]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
The VGATHER group of instructions requires that all three involved
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
d382c579
TG
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
47926f60 5 Free Software Foundation, Inc.
252b5132
RH
6
7 This file is part of GAS, the GNU Assembler.
8
9 GAS is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
ec2655a6 11 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
12 any later version.
13
14 GAS is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
21 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
252b5132 23
47926f60
KH
24/* Intel 80386 machine specific gas.
25 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 26 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 27 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
28 Bugs & suggestions are completely welcome. This is free software.
29 Please help us make it better. */
252b5132 30
252b5132 31#include "as.h"
3882b010 32#include "safe-ctype.h"
252b5132 33#include "subsegs.h"
316e2c05 34#include "dwarf2dbg.h"
54cfded0 35#include "dw2gencfi.h"
d2b2c203 36#include "elf/x86-64.h"
40fb9820 37#include "opcodes/i386-init.h"
252b5132 38
252b5132
RH
39#ifndef REGISTER_WARNINGS
40#define REGISTER_WARNINGS 1
41#endif
42
c3332e24 43#ifndef INFER_ADDR_PREFIX
eecb386c 44#define INFER_ADDR_PREFIX 1
c3332e24
AM
45#endif
46
29b0f896
AM
47#ifndef DEFAULT_ARCH
48#define DEFAULT_ARCH "i386"
246fcdee 49#endif
252b5132 50
edde18a5
AM
51#ifndef INLINE
52#if __GNUC__ >= 2
53#define INLINE __inline__
54#else
55#define INLINE
56#endif
57#endif
58
6305a203
L
59/* Prefixes will be emitted in the order defined below.
60 WAIT_PREFIX must be the first prefix since FWAIT is really is an
61 instruction, and so must come before any prefixes.
62 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 63 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
64#define WAIT_PREFIX 0
65#define SEG_PREFIX 1
66#define ADDR_PREFIX 2
67#define DATA_PREFIX 3
c32fa91d 68#define REP_PREFIX 4
42164a71 69#define HLE_PREFIX REP_PREFIX
c32fa91d
L
70#define LOCK_PREFIX 5
71#define REX_PREFIX 6 /* must come last. */
72#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
73
74/* we define the syntax here (modulo base,index,scale syntax) */
75#define REGISTER_PREFIX '%'
76#define IMMEDIATE_PREFIX '$'
77#define ABSOLUTE_PREFIX '*'
78
79/* these are the instruction mnemonic suffixes in AT&T syntax or
80 memory operand size in Intel syntax. */
81#define WORD_MNEM_SUFFIX 'w'
82#define BYTE_MNEM_SUFFIX 'b'
83#define SHORT_MNEM_SUFFIX 's'
84#define LONG_MNEM_SUFFIX 'l'
85#define QWORD_MNEM_SUFFIX 'q'
86#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 87#define YMMWORD_MNEM_SUFFIX 'y'
6305a203
L
88/* Intel Syntax. Use a non-ascii letter since since it never appears
89 in instructions. */
90#define LONG_DOUBLE_MNEM_SUFFIX '\1'
91
92#define END_OF_INSN '\0'
93
94/*
95 'templates' is for grouping together 'template' structures for opcodes
96 of the same name. This is only used for storing the insns in the grand
97 ole hash table of insns.
98 The templates themselves start at START and range up to (but not including)
99 END.
100 */
101typedef struct
102{
d3ce72d0
NC
103 const insn_template *start;
104 const insn_template *end;
6305a203
L
105}
106templates;
107
108/* 386 operand encoding bytes: see 386 book for details of this. */
109typedef struct
110{
111 unsigned int regmem; /* codes register or memory operand */
112 unsigned int reg; /* codes register operand (or extended opcode) */
113 unsigned int mode; /* how to interpret regmem & reg */
114}
115modrm_byte;
116
117/* x86-64 extension prefix. */
118typedef int rex_byte;
119
6305a203
L
120/* 386 opcode byte to code indirect addressing. */
121typedef struct
122{
123 unsigned base;
124 unsigned index;
125 unsigned scale;
126}
127sib_byte;
128
6305a203
L
129/* x86 arch names, types and features */
130typedef struct
131{
132 const char *name; /* arch name */
8a2c8fef 133 unsigned int len; /* arch string length */
6305a203
L
134 enum processor_type type; /* arch type */
135 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 136 unsigned int skip; /* show_arch should skip this. */
22109423 137 unsigned int negated; /* turn off indicated flags. */
6305a203
L
138}
139arch_entry;
140
78f12dd3 141static void update_code_flag (int, int);
e3bb37b5
L
142static void set_code_flag (int);
143static void set_16bit_gcc_code_flag (int);
144static void set_intel_syntax (int);
1efbbeb4 145static void set_intel_mnemonic (int);
db51cc60 146static void set_allow_index_reg (int);
7bab8ab5 147static void set_check (int);
e3bb37b5 148static void set_cpu_arch (int);
6482c264 149#ifdef TE_PE
e3bb37b5 150static void pe_directive_secrel (int);
6482c264 151#endif
e3bb37b5
L
152static void signed_cons (int);
153static char *output_invalid (int c);
ee86248c
JB
154static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
155 const char *);
156static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
157 const char *);
a7619375 158static int i386_att_operand (char *);
e3bb37b5 159static int i386_intel_operand (char *, int);
ee86248c
JB
160static int i386_intel_simplify (expressionS *);
161static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
162static const reg_entry *parse_register (char *, char **);
163static char *parse_insn (char *, char *);
164static char *parse_operands (char *, const char *);
165static void swap_operands (void);
4d456e3d 166static void swap_2_operands (int, int);
e3bb37b5
L
167static void optimize_imm (void);
168static void optimize_disp (void);
d3ce72d0 169static const insn_template *match_template (void);
e3bb37b5
L
170static int check_string (void);
171static int process_suffix (void);
172static int check_byte_reg (void);
173static int check_long_reg (void);
174static int check_qword_reg (void);
175static int check_word_reg (void);
176static int finalize_imm (void);
177static int process_operands (void);
178static const seg_entry *build_modrm_byte (void);
179static void output_insn (void);
180static void output_imm (fragS *, offsetT);
181static void output_disp (fragS *, offsetT);
29b0f896 182#ifndef I386COFF
e3bb37b5 183static void s_bss (int);
252b5132 184#endif
17d4e2a2
L
185#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
186static void handle_large_common (int small ATTRIBUTE_UNUSED);
187#endif
252b5132 188
a847613f 189static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 190
c0f3af97
L
191/* VEX prefix. */
192typedef struct
193{
194 /* VEX prefix is either 2 byte or 3 byte. */
195 unsigned char bytes[3];
196 unsigned int length;
197 /* Destination or source register specifier. */
198 const reg_entry *register_specifier;
199} vex_prefix;
200
252b5132 201/* 'md_assemble ()' gathers together information and puts it into a
47926f60 202 i386_insn. */
252b5132 203
520dc8e8
AM
204union i386_op
205 {
206 expressionS *disps;
207 expressionS *imms;
208 const reg_entry *regs;
209 };
210
a65babc9
L
211enum i386_error
212 {
86e026a4 213 operand_size_mismatch,
a65babc9
L
214 operand_type_mismatch,
215 register_type_mismatch,
216 number_of_operands_mismatch,
217 invalid_instruction_suffix,
218 bad_imm4,
219 old_gcc_only,
220 unsupported_with_intel_mnemonic,
221 unsupported_syntax,
6c30d220
L
222 unsupported,
223 invalid_vsib_address,
7bab8ab5 224 invalid_vector_register_set,
6c30d220 225 unsupported_vector_index_register
a65babc9
L
226 };
227
252b5132
RH
228struct _i386_insn
229 {
47926f60 230 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 231 insn_template tm;
252b5132 232
7d5e4556
L
233 /* SUFFIX holds the instruction size suffix for byte, word, dword
234 or qword, if given. */
252b5132
RH
235 char suffix;
236
47926f60 237 /* OPERANDS gives the number of given operands. */
252b5132
RH
238 unsigned int operands;
239
240 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
241 of given register, displacement, memory operands and immediate
47926f60 242 operands. */
252b5132
RH
243 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
244
245 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 246 use OP[i] for the corresponding operand. */
40fb9820 247 i386_operand_type types[MAX_OPERANDS];
252b5132 248
520dc8e8
AM
249 /* Displacement expression, immediate expression, or register for each
250 operand. */
251 union i386_op op[MAX_OPERANDS];
252b5132 252
3e73aa7c
JH
253 /* Flags for operands. */
254 unsigned int flags[MAX_OPERANDS];
255#define Operand_PCrel 1
256
252b5132 257 /* Relocation type for operand */
f86103b7 258 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 259
252b5132
RH
260 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
261 the base index byte below. */
262 const reg_entry *base_reg;
263 const reg_entry *index_reg;
264 unsigned int log2_scale_factor;
265
266 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 267 explicit segment overrides are given. */
ce8a8b2f 268 const seg_entry *seg[2];
252b5132
RH
269
270 /* PREFIX holds all the given prefix opcodes (usually null).
271 PREFIXES is the number of prefix opcodes. */
272 unsigned int prefixes;
273 unsigned char prefix[MAX_PREFIXES];
274
275 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 276 addressing modes of this insn are encoded. */
252b5132 277 modrm_byte rm;
3e73aa7c 278 rex_byte rex;
252b5132 279 sib_byte sib;
c0f3af97 280 vex_prefix vex;
b6169b20
L
281
282 /* Swap operand in encoding. */
4473e004 283 unsigned int swap_operand;
891edac4 284
a501d77e
L
285 /* Prefer 8bit or 32bit displacement in encoding. */
286 enum
287 {
288 disp_encoding_default = 0,
289 disp_encoding_8bit,
290 disp_encoding_32bit
291 } disp_encoding;
f8a5c266 292
42164a71
L
293 /* Have HLE prefix. */
294 unsigned int have_hle;
295
891edac4 296 /* Error message. */
a65babc9 297 enum i386_error error;
252b5132
RH
298 };
299
300typedef struct _i386_insn i386_insn;
301
302/* List of chars besides those in app.c:symbol_chars that can start an
303 operand. Used to prevent the scrubber eating vital white-space. */
32137342 304const char extra_symbol_chars[] = "*%-(["
252b5132 305#ifdef LEX_AT
32137342
NC
306 "@"
307#endif
308#ifdef LEX_QM
309 "?"
252b5132 310#endif
32137342 311 ;
252b5132 312
29b0f896
AM
313#if (defined (TE_I386AIX) \
314 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 315 && !defined (TE_GNU) \
29b0f896 316 && !defined (TE_LINUX) \
8d63c93e
RM
317 && !defined (TE_NACL) \
318 && !defined (TE_NETWARE) \
29b0f896 319 && !defined (TE_FreeBSD) \
5b806d27 320 && !defined (TE_DragonFly) \
29b0f896 321 && !defined (TE_NetBSD)))
252b5132 322/* This array holds the chars that always start a comment. If the
b3b91714
AM
323 pre-processor is disabled, these aren't very useful. The option
324 --divide will remove '/' from this list. */
325const char *i386_comment_chars = "#/";
326#define SVR4_COMMENT_CHARS 1
252b5132 327#define PREFIX_SEPARATOR '\\'
252b5132 328
b3b91714
AM
329#else
330const char *i386_comment_chars = "#";
331#define PREFIX_SEPARATOR '/'
332#endif
333
252b5132
RH
334/* This array holds the chars that only start a comment at the beginning of
335 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
336 .line and .file directives will appear in the pre-processed output.
337 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 338 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
339 #NO_APP at the beginning of its output.
340 Also note that comments started like this one will always work if
252b5132 341 '/' isn't otherwise defined. */
b3b91714 342const char line_comment_chars[] = "#/";
252b5132 343
63a0b638 344const char line_separator_chars[] = ";";
252b5132 345
ce8a8b2f
AM
346/* Chars that can be used to separate mant from exp in floating point
347 nums. */
252b5132
RH
348const char EXP_CHARS[] = "eE";
349
ce8a8b2f
AM
350/* Chars that mean this number is a floating point constant
351 As in 0f12.456
352 or 0d1.2345e12. */
252b5132
RH
353const char FLT_CHARS[] = "fFdDxX";
354
ce8a8b2f 355/* Tables for lexical analysis. */
252b5132
RH
356static char mnemonic_chars[256];
357static char register_chars[256];
358static char operand_chars[256];
359static char identifier_chars[256];
360static char digit_chars[256];
361
ce8a8b2f 362/* Lexical macros. */
252b5132
RH
363#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
364#define is_operand_char(x) (operand_chars[(unsigned char) x])
365#define is_register_char(x) (register_chars[(unsigned char) x])
366#define is_space_char(x) ((x) == ' ')
367#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
368#define is_digit_char(x) (digit_chars[(unsigned char) x])
369
0234cb7c 370/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
371static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
372
373/* md_assemble() always leaves the strings it's passed unaltered. To
374 effect this we maintain a stack of saved characters that we've smashed
375 with '\0's (indicating end of strings for various sub-fields of the
47926f60 376 assembler instruction). */
252b5132 377static char save_stack[32];
ce8a8b2f 378static char *save_stack_p;
252b5132
RH
379#define END_STRING_AND_SAVE(s) \
380 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
381#define RESTORE_END_STRING(s) \
382 do { *(s) = *--save_stack_p; } while (0)
383
47926f60 384/* The instruction we're assembling. */
252b5132
RH
385static i386_insn i;
386
387/* Possible templates for current insn. */
388static const templates *current_templates;
389
31b2323c
L
390/* Per instruction expressionS buffers: max displacements & immediates. */
391static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
392static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 393
47926f60 394/* Current operand we are working on. */
ee86248c 395static int this_operand = -1;
252b5132 396
3e73aa7c
JH
397/* We support four different modes. FLAG_CODE variable is used to distinguish
398 these. */
399
400enum flag_code {
401 CODE_32BIT,
402 CODE_16BIT,
403 CODE_64BIT };
404
405static enum flag_code flag_code;
4fa24527 406static unsigned int object_64bit;
862be3fb 407static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
408static int use_rela_relocations = 0;
409
7af8ed2d
NC
410#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
411 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
412 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
413
351f65ca
L
414/* The ELF ABI to use. */
415enum x86_elf_abi
416{
417 I386_ABI,
7f56bc95
L
418 X86_64_ABI,
419 X86_64_X32_ABI
351f65ca
L
420};
421
422static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 423#endif
351f65ca 424
3e73aa7c 425/* The names used to print error messages. */
b77a7acd 426static const char *flag_code_names[] =
3e73aa7c
JH
427 {
428 "32",
429 "16",
430 "64"
431 };
252b5132 432
47926f60
KH
433/* 1 for intel syntax,
434 0 if att syntax. */
435static int intel_syntax = 0;
252b5132 436
1efbbeb4
L
437/* 1 for intel mnemonic,
438 0 if att mnemonic. */
439static int intel_mnemonic = !SYSV386_COMPAT;
440
5209009a 441/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
442static int old_gcc = OLDGCC_COMPAT;
443
a60de03c
JB
444/* 1 if pseudo registers are permitted. */
445static int allow_pseudo_reg = 0;
446
47926f60
KH
447/* 1 if register prefix % not required. */
448static int allow_naked_reg = 0;
252b5132 449
ba104c83 450/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
451static int allow_index_reg = 0;
452
7bab8ab5 453static enum check_kind
daf50ae7 454 {
7bab8ab5
JB
455 check_none = 0,
456 check_warning,
457 check_error
daf50ae7 458 }
7bab8ab5 459sse_check, operand_check = check_warning;
daf50ae7 460
2ca3ace5
L
461/* Register prefix used for error message. */
462static const char *register_prefix = "%";
463
47926f60
KH
464/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
465 leave, push, and pop instructions so that gcc has the same stack
466 frame as in 32 bit mode. */
467static char stackop_size = '\0';
eecb386c 468
12b55ccc
L
469/* Non-zero to optimize code alignment. */
470int optimize_align_code = 1;
471
47926f60
KH
472/* Non-zero to quieten some warnings. */
473static int quiet_warnings = 0;
a38cf1db 474
47926f60
KH
475/* CPU name. */
476static const char *cpu_arch_name = NULL;
6305a203 477static char *cpu_sub_arch_name = NULL;
a38cf1db 478
47926f60 479/* CPU feature flags. */
40fb9820
L
480static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
481
ccc9c027
L
482/* If we have selected a cpu we are generating instructions for. */
483static int cpu_arch_tune_set = 0;
484
9103f4f4 485/* Cpu we are generating instructions for. */
fbf3f584 486enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
487
488/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 489static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 490
ccc9c027 491/* CPU instruction set architecture used. */
fbf3f584 492enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 493
9103f4f4 494/* CPU feature flags of instruction set architecture used. */
fbf3f584 495i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 496
fddf5b5b
AM
497/* If set, conditional jumps are not automatically promoted to handle
498 larger than a byte offset. */
499static unsigned int no_cond_jump_promotion = 0;
500
c0f3af97
L
501/* Encode SSE instructions with VEX prefix. */
502static unsigned int sse2avx;
503
539f890d
L
504/* Encode scalar AVX instructions with specific vector length. */
505static enum
506 {
507 vex128 = 0,
508 vex256
509 } avxscalar;
510
29b0f896 511/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 512static symbolS *GOT_symbol;
29b0f896 513
a4447b93
RH
514/* The dwarf2 return column, adjusted for 32 or 64 bit. */
515unsigned int x86_dwarf2_return_column;
516
517/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
518int x86_cie_data_alignment;
519
252b5132 520/* Interface to relax_segment.
fddf5b5b
AM
521 There are 3 major relax states for 386 jump insns because the
522 different types of jumps add different sizes to frags when we're
523 figuring out what sort of jump to choose to reach a given label. */
252b5132 524
47926f60 525/* Types. */
93c2a809
AM
526#define UNCOND_JUMP 0
527#define COND_JUMP 1
528#define COND_JUMP86 2
fddf5b5b 529
47926f60 530/* Sizes. */
252b5132
RH
531#define CODE16 1
532#define SMALL 0
29b0f896 533#define SMALL16 (SMALL | CODE16)
252b5132 534#define BIG 2
29b0f896 535#define BIG16 (BIG | CODE16)
252b5132
RH
536
537#ifndef INLINE
538#ifdef __GNUC__
539#define INLINE __inline__
540#else
541#define INLINE
542#endif
543#endif
544
fddf5b5b
AM
545#define ENCODE_RELAX_STATE(type, size) \
546 ((relax_substateT) (((type) << 2) | (size)))
547#define TYPE_FROM_RELAX_STATE(s) \
548 ((s) >> 2)
549#define DISP_SIZE_FROM_RELAX_STATE(s) \
550 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
551
552/* This table is used by relax_frag to promote short jumps to long
553 ones where necessary. SMALL (short) jumps may be promoted to BIG
554 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
555 don't allow a short jump in a 32 bit code segment to be promoted to
556 a 16 bit offset jump because it's slower (requires data size
557 prefix), and doesn't work, unless the destination is in the bottom
558 64k of the code segment (The top 16 bits of eip are zeroed). */
559
560const relax_typeS md_relax_table[] =
561{
24eab124
AM
562 /* The fields are:
563 1) most positive reach of this state,
564 2) most negative reach of this state,
93c2a809 565 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 566 4) which index into the table to try if we can't fit into this one. */
252b5132 567
fddf5b5b 568 /* UNCOND_JUMP states. */
93c2a809
AM
569 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
570 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
571 /* dword jmp adds 4 bytes to frag:
572 0 extra opcode bytes, 4 displacement bytes. */
252b5132 573 {0, 0, 4, 0},
93c2a809
AM
574 /* word jmp adds 2 byte2 to frag:
575 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
576 {0, 0, 2, 0},
577
93c2a809
AM
578 /* COND_JUMP states. */
579 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
580 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
581 /* dword conditionals adds 5 bytes to frag:
582 1 extra opcode byte, 4 displacement bytes. */
583 {0, 0, 5, 0},
fddf5b5b 584 /* word conditionals add 3 bytes to frag:
93c2a809
AM
585 1 extra opcode byte, 2 displacement bytes. */
586 {0, 0, 3, 0},
587
588 /* COND_JUMP86 states. */
589 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
590 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
591 /* dword conditionals adds 5 bytes to frag:
592 1 extra opcode byte, 4 displacement bytes. */
593 {0, 0, 5, 0},
594 /* word conditionals add 4 bytes to frag:
595 1 displacement byte and a 3 byte long branch insn. */
596 {0, 0, 4, 0}
252b5132
RH
597};
598
9103f4f4
L
599static const arch_entry cpu_arch[] =
600{
89507696
JB
601 /* Do not replace the first two entries - i386_target_format()
602 relies on them being there in this order. */
8a2c8fef 603 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
22109423 604 CPU_GENERIC32_FLAGS, 0, 0 },
8a2c8fef 605 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
22109423 606 CPU_GENERIC64_FLAGS, 0, 0 },
8a2c8fef 607 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
22109423 608 CPU_NONE_FLAGS, 0, 0 },
8a2c8fef 609 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
22109423 610 CPU_I186_FLAGS, 0, 0 },
8a2c8fef 611 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
22109423 612 CPU_I286_FLAGS, 0, 0 },
8a2c8fef 613 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
22109423 614 CPU_I386_FLAGS, 0, 0 },
8a2c8fef 615 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
22109423 616 CPU_I486_FLAGS, 0, 0 },
8a2c8fef 617 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
22109423 618 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 619 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
22109423 620 CPU_I686_FLAGS, 0, 0 },
8a2c8fef 621 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
22109423 622 CPU_I586_FLAGS, 0, 0 },
8a2c8fef 623 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
22109423 624 CPU_PENTIUMPRO_FLAGS, 0, 0 },
8a2c8fef 625 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
22109423 626 CPU_P2_FLAGS, 0, 0 },
8a2c8fef 627 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
22109423 628 CPU_P3_FLAGS, 0, 0 },
8a2c8fef 629 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
22109423 630 CPU_P4_FLAGS, 0, 0 },
8a2c8fef 631 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
22109423 632 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 633 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
22109423 634 CPU_NOCONA_FLAGS, 0, 0 },
8a2c8fef 635 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
22109423 636 CPU_CORE_FLAGS, 1, 0 },
8a2c8fef 637 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
22109423 638 CPU_CORE_FLAGS, 0, 0 },
8a2c8fef 639 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
22109423 640 CPU_CORE2_FLAGS, 1, 0 },
8a2c8fef 641 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
22109423 642 CPU_CORE2_FLAGS, 0, 0 },
8a2c8fef 643 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
22109423 644 CPU_COREI7_FLAGS, 0, 0 },
8a2c8fef 645 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
22109423 646 CPU_L1OM_FLAGS, 0, 0 },
7a9068fe
L
647 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
648 CPU_K1OM_FLAGS, 0, 0 },
8a2c8fef 649 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
22109423 650 CPU_K6_FLAGS, 0, 0 },
8a2c8fef 651 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
22109423 652 CPU_K6_2_FLAGS, 0, 0 },
8a2c8fef 653 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
22109423 654 CPU_ATHLON_FLAGS, 0, 0 },
8a2c8fef 655 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
22109423 656 CPU_K8_FLAGS, 1, 0 },
8a2c8fef 657 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
22109423 658 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 659 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
22109423 660 CPU_K8_FLAGS, 0, 0 },
8a2c8fef 661 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
22109423 662 CPU_AMDFAM10_FLAGS, 0, 0 },
8aedb9fe 663 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
22109423 664 CPU_BDVER1_FLAGS, 0, 0 },
8aedb9fe 665 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
af2f724e 666 CPU_BDVER2_FLAGS, 0, 0 },
8a2c8fef 667 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
22109423 668 CPU_8087_FLAGS, 0, 0 },
8a2c8fef 669 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
22109423 670 CPU_287_FLAGS, 0, 0 },
8a2c8fef 671 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
22109423 672 CPU_387_FLAGS, 0, 0 },
8a2c8fef 673 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
22109423 674 CPU_ANY87_FLAGS, 0, 1 },
8a2c8fef 675 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
22109423 676 CPU_MMX_FLAGS, 0, 0 },
8a2c8fef 677 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
22109423 678 CPU_3DNOWA_FLAGS, 0, 1 },
8a2c8fef 679 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
22109423 680 CPU_SSE_FLAGS, 0, 0 },
8a2c8fef 681 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
22109423 682 CPU_SSE2_FLAGS, 0, 0 },
8a2c8fef 683 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
22109423 684 CPU_SSE3_FLAGS, 0, 0 },
8a2c8fef 685 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
22109423 686 CPU_SSSE3_FLAGS, 0, 0 },
8a2c8fef 687 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
22109423 688 CPU_SSE4_1_FLAGS, 0, 0 },
8a2c8fef 689 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
22109423 690 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 691 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
22109423 692 CPU_SSE4_2_FLAGS, 0, 0 },
8a2c8fef 693 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
22109423 694 CPU_ANY_SSE_FLAGS, 0, 1 },
8a2c8fef 695 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
22109423 696 CPU_AVX_FLAGS, 0, 0 },
6c30d220
L
697 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
698 CPU_AVX2_FLAGS, 0, 0 },
8a2c8fef 699 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
22109423 700 CPU_ANY_AVX_FLAGS, 0, 1 },
8a2c8fef 701 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
22109423 702 CPU_VMX_FLAGS, 0, 0 },
8729a6f6
L
703 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
704 CPU_VMFUNC_FLAGS, 0, 0 },
8a2c8fef 705 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
22109423 706 CPU_SMX_FLAGS, 0, 0 },
8a2c8fef 707 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
22109423 708 CPU_XSAVE_FLAGS, 0, 0 },
c7b8aa3a 709 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
22109423 710 CPU_XSAVEOPT_FLAGS, 0, 0 },
8a2c8fef 711 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
22109423 712 CPU_AES_FLAGS, 0, 0 },
8a2c8fef 713 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
22109423 714 CPU_PCLMUL_FLAGS, 0, 0 },
8a2c8fef 715 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
22109423 716 CPU_PCLMUL_FLAGS, 1, 0 },
c7b8aa3a 717 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
22109423 718 CPU_FSGSBASE_FLAGS, 0, 0 },
c7b8aa3a 719 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
22109423 720 CPU_RDRND_FLAGS, 0, 0 },
c7b8aa3a 721 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
22109423 722 CPU_F16C_FLAGS, 0, 0 },
6c30d220
L
723 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
724 CPU_BMI2_FLAGS, 0, 0 },
8a2c8fef 725 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
22109423 726 CPU_FMA_FLAGS, 0, 0 },
8a2c8fef 727 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
22109423 728 CPU_FMA4_FLAGS, 0, 0 },
8a2c8fef 729 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
22109423 730 CPU_XOP_FLAGS, 0, 0 },
8a2c8fef 731 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
22109423 732 CPU_LWP_FLAGS, 0, 0 },
8a2c8fef 733 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
22109423 734 CPU_MOVBE_FLAGS, 0, 0 },
8a2c8fef 735 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
22109423 736 CPU_EPT_FLAGS, 0, 0 },
6c30d220
L
737 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
738 CPU_LZCNT_FLAGS, 0, 0 },
42164a71
L
739 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
740 CPU_HLE_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
742 CPU_RTM_FLAGS, 0, 0 },
6c30d220
L
743 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
744 CPU_INVPCID_FLAGS, 0, 0 },
8a2c8fef 745 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
22109423
L
746 CPU_CLFLUSH_FLAGS, 0, 0 },
747 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
748 CPU_NOP_FLAGS, 0, 0 },
8a2c8fef 749 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
22109423 750 CPU_SYSCALL_FLAGS, 0, 0 },
8a2c8fef 751 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
22109423 752 CPU_RDTSCP_FLAGS, 0, 0 },
8a2c8fef 753 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
22109423 754 CPU_3DNOW_FLAGS, 0, 0 },
8a2c8fef 755 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
22109423 756 CPU_3DNOWA_FLAGS, 0, 0 },
8a2c8fef 757 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
22109423 758 CPU_PADLOCK_FLAGS, 0, 0 },
8a2c8fef 759 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
22109423 760 CPU_SVME_FLAGS, 1, 0 },
8a2c8fef 761 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
22109423 762 CPU_SVME_FLAGS, 0, 0 },
8a2c8fef 763 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
22109423 764 CPU_SSE4A_FLAGS, 0, 0 },
8a2c8fef 765 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
22109423 766 CPU_ABM_FLAGS, 0, 0 },
87973e9f
QN
767 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
768 CPU_BMI_FLAGS, 0, 0 },
2a2a0f38
QN
769 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
770 CPU_TBM_FLAGS, 0, 0 },
e2e1fcde
L
771 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
772 CPU_ADX_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
774 CPU_RDSEED_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
776 CPU_PRFCHW_FLAGS, 0, 0 },
e413e4e9
AM
777};
778
704209c0 779#ifdef I386COFF
a6c24e68
NC
780/* Like s_lcomm_internal in gas/read.c but the alignment string
781 is allowed to be optional. */
782
783static symbolS *
784pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
785{
786 addressT align = 0;
787
788 SKIP_WHITESPACE ();
789
7ab9ffdd 790 if (needs_align
a6c24e68
NC
791 && *input_line_pointer == ',')
792 {
793 align = parse_align (needs_align - 1);
7ab9ffdd 794
a6c24e68
NC
795 if (align == (addressT) -1)
796 return NULL;
797 }
798 else
799 {
800 if (size >= 8)
801 align = 3;
802 else if (size >= 4)
803 align = 2;
804 else if (size >= 2)
805 align = 1;
806 else
807 align = 0;
808 }
809
810 bss_alloc (symbolP, size, align);
811 return symbolP;
812}
813
704209c0 814static void
a6c24e68
NC
815pe_lcomm (int needs_align)
816{
817 s_comm_internal (needs_align * 2, pe_lcomm_internal);
818}
704209c0 819#endif
a6c24e68 820
29b0f896
AM
821const pseudo_typeS md_pseudo_table[] =
822{
823#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
824 {"align", s_align_bytes, 0},
825#else
826 {"align", s_align_ptwo, 0},
827#endif
828 {"arch", set_cpu_arch, 0},
829#ifndef I386COFF
830 {"bss", s_bss, 0},
a6c24e68
NC
831#else
832 {"lcomm", pe_lcomm, 1},
29b0f896
AM
833#endif
834 {"ffloat", float_cons, 'f'},
835 {"dfloat", float_cons, 'd'},
836 {"tfloat", float_cons, 'x'},
837 {"value", cons, 2},
d182319b 838 {"slong", signed_cons, 4},
29b0f896
AM
839 {"noopt", s_ignore, 0},
840 {"optim", s_ignore, 0},
841 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
842 {"code16", set_code_flag, CODE_16BIT},
843 {"code32", set_code_flag, CODE_32BIT},
844 {"code64", set_code_flag, CODE_64BIT},
845 {"intel_syntax", set_intel_syntax, 1},
846 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
847 {"intel_mnemonic", set_intel_mnemonic, 1},
848 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
849 {"allow_index_reg", set_allow_index_reg, 1},
850 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
851 {"sse_check", set_check, 0},
852 {"operand_check", set_check, 1},
3b22753a
L
853#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
854 {"largecomm", handle_large_common, 0},
07a53e5c 855#else
e3bb37b5 856 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
857 {"loc", dwarf2_directive_loc, 0},
858 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 859#endif
6482c264
NC
860#ifdef TE_PE
861 {"secrel32", pe_directive_secrel, 0},
862#endif
29b0f896
AM
863 {0, 0, 0}
864};
865
866/* For interface with expression (). */
867extern char *input_line_pointer;
868
869/* Hash table for instruction mnemonic lookup. */
870static struct hash_control *op_hash;
871
872/* Hash table for register lookup. */
873static struct hash_control *reg_hash;
874\f
252b5132 875void
e3bb37b5 876i386_align_code (fragS *fragP, int count)
252b5132 877{
ce8a8b2f
AM
878 /* Various efficient no-op patterns for aligning code labels.
879 Note: Don't try to assemble the instructions in the comments.
880 0L and 0w are not legal. */
252b5132
RH
881 static const char f32_1[] =
882 {0x90}; /* nop */
883 static const char f32_2[] =
ccc9c027 884 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
885 static const char f32_3[] =
886 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
887 static const char f32_4[] =
888 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
889 static const char f32_5[] =
890 {0x90, /* nop */
891 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
892 static const char f32_6[] =
893 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
894 static const char f32_7[] =
895 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
896 static const char f32_8[] =
897 {0x90, /* nop */
898 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
899 static const char f32_9[] =
900 {0x89,0xf6, /* movl %esi,%esi */
901 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
902 static const char f32_10[] =
903 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
904 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
905 static const char f32_11[] =
906 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
907 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
908 static const char f32_12[] =
909 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
910 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
911 static const char f32_13[] =
912 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
913 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
914 static const char f32_14[] =
915 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
916 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
c3332e24
AM
917 static const char f16_3[] =
918 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
919 static const char f16_4[] =
920 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
921 static const char f16_5[] =
922 {0x90, /* nop */
923 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
924 static const char f16_6[] =
925 {0x89,0xf6, /* mov %si,%si */
926 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
927 static const char f16_7[] =
928 {0x8d,0x74,0x00, /* lea 0(%si),%si */
929 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
930 static const char f16_8[] =
931 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
932 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
76bc74dc
L
933 static const char jump_31[] =
934 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
935 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
936 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
937 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
252b5132
RH
938 static const char *const f32_patt[] = {
939 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 940 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132
RH
941 };
942 static const char *const f16_patt[] = {
76bc74dc 943 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 944 };
ccc9c027
L
945 /* nopl (%[re]ax) */
946 static const char alt_3[] =
947 {0x0f,0x1f,0x00};
948 /* nopl 0(%[re]ax) */
949 static const char alt_4[] =
950 {0x0f,0x1f,0x40,0x00};
951 /* nopl 0(%[re]ax,%[re]ax,1) */
952 static const char alt_5[] =
953 {0x0f,0x1f,0x44,0x00,0x00};
954 /* nopw 0(%[re]ax,%[re]ax,1) */
955 static const char alt_6[] =
956 {0x66,0x0f,0x1f,0x44,0x00,0x00};
957 /* nopl 0L(%[re]ax) */
958 static const char alt_7[] =
959 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
960 /* nopl 0L(%[re]ax,%[re]ax,1) */
961 static const char alt_8[] =
962 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
963 /* nopw 0L(%[re]ax,%[re]ax,1) */
964 static const char alt_9[] =
965 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
966 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
967 static const char alt_10[] =
968 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
969 /* data16
970 nopw %cs:0L(%[re]ax,%[re]ax,1) */
971 static const char alt_long_11[] =
972 {0x66,
973 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
974 /* data16
975 data16
976 nopw %cs:0L(%[re]ax,%[re]ax,1) */
977 static const char alt_long_12[] =
978 {0x66,
979 0x66,
980 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
981 /* data16
982 data16
983 data16
984 nopw %cs:0L(%[re]ax,%[re]ax,1) */
985 static const char alt_long_13[] =
986 {0x66,
987 0x66,
988 0x66,
989 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
990 /* data16
991 data16
992 data16
993 data16
994 nopw %cs:0L(%[re]ax,%[re]ax,1) */
995 static const char alt_long_14[] =
996 {0x66,
997 0x66,
998 0x66,
999 0x66,
1000 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1001 /* data16
1002 data16
1003 data16
1004 data16
1005 data16
1006 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1007 static const char alt_long_15[] =
1008 {0x66,
1009 0x66,
1010 0x66,
1011 0x66,
1012 0x66,
1013 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1014 /* nopl 0(%[re]ax,%[re]ax,1)
1015 nopw 0(%[re]ax,%[re]ax,1) */
1016 static const char alt_short_11[] =
1017 {0x0f,0x1f,0x44,0x00,0x00,
1018 0x66,0x0f,0x1f,0x44,0x00,0x00};
1019 /* nopw 0(%[re]ax,%[re]ax,1)
1020 nopw 0(%[re]ax,%[re]ax,1) */
1021 static const char alt_short_12[] =
1022 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1023 0x66,0x0f,0x1f,0x44,0x00,0x00};
1024 /* nopw 0(%[re]ax,%[re]ax,1)
1025 nopl 0L(%[re]ax) */
1026 static const char alt_short_13[] =
1027 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1028 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1029 /* nopl 0L(%[re]ax)
1030 nopl 0L(%[re]ax) */
1031 static const char alt_short_14[] =
1032 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1033 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1034 /* nopl 0L(%[re]ax)
1035 nopl 0L(%[re]ax,%[re]ax,1) */
1036 static const char alt_short_15[] =
1037 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1038 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1039 static const char *const alt_short_patt[] = {
1040 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1041 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1042 alt_short_14, alt_short_15
1043 };
1044 static const char *const alt_long_patt[] = {
1045 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1046 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1047 alt_long_14, alt_long_15
1048 };
252b5132 1049
76bc74dc
L
1050 /* Only align for at least a positive non-zero boundary. */
1051 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1052 return;
3e73aa7c 1053
ccc9c027
L
1054 /* We need to decide which NOP sequence to use for 32bit and
1055 64bit. When -mtune= is used:
4eed87de 1056
76bc74dc
L
1057 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1058 PROCESSOR_GENERIC32, f32_patt will be used.
1059 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
bd5295b2
L
1060 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1061 PROCESSOR_GENERIC64, alt_long_patt will be used.
