]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
x86: fold redundant expressions in process_suffix()
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
a65babc9
L
284 };
285
252b5132
RH
286struct _i386_insn
287 {
47926f60 288 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 289 insn_template tm;
252b5132 290
7d5e4556
L
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
252b5132
RH
293 char suffix;
294
47926f60 295 /* OPERANDS gives the number of given operands. */
252b5132
RH
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
47926f60 300 operands. */
252b5132
RH
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 304 use OP[i] for the corresponding operand. */
40fb9820 305 i386_operand_type types[MAX_OPERANDS];
252b5132 306
520dc8e8
AM
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
252b5132 310
3e73aa7c
JH
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313#define Operand_PCrel 1
314
252b5132 315 /* Relocation type for operand */
f86103b7 316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 317
252b5132
RH
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 325 explicit segment overrides are given. */
ce8a8b2f 326 const seg_entry *seg[2];
252b5132 327
8325cc63
JB
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
252b5132
RH
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 337 addressing modes of this insn are encoded. */
252b5132 338 modrm_byte rm;
3e73aa7c 339 rex_byte rex;
43234a1e 340 rex_byte vrex;
252b5132 341 sib_byte sib;
c0f3af97 342 vex_prefix vex;
b6169b20 343
43234a1e
L
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
86fa6981
L
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
891edac4 363
a501d77e
L
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
f8a5c266 371
6b6b6807
L
372 /* Prefer the REX byte in encoding. */
373 bfd_boolean rex_encoding;
374
b6f8c7c4
L
375 /* Disable instruction size optimization. */
376 bfd_boolean no_optimize;
377
86fa6981
L
378 /* How to encode vector instructions. */
379 enum
380 {
381 vex_encoding_default = 0,
382 vex_encoding_vex2,
383 vex_encoding_vex3,
384 vex_encoding_evex
385 } vec_encoding;
386
d5de92cf
L
387 /* REP prefix. */
388 const char *rep_prefix;
389
165de32a
L
390 /* HLE prefix. */
391 const char *hle_prefix;
42164a71 392
7e8b059b
L
393 /* Have BND prefix. */
394 const char *bnd_prefix;
395
04ef582a
L
396 /* Have NOTRACK prefix. */
397 const char *notrack_prefix;
398
891edac4 399 /* Error message. */
a65babc9 400 enum i386_error error;
252b5132
RH
401 };
402
403typedef struct _i386_insn i386_insn;
404
43234a1e
L
405/* Link RC type with corresponding string, that'll be looked for in
406 asm. */
407struct RC_name
408{
409 enum rc_type type;
410 const char *name;
411 unsigned int len;
412};
413
414static const struct RC_name RC_NamesTable[] =
415{
416 { rne, STRING_COMMA_LEN ("rn-sae") },
417 { rd, STRING_COMMA_LEN ("rd-sae") },
418 { ru, STRING_COMMA_LEN ("ru-sae") },
419 { rz, STRING_COMMA_LEN ("rz-sae") },
420 { saeonly, STRING_COMMA_LEN ("sae") },
421};
422
252b5132
RH
423/* List of chars besides those in app.c:symbol_chars that can start an
424 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 425const char extra_symbol_chars[] = "*%-([{}"
252b5132 426#ifdef LEX_AT
32137342
NC
427 "@"
428#endif
429#ifdef LEX_QM
430 "?"
252b5132 431#endif
32137342 432 ;
252b5132 433
29b0f896
AM
434#if (defined (TE_I386AIX) \
435 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 436 && !defined (TE_GNU) \
29b0f896 437 && !defined (TE_LINUX) \
8d63c93e
RM
438 && !defined (TE_NACL) \
439 && !defined (TE_NETWARE) \
29b0f896 440 && !defined (TE_FreeBSD) \
5b806d27 441 && !defined (TE_DragonFly) \
29b0f896 442 && !defined (TE_NetBSD)))
252b5132 443/* This array holds the chars that always start a comment. If the
b3b91714
AM
444 pre-processor is disabled, these aren't very useful. The option
445 --divide will remove '/' from this list. */
446const char *i386_comment_chars = "#/";
447#define SVR4_COMMENT_CHARS 1
252b5132 448#define PREFIX_SEPARATOR '\\'
252b5132 449
b3b91714
AM
450#else
451const char *i386_comment_chars = "#";
452#define PREFIX_SEPARATOR '/'
453#endif
454
252b5132
RH
455/* This array holds the chars that only start a comment at the beginning of
456 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
457 .line and .file directives will appear in the pre-processed output.
458 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 459 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
460 #NO_APP at the beginning of its output.
461 Also note that comments started like this one will always work if
252b5132 462 '/' isn't otherwise defined. */
b3b91714 463const char line_comment_chars[] = "#/";
252b5132 464
63a0b638 465const char line_separator_chars[] = ";";
252b5132 466
ce8a8b2f
AM
467/* Chars that can be used to separate mant from exp in floating point
468 nums. */
252b5132
RH
469const char EXP_CHARS[] = "eE";
470
ce8a8b2f
AM
471/* Chars that mean this number is a floating point constant
472 As in 0f12.456
473 or 0d1.2345e12. */
252b5132
RH
474const char FLT_CHARS[] = "fFdDxX";
475
ce8a8b2f 476/* Tables for lexical analysis. */
252b5132
RH
477static char mnemonic_chars[256];
478static char register_chars[256];
479static char operand_chars[256];
480static char identifier_chars[256];
481static char digit_chars[256];
482
ce8a8b2f 483/* Lexical macros. */
252b5132
RH
484#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
485#define is_operand_char(x) (operand_chars[(unsigned char) x])
486#define is_register_char(x) (register_chars[(unsigned char) x])
487#define is_space_char(x) ((x) == ' ')
488#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
489#define is_digit_char(x) (digit_chars[(unsigned char) x])
490
0234cb7c 491/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
492static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
493
494/* md_assemble() always leaves the strings it's passed unaltered. To
495 effect this we maintain a stack of saved characters that we've smashed
496 with '\0's (indicating end of strings for various sub-fields of the
47926f60 497 assembler instruction). */
252b5132 498static char save_stack[32];
ce8a8b2f 499static char *save_stack_p;
252b5132
RH
500#define END_STRING_AND_SAVE(s) \
501 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
502#define RESTORE_END_STRING(s) \
503 do { *(s) = *--save_stack_p; } while (0)
504
47926f60 505/* The instruction we're assembling. */
252b5132
RH
506static i386_insn i;
507
508/* Possible templates for current insn. */
509static const templates *current_templates;
510
31b2323c
L
511/* Per instruction expressionS buffers: max displacements & immediates. */
512static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
513static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 514
47926f60 515/* Current operand we are working on. */
ee86248c 516static int this_operand = -1;
252b5132 517
3e73aa7c
JH
518/* We support four different modes. FLAG_CODE variable is used to distinguish
519 these. */
520
521enum flag_code {
522 CODE_32BIT,
523 CODE_16BIT,
524 CODE_64BIT };
525
526static enum flag_code flag_code;
4fa24527 527static unsigned int object_64bit;
862be3fb 528static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
529static int use_rela_relocations = 0;
530
7af8ed2d
NC
531#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
532 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
533 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
534
351f65ca
L
535/* The ELF ABI to use. */
536enum x86_elf_abi
537{
538 I386_ABI,
7f56bc95
L
539 X86_64_ABI,
540 X86_64_X32_ABI
351f65ca
L
541};
542
543static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 544#endif
351f65ca 545
167ad85b
TG
546#if defined (TE_PE) || defined (TE_PEP)
547/* Use big object file format. */
548static int use_big_obj = 0;
549#endif
550
8dcea932
L
551#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
552/* 1 if generating code for a shared library. */
553static int shared = 0;
554#endif
555
47926f60
KH
556/* 1 for intel syntax,
557 0 if att syntax. */
558static int intel_syntax = 0;
252b5132 559
e89c5eaa
L
560/* 1 for Intel64 ISA,
561 0 if AMD64 ISA. */
562static int intel64;
563
1efbbeb4
L
564/* 1 for intel mnemonic,
565 0 if att mnemonic. */
566static int intel_mnemonic = !SYSV386_COMPAT;
567
5209009a 568/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
569static int old_gcc = OLDGCC_COMPAT;
570
a60de03c
JB
571/* 1 if pseudo registers are permitted. */
572static int allow_pseudo_reg = 0;
573
47926f60
KH
574/* 1 if register prefix % not required. */
575static int allow_naked_reg = 0;
252b5132 576
33eaf5de 577/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
578 instructions supporting it, even if this prefix wasn't specified
579 explicitly. */
580static int add_bnd_prefix = 0;
581
ba104c83 582/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
583static int allow_index_reg = 0;
584
d022bddd
IT
585/* 1 if the assembler should ignore LOCK prefix, even if it was
586 specified explicitly. */
587static int omit_lock_prefix = 0;
588
e4e00185
AS
589/* 1 if the assembler should encode lfence, mfence, and sfence as
590 "lock addl $0, (%{re}sp)". */
591static int avoid_fence = 0;
592
0cb4071e
L
593/* 1 if the assembler should generate relax relocations. */
594
595static int generate_relax_relocations
596 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
597
7bab8ab5 598static enum check_kind
daf50ae7 599 {
7bab8ab5
JB
600 check_none = 0,
601 check_warning,
602 check_error
daf50ae7 603 }
7bab8ab5 604sse_check, operand_check = check_warning;
daf50ae7 605
b6f8c7c4
L
606/* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 */
611static int optimize = 0;
612
613/* Optimization:
614 1. Clear the REX_W bit with register operand if possible.
615 2. Above plus use 128bit vector instruction to clear the full vector
616 register.
617 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
618 "testb $imm7,%r8".
619 */
620static int optimize_for_space = 0;
621
2ca3ace5
L
622/* Register prefix used for error message. */
623static const char *register_prefix = "%";
624
47926f60
KH
625/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
626 leave, push, and pop instructions so that gcc has the same stack
627 frame as in 32 bit mode. */
628static char stackop_size = '\0';
eecb386c 629
12b55ccc
L
630/* Non-zero to optimize code alignment. */
631int optimize_align_code = 1;
632
47926f60
KH
633/* Non-zero to quieten some warnings. */
634static int quiet_warnings = 0;
a38cf1db 635
47926f60
KH
636/* CPU name. */
637static const char *cpu_arch_name = NULL;
6305a203 638static char *cpu_sub_arch_name = NULL;
a38cf1db 639
47926f60 640/* CPU feature flags. */
40fb9820
L
641static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
642
ccc9c027
L
643/* If we have selected a cpu we are generating instructions for. */
644static int cpu_arch_tune_set = 0;
645
9103f4f4 646/* Cpu we are generating instructions for. */
fbf3f584 647enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
648
649/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 650static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 651
ccc9c027 652/* CPU instruction set architecture used. */
fbf3f584 653enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 654
9103f4f4 655/* CPU feature flags of instruction set architecture used. */
fbf3f584 656i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 657
fddf5b5b
AM
658/* If set, conditional jumps are not automatically promoted to handle
659 larger than a byte offset. */
660static unsigned int no_cond_jump_promotion = 0;
661
c0f3af97
L
662/* Encode SSE instructions with VEX prefix. */
663static unsigned int sse2avx;
664
539f890d
L
665/* Encode scalar AVX instructions with specific vector length. */
666static enum
667 {
668 vex128 = 0,
669 vex256
670 } avxscalar;
671
43234a1e
L
672/* Encode scalar EVEX LIG instructions with specific vector length. */
673static enum
674 {
675 evexl128 = 0,
676 evexl256,
677 evexl512
678 } evexlig;
679
680/* Encode EVEX WIG instructions with specific evex.w. */
681static enum
682 {
683 evexw0 = 0,
684 evexw1
685 } evexwig;
686
d3d3c6db
IT
687/* Value to encode in EVEX RC bits, for SAE-only instructions. */
688static enum rc_type evexrcig = rne;
689
29b0f896 690/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 691static symbolS *GOT_symbol;
29b0f896 692
a4447b93
RH
693/* The dwarf2 return column, adjusted for 32 or 64 bit. */
694unsigned int x86_dwarf2_return_column;
695
696/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
697int x86_cie_data_alignment;
698
252b5132 699/* Interface to relax_segment.
fddf5b5b
AM
700 There are 3 major relax states for 386 jump insns because the
701 different types of jumps add different sizes to frags when we're
702 figuring out what sort of jump to choose to reach a given label. */
252b5132 703
47926f60 704/* Types. */
93c2a809
AM
705#define UNCOND_JUMP 0
706#define COND_JUMP 1
707#define COND_JUMP86 2
fddf5b5b 708
47926f60 709/* Sizes. */
252b5132
RH
710#define CODE16 1
711#define SMALL 0
29b0f896 712#define SMALL16 (SMALL | CODE16)
252b5132 713#define BIG 2
29b0f896 714#define BIG16 (BIG | CODE16)
252b5132
RH
715
716#ifndef INLINE
717#ifdef __GNUC__
718#define INLINE __inline__
719#else
720#define INLINE
721#endif
722#endif
723
fddf5b5b
AM
724#define ENCODE_RELAX_STATE(type, size) \
725 ((relax_substateT) (((type) << 2) | (size)))
726#define TYPE_FROM_RELAX_STATE(s) \
727 ((s) >> 2)
728#define DISP_SIZE_FROM_RELAX_STATE(s) \
729 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
730
731/* This table is used by relax_frag to promote short jumps to long
732 ones where necessary. SMALL (short) jumps may be promoted to BIG
733 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
734 don't allow a short jump in a 32 bit code segment to be promoted to
735 a 16 bit offset jump because it's slower (requires data size
736 prefix), and doesn't work, unless the destination is in the bottom
737 64k of the code segment (The top 16 bits of eip are zeroed). */
738
739const relax_typeS md_relax_table[] =
740{
24eab124
AM
741 /* The fields are:
742 1) most positive reach of this state,
743 2) most negative reach of this state,
93c2a809 744 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 745 4) which index into the table to try if we can't fit into this one. */
252b5132 746
fddf5b5b 747 /* UNCOND_JUMP states. */
93c2a809
AM
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
750 /* dword jmp adds 4 bytes to frag:
751 0 extra opcode bytes, 4 displacement bytes. */
252b5132 752 {0, 0, 4, 0},
93c2a809
AM
753 /* word jmp adds 2 byte2 to frag:
754 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
755 {0, 0, 2, 0},
756
93c2a809
AM
757 /* COND_JUMP states. */
758 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
760 /* dword conditionals adds 5 bytes to frag:
761 1 extra opcode byte, 4 displacement bytes. */
762 {0, 0, 5, 0},
fddf5b5b 763 /* word conditionals add 3 bytes to frag:
93c2a809
AM
764 1 extra opcode byte, 2 displacement bytes. */
765 {0, 0, 3, 0},
766
767 /* COND_JUMP86 states. */
768 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
769 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
770 /* dword conditionals adds 5 bytes to frag:
771 1 extra opcode byte, 4 displacement bytes. */
772 {0, 0, 5, 0},
773 /* word conditionals add 4 bytes to frag:
774 1 displacement byte and a 3 byte long branch insn. */
775 {0, 0, 4, 0}
252b5132
RH
776};
777
9103f4f4
L
778static const arch_entry cpu_arch[] =
779{
89507696
JB
780 /* Do not replace the first two entries - i386_target_format()
781 relies on them being there in this order. */
8a2c8fef 782 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 783 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 785 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 787 CPU_NONE_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 789 CPU_I186_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 791 CPU_I286_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 793 CPU_I386_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 795 CPU_I486_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 797 CPU_I586_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_I686_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 801 CPU_I586_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 803 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 805 CPU_P2_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 807 CPU_P3_FLAGS, 0 },
8a2c8fef 808 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 809 CPU_P4_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 811 CPU_CORE_FLAGS, 0 },
8a2c8fef 812 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 813 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 815 CPU_CORE_FLAGS, 1 },
8a2c8fef 816 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 817 CPU_CORE_FLAGS, 0 },
8a2c8fef 818 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 819 CPU_CORE2_FLAGS, 1 },
8a2c8fef 820 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 821 CPU_CORE2_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 823 CPU_COREI7_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 825 CPU_L1OM_FLAGS, 0 },
7a9068fe 826 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 827 CPU_K1OM_FLAGS, 0 },
81486035 828 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 829 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 830 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 831 CPU_K6_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 833 CPU_K6_2_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 835 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 836 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 837 CPU_K8_FLAGS, 1 },
8a2c8fef 838 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 839 CPU_K8_FLAGS, 0 },
8a2c8fef 840 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 841 CPU_K8_FLAGS, 0 },
8a2c8fef 842 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 843 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 844 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 845 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 846 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 847 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 848 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 849 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 850 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 851 CPU_BDVER4_FLAGS, 0 },
029f3522 852 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 853 CPU_ZNVER1_FLAGS, 0 },
7b458c12 854 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 855 CPU_BTVER1_FLAGS, 0 },
7b458c12 856 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 857 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 858 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 859 CPU_8087_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_287_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_387_FLAGS, 0 },
1848e567
L
864 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
865 CPU_687_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_MMX_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSE_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE2_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE3_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 878 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 880 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 882 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX_FLAGS, 0 },
6c30d220 884 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX2_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512F_FLAGS, 0 },
43234a1e 888 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512CD_FLAGS, 0 },
43234a1e 890 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512ER_FLAGS, 0 },
43234a1e 892 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 894 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 896 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 898 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_VMX_FLAGS, 0 },
8729a6f6 902 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 904 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_SMX_FLAGS, 0 },
8a2c8fef 906 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 908 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 910 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 912 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 914 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_AES_FLAGS, 0 },
8a2c8fef 916 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 918 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 920 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 922 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 924 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_F16C_FLAGS, 0 },
6c30d220 926 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_BMI2_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_FMA_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_FMA4_FLAGS, 0 },
8a2c8fef 932 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_XOP_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_LWP_FLAGS, 0 },
8a2c8fef 936 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_MOVBE_FLAGS, 0 },
60aa667e 938 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_CX16_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_EPT_FLAGS, 0 },
6c30d220 942 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_LZCNT_FLAGS, 0 },
42164a71 944 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_HLE_FLAGS, 0 },
42164a71 946 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_RTM_FLAGS, 0 },
6c30d220 948 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_CLFLUSH_FLAGS, 0 },
22109423 952 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_NOP_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_SVME_FLAGS, 1 },
8a2c8fef 966 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_SVME_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 970 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_ABM_FLAGS, 0 },
87973e9f 972 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_BMI_FLAGS, 0 },
2a2a0f38 974 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_TBM_FLAGS, 0 },
e2e1fcde 976 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_ADX_FLAGS, 0 },
e2e1fcde 978 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 980 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_PRFCHW_FLAGS, 0 },
5c111e37 982 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_SMAP_FLAGS, 0 },
7e8b059b 984 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_MPX_FLAGS, 0 },
a0046408 986 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_SHA_FLAGS, 0 },
963f3586 988 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 990 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 992 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_SE1_FLAGS, 0 },
c5e7287a 994 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 995 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 996 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 997 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 998 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 999 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1000 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1002 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1004 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1006 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1008 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1010 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1012 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_CLZERO_FLAGS, 0 },
9916071f 1014 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_MWAITX_FLAGS, 0 },
8eab4136 1016 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_OSPKE_FLAGS, 0 },
8bc52696 1018 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1020 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1021 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1022 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1023 CPU_IBT_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1025 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1026 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1027 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1028 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1029 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1030 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1031 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1032 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1033 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1034 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1035 CPU_PCONFIG_FLAGS, 0 },
293f5f65
L
1036};
1037
1038static const noarch_entry cpu_noarch[] =
1039{
1040 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1041 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1042 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1043 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1044 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1045 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1046 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1048 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1052 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1053 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1054 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1063 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1064 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1065 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1066 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1067 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1068 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1069 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1070 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1071};
1072
704209c0 1073#ifdef I386COFF
a6c24e68
NC
1074/* Like s_lcomm_internal in gas/read.c but the alignment string
1075 is allowed to be optional. */
1076
1077static symbolS *
1078pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1079{
1080 addressT align = 0;
1081
1082 SKIP_WHITESPACE ();
1083
7ab9ffdd 1084 if (needs_align
a6c24e68
NC
1085 && *input_line_pointer == ',')
1086 {
1087 align = parse_align (needs_align - 1);
7ab9ffdd 1088
a6c24e68
NC
1089 if (align == (addressT) -1)
1090 return NULL;
1091 }
1092 else
1093 {
1094 if (size >= 8)
1095 align = 3;
1096 else if (size >= 4)
1097 align = 2;
1098 else if (size >= 2)
1099 align = 1;
1100 else
1101 align = 0;
1102 }
1103
1104 bss_alloc (symbolP, size, align);
1105 return symbolP;
1106}
1107
704209c0 1108static void
a6c24e68
NC
1109pe_lcomm (int needs_align)
1110{
1111 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1112}
704209c0 1113#endif
a6c24e68 1114
29b0f896
AM
1115const pseudo_typeS md_pseudo_table[] =
1116{
1117#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1118 {"align", s_align_bytes, 0},
1119#else
1120 {"align", s_align_ptwo, 0},
1121#endif
1122 {"arch", set_cpu_arch, 0},
1123#ifndef I386COFF
1124 {"bss", s_bss, 0},
a6c24e68
NC
1125#else
1126 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1127#endif
1128 {"ffloat", float_cons, 'f'},
1129 {"dfloat", float_cons, 'd'},
1130 {"tfloat", float_cons, 'x'},
1131 {"value", cons, 2},
d182319b 1132 {"slong", signed_cons, 4},
29b0f896
AM
1133 {"noopt", s_ignore, 0},
1134 {"optim", s_ignore, 0},
1135 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1136 {"code16", set_code_flag, CODE_16BIT},
1137 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1138#ifdef BFD64
29b0f896 1139 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1140#endif
29b0f896
AM
1141 {"intel_syntax", set_intel_syntax, 1},
1142 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1143 {"intel_mnemonic", set_intel_mnemonic, 1},
1144 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1145 {"allow_index_reg", set_allow_index_reg, 1},
1146 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1147 {"sse_check", set_check, 0},
1148 {"operand_check", set_check, 1},
3b22753a
L
1149#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1150 {"largecomm", handle_large_common, 0},
07a53e5c 1151#else
68d20676 1152 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1153 {"loc", dwarf2_directive_loc, 0},
1154 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1155#endif
6482c264
NC
1156#ifdef TE_PE
1157 {"secrel32", pe_directive_secrel, 0},
1158#endif
29b0f896
AM
1159 {0, 0, 0}
1160};
1161
1162/* For interface with expression (). */
1163extern char *input_line_pointer;
1164
1165/* Hash table for instruction mnemonic lookup. */
1166static struct hash_control *op_hash;
1167
1168/* Hash table for register lookup. */
1169static struct hash_control *reg_hash;
1170\f
ce8a8b2f
AM
1171 /* Various efficient no-op patterns for aligning code labels.
