b0f896
AM
3257 size = 4;
3258 if (code16)
3259 size = 2;
252b5132 3260
29b0f896
AM
3261 if (i.prefixes != 0 && !intel_syntax)
3262 as_warn (_("skipping prefixes on this instruction"));
252b5132 3263
29b0f896
AM
3264 /* 1 opcode; 2 segment; offset */
3265 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3266
29b0f896
AM
3267 if (i.prefix[DATA_PREFIX] != 0)
3268 *p++ = DATA_PREFIX_OPCODE;
252b5132 3269
29b0f896
AM
3270 if (i.prefix[REX_PREFIX] != 0)
3271 *p++ = i.prefix[REX_PREFIX];
252b5132 3272
29b0f896
AM
3273 *p++ = i.tm.base_opcode;
3274 if (i.op[1].imms->X_op == O_constant)
3275 {
3276 offsetT n = i.op[1].imms->X_add_number;
252b5132 3277
29b0f896
AM
3278 if (size == 2
3279 && !fits_in_unsigned_word (n)
3280 && !fits_in_signed_word (n))
3281 {
3282 as_bad (_("16-bit jump out of range"));
3283 return;
3284 }
3285 md_number_to_chars (p, n, size);
3286 }
3287 else
3288 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3289 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3290 if (i.op[0].imms->X_op != O_constant)
3291 as_bad (_("can't handle non absolute segment in `%s'"),
3292 i.tm.name);
3293 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3294}
a217f122 3295
29b0f896
AM
3296static void
3297output_insn ()
3298{
2bbd9c25
JJ
3299 fragS *insn_start_frag;
3300 offsetT insn_start_off;
3301
29b0f896
AM
3302 /* Tie dwarf2 debug info to the address at the start of the insn.
3303 We can't do this after the insn has been output as the current
3304 frag may have been closed off. eg. by frag_var. */
3305 dwarf2_emit_insn (0);
3306
2bbd9c25
JJ
3307 insn_start_frag = frag_now;
3308 insn_start_off = frag_now_fix ();
3309
29b0f896
AM
3310 /* Output jumps. */
3311 if (i.tm.opcode_modifier & Jump)
3312 output_branch ();
3313 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3314 output_jump ();
3315 else if (i.tm.opcode_modifier & JumpInterSegment)
3316 output_interseg_jump ();
3317 else
3318 {
3319 /* Output normal instructions here. */
3320 char *p;
3321 unsigned char *q;
252b5132 3322
0f10071e
ML
3323 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3324 have 3 bytes. We may use one more higher byte to specify a prefix
3325 the instruction requires. */
3326 if ((i.tm.cpu_flags & CpuPadLock) != 0
3327 && (i.tm.base_opcode & 0xff000000) != 0)
3328 {
3329 unsigned int prefix;
3330 prefix = (i.tm.base_opcode >> 24) & 0xff;
3331
3332 if (prefix != REPE_PREFIX_OPCODE
3333 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3334 add_prefix (prefix);
3335 }
3336 else
3337 if ((i.tm.cpu_flags & CpuPadLock) == 0
3338 && (i.tm.base_opcode & 0xff0000) != 0)
3339 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3340
29b0f896
AM
3341 /* The prefix bytes. */
3342 for (q = i.prefix;
3343 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3344 q++)
3345 {
3346 if (*q)
3347 {
3348 p = frag_more (1);
3349 md_number_to_chars (p, (valueT) *q, 1);
3350 }
3351 }
252b5132 3352
29b0f896
AM
3353 /* Now the opcode; be careful about word order here! */
3354 if (fits_in_unsigned_byte (i.tm.base_opcode))
3355 {
3356 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3357 }
3358 else
3359 {
0f10071e
ML
3360 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3361 {
3362 p = frag_more (3);
3363 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3364 }
3365 else
3366 p = frag_more (2);
3367
29b0f896
AM
3368 /* Put out high byte first: can't use md_number_to_chars! */
3369 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3370 *p = i.tm.base_opcode & 0xff;
3371 }
3e73aa7c 3372
29b0f896
AM
3373 /* Now the modrm byte and sib byte (if present). */
3374 if (i.tm.opcode_modifier & Modrm)
3375 {
3376 p = frag_more (1);
3377 md_number_to_chars (p,
3378 (valueT) (i.rm.regmem << 0
3379 | i.rm.reg << 3
3380 | i.rm.mode << 6),
3381 1);
3382 /* If i.rm.regmem == ESP (4)
3383 && i.rm.mode != (Register mode)
3384 && not 16 bit
3385 ==> need second modrm byte. */
3386 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3387 && i.rm.mode != 3
3388 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3389 {
3390 p = frag_more (1);
3391 md_number_to_chars (p,
3392 (valueT) (i.sib.base << 0
3393 | i.sib.index << 3
3394 | i.sib.scale << 6),
3395 1);
3396 }
3397 }
3e73aa7c 3398
29b0f896 3399 if (i.disp_operands)
2bbd9c25 3400 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3401
29b0f896 3402 if (i.imm_operands)
2bbd9c25 3403 output_imm (insn_start_frag, insn_start_off);
29b0f896 3404 }
252b5132 3405
29b0f896
AM
3406#ifdef DEBUG386
3407 if (flag_debug)
3408 {
3409 pi (line, &i);
3410 }
3411#endif /* DEBUG386 */
3412}
252b5132 3413
29b0f896 3414static void
2bbd9c25
JJ
3415output_disp (insn_start_frag, insn_start_off)
3416 fragS *insn_start_frag;
3417 offsetT insn_start_off;
29b0f896
AM
3418{
3419 char *p;
3420 unsigned int n;
252b5132 3421
29b0f896
AM
3422 for (n = 0; n < i.operands; n++)
3423 {
3424 if (i.types[n] & Disp)
3425 {
3426 if (i.op[n].disps->X_op == O_constant)
3427 {
3428 int size;
3429 offsetT val;
252b5132 3430
29b0f896
AM
3431 size = 4;
3432 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3433 {
3434 size = 2;
3435 if (i.types[n] & Disp8)
3436 size = 1;
3437 if (i.types[n] & Disp64)
3438 size = 8;
3439 }
3440 val = offset_in_range (i.op[n].disps->X_add_number,
3441 size);
3442 p = frag_more (size);
3443 md_number_to_chars (p, val, size);
3444 }
3445 else
3446 {
f86103b7 3447 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3448 int size = 4;
3449 int sign = 0;
3450 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3451
3452 /* The PC relative address is computed relative
3453 to the instruction boundary, so in case immediate
3454 fields follows, we need to adjust the value. */
3455 if (pcrel && i.imm_operands)
3456 {
3457 int imm_size = 4;
3458 unsigned int n1;
252b5132 3459
29b0f896
AM
3460 for (n1 = 0; n1 < i.operands; n1++)
3461 if (i.types[n1] & Imm)
252b5132 3462 {
29b0f896 3463 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3464 {
29b0f896
AM
3465 imm_size = 2;
3466 if (i.types[n1] & (Imm8 | Imm8S))
3467 imm_size = 1;
3468 if (i.types[n1] & Imm64)
3469 imm_size = 8;
252b5132 3470 }
29b0f896 3471 break;
252b5132 3472 }
29b0f896
AM
3473 /* We should find the immediate. */
3474 if (n1 == i.operands)
3475 abort ();
3476 i.op[n].disps->X_add_number -= imm_size;
3477 }
520dc8e8 3478
29b0f896
AM
3479 if (i.types[n] & Disp32S)
3480 sign = 1;
3e73aa7c 3481
29b0f896
AM
3482 if (i.types[n] & (Disp16 | Disp64))
3483 {
3484 size = 2;
3485 if (i.types[n] & Disp64)
3486 size = 8;
3487 }
520dc8e8 3488
29b0f896 3489 p = frag_more (size);
2bbd9c25 3490 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
2bbd9c25
JJ
3491 if (reloc_type == BFD_RELOC_32
3492 && GOT_symbol
3493 && GOT_symbol == i.op[n].disps->X_add_symbol
3494 && (i.op[n].disps->X_op == O_symbol
3495 || (i.op[n].disps->X_op == O_add
3496 && ((symbol_get_value_expression
3497 (i.op[n].disps->X_op_symbol)->X_op)
3498 == O_subtract))))
3499 {
3500 offsetT add;
3501
3502 if (insn_start_frag == frag_now)
3503 add = (p - frag_now->fr_literal) - insn_start_off;
3504 else
3505 {
3506 fragS *fr;
3507
3508 add = insn_start_frag->fr_fix - insn_start_off;
3509 for (fr = insn_start_frag->fr_next;
3510 fr && fr != frag_now; fr = fr->fr_next)
3511 add += fr->fr_fix;
3512 add += p - frag_now->fr_literal;
3513 }
3514
3515 /* We don't support dynamic linking on x86-64 yet. */
3516 if (flag_code == CODE_64BIT)
3517 abort ();
3518 reloc_type = BFD_RELOC_386_GOTPC;
3519 i.op[n].disps->X_add_number += add;
3520 }
062cd5e7 3521 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3522 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3523 }
3524 }
3525 }
3526}
252b5132 3527
29b0f896 3528static void
2bbd9c25
JJ
3529output_imm (insn_start_frag, insn_start_off)
3530 fragS *insn_start_frag;
3531 offsetT insn_start_off;
29b0f896
AM
3532{
3533 char *p;
3534 unsigned int n;
252b5132 3535
29b0f896
AM
3536 for (n = 0; n < i.operands; n++)
3537 {
3538 if (i.types[n] & Imm)
3539 {
3540 if (i.op[n].imms->X_op == O_constant)
3541 {
3542 int size;
3543 offsetT val;
b4cac588 3544
29b0f896
AM
3545 size = 4;
3546 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3547 {
3548 size = 2;
3549 if (i.types[n] & (Imm8 | Imm8S))
3550 size = 1;
3551 else if (i.types[n] & Imm64)
3552 size = 8;
3553 }
3554 val = offset_in_range (i.op[n].imms->X_add_number,
3555 size);
3556 p = frag_more (size);
3557 md_number_to_chars (p, val, size);
3558 }
3559 else
3560 {
3561 /* Not absolute_section.
3562 Need a 32-bit fixup (don't support 8bit
3563 non-absolute imms). Try to support other
3564 sizes ... */
f86103b7 3565 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3566 int size = 4;
3567 int sign = 0;
3568
3569 if ((i.types[n] & (Imm32S))
a7d61044
JB
3570 && (i.suffix == QWORD_MNEM_SUFFIX
3571 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
29b0f896
AM
3572 sign = 1;
3573 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3574 {
3575 size = 2;
3576 if (i.types[n] & (Imm8 | Imm8S))
3577 size = 1;
3578 if (i.types[n] & Imm64)
3579 size = 8;
3580 }
520dc8e8 3581
29b0f896
AM
3582 p = frag_more (size);
3583 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3584
2bbd9c25
JJ
3585 /* This is tough to explain. We end up with this one if we
3586 * have operands that look like
3587 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3588 * obtain the absolute address of the GOT, and it is strongly
3589 * preferable from a performance point of view to avoid using
3590 * a runtime relocation for this. The actual sequence of
3591 * instructions often look something like:
3592 *
3593 * call .L66
3594 * .L66:
3595 * popl %ebx
3596 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3597 *
3598 * The call and pop essentially return the absolute address
3599 * of the label .L66 and store it in %ebx. The linker itself
3600 * will ultimately change the first operand of the addl so
3601 * that %ebx points to the GOT, but to keep things simple, the
3602 * .o file must have this operand set so that it generates not
3603 * the absolute address of .L66, but the absolute address of
3604 * itself. This allows the linker itself simply treat a GOTPC
3605 * relocation as asking for a pcrel offset to the GOT to be
3606 * added in, and the addend of the relocation is stored in the
3607 * operand field for the instruction itself.
3608 *
3609 * Our job here is to fix the operand so that it would add
3610 * the correct offset so that %ebx would point to itself. The
3611 * thing that is tricky is that .-.L66 will point to the
3612 * beginning of the instruction, so we need to further modify
3613 * the operand so that it will point to itself. There are
3614 * other cases where you have something like:
3615 *
3616 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3617 *
3618 * and here no correction would be required. Internally in
3619 * the assembler we treat operands of this form as not being
3620 * pcrel since the '.' is explicitly mentioned, and I wonder
3621 * whether it would simplify matters to do it this way. Who
3622 * knows. In earlier versions of the PIC patches, the
3623 * pcrel_adjust field was used to store the correction, but
3624 * since the expression is not pcrel, I felt it would be
3625 * confusing to do it this way. */
3626
29b0f896
AM
3627 if (reloc_type == BFD_RELOC_32
3628 && GOT_symbol
3629 && GOT_symbol == i.op[n].imms->X_add_symbol
3630 && (i.op[n].imms->X_op == O_symbol
3631 || (i.op[n].imms->X_op == O_add
3632 && ((symbol_get_value_expression
3633 (i.op[n].imms->X_op_symbol)->X_op)
3634 == O_subtract))))
3635 {
2bbd9c25
JJ
3636 offsetT add;
3637
3638 if (insn_start_frag == frag_now)
3639 add = (p - frag_now->fr_literal) - insn_start_off;
3640 else
3641 {
3642 fragS *fr;
3643
3644 add = insn_start_frag->fr_fix - insn_start_off;
3645 for (fr = insn_start_frag->fr_next;
3646 fr && fr != frag_now; fr = fr->fr_next)
3647 add += fr->fr_fix;
3648 add += p - frag_now->fr_literal;
3649 }
3650
29b0f896
AM
3651 /* We don't support dynamic linking on x86-64 yet. */
3652 if (flag_code == CODE_64BIT)
3653 abort ();
3654 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3655 i.op[n].imms->X_add_number += add;
29b0f896 3656 }
29b0f896
AM
3657 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3658 i.op[n].imms, 0, reloc_type);
3659 }
3660 }
3661 }
252b5132
RH
3662}
3663\f
f3c180ae 3664#ifndef LEX_AT
f86103b7 3665static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3666
3667/* Parse operands of the form
3668 <symbol>@GOTOFF+<nnn>
3669 and similar .plt or .got references.