76bc74dc 1062 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
8aedb9fe 1063 PROCESSOR_AMDFAM10, and PROCESSOR_BD, alt_short_patt
69dd9865 1064 will be used.
ccc9c027 1065
76bc74dc 1066 When -mtune= isn't used, alt_long_patt will be used if
22109423 1067 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1068 be used.
ccc9c027
L
1069
1070 When -march= or .arch is used, we can't use anything beyond
1071 cpu_arch_isa_flags. */
1072
1073 if (flag_code == CODE_16BIT)
1074 {
ccc9c027 1075 if (count > 8)
33fef721 1076 {
76bc74dc
L
1077 memcpy (fragP->fr_literal + fragP->fr_fix,
1078 jump_31, count);
1079 /* Adjust jump offset. */
1080 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1081 }
76bc74dc
L
1082 else
1083 memcpy (fragP->fr_literal + fragP->fr_fix,
1084 f16_patt[count - 1], count);
252b5132 1085 }
33fef721 1086 else
ccc9c027
L
1087 {
1088 const char *const *patt = NULL;
1089
fbf3f584 1090 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1091 {
1092 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1093 switch (cpu_arch_tune)
1094 {
1095 case PROCESSOR_UNKNOWN:
1096 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1097 optimize with nops. */
1098 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
76bc74dc 1099 patt = alt_long_patt;
ccc9c027
L
1100 else
1101 patt = f32_patt;
1102 break;
ccc9c027
L
1103 case PROCESSOR_PENTIUM4:
1104 case PROCESSOR_NOCONA:
ef05d495 1105 case PROCESSOR_CORE:
76bc74dc 1106 case PROCESSOR_CORE2:
bd5295b2 1107 case PROCESSOR_COREI7:
3632d14b 1108 case PROCESSOR_L1OM:
7a9068fe 1109 case PROCESSOR_K1OM:
76bc74dc
L
1110 case PROCESSOR_GENERIC64:
1111 patt = alt_long_patt;
1112 break;
ccc9c027
L
1113 case PROCESSOR_K6:
1114 case PROCESSOR_ATHLON:
1115 case PROCESSOR_K8:
4eed87de 1116 case PROCESSOR_AMDFAM10:
8aedb9fe 1117 case PROCESSOR_BD:
ccc9c027
L
1118 patt = alt_short_patt;
1119 break;
76bc74dc 1120 case PROCESSOR_I386:
ccc9c027
L
1121 case PROCESSOR_I486:
1122 case PROCESSOR_PENTIUM:
2dde1948 1123 case PROCESSOR_PENTIUMPRO:
ccc9c027
L
1124 case PROCESSOR_GENERIC32:
1125 patt = f32_patt;
1126 break;
4eed87de 1127 }
ccc9c027
L
1128 }
1129 else
1130 {
fbf3f584 1131 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1132 {
1133 case PROCESSOR_UNKNOWN:
e6a14101 1134 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1135 PROCESSOR_UNKNOWN. */
1136 abort ();
1137 break;
1138
76bc74dc 1139 case PROCESSOR_I386:
ccc9c027
L
1140 case PROCESSOR_I486:
1141 case PROCESSOR_PENTIUM:
ccc9c027
L
1142 case PROCESSOR_K6:
1143 case PROCESSOR_ATHLON:
1144 case PROCESSOR_K8:
4eed87de 1145 case PROCESSOR_AMDFAM10:
8aedb9fe 1146 case PROCESSOR_BD:
ccc9c027
L
1147 case PROCESSOR_GENERIC32:
1148 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1149 with nops. */
1150 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1151 patt = alt_short_patt;
1152 else
1153 patt = f32_patt;
1154 break;
76bc74dc
L
1155 case PROCESSOR_PENTIUMPRO:
1156 case PROCESSOR_PENTIUM4:
1157 case PROCESSOR_NOCONA:
1158 case PROCESSOR_CORE:
ef05d495 1159 case PROCESSOR_CORE2:
bd5295b2 1160 case PROCESSOR_COREI7:
3632d14b 1161 case PROCESSOR_L1OM:
7a9068fe 1162 case PROCESSOR_K1OM:
22109423 1163 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
ccc9c027
L
1164 patt = alt_long_patt;
1165 else
1166 patt = f32_patt;
1167 break;
1168 case PROCESSOR_GENERIC64:
76bc74dc 1169 patt = alt_long_patt;
ccc9c027 1170 break;
4eed87de 1171 }
ccc9c027
L
1172 }
1173
76bc74dc
L
1174 if (patt == f32_patt)
1175 {
1176 /* If the padding is less than 15 bytes, we use the normal
1177 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1178 its offset. */
1179 int limit;
76ba9986 1180
711eedef
L
1181 /* For 64bit, the limit is 3 bytes. */
1182 if (flag_code == CODE_64BIT
1183 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1184 limit = 3;
1185 else
1186 limit = 15;
1187 if (count < limit)
76bc74dc
L
1188 memcpy (fragP->fr_literal + fragP->fr_fix,
1189 patt[count - 1], count);
1190 else
1191 {
1192 memcpy (fragP->fr_literal + fragP->fr_fix,
1193 jump_31, count);
1194 /* Adjust jump offset. */
1195 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1196 }
1197 }
1198 else
1199 {
1200 /* Maximum length of an instruction is 15 byte. If the
1201 padding is greater than 15 bytes and we don't use jump,
1202 we have to break it into smaller pieces. */
1203 int padding = count;
1204 while (padding > 15)
1205 {
1206 padding -= 15;
1207 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1208 patt [14], 15);
1209 }
1210
1211 if (padding)
1212 memcpy (fragP->fr_literal + fragP->fr_fix,
1213 patt [padding - 1], padding);
1214 }
ccc9c027 1215 }
33fef721 1216 fragP->fr_var = count;
252b5132
RH
1217}
1218
c6fb90c8 1219static INLINE int
0dfbf9d7 1220operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1221{
0dfbf9d7 1222 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1223 {
1224 case 3:
0dfbf9d7 1225 if (x->array[2])
c6fb90c8
L
1226 return 0;
1227 case 2:
0dfbf9d7 1228 if (x->array[1])
c6fb90c8
L
1229 return 0;
1230 case 1:
0dfbf9d7 1231 return !x->array[0];
c6fb90c8
L
1232 default:
1233 abort ();
1234 }
40fb9820
L
1235}
1236
c6fb90c8 1237static INLINE void
0dfbf9d7 1238operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1239{
0dfbf9d7 1240 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1241 {
1242 case 3:
0dfbf9d7 1243 x->array[2] = v;
c6fb90c8 1244 case 2:
0dfbf9d7 1245 x->array[1] = v;
c6fb90c8 1246 case 1:
0dfbf9d7 1247 x->array[0] = v;
c6fb90c8
L
1248 break;
1249 default:
1250 abort ();
1251 }
1252}
40fb9820 1253
c6fb90c8 1254static INLINE int
0dfbf9d7
L
1255operand_type_equal (const union i386_operand_type *x,
1256 const union i386_operand_type *y)
c6fb90c8 1257{
0dfbf9d7 1258 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1259 {
1260 case 3:
0dfbf9d7 1261 if (x->array[2] != y->array[2])
c6fb90c8
L
1262 return 0;
1263 case 2:
0dfbf9d7 1264 if (x->array[1] != y->array[1])
c6fb90c8
L
1265 return 0;
1266 case 1:
0dfbf9d7 1267 return x->array[0] == y->array[0];
c6fb90c8
L
1268 break;
1269 default:
1270 abort ();
1271 }
1272}
40fb9820 1273
0dfbf9d7
L
1274static INLINE int
1275cpu_flags_all_zero (const union i386_cpu_flags *x)
1276{
1277 switch (ARRAY_SIZE(x->array))
1278 {
1279 case 3:
1280 if (x->array[2])
1281 return 0;
1282 case 2:
1283 if (x->array[1])
1284 return 0;
1285 case 1:
1286 return !x->array[0];
1287 default:
1288 abort ();
1289 }
1290}
1291
1292static INLINE void
1293cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1294{
1295 switch (ARRAY_SIZE(x->array))
1296 {
1297 case 3:
1298 x->array[2] = v;
1299 case 2:
1300 x->array[1] = v;
1301 case 1:
1302 x->array[0] = v;
1303 break;
1304 default:
1305 abort ();
1306 }
1307}
1308
1309static INLINE int
1310cpu_flags_equal (const union i386_cpu_flags *x,
1311 const union i386_cpu_flags *y)
1312{
1313 switch (ARRAY_SIZE(x->array))
1314 {
1315 case 3:
1316 if (x->array[2] != y->array[2])
1317 return 0;
1318 case 2:
1319 if (x->array[1] != y->array[1])
1320 return 0;
1321 case 1:
1322 return x->array[0] == y->array[0];
1323 break;
1324 default:
1325 abort ();
1326 }
1327}
c6fb90c8
L
1328
1329static INLINE int
1330cpu_flags_check_cpu64 (i386_cpu_flags f)
1331{
1332 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1333 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1334}
1335
c6fb90c8
L
1336static INLINE i386_cpu_flags
1337cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1338{
c6fb90c8
L
1339 switch (ARRAY_SIZE (x.array))
1340 {
1341 case 3:
1342 x.array [2] &= y.array [2];
1343 case 2:
1344 x.array [1] &= y.array [1];
1345 case 1:
1346 x.array [0] &= y.array [0];
1347 break;
1348 default:
1349 abort ();
1350 }
1351 return x;
1352}
40fb9820 1353
c6fb90c8
L
1354static INLINE i386_cpu_flags
1355cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1356{
c6fb90c8 1357 switch (ARRAY_SIZE (x.array))
40fb9820 1358 {
c6fb90c8
L
1359 case 3:
1360 x.array [2] |= y.array [2];
1361 case 2:
1362 x.array [1] |= y.array [1];
1363 case 1:
1364 x.array [0] |= y.array [0];
40fb9820
L
1365 break;
1366 default:
1367 abort ();
1368 }
40fb9820
L
1369 return x;
1370}
1371
309d3373
JB
1372static INLINE i386_cpu_flags
1373cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1374{
1375 switch (ARRAY_SIZE (x.array))
1376 {
1377 case 3:
1378 x.array [2] &= ~y.array [2];
1379 case 2:
1380 x.array [1] &= ~y.array [1];
1381 case 1:
1382 x.array [0] &= ~y.array [0];
1383 break;
1384 default:
1385 abort ();
1386 }
1387 return x;
1388}
1389
c0f3af97
L
1390#define CPU_FLAGS_ARCH_MATCH 0x1
1391#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1392#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1393#define CPU_FLAGS_PCLMUL_MATCH 0x8
1394#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1395
a5ff0eb2 1396#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1397 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1398 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1399#define CPU_FLAGS_PERFECT_MATCH \
1400 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1401
1402/* Return CPU flags match bits. */
3629bb00 1403
40fb9820 1404static int
d3ce72d0 1405cpu_flags_match (const insn_template *t)
40fb9820 1406{
c0f3af97
L
1407 i386_cpu_flags x = t->cpu_flags;
1408 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1409
1410 x.bitfield.cpu64 = 0;
1411 x.bitfield.cpuno64 = 0;
1412
0dfbf9d7 1413 if (cpu_flags_all_zero (&x))
c0f3af97
L
1414 {
1415 /* This instruction is available on all archs. */
1416 match |= CPU_FLAGS_32BIT_MATCH;
1417 }
3629bb00
L
1418 else
1419 {
c0f3af97 1420 /* This instruction is available only on some archs. */
3629bb00
L
1421 i386_cpu_flags cpu = cpu_arch_flags;
1422
1423 cpu.bitfield.cpu64 = 0;
1424 cpu.bitfield.cpuno64 = 0;
1425 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1426 if (!cpu_flags_all_zero (&cpu))
1427 {
a5ff0eb2
L
1428 if (x.bitfield.cpuavx)
1429 {
ce2f5b3c 1430 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1431 if (cpu.bitfield.cpuavx)
1432 {
1433 /* Check SSE2AVX. */
1434 if (!t->opcode_modifier.sse2avx|| sse2avx)
1435 {
1436 match |= (CPU_FLAGS_ARCH_MATCH
1437 | CPU_FLAGS_AVX_MATCH);
1438 /* Check AES. */
1439 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1440 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1441 /* Check PCLMUL. */
1442 if (!x.bitfield.cpupclmul
1443 || cpu.bitfield.cpupclmul)
1444 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1445 }
1446 }
1447 else
1448 match |= CPU_FLAGS_ARCH_MATCH;
1449 }
1450 else
c0f3af97
L
1451 match |= CPU_FLAGS_32BIT_MATCH;
1452 }
3629bb00 1453 }
c0f3af97 1454 return match;
40fb9820
L
1455}
1456
c6fb90c8
L
1457static INLINE i386_operand_type
1458operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1459{
c6fb90c8
L
1460 switch (ARRAY_SIZE (x.array))
1461 {
1462 case 3:
1463 x.array [2] &= y.array [2];
1464 case 2:
1465 x.array [1] &= y.array [1];
1466 case 1:
1467 x.array [0] &= y.array [0];
1468 break;
1469 default:
1470 abort ();
1471 }
1472 return x;
40fb9820
L
1473}
1474
c6fb90c8
L
1475static INLINE i386_operand_type
1476operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1477{
c6fb90c8 1478 switch (ARRAY_SIZE (x.array))
40fb9820 1479 {
c6fb90c8
L
1480 case 3:
1481 x.array [2] |= y.array [2];
1482 case 2:
1483 x.array [1] |= y.array [1];
1484 case 1:
1485 x.array [0] |= y.array [0];
40fb9820
L
1486 break;
1487 default:
1488 abort ();
1489 }
c6fb90c8
L
1490 return x;
1491}
40fb9820 1492
c6fb90c8
L
1493static INLINE i386_operand_type
1494operand_type_xor (i386_operand_type x, i386_operand_type y)
1495{
1496 switch (ARRAY_SIZE (x.array))
1497 {
1498 case 3:
1499 x.array [2] ^= y.array [2];
1500 case 2:
1501 x.array [1] ^= y.array [1];
1502 case 1:
1503 x.array [0] ^= y.array [0];
1504 break;
1505 default:
1506 abort ();
1507 }
40fb9820
L
1508 return x;
1509}
1510
1511static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1512static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1513static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1514static const i386_operand_type inoutportreg
1515 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1516static const i386_operand_type reg16_inoutportreg
1517 = OPERAND_TYPE_REG16_INOUTPORTREG;
1518static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1519static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1520static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1521static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1522static const i386_operand_type anydisp
1523 = OPERAND_TYPE_ANYDISP;
40fb9820 1524static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1525static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
40fb9820
L
1526static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1527static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1528static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1529static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1530static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1531static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1532static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1533static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1534static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1535static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1536
1537enum operand_type
1538{
1539 reg,
40fb9820
L
1540 imm,
1541 disp,
1542 anymem
1543};
1544
c6fb90c8 1545static INLINE int
40fb9820
L
1546operand_type_check (i386_operand_type t, enum operand_type c)
1547{
1548 switch (c)
1549 {
1550 case reg:
1551 return (t.bitfield.reg8
1552 || t.bitfield.reg16
1553 || t.bitfield.reg32
1554 || t.bitfield.reg64);
1555
40fb9820
L
1556 case imm:
1557 return (t.bitfield.imm8
1558 || t.bitfield.imm8s
1559 || t.bitfield.imm16
1560 || t.bitfield.imm32
1561 || t.bitfield.imm32s
1562 || t.bitfield.imm64);
1563
1564 case disp:
1565 return (t.bitfield.disp8
1566 || t.bitfield.disp16
1567 || t.bitfield.disp32
1568 || t.bitfield.disp32s
1569 || t.bitfield.disp64);
1570
1571 case anymem:
1572 return (t.bitfield.disp8
1573 || t.bitfield.disp16
1574 || t.bitfield.disp32
1575 || t.bitfield.disp32s
1576 || t.bitfield.disp64
1577 || t.bitfield.baseindex);
1578
1579 default:
1580 abort ();
1581 }
2cfe26b6
AM
1582
1583 return 0;
40fb9820
L
1584}
1585
5c07affc
L
1586/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1587 operand J for instruction template T. */
1588
1589static INLINE int
d3ce72d0 1590match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1591{
1592 return !((i.types[j].bitfield.byte
1593 && !t->operand_types[j].bitfield.byte)
1594 || (i.types[j].bitfield.word
1595 && !t->operand_types[j].bitfield.word)
1596 || (i.types[j].bitfield.dword
1597 && !t->operand_types[j].bitfield.dword)
1598 || (i.types[j].bitfield.qword
1599 && !t->operand_types[j].bitfield.qword));
1600}
1601
1602/* Return 1 if there is no conflict in any size on operand J for
1603 instruction template T. */
1604
1605static INLINE int
d3ce72d0 1606match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1607{
1608 return (match_reg_size (t, j)
1609 && !((i.types[j].bitfield.unspecified
1610 && !t->operand_types[j].bitfield.unspecified)
1611 || (i.types[j].bitfield.fword
1612 && !t->operand_types[j].bitfield.fword)
1613 || (i.types[j].bitfield.tbyte
1614 && !t->operand_types[j].bitfield.tbyte)
1615 || (i.types[j].bitfield.xmmword
c0f3af97
L
1616 && !t->operand_types[j].bitfield.xmmword)
1617 || (i.types[j].bitfield.ymmword
1618 && !t->operand_types[j].bitfield.ymmword)));
5c07affc
L
1619}
1620
1621/* Return 1 if there is no size conflict on any operands for
1622 instruction template T. */
1623
1624static INLINE int
d3ce72d0 1625operand_size_match (const insn_template *t)
5c07affc
L
1626{
1627 unsigned int j;
1628 int match = 1;
1629
1630 /* Don't check jump instructions. */
1631 if (t->opcode_modifier.jump
1632 || t->opcode_modifier.jumpbyte
1633 || t->opcode_modifier.jumpdword
1634 || t->opcode_modifier.jumpintersegment)
1635 return match;
1636
1637 /* Check memory and accumulator operand size. */
1638 for (j = 0; j < i.operands; j++)
1639 {
1640 if (t->operand_types[j].bitfield.anysize)
1641 continue;
1642
1643 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1644 {
1645 match = 0;
1646 break;
1647 }
1648
1649 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1650 {
1651 match = 0;
1652 break;
1653 }
1654 }
1655
891edac4 1656 if (match)
5c07affc 1657 return match;
891edac4
L
1658 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1659 {
1660mismatch:
86e026a4 1661 i.error = operand_size_mismatch;
891edac4
L
1662 return 0;
1663 }
5c07affc
L
1664
1665 /* Check reverse. */
9c2799c2 1666 gas_assert (i.operands == 2);
5c07affc
L
1667
1668 match = 1;
1669 for (j = 0; j < 2; j++)
1670 {
1671 if (t->operand_types[j].bitfield.acc
1672 && !match_reg_size (t, j ? 0 : 1))
891edac4 1673 goto mismatch;
5c07affc
L
1674
1675 if (i.types[j].bitfield.mem
1676 && !match_mem_size (t, j ? 0 : 1))
891edac4 1677 goto mismatch;
5c07affc
L
1678 }
1679
1680 return match;
1681}
1682
c6fb90c8 1683static INLINE int
40fb9820
L
1684operand_type_match (i386_operand_type overlap,
1685 i386_operand_type given)
1686{
1687 i386_operand_type temp = overlap;
1688
1689 temp.bitfield.jumpabsolute = 0;
7d5e4556 1690 temp.bitfield.unspecified = 0;
5c07affc
L
1691 temp.bitfield.byte = 0;
1692 temp.bitfield.word = 0;
1693 temp.bitfield.dword = 0;
1694 temp.bitfield.fword = 0;
1695 temp.bitfield.qword = 0;
1696 temp.bitfield.tbyte = 0;
1697 temp.bitfield.xmmword = 0;
c0f3af97 1698 temp.bitfield.ymmword = 0;
0dfbf9d7 1699 if (operand_type_all_zero (&temp))
891edac4 1700 goto mismatch;
40fb9820 1701
891edac4
L
1702 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1703 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1704 return 1;
1705
1706mismatch:
a65babc9 1707 i.error = operand_type_mismatch;
891edac4 1708 return 0;
40fb9820
L
1709}
1710
7d5e4556 1711/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1712 unless the expected operand type register overlap is null.
1713 Note that Acc in a template matches every size of reg. */
1714
c6fb90c8 1715static INLINE int
40fb9820
L
1716operand_type_register_match (i386_operand_type m0,
1717 i386_operand_type g0,
1718 i386_operand_type t0,
1719 i386_operand_type m1,
1720 i386_operand_type g1,
1721 i386_operand_type t1)
1722{
1723 if (!operand_type_check (g0, reg))
1724 return 1;
1725
1726 if (!operand_type_check (g1, reg))
1727 return 1;
1728
1729 if (g0.bitfield.reg8 == g1.bitfield.reg8
1730 && g0.bitfield.reg16 == g1.bitfield.reg16
1731 && g0.bitfield.reg32 == g1.bitfield.reg32
1732 && g0.bitfield.reg64 == g1.bitfield.reg64)
1733 return 1;
1734
1735 if (m0.bitfield.acc)
1736 {
1737 t0.bitfield.reg8 = 1;
1738 t0.bitfield.reg16 = 1;
1739 t0.bitfield.reg32 = 1;
1740 t0.bitfield.reg64 = 1;
1741 }
1742
1743 if (m1.bitfield.acc)
1744 {
1745 t1.bitfield.reg8 = 1;
1746 t1.bitfield.reg16 = 1;
1747 t1.bitfield.reg32 = 1;
1748 t1.bitfield.reg64 = 1;
1749 }
1750
891edac4
L
1751 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1752 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1753 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1754 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1755 return 1;
1756
a65babc9 1757 i.error = register_type_mismatch;
891edac4
L
1758
1759 return 0;
40fb9820
L
1760}
1761
4c692bc7
JB
1762static INLINE unsigned int
1763register_number (const reg_entry *r)
1764{
1765 unsigned int nr = r->reg_num;
1766
1767 if (r->reg_flags & RegRex)
1768 nr += 8;
1769
1770 return nr;
1771}
1772
252b5132 1773static INLINE unsigned int
40fb9820 1774mode_from_disp_size (i386_operand_type t)
252b5132 1775{
40fb9820
L
1776 if (t.bitfield.disp8)
1777 return 1;
1778 else if (t.bitfield.disp16
1779 || t.bitfield.disp32
1780 || t.bitfield.disp32s)
1781 return 2;
1782 else
1783 return 0;
252b5132
RH
1784}
1785
1786static INLINE int
e3bb37b5 1787fits_in_signed_byte (offsetT num)
252b5132
RH
1788{
1789 return (num >= -128) && (num <= 127);
47926f60 1790}
252b5132
RH
1791
1792static INLINE int
e3bb37b5 1793fits_in_unsigned_byte (offsetT num)
252b5132
RH
1794{
1795 return (num & 0xff) == num;
47926f60 1796}
252b5132
RH
1797
1798static INLINE int
e3bb37b5 1799fits_in_unsigned_word (offsetT num)
252b5132
RH
1800{
1801 return (num & 0xffff) == num;
47926f60 1802}
252b5132
RH
1803
1804static INLINE int
e3bb37b5 1805fits_in_signed_word (offsetT num)
252b5132
RH
1806{
1807 return (-32768 <= num) && (num <= 32767);
47926f60 1808}
2a962e6d 1809
3e73aa7c 1810static INLINE int
e3bb37b5 1811fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1812{
1813#ifndef BFD64
1814 return 1;
1815#else
1816 return (!(((offsetT) -1 << 31) & num)
1817 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1818#endif
1819} /* fits_in_signed_long() */
2a962e6d 1820
3e73aa7c 1821static INLINE int
e3bb37b5 1822fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1823{
1824#ifndef BFD64
1825 return 1;
1826#else
1827 return (num & (((offsetT) 2 << 31) - 1)) == num;
1828#endif
1829} /* fits_in_unsigned_long() */
252b5132 1830
a683cc34
SP
1831static INLINE int
1832fits_in_imm4 (offsetT num)
1833{
1834 return (num & 0xf) == num;
1835}
1836
40fb9820 1837static i386_operand_type
e3bb37b5 1838smallest_imm_type (offsetT num)
252b5132 1839{
40fb9820 1840 i386_operand_type t;
7ab9ffdd 1841
0dfbf9d7 1842 operand_type_set (&t, 0);
40fb9820
L
1843 t.bitfield.imm64 = 1;
1844
1845 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
1846 {
1847 /* This code is disabled on the 486 because all the Imm1 forms
1848 in the opcode table are slower on the i486. They're the
1849 versions with the implicitly specified single-position
1850 displacement, which has another syntax if you really want to
1851 use that form. */
40fb9820
L
1852 t.bitfield.imm1 = 1;
1853 t.bitfield.imm8 = 1;
1854 t.bitfield.imm8s = 1;
1855 t.bitfield.imm16 = 1;
1856 t.bitfield.imm32 = 1;
1857 t.bitfield.imm32s = 1;
1858 }
1859 else if (fits_in_signed_byte (num))
1860 {
1861 t.bitfield.imm8 = 1;
1862 t.bitfield.imm8s = 1;
1863 t.bitfield.imm16 = 1;
1864 t.bitfield.imm32 = 1;
1865 t.bitfield.imm32s = 1;
1866 }
1867 else if (fits_in_unsigned_byte (num))
1868 {
1869 t.bitfield.imm8 = 1;
1870 t.bitfield.imm16 = 1;
1871 t.bitfield.imm32 = 1;
1872 t.bitfield.imm32s = 1;
1873 }
1874 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1875 {
1876 t.bitfield.imm16 = 1;
1877 t.bitfield.imm32 = 1;
1878 t.bitfield.imm32s = 1;
1879 }
1880 else if (fits_in_signed_long (num))
1881 {
1882 t.bitfield.imm32 = 1;
1883 t.bitfield.imm32s = 1;
1884 }
1885 else if (fits_in_unsigned_long (num))
1886 t.bitfield.imm32 = 1;
1887
1888 return t;
47926f60 1889}
252b5132 1890
847f7ad4 1891static offsetT
e3bb37b5 1892offset_in_range (offsetT val, int size)
847f7ad4 1893{
508866be 1894 addressT mask;
ba2adb93 1895
847f7ad4
AM
1896 switch (size)
1897 {
508866be
L
1898 case 1: mask = ((addressT) 1 << 8) - 1; break;
1899 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 1900 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
1901#ifdef BFD64
1902 case 8: mask = ((addressT) 2 << 63) - 1; break;
1903#endif
47926f60 1904 default: abort ();
847f7ad4
AM
1905 }
1906
9de868bf
L
1907#ifdef BFD64
1908 /* If BFD64, sign extend val for 32bit address mode. */
1909 if (flag_code != CODE_64BIT
1910 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
1911 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1912 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 1913#endif
ba2adb93 1914
47926f60 1915 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
1916 {
1917 char buf1[40], buf2[40];
1918
1919 sprint_value (buf1, val);
1920 sprint_value (buf2, val & mask);
1921 as_warn (_("%s shortened to %s"), buf1, buf2);
1922 }
1923 return val & mask;
1924}
1925
c32fa91d
L
1926enum PREFIX_GROUP
1927{
1928 PREFIX_EXIST = 0,
1929 PREFIX_LOCK,
1930 PREFIX_REP,
1931 PREFIX_OTHER
1932};
1933
1934/* Returns
1935 a. PREFIX_EXIST if attempting to add a prefix where one from the
1936 same class already exists.
1937 b. PREFIX_LOCK if lock prefix is added.
1938 c. PREFIX_REP if rep/repne prefix is added.
1939 d. PREFIX_OTHER if other prefix is added.
1940 */
1941
1942static enum PREFIX_GROUP
e3bb37b5 1943add_prefix (unsigned int prefix)
252b5132 1944{
c32fa91d 1945 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 1946 unsigned int q;
252b5132 1947
29b0f896
AM
1948 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1949 && flag_code == CODE_64BIT)
b1905489 1950 {
161a04f6
L
1951 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1952 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1953 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 1954 ret = PREFIX_EXIST;
b1905489
JB
1955 q = REX_PREFIX;
1956 }
3e73aa7c 1957 else
b1905489
JB
1958 {
1959 switch (prefix)
1960 {
1961 default:
1962 abort ();
1963
1964 case CS_PREFIX_OPCODE:
1965 case DS_PREFIX_OPCODE:
1966 case ES_PREFIX_OPCODE:
1967 case FS_PREFIX_OPCODE:
1968 case GS_PREFIX_OPCODE:
1969 case SS_PREFIX_OPCODE:
1970 q = SEG_PREFIX;
1971 break;
1972
1973 case REPNE_PREFIX_OPCODE:
1974 case REPE_PREFIX_OPCODE:
c32fa91d
L
1975 q = REP_PREFIX;
1976 ret = PREFIX_REP;
1977 break;
1978
b1905489 1979 case LOCK_PREFIX_OPCODE:
c32fa91d
L
1980 q = LOCK_PREFIX;
1981 ret = PREFIX_LOCK;
b1905489
JB
1982 break;
1983
1984 case FWAIT_OPCODE:
1985 q = WAIT_PREFIX;
1986 break;
1987
1988 case ADDR_PREFIX_OPCODE:
1989 q = ADDR_PREFIX;
1990 break;
1991
1992 case DATA_PREFIX_OPCODE:
1993 q = DATA_PREFIX;
1994 break;
1995 }
1996 if (i.prefix[q] != 0)
c32fa91d 1997 ret = PREFIX_EXIST;
b1905489 1998 }
252b5132 1999
b1905489 2000 if (ret)
252b5132 2001 {
b1905489
JB
2002 if (!i.prefix[q])
2003 ++i.prefixes;
2004 i.prefix[q] |= prefix;
252b5132 2005 }
b1905489
JB
2006 else
2007 as_bad (_("same type of prefix used twice"));
252b5132 2008
252b5132
RH
2009 return ret;
2010}
2011
2012static void
78f12dd3 2013update_code_flag (int value, int check)
eecb386c 2014{
78f12dd3
L
2015 PRINTF_LIKE ((*as_error));
2016
1e9cc1c2 2017 flag_code = (enum flag_code) value;
40fb9820
L
2018 if (flag_code == CODE_64BIT)
2019 {
2020 cpu_arch_flags.bitfield.cpu64 = 1;
2021 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2022 }
2023 else
2024 {
2025 cpu_arch_flags.bitfield.cpu64 = 0;
2026 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2027 }
2028 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2029 {
78f12dd3
L
2030 if (check)
2031 as_error = as_fatal;
2032 else
2033 as_error = as_bad;
2034 (*as_error) (_("64bit mode not supported on `%s'."),
2035 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2036 }
40fb9820 2037 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2038 {
78f12dd3
L
2039 if (check)
2040 as_error = as_fatal;
2041 else
2042 as_error = as_bad;
2043 (*as_error) (_("32bit mode not supported on `%s'."),
2044 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2045 }
eecb386c
AM
2046 stackop_size = '\0';
2047}
2048
78f12dd3
L
2049static void
2050set_code_flag (int value)
2051{
2052 update_code_flag (value, 0);
2053}
2054
eecb386c 2055static void
e3bb37b5 2056set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2057{
1e9cc1c2 2058 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2059 if (flag_code != CODE_16BIT)
2060 abort ();
2061 cpu_arch_flags.bitfield.cpu64 = 0;
2062 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2063 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2064}
2065
2066static void
e3bb37b5 2067set_intel_syntax (int syntax_flag)
252b5132
RH
2068{
2069 /* Find out if register prefixing is specified. */
2070 int ask_naked_reg = 0;
2071
2072 SKIP_WHITESPACE ();
29b0f896 2073 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
2074 {
2075 char *string = input_line_pointer;
2076 int e = get_symbol_end ();
2077
47926f60 2078 if (strcmp (string, "prefix") == 0)
252b5132 2079 ask_naked_reg = 1;
47926f60 2080 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2081 ask_naked_reg = -1;
2082 else
d0b47220 2083 as_bad (_("bad argument to syntax directive."));
252b5132
RH
2084 *input_line_pointer = e;
2085 }
2086 demand_empty_rest_of_line ();
c3332e24 2087
252b5132
RH
2088 intel_syntax = syntax_flag;
2089
2090 if (ask_naked_reg == 0)
f86103b7
AM
2091 allow_naked_reg = (intel_syntax
2092 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2093 else
2094 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2095
ee86248c 2096 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2097
e4a3b5a4 2098 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2099 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2100 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2101}
2102
1efbbeb4
L
2103static void
2104set_intel_mnemonic (int mnemonic_flag)
2105{
e1d4d893 2106 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2107}
2108
db51cc60
L
2109static void
2110set_allow_index_reg (int flag)
2111{
2112 allow_index_reg = flag;
2113}
2114
cb19c032 2115static void
7bab8ab5 2116set_check (int what)
cb19c032 2117{
7bab8ab5
JB
2118 enum check_kind *kind;
2119 const char *str;
2120
2121 if (what)
2122 {
2123 kind = &operand_check;
2124 str = "operand";
2125 }
2126 else
2127 {
2128 kind = &sse_check;
2129 str = "sse";
2130 }
2131
cb19c032
L
2132 SKIP_WHITESPACE ();
2133
2134 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2135 {
2136 char *string = input_line_pointer;
2137 int e = get_symbol_end ();
2138
2139 if (strcmp (string, "none") == 0)
7bab8ab5 2140 *kind = check_none;
cb19c032 2141 else if (strcmp (string, "warning") == 0)
7bab8ab5 2142 *kind = check_warning;
cb19c032 2143 else if (strcmp (string, "error") == 0)
7bab8ab5 2144 *kind = check_error;
cb19c032 2145 else
7bab8ab5 2146 as_bad (_("bad argument to %s_check directive."), str);
cb19c032
L
2147 *input_line_pointer = e;
2148 }
2149 else
7bab8ab5 2150 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2151
2152 demand_empty_rest_of_line ();
2153}
2154
8a9036a4
L
2155static void
2156check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2157 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2158{
2159#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2160 static const char *arch;
2161
2162 /* Intel LIOM is only supported on ELF. */
2163 if (!IS_ELF)
2164 return;
2165
2166 if (!arch)
2167 {
2168 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2169 use default_arch. */
2170 arch = cpu_arch_name;
2171 if (!arch)
2172 arch = default_arch;
2173 }
2174
3632d14b 2175 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2176 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2177 || new_flag.bitfield.cpul1om)
8a9036a4 2178 return;
76ba9986 2179
7a9068fe
L
2180 /* If we are targeting Intel K1OM, we must enable it. */
2181 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2182 || new_flag.bitfield.cpuk1om)
2183 return;
2184
8a9036a4
L
2185 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2186#endif
2187}
2188
e413e4e9 2189static void
e3bb37b5 2190set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2191{
47926f60 2192 SKIP_WHITESPACE ();
e413e4e9 2193
29b0f896 2194 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
2195 {
2196 char *string = input_line_pointer;
2197 int e = get_symbol_end ();
91d6fa6a 2198 unsigned int j;
40fb9820 2199 i386_cpu_flags flags;
e413e4e9 2200
91d6fa6a 2201 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2202 {
91d6fa6a 2203 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2204 {
91d6fa6a 2205 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2206
5c6af06e
JB
2207 if (*string != '.')