1172 Note: Don't try to assemble the instructions in the comments.
1173 0L and 0w are not legal. */
62a02d25
L
1174static const unsigned char f32_1[] =
1175 {0x90}; /* nop */
1176static const unsigned char f32_2[] =
1177 {0x66,0x90}; /* xchg %ax,%ax */
1178static const unsigned char f32_3[] =
1179 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1180static const unsigned char f32_4[] =
1181 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1182static const unsigned char f32_6[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1184static const unsigned char f32_7[] =
1185 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1186static const unsigned char f16_3[] =
3ae729d5 1187 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1188static const unsigned char f16_4[] =
3ae729d5
L
1189 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1190static const unsigned char jump_disp8[] =
1191 {0xeb}; /* jmp disp8 */
1192static const unsigned char jump32_disp32[] =
1193 {0xe9}; /* jmp disp32 */
1194static const unsigned char jump16_disp32[] =
1195 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1196/* 32-bit NOPs patterns. */
1197static const unsigned char *const f32_patt[] = {
3ae729d5 1198 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1199};
1200/* 16-bit NOPs patterns. */
1201static const unsigned char *const f16_patt[] = {
3ae729d5 1202 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1203};
1204/* nopl (%[re]ax) */
1205static const unsigned char alt_3[] =
1206 {0x0f,0x1f,0x00};
1207/* nopl 0(%[re]ax) */
1208static const unsigned char alt_4[] =
1209 {0x0f,0x1f,0x40,0x00};
1210/* nopl 0(%[re]ax,%[re]ax,1) */
1211static const unsigned char alt_5[] =
1212 {0x0f,0x1f,0x44,0x00,0x00};
1213/* nopw 0(%[re]ax,%[re]ax,1) */
1214static const unsigned char alt_6[] =
1215 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1216/* nopl 0L(%[re]ax) */
1217static const unsigned char alt_7[] =
1218 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1219/* nopl 0L(%[re]ax,%[re]ax,1) */
1220static const unsigned char alt_8[] =
1221 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1222/* nopw 0L(%[re]ax,%[re]ax,1) */
1223static const unsigned char alt_9[] =
1224 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1226static const unsigned char alt_10[] =
1227 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1228/* data16 nopw %cs:0L(%eax,%eax,1) */
1229static const unsigned char alt_11[] =
1230 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1231/* 32-bit and 64-bit NOPs patterns. */
1232static const unsigned char *const alt_patt[] = {
1233 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1234 alt_9, alt_10, alt_11
62a02d25
L
1235};
1236
1237/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1238 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1239
1240static void
1241i386_output_nops (char *where, const unsigned char *const *patt,
1242 int count, int max_single_nop_size)
1243
1244{
3ae729d5
L
1245 /* Place the longer NOP first. */
1246 int last;
1247 int offset;
1248 const unsigned char *nops = patt[max_single_nop_size - 1];
1249
1250 /* Use the smaller one if the requsted one isn't available. */
1251 if (nops == NULL)
62a02d25 1252 {
3ae729d5
L
1253 max_single_nop_size--;
1254 nops = patt[max_single_nop_size - 1];
62a02d25
L
1255 }
1256
3ae729d5
L
1257 last = count % max_single_nop_size;
1258
1259 count -= last;
1260 for (offset = 0; offset < count; offset += max_single_nop_size)
1261 memcpy (where + offset, nops, max_single_nop_size);
1262
1263 if (last)
1264 {
1265 nops = patt[last - 1];
1266 if (nops == NULL)
1267 {
1268 /* Use the smaller one plus one-byte NOP if the needed one
1269 isn't available. */
1270 last--;
1271 nops = patt[last - 1];
1272 memcpy (where + offset, nops, last);
1273 where[offset + last] = *patt[0];
1274 }
1275 else
1276 memcpy (where + offset, nops, last);
1277 }
62a02d25
L
1278}
1279
3ae729d5
L
1280static INLINE int
1281fits_in_imm7 (offsetT num)
1282{
1283 return (num & 0x7f) == num;
1284}
1285
1286static INLINE int
1287fits_in_imm31 (offsetT num)
1288{
1289 return (num & 0x7fffffff) == num;
1290}
62a02d25
L
1291
1292/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1293 single NOP instruction LIMIT. */
1294
1295void
3ae729d5 1296i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1297{
3ae729d5 1298 const unsigned char *const *patt = NULL;
62a02d25 1299 int max_single_nop_size;
3ae729d5
L
1300 /* Maximum number of NOPs before switching to jump over NOPs. */
1301 int max_number_of_nops;
62a02d25 1302
3ae729d5 1303 switch (fragP->fr_type)
62a02d25 1304 {
3ae729d5
L
1305 case rs_fill_nop:
1306 case rs_align_code:
1307 break;
1308 default:
62a02d25
L
1309 return;
1310 }
1311
ccc9c027
L
1312 /* We need to decide which NOP sequence to use for 32bit and
1313 64bit. When -mtune= is used:
4eed87de 1314
76bc74dc
L
1315 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1316 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1317 2. For the rest, alt_patt will be used.
1318
1319 When -mtune= isn't used, alt_patt will be used if
22109423 1320 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1321 be used.
ccc9c027
L
1322
1323 When -march= or .arch is used, we can't use anything beyond
1324 cpu_arch_isa_flags. */
1325
1326 if (flag_code == CODE_16BIT)
1327 {
3ae729d5
L
1328 patt = f16_patt;
1329 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1330 /* Limit number of NOPs to 2 in 16-bit mode. */
1331 max_number_of_nops = 2;
252b5132 1332 }
33fef721 1333 else
ccc9c027 1334 {
fbf3f584 1335 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1336 {
1337 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1338 switch (cpu_arch_tune)
1339 {
1340 case PROCESSOR_UNKNOWN:
1341 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1342 optimize with nops. */
1343 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1344 patt = alt_patt;
ccc9c027
L
1345 else
1346 patt = f32_patt;
1347 break;
ccc9c027
L
1348 case PROCESSOR_PENTIUM4:
1349 case PROCESSOR_NOCONA:
ef05d495 1350 case PROCESSOR_CORE:
76bc74dc 1351 case PROCESSOR_CORE2:
bd5295b2 1352 case PROCESSOR_COREI7:
3632d14b 1353 case PROCESSOR_L1OM:
7a9068fe 1354 case PROCESSOR_K1OM:
76bc74dc 1355 case PROCESSOR_GENERIC64:
ccc9c027
L
1356 case PROCESSOR_K6:
1357 case PROCESSOR_ATHLON:
1358 case PROCESSOR_K8:
4eed87de 1359 case PROCESSOR_AMDFAM10:
8aedb9fe 1360 case PROCESSOR_BD:
029f3522 1361 case PROCESSOR_ZNVER:
7b458c12 1362 case PROCESSOR_BT:
80b8656c 1363 patt = alt_patt;
ccc9c027 1364 break;
76bc74dc 1365 case PROCESSOR_I386:
ccc9c027
L
1366 case PROCESSOR_I486:
1367 case PROCESSOR_PENTIUM:
2dde1948 1368 case PROCESSOR_PENTIUMPRO:
81486035 1369 case PROCESSOR_IAMCU:
ccc9c027
L
1370 case PROCESSOR_GENERIC32:
1371 patt = f32_patt;
1372 break;
4eed87de 1373 }
ccc9c027
L
1374 }
1375 else
1376 {
fbf3f584 1377 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1378 {
1379 case PROCESSOR_UNKNOWN:
e6a14101 1380 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1381 PROCESSOR_UNKNOWN. */
1382 abort ();
1383 break;
1384
76bc74dc 1385 case PROCESSOR_I386:
ccc9c027
L
1386 case PROCESSOR_I486:
1387 case PROCESSOR_PENTIUM:
81486035 1388 case PROCESSOR_IAMCU:
ccc9c027
L
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
4eed87de 1392 case PROCESSOR_AMDFAM10:
8aedb9fe 1393 case PROCESSOR_BD:
029f3522 1394 case PROCESSOR_ZNVER:
7b458c12 1395 case PROCESSOR_BT:
ccc9c027
L
1396 case PROCESSOR_GENERIC32:
1397 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1398 with nops. */
1399 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1400 patt = alt_patt;
ccc9c027
L
1401 else
1402 patt = f32_patt;
1403 break;
76bc74dc
L
1404 case PROCESSOR_PENTIUMPRO:
1405 case PROCESSOR_PENTIUM4:
1406 case PROCESSOR_NOCONA:
1407 case PROCESSOR_CORE:
ef05d495 1408 case PROCESSOR_CORE2:
bd5295b2 1409 case PROCESSOR_COREI7:
3632d14b 1410 case PROCESSOR_L1OM:
7a9068fe 1411 case PROCESSOR_K1OM:
22109423 1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1413 patt = alt_patt;
ccc9c027
L
1414 else
1415 patt = f32_patt;
1416 break;
1417 case PROCESSOR_GENERIC64:
80b8656c 1418 patt = alt_patt;
ccc9c027 1419 break;
4eed87de 1420 }
ccc9c027
L
1421 }
1422
76bc74dc
L
1423 if (patt == f32_patt)
1424 {
3ae729d5
L
1425 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1426 /* Limit number of NOPs to 2 for older processors. */
1427 max_number_of_nops = 2;
76bc74dc
L
1428 }
1429 else
1430 {
3ae729d5
L
1431 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1432 /* Limit number of NOPs to 7 for newer processors. */
1433 max_number_of_nops = 7;
1434 }
1435 }
1436
1437 if (limit == 0)
1438 limit = max_single_nop_size;
1439
1440 if (fragP->fr_type == rs_fill_nop)
1441 {
1442 /* Output NOPs for .nop directive. */
1443 if (limit > max_single_nop_size)
1444 {
1445 as_bad_where (fragP->fr_file, fragP->fr_line,
1446 _("invalid single nop size: %d "
1447 "(expect within [0, %d])"),
1448 limit, max_single_nop_size);
1449 return;
1450 }
1451 }
1452 else
1453 fragP->fr_var = count;
1454
1455 if ((count / max_single_nop_size) > max_number_of_nops)
1456 {
1457 /* Generate jump over NOPs. */
1458 offsetT disp = count - 2;
1459 if (fits_in_imm7 (disp))
1460 {
1461 /* Use "jmp disp8" if possible. */
1462 count = disp;
1463 where[0] = jump_disp8[0];
1464 where[1] = count;
1465 where += 2;
1466 }
1467 else
1468 {
1469 unsigned int size_of_jump;
1470
1471 if (flag_code == CODE_16BIT)
1472 {
1473 where[0] = jump16_disp32[0];
1474 where[1] = jump16_disp32[1];
1475 size_of_jump = 2;
1476 }
1477 else
1478 {
1479 where[0] = jump32_disp32[0];
1480 size_of_jump = 1;
1481 }
1482
1483 count -= size_of_jump + 4;
1484 if (!fits_in_imm31 (count))
1485 {
1486 as_bad_where (fragP->fr_file, fragP->fr_line,
1487 _("jump over nop padding out of range"));
1488 return;
1489 }
1490
1491 md_number_to_chars (where + size_of_jump, count, 4);
1492 where += size_of_jump + 4;
76bc74dc 1493 }
ccc9c027 1494 }
3ae729d5
L
1495
1496 /* Generate multiple NOPs. */
1497 i386_output_nops (where, patt, count, limit);
252b5132
RH
1498}
1499
c6fb90c8 1500static INLINE int
0dfbf9d7 1501operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1502{
0dfbf9d7 1503 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1504 {
1505 case 3:
0dfbf9d7 1506 if (x->array[2])
c6fb90c8 1507 return 0;
1a0670f3 1508 /* Fall through. */
c6fb90c8 1509 case 2:
0dfbf9d7 1510 if (x->array[1])
c6fb90c8 1511 return 0;
1a0670f3 1512 /* Fall through. */
c6fb90c8 1513 case 1:
0dfbf9d7 1514 return !x->array[0];
c6fb90c8
L
1515 default:
1516 abort ();
1517 }
40fb9820
L
1518}
1519
c6fb90c8 1520static INLINE void
0dfbf9d7 1521operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1522{
0dfbf9d7 1523 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1524 {
1525 case 3:
0dfbf9d7 1526 x->array[2] = v;
1a0670f3 1527 /* Fall through. */
c6fb90c8 1528 case 2:
0dfbf9d7 1529 x->array[1] = v;
1a0670f3 1530 /* Fall through. */
c6fb90c8 1531 case 1:
0dfbf9d7 1532 x->array[0] = v;
1a0670f3 1533 /* Fall through. */
c6fb90c8
L
1534 break;
1535 default:
1536 abort ();
1537 }
1538}
40fb9820 1539
c6fb90c8 1540static INLINE int
0dfbf9d7
L
1541operand_type_equal (const union i386_operand_type *x,
1542 const union i386_operand_type *y)
c6fb90c8 1543{
0dfbf9d7 1544 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1545 {
1546 case 3:
0dfbf9d7 1547 if (x->array[2] != y->array[2])
c6fb90c8 1548 return 0;
1a0670f3 1549 /* Fall through. */
c6fb90c8 1550 case 2:
0dfbf9d7 1551 if (x->array[1] != y->array[1])
c6fb90c8 1552 return 0;
1a0670f3 1553 /* Fall through. */
c6fb90c8 1554 case 1:
0dfbf9d7 1555 return x->array[0] == y->array[0];
c6fb90c8
L
1556 break;
1557 default:
1558 abort ();
1559 }
1560}
40fb9820 1561
0dfbf9d7
L
1562static INLINE int
1563cpu_flags_all_zero (const union i386_cpu_flags *x)
1564{
1565 switch (ARRAY_SIZE(x->array))
1566 {
53467f57
IT
1567 case 4:
1568 if (x->array[3])
1569 return 0;
1570 /* Fall through. */
0dfbf9d7
L
1571 case 3:
1572 if (x->array[2])
1573 return 0;
1a0670f3 1574 /* Fall through. */
0dfbf9d7
L
1575 case 2:
1576 if (x->array[1])
1577 return 0;
1a0670f3 1578 /* Fall through. */
0dfbf9d7
L
1579 case 1:
1580 return !x->array[0];
1581 default:
1582 abort ();
1583 }
1584}
1585
0dfbf9d7
L
1586static INLINE int
1587cpu_flags_equal (const union i386_cpu_flags *x,
1588 const union i386_cpu_flags *y)
1589{
1590 switch (ARRAY_SIZE(x->array))
1591 {
53467f57
IT
1592 case 4:
1593 if (x->array[3] != y->array[3])
1594 return 0;
1595 /* Fall through. */
0dfbf9d7
L
1596 case 3:
1597 if (x->array[2] != y->array[2])
1598 return 0;
1a0670f3 1599 /* Fall through. */
0dfbf9d7
L
1600 case 2:
1601 if (x->array[1] != y->array[1])
1602 return 0;
1a0670f3 1603 /* Fall through. */
0dfbf9d7
L
1604 case 1:
1605 return x->array[0] == y->array[0];
1606 break;
1607 default:
1608 abort ();
1609 }
1610}
c6fb90c8
L
1611
1612static INLINE int
1613cpu_flags_check_cpu64 (i386_cpu_flags f)
1614{
1615 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1616 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1617}
1618
c6fb90c8
L
1619static INLINE i386_cpu_flags
1620cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1621{
c6fb90c8
L
1622 switch (ARRAY_SIZE (x.array))
1623 {
53467f57
IT
1624 case 4:
1625 x.array [3] &= y.array [3];
1626 /* Fall through. */
c6fb90c8
L
1627 case 3:
1628 x.array [2] &= y.array [2];
1a0670f3 1629 /* Fall through. */
c6fb90c8
L
1630 case 2:
1631 x.array [1] &= y.array [1];
1a0670f3 1632 /* Fall through. */
c6fb90c8
L
1633 case 1:
1634 x.array [0] &= y.array [0];
1635 break;
1636 default:
1637 abort ();
1638 }
1639 return x;
1640}
40fb9820 1641
c6fb90c8
L
1642static INLINE i386_cpu_flags
1643cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1644{
c6fb90c8 1645 switch (ARRAY_SIZE (x.array))
40fb9820 1646 {
53467f57
IT
1647 case 4:
1648 x.array [3] |= y.array [3];
1649 /* Fall through. */
c6fb90c8
L
1650 case 3:
1651 x.array [2] |= y.array [2];
1a0670f3 1652 /* Fall through. */
c6fb90c8
L
1653 case 2:
1654 x.array [1] |= y.array [1];
1a0670f3 1655 /* Fall through. */
c6fb90c8
L
1656 case 1:
1657 x.array [0] |= y.array [0];
40fb9820
L
1658 break;
1659 default:
1660 abort ();
1661 }
40fb9820
L
1662 return x;
1663}
1664
309d3373
JB
1665static INLINE i386_cpu_flags
1666cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1667{
1668 switch (ARRAY_SIZE (x.array))
1669 {
53467f57
IT
1670 case 4:
1671 x.array [3] &= ~y.array [3];
1672 /* Fall through. */
309d3373
JB
1673 case 3:
1674 x.array [2] &= ~y.array [2];
1a0670f3 1675 /* Fall through. */
309d3373
JB
1676 case 2:
1677 x.array [1] &= ~y.array [1];
1a0670f3 1678 /* Fall through. */
309d3373
JB
1679 case 1:
1680 x.array [0] &= ~y.array [0];
1681 break;
1682 default:
1683 abort ();
1684 }
1685 return x;
1686}
1687
c0f3af97
L
1688#define CPU_FLAGS_ARCH_MATCH 0x1
1689#define CPU_FLAGS_64BIT_MATCH 0x2
1690
c0f3af97 1691#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1692 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1693
1694/* Return CPU flags match bits. */
3629bb00 1695
40fb9820 1696static int
d3ce72d0 1697cpu_flags_match (const insn_template *t)
40fb9820 1698{
c0f3af97
L
1699 i386_cpu_flags x = t->cpu_flags;
1700 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1701
1702 x.bitfield.cpu64 = 0;
1703 x.bitfield.cpuno64 = 0;
1704
0dfbf9d7 1705 if (cpu_flags_all_zero (&x))
c0f3af97
L
1706 {
1707 /* This instruction is available on all archs. */
db12e14e 1708 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1709 }
3629bb00
L
1710 else
1711 {
c0f3af97 1712 /* This instruction is available only on some archs. */
3629bb00
L
1713 i386_cpu_flags cpu = cpu_arch_flags;
1714
ab592e75
JB
1715 /* AVX512VL is no standalone feature - match it and then strip it. */
1716 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1717 return match;
1718 x.bitfield.cpuavx512vl = 0;
1719
3629bb00 1720 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1721 if (!cpu_flags_all_zero (&cpu))
1722 {
a5ff0eb2
L
1723 if (x.bitfield.cpuavx)
1724 {
929f69fa 1725 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1726 if (cpu.bitfield.cpuavx
1727 && (!t->opcode_modifier.sse2avx || sse2avx)
1728 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1729 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1730 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1731 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1732 }
929f69fa
JB
1733 else if (x.bitfield.cpuavx512f)
1734 {
1735 /* We need to check a few extra flags with AVX512F. */
1736 if (cpu.bitfield.cpuavx512f
1737 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1738 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1739 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1740 match |= CPU_FLAGS_ARCH_MATCH;
1741 }
a5ff0eb2 1742 else
db12e14e 1743 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1744 }
3629bb00 1745 }
c0f3af97 1746 return match;
40fb9820
L
1747}
1748
c6fb90c8
L
1749static INLINE i386_operand_type
1750operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1751{
c6fb90c8
L
1752 switch (ARRAY_SIZE (x.array))
1753 {
1754 case 3:
1755 x.array [2] &= y.array [2];
1a0670f3 1756 /* Fall through. */
c6fb90c8
L
1757 case 2:
1758 x.array [1] &= y.array [1];
1a0670f3 1759 /* Fall through. */
c6fb90c8
L
1760 case 1:
1761 x.array [0] &= y.array [0];
1762 break;
1763 default:
1764 abort ();
1765 }
1766 return x;
40fb9820
L
1767}
1768
73053c1f
JB
1769static INLINE i386_operand_type
1770operand_type_and_not (i386_operand_type x, i386_operand_type y)
1771{
1772 switch (ARRAY_SIZE (x.array))
1773 {
1774 case 3:
1775 x.array [2] &= ~y.array [2];
1776 /* Fall through. */
1777 case 2:
1778 x.array [1] &= ~y.array [1];
1779 /* Fall through. */
1780 case 1:
1781 x.array [0] &= ~y.array [0];
1782 break;
1783 default:
1784 abort ();
1785 }
1786 return x;
1787}
1788
c6fb90c8
L
1789static INLINE i386_operand_type
1790operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1791{
c6fb90c8 1792 switch (ARRAY_SIZE (x.array))
40fb9820 1793 {
c6fb90c8
L
1794 case 3:
1795 x.array [2] |= y.array [2];
1a0670f3 1796 /* Fall through. */
c6fb90c8
L
1797 case 2:
1798 x.array [1] |= y.array [1];
1a0670f3 1799 /* Fall through. */
c6fb90c8
L
1800 case 1:
1801 x.array [0] |= y.array [0];
40fb9820
L
1802 break;
1803 default:
1804 abort ();
1805 }
c6fb90c8
L
1806 return x;
1807}
40fb9820 1808
c6fb90c8
L
1809static INLINE i386_operand_type
1810operand_type_xor (i386_operand_type x, i386_operand_type y)
1811{
1812 switch (ARRAY_SIZE (x.array))
1813 {
1814 case 3:
1815 x.array [2] ^= y.array [2];
1a0670f3 1816 /* Fall through. */
c6fb90c8
L
1817 case 2:
1818 x.array [1] ^= y.array [1];
1a0670f3 1819 /* Fall through. */
c6fb90c8
L
1820 case 1:
1821 x.array [0] ^= y.array [0];
1822 break;
1823 default:
1824 abort ();
1825 }
40fb9820
L
1826 return x;
1827}
1828
1829static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1830static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1831static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1832static const i386_operand_type inoutportreg
1833 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1834static const i386_operand_type reg16_inoutportreg
1835 = OPERAND_TYPE_REG16_INOUTPORTREG;
1836static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1837static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1838static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1839static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1840static const i386_operand_type anydisp
1841 = OPERAND_TYPE_ANYDISP;
40fb9820 1842static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1843static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1844static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1845static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1846static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1847static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1848static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1849static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1850static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1851static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1852static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1853static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1854
1855enum operand_type
1856{
1857 reg,
40fb9820
L
1858 imm,
1859 disp,
1860 anymem
1861};
1862
c6fb90c8 1863static INLINE int
40fb9820
L
1864operand_type_check (i386_operand_type t, enum operand_type c)
1865{
1866 switch (c)
1867 {
1868 case reg:
dc821c5f 1869 return t.bitfield.reg;
40fb9820 1870
40fb9820
L
1871 case imm:
1872 return (t.bitfield.imm8
1873 || t.bitfield.imm8s
1874 || t.bitfield.imm16
1875 || t.bitfield.imm32
1876 || t.bitfield.imm32s
1877 || t.bitfield.imm64);
1878
1879 case disp:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64);
1885
1886 case anymem:
1887 return (t.bitfield.disp8
1888 || t.bitfield.disp16
1889 || t.bitfield.disp32
1890 || t.bitfield.disp32s
1891 || t.bitfield.disp64
1892 || t.bitfield.baseindex);
1893
1894 default:
1895 abort ();
1896 }
2cfe26b6
AM
1897
1898 return 0;
40fb9820
L
1899}
1900
ca0d63fe 1901/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1902 operand J for instruction template T. */
1903
1904static INLINE int
d3ce72d0 1905match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1906{
1907 return !((i.types[j].bitfield.byte
1908 && !t->operand_types[j].bitfield.byte)
1909 || (i.types[j].bitfield.word
1910 && !t->operand_types[j].bitfield.word)
1911 || (i.types[j].bitfield.dword
1912 && !t->operand_types[j].bitfield.dword)
1913 || (i.types[j].bitfield.qword
ca0d63fe
JB
1914 && !t->operand_types[j].bitfield.qword)
1915 || (i.types[j].bitfield.tbyte
1916 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1917}
1918
1b54b8d7
JB
1919/* Return 1 if there is no conflict in SIMD register on
1920 operand J for instruction template T. */
1921
1922static INLINE int
1923match_simd_size (const insn_template *t, unsigned int j)
1924{
1925 return !((i.types[j].bitfield.xmmword
1926 && !t->operand_types[j].bitfield.xmmword)
1927 || (i.types[j].bitfield.ymmword
1928 && !t->operand_types[j].bitfield.ymmword)
1929 || (i.types[j].bitfield.zmmword
1930 && !t->operand_types[j].bitfield.zmmword));
1931}
1932
5c07affc
L
1933/* Return 1 if there is no conflict in any size on operand J for
1934 instruction template T. */
1935
1936static INLINE int
d3ce72d0 1937match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1938{
1939 return (match_reg_size (t, j)
1940 && !((i.types[j].bitfield.unspecified
af508cb9 1941 && !i.broadcast
5c07affc
L
1942 && !t->operand_types[j].bitfield.unspecified)
1943 || (i.types[j].bitfield.fword
1944 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1945 /* For scalar opcode templates to allow register and memory
1946 operands at the same time, some special casing is needed
1947 here. */
1948 || ((t->operand_types[j].bitfield.regsimd
1949 && !t->opcode_modifier.broadcast
1950 && (t->operand_types[j].bitfield.dword
1951 || t->operand_types[j].bitfield.qword))
1952 ? (i.types[j].bitfield.xmmword
1953 || i.types[j].bitfield.ymmword
1954 || i.types[j].bitfield.zmmword)
1955 : !match_simd_size(t, j))));
5c07affc
L
1956}
1957
1958/* Return 1 if there is no size conflict on any operands for
1959 instruction template T. */
1960
1961static INLINE int
d3ce72d0 1962operand_size_match (const insn_template *t)
5c07affc
L
1963{
1964 unsigned int j;
1965 int match = 1;
1966
1967 /* Don't check jump instructions. */
1968 if (t->opcode_modifier.jump
1969 || t->opcode_modifier.jumpbyte
1970 || t->opcode_modifier.jumpdword
1971 || t->opcode_modifier.jumpintersegment)
1972 return match;
1973
1974 /* Check memory and accumulator operand size. */
1975 for (j = 0; j < i.operands; j++)
1976 {
1b54b8d7
JB
1977 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1978 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1979 continue;
1980
1b54b8d7 1981 if (t->operand_types[j].bitfield.reg
dc821c5f 1982 && !match_reg_size (t, j))
5c07affc
L
1983 {
1984 match = 0;
1985 break;
1986 }
1987
1b54b8d7
JB
1988 if (t->operand_types[j].bitfield.regsimd
1989 && !match_simd_size (t, j))
1990 {
1991 match = 0;
1992 break;
1993 }
1994
1995 if (t->operand_types[j].bitfield.acc
1996 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1997 {
1998 match = 0;
1999 break;
2000 }
2001
5c07affc
L
2002 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2003 {
2004 match = 0;
2005 break;
2006 }
2007 }
2008
891edac4 2009 if (match)
5c07affc 2010 return match;
38e314eb 2011 else if (!t->opcode_modifier.d)
891edac4
L
2012 {
2013mismatch:
86e026a4 2014 i.error = operand_size_mismatch;
891edac4
L
2015 return 0;
2016 }
5c07affc
L
2017
2018 /* Check reverse. */
9c2799c2 2019 gas_assert (i.operands == 2);
5c07affc
L
2020
2021 match = 1;
2022 for (j = 0; j < 2; j++)
2023 {
dc821c5f
JB
2024 if ((t->operand_types[j].bitfield.reg
2025 || t->operand_types[j].bitfield.acc)
5c07affc 2026 && !match_reg_size (t, j ? 0 : 1))
891edac4 2027 goto mismatch;
5c07affc
L
2028
2029 if (i.types[j].bitfield.mem
2030 && !match_mem_size (t, j ? 0 : 1))
891edac4 2031 goto mismatch;
5c07affc
L
2032 }
2033
2034 return match;
2035}
2036
c6fb90c8 2037static INLINE int
40fb9820
L
2038operand_type_match (i386_operand_type overlap,
2039 i386_operand_type given)
2040{
2041 i386_operand_type temp = overlap;
2042
2043 temp.bitfield.jumpabsolute = 0;
7d5e4556 2044 temp.bitfield.unspecified = 0;
5c07affc
L
2045 temp.bitfield.byte = 0;
2046 temp.bitfield.word = 0;
2047 temp.bitfield.dword = 0;
2048 temp.bitfield.fword = 0;
2049 temp.bitfield.qword = 0;
2050 temp.bitfield.tbyte = 0;
2051 temp.bitfield.xmmword = 0;
c0f3af97 2052 temp.bitfield.ymmword = 0;
43234a1e 2053 temp.bitfield.zmmword = 0;
0dfbf9d7 2054 if (operand_type_all_zero (&temp))
891edac4 2055 goto mismatch;
40fb9820 2056
891edac4
L
2057 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2058 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2059 return 1;
2060
2061mismatch:
a65babc9 2062 i.error = operand_type_mismatch;
891edac4 2063 return 0;
40fb9820
L
2064}
2065
7d5e4556 2066/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2067 unless the expected operand type register overlap is null.