3670
3671 If we find one, set up the correct relocation in RELOC and copy the
3672 input string, minus the `@GOTOFF' into a malloc'd buffer for
3673 parsing by the calling routine. Return this buffer, and if ADJUST
3674 is non-null set it to the length of the string we removed from the
3675 input line. Otherwise return NULL. */
3676static char *
3677lex_got (reloc, adjust)
f86103b7 3678 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3679 int *adjust;
3680{
3681 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3682 static const struct {
3683 const char *str;
f86103b7 3684 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3685 } gotrel[] = {
13ae64f3
JJ
3686 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3687 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3688 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3689 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3690 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3691 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3692 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3693 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3694 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3695 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3696 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3697 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3698 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3699 };
3700 char *cp;
3701 unsigned int j;
3702
3703 for (cp = input_line_pointer; *cp != '@'; cp++)
3704 if (is_end_of_line[(unsigned char) *cp])
3705 return NULL;
3706
3707 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3708 {
3709 int len;
3710
3711 len = strlen (gotrel[j].str);
28f81592 3712 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3713 {
3714 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3715 {
28f81592
AM
3716 int first, second;
3717 char *tmpbuf, *past_reloc;
f3c180ae
AM
3718
3719 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3720 if (adjust)
3721 *adjust = len;
f3c180ae
AM
3722
3723 if (GOT_symbol == NULL)
3724 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3725
3726 /* Replace the relocation token with ' ', so that
3727 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3728
3729 /* The length of the first part of our input line. */
f3c180ae 3730 first = cp - input_line_pointer;
28f81592
AM
3731
3732 /* The second part goes from after the reloc token until
3733 (and including) an end_of_line char. Don't use strlen
3734 here as the end_of_line char may not be a NUL. */
3735 past_reloc = cp + 1 + len;
3736 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3737 ;
3738 second = cp - past_reloc;
3739
3740 /* Allocate and copy string. The trailing NUL shouldn't
3741 be necessary, but be safe. */
3742 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3743 memcpy (tmpbuf, input_line_pointer, first);
3744 tmpbuf[first] = ' ';
28f81592
AM
3745 memcpy (tmpbuf + first + 1, past_reloc, second);
3746 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3747 return tmpbuf;
3748 }
3749
3750 as_bad (_("@%s reloc is not supported in %s bit mode"),
3751 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3752 return NULL;
3753 }
3754 }
3755
3756 /* Might be a symbol version string. Don't as_bad here. */
3757 return NULL;
3758}
3759
3760/* x86_cons_fix_new is called via the expression parsing code when a
3761 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3762static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3763
3764void
3765x86_cons_fix_new (frag, off, len, exp)
3766 fragS *frag;
3767 unsigned int off;
3768 unsigned int len;
3769 expressionS *exp;
3770{
f86103b7 3771 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3772 got_reloc = NO_RELOC;
3773 fix_new_exp (frag, off, len, exp, 0, r);
3774}
3775
3776void
3777x86_cons (exp, size)
3778 expressionS *exp;
3779 int size;
3780{
3781 if (size == 4)
3782 {
3783 /* Handle @GOTOFF and the like in an expression. */
3784 char *save;
3785 char *gotfree_input_line;
3786 int adjust;
3787
3788 save = input_line_pointer;
3789 gotfree_input_line = lex_got (&got_reloc, &adjust);
3790 if (gotfree_input_line)
3791 input_line_pointer = gotfree_input_line;
3792
3793 expression (exp);
3794
3795 if (gotfree_input_line)
3796 {
3797 /* expression () has merrily parsed up to the end of line,
3798 or a comma - in the wrong buffer. Transfer how far
3799 input_line_pointer has moved to the right buffer. */
3800 input_line_pointer = (save
3801 + (input_line_pointer - gotfree_input_line)
3802 + adjust);
3803 free (gotfree_input_line);
3804 }
3805 }
3806 else
3807 expression (exp);
3808}
3809#endif
3810
6482c264
NC
3811#ifdef TE_PE
3812
6482c264
NC
3813void
3814x86_pe_cons_fix_new (frag, off, len, exp)
3815 fragS *frag;
3816 unsigned int off;
3817 unsigned int len;
3818 expressionS *exp;
3819{
3820 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3821
3822 if (exp->X_op == O_secrel)
3823 {
3824 exp->X_op = O_symbol;
3825 r = BFD_RELOC_32_SECREL;
3826 }
3827
3828 fix_new_exp (frag, off, len, exp, 0, r);
3829}
3830
3831static void
3832pe_directive_secrel (dummy)
3833 int dummy ATTRIBUTE_UNUSED;
3834{
3835 expressionS exp;
3836
3837 do
3838 {
3839 expression (&exp);
3840 if (exp.X_op == O_symbol)
3841 exp.X_op = O_secrel;
3842
3843 emit_expr (&exp, 4);
3844 }
3845 while (*input_line_pointer++ == ',');
3846
3847 input_line_pointer--;
3848 demand_empty_rest_of_line ();
3849}
3850
3851#endif
3852
252b5132
RH
3853static int i386_immediate PARAMS ((char *));
3854
3855static int
3856i386_immediate (imm_start)
3857 char *imm_start;
3858{
3859 char *save_input_line_pointer;
f3c180ae
AM
3860#ifndef LEX_AT
3861 char *gotfree_input_line;
3862#endif
252b5132 3863 segT exp_seg = 0;
47926f60 3864 expressionS *exp;
252b5132
RH
3865
3866 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3867 {
d0b47220 3868 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3869 return 0;
3870 }
3871
3872 exp = &im_expressions[i.imm_operands++];
520dc8e8 3873 i.op[this_operand].imms = exp;
252b5132
RH
3874
3875 if (is_space_char (*imm_start))
3876 ++imm_start;
3877
3878 save_input_line_pointer = input_line_pointer;
3879 input_line_pointer = imm_start;
3880
3881#ifndef LEX_AT
f3c180ae
AM
3882 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3883 if (gotfree_input_line)
3884 input_line_pointer = gotfree_input_line;
252b5132
RH
3885#endif
3886
3887 exp_seg = expression (exp);
3888
83183c0c 3889 SKIP_WHITESPACE ();
252b5132 3890 if (*input_line_pointer)
f3c180ae 3891 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3892
3893 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3894#ifndef LEX_AT
3895 if (gotfree_input_line)
3896 free (gotfree_input_line);
3897#endif
252b5132 3898
2daf4fd8 3899 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3900 {
47926f60 3901 /* Missing or bad expr becomes absolute 0. */
d0b47220 3902 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3903 imm_start);
252b5132
RH
3904 exp->X_op = O_constant;
3905 exp->X_add_number = 0;
3906 exp->X_add_symbol = (symbolS *) 0;
3907 exp->X_op_symbol = (symbolS *) 0;
252b5132 3908 }
3e73aa7c 3909 else if (exp->X_op == O_constant)
252b5132 3910 {
47926f60 3911 /* Size it properly later. */
3e73aa7c
JH
3912 i.types[this_operand] |= Imm64;
3913 /* If BFD64, sign extend val. */
3914 if (!use_rela_relocations)
3915 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3916 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3917 }
4c63da97 3918#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3919 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3920 && exp_seg != absolute_section
47926f60 3921 && exp_seg != text_section
24eab124
AM
3922 && exp_seg != data_section
3923 && exp_seg != bss_section
3924 && exp_seg != undefined_section
f86103b7 3925 && !bfd_is_com_section (exp_seg))
252b5132 3926 {
d0b47220 3927 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3928 return 0;
3929 }
3930#endif
3931 else
3932 {
3933 /* This is an address. The size of the address will be
24eab124 3934 determined later, depending on destination register,
3e73aa7c
JH
3935 suffix, or the default for the section. */
3936 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3937 }
3938
3939 return 1;
3940}
3941
551c1ca1 3942static char *i386_scale PARAMS ((char *));
252b5132 3943
551c1ca1 3944static char *
252b5132
RH
3945i386_scale (scale)
3946 char *scale;
3947{
551c1ca1
AM
3948 offsetT val;
3949 char *save = input_line_pointer;
252b5132 3950
551c1ca1
AM
3951 input_line_pointer = scale;
3952 val = get_absolute_expression ();
3953
3954 switch (val)
252b5132 3955 {
551c1ca1 3956 case 1:
252b5132
RH
3957 i.log2_scale_factor = 0;
3958 break;
551c1ca1 3959 case 2:
252b5132
RH
3960 i.log2_scale_factor = 1;
3961 break;
551c1ca1 3962 case 4:
252b5132
RH
3963 i.log2_scale_factor = 2;
3964 break;
551c1ca1 3965 case 8:
252b5132
RH
3966 i.log2_scale_factor = 3;
3967 break;
3968 default:
a724f0f4
JB
3969 {
3970 char sep = *input_line_pointer;
3971
3972 *input_line_pointer = '\0';
3973 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3974 scale);
3975 *input_line_pointer = sep;
3976 input_line_pointer = save;
3977 return NULL;
3978 }
252b5132 3979 }
29b0f896 3980 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3981 {
3982 as_warn (_("scale factor of %d without an index register"),
24eab124 3983 1 << i.log2_scale_factor);
252b5132
RH
3984#if SCALE1_WHEN_NO_INDEX
3985 i.log2_scale_factor = 0;
3986#endif
3987 }
551c1ca1
AM
3988 scale = input_line_pointer;
3989 input_line_pointer = save;
3990 return scale;
252b5132
RH
3991}
3992
3993static int i386_displacement PARAMS ((char *, char *));
3994
3995static int
3996i386_displacement (disp_start, disp_end)
3997 char *disp_start;
3998 char *disp_end;
3999{
29b0f896 4000 expressionS *exp;
252b5132
RH
4001 segT exp_seg = 0;
4002 char *save_input_line_pointer;
f3c180ae
AM
4003#ifndef LEX_AT
4004 char *gotfree_input_line;
4005#endif
252b5132
RH
4006 int bigdisp = Disp32;
4007
3e73aa7c 4008 if (flag_code == CODE_64BIT)
7ecd2f8b 4009 {
29b0f896
AM
4010 if (i.prefix[ADDR_PREFIX] == 0)
4011 bigdisp = Disp64;
7ecd2f8b
JH
4012 }
4013 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4014 bigdisp = Disp16;
252b5132
RH
4015 i.types[this_operand] |= bigdisp;
4016
4017 exp = &disp_expressions[i.disp_operands];
520dc8e8 4018 i.op[this_operand].disps = exp;
252b5132
RH
4019 i.disp_operands++;
4020 save_input_line_pointer = input_line_pointer;
4021 input_line_pointer = disp_start;
4022 END_STRING_AND_SAVE (disp_end);
4023
4024#ifndef GCC_ASM_O_HACK
4025#define GCC_ASM_O_HACK 0
4026#endif
4027#if GCC_ASM_O_HACK
4028 END_STRING_AND_SAVE (disp_end + 1);
4029 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4030 && displacement_string_end[-1] == '+')
252b5132
RH
4031 {
4032 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4033 constraint within gcc asm statements.
4034 For instance:
4035
4036 #define _set_tssldt_desc(n,addr,limit,type) \
4037 __asm__ __volatile__ ( \
4038 "movw %w2,%0\n\t" \
4039 "movw %w1,2+%0\n\t" \
4040 "rorl $16,%1\n\t" \
4041 "movb %b1,4+%0\n\t" \
4042 "movb %4,5+%0\n\t" \
4043 "movb $0,6+%0\n\t" \
4044 "movb %h1,7+%0\n\t" \
4045 "rorl $16,%1" \
4046 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4047
4048 This works great except that the output assembler ends
4049 up looking a bit weird if it turns out that there is
4050 no offset. You end up producing code that looks like:
4051
4052 #APP
4053 movw $235,(%eax)
4054 movw %dx,2+(%eax)
4055 rorl $16,%edx
4056 movb %dl,4+(%eax)
4057 movb $137,5+(%eax)
4058 movb $0,6+(%eax)
4059 movb %dh,7+(%eax)
4060 rorl $16,%edx
4061 #NO_APP
4062
47926f60 4063 So here we provide the missing zero. */
24eab124
AM
4064
4065 *displacement_string_end = '0';
252b5132
RH
4066 }
4067#endif
4068#ifndef LEX_AT
f3c180ae
AM
4069 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4070 if (gotfree_input_line)
4071 input_line_pointer = gotfree_input_line;
252b5132
RH
4072#endif
4073
24eab124 4074 exp_seg = expression (exp);
252b5132 4075
636c26b0
AM
4076 SKIP_WHITESPACE ();
4077 if (*input_line_pointer)
4078 as_bad (_("junk `%s' after expression"), input_line_pointer);
4079#if GCC_ASM_O_HACK
4080 RESTORE_END_STRING (disp_end + 1);
4081#endif
4082 RESTORE_END_STRING (disp_end);
4083 input_line_pointer = save_input_line_pointer;
4084#ifndef LEX_AT
4085 if (gotfree_input_line)
4086 free (gotfree_input_line);
4087#endif
4088
24eab124
AM
4089 /* We do this to make sure that the section symbol is in
4090 the symbol table. We will ultimately change the relocation
47926f60 4091 to be relative to the beginning of the section. */
1ae12ab7
AM
4092 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4093 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 4094 {
636c26b0
AM
4095 if (exp->X_op != O_symbol)
4096 {
4097 as_bad (_("bad expression used with @%s"),
4098 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4099 ? "GOTPCREL"
4100 : "GOTOFF"));
4101 return 0;
4102 }
4103
e5cb08ac 4104 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4105 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4106 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4107 exp->X_op = O_subtract;
4108 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4109 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4110 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 4111 else
29b0f896 4112 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4113 }
252b5132 4114
2daf4fd8
AM
4115 if (exp->X_op == O_absent || exp->X_op == O_big)
4116 {
47926f60 4117 /* Missing or bad expr becomes absolute 0. */
d0b47220 4118 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4119 disp_start);
4120 exp->X_op = O_constant;
4121 exp->X_add_number = 0;
4122 exp->X_add_symbol = (symbolS *) 0;
4123 exp->X_op_symbol = (symbolS *) 0;
4124 }
4125
4c63da97 4126#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4127 if (exp->X_op != O_constant
45288df1 4128 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4129 && exp_seg != absolute_section
45288df1
AM
4130 && exp_seg != text_section
4131 && exp_seg != data_section
4132 && exp_seg != bss_section
31312f95 4133 && exp_seg != undefined_section
f86103b7 4134 && !bfd_is_com_section (exp_seg))
24eab124 4135 {
d0b47220 4136 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4137 return 0;
4138 }
252b5132 4139#endif
3e73aa7c
JH
4140 else if (flag_code == CODE_64BIT)
4141 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
4142 return 1;
4143}
4144
e5cb08ac 4145static int i386_index_check PARAMS ((const char *));
252b5132 4146
eecb386c 4147/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4148 Return 1 on success, 0 on a failure. */
4149
252b5132 4150static int
eecb386c
AM
4151i386_index_check (operand_string)
4152 const char *operand_string;
252b5132 4153{
3e73aa7c 4154 int ok;
24eab124 4155#if INFER_ADDR_PREFIX
eecb386c
AM
4156 int fudged = 0;
4157
24eab124
AM
4158 tryprefix:
4159#endif
3e73aa7c 4160 ok = 1;
20f0a1fc
NC
4161 if (flag_code == CODE_64BIT)
4162 {
4163 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4164
4165 if ((i.base_reg
4166 && ((i.base_reg->reg_type & RegXX) == 0)
4167 && (i.base_reg->reg_type != BaseIndex
4168 || i.index_reg))
4169 || (i.index_reg
4170 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4171 != (RegXX | BaseIndex))))
4172 ok = 0;
3e73aa7c
JH
4173 }
4174 else
4175 {
4176 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4177 {
4178 /* 16bit checks. */
4179 if ((i.base_reg
29b0f896
AM
4180 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4181 != (Reg16 | BaseIndex)))
3e73aa7c 4182 || (i.index_reg
29b0f896
AM
4183 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4184 != (Reg16 | BaseIndex))
4185 || !(i.base_reg
4186 && i.base_reg->reg_num < 6
4187 && i.index_reg->reg_num >= 6
4188 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4189 ok = 0;
4190 }
4191 else
e5cb08ac 4192 {
3e73aa7c
JH
4193 /* 32bit checks. */
4194 if ((i.base_reg
4195 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4196 || (i.index_reg
29b0f896
AM
4197 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4198 != (Reg32 | BaseIndex))))
e5cb08ac 4199 ok = 0;
3e73aa7c
JH
4200 }
4201 }
4202 if (!ok)
24eab124
AM
4203 {
4204#if INFER_ADDR_PREFIX
20f0a1fc 4205 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4206 {
4207 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4208 i.prefixes += 1;