2208 {
91d6fa6a 2209 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2210 cpu_sub_arch_name = NULL;
91d6fa6a 2211 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2212 if (flag_code == CODE_64BIT)
2213 {
2214 cpu_arch_flags.bitfield.cpu64 = 1;
2215 cpu_arch_flags.bitfield.cpuno64 = 0;
2216 }
2217 else
2218 {
2219 cpu_arch_flags.bitfield.cpu64 = 0;
2220 cpu_arch_flags.bitfield.cpuno64 = 1;
2221 }
91d6fa6a
NC
2222 cpu_arch_isa = cpu_arch[j].type;
2223 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2224 if (!cpu_arch_tune_set)
2225 {
2226 cpu_arch_tune = cpu_arch_isa;
2227 cpu_arch_tune_flags = cpu_arch_isa_flags;
2228 }
5c6af06e
JB
2229 break;
2230 }
40fb9820 2231
22109423 2232 if (!cpu_arch[j].negated)
309d3373 2233 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 2234 cpu_arch[j].flags);
309d3373
JB
2235 else
2236 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 2237 cpu_arch[j].flags);
0dfbf9d7 2238 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2239 {
6305a203
L
2240 if (cpu_sub_arch_name)
2241 {
2242 char *name = cpu_sub_arch_name;
2243 cpu_sub_arch_name = concat (name,
91d6fa6a 2244 cpu_arch[j].name,
1bf57e9f 2245 (const char *) NULL);
6305a203
L
2246 free (name);
2247 }
2248 else
91d6fa6a 2249 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2250 cpu_arch_flags = flags;
a586129e 2251 cpu_arch_isa_flags = flags;
5c6af06e
JB
2252 }
2253 *input_line_pointer = e;
2254 demand_empty_rest_of_line ();
2255 return;
e413e4e9
AM
2256 }
2257 }
91d6fa6a 2258 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2259 as_bad (_("no such architecture: `%s'"), string);
2260
2261 *input_line_pointer = e;
2262 }
2263 else
2264 as_bad (_("missing cpu architecture"));
2265
fddf5b5b
AM
2266 no_cond_jump_promotion = 0;
2267 if (*input_line_pointer == ','
29b0f896 2268 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
2269 {
2270 char *string = ++input_line_pointer;
2271 int e = get_symbol_end ();
2272
2273 if (strcmp (string, "nojumps") == 0)
2274 no_cond_jump_promotion = 1;
2275 else if (strcmp (string, "jumps") == 0)
2276 ;
2277 else
2278 as_bad (_("no such architecture modifier: `%s'"), string);
2279
2280 *input_line_pointer = e;
2281 }
2282
e413e4e9
AM
2283 demand_empty_rest_of_line ();
2284}
2285
8a9036a4
L
2286enum bfd_architecture
2287i386_arch (void)
2288{
3632d14b 2289 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2290 {
2291 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2292 || flag_code != CODE_64BIT)
2293 as_fatal (_("Intel L1OM is 64bit ELF only"));
2294 return bfd_arch_l1om;
2295 }
7a9068fe
L
2296 else if (cpu_arch_isa == PROCESSOR_K1OM)
2297 {
2298 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2299 || flag_code != CODE_64BIT)
2300 as_fatal (_("Intel K1OM is 64bit ELF only"));
2301 return bfd_arch_k1om;
2302 }
8a9036a4
L
2303 else
2304 return bfd_arch_i386;
2305}
2306
b9d79e03 2307unsigned long
7016a5d5 2308i386_mach (void)
b9d79e03 2309{
351f65ca 2310 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2311 {
3632d14b 2312 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2313 {
351f65ca
L
2314 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2315 || default_arch[6] != '\0')
8a9036a4
L
2316 as_fatal (_("Intel L1OM is 64bit ELF only"));
2317 return bfd_mach_l1om;
2318 }
7a9068fe
L
2319 else if (cpu_arch_isa == PROCESSOR_K1OM)
2320 {
2321 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2322 || default_arch[6] != '\0')
2323 as_fatal (_("Intel K1OM is 64bit ELF only"));
2324 return bfd_mach_k1om;
2325 }
351f65ca 2326 else if (default_arch[6] == '\0')
8a9036a4 2327 return bfd_mach_x86_64;
351f65ca
L
2328 else
2329 return bfd_mach_x64_32;
8a9036a4 2330 }
b9d79e03
JH
2331 else if (!strcmp (default_arch, "i386"))
2332 return bfd_mach_i386_i386;
2333 else
2b5d6a91 2334 as_fatal (_("unknown architecture"));
b9d79e03 2335}
b9d79e03 2336\f
252b5132 2337void
7016a5d5 2338md_begin (void)
252b5132
RH
2339{
2340 const char *hash_err;
2341
47926f60 2342 /* Initialize op_hash hash table. */
252b5132
RH
2343 op_hash = hash_new ();
2344
2345 {
d3ce72d0 2346 const insn_template *optab;
29b0f896 2347 templates *core_optab;
252b5132 2348
47926f60
KH
2349 /* Setup for loop. */
2350 optab = i386_optab;
252b5132
RH
2351 core_optab = (templates *) xmalloc (sizeof (templates));
2352 core_optab->start = optab;
2353
2354 while (1)
2355 {
2356 ++optab;
2357 if (optab->name == NULL
2358 || strcmp (optab->name, (optab - 1)->name) != 0)
2359 {
2360 /* different name --> ship out current template list;
47926f60 2361 add to hash table; & begin anew. */
252b5132
RH
2362 core_optab->end = optab;
2363 hash_err = hash_insert (op_hash,
2364 (optab - 1)->name,
5a49b8ac 2365 (void *) core_optab);
252b5132
RH
2366 if (hash_err)
2367 {
2b5d6a91 2368 as_fatal (_("internal Error: Can't hash %s: %s"),
252b5132
RH
2369 (optab - 1)->name,
2370 hash_err);
2371 }
2372 if (optab->name == NULL)
2373 break;
2374 core_optab = (templates *) xmalloc (sizeof (templates));
2375 core_optab->start = optab;
2376 }
2377 }
2378 }
2379
47926f60 2380 /* Initialize reg_hash hash table. */
252b5132
RH
2381 reg_hash = hash_new ();
2382 {
29b0f896 2383 const reg_entry *regtab;
c3fe08fa 2384 unsigned int regtab_size = i386_regtab_size;
252b5132 2385
c3fe08fa 2386 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2387 {
5a49b8ac 2388 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2389 if (hash_err)
2b5d6a91 2390 as_fatal (_("internal Error: Can't hash %s: %s"),
3e73aa7c
JH
2391 regtab->reg_name,
2392 hash_err);
252b5132
RH
2393 }
2394 }
2395
47926f60 2396 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2397 {
29b0f896
AM
2398 int c;
2399 char *p;
252b5132
RH
2400
2401 for (c = 0; c < 256; c++)
2402 {
3882b010 2403 if (ISDIGIT (c))
252b5132
RH
2404 {
2405 digit_chars[c] = c;
2406 mnemonic_chars[c] = c;
2407 register_chars[c] = c;
2408 operand_chars[c] = c;
2409 }
3882b010 2410 else if (ISLOWER (c))
252b5132
RH
2411 {
2412 mnemonic_chars[c] = c;
2413 register_chars[c] = c;
2414 operand_chars[c] = c;
2415 }
3882b010 2416 else if (ISUPPER (c))
252b5132 2417 {
3882b010 2418 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2419 register_chars[c] = mnemonic_chars[c];
2420 operand_chars[c] = c;
2421 }
2422
3882b010 2423 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2424 identifier_chars[c] = c;
2425 else if (c >= 128)
2426 {
2427 identifier_chars[c] = c;
2428 operand_chars[c] = c;
2429 }
2430 }
2431
2432#ifdef LEX_AT
2433 identifier_chars['@'] = '@';
32137342
NC
2434#endif
2435#ifdef LEX_QM
2436 identifier_chars['?'] = '?';
2437 operand_chars['?'] = '?';
252b5132 2438#endif
252b5132 2439 digit_chars['-'] = '-';
c0f3af97 2440 mnemonic_chars['_'] = '_';
791fe849 2441 mnemonic_chars['-'] = '-';
0003779b 2442 mnemonic_chars['.'] = '.';
252b5132
RH
2443 identifier_chars['_'] = '_';
2444 identifier_chars['.'] = '.';
2445
2446 for (p = operand_special_chars; *p != '\0'; p++)
2447 operand_chars[(unsigned char) *p] = *p;
2448 }
2449
2450#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2451 if (IS_ELF)
252b5132
RH
2452 {
2453 record_alignment (text_section, 2);
2454 record_alignment (data_section, 2);
2455 record_alignment (bss_section, 2);
2456 }
2457#endif
a4447b93
RH
2458
2459 if (flag_code == CODE_64BIT)
2460 {
ca19b261
KT
2461#if defined (OBJ_COFF) && defined (TE_PE)
2462 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2463 ? 32 : 16);
2464#else
a4447b93 2465 x86_dwarf2_return_column = 16;
ca19b261 2466#endif
61ff971f 2467 x86_cie_data_alignment = -8;
a4447b93
RH
2468 }
2469 else
2470 {
2471 x86_dwarf2_return_column = 8;
2472 x86_cie_data_alignment = -4;
2473 }
252b5132
RH
2474}
2475
2476void
e3bb37b5 2477i386_print_statistics (FILE *file)
252b5132
RH
2478{
2479 hash_print_statistics (file, "i386 opcode", op_hash);
2480 hash_print_statistics (file, "i386 register", reg_hash);
2481}
2482\f
252b5132
RH
2483#ifdef DEBUG386
2484
ce8a8b2f 2485/* Debugging routines for md_assemble. */
d3ce72d0 2486static void pte (insn_template *);
40fb9820 2487static void pt (i386_operand_type);
e3bb37b5
L
2488static void pe (expressionS *);
2489static void ps (symbolS *);
252b5132
RH
2490
2491static void
e3bb37b5 2492pi (char *line, i386_insn *x)
252b5132 2493{
09137c09 2494 unsigned int j;
252b5132
RH
2495
2496 fprintf (stdout, "%s: template ", line);
2497 pte (&x->tm);
09f131f2
JH
2498 fprintf (stdout, " address: base %s index %s scale %x\n",
2499 x->base_reg ? x->base_reg->reg_name : "none",
2500 x->index_reg ? x->index_reg->reg_name : "none",
2501 x->log2_scale_factor);
2502 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2503 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2504 fprintf (stdout, " sib: base %x index %x scale %x\n",
2505 x->sib.base, x->sib.index, x->sib.scale);
2506 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2507 (x->rex & REX_W) != 0,
2508 (x->rex & REX_R) != 0,
2509 (x->rex & REX_X) != 0,
2510 (x->rex & REX_B) != 0);
09137c09 2511 for (j = 0; j < x->operands; j++)
252b5132 2512 {
09137c09
SP
2513 fprintf (stdout, " #%d: ", j + 1);
2514 pt (x->types[j]);
252b5132 2515 fprintf (stdout, "\n");
09137c09
SP
2516 if (x->types[j].bitfield.reg8
2517 || x->types[j].bitfield.reg16
2518 || x->types[j].bitfield.reg32
2519 || x->types[j].bitfield.reg64
2520 || x->types[j].bitfield.regmmx
2521 || x->types[j].bitfield.regxmm
2522 || x->types[j].bitfield.regymm
2523 || x->types[j].bitfield.sreg2
2524 || x->types[j].bitfield.sreg3
2525 || x->types[j].bitfield.control
2526 || x->types[j].bitfield.debug
2527 || x->types[j].bitfield.test)
2528 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2529 if (operand_type_check (x->types[j], imm))
2530 pe (x->op[j].imms);
2531 if (operand_type_check (x->types[j], disp))
2532 pe (x->op[j].disps);
252b5132
RH
2533 }
2534}
2535
2536static void
d3ce72d0 2537pte (insn_template *t)
252b5132 2538{
09137c09 2539 unsigned int j;
252b5132 2540 fprintf (stdout, " %d operands ", t->operands);
47926f60 2541 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2542 if (t->extension_opcode != None)
2543 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2544 if (t->opcode_modifier.d)
252b5132 2545 fprintf (stdout, "D");
40fb9820 2546 if (t->opcode_modifier.w)
252b5132
RH
2547 fprintf (stdout, "W");
2548 fprintf (stdout, "\n");
09137c09 2549 for (j = 0; j < t->operands; j++)
252b5132 2550 {
09137c09
SP
2551 fprintf (stdout, " #%d type ", j + 1);
2552 pt (t->operand_types[j]);
252b5132
RH
2553 fprintf (stdout, "\n");
2554 }
2555}
2556
2557static void
e3bb37b5 2558pe (expressionS *e)
252b5132 2559{
24eab124 2560 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2561 fprintf (stdout, " add_number %ld (%lx)\n",
2562 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2563 if (e->X_add_symbol)
2564 {
2565 fprintf (stdout, " add_symbol ");
2566 ps (e->X_add_symbol);
2567 fprintf (stdout, "\n");
2568 }
2569 if (e->X_op_symbol)
2570 {
2571 fprintf (stdout, " op_symbol ");
2572 ps (e->X_op_symbol);
2573 fprintf (stdout, "\n");
2574 }
2575}
2576
2577static void
e3bb37b5 2578ps (symbolS *s)
252b5132
RH
2579{
2580 fprintf (stdout, "%s type %s%s",
2581 S_GET_NAME (s),
2582 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2583 segment_name (S_GET_SEGMENT (s)));
2584}
2585
7b81dfbb 2586static struct type_name
252b5132 2587 {
40fb9820
L
2588 i386_operand_type mask;
2589 const char *name;
252b5132 2590 }
7b81dfbb 2591const type_names[] =
252b5132 2592{
40fb9820
L
2593 { OPERAND_TYPE_REG8, "r8" },
2594 { OPERAND_TYPE_REG16, "r16" },
2595 { OPERAND_TYPE_REG32, "r32" },
2596 { OPERAND_TYPE_REG64, "r64" },
2597 { OPERAND_TYPE_IMM8, "i8" },
2598 { OPERAND_TYPE_IMM8, "i8s" },
2599 { OPERAND_TYPE_IMM16, "i16" },
2600 { OPERAND_TYPE_IMM32, "i32" },
2601 { OPERAND_TYPE_IMM32S, "i32s" },
2602 { OPERAND_TYPE_IMM64, "i64" },
2603 { OPERAND_TYPE_IMM1, "i1" },
2604 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2605 { OPERAND_TYPE_DISP8, "d8" },
2606 { OPERAND_TYPE_DISP16, "d16" },
2607 { OPERAND_TYPE_DISP32, "d32" },
2608 { OPERAND_TYPE_DISP32S, "d32s" },
2609 { OPERAND_TYPE_DISP64, "d64" },
2610 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2611 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2612 { OPERAND_TYPE_CONTROL, "control reg" },
2613 { OPERAND_TYPE_TEST, "test reg" },
2614 { OPERAND_TYPE_DEBUG, "debug reg" },
2615 { OPERAND_TYPE_FLOATREG, "FReg" },
2616 { OPERAND_TYPE_FLOATACC, "FAcc" },
2617 { OPERAND_TYPE_SREG2, "SReg2" },
2618 { OPERAND_TYPE_SREG3, "SReg3" },
2619 { OPERAND_TYPE_ACC, "Acc" },
2620 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2621 { OPERAND_TYPE_REGMMX, "rMMX" },
2622 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2623 { OPERAND_TYPE_REGYMM, "rYMM" },
40fb9820 2624 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2625};
2626
2627static void
40fb9820 2628pt (i386_operand_type t)
252b5132 2629{
40fb9820 2630 unsigned int j;
c6fb90c8 2631 i386_operand_type a;
252b5132 2632
40fb9820 2633 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2634 {
2635 a = operand_type_and (t, type_names[j].mask);
0349dc08 2636 if (!operand_type_all_zero (&a))
c6fb90c8
L
2637 fprintf (stdout, "%s, ", type_names[j].name);
2638 }
252b5132
RH
2639 fflush (stdout);
2640}
2641
2642#endif /* DEBUG386 */
2643\f
252b5132 2644static bfd_reloc_code_real_type
3956db08 2645reloc (unsigned int size,
64e74474
AM
2646 int pcrel,
2647 int sign,
2648 bfd_reloc_code_real_type other)
252b5132 2649{
47926f60 2650 if (other != NO_RELOC)
3956db08 2651 {
91d6fa6a 2652 reloc_howto_type *rel;
3956db08
JB
2653
2654 if (size == 8)
2655 switch (other)
2656 {
64e74474
AM
2657 case BFD_RELOC_X86_64_GOT32:
2658 return BFD_RELOC_X86_64_GOT64;
2659 break;
2660 case BFD_RELOC_X86_64_PLTOFF64:
2661 return BFD_RELOC_X86_64_PLTOFF64;
2662 break;
2663 case BFD_RELOC_X86_64_GOTPC32:
2664 other = BFD_RELOC_X86_64_GOTPC64;
2665 break;
2666 case BFD_RELOC_X86_64_GOTPCREL:
2667 other = BFD_RELOC_X86_64_GOTPCREL64;
2668 break;
2669 case BFD_RELOC_X86_64_TPOFF32:
2670 other = BFD_RELOC_X86_64_TPOFF64;
2671 break;
2672 case BFD_RELOC_X86_64_DTPOFF32:
2673 other = BFD_RELOC_X86_64_DTPOFF64;
2674 break;
2675 default:
2676 break;
3956db08 2677 }
e05278af
JB
2678
2679 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 2680 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
2681 sign = -1;
2682
91d6fa6a
NC
2683 rel = bfd_reloc_type_lookup (stdoutput, other);
2684 if (!rel)
3956db08 2685 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2686 else if (size != bfd_get_reloc_size (rel))
3956db08 2687 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2688 bfd_get_reloc_size (rel),
3956db08 2689 size);
91d6fa6a 2690 else if (pcrel && !rel->pc_relative)
3956db08 2691 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2692 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2693 && !sign)
91d6fa6a 2694 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2695 && sign > 0))
3956db08
JB
2696 as_bad (_("relocated field and relocation type differ in signedness"));
2697 else
2698 return other;
2699 return NO_RELOC;
2700 }
252b5132
RH
2701
2702 if (pcrel)
2703 {
3e73aa7c 2704 if (!sign)
3956db08 2705 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2706 switch (size)
2707 {
2708 case 1: return BFD_RELOC_8_PCREL;
2709 case 2: return BFD_RELOC_16_PCREL;
2710 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 2711 case 8: return BFD_RELOC_64_PCREL;
252b5132 2712 }
3956db08 2713 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2714 }
2715 else
2716 {
3956db08 2717 if (sign > 0)
e5cb08ac 2718 switch (size)
3e73aa7c
JH
2719 {
2720 case 4: return BFD_RELOC_X86_64_32S;
2721 }
2722 else
2723 switch (size)
2724 {
2725 case 1: return BFD_RELOC_8;
2726 case 2: return BFD_RELOC_16;
2727 case 4: return BFD_RELOC_32;
2728 case 8: return BFD_RELOC_64;
2729 }
3956db08
JB
2730 as_bad (_("cannot do %s %u byte relocation"),
2731 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2732 }
2733
0cc9e1d3 2734 return NO_RELOC;
252b5132
RH
2735}
2736
47926f60
KH
2737/* Here we decide which fixups can be adjusted to make them relative to
2738 the beginning of the section instead of the symbol. Basically we need
2739 to make sure that the dynamic relocations are done correctly, so in
2740 some cases we force the original symbol to be used. */
2741
252b5132 2742int
e3bb37b5 2743tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2744{
6d249963 2745#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 2746 if (!IS_ELF)
31312f95
AM
2747 return 1;
2748
a161fe53
AM
2749 /* Don't adjust pc-relative references to merge sections in 64-bit
2750 mode. */
2751 if (use_rela_relocations
2752 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2753 && fixP->fx_pcrel)
252b5132 2754 return 0;
31312f95 2755
8d01d9a9
AJ
2756 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2757 and changed later by validate_fix. */
2758 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2759 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2760 return 0;
2761
ce8a8b2f 2762 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
2763 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2764 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2765 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
2766 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2767 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2768 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2769 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
2770 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2771 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2772 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2773 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
2774 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2775 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
2776 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2777 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 2778 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
2779 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2780 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2781 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 2782 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
2783 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2784 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
2785 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2786 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
2787 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2788 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
2789 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2790 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2791 return 0;
31312f95 2792#endif
252b5132
RH
2793 return 1;
2794}
252b5132 2795
b4cac588 2796static int
e3bb37b5 2797intel_float_operand (const char *mnemonic)
252b5132 2798{
9306ca4a
JB
2799 /* Note that the value returned is meaningful only for opcodes with (memory)
2800 operands, hence the code here is free to improperly handle opcodes that
2801 have no operands (for better performance and smaller code). */
2802
2803 if (mnemonic[0] != 'f')
2804 return 0; /* non-math */
2805
2806 switch (mnemonic[1])
2807 {
2808 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2809 the fs segment override prefix not currently handled because no
2810 call path can make opcodes without operands get here */
2811 case 'i':
2812 return 2 /* integer op */;
2813 case 'l':
2814 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2815 return 3; /* fldcw/fldenv */
2816 break;
2817 case 'n':
2818 if (mnemonic[2] != 'o' /* fnop */)
2819 return 3; /* non-waiting control op */
2820 break;
2821 case 'r':
2822 if (mnemonic[2] == 's')
2823 return 3; /* frstor/frstpm */
2824 break;
2825 case 's':
2826 if (mnemonic[2] == 'a')
2827 return 3; /* fsave */
2828 if (mnemonic[2] == 't')
2829 {
2830 switch (mnemonic[3])
2831 {
2832 case 'c': /* fstcw */
2833 case 'd': /* fstdw */
2834 case 'e': /* fstenv */
2835 case 's': /* fsts[gw] */
2836 return 3;
2837 }
2838 }
2839 break;
2840 case 'x':
2841 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2842 return 0; /* fxsave/fxrstor are not really math ops */
2843 break;
2844 }
252b5132 2845
9306ca4a 2846 return 1;
252b5132
RH
2847}
2848
c0f3af97
L
2849/* Build the VEX prefix. */
2850
2851static void
d3ce72d0 2852build_vex_prefix (const insn_template *t)
c0f3af97
L
2853{
2854 unsigned int register_specifier;
2855 unsigned int implied_prefix;
2856 unsigned int vector_length;
2857
2858 /* Check register specifier. */
2859 if (i.vex.register_specifier)
4c692bc7 2860 register_specifier = ~register_number (i.vex.register_specifier) & 0xf;
c0f3af97
L
2861 else
2862 register_specifier = 0xf;
2863
fa99fab2
L
2864 /* Use 2-byte VEX prefix by swappping destination and source
2865 operand. */
2866 if (!i.swap_operand
2867 && i.operands == i.reg_operands
7f399153 2868 && i.tm.opcode_modifier.vexopcode == VEX0F
fa99fab2
L
2869 && i.tm.opcode_modifier.s
2870 && i.rex == REX_B)
2871 {
2872 unsigned int xchg = i.operands - 1;
2873 union i386_op temp_op;
2874 i386_operand_type temp_type;
2875
2876 temp_type = i.types[xchg];
2877 i.types[xchg] = i.types[0];
2878 i.types[0] = temp_type;
2879 temp_op = i.op[xchg];
2880 i.op[xchg] = i.op[0];
2881 i.op[0] = temp_op;
2882
9c2799c2 2883 gas_assert (i.rm.mode == 3);
fa99fab2
L
2884
2885 i.rex = REX_R;
2886 xchg = i.rm.regmem;
2887 i.rm.regmem = i.rm.reg;
2888 i.rm.reg = xchg;
2889
2890 /* Use the next insn. */
2891 i.tm = t[1];
2892 }
2893
539f890d
L
2894 if (i.tm.opcode_modifier.vex == VEXScalar)
2895 vector_length = avxscalar;
2896 else
2897 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
2898
2899 switch ((i.tm.base_opcode >> 8) & 0xff)
2900 {
2901 case 0:
2902 implied_prefix = 0;
2903 break;
2904 case DATA_PREFIX_OPCODE:
2905 implied_prefix = 1;
2906 break;
2907 case REPE_PREFIX_OPCODE:
2908 implied_prefix = 2;
2909 break;
2910 case REPNE_PREFIX_OPCODE:
2911 implied_prefix = 3;
2912 break;
2913 default:
2914 abort ();
2915 }
2916
2917 /* Use 2-byte VEX prefix if possible. */
7f399153 2918 if (i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 2919 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
2920 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2921 {
2922 /* 2-byte VEX prefix. */
2923 unsigned int r;
2924
2925 i.vex.length = 2;
2926 i.vex.bytes[0] = 0xc5;
2927
2928 /* Check the REX.R bit. */
2929 r = (i.rex & REX_R) ? 0 : 1;
2930 i.vex.bytes[1] = (r << 7
2931 | register_specifier << 3
2932 | vector_length << 2
2933 | implied_prefix);
2934 }
2935 else
2936 {
2937 /* 3-byte VEX prefix. */
2938 unsigned int m, w;
2939
f88c9eb0 2940 i.vex.length = 3;
f88c9eb0 2941
7f399153 2942 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 2943 {
7f399153
L
2944 case VEX0F:
2945 m = 0x1;
80de6e00 2946 i.vex.bytes[0] = 0xc4;
7f399153
L
2947 break;
2948 case VEX0F38:
2949 m = 0x2;
80de6e00 2950 i.vex.bytes[0] = 0xc4;
7f399153
L
2951 break;
2952 case VEX0F3A:
2953 m = 0x3;
80de6e00 2954 i.vex.bytes[0] = 0xc4;
7f399153
L
2955 break;
2956 case XOP08:
5dd85c99
SP
2957 m = 0x8;
2958 i.vex.bytes[0] = 0x8f;
7f399153
L
2959 break;
2960 case XOP09:
f88c9eb0
SP
2961 m = 0x9;
2962 i.vex.bytes[0] = 0x8f;
7f399153
L
2963 break;
2964 case XOP0A:
f88c9eb0
SP
2965 m = 0xa;
2966 i.vex.bytes[0] = 0x8f;
7f399153
L
2967 break;
2968 default:
2969 abort ();
f88c9eb0 2970 }
c0f3af97 2971
c0f3af97
L
2972 /* The high 3 bits of the second VEX byte are 1's compliment
2973 of RXB bits from REX. */
2974 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2975
2976 /* Check the REX.W bit. */
2977 w = (i.rex & REX_W) ? 1 : 0;
1ef99a7b 2978 if (i.tm.opcode_modifier.vexw)
c0f3af97
L
2979 {
2980 if (w)
2981 abort ();
2982
1ef99a7b 2983 if (i.tm.opcode_modifier.vexw == VEXW1)
c0f3af97
L
2984 w = 1;
2985 }
2986
2987 i.vex.bytes[2] = (w << 7
2988 | register_specifier << 3
2989 | vector_length << 2
2990 | implied_prefix);
2991 }
2992}
2993
65da13b5
L
2994static void
2995process_immext (void)
2996{
2997 expressionS *exp;
2998
4c692bc7
JB
2999 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3000 && i.operands > 0)
65da13b5 3001 {
4c692bc7
JB
3002 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3003 with an opcode suffix which is coded in the same place as an
3004 8-bit immediate field would be.
3005 Here we check those operands and remove them afterwards. */
65da13b5
L
3006 unsigned int x;
3007
3008 for (x = 0; x < i.operands; x++)
4c692bc7 3009 if (register_number (i.op[x].regs) != x)
65da13b5 3010 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3011 register_prefix, i.op[x].regs->reg_name, x + 1,
3012 i.tm.name);
3013
3014 i.operands = 0;
65da13b5
L
3015 }
3016
c0f3af97 3017 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3018 which is coded in the same place as an 8-bit immediate field
3019 would be. Here we fake an 8-bit immediate operand from the
3020 opcode suffix stored in tm.extension_opcode.
3021
c1e679ec 3022 AVX instructions also use this encoding, for some of
c0f3af97 3023 3 argument instructions. */
65da13b5 3024
9c2799c2 3025 gas_assert (i.imm_operands == 0
7ab9ffdd
L
3026 && (i.operands <= 2
3027 || (i.tm.opcode_modifier.vex
3028 && i.operands <= 4)));
65da13b5
L
3029
3030 exp = &im_expressions[i.imm_operands++];
3031 i.op[i.operands].imms = exp;
3032 i.types[i.operands] = imm8;
3033 i.operands++;
3034 exp->X_op = O_constant;
3035 exp->X_add_number = i.tm.extension_opcode;
3036 i.tm.extension_opcode = None;
3037}
3038
42164a71
L
3039
3040static int
3041check_hle (void)
3042{
3043 switch (i.tm.opcode_modifier.hleprefixok)
3044 {
3045 default:
3046 abort ();
82c2def5 3047 case HLEPrefixNone:
42164a71
L
3048 if (i.prefix[HLE_PREFIX] == XACQUIRE_PREFIX_OPCODE)
3049 as_bad (_("invalid instruction `%s' after `xacquire'"),
3050 i.tm.name);
3051 else
3052 as_bad (_("invalid instruction `%s' after `xrelease'"),
3053 i.tm.name);
3054 return 0;
82c2def5 3055 case HLEPrefixLock:
42164a71
L
3056 if (i.prefix[LOCK_PREFIX])
3057 return 1;
3058 if (i.prefix[HLE_PREFIX] == XACQUIRE_PREFIX_OPCODE)
3059 as_bad (_("missing `lock' with `xacquire'"));
3060 else
3061 as_bad (_("missing `lock' with `xrelease'"));
3062 return 0;
82c2def5 3063 case HLEPrefixAny:
42164a71 3064 return 1;
82c2def5 3065 case HLEPrefixRelease:
42164a71
L
3066 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3067 {
3068 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3069 i.tm.name);
3070 return 0;
3071 }
3072 if (i.mem_operands == 0
3073 || !operand_type_check (i.types[i.operands - 1], anymem))
3074 {
3075 as_bad (_("memory destination needed for instruction `%s'"
3076 " after `xrelease'"), i.tm.name);
3077 return 0;
3078 }
3079 return 1;
3080 }
3081}
3082
252b5132
RH
3083/* This is the guts of the machine-dependent assembler. LINE points to a
3084 machine dependent instruction. This function is supposed to emit
3085 the frags/bytes it assembles to. */
3086
3087void
65da13b5 3088md_assemble (char *line)
252b5132 3089{
40fb9820 3090 unsigned int j;
252b5132 3091 char mnemonic[MAX_MNEM_SIZE];
d3ce72d0 3092 const insn_template *t;
252b5132 3093
47926f60 3094 /* Initialize globals. */
252b5132
RH
3095 memset (&i, '\0', sizeof (i));
3096 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3097 i.reloc[j] = NO_RELOC;
252b5132
RH
3098 memset (disp_expressions, '\0', sizeof (disp_expressions));
3099 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3100 save_stack_p = save_stack;
252b5132
RH
3101
3102 /* First parse an instruction mnemonic & call i386_operand for the operands.
3103 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3104 start of a (possibly prefixed) mnemonic. */
252b5132 3105
29b0f896
AM
3106 line = parse_insn (line, mnemonic);
3107 if (line == NULL)
3108 return;
252b5132 3109
29b0f896 3110 line = parse_operands (line, mnemonic);
ee86248c 3111 this_operand = -1;
29b0f896
AM
3112 if (line == NULL)
3113 return;
252b5132 3114
29b0f896
AM
3115 /* Now we've parsed the mnemonic into a set of templates, and have the
3116 operands at hand. */
3117
3118 /* All intel opcodes have reversed operands except for "bound" and
3119 "enter". We also don't reverse intersegment "jmp" and "call"
3120 instructions with 2 immediate operands so that the immediate segment
050dfa73 3121 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3122 if (intel_syntax
3123 && i.operands > 1
29b0f896 3124 && (strcmp (mnemonic, "bound") != 0)
30123838 3125 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3126 && !(operand_type_check (i.types[0], imm)
3127 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3128 swap_operands ();
3129
ec56d5c0
JB
3130 /* The order of the immediates should be reversed
3131 for 2 immediates extrq and insertq instructions */
3132 if (i.imm_operands == 2
3133 && (strcmp (mnemonic, "extrq") == 0
3134 || strcmp (mnemonic, "insertq") == 0))
3135 swap_2_operands (0, 1);
3136
29b0f896
AM
3137 if (i.imm_operands)
3138 optimize_imm ();
3139
b300c311
L
3140 /* Don't optimize displacement for movabs since it only takes 64bit
3141 displacement. */
3142 if (i.disp_operands
a501d77e 3143 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3144 && (flag_code != CODE_64BIT
3145 || strcmp (mnemonic, "movabs") != 0))
3146 optimize_disp ();
29b0f896
AM
3147
3148 /* Next, we find a template that matches the given insn,
3149 making sure the overlap of the given operands types is consistent
3150 with the template operand types. */
252b5132 3151
fa99fab2 3152 if (!(t = match_template ()))
29b0f896 3153 return;
252b5132 3154
7bab8ab5 3155 if (sse_check != check_none
81f8a913 3156 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3157 && (i.tm.cpu_flags.bitfield.cpusse
3158 || i.tm.cpu_flags.bitfield.cpusse2
3159 || i.tm.cpu_flags.bitfield.cpusse3
3160 || i.tm.cpu_flags.bitfield.cpussse3
3161 || i.tm.cpu_flags.bitfield.cpusse4_1
3162 || i.tm.cpu_flags.bitfield.cpusse4_2))
3163 {
7bab8ab5 3164 (sse_check == check_warning
daf50ae7
L
3165 ? as_warn
3166 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3167 }
3168
321fd21e
L
3169 /* Zap movzx and movsx suffix. The suffix has been set from
3170 "word ptr" or "byte ptr" on the source operand in Intel syntax
3171 or extracted from mnemonic in AT&T syntax. But we'll use
3172 the destination register to choose the suffix for encoding. */
3173 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3174 {
321fd21e
L
3175 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3176 there is no suffix, the default will be byte extension. */
3177 if (i.reg_operands != 2
3178 && !i.suffix
7ab9ffdd 3179 && intel_syntax)
321fd21e
L
3180 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3181
3182 i.suffix = 0;
cd61ebfe 3183 }
24eab124 3184
40fb9820 3185 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3186 if (!add_prefix (FWAIT_OPCODE))
3187 return;
252b5132 3188
c1ba0266
L
3189 /* Check for lock without a lockable instruction. Destination operand
3190 must be memory unless it is xchg (0x86). */
c32fa91d
L
3191 if (i.prefix[LOCK_PREFIX]
3192 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3193 || i.mem_operands == 0
3194 || (i.tm.base_opcode != 0x86
3195 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3196 {
3197 as_bad (_("expecting lockable instruction after `lock'"));
3198 return;
3199 }
3200
42164a71
L
3201 /* Check if HLE prefix is OK. */
3202 if (i.have_hle && !check_hle ())
3203 return;
3204
29b0f896 3205 /* Check string instruction segment overrides. */
40fb9820 3206 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3207 {
3208 if (!check_string ())
5dd0794d 3209 return;
fc0763e6 3210 i.disp_operands = 0;
29b0f896 3211 }
5dd0794d 3212
29b0f896
AM
3213 if (!process_suffix ())
3214 return;
e413e4e9 3215
bc0844ae
L
3216 /* Update operand types. */
3217 for (j = 0; j < i.operands; j++)
3218 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3219
29b0f896
AM
3220 /* Make still unresolved immediate matches conform to size of immediate
3221 given in i.suffix. */
3222 if (!finalize_imm ())
3223 return;
252b5132 3224
40fb9820 3225 if (i.types[0].bitfield.imm1)
29b0f896 3226 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3227
9afe6eb8
L
3228 /* We only need to check those implicit registers for instructions
3229 with 3 operands or less. */
3230 if (i.operands <= 3)
3231 for (j = 0; j < i.operands; j++)
3232 if (i.types[j].bitfield.inoutportreg
3233 || i.types[j].bitfield.shiftcount
3234 || i.types[j].bitfield.acc
3235 || i.types[j].bitfield.floatacc)
3236 i.reg_operands--;
40fb9820 3237
c0f3af97
L
3238 /* ImmExt should be processed after SSE2AVX. */
3239 if (!i.tm.opcode_modifier.sse2avx
3240 && i.tm.opcode_modifier.immext)
65da13b5 3241 process_immext ();
252b5132 3242
29b0f896
AM
3243 /* For insns with operands there are more diddles to do to the opcode. */
3244 if (i.operands)
3245 {
3246 if (!process_operands ())
3247 return;
3248 }
40fb9820 3249 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3250 {
3251 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3252 as_warn (_("translating to `%sp'"), i.tm.name);
3253 }
252b5132 3254
c0f3af97 3255 if (i.tm.opcode_modifier.vex)
fa99fab2 3256 build_vex_prefix (t);
c0f3af97 3257
5dd85c99
SP
3258 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3259 instructions may define INT_OPCODE as well, so avoid this corner
3260 case for those instructions that use MODRM. */
3261 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3262 && !i.tm.opcode_modifier.modrm
3263 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3264 {
3265 i.tm.base_opcode = INT3_OPCODE;
3266 i.imm_operands = 0;
3267 }
252b5132 3268
40fb9820
L
3269 if ((i.tm.opcode_modifier.jump
3270 || i.tm.opcode_modifier.jumpbyte
3271 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3272 && i.op[0].disps->X_op == O_constant)
3273 {
3274 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3275 the absolute address given by the constant. Since ix86 jumps and
3276 calls are pc relative, we need to generate a reloc. */
3277 i.op[0].disps->X_add_symbol = &abs_symbol;
3278 i.op[0].disps->X_op = O_symbol;
3279 }
252b5132 3280
40fb9820 3281 if (i.tm.opcode_modifier.rex64)
161a04f6 3282 i.rex |= REX_W;
252b5132 3283
29b0f896
AM
3284 /* For 8 bit registers we need an empty rex prefix. Also if the
3285 instruction already has a prefix, we need to convert old
3286 registers to new ones. */
773f551c 3287
40fb9820 3288 if ((i.types[0].bitfield.reg8
29b0f896 3289 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3290 || (i.types[1].bitfield.reg8
29b0f896 3291 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3292 || ((i.types[0].bitfield.reg8
3293 || i.types[1].bitfield.reg8)
29b0f896
AM
3294 && i.rex != 0))
3295 {
3296 int x;
726c5dcd 3297
29b0f896
AM
3298 i.rex |= REX_OPCODE;
3299 for (x = 0; x < 2; x++)
3300 {
3301 /* Look for 8 bit operand that uses old registers. */
40fb9820 3302 if (i.types[x].bitfield.reg8
29b0f896 3303 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3304 {
29b0f896
AM
3305 /* In case it is "hi" register, give up. */
3306 if (i.op[x].regs->reg_num > 3)
a540244d 3307 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3308 "instruction requiring REX prefix."),
a540244d 3309 register_prefix, i.op[x].regs->reg_name);
773f551c 3310
29b0f896
AM
3311 /* Otherwise it is equivalent to the extended register.
3312 Since the encoding doesn't change this is merely
3313 cosmetic cleanup for debug output. */
3314
3315 i.op[x].regs = i.op[x].regs + 8;
773f551c 3316 }
29b0f896
AM
3317 }
3318 }
773f551c 3319
7ab9ffdd 3320 if (i.rex != 0)
29b0f896
AM
3321 add_prefix (REX_OPCODE | i.rex);
3322
3323 /* We are ready to output the insn. */
3324 output_insn ();
3325}
3326
3327static char *
e3bb37b5 3328parse_insn (char *line, char *mnemonic)
29b0f896
AM
3329{
3330 char *l = line;
3331 char *token_start = l;
3332 char *mnem_p;
5c6af06e 3333 int supported;
d3ce72d0 3334 const insn_template *t;
b6169b20 3335 char *dot_p = NULL;
29b0f896
AM
3336
3337 /* Non-zero if we found a prefix only acceptable with string insns. */
3338 const char *expecting_string_instruction = NULL;
45288df1 3339
29b0f896
AM
3340 while (1)
3341 {
3342 mnem_p = mnemonic;
3343 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3344 {
b6169b20
L
3345 if (*mnem_p == '.')
3346 dot_p = mnem_p;
29b0f896
AM
3347 mnem_p++;
3348 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3349 {
29b0f896
AM
3350 as_bad (_("no such instruction: `%s'"), token_start);
3351 return NULL;
3352 }
3353 l++;
3354 }
3355 if (!is_space_char (*l)
3356 && *l != END_OF_INSN
e44823cf
JB
3357 && (intel_syntax
3358 || (*l != PREFIX_SEPARATOR
3359 && *l != ',')))
29b0f896
AM
3360 {
3361 as_bad (_("invalid character %s in mnemonic"),
3362 output_invalid (*l));
3363 return NULL;
3364 }
3365 if (token_start == l)
3366 {
e44823cf 3367 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3368 as_bad (_("expecting prefix; got nothing"));
3369 else
3370 as_bad (_("expecting mnemonic; got nothing"));
3371 return NULL;
3372 }
45288df1 3373
29b0f896 3374 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3375 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3376
29b0f896
AM
3377 if (*l != END_OF_INSN
3378 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3379 && current_templates
40fb9820 3380 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3381 {
c6fb90c8 3382 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3383 {
3384 as_bad ((flag_code != CODE_64BIT
3385 ? _("`%s' is only supported in 64-bit mode")
3386 : _("`%s' is not supported in 64-bit mode")),
3387 current_templates->start->name);
3388 return NULL;
3389 }
29b0f896
AM
3390 /* If we are in 16-bit mode, do not allow addr16 or data16.
3391 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3392 if ((current_templates->start->opcode_modifier.size16
3393 || current_templates->start->opcode_modifier.size32)
29b0f896 3394 && flag_code != CODE_64BIT
40fb9820 3395 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3396 ^ (flag_code == CODE_16BIT)))
3397 {
3398 as_bad (_("redundant %s prefix"),
3399 current_templates->start->name);
3400 return NULL;
45288df1 3401 }
29b0f896
AM
3402 /* Add prefix, checking for repeated prefixes. */
3403 switch (add_prefix (current_templates->start->base_opcode))
3404 {
c32fa91d 3405 case PREFIX_EXIST:
29b0f896 3406 return NULL;
c32fa91d 3407 case PREFIX_REP:
42164a71
L
3408 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3409 i.have_hle = 1;
3410 else
3411 expecting_string_instruction = current_templates->start->name;
29b0f896 3412 break;
c32fa91d
L
3413 default:
3414 break;
29b0f896
AM
3415 }
3416 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3417 token_start = ++l;
3418 }
3419 else
3420 break;
3421 }
45288df1 3422
30a55f88 3423 if (!current_templates)
b6169b20 3424 {
f8a5c266
L
3425 /* Check if we should swap operand or force 32bit displacement in
3426 encoding. */
30a55f88
L
3427 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3428 i.swap_operand = 1;
8d63c93e 3429 else if (mnem_p - 3 == dot_p
a501d77e
L
3430 && dot_p[1] == 'd'
3431 && dot_p[2] == '8')
3432 i.disp_encoding = disp_encoding_8bit;
8d63c93e 3433 else if (mnem_p - 4 == dot_p
f8a5c266
L
3434 && dot_p[1] == 'd'
3435 && dot_p[2] == '3'
3436 && dot_p[3] == '2')
a501d77e 3437 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
3438 else
3439 goto check_suffix;
3440 mnem_p = dot_p;
3441 *dot_p = '\0';
d3ce72d0 3442 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
3443 }
3444
29b0f896
AM
3445 if (!current_templates)
3446 {
b6169b20 3447check_suffix:
29b0f896
AM
3448 /* See if we can get a match by trimming off a suffix. */
3449 switch (mnem_p[-1])
3450 {
3451 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3452 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3453 i.suffix = SHORT_MNEM_SUFFIX;
3454 else
29b0f896
AM
3455 case BYTE_MNEM_SUFFIX:
3456 case QWORD_MNEM_SUFFIX:
3457 i.suffix = mnem_p[-1];
3458 mnem_p[-1] = '\0';
d3ce72d0
NC
3459 current_templates = (const templates *) hash_find (op_hash,
3460 mnemonic);
29b0f896
AM
3461 break;
3462 case SHORT_MNEM_SUFFIX:
3463 case LONG_MNEM_SUFFIX:
3464 if (!intel_syntax)
3465 {
3466 i.suffix = mnem_p[-1];
3467 mnem_p[-1] = '\0';
d3ce72d0
NC
3468 current_templates = (const templates *) hash_find (op_hash,
3469 mnemonic);
29b0f896
AM
3470 }
3471 break;
252b5132 3472
29b0f896
AM
3473 /* Intel Syntax. */
3474 case 'd':
3475 if (intel_syntax)
3476 {
9306ca4a 3477 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3478 i.suffix = SHORT_MNEM_SUFFIX;
3479 else
3480 i.suffix = LONG_MNEM_SUFFIX;
3481 mnem_p[-1] = '\0';
d3ce72d0
NC
3482 current_templates = (const templates *) hash_find (op_hash,
3483 mnemonic);
29b0f896
AM
3484 }
3485 break;
3486 }
3487 if (!current_templates)
3488 {
3489 as_bad (_("no such instruction: `%s'"), token_start);
3490 return NULL;
3491 }
3492 }
252b5132 3493
40fb9820
L
3494 if (current_templates->start->opcode_modifier.jump
3495 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3496 {
3497 /* Check for a branch hint. We allow ",pt" and ",pn" for
3498 predict taken and predict not taken respectively.
3499 I'm not sure that branch hints actually do anything on loop
3500 and jcxz insns (JumpByte) for current Pentium4 chips. They
3501 may work in the future and it doesn't hurt to accept them
3502 now. */
3503 if (l[0] == ',' && l[1] == 'p')
3504 {
3505 if (l[2] == 't')
3506 {
3507 if (!add_prefix (DS_PREFIX_OPCODE))
3508 return NULL;
3509 l += 3;
3510 }
3511 else if (l[2] == 'n')
3512 {
3513 if (!add_prefix (CS_PREFIX_OPCODE))
3514 return NULL;
3515 l += 3;
3516 }
3517 }
3518 }
3519 /* Any other comma loses. */
3520 if (*l == ',')
3521 {
3522 as_bad (_("invalid character %s in mnemonic"),
3523 output_invalid (*l));
3524 return NULL;
3525 }
252b5132 3526
29b0f896 3527 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
3528 supported = 0;
3529 for (t = current_templates->start; t < current_templates->end; ++t)
3530 {
c0f3af97
L
3531 supported |= cpu_flags_match (t);
3532 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 3533 goto skip;
5c6af06e 3534 }
3629bb00 3535
c0f3af97 3536 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
3537 {
3538 as_bad (flag_code == CODE_64BIT
3539 ? _("`%s' is not supported in 64-bit mode")
3540 : _("`%s' is only supported in 64-bit mode"),
3541 current_templates->start->name);
3542 return NULL;
3543 }
c0f3af97 3544 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 3545 {
3629bb00 3546 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 3547 current_templates->start->name,
41aacd83 3548 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
3549 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3550 return NULL;
29b0f896 3551 }
3629bb00
L
3552
3553skip:
3554 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 3555 && (flag_code != CODE_16BIT))
29b0f896
AM
3556 {
3557 as_warn (_("use .code16 to ensure correct addressing mode"));
3558 }
252b5132 3559
29c048b6 3560 /* Check for rep/repne without a string (or other allowed) instruction. */
f41bbced 3561 if (expecting_string_instruction)
29b0f896 3562 {
f41bbced
JB
3563 static templates override;
3564
3565 for (t = current_templates->start; t < current_templates->end; ++t)
29c048b6 3566 if (t->opcode_modifier.repprefixok)
f41bbced
JB
3567 break;
3568 if (t >= current_templates->end)
3569 {
3570 as_bad (_("expecting string instruction after `%s'"),
64e74474 3571 expecting_string_instruction);
f41bbced
JB
3572 return NULL;
3573 }
3574 for (override.start = t; t < current_templates->end; ++t)
29c048b6 3575 if (!t->opcode_modifier.repprefixok)
f41bbced
JB
3576 break;
3577 override.end = t;
3578 current_templates = &override;
29b0f896 3579 }
252b5132 3580
29b0f896
AM
3581 return l;
3582}
252b5132 3583
29b0f896 3584static char *
e3bb37b5 3585parse_operands (char *l, const char *mnemonic)
29b0f896
AM
3586{
3587 char *token_start;
3138f287 3588
29b0f896
AM
3589 /* 1 if operand is pending after ','. */
3590 unsigned int expecting_operand = 0;
252b5132 3591
29b0f896
AM
3592 /* Non-zero if operand parens not balanced. */
3593 unsigned int paren_not_balanced;
3594
3595 while (*l != END_OF_INSN)
3596 {
3597 /* Skip optional white space before operand. */
3598 if (is_space_char (*l))
3599 ++l;
3600 if (!is_operand_char (*l) && *l != END_OF_INSN)
3601 {
3602 as_bad (_("invalid character %s before operand %d"),
3603 output_invalid (*l),
3604 i.operands + 1);
3605 return NULL;
3606 }
3607 token_start = l; /* after white space */
3608 paren_not_balanced = 0;
3609 while (paren_not_balanced || *l != ',')
3610 {
3611 if (*l == END_OF_INSN)
3612 {
3613 if (paren_not_balanced)
3614 {
3615 if (!intel_syntax)
3616 as_bad (_("unbalanced parenthesis in operand %d."),
3617 i.operands + 1);
3618 else
3619 as_bad (_("unbalanced brackets in operand %d."),
3620 i.operands + 1);
3621 return NULL;
3622 }
3623 else
3624 break; /* we are done */
3625 }
3626 else if (!is_operand_char (*l) && !is_space_char (*l))
3627 {
3628 as_bad (_("invalid character %s in operand %d"),
3629 output_invalid (*l),
3630 i.operands + 1);
3631 return NULL;
3632 }
3633 if (!intel_syntax)
3634 {
3635 if (*l == '(')
3636 ++paren_not_balanced;
3637 if (*l == ')')
3638 --paren_not_balanced;
3639 }
3640 else
3641 {
3642 if (*l == '[')
3643 ++paren_not_balanced;
3644 if (*l == ']')
3645 --paren_not_balanced;
3646 }
3647 l++;
3648 }
3649 if (l != token_start)
3650 { /* Yes, we've read in another operand. */
3651 unsigned int operand_ok;
3652 this_operand = i.operands++;
7d5e4556 3653 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
3654 if (i.operands > MAX_OPERANDS)
3655 {
3656 as_bad (_("spurious operands; (%d operands/instruction max)"),
3657 MAX_OPERANDS);
3658 return NULL;
3659 }
3660 /* Now parse operand adding info to 'i' as we go along. */
3661 END_STRING_AND_SAVE (l);
3662
3663 if (intel_syntax)
3664 operand_ok =
3665 i386_intel_operand (token_start,
3666 intel_float_operand (mnemonic));
3667 else
a7619375 3668 operand_ok = i386_att_operand (token_start);
29b0f896
AM
3669
3670 RESTORE_END_STRING (l);
3671 if (!operand_ok)
3672 return NULL;
3673 }
3674 else
3675 {
3676 if (expecting_operand)
3677 {
3678 expecting_operand_after_comma:
3679 as_bad (_("expecting operand after ','; got nothing"));
3680 return NULL;
3681 }
3682 if (*l == ',')
3683 {
3684 as_bad (_("expecting operand before ','; got nothing"));
3685 return NULL;
3686 }
3687 }
7f3f1ea2 3688
29b0f896
AM
3689 /* Now *l must be either ',' or END_OF_INSN. */
3690 if (*l == ',')
3691 {
3692 if (*++l == END_OF_INSN)
3693 {
3694 /* Just skip it, if it's \n complain. */
3695 goto expecting_operand_after_comma;
3696 }
3697 expecting_operand = 1;
3698 }
3699 }
3700 return l;
3701}
7f3f1ea2 3702
050dfa73 3703static void
4d456e3d 3704swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
3705{
3706 union i386_op temp_op;
40fb9820 3707 i386_operand_type temp_type;
050dfa73 3708 enum bfd_reloc_code_real temp_reloc;
4eed87de 3709
050dfa73
MM
3710 temp_type = i.types[xchg2];
3711 i.types[xchg2] = i.types[xchg1];
3712 i.types[xchg1] = temp_type;
3713 temp_op = i.op[xchg2];
3714 i.op[xchg2] = i.op[xchg1];
3715 i.op[xchg1] = temp_op;
3716 temp_reloc = i.reloc[xchg2];
3717 i.reloc[xchg2] = i.reloc[xchg1];
3718 i.reloc[xchg1] = temp_reloc;
3719}
3720
29b0f896 3721static void
e3bb37b5 3722swap_operands (void)
29b0f896 3723{
b7c61d9a 3724 switch (i.operands)
050dfa73 3725 {
c0f3af97 3726 case 5:
b7c61d9a 3727 case 4:
4d456e3d 3728 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
3729 case 3:
3730 case 2:
4d456e3d 3731 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
3732 break;
3733 default:
3734 abort ();
29b0f896 3735 }
29b0f896
AM
3736
3737 if (i.mem_operands == 2)
3738 {
3739 const seg_entry *temp_seg;
3740 temp_seg = i.seg[0];
3741 i.seg[0] = i.seg[1];
3742 i.seg[1] = temp_seg;
3743 }
3744}
252b5132 3745
29b0f896
AM
3746/* Try to ensure constant immediates are represented in the smallest
3747 opcode possible. */
3748static void
e3bb37b5 3749optimize_imm (void)
29b0f896
AM
3750{
3751 char guess_suffix = 0;
3752 int op;
252b5132 3753
29b0f896
AM
3754 if (i.suffix)
3755 guess_suffix = i.suffix;
3756 else if (i.reg_operands)
3757 {
3758 /* Figure out a suffix from the last register operand specified.