2068 Memory operand size of certain SIMD instructions is also being checked
2069 here. */
40fb9820 2070
c6fb90c8 2071static INLINE int
dc821c5f 2072operand_type_register_match (i386_operand_type g0,
40fb9820 2073 i386_operand_type t0,
40fb9820
L
2074 i386_operand_type g1,
2075 i386_operand_type t1)
2076{
10c17abd
JB
2077 if (!g0.bitfield.reg
2078 && !g0.bitfield.regsimd
2079 && (!operand_type_check (g0, anymem)
2080 || g0.bitfield.unspecified
2081 || !t0.bitfield.regsimd))
40fb9820
L
2082 return 1;
2083
10c17abd
JB
2084 if (!g1.bitfield.reg
2085 && !g1.bitfield.regsimd
2086 && (!operand_type_check (g1, anymem)
2087 || g1.bitfield.unspecified
2088 || !t1.bitfield.regsimd))
40fb9820
L
2089 return 1;
2090
dc821c5f
JB
2091 if (g0.bitfield.byte == g1.bitfield.byte
2092 && g0.bitfield.word == g1.bitfield.word
2093 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2094 && g0.bitfield.qword == g1.bitfield.qword
2095 && g0.bitfield.xmmword == g1.bitfield.xmmword
2096 && g0.bitfield.ymmword == g1.bitfield.ymmword
2097 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2098 return 1;
2099
dc821c5f
JB
2100 if (!(t0.bitfield.byte & t1.bitfield.byte)
2101 && !(t0.bitfield.word & t1.bitfield.word)
2102 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2103 && !(t0.bitfield.qword & t1.bitfield.qword)
2104 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2105 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2106 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2107 return 1;
2108
a65babc9 2109 i.error = register_type_mismatch;
891edac4
L
2110
2111 return 0;
40fb9820
L
2112}
2113
4c692bc7
JB
2114static INLINE unsigned int
2115register_number (const reg_entry *r)
2116{
2117 unsigned int nr = r->reg_num;
2118
2119 if (r->reg_flags & RegRex)
2120 nr += 8;
2121
200cbe0f
L
2122 if (r->reg_flags & RegVRex)
2123 nr += 16;
2124
4c692bc7
JB
2125 return nr;
2126}
2127
252b5132 2128static INLINE unsigned int
40fb9820 2129mode_from_disp_size (i386_operand_type t)
252b5132 2130{
b5014f7a 2131 if (t.bitfield.disp8)
40fb9820
L
2132 return 1;
2133 else if (t.bitfield.disp16
2134 || t.bitfield.disp32
2135 || t.bitfield.disp32s)
2136 return 2;
2137 else
2138 return 0;
252b5132
RH
2139}
2140
2141static INLINE int
65879393 2142fits_in_signed_byte (addressT num)
252b5132 2143{
65879393 2144 return num + 0x80 <= 0xff;
47926f60 2145}
252b5132
RH
2146
2147static INLINE int
65879393 2148fits_in_unsigned_byte (addressT num)
252b5132 2149{
65879393 2150 return num <= 0xff;
47926f60 2151}
252b5132
RH
2152
2153static INLINE int
65879393 2154fits_in_unsigned_word (addressT num)
252b5132 2155{
65879393 2156 return num <= 0xffff;
47926f60 2157}
252b5132
RH
2158
2159static INLINE int
65879393 2160fits_in_signed_word (addressT num)
252b5132 2161{
65879393 2162 return num + 0x8000 <= 0xffff;
47926f60 2163}
2a962e6d 2164
3e73aa7c 2165static INLINE int
65879393 2166fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2167{
2168#ifndef BFD64
2169 return 1;
2170#else
65879393 2171 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2172#endif
2173} /* fits_in_signed_long() */
2a962e6d 2174
3e73aa7c 2175static INLINE int
65879393 2176fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2177{
2178#ifndef BFD64
2179 return 1;
2180#else
65879393 2181 return num <= 0xffffffff;
3e73aa7c
JH
2182#endif
2183} /* fits_in_unsigned_long() */
252b5132 2184
43234a1e 2185static INLINE int
b5014f7a 2186fits_in_disp8 (offsetT num)
43234a1e
L
2187{
2188 int shift = i.memshift;
2189 unsigned int mask;
2190
2191 if (shift == -1)
2192 abort ();
2193
2194 mask = (1 << shift) - 1;
2195
2196 /* Return 0 if NUM isn't properly aligned. */
2197 if ((num & mask))
2198 return 0;
2199
2200 /* Check if NUM will fit in 8bit after shift. */
2201 return fits_in_signed_byte (num >> shift);
2202}
2203
a683cc34
SP
2204static INLINE int
2205fits_in_imm4 (offsetT num)
2206{
2207 return (num & 0xf) == num;
2208}
2209
40fb9820 2210static i386_operand_type
e3bb37b5 2211smallest_imm_type (offsetT num)
252b5132 2212{
40fb9820 2213 i386_operand_type t;
7ab9ffdd 2214
0dfbf9d7 2215 operand_type_set (&t, 0);
40fb9820
L
2216 t.bitfield.imm64 = 1;
2217
2218 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2219 {
2220 /* This code is disabled on the 486 because all the Imm1 forms
2221 in the opcode table are slower on the i486. They're the
2222 versions with the implicitly specified single-position
2223 displacement, which has another syntax if you really want to
2224 use that form. */
40fb9820
L
2225 t.bitfield.imm1 = 1;
2226 t.bitfield.imm8 = 1;
2227 t.bitfield.imm8s = 1;
2228 t.bitfield.imm16 = 1;
2229 t.bitfield.imm32 = 1;
2230 t.bitfield.imm32s = 1;
2231 }
2232 else if (fits_in_signed_byte (num))
2233 {
2234 t.bitfield.imm8 = 1;
2235 t.bitfield.imm8s = 1;
2236 t.bitfield.imm16 = 1;
2237 t.bitfield.imm32 = 1;
2238 t.bitfield.imm32s = 1;
2239 }
2240 else if (fits_in_unsigned_byte (num))
2241 {
2242 t.bitfield.imm8 = 1;
2243 t.bitfield.imm16 = 1;
2244 t.bitfield.imm32 = 1;
2245 t.bitfield.imm32s = 1;
2246 }
2247 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2248 {
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_long (num))
2254 {
2255 t.bitfield.imm32 = 1;
2256 t.bitfield.imm32s = 1;
2257 }
2258 else if (fits_in_unsigned_long (num))
2259 t.bitfield.imm32 = 1;
2260
2261 return t;
47926f60 2262}
252b5132 2263
847f7ad4 2264static offsetT
e3bb37b5 2265offset_in_range (offsetT val, int size)
847f7ad4 2266{
508866be 2267 addressT mask;
ba2adb93 2268
847f7ad4
AM
2269 switch (size)
2270 {
508866be
L
2271 case 1: mask = ((addressT) 1 << 8) - 1; break;
2272 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2273 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2274#ifdef BFD64
2275 case 8: mask = ((addressT) 2 << 63) - 1; break;
2276#endif
47926f60 2277 default: abort ();
847f7ad4
AM
2278 }
2279
9de868bf
L
2280#ifdef BFD64
2281 /* If BFD64, sign extend val for 32bit address mode. */
2282 if (flag_code != CODE_64BIT
2283 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2284 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2285 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2286#endif
ba2adb93 2287
47926f60 2288 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2289 {
2290 char buf1[40], buf2[40];
2291
2292 sprint_value (buf1, val);
2293 sprint_value (buf2, val & mask);
2294 as_warn (_("%s shortened to %s"), buf1, buf2);
2295 }
2296 return val & mask;
2297}
2298
c32fa91d
L
2299enum PREFIX_GROUP
2300{
2301 PREFIX_EXIST = 0,
2302 PREFIX_LOCK,
2303 PREFIX_REP,
04ef582a 2304 PREFIX_DS,
c32fa91d
L
2305 PREFIX_OTHER
2306};
2307
2308/* Returns
2309 a. PREFIX_EXIST if attempting to add a prefix where one from the
2310 same class already exists.
2311 b. PREFIX_LOCK if lock prefix is added.
2312 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2313 d. PREFIX_DS if ds prefix is added.
2314 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2315 */
2316
2317static enum PREFIX_GROUP
e3bb37b5 2318add_prefix (unsigned int prefix)
252b5132 2319{
c32fa91d 2320 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2321 unsigned int q;
252b5132 2322
29b0f896
AM
2323 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2324 && flag_code == CODE_64BIT)
b1905489 2325 {
161a04f6
L
2326 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2327 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2328 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2329 ret = PREFIX_EXIST;
b1905489
JB
2330 q = REX_PREFIX;
2331 }
3e73aa7c 2332 else
b1905489
JB
2333 {
2334 switch (prefix)
2335 {
2336 default:
2337 abort ();
2338
b1905489 2339 case DS_PREFIX_OPCODE:
04ef582a
L
2340 ret = PREFIX_DS;
2341 /* Fall through. */
2342 case CS_PREFIX_OPCODE:
b1905489
JB
2343 case ES_PREFIX_OPCODE:
2344 case FS_PREFIX_OPCODE:
2345 case GS_PREFIX_OPCODE:
2346 case SS_PREFIX_OPCODE:
2347 q = SEG_PREFIX;
2348 break;
2349
2350 case REPNE_PREFIX_OPCODE:
2351 case REPE_PREFIX_OPCODE:
c32fa91d
L
2352 q = REP_PREFIX;
2353 ret = PREFIX_REP;
2354 break;
2355
b1905489 2356 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2357 q = LOCK_PREFIX;
2358 ret = PREFIX_LOCK;
b1905489
JB
2359 break;
2360
2361 case FWAIT_OPCODE:
2362 q = WAIT_PREFIX;
2363 break;
2364
2365 case ADDR_PREFIX_OPCODE:
2366 q = ADDR_PREFIX;
2367 break;
2368
2369 case DATA_PREFIX_OPCODE:
2370 q = DATA_PREFIX;
2371 break;
2372 }
2373 if (i.prefix[q] != 0)
c32fa91d 2374 ret = PREFIX_EXIST;
b1905489 2375 }
252b5132 2376
b1905489 2377 if (ret)
252b5132 2378 {
b1905489
JB
2379 if (!i.prefix[q])
2380 ++i.prefixes;
2381 i.prefix[q] |= prefix;
252b5132 2382 }
b1905489
JB
2383 else
2384 as_bad (_("same type of prefix used twice"));
252b5132 2385
252b5132
RH
2386 return ret;
2387}
2388
2389static void
78f12dd3 2390update_code_flag (int value, int check)
eecb386c 2391{
78f12dd3
L
2392 PRINTF_LIKE ((*as_error));
2393
1e9cc1c2 2394 flag_code = (enum flag_code) value;
40fb9820
L
2395 if (flag_code == CODE_64BIT)
2396 {
2397 cpu_arch_flags.bitfield.cpu64 = 1;
2398 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2399 }
2400 else
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 0;
2403 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2404 }
2405 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2406 {
78f12dd3
L
2407 if (check)
2408 as_error = as_fatal;
2409 else
2410 as_error = as_bad;
2411 (*as_error) (_("64bit mode not supported on `%s'."),
2412 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2413 }
40fb9820 2414 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2415 {
78f12dd3
L
2416 if (check)
2417 as_error = as_fatal;
2418 else
2419 as_error = as_bad;
2420 (*as_error) (_("32bit mode not supported on `%s'."),
2421 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2422 }
eecb386c
AM
2423 stackop_size = '\0';
2424}
2425
78f12dd3
L
2426static void
2427set_code_flag (int value)
2428{
2429 update_code_flag (value, 0);
2430}
2431
eecb386c 2432static void
e3bb37b5 2433set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2434{
1e9cc1c2 2435 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2436 if (flag_code != CODE_16BIT)
2437 abort ();
2438 cpu_arch_flags.bitfield.cpu64 = 0;
2439 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2440 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2441}
2442
2443static void
e3bb37b5 2444set_intel_syntax (int syntax_flag)
252b5132
RH
2445{
2446 /* Find out if register prefixing is specified. */
2447 int ask_naked_reg = 0;
2448
2449 SKIP_WHITESPACE ();
29b0f896 2450 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2451 {
d02603dc
NC
2452 char *string;
2453 int e = get_symbol_name (&string);
252b5132 2454
47926f60 2455 if (strcmp (string, "prefix") == 0)
252b5132 2456 ask_naked_reg = 1;
47926f60 2457 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2458 ask_naked_reg = -1;
2459 else
d0b47220 2460 as_bad (_("bad argument to syntax directive."));
d02603dc 2461 (void) restore_line_pointer (e);
252b5132
RH
2462 }
2463 demand_empty_rest_of_line ();
c3332e24 2464
252b5132
RH
2465 intel_syntax = syntax_flag;
2466
2467 if (ask_naked_reg == 0)
f86103b7
AM
2468 allow_naked_reg = (intel_syntax
2469 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2470 else
2471 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2472
ee86248c 2473 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2474
e4a3b5a4 2475 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2476 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2477 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2478}
2479
1efbbeb4
L
2480static void
2481set_intel_mnemonic (int mnemonic_flag)
2482{
e1d4d893 2483 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2484}
2485
db51cc60
L
2486static void
2487set_allow_index_reg (int flag)
2488{
2489 allow_index_reg = flag;
2490}
2491
cb19c032 2492static void
7bab8ab5 2493set_check (int what)
cb19c032 2494{
7bab8ab5
JB
2495 enum check_kind *kind;
2496 const char *str;
2497
2498 if (what)
2499 {
2500 kind = &operand_check;
2501 str = "operand";
2502 }
2503 else
2504 {
2505 kind = &sse_check;
2506 str = "sse";
2507 }
2508
cb19c032
L
2509 SKIP_WHITESPACE ();
2510
2511 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2512 {
d02603dc
NC
2513 char *string;
2514 int e = get_symbol_name (&string);
cb19c032
L
2515
2516 if (strcmp (string, "none") == 0)
7bab8ab5 2517 *kind = check_none;
cb19c032 2518 else if (strcmp (string, "warning") == 0)
7bab8ab5 2519 *kind = check_warning;
cb19c032 2520 else if (strcmp (string, "error") == 0)
7bab8ab5 2521 *kind = check_error;
cb19c032 2522 else
7bab8ab5 2523 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2524 (void) restore_line_pointer (e);
cb19c032
L
2525 }
2526 else
7bab8ab5 2527 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2528
2529 demand_empty_rest_of_line ();
2530}
2531
8a9036a4
L
2532static void
2533check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2534 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2535{
2536#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2537 static const char *arch;
2538
2539 /* Intel LIOM is only supported on ELF. */
2540 if (!IS_ELF)
2541 return;
2542
2543 if (!arch)
2544 {
2545 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2546 use default_arch. */
2547 arch = cpu_arch_name;
2548 if (!arch)
2549 arch = default_arch;
2550 }
2551
81486035
L
2552 /* If we are targeting Intel MCU, we must enable it. */
2553 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2554 || new_flag.bitfield.cpuiamcu)
2555 return;
2556
3632d14b 2557 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2558 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2559 || new_flag.bitfield.cpul1om)
8a9036a4 2560 return;
76ba9986 2561
7a9068fe
L
2562 /* If we are targeting Intel K1OM, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2564 || new_flag.bitfield.cpuk1om)
2565 return;
2566
8a9036a4
L
2567 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2568#endif
2569}
2570
e413e4e9 2571static void
e3bb37b5 2572set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2573{
47926f60 2574 SKIP_WHITESPACE ();
e413e4e9 2575
29b0f896 2576 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2577 {
d02603dc
NC
2578 char *string;
2579 int e = get_symbol_name (&string);
91d6fa6a 2580 unsigned int j;
40fb9820 2581 i386_cpu_flags flags;
e413e4e9 2582
91d6fa6a 2583 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2584 {
91d6fa6a 2585 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2586 {
91d6fa6a 2587 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2588
5c6af06e
JB
2589 if (*string != '.')