b23bac36
AM
4209 /* Change the size of any displacement too. At most one of
4210 Disp16 or Disp32 is set.
4211 FIXME. There doesn't seem to be any real need for separate
4212 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4213 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4214 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4215 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4216 fudged = 1;
24eab124
AM
4217 goto tryprefix;
4218 }
eecb386c
AM
4219 if (fudged)
4220 as_bad (_("`%s' is not a valid base/index expression"),
4221 operand_string);
4222 else
c388dee8 4223#endif
eecb386c
AM
4224 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4225 operand_string,
3e73aa7c 4226 flag_code_names[flag_code]);
24eab124 4227 }
20f0a1fc 4228 return ok;
24eab124 4229}
252b5132 4230
252b5132 4231/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4232 on error. */
252b5132 4233
252b5132
RH
4234static int
4235i386_operand (operand_string)
4236 char *operand_string;
4237{
af6bdddf
AM
4238 const reg_entry *r;
4239 char *end_op;
24eab124 4240 char *op_string = operand_string;
252b5132 4241
24eab124 4242 if (is_space_char (*op_string))
252b5132
RH
4243 ++op_string;
4244
24eab124 4245 /* We check for an absolute prefix (differentiating,
47926f60 4246 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4247 if (*op_string == ABSOLUTE_PREFIX)
4248 {
4249 ++op_string;
4250 if (is_space_char (*op_string))
4251 ++op_string;
4252 i.types[this_operand] |= JumpAbsolute;
4253 }
252b5132 4254
47926f60 4255 /* Check if operand is a register. */
af6bdddf
AM
4256 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4257 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4258 {
24eab124
AM
4259 /* Check for a segment override by searching for ':' after a
4260 segment register. */
4261 op_string = end_op;
4262 if (is_space_char (*op_string))
4263 ++op_string;
4264 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4265 {
4266 switch (r->reg_num)
4267 {
4268 case 0:
4269 i.seg[i.mem_operands] = &es;
4270 break;
4271 case 1:
4272 i.seg[i.mem_operands] = &cs;
4273 break;
4274 case 2:
4275 i.seg[i.mem_operands] = &ss;
4276 break;
4277 case 3:
4278 i.seg[i.mem_operands] = &ds;
4279 break;
4280 case 4:
4281 i.seg[i.mem_operands] = &fs;
4282 break;
4283 case 5:
4284 i.seg[i.mem_operands] = &gs;
4285 break;
4286 }
252b5132 4287
24eab124 4288 /* Skip the ':' and whitespace. */
252b5132
RH
4289 ++op_string;
4290 if (is_space_char (*op_string))
24eab124 4291 ++op_string;
252b5132 4292
24eab124
AM
4293 if (!is_digit_char (*op_string)
4294 && !is_identifier_char (*op_string)
4295 && *op_string != '('
4296 && *op_string != ABSOLUTE_PREFIX)
4297 {
4298 as_bad (_("bad memory operand `%s'"), op_string);
4299 return 0;
4300 }
47926f60 4301 /* Handle case of %es:*foo. */
24eab124
AM
4302 if (*op_string == ABSOLUTE_PREFIX)
4303 {
4304 ++op_string;
4305 if (is_space_char (*op_string))
4306 ++op_string;
4307 i.types[this_operand] |= JumpAbsolute;
4308 }
4309 goto do_memory_reference;
4310 }
4311 if (*op_string)
4312 {
d0b47220 4313 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4314 return 0;
4315 }
4316 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4317 i.op[this_operand].regs = r;
24eab124
AM
4318 i.reg_operands++;
4319 }
af6bdddf
AM
4320 else if (*op_string == REGISTER_PREFIX)
4321 {
4322 as_bad (_("bad register name `%s'"), op_string);
4323 return 0;
4324 }
24eab124 4325 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4326 {
24eab124
AM
4327 ++op_string;
4328 if (i.types[this_operand] & JumpAbsolute)
4329 {
d0b47220 4330 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4331 return 0;
4332 }
4333 if (!i386_immediate (op_string))
4334 return 0;
4335 }
4336 else if (is_digit_char (*op_string)
4337 || is_identifier_char (*op_string)
e5cb08ac 4338 || *op_string == '(')
24eab124 4339 {
47926f60 4340 /* This is a memory reference of some sort. */
af6bdddf 4341 char *base_string;
252b5132 4342
47926f60 4343 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4344 char *displacement_string_start;
4345 char *displacement_string_end;
252b5132 4346
24eab124 4347 do_memory_reference:
24eab124
AM
4348 if ((i.mem_operands == 1
4349 && (current_templates->start->opcode_modifier & IsString) == 0)
4350 || i.mem_operands == 2)
4351 {
4352 as_bad (_("too many memory references for `%s'"),
4353 current_templates->start->name);
4354 return 0;
4355 }
252b5132 4356
24eab124
AM
4357 /* Check for base index form. We detect the base index form by
4358 looking for an ')' at the end of the operand, searching
4359 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4360 after the '('. */
af6bdddf 4361 base_string = op_string + strlen (op_string);
c3332e24 4362
af6bdddf
AM
4363 --base_string;
4364 if (is_space_char (*base_string))
4365 --base_string;
252b5132 4366
47926f60 4367 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4368 displacement_string_start = op_string;
4369 displacement_string_end = base_string + 1;
252b5132 4370
24eab124
AM
4371 if (*base_string == ')')
4372 {
af6bdddf 4373 char *temp_string;
24eab124
AM
4374 unsigned int parens_balanced = 1;
4375 /* We've already checked that the number of left & right ()'s are
47926f60 4376 equal, so this loop will not be infinite. */
24eab124
AM
4377 do
4378 {
4379 base_string--;
4380 if (*base_string == ')')
4381 parens_balanced++;
4382 if (*base_string == '(')
4383 parens_balanced--;
4384 }
4385 while (parens_balanced);
c3332e24 4386
af6bdddf 4387 temp_string = base_string;
c3332e24 4388
24eab124 4389 /* Skip past '(' and whitespace. */
252b5132
RH
4390 ++base_string;
4391 if (is_space_char (*base_string))
24eab124 4392 ++base_string;
252b5132 4393
af6bdddf
AM
4394 if (*base_string == ','
4395 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4396 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4397 {
af6bdddf 4398 displacement_string_end = temp_string;
252b5132 4399
af6bdddf 4400 i.types[this_operand] |= BaseIndex;
252b5132 4401
af6bdddf 4402 if (i.base_reg)
24eab124 4403 {
24eab124
AM
4404 base_string = end_op;
4405 if (is_space_char (*base_string))
4406 ++base_string;
af6bdddf
AM
4407 }
4408
4409 /* There may be an index reg or scale factor here. */
4410 if (*base_string == ',')
4411 {
4412 ++base_string;
4413 if (is_space_char (*base_string))
4414 ++base_string;
4415
4416 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4417 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4418 {
af6bdddf 4419 base_string = end_op;
24eab124
AM
4420 if (is_space_char (*base_string))
4421 ++base_string;
af6bdddf
AM
4422 if (*base_string == ',')
4423 {
4424 ++base_string;
4425 if (is_space_char (*base_string))
4426 ++base_string;
4427 }
e5cb08ac 4428 else if (*base_string != ')')
af6bdddf
AM
4429 {
4430 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4431 operand_string);
4432 return 0;
4433 }
24eab124 4434 }
af6bdddf 4435 else if (*base_string == REGISTER_PREFIX)
24eab124 4436 {
af6bdddf 4437 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4438 return 0;
4439 }
252b5132 4440
47926f60 4441 /* Check for scale factor. */
551c1ca1 4442 if (*base_string != ')')
af6bdddf 4443 {
551c1ca1
AM
4444 char *end_scale = i386_scale (base_string);
4445
4446 if (!end_scale)
af6bdddf 4447 return 0;
24eab124 4448
551c1ca1 4449 base_string = end_scale;
af6bdddf
AM
4450 if (is_space_char (*base_string))
4451 ++base_string;
4452 if (*base_string != ')')
4453 {
4454 as_bad (_("expecting `)' after scale factor in `%s'"),
4455 operand_string);
4456 return 0;
4457 }
4458 }
4459 else if (!i.index_reg)
24eab124 4460 {
af6bdddf
AM
4461 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4462 *base_string);
24eab124
AM
4463 return 0;
4464 }
4465 }
af6bdddf 4466 else if (*base_string != ')')
24eab124 4467 {
af6bdddf
AM
4468 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4469 operand_string);
24eab124
AM
4470 return 0;
4471 }
c3332e24 4472 }
af6bdddf 4473 else if (*base_string == REGISTER_PREFIX)
c3332e24 4474 {
af6bdddf 4475 as_bad (_("bad register name `%s'"), base_string);
24eab124 4476 return 0;
c3332e24 4477 }
24eab124
AM
4478 }
4479
4480 /* If there's an expression beginning the operand, parse it,
4481 assuming displacement_string_start and
4482 displacement_string_end are meaningful. */
4483 if (displacement_string_start != displacement_string_end)
4484 {
4485 if (!i386_displacement (displacement_string_start,
4486 displacement_string_end))
4487 return 0;
4488 }
4489
4490 /* Special case for (%dx) while doing input/output op. */
4491 if (i.base_reg
4492 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4493 && i.index_reg == 0
4494 && i.log2_scale_factor == 0
4495 && i.seg[i.mem_operands] == 0
4496 && (i.types[this_operand] & Disp) == 0)
4497 {
4498 i.types[this_operand] = InOutPortReg;
4499 return 1;
4500 }
4501
eecb386c
AM
4502 if (i386_index_check (operand_string) == 0)
4503 return 0;
24eab124
AM
4504 i.mem_operands++;
4505 }
4506 else
ce8a8b2f
AM
4507 {
4508 /* It's not a memory operand; argh! */
24eab124
AM
4509 as_bad (_("invalid char %s beginning operand %d `%s'"),
4510 output_invalid (*op_string),
4511 this_operand + 1,
4512 op_string);
4513 return 0;
4514 }
47926f60 4515 return 1; /* Normal return. */
252b5132
RH
4516}
4517\f
ee7fcc42
AM
4518/* md_estimate_size_before_relax()
4519
4520 Called just before relax() for rs_machine_dependent frags. The x86
4521 assembler uses these frags to handle variable size jump
4522 instructions.
4523
4524 Any symbol that is now undefined will not become defined.
4525 Return the correct fr_subtype in the frag.
4526 Return the initial "guess for variable size of frag" to caller.
4527 The guess is actually the growth beyond the fixed part. Whatever
4528 we do to grow the fixed or variable part contributes to our
4529 returned value. */
4530
252b5132
RH
4531int
4532md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4533 fragS *fragP;
4534 segT segment;
252b5132 4535{
252b5132 4536 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4537 check for un-relaxable symbols. On an ELF system, we can't relax
4538 an externally visible symbol, because it may be overridden by a
4539 shared library. */
4540 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4541#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4542 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4543 && (S_IS_EXTERNAL (fragP->fr_symbol)
4544 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4545#endif
4546 )
252b5132 4547 {
b98ef147
AM
4548 /* Symbol is undefined in this segment, or we need to keep a
4549 reloc so that weak symbols can be overridden. */
4550 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4551 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4552 unsigned char *opcode;
4553 int old_fr_fix;
f6af82bd 4554
ee7fcc42
AM
4555 if (fragP->fr_var != NO_RELOC)
4556 reloc_type = fragP->fr_var;
b98ef147 4557 else if (size == 2)
f6af82bd
AM
4558 reloc_type = BFD_RELOC_16_PCREL;
4559 else
4560 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4561
ee7fcc42
AM
4562 old_fr_fix = fragP->fr_fix;
4563 opcode = (unsigned char *) fragP->fr_opcode;
4564
fddf5b5b 4565 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4566 {
fddf5b5b
AM
4567 case UNCOND_JUMP:
4568 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4569 opcode[0] = 0xe9;
252b5132 4570 fragP->fr_fix += size;
062cd5e7
AS
4571 fix_new (fragP, old_fr_fix, size,
4572 fragP->fr_symbol,
4573 fragP->fr_offset, 1,
4574 reloc_type);
252b5132
RH
4575 break;
4576
fddf5b5b 4577 case COND_JUMP86:
412167cb
AM
4578 if (size == 2
4579 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4580 {
4581 /* Negate the condition, and branch past an
4582 unconditional jump. */
4583 opcode[0] ^= 1;
4584 opcode[1] = 3;
4585 /* Insert an unconditional jump. */
4586 opcode[2] = 0xe9;
4587 /* We added two extra opcode bytes, and have a two byte
4588 offset. */
4589 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4590 fix_new (fragP, old_fr_fix + 2, 2,
4591 fragP->fr_symbol,
4592 fragP->fr_offset, 1,
4593 reloc_type);
fddf5b5b
AM
4594 break;
4595 }
4596 /* Fall through. */
4597
4598 case COND_JUMP:
412167cb
AM
4599 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4600 {
3e02c1cc
AM
4601 fixS *fixP;
4602
412167cb 4603 fragP->fr_fix += 1;
3e02c1cc
AM
4604 fixP = fix_new (fragP, old_fr_fix, 1,
4605 fragP->fr_symbol,
4606 fragP->fr_offset, 1,
4607 BFD_RELOC_8_PCREL);
4608 fixP->fx_signed = 1;
412167cb
AM
4609 break;
4610 }
93c2a809 4611
24eab124 4612 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4613 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4614 opcode[1] = opcode[0] + 0x10;
f6af82bd 4615 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4616 /* We've added an opcode byte. */
4617 fragP->fr_fix += 1 + size;
062cd5e7
AS
4618 fix_new (fragP, old_fr_fix + 1, size,
4619 fragP->fr_symbol,
4620 fragP->fr_offset, 1,
4621 reloc_type);
252b5132 4622 break;
fddf5b5b
AM
4623
4624 default:
4625 BAD_CASE (fragP->fr_subtype);
4626 break;
252b5132
RH
4627 }
4628 frag_wane (fragP);
ee7fcc42 4629 return fragP->fr_fix - old_fr_fix;
252b5132 4630 }
93c2a809 4631
93c2a809
AM
4632 /* Guess size depending on current relax state. Initially the relax
4633 state will correspond to a short jump and we return 1, because
4634 the variable part of the frag (the branch offset) is one byte
4635 long. However, we can relax a section more than once and in that
4636 case we must either set fr_subtype back to the unrelaxed state,
4637 or return the value for the appropriate branch. */
4638 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4639}
4640
47926f60
KH
4641/* Called after relax() is finished.