3759 We can't do this properly yet, ie. excluding InOutPortReg,
3760 but the following works for instructions with immediates.
3761 In any case, we can't set i.suffix yet. */
3762 for (op = i.operands; --op >= 0;)
40fb9820 3763 if (i.types[op].bitfield.reg8)
7ab9ffdd 3764 {
40fb9820
L
3765 guess_suffix = BYTE_MNEM_SUFFIX;
3766 break;
3767 }
3768 else if (i.types[op].bitfield.reg16)
252b5132 3769 {
40fb9820
L
3770 guess_suffix = WORD_MNEM_SUFFIX;
3771 break;
3772 }
3773 else if (i.types[op].bitfield.reg32)
3774 {
3775 guess_suffix = LONG_MNEM_SUFFIX;
3776 break;
3777 }
3778 else if (i.types[op].bitfield.reg64)
3779 {
3780 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 3781 break;
252b5132 3782 }
29b0f896
AM
3783 }
3784 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3785 guess_suffix = WORD_MNEM_SUFFIX;
3786
3787 for (op = i.operands; --op >= 0;)
40fb9820 3788 if (operand_type_check (i.types[op], imm))
29b0f896
AM
3789 {
3790 switch (i.op[op].imms->X_op)
252b5132 3791 {
29b0f896
AM
3792 case O_constant:
3793 /* If a suffix is given, this operand may be shortened. */
3794 switch (guess_suffix)
252b5132 3795 {
29b0f896 3796 case LONG_MNEM_SUFFIX:
40fb9820
L
3797 i.types[op].bitfield.imm32 = 1;
3798 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
3799 break;
3800 case WORD_MNEM_SUFFIX:
40fb9820
L
3801 i.types[op].bitfield.imm16 = 1;
3802 i.types[op].bitfield.imm32 = 1;
3803 i.types[op].bitfield.imm32s = 1;
3804 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
3805 break;
3806 case BYTE_MNEM_SUFFIX:
40fb9820
L
3807 i.types[op].bitfield.imm8 = 1;
3808 i.types[op].bitfield.imm8s = 1;
3809 i.types[op].bitfield.imm16 = 1;
3810 i.types[op].bitfield.imm32 = 1;
3811 i.types[op].bitfield.imm32s = 1;
3812 i.types[op].bitfield.imm64 = 1;
29b0f896 3813 break;
252b5132 3814 }
252b5132 3815
29b0f896
AM
3816 /* If this operand is at most 16 bits, convert it
3817 to a signed 16 bit number before trying to see
3818 whether it will fit in an even smaller size.
3819 This allows a 16-bit operand such as $0xffe0 to
3820 be recognised as within Imm8S range. */
40fb9820 3821 if ((i.types[op].bitfield.imm16)
29b0f896 3822 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 3823 {
29b0f896
AM
3824 i.op[op].imms->X_add_number =
3825 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3826 }
40fb9820 3827 if ((i.types[op].bitfield.imm32)
29b0f896
AM
3828 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3829 == 0))
3830 {
3831 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3832 ^ ((offsetT) 1 << 31))
3833 - ((offsetT) 1 << 31));
3834 }
40fb9820 3835 i.types[op]
c6fb90c8
L
3836 = operand_type_or (i.types[op],
3837 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 3838
29b0f896
AM
3839 /* We must avoid matching of Imm32 templates when 64bit
3840 only immediate is available. */
3841 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 3842 i.types[op].bitfield.imm32 = 0;
29b0f896 3843 break;
252b5132 3844
29b0f896
AM
3845 case O_absent:
3846 case O_register:
3847 abort ();
3848
3849 /* Symbols and expressions. */
3850 default:
9cd96992
JB
3851 /* Convert symbolic operand to proper sizes for matching, but don't
3852 prevent matching a set of insns that only supports sizes other
3853 than those matching the insn suffix. */
3854 {
40fb9820 3855 i386_operand_type mask, allowed;
d3ce72d0 3856 const insn_template *t;
9cd96992 3857
0dfbf9d7
L
3858 operand_type_set (&mask, 0);
3859 operand_type_set (&allowed, 0);
40fb9820 3860
4eed87de
AM
3861 for (t = current_templates->start;
3862 t < current_templates->end;
3863 ++t)
c6fb90c8
L
3864 allowed = operand_type_or (allowed,
3865 t->operand_types[op]);
9cd96992
JB
3866 switch (guess_suffix)
3867 {
3868 case QWORD_MNEM_SUFFIX:
40fb9820
L
3869 mask.bitfield.imm64 = 1;
3870 mask.bitfield.imm32s = 1;
9cd96992
JB
3871 break;
3872 case LONG_MNEM_SUFFIX:
40fb9820 3873 mask.bitfield.imm32 = 1;
9cd96992
JB
3874 break;
3875 case WORD_MNEM_SUFFIX:
40fb9820 3876 mask.bitfield.imm16 = 1;
9cd96992
JB
3877 break;
3878 case BYTE_MNEM_SUFFIX:
40fb9820 3879 mask.bitfield.imm8 = 1;
9cd96992
JB
3880 break;
3881 default:
9cd96992
JB
3882 break;
3883 }
c6fb90c8 3884 allowed = operand_type_and (mask, allowed);
0dfbf9d7 3885 if (!operand_type_all_zero (&allowed))
c6fb90c8 3886 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 3887 }
29b0f896 3888 break;
252b5132 3889 }
29b0f896
AM
3890 }
3891}
47926f60 3892
29b0f896
AM
3893/* Try to use the smallest displacement type too. */
3894static void
e3bb37b5 3895optimize_disp (void)
29b0f896
AM
3896{
3897 int op;
3e73aa7c 3898
29b0f896 3899 for (op = i.operands; --op >= 0;)
40fb9820 3900 if (operand_type_check (i.types[op], disp))
252b5132 3901 {
b300c311 3902 if (i.op[op].disps->X_op == O_constant)
252b5132 3903 {
91d6fa6a 3904 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 3905
40fb9820 3906 if (i.types[op].bitfield.disp16
91d6fa6a 3907 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
3908 {
3909 /* If this operand is at most 16 bits, convert
3910 to a signed 16 bit number and don't use 64bit
3911 displacement. */
91d6fa6a 3912 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 3913 i.types[op].bitfield.disp64 = 0;
b300c311 3914 }
40fb9820 3915 if (i.types[op].bitfield.disp32
91d6fa6a 3916 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
3917 {
3918 /* If this operand is at most 32 bits, convert
3919 to a signed 32 bit number and don't use 64bit
3920 displacement. */
91d6fa6a
NC
3921 op_disp &= (((offsetT) 2 << 31) - 1);
3922 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 3923 i.types[op].bitfield.disp64 = 0;
b300c311 3924 }
91d6fa6a 3925 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 3926 {
40fb9820
L
3927 i.types[op].bitfield.disp8 = 0;
3928 i.types[op].bitfield.disp16 = 0;
3929 i.types[op].bitfield.disp32 = 0;
3930 i.types[op].bitfield.disp32s = 0;
3931 i.types[op].bitfield.disp64 = 0;
b300c311
L
3932 i.op[op].disps = 0;
3933 i.disp_operands--;
3934 }
3935 else if (flag_code == CODE_64BIT)
3936 {
91d6fa6a 3937 if (fits_in_signed_long (op_disp))
28a9d8f5 3938 {
40fb9820
L
3939 i.types[op].bitfield.disp64 = 0;
3940 i.types[op].bitfield.disp32s = 1;
28a9d8f5 3941 }
0e1147d9 3942 if (i.prefix[ADDR_PREFIX]
91d6fa6a 3943 && fits_in_unsigned_long (op_disp))
40fb9820 3944 i.types[op].bitfield.disp32 = 1;
b300c311 3945 }
40fb9820
L
3946 if ((i.types[op].bitfield.disp32
3947 || i.types[op].bitfield.disp32s
3948 || i.types[op].bitfield.disp16)
91d6fa6a 3949 && fits_in_signed_byte (op_disp))
40fb9820 3950 i.types[op].bitfield.disp8 = 1;
252b5132 3951 }
67a4f2b7
AO
3952 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3953 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3954 {
3955 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3956 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
3957 i.types[op].bitfield.disp8 = 0;
3958 i.types[op].bitfield.disp16 = 0;
3959 i.types[op].bitfield.disp32 = 0;
3960 i.types[op].bitfield.disp32s = 0;
3961 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
3962 }
3963 else
b300c311 3964 /* We only support 64bit displacement on constants. */
40fb9820 3965 i.types[op].bitfield.disp64 = 0;
252b5132 3966 }
29b0f896
AM
3967}
3968
6c30d220
L
3969/* Check if operands are valid for the instruction. */
3970
3971static int
3972check_VecOperands (const insn_template *t)
3973{
3974 /* Without VSIB byte, we can't have a vector register for index. */
3975 if (!t->opcode_modifier.vecsib
3976 && i.index_reg
3977 && (i.index_reg->reg_type.bitfield.regxmm
3978 || i.index_reg->reg_type.bitfield.regymm))
3979 {
3980 i.error = unsupported_vector_index_register;
3981 return 1;
3982 }
3983
7bab8ab5
JB
3984 /* For VSIB byte, we need a vector register for index, and all vector
3985 registers must be distinct. */
3986 if (t->opcode_modifier.vecsib)
3987 {
3988 if (!i.index_reg
6c30d220
L
3989 || !((t->opcode_modifier.vecsib == VecSIB128
3990 && i.index_reg->reg_type.bitfield.regxmm)
3991 || (t->opcode_modifier.vecsib == VecSIB256
7bab8ab5
JB
3992 && i.index_reg->reg_type.bitfield.regymm)))
3993 {
3994 i.error = invalid_vsib_address;
3995 return 1;
3996 }
3997
3998 gas_assert (i.reg_operands == 2);
3999 gas_assert (i.types[0].bitfield.regxmm
4000 || i.types[0].bitfield.regymm);
4001 gas_assert (i.types[2].bitfield.regxmm
4002 || i.types[2].bitfield.regymm);
4003
4004 if (operand_check == check_none)
4005 return 0;
4006 if (register_number (i.op[0].regs) != register_number (i.index_reg)
4007 && register_number (i.op[2].regs) != register_number (i.index_reg)
4008 && register_number (i.op[0].regs) != register_number (i.op[2].regs))
4009 return 0;
4010 if (operand_check == check_error)
4011 {
4012 i.error = invalid_vector_register_set;
4013 return 1;
4014 }
4015 as_warn (_("mask, index, and destination registers should be distinct"));
6c30d220
L
4016 }
4017
4018 return 0;
4019}
4020
43f3e2ee 4021/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4022 operand types. */
4023
4024static int
4025VEX_check_operands (const insn_template *t)
4026{
4027 if (!t->opcode_modifier.vex)
4028 return 0;
4029
4030 /* Only check VEX_Imm4, which must be the first operand. */
4031 if (t->operand_types[0].bitfield.vec_imm4)
4032 {
4033 if (i.op[0].imms->X_op != O_constant
4034 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4035 {
a65babc9 4036 i.error = bad_imm4;
891edac4
L
4037 return 1;
4038 }
a683cc34
SP
4039
4040 /* Turn off Imm8 so that update_imm won't complain. */
4041 i.types[0] = vec_imm4;
4042 }
4043
4044 return 0;
4045}
4046
d3ce72d0 4047static const insn_template *
e3bb37b5 4048match_template (void)
29b0f896
AM
4049{
4050 /* Points to template once we've found it. */
d3ce72d0 4051 const insn_template *t;
40fb9820 4052 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4053 i386_operand_type overlap4;
29b0f896 4054 unsigned int found_reverse_match;
40fb9820
L
4055 i386_opcode_modifier suffix_check;
4056 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4057 int addr_prefix_disp;
a5c311ca 4058 unsigned int j;
3629bb00 4059 unsigned int found_cpu_match;
45664ddb 4060 unsigned int check_register;
5614d22c 4061 enum i386_error specific_error = 0;
29b0f896 4062
c0f3af97
L
4063#if MAX_OPERANDS != 5
4064# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4065#endif
4066
29b0f896 4067 found_reverse_match = 0;
539e75ad 4068 addr_prefix_disp = -1;
40fb9820
L
4069
4070 memset (&suffix_check, 0, sizeof (suffix_check));
4071 if (i.suffix == BYTE_MNEM_SUFFIX)
4072 suffix_check.no_bsuf = 1;
4073 else if (i.suffix == WORD_MNEM_SUFFIX)
4074 suffix_check.no_wsuf = 1;
4075 else if (i.suffix == SHORT_MNEM_SUFFIX)
4076 suffix_check.no_ssuf = 1;
4077 else if (i.suffix == LONG_MNEM_SUFFIX)
4078 suffix_check.no_lsuf = 1;
4079 else if (i.suffix == QWORD_MNEM_SUFFIX)
4080 suffix_check.no_qsuf = 1;
4081 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4082 suffix_check.no_ldsuf = 1;
29b0f896 4083
01559ecc
L
4084 /* Must have right number of operands. */
4085 i.error = number_of_operands_mismatch;
4086
45aa61fe 4087 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4088 {
539e75ad
L
4089 addr_prefix_disp = -1;
4090
29b0f896
AM
4091 if (i.operands != t->operands)
4092 continue;
4093
50aecf8c 4094 /* Check processor support. */
a65babc9 4095 i.error = unsupported;
c0f3af97
L
4096 found_cpu_match = (cpu_flags_match (t)
4097 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4098 if (!found_cpu_match)
4099 continue;
4100
e1d4d893 4101 /* Check old gcc support. */
a65babc9 4102 i.error = old_gcc_only;
e1d4d893
L
4103 if (!old_gcc && t->opcode_modifier.oldgcc)
4104 continue;
4105
4106 /* Check AT&T mnemonic. */
a65babc9 4107 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4108 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4109 continue;
4110
891edac4 4111 /* Check AT&T/Intel syntax. */
a65babc9 4112 i.error = unsupported_syntax;
5c07affc
L
4113 if ((intel_syntax && t->opcode_modifier.attsyntax)
4114 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
4115 continue;
4116
20592a94 4117 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4118 i.error = invalid_instruction_suffix;
567e4e96
L
4119 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4120 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4121 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4122 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4123 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4124 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4125 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896
AM
4126 continue;
4127
5c07affc 4128 if (!operand_size_match (t))
7d5e4556 4129 continue;
539e75ad 4130
5c07affc
L
4131 for (j = 0; j < MAX_OPERANDS; j++)
4132 operand_types[j] = t->operand_types[j];
4133
45aa61fe
AM
4134 /* In general, don't allow 64-bit operands in 32-bit mode. */
4135 if (i.suffix == QWORD_MNEM_SUFFIX
4136 && flag_code != CODE_64BIT
4137 && (intel_syntax
40fb9820 4138 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4139 && !intel_float_operand (t->name))
4140 : intel_float_operand (t->name) != 2)
40fb9820 4141 && ((!operand_types[0].bitfield.regmmx
c0f3af97
L
4142 && !operand_types[0].bitfield.regxmm
4143 && !operand_types[0].bitfield.regymm)
40fb9820 4144 || (!operand_types[t->operands > 1].bitfield.regmmx
c0f3af97
L
4145 && !!operand_types[t->operands > 1].bitfield.regxmm
4146 && !!operand_types[t->operands > 1].bitfield.regymm))
45aa61fe
AM
4147 && (t->base_opcode != 0x0fc7
4148 || t->extension_opcode != 1 /* cmpxchg8b */))
4149 continue;
4150
192dc9c6
JB
4151 /* In general, don't allow 32-bit operands on pre-386. */
4152 else if (i.suffix == LONG_MNEM_SUFFIX
4153 && !cpu_arch_flags.bitfield.cpui386
4154 && (intel_syntax
4155 ? (!t->opcode_modifier.ignoresize
4156 && !intel_float_operand (t->name))
4157 : intel_float_operand (t->name) != 2)
4158 && ((!operand_types[0].bitfield.regmmx
4159 && !operand_types[0].bitfield.regxmm)
4160 || (!operand_types[t->operands > 1].bitfield.regmmx
4161 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4162 continue;
4163
29b0f896 4164 /* Do not verify operands when there are none. */
50aecf8c 4165 else
29b0f896 4166 {
c6fb90c8 4167 if (!t->operands)
2dbab7d5
L
4168 /* We've found a match; break out of loop. */
4169 break;
29b0f896 4170 }
252b5132 4171
539e75ad
L
4172 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4173 into Disp32/Disp16/Disp32 operand. */
4174 if (i.prefix[ADDR_PREFIX] != 0)
4175 {
40fb9820 4176 /* There should be only one Disp operand. */
539e75ad
L
4177 switch (flag_code)
4178 {
4179 case CODE_16BIT:
40fb9820
L
4180 for (j = 0; j < MAX_OPERANDS; j++)
4181 {
4182 if (operand_types[j].bitfield.disp16)
4183 {
4184 addr_prefix_disp = j;
4185 operand_types[j].bitfield.disp32 = 1;
4186 operand_types[j].bitfield.disp16 = 0;
4187 break;
4188 }
4189 }
539e75ad
L
4190 break;
4191 case CODE_32BIT:
40fb9820
L
4192 for (j = 0; j < MAX_OPERANDS; j++)
4193 {
4194 if (operand_types[j].bitfield.disp32)
4195 {
4196 addr_prefix_disp = j;
4197 operand_types[j].bitfield.disp32 = 0;
4198 operand_types[j].bitfield.disp16 = 1;
4199 break;
4200 }
4201 }
539e75ad
L
4202 break;
4203 case CODE_64BIT:
40fb9820
L
4204 for (j = 0; j < MAX_OPERANDS; j++)
4205 {
4206 if (operand_types[j].bitfield.disp64)
4207 {
4208 addr_prefix_disp = j;
4209 operand_types[j].bitfield.disp64 = 0;
4210 operand_types[j].bitfield.disp32 = 1;
4211 break;
4212 }
4213 }
539e75ad
L
4214 break;
4215 }
539e75ad
L
4216 }
4217
56ffb741
L
4218 /* We check register size if needed. */
4219 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 4220 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
4221 switch (t->operands)
4222 {
4223 case 1:
40fb9820 4224 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
4225 continue;
4226 break;
4227 case 2:
8b38ad71
L
4228 /* xchg %eax, %eax is a special case. It is an aliase for nop
4229 only in 32bit mode and we can use opcode 0x90. In 64bit
4230 mode, we can't use 0x90 for xchg %eax, %eax since it should
4231 zero-extend %eax to %rax. */
4232 if (flag_code == CODE_64BIT
4233 && t->base_opcode == 0x90
0dfbf9d7
L
4234 && operand_type_equal (&i.types [0], &acc32)
4235 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 4236 continue;
b6169b20
L
4237 if (i.swap_operand)
4238 {
4239 /* If we swap operand in encoding, we either match
4240 the next one or reverse direction of operands. */
4241 if (t->opcode_modifier.s)
4242 continue;
4243 else if (t->opcode_modifier.d)
4244 goto check_reverse;
4245 }
4246
29b0f896 4247 case 3:
fa99fab2
L
4248 /* If we swap operand in encoding, we match the next one. */
4249 if (i.swap_operand && t->opcode_modifier.s)
4250 continue;
f48ff2ae 4251 case 4:
c0f3af97 4252 case 5:
c6fb90c8 4253 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
4254 if (!operand_type_match (overlap0, i.types[0])
4255 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4256 || (check_register
4257 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
4258 operand_types[0],
4259 overlap1, i.types[1],
4260 operand_types[1])))
29b0f896
AM
4261 {
4262 /* Check if other direction is valid ... */
40fb9820 4263 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
4264 continue;
4265
b6169b20 4266check_reverse:
29b0f896 4267 /* Try reversing direction of operands. */
c6fb90c8
L
4268 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4269 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
4270 if (!operand_type_match (overlap0, i.types[0])
4271 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4272 || (check_register
4273 && !operand_type_register_match (overlap0,
4274 i.types[0],
4275 operand_types[1],
4276 overlap1,
4277 i.types[1],
4278 operand_types[0])))
29b0f896
AM
4279 {
4280 /* Does not match either direction. */
4281 continue;
4282 }
4283 /* found_reverse_match holds which of D or FloatDR
4284 we've found. */
40fb9820 4285 if (t->opcode_modifier.d)
8a2ed489 4286 found_reverse_match = Opcode_D;
40fb9820 4287 else if (t->opcode_modifier.floatd)
8a2ed489
L
4288 found_reverse_match = Opcode_FloatD;
4289 else
4290 found_reverse_match = 0;
40fb9820 4291 if (t->opcode_modifier.floatr)
8a2ed489 4292 found_reverse_match |= Opcode_FloatR;
29b0f896 4293 }
f48ff2ae 4294 else
29b0f896 4295 {
f48ff2ae 4296 /* Found a forward 2 operand match here. */
d1cbb4db
L
4297 switch (t->operands)
4298 {
c0f3af97
L
4299 case 5:
4300 overlap4 = operand_type_and (i.types[4],
4301 operand_types[4]);
d1cbb4db 4302 case 4:
c6fb90c8
L
4303 overlap3 = operand_type_and (i.types[3],
4304 operand_types[3]);
d1cbb4db 4305 case 3:
c6fb90c8
L
4306 overlap2 = operand_type_and (i.types[2],
4307 operand_types[2]);
d1cbb4db
L
4308 break;
4309 }
29b0f896 4310
f48ff2ae
L
4311 switch (t->operands)
4312 {
c0f3af97
L
4313 case 5:
4314 if (!operand_type_match (overlap4, i.types[4])
4315 || !operand_type_register_match (overlap3,
4316 i.types[3],
4317 operand_types[3],
4318 overlap4,
4319 i.types[4],
4320 operand_types[4]))
4321 continue;
f48ff2ae 4322 case 4:
40fb9820 4323 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
4324 || (check_register
4325 && !operand_type_register_match (overlap2,
4326 i.types[2],
4327 operand_types[2],
4328 overlap3,
4329 i.types[3],
4330 operand_types[3])))
f48ff2ae
L
4331 continue;
4332 case 3:
4333 /* Here we make use of the fact that there are no
4334 reverse match 3 operand instructions, and all 3
4335 operand instructions only need to be checked for
4336 register consistency between operands 2 and 3. */
40fb9820 4337 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
4338 || (check_register
4339 && !operand_type_register_match (overlap1,
4340 i.types[1],
4341 operand_types[1],
4342 overlap2,
4343 i.types[2],
4344 operand_types[2])))
f48ff2ae
L
4345 continue;
4346 break;
4347 }
29b0f896 4348 }
f48ff2ae 4349 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
4350 slip through to break. */
4351 }
3629bb00 4352 if (!found_cpu_match)
29b0f896
AM
4353 {
4354 found_reverse_match = 0;
4355 continue;
4356 }
c0f3af97 4357
5614d22c
JB
4358 /* Check if vector and VEX operands are valid. */
4359 if (check_VecOperands (t) || VEX_check_operands (t))
4360 {
4361 specific_error = i.error;
4362 continue;
4363 }
a683cc34 4364
29b0f896
AM
4365 /* We've found a match; break out of loop. */
4366 break;
4367 }
4368
4369 if (t == current_templates->end)
4370 {
4371 /* We found no match. */
a65babc9 4372 const char *err_msg;
5614d22c 4373 switch (specific_error ? specific_error : i.error)
a65babc9
L
4374 {
4375 default:
4376 abort ();
86e026a4 4377 case operand_size_mismatch:
a65babc9
L
4378 err_msg = _("operand size mismatch");
4379 break;
4380 case operand_type_mismatch:
4381 err_msg = _("operand type mismatch");
4382 break;
4383 case register_type_mismatch:
4384 err_msg = _("register type mismatch");
4385 break;
4386 case number_of_operands_mismatch:
4387 err_msg = _("number of operands mismatch");
4388 break;
4389 case invalid_instruction_suffix:
4390 err_msg = _("invalid instruction suffix");
4391 break;
4392 case bad_imm4:
4a2608e3 4393 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
4394 break;
4395 case old_gcc_only:
4396 err_msg = _("only supported with old gcc");
4397 break;
4398 case unsupported_with_intel_mnemonic:
4399 err_msg = _("unsupported with Intel mnemonic");
4400 break;
4401 case unsupported_syntax:
4402 err_msg = _("unsupported syntax");
4403 break;
4404 case unsupported:
35262a23 4405 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
4406 current_templates->start->name);
4407 return NULL;
6c30d220
L
4408 case invalid_vsib_address:
4409 err_msg = _("invalid VSIB address");
4410 break;
7bab8ab5
JB
4411 case invalid_vector_register_set:
4412 err_msg = _("mask, index, and destination registers must be distinct");
4413 break;
6c30d220
L
4414 case unsupported_vector_index_register:
4415 err_msg = _("unsupported vector index register");
4416 break;
a65babc9
L
4417 }
4418 as_bad (_("%s for `%s'"), err_msg,
891edac4 4419 current_templates->start->name);
fa99fab2 4420 return NULL;
29b0f896 4421 }
252b5132 4422
29b0f896
AM
4423 if (!quiet_warnings)
4424 {
4425 if (!intel_syntax
40fb9820
L
4426 && (i.types[0].bitfield.jumpabsolute
4427 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
4428 {
4429 as_warn (_("indirect %s without `*'"), t->name);
4430 }
4431
40fb9820
L
4432 if (t->opcode_modifier.isprefix
4433 && t->opcode_modifier.ignoresize)
29b0f896
AM
4434 {
4435 /* Warn them that a data or address size prefix doesn't
4436 affect assembly of the next line of code. */
4437 as_warn (_("stand-alone `%s' prefix"), t->name);
4438 }
4439 }
4440
4441 /* Copy the template we found. */
4442 i.tm = *t;
539e75ad
L
4443
4444 if (addr_prefix_disp != -1)
4445 i.tm.operand_types[addr_prefix_disp]
4446 = operand_types[addr_prefix_disp];
4447
29b0f896
AM
4448 if (found_reverse_match)
4449 {
4450 /* If we found a reverse match we must alter the opcode
4451 direction bit. found_reverse_match holds bits to change
4452 (different for int & float insns). */
4453
4454 i.tm.base_opcode ^= found_reverse_match;
4455
539e75ad
L
4456 i.tm.operand_types[0] = operand_types[1];
4457 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
4458 }
4459
fa99fab2 4460 return t;
29b0f896
AM
4461}
4462
4463static int
e3bb37b5 4464check_string (void)
29b0f896 4465{
40fb9820
L
4466 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4467 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
4468 {
4469 if (i.seg[0] != NULL && i.seg[0] != &es)
4470 {
a87af027 4471 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 4472 i.tm.name,
a87af027
JB
4473 mem_op + 1,
4474 register_prefix);
29b0f896
AM
4475 return 0;
4476 }
4477 /* There's only ever one segment override allowed per instruction.