2590 {
91d6fa6a 2591 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2592 cpu_sub_arch_name = NULL;
91d6fa6a 2593 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2594 if (flag_code == CODE_64BIT)
2595 {
2596 cpu_arch_flags.bitfield.cpu64 = 1;
2597 cpu_arch_flags.bitfield.cpuno64 = 0;
2598 }
2599 else
2600 {
2601 cpu_arch_flags.bitfield.cpu64 = 0;
2602 cpu_arch_flags.bitfield.cpuno64 = 1;
2603 }
91d6fa6a
NC
2604 cpu_arch_isa = cpu_arch[j].type;
2605 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2606 if (!cpu_arch_tune_set)
2607 {
2608 cpu_arch_tune = cpu_arch_isa;
2609 cpu_arch_tune_flags = cpu_arch_isa_flags;
2610 }
5c6af06e
JB
2611 break;
2612 }
40fb9820 2613
293f5f65
L
2614 flags = cpu_flags_or (cpu_arch_flags,
2615 cpu_arch[j].flags);
81486035 2616
5b64d091 2617 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2618 {
6305a203
L
2619 if (cpu_sub_arch_name)
2620 {
2621 char *name = cpu_sub_arch_name;
2622 cpu_sub_arch_name = concat (name,
91d6fa6a 2623 cpu_arch[j].name,
1bf57e9f 2624 (const char *) NULL);
6305a203
L
2625 free (name);
2626 }
2627 else
91d6fa6a 2628 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2629 cpu_arch_flags = flags;
a586129e 2630 cpu_arch_isa_flags = flags;
5c6af06e 2631 }
d02603dc 2632 (void) restore_line_pointer (e);
5c6af06e
JB
2633 demand_empty_rest_of_line ();
2634 return;
e413e4e9
AM
2635 }
2636 }
293f5f65
L
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
33eaf5de 2640 /* Disable an ISA extension. */
293f5f65
L
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
91d6fa6a 2668 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
fddf5b5b
AM
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
29b0f896 2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2679 {
d02603dc
NC
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
fddf5b5b
AM
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
d02603dc 2693 (void) restore_line_pointer (e);
fddf5b5b
AM
2694 }
2695
e413e4e9
AM
2696 demand_empty_rest_of_line ();
2697}
2698
8a9036a4
L
2699enum bfd_architecture
2700i386_arch (void)
2701{
3632d14b 2702 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
7a9068fe
L
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
81486035
L
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
8a9036a4
L
2723 else
2724 return bfd_arch_i386;
2725}
2726
b9d79e03 2727unsigned long
7016a5d5 2728i386_mach (void)
b9d79e03 2729{
351f65ca 2730 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2731 {
3632d14b 2732 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2733 {
351f65ca
L
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
8a9036a4
L
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
7a9068fe
L
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
351f65ca 2746 else if (default_arch[6] == '\0')
8a9036a4 2747 return bfd_mach_x86_64;
351f65ca
L
2748 else
2749 return bfd_mach_x64_32;
8a9036a4 2750 }
5197d474
L
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
81486035
L
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
b9d79e03 2763 else
2b5d6a91 2764 as_fatal (_("unknown architecture"));
b9d79e03 2765}
b9d79e03 2766\f
252b5132 2767void
7016a5d5 2768md_begin (void)
252b5132
RH
2769{
2770 const char *hash_err;
2771
86fa6981
L
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
47926f60 2775 /* Initialize op_hash hash table. */
252b5132
RH
2776 op_hash = hash_new ();
2777
2778 {
d3ce72d0 2779 const insn_template *optab;
29b0f896 2780 templates *core_optab;
252b5132 2781
47926f60
KH
2782 /* Setup for loop. */
2783 optab = i386_optab;
add39d23 2784 core_optab = XNEW (templates);
252b5132
RH
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
47926f60 2794 add to hash table; & begin anew. */
252b5132
RH
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
5a49b8ac 2798 (void *) core_optab);
252b5132
RH
2799 if (hash_err)
2800 {
b37df7c4 2801 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
add39d23 2807 core_optab = XNEW (templates);
252b5132
RH
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
47926f60 2813 /* Initialize reg_hash hash table. */
252b5132
RH
2814 reg_hash = hash_new ();
2815 {
29b0f896 2816 const reg_entry *regtab;
c3fe08fa 2817 unsigned int regtab_size = i386_regtab_size;
252b5132 2818
c3fe08fa 2819 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2820 {
5a49b8ac 2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2822 if (hash_err)
b37df7c4 2823 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2824 regtab->reg_name,
2825 hash_err);
252b5132
RH
2826 }
2827 }
2828
47926f60 2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2830 {
29b0f896
AM
2831 int c;
2832 char *p;
252b5132
RH
2833
2834 for (c = 0; c < 256; c++)
2835 {
3882b010 2836 if (ISDIGIT (c))
252b5132
RH
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
3882b010 2843 else if (ISLOWER (c))
252b5132
RH
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
3882b010 2849 else if (ISUPPER (c))
252b5132 2850 {
3882b010 2851 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
43234a1e 2855 else if (c == '{' || c == '}')
86fa6981
L
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
252b5132 2860
3882b010 2861 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870#ifdef LEX_AT
2871 identifier_chars['@'] = '@';
32137342
NC
2872#endif
2873#ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
252b5132 2876#endif
252b5132 2877 digit_chars['-'] = '-';
c0f3af97 2878 mnemonic_chars['_'] = '_';
791fe849 2879 mnemonic_chars['-'] = '-';
0003779b 2880 mnemonic_chars['.'] = '.';
252b5132
RH
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
a4447b93
RH
2888 if (flag_code == CODE_64BIT)
2889 {
ca19b261
KT
2890#if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893#else
a4447b93 2894 x86_dwarf2_return_column = 16;
ca19b261 2895#endif
61ff971f 2896 x86_cie_data_alignment = -8;
a4447b93
RH
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
252b5132
RH
2903}
2904
2905void
e3bb37b5 2906i386_print_statistics (FILE *file)
252b5132
RH
2907{
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910}
2911\f
252b5132
RH
2912#ifdef DEBUG386
2913
ce8a8b2f 2914/* Debugging routines for md_assemble. */
d3ce72d0 2915static void pte (insn_template *);
40fb9820 2916static void pt (i386_operand_type);
e3bb37b5
L
2917static void pe (expressionS *);
2918static void ps (symbolS *);
252b5132
RH
2919
2920static void
e3bb37b5 2921pi (char *line, i386_insn *x)
252b5132 2922{
09137c09 2923 unsigned int j;
252b5132
RH
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
09f131f2
JH
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2932 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
09137c09 2940 for (j = 0; j < x->operands; j++)
252b5132 2941 {
09137c09
SP
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
252b5132 2944 fprintf (stdout, "\n");
dc821c5f 2945 if (x->types[j].bitfield.reg
09137c09 2946 || x->types[j].bitfield.regmmx
1b54b8d7 2947 || x->types[j].bitfield.regsimd
09137c09
SP
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
252b5132
RH
2958 }
2959}
2960
2961static void
d3ce72d0 2962pte (insn_template *t)
252b5132 2963{
09137c09 2964 unsigned int j;
252b5132 2965 fprintf (stdout, " %d operands ", t->operands);
47926f60 2966 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2969 if (t->opcode_modifier.d)
252b5132 2970 fprintf (stdout, "D");
40fb9820 2971 if (t->opcode_modifier.w)
252b5132
RH
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
09137c09 2974 for (j = 0; j < t->operands; j++)
252b5132 2975 {
09137c09
SP
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
252b5132
RH
2978 fprintf (stdout, "\n");
2979 }
2980}
2981
2982static void
e3bb37b5 2983pe (expressionS *e)
252b5132 2984{
24eab124 2985 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000}
3001
3002static void
e3bb37b5 3003ps (symbolS *s)
252b5132
RH
3004{
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009}
3010
7b81dfbb 3011static struct type_name
252b5132 3012 {
40fb9820
L
3013 i386_operand_type mask;
3014 const char *name;
252b5132 3015 }
7b81dfbb 3016const type_names[] =
252b5132 3017{
40fb9820
L
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3048 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3051 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3052};
3053
3054static void
40fb9820 3055pt (i386_operand_type t)
252b5132 3056{
40fb9820 3057 unsigned int j;
c6fb90c8 3058 i386_operand_type a;
252b5132 3059
40fb9820 3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
0349dc08 3063 if (!operand_type_all_zero (&a))
c6fb90c8
L
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
252b5132
RH
3066 fflush (stdout);
3067}
3068
3069#endif /* DEBUG386 */
3070\f
252b5132 3071static bfd_reloc_code_real_type
3956db08 3072reloc (unsigned int size,
64e74474
AM
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
252b5132 3076{
47926f60 3077 if (other != NO_RELOC)
3956db08 3078 {
91d6fa6a 3079 reloc_howto_type *rel;
3956db08
JB
3080
3081 if (size == 8)
3082 switch (other)
3083 {
64e74474
AM
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
553d1284
L
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
64e74474
AM
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3956db08 3107 }
e05278af 3108
8ce3d284 3109#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
1ab668bf 3113 other = BFD_RELOC_SIZE64;
8fd4256d 3114 if (pcrel)
1ab668bf
AM
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
8fd4256d 3119 }
8ce3d284 3120#endif
8fd4256d 3121
e05278af 3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3124 sign = -1;
3125
91d6fa6a
NC
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3956db08 3128 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3129 else if (size != bfd_get_reloc_size (rel))
3956db08 3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3131 bfd_get_reloc_size (rel),
3956db08 3132 size);
91d6fa6a 3133 else if (pcrel && !rel->pc_relative)
3956db08 3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3136 && !sign)
91d6fa6a 3137 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3138 && sign > 0))
3956db08
JB
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
252b5132
RH
3144
3145 if (pcrel)
3146 {
3e73aa7c 3147 if (!sign)
3956db08 3148 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
d258b828 3153 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3154 case 8: return BFD_RELOC_64_PCREL;
252b5132 3155 }
3956db08 3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3157 }
3158 else
3159 {
3956db08 3160 if (sign > 0)
e5cb08ac 3161 switch (size)
3e73aa7c
JH
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3956db08
JB
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3175 }
3176
0cc9e1d3 3177 return NO_RELOC;
252b5132
RH
3178}
3179
47926f60
KH
3180/* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
252b5132 3185int
e3bb37b5 3186tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3187{
6d249963 3188#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3189 if (!IS_ELF)
31312f95
AM
3190 return 1;
3191
a161fe53
AM
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
252b5132 3197 return 0;
31312f95 3198
8d01d9a9
AJ
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
8fd4256d
L
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
31312f95 3241#endif
252b5132
RH
3242 return 1;
3243}
252b5132 3244
b4cac588 3245static int
e3bb37b5 3246intel_float_operand (const char *mnemonic)
252b5132 3247{
9306ca4a
JB
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
252b5132 3294
9306ca4a 3295 return 1;
252b5132
RH
3296}
3297
c0f3af97
L
3298/* Build the VEX prefix. */
3299
3300static void
d3ce72d0 3301build_vex_prefix (const insn_template *t)
c0f3af97
L
3302{
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
43234a1e
L
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
c0f3af97
L
3314 else
3315 register_specifier = 0xf;
3316
33eaf5de 3317 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3318 operand. */
86fa6981
L
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
fa99fab2 3321 && i.operands == i.reg_operands
7f399153 3322 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3323 && i.tm.opcode_modifier.load
fa99fab2
L
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
9c2799c2 3337 gas_assert (i.rm.mode == 3);
fa99fab2
L
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
539f890d
L
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
10c17abd
JB
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
539f890d 3352 else
10c17abd
JB
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
c0f3af97
L
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3388 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
f88c9eb0 3409 i.vex.length = 3;
f88c9eb0 3410
7f399153 3411 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3412 {
7f399153
L
3413 case VEX0F:
3414 m = 0x1;
80de6e00 3415 i.vex.bytes[0] = 0xc4;
7f399153
L
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
80de6e00 3419 i.vex.bytes[0] = 0xc4;
7f399153
L
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
80de6e00 3423 i.vex.bytes[0] = 0xc4;
7f399153
L
3424 break;
3425 case XOP08:
5dd85c99
SP
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
7f399153
L
3428 break;
3429 case XOP09:
f88c9eb0
SP
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
7f399153
L
3432 break;
3433 case XOP0A:
f88c9eb0
SP
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
7f399153
L
3436 break;
3437 default:
3438 abort ();
f88c9eb0 3439 }
c0f3af97 3440
c0f3af97
L
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
c0f3af97
L
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455}
3456
43234a1e
L
3457/* Build the EVEX prefix. */
3458
3459static void
3460build_evex_prefix (void)
3461{
3462 unsigned int register_specifier;
3463 unsigned int implied_prefix;
3464 unsigned int m, w;
3465 rex_byte vrex_used = 0;
3466
3467 /* Check register specifier. */
3468 if (i.vex.register_specifier)
3469 {
3470 gas_assert ((i.vrex & REX_X) == 0);
3471
3472 register_specifier = i.vex.register_specifier->reg_num;
3473 if ((i.vex.register_specifier->reg_flags & RegRex))
3474 register_specifier += 8;
3475 /* The upper 16 registers are encoded in the fourth byte of the
3476 EVEX prefix. */
3477 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3478 i.vex.bytes[3] = 0x8;
3479 register_specifier = ~register_specifier & 0xf;
3480 }
3481 else
3482 {
3483 register_specifier = 0xf;
3484
3485 /* Encode upper 16 vector index register in the fourth byte of
3486 the EVEX prefix. */
3487 if (!(i.vrex & REX_X))
3488 i.vex.bytes[3] = 0x8;
3489 else
3490 vrex_used |= REX_X;
3491 }
3492
3493 switch ((i.tm.base_opcode >> 8) & 0xff)
3494 {
3495 case 0:
3496 implied_prefix = 0;
3497 break;
3498 case DATA_PREFIX_OPCODE:
3499 implied_prefix = 1;
3500 break;
3501 case REPE_PREFIX_OPCODE:
3502 implied_prefix = 2;
3503 break;
3504 case REPNE_PREFIX_OPCODE:
3505 implied_prefix = 3;
3506 break;
3507 default:
3508 abort ();
3509 }
3510
3511 /* 4 byte EVEX prefix. */
3512 i.vex.length = 4;
3513 i.vex.bytes[0] = 0x62;
3514
3515 /* mmmm bits. */
3516 switch (i.tm.opcode_modifier.vexopcode)
3517 {
3518 case VEX0F:
3519 m = 1;
3520 break;
3521 case VEX0F38:
3522 m = 2;
3523 break;
3524 case VEX0F3A:
3525 m = 3;
3526 break;
3527 default:
3528 abort ();
3529 break;
3530 }
3531
3532 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3533 bits from REX. */
3534 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3535
3536 /* The fifth bit of the second EVEX byte is 1's compliment of the
3537 REX_R bit in VREX. */
3538 if (!(i.vrex & REX_R))
3539 i.vex.bytes[1] |= 0x10;
3540 else
3541 vrex_used |= REX_R;
3542
3543 if ((i.reg_operands + i.imm_operands) == i.operands)
3544 {
3545 /* When all operands are registers, the REX_X bit in REX is not
3546 used. We reuse it to encode the upper 16 registers, which is
3547 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3548 as 1's compliment. */
3549 if ((i.vrex & REX_B))
3550 {
3551 vrex_used |= REX_B;
3552 i.vex.bytes[1] &= ~0x40;
3553 }
3554 }
3555
3556 /* EVEX instructions shouldn't need the REX prefix. */
3557 i.vrex &= ~vrex_used;
3558 gas_assert (i.vrex == 0);
3559
3560 /* Check the REX.W bit. */
3561 w = (i.rex & REX_W) ? 1 : 0;
3562 if (i.tm.opcode_modifier.vexw)
3563 {
3564 if (i.tm.opcode_modifier.vexw == VEXW1)
3565 w = 1;
3566 }
3567 /* If w is not set it means we are dealing with WIG instruction. */
3568 else if (!w)
3569 {
3570 if (evexwig == evexw1)
3571 w = 1;
3572 }
3573
3574 /* Encode the U bit. */
3575 implied_prefix |= 0x4;
3576
3577 /* The third byte of the EVEX prefix. */
3578 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3579
3580 /* The fourth byte of the EVEX prefix. */
3581 /* The zeroing-masking bit. */
3582 if (i.mask && i.mask->zeroing)
3583 i.vex.bytes[3] |= 0x80;
3584
3585 /* Don't always set the broadcast bit if there is no RC. */
3586 if (!i.rounding)
3587 {
3588 /* Encode the vector length. */
3589 unsigned int vec_length;
3590
3591 switch (i.tm.opcode_modifier.evex)
3592 {
3593 case EVEXLIG: /* LL' is ignored */
3594 vec_length = evexlig << 5;
3595 break;
3596 case EVEX128:
3597 vec_length = 0 << 5;
3598 break;
3599 case EVEX256:
3600 vec_length = 1 << 5;
3601 break;
3602 case EVEX512:
3603 vec_length = 2 << 5;
3604 break;
3605 default:
3606 abort ();
3607 break;
3608 }
3609 i.vex.bytes[3] |= vec_length;
3610 /* Encode the broadcast bit. */
3611 if (i.broadcast)
3612 i.vex.bytes[3] |= 0x10;
3613 }
3614 else
3615 {
3616 if (i.rounding->type != saeonly)
3617 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3618 else
d3d3c6db 3619 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3620 }
3621
3622 if (i.mask && i.mask->mask)
3623 i.vex.bytes[3] |= i.mask->mask->reg_num;
3624}
3625
65da13b5
L
3626static void
3627process_immext (void)
3628{
3629 expressionS *exp;
3630
4c692bc7
JB
3631 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3632 && i.operands > 0)
65da13b5 3633 {
4c692bc7
JB
3634 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3635 with an opcode suffix which is coded in the same place as an
3636 8-bit immediate field would be.
3637 Here we check those operands and remove them afterwards. */
65da13b5
L
3638 unsigned int x;
3639
3640 for (x = 0; x < i.operands; x++)
4c692bc7 3641 if (register_number (i.op[x].regs) != x)
65da13b5 3642 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3643 register_prefix, i.op[x].regs->reg_name, x + 1,
3644 i.tm.name);
3645
3646 i.operands = 0;
65da13b5
L
3647 }
3648
9916071f
AP
3649 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3650 {
3651 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3652 suffix which is coded in the same place as an 8-bit immediate
3653 field would be.
3654 Here we check those operands and remove them afterwards. */
3655 unsigned int x;
3656
3657 if (i.operands != 3)
3658 abort();
3659
3660 for (x = 0; x < 2; x++)
3661 if (register_number (i.op[x].regs) != x)
3662 goto bad_register_operand;
3663
3664 /* Check for third operand for mwaitx/monitorx insn. */
3665 if (register_number (i.op[x].regs)
3666 != (x + (i.tm.extension_opcode == 0xfb)))
3667 {
3668bad_register_operand:
3669 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3670 register_prefix, i.op[x].regs->reg_name, x+1,
3671 i.tm.name);
3672 }
3673
3674 i.operands = 0;
3675 }
3676
c0f3af97 3677 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3678 which is coded in the same place as an 8-bit immediate field
3679 would be. Here we fake an 8-bit immediate operand from the
3680 opcode suffix stored in tm.extension_opcode.
3681
c1e679ec 3682 AVX instructions also use this encoding, for some of
c0f3af97 3683 3 argument instructions. */
65da13b5 3684
43234a1e 3685 gas_assert (i.imm_operands <= 1
7ab9ffdd 3686 && (i.operands <= 2
43234a1e
L
3687 || ((i.tm.opcode_modifier.vex
3688 || i.tm.opcode_modifier.evex)
7ab9ffdd 3689 && i.operands <= 4)));
65da13b5
L
3690
3691 exp = &im_expressions[i.imm_operands++];
3692 i.op[i.operands].imms = exp;
3693 i.types[i.operands] = imm8;
3694 i.operands++;
3695 exp->X_op = O_constant;
3696 exp->X_add_number = i.tm.extension_opcode;
3697 i.tm.extension_opcode = None;
3698}
3699
42164a71
L
3700
3701static int
3702check_hle (void)
3703{
3704 switch (i.tm.opcode_modifier.hleprefixok)
3705 {
3706 default:
3707 abort ();
82c2def5 3708 case HLEPrefixNone:
165de32a
L
3709 as_bad (_("invalid instruction `%s' after `%s'"),
3710 i.tm.name, i.hle_prefix);
42164a71 3711 return 0;
82c2def5 3712 case HLEPrefixLock:
42164a71
L
3713 if (i.prefix[LOCK_PREFIX])
3714 return 1;
165de32a 3715 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3716 return 0;
82c2def5 3717 case HLEPrefixAny:
42164a71 3718 return 1;
82c2def5 3719 case HLEPrefixRelease:
42164a71
L
3720 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3721 {
3722 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3723 i.tm.name);
3724 return 0;
3725 }
3726 if (i.mem_operands == 0
3727 || !operand_type_check (i.types[i.operands - 1], anymem))
3728 {
3729 as_bad (_("memory destination needed for instruction `%s'"
3730 " after `xrelease'"), i.tm.name);
3731 return 0;
3732 }
3733 return 1;
3734 }
3735}
3736
b6f8c7c4
L
3737/* Try the shortest encoding by shortening operand size. */
3738
3739static void
3740optimize_encoding (void)
3741{
3742 int j;
3743
3744 if (optimize_for_space
3745 && i.reg_operands == 1
3746 && i.imm_operands == 1
3747 && !i.types[1].bitfield.byte
3748 && i.op[0].imms->X_op == O_constant
3749 && fits_in_imm7 (i.op[0].imms->X_add_number)
3750 && ((i.tm.base_opcode == 0xa8
3751 && i.tm.extension_opcode == None)
3752 || (i.tm.base_opcode == 0xf6
3753 && i.tm.extension_opcode == 0x0)))
3754 {
3755 /* Optimize: -Os:
3756 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3757 */
3758 unsigned int base_regnum = i.op[1].regs->reg_num;
3759 if (flag_code == CODE_64BIT || base_regnum < 4)
3760 {
3761 i.types[1].bitfield.byte = 1;
3762 /* Ignore the suffix. */
3763 i.suffix = 0;
3764 if (base_regnum >= 4
3765 && !(i.op[1].regs->reg_flags & RegRex))
3766 {
3767 /* Handle SP, BP, SI and DI registers. */
3768 if (i.types[1].bitfield.word)
3769 j = 16;
3770 else if (i.types[1].bitfield.dword)
3771 j = 32;
3772 else
3773 j = 48;
3774 i.op[1].regs -= j;
3775 }
3776 }
3777 }
3778 else if (flag_code == CODE_64BIT
3779 && ((i.reg_operands == 1
3780 && i.imm_operands == 1
3781 && i.op[0].imms->X_op == O_constant
3782 && ((i.tm.base_opcode == 0xb0
3783 && i.tm.extension_opcode == None
3784 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3785 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3786 && (((i.tm.base_opcode == 0x24
3787 || i.tm.base_opcode == 0xa8)
3788 && i.tm.extension_opcode == None)
3789 || (i.tm.base_opcode == 0x80
3790 && i.tm.extension_opcode == 0x4)
3791 || ((i.tm.base_opcode == 0xf6
3792 || i.tm.base_opcode == 0xc6)
3793 && i.tm.extension_opcode == 0x0)))))
3794 || (i.reg_operands == 2
3795 && i.op[0].regs == i.op[1].regs
3796 && ((i.tm.base_opcode == 0x30
3797 || i.tm.base_opcode == 0x28)
3798 && i.tm.extension_opcode == None)))
3799 && i.types[1].bitfield.qword)
3800 {
3801 /* Optimize: -O:
3802 andq $imm31, %r64 -> andl $imm31, %r32
3803 testq $imm31, %r64 -> testl $imm31, %r32
3804 xorq %r64, %r64 -> xorl %r32, %r32
3805 subq %r64, %r64 -> subl %r32, %r32
3806 movq $imm31, %r64 -> movl $imm31, %r32
3807 movq $imm32, %r64 -> movl $imm32, %r32
3808 */
3809 i.tm.opcode_modifier.norex64 = 1;
3810 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3811 {
3812 /* Handle
3813 movq $imm31, %r64 -> movl $imm31, %r32
3814 movq $imm32, %r64 -> movl $imm32, %r32
3815 */
3816 i.tm.operand_types[0].bitfield.imm32 = 1;
3817 i.tm.operand_types[0].bitfield.imm32s = 0;
3818 i.tm.operand_types[0].bitfield.imm64 = 0;
3819 i.types[0].bitfield.imm32 = 1;
3820 i.types[0].bitfield.imm32s = 0;
3821 i.types[0].bitfield.imm64 = 0;
3822 i.types[1].bitfield.dword = 1;
3823 i.types[1].bitfield.qword = 0;
3824 if (i.tm.base_opcode == 0xc6)
3825 {
3826 /* Handle
3827 movq $imm31, %r64 -> movl $imm31, %r32
3828 */
3829 i.tm.base_opcode = 0xb0;
3830 i.tm.extension_opcode = None;
3831 i.tm.opcode_modifier.shortform = 1;
3832 i.tm.opcode_modifier.modrm = 0;
3833 }
3834 }
3835 }
3836 else if (optimize > 1
3837 && i.reg_operands == 3
3838 && i.op[0].regs == i.op[1].regs
3839 && !i.types[2].bitfield.xmmword
3840 && (i.tm.opcode_modifier.vex
3841 || (!i.mask
3842 && !i.rounding
3843 && i.tm.opcode_modifier.evex
3844 && cpu_arch_flags.bitfield.cpuavx512vl))
3845 && ((i.tm.base_opcode == 0x55
3846 || i.tm.base_opcode == 0x6655
3847 || i.tm.base_opcode == 0x66df
3848 || i.tm.base_opcode == 0x57
3849 || i.tm.base_opcode == 0x6657
8305403a
L
3850 || i.tm.base_opcode == 0x66ef
3851 || i.tm.base_opcode == 0x66f8
3852 || i.tm.base_opcode == 0x66f9
3853 || i.tm.base_opcode == 0x66fa
3854 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3855 && i.tm.extension_opcode == None))
3856 {
3857 /* Optimize: -O2:
8305403a
L
3858 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3859 vpsubq and vpsubw:
b6f8c7c4
L
3860 EVEX VOP %zmmM, %zmmM, %zmmN
3861 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3862 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3863 EVEX VOP %ymmM, %ymmM, %ymmN
3864 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3865 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3866 VEX VOP %ymmM, %ymmM, %ymmN
3867 -> VEX VOP %xmmM, %xmmM, %xmmN
3868 VOP, one of vpandn and vpxor:
3869 VEX VOP %ymmM, %ymmM, %ymmN
3870 -> VEX VOP %xmmM, %xmmM, %xmmN
3871 VOP, one of vpandnd and vpandnq:
3872 EVEX VOP %zmmM, %zmmM, %zmmN
3873 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3874 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3875 EVEX VOP %ymmM, %ymmM, %ymmN
3876 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3877 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3878 VOP, one of vpxord and vpxorq:
3879 EVEX VOP %zmmM, %zmmM, %zmmN
3880 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3881 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3882 EVEX VOP %ymmM, %ymmM, %ymmN
3883 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3884 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3885 */
3886 if (i.tm.opcode_modifier.evex)
3887 {
3888 /* If only lower 16 vector registers are used, we can use
3889 VEX encoding. */
3890 for (j = 0; j < 3; j++)
3891 if (register_number (i.op[j].regs) > 15)
3892 break;
3893
3894 if (j < 3)
3895 i.tm.opcode_modifier.evex = EVEX128;
3896 else
3897 {
3898 i.tm.opcode_modifier.vex = VEX128;
3899 i.tm.opcode_modifier.vexw = VEXW0;
3900 i.tm.opcode_modifier.evex = 0;
3901 }
3902 }
3903 else
3904 i.tm.opcode_modifier.vex = VEX128;
3905
3906 if (i.tm.opcode_modifier.vex)
3907 for (j = 0; j < 3; j++)
3908 {
3909 i.types[j].bitfield.xmmword = 1;
3910 i.types[j].bitfield.ymmword = 0;
3911 }
3912 }
3913}
3914
252b5132
RH
3915/* This is the guts of the machine-dependent assembler. LINE points to a
3916 machine dependent instruction. This function is supposed to emit
3917 the frags/bytes it assembles to. */
3918
3919void
65da13b5 3920md_assemble (char *line)
252b5132 3921{
40fb9820 3922 unsigned int j;
83b16ac6 3923 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3924 const insn_template *t;
252b5132 3925
47926f60 3926 /* Initialize globals. */
252b5132
RH
3927 memset (&i, '\0', sizeof (i));
3928 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3929 i.reloc[j] = NO_RELOC;
252b5132
RH
3930 memset (disp_expressions, '\0', sizeof (disp_expressions));
3931 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3932 save_stack_p = save_stack;
252b5132
RH
3933
3934 /* First parse an instruction mnemonic & call i386_operand for the operands.