4642
4643 In: Address of frag.
4644 fr_type == rs_machine_dependent.
4645 fr_subtype is what the address relaxed to.
4646
4647 Out: Any fixSs and constants are set up.
4648 Caller will turn frag into a ".space 0". */
4649
252b5132
RH
4650void
4651md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4652 bfd *abfd ATTRIBUTE_UNUSED;
4653 segT sec ATTRIBUTE_UNUSED;
29b0f896 4654 fragS *fragP;
252b5132 4655{
29b0f896 4656 unsigned char *opcode;
252b5132 4657 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4658 offsetT target_address;
4659 offsetT opcode_address;
252b5132 4660 unsigned int extension = 0;
847f7ad4 4661 offsetT displacement_from_opcode_start;
252b5132
RH
4662
4663 opcode = (unsigned char *) fragP->fr_opcode;
4664
47926f60 4665 /* Address we want to reach in file space. */
252b5132 4666 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4667
47926f60 4668 /* Address opcode resides at in file space. */
252b5132
RH
4669 opcode_address = fragP->fr_address + fragP->fr_fix;
4670
47926f60 4671 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4672 displacement_from_opcode_start = target_address - opcode_address;
4673
fddf5b5b 4674 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4675 {
47926f60
KH
4676 /* Don't have to change opcode. */
4677 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4678 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4679 }
4680 else
4681 {
4682 if (no_cond_jump_promotion
4683 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4684 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4685
fddf5b5b
AM
4686 switch (fragP->fr_subtype)
4687 {
4688 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4689 extension = 4; /* 1 opcode + 4 displacement */
4690 opcode[0] = 0xe9;
4691 where_to_put_displacement = &opcode[1];
4692 break;
252b5132 4693
fddf5b5b
AM
4694 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4695 extension = 2; /* 1 opcode + 2 displacement */
4696 opcode[0] = 0xe9;
4697 where_to_put_displacement = &opcode[1];
4698 break;
252b5132 4699
fddf5b5b
AM
4700 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4701 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4702 extension = 5; /* 2 opcode + 4 displacement */
4703 opcode[1] = opcode[0] + 0x10;
4704 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4705 where_to_put_displacement = &opcode[2];
4706 break;
252b5132 4707
fddf5b5b
AM
4708 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4709 extension = 3; /* 2 opcode + 2 displacement */
4710 opcode[1] = opcode[0] + 0x10;
4711 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4712 where_to_put_displacement = &opcode[2];
4713 break;
252b5132 4714
fddf5b5b
AM
4715 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4716 extension = 4;
4717 opcode[0] ^= 1;
4718 opcode[1] = 3;
4719 opcode[2] = 0xe9;
4720 where_to_put_displacement = &opcode[3];
4721 break;
4722
4723 default:
4724 BAD_CASE (fragP->fr_subtype);
4725 break;
4726 }
252b5132 4727 }
fddf5b5b 4728
47926f60 4729 /* Now put displacement after opcode. */
252b5132
RH
4730 md_number_to_chars ((char *) where_to_put_displacement,
4731 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4732 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4733 fragP->fr_fix += extension;
4734}
4735\f
47926f60
KH
4736/* Size of byte displacement jmp. */
4737int md_short_jump_size = 2;
4738
4739/* Size of dword displacement jmp. */
4740int md_long_jump_size = 5;
252b5132 4741
47926f60
KH
4742/* Size of relocation record. */
4743const int md_reloc_size = 8;
252b5132
RH
4744
4745void
4746md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4747 char *ptr;
4748 addressT from_addr, to_addr;
ab9da554
ILT
4749 fragS *frag ATTRIBUTE_UNUSED;
4750 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4751{
847f7ad4 4752 offsetT offset;
252b5132
RH
4753
4754 offset = to_addr - (from_addr + 2);
47926f60
KH
4755 /* Opcode for byte-disp jump. */
4756 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4757 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4758}
4759
4760void
4761md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4762 char *ptr;
4763 addressT from_addr, to_addr;
a38cf1db
AM
4764 fragS *frag ATTRIBUTE_UNUSED;
4765 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4766{
847f7ad4 4767 offsetT offset;
252b5132 4768
a38cf1db
AM
4769 offset = to_addr - (from_addr + 5);
4770 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4771 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4772}
4773\f
4774/* Apply a fixup (fixS) to segment data, once it has been determined
4775 by our caller that we have all the info we need to fix it up.
4776
4777 On the 386, immediates, displacements, and data pointers are all in
4778 the same (little-endian) format, so we don't need to care about which
4779 we are handling. */
4780
94f592af
NC
4781void
4782md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4783 /* The fix we're to put in. */
4784 fixS *fixP;
47926f60 4785 /* Pointer to the value of the bits. */
c6682705 4786 valueT *valP;
47926f60
KH
4787 /* Segment fix is from. */
4788 segT seg ATTRIBUTE_UNUSED;
252b5132 4789{
94f592af 4790 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4791 valueT value = *valP;
252b5132 4792
f86103b7 4793#if !defined (TE_Mach)
93382f6d
AM
4794 if (fixP->fx_pcrel)
4795 {
4796 switch (fixP->fx_r_type)
4797 {
5865bb77
ILT
4798 default:
4799 break;
4800
93382f6d 4801 case BFD_RELOC_32:
ae8887b5 4802 case BFD_RELOC_X86_64_32S:
93382f6d
AM
4803 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4804 break;
4805 case BFD_RELOC_16:
4806 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4807 break;
4808 case BFD_RELOC_8:
4809 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4810 break;
4811 }
4812 }
252b5132 4813
a161fe53 4814 if (fixP->fx_addsy != NULL
31312f95
AM
4815 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4816 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4817 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4818 && !use_rela_relocations)
252b5132 4819 {
31312f95
AM
4820 /* This is a hack. There should be a better way to handle this.
4821 This covers for the fact that bfd_install_relocation will
4822 subtract the current location (for partial_inplace, PC relative
4823 relocations); see more below. */
252b5132
RH
4824#ifndef OBJ_AOUT
4825 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4826#ifdef TE_PE
4827 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4828#endif
4829 )
4830 value += fixP->fx_where + fixP->fx_frag->fr_address;
4831#endif
4832#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4833 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4834 {
6539b54b 4835 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4836
6539b54b 4837 if ((sym_seg == seg
2f66722d 4838 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4839 && sym_seg != absolute_section))
ae6063d4 4840 && !generic_force_reloc (fixP))
2f66722d
AM
4841 {
4842 /* Yes, we add the values in twice. This is because
6539b54b
AM
4843 bfd_install_relocation subtracts them out again. I think
4844 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4845 it. FIXME. */
4846 value += fixP->fx_where + fixP->fx_frag->fr_address;
4847 }
252b5132
RH
4848 }
4849#endif
4850#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
4851 /* For some reason, the PE format does not store a
4852 section address offset for a PC relative symbol. */
4853 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4854#if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4855 || S_IS_WEAK (fixP->fx_addsy)
4856#endif
4857 )
252b5132
RH
4858 value += md_pcrel_from (fixP);
4859#endif
4860 }
4861
4862 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4863 and we must not disappoint it. */
252b5132
RH
4864#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4865 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4866 && fixP->fx_addsy)
47926f60
KH
4867 switch (fixP->fx_r_type)
4868 {
4869 case BFD_RELOC_386_PLT32:
3e73aa7c 4870 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4871 /* Make the jump instruction point to the address of the operand. At
4872 runtime we merely add the offset to the actual PLT entry. */
4873 value = -4;
4874 break;
31312f95 4875
13ae64f3
JJ
4876 case BFD_RELOC_386_TLS_GD:
4877 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4878 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4879 case BFD_RELOC_386_TLS_IE:
4880 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4881 case BFD_RELOC_X86_64_TLSGD:
4882 case BFD_RELOC_X86_64_TLSLD:
4883 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4884 value = 0; /* Fully resolved at runtime. No addend. */
4885 /* Fallthrough */
4886 case BFD_RELOC_386_TLS_LE:
4887 case BFD_RELOC_386_TLS_LDO_32:
4888 case BFD_RELOC_386_TLS_LE_32:
4889 case BFD_RELOC_X86_64_DTPOFF32:
4890 case BFD_RELOC_X86_64_TPOFF32:
4891 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4892 break;
4893
4894 case BFD_RELOC_386_GOT32:
4895 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4896 value = 0; /* Fully resolved at runtime. No addend. */
4897 break;
47926f60
KH
4898
4899 case BFD_RELOC_VTABLE_INHERIT:
4900 case BFD_RELOC_VTABLE_ENTRY:
4901 fixP->fx_done = 0;
94f592af 4902 return;
47926f60
KH
4903
4904 default:
4905 break;
4906 }
4907#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4908 *valP = value;
f86103b7 4909#endif /* !defined (TE_Mach) */
3e73aa7c 4910
3e73aa7c 4911 /* Are we finished with this relocation now? */
c6682705 4912 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4913 fixP->fx_done = 1;
4914 else if (use_rela_relocations)
4915 {
4916 fixP->fx_no_overflow = 1;
062cd5e7
AS
4917 /* Remember value for tc_gen_reloc. */
4918 fixP->fx_addnumber = value;
3e73aa7c
JH
4919 value = 0;
4920 }
f86103b7 4921
94f592af 4922 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4923}
252b5132 4924\f
252b5132
RH
4925#define MAX_LITTLENUMS 6
4926
47926f60
KH
4927/* Turn the string pointed to by litP into a floating point constant
4928 of type TYPE, and emit the appropriate bytes. The number of
4929 LITTLENUMS emitted is stored in *SIZEP. An error message is
4930 returned, or NULL on OK. */
4931
252b5132
RH
4932char *
4933md_atof (type, litP, sizeP)
2ab9b79e 4934 int type;
252b5132
RH
4935 char *litP;
4936 int *sizeP;
4937{
4938 int prec;
4939 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4940 LITTLENUM_TYPE *wordP;
4941 char *t;
4942
4943 switch (type)
4944 {
4945 case 'f':
4946 case 'F':
4947 prec = 2;
4948 break;
4949
4950 case 'd':
4951 case 'D':
4952 prec = 4;
4953 break;
4954
4955 case 'x':
4956 case 'X':
4957 prec = 5;
4958 break;
4959
4960 default:
4961 *sizeP = 0;
4962 return _("Bad call to md_atof ()");
4963 }
4964 t = atof_ieee (input_line_pointer, type, words);
4965 if (t)
4966 input_line_pointer = t;
4967
4968 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4969 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4970 the bigendian 386. */
4971 for (wordP = words + prec - 1; prec--;)
4972 {
4973 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4974 litP += sizeof (LITTLENUM_TYPE);
4975 }
4976 return 0;
4977}
4978\f
4979char output_invalid_buf[8];
4980
252b5132
RH
4981static char *
4982output_invalid (c)
4983 int c;
4984{
3882b010 4985 if (ISPRINT (c))
252b5132
RH
4986 sprintf (output_invalid_buf, "'%c'", c);
4987 else
4988 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4989 return output_invalid_buf;
4990}
4991
af6bdddf 4992/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4993
4994static const reg_entry *
4995parse_register (reg_string, end_op)
4996 char *reg_string;
4997 char **end_op;
4998{
af6bdddf
AM
4999 char *s = reg_string;
5000 char *p;
252b5132
RH
5001 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5002 const reg_entry *r;
5003
5004 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5005 if (*s == REGISTER_PREFIX)
5006 ++s;
5007
5008 if (is_space_char (*s))
5009 ++s;
5010
5011 p = reg_name_given;
af6bdddf 5012 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5013 {
5014 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5015 return (const reg_entry *) NULL;
5016 s++;
252b5132
RH
5017 }
5018
6588847e
DN
5019 /* For naked regs, make sure that we are not dealing with an identifier.