4478 This instruction possibly has a legal segment override on the
4479 second operand, so copy the segment to where non-string
4480 instructions store it, allowing common code. */
4481 i.seg[0] = i.seg[1];
4482 }
40fb9820 4483 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
4484 {
4485 if (i.seg[1] != NULL && i.seg[1] != &es)
4486 {
a87af027 4487 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 4488 i.tm.name,
a87af027
JB
4489 mem_op + 2,
4490 register_prefix);
29b0f896
AM
4491 return 0;
4492 }
4493 }
4494 return 1;
4495}
4496
4497static int
543613e9 4498process_suffix (void)
29b0f896
AM
4499{
4500 /* If matched instruction specifies an explicit instruction mnemonic
4501 suffix, use it. */
40fb9820
L
4502 if (i.tm.opcode_modifier.size16)
4503 i.suffix = WORD_MNEM_SUFFIX;
4504 else if (i.tm.opcode_modifier.size32)
4505 i.suffix = LONG_MNEM_SUFFIX;
4506 else if (i.tm.opcode_modifier.size64)
4507 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
4508 else if (i.reg_operands)
4509 {
4510 /* If there's no instruction mnemonic suffix we try to invent one
4511 based on register operands. */
4512 if (!i.suffix)
4513 {
4514 /* We take i.suffix from the last register operand specified,
4515 Destination register type is more significant than source
381d071f
L
4516 register type. crc32 in SSE4.2 prefers source register
4517 type. */
4518 if (i.tm.base_opcode == 0xf20f38f1)
4519 {
40fb9820
L
4520 if (i.types[0].bitfield.reg16)
4521 i.suffix = WORD_MNEM_SUFFIX;
4522 else if (i.types[0].bitfield.reg32)
4523 i.suffix = LONG_MNEM_SUFFIX;
4524 else if (i.types[0].bitfield.reg64)
4525 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 4526 }
9344ff29 4527 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 4528 {
40fb9820 4529 if (i.types[0].bitfield.reg8)
20592a94
L
4530 i.suffix = BYTE_MNEM_SUFFIX;
4531 }
381d071f
L
4532
4533 if (!i.suffix)
4534 {
4535 int op;
4536
20592a94
L
4537 if (i.tm.base_opcode == 0xf20f38f1
4538 || i.tm.base_opcode == 0xf20f38f0)
4539 {
4540 /* We have to know the operand size for crc32. */
4541 as_bad (_("ambiguous memory operand size for `%s`"),
4542 i.tm.name);
4543 return 0;
4544 }
4545
381d071f 4546 for (op = i.operands; --op >= 0;)
40fb9820 4547 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 4548 {
40fb9820
L
4549 if (i.types[op].bitfield.reg8)
4550 {
4551 i.suffix = BYTE_MNEM_SUFFIX;
4552 break;
4553 }
4554 else if (i.types[op].bitfield.reg16)
4555 {
4556 i.suffix = WORD_MNEM_SUFFIX;
4557 break;
4558 }
4559 else if (i.types[op].bitfield.reg32)
4560 {
4561 i.suffix = LONG_MNEM_SUFFIX;
4562 break;
4563 }
4564 else if (i.types[op].bitfield.reg64)
4565 {
4566 i.suffix = QWORD_MNEM_SUFFIX;
4567 break;
4568 }
381d071f
L
4569 }
4570 }
29b0f896
AM
4571 }
4572 else if (i.suffix == BYTE_MNEM_SUFFIX)
4573 {
2eb952a4
L
4574 if (intel_syntax
4575 && i.tm.opcode_modifier.ignoresize
4576 && i.tm.opcode_modifier.no_bsuf)
4577 i.suffix = 0;
4578 else if (!check_byte_reg ())
29b0f896
AM
4579 return 0;
4580 }
4581 else if (i.suffix == LONG_MNEM_SUFFIX)
4582 {
2eb952a4
L
4583 if (intel_syntax
4584 && i.tm.opcode_modifier.ignoresize
4585 && i.tm.opcode_modifier.no_lsuf)
4586 i.suffix = 0;
4587 else if (!check_long_reg ())
29b0f896
AM
4588 return 0;
4589 }
4590 else if (i.suffix == QWORD_MNEM_SUFFIX)
4591 {
955e1e6a
L
4592 if (intel_syntax
4593 && i.tm.opcode_modifier.ignoresize
4594 && i.tm.opcode_modifier.no_qsuf)
4595 i.suffix = 0;
4596 else if (!check_qword_reg ())
29b0f896
AM
4597 return 0;
4598 }
4599 else if (i.suffix == WORD_MNEM_SUFFIX)
4600 {
2eb952a4
L
4601 if (intel_syntax
4602 && i.tm.opcode_modifier.ignoresize
4603 && i.tm.opcode_modifier.no_wsuf)
4604 i.suffix = 0;
4605 else if (!check_word_reg ())
29b0f896
AM
4606 return 0;
4607 }
c0f3af97
L
4608 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4609 || i.suffix == YMMWORD_MNEM_SUFFIX)
582d5edd 4610 {
c0f3af97 4611 /* Skip if the instruction has x/y suffix. match_template
582d5edd
L
4612 should check if it is a valid suffix. */
4613 }
40fb9820 4614 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
4615 /* Do nothing if the instruction is going to ignore the prefix. */
4616 ;
4617 else
4618 abort ();
4619 }
40fb9820 4620 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
4621 && !i.suffix
4622 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 4623 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
4624 {
4625 i.suffix = stackop_size;
4626 }
9306ca4a
JB
4627 else if (intel_syntax
4628 && !i.suffix
40fb9820
L
4629 && (i.tm.operand_types[0].bitfield.jumpabsolute
4630 || i.tm.opcode_modifier.jumpbyte
4631 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
4632 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4633 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
4634 {
4635 switch (flag_code)
4636 {
4637 case CODE_64BIT:
40fb9820 4638 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
4639 {
4640 i.suffix = QWORD_MNEM_SUFFIX;
4641 break;
4642 }
4643 case CODE_32BIT:
40fb9820 4644 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
4645 i.suffix = LONG_MNEM_SUFFIX;
4646 break;
4647 case CODE_16BIT:
40fb9820 4648 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
4649 i.suffix = WORD_MNEM_SUFFIX;
4650 break;
4651 }
4652 }
252b5132 4653
9306ca4a 4654 if (!i.suffix)
29b0f896 4655 {
9306ca4a
JB
4656 if (!intel_syntax)
4657 {
40fb9820 4658 if (i.tm.opcode_modifier.w)
9306ca4a 4659 {
4eed87de
AM
4660 as_bad (_("no instruction mnemonic suffix given and "
4661 "no register operands; can't size instruction"));
9306ca4a
JB
4662 return 0;
4663 }
4664 }
4665 else
4666 {
40fb9820 4667 unsigned int suffixes;
7ab9ffdd 4668
40fb9820
L
4669 suffixes = !i.tm.opcode_modifier.no_bsuf;
4670 if (!i.tm.opcode_modifier.no_wsuf)
4671 suffixes |= 1 << 1;
4672 if (!i.tm.opcode_modifier.no_lsuf)
4673 suffixes |= 1 << 2;
fc4adea1 4674 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
4675 suffixes |= 1 << 3;
4676 if (!i.tm.opcode_modifier.no_ssuf)
4677 suffixes |= 1 << 4;
4678 if (!i.tm.opcode_modifier.no_qsuf)
4679 suffixes |= 1 << 5;
4680
4681 /* There are more than suffix matches. */
4682 if (i.tm.opcode_modifier.w
9306ca4a 4683 || ((suffixes & (suffixes - 1))
40fb9820
L
4684 && !i.tm.opcode_modifier.defaultsize
4685 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
4686 {
4687 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4688 return 0;
4689 }
4690 }
29b0f896 4691 }
252b5132 4692
9306ca4a
JB
4693 /* Change the opcode based on the operand size given by i.suffix;
4694 We don't need to change things for byte insns. */
4695
582d5edd
L
4696 if (i.suffix
4697 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97
L
4698 && i.suffix != XMMWORD_MNEM_SUFFIX
4699 && i.suffix != YMMWORD_MNEM_SUFFIX)
29b0f896
AM
4700 {
4701 /* It's not a byte, select word/dword operation. */
40fb9820 4702 if (i.tm.opcode_modifier.w)
29b0f896 4703 {
40fb9820 4704 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
4705 i.tm.base_opcode |= 8;
4706 else
4707 i.tm.base_opcode |= 1;
4708 }
0f3f3d8b 4709
29b0f896
AM
4710 /* Now select between word & dword operations via the operand
4711 size prefix, except for instructions that will ignore this
4712 prefix anyway. */
ca61edf2 4713 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 4714 {
ca61edf2
L
4715 /* The address size override prefix changes the size of the
4716 first operand. */
40fb9820
L
4717 if ((flag_code == CODE_32BIT
4718 && i.op->regs[0].reg_type.bitfield.reg16)
4719 || (flag_code != CODE_32BIT
4720 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
4721 if (!add_prefix (ADDR_PREFIX_OPCODE))
4722 return 0;
4723 }
4724 else if (i.suffix != QWORD_MNEM_SUFFIX
4725 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
4726 && !i.tm.opcode_modifier.ignoresize
4727 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
4728 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4729 || (flag_code == CODE_64BIT
40fb9820 4730 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
4731 {
4732 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 4733
40fb9820 4734 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 4735 prefix = ADDR_PREFIX_OPCODE;
252b5132 4736
29b0f896
AM
4737 if (!add_prefix (prefix))
4738 return 0;
24eab124 4739 }
252b5132 4740
29b0f896
AM
4741 /* Set mode64 for an operand. */
4742 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 4743 && flag_code == CODE_64BIT
40fb9820 4744 && !i.tm.opcode_modifier.norex64)
46e883c5
L
4745 {
4746 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
4747 need rex64. cmpxchg8b is also a special case. */
4748 if (! (i.operands == 2
4749 && i.tm.base_opcode == 0x90
4750 && i.tm.extension_opcode == None
0dfbf9d7
L
4751 && operand_type_equal (&i.types [0], &acc64)
4752 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
4753 && ! (i.operands == 1
4754 && i.tm.base_opcode == 0xfc7
4755 && i.tm.extension_opcode == 1
40fb9820
L
4756 && !operand_type_check (i.types [0], reg)
4757 && operand_type_check (i.types [0], anymem)))
f6bee062 4758 i.rex |= REX_W;
46e883c5 4759 }
3e73aa7c 4760
29b0f896
AM
4761 /* Size floating point instruction. */
4762 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 4763 if (i.tm.opcode_modifier.floatmf)
543613e9 4764 i.tm.base_opcode ^= 4;
29b0f896 4765 }
7ecd2f8b 4766
29b0f896
AM
4767 return 1;
4768}
3e73aa7c 4769
29b0f896 4770static int
543613e9 4771check_byte_reg (void)
29b0f896
AM
4772{
4773 int op;
543613e9 4774
29b0f896
AM
4775 for (op = i.operands; --op >= 0;)
4776 {
4777 /* If this is an eight bit register, it's OK. If it's the 16 or
4778 32 bit version of an eight bit register, we will just use the
4779 low portion, and that's OK too. */
40fb9820 4780 if (i.types[op].bitfield.reg8)
29b0f896
AM
4781 continue;
4782
5a819eb9
JB
4783 /* I/O port address operands are OK too. */
4784 if (i.tm.operand_types[op].bitfield.inoutportreg)
4785 continue;
4786
9344ff29
L
4787 /* crc32 doesn't generate this warning. */
4788 if (i.tm.base_opcode == 0xf20f38f0)
4789 continue;
4790
40fb9820
L
4791 if ((i.types[op].bitfield.reg16
4792 || i.types[op].bitfield.reg32
4793 || i.types[op].bitfield.reg64)
5a819eb9
JB
4794 && i.op[op].regs->reg_num < 4
4795 /* Prohibit these changes in 64bit mode, since the lowering
4796 would be more complicated. */
4797 && flag_code != CODE_64BIT)
29b0f896 4798 {
29b0f896 4799#if REGISTER_WARNINGS
5a819eb9 4800 if (!quiet_warnings)
a540244d
L
4801 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4802 register_prefix,
40fb9820 4803 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
4804 ? REGNAM_AL - REGNAM_AX
4805 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 4806 register_prefix,
29b0f896
AM
4807 i.op[op].regs->reg_name,
4808 i.suffix);
4809#endif
4810 continue;
4811 }
4812 /* Any other register is bad. */
40fb9820
L
4813 if (i.types[op].bitfield.reg16
4814 || i.types[op].bitfield.reg32
4815 || i.types[op].bitfield.reg64
4816 || i.types[op].bitfield.regmmx
4817 || i.types[op].bitfield.regxmm
c0f3af97 4818 || i.types[op].bitfield.regymm
40fb9820
L
4819 || i.types[op].bitfield.sreg2
4820 || i.types[op].bitfield.sreg3
4821 || i.types[op].bitfield.control
4822 || i.types[op].bitfield.debug
4823 || i.types[op].bitfield.test
4824 || i.types[op].bitfield.floatreg
4825 || i.types[op].bitfield.floatacc)
29b0f896 4826 {
a540244d
L
4827 as_bad (_("`%s%s' not allowed with `%s%c'"),
4828 register_prefix,
29b0f896
AM
4829 i.op[op].regs->reg_name,
4830 i.tm.name,
4831 i.suffix);
4832 return 0;
4833 }
4834 }
4835 return 1;
4836}
4837
4838static int
e3bb37b5 4839check_long_reg (void)
29b0f896
AM
4840{
4841 int op;
4842
4843 for (op = i.operands; --op >= 0;)
4844 /* Reject eight bit registers, except where the template requires
4845 them. (eg. movzb) */
40fb9820
L
4846 if (i.types[op].bitfield.reg8
4847 && (i.tm.operand_types[op].bitfield.reg16
4848 || i.tm.operand_types[op].bitfield.reg32
4849 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4850 {
a540244d
L
4851 as_bad (_("`%s%s' not allowed with `%s%c'"),
4852 register_prefix,
29b0f896
AM
4853 i.op[op].regs->reg_name,
4854 i.tm.name,
4855 i.suffix);
4856 return 0;
4857 }
4858 /* Warn if the e prefix on a general reg is missing. */
4859 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
4860 && i.types[op].bitfield.reg16
4861 && (i.tm.operand_types[op].bitfield.reg32
4862 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
4863 {
4864 /* Prohibit these changes in the 64bit mode, since the
4865 lowering is more complicated. */
4866 if (flag_code == CODE_64BIT)
252b5132 4867 {
2b5d6a91 4868 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 4869 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4870 i.suffix);
4871 return 0;
252b5132 4872 }
29b0f896
AM
4873#if REGISTER_WARNINGS
4874 else
a540244d
L
4875 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4876 register_prefix,
29b0f896 4877 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
a540244d 4878 register_prefix,
29b0f896
AM
4879 i.op[op].regs->reg_name,
4880 i.suffix);
4881#endif
252b5132 4882 }
29b0f896 4883 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
4884 else if (i.types[op].bitfield.reg64
4885 && (i.tm.operand_types[op].bitfield.reg32
4886 || i.tm.operand_types[op].bitfield.acc))
252b5132 4887 {
34828aad 4888 if (intel_syntax
ca61edf2 4889 && i.tm.opcode_modifier.toqword
40fb9820 4890 && !i.types[0].bitfield.regxmm)
34828aad 4891 {
ca61edf2 4892 /* Convert to QWORD. We want REX byte. */
34828aad
L
4893 i.suffix = QWORD_MNEM_SUFFIX;
4894 }
4895 else
4896 {
2b5d6a91 4897 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
4898 register_prefix, i.op[op].regs->reg_name,
4899 i.suffix);
4900 return 0;
4901 }
29b0f896
AM
4902 }
4903 return 1;
4904}
252b5132 4905
29b0f896 4906static int
e3bb37b5 4907check_qword_reg (void)
29b0f896
AM
4908{
4909 int op;
252b5132 4910
29b0f896
AM
4911 for (op = i.operands; --op >= 0; )
4912 /* Reject eight bit registers, except where the template requires
4913 them. (eg. movzb) */
40fb9820
L
4914 if (i.types[op].bitfield.reg8
4915 && (i.tm.operand_types[op].bitfield.reg16
4916 || i.tm.operand_types[op].bitfield.reg32
4917 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4918 {
a540244d
L
4919 as_bad (_("`%s%s' not allowed with `%s%c'"),
4920 register_prefix,
29b0f896
AM
4921 i.op[op].regs->reg_name,
4922 i.tm.name,
4923 i.suffix);
4924 return 0;
4925 }
4926 /* Warn if the e prefix on a general reg is missing. */
40fb9820
L
4927 else if ((i.types[op].bitfield.reg16
4928 || i.types[op].bitfield.reg32)
4929 && (i.tm.operand_types[op].bitfield.reg32
4930 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
4931 {
4932 /* Prohibit these changes in the 64bit mode, since the
4933 lowering is more complicated. */
34828aad 4934 if (intel_syntax
ca61edf2 4935 && i.tm.opcode_modifier.todword
40fb9820 4936 && !i.types[0].bitfield.regxmm)
34828aad 4937 {
ca61edf2 4938 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
4939 i.suffix = LONG_MNEM_SUFFIX;
4940 }
4941 else
4942 {
2b5d6a91 4943 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
4944 register_prefix, i.op[op].regs->reg_name,
4945 i.suffix);
4946 return 0;
4947 }
252b5132 4948 }
29b0f896
AM
4949 return 1;
4950}
252b5132 4951
29b0f896 4952static int
e3bb37b5 4953check_word_reg (void)
29b0f896
AM
4954{
4955 int op;
4956 for (op = i.operands; --op >= 0;)
4957 /* Reject eight bit registers, except where the template requires
4958 them. (eg. movzb) */
40fb9820
L
4959 if (i.types[op].bitfield.reg8
4960 && (i.tm.operand_types[op].bitfield.reg16
4961 || i.tm.operand_types[op].bitfield.reg32
4962 || i.tm.operand_types[op].bitfield.acc))
29b0f896 4963 {
a540244d
L
4964 as_bad (_("`%s%s' not allowed with `%s%c'"),
4965 register_prefix,
29b0f896
AM
4966 i.op[op].regs->reg_name,
4967 i.tm.name,
4968 i.suffix);
4969 return 0;
4970 }
4971 /* Warn if the e prefix on a general reg is present. */
4972 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
4973 && i.types[op].bitfield.reg32
4974 && (i.tm.operand_types[op].bitfield.reg16
4975 || i.tm.operand_types[op].bitfield.acc))
252b5132 4976 {
29b0f896
AM
4977 /* Prohibit these changes in the 64bit mode, since the
4978 lowering is more complicated. */
4979 if (flag_code == CODE_64BIT)
252b5132 4980 {
2b5d6a91 4981 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 4982 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
4983 i.suffix);
4984 return 0;
252b5132 4985 }
29b0f896
AM
4986 else
4987#if REGISTER_WARNINGS
a540244d
L
4988 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4989 register_prefix,
29b0f896 4990 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
a540244d 4991 register_prefix,
29b0f896
AM
4992 i.op[op].regs->reg_name,
4993 i.suffix);
4994#endif
4995 }
4996 return 1;
4997}
252b5132 4998
29b0f896 4999static int
40fb9820 5000update_imm (unsigned int j)
29b0f896 5001{
bc0844ae 5002 i386_operand_type overlap = i.types[j];
40fb9820
L
5003 if ((overlap.bitfield.imm8
5004 || overlap.bitfield.imm8s
5005 || overlap.bitfield.imm16
5006 || overlap.bitfield.imm32
5007 || overlap.bitfield.imm32s
5008 || overlap.bitfield.imm64)
0dfbf9d7
L
5009 && !operand_type_equal (&overlap, &imm8)
5010 && !operand_type_equal (&overlap, &imm8s)
5011 && !operand_type_equal (&overlap, &imm16)
5012 && !operand_type_equal (&overlap, &imm32)
5013 && !operand_type_equal (&overlap, &imm32s)
5014 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5015 {
5016 if (i.suffix)
5017 {
40fb9820
L
5018 i386_operand_type temp;
5019
0dfbf9d7 5020 operand_type_set (&temp, 0);
7ab9ffdd 5021 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5022 {
5023 temp.bitfield.imm8 = overlap.bitfield.imm8;
5024 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5025 }
5026 else if (i.suffix == WORD_MNEM_SUFFIX)
5027 temp.bitfield.imm16 = overlap.bitfield.imm16;
5028 else if (i.suffix == QWORD_MNEM_SUFFIX)
5029 {
5030 temp.bitfield.imm64 = overlap.bitfield.imm64;
5031 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5032 }
5033 else
5034 temp.bitfield.imm32 = overlap.bitfield.imm32;
5035 overlap = temp;
29b0f896 5036 }
0dfbf9d7
L
5037 else if (operand_type_equal (&overlap, &imm16_32_32s)
5038 || operand_type_equal (&overlap, &imm16_32)
5039 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5040 {
40fb9820 5041 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5042 overlap = imm16;
40fb9820 5043 else
65da13b5 5044 overlap = imm32s;
29b0f896 5045 }
0dfbf9d7
L
5046 if (!operand_type_equal (&overlap, &imm8)
5047 && !operand_type_equal (&overlap, &imm8s)
5048 && !operand_type_equal (&overlap, &imm16)
5049 && !operand_type_equal (&overlap, &imm32)
5050 && !operand_type_equal (&overlap, &imm32s)
5051 && !operand_type_equal (&overlap, &imm64))
29b0f896 5052 {
4eed87de
AM
5053 as_bad (_("no instruction mnemonic suffix given; "
5054 "can't determine immediate size"));
29b0f896
AM
5055 return 0;
5056 }
5057 }
40fb9820 5058 i.types[j] = overlap;
29b0f896 5059
40fb9820
L
5060 return 1;
5061}
5062
5063static int
5064finalize_imm (void)
5065{
bc0844ae 5066 unsigned int j, n;
29b0f896 5067
bc0844ae
L
5068 /* Update the first 2 immediate operands. */
5069 n = i.operands > 2 ? 2 : i.operands;
5070 if (n)
5071 {
5072 for (j = 0; j < n; j++)
5073 if (update_imm (j) == 0)
5074 return 0;
40fb9820 5075
bc0844ae
L
5076 /* The 3rd operand can't be immediate operand. */
5077 gas_assert (operand_type_check (i.types[2], imm) == 0);
5078 }
29b0f896
AM
5079
5080 return 1;
5081}
5082
c0f3af97
L
5083static int
5084bad_implicit_operand (int xmm)
5085{
91d6fa6a
NC
5086 const char *ireg = xmm ? "xmm0" : "ymm0";
5087
c0f3af97
L
5088 if (intel_syntax)
5089 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5090 i.tm.name, register_prefix, ireg);
c0f3af97
L
5091 else
5092 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5093 i.tm.name, register_prefix, ireg);
c0f3af97
L
5094 return 0;
5095}
5096
29b0f896 5097static int
e3bb37b5 5098process_operands (void)
29b0f896
AM
5099{
5100 /* Default segment register this instruction will use for memory
5101 accesses. 0 means unknown. This is only for optimizing out
5102 unnecessary segment overrides. */
5103 const seg_entry *default_seg = 0;
5104
2426c15f 5105 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5106 {
91d6fa6a
NC
5107 unsigned int dupl = i.operands;
5108 unsigned int dest = dupl - 1;
9fcfb3d7
L
5109 unsigned int j;
5110
c0f3af97 5111 /* The destination must be an xmm register. */
9c2799c2 5112 gas_assert (i.reg_operands
91d6fa6a 5113 && MAX_OPERANDS > dupl
7ab9ffdd 5114 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5115
5116 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 5117 {
c0f3af97 5118 /* The first operand is implicit and must be xmm0. */
9c2799c2 5119 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 5120 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
5121 return bad_implicit_operand (1);
5122
8cd7925b 5123 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
5124 {
5125 /* Keep xmm0 for instructions with VEX prefix and 3
5126 sources. */
5127 goto duplicate;
5128 }
e2ec9d29 5129 else
c0f3af97
L
5130 {
5131 /* We remove the first xmm0 and keep the number of
5132 operands unchanged, which in fact duplicates the
5133 destination. */
5134 for (j = 1; j < i.operands; j++)
5135 {
5136 i.op[j - 1] = i.op[j];
5137 i.types[j - 1] = i.types[j];
5138 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5139 }
5140 }
5141 }
5142 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 5143 {
91d6fa6a 5144 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
5145 && (i.tm.opcode_modifier.vexsources
5146 == VEX3SOURCES));
c0f3af97
L
5147
5148 /* Add the implicit xmm0 for instructions with VEX prefix
5149 and 3 sources. */
5150 for (j = i.operands; j > 0; j--)
5151 {
5152 i.op[j] = i.op[j - 1];
5153 i.types[j] = i.types[j - 1];
5154 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5155 }
5156 i.op[0].regs
5157 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 5158 i.types[0] = regxmm;
c0f3af97
L
5159 i.tm.operand_types[0] = regxmm;
5160
5161 i.operands += 2;
5162 i.reg_operands += 2;
5163 i.tm.operands += 2;
5164
91d6fa6a 5165 dupl++;
c0f3af97 5166 dest++;
91d6fa6a
NC
5167 i.op[dupl] = i.op[dest];
5168 i.types[dupl] = i.types[dest];
5169 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 5170 }
c0f3af97
L
5171 else
5172 {
5173duplicate:
5174 i.operands++;
5175 i.reg_operands++;
5176 i.tm.operands++;
5177
91d6fa6a
NC
5178 i.op[dupl] = i.op[dest];
5179 i.types[dupl] = i.types[dest];
5180 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
5181 }
5182
5183 if (i.tm.opcode_modifier.immext)
5184 process_immext ();
5185 }
5186 else if (i.tm.opcode_modifier.firstxmm0)
5187 {
5188 unsigned int j;
5189
5190 /* The first operand is implicit and must be xmm0/ymm0. */
9c2799c2 5191 gas_assert (i.reg_operands
7ab9ffdd
L
5192 && (operand_type_equal (&i.types[0], &regxmm)
5193 || operand_type_equal (&i.types[0], &regymm)));
4c692bc7 5194 if (register_number (i.op[0].regs) != 0)
c0f3af97 5195 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
5196
5197 for (j = 1; j < i.operands; j++)
5198 {
5199 i.op[j - 1] = i.op[j];
5200 i.types[j - 1] = i.types[j];
5201
5202 /* We need to adjust fields in i.tm since they are used by
5203 build_modrm_byte. */
5204 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5205 }
5206
e2ec9d29
L
5207 i.operands--;
5208 i.reg_operands--;
e2ec9d29
L
5209 i.tm.operands--;
5210 }
5211 else if (i.tm.opcode_modifier.regkludge)
5212 {
5213 /* The imul $imm, %reg instruction is converted into
5214 imul $imm, %reg, %reg, and the clr %reg instruction
5215 is converted into xor %reg, %reg. */
5216
5217 unsigned int first_reg_op;
5218
5219 if (operand_type_check (i.types[0], reg))
5220 first_reg_op = 0;
5221 else
5222 first_reg_op = 1;
5223 /* Pretend we saw the extra register operand. */
9c2799c2 5224 gas_assert (i.reg_operands == 1
7ab9ffdd 5225 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
5226 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5227 i.types[first_reg_op + 1] = i.types[first_reg_op];
5228 i.operands++;
5229 i.reg_operands++;
29b0f896
AM
5230 }
5231
40fb9820 5232 if (i.tm.opcode_modifier.shortform)
29b0f896 5233 {
40fb9820
L
5234 if (i.types[0].bitfield.sreg2
5235 || i.types[0].bitfield.sreg3)
29b0f896 5236 {
4eed87de
AM
5237 if (i.tm.base_opcode == POP_SEG_SHORT
5238 && i.op[0].regs->reg_num == 1)
29b0f896 5239 {
a87af027 5240 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 5241 return 0;
29b0f896 5242 }
4eed87de
AM
5243 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5244 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 5245 i.rex |= REX_B;
4eed87de
AM
5246 }
5247 else
5248 {
7ab9ffdd 5249 /* The register or float register operand is in operand
85f10a01 5250 0 or 1. */
40fb9820 5251 unsigned int op;
7ab9ffdd
L
5252
5253 if (i.types[0].bitfield.floatreg
5254 || operand_type_check (i.types[0], reg))
5255 op = 0;
5256 else
5257 op = 1;
4eed87de
AM
5258 /* Register goes in low 3 bits of opcode. */
5259 i.tm.base_opcode |= i.op[op].regs->reg_num;
5260 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 5261 i.rex |= REX_B;
40fb9820 5262 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 5263 {
4eed87de
AM
5264 /* Warn about some common errors, but press on regardless.
5265 The first case can be generated by gcc (<= 2.8.1). */
5266 if (i.operands == 2)
5267 {
5268 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 5269 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
5270 register_prefix, i.op[!intel_syntax].regs->reg_name,
5271 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
5272 }
5273 else
5274 {
5275 /* Extraneous `l' suffix on fp insn. */
a540244d
L
5276 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5277 register_prefix, i.op[0].regs->reg_name);
4eed87de 5278 }
29b0f896
AM
5279 }
5280 }
5281 }
40fb9820 5282 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
5283 {
5284 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
5285 must be put into the modrm byte). Now, we make the modrm and
5286 index base bytes based on all the info we've collected. */
29b0f896
AM
5287
5288 default_seg = build_modrm_byte ();
5289 }
8a2ed489 5290 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
5291 {
5292 default_seg = &ds;
5293 }
40fb9820 5294 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
5295 {
5296 /* For the string instructions that allow a segment override
5297 on one of their operands, the default segment is ds. */
5298 default_seg = &ds;
5299 }
5300
75178d9d
L
5301 if (i.tm.base_opcode == 0x8d /* lea */
5302 && i.seg[0]
5303 && !quiet_warnings)
30123838 5304 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
5305
5306 /* If a segment was explicitly specified, and the specified segment
5307 is not the default, use an opcode prefix to select it. If we
5308 never figured out what the default segment is, then default_seg
5309 will be zero at this point, and the specified segment prefix will
5310 always be used. */
29b0f896
AM
5311 if ((i.seg[0]) && (i.seg[0] != default_seg))
5312 {
5313 if (!add_prefix (i.seg[0]->seg_prefix))
5314 return 0;
5315 }
5316 return 1;
5317}
5318
5319static const seg_entry *
e3bb37b5 5320build_modrm_byte (void)
29b0f896
AM
5321{
5322 const seg_entry *default_seg = 0;
c0f3af97 5323 unsigned int source, dest;
8cd7925b 5324 int vex_3_sources;
c0f3af97
L
5325
5326 /* The first operand of instructions with VEX prefix and 3 sources
5327 must be VEX_Imm4. */
8cd7925b 5328 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
5329 if (vex_3_sources)
5330 {
91d6fa6a 5331 unsigned int nds, reg_slot;
4c2c6516 5332 expressionS *exp;
c0f3af97 5333
922d8de8 5334 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
5335 && i.tm.opcode_modifier.immext)
5336 {
5337 dest = i.operands - 2;
5338 gas_assert (dest == 3);
5339 }
922d8de8 5340 else
a683cc34 5341 dest = i.operands - 1;
c0f3af97 5342 nds = dest - 1;
922d8de8 5343
a683cc34
SP
5344 /* There are 2 kinds of instructions:
5345 1. 5 operands: 4 register operands or 3 register operands
5346 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5347 VexW0 or VexW1. The destination must be either XMM or YMM
5348 register.
5349 2. 4 operands: 4 register operands or 3 register operands
5350 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 5351 gas_assert ((i.reg_operands == 4
a683cc34
SP
5352 || (i.reg_operands == 3 && i.mem_operands == 1))
5353 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5354 && (i.tm.opcode_modifier.veximmext
5355 || (i.imm_operands == 1
5356 && i.types[0].bitfield.vec_imm4
5357 && (i.tm.opcode_modifier.vexw == VEXW0
5358 || i.tm.opcode_modifier.vexw == VEXW1)
5359 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5360 || operand_type_equal (&i.tm.operand_types[dest], &regymm)))));
5361
5362 if (i.imm_operands == 0)
5363 {
5364 /* When there is no immediate operand, generate an 8bit
5365 immediate operand to encode the first operand. */
5366 exp = &im_expressions[i.imm_operands++];
5367 i.op[i.operands].imms = exp;
5368 i.types[i.operands] = imm8;
5369 i.operands++;
5370 /* If VexW1 is set, the first operand is the source and
5371 the second operand is encoded in the immediate operand. */
5372 if (i.tm.opcode_modifier.vexw == VEXW1)
5373 {
5374 source = 0;
5375 reg_slot = 1;
5376 }
5377 else
5378 {
5379 source = 1;
5380 reg_slot = 0;
5381 }
5382
5383 /* FMA swaps REG and NDS. */
5384 if (i.tm.cpu_flags.bitfield.cpufma)
5385 {
5386 unsigned int tmp;
5387 tmp = reg_slot;
5388 reg_slot = nds;
5389 nds = tmp;
5390 }
5391
24981e7b
L
5392 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5393 &regxmm)
a683cc34
SP
5394 || operand_type_equal (&i.tm.operand_types[reg_slot],
5395 &regymm));
5396 exp->X_op = O_constant;
4c692bc7 5397 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
a683cc34 5398 }
922d8de8 5399 else
a683cc34
SP
5400 {
5401 unsigned int imm_slot;
5402
5403 if (i.tm.opcode_modifier.vexw == VEXW0)
5404 {
5405 /* If VexW0 is set, the third operand is the source and
5406 the second operand is encoded in the immediate
5407 operand. */
5408 source = 2;
5409 reg_slot = 1;
5410 }
5411 else
5412 {
5413 /* VexW1 is set, the second operand is the source and
5414 the third operand is encoded in the immediate
5415 operand. */
5416 source = 1;
5417 reg_slot = 2;
5418 }
5419
5420 if (i.tm.opcode_modifier.immext)
5421 {
5422 /* When ImmExt is set, the immdiate byte is the last
5423 operand. */
5424 imm_slot = i.operands - 1;
5425 source--;
5426 reg_slot--;
5427 }
5428 else
5429 {
5430 imm_slot = 0;
5431
5432 /* Turn on Imm8 so that output_imm will generate it. */
5433 i.types[imm_slot].bitfield.imm8 = 1;
5434 }
5435
24981e7b
L
5436 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5437 &regxmm)
5438 || operand_type_equal (&i.tm.operand_types[reg_slot],
5439 &regymm));
a683cc34 5440 i.op[imm_slot].imms->X_add_number
4c692bc7 5441 |= register_number (i.op[reg_slot].regs) << 4;
a683cc34
SP
5442 }
5443
5444 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
5445 || operand_type_equal (&i.tm.operand_types[nds],
5446 &regymm));
dae39acc 5447 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
5448 }
5449 else
5450 source = dest = 0;
29b0f896
AM
5451
5452 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
5453 implicit registers do not count. If there are 3 register
5454 operands, it must be a instruction with VexNDS. For a
5455 instruction with VexNDD, the destination register is encoded
5456 in VEX prefix. If there are 4 register operands, it must be
5457 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
5458 if (i.mem_operands == 0
5459 && ((i.reg_operands == 2
2426c15f 5460 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 5461 || (i.reg_operands == 3
2426c15f 5462 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 5463 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 5464 {
cab737b9
L
5465 switch (i.operands)
5466 {
5467 case 2:
5468 source = 0;
5469 break;
5470 case 3:
c81128dc
L
5471 /* When there are 3 operands, one of them may be immediate,
5472 which may be the first or the last operand. Otherwise,
c0f3af97
L
5473 the first operand must be shift count register (cl) or it
5474 is an instruction with VexNDS. */
9c2799c2 5475 gas_assert (i.imm_operands == 1
7ab9ffdd 5476 || (i.imm_operands == 0
2426c15f 5477 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 5478 || i.types[0].bitfield.shiftcount)));
40fb9820
L
5479 if (operand_type_check (i.types[0], imm)
5480 || i.types[0].bitfield.shiftcount)
5481 source = 1;
5482 else
5483 source = 0;
cab737b9
L
5484 break;
5485 case 4:
368d64cc
L
5486 /* When there are 4 operands, the first two must be 8bit
5487 immediate operands. The source operand will be the 3rd
c0f3af97
L
5488 one.
5489
5490 For instructions with VexNDS, if the first operand
5491 an imm8, the source operand is the 2nd one. If the last
5492 operand is imm8, the source operand is the first one. */
9c2799c2 5493 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
5494 && i.types[0].bitfield.imm8
5495 && i.types[1].bitfield.imm8)
2426c15f 5496 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
5497 && i.imm_operands == 1
5498 && (i.types[0].bitfield.imm8
5499 || i.types[i.operands - 1].bitfield.imm8)));
9f2670f2
L
5500 if (i.imm_operands == 2)
5501 source = 2;
5502 else
c0f3af97
L
5503 {
5504 if (i.types[0].bitfield.imm8)
5505 source = 1;
5506 else
5507 source = 0;
5508 }
c0f3af97
L
5509 break;
5510 case 5:
cab737b9
L
5511 break;
5512 default:
5513 abort ();
5514 }
5515
c0f3af97
L
5516 if (!vex_3_sources)
5517 {
5518 dest = source + 1;
5519
2426c15f 5520 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97
L
5521 {
5522 /* For instructions with VexNDS, the register-only
f12dc422
L
5523 source operand must be 32/64bit integer, XMM or
5524 YMM register. It is encoded in VEX prefix. We
5525 need to clear RegMem bit before calling
5526 operand_type_equal. */
5527
5528 i386_operand_type op;
5529 unsigned int vvvv;
5530
5531 /* Check register-only source operand when two source
5532 operands are swapped. */
5533 if (!i.tm.operand_types[source].bitfield.baseindex
5534 && i.tm.operand_types[dest].bitfield.baseindex)
5535 {
5536 vvvv = source;
5537 source = dest;
5538 }
5539 else
5540 vvvv = dest;
5541
5542 op = i.tm.operand_types[vvvv];
fa99fab2 5543 op.bitfield.regmem = 0;
c0f3af97 5544 if ((dest + 1) >= i.operands
f12dc422
L
5545 || (op.bitfield.reg32 != 1
5546 && !op.bitfield.reg64 != 1
5547 && !operand_type_equal (&op, &regxmm)
fa99fab2 5548 && !operand_type_equal (&op, &regymm)))
c0f3af97 5549 abort ();
f12dc422 5550 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
5551 dest++;
5552 }
5553 }
29b0f896
AM
5554
5555 i.rm.mode = 3;
5556 /* One of the register operands will be encoded in the i.tm.reg
5557 field, the other in the combined i.tm.mode and i.tm.regmem
5558 fields. If no form of this instruction supports a memory
5559 destination operand, then we assume the source operand may
5560 sometimes be a memory operand and so we need to store the
5561 destination in the i.rm.reg field. */
40fb9820
L
5562 if (!i.tm.operand_types[dest].bitfield.regmem
5563 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
5564 {
5565 i.rm.reg = i.op[dest].regs->reg_num;
5566 i.rm.regmem = i.op[source].regs->reg_num;
5567 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 5568 i.rex |= REX_R;
29b0f896 5569 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 5570 i.rex |= REX_B;
29b0f896
AM
5571 }
5572 else
5573 {
5574 i.rm.reg = i.op[source].regs->reg_num;
5575 i.rm.regmem = i.op[dest].regs->reg_num;
5576 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 5577 i.rex |= REX_B;
29b0f896 5578 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 5579 i.rex |= REX_R;
29b0f896 5580 }
161a04f6 5581 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 5582 {
40fb9820
L
5583 if (!i.types[0].bitfield.control
5584 && !i.types[1].bitfield.control)
c4a530c5 5585 abort ();
161a04f6 5586 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
5587 add_prefix (LOCK_PREFIX_OPCODE);
5588 }
29b0f896
AM
5589 }
5590 else
5591 { /* If it's not 2 reg operands... */
c0f3af97
L
5592 unsigned int mem;
5593
29b0f896
AM
5594 if (i.mem_operands)
5595 {
5596 unsigned int fake_zero_displacement = 0;
99018f42 5597 unsigned int op;
4eed87de 5598
7ab9ffdd
L
5599 for (op = 0; op < i.operands; op++)
5600 if (operand_type_check (i.types[op], anymem))
5601 break;
7ab9ffdd 5602 gas_assert (op < i.operands);
29b0f896 5603
6c30d220
L
5604 if (i.tm.opcode_modifier.vecsib)
5605 {
5606 if (i.index_reg->reg_num == RegEiz
5607 || i.index_reg->reg_num == RegRiz)
5608 abort ();
5609
5610 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5611 if (!i.base_reg)
5612 {
5613 i.sib.base = NO_BASE_REGISTER;
5614 i.sib.scale = i.log2_scale_factor;
5615 i.types[op].bitfield.disp8 = 0;
5616 i.types[op].bitfield.disp16 = 0;
5617 i.types[op].bitfield.disp64 = 0;
5618 if (flag_code != CODE_64BIT)
5619 {
5620 /* Must be 32 bit */
5621 i.types[op].bitfield.disp32 = 1;
5622 i.types[op].bitfield.disp32s = 0;
5623 }
5624 else
5625 {
5626 i.types[op].bitfield.disp32 = 0;
5627 i.types[op].bitfield.disp32s = 1;
5628 }
5629 }
5630 i.sib.index = i.index_reg->reg_num;
5631 if ((i.index_reg->reg_flags & RegRex) != 0)
5632 i.rex |= REX_X;
5633 }
5634
29b0f896
AM
5635 default_seg = &ds;
5636
5637 if (i.base_reg == 0)
5638 {
5639 i.rm.mode = 0;
5640 if (!i.disp_operands)
6c30d220
L
5641 {
5642 fake_zero_displacement = 1;
5643 /* Instructions with VSIB byte need 32bit displacement
5644 if there is no base register. */
5645 if (i.tm.opcode_modifier.vecsib)
5646 i.types[op].bitfield.disp32 = 1;
5647 }
29b0f896
AM
5648 if (i.index_reg == 0)
5649 {
6c30d220 5650 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 5651 /* Operand is just <disp> */
20f0a1fc 5652 if (flag_code == CODE_64BIT)
29b0f896
AM
5653 {
5654 /* 64bit mode overwrites the 32bit absolute
5655 addressing by RIP relative addressing and
5656 absolute addressing is encoded by one of the
5657 redundant SIB forms. */
5658 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5659 i.sib.base = NO_BASE_REGISTER;
5660 i.sib.index = NO_INDEX_REGISTER;
fc225355 5661 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 5662 ? disp32s : disp32);
20f0a1fc 5663 }
fc225355
L
5664 else if ((flag_code == CODE_16BIT)
5665 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
5666 {
5667 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 5668 i.types[op] = disp16;
20f0a1fc
NC
5669 }
5670 else
5671 {
5672 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 5673 i.types[op] = disp32;
29b0f896
AM
5674 }
5675 }
6c30d220 5676 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 5677 {
6c30d220 5678 /* !i.base_reg && i.index_reg */
db51cc60
L
5679 if (i.index_reg->reg_num == RegEiz
5680 || i.index_reg->reg_num == RegRiz)
5681 i.sib.index = NO_INDEX_REGISTER;
5682 else
5683 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
5684 i.sib.base = NO_BASE_REGISTER;
5685 i.sib.scale = i.log2_scale_factor;
5686 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
5687 i.types[op].bitfield.disp8 = 0;
5688 i.types[op].bitfield.disp16 = 0;
5689 i.types[op].bitfield.disp64 = 0;
29b0f896 5690 if (flag_code != CODE_64BIT)
40fb9820
L
5691 {
5692 /* Must be 32 bit */
5693 i.types[op].bitfield.disp32 = 1;
5694 i.types[op].bitfield.disp32s = 0;
5695 }
29b0f896 5696 else
40fb9820
L
5697 {
5698 i.types[op].bitfield.disp32 = 0;
5699 i.types[op].bitfield.disp32s = 1;
5700 }
29b0f896 5701 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 5702 i.rex |= REX_X;
29b0f896
AM
5703 }
5704 }
5705 /* RIP addressing for 64bit mode. */
9a04903e
JB
5706 else if (i.base_reg->reg_num == RegRip ||
5707 i.base_reg->reg_num == RegEip)
29b0f896 5708 {
6c30d220 5709 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 5710 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
5711 i.types[op].bitfield.disp8 = 0;
5712 i.types[op].bitfield.disp16 = 0;
5713 i.types[op].bitfield.disp32 = 0;
5714 i.types[op].bitfield.disp32s = 1;
5715 i.types[op].bitfield.disp64 = 0;
71903a11 5716 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
5717 if (! i.disp_operands)
5718 fake_zero_displacement = 1;
29b0f896 5719 }
40fb9820 5720 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 5721 {
6c30d220 5722 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
5723 switch (i.base_reg->reg_num)
5724 {
5725 case 3: /* (%bx) */
5726 if (i.index_reg == 0)
5727 i.rm.regmem = 7;
5728 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5729 i.rm.regmem = i.index_reg->reg_num - 6;
5730 break;
5731 case 5: /* (%bp) */
5732 default_seg = &ss;
5733 if (i.index_reg == 0)
5734 {
5735 i.rm.regmem = 6;
40fb9820 5736 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
5737 {
5738 /* fake (%bp) into 0(%bp) */
40fb9820 5739 i.types[op].bitfield.disp8 = 1;
252b5132 5740 fake_zero_displacement = 1;
29b0f896
AM
5741 }
5742 }
5743 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5744 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5745 break;
5746 default: /* (%si) -> 4 or (%di) -> 5 */
5747 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5748 }
5749 i.rm.mode = mode_from_disp_size (i.types[op]);
5750 }
5751 else /* i.base_reg and 32/64 bit mode */
5752 {
5753 if (flag_code == CODE_64BIT
40fb9820
L
5754 && operand_type_check (i.types[op], disp))
5755 {
5756 i386_operand_type temp;
0dfbf9d7 5757 operand_type_set (&temp, 0);
40fb9820
L
5758 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5759 i.types[op] = temp;
5760 if (i.prefix[ADDR_PREFIX] == 0)
5761 i.types[op].bitfield.disp32s = 1;
5762 else
5763 i.types[op].bitfield.disp32 = 1;
5764 }
20f0a1fc 5765
6c30d220
L
5766 if (!i.tm.opcode_modifier.vecsib)
5767 i.rm.regmem = i.base_reg->reg_num;
29b0f896 5768 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 5769 i.rex |= REX_B;
29b0f896
AM
5770 i.sib.base = i.base_reg->reg_num;
5771 /* x86-64 ignores REX prefix bit here to avoid decoder
5772 complications. */
5773 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5774 {
5775 default_seg = &ss;
5776 if (i.disp_operands == 0)
5777 {
5778 fake_zero_displacement = 1;
40fb9820 5779 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
5780 }
5781 }
5782 else if (i.base_reg->reg_num == ESP_REG_NUM)
5783 {
5784 default_seg = &ss;
5785 }
5786 i.sib.scale = i.log2_scale_factor;
5787 if (i.index_reg == 0)
5788 {
6c30d220 5789 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
5790 /* <disp>(%esp) becomes two byte modrm with no index
5791 register. We've already stored the code for esp
5792 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5793 Any base register besides %esp will not use the
5794 extra modrm byte. */
5795 i.sib.index = NO_INDEX_REGISTER;
29b0f896 5796 }
6c30d220 5797 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 5798 {
db51cc60
L
5799 if (i.index_reg->reg_num == RegEiz
5800 || i.index_reg->reg_num == RegRiz)
5801 i.sib.index = NO_INDEX_REGISTER;
5802 else
5803 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
5804 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5805 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 5806 i.rex |= REX_X;
29b0f896 5807 }
67a4f2b7
AO
5808
5809 if (i.disp_operands
5810 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5811 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5812 i.rm.mode = 0;
5813 else
a501d77e
L
5814 {
5815 if (!fake_zero_displacement
5816 && !i.disp_operands
5817 && i.disp_encoding)
5818 {
5819 fake_zero_displacement = 1;
5820 if (i.disp_encoding == disp_encoding_8bit)
5821 i.types[op].bitfield.disp8 = 1;
5822 else
5823 i.types[op].bitfield.disp32 = 1;
5824 }
5825 i.rm.mode = mode_from_disp_size (i.types[op]);
5826 }
29b0f896 5827 }
252b5132 5828
29b0f896
AM
5829 if (fake_zero_displacement)
5830 {
5831 /* Fakes a zero displacement assuming that i.types[op]
5832 holds the correct displacement size. */
5833 expressionS *exp;
5834
9c2799c2 5835 gas_assert (i.op[op].disps == 0);
29b0f896
AM
5836 exp = &disp_expressions[i.disp_operands++];
5837 i.op[op].disps = exp;
5838 exp->X_op = O_constant;
5839 exp->X_add_number = 0;
5840 exp->X_add_symbol = (symbolS *) 0;
5841 exp->X_op_symbol = (symbolS *) 0;
5842 }
c0f3af97
L
5843
5844 mem = op;
29b0f896 5845 }
c0f3af97
L
5846 else
5847 mem = ~0;
252b5132 5848
8c43a48b 5849 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
5850 {
5851 if (operand_type_check (i.types[0], imm))
5852 i.vex.register_specifier = NULL;
5853 else
5854 {
5855 /* VEX.vvvv encodes one of the sources when the first
5856 operand is not an immediate. */
1ef99a7b 5857 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
5858 i.vex.register_specifier = i.op[0].regs;
5859 else
5860 i.vex.register_specifier = i.op[1].regs;
5861 }
5862
5863 /* Destination is a XMM register encoded in the ModRM.reg
5864 and VEX.R bit. */
5865 i.rm.reg = i.op[2].regs->reg_num;
5866 if ((i.op[2].regs->reg_flags & RegRex) != 0)
5867 i.rex |= REX_R;
5868
5869 /* ModRM.rm and VEX.B encodes the other source. */
5870 if (!i.mem_operands)
5871 {
5872 i.rm.mode = 3;
5873
1ef99a7b 5874 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
5875 i.rm.regmem = i.op[1].regs->reg_num;
5876 else
5877 i.rm.regmem = i.op[0].regs->reg_num;
5878
5879 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5880 i.rex |= REX_B;
5881 }
5882 }
2426c15f 5883 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
5884 {
5885 i.vex.register_specifier = i.op[2].regs;
5886 if (!i.mem_operands)
5887 {
5888 i.rm.mode = 3;
5889 i.rm.regmem = i.op[1].regs->reg_num;
5890 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5891 i.rex |= REX_B;
5892 }
5893 }
29b0f896
AM
5894 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5895 (if any) based on i.tm.extension_opcode. Again, we must be
5896 careful to make sure that segment/control/debug/test/MMX
5897 registers are coded into the i.rm.reg field. */
f88c9eb0 5898 else if (i.reg_operands)
29b0f896 5899 {
99018f42 5900 unsigned int op;
7ab9ffdd
L
5901 unsigned int vex_reg = ~0;
5902
5903 for (op = 0; op < i.operands; op++)
5904 if (i.types[op].bitfield.reg8
5905 || i.types[op].bitfield.reg16
5906 || i.types[op].bitfield.reg32
5907 || i.types[op].bitfield.reg64
5908 || i.types[op].bitfield.regmmx
5909 || i.types[op].bitfield.regxmm
5910 || i.types[op].bitfield.regymm
5911 || i.types[op].bitfield.sreg2
5912 || i.types[op].bitfield.sreg3
5913 || i.types[op].bitfield.control
5914 || i.types[op].bitfield.debug
5915 || i.types[op].bitfield.test)
5916 break;
c0209578 5917
7ab9ffdd
L
5918 if (vex_3_sources)
5919 op = dest;
2426c15f 5920 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
5921 {
5922 /* For instructions with VexNDS, the register-only
5923 source operand is encoded in VEX prefix. */
5924 gas_assert (mem != (unsigned int) ~0);
c0f3af97 5925
7ab9ffdd 5926 if (op > mem)
c0f3af97 5927 {
7ab9ffdd
L
5928 vex_reg = op++;
5929 gas_assert (op < i.operands);
c0f3af97
L
5930 }
5931 else
c0f3af97 5932 {
f12dc422
L
5933 /* Check register-only source operand when two source
5934 operands are swapped. */
5935 if (!i.tm.operand_types[op].bitfield.baseindex
5936 && i.tm.operand_types[op + 1].bitfield.baseindex)
5937 {
5938 vex_reg = op;
5939 op += 2;
5940 gas_assert (mem == (vex_reg + 1)
5941 && op < i.operands);
5942 }
5943 else
5944 {
5945 vex_reg = op + 1;
5946 gas_assert (vex_reg < i.operands);
5947 }
c0f3af97 5948 }
7ab9ffdd 5949 }
2426c15f 5950 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 5951 {
f12dc422 5952 /* For instructions with VexNDD, the register destination
7ab9ffdd 5953 is encoded in VEX prefix. */
f12dc422
L
5954 if (i.mem_operands == 0)
5955 {
5956 /* There is no memory operand. */
5957 gas_assert ((op + 2) == i.operands);
5958 vex_reg = op + 1;
5959 }
5960 else
8d63c93e 5961 {
f12dc422
L
5962 /* There are only 2 operands. */
5963 gas_assert (op < 2 && i.operands == 2);
5964 vex_reg = 1;
5965 }
7ab9ffdd
L
5966 }
5967 else
5968 gas_assert (op < i.operands);
99018f42 5969
7ab9ffdd
L
5970 if (vex_reg != (unsigned int) ~0)
5971 {
f12dc422 5972 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 5973
f12dc422
L
5974 if (type->bitfield.reg32 != 1
5975 && type->bitfield.reg64 != 1
5976 && !operand_type_equal (type, &regxmm)
5977 && !operand_type_equal (type, &regymm))
7ab9ffdd 5978 abort ();
f88c9eb0 5979
7ab9ffdd
L
5980 i.vex.register_specifier = i.op[vex_reg].regs;
5981 }
5982
1b9f0c97
L
5983 /* Don't set OP operand twice. */
5984 if (vex_reg != op)
7ab9ffdd 5985 {
1b9f0c97
L
5986 /* If there is an extension opcode to put here, the
5987 register number must be put into the regmem field. */
5988 if (i.tm.extension_opcode != None)
5989 {
5990 i.rm.regmem = i.op[op].regs->reg_num;
5991 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5992 i.rex |= REX_B;
5993 }
5994 else
5995 {
5996 i.rm.reg = i.op[op].regs->reg_num;
5997 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5998 i.rex |= REX_R;
5999 }
7ab9ffdd 6000 }
252b5132 6001
29b0f896
AM
6002 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6003 must set it to 3 to indicate this is a register operand
6004 in the regmem field. */
6005 if (!i.mem_operands)
6006 i.rm.mode = 3;
6007 }
252b5132 6008
29b0f896 6009 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6010 if (i.tm.extension_opcode != None)
29b0f896
AM
6011 i.rm.reg = i.tm.extension_opcode;
6012 }
6013 return default_seg;
6014}
252b5132 6015
29b0f896 6016static void
e3bb37b5 6017output_branch (void)
29b0f896
AM
6018{
6019 char *p;
f8a5c266 6020 int size;
29b0f896
AM
6021 int code16;
6022 int prefix;
6023 relax_substateT subtype;
6024 symbolS *sym;
6025 offsetT off;
6026
f8a5c266 6027 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6028 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6029
6030 prefix = 0;
6031 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6032 {
29b0f896
AM
6033 prefix = 1;
6034 i.prefixes -= 1;
6035 code16 ^= CODE16;
252b5132 6036 }
29b0f896
AM
6037 /* Pentium4 branch hints. */
6038 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6039 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6040 {
29b0f896
AM
6041 prefix++;
6042 i.prefixes--;
6043 }
6044 if (i.prefix[REX_PREFIX] != 0)
6045 {
6046 prefix++;
6047 i.prefixes--;
2f66722d
AM
6048 }
6049
29b0f896
AM
6050 if (i.prefixes != 0 && !intel_syntax)
6051 as_warn (_("skipping prefixes on this instruction"));
6052
6053 /* It's always a symbol; End frag & setup for relax.