3935 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3936 start of a (possibly prefixed) mnemonic. */
252b5132 3937
29b0f896
AM
3938 line = parse_insn (line, mnemonic);
3939 if (line == NULL)
3940 return;
83b16ac6 3941 mnem_suffix = i.suffix;
252b5132 3942
29b0f896 3943 line = parse_operands (line, mnemonic);
ee86248c 3944 this_operand = -1;
8325cc63
JB
3945 xfree (i.memop1_string);
3946 i.memop1_string = NULL;
29b0f896
AM
3947 if (line == NULL)
3948 return;
252b5132 3949
29b0f896
AM
3950 /* Now we've parsed the mnemonic into a set of templates, and have the
3951 operands at hand. */
3952
3953 /* All intel opcodes have reversed operands except for "bound" and
3954 "enter". We also don't reverse intersegment "jmp" and "call"
3955 instructions with 2 immediate operands so that the immediate segment
050dfa73 3956 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3957 if (intel_syntax
3958 && i.operands > 1
29b0f896 3959 && (strcmp (mnemonic, "bound") != 0)
30123838 3960 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3961 && !(operand_type_check (i.types[0], imm)
3962 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3963 swap_operands ();
3964
ec56d5c0
JB
3965 /* The order of the immediates should be reversed
3966 for 2 immediates extrq and insertq instructions */
3967 if (i.imm_operands == 2
3968 && (strcmp (mnemonic, "extrq") == 0
3969 || strcmp (mnemonic, "insertq") == 0))
3970 swap_2_operands (0, 1);
3971
29b0f896
AM
3972 if (i.imm_operands)
3973 optimize_imm ();
3974
b300c311
L
3975 /* Don't optimize displacement for movabs since it only takes 64bit
3976 displacement. */
3977 if (i.disp_operands
a501d77e 3978 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3979 && (flag_code != CODE_64BIT
3980 || strcmp (mnemonic, "movabs") != 0))
3981 optimize_disp ();
29b0f896
AM
3982
3983 /* Next, we find a template that matches the given insn,
3984 making sure the overlap of the given operands types is consistent
3985 with the template operand types. */
252b5132 3986
83b16ac6 3987 if (!(t = match_template (mnem_suffix)))
29b0f896 3988 return;
252b5132 3989
7bab8ab5 3990 if (sse_check != check_none
81f8a913 3991 && !i.tm.opcode_modifier.noavx
6e3e5c9e 3992 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
3993 && (i.tm.cpu_flags.bitfield.cpusse
3994 || i.tm.cpu_flags.bitfield.cpusse2
3995 || i.tm.cpu_flags.bitfield.cpusse3
3996 || i.tm.cpu_flags.bitfield.cpussse3
3997 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
3998 || i.tm.cpu_flags.bitfield.cpusse4_2
3999 || i.tm.cpu_flags.bitfield.cpupclmul
4000 || i.tm.cpu_flags.bitfield.cpuaes
4001 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4002 {
7bab8ab5 4003 (sse_check == check_warning
daf50ae7
L
4004 ? as_warn
4005 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4006 }
4007
321fd21e
L
4008 /* Zap movzx and movsx suffix. The suffix has been set from
4009 "word ptr" or "byte ptr" on the source operand in Intel syntax
4010 or extracted from mnemonic in AT&T syntax. But we'll use
4011 the destination register to choose the suffix for encoding. */
4012 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4013 {
321fd21e
L
4014 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4015 there is no suffix, the default will be byte extension. */
4016 if (i.reg_operands != 2
4017 && !i.suffix
7ab9ffdd 4018 && intel_syntax)
321fd21e
L
4019 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4020
4021 i.suffix = 0;
cd61ebfe 4022 }
24eab124 4023
40fb9820 4024 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4025 if (!add_prefix (FWAIT_OPCODE))
4026 return;
252b5132 4027
d5de92cf
L
4028 /* Check if REP prefix is OK. */
4029 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4030 {
4031 as_bad (_("invalid instruction `%s' after `%s'"),
4032 i.tm.name, i.rep_prefix);
4033 return;
4034 }
4035
c1ba0266
L
4036 /* Check for lock without a lockable instruction. Destination operand
4037 must be memory unless it is xchg (0x86). */
c32fa91d
L
4038 if (i.prefix[LOCK_PREFIX]
4039 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4040 || i.mem_operands == 0
4041 || (i.tm.base_opcode != 0x86
4042 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4043 {
4044 as_bad (_("expecting lockable instruction after `lock'"));
4045 return;
4046 }
4047
42164a71 4048 /* Check if HLE prefix is OK. */
165de32a 4049 if (i.hle_prefix && !check_hle ())
42164a71
L
4050 return;
4051
7e8b059b
L
4052 /* Check BND prefix. */
4053 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4054 as_bad (_("expecting valid branch instruction after `bnd'"));
4055
04ef582a 4056 /* Check NOTRACK prefix. */
9fef80d6
L
4057 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4058 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4059
327e8c42
JB
4060 if (i.tm.cpu_flags.bitfield.cpumpx)
4061 {
4062 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4063 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4064 else if (flag_code != CODE_16BIT
4065 ? i.prefix[ADDR_PREFIX]
4066 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4067 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4068 }
7e8b059b
L
4069
4070 /* Insert BND prefix. */
4071 if (add_bnd_prefix
4072 && i.tm.opcode_modifier.bndprefixok
4073 && !i.prefix[BND_PREFIX])
4074 add_prefix (BND_PREFIX_OPCODE);
4075
29b0f896 4076 /* Check string instruction segment overrides. */
40fb9820 4077 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4078 {
4079 if (!check_string ())
5dd0794d 4080 return;
fc0763e6 4081 i.disp_operands = 0;
29b0f896 4082 }
5dd0794d 4083
b6f8c7c4
L
4084 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4085 optimize_encoding ();
4086
29b0f896
AM
4087 if (!process_suffix ())
4088 return;
e413e4e9 4089
bc0844ae
L
4090 /* Update operand types. */
4091 for (j = 0; j < i.operands; j++)
4092 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4093
29b0f896
AM
4094 /* Make still unresolved immediate matches conform to size of immediate
4095 given in i.suffix. */
4096 if (!finalize_imm ())
4097 return;
252b5132 4098
40fb9820 4099 if (i.types[0].bitfield.imm1)
29b0f896 4100 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4101
9afe6eb8
L
4102 /* We only need to check those implicit registers for instructions
4103 with 3 operands or less. */
4104 if (i.operands <= 3)
4105 for (j = 0; j < i.operands; j++)
4106 if (i.types[j].bitfield.inoutportreg
4107 || i.types[j].bitfield.shiftcount
1b54b8d7 4108 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4109 i.reg_operands--;
40fb9820 4110
c0f3af97
L
4111 /* ImmExt should be processed after SSE2AVX. */
4112 if (!i.tm.opcode_modifier.sse2avx
4113 && i.tm.opcode_modifier.immext)
65da13b5 4114 process_immext ();
252b5132 4115
29b0f896
AM
4116 /* For insns with operands there are more diddles to do to the opcode. */
4117 if (i.operands)
4118 {
4119 if (!process_operands ())
4120 return;
4121 }
40fb9820 4122 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4123 {
4124 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4125 as_warn (_("translating to `%sp'"), i.tm.name);
4126 }
252b5132 4127
9e5e5283
L
4128 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
4129 {
4130 if (flag_code == CODE_16BIT)
4131 {
4132 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4133 i.tm.name);
4134 return;
4135 }
c0f3af97 4136
9e5e5283
L
4137 if (i.tm.opcode_modifier.vex)
4138 build_vex_prefix (t);
4139 else
4140 build_evex_prefix ();
4141 }
43234a1e 4142
5dd85c99
SP
4143 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4144 instructions may define INT_OPCODE as well, so avoid this corner
4145 case for those instructions that use MODRM. */
4146 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4147 && !i.tm.opcode_modifier.modrm
4148 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4149 {
4150 i.tm.base_opcode = INT3_OPCODE;
4151 i.imm_operands = 0;
4152 }
252b5132 4153
40fb9820
L
4154 if ((i.tm.opcode_modifier.jump
4155 || i.tm.opcode_modifier.jumpbyte
4156 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4157 && i.op[0].disps->X_op == O_constant)
4158 {
4159 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4160 the absolute address given by the constant. Since ix86 jumps and
4161 calls are pc relative, we need to generate a reloc. */
4162 i.op[0].disps->X_add_symbol = &abs_symbol;
4163 i.op[0].disps->X_op = O_symbol;
4164 }
252b5132 4165
40fb9820 4166 if (i.tm.opcode_modifier.rex64)
161a04f6 4167 i.rex |= REX_W;
252b5132 4168
29b0f896
AM
4169 /* For 8 bit registers we need an empty rex prefix. Also if the
4170 instruction already has a prefix, we need to convert old
4171 registers to new ones. */
773f551c 4172
dc821c5f 4173 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4174 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4175 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4176 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4177 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4178 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4179 && i.rex != 0))
4180 {
4181 int x;
726c5dcd 4182
29b0f896
AM
4183 i.rex |= REX_OPCODE;
4184 for (x = 0; x < 2; x++)
4185 {
4186 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4187 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4188 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4189 {
29b0f896
AM
4190 /* In case it is "hi" register, give up. */
4191 if (i.op[x].regs->reg_num > 3)
a540244d 4192 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4193 "instruction requiring REX prefix."),
a540244d 4194 register_prefix, i.op[x].regs->reg_name);
773f551c 4195
29b0f896
AM
4196 /* Otherwise it is equivalent to the extended register.
4197 Since the encoding doesn't change this is merely
4198 cosmetic cleanup for debug output. */
4199
4200 i.op[x].regs = i.op[x].regs + 8;
773f551c 4201 }
29b0f896
AM
4202 }
4203 }
773f551c 4204
6b6b6807
L
4205 if (i.rex == 0 && i.rex_encoding)
4206 {
4207 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4208 that uses legacy register. If it is "hi" register, don't add
4209 the REX_OPCODE byte. */
4210 int x;
4211 for (x = 0; x < 2; x++)
4212 if (i.types[x].bitfield.reg
4213 && i.types[x].bitfield.byte
4214 && (i.op[x].regs->reg_flags & RegRex64) == 0
4215 && i.op[x].regs->reg_num > 3)
4216 {
4217 i.rex_encoding = FALSE;
4218 break;
4219 }
4220
4221 if (i.rex_encoding)
4222 i.rex = REX_OPCODE;
4223 }
4224
7ab9ffdd 4225 if (i.rex != 0)
29b0f896
AM
4226 add_prefix (REX_OPCODE | i.rex);
4227
4228 /* We are ready to output the insn. */
4229 output_insn ();
4230}
4231
4232static char *
e3bb37b5 4233parse_insn (char *line, char *mnemonic)
29b0f896
AM
4234{
4235 char *l = line;
4236 char *token_start = l;
4237 char *mnem_p;
5c6af06e 4238 int supported;
d3ce72d0 4239 const insn_template *t;
b6169b20 4240 char *dot_p = NULL;
29b0f896 4241
29b0f896
AM
4242 while (1)
4243 {
4244 mnem_p = mnemonic;
4245 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4246 {
b6169b20
L
4247 if (*mnem_p == '.')
4248 dot_p = mnem_p;
29b0f896
AM
4249 mnem_p++;
4250 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4251 {
29b0f896
AM
4252 as_bad (_("no such instruction: `%s'"), token_start);
4253 return NULL;
4254 }
4255 l++;
4256 }
4257 if (!is_space_char (*l)
4258 && *l != END_OF_INSN
e44823cf
JB
4259 && (intel_syntax
4260 || (*l != PREFIX_SEPARATOR
4261 && *l != ',')))
29b0f896
AM
4262 {
4263 as_bad (_("invalid character %s in mnemonic"),
4264 output_invalid (*l));
4265 return NULL;
4266 }
4267 if (token_start == l)
4268 {
e44823cf 4269 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4270 as_bad (_("expecting prefix; got nothing"));
4271 else
4272 as_bad (_("expecting mnemonic; got nothing"));
4273 return NULL;
4274 }
45288df1 4275
29b0f896 4276 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4277 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4278
29b0f896
AM
4279 if (*l != END_OF_INSN
4280 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4281 && current_templates
40fb9820 4282 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4283 {
c6fb90c8 4284 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4285 {
4286 as_bad ((flag_code != CODE_64BIT
4287 ? _("`%s' is only supported in 64-bit mode")
4288 : _("`%s' is not supported in 64-bit mode")),
4289 current_templates->start->name);
4290 return NULL;
4291 }
29b0f896
AM
4292 /* If we are in 16-bit mode, do not allow addr16 or data16.
4293 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4294 if ((current_templates->start->opcode_modifier.size16
4295 || current_templates->start->opcode_modifier.size32)
29b0f896 4296 && flag_code != CODE_64BIT
40fb9820 4297 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4298 ^ (flag_code == CODE_16BIT)))
4299 {
4300 as_bad (_("redundant %s prefix"),
4301 current_templates->start->name);
4302 return NULL;
45288df1 4303 }
86fa6981 4304 if (current_templates->start->opcode_length == 0)
29b0f896 4305 {
86fa6981
L
4306 /* Handle pseudo prefixes. */
4307 switch (current_templates->start->base_opcode)
4308 {
4309 case 0x0:
4310 /* {disp8} */
4311 i.disp_encoding = disp_encoding_8bit;
4312 break;
4313 case 0x1:
4314 /* {disp32} */
4315 i.disp_encoding = disp_encoding_32bit;
4316 break;
4317 case 0x2:
4318 /* {load} */
4319 i.dir_encoding = dir_encoding_load;
4320 break;
4321 case 0x3:
4322 /* {store} */
4323 i.dir_encoding = dir_encoding_store;
4324 break;
4325 case 0x4:
4326 /* {vex2} */
4327 i.vec_encoding = vex_encoding_vex2;
4328 break;
4329 case 0x5:
4330 /* {vex3} */
4331 i.vec_encoding = vex_encoding_vex3;
4332 break;
4333 case 0x6:
4334 /* {evex} */
4335 i.vec_encoding = vex_encoding_evex;
4336 break;
6b6b6807
L
4337 case 0x7:
4338 /* {rex} */
4339 i.rex_encoding = TRUE;
4340 break;
b6f8c7c4
L
4341 case 0x8:
4342 /* {nooptimize} */
4343 i.no_optimize = TRUE;
4344 break;
86fa6981
L
4345 default:
4346 abort ();
4347 }
4348 }
4349 else
4350 {
4351 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4352 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4353 {
4e9ac44a
L
4354 case PREFIX_EXIST:
4355 return NULL;
4356 case PREFIX_DS:
d777820b 4357 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4358 i.notrack_prefix = current_templates->start->name;
4359 break;
4360 case PREFIX_REP:
4361 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4362 i.hle_prefix = current_templates->start->name;
4363 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4364 i.bnd_prefix = current_templates->start->name;
4365 else
4366 i.rep_prefix = current_templates->start->name;
4367 break;
4368 default:
4369 break;
86fa6981 4370 }
29b0f896
AM
4371 }
4372 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4373 token_start = ++l;
4374 }
4375 else
4376 break;
4377 }
45288df1 4378
30a55f88 4379 if (!current_templates)
b6169b20 4380 {
f8a5c266
L
4381 /* Check if we should swap operand or force 32bit displacement in
4382 encoding. */
30a55f88 4383 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4384 i.dir_encoding = dir_encoding_store;
8d63c93e 4385 else if (mnem_p - 3 == dot_p
a501d77e
L
4386 && dot_p[1] == 'd'
4387 && dot_p[2] == '8')
4388 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4389 else if (mnem_p - 4 == dot_p
f8a5c266
L
4390 && dot_p[1] == 'd'
4391 && dot_p[2] == '3'
4392 && dot_p[3] == '2')
a501d77e 4393 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4394 else
4395 goto check_suffix;
4396 mnem_p = dot_p;
4397 *dot_p = '\0';
d3ce72d0 4398 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4399 }
4400
29b0f896
AM
4401 if (!current_templates)
4402 {
b6169b20 4403check_suffix:
29b0f896
AM
4404 /* See if we can get a match by trimming off a suffix. */
4405 switch (mnem_p[-1])
4406 {
4407 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4408 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4409 i.suffix = SHORT_MNEM_SUFFIX;
4410 else
1a0670f3 4411 /* Fall through. */
29b0f896
AM
4412 case BYTE_MNEM_SUFFIX:
4413 case QWORD_MNEM_SUFFIX:
4414 i.suffix = mnem_p[-1];
4415 mnem_p[-1] = '\0';
d3ce72d0
NC
4416 current_templates = (const templates *) hash_find (op_hash,
4417 mnemonic);
29b0f896
AM
4418 break;
4419 case SHORT_MNEM_SUFFIX:
4420 case LONG_MNEM_SUFFIX:
4421 if (!intel_syntax)
4422 {
4423 i.suffix = mnem_p[-1];
4424 mnem_p[-1] = '\0';
d3ce72d0
NC
4425 current_templates = (const templates *) hash_find (op_hash,
4426 mnemonic);
29b0f896
AM
4427 }
4428 break;
252b5132 4429
29b0f896
AM
4430 /* Intel Syntax. */
4431 case 'd':
4432 if (intel_syntax)
4433 {
9306ca4a 4434 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4435 i.suffix = SHORT_MNEM_SUFFIX;
4436 else
4437 i.suffix = LONG_MNEM_SUFFIX;
4438 mnem_p[-1] = '\0';
d3ce72d0
NC
4439 current_templates = (const templates *) hash_find (op_hash,
4440 mnemonic);
29b0f896
AM
4441 }
4442 break;
4443 }
4444 if (!current_templates)
4445 {
4446 as_bad (_("no such instruction: `%s'"), token_start);
4447 return NULL;
4448 }
4449 }
252b5132 4450
40fb9820
L
4451 if (current_templates->start->opcode_modifier.jump
4452 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4453 {
4454 /* Check for a branch hint. We allow ",pt" and ",pn" for
4455 predict taken and predict not taken respectively.
4456 I'm not sure that branch hints actually do anything on loop
4457 and jcxz insns (JumpByte) for current Pentium4 chips. They
4458 may work in the future and it doesn't hurt to accept them
4459 now. */
4460 if (l[0] == ',' && l[1] == 'p')
4461 {
4462 if (l[2] == 't')
4463 {
4464 if (!add_prefix (DS_PREFIX_OPCODE))
4465 return NULL;
4466 l += 3;
4467 }
4468 else if (l[2] == 'n')
4469 {
4470 if (!add_prefix (CS_PREFIX_OPCODE))
4471 return NULL;
4472 l += 3;
4473 }
4474 }
4475 }
4476 /* Any other comma loses. */
4477 if (*l == ',')
4478 {
4479 as_bad (_("invalid character %s in mnemonic"),
4480 output_invalid (*l));
4481 return NULL;
4482 }
252b5132 4483
29b0f896 4484 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4485 supported = 0;
4486 for (t = current_templates->start; t < current_templates->end; ++t)
4487 {
c0f3af97
L
4488 supported |= cpu_flags_match (t);
4489 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4490 {
4491 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4492 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4493
548d0ee6
JB
4494 return l;
4495 }
29b0f896 4496 }
3629bb00 4497
548d0ee6
JB
4498 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4499 as_bad (flag_code == CODE_64BIT
4500 ? _("`%s' is not supported in 64-bit mode")
4501 : _("`%s' is only supported in 64-bit mode"),
4502 current_templates->start->name);
4503 else
4504 as_bad (_("`%s' is not supported on `%s%s'"),
4505 current_templates->start->name,
4506 cpu_arch_name ? cpu_arch_name : default_arch,
4507 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4508
548d0ee6 4509 return NULL;
29b0f896 4510}
252b5132 4511
29b0f896 4512static char *
e3bb37b5 4513parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4514{
4515 char *token_start;
3138f287 4516
29b0f896
AM
4517 /* 1 if operand is pending after ','. */
4518 unsigned int expecting_operand = 0;
252b5132 4519
29b0f896
AM
4520 /* Non-zero if operand parens not balanced. */
4521 unsigned int paren_not_balanced;
4522
4523 while (*l != END_OF_INSN)
4524 {
4525 /* Skip optional white space before operand. */
4526 if (is_space_char (*l))
4527 ++l;
d02603dc 4528 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4529 {
4530 as_bad (_("invalid character %s before operand %d"),
4531 output_invalid (*l),
4532 i.operands + 1);
4533 return NULL;
4534 }
d02603dc 4535 token_start = l; /* After white space. */
29b0f896
AM
4536 paren_not_balanced = 0;
4537 while (paren_not_balanced || *l != ',')
4538 {
4539 if (*l == END_OF_INSN)
4540 {
4541 if (paren_not_balanced)
4542 {
4543 if (!intel_syntax)
4544 as_bad (_("unbalanced parenthesis in operand %d."),
4545 i.operands + 1);
4546 else
4547 as_bad (_("unbalanced brackets in operand %d."),
4548 i.operands + 1);
4549 return NULL;
4550 }
4551 else
4552 break; /* we are done */
4553 }
d02603dc 4554 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4555 {
4556 as_bad (_("invalid character %s in operand %d"),
4557 output_invalid (*l),
4558 i.operands + 1);
4559 return NULL;
4560 }
4561 if (!intel_syntax)
4562 {
4563 if (*l == '(')
4564 ++paren_not_balanced;
4565 if (*l == ')')
4566 --paren_not_balanced;
4567 }
4568 else
4569 {
4570 if (*l == '[')
4571 ++paren_not_balanced;
4572 if (*l == ']')
4573 --paren_not_balanced;
4574 }
4575 l++;
4576 }
4577 if (l != token_start)
4578 { /* Yes, we've read in another operand. */
4579 unsigned int operand_ok;
4580 this_operand = i.operands++;
4581 if (i.operands > MAX_OPERANDS)
4582 {
4583 as_bad (_("spurious operands; (%d operands/instruction max)"),
4584 MAX_OPERANDS);
4585 return NULL;
4586 }
9d46ce34 4587 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4588 /* Now parse operand adding info to 'i' as we go along. */
4589 END_STRING_AND_SAVE (l);
4590
4591 if (intel_syntax)
4592 operand_ok =
4593 i386_intel_operand (token_start,
4594 intel_float_operand (mnemonic));
4595 else
a7619375 4596 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4597
4598 RESTORE_END_STRING (l);
4599 if (!operand_ok)
4600 return NULL;
4601 }
4602 else
4603 {
4604 if (expecting_operand)
4605 {
4606 expecting_operand_after_comma:
4607 as_bad (_("expecting operand after ','; got nothing"));
4608 return NULL;
4609 }
4610 if (*l == ',')
4611 {
4612 as_bad (_("expecting operand before ','; got nothing"));
4613 return NULL;
4614 }
4615 }
7f3f1ea2 4616
29b0f896
AM
4617 /* Now *l must be either ',' or END_OF_INSN. */
4618 if (*l == ',')
4619 {
4620 if (*++l == END_OF_INSN)
4621 {
4622 /* Just skip it, if it's \n complain. */
4623 goto expecting_operand_after_comma;
4624 }
4625 expecting_operand = 1;
4626 }
4627 }
4628 return l;
4629}
7f3f1ea2 4630
050dfa73 4631static void
4d456e3d 4632swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4633{
4634 union i386_op temp_op;
40fb9820 4635 i386_operand_type temp_type;
050dfa73 4636 enum bfd_reloc_code_real temp_reloc;
4eed87de 4637
050dfa73
MM
4638 temp_type = i.types[xchg2];
4639 i.types[xchg2] = i.types[xchg1];
4640 i.types[xchg1] = temp_type;
4641 temp_op = i.op[xchg2];
4642 i.op[xchg2] = i.op[xchg1];
4643 i.op[xchg1] = temp_op;
4644 temp_reloc = i.reloc[xchg2];
4645 i.reloc[xchg2] = i.reloc[xchg1];
4646 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4647
4648 if (i.mask)
4649 {
4650 if (i.mask->operand == xchg1)
4651 i.mask->operand = xchg2;
4652 else if (i.mask->operand == xchg2)
4653 i.mask->operand = xchg1;
4654 }
4655 if (i.broadcast)
4656 {
4657 if (i.broadcast->operand == xchg1)
4658 i.broadcast->operand = xchg2;
4659 else if (i.broadcast->operand == xchg2)
4660 i.broadcast->operand = xchg1;
4661 }
4662 if (i.rounding)
4663 {
4664 if (i.rounding->operand == xchg1)
4665 i.rounding->operand = xchg2;
4666 else if (i.rounding->operand == xchg2)
4667 i.rounding->operand = xchg1;
4668 }
050dfa73
MM
4669}
4670
29b0f896 4671static void
e3bb37b5 4672swap_operands (void)
29b0f896 4673{
b7c61d9a 4674 switch (i.operands)
050dfa73 4675 {
c0f3af97 4676 case 5:
b7c61d9a 4677 case 4:
4d456e3d 4678 swap_2_operands (1, i.operands - 2);
1a0670f3 4679 /* Fall through. */
b7c61d9a
L
4680 case 3:
4681 case 2:
4d456e3d 4682 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4683 break;
4684 default:
4685 abort ();
29b0f896 4686 }
29b0f896
AM
4687
4688 if (i.mem_operands == 2)
4689 {
4690 const seg_entry *temp_seg;
4691 temp_seg = i.seg[0];
4692 i.seg[0] = i.seg[1];
4693 i.seg[1] = temp_seg;
4694 }
4695}
252b5132 4696
29b0f896
AM
4697/* Try to ensure constant immediates are represented in the smallest
4698 opcode possible. */
4699static void
e3bb37b5 4700optimize_imm (void)
29b0f896
AM
4701{
4702 char guess_suffix = 0;
4703 int op;
252b5132 4704
29b0f896
AM
4705 if (i.suffix)
4706 guess_suffix = i.suffix;
4707 else if (i.reg_operands)
4708 {
4709 /* Figure out a suffix from the last register operand specified.