5020 This prevents confusing an identifier like `eax_var' with register
5021 `eax'. */
5022 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5023 return (const reg_entry *) NULL;
5024
af6bdddf 5025 *end_op = s;
252b5132
RH
5026
5027 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5028
5f47d35b 5029 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5030 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5031 {
5f47d35b
AM
5032 if (is_space_char (*s))
5033 ++s;
5034 if (*s == '(')
5035 {
af6bdddf 5036 ++s;
5f47d35b
AM
5037 if (is_space_char (*s))
5038 ++s;
5039 if (*s >= '0' && *s <= '7')
5040 {
5041 r = &i386_float_regtab[*s - '0'];
af6bdddf 5042 ++s;
5f47d35b
AM
5043 if (is_space_char (*s))
5044 ++s;
5045 if (*s == ')')
5046 {
5047 *end_op = s + 1;
5048 return r;
5049 }
5f47d35b 5050 }
47926f60 5051 /* We have "%st(" then garbage. */
5f47d35b
AM
5052 return (const reg_entry *) NULL;
5053 }
5054 }
5055
1ae00879 5056 if (r != NULL
20f0a1fc 5057 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
c4a530c5 5058 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
1ae00879 5059 && flag_code != CODE_64BIT)
20f0a1fc 5060 return (const reg_entry *) NULL;
1ae00879 5061
252b5132
RH
5062 return r;
5063}
5064\f
4cc782b5 5065#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5066const char *md_shortopts = "kVQ:sqn";
252b5132 5067#else
12b55ccc 5068const char *md_shortopts = "qn";
252b5132 5069#endif
6e0b89ee 5070
252b5132 5071struct option md_longopts[] = {
3e73aa7c
JH
5072#define OPTION_32 (OPTION_MD_BASE + 0)
5073 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5074#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
5075#define OPTION_64 (OPTION_MD_BASE + 1)
5076 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5077#endif
252b5132
RH
5078 {NULL, no_argument, NULL, 0}
5079};
5080size_t md_longopts_size = sizeof (md_longopts);
5081
5082int
5083md_parse_option (c, arg)
5084 int c;
ab9da554 5085 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5086{
5087 switch (c)
5088 {
12b55ccc
L
5089 case 'n':
5090 optimize_align_code = 0;
5091 break;
5092
a38cf1db
AM
5093 case 'q':
5094 quiet_warnings = 1;
252b5132
RH
5095 break;
5096
5097#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5098 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5099 should be emitted or not. FIXME: Not implemented. */
5100 case 'Q':
252b5132
RH
5101 break;
5102
5103 /* -V: SVR4 argument to print version ID. */
5104 case 'V':
5105 print_version_id ();
5106 break;
5107
a38cf1db
AM
5108 /* -k: Ignore for FreeBSD compatibility. */
5109 case 'k':
252b5132 5110 break;
4cc782b5
ILT
5111
5112 case 's':
5113 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5114 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5115 break;
6e0b89ee 5116
3e73aa7c
JH
5117 case OPTION_64:
5118 {
5119 const char **list, **l;
5120
3e73aa7c
JH
5121 list = bfd_target_list ();
5122 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5123 if (strcmp (*l, "elf64-x86-64") == 0)
5124 {
5125 default_arch = "x86_64";
5126 break;
5127 }
3e73aa7c 5128 if (*l == NULL)
6e0b89ee 5129 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5130 free (list);
5131 }
5132 break;
5133#endif
252b5132 5134
6e0b89ee
AM
5135 case OPTION_32:
5136 default_arch = "i386";
5137 break;
5138
252b5132
RH
5139 default:
5140 return 0;
5141 }
5142 return 1;
5143}
5144
5145void
5146md_show_usage (stream)
5147 FILE *stream;
5148{
4cc782b5
ILT
5149#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5150 fprintf (stream, _("\
a38cf1db
AM
5151 -Q ignored\n\
5152 -V print assembler version number\n\
5153 -k ignored\n\
12b55ccc 5154 -n Do not optimize code alignment\n\
a38cf1db
AM
5155 -q quieten some warnings\n\
5156 -s ignored\n"));
5157#else
5158 fprintf (stream, _("\
12b55ccc 5159 -n Do not optimize code alignment\n\
a38cf1db 5160 -q quieten some warnings\n"));
4cc782b5 5161#endif
252b5132
RH
5162}
5163
3e73aa7c
JH
5164#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5165 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5166
5167/* Pick the target format to use. */
5168
47926f60 5169const char *
252b5132
RH
5170i386_target_format ()
5171{
3e73aa7c
JH
5172 if (!strcmp (default_arch, "x86_64"))
5173 set_code_flag (CODE_64BIT);
5174 else if (!strcmp (default_arch, "i386"))
5175 set_code_flag (CODE_32BIT);
5176 else
5177 as_fatal (_("Unknown architecture"));
252b5132
RH
5178 switch (OUTPUT_FLAVOR)
5179 {
4c63da97
AM
5180#ifdef OBJ_MAYBE_AOUT
5181 case bfd_target_aout_flavour:
47926f60 5182 return AOUT_TARGET_FORMAT;
4c63da97
AM
5183#endif
5184#ifdef OBJ_MAYBE_COFF
252b5132
RH
5185 case bfd_target_coff_flavour:
5186 return "coff-i386";
4c63da97 5187#endif
3e73aa7c 5188#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5189 case bfd_target_elf_flavour:
3e73aa7c 5190 {
e5cb08ac
KH
5191 if (flag_code == CODE_64BIT)
5192 use_rela_relocations = 1;
4ada7262 5193 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5194 }
4c63da97 5195#endif
252b5132
RH
5196 default:
5197 abort ();
5198 return NULL;
5199 }
5200}
5201
47926f60 5202#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5203
5204#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5205void i386_elf_emit_arch_note ()
5206{
5207 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5208 && cpu_arch_name != NULL)
5209 {
5210 char *p;
5211 asection *seg = now_seg;
5212 subsegT subseg = now_subseg;
5213 Elf_Internal_Note i_note;
5214 Elf_External_Note e_note;
5215 asection *note_secp;
5216 int len;
5217
5218 /* Create the .note section. */
5219 note_secp = subseg_new (".note", 0);
5220 bfd_set_section_flags (stdoutput,
5221 note_secp,
5222 SEC_HAS_CONTENTS | SEC_READONLY);
5223
5224 /* Process the arch string. */
5225 len = strlen (cpu_arch_name);
5226
5227 i_note.namesz = len + 1;
5228 i_note.descsz = 0;
5229 i_note.type = NT_ARCH;
5230 p = frag_more (sizeof (e_note.namesz));
5231 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5232 p = frag_more (sizeof (e_note.descsz));
5233 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5234 p = frag_more (sizeof (e_note.type));
5235 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5236 p = frag_more (len + 1);
5237 strcpy (p, cpu_arch_name);
5238
5239 frag_align (2, 0, 0);
5240
5241 subseg_set (seg, subseg);
5242 }
5243}
5244#endif
252b5132 5245\f
252b5132
RH
5246symbolS *
5247md_undefined_symbol (name)
5248 char *name;
5249{
18dc2407
ILT
5250 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5251 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5252 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5253 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5254 {
5255 if (!GOT_symbol)
5256 {
5257 if (symbol_find (name))
5258 as_bad (_("GOT already in symbol table"));
5259 GOT_symbol = symbol_new (name, undefined_section,
5260 (valueT) 0, &zero_address_frag);
5261 };
5262 return GOT_symbol;
5263 }
252b5132
RH
5264 return 0;
5265}
5266
5267/* Round up a section size to the appropriate boundary. */
47926f60 5268
252b5132
RH
5269valueT
5270md_section_align (segment, size)
ab9da554 5271 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5272 valueT size;
5273{
4c63da97
AM
5274#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5275 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5276 {
5277 /* For a.out, force the section size to be aligned. If we don't do
5278 this, BFD will align it for us, but it will not write out the
5279 final bytes of the section. This may be a bug in BFD, but it is
5280 easier to fix it here since that is how the other a.out targets
5281 work. */
5282 int align;
5283
5284 align = bfd_get_section_alignment (stdoutput, segment);
5285 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5286 }
252b5132
RH
5287#endif
5288
5289 return size;
5290}
5291
5292/* On the i386, PC-relative offsets are relative to the start of the
5293 next instruction. That is, the address of the offset, plus its
5294 size, since the offset is always the last part of the insn. */
5295
5296long
5297md_pcrel_from (fixP)
5298 fixS *fixP;
5299{
5300 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5301}
5302
5303#ifndef I386COFF
5304
5305static void
5306s_bss (ignore)
ab9da554 5307 int ignore ATTRIBUTE_UNUSED;
252b5132 5308{
29b0f896 5309 int temp;
252b5132 5310
8a75718c
JB
5311#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5312 if (IS_ELF)
5313 obj_elf_section_change_hook ();
5314#endif
252b5132
RH
5315 temp = get_absolute_expression ();
5316 subseg_set (bss_section, (subsegT) temp);
5317 demand_empty_rest_of_line ();
5318}
5319
5320#endif
5321
252b5132
RH
5322void
5323i386_validate_fix (fixp)
5324 fixS *fixp;
5325{
5326 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5327 {
3e73aa7c 5328 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5329 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5330 {
5331 if (flag_code != CODE_64BIT)
5332 abort ();
5333 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5334 }
5335 else
5336 {
5337 if (flag_code == CODE_64BIT)
5338 abort ();
5339 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5340 }
252b5132
RH
5341 fixp->fx_subsy = 0;
5342 }
5343}
5344
252b5132
RH
5345arelent *
5346tc_gen_reloc (section, fixp)
ab9da554 5347 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5348 fixS *fixp;
5349{
5350 arelent *rel;
5351 bfd_reloc_code_real_type code;
5352
5353 switch (fixp->fx_r_type)
5354 {
3e73aa7c
JH
5355 case BFD_RELOC_X86_64_PLT32:
5356 case BFD_RELOC_X86_64_GOT32:
5357 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5358 case BFD_RELOC_386_PLT32:
5359 case BFD_RELOC_386_GOT32:
5360 case BFD_RELOC_386_GOTOFF:
5361 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5362 case BFD_RELOC_386_TLS_GD:
5363 case BFD_RELOC_386_TLS_LDM:
5364 case BFD_RELOC_386_TLS_LDO_32:
5365 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5366 case BFD_RELOC_386_TLS_IE:
5367 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5368 case BFD_RELOC_386_TLS_LE_32:
5369 case BFD_RELOC_386_TLS_LE:
bffbf940
JJ
5370 case BFD_RELOC_X86_64_TLSGD:
5371 case BFD_RELOC_X86_64_TLSLD:
5372 case BFD_RELOC_X86_64_DTPOFF32:
5373 case BFD_RELOC_X86_64_GOTTPOFF:
5374 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5375 case BFD_RELOC_RVA:
5376 case BFD_RELOC_VTABLE_ENTRY:
5377 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5378#ifdef TE_PE
5379 case BFD_RELOC_32_SECREL:
5380#endif
252b5132
RH
5381 code = fixp->fx_r_type;
5382 break;
dbbaec26
L
5383 case BFD_RELOC_X86_64_32S:
5384 if (!fixp->fx_pcrel)
5385 {
5386 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5387 code = fixp->fx_r_type;
5388 break;
5389 }
252b5132 5390 default:
93382f6d 5391 if (fixp->fx_pcrel)
252b5132 5392 {
93382f6d
AM
5393 switch (fixp->fx_size)
5394 {
5395 default:
b091f402
AM
5396 as_bad_where (fixp->fx_file, fixp->fx_line,
5397 _("can not do %d byte pc-relative relocation"),
5398 fixp->fx_size);
93382f6d
AM
5399 code = BFD_RELOC_32_PCREL;
5400 break;
5401 case 1: code = BFD_RELOC_8_PCREL; break;
5402 case 2: code = BFD_RELOC_16_PCREL; break;
5403 case 4: code = BFD_RELOC_32_PCREL; break;
5404 }
5405 }
5406 else
5407 {
5408 switch (fixp->fx_size)
5409 {
5410 default:
b091f402
AM
5411 as_bad_where (fixp->fx_file, fixp->fx_line,
5412 _("can not do %d byte relocation"),
5413 fixp->fx_size);
93382f6d
AM
5414 code = BFD_RELOC_32;
5415 break;
5416 case 1: code = BFD_RELOC_8; break;
5417 case 2: code = BFD_RELOC_16; break;
5418 case 4: code = BFD_RELOC_32; break;
937149dd 5419#ifdef BFD64
3e73aa7c 5420 case 8: code = BFD_RELOC_64; break;
937149dd 5421#endif
93382f6d 5422 }
252b5132
RH
5423 }
5424 break;
5425 }
252b5132
RH
5426
5427 if (code == BFD_RELOC_32
5428 && GOT_symbol
5429 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5430 {
5431 /* We don't support GOTPC on 64bit targets. */
5432 if (flag_code == CODE_64BIT)
bfb32b52 5433 abort ();
3e73aa7c
JH
5434 code = BFD_RELOC_386_GOTPC;
5435 }
252b5132
RH
5436
5437 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5438 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5439 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5440
5441 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 5442
3e73aa7c
JH
5443 if (!use_rela_relocations)
5444 {
5445 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5446 vtable entry to be used in the relocation's section offset. */
5447 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5448 rel->address = fixp->fx_offset;
252b5132 5449
c6682705 5450 rel->addend = 0;
3e73aa7c
JH
5451 }
5452 /* Use the rela in 64bit mode. */
252b5132 5453 else
3e73aa7c 5454 {
062cd5e7
AS
5455 if (!fixp->fx_pcrel)
5456 rel->addend = fixp->fx_offset;
5457 else
5458 switch (code)
5459 {
5460 case BFD_RELOC_X86_64_PLT32:
5461 case BFD_RELOC_X86_64_GOT32:
5462 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5463 case BFD_RELOC_X86_64_TLSGD:
5464 case BFD_RELOC_X86_64_TLSLD:
5465 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5466 rel->addend = fixp->fx_offset - fixp->fx_size;
5467 break;
5468 default:
5469 rel->addend = (section->vma
5470 - fixp->fx_size
5471 + fixp->fx_addnumber
5472 + md_pcrel_from (fixp));
5473 break;
5474 }
3e73aa7c
JH
5475 }
5476
252b5132
RH
5477 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5478 if (rel->howto == NULL)
5479 {
5480 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5481 _("cannot represent relocation type %s"),
252b5132
RH
5482 bfd_get_reloc_code_name (code));
5483 /* Set howto to a garbage value so that we can keep going. */
5484 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5485 assert (rel->howto != NULL);
5486 }
5487
5488 return rel;
5489}
5490
64a0c779
DN
5491\f
5492/* Parse operands using Intel syntax. This implements a recursive descent
5493 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5494 Programmer's Guide.
5495
5496 FIXME: We do not recognize the full operand grammar defined in the MASM
5497 documentation. In particular, all the structure/union and
5498 high-level macro operands are missing.
5499
5500 Uppercase words are terminals, lower case words are non-terminals.
5501 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5502 bars '|' denote choices. Most grammar productions are implemented in
5503 functions called 'intel_<production>'.