6054 Make sure there is enough room in this frag for the largest
6055 instruction we may generate in md_convert_frag. This is 2
6056 bytes for the opcode and room for the prefix and largest
6057 displacement. */
6058 frag_grow (prefix + 2 + 4);
6059 /* Prefix and 1 opcode byte go in fr_fix. */
6060 p = frag_more (prefix + 1);
6061 if (i.prefix[DATA_PREFIX] != 0)
6062 *p++ = DATA_PREFIX_OPCODE;
6063 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6064 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6065 *p++ = i.prefix[SEG_PREFIX];
6066 if (i.prefix[REX_PREFIX] != 0)
6067 *p++ = i.prefix[REX_PREFIX];
6068 *p = i.tm.base_opcode;
6069
6070 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 6071 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 6072 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 6073 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 6074 else
f8a5c266 6075 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 6076 subtype |= code16;
3e73aa7c 6077
29b0f896
AM
6078 sym = i.op[0].disps->X_add_symbol;
6079 off = i.op[0].disps->X_add_number;
3e73aa7c 6080
29b0f896
AM
6081 if (i.op[0].disps->X_op != O_constant
6082 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 6083 {
29b0f896
AM
6084 /* Handle complex expressions. */
6085 sym = make_expr_symbol (i.op[0].disps);
6086 off = 0;
6087 }
3e73aa7c 6088
29b0f896
AM
6089 /* 1 possible extra opcode + 4 byte displacement go in var part.
6090 Pass reloc in fr_var. */
6091 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6092}
3e73aa7c 6093
29b0f896 6094static void
e3bb37b5 6095output_jump (void)
29b0f896
AM
6096{
6097 char *p;
6098 int size;
3e02c1cc 6099 fixS *fixP;
29b0f896 6100
40fb9820 6101 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
6102 {
6103 /* This is a loop or jecxz type instruction. */
6104 size = 1;
6105 if (i.prefix[ADDR_PREFIX] != 0)
6106 {
6107 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6108 i.prefixes -= 1;
6109 }
6110 /* Pentium4 branch hints. */
6111 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6112 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6113 {
6114 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6115 i.prefixes--;
3e73aa7c
JH
6116 }
6117 }
29b0f896
AM
6118 else
6119 {
6120 int code16;
3e73aa7c 6121
29b0f896
AM
6122 code16 = 0;
6123 if (flag_code == CODE_16BIT)
6124 code16 = CODE16;
3e73aa7c 6125
29b0f896
AM
6126 if (i.prefix[DATA_PREFIX] != 0)
6127 {
6128 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6129 i.prefixes -= 1;
6130 code16 ^= CODE16;
6131 }
252b5132 6132
29b0f896
AM
6133 size = 4;
6134 if (code16)
6135 size = 2;
6136 }
9fcc94b6 6137
29b0f896
AM
6138 if (i.prefix[REX_PREFIX] != 0)
6139 {
6140 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6141 i.prefixes -= 1;
6142 }
252b5132 6143
29b0f896
AM
6144 if (i.prefixes != 0 && !intel_syntax)
6145 as_warn (_("skipping prefixes on this instruction"));
e0890092 6146
42164a71
L
6147 p = frag_more (i.tm.opcode_length + size);
6148 switch (i.tm.opcode_length)
6149 {
6150 case 2:
6151 *p++ = i.tm.base_opcode >> 8;
6152 case 1:
6153 *p++ = i.tm.base_opcode;
6154 break;
6155 default:
6156 abort ();
6157 }
e0890092 6158
3e02c1cc
AM
6159 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6160 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6161
6162 /* All jumps handled here are signed, but don't use a signed limit
6163 check for 32 and 16 bit jumps as we want to allow wrap around at
6164 4G and 64k respectively. */
6165 if (size == 1)
6166 fixP->fx_signed = 1;
29b0f896 6167}
e0890092 6168
29b0f896 6169static void
e3bb37b5 6170output_interseg_jump (void)
29b0f896
AM
6171{
6172 char *p;
6173 int size;
6174 int prefix;
6175 int code16;
252b5132 6176
29b0f896
AM
6177 code16 = 0;
6178 if (flag_code == CODE_16BIT)
6179 code16 = CODE16;
a217f122 6180
29b0f896
AM
6181 prefix = 0;
6182 if (i.prefix[DATA_PREFIX] != 0)
6183 {
6184 prefix = 1;
6185 i.prefixes -= 1;
6186 code16 ^= CODE16;
6187 }
6188 if (i.prefix[REX_PREFIX] != 0)
6189 {
6190 prefix++;
6191 i.prefixes -= 1;
6192 }
252b5132 6193
29b0f896
AM
6194 size = 4;
6195 if (code16)
6196 size = 2;
252b5132 6197
29b0f896
AM
6198 if (i.prefixes != 0 && !intel_syntax)
6199 as_warn (_("skipping prefixes on this instruction"));
252b5132 6200
29b0f896
AM
6201 /* 1 opcode; 2 segment; offset */
6202 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 6203
29b0f896
AM
6204 if (i.prefix[DATA_PREFIX] != 0)
6205 *p++ = DATA_PREFIX_OPCODE;
252b5132 6206
29b0f896
AM
6207 if (i.prefix[REX_PREFIX] != 0)
6208 *p++ = i.prefix[REX_PREFIX];
252b5132 6209
29b0f896
AM
6210 *p++ = i.tm.base_opcode;
6211 if (i.op[1].imms->X_op == O_constant)
6212 {
6213 offsetT n = i.op[1].imms->X_add_number;
252b5132 6214
29b0f896
AM
6215 if (size == 2
6216 && !fits_in_unsigned_word (n)
6217 && !fits_in_signed_word (n))
6218 {
6219 as_bad (_("16-bit jump out of range"));
6220 return;
6221 }
6222 md_number_to_chars (p, n, size);
6223 }
6224 else
6225 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6226 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6227 if (i.op[0].imms->X_op != O_constant)
6228 as_bad (_("can't handle non absolute segment in `%s'"),
6229 i.tm.name);
6230 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6231}
a217f122 6232
29b0f896 6233static void
e3bb37b5 6234output_insn (void)
29b0f896 6235{
2bbd9c25
JJ
6236 fragS *insn_start_frag;
6237 offsetT insn_start_off;
6238
29b0f896
AM
6239 /* Tie dwarf2 debug info to the address at the start of the insn.
6240 We can't do this after the insn has been output as the current
6241 frag may have been closed off. eg. by frag_var. */
6242 dwarf2_emit_insn (0);
6243
2bbd9c25
JJ
6244 insn_start_frag = frag_now;
6245 insn_start_off = frag_now_fix ();
6246
29b0f896 6247 /* Output jumps. */
40fb9820 6248 if (i.tm.opcode_modifier.jump)
29b0f896 6249 output_branch ();
40fb9820
L
6250 else if (i.tm.opcode_modifier.jumpbyte
6251 || i.tm.opcode_modifier.jumpdword)
29b0f896 6252 output_jump ();
40fb9820 6253 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
6254 output_interseg_jump ();
6255 else
6256 {
6257 /* Output normal instructions here. */
6258 char *p;
6259 unsigned char *q;
47465058 6260 unsigned int j;
331d2d0d 6261 unsigned int prefix;
4dffcebc 6262
c0f3af97 6263 /* Since the VEX prefix contains the implicit prefix, we don't
89e71f5c 6264 need the explicit prefix. */
c0f3af97 6265 if (!i.tm.opcode_modifier.vex)
bc4bd9ab 6266 {
c0f3af97 6267 switch (i.tm.opcode_length)
bc4bd9ab 6268 {
c0f3af97
L
6269 case 3:
6270 if (i.tm.base_opcode & 0xff000000)
4dffcebc 6271 {
c0f3af97
L
6272 prefix = (i.tm.base_opcode >> 24) & 0xff;
6273 goto check_prefix;
6274 }
6275 break;
6276 case 2:
6277 if ((i.tm.base_opcode & 0xff0000) != 0)
6278 {
6279 prefix = (i.tm.base_opcode >> 16) & 0xff;
6280 if (i.tm.cpu_flags.bitfield.cpupadlock)
6281 {
4dffcebc 6282check_prefix:
c0f3af97 6283 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 6284 || (i.prefix[REP_PREFIX]
c0f3af97
L
6285 != REPE_PREFIX_OPCODE))
6286 add_prefix (prefix);
6287 }
6288 else
4dffcebc
L
6289 add_prefix (prefix);
6290 }
c0f3af97
L
6291 break;
6292 case 1:
6293 break;
6294 default:
6295 abort ();
bc4bd9ab 6296 }
c0f3af97
L
6297
6298 /* The prefix bytes. */
6299 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6300 if (*q)
6301 FRAG_APPEND_1_CHAR (*q);
0f10071e 6302 }
ae5c1c7b 6303 else
c0f3af97
L
6304 {
6305 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6306 if (*q)
6307 switch (j)
6308 {
6309 case REX_PREFIX:
6310 /* REX byte is encoded in VEX prefix. */
6311 break;
6312 case SEG_PREFIX:
6313 case ADDR_PREFIX:
6314 FRAG_APPEND_1_CHAR (*q);
6315 break;
6316 default:
6317 /* There should be no other prefixes for instructions
6318 with VEX prefix. */
6319 abort ();
6320 }
6321
6322 /* Now the VEX prefix. */
6323 p = frag_more (i.vex.length);
6324 for (j = 0; j < i.vex.length; j++)
6325 p[j] = i.vex.bytes[j];
6326 }
252b5132 6327
29b0f896 6328 /* Now the opcode; be careful about word order here! */
4dffcebc 6329 if (i.tm.opcode_length == 1)
29b0f896
AM
6330 {
6331 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6332 }
6333 else
6334 {
4dffcebc 6335 switch (i.tm.opcode_length)
331d2d0d 6336 {
4dffcebc 6337 case 3:
331d2d0d
L
6338 p = frag_more (3);
6339 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
6340 break;
6341 case 2:
6342 p = frag_more (2);
6343 break;
6344 default:
6345 abort ();
6346 break;
331d2d0d 6347 }
0f10071e 6348
29b0f896
AM
6349 /* Put out high byte first: can't use md_number_to_chars! */
6350 *p++ = (i.tm.base_opcode >> 8) & 0xff;
6351 *p = i.tm.base_opcode & 0xff;
6352 }
3e73aa7c 6353
29b0f896 6354 /* Now the modrm byte and sib byte (if present). */
40fb9820 6355 if (i.tm.opcode_modifier.modrm)
29b0f896 6356 {
4a3523fa
L
6357 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
6358 | i.rm.reg << 3
6359 | i.rm.mode << 6));
29b0f896
AM
6360 /* If i.rm.regmem == ESP (4)
6361 && i.rm.mode != (Register mode)
6362 && not 16 bit
6363 ==> need second modrm byte. */
6364 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
6365 && i.rm.mode != 3
40fb9820 6366 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
6367 FRAG_APPEND_1_CHAR ((i.sib.base << 0
6368 | i.sib.index << 3
6369 | i.sib.scale << 6));
29b0f896 6370 }
3e73aa7c 6371
29b0f896 6372 if (i.disp_operands)
2bbd9c25 6373 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 6374
29b0f896 6375 if (i.imm_operands)
2bbd9c25 6376 output_imm (insn_start_frag, insn_start_off);
29b0f896 6377 }
252b5132 6378
29b0f896
AM
6379#ifdef DEBUG386
6380 if (flag_debug)
6381 {
7b81dfbb 6382 pi ("" /*line*/, &i);
29b0f896
AM
6383 }
6384#endif /* DEBUG386 */
6385}
252b5132 6386
e205caa7
L
6387/* Return the size of the displacement operand N. */
6388
6389static int
6390disp_size (unsigned int n)
6391{
6392 int size = 4;
40fb9820
L
6393 if (i.types[n].bitfield.disp64)
6394 size = 8;
6395 else if (i.types[n].bitfield.disp8)
6396 size = 1;
6397 else if (i.types[n].bitfield.disp16)
6398 size = 2;
e205caa7
L
6399 return size;
6400}
6401
6402/* Return the size of the immediate operand N. */
6403
6404static int
6405imm_size (unsigned int n)
6406{
6407 int size = 4;
40fb9820
L
6408 if (i.types[n].bitfield.imm64)
6409 size = 8;
6410 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
6411 size = 1;
6412 else if (i.types[n].bitfield.imm16)
6413 size = 2;
e205caa7
L
6414 return size;
6415}
6416
29b0f896 6417static void
64e74474 6418output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
6419{
6420 char *p;
6421 unsigned int n;
252b5132 6422
29b0f896
AM
6423 for (n = 0; n < i.operands; n++)
6424 {
40fb9820 6425 if (operand_type_check (i.types[n], disp))
29b0f896
AM
6426 {
6427 if (i.op[n].disps->X_op == O_constant)
6428 {
e205caa7 6429 int size = disp_size (n);
29b0f896 6430 offsetT val;
252b5132 6431
29b0f896
AM
6432 val = offset_in_range (i.op[n].disps->X_add_number,
6433 size);
6434 p = frag_more (size);
6435 md_number_to_chars (p, val, size);
6436 }
6437 else
6438 {
f86103b7 6439 enum bfd_reloc_code_real reloc_type;
e205caa7 6440 int size = disp_size (n);
40fb9820 6441 int sign = i.types[n].bitfield.disp32s;
29b0f896
AM
6442 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
6443
e205caa7 6444 /* We can't have 8 bit displacement here. */
9c2799c2 6445 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 6446
29b0f896
AM
6447 /* The PC relative address is computed relative
6448 to the instruction boundary, so in case immediate
6449 fields follows, we need to adjust the value. */
6450 if (pcrel && i.imm_operands)
6451 {
29b0f896 6452 unsigned int n1;
e205caa7 6453 int sz = 0;
252b5132 6454
29b0f896 6455 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 6456 if (operand_type_check (i.types[n1], imm))
252b5132 6457 {
e205caa7
L
6458 /* Only one immediate is allowed for PC
6459 relative address. */
9c2799c2 6460 gas_assert (sz == 0);
e205caa7
L
6461 sz = imm_size (n1);
6462 i.op[n].disps->X_add_number -= sz;
252b5132 6463 }
29b0f896 6464 /* We should find the immediate. */
9c2799c2 6465 gas_assert (sz != 0);
29b0f896 6466 }
520dc8e8 6467
29b0f896 6468 p = frag_more (size);
2bbd9c25 6469 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 6470 if (GOT_symbol
2bbd9c25 6471 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 6472 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
6473 || reloc_type == BFD_RELOC_X86_64_32S
6474 || (reloc_type == BFD_RELOC_64
6475 && object_64bit))
d6ab8113
JB
6476 && (i.op[n].disps->X_op == O_symbol
6477 || (i.op[n].disps->X_op == O_add
6478 && ((symbol_get_value_expression
6479 (i.op[n].disps->X_op_symbol)->X_op)
6480 == O_subtract))))
6481 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
6482 {
6483 offsetT add;
6484
6485 if (insn_start_frag == frag_now)
6486 add = (p - frag_now->fr_literal) - insn_start_off;
6487 else
6488 {
6489 fragS *fr;
6490
6491 add = insn_start_frag->fr_fix - insn_start_off;
6492 for (fr = insn_start_frag->fr_next;
6493 fr && fr != frag_now; fr = fr->fr_next)
6494 add += fr->fr_fix;
6495 add += p - frag_now->fr_literal;
6496 }
6497
4fa24527 6498 if (!object_64bit)
7b81dfbb
AJ
6499 {
6500 reloc_type = BFD_RELOC_386_GOTPC;
6501 i.op[n].imms->X_add_number += add;
6502 }
6503 else if (reloc_type == BFD_RELOC_64)
6504 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 6505 else
7b81dfbb
AJ
6506 /* Don't do the adjustment for x86-64, as there
6507 the pcrel addressing is relative to the _next_
6508 insn, and that is taken care of in other code. */
d6ab8113 6509 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 6510 }
062cd5e7 6511 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 6512 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
6513 }
6514 }
6515 }
6516}
252b5132 6517
29b0f896 6518static void
64e74474 6519output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
6520{
6521 char *p;
6522 unsigned int n;
252b5132 6523
29b0f896
AM
6524 for (n = 0; n < i.operands; n++)
6525 {
40fb9820 6526 if (operand_type_check (i.types[n], imm))
29b0f896
AM
6527 {
6528 if (i.op[n].imms->X_op == O_constant)
6529 {
e205caa7 6530 int size = imm_size (n);
29b0f896 6531 offsetT val;
b4cac588 6532
29b0f896
AM
6533 val = offset_in_range (i.op[n].imms->X_add_number,
6534 size);
6535 p = frag_more (size);
6536 md_number_to_chars (p, val, size);
6537 }
6538 else
6539 {
6540 /* Not absolute_section.
6541 Need a 32-bit fixup (don't support 8bit
6542 non-absolute imms). Try to support other
6543 sizes ... */
f86103b7 6544 enum bfd_reloc_code_real reloc_type;
e205caa7
L
6545 int size = imm_size (n);
6546 int sign;
29b0f896 6547
40fb9820 6548 if (i.types[n].bitfield.imm32s
a7d61044 6549 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 6550 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 6551 sign = 1;
e205caa7
L
6552 else
6553 sign = 0;
520dc8e8 6554
29b0f896
AM
6555 p = frag_more (size);
6556 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 6557
2bbd9c25
JJ
6558 /* This is tough to explain. We end up with this one if we
6559 * have operands that look like
6560 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6561 * obtain the absolute address of the GOT, and it is strongly
6562 * preferable from a performance point of view to avoid using
6563 * a runtime relocation for this. The actual sequence of
6564 * instructions often look something like:
6565 *
6566 * call .L66
6567 * .L66:
6568 * popl %ebx
6569 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6570 *
6571 * The call and pop essentially return the absolute address
6572 * of the label .L66 and store it in %ebx. The linker itself
6573 * will ultimately change the first operand of the addl so
6574 * that %ebx points to the GOT, but to keep things simple, the
6575 * .o file must have this operand set so that it generates not
6576 * the absolute address of .L66, but the absolute address of
6577 * itself. This allows the linker itself simply treat a GOTPC
6578 * relocation as asking for a pcrel offset to the GOT to be
6579 * added in, and the addend of the relocation is stored in the
6580 * operand field for the instruction itself.
6581 *
6582 * Our job here is to fix the operand so that it would add
6583 * the correct offset so that %ebx would point to itself. The
6584 * thing that is tricky is that .-.L66 will point to the
6585 * beginning of the instruction, so we need to further modify
6586 * the operand so that it will point to itself. There are
6587 * other cases where you have something like:
6588 *
6589 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6590 *
6591 * and here no correction would be required. Internally in
6592 * the assembler we treat operands of this form as not being
6593 * pcrel since the '.' is explicitly mentioned, and I wonder
6594 * whether it would simplify matters to do it this way. Who
6595 * knows. In earlier versions of the PIC patches, the
6596 * pcrel_adjust field was used to store the correction, but
6597 * since the expression is not pcrel, I felt it would be
6598 * confusing to do it this way. */
6599
d6ab8113 6600 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
6601 || reloc_type == BFD_RELOC_X86_64_32S
6602 || reloc_type == BFD_RELOC_64)
29b0f896
AM
6603 && GOT_symbol
6604 && GOT_symbol == i.op[n].imms->X_add_symbol
6605 && (i.op[n].imms->X_op == O_symbol
6606 || (i.op[n].imms->X_op == O_add
6607 && ((symbol_get_value_expression
6608 (i.op[n].imms->X_op_symbol)->X_op)
6609 == O_subtract))))
6610 {
2bbd9c25
JJ
6611 offsetT add;
6612
6613 if (insn_start_frag == frag_now)
6614 add = (p - frag_now->fr_literal) - insn_start_off;
6615 else
6616 {
6617 fragS *fr;
6618
6619 add = insn_start_frag->fr_fix - insn_start_off;
6620 for (fr = insn_start_frag->fr_next;
6621 fr && fr != frag_now; fr = fr->fr_next)
6622 add += fr->fr_fix;
6623 add += p - frag_now->fr_literal;
6624 }
6625
4fa24527 6626 if (!object_64bit)
d6ab8113 6627 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 6628 else if (size == 4)
d6ab8113 6629 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
6630 else if (size == 8)
6631 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 6632 i.op[n].imms->X_add_number += add;
29b0f896 6633 }
29b0f896
AM
6634 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6635 i.op[n].imms, 0, reloc_type);
6636 }
6637 }
6638 }
252b5132
RH
6639}
6640\f
d182319b
JB
6641/* x86_cons_fix_new is called via the expression parsing code when a
6642 reloc is needed. We use this hook to get the correct .got reloc. */
6643static enum bfd_reloc_code_real got_reloc = NO_RELOC;
6644static int cons_sign = -1;
6645
6646void
e3bb37b5 6647x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
64e74474 6648 expressionS *exp)
d182319b
JB
6649{
6650 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
6651
6652 got_reloc = NO_RELOC;
6653
6654#ifdef TE_PE
6655 if (exp->X_op == O_secrel)
6656 {
6657 exp->X_op = O_symbol;
6658 r = BFD_RELOC_32_SECREL;
6659 }
6660#endif
6661
6662 fix_new_exp (frag, off, len, exp, 0, r);
6663}
6664
357d1bd8
L
6665/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
6666 purpose of the `.dc.a' internal pseudo-op. */
6667
6668int
6669x86_address_bytes (void)
6670{
6671 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
6672 return 4;
6673 return stdoutput->arch_info->bits_per_address / 8;
6674}
6675
d382c579
TG
6676#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
6677 || defined (LEX_AT)
718ddfc0
JB
6678# define lex_got(reloc, adjust, types) NULL
6679#else
f3c180ae
AM
6680/* Parse operands of the form
6681 <symbol>@GOTOFF+<nnn>
6682 and similar .plt or .got references.
6683
6684 If we find one, set up the correct relocation in RELOC and copy the
6685 input string, minus the `@GOTOFF' into a malloc'd buffer for
6686 parsing by the calling routine. Return this buffer, and if ADJUST
6687 is non-null set it to the length of the string we removed from the
6688 input line. Otherwise return NULL. */
6689static char *
91d6fa6a 6690lex_got (enum bfd_reloc_code_real *rel,
64e74474 6691 int *adjust,
40fb9820 6692 i386_operand_type *types)
f3c180ae 6693{
7b81dfbb
AJ
6694 /* Some of the relocations depend on the size of what field is to
6695 be relocated. But in our callers i386_immediate and i386_displacement
6696 we don't yet know the operand size (this will be set by insn
6697 matching). Hence we record the word32 relocation here,
6698 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
6699 static const struct {
6700 const char *str;
cff8d58a 6701 int len;
4fa24527 6702 const enum bfd_reloc_code_real rel[2];
40fb9820 6703 const i386_operand_type types64;
f3c180ae 6704 } gotrel[] = {
cff8d58a
L
6705 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
6706 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 6707 OPERAND_TYPE_IMM64 },
cff8d58a
L
6708 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
6709 BFD_RELOC_X86_64_PLT32 },
40fb9820 6710 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6711 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
6712 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 6713 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
6714 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
6715 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 6716 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
6717 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
6718 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 6719 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6720 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
6721 BFD_RELOC_X86_64_TLSGD },
40fb9820 6722 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6723 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
6724 _dummy_first_bfd_reloc_code_real },
40fb9820 6725 OPERAND_TYPE_NONE },
cff8d58a
L
6726 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
6727 BFD_RELOC_X86_64_TLSLD },
40fb9820 6728 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6729 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
6730 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 6731 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6732 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
6733 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 6734 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
6735 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
6736 _dummy_first_bfd_reloc_code_real },
40fb9820 6737 OPERAND_TYPE_NONE },
cff8d58a
L
6738 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
6739 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 6740 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
6741 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
6742 _dummy_first_bfd_reloc_code_real },
40fb9820 6743 OPERAND_TYPE_NONE },
cff8d58a
L
6744 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
6745 _dummy_first_bfd_reloc_code_real },
40fb9820 6746 OPERAND_TYPE_NONE },
cff8d58a
L
6747 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
6748 BFD_RELOC_X86_64_GOT32 },
40fb9820 6749 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
6750 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
6751 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 6752 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
6753 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
6754 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 6755 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
6756 };
6757 char *cp;
6758 unsigned int j;
6759
d382c579 6760#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
6761 if (!IS_ELF)
6762 return NULL;
d382c579 6763#endif
718ddfc0 6764
f3c180ae 6765 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 6766 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
6767 return NULL;
6768
47465058 6769 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 6770 {
cff8d58a 6771 int len = gotrel[j].len;
28f81592 6772 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 6773 {
4fa24527 6774 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 6775 {
28f81592
AM
6776 int first, second;
6777 char *tmpbuf, *past_reloc;
f3c180ae 6778
91d6fa6a 6779 *rel = gotrel[j].rel[object_64bit];
28f81592
AM
6780 if (adjust)
6781 *adjust = len;
f3c180ae 6782
3956db08
JB
6783 if (types)
6784 {
6785 if (flag_code != CODE_64BIT)
40fb9820
L
6786 {
6787 types->bitfield.imm32 = 1;
6788 types->bitfield.disp32 = 1;
6789 }
3956db08
JB
6790 else
6791 *types = gotrel[j].types64;
6792 }
6793
f3c180ae
AM
6794 if (GOT_symbol == NULL)
6795 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6796
28f81592 6797 /* The length of the first part of our input line. */
f3c180ae 6798 first = cp - input_line_pointer;
28f81592
AM
6799
6800 /* The second part goes from after the reloc token until
67c11a9b 6801 (and including) an end_of_line char or comma. */
28f81592 6802 past_reloc = cp + 1 + len;
67c11a9b
AM
6803 cp = past_reloc;
6804 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6805 ++cp;
6806 second = cp + 1 - past_reloc;
28f81592
AM
6807
6808 /* Allocate and copy string. The trailing NUL shouldn't
6809 be necessary, but be safe. */
1e9cc1c2 6810 tmpbuf = (char *) xmalloc (first + second + 2);
f3c180ae 6811 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
6812 if (second != 0 && *past_reloc != ' ')
6813 /* Replace the relocation token with ' ', so that
6814 errors like foo@GOTOFF1 will be detected. */
6815 tmpbuf[first++] = ' ';
6816 memcpy (tmpbuf + first, past_reloc, second);
6817 tmpbuf[first + second] = '\0';
f3c180ae
AM
6818 return tmpbuf;
6819 }
6820
4fa24527
JB
6821 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6822 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
6823 return NULL;
6824 }
6825 }
6826
6827 /* Might be a symbol version string. Don't as_bad here. */
6828 return NULL;
6829}
4e4f7c87 6830#endif
f3c180ae 6831
a988325c
NC
6832#ifdef TE_PE
6833#ifdef lex_got
6834#undef lex_got
6835#endif
6836/* Parse operands of the form
6837 <symbol>@SECREL32+<nnn>
6838
6839 If we find one, set up the correct relocation in RELOC and copy the
6840 input string, minus the `@SECREL32' into a malloc'd buffer for
6841 parsing by the calling routine. Return this buffer, and if ADJUST
6842 is non-null set it to the length of the string we removed from the
6843 input line. Otherwise return NULL.
6844
6845 This function is copied from the ELF version above adjusted for PE targets. */
6846
6847static char *
6848lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
6849 int *adjust ATTRIBUTE_UNUSED,
6850 i386_operand_type *types ATTRIBUTE_UNUSED)
6851{
6852 static const struct
6853 {
6854 const char *str;
6855 int len;
6856 const enum bfd_reloc_code_real rel[2];
6857 const i386_operand_type types64;
6858 }
6859 gotrel[] =
6860 {
6861 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
6862 BFD_RELOC_32_SECREL },
6863 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6864 };
6865
6866 char *cp;
6867 unsigned j;
6868
6869 for (cp = input_line_pointer; *cp != '@'; cp++)
6870 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6871 return NULL;
6872
6873 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6874 {
6875 int len = gotrel[j].len;
6876
6877 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6878 {
6879 if (gotrel[j].rel[object_64bit] != 0)
6880 {
6881 int first, second;
6882 char *tmpbuf, *past_reloc;
6883
6884 *rel = gotrel[j].rel[object_64bit];
6885 if (adjust)
6886 *adjust = len;
6887
6888 if (types)
6889 {
6890 if (flag_code != CODE_64BIT)
6891 {
6892 types->bitfield.imm32 = 1;
6893 types->bitfield.disp32 = 1;
6894 }
6895 else
6896 *types = gotrel[j].types64;
6897 }
6898
6899 /* The length of the first part of our input line. */
6900 first = cp - input_line_pointer;
6901
6902 /* The second part goes from after the reloc token until
6903 (and including) an end_of_line char or comma. */
6904 past_reloc = cp + 1 + len;
6905 cp = past_reloc;
6906 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6907 ++cp;
6908 second = cp + 1 - past_reloc;
6909
6910 /* Allocate and copy string. The trailing NUL shouldn't
6911 be necessary, but be safe. */
6912 tmpbuf = (char *) xmalloc (first + second + 2);
6913 memcpy (tmpbuf, input_line_pointer, first);
6914 if (second != 0 && *past_reloc != ' ')
6915 /* Replace the relocation token with ' ', so that
6916 errors like foo@SECLREL321 will be detected. */
6917 tmpbuf[first++] = ' ';
6918 memcpy (tmpbuf + first, past_reloc, second);
6919 tmpbuf[first + second] = '\0';
6920 return tmpbuf;
6921 }
6922
6923 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6924 gotrel[j].str, 1 << (5 + object_64bit));
6925 return NULL;
6926 }
6927 }
6928
6929 /* Might be a symbol version string. Don't as_bad here. */
6930 return NULL;
6931}
6932
6933#endif /* TE_PE */
6934
f3c180ae 6935void
e3bb37b5 6936x86_cons (expressionS *exp, int size)
f3c180ae 6937{
ee86248c
JB
6938 intel_syntax = -intel_syntax;
6939
3c7b9c2c 6940 exp->X_md = 0;
4fa24527 6941 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
6942 {
6943 /* Handle @GOTOFF and the like in an expression. */
6944 char *save;
6945 char *gotfree_input_line;
4a57f2cf 6946 int adjust = 0;
f3c180ae
AM
6947
6948 save = input_line_pointer;
3956db08 6949 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
6950 if (gotfree_input_line)
6951 input_line_pointer = gotfree_input_line;
6952
6953 expression (exp);
6954
6955 if (gotfree_input_line)
6956 {
6957 /* expression () has merrily parsed up to the end of line,
6958 or a comma - in the wrong buffer. Transfer how far
6959 input_line_pointer has moved to the right buffer. */
6960 input_line_pointer = (save
6961 + (input_line_pointer - gotfree_input_line)
6962 + adjust);
6963 free (gotfree_input_line);
3992d3b7
AM
6964 if (exp->X_op == O_constant
6965 || exp->X_op == O_absent
6966 || exp->X_op == O_illegal
0398aac5 6967 || exp->X_op == O_register
3992d3b7
AM
6968 || exp->X_op == O_big)
6969 {
6970 char c = *input_line_pointer;
6971 *input_line_pointer = 0;
6972 as_bad (_("missing or invalid expression `%s'"), save);
6973 *input_line_pointer = c;
6974 }
f3c180ae
AM
6975 }
6976 }
6977 else
6978 expression (exp);
ee86248c
JB
6979
6980 intel_syntax = -intel_syntax;
6981
6982 if (intel_syntax)
6983 i386_intel_simplify (exp);
f3c180ae 6984}
f3c180ae 6985
9f32dd5b
L
6986static void
6987signed_cons (int size)
6482c264 6988{
d182319b
JB
6989 if (flag_code == CODE_64BIT)
6990 cons_sign = 1;
6991 cons (size);
6992 cons_sign = -1;
6482c264
NC
6993}
6994
d182319b 6995#ifdef TE_PE
6482c264 6996static void
7016a5d5 6997pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
6998{
6999 expressionS exp;
7000
7001 do
7002 {
7003 expression (&exp);
7004 if (exp.X_op == O_symbol)
7005 exp.X_op = O_secrel;
7006
7007 emit_expr (&exp, 4);
7008 }
7009 while (*input_line_pointer++ == ',');
7010
7011 input_line_pointer--;
7012 demand_empty_rest_of_line ();
7013}
6482c264
NC
7014#endif
7015
252b5132 7016static int
70e41ade 7017i386_immediate (char *imm_start)
252b5132
RH
7018{
7019 char *save_input_line_pointer;
f3c180ae 7020 char *gotfree_input_line;
252b5132 7021 segT exp_seg = 0;
47926f60 7022 expressionS *exp;
40fb9820
L
7023 i386_operand_type types;
7024
0dfbf9d7 7025 operand_type_set (&types, ~0);
252b5132
RH
7026
7027 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7028 {
31b2323c
L
7029 as_bad (_("at most %d immediate operands are allowed"),
7030 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
7031 return 0;
7032 }
7033
7034 exp = &im_expressions[i.imm_operands++];
520dc8e8 7035 i.op[this_operand].imms = exp;
252b5132
RH
7036
7037 if (is_space_char (*imm_start))
7038 ++imm_start;
7039
7040 save_input_line_pointer = input_line_pointer;
7041 input_line_pointer = imm_start;
7042
3956db08 7043 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
7044 if (gotfree_input_line)
7045 input_line_pointer = gotfree_input_line;
252b5132
RH
7046
7047 exp_seg = expression (exp);
7048
83183c0c 7049 SKIP_WHITESPACE ();
252b5132 7050 if (*input_line_pointer)
f3c180ae 7051 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
7052
7053 input_line_pointer = save_input_line_pointer;
f3c180ae 7054 if (gotfree_input_line)
ee86248c
JB
7055 {
7056 free (gotfree_input_line);
7057
7058 if (exp->X_op == O_constant || exp->X_op == O_register)
7059 exp->X_op = O_illegal;
7060 }
7061
7062 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7063}
252b5132 7064
ee86248c
JB
7065static int
7066i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7067 i386_operand_type types, const char *imm_start)
7068{
7069 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 7070 {
313c53d1
L
7071 if (imm_start)
7072 as_bad (_("missing or invalid immediate expression `%s'"),
7073 imm_start);
3992d3b7 7074 return 0;
252b5132 7075 }
3e73aa7c 7076 else if (exp->X_op == O_constant)
252b5132 7077 {
47926f60 7078 /* Size it properly later. */
40fb9820 7079 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
7080 /* If not 64bit, sign extend val. */
7081 if (flag_code != CODE_64BIT
4eed87de
AM
7082 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7083 exp->X_add_number
7084 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 7085 }
4c63da97 7086#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 7087 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 7088 && exp_seg != absolute_section
47926f60 7089 && exp_seg != text_section
24eab124
AM
7090 && exp_seg != data_section
7091 && exp_seg != bss_section
7092 && exp_seg != undefined_section
f86103b7 7093 && !bfd_is_com_section (exp_seg))
252b5132 7094 {
d0b47220 7095 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
7096 return 0;
7097 }
7098#endif
bb8f5920
L
7099 else if (!intel_syntax && exp->X_op == O_register)
7100 {
313c53d1
L
7101 if (imm_start)
7102 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
7103 return 0;
7104 }
252b5132
RH
7105 else
7106 {
7107 /* This is an address. The size of the address will be
24eab124 7108 determined later, depending on destination register,
3e73aa7c 7109 suffix, or the default for the section. */
40fb9820
L
7110 i.types[this_operand].bitfield.imm8 = 1;
7111 i.types[this_operand].bitfield.imm16 = 1;
7112 i.types[this_operand].bitfield.imm32 = 1;
7113 i.types[this_operand].bitfield.imm32s = 1;
7114 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
7115 i.types[this_operand] = operand_type_and (i.types[this_operand],
7116 types);
252b5132
RH
7117 }
7118
7119 return 1;
7120}
7121
551c1ca1 7122static char *
e3bb37b5 7123i386_scale (char *scale)
252b5132 7124{
551c1ca1
AM
7125 offsetT val;
7126 char *save = input_line_pointer;
252b5132 7127
551c1ca1
AM
7128 input_line_pointer = scale;
7129 val = get_absolute_expression ();
7130
7131 switch (val)
252b5132 7132 {
551c1ca1 7133 case 1:
252b5132
RH
7134 i.log2_scale_factor = 0;
7135 break;
551c1ca1 7136 case 2:
252b5132
RH
7137 i.log2_scale_factor = 1;
7138 break;
551c1ca1 7139 case 4:
252b5132
RH
7140 i.log2_scale_factor = 2;
7141 break;
551c1ca1 7142 case 8:
252b5132
RH
7143 i.log2_scale_factor = 3;
7144 break;
7145 default:
a724f0f4
JB
7146 {
7147 char sep = *input_line_pointer;
7148
7149 *input_line_pointer = '\0';
7150 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7151 scale);
7152 *input_line_pointer = sep;
7153 input_line_pointer = save;
7154 return NULL;
7155 }
252b5132 7156 }
29b0f896 7157 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
7158 {
7159 as_warn (_("scale factor of %d without an index register"),
24eab124 7160 1 << i.log2_scale_factor);
252b5132 7161 i.log2_scale_factor = 0;
252b5132 7162 }
551c1ca1
AM
7163 scale = input_line_pointer;
7164 input_line_pointer = save;
7165 return scale;
252b5132
RH
7166}
7167
252b5132 7168static int
e3bb37b5 7169i386_displacement (char *disp_start, char *disp_end)
252b5132 7170{
29b0f896 7171 expressionS *exp;
252b5132
RH
7172 segT exp_seg = 0;
7173 char *save_input_line_pointer;
f3c180ae 7174 char *gotfree_input_line;
40fb9820
L
7175 int override;
7176 i386_operand_type bigdisp, types = anydisp;
3992d3b7 7177 int ret;
252b5132 7178
31b2323c
L
7179 if (i.disp_operands == MAX_MEMORY_OPERANDS)
7180 {
7181 as_bad (_("at most %d displacement operands are allowed"),
7182 MAX_MEMORY_OPERANDS);
7183 return 0;
7184 }
7185
0dfbf9d7 7186 operand_type_set (&bigdisp, 0);
40fb9820
L
7187 if ((i.types[this_operand].bitfield.jumpabsolute)
7188 || (!current_templates->start->opcode_modifier.jump
7189 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 7190 {
40fb9820 7191 bigdisp.bitfield.disp32 = 1;
e05278af 7192 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
7193 if (flag_code == CODE_64BIT)
7194 {
7195 if (!override)
7196 {
7197 bigdisp.bitfield.disp32s = 1;
7198 bigdisp.bitfield.disp64 = 1;
7199 }
7200 }
7201 else if ((flag_code == CODE_16BIT) ^ override)
7202 {
7203 bigdisp.bitfield.disp32 = 0;
7204 bigdisp.bitfield.disp16 = 1;
7205 }
e05278af
JB
7206 }
7207 else
7208 {
7209 /* For PC-relative branches, the width of the displacement
7210 is dependent upon data size, not address size. */
e05278af 7211 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
7212 if (flag_code == CODE_64BIT)
7213 {
7214 if (override || i.suffix == WORD_MNEM_SUFFIX)
7215 bigdisp.bitfield.disp16 = 1;
7216 else
7217 {
7218 bigdisp.bitfield.disp32 = 1;
7219 bigdisp.bitfield.disp32s = 1;
7220 }
7221 }
7222 else
e05278af
JB
7223 {
7224 if (!override)
7225 override = (i.suffix == (flag_code != CODE_16BIT
7226 ? WORD_MNEM_SUFFIX
7227 : LONG_MNEM_SUFFIX));
40fb9820
L
7228 bigdisp.bitfield.disp32 = 1;
7229 if ((flag_code == CODE_16BIT) ^ override)
7230 {
7231 bigdisp.bitfield.disp32 = 0;
7232 bigdisp.bitfield.disp16 = 1;
7233 }
e05278af 7234 }
e05278af 7235 }
c6fb90c8
L
7236 i.types[this_operand] = operand_type_or (i.types[this_operand],
7237 bigdisp);
252b5132
RH
7238
7239 exp = &disp_expressions[i.disp_operands];
520dc8e8 7240 i.op[this_operand].disps = exp;
252b5132
RH
7241 i.disp_operands++;
7242 save_input_line_pointer = input_line_pointer;
7243 input_line_pointer = disp_start;
7244 END_STRING_AND_SAVE (disp_end);
7245
7246#ifndef GCC_ASM_O_HACK
7247#define GCC_ASM_O_HACK 0
7248#endif
7249#if GCC_ASM_O_HACK
7250 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 7251 if (i.types[this_operand].bitfield.baseIndex
24eab124 7252 && displacement_string_end[-1] == '+')
252b5132
RH
7253 {
7254 /* This hack is to avoid a warning when using the "o"
24eab124
AM
7255 constraint within gcc asm statements.