4710 We can't do this properly yet, ie. excluding InOutPortReg,
4711 but the following works for instructions with immediates.
4712 In any case, we can't set i.suffix yet. */
4713 for (op = i.operands; --op >= 0;)
dc821c5f 4714 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4715 {
40fb9820
L
4716 guess_suffix = BYTE_MNEM_SUFFIX;
4717 break;
4718 }
dc821c5f 4719 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4720 {
40fb9820
L
4721 guess_suffix = WORD_MNEM_SUFFIX;
4722 break;
4723 }
dc821c5f 4724 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4725 {
4726 guess_suffix = LONG_MNEM_SUFFIX;
4727 break;
4728 }
dc821c5f 4729 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4730 {
4731 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4732 break;
252b5132 4733 }
29b0f896
AM
4734 }
4735 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4736 guess_suffix = WORD_MNEM_SUFFIX;
4737
4738 for (op = i.operands; --op >= 0;)
40fb9820 4739 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4740 {
4741 switch (i.op[op].imms->X_op)
252b5132 4742 {
29b0f896
AM
4743 case O_constant:
4744 /* If a suffix is given, this operand may be shortened. */
4745 switch (guess_suffix)
252b5132 4746 {
29b0f896 4747 case LONG_MNEM_SUFFIX:
40fb9820
L
4748 i.types[op].bitfield.imm32 = 1;
4749 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4750 break;
4751 case WORD_MNEM_SUFFIX:
40fb9820
L
4752 i.types[op].bitfield.imm16 = 1;
4753 i.types[op].bitfield.imm32 = 1;
4754 i.types[op].bitfield.imm32s = 1;
4755 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4756 break;
4757 case BYTE_MNEM_SUFFIX:
40fb9820
L
4758 i.types[op].bitfield.imm8 = 1;
4759 i.types[op].bitfield.imm8s = 1;
4760 i.types[op].bitfield.imm16 = 1;
4761 i.types[op].bitfield.imm32 = 1;
4762 i.types[op].bitfield.imm32s = 1;
4763 i.types[op].bitfield.imm64 = 1;
29b0f896 4764 break;
252b5132 4765 }
252b5132 4766
29b0f896
AM
4767 /* If this operand is at most 16 bits, convert it
4768 to a signed 16 bit number before trying to see
4769 whether it will fit in an even smaller size.
4770 This allows a 16-bit operand such as $0xffe0 to
4771 be recognised as within Imm8S range. */
40fb9820 4772 if ((i.types[op].bitfield.imm16)
29b0f896 4773 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4774 {
29b0f896
AM
4775 i.op[op].imms->X_add_number =
4776 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4777 }
a28def75
L
4778#ifdef BFD64
4779 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4780 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4781 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4782 == 0))
4783 {
4784 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4785 ^ ((offsetT) 1 << 31))
4786 - ((offsetT) 1 << 31));
4787 }
a28def75 4788#endif
40fb9820 4789 i.types[op]
c6fb90c8
L
4790 = operand_type_or (i.types[op],
4791 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4792
29b0f896
AM
4793 /* We must avoid matching of Imm32 templates when 64bit
4794 only immediate is available. */
4795 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4796 i.types[op].bitfield.imm32 = 0;
29b0f896 4797 break;
252b5132 4798
29b0f896
AM
4799 case O_absent:
4800 case O_register:
4801 abort ();
4802
4803 /* Symbols and expressions. */
4804 default:
9cd96992
JB
4805 /* Convert symbolic operand to proper sizes for matching, but don't
4806 prevent matching a set of insns that only supports sizes other
4807 than those matching the insn suffix. */
4808 {
40fb9820 4809 i386_operand_type mask, allowed;
d3ce72d0 4810 const insn_template *t;
9cd96992 4811
0dfbf9d7
L
4812 operand_type_set (&mask, 0);
4813 operand_type_set (&allowed, 0);
40fb9820 4814
4eed87de
AM
4815 for (t = current_templates->start;
4816 t < current_templates->end;
4817 ++t)
c6fb90c8
L
4818 allowed = operand_type_or (allowed,
4819 t->operand_types[op]);
9cd96992
JB
4820 switch (guess_suffix)
4821 {
4822 case QWORD_MNEM_SUFFIX:
40fb9820
L
4823 mask.bitfield.imm64 = 1;
4824 mask.bitfield.imm32s = 1;
9cd96992
JB
4825 break;
4826 case LONG_MNEM_SUFFIX:
40fb9820 4827 mask.bitfield.imm32 = 1;
9cd96992
JB
4828 break;
4829 case WORD_MNEM_SUFFIX:
40fb9820 4830 mask.bitfield.imm16 = 1;
9cd96992
JB
4831 break;
4832 case BYTE_MNEM_SUFFIX:
40fb9820 4833 mask.bitfield.imm8 = 1;
9cd96992
JB
4834 break;
4835 default:
9cd96992
JB
4836 break;
4837 }
c6fb90c8 4838 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4839 if (!operand_type_all_zero (&allowed))
c6fb90c8 4840 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4841 }
29b0f896 4842 break;
252b5132 4843 }
29b0f896
AM
4844 }
4845}
47926f60 4846
29b0f896
AM
4847/* Try to use the smallest displacement type too. */
4848static void
e3bb37b5 4849optimize_disp (void)
29b0f896
AM
4850{
4851 int op;
3e73aa7c 4852
29b0f896 4853 for (op = i.operands; --op >= 0;)
40fb9820 4854 if (operand_type_check (i.types[op], disp))
252b5132 4855 {
b300c311 4856 if (i.op[op].disps->X_op == O_constant)
252b5132 4857 {
91d6fa6a 4858 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4859
40fb9820 4860 if (i.types[op].bitfield.disp16
91d6fa6a 4861 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4862 {
4863 /* If this operand is at most 16 bits, convert
4864 to a signed 16 bit number and don't use 64bit
4865 displacement. */
91d6fa6a 4866 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4867 i.types[op].bitfield.disp64 = 0;
b300c311 4868 }
a28def75
L
4869#ifdef BFD64
4870 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4871 if (i.types[op].bitfield.disp32
91d6fa6a 4872 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4873 {
4874 /* If this operand is at most 32 bits, convert
4875 to a signed 32 bit number and don't use 64bit
4876 displacement. */
91d6fa6a
NC
4877 op_disp &= (((offsetT) 2 << 31) - 1);
4878 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4879 i.types[op].bitfield.disp64 = 0;
b300c311 4880 }
a28def75 4881#endif
91d6fa6a 4882 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4883 {
40fb9820
L
4884 i.types[op].bitfield.disp8 = 0;
4885 i.types[op].bitfield.disp16 = 0;
4886 i.types[op].bitfield.disp32 = 0;
4887 i.types[op].bitfield.disp32s = 0;
4888 i.types[op].bitfield.disp64 = 0;
b300c311
L
4889 i.op[op].disps = 0;
4890 i.disp_operands--;
4891 }
4892 else if (flag_code == CODE_64BIT)
4893 {
91d6fa6a 4894 if (fits_in_signed_long (op_disp))
28a9d8f5 4895 {
40fb9820
L
4896 i.types[op].bitfield.disp64 = 0;
4897 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4898 }
0e1147d9 4899 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4900 && fits_in_unsigned_long (op_disp))
40fb9820 4901 i.types[op].bitfield.disp32 = 1;
b300c311 4902 }
40fb9820
L
4903 if ((i.types[op].bitfield.disp32
4904 || i.types[op].bitfield.disp32s
4905 || i.types[op].bitfield.disp16)
b5014f7a 4906 && fits_in_disp8 (op_disp))
40fb9820 4907 i.types[op].bitfield.disp8 = 1;
252b5132 4908 }
67a4f2b7
AO
4909 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4910 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4911 {
4912 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4913 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4914 i.types[op].bitfield.disp8 = 0;
4915 i.types[op].bitfield.disp16 = 0;
4916 i.types[op].bitfield.disp32 = 0;
4917 i.types[op].bitfield.disp32s = 0;
4918 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4919 }
4920 else
b300c311 4921 /* We only support 64bit displacement on constants. */
40fb9820 4922 i.types[op].bitfield.disp64 = 0;
252b5132 4923 }
29b0f896
AM
4924}
4925
6c30d220
L
4926/* Check if operands are valid for the instruction. */
4927
4928static int
4929check_VecOperands (const insn_template *t)
4930{
43234a1e
L
4931 unsigned int op;
4932
6c30d220
L
4933 /* Without VSIB byte, we can't have a vector register for index. */
4934 if (!t->opcode_modifier.vecsib
4935 && i.index_reg
1b54b8d7
JB
4936 && (i.index_reg->reg_type.bitfield.xmmword
4937 || i.index_reg->reg_type.bitfield.ymmword
4938 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4939 {
4940 i.error = unsupported_vector_index_register;
4941 return 1;
4942 }
4943
ad8ecc81
MZ
4944 /* Check if default mask is allowed. */
4945 if (t->opcode_modifier.nodefmask
4946 && (!i.mask || i.mask->mask->reg_num == 0))
4947 {
4948 i.error = no_default_mask;
4949 return 1;
4950 }
4951
7bab8ab5
JB
4952 /* For VSIB byte, we need a vector register for index, and all vector
4953 registers must be distinct. */
4954 if (t->opcode_modifier.vecsib)
4955 {
4956 if (!i.index_reg
6c30d220 4957 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4958 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4959 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4960 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4961 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4962 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
4963 {
4964 i.error = invalid_vsib_address;
4965 return 1;
4966 }
4967
43234a1e
L
4968 gas_assert (i.reg_operands == 2 || i.mask);
4969 if (i.reg_operands == 2 && !i.mask)
4970 {
1b54b8d7
JB
4971 gas_assert (i.types[0].bitfield.regsimd);
4972 gas_assert (i.types[0].bitfield.xmmword
4973 || i.types[0].bitfield.ymmword);
4974 gas_assert (i.types[2].bitfield.regsimd);
4975 gas_assert (i.types[2].bitfield.xmmword
4976 || i.types[2].bitfield.ymmword);
43234a1e
L
4977 if (operand_check == check_none)
4978 return 0;
4979 if (register_number (i.op[0].regs)
4980 != register_number (i.index_reg)
4981 && register_number (i.op[2].regs)
4982 != register_number (i.index_reg)
4983 && register_number (i.op[0].regs)
4984 != register_number (i.op[2].regs))
4985 return 0;
4986 if (operand_check == check_error)
4987 {
4988 i.error = invalid_vector_register_set;
4989 return 1;
4990 }
4991 as_warn (_("mask, index, and destination registers should be distinct"));
4992 }
8444f82a
MZ
4993 else if (i.reg_operands == 1 && i.mask)
4994 {
1b54b8d7
JB
4995 if (i.types[1].bitfield.regsimd
4996 && (i.types[1].bitfield.xmmword
4997 || i.types[1].bitfield.ymmword
4998 || i.types[1].bitfield.zmmword)
8444f82a
MZ
4999 && (register_number (i.op[1].regs)
5000 == register_number (i.index_reg)))
5001 {
5002 if (operand_check == check_error)
5003 {
5004 i.error = invalid_vector_register_set;
5005 return 1;
5006 }
5007 if (operand_check != check_none)
5008 as_warn (_("index and destination registers should be distinct"));
5009 }
5010 }
43234a1e 5011 }
7bab8ab5 5012
43234a1e
L
5013 /* Check if broadcast is supported by the instruction and is applied
5014 to the memory operand. */
5015 if (i.broadcast)
5016 {
5017 int broadcasted_opnd_size;
5018
5019 /* Check if specified broadcast is supported in this instruction,
5020 and it's applied to memory operand of DWORD or QWORD type,
5021 depending on VecESize. */
5022 if (i.broadcast->type != t->opcode_modifier.broadcast
5023 || !i.types[i.broadcast->operand].bitfield.mem
5024 || (t->opcode_modifier.vecesize == 0
5025 && !i.types[i.broadcast->operand].bitfield.dword
5026 && !i.types[i.broadcast->operand].bitfield.unspecified)
5027 || (t->opcode_modifier.vecesize == 1
5028 && !i.types[i.broadcast->operand].bitfield.qword
5029 && !i.types[i.broadcast->operand].bitfield.unspecified))
5030 goto bad_broadcast;
5031
5032 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5033 if (i.broadcast->type == BROADCAST_1TO16)
5034 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5035 else if (i.broadcast->type == BROADCAST_1TO8)
5036 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
5037 else if (i.broadcast->type == BROADCAST_1TO4)
5038 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5039 else if (i.broadcast->type == BROADCAST_1TO2)
5040 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
5041 else
5042 goto bad_broadcast;
5043
5044 if ((broadcasted_opnd_size == 256
5045 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5046 || (broadcasted_opnd_size == 512
5047 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5048 {
5049 bad_broadcast:
5050 i.error = unsupported_broadcast;
5051 return 1;
5052 }
5053 }
5054 /* If broadcast is supported in this instruction, we need to check if
5055 operand of one-element size isn't specified without broadcast. */
5056 else if (t->opcode_modifier.broadcast && i.mem_operands)
5057 {
5058 /* Find memory operand. */
5059 for (op = 0; op < i.operands; op++)
5060 if (operand_type_check (i.types[op], anymem))
5061 break;
5062 gas_assert (op < i.operands);
5063 /* Check size of the memory operand. */
5064 if ((t->opcode_modifier.vecesize == 0
5065 && i.types[op].bitfield.dword)
5066 || (t->opcode_modifier.vecesize == 1
5067 && i.types[op].bitfield.qword))
5068 {
5069 i.error = broadcast_needed;
5070 return 1;
5071 }
5072 }
5073
5074 /* Check if requested masking is supported. */
5075 if (i.mask
5076 && (!t->opcode_modifier.masking
5077 || (i.mask->zeroing
5078 && t->opcode_modifier.masking == MERGING_MASKING)))
5079 {
5080 i.error = unsupported_masking;
5081 return 1;
5082 }
5083
5084 /* Check if masking is applied to dest operand. */
5085 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5086 {
5087 i.error = mask_not_on_destination;
5088 return 1;
5089 }
5090
43234a1e
L
5091 /* Check RC/SAE. */
5092 if (i.rounding)
5093 {
5094 if ((i.rounding->type != saeonly
5095 && !t->opcode_modifier.staticrounding)
5096 || (i.rounding->type == saeonly
5097 && (t->opcode_modifier.staticrounding
5098 || !t->opcode_modifier.sae)))
5099 {
5100 i.error = unsupported_rc_sae;
5101 return 1;
5102 }
5103 /* If the instruction has several immediate operands and one of
5104 them is rounding, the rounding operand should be the last
5105 immediate operand. */
5106 if (i.imm_operands > 1
5107 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5108 {
43234a1e 5109 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5110 return 1;
5111 }
6c30d220
L
5112 }
5113
43234a1e 5114 /* Check vector Disp8 operand. */
b5014f7a
JB
5115 if (t->opcode_modifier.disp8memshift
5116 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5117 {
5118 if (i.broadcast)
5119 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5120 else
5121 i.memshift = t->opcode_modifier.disp8memshift;
5122
5123 for (op = 0; op < i.operands; op++)
5124 if (operand_type_check (i.types[op], disp)
5125 && i.op[op].disps->X_op == O_constant)
5126 {
b5014f7a 5127 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5128 {
b5014f7a
JB
5129 i.types[op].bitfield.disp8 = 1;
5130 return 0;
43234a1e 5131 }
b5014f7a 5132 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5133 }
5134 }
b5014f7a
JB
5135
5136 i.memshift = 0;
43234a1e 5137
6c30d220
L
5138 return 0;
5139}
5140
43f3e2ee 5141/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5142 operand types. */
5143
5144static int
5145VEX_check_operands (const insn_template *t)
5146{
86fa6981 5147 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5148 {
86fa6981
L
5149 /* This instruction must be encoded with EVEX prefix. */
5150 if (!t->opcode_modifier.evex)
5151 {
5152 i.error = unsupported;
5153 return 1;
5154 }
5155 return 0;
43234a1e
L
5156 }
5157
a683cc34 5158 if (!t->opcode_modifier.vex)
86fa6981
L
5159 {
5160 /* This instruction template doesn't have VEX prefix. */
5161 if (i.vec_encoding != vex_encoding_default)
5162 {
5163 i.error = unsupported;
5164 return 1;
5165 }
5166 return 0;
5167 }
a683cc34
SP
5168
5169 /* Only check VEX_Imm4, which must be the first operand. */
5170 if (t->operand_types[0].bitfield.vec_imm4)
5171 {
5172 if (i.op[0].imms->X_op != O_constant
5173 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5174 {
a65babc9 5175 i.error = bad_imm4;
891edac4
L
5176 return 1;
5177 }
a683cc34
SP
5178
5179 /* Turn off Imm8 so that update_imm won't complain. */
5180 i.types[0] = vec_imm4;
5181 }
5182
5183 return 0;
5184}
5185
d3ce72d0 5186static const insn_template *
83b16ac6 5187match_template (char mnem_suffix)
29b0f896
AM
5188{
5189 /* Points to template once we've found it. */
d3ce72d0 5190 const insn_template *t;
40fb9820 5191 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5192 i386_operand_type overlap4;
29b0f896 5193 unsigned int found_reverse_match;
83b16ac6 5194 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5195 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5196 int addr_prefix_disp;
a5c311ca 5197 unsigned int j;
3629bb00 5198 unsigned int found_cpu_match;
45664ddb 5199 unsigned int check_register;
5614d22c 5200 enum i386_error specific_error = 0;
29b0f896 5201
c0f3af97
L
5202#if MAX_OPERANDS != 5
5203# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5204#endif
5205
29b0f896 5206 found_reverse_match = 0;
539e75ad 5207 addr_prefix_disp = -1;
40fb9820
L
5208
5209 memset (&suffix_check, 0, sizeof (suffix_check));
5210 if (i.suffix == BYTE_MNEM_SUFFIX)
5211 suffix_check.no_bsuf = 1;
5212 else if (i.suffix == WORD_MNEM_SUFFIX)
5213 suffix_check.no_wsuf = 1;
5214 else if (i.suffix == SHORT_MNEM_SUFFIX)
5215 suffix_check.no_ssuf = 1;
5216 else if (i.suffix == LONG_MNEM_SUFFIX)
5217 suffix_check.no_lsuf = 1;
5218 else if (i.suffix == QWORD_MNEM_SUFFIX)
5219 suffix_check.no_qsuf = 1;
5220 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5221 suffix_check.no_ldsuf = 1;
29b0f896 5222
83b16ac6
JB
5223 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5224 if (intel_syntax)
5225 {
5226 switch (mnem_suffix)
5227 {
5228 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5229 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5230 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5231 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5232 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5233 }
5234 }
5235
01559ecc
L
5236 /* Must have right number of operands. */
5237 i.error = number_of_operands_mismatch;
5238
45aa61fe 5239 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5240 {
539e75ad
L
5241 addr_prefix_disp = -1;
5242
29b0f896
AM
5243 if (i.operands != t->operands)
5244 continue;
5245
50aecf8c 5246 /* Check processor support. */
a65babc9 5247 i.error = unsupported;
c0f3af97
L
5248 found_cpu_match = (cpu_flags_match (t)
5249 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5250 if (!found_cpu_match)
5251 continue;
5252
e1d4d893 5253 /* Check old gcc support. */
a65babc9 5254 i.error = old_gcc_only;
e1d4d893
L
5255 if (!old_gcc && t->opcode_modifier.oldgcc)
5256 continue;
5257
5258 /* Check AT&T mnemonic. */
a65babc9 5259 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5260 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5261 continue;
5262
e92bae62 5263 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5264 i.error = unsupported_syntax;
5c07affc 5265 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5266 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5267 || (intel64 && t->opcode_modifier.amd64)
5268 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5269 continue;
5270
20592a94 5271 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5272 i.error = invalid_instruction_suffix;
567e4e96
L
5273 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5274 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5275 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5276 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5277 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5278 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5279 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5280 continue;
83b16ac6
JB
5281 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5282 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5283 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5284 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5285 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5286 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5287 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5288 continue;
29b0f896 5289
5c07affc 5290 if (!operand_size_match (t))
7d5e4556 5291 continue;
539e75ad 5292
5c07affc
L
5293 for (j = 0; j < MAX_OPERANDS; j++)
5294 operand_types[j] = t->operand_types[j];
5295
45aa61fe
AM
5296 /* In general, don't allow 64-bit operands in 32-bit mode. */
5297 if (i.suffix == QWORD_MNEM_SUFFIX
5298 && flag_code != CODE_64BIT
5299 && (intel_syntax
40fb9820 5300 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5301 && !intel_float_operand (t->name))
5302 : intel_float_operand (t->name) != 2)
40fb9820 5303 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5304 && !operand_types[0].bitfield.regsimd)
40fb9820 5305 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5306 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5307 && (t->base_opcode != 0x0fc7
5308 || t->extension_opcode != 1 /* cmpxchg8b */))
5309 continue;
5310
192dc9c6
JB
5311 /* In general, don't allow 32-bit operands on pre-386. */
5312 else if (i.suffix == LONG_MNEM_SUFFIX
5313 && !cpu_arch_flags.bitfield.cpui386
5314 && (intel_syntax
5315 ? (!t->opcode_modifier.ignoresize
5316 && !intel_float_operand (t->name))
5317 : intel_float_operand (t->name) != 2)
5318 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5319 && !operand_types[0].bitfield.regsimd)
192dc9c6 5320 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5321 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5322 continue;
5323
29b0f896 5324 /* Do not verify operands when there are none. */
50aecf8c 5325 else
29b0f896 5326 {
c6fb90c8 5327 if (!t->operands)
2dbab7d5
L
5328 /* We've found a match; break out of loop. */
5329 break;
29b0f896 5330 }
252b5132 5331
539e75ad
L
5332 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5333 into Disp32/Disp16/Disp32 operand. */
5334 if (i.prefix[ADDR_PREFIX] != 0)
5335 {
40fb9820 5336 /* There should be only one Disp operand. */
539e75ad
L
5337 switch (flag_code)
5338 {
5339 case CODE_16BIT:
40fb9820
L
5340 for (j = 0; j < MAX_OPERANDS; j++)
5341 {
5342 if (operand_types[j].bitfield.disp16)
5343 {
5344 addr_prefix_disp = j;
5345 operand_types[j].bitfield.disp32 = 1;
5346 operand_types[j].bitfield.disp16 = 0;
5347 break;
5348 }
5349 }
539e75ad
L
5350 break;
5351 case CODE_32BIT:
40fb9820
L
5352 for (j = 0; j < MAX_OPERANDS; j++)
5353 {
5354 if (operand_types[j].bitfield.disp32)
5355 {
5356 addr_prefix_disp = j;
5357 operand_types[j].bitfield.disp32 = 0;
5358 operand_types[j].bitfield.disp16 = 1;
5359 break;
5360 }
5361 }
539e75ad
L
5362 break;
5363 case CODE_64BIT:
40fb9820
L
5364 for (j = 0; j < MAX_OPERANDS; j++)
5365 {
5366 if (operand_types[j].bitfield.disp64)
5367 {
5368 addr_prefix_disp = j;
5369 operand_types[j].bitfield.disp64 = 0;
5370 operand_types[j].bitfield.disp32 = 1;
5371 break;
5372 }
5373 }
539e75ad
L
5374 break;
5375 }
539e75ad
L
5376 }
5377
02a86693
L
5378 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5379 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5380 continue;
5381
56ffb741
L
5382 /* We check register size if needed. */