5504
5505 Initial production is 'expr'.
5506
9306ca4a 5507 addOp + | -
64a0c779
DN
5508
5509 alpha [a-zA-Z]
5510
9306ca4a
JB
5511 binOp & | AND | \| | OR | ^ | XOR
5512
64a0c779
DN
5513 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5514
5515 constant digits [[ radixOverride ]]
5516
9306ca4a 5517 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5518
5519 digits decdigit
b77a7acd
AJ
5520 | digits decdigit
5521 | digits hexdigit
64a0c779
DN
5522
5523 decdigit [0-9]
5524
9306ca4a
JB
5525 e04 e04 addOp e05
5526 | e05
5527
5528 e05 e05 binOp e06
b77a7acd 5529 | e06
64a0c779
DN
5530
5531 e06 e06 mulOp e09
b77a7acd 5532 | e09
64a0c779
DN
5533
5534 e09 OFFSET e10
a724f0f4
JB
5535 | SHORT e10
5536 | + e10
5537 | - e10
9306ca4a
JB
5538 | ~ e10
5539 | NOT e10
64a0c779
DN
5540 | e09 PTR e10
5541 | e09 : e10
5542 | e10
5543
5544 e10 e10 [ expr ]
b77a7acd 5545 | e11
64a0c779
DN
5546
5547 e11 ( expr )
b77a7acd 5548 | [ expr ]
64a0c779
DN
5549 | constant
5550 | dataType
5551 | id
5552 | $
5553 | register
5554
a724f0f4 5555 => expr expr cmpOp e04
9306ca4a 5556 | e04
64a0c779
DN
5557
5558 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5559 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5560
5561 hexdigit a | b | c | d | e | f
b77a7acd 5562 | A | B | C | D | E | F
64a0c779
DN
5563
5564 id alpha
b77a7acd 5565 | id alpha
64a0c779
DN
5566 | id decdigit
5567
9306ca4a 5568 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5569
5570 quote " | '
5571
5572 register specialRegister
b77a7acd 5573 | gpRegister
64a0c779
DN
5574 | byteRegister
5575
5576 segmentRegister CS | DS | ES | FS | GS | SS
5577
9306ca4a 5578 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5579 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5580 | TR3 | TR4 | TR5 | TR6 | TR7
5581
64a0c779
DN
5582 We simplify the grammar in obvious places (e.g., register parsing is
5583 done by calling parse_register) and eliminate immediate left recursion
5584 to implement a recursive-descent parser.
5585
a724f0f4
JB
5586 expr e04 expr'
5587
5588 expr' cmpOp e04 expr'
5589 | Empty
9306ca4a
JB
5590
5591 e04 e05 e04'
5592
5593 e04' addOp e05 e04'
5594 | Empty
64a0c779
DN
5595
5596 e05 e06 e05'
5597
9306ca4a 5598 e05' binOp e06 e05'
b77a7acd 5599 | Empty
64a0c779
DN
5600
5601 e06 e09 e06'
5602
5603 e06' mulOp e09 e06'
b77a7acd 5604 | Empty
64a0c779
DN
5605
5606 e09 OFFSET e10 e09'
a724f0f4
JB
5607 | SHORT e10'
5608 | + e10'
5609 | - e10'
5610 | ~ e10'
5611 | NOT e10'
b77a7acd 5612 | e10 e09'
64a0c779
DN
5613
5614 e09' PTR e10 e09'
b77a7acd 5615 | : e10 e09'
64a0c779
DN
5616 | Empty
5617
5618 e10 e11 e10'
5619
5620 e10' [ expr ] e10'
b77a7acd 5621 | Empty
64a0c779
DN
5622
5623 e11 ( expr )
b77a7acd 5624 | [ expr ]
64a0c779
DN
5625 | BYTE
5626 | WORD
5627 | DWORD
9306ca4a 5628 | FWORD
64a0c779 5629 | QWORD
9306ca4a
JB
5630 | TBYTE
5631 | OWORD
5632 | XMMWORD
64a0c779
DN
5633 | .
5634 | $
5635 | register
5636 | id
5637 | constant */
5638
5639/* Parsing structure for the intel syntax parser. Used to implement the
5640 semantic actions for the operand grammar. */
5641struct intel_parser_s
5642 {
5643 char *op_string; /* The string being parsed. */
5644 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5645 int op_modifier; /* Operand modifier. */
64a0c779 5646 int is_mem; /* 1 if operand is memory reference. */
a724f0f4
JB
5647 int in_offset; /* >=1 if parsing operand of offset. */
5648 int in_bracket; /* >=1 if parsing operand in brackets. */
64a0c779
DN
5649 const reg_entry *reg; /* Last register reference found. */
5650 char *disp; /* Displacement string being built. */
a724f0f4 5651 char *next_operand; /* Resume point when splitting operands. */
64a0c779
DN
5652 };
5653
5654static struct intel_parser_s intel_parser;
5655
5656/* Token structure for parsing intel syntax. */
5657struct intel_token
5658 {
5659 int code; /* Token code. */
5660 const reg_entry *reg; /* Register entry for register tokens. */
5661 char *str; /* String representation. */
5662 };
5663
5664static struct intel_token cur_token, prev_token;
5665
50705ef4
AM
5666/* Token codes for the intel parser. Since T_SHORT is already used
5667 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5668#define T_NIL -1
5669#define T_CONST 1
5670#define T_REG 2
5671#define T_BYTE 3
5672#define T_WORD 4
9306ca4a
JB
5673#define T_DWORD 5
5674#define T_FWORD 6
5675#define T_QWORD 7
5676#define T_TBYTE 8
5677#define T_XMMWORD 9
50705ef4 5678#undef T_SHORT
9306ca4a
JB
5679#define T_SHORT 10
5680#define T_OFFSET 11
5681#define T_PTR 12
5682#define T_ID 13
5683#define T_SHL 14
5684#define T_SHR 15
64a0c779
DN
5685
5686/* Prototypes for intel parser functions. */
5687static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5688static void intel_get_token PARAMS ((void));
5689static void intel_putback_token PARAMS ((void));
5690static int intel_expr PARAMS ((void));
9306ca4a 5691static int intel_e04 PARAMS ((void));
cce0cbdc 5692static int intel_e05 PARAMS ((void));
cce0cbdc 5693static int intel_e06 PARAMS ((void));
cce0cbdc 5694static int intel_e09 PARAMS ((void));
a724f0f4 5695static int intel_bracket_expr PARAMS ((void));
cce0cbdc 5696static int intel_e10 PARAMS ((void));
cce0cbdc 5697static int intel_e11 PARAMS ((void));
64a0c779 5698
64a0c779
DN
5699static int
5700i386_intel_operand (operand_string, got_a_float)
5701 char *operand_string;
5702 int got_a_float;
5703{
5704 int ret;
5705 char *p;
5706
a724f0f4
JB
5707 p = intel_parser.op_string = xstrdup (operand_string);
5708 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
5709
5710 for (;;)
64a0c779 5711 {
a724f0f4
JB
5712 /* Initialize token holders. */
5713 cur_token.code = prev_token.code = T_NIL;
5714 cur_token.reg = prev_token.reg = NULL;
5715 cur_token.str = prev_token.str = NULL;
5716
5717 /* Initialize parser structure. */
5718 intel_parser.got_a_float = got_a_float;
5719 intel_parser.op_modifier = 0;
5720 intel_parser.is_mem = 0;
5721 intel_parser.in_offset = 0;
5722 intel_parser.in_bracket = 0;
5723 intel_parser.reg = NULL;
5724 intel_parser.disp[0] = '\0';
5725 intel_parser.next_operand = NULL;
5726
5727 /* Read the first token and start the parser. */
5728 intel_get_token ();
5729 ret = intel_expr ();
5730
5731 if (!ret)
5732 break;
5733
9306ca4a
JB
5734 if (cur_token.code != T_NIL)
5735 {
5736 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5737 current_templates->start->name, cur_token.str);
5738 ret = 0;
5739 }
64a0c779
DN
5740 /* If we found a memory reference, hand it over to i386_displacement
5741 to fill in the rest of the operand fields. */
9306ca4a 5742 else if (intel_parser.is_mem)
64a0c779
DN
5743 {
5744 if ((i.mem_operands == 1
5745 && (current_templates->start->opcode_modifier & IsString) == 0)
5746 || i.mem_operands == 2)
5747 {
5748 as_bad (_("too many memory references for '%s'"),
5749 current_templates->start->name);
5750 ret = 0;
5751 }
5752 else
5753 {
5754 char *s = intel_parser.disp;
5755 i.mem_operands++;
5756
a724f0f4
JB
5757 if (!quiet_warnings && intel_parser.is_mem < 0)
5758 /* See the comments in intel_bracket_expr. */
5759 as_warn (_("Treating `%s' as memory reference"), operand_string);
5760
64a0c779
DN
5761 /* Add the displacement expression. */
5762 if (*s != '\0')
a4622f40
AM
5763 ret = i386_displacement (s, s + strlen (s));
5764 if (ret)
a724f0f4
JB
5765 {
5766 /* Swap base and index in 16-bit memory operands like
5767 [si+bx]. Since i386_index_check is also used in AT&T
5768 mode we have to do that here. */
5769 if (i.base_reg
5770 && i.index_reg
5771 && (i.base_reg->reg_type & Reg16)
5772 && (i.index_reg->reg_type & Reg16)
5773 && i.base_reg->reg_num >= 6
5774 && i.index_reg->reg_num < 6)
5775 {
5776 const reg_entry *base = i.index_reg;
5777
5778 i.index_reg = i.base_reg;
5779 i.base_reg = base;
5780 }
5781 ret = i386_index_check (operand_string);
5782 }
64a0c779
DN
5783 }
5784 }
5785
5786 /* Constant and OFFSET expressions are handled by i386_immediate. */
a724f0f4 5787 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
64a0c779
DN
5788 || intel_parser.reg == NULL)
5789 ret = i386_immediate (intel_parser.disp);
a724f0f4
JB
5790
5791 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
5792 ret = 0;
5793 if (!ret || !intel_parser.next_operand)
5794 break;
5795 intel_parser.op_string = intel_parser.next_operand;
5796 this_operand = i.operands++;
64a0c779
DN
5797 }
5798
5799 free (p);
5800 free (intel_parser.disp);
5801
5802 return ret;
5803}
5804
a724f0f4
JB
5805#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
5806
5807/* expr e04 expr'
5808
5809 expr' cmpOp e04 expr'
5810 | Empty */
64a0c779
DN
5811static int
5812intel_expr ()
5813{
a724f0f4
JB
5814 /* XXX Implement the comparison operators. */
5815 return intel_e04 ();
9306ca4a
JB
5816}
5817
a724f0f4 5818/* e04 e05 e04'
9306ca4a 5819
a724f0f4 5820 e04' addOp e05 e04'
9306ca4a
JB
5821 | Empty */
5822static int
5823intel_e04 ()
5824{
a724f0f4 5825 int nregs = -1;
9306ca4a 5826
a724f0f4 5827 for (;;)
9306ca4a 5828 {
a724f0f4
JB
5829 if (!intel_e05())
5830 return 0;
9306ca4a 5831
a724f0f4
JB
5832 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5833 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
9306ca4a 5834
a724f0f4
JB
5835 if (cur_token.code == '+')
5836 nregs = -1;
5837 else if (cur_token.code == '-')
5838 nregs = NUM_ADDRESS_REGS;
5839 else
5840 return 1;
64a0c779 5841
a724f0f4
JB
5842 strcat (intel_parser.disp, cur_token.str);
5843 intel_match_token (cur_token.code);
5844 }
64a0c779
DN
5845}
5846
64a0c779
DN
5847/* e05 e06 e05'
5848
9306ca4a 5849 e05' binOp e06 e05'
64a0c779
DN
5850 | Empty */
5851static int
5852intel_e05 ()
5853{
a724f0f4 5854 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5855
a724f0f4 5856 for (;;)
64a0c779 5857 {
a724f0f4
JB
5858 if (!intel_e06())
5859 return 0;
5860
5861 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5862 {
5863 char str[2];
5864
5865 str[0] = cur_token.code;
5866 str[1] = 0;
5867 strcat (intel_parser.disp, str);
5868 }
5869 else
5870 break;
9306ca4a 5871
64a0c779
DN
5872 intel_match_token (cur_token.code);
5873
a724f0f4
JB
5874 if (nregs < 0)
5875 nregs = ~nregs;
64a0c779 5876 }
a724f0f4
JB
5877 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5878 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
5879 return 1;
4a1805b1 5880}
64a0c779
DN
5881
5882/* e06 e09 e06'
5883
5884 e06' mulOp e09 e06'
b77a7acd 5885 | Empty */
64a0c779
DN
5886static int
5887intel_e06 ()
5888{
a724f0f4 5889 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5890
a724f0f4 5891 for (;;)
64a0c779 5892 {
a724f0f4
JB
5893 if (!intel_e09())
5894 return 0;
9306ca4a 5895
a724f0f4
JB
5896 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5897 {
5898 char str[2];
9306ca4a 5899
a724f0f4
JB
5900 str[0] = cur_token.code;
5901 str[1] = 0;
5902 strcat (intel_parser.disp, str);
5903 }
5904 else if (cur_token.code == T_SHL)
5905 strcat (intel_parser.disp, "<<");
5906 else if (cur_token.code == T_SHR)
5907 strcat (intel_parser.disp, ">>");
5908 else
5909 break;
9306ca4a 5910
a724f0f4 5911 intel_match_token (cur_token.code);
64a0c779 5912
a724f0f4
JB
5913 if (nregs < 0)
5914 nregs = ~nregs;
64a0c779 5915 }
a724f0f4
JB
5916 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5917 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
5918 return 1;
64a0c779
DN
5919}
5920
a724f0f4
JB
5921/* e09 OFFSET e09
5922 | SHORT e09
5923 | + e09
5924 | - e09
5925 | ~ e09
5926 | NOT e09
9306ca4a
JB
5927 | e10 e09'
5928
64a0c779 5929 e09' PTR e10 e09'
b77a7acd 5930 | : e10 e09'
64a0c779
DN
5931 | Empty */
5932static int
5933intel_e09 ()
5934{
a724f0f4
JB
5935 int nregs = ~NUM_ADDRESS_REGS;
5936 int in_offset = 0;
5937
5938 for (;;)
64a0c779 5939 {
a724f0f4
JB
5940 /* Don't consume constants here. */
5941 if (cur_token.code == '+' || cur_token.code == '-')
5942 {
5943 /* Need to look one token ahead - if the next token
5944 is a constant, the current token is its sign. */
5945 int next_code;
5946
5947 intel_match_token (cur_token.code);
5948 next_code = cur_token.code;
5949 intel_putback_token ();
5950 if (next_code == T_CONST)
5951 break;
5952 }
5953
5954 /* e09 OFFSET e09 */
5955 if (cur_token.code == T_OFFSET)
5956 {
5957 if (!in_offset++)
5958 ++intel_parser.in_offset;
5959 }
5960
5961 /* e09 SHORT e09 */
5962 else if (cur_token.code == T_SHORT)
5963 intel_parser.op_modifier |= 1 << T_SHORT;
5964
5965 /* e09 + e09 */
5966 else if (cur_token.code == '+')
5967 strcat (intel_parser.disp, "+");
5968
5969 /* e09 - e09
5970 | ~ e09
5971 | NOT e09 */
5972 else if (cur_token.code == '-' || cur_token.code == '~')
5973 {
5974 char str[2];
64a0c779 5975
a724f0f4
JB
5976 if (nregs < 0)
5977 nregs = ~nregs;