7256 For instance:
7257
7258 #define _set_tssldt_desc(n,addr,limit,type) \
7259 __asm__ __volatile__ ( \
7260 "movw %w2,%0\n\t" \
7261 "movw %w1,2+%0\n\t" \
7262 "rorl $16,%1\n\t" \
7263 "movb %b1,4+%0\n\t" \
7264 "movb %4,5+%0\n\t" \
7265 "movb $0,6+%0\n\t" \
7266 "movb %h1,7+%0\n\t" \
7267 "rorl $16,%1" \
7268 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
7269
7270 This works great except that the output assembler ends
7271 up looking a bit weird if it turns out that there is
7272 no offset. You end up producing code that looks like:
7273
7274 #APP
7275 movw $235,(%eax)
7276 movw %dx,2+(%eax)
7277 rorl $16,%edx
7278 movb %dl,4+(%eax)
7279 movb $137,5+(%eax)
7280 movb $0,6+(%eax)
7281 movb %dh,7+(%eax)
7282 rorl $16,%edx
7283 #NO_APP
7284
47926f60 7285 So here we provide the missing zero. */
24eab124
AM
7286
7287 *displacement_string_end = '0';
252b5132
RH
7288 }
7289#endif
3956db08 7290 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
7291 if (gotfree_input_line)
7292 input_line_pointer = gotfree_input_line;
252b5132 7293
24eab124 7294 exp_seg = expression (exp);
252b5132 7295
636c26b0
AM
7296 SKIP_WHITESPACE ();
7297 if (*input_line_pointer)
7298 as_bad (_("junk `%s' after expression"), input_line_pointer);
7299#if GCC_ASM_O_HACK
7300 RESTORE_END_STRING (disp_end + 1);
7301#endif
636c26b0 7302 input_line_pointer = save_input_line_pointer;
636c26b0 7303 if (gotfree_input_line)
ee86248c
JB
7304 {
7305 free (gotfree_input_line);
7306
7307 if (exp->X_op == O_constant || exp->X_op == O_register)
7308 exp->X_op = O_illegal;
7309 }
7310
7311 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
7312
7313 RESTORE_END_STRING (disp_end);
7314
7315 return ret;
7316}
7317
7318static int
7319i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7320 i386_operand_type types, const char *disp_start)
7321{
7322 i386_operand_type bigdisp;
7323 int ret = 1;
636c26b0 7324
24eab124
AM
7325 /* We do this to make sure that the section symbol is in
7326 the symbol table. We will ultimately change the relocation
47926f60 7327 to be relative to the beginning of the section. */
1ae12ab7 7328 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
7329 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
7330 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 7331 {
636c26b0 7332 if (exp->X_op != O_symbol)
3992d3b7 7333 goto inv_disp;
636c26b0 7334
e5cb08ac 7335 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
7336 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
7337 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 7338 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
7339 exp->X_op = O_subtract;
7340 exp->X_op_symbol = GOT_symbol;
1ae12ab7 7341 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 7342 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
7343 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
7344 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 7345 else
29b0f896 7346 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 7347 }
252b5132 7348
3992d3b7
AM
7349 else if (exp->X_op == O_absent
7350 || exp->X_op == O_illegal
ee86248c 7351 || exp->X_op == O_big)
2daf4fd8 7352 {
3992d3b7
AM
7353 inv_disp:
7354 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 7355 disp_start);
3992d3b7 7356 ret = 0;
2daf4fd8
AM
7357 }
7358
0e1147d9
L
7359 else if (flag_code == CODE_64BIT
7360 && !i.prefix[ADDR_PREFIX]
7361 && exp->X_op == O_constant)
7362 {
7363 /* Since displacement is signed extended to 64bit, don't allow
7364 disp32 and turn off disp32s if they are out of range. */
7365 i.types[this_operand].bitfield.disp32 = 0;
7366 if (!fits_in_signed_long (exp->X_add_number))
7367 {
7368 i.types[this_operand].bitfield.disp32s = 0;
7369 if (i.types[this_operand].bitfield.baseindex)
7370 {
7371 as_bad (_("0x%lx out range of signed 32bit displacement"),
7372 (long) exp->X_add_number);
7373 ret = 0;
7374 }
7375 }
7376 }
7377
4c63da97 7378#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
7379 else if (exp->X_op != O_constant
7380 && OUTPUT_FLAVOR == bfd_target_aout_flavour
7381 && exp_seg != absolute_section
7382 && exp_seg != text_section
7383 && exp_seg != data_section
7384 && exp_seg != bss_section
7385 && exp_seg != undefined_section
7386 && !bfd_is_com_section (exp_seg))
24eab124 7387 {
d0b47220 7388 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 7389 ret = 0;
24eab124 7390 }
252b5132 7391#endif
3956db08 7392
40fb9820
L
7393 /* Check if this is a displacement only operand. */
7394 bigdisp = i.types[this_operand];
7395 bigdisp.bitfield.disp8 = 0;
7396 bigdisp.bitfield.disp16 = 0;
7397 bigdisp.bitfield.disp32 = 0;
7398 bigdisp.bitfield.disp32s = 0;
7399 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 7400 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
7401 i.types[this_operand] = operand_type_and (i.types[this_operand],
7402 types);
3956db08 7403
3992d3b7 7404 return ret;
252b5132
RH
7405}
7406
eecb386c 7407/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
7408 Return 1 on success, 0 on a failure. */
7409
252b5132 7410static int
e3bb37b5 7411i386_index_check (const char *operand_string)
252b5132 7412{
3e73aa7c 7413 int ok;
fc0763e6 7414 const char *kind = "base/index";
24eab124 7415#if INFER_ADDR_PREFIX
eecb386c
AM
7416 int fudged = 0;
7417
24eab124
AM
7418 tryprefix:
7419#endif
3e73aa7c 7420 ok = 1;
fc0763e6
JB
7421 if (current_templates->start->opcode_modifier.isstring
7422 && !current_templates->start->opcode_modifier.immext
7423 && (current_templates->end[-1].opcode_modifier.isstring
7424 || i.mem_operands))
7425 {
7426 /* Memory operands of string insns are special in that they only allow
7427 a single register (rDI, rSI, or rBX) as their memory address. */
7428 unsigned int expected;
7429
7430 kind = "string address";
7431
7432 if (current_templates->start->opcode_modifier.w)
7433 {
7434 i386_operand_type type = current_templates->end[-1].operand_types[0];
7435
7436 if (!type.bitfield.baseindex
7437 || ((!i.mem_operands != !intel_syntax)
7438 && current_templates->end[-1].operand_types[1]
7439 .bitfield.baseindex))
7440 type = current_templates->end[-1].operand_types[1];
7441 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
7442 }
7443 else
7444 expected = 3 /* rBX */;
7445
7446 if (!i.base_reg || i.index_reg
7447 || operand_type_check (i.types[this_operand], disp))
7448 ok = -1;
7449 else if (!(flag_code == CODE_64BIT
7450 ? i.prefix[ADDR_PREFIX]
7451 ? i.base_reg->reg_type.bitfield.reg32
7452 : i.base_reg->reg_type.bitfield.reg64
7453 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7454 ? i.base_reg->reg_type.bitfield.reg32
7455 : i.base_reg->reg_type.bitfield.reg16))
7456 ok = 0;
4c692bc7 7457 else if (register_number (i.base_reg) != expected)
fc0763e6
JB
7458 ok = -1;
7459
7460 if (ok < 0)
7461 {
7462 unsigned int j;
7463
7464 for (j = 0; j < i386_regtab_size; ++j)
7465 if ((flag_code == CODE_64BIT
7466 ? i.prefix[ADDR_PREFIX]
7467 ? i386_regtab[j].reg_type.bitfield.reg32
7468 : i386_regtab[j].reg_type.bitfield.reg64
7469 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7470 ? i386_regtab[j].reg_type.bitfield.reg32
7471 : i386_regtab[j].reg_type.bitfield.reg16)
4c692bc7 7472 && register_number(i386_regtab + j) == expected)
fc0763e6 7473 break;
9c2799c2 7474 gas_assert (j < i386_regtab_size);
fc0763e6
JB
7475 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
7476 operand_string,
7477 intel_syntax ? '[' : '(',
7478 register_prefix,
7479 i386_regtab[j].reg_name,
7480 intel_syntax ? ']' : ')');
7481 ok = 1;
7482 }
7483 }
7484 else if (flag_code == CODE_64BIT)
64e74474 7485 {
64e74474 7486 if ((i.base_reg
40fb9820
L
7487 && ((i.prefix[ADDR_PREFIX] == 0
7488 && !i.base_reg->reg_type.bitfield.reg64)
7489 || (i.prefix[ADDR_PREFIX]
7490 && !i.base_reg->reg_type.bitfield.reg32))
7491 && (i.index_reg
9a04903e
JB
7492 || i.base_reg->reg_num !=
7493 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
64e74474 7494 || (i.index_reg
6c30d220
L
7495 && !(i.index_reg->reg_type.bitfield.regxmm
7496 || i.index_reg->reg_type.bitfield.regymm)
40fb9820
L
7497 && (!i.index_reg->reg_type.bitfield.baseindex
7498 || (i.prefix[ADDR_PREFIX] == 0
db51cc60
L
7499 && i.index_reg->reg_num != RegRiz
7500 && !i.index_reg->reg_type.bitfield.reg64
7501 )
40fb9820 7502 || (i.prefix[ADDR_PREFIX]
db51cc60 7503 && i.index_reg->reg_num != RegEiz
40fb9820 7504 && !i.index_reg->reg_type.bitfield.reg32))))
64e74474 7505 ok = 0;
3e73aa7c
JH
7506 }
7507 else
7508 {
7509 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
7510 {
7511 /* 16bit checks. */
7512 if ((i.base_reg
40fb9820
L
7513 && (!i.base_reg->reg_type.bitfield.reg16
7514 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 7515 || (i.index_reg
40fb9820
L
7516 && (!i.index_reg->reg_type.bitfield.reg16
7517 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
7518 || !(i.base_reg
7519 && i.base_reg->reg_num < 6
7520 && i.index_reg->reg_num >= 6
7521 && i.log2_scale_factor == 0))))
3e73aa7c
JH
7522 ok = 0;
7523 }
7524 else
e5cb08ac 7525 {
3e73aa7c
JH
7526 /* 32bit checks. */
7527 if ((i.base_reg
40fb9820 7528 && !i.base_reg->reg_type.bitfield.reg32)
3e73aa7c 7529 || (i.index_reg
6c30d220
L
7530 && !i.index_reg->reg_type.bitfield.regxmm
7531 && !i.index_reg->reg_type.bitfield.regymm
db51cc60
L
7532 && ((!i.index_reg->reg_type.bitfield.reg32
7533 && i.index_reg->reg_num != RegEiz)
40fb9820 7534 || !i.index_reg->reg_type.bitfield.baseindex)))
e5cb08ac 7535 ok = 0;
3e73aa7c
JH
7536 }
7537 }
7538 if (!ok)
24eab124
AM
7539 {
7540#if INFER_ADDR_PREFIX
fc0763e6 7541 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
24eab124
AM
7542 {
7543 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
7544 i.prefixes += 1;
b23bac36
AM
7545 /* Change the size of any displacement too. At most one of
7546 Disp16 or Disp32 is set.
7547 FIXME. There doesn't seem to be any real need for separate
7548 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 7549 Removing them would probably clean up the code quite a lot. */
4eed87de 7550 if (flag_code != CODE_64BIT
40fb9820
L
7551 && (i.types[this_operand].bitfield.disp16
7552 || i.types[this_operand].bitfield.disp32))
7553 i.types[this_operand]
c6fb90c8 7554 = operand_type_xor (i.types[this_operand], disp16_32);
eecb386c 7555 fudged = 1;
24eab124
AM
7556 goto tryprefix;
7557 }
eecb386c 7558 if (fudged)
fc0763e6
JB
7559 as_bad (_("`%s' is not a valid %s expression"),
7560 operand_string,
7561 kind);
eecb386c 7562 else
c388dee8 7563#endif
fc0763e6 7564 as_bad (_("`%s' is not a valid %s-bit %s expression"),
eecb386c 7565 operand_string,
fc0763e6
JB
7566 flag_code_names[i.prefix[ADDR_PREFIX]
7567 ? flag_code == CODE_32BIT
7568 ? CODE_16BIT
7569 : CODE_32BIT
7570 : flag_code],
7571 kind);
24eab124 7572 }
20f0a1fc 7573 return ok;
24eab124 7574}
252b5132 7575
fc0763e6 7576/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 7577 on error. */
252b5132 7578
252b5132 7579static int
a7619375 7580i386_att_operand (char *operand_string)
252b5132 7581{
af6bdddf
AM
7582 const reg_entry *r;
7583 char *end_op;
24eab124 7584 char *op_string = operand_string;
252b5132 7585
24eab124 7586 if (is_space_char (*op_string))
252b5132
RH
7587 ++op_string;
7588
24eab124 7589 /* We check for an absolute prefix (differentiating,
47926f60 7590 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
7591 if (*op_string == ABSOLUTE_PREFIX)
7592 {
7593 ++op_string;
7594 if (is_space_char (*op_string))
7595 ++op_string;
40fb9820 7596 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 7597 }
252b5132 7598
47926f60 7599 /* Check if operand is a register. */
4d1bb795 7600 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 7601 {
40fb9820
L
7602 i386_operand_type temp;
7603
24eab124
AM
7604 /* Check for a segment override by searching for ':' after a
7605 segment register. */
7606 op_string = end_op;
7607 if (is_space_char (*op_string))
7608 ++op_string;
40fb9820
L
7609 if (*op_string == ':'
7610 && (r->reg_type.bitfield.sreg2
7611 || r->reg_type.bitfield.sreg3))
24eab124
AM
7612 {
7613 switch (r->reg_num)
7614 {
7615 case 0:
7616 i.seg[i.mem_operands] = &es;
7617 break;
7618 case 1:
7619 i.seg[i.mem_operands] = &cs;
7620 break;
7621 case 2:
7622 i.seg[i.mem_operands] = &ss;
7623 break;
7624 case 3:
7625 i.seg[i.mem_operands] = &ds;
7626 break;
7627 case 4:
7628 i.seg[i.mem_operands] = &fs;
7629 break;
7630 case 5:
7631 i.seg[i.mem_operands] = &gs;
7632 break;
7633 }
252b5132 7634
24eab124 7635 /* Skip the ':' and whitespace. */
252b5132
RH
7636 ++op_string;
7637 if (is_space_char (*op_string))
24eab124 7638 ++op_string;
252b5132 7639
24eab124
AM
7640 if (!is_digit_char (*op_string)
7641 && !is_identifier_char (*op_string)
7642 && *op_string != '('
7643 && *op_string != ABSOLUTE_PREFIX)
7644 {
7645 as_bad (_("bad memory operand `%s'"), op_string);
7646 return 0;
7647 }
47926f60 7648 /* Handle case of %es:*foo. */
24eab124
AM
7649 if (*op_string == ABSOLUTE_PREFIX)
7650 {
7651 ++op_string;
7652 if (is_space_char (*op_string))
7653 ++op_string;
40fb9820 7654 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
7655 }
7656 goto do_memory_reference;
7657 }
7658 if (*op_string)
7659 {
d0b47220 7660 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
7661 return 0;
7662 }
40fb9820
L
7663 temp = r->reg_type;
7664 temp.bitfield.baseindex = 0;
c6fb90c8
L
7665 i.types[this_operand] = operand_type_or (i.types[this_operand],
7666 temp);
7d5e4556 7667 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 7668 i.op[this_operand].regs = r;
24eab124
AM
7669 i.reg_operands++;
7670 }
af6bdddf
AM
7671 else if (*op_string == REGISTER_PREFIX)
7672 {
7673 as_bad (_("bad register name `%s'"), op_string);
7674 return 0;
7675 }
24eab124 7676 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 7677 {
24eab124 7678 ++op_string;
40fb9820 7679 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 7680 {
d0b47220 7681 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
7682 return 0;
7683 }
7684 if (!i386_immediate (op_string))
7685 return 0;
7686 }
7687 else if (is_digit_char (*op_string)
7688 || is_identifier_char (*op_string)
e5cb08ac 7689 || *op_string == '(')
24eab124 7690 {
47926f60 7691 /* This is a memory reference of some sort. */
af6bdddf 7692 char *base_string;
252b5132 7693
47926f60 7694 /* Start and end of displacement string expression (if found). */
eecb386c
AM
7695 char *displacement_string_start;
7696 char *displacement_string_end;
252b5132 7697
24eab124 7698 do_memory_reference:
24eab124 7699 if ((i.mem_operands == 1
40fb9820 7700 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
7701 || i.mem_operands == 2)
7702 {
7703 as_bad (_("too many memory references for `%s'"),
7704 current_templates->start->name);
7705 return 0;
7706 }
252b5132 7707
24eab124
AM
7708 /* Check for base index form. We detect the base index form by
7709 looking for an ')' at the end of the operand, searching
7710 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7711 after the '('. */
af6bdddf 7712 base_string = op_string + strlen (op_string);
c3332e24 7713
af6bdddf
AM
7714 --base_string;
7715 if (is_space_char (*base_string))
7716 --base_string;
252b5132 7717
47926f60 7718 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
7719 displacement_string_start = op_string;
7720 displacement_string_end = base_string + 1;
252b5132 7721
24eab124
AM
7722 if (*base_string == ')')
7723 {
af6bdddf 7724 char *temp_string;
24eab124
AM
7725 unsigned int parens_balanced = 1;
7726 /* We've already checked that the number of left & right ()'s are
47926f60 7727 equal, so this loop will not be infinite. */
24eab124
AM
7728 do
7729 {
7730 base_string--;
7731 if (*base_string == ')')
7732 parens_balanced++;
7733 if (*base_string == '(')
7734 parens_balanced--;
7735 }
7736 while (parens_balanced);
c3332e24 7737
af6bdddf 7738 temp_string = base_string;
c3332e24 7739
24eab124 7740 /* Skip past '(' and whitespace. */
252b5132
RH
7741 ++base_string;
7742 if (is_space_char (*base_string))
24eab124 7743 ++base_string;
252b5132 7744
af6bdddf 7745 if (*base_string == ','
4eed87de
AM
7746 || ((i.base_reg = parse_register (base_string, &end_op))
7747 != NULL))
252b5132 7748 {
af6bdddf 7749 displacement_string_end = temp_string;
252b5132 7750
40fb9820 7751 i.types[this_operand].bitfield.baseindex = 1;
252b5132 7752
af6bdddf 7753 if (i.base_reg)
24eab124 7754 {
24eab124
AM
7755 base_string = end_op;
7756 if (is_space_char (*base_string))
7757 ++base_string;
af6bdddf
AM
7758 }
7759
7760 /* There may be an index reg or scale factor here. */
7761 if (*base_string == ',')
7762 {
7763 ++base_string;
7764 if (is_space_char (*base_string))
7765 ++base_string;
7766
4eed87de
AM
7767 if ((i.index_reg = parse_register (base_string, &end_op))
7768 != NULL)
24eab124 7769 {
af6bdddf 7770 base_string = end_op;
24eab124
AM
7771 if (is_space_char (*base_string))
7772 ++base_string;
af6bdddf
AM
7773 if (*base_string == ',')
7774 {
7775 ++base_string;
7776 if (is_space_char (*base_string))
7777 ++base_string;
7778 }
e5cb08ac 7779 else if (*base_string != ')')
af6bdddf 7780 {
4eed87de
AM
7781 as_bad (_("expecting `,' or `)' "
7782 "after index register in `%s'"),
af6bdddf
AM
7783 operand_string);
7784 return 0;
7785 }
24eab124 7786 }
af6bdddf 7787 else if (*base_string == REGISTER_PREFIX)
24eab124 7788 {
af6bdddf 7789 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
7790 return 0;
7791 }
252b5132 7792
47926f60 7793 /* Check for scale factor. */
551c1ca1 7794 if (*base_string != ')')
af6bdddf 7795 {
551c1ca1
AM
7796 char *end_scale = i386_scale (base_string);
7797
7798 if (!end_scale)
af6bdddf 7799 return 0;
24eab124 7800
551c1ca1 7801 base_string = end_scale;
af6bdddf
AM
7802 if (is_space_char (*base_string))
7803 ++base_string;
7804 if (*base_string != ')')
7805 {
4eed87de
AM
7806 as_bad (_("expecting `)' "
7807 "after scale factor in `%s'"),
af6bdddf
AM
7808 operand_string);
7809 return 0;
7810 }
7811 }
7812 else if (!i.index_reg)
24eab124 7813 {
4eed87de
AM
7814 as_bad (_("expecting index register or scale factor "
7815 "after `,'; got '%c'"),
af6bdddf 7816 *base_string);
24eab124
AM
7817 return 0;
7818 }
7819 }
af6bdddf 7820 else if (*base_string != ')')
24eab124 7821 {
4eed87de
AM
7822 as_bad (_("expecting `,' or `)' "
7823 "after base register in `%s'"),
af6bdddf 7824 operand_string);
24eab124
AM
7825 return 0;
7826 }
c3332e24 7827 }
af6bdddf 7828 else if (*base_string == REGISTER_PREFIX)
c3332e24 7829 {
af6bdddf 7830 as_bad (_("bad register name `%s'"), base_string);
24eab124 7831 return 0;
c3332e24 7832 }
24eab124
AM
7833 }
7834
7835 /* If there's an expression beginning the operand, parse it,
7836 assuming displacement_string_start and
7837 displacement_string_end are meaningful. */
7838 if (displacement_string_start != displacement_string_end)
7839 {
7840 if (!i386_displacement (displacement_string_start,
7841 displacement_string_end))
7842 return 0;
7843 }
7844
7845 /* Special case for (%dx) while doing input/output op. */
7846 if (i.base_reg
0dfbf9d7
L
7847 && operand_type_equal (&i.base_reg->reg_type,
7848 &reg16_inoutportreg)
24eab124
AM
7849 && i.index_reg == 0
7850 && i.log2_scale_factor == 0
7851 && i.seg[i.mem_operands] == 0
40fb9820 7852 && !operand_type_check (i.types[this_operand], disp))
24eab124 7853 {
65da13b5 7854 i.types[this_operand] = inoutportreg;
24eab124
AM
7855 return 1;
7856 }
7857
eecb386c
AM
7858 if (i386_index_check (operand_string) == 0)
7859 return 0;
5c07affc 7860 i.types[this_operand].bitfield.mem = 1;
24eab124
AM
7861 i.mem_operands++;
7862 }
7863 else
ce8a8b2f
AM
7864 {
7865 /* It's not a memory operand; argh! */
24eab124
AM
7866 as_bad (_("invalid char %s beginning operand %d `%s'"),
7867 output_invalid (*op_string),
7868 this_operand + 1,
7869 op_string);
7870 return 0;
7871 }
47926f60 7872 return 1; /* Normal return. */
252b5132
RH
7873}
7874\f
fa94de6b
RM
7875/* Calculate the maximum variable size (i.e., excluding fr_fix)
7876 that an rs_machine_dependent frag may reach. */
7877
7878unsigned int
7879i386_frag_max_var (fragS *frag)
7880{
7881 /* The only relaxable frags are for jumps.
7882 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
7883 gas_assert (frag->fr_type == rs_machine_dependent);
7884 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
7885}
7886
ee7fcc42
AM
7887/* md_estimate_size_before_relax()
7888
7889 Called just before relax() for rs_machine_dependent frags. The x86
7890 assembler uses these frags to handle variable size jump
7891 instructions.
7892
7893 Any symbol that is now undefined will not become defined.
7894 Return the correct fr_subtype in the frag.
7895 Return the initial "guess for variable size of frag" to caller.
7896 The guess is actually the growth beyond the fixed part. Whatever
7897 we do to grow the fixed or variable part contributes to our
7898 returned value. */
7899
252b5132 7900int
7016a5d5 7901md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 7902{
252b5132 7903 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
7904 check for un-relaxable symbols. On an ELF system, we can't relax
7905 an externally visible symbol, because it may be overridden by a
7906 shared library. */
7907 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 7908#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 7909 || (IS_ELF
31312f95 7910 && (S_IS_EXTERNAL (fragP->fr_symbol)
915bcca5
L
7911 || S_IS_WEAK (fragP->fr_symbol)
7912 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7913 & BSF_GNU_INDIRECT_FUNCTION))))
fbeb56a4
DK
7914#endif
7915#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 7916 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 7917 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
7918#endif
7919 )
252b5132 7920 {
b98ef147
AM
7921 /* Symbol is undefined in this segment, or we need to keep a
7922 reloc so that weak symbols can be overridden. */
7923 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 7924 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
7925 unsigned char *opcode;
7926 int old_fr_fix;
f6af82bd 7927
ee7fcc42 7928 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 7929 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 7930 else if (size == 2)
f6af82bd
AM
7931 reloc_type = BFD_RELOC_16_PCREL;
7932 else
7933 reloc_type = BFD_RELOC_32_PCREL;
252b5132 7934
ee7fcc42
AM
7935 old_fr_fix = fragP->fr_fix;
7936 opcode = (unsigned char *) fragP->fr_opcode;
7937
fddf5b5b 7938 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 7939 {
fddf5b5b
AM
7940 case UNCOND_JUMP:
7941 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 7942 opcode[0] = 0xe9;
252b5132 7943 fragP->fr_fix += size;
062cd5e7
AS
7944 fix_new (fragP, old_fr_fix, size,
7945 fragP->fr_symbol,
7946 fragP->fr_offset, 1,
7947 reloc_type);
252b5132
RH
7948 break;
7949
fddf5b5b 7950 case COND_JUMP86:
412167cb
AM
7951 if (size == 2
7952 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
7953 {
7954 /* Negate the condition, and branch past an
7955 unconditional jump. */
7956 opcode[0] ^= 1;
7957 opcode[1] = 3;
7958 /* Insert an unconditional jump. */
7959 opcode[2] = 0xe9;
7960 /* We added two extra opcode bytes, and have a two byte
7961 offset. */
7962 fragP->fr_fix += 2 + 2;
062cd5e7
AS
7963 fix_new (fragP, old_fr_fix + 2, 2,
7964 fragP->fr_symbol,
7965 fragP->fr_offset, 1,
7966 reloc_type);
fddf5b5b
AM
7967 break;
7968 }
7969 /* Fall through. */
7970
7971 case COND_JUMP:
412167cb
AM
7972 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7973 {
3e02c1cc
AM
7974 fixS *fixP;
7975
412167cb 7976 fragP->fr_fix += 1;
3e02c1cc
AM
7977 fixP = fix_new (fragP, old_fr_fix, 1,
7978 fragP->fr_symbol,
7979 fragP->fr_offset, 1,
7980 BFD_RELOC_8_PCREL);
7981 fixP->fx_signed = 1;
412167cb
AM
7982 break;
7983 }
93c2a809 7984
24eab124 7985 /* This changes the byte-displacement jump 0x7N
fddf5b5b 7986 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 7987 opcode[1] = opcode[0] + 0x10;
f6af82bd 7988 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
7989 /* We've added an opcode byte. */
7990 fragP->fr_fix += 1 + size;
062cd5e7
AS
7991 fix_new (fragP, old_fr_fix + 1, size,
7992 fragP->fr_symbol,
7993 fragP->fr_offset, 1,
7994 reloc_type);
252b5132 7995 break;
fddf5b5b
AM
7996
7997 default:
7998 BAD_CASE (fragP->fr_subtype);
7999 break;
252b5132
RH
8000 }
8001 frag_wane (fragP);
ee7fcc42 8002 return fragP->fr_fix - old_fr_fix;
252b5132 8003 }
93c2a809 8004
93c2a809
AM
8005 /* Guess size depending on current relax state. Initially the relax
8006 state will correspond to a short jump and we return 1, because
8007 the variable part of the frag (the branch offset) is one byte
8008 long. However, we can relax a section more than once and in that
8009 case we must either set fr_subtype back to the unrelaxed state,
8010 or return the value for the appropriate branch. */
8011 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
8012}
8013
47926f60
KH
8014/* Called after relax() is finished.
8015
8016 In: Address of frag.
8017 fr_type == rs_machine_dependent.
8018 fr_subtype is what the address relaxed to.
8019
8020 Out: Any fixSs and constants are set up.
8021 Caller will turn frag into a ".space 0". */
8022
252b5132 8023void
7016a5d5
TG
8024md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8025 fragS *fragP)
252b5132 8026{
29b0f896 8027 unsigned char *opcode;
252b5132 8028 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
8029 offsetT target_address;
8030 offsetT opcode_address;
252b5132 8031 unsigned int extension = 0;
847f7ad4 8032 offsetT displacement_from_opcode_start;
252b5132
RH
8033
8034 opcode = (unsigned char *) fragP->fr_opcode;
8035
47926f60 8036 /* Address we want to reach in file space. */
252b5132 8037 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 8038
47926f60 8039 /* Address opcode resides at in file space. */
252b5132
RH
8040 opcode_address = fragP->fr_address + fragP->fr_fix;
8041
47926f60 8042 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
8043 displacement_from_opcode_start = target_address - opcode_address;
8044
fddf5b5b 8045 if ((fragP->fr_subtype & BIG) == 0)
252b5132 8046 {
47926f60
KH
8047 /* Don't have to change opcode. */
8048 extension = 1; /* 1 opcode + 1 displacement */
252b5132 8049 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
8050 }
8051 else
8052 {
8053 if (no_cond_jump_promotion
8054 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
8055 as_warn_where (fragP->fr_file, fragP->fr_line,
8056 _("long jump required"));
252b5132 8057
fddf5b5b
AM
8058 switch (fragP->fr_subtype)
8059 {
8060 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8061 extension = 4; /* 1 opcode + 4 displacement */
8062 opcode[0] = 0xe9;
8063 where_to_put_displacement = &opcode[1];
8064 break;
252b5132 8065
fddf5b5b
AM
8066 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8067 extension = 2; /* 1 opcode + 2 displacement */
8068 opcode[0] = 0xe9;
8069 where_to_put_displacement = &opcode[1];
8070 break;
252b5132 8071
fddf5b5b
AM
8072 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8073 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8074 extension = 5; /* 2 opcode + 4 displacement */
8075 opcode[1] = opcode[0] + 0x10;
8076 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8077 where_to_put_displacement = &opcode[2];
8078 break;
252b5132 8079
fddf5b5b
AM
8080 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
8081 extension = 3; /* 2 opcode + 2 displacement */
8082 opcode[1] = opcode[0] + 0x10;
8083 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8084 where_to_put_displacement = &opcode[2];
8085 break;
252b5132 8086
fddf5b5b
AM
8087 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
8088 extension = 4;
8089 opcode[0] ^= 1;
8090 opcode[1] = 3;
8091 opcode[2] = 0xe9;
8092 where_to_put_displacement = &opcode[3];
8093 break;
8094
8095 default:
8096 BAD_CASE (fragP->fr_subtype);
8097 break;
8098 }
252b5132 8099 }
fddf5b5b 8100
7b81dfbb
AJ
8101 /* If size if less then four we are sure that the operand fits,
8102 but if it's 4, then it could be that the displacement is larger
8103 then -/+ 2GB. */
8104 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
8105 && object_64bit
8106 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
8107 + ((addressT) 1 << 31))
8108 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
8109 {
8110 as_bad_where (fragP->fr_file, fragP->fr_line,
8111 _("jump target out of range"));
8112 /* Make us emit 0. */
8113 displacement_from_opcode_start = extension;
8114 }
47926f60 8115 /* Now put displacement after opcode. */
252b5132
RH
8116 md_number_to_chars ((char *) where_to_put_displacement,
8117 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 8118 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
8119 fragP->fr_fix += extension;
8120}
8121\f
7016a5d5 8122/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
8123 by our caller that we have all the info we need to fix it up.
8124
7016a5d5
TG
8125 Parameter valP is the pointer to the value of the bits.
8126
252b5132
RH
8127 On the 386, immediates, displacements, and data pointers are all in
8128 the same (little-endian) format, so we don't need to care about which
8129 we are handling. */
8130
94f592af 8131void
7016a5d5 8132md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 8133{
94f592af 8134 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 8135 valueT value = *valP;
252b5132 8136
f86103b7 8137#if !defined (TE_Mach)
93382f6d
AM
8138 if (fixP->fx_pcrel)
8139 {
8140 switch (fixP->fx_r_type)
8141 {
5865bb77
ILT
8142 default:
8143 break;
8144
d6ab8113
JB
8145 case BFD_RELOC_64:
8146 fixP->fx_r_type = BFD_RELOC_64_PCREL;
8147 break;
93382f6d 8148 case BFD_RELOC_32:
ae8887b5 8149 case BFD_RELOC_X86_64_32S:
93382f6d
AM
8150 fixP->fx_r_type = BFD_RELOC_32_PCREL;
8151 break;
8152 case BFD_RELOC_16:
8153 fixP->fx_r_type = BFD_RELOC_16_PCREL;
8154 break;
8155 case BFD_RELOC_8:
8156 fixP->fx_r_type = BFD_RELOC_8_PCREL;
8157 break;
8158 }
8159 }
252b5132 8160
a161fe53 8161 if (fixP->fx_addsy != NULL
31312f95 8162 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 8163 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
8164 || fixP->fx_r_type == BFD_RELOC_16_PCREL
8165 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
8166 && !use_rela_relocations)
252b5132 8167 {
31312f95
AM
8168 /* This is a hack. There should be a better way to handle this.
8169 This covers for the fact that bfd_install_relocation will
8170 subtract the current location (for partial_inplace, PC relative
8171 relocations); see more below. */
252b5132 8172#ifndef OBJ_AOUT
718ddfc0 8173 if (IS_ELF
252b5132
RH
8174#ifdef TE_PE
8175 || OUTPUT_FLAVOR == bfd_target_coff_flavour
8176#endif
8177 )
8178 value += fixP->fx_where + fixP->fx_frag->fr_address;
8179#endif
8180#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 8181 if (IS_ELF)
252b5132 8182 {
6539b54b 8183 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 8184
6539b54b 8185 if ((sym_seg == seg
2f66722d 8186 || (symbol_section_p (fixP->fx_addsy)
6539b54b 8187 && sym_seg != absolute_section))
af65af87 8188 && !generic_force_reloc (fixP))
2f66722d
AM
8189 {
8190 /* Yes, we add the values in twice. This is because
6539b54b
AM
8191 bfd_install_relocation subtracts them out again. I think
8192 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
8193 it. FIXME. */
8194 value += fixP->fx_where + fixP->fx_frag->fr_address;
8195 }
252b5132
RH
8196 }
8197#endif
8198#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
8199 /* For some reason, the PE format does not store a
8200 section address offset for a PC relative symbol. */
8201 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 8202 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
8203 value += md_pcrel_from (fixP);
8204#endif
8205 }
fbeb56a4
DK
8206#if defined (OBJ_COFF) && defined (TE_PE)
8207 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
8208 {
8209 value -= S_GET_VALUE (fixP->fx_addsy);
8210 }
8211#endif
252b5132
RH
8212
8213 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 8214 and we must not disappoint it. */
252b5132 8215#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 8216 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
8217 switch (fixP->fx_r_type)
8218 {
8219 case BFD_RELOC_386_PLT32:
3e73aa7c 8220 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
8221 /* Make the jump instruction point to the address of the operand. At
8222 runtime we merely add the offset to the actual PLT entry. */
8223 value = -4;
8224 break;
31312f95 8225
13ae64f3
JJ
8226 case BFD_RELOC_386_TLS_GD:
8227 case BFD_RELOC_386_TLS_LDM:
13ae64f3 8228 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
8229 case BFD_RELOC_386_TLS_IE:
8230 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 8231 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
8232 case BFD_RELOC_X86_64_TLSGD:
8233 case BFD_RELOC_X86_64_TLSLD:
8234 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 8235 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
8236 value = 0; /* Fully resolved at runtime. No addend. */
8237 /* Fallthrough */
8238 case BFD_RELOC_386_TLS_LE:
8239 case BFD_RELOC_386_TLS_LDO_32:
8240 case BFD_RELOC_386_TLS_LE_32:
8241 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 8242 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 8243 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 8244 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
8245 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8246 break;
8247
67a4f2b7
AO
8248 case BFD_RELOC_386_TLS_DESC_CALL:
8249 case BFD_RELOC_X86_64_TLSDESC_CALL:
8250 value = 0; /* Fully resolved at runtime. No addend. */
8251 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8252 fixP->fx_done = 0;
8253 return;
8254
00f7efb6
JJ
8255 case BFD_RELOC_386_GOT32:
8256 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
8257 value = 0; /* Fully resolved at runtime. No addend. */
8258 break;
47926f60
KH
8259
8260 case BFD_RELOC_VTABLE_INHERIT:
8261 case BFD_RELOC_VTABLE_ENTRY:
8262 fixP->fx_done = 0;
94f592af 8263 return;
47926f60
KH
8264
8265 default:
8266 break;
8267 }
8268#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 8269 *valP = value;
f86103b7 8270#endif /* !defined (TE_Mach) */
3e73aa7c 8271
3e73aa7c 8272 /* Are we finished with this relocation now? */
c6682705 8273 if (fixP->fx_addsy == NULL)
3e73aa7c 8274 fixP->fx_done = 1;
fbeb56a4
DK
8275#if defined (OBJ_COFF) && defined (TE_PE)
8276 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
8277 {
8278 fixP->fx_done = 0;
8279 /* Remember value for tc_gen_reloc. */
8280 fixP->fx_addnumber = value;
8281 /* Clear out the frag for now. */
8282 value = 0;
8283 }
8284#endif
3e73aa7c
JH
8285 else if (use_rela_relocations)
8286 {
8287 fixP->fx_no_overflow = 1;
062cd5e7
AS
8288 /* Remember value for tc_gen_reloc. */
8289 fixP->fx_addnumber = value;
3e73aa7c
JH
8290 value = 0;
8291 }
f86103b7 8292
94f592af 8293 md_number_to_chars (p, value, fixP->fx_size);
252b5132 8294}
252b5132 8295\f
252b5132 8296char *
499ac353 8297md_atof (int type, char *litP, int *sizeP)
252b5132 8298{
499ac353
NC
8299 /* This outputs the LITTLENUMs in REVERSE order;
8300 in accord with the bigendian 386. */
8301 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
8302}
8303\f
2d545b82 8304static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 8305
252b5132 8306static char *
e3bb37b5 8307output_invalid (int c)
252b5132 8308{
3882b010 8309 if (ISPRINT (c))
f9f21a03
L
8310 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
8311 "'%c'", c);
252b5132 8312 else
f9f21a03 8313 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 8314 "(0x%x)", (unsigned char) c);
252b5132
RH
8315 return output_invalid_buf;
8316}
8317
af6bdddf 8318/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
8319
8320static const reg_entry *
4d1bb795 8321parse_real_register (char *reg_string, char **end_op)
252b5132 8322{
af6bdddf
AM
8323 char *s = reg_string;
8324 char *p;
252b5132
RH
8325 char reg_name_given[MAX_REG_NAME_SIZE + 1];
8326 const reg_entry *r;
8327
8328 /* Skip possible REGISTER_PREFIX and possible whitespace. */
8329 if (*s == REGISTER_PREFIX)
8330 ++s;
8331
8332 if (is_space_char (*s))
8333 ++s;
8334
8335 p = reg_name_given;
af6bdddf 8336 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
8337 {
8338 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
8339 return (const reg_entry *) NULL;
8340 s++;
252b5132
RH
8341 }
8342
6588847e
DN
8343 /* For naked regs, make sure that we are not dealing with an identifier.