5383 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5384 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5385 switch (t->operands)
5386 {
5387 case 1:
40fb9820 5388 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5389 continue;
5390 break;
5391 case 2:
33eaf5de 5392 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5393 only in 32bit mode and we can use opcode 0x90. In 64bit
5394 mode, we can't use 0x90 for xchg %eax, %eax since it should
5395 zero-extend %eax to %rax. */
5396 if (flag_code == CODE_64BIT
5397 && t->base_opcode == 0x90
0dfbf9d7
L
5398 && operand_type_equal (&i.types [0], &acc32)
5399 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5400 continue;
86fa6981
L
5401 /* If we want store form, we reverse direction of operands. */
5402 if (i.dir_encoding == dir_encoding_store
5403 && t->opcode_modifier.d)
5404 goto check_reverse;
1a0670f3 5405 /* Fall through. */
b6169b20 5406
29b0f896 5407 case 3:
86fa6981
L
5408 /* If we want store form, we skip the current load. */
5409 if (i.dir_encoding == dir_encoding_store
5410 && i.mem_operands == 0
5411 && t->opcode_modifier.load)
fa99fab2 5412 continue;
1a0670f3 5413 /* Fall through. */
f48ff2ae 5414 case 4:
c0f3af97 5415 case 5:
c6fb90c8 5416 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5417 if (!operand_type_match (overlap0, i.types[0])
5418 || !operand_type_match (overlap1, i.types[1])
45664ddb 5419 || (check_register
dc821c5f 5420 && !operand_type_register_match (i.types[0],
40fb9820 5421 operand_types[0],
dc821c5f 5422 i.types[1],
40fb9820 5423 operand_types[1])))
29b0f896
AM
5424 {
5425 /* Check if other direction is valid ... */
38e314eb 5426 if (!t->opcode_modifier.d)
29b0f896
AM
5427 continue;
5428
b6169b20 5429check_reverse:
29b0f896 5430 /* Try reversing direction of operands. */
c6fb90c8
L
5431 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5432 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5433 if (!operand_type_match (overlap0, i.types[0])
5434 || !operand_type_match (overlap1, i.types[1])
45664ddb 5435 || (check_register
dc821c5f 5436 && !operand_type_register_match (i.types[0],
45664ddb 5437 operand_types[1],
45664ddb
L
5438 i.types[1],
5439 operand_types[0])))
29b0f896
AM
5440 {
5441 /* Does not match either direction. */
5442 continue;
5443 }
38e314eb 5444 /* found_reverse_match holds which of D or FloatR
29b0f896 5445 we've found. */
38e314eb
JB
5446 if (!t->opcode_modifier.d)
5447 found_reverse_match = 0;
5448 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5449 found_reverse_match = Opcode_FloatD;
5450 else
38e314eb 5451 found_reverse_match = Opcode_D;
40fb9820 5452 if (t->opcode_modifier.floatr)
8a2ed489 5453 found_reverse_match |= Opcode_FloatR;
29b0f896 5454 }
f48ff2ae 5455 else
29b0f896 5456 {
f48ff2ae 5457 /* Found a forward 2 operand match here. */
d1cbb4db
L
5458 switch (t->operands)
5459 {
c0f3af97
L
5460 case 5:
5461 overlap4 = operand_type_and (i.types[4],
5462 operand_types[4]);
1a0670f3 5463 /* Fall through. */
d1cbb4db 5464 case 4:
c6fb90c8
L
5465 overlap3 = operand_type_and (i.types[3],
5466 operand_types[3]);
1a0670f3 5467 /* Fall through. */
d1cbb4db 5468 case 3:
c6fb90c8
L
5469 overlap2 = operand_type_and (i.types[2],
5470 operand_types[2]);
d1cbb4db
L
5471 break;
5472 }
29b0f896 5473
f48ff2ae
L
5474 switch (t->operands)
5475 {
c0f3af97
L
5476 case 5:
5477 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5478 || !operand_type_register_match (i.types[3],
c0f3af97 5479 operand_types[3],
c0f3af97
L
5480 i.types[4],
5481 operand_types[4]))
5482 continue;
1a0670f3 5483 /* Fall through. */
f48ff2ae 5484 case 4:
40fb9820 5485 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5486 || (check_register
dc821c5f 5487 && !operand_type_register_match (i.types[2],
45664ddb 5488 operand_types[2],
45664ddb
L
5489 i.types[3],
5490 operand_types[3])))
f48ff2ae 5491 continue;
1a0670f3 5492 /* Fall through. */
f48ff2ae
L
5493 case 3:
5494 /* Here we make use of the fact that there are no
5495 reverse match 3 operand instructions, and all 3
5496 operand instructions only need to be checked for
5497 register consistency between operands 2 and 3. */
40fb9820 5498 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5499 || (check_register
dc821c5f 5500 && !operand_type_register_match (i.types[1],
45664ddb 5501 operand_types[1],
45664ddb
L
5502 i.types[2],
5503 operand_types[2])))
f48ff2ae
L
5504 continue;
5505 break;
5506 }
29b0f896 5507 }
f48ff2ae 5508 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5509 slip through to break. */
5510 }
3629bb00 5511 if (!found_cpu_match)
29b0f896
AM
5512 {
5513 found_reverse_match = 0;
5514 continue;
5515 }
c0f3af97 5516
5614d22c
JB
5517 /* Check if vector and VEX operands are valid. */
5518 if (check_VecOperands (t) || VEX_check_operands (t))
5519 {
5520 specific_error = i.error;
5521 continue;
5522 }
a683cc34 5523
29b0f896
AM
5524 /* We've found a match; break out of loop. */
5525 break;
5526 }
5527
5528 if (t == current_templates->end)
5529 {
5530 /* We found no match. */
a65babc9 5531 const char *err_msg;
5614d22c 5532 switch (specific_error ? specific_error : i.error)
a65babc9
L
5533 {
5534 default:
5535 abort ();
86e026a4 5536 case operand_size_mismatch:
a65babc9
L
5537 err_msg = _("operand size mismatch");
5538 break;
5539 case operand_type_mismatch:
5540 err_msg = _("operand type mismatch");
5541 break;
5542 case register_type_mismatch:
5543 err_msg = _("register type mismatch");
5544 break;
5545 case number_of_operands_mismatch:
5546 err_msg = _("number of operands mismatch");
5547 break;
5548 case invalid_instruction_suffix:
5549 err_msg = _("invalid instruction suffix");
5550 break;
5551 case bad_imm4:
4a2608e3 5552 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5553 break;
5554 case old_gcc_only:
5555 err_msg = _("only supported with old gcc");
5556 break;
5557 case unsupported_with_intel_mnemonic:
5558 err_msg = _("unsupported with Intel mnemonic");
5559 break;
5560 case unsupported_syntax:
5561 err_msg = _("unsupported syntax");
5562 break;
5563 case unsupported:
35262a23 5564 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5565 current_templates->start->name);
5566 return NULL;
6c30d220
L
5567 case invalid_vsib_address:
5568 err_msg = _("invalid VSIB address");
5569 break;
7bab8ab5
JB
5570 case invalid_vector_register_set:
5571 err_msg = _("mask, index, and destination registers must be distinct");
5572 break;
6c30d220
L
5573 case unsupported_vector_index_register:
5574 err_msg = _("unsupported vector index register");
5575 break;
43234a1e
L
5576 case unsupported_broadcast:
5577 err_msg = _("unsupported broadcast");
5578 break;
5579 case broadcast_not_on_src_operand:
5580 err_msg = _("broadcast not on source memory operand");
5581 break;
5582 case broadcast_needed:
5583 err_msg = _("broadcast is needed for operand of such type");
5584 break;
5585 case unsupported_masking:
5586 err_msg = _("unsupported masking");
5587 break;
5588 case mask_not_on_destination:
5589 err_msg = _("mask not on destination operand");
5590 break;
5591 case no_default_mask:
5592 err_msg = _("default mask isn't allowed");
5593 break;
5594 case unsupported_rc_sae:
5595 err_msg = _("unsupported static rounding/sae");
5596 break;
5597 case rc_sae_operand_not_last_imm:
5598 if (intel_syntax)
5599 err_msg = _("RC/SAE operand must precede immediate operands");
5600 else
5601 err_msg = _("RC/SAE operand must follow immediate operands");
5602 break;
5603 case invalid_register_operand:
5604 err_msg = _("invalid register operand");
5605 break;
a65babc9
L
5606 }
5607 as_bad (_("%s for `%s'"), err_msg,
891edac4 5608 current_templates->start->name);
fa99fab2 5609 return NULL;
29b0f896 5610 }
252b5132 5611
29b0f896
AM
5612 if (!quiet_warnings)
5613 {
5614 if (!intel_syntax
40fb9820
L
5615 && (i.types[0].bitfield.jumpabsolute
5616 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5617 {
5618 as_warn (_("indirect %s without `*'"), t->name);
5619 }
5620
40fb9820
L
5621 if (t->opcode_modifier.isprefix
5622 && t->opcode_modifier.ignoresize)
29b0f896
AM
5623 {
5624 /* Warn them that a data or address size prefix doesn't
5625 affect assembly of the next line of code. */
5626 as_warn (_("stand-alone `%s' prefix"), t->name);
5627 }
5628 }
5629
5630 /* Copy the template we found. */
5631 i.tm = *t;
539e75ad
L
5632
5633 if (addr_prefix_disp != -1)
5634 i.tm.operand_types[addr_prefix_disp]
5635 = operand_types[addr_prefix_disp];
5636
29b0f896
AM
5637 if (found_reverse_match)
5638 {
5639 /* If we found a reverse match we must alter the opcode
5640 direction bit. found_reverse_match holds bits to change
5641 (different for int & float insns). */
5642
5643 i.tm.base_opcode ^= found_reverse_match;
5644
539e75ad
L
5645 i.tm.operand_types[0] = operand_types[1];
5646 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5647 }
5648
fa99fab2 5649 return t;
29b0f896
AM
5650}
5651
5652static int
e3bb37b5 5653check_string (void)
29b0f896 5654{
40fb9820
L
5655 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5656 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5657 {
5658 if (i.seg[0] != NULL && i.seg[0] != &es)
5659 {
a87af027 5660 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5661 i.tm.name,
a87af027
JB
5662 mem_op + 1,
5663 register_prefix);
29b0f896
AM
5664 return 0;
5665 }
5666 /* There's only ever one segment override allowed per instruction.
5667 This instruction possibly has a legal segment override on the
5668 second operand, so copy the segment to where non-string
5669 instructions store it, allowing common code. */
5670 i.seg[0] = i.seg[1];
5671 }
40fb9820 5672 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5673 {
5674 if (i.seg[1] != NULL && i.seg[1] != &es)
5675 {
a87af027 5676 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5677 i.tm.name,
a87af027
JB
5678 mem_op + 2,
5679 register_prefix);
29b0f896
AM
5680 return 0;
5681 }
5682 }
5683 return 1;
5684}
5685
5686static int
543613e9 5687process_suffix (void)
29b0f896
AM
5688{
5689 /* If matched instruction specifies an explicit instruction mnemonic
5690 suffix, use it. */
40fb9820
L
5691 if (i.tm.opcode_modifier.size16)
5692 i.suffix = WORD_MNEM_SUFFIX;
5693 else if (i.tm.opcode_modifier.size32)
5694 i.suffix = LONG_MNEM_SUFFIX;
5695 else if (i.tm.opcode_modifier.size64)
5696 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5697 else if (i.reg_operands)
5698 {
5699 /* If there's no instruction mnemonic suffix we try to invent one
5700 based on register operands. */
5701 if (!i.suffix)
5702 {
5703 /* We take i.suffix from the last register operand specified,
5704 Destination register type is more significant than source
381d071f
L
5705 register type. crc32 in SSE4.2 prefers source register
5706 type. */
5707 if (i.tm.base_opcode == 0xf20f38f1)
5708 {
dc821c5f 5709 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5710 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5711 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5712 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5713 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5714 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5715 }
9344ff29 5716 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5717 {
dc821c5f 5718 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5719 i.suffix = BYTE_MNEM_SUFFIX;
5720 }
381d071f
L
5721
5722 if (!i.suffix)
5723 {
5724 int op;
5725
20592a94
L
5726 if (i.tm.base_opcode == 0xf20f38f1
5727 || i.tm.base_opcode == 0xf20f38f0)
5728 {
5729 /* We have to know the operand size for crc32. */
5730 as_bad (_("ambiguous memory operand size for `%s`"),
5731 i.tm.name);
5732 return 0;
5733 }
5734
381d071f 5735 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5736 if (!i.tm.operand_types[op].bitfield.inoutportreg
5737 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5738 {
8819ada6
JB
5739 if (!i.types[op].bitfield.reg)
5740 continue;
5741 if (i.types[op].bitfield.byte)
5742 i.suffix = BYTE_MNEM_SUFFIX;
5743 else if (i.types[op].bitfield.word)
5744 i.suffix = WORD_MNEM_SUFFIX;
5745 else if (i.types[op].bitfield.dword)
5746 i.suffix = LONG_MNEM_SUFFIX;
5747 else if (i.types[op].bitfield.qword)
5748 i.suffix = QWORD_MNEM_SUFFIX;
5749 else
5750 continue;
5751 break;
381d071f
L
5752 }
5753 }
29b0f896
AM
5754 }
5755 else if (i.suffix == BYTE_MNEM_SUFFIX)
5756 {
2eb952a4
L
5757 if (intel_syntax
5758 && i.tm.opcode_modifier.ignoresize
5759 && i.tm.opcode_modifier.no_bsuf)
5760 i.suffix = 0;
5761 else if (!check_byte_reg ())
29b0f896
AM
5762 return 0;
5763 }
5764 else if (i.suffix == LONG_MNEM_SUFFIX)
5765 {
2eb952a4
L
5766 if (intel_syntax
5767 && i.tm.opcode_modifier.ignoresize
5768 && i.tm.opcode_modifier.no_lsuf)
5769 i.suffix = 0;
5770 else if (!check_long_reg ())
29b0f896
AM
5771 return 0;
5772 }
5773 else if (i.suffix == QWORD_MNEM_SUFFIX)
5774 {
955e1e6a
L
5775 if (intel_syntax
5776 && i.tm.opcode_modifier.ignoresize
5777 && i.tm.opcode_modifier.no_qsuf)
5778 i.suffix = 0;
5779 else if (!check_qword_reg ())
29b0f896
AM
5780 return 0;
5781 }
5782 else if (i.suffix == WORD_MNEM_SUFFIX)
5783 {
2eb952a4
L
5784 if (intel_syntax
5785 && i.tm.opcode_modifier.ignoresize
5786 && i.tm.opcode_modifier.no_wsuf)
5787 i.suffix = 0;
5788 else if (!check_word_reg ())
29b0f896
AM
5789 return 0;
5790 }
c0f3af97 5791 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5792 || i.suffix == YMMWORD_MNEM_SUFFIX
5793 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5794 {
43234a1e 5795 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5796 should check if it is a valid suffix. */
5797 }
40fb9820 5798 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5799 /* Do nothing if the instruction is going to ignore the prefix. */
5800 ;
5801 else
5802 abort ();
5803 }
40fb9820 5804 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5805 && !i.suffix
5806 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5807 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5808 {
5809 i.suffix = stackop_size;
5810 }
9306ca4a
JB
5811 else if (intel_syntax
5812 && !i.suffix
40fb9820
L
5813 && (i.tm.operand_types[0].bitfield.jumpabsolute
5814 || i.tm.opcode_modifier.jumpbyte
5815 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5816 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5817 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5818 {
5819 switch (flag_code)
5820 {
5821 case CODE_64BIT:
40fb9820 5822 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5823 {
5824 i.suffix = QWORD_MNEM_SUFFIX;
5825 break;
5826 }
1a0670f3 5827 /* Fall through. */
9306ca4a 5828 case CODE_32BIT:
40fb9820 5829 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5830 i.suffix = LONG_MNEM_SUFFIX;
5831 break;
5832 case CODE_16BIT:
40fb9820 5833 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5834 i.suffix = WORD_MNEM_SUFFIX;
5835 break;
5836 }
5837 }
252b5132 5838
9306ca4a 5839 if (!i.suffix)
29b0f896 5840 {
9306ca4a
JB
5841 if (!intel_syntax)
5842 {
40fb9820 5843 if (i.tm.opcode_modifier.w)
9306ca4a 5844 {
4eed87de
AM
5845 as_bad (_("no instruction mnemonic suffix given and "
5846 "no register operands; can't size instruction"));
9306ca4a
JB
5847 return 0;
5848 }
5849 }
5850 else
5851 {
40fb9820 5852 unsigned int suffixes;
7ab9ffdd 5853
40fb9820
L
5854 suffixes = !i.tm.opcode_modifier.no_bsuf;
5855 if (!i.tm.opcode_modifier.no_wsuf)
5856 suffixes |= 1 << 1;
5857 if (!i.tm.opcode_modifier.no_lsuf)
5858 suffixes |= 1 << 2;
fc4adea1 5859 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5860 suffixes |= 1 << 3;
5861 if (!i.tm.opcode_modifier.no_ssuf)
5862 suffixes |= 1 << 4;
c2b9da16 5863 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5864 suffixes |= 1 << 5;
5865
5866 /* There are more than suffix matches. */
5867 if (i.tm.opcode_modifier.w
9306ca4a 5868 || ((suffixes & (suffixes - 1))
40fb9820
L
5869 && !i.tm.opcode_modifier.defaultsize
5870 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5871 {
5872 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5873 return 0;
5874 }
5875 }
29b0f896 5876 }
252b5132 5877
9306ca4a
JB
5878 /* Change the opcode based on the operand size given by i.suffix;
5879 We don't need to change things for byte insns. */
5880
582d5edd
L
5881 if (i.suffix
5882 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5883 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5884 && i.suffix != YMMWORD_MNEM_SUFFIX
5885 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5886 {
5887 /* It's not a byte, select word/dword operation. */
40fb9820 5888 if (i.tm.opcode_modifier.w)
29b0f896 5889 {
40fb9820 5890 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5891 i.tm.base_opcode |= 8;
5892 else
5893 i.tm.base_opcode |= 1;
5894 }
0f3f3d8b 5895
29b0f896
AM
5896 /* Now select between word & dword operations via the operand
5897 size prefix, except for instructions that will ignore this
5898 prefix anyway. */
ca61edf2 5899 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5900 {
ca61edf2
L
5901 /* The address size override prefix changes the size of the
5902 first operand. */
40fb9820 5903 if ((flag_code == CODE_32BIT
dc821c5f 5904 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5905 || (flag_code != CODE_32BIT
dc821c5f 5906 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5907 if (!add_prefix (ADDR_PREFIX_OPCODE))
5908 return 0;
5909 }
5910 else if (i.suffix != QWORD_MNEM_SUFFIX
5911 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5912 && !i.tm.opcode_modifier.ignoresize
5913 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5914 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5915 || (flag_code == CODE_64BIT
40fb9820 5916 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5917 {
5918 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5919
40fb9820 5920 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5921 prefix = ADDR_PREFIX_OPCODE;
252b5132 5922
29b0f896
AM
5923 if (!add_prefix (prefix))
5924 return 0;
24eab124 5925 }
252b5132 5926
29b0f896
AM
5927 /* Set mode64 for an operand. */
5928 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5929 && flag_code == CODE_64BIT
40fb9820 5930 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5931 {
5932 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5933 need rex64. cmpxchg8b is also a special case. */
5934 if (! (i.operands == 2
5935 && i.tm.base_opcode == 0x90
5936 && i.tm.extension_opcode == None
0dfbf9d7
L
5937 && operand_type_equal (&i.types [0], &acc64)
5938 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5939 && ! (i.operands == 1
5940 && i.tm.base_opcode == 0xfc7
5941 && i.tm.extension_opcode == 1
40fb9820
L
5942 && !operand_type_check (i.types [0], reg)
5943 && operand_type_check (i.types [0], anymem)))
f6bee062 5944 i.rex |= REX_W;
46e883c5 5945 }
3e73aa7c 5946
29b0f896
AM
5947 /* Size floating point instruction. */
5948 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5949 if (i.tm.opcode_modifier.floatmf)
543613e9 5950 i.tm.base_opcode ^= 4;
29b0f896 5951 }
7ecd2f8b 5952
29b0f896
AM
5953 return 1;
5954}
3e73aa7c 5955
29b0f896 5956static int
543613e9 5957check_byte_reg (void)
29b0f896
AM
5958{
5959 int op;
543613e9 5960
29b0f896
AM
5961 for (op = i.operands; --op >= 0;)
5962 {
dc821c5f
JB
5963 /* Skip non-register operands. */
5964 if (!i.types[op].bitfield.reg)
5965 continue;
5966
29b0f896
AM
5967 /* If this is an eight bit register, it's OK. If it's the 16 or
5968 32 bit version of an eight bit register, we will just use the
5969 low portion, and that's OK too. */
dc821c5f 5970 if (i.types[op].bitfield.byte)
29b0f896
AM
5971 continue;
5972
5a819eb9
JB
5973 /* I/O port address operands are OK too. */
5974 if (i.tm.operand_types[op].bitfield.inoutportreg)
5975 continue;
5976
9344ff29
L
5977 /* crc32 doesn't generate this warning. */
5978 if (i.tm.base_opcode == 0xf20f38f0)
5979 continue;
5980
dc821c5f
JB
5981 if ((i.types[op].bitfield.word
5982 || i.types[op].bitfield.dword
5983 || i.types[op].bitfield.qword)
5a819eb9
JB
5984 && i.op[op].regs->reg_num < 4
5985 /* Prohibit these changes in 64bit mode, since the lowering
5986 would be more complicated. */
5987 && flag_code != CODE_64BIT)
29b0f896 5988 {
29b0f896 5989#if REGISTER_WARNINGS
5a819eb9 5990 if (!quiet_warnings)
a540244d
L
5991 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5992 register_prefix,
dc821c5f 5993 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
5994 ? REGNAM_AL - REGNAM_AX
5995 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5996 register_prefix,
29b0f896
AM
5997 i.op[op].regs->reg_name,
5998 i.suffix);
5999#endif
6000 continue;
6001 }
6002 /* Any other register is bad. */
dc821c5f 6003 if (i.types[op].bitfield.reg
40fb9820 6004 || i.types[op].bitfield.regmmx
1b54b8d7 6005 || i.types[op].bitfield.regsimd
40fb9820
L
6006 || i.types[op].bitfield.sreg2
6007 || i.types[op].bitfield.sreg3
6008 || i.types[op].bitfield.control
6009 || i.types[op].bitfield.debug
ca0d63fe 6010 || i.types[op].bitfield.test)
29b0f896 6011 {
a540244d
L
6012 as_bad (_("`%s%s' not allowed with `%s%c'"),
6013 register_prefix,
29b0f896
AM
6014 i.op[op].regs->reg_name,
6015 i.tm.name,
6016 i.suffix);
6017 return 0;
6018 }
6019 }
6020 return 1;
6021}
6022
6023static int
e3bb37b5 6024check_long_reg (void)
29b0f896
AM
6025{
6026 int op;
6027
6028 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6029 /* Skip non-register operands. */
6030 if (!i.types[op].bitfield.reg)
6031 continue;
29b0f896
AM
6032 /* Reject eight bit registers, except where the template requires
6033 them. (eg. movzb) */
dc821c5f
JB
6034 else if (i.types[op].bitfield.byte
6035 && (i.tm.operand_types[op].bitfield.reg
6036 || i.tm.operand_types[op].bitfield.acc)
6037 && (i.tm.operand_types[op].bitfield.word
6038 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6039 {
a540244d
L
6040 as_bad (_("`%s%s' not allowed with `%s%c'"),
6041 register_prefix,
29b0f896
AM
6042 i.op[op].regs->reg_name,
6043 i.tm.name,
6044 i.suffix);
6045 return 0;
6046 }
e4630f71 6047 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6048 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6049 && i.types[op].bitfield.word
6050 && (i.tm.operand_types[op].bitfield.reg
6051 || i.tm.operand_types[op].bitfield.acc)
6052 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6053 {
6054 /* Prohibit these changes in the 64bit mode, since the
6055 lowering is more complicated. */
6056 if (flag_code == CODE_64BIT)
252b5132 6057 {
2b5d6a91 6058 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6059 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6060 i.suffix);
6061 return 0;
252b5132 6062 }
29b0f896 6063#if REGISTER_WARNINGS
cecf1424
JB
6064 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6065 register_prefix,
6066 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6067 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6068#endif