5978 str[0] = cur_token.code;
5979 str[1] = 0;
5980 strcat (intel_parser.disp, str);
5981 }
5982
5983 /* e09 e10 e09' */
5984 else
5985 break;
5986
5987 intel_match_token (cur_token.code);
64a0c779
DN
5988 }
5989
a724f0f4 5990 for (;;)
9306ca4a 5991 {
a724f0f4
JB
5992 if (!intel_e10 ())
5993 return 0;
9306ca4a 5994
a724f0f4
JB
5995 /* e09' PTR e10 e09' */
5996 if (cur_token.code == T_PTR)
5997 {
5998 char suffix;
9306ca4a 5999
a724f0f4
JB
6000 if (prev_token.code == T_BYTE)
6001 suffix = BYTE_MNEM_SUFFIX;
9306ca4a 6002
a724f0f4
JB
6003 else if (prev_token.code == T_WORD)
6004 {
6005 if (current_templates->start->name[0] == 'l'
6006 && current_templates->start->name[2] == 's'
6007 && current_templates->start->name[3] == 0)
6008 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6009 else if (intel_parser.got_a_float == 2) /* "fi..." */
6010 suffix = SHORT_MNEM_SUFFIX;
6011 else
6012 suffix = WORD_MNEM_SUFFIX;
6013 }
64a0c779 6014
a724f0f4
JB
6015 else if (prev_token.code == T_DWORD)
6016 {
6017 if (current_templates->start->name[0] == 'l'
6018 && current_templates->start->name[2] == 's'
6019 && current_templates->start->name[3] == 0)
6020 suffix = WORD_MNEM_SUFFIX;
6021 else if (flag_code == CODE_16BIT
6022 && (current_templates->start->opcode_modifier
6023 & (Jump|JumpDword|JumpInterSegment)))
6024 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6025 else if (intel_parser.got_a_float == 1) /* "f..." */
6026 suffix = SHORT_MNEM_SUFFIX;
6027 else
6028 suffix = LONG_MNEM_SUFFIX;
6029 }
9306ca4a 6030
a724f0f4
JB
6031 else if (prev_token.code == T_FWORD)
6032 {
6033 if (current_templates->start->name[0] == 'l'
6034 && current_templates->start->name[2] == 's'
6035 && current_templates->start->name[3] == 0)
6036 suffix = LONG_MNEM_SUFFIX;
6037 else if (!intel_parser.got_a_float)
6038 {
6039 if (flag_code == CODE_16BIT)
6040 add_prefix (DATA_PREFIX_OPCODE);
6041 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6042 }
6043 else
6044 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6045 }
64a0c779 6046
a724f0f4
JB
6047 else if (prev_token.code == T_QWORD)
6048 {
6049 if (intel_parser.got_a_float == 1) /* "f..." */
6050 suffix = LONG_MNEM_SUFFIX;
6051 else
6052 suffix = QWORD_MNEM_SUFFIX;
6053 }
64a0c779 6054
a724f0f4
JB
6055 else if (prev_token.code == T_TBYTE)
6056 {
6057 if (intel_parser.got_a_float == 1)
6058 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6059 else
6060 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6061 }
9306ca4a 6062
a724f0f4 6063 else if (prev_token.code == T_XMMWORD)
9306ca4a 6064 {
a724f0f4
JB
6065 /* XXX ignored for now, but accepted since gcc uses it */
6066 suffix = 0;
9306ca4a 6067 }
64a0c779 6068
f16b83df 6069 else
a724f0f4
JB
6070 {
6071 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6072 return 0;
6073 }
6074
6075 if (current_templates->start->base_opcode == 0x8d /* lea */)
6076 ;
6077 else if (!i.suffix)
6078 i.suffix = suffix;
6079 else if (i.suffix != suffix)
6080 {
6081 as_bad (_("Conflicting operand modifiers"));
6082 return 0;
6083 }
64a0c779 6084
9306ca4a
JB
6085 }
6086
a724f0f4
JB
6087 /* e09' : e10 e09' */
6088 else if (cur_token.code == ':')
9306ca4a 6089 {
a724f0f4
JB
6090 if (prev_token.code != T_REG)
6091 {
6092 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6093 segment/group identifier (which we don't have), using comma
6094 as the operand separator there is even less consistent, since
6095 there all branches only have a single operand. */
6096 if (this_operand != 0
6097 || intel_parser.in_offset
6098 || intel_parser.in_bracket
6099 || (!(current_templates->start->opcode_modifier
6100 & (Jump|JumpDword|JumpInterSegment))
6101 && !(current_templates->start->operand_types[0]
6102 & JumpAbsolute)))
6103 return intel_match_token (T_NIL);
6104 /* Remember the start of the 2nd operand and terminate 1st
6105 operand here.
6106 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6107 another expression), but it gets at least the simplest case
6108 (a plain number or symbol on the left side) right. */
6109 intel_parser.next_operand = intel_parser.op_string;
6110 *--intel_parser.op_string = '\0';
6111 return intel_match_token (':');
6112 }
9306ca4a 6113 }
64a0c779 6114
a724f0f4 6115 /* e09' Empty */
64a0c779 6116 else
a724f0f4 6117 break;
64a0c779 6118
a724f0f4
JB
6119 intel_match_token (cur_token.code);
6120
6121 }
6122
6123 if (in_offset)
6124 {
6125 --intel_parser.in_offset;
6126 if (nregs < 0)
6127 nregs = ~nregs;
6128 if (NUM_ADDRESS_REGS > nregs)
9306ca4a 6129 {
a724f0f4 6130 as_bad (_("Invalid operand to `OFFSET'"));
9306ca4a
JB
6131 return 0;
6132 }
a724f0f4
JB
6133 intel_parser.op_modifier |= 1 << T_OFFSET;
6134 }
9306ca4a 6135
a724f0f4
JB
6136 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6137 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6138 return 1;
6139}
64a0c779 6140
a724f0f4
JB
6141static int
6142intel_bracket_expr ()
6143{
6144 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6145 const char *start = intel_parser.op_string;
6146 int len;
6147
6148 if (i.op[this_operand].regs)
6149 return intel_match_token (T_NIL);
6150
6151 intel_match_token ('[');
6152
6153 /* Mark as a memory operand only if it's not already known to be an
6154 offset expression. If it's an offset expression, we need to keep
6155 the brace in. */
6156 if (!intel_parser.in_offset)
6157 {
6158 ++intel_parser.in_bracket;
6159 /* Unfortunately gas always diverged from MASM in a respect that can't
6160 be easily fixed without risking to break code sequences likely to be
6161 encountered (the testsuite even check for this): MASM doesn't consider
6162 an expression inside brackets unconditionally as a memory reference.
6163 When that is e.g. a constant, an offset expression, or the sum of the
6164 two, this is still taken as a constant load. gas, however, always
6165 treated these as memory references. As a compromise, we'll try to make
6166 offset expressions inside brackets work the MASM way (since that's
6167 less likely to be found in real world code), but make constants alone
6168 continue to work the traditional gas way. In either case, issue a
6169 warning. */
6170 intel_parser.op_modifier &= ~was_offset;
64a0c779 6171 }
a724f0f4
JB
6172 else
6173 strcat (intel_parser.disp, "[");
6174
6175 /* Add a '+' to the displacement string if necessary. */
6176 if (*intel_parser.disp != '\0'
6177 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6178 strcat (intel_parser.disp, "+");
64a0c779 6179
a724f0f4
JB
6180 if (intel_expr ()
6181 && (len = intel_parser.op_string - start - 1,
6182 intel_match_token (']')))
64a0c779 6183 {
a724f0f4
JB
6184 /* Preserve brackets when the operand is an offset expression. */
6185 if (intel_parser.in_offset)
6186 strcat (intel_parser.disp, "]");
6187 else
6188 {
6189 --intel_parser.in_bracket;
6190 if (i.base_reg || i.index_reg)
6191 intel_parser.is_mem = 1;
6192 if (!intel_parser.is_mem)
6193 {
6194 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6195 /* Defer the warning until all of the operand was parsed. */
6196 intel_parser.is_mem = -1;
6197 else if (!quiet_warnings)
6198 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6199 }
6200 }
6201 intel_parser.op_modifier |= was_offset;
64a0c779 6202
a724f0f4 6203 return 1;
64a0c779 6204 }
a724f0f4 6205 return 0;
64a0c779
DN
6206}
6207
6208/* e10 e11 e10'
6209
6210 e10' [ expr ] e10'
b77a7acd 6211 | Empty */
64a0c779
DN
6212static int
6213intel_e10 ()
6214{
a724f0f4
JB
6215 if (!intel_e11 ())
6216 return 0;
64a0c779 6217
a724f0f4 6218 while (cur_token.code == '[')
64a0c779 6219 {
a724f0f4 6220 if (!intel_bracket_expr ())
21d6c4af 6221 return 0;
64a0c779
DN
6222 }
6223
a724f0f4 6224 return 1;
64a0c779
DN
6225}
6226
64a0c779 6227/* e11 ( expr )
b77a7acd 6228 | [ expr ]
64a0c779
DN
6229 | BYTE
6230 | WORD
6231 | DWORD
9306ca4a 6232 | FWORD
64a0c779 6233 | QWORD
9306ca4a
JB
6234 | TBYTE
6235 | OWORD
6236 | XMMWORD
4a1805b1 6237 | $
64a0c779
DN
6238 | .
6239 | register
6240 | id
6241 | constant */
6242static int
6243intel_e11 ()
6244{
a724f0f4 6245 switch (cur_token.code)
64a0c779 6246 {
a724f0f4
JB
6247 /* e11 ( expr ) */
6248 case '(':
64a0c779
DN
6249 intel_match_token ('(');
6250 strcat (intel_parser.disp, "(");
6251
6252 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6253 {
6254 strcat (intel_parser.disp, ")");
6255 return 1;
6256 }
a724f0f4 6257 return 0;
4a1805b1 6258
a724f0f4
JB
6259 /* e11 [ expr ] */
6260 case '[':
6261 /* Operands for jump/call inside brackets denote absolute addresses.
6262 XXX This shouldn't be needed anymore (or if it should rather live
6263 in intel_bracket_expr). */
9306ca4a
JB
6264 if (current_templates->start->opcode_modifier
6265 & (Jump|JumpDword|JumpByte|JumpInterSegment))
64a0c779
DN
6266 i.types[this_operand] |= JumpAbsolute;
6267
a724f0f4 6268 return intel_bracket_expr ();
64a0c779 6269
a724f0f4
JB
6270 /* e11 $
6271 | . */
6272 case '.':
64a0c779
DN
6273 strcat (intel_parser.disp, cur_token.str);
6274 intel_match_token (cur_token.code);
21d6c4af
DN
6275
6276 /* Mark as a memory operand only if it's not already known to be an
6277 offset expression. */
a724f0f4 6278 if (!intel_parser.in_offset)
21d6c4af 6279 intel_parser.is_mem = 1;
64a0c779
DN
6280
6281 return 1;
64a0c779 6282
a724f0f4
JB
6283 /* e11 register */
6284 case T_REG:
6285 {
6286 const reg_entry *reg = intel_parser.reg = cur_token.reg;
64a0c779 6287
a724f0f4 6288 intel_match_token (T_REG);
64a0c779 6289
a724f0f4
JB
6290 /* Check for segment change. */
6291 if (cur_token.code == ':')
6292 {
6293 if (!(reg->reg_type & (SReg2 | SReg3)))
6294 {
6295 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6296 return 0;
6297 }
6298 else if (i.seg[i.mem_operands])
6299 as_warn (_("Extra segment override ignored"));
6300 else
6301 {
6302 if (!intel_parser.in_offset)
6303 intel_parser.is_mem = 1;
6304 switch (reg->reg_num)
6305 {
6306 case 0:
6307 i.seg[i.mem_operands] = &es;
6308 break;
6309 case 1:
6310 i.seg[i.mem_operands] = &cs;
6311 break;
6312 case 2:
6313 i.seg[i.mem_operands] = &ss;
6314 break;
6315 case 3:
6316 i.seg[i.mem_operands] = &ds;
6317 break;
6318 case 4:
6319 i.seg[i.mem_operands] = &fs;
6320 break;
6321 case 5:
6322 i.seg[i.mem_operands] = &gs;
6323 break;
6324 }
6325 }
6326 }
64a0c779 6327
a724f0f4
JB
6328 /* Not a segment register. Check for register scaling. */
6329 else if (cur_token.code == '*')
6330 {
6331 if (!intel_parser.in_bracket)
6332 {
6333 as_bad (_("Register scaling only allowed in memory operands"));
6334 return 0;
6335 }
64a0c779 6336
a724f0f4
JB
6337 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6338 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6339 else if (i.index_reg)
6340 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
64a0c779 6341
a724f0f4
JB
6342 /* What follows must be a valid scale. */
6343 intel_match_token ('*');
6344 i.index_reg = reg;
6345 i.types[this_operand] |= BaseIndex;
64a0c779 6346
a724f0f4
JB
6347 /* Set the scale after setting the register (otherwise,
6348 i386_scale will complain) */
6349 if (cur_token.code == '+' || cur_token.code == '-')
6350 {
6351 char *str, sign = cur_token.code;
6352 intel_match_token (cur_token.code);
6353 if (cur_token.code != T_CONST)
6354 {
6355 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6356 cur_token.str);
6357 return 0;
6358 }
6359 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6360 strcpy (str + 1, cur_token.str);
6361 *str = sign;
6362 if (!i386_scale (str))
6363 return 0;
6364 free (str);
6365 }
6366 else if (!i386_scale (cur_token.str))
64a0c779 6367 return 0;
a724f0f4
JB
6368 intel_match_token (cur_token.code);
6369 }
64a0c779 6370
a724f0f4
JB
6371 /* No scaling. If this is a memory operand, the register is either a
6372 base register (first occurrence) or an index register (second
6373 occurrence). */
6374 else if (intel_parser.in_bracket && !(reg->reg_type & (SReg2 | SReg3)))
6375 {
64a0c779 6376
a724f0f4
JB
6377 if (!i.base_reg)
6378 i.base_reg = reg;
6379 else if (!i.index_reg)
6380 i.index_reg = reg;
6381 else
6382 {
6383 as_bad (_("Too many register references in memory operand"));
6384 return 0;
6385 }
64a0c779 6386
a724f0f4
JB
6387 i.types[this_operand] |= BaseIndex;
6388 }
4a1805b1 6389
a724f0f4
JB
6390 /* Offset modifier. Add the register to the displacement string to be
6391 parsed as an immediate expression after we're done. */
6392 else if (intel_parser.in_offset)
6393 {
6394 as_warn (_("Using register names in OFFSET expressions is deprecated"));
6395 strcat (intel_parser.disp, reg->reg_name);
6396 }
64a0c779 6397
a724f0f4
JB
6398 /* It's neither base nor index nor offset. */