8344 This prevents confusing an identifier like `eax_var' with register
8345 `eax'. */
8346 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
8347 return (const reg_entry *) NULL;
8348
af6bdddf 8349 *end_op = s;
252b5132
RH
8350
8351 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
8352
5f47d35b 8353 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 8354 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 8355 {
5f47d35b
AM
8356 if (is_space_char (*s))
8357 ++s;
8358 if (*s == '(')
8359 {
af6bdddf 8360 ++s;
5f47d35b
AM
8361 if (is_space_char (*s))
8362 ++s;
8363 if (*s >= '0' && *s <= '7')
8364 {
db557034 8365 int fpr = *s - '0';
af6bdddf 8366 ++s;
5f47d35b
AM
8367 if (is_space_char (*s))
8368 ++s;
8369 if (*s == ')')
8370 {
8371 *end_op = s + 1;
1e9cc1c2 8372 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
8373 know (r);
8374 return r + fpr;
5f47d35b 8375 }
5f47d35b 8376 }
47926f60 8377 /* We have "%st(" then garbage. */
5f47d35b
AM
8378 return (const reg_entry *) NULL;
8379 }
8380 }
8381
a60de03c
JB
8382 if (r == NULL || allow_pseudo_reg)
8383 return r;
8384
0dfbf9d7 8385 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
8386 return (const reg_entry *) NULL;
8387
192dc9c6
JB
8388 if ((r->reg_type.bitfield.reg32
8389 || r->reg_type.bitfield.sreg3
8390 || r->reg_type.bitfield.control
8391 || r->reg_type.bitfield.debug
8392 || r->reg_type.bitfield.test)
8393 && !cpu_arch_flags.bitfield.cpui386)
8394 return (const reg_entry *) NULL;
8395
309d3373
JB
8396 if (r->reg_type.bitfield.floatreg
8397 && !cpu_arch_flags.bitfield.cpu8087
8398 && !cpu_arch_flags.bitfield.cpu287
8399 && !cpu_arch_flags.bitfield.cpu387)
8400 return (const reg_entry *) NULL;
8401
192dc9c6
JB
8402 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
8403 return (const reg_entry *) NULL;
8404
8405 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
8406 return (const reg_entry *) NULL;
8407
40f12533
L
8408 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
8409 return (const reg_entry *) NULL;
8410
db51cc60 8411 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 8412 if (!allow_index_reg
db51cc60
L
8413 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
8414 return (const reg_entry *) NULL;
8415
a60de03c
JB
8416 if (((r->reg_flags & (RegRex64 | RegRex))
8417 || r->reg_type.bitfield.reg64)
40fb9820 8418 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 8419 || !operand_type_equal (&r->reg_type, &control))
1ae00879 8420 && flag_code != CODE_64BIT)
20f0a1fc 8421 return (const reg_entry *) NULL;
1ae00879 8422
b7240065
JB
8423 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
8424 return (const reg_entry *) NULL;
8425
252b5132
RH
8426 return r;
8427}
4d1bb795
JB
8428
8429/* REG_STRING starts *before* REGISTER_PREFIX. */
8430
8431static const reg_entry *
8432parse_register (char *reg_string, char **end_op)
8433{
8434 const reg_entry *r;
8435
8436 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
8437 r = parse_real_register (reg_string, end_op);
8438 else
8439 r = NULL;
8440 if (!r)
8441 {
8442 char *save = input_line_pointer;
8443 char c;
8444 symbolS *symbolP;
8445
8446 input_line_pointer = reg_string;
8447 c = get_symbol_end ();
8448 symbolP = symbol_find (reg_string);
8449 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
8450 {
8451 const expressionS *e = symbol_get_value_expression (symbolP);
8452
0398aac5 8453 know (e->X_op == O_register);
4eed87de 8454 know (e->X_add_number >= 0
c3fe08fa 8455 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795
JB
8456 r = i386_regtab + e->X_add_number;
8457 *end_op = input_line_pointer;
8458 }
8459 *input_line_pointer = c;
8460 input_line_pointer = save;
8461 }
8462 return r;
8463}
8464
8465int
8466i386_parse_name (char *name, expressionS *e, char *nextcharP)
8467{
8468 const reg_entry *r;
8469 char *end = input_line_pointer;
8470
8471 *end = *nextcharP;
8472 r = parse_register (name, &input_line_pointer);
8473 if (r && end <= input_line_pointer)
8474 {
8475 *nextcharP = *input_line_pointer;
8476 *input_line_pointer = 0;
8477 e->X_op = O_register;
8478 e->X_add_number = r - i386_regtab;
8479 return 1;
8480 }
8481 input_line_pointer = end;
8482 *end = 0;
ee86248c 8483 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
8484}
8485
8486void
8487md_operand (expressionS *e)
8488{
ee86248c
JB
8489 char *end;
8490 const reg_entry *r;
4d1bb795 8491
ee86248c
JB
8492 switch (*input_line_pointer)
8493 {
8494 case REGISTER_PREFIX:
8495 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
8496 if (r)
8497 {
8498 e->X_op = O_register;
8499 e->X_add_number = r - i386_regtab;
8500 input_line_pointer = end;
8501 }
ee86248c
JB
8502 break;
8503
8504 case '[':
9c2799c2 8505 gas_assert (intel_syntax);
ee86248c
JB
8506 end = input_line_pointer++;
8507 expression (e);
8508 if (*input_line_pointer == ']')
8509 {
8510 ++input_line_pointer;
8511 e->X_op_symbol = make_expr_symbol (e);
8512 e->X_add_symbol = NULL;
8513 e->X_add_number = 0;
8514 e->X_op = O_index;
8515 }
8516 else
8517 {
8518 e->X_op = O_absent;
8519 input_line_pointer = end;
8520 }
8521 break;
4d1bb795
JB
8522 }
8523}
8524
252b5132 8525\f
4cc782b5 8526#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 8527const char *md_shortopts = "kVQ:sqn";
252b5132 8528#else
12b55ccc 8529const char *md_shortopts = "qn";
252b5132 8530#endif
6e0b89ee 8531
3e73aa7c 8532#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
8533#define OPTION_64 (OPTION_MD_BASE + 1)
8534#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
8535#define OPTION_MARCH (OPTION_MD_BASE + 3)
8536#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
8537#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
8538#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
8539#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
8540#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
8541#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 8542#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 8543#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
8544#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
8545#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
8546#define OPTION_X32 (OPTION_MD_BASE + 14)
b3b91714 8547
99ad8390
NC
8548struct option md_longopts[] =
8549{
3e73aa7c 8550 {"32", no_argument, NULL, OPTION_32},
321098a5 8551#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 8552 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 8553 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
8554#endif
8555#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 8556 {"x32", no_argument, NULL, OPTION_X32},
6e0b89ee 8557#endif
b3b91714 8558 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
8559 {"march", required_argument, NULL, OPTION_MARCH},
8560 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
8561 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
8562 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
8563 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
8564 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
8565 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 8566 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 8567 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 8568 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 8569 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
252b5132
RH
8570 {NULL, no_argument, NULL, 0}
8571};
8572size_t md_longopts_size = sizeof (md_longopts);
8573
8574int
9103f4f4 8575md_parse_option (int c, char *arg)
252b5132 8576{
91d6fa6a 8577 unsigned int j;
6305a203 8578 char *arch, *next;
9103f4f4 8579
252b5132
RH
8580 switch (c)
8581 {
12b55ccc
L
8582 case 'n':
8583 optimize_align_code = 0;
8584 break;
8585
a38cf1db
AM
8586 case 'q':
8587 quiet_warnings = 1;
252b5132
RH
8588 break;
8589
8590#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
8591 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8592 should be emitted or not. FIXME: Not implemented. */
8593 case 'Q':
252b5132
RH
8594 break;
8595
8596 /* -V: SVR4 argument to print version ID. */
8597 case 'V':
8598 print_version_id ();
8599 break;
8600
a38cf1db
AM
8601 /* -k: Ignore for FreeBSD compatibility. */
8602 case 'k':
252b5132 8603 break;
4cc782b5
ILT
8604
8605 case 's':
8606 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 8607 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 8608 break;
99ad8390 8609#endif
321098a5 8610#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 8611 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
8612 case OPTION_64:
8613 {
8614 const char **list, **l;
8615
3e73aa7c
JH
8616 list = bfd_target_list ();
8617 for (l = list; *l != NULL; l++)
8620418b 8618 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
8619 || strcmp (*l, "coff-x86-64") == 0
8620 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
8621 || strcmp (*l, "pei-x86-64") == 0
8622 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
8623 {
8624 default_arch = "x86_64";
8625 break;
8626 }
3e73aa7c 8627 if (*l == NULL)
2b5d6a91 8628 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
8629 free (list);
8630 }
8631 break;
8632#endif
252b5132 8633
351f65ca 8634#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 8635 case OPTION_X32:
351f65ca
L
8636 if (IS_ELF)
8637 {
8638 const char **list, **l;
8639
8640 list = bfd_target_list ();
8641 for (l = list; *l != NULL; l++)
8642 if (CONST_STRNEQ (*l, "elf32-x86-64"))
8643 {
8644 default_arch = "x86_64:32";
8645 break;
8646 }
8647 if (*l == NULL)
2b5d6a91 8648 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
8649 free (list);
8650 }
8651 else
8652 as_fatal (_("32bit x86_64 is only supported for ELF"));
8653 break;
8654#endif
8655
6e0b89ee
AM
8656 case OPTION_32:
8657 default_arch = "i386";
8658 break;
8659
b3b91714
AM
8660 case OPTION_DIVIDE:
8661#ifdef SVR4_COMMENT_CHARS
8662 {
8663 char *n, *t;
8664 const char *s;
8665
8666 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
8667 t = n;
8668 for (s = i386_comment_chars; *s != '\0'; s++)
8669 if (*s != '/')
8670 *t++ = *s;
8671 *t = '\0';
8672 i386_comment_chars = n;
8673 }
8674#endif
8675 break;
8676
9103f4f4 8677 case OPTION_MARCH:
6305a203
L
8678 arch = xstrdup (arg);
8679 do
9103f4f4 8680 {
6305a203 8681 if (*arch == '.')
2b5d6a91 8682 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
8683 next = strchr (arch, '+');
8684 if (next)
8685 *next++ = '\0';
91d6fa6a 8686 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 8687 {
91d6fa6a 8688 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 8689 {
6305a203 8690 /* Processor. */
1ded5609
JB
8691 if (! cpu_arch[j].flags.bitfield.cpui386)
8692 continue;
8693
91d6fa6a 8694 cpu_arch_name = cpu_arch[j].name;
6305a203 8695 cpu_sub_arch_name = NULL;
91d6fa6a
NC
8696 cpu_arch_flags = cpu_arch[j].flags;
8697 cpu_arch_isa = cpu_arch[j].type;
8698 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
8699 if (!cpu_arch_tune_set)
8700 {
8701 cpu_arch_tune = cpu_arch_isa;
8702 cpu_arch_tune_flags = cpu_arch_isa_flags;
8703 }
8704 break;
8705 }
91d6fa6a
NC
8706 else if (*cpu_arch [j].name == '.'
8707 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203
L
8708 {
8709 /* ISA entension. */
8710 i386_cpu_flags flags;
309d3373 8711
49021df2 8712 if (!cpu_arch[j].negated)
309d3373 8713 flags = cpu_flags_or (cpu_arch_flags,
91d6fa6a 8714 cpu_arch[j].flags);
309d3373
JB
8715 else
8716 flags = cpu_flags_and_not (cpu_arch_flags,
49021df2 8717 cpu_arch[j].flags);
0dfbf9d7 8718 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
8719 {
8720 if (cpu_sub_arch_name)
8721 {
8722 char *name = cpu_sub_arch_name;
8723 cpu_sub_arch_name = concat (name,
91d6fa6a 8724 cpu_arch[j].name,
1bf57e9f 8725 (const char *) NULL);
6305a203
L
8726 free (name);
8727 }
8728 else
91d6fa6a 8729 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 8730 cpu_arch_flags = flags;
a586129e 8731 cpu_arch_isa_flags = flags;
6305a203
L
8732 }
8733 break;
ccc9c027 8734 }
9103f4f4 8735 }
6305a203 8736
91d6fa6a 8737 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 8738 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
8739
8740 arch = next;
9103f4f4 8741 }
6305a203 8742 while (next != NULL );
9103f4f4
L
8743 break;
8744
8745 case OPTION_MTUNE:
8746 if (*arg == '.')
2b5d6a91 8747 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 8748 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 8749 {
91d6fa6a 8750 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 8751 {
ccc9c027 8752 cpu_arch_tune_set = 1;
91d6fa6a
NC
8753 cpu_arch_tune = cpu_arch [j].type;
8754 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
8755 break;
8756 }
8757 }
91d6fa6a 8758 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 8759 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
8760 break;
8761
1efbbeb4
L
8762 case OPTION_MMNEMONIC:
8763 if (strcasecmp (arg, "att") == 0)
8764 intel_mnemonic = 0;
8765 else if (strcasecmp (arg, "intel") == 0)
8766 intel_mnemonic = 1;
8767 else
2b5d6a91 8768 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
8769 break;
8770
8771 case OPTION_MSYNTAX:
8772 if (strcasecmp (arg, "att") == 0)
8773 intel_syntax = 0;
8774 else if (strcasecmp (arg, "intel") == 0)
8775 intel_syntax = 1;
8776 else
2b5d6a91 8777 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
8778 break;
8779
8780 case OPTION_MINDEX_REG:
8781 allow_index_reg = 1;
8782 break;
8783
8784 case OPTION_MNAKED_REG:
8785 allow_naked_reg = 1;
8786 break;
8787
8788 case OPTION_MOLD_GCC:
8789 old_gcc = 1;
1efbbeb4
L
8790 break;
8791
c0f3af97
L
8792 case OPTION_MSSE2AVX:
8793 sse2avx = 1;
8794 break;
8795
daf50ae7
L
8796 case OPTION_MSSE_CHECK:
8797 if (strcasecmp (arg, "error") == 0)
7bab8ab5 8798 sse_check = check_error;
daf50ae7 8799 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 8800 sse_check = check_warning;
daf50ae7 8801 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 8802 sse_check = check_none;
daf50ae7 8803 else
2b5d6a91 8804 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
8805 break;
8806
7bab8ab5
JB
8807 case OPTION_MOPERAND_CHECK:
8808 if (strcasecmp (arg, "error") == 0)
8809 operand_check = check_error;
8810 else if (strcasecmp (arg, "warning") == 0)
8811 operand_check = check_warning;
8812 else if (strcasecmp (arg, "none") == 0)
8813 operand_check = check_none;
8814 else
8815 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
8816 break;
8817
539f890d
L
8818 case OPTION_MAVXSCALAR:
8819 if (strcasecmp (arg, "128") == 0)
8820 avxscalar = vex128;
8821 else if (strcasecmp (arg, "256") == 0)
8822 avxscalar = vex256;
8823 else
2b5d6a91 8824 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
8825 break;
8826
252b5132
RH
8827 default:
8828 return 0;
8829 }
8830 return 1;
8831}
8832
8a2c8fef
L
8833#define MESSAGE_TEMPLATE \
8834" "
8835
8836static void
1ded5609 8837show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
8838{
8839 static char message[] = MESSAGE_TEMPLATE;
8840 char *start = message + 27;
8841 char *p;
8842 int size = sizeof (MESSAGE_TEMPLATE);
8843 int left;
8844 const char *name;
8845 int len;
8846 unsigned int j;
8847
8848 p = start;
8849 left = size - (start - message);
8850 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8851 {
8852 /* Should it be skipped? */
8853 if (cpu_arch [j].skip)
8854 continue;
8855
8856 name = cpu_arch [j].name;
8857 len = cpu_arch [j].len;
8858 if (*name == '.')
8859 {
8860 /* It is an extension. Skip if we aren't asked to show it. */
8861 if (ext)
8862 {
8863 name++;
8864 len--;
8865 }
8866 else
8867 continue;
8868 }
8869 else if (ext)
8870 {
8871 /* It is an processor. Skip if we show only extension. */
8872 continue;
8873 }
1ded5609
JB
8874 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
8875 {
8876 /* It is an impossible processor - skip. */
8877 continue;
8878 }
8a2c8fef
L
8879
8880 /* Reserve 2 spaces for ", " or ",\0" */
8881 left -= len + 2;
8882
8883 /* Check if there is any room. */
8884 if (left >= 0)
8885 {
8886 if (p != start)
8887 {
8888 *p++ = ',';
8889 *p++ = ' ';
8890 }
8891 p = mempcpy (p, name, len);
8892 }
8893 else
8894 {
8895 /* Output the current message now and start a new one. */
8896 *p++ = ',';
8897 *p = '\0';
8898 fprintf (stream, "%s\n", message);
8899 p = start;
8900 left = size - (start - message) - len - 2;
8d63c93e 8901
8a2c8fef
L
8902 gas_assert (left >= 0);
8903
8904 p = mempcpy (p, name, len);
8905 }
8906 }
8907
8908 *p = '\0';
8909 fprintf (stream, "%s\n", message);
8910}
8911
252b5132 8912void
8a2c8fef 8913md_show_usage (FILE *stream)
252b5132 8914{
4cc782b5
ILT
8915#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8916 fprintf (stream, _("\
a38cf1db
AM
8917 -Q ignored\n\
8918 -V print assembler version number\n\
b3b91714
AM
8919 -k ignored\n"));
8920#endif
8921 fprintf (stream, _("\
12b55ccc 8922 -n Do not optimize code alignment\n\
b3b91714
AM
8923 -q quieten some warnings\n"));
8924#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8925 fprintf (stream, _("\
a38cf1db 8926 -s ignored\n"));
b3b91714 8927#endif
321098a5
L
8928#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8929 || defined (TE_PE) || defined (TE_PEP))
751d281c 8930 fprintf (stream, _("\
570561f7 8931 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 8932#endif
b3b91714
AM
8933#ifdef SVR4_COMMENT_CHARS
8934 fprintf (stream, _("\
8935 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
8936#else
8937 fprintf (stream, _("\
b3b91714 8938 --divide ignored\n"));
4cc782b5 8939#endif
9103f4f4 8940 fprintf (stream, _("\
6305a203 8941 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 8942 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 8943 show_arch (stream, 0, 1);
8a2c8fef
L
8944 fprintf (stream, _("\
8945 EXTENSION is combination of:\n"));
1ded5609 8946 show_arch (stream, 1, 0);
6305a203 8947 fprintf (stream, _("\
8a2c8fef 8948 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 8949 show_arch (stream, 0, 0);
ba104c83 8950 fprintf (stream, _("\
c0f3af97
L
8951 -msse2avx encode SSE instructions with VEX prefix\n"));
8952 fprintf (stream, _("\
daf50ae7
L
8953 -msse-check=[none|error|warning]\n\
8954 check SSE instructions\n"));
8955 fprintf (stream, _("\
7bab8ab5
JB
8956 -moperand-check=[none|error|warning]\n\
8957 check operand combinations for validity\n"));
8958 fprintf (stream, _("\
539f890d
L
8959 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
8960 length\n"));
8961 fprintf (stream, _("\
ba104c83
L
8962 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8963 fprintf (stream, _("\
8964 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8965 fprintf (stream, _("\
8966 -mindex-reg support pseudo index registers\n"));
8967 fprintf (stream, _("\
8968 -mnaked-reg don't require `%%' prefix for registers\n"));
8969 fprintf (stream, _("\
8970 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
252b5132
RH
8971}
8972
3e73aa7c 8973#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 8974 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 8975 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
8976
8977/* Pick the target format to use. */
8978
47926f60 8979const char *
e3bb37b5 8980i386_target_format (void)
252b5132 8981{
351f65ca
L
8982 if (!strncmp (default_arch, "x86_64", 6))
8983 {
8984 update_code_flag (CODE_64BIT, 1);
8985 if (default_arch[6] == '\0')
7f56bc95 8986 x86_elf_abi = X86_64_ABI;
351f65ca 8987 else
7f56bc95 8988 x86_elf_abi = X86_64_X32_ABI;
351f65ca 8989 }
3e73aa7c 8990 else if (!strcmp (default_arch, "i386"))
78f12dd3 8991 update_code_flag (CODE_32BIT, 1);
3e73aa7c 8992 else
2b5d6a91 8993 as_fatal (_("unknown architecture"));
89507696
JB
8994
8995 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8996 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8997 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8998 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8999
252b5132
RH
9000 switch (OUTPUT_FLAVOR)
9001 {
9384f2ff 9002#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 9003 case bfd_target_aout_flavour:
47926f60 9004 return AOUT_TARGET_FORMAT;
4c63da97 9005#endif
9384f2ff
AM
9006#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
9007# if defined (TE_PE) || defined (TE_PEP)
9008 case bfd_target_coff_flavour:
9009 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
9010# elif defined (TE_GO32)
0561d57c
JK
9011 case bfd_target_coff_flavour:
9012 return "coff-go32";
9384f2ff 9013# else
252b5132
RH
9014 case bfd_target_coff_flavour:
9015 return "coff-i386";
9384f2ff 9016# endif
4c63da97 9017#endif
3e73aa7c 9018#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 9019 case bfd_target_elf_flavour:
3e73aa7c 9020 {
351f65ca
L
9021 const char *format;
9022
9023 switch (x86_elf_abi)
4fa24527 9024 {
351f65ca
L
9025 default:
9026 format = ELF_TARGET_FORMAT;
9027 break;
7f56bc95 9028 case X86_64_ABI:
351f65ca 9029 use_rela_relocations = 1;
4fa24527 9030 object_64bit = 1;
351f65ca
L
9031 format = ELF_TARGET_FORMAT64;
9032 break;
7f56bc95 9033 case X86_64_X32_ABI:
4fa24527 9034 use_rela_relocations = 1;
351f65ca 9035 object_64bit = 1;
862be3fb 9036 disallow_64bit_reloc = 1;
351f65ca
L
9037 format = ELF_TARGET_FORMAT32;
9038 break;
4fa24527 9039 }
3632d14b 9040 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 9041 {
7f56bc95 9042 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
9043 as_fatal (_("Intel L1OM is 64bit only"));
9044 return ELF_TARGET_L1OM_FORMAT;
9045 }
7a9068fe
L
9046 if (cpu_arch_isa == PROCESSOR_K1OM)
9047 {
9048 if (x86_elf_abi != X86_64_ABI)
9049 as_fatal (_("Intel K1OM is 64bit only"));
9050 return ELF_TARGET_K1OM_FORMAT;
9051 }
8a9036a4 9052 else
351f65ca 9053 return format;
3e73aa7c 9054 }
e57f8c65
TG
9055#endif
9056#if defined (OBJ_MACH_O)
9057 case bfd_target_mach_o_flavour:
d382c579
TG
9058 if (flag_code == CODE_64BIT)
9059 {
9060 use_rela_relocations = 1;
9061 object_64bit = 1;
9062 return "mach-o-x86-64";
9063 }
9064 else
9065 return "mach-o-i386";
4c63da97 9066#endif
252b5132
RH
9067 default:
9068 abort ();
9069 return NULL;
9070 }
9071}
9072
47926f60 9073#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
9074
9075#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
e3bb37b5
L
9076void
9077i386_elf_emit_arch_note (void)
a847613f 9078{
718ddfc0 9079 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
9080 {
9081 char *p;
9082 asection *seg = now_seg;
9083 subsegT subseg = now_subseg;
9084 Elf_Internal_Note i_note;
9085 Elf_External_Note e_note;
9086 asection *note_secp;
9087 int len;
9088
9089 /* Create the .note section. */
9090 note_secp = subseg_new (".note", 0);
9091 bfd_set_section_flags (stdoutput,
9092 note_secp,
9093 SEC_HAS_CONTENTS | SEC_READONLY);
9094
9095 /* Process the arch string. */
9096 len = strlen (cpu_arch_name);
9097
9098 i_note.namesz = len + 1;
9099 i_note.descsz = 0;
9100 i_note.type = NT_ARCH;
9101 p = frag_more (sizeof (e_note.namesz));
9102 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
9103 p = frag_more (sizeof (e_note.descsz));
9104 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
9105 p = frag_more (sizeof (e_note.type));
9106 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
9107 p = frag_more (len + 1);
9108 strcpy (p, cpu_arch_name);
9109
9110 frag_align (2, 0, 0);
9111
9112 subseg_set (seg, subseg);
9113 }
9114}
9115#endif
252b5132 9116\f
252b5132 9117symbolS *
7016a5d5 9118md_undefined_symbol (char *name)
252b5132 9119{
18dc2407
ILT
9120 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
9121 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
9122 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
9123 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
9124 {
9125 if (!GOT_symbol)
9126 {
9127 if (symbol_find (name))
9128 as_bad (_("GOT already in symbol table"));
9129 GOT_symbol = symbol_new (name, undefined_section,
9130 (valueT) 0, &zero_address_frag);
9131 };
9132 return GOT_symbol;
9133 }
252b5132
RH
9134 return 0;
9135}
9136
9137/* Round up a section size to the appropriate boundary. */
47926f60 9138
252b5132 9139valueT
7016a5d5 9140md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 9141{
4c63da97
AM
9142#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9143 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
9144 {
9145 /* For a.out, force the section size to be aligned. If we don't do
9146 this, BFD will align it for us, but it will not write out the
9147 final bytes of the section. This may be a bug in BFD, but it is
9148 easier to fix it here since that is how the other a.out targets
9149 work. */
9150 int align;
9151
9152 align = bfd_get_section_alignment (stdoutput, segment);
9153 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
9154 }
252b5132
RH
9155#endif
9156
9157 return size;
9158}
9159
9160/* On the i386, PC-relative offsets are relative to the start of the
9161 next instruction. That is, the address of the offset, plus its
9162 size, since the offset is always the last part of the insn. */
9163
9164long
e3bb37b5 9165md_pcrel_from (fixS *fixP)
252b5132
RH
9166{
9167 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
9168}
9169
9170#ifndef I386COFF
9171
9172static void
e3bb37b5 9173s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 9174{
29b0f896 9175 int temp;
252b5132 9176
8a75718c
JB
9177#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9178 if (IS_ELF)
9179 obj_elf_section_change_hook ();
9180#endif
252b5132
RH
9181 temp = get_absolute_expression ();
9182 subseg_set (bss_section, (subsegT) temp);
9183 demand_empty_rest_of_line ();
9184}
9185
9186#endif
9187
252b5132 9188void
e3bb37b5 9189i386_validate_fix (fixS *fixp)
252b5132
RH
9190{
9191 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
9192 {
23df1078
JH
9193 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
9194 {
4fa24527 9195 if (!object_64bit)
23df1078
JH
9196 abort ();
9197 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
9198 }
9199 else
9200 {
4fa24527 9201 if (!object_64bit)
d6ab8113
JB
9202 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
9203 else
9204 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 9205 }
252b5132
RH
9206 fixp->fx_subsy = 0;
9207 }
9208}
9209
252b5132 9210arelent *
7016a5d5 9211tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
9212{
9213 arelent *rel;
9214 bfd_reloc_code_real_type code;
9215
9216 switch (fixp->fx_r_type)
9217 {
3e73aa7c
JH
9218 case BFD_RELOC_X86_64_PLT32:
9219 case BFD_RELOC_X86_64_GOT32:
9220 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
9221 case BFD_RELOC_386_PLT32:
9222 case BFD_RELOC_386_GOT32:
9223 case BFD_RELOC_386_GOTOFF:
9224 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
9225 case BFD_RELOC_386_TLS_GD:
9226 case BFD_RELOC_386_TLS_LDM:
9227 case BFD_RELOC_386_TLS_LDO_32:
9228 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9229 case BFD_RELOC_386_TLS_IE:
9230 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
9231 case BFD_RELOC_386_TLS_LE_32:
9232 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
9233 case BFD_RELOC_386_TLS_GOTDESC:
9234 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
9235 case BFD_RELOC_X86_64_TLSGD:
9236 case BFD_RELOC_X86_64_TLSLD:
9237 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9238 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
9239 case BFD_RELOC_X86_64_GOTTPOFF:
9240 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
9241 case BFD_RELOC_X86_64_TPOFF64:
9242 case BFD_RELOC_X86_64_GOTOFF64:
9243 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
9244 case BFD_RELOC_X86_64_GOT64:
9245 case BFD_RELOC_X86_64_GOTPCREL64:
9246 case BFD_RELOC_X86_64_GOTPC64:
9247 case BFD_RELOC_X86_64_GOTPLT64:
9248 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
9249 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9250 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
9251 case BFD_RELOC_RVA:
9252 case BFD_RELOC_VTABLE_ENTRY:
9253 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
9254#ifdef TE_PE
9255 case BFD_RELOC_32_SECREL:
9256#endif
252b5132
RH
9257 code = fixp->fx_r_type;
9258 break;
dbbaec26
L
9259 case BFD_RELOC_X86_64_32S:
9260 if (!fixp->fx_pcrel)
9261 {
9262 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
9263 code = fixp->fx_r_type;
9264 break;
9265 }
252b5132 9266 default:
93382f6d 9267 if (fixp->fx_pcrel)
252b5132 9268 {
93382f6d
AM
9269 switch (fixp->fx_size)
9270 {
9271 default:
b091f402
AM
9272 as_bad_where (fixp->fx_file, fixp->fx_line,
9273 _("can not do %d byte pc-relative relocation"),
9274 fixp->fx_size);
93382f6d
AM
9275 code = BFD_RELOC_32_PCREL;
9276 break;
9277 case 1: code = BFD_RELOC_8_PCREL; break;
9278 case 2: code = BFD_RELOC_16_PCREL; break;
9279 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
9280#ifdef BFD64
9281 case 8: code = BFD_RELOC_64_PCREL; break;
9282#endif
93382f6d
AM
9283 }
9284 }
9285 else
9286 {
9287 switch (fixp->fx_size)
9288 {
9289 default:
b091f402
AM
9290 as_bad_where (fixp->fx_file, fixp->fx_line,
9291 _("can not do %d byte relocation"),
9292 fixp->fx_size);
93382f6d
AM
9293 code = BFD_RELOC_32;
9294 break;
9295 case 1: code = BFD_RELOC_8; break;
9296 case 2: code = BFD_RELOC_16; break;
9297 case 4: code = BFD_RELOC_32; break;
937149dd 9298#ifdef BFD64
3e73aa7c 9299 case 8: code = BFD_RELOC_64; break;
937149dd 9300#endif
93382f6d 9301 }
252b5132
RH
9302 }
9303 break;
9304 }
252b5132 9305
d182319b
JB
9306 if ((code == BFD_RELOC_32
9307 || code == BFD_RELOC_32_PCREL
9308 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
9309 && GOT_symbol
9310 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 9311 {
4fa24527 9312 if (!object_64bit)
d6ab8113
JB
9313 code = BFD_RELOC_386_GOTPC;
9314 else
9315 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 9316 }
7b81dfbb
AJ
9317 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
9318 && GOT_symbol
9319 && fixp->fx_addsy == GOT_symbol)
9320 {
9321 code = BFD_RELOC_X86_64_GOTPC64;
9322 }
252b5132
RH
9323
9324 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
9325 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
9326 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
9327
9328 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 9329
3e73aa7c
JH
9330 if (!use_rela_relocations)
9331 {
9332 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
9333 vtable entry to be used in the relocation's section offset. */
9334 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
9335 rel->address = fixp->fx_offset;
fbeb56a4
DK
9336#if defined (OBJ_COFF) && defined (TE_PE)
9337 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
9338 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
9339 else
9340#endif
c6682705 9341 rel->addend = 0;
3e73aa7c
JH
9342 }
9343 /* Use the rela in 64bit mode. */
252b5132 9344 else
3e73aa7c 9345 {
862be3fb
L
9346 if (disallow_64bit_reloc)
9347 switch (code)
9348 {
862be3fb
L
9349 case BFD_RELOC_X86_64_DTPOFF64:
9350 case BFD_RELOC_X86_64_TPOFF64:
9351 case BFD_RELOC_64_PCREL:
9352 case BFD_RELOC_X86_64_GOTOFF64:
9353 case BFD_RELOC_X86_64_GOT64:
9354 case BFD_RELOC_X86_64_GOTPCREL64:
9355 case BFD_RELOC_X86_64_GOTPC64:
9356 case BFD_RELOC_X86_64_GOTPLT64:
9357 case BFD_RELOC_X86_64_PLTOFF64:
9358 as_bad_where (fixp->fx_file, fixp->fx_line,
9359 _("cannot represent relocation type %s in x32 mode"),
9360 bfd_get_reloc_code_name (code));
9361 break;
9362 default:
9363 break;
9364 }
9365
062cd5e7
AS
9366 if (!fixp->fx_pcrel)
9367 rel->addend = fixp->fx_offset;
9368 else
9369 switch (code)
9370 {
9371 case BFD_RELOC_X86_64_PLT32:
9372 case BFD_RELOC_X86_64_GOT32:
9373 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
9374 case BFD_RELOC_X86_64_TLSGD:
9375 case BFD_RELOC_X86_64_TLSLD:
9376 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
9377 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9378 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
9379 rel->addend = fixp->fx_offset - fixp->fx_size;
9380 break;
9381 default:
9382 rel->addend = (section->vma
9383 - fixp->fx_size
9384 + fixp->fx_addnumber
9385 + md_pcrel_from (fixp));
9386 break;
9387 }
3e73aa7c
JH
9388 }
9389
252b5132
RH
9390 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
9391 if (rel->howto == NULL)
9392 {
9393 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 9394 _("cannot represent relocation type %s"),
252b5132
RH
9395 bfd_get_reloc_code_name (code));
9396 /* Set howto to a garbage value so that we can keep going. */
9397 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 9398 gas_assert (rel->howto != NULL);
252b5132
RH
9399 }
9400
9401 return rel;
9402}
9403
ee86248c 9404#include "tc-i386-intel.c"
54cfded0 9405
a60de03c
JB
9406void
9407tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 9408{
a60de03c
JB
9409 int saved_naked_reg;
9410 char saved_register_dot;
54cfded0 9411
a60de03c
JB
9412 saved_naked_reg = allow_naked_reg;
9413 allow_naked_reg = 1;
9414 saved_register_dot = register_chars['.'];
9415 register_chars['.'] = '.';
9416 allow_pseudo_reg = 1;
9417 expression_and_evaluate (exp);
9418 allow_pseudo_reg = 0;
9419 register_chars['.'] = saved_register_dot;
9420 allow_naked_reg = saved_naked_reg;
9421
e96d56a1 9422 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 9423 {
a60de03c
JB
9424 if ((addressT) exp->X_add_number < i386_regtab_size)
9425 {
9426 exp->X_op = O_constant;
9427 exp->X_add_number = i386_regtab[exp->X_add_number]
9428 .dw2_regnum[flag_code >> 1];
9429 }
9430 else
9431 exp->X_op = O_illegal;
54cfded0 9432 }
54cfded0
AM
9433}
9434
9435void
9436tc_x86_frame_initial_instructions (void)
9437{
a60de03c
JB
9438 static unsigned int sp_regno[2];
9439
9440 if (!sp_regno[flag_code >> 1])
9441 {
9442 char *saved_input = input_line_pointer;
9443 char sp[][4] = {"esp", "rsp"};
9444 expressionS exp;
a4447b93 9445
a60de03c
JB
9446 input_line_pointer = sp[flag_code >> 1];
9447 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 9448 gas_assert (exp.X_op == O_constant);
a60de03c
JB
9449 sp_regno[flag_code >> 1] = exp.X_add_number;
9450 input_line_pointer = saved_input;
9451 }
a4447b93 9452
61ff971f
L
9453 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
9454 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 9455}
d2b2c203 9456
d7921315
L
9457int
9458x86_dwarf2_addr_size (void)
9459{
9460#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9461 if (x86_elf_abi == X86_64_X32_ABI)
9462 return 4;
9463#endif
9464 return bfd_arch_bits_per_address (stdoutput) / 8;
9465}
9466
d2b2c203
DJ
9467int
9468i386_elf_section_type (const char *str, size_t len)
9469{
9470 if (flag_code == CODE_64BIT
9471 && len == sizeof ("unwind") - 1
9472 && strncmp (str, "unwind", 6) == 0)
9473 return SHT_X86_64_UNWIND;
9474
9475 return -1;
9476}
bb41ade5 9477
ad5fec3b
EB
9478#ifdef TE_SOLARIS
9479void
9480i386_solaris_fix_up_eh_frame (segT sec)
9481{
9482 if (flag_code == CODE_64BIT)
9483 elf_section_type (sec) = SHT_X86_64_UNWIND;
9484}
9485#endif
9486
bb41ade5
AM
9487#ifdef TE_PE
9488void
9489tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
9490{
91d6fa6a 9491 expressionS exp;
bb41ade5 9492
91d6fa6a
NC
9493 exp.X_op = O_secrel;
9494 exp.X_add_symbol = symbol;
9495 exp.X_add_number = 0;
9496 emit_expr (&exp, size);
bb41ade5
AM
9497}
9498#endif
3b22753a
L
9499
9500#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9501/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
9502
01e1a5bc 9503bfd_vma
3b22753a
L
9504x86_64_section_letter (int letter, char **ptr_msg)
9505{
9506 if (flag_code == CODE_64BIT)
9507 {
9508 if (letter == 'l')
9509 return SHF_X86_64_LARGE;
9510
8f3bae45 9511 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 9512 }
3b22753a 9513 else
8f3bae45 9514 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
9515 return -1;
9516}
9517
01e1a5bc 9518bfd_vma
3b22753a
L
9519x86_64_section_word (char *str, size_t len)
9520{
8620418b 9521 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
9522 return SHF_X86_64_LARGE;
9523
9524 return -1;
9525}
9526
9527static void
9528handle_large_common (int small ATTRIBUTE_UNUSED)
9529{
9530 if (flag_code != CODE_64BIT)
9531 {
9532 s_comm_internal (0, elf_common_parse);
9533 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
9534 }
9535 else
9536 {
9537 static segT lbss_section;
9538 asection *saved_com_section_ptr = elf_com_section_ptr;
9539 asection *saved_bss_section = bss_section;
9540
9541 if (lbss_section == NULL)
9542 {
9543 flagword applicable;
9544 segT seg = now_seg;
9545 subsegT subseg = now_subseg;
9546
9547 /* The .lbss section is for local .largecomm symbols. */
9548 lbss_section = subseg_new (".lbss", 0);
9549 applicable = bfd_applicable_section_flags (stdoutput);
9550 bfd_set_section_flags (stdoutput, lbss_section,
9551 applicable & SEC_ALLOC);
9552 seg_info (lbss_section)->bss = 1;
9553
9554 subseg_set (seg, subseg);
9555 }
9556
9557 elf_com_section_ptr = &_bfd_elf_large_com_section;
9558 bss_section = lbss_section;
9559
9560 s_comm_internal (0, elf_common_parse);
9561
9562 elf_com_section_ptr = saved_com_section_ptr;
9563 bss_section = saved_bss_section;
9564 }
9565}
9566#endif /* OBJ_ELF || OBJ_MAYBE_ELF */