6399 else if (!intel_parser.is_mem)
6400 {
6401 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6402 i.op[this_operand].regs = reg;
6403 i.reg_operands++;
6404 }
6405 else
6406 {
6407 as_bad (_("Invalid use of register"));
6408 return 0;
6409 }
64a0c779 6410
a724f0f4
JB
6411 /* Since registers are not part of the displacement string (except
6412 when we're parsing offset operands), we may need to remove any
6413 preceding '+' from the displacement string. */
6414 if (*intel_parser.disp != '\0'
6415 && !intel_parser.in_offset)
6416 {
6417 char *s = intel_parser.disp;
6418 s += strlen (s) - 1;
6419 if (*s == '+')
6420 *s = '\0';
6421 }
4a1805b1 6422
a724f0f4
JB
6423 return 1;
6424 }
6425
6426 /* e11 BYTE
6427 | WORD
6428 | DWORD
6429 | FWORD
6430 | QWORD
6431 | TBYTE
6432 | OWORD
6433 | XMMWORD */
6434 case T_BYTE:
6435 case T_WORD:
6436 case T_DWORD:
6437 case T_FWORD:
6438 case T_QWORD:
6439 case T_TBYTE:
6440 case T_XMMWORD:
6441 intel_match_token (cur_token.code);
64a0c779 6442
a724f0f4
JB
6443 if (cur_token.code == T_PTR)
6444 return 1;
6445
6446 /* It must have been an identifier. */
6447 intel_putback_token ();
6448 cur_token.code = T_ID;
6449 /* FALLTHRU */
6450
6451 /* e11 id
6452 | constant */
6453 case T_ID:
6454 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
9306ca4a
JB
6455 {
6456 symbolS *symbolP;
6457
a724f0f4
JB
6458 /* The identifier represents a memory reference only if it's not
6459 preceded by an offset modifier and if it's not an equate. */
9306ca4a
JB
6460 symbolP = symbol_find(cur_token.str);
6461 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6462 intel_parser.is_mem = 1;
6463 }
a724f0f4 6464 /* FALLTHRU */
64a0c779 6465
a724f0f4
JB
6466 case T_CONST:
6467 case '-':
6468 case '+':
6469 {
6470 char *save_str, sign = 0;
64a0c779 6471
a724f0f4
JB
6472 /* Allow constants that start with `+' or `-'. */
6473 if (cur_token.code == '-' || cur_token.code == '+')
6474 {
6475 sign = cur_token.code;
6476 intel_match_token (cur_token.code);
6477 if (cur_token.code != T_CONST)
6478 {
6479 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6480 cur_token.str);
6481 return 0;
6482 }
6483 }
64a0c779 6484
a724f0f4
JB
6485 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6486 strcpy (save_str + !!sign, cur_token.str);
6487 if (sign)
6488 *save_str = sign;
64a0c779 6489
a724f0f4
JB
6490 /* Get the next token to check for register scaling. */
6491 intel_match_token (cur_token.code);
64a0c779 6492
a724f0f4
JB
6493 /* Check if this constant is a scaling factor for an index register. */
6494 if (cur_token.code == '*')
6495 {
6496 if (intel_match_token ('*') && cur_token.code == T_REG)
6497 {
6498 const reg_entry *reg = cur_token.reg;
6499
6500 if (!intel_parser.in_bracket)
6501 {
6502 as_bad (_("Register scaling only allowed in memory operands"));
6503 return 0;
6504 }
6505
6506 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6507 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6508 else if (i.index_reg)
6509 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6510
6511 /* The constant is followed by `* reg', so it must be
6512 a valid scale. */
6513 i.index_reg = reg;
6514 i.types[this_operand] |= BaseIndex;
6515
6516 /* Set the scale after setting the register (otherwise,
6517 i386_scale will complain) */
6518 if (!i386_scale (save_str))
64a0c779 6519 return 0;
a724f0f4
JB
6520 intel_match_token (T_REG);
6521
6522 /* Since registers are not part of the displacement
6523 string, we may need to remove any preceding '+' from
6524 the displacement string. */
6525 if (*intel_parser.disp != '\0')
6526 {
6527 char *s = intel_parser.disp;
6528 s += strlen (s) - 1;
6529 if (*s == '+')
6530 *s = '\0';
6531 }
6532
6533 free (save_str);
6534
6535 return 1;
6536 }
64a0c779 6537
a724f0f4
JB
6538 /* The constant was not used for register scaling. Since we have
6539 already consumed the token following `*' we now need to put it
6540 back in the stream. */
64a0c779 6541 intel_putback_token ();
a724f0f4 6542 }
64a0c779 6543
a724f0f4
JB
6544 /* Add the constant to the displacement string. */
6545 strcat (intel_parser.disp, save_str);
6546 free (save_str);
64a0c779 6547
a724f0f4
JB
6548 return 1;
6549 }
64a0c779
DN
6550 }
6551
64a0c779
DN
6552 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6553 return 0;
6554}
6555
64a0c779
DN
6556/* Match the given token against cur_token. If they match, read the next
6557 token from the operand string. */
6558static int
6559intel_match_token (code)
e5cb08ac 6560 int code;
64a0c779
DN
6561{
6562 if (cur_token.code == code)
6563 {
6564 intel_get_token ();
6565 return 1;
6566 }
6567 else
6568 {
0477af35 6569 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6570 return 0;
6571 }
6572}
6573
64a0c779
DN
6574/* Read a new token from intel_parser.op_string and store it in cur_token. */
6575static void
6576intel_get_token ()
6577{
6578 char *end_op;
6579 const reg_entry *reg;
6580 struct intel_token new_token;
6581
6582 new_token.code = T_NIL;
6583 new_token.reg = NULL;
6584 new_token.str = NULL;
6585
4a1805b1 6586 /* Free the memory allocated to the previous token and move
64a0c779
DN
6587 cur_token to prev_token. */
6588 if (prev_token.str)
6589 free (prev_token.str);
6590
6591 prev_token = cur_token;
6592
6593 /* Skip whitespace. */
6594 while (is_space_char (*intel_parser.op_string))
6595 intel_parser.op_string++;
6596
6597 /* Return an empty token if we find nothing else on the line. */
6598 if (*intel_parser.op_string == '\0')
6599 {
6600 cur_token = new_token;
6601 return;
6602 }
6603
6604 /* The new token cannot be larger than the remainder of the operand
6605 string. */
a724f0f4 6606 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
64a0c779
DN
6607 new_token.str[0] = '\0';
6608
6609 if (strchr ("0123456789", *intel_parser.op_string))
6610 {
6611 char *p = new_token.str;
6612 char *q = intel_parser.op_string;
6613 new_token.code = T_CONST;
6614
6615 /* Allow any kind of identifier char to encompass floating point and
6616 hexadecimal numbers. */
6617 while (is_identifier_char (*q))
6618 *p++ = *q++;
6619 *p = '\0';
6620
6621 /* Recognize special symbol names [0-9][bf]. */
6622 if (strlen (intel_parser.op_string) == 2
4a1805b1 6623 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6624 || intel_parser.op_string[1] == 'f'))
6625 new_token.code = T_ID;
6626 }
6627
64a0c779
DN
6628 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6629 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6630 {
6631 new_token.code = T_REG;
6632 new_token.reg = reg;
6633
6634 if (*intel_parser.op_string == REGISTER_PREFIX)
6635 {
6636 new_token.str[0] = REGISTER_PREFIX;
6637 new_token.str[1] = '\0';
6638 }
6639
6640 strcat (new_token.str, reg->reg_name);
6641 }
6642
6643 else if (is_identifier_char (*intel_parser.op_string))
6644 {
6645 char *p = new_token.str;
6646 char *q = intel_parser.op_string;
6647
6648 /* A '.' or '$' followed by an identifier char is an identifier.
6649 Otherwise, it's operator '.' followed by an expression. */
6650 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6651 {
9306ca4a
JB
6652 new_token.code = '.';
6653 new_token.str[0] = '.';
64a0c779
DN
6654 new_token.str[1] = '\0';
6655 }
6656 else
6657 {
6658 while (is_identifier_char (*q) || *q == '@')
6659 *p++ = *q++;
6660 *p = '\0';
6661
9306ca4a
JB
6662 if (strcasecmp (new_token.str, "NOT") == 0)
6663 new_token.code = '~';
6664
6665 else if (strcasecmp (new_token.str, "MOD") == 0)
6666 new_token.code = '%';
6667
6668 else if (strcasecmp (new_token.str, "AND") == 0)
6669 new_token.code = '&';
6670
6671 else if (strcasecmp (new_token.str, "OR") == 0)
6672 new_token.code = '|';
6673
6674 else if (strcasecmp (new_token.str, "XOR") == 0)
6675 new_token.code = '^';
6676
6677 else if (strcasecmp (new_token.str, "SHL") == 0)
6678 new_token.code = T_SHL;
6679
6680 else if (strcasecmp (new_token.str, "SHR") == 0)
6681 new_token.code = T_SHR;
6682
6683 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
6684 new_token.code = T_BYTE;
6685
6686 else if (strcasecmp (new_token.str, "WORD") == 0)
6687 new_token.code = T_WORD;
6688
6689 else if (strcasecmp (new_token.str, "DWORD") == 0)
6690 new_token.code = T_DWORD;
6691
9306ca4a
JB
6692 else if (strcasecmp (new_token.str, "FWORD") == 0)
6693 new_token.code = T_FWORD;
6694
64a0c779
DN
6695 else if (strcasecmp (new_token.str, "QWORD") == 0)
6696 new_token.code = T_QWORD;
6697
9306ca4a
JB
6698 else if (strcasecmp (new_token.str, "TBYTE") == 0
6699 /* XXX remove (gcc still uses it) */
6700 || strcasecmp (new_token.str, "XWORD") == 0)
6701 new_token.code = T_TBYTE;
6702
6703 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6704 || strcasecmp (new_token.str, "OWORD") == 0)
6705 new_token.code = T_XMMWORD;
64a0c779
DN
6706
6707 else if (strcasecmp (new_token.str, "PTR") == 0)
6708 new_token.code = T_PTR;
6709
6710 else if (strcasecmp (new_token.str, "SHORT") == 0)
6711 new_token.code = T_SHORT;
6712
6713 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6714 {
6715 new_token.code = T_OFFSET;
6716
6717 /* ??? This is not mentioned in the MASM grammar but gcc
6718 makes use of it with -mintel-syntax. OFFSET may be
6719 followed by FLAT: */
6720 if (strncasecmp (q, " FLAT:", 6) == 0)
6721 strcat (new_token.str, " FLAT:");
6722 }
6723
6724 /* ??? This is not mentioned in the MASM grammar. */
6725 else if (strcasecmp (new_token.str, "FLAT") == 0)
a724f0f4
JB
6726 {
6727 new_token.code = T_OFFSET;
6728 if (*q == ':')
6729 strcat (new_token.str, ":");
6730 else
6731 as_bad (_("`:' expected"));
6732 }
64a0c779
DN
6733
6734 else
6735 new_token.code = T_ID;
6736 }
6737 }
6738
9306ca4a
JB
6739 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6740 {
6741 new_token.code = *intel_parser.op_string;
6742 new_token.str[0] = *intel_parser.op_string;
6743 new_token.str[1] = '\0';
6744 }
6745
6746 else if (strchr ("<>", *intel_parser.op_string)
6747 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6748 {
6749 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6750 new_token.str[0] = *intel_parser.op_string;
6751 new_token.str[1] = *intel_parser.op_string;
6752 new_token.str[2] = '\0';
6753 }
6754
64a0c779 6755 else
0477af35 6756 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6757
6758 intel_parser.op_string += strlen (new_token.str);
6759 cur_token = new_token;
6760}
6761
64a0c779
DN
6762/* Put cur_token back into the token stream and make cur_token point to
6763 prev_token. */
6764static void
6765intel_putback_token ()
6766{
a724f0f4
JB
6767 if (cur_token.code != T_NIL)
6768 {
6769 intel_parser.op_string -= strlen (cur_token.str);
6770 free (cur_token.str);
6771 }
64a0c779 6772 cur_token = prev_token;
4a1805b1 6773
64a0c779
DN
6774 /* Forget prev_token. */
6775 prev_token.code = T_NIL;
6776 prev_token.reg = NULL;
6777 prev_token.str = NULL;
6778}
54cfded0 6779
a4447b93 6780int
54cfded0
AM
6781tc_x86_regname_to_dw2regnum (const char *regname)
6782{
6783 unsigned int regnum;
6784 unsigned int regnames_count;
6785 char *regnames_32[] =
6786 {
a4447b93
RH
6787 "eax", "ecx", "edx", "ebx",
6788 "esp", "ebp", "esi", "edi",
54cfded0
AM
6789 "eip"
6790 };
6791 char *regnames_64[] =
6792 {
6793 "rax", "rbx", "rcx", "rdx",
6794 "rdi", "rsi", "rbp", "rsp",
6795 "r8", "r9", "r10", "r11",
6796 "r12", "r13", "r14", "r15",
6797 "rip"
6798 };
6799 char **regnames;
6800
6801 if (flag_code == CODE_64BIT)
6802 {
6803 regnames = regnames_64;
0cea6190 6804 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6805 }
6806 else
6807 {
6808 regnames = regnames_32;
0cea6190 6809 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6810 }
6811
6812 for (regnum = 0; regnum < regnames_count; regnum++)
6813 if (strcmp (regname, regnames[regnum]) == 0)
6814 return regnum;
6815
54cfded0
AM
6816 return -1;
6817}
6818
6819void
6820tc_x86_frame_initial_instructions (void)
6821{
a4447b93
RH
6822 static unsigned int sp_regno;
6823
6824 if (!sp_regno)
6825 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6826 ? "rsp" : "esp");
6827
6828 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6829 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6830}
d2b2c203
DJ
6831
6832int
6833i386_elf_section_type (const char *str, size_t len)
6834{
6835 if (flag_code == CODE_64BIT
6836 && len == sizeof ("unwind") - 1
6837 && strncmp (str, "unwind", 6) == 0)
6838 return SHT_X86_64_UNWIND;
6839
6840 return -1;
6841}
bb41ade5
AM
6842
6843#ifdef TE_PE
6844void
6845tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6846{
6847 expressionS expr;
6848
6849 expr.X_op = O_secrel;
6850 expr.X_add_symbol = symbol;
6851 expr.X_add_number = 0;
6852 emit_expr (&expr, size);
6853}
6854#endif