252b5132 6069 }
e4630f71 6070 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6071 else if (i.types[op].bitfield.qword
6072 && (i.tm.operand_types[op].bitfield.reg
6073 || i.tm.operand_types[op].bitfield.acc)
6074 && i.tm.operand_types[op].bitfield.dword)
252b5132 6075 {
34828aad 6076 if (intel_syntax
ca61edf2 6077 && i.tm.opcode_modifier.toqword
1b54b8d7 6078 && !i.types[0].bitfield.regsimd)
34828aad 6079 {
ca61edf2 6080 /* Convert to QWORD. We want REX byte. */
34828aad
L
6081 i.suffix = QWORD_MNEM_SUFFIX;
6082 }
6083 else
6084 {
2b5d6a91 6085 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6086 register_prefix, i.op[op].regs->reg_name,
6087 i.suffix);
6088 return 0;
6089 }
29b0f896
AM
6090 }
6091 return 1;
6092}
252b5132 6093
29b0f896 6094static int
e3bb37b5 6095check_qword_reg (void)
29b0f896
AM
6096{
6097 int op;
252b5132 6098
29b0f896 6099 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6100 /* Skip non-register operands. */
6101 if (!i.types[op].bitfield.reg)
6102 continue;
29b0f896
AM
6103 /* Reject eight bit registers, except where the template requires
6104 them. (eg. movzb) */
dc821c5f
JB
6105 else if (i.types[op].bitfield.byte
6106 && (i.tm.operand_types[op].bitfield.reg
6107 || i.tm.operand_types[op].bitfield.acc)
6108 && (i.tm.operand_types[op].bitfield.word
6109 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6110 {
a540244d
L
6111 as_bad (_("`%s%s' not allowed with `%s%c'"),
6112 register_prefix,
29b0f896
AM
6113 i.op[op].regs->reg_name,
6114 i.tm.name,
6115 i.suffix);
6116 return 0;
6117 }
e4630f71 6118 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6119 else if ((i.types[op].bitfield.word
6120 || i.types[op].bitfield.dword)
6121 && (i.tm.operand_types[op].bitfield.reg
6122 || i.tm.operand_types[op].bitfield.acc)
6123 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6124 {
6125 /* Prohibit these changes in the 64bit mode, since the
6126 lowering is more complicated. */
34828aad 6127 if (intel_syntax
ca61edf2 6128 && i.tm.opcode_modifier.todword
1b54b8d7 6129 && !i.types[0].bitfield.regsimd)
34828aad 6130 {
ca61edf2 6131 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6132 i.suffix = LONG_MNEM_SUFFIX;
6133 }
6134 else
6135 {
2b5d6a91 6136 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6137 register_prefix, i.op[op].regs->reg_name,
6138 i.suffix);
6139 return 0;
6140 }
252b5132 6141 }
29b0f896
AM
6142 return 1;
6143}
252b5132 6144
29b0f896 6145static int
e3bb37b5 6146check_word_reg (void)
29b0f896
AM
6147{
6148 int op;
6149 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6150 /* Skip non-register operands. */
6151 if (!i.types[op].bitfield.reg)
6152 continue;
29b0f896
AM
6153 /* Reject eight bit registers, except where the template requires
6154 them. (eg. movzb) */
dc821c5f
JB
6155 else if (i.types[op].bitfield.byte
6156 && (i.tm.operand_types[op].bitfield.reg
6157 || i.tm.operand_types[op].bitfield.acc)
6158 && (i.tm.operand_types[op].bitfield.word
6159 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6160 {
a540244d
L
6161 as_bad (_("`%s%s' not allowed with `%s%c'"),
6162 register_prefix,
29b0f896
AM
6163 i.op[op].regs->reg_name,
6164 i.tm.name,
6165 i.suffix);
6166 return 0;
6167 }
e4630f71 6168 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6169 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6170 && (i.types[op].bitfield.dword
6171 || i.types[op].bitfield.qword)
6172 && (i.tm.operand_types[op].bitfield.reg
6173 || i.tm.operand_types[op].bitfield.acc)
6174 && i.tm.operand_types[op].bitfield.word)
252b5132 6175 {
29b0f896
AM
6176 /* Prohibit these changes in the 64bit mode, since the
6177 lowering is more complicated. */
6178 if (flag_code == CODE_64BIT)
252b5132 6179 {
2b5d6a91 6180 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6181 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6182 i.suffix);
6183 return 0;
252b5132 6184 }
29b0f896 6185#if REGISTER_WARNINGS
cecf1424
JB
6186 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6187 register_prefix,
6188 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6189 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6190#endif
6191 }
6192 return 1;
6193}
252b5132 6194
29b0f896 6195static int
40fb9820 6196update_imm (unsigned int j)
29b0f896 6197{
bc0844ae 6198 i386_operand_type overlap = i.types[j];
40fb9820
L
6199 if ((overlap.bitfield.imm8
6200 || overlap.bitfield.imm8s
6201 || overlap.bitfield.imm16
6202 || overlap.bitfield.imm32
6203 || overlap.bitfield.imm32s
6204 || overlap.bitfield.imm64)
0dfbf9d7
L
6205 && !operand_type_equal (&overlap, &imm8)
6206 && !operand_type_equal (&overlap, &imm8s)
6207 && !operand_type_equal (&overlap, &imm16)
6208 && !operand_type_equal (&overlap, &imm32)
6209 && !operand_type_equal (&overlap, &imm32s)
6210 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6211 {
6212 if (i.suffix)
6213 {
40fb9820
L
6214 i386_operand_type temp;
6215
0dfbf9d7 6216 operand_type_set (&temp, 0);
7ab9ffdd 6217 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6218 {
6219 temp.bitfield.imm8 = overlap.bitfield.imm8;
6220 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6221 }
6222 else if (i.suffix == WORD_MNEM_SUFFIX)
6223 temp.bitfield.imm16 = overlap.bitfield.imm16;
6224 else if (i.suffix == QWORD_MNEM_SUFFIX)
6225 {
6226 temp.bitfield.imm64 = overlap.bitfield.imm64;
6227 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6228 }
6229 else
6230 temp.bitfield.imm32 = overlap.bitfield.imm32;
6231 overlap = temp;
29b0f896 6232 }
0dfbf9d7
L
6233 else if (operand_type_equal (&overlap, &imm16_32_32s)
6234 || operand_type_equal (&overlap, &imm16_32)
6235 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6236 {
40fb9820 6237 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6238 overlap = imm16;
40fb9820 6239 else
65da13b5 6240 overlap = imm32s;
29b0f896 6241 }
0dfbf9d7
L
6242 if (!operand_type_equal (&overlap, &imm8)
6243 && !operand_type_equal (&overlap, &imm8s)
6244 && !operand_type_equal (&overlap, &imm16)
6245 && !operand_type_equal (&overlap, &imm32)
6246 && !operand_type_equal (&overlap, &imm32s)
6247 && !operand_type_equal (&overlap, &imm64))
29b0f896 6248 {
4eed87de
AM
6249 as_bad (_("no instruction mnemonic suffix given; "
6250 "can't determine immediate size"));
29b0f896
AM
6251 return 0;
6252 }
6253 }
40fb9820 6254 i.types[j] = overlap;
29b0f896 6255
40fb9820
L
6256 return 1;
6257}
6258
6259static int
6260finalize_imm (void)
6261{
bc0844ae 6262 unsigned int j, n;
29b0f896 6263
bc0844ae
L
6264 /* Update the first 2 immediate operands. */
6265 n = i.operands > 2 ? 2 : i.operands;
6266 if (n)
6267 {
6268 for (j = 0; j < n; j++)
6269 if (update_imm (j) == 0)
6270 return 0;
40fb9820 6271
bc0844ae
L
6272 /* The 3rd operand can't be immediate operand. */
6273 gas_assert (operand_type_check (i.types[2], imm) == 0);
6274 }
29b0f896
AM
6275
6276 return 1;
6277}
6278
6279static int
e3bb37b5 6280process_operands (void)
29b0f896
AM
6281{
6282 /* Default segment register this instruction will use for memory
6283 accesses. 0 means unknown. This is only for optimizing out
6284 unnecessary segment overrides. */
6285 const seg_entry *default_seg = 0;
6286
2426c15f 6287 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6288 {
91d6fa6a
NC
6289 unsigned int dupl = i.operands;
6290 unsigned int dest = dupl - 1;
9fcfb3d7
L
6291 unsigned int j;
6292
c0f3af97 6293 /* The destination must be an xmm register. */
9c2799c2 6294 gas_assert (i.reg_operands
91d6fa6a 6295 && MAX_OPERANDS > dupl
7ab9ffdd 6296 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6297
1b54b8d7
JB
6298 if (i.tm.operand_types[0].bitfield.acc
6299 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6300 {
8cd7925b 6301 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6302 {
6303 /* Keep xmm0 for instructions with VEX prefix and 3
6304 sources. */
1b54b8d7
JB
6305 i.tm.operand_types[0].bitfield.acc = 0;
6306 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6307 goto duplicate;
6308 }
e2ec9d29 6309 else
c0f3af97
L
6310 {
6311 /* We remove the first xmm0 and keep the number of
6312 operands unchanged, which in fact duplicates the
6313 destination. */
6314 for (j = 1; j < i.operands; j++)
6315 {
6316 i.op[j - 1] = i.op[j];
6317 i.types[j - 1] = i.types[j];
6318 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6319 }
6320 }
6321 }
6322 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6323 {
91d6fa6a 6324 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6325 && (i.tm.opcode_modifier.vexsources
6326 == VEX3SOURCES));
c0f3af97
L
6327
6328 /* Add the implicit xmm0 for instructions with VEX prefix
6329 and 3 sources. */
6330 for (j = i.operands; j > 0; j--)
6331 {
6332 i.op[j] = i.op[j - 1];
6333 i.types[j] = i.types[j - 1];
6334 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6335 }
6336 i.op[0].regs
6337 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6338 i.types[0] = regxmm;
c0f3af97
L
6339 i.tm.operand_types[0] = regxmm;
6340
6341 i.operands += 2;
6342 i.reg_operands += 2;
6343 i.tm.operands += 2;
6344
91d6fa6a 6345 dupl++;
c0f3af97 6346 dest++;
91d6fa6a
NC
6347 i.op[dupl] = i.op[dest];
6348 i.types[dupl] = i.types[dest];
6349 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6350 }
c0f3af97
L
6351 else
6352 {
6353duplicate:
6354 i.operands++;
6355 i.reg_operands++;
6356 i.tm.operands++;
6357
91d6fa6a
NC
6358 i.op[dupl] = i.op[dest];
6359 i.types[dupl] = i.types[dest];
6360 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6361 }
6362
6363 if (i.tm.opcode_modifier.immext)
6364 process_immext ();
6365 }
1b54b8d7
JB
6366 else if (i.tm.operand_types[0].bitfield.acc
6367 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6368 {
6369 unsigned int j;
6370
9fcfb3d7
L
6371 for (j = 1; j < i.operands; j++)
6372 {
6373 i.op[j - 1] = i.op[j];
6374 i.types[j - 1] = i.types[j];
6375
6376 /* We need to adjust fields in i.tm since they are used by
6377 build_modrm_byte. */
6378 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6379 }
6380
e2ec9d29
L
6381 i.operands--;
6382 i.reg_operands--;
e2ec9d29
L
6383 i.tm.operands--;
6384 }
920d2ddc
IT
6385 else if (i.tm.opcode_modifier.implicitquadgroup)
6386 {
a477a8c4
JB
6387 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6388
920d2ddc 6389 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6390 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6391 regnum = register_number (i.op[1].regs);
6392 first_reg_in_group = regnum & ~3;
6393 last_reg_in_group = first_reg_in_group + 3;
6394 if (regnum != first_reg_in_group)
6395 as_warn (_("source register `%s%s' implicitly denotes"
6396 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6397 register_prefix, i.op[1].regs->reg_name,
6398 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6399 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6400 i.tm.name);
6401 }
e2ec9d29
L
6402 else if (i.tm.opcode_modifier.regkludge)
6403 {
6404 /* The imul $imm, %reg instruction is converted into
6405 imul $imm, %reg, %reg, and the clr %reg instruction
6406 is converted into xor %reg, %reg. */
6407
6408 unsigned int first_reg_op;
6409
6410 if (operand_type_check (i.types[0], reg))
6411 first_reg_op = 0;
6412 else
6413 first_reg_op = 1;
6414 /* Pretend we saw the extra register operand. */
9c2799c2 6415 gas_assert (i.reg_operands == 1
7ab9ffdd 6416 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6417 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6418 i.types[first_reg_op + 1] = i.types[first_reg_op];
6419 i.operands++;
6420 i.reg_operands++;
29b0f896
AM
6421 }
6422
40fb9820 6423 if (i.tm.opcode_modifier.shortform)
29b0f896 6424 {
40fb9820
L
6425 if (i.types[0].bitfield.sreg2
6426 || i.types[0].bitfield.sreg3)
29b0f896 6427 {
4eed87de
AM
6428 if (i.tm.base_opcode == POP_SEG_SHORT
6429 && i.op[0].regs->reg_num == 1)
29b0f896 6430 {
a87af027 6431 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6432 return 0;
29b0f896 6433 }
4eed87de
AM
6434 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6435 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6436 i.rex |= REX_B;
4eed87de
AM
6437 }
6438 else
6439 {
7ab9ffdd 6440 /* The register or float register operand is in operand
85f10a01 6441 0 or 1. */
40fb9820 6442 unsigned int op;
7ab9ffdd 6443
ca0d63fe 6444 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6445 || operand_type_check (i.types[0], reg))
6446 op = 0;
6447 else
6448 op = 1;
4eed87de
AM
6449 /* Register goes in low 3 bits of opcode. */
6450 i.tm.base_opcode |= i.op[op].regs->reg_num;
6451 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6452 i.rex |= REX_B;
40fb9820 6453 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6454 {
4eed87de
AM
6455 /* Warn about some common errors, but press on regardless.
6456 The first case can be generated by gcc (<= 2.8.1). */
6457 if (i.operands == 2)
6458 {
6459 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6460 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6461 register_prefix, i.op[!intel_syntax].regs->reg_name,
6462 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6463 }
6464 else
6465 {
6466 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6467 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6468 register_prefix, i.op[0].regs->reg_name);
4eed87de 6469 }
29b0f896
AM
6470 }
6471 }
6472 }
40fb9820 6473 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6474 {
6475 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6476 must be put into the modrm byte). Now, we make the modrm and
6477 index base bytes based on all the info we've collected. */
29b0f896
AM
6478
6479 default_seg = build_modrm_byte ();
6480 }
8a2ed489 6481 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6482 {
6483 default_seg = &ds;
6484 }
40fb9820 6485 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6486 {
6487 /* For the string instructions that allow a segment override
6488 on one of their operands, the default segment is ds. */
6489 default_seg = &ds;
6490 }
6491
75178d9d
L
6492 if (i.tm.base_opcode == 0x8d /* lea */
6493 && i.seg[0]
6494 && !quiet_warnings)
30123838 6495 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6496
6497 /* If a segment was explicitly specified, and the specified segment
6498 is not the default, use an opcode prefix to select it. If we
6499 never figured out what the default segment is, then default_seg
6500 will be zero at this point, and the specified segment prefix will
6501 always be used. */
29b0f896
AM
6502 if ((i.seg[0]) && (i.seg[0] != default_seg))
6503 {
6504 if (!add_prefix (i.seg[0]->seg_prefix))
6505 return 0;
6506 }
6507 return 1;
6508}
6509
6510static const seg_entry *
e3bb37b5 6511build_modrm_byte (void)
29b0f896
AM
6512{
6513 const seg_entry *default_seg = 0;
c0f3af97 6514 unsigned int source, dest;
8cd7925b 6515 int vex_3_sources;
c0f3af97
L
6516
6517 /* The first operand of instructions with VEX prefix and 3 sources
6518 must be VEX_Imm4. */
8cd7925b 6519 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6520 if (vex_3_sources)
6521 {
91d6fa6a 6522 unsigned int nds, reg_slot;
4c2c6516 6523 expressionS *exp;
c0f3af97 6524
922d8de8 6525 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6526 && i.tm.opcode_modifier.immext)
6527 {
6528 dest = i.operands - 2;
6529 gas_assert (dest == 3);
6530 }
922d8de8 6531 else
a683cc34 6532 dest = i.operands - 1;
c0f3af97 6533 nds = dest - 1;
922d8de8 6534
a683cc34
SP
6535 /* There are 2 kinds of instructions:
6536 1. 5 operands: 4 register operands or 3 register operands
6537 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6538 VexW0 or VexW1. The destination must be either XMM, YMM or
6539 ZMM register.
a683cc34
SP
6540 2. 4 operands: 4 register operands or 3 register operands
6541 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6542 gas_assert ((i.reg_operands == 4
a683cc34
SP
6543 || (i.reg_operands == 3 && i.mem_operands == 1))
6544 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6545 && (i.tm.opcode_modifier.veximmext
6546 || (i.imm_operands == 1
6547 && i.types[0].bitfield.vec_imm4
6548 && (i.tm.opcode_modifier.vexw == VEXW0
6549 || i.tm.opcode_modifier.vexw == VEXW1)
10c17abd 6550 && i.tm.operand_types[dest].bitfield.regsimd)));
a683cc34
SP
6551
6552 if (i.imm_operands == 0)
6553 {
6554 /* When there is no immediate operand, generate an 8bit
6555 immediate operand to encode the first operand. */
6556 exp = &im_expressions[i.imm_operands++];
6557 i.op[i.operands].imms = exp;
6558 i.types[i.operands] = imm8;
6559 i.operands++;
6560 /* If VexW1 is set, the first operand is the source and
6561 the second operand is encoded in the immediate operand. */
6562 if (i.tm.opcode_modifier.vexw == VEXW1)
6563 {
6564 source = 0;
6565 reg_slot = 1;
6566 }
6567 else
6568 {
6569 source = 1;
6570 reg_slot = 0;
6571 }
6572
6573 /* FMA swaps REG and NDS. */
6574 if (i.tm.cpu_flags.bitfield.cpufma)
6575 {
6576 unsigned int tmp;
6577 tmp = reg_slot;
6578 reg_slot = nds;
6579 nds = tmp;
6580 }
6581
10c17abd 6582 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6583 exp->X_op = O_constant;
4c692bc7 6584 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6585 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6586 }
922d8de8 6587 else
a683cc34
SP
6588 {
6589 unsigned int imm_slot;
6590
6591 if (i.tm.opcode_modifier.vexw == VEXW0)
6592 {
6593 /* If VexW0 is set, the third operand is the source and
6594 the second operand is encoded in the immediate
6595 operand. */
6596 source = 2;
6597 reg_slot = 1;
6598 }
6599 else
6600 {
6601 /* VexW1 is set, the second operand is the source and
6602 the third operand is encoded in the immediate
6603 operand. */
6604 source = 1;
6605 reg_slot = 2;
6606 }
6607
6608 if (i.tm.opcode_modifier.immext)
6609 {
33eaf5de 6610 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6611 operand. */
6612 imm_slot = i.operands - 1;
6613 source--;
6614 reg_slot--;
6615 }
6616 else
6617 {
6618 imm_slot = 0;
6619
6620 /* Turn on Imm8 so that output_imm will generate it. */
6621 i.types[imm_slot].bitfield.imm8 = 1;
6622 }
6623
10c17abd 6624 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6625 i.op[imm_slot].imms->X_add_number
4c692bc7 6626 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6627 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6628 }
6629
10c17abd 6630 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6631 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6632 }
6633 else
6634 source = dest = 0;
29b0f896
AM
6635
6636 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6637 implicit registers do not count. If there are 3 register
6638 operands, it must be a instruction with VexNDS. For a
6639 instruction with VexNDD, the destination register is encoded
6640 in VEX prefix. If there are 4 register operands, it must be
6641 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6642 if (i.mem_operands == 0
6643 && ((i.reg_operands == 2
2426c15f 6644 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6645 || (i.reg_operands == 3
2426c15f 6646 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6647 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6648 {
cab737b9
L
6649 switch (i.operands)
6650 {
6651 case 2:
6652 source = 0;
6653 break;
6654 case 3:
c81128dc
L
6655 /* When there are 3 operands, one of them may be immediate,
6656 which may be the first or the last operand. Otherwise,
c0f3af97
L
6657 the first operand must be shift count register (cl) or it
6658 is an instruction with VexNDS. */
9c2799c2 6659 gas_assert (i.imm_operands == 1
7ab9ffdd 6660 || (i.imm_operands == 0
2426c15f 6661 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6662 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6663 if (operand_type_check (i.types[0], imm)
6664 || i.types[0].bitfield.shiftcount)
6665 source = 1;
6666 else
6667 source = 0;
cab737b9
L
6668 break;
6669 case 4:
368d64cc
L
6670 /* When there are 4 operands, the first two must be 8bit
6671 immediate operands. The source operand will be the 3rd
c0f3af97
L
6672 one.
6673
6674 For instructions with VexNDS, if the first operand
6675 an imm8, the source operand is the 2nd one. If the last
6676 operand is imm8, the source operand is the first one. */
9c2799c2 6677 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6678 && i.types[0].bitfield.imm8
6679 && i.types[1].bitfield.imm8)
2426c15f 6680 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6681 && i.imm_operands == 1
6682 && (i.types[0].bitfield.imm8
43234a1e
L
6683 || i.types[i.operands - 1].bitfield.imm8
6684 || i.rounding)));
9f2670f2
L
6685 if (i.imm_operands == 2)
6686 source = 2;
6687 else
c0f3af97
L
6688 {
6689 if (i.types[0].bitfield.imm8)
6690 source = 1;
6691 else
6692 source = 0;
6693 }
c0f3af97
L
6694 break;
6695 case 5:
43234a1e
L
6696 if (i.tm.opcode_modifier.evex)
6697 {
6698 /* For EVEX instructions, when there are 5 operands, the
6699 first one must be immediate operand. If the second one
6700 is immediate operand, the source operand is the 3th
6701 one. If the last one is immediate operand, the source
6702 operand is the 2nd one. */
6703 gas_assert (i.imm_operands == 2
6704 && i.tm.opcode_modifier.sae
6705 && operand_type_check (i.types[0], imm));
6706 if (operand_type_check (i.types[1], imm))
6707 source = 2;
6708 else if (operand_type_check (i.types[4], imm))
6709 source = 1;
6710 else
6711 abort ();
6712 }
cab737b9
L
6713 break;
6714 default:
6715 abort ();
6716 }
6717
c0f3af97
L
6718 if (!vex_3_sources)
6719 {
6720 dest = source + 1;
6721
43234a1e
L
6722 /* RC/SAE operand could be between DEST and SRC. That happens
6723 when one operand is GPR and the other one is XMM/YMM/ZMM
6724 register. */
6725 if (i.rounding && i.rounding->operand == (int) dest)
6726 dest++;
6727
2426c15f 6728 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6729 {
43234a1e 6730 /* For instructions with VexNDS, the register-only source
c5d0745b 6731 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6732 register. It is encoded in VEX prefix. We need to
6733 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6734
6735 i386_operand_type op;
6736 unsigned int vvvv;
6737
6738 /* Check register-only source operand when two source
6739 operands are swapped. */
6740 if (!i.tm.operand_types[source].bitfield.baseindex
6741 && i.tm.operand_types[dest].bitfield.baseindex)
6742 {
6743 vvvv = source;
6744 source = dest;
6745 }
6746 else
6747 vvvv = dest;
6748
6749 op = i.tm.operand_types[vvvv];
fa99fab2 6750 op.bitfield.regmem = 0;
c0f3af97 6751 if ((dest + 1) >= i.operands
dc821c5f
JB
6752 || ((!op.bitfield.reg
6753 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6754 && !op.bitfield.regsimd
43234a1e 6755 && !operand_type_equal (&op, &regmask)))
c0f3af97 6756 abort ();
f12dc422 6757 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6758 dest++;
6759 }
6760 }
29b0f896
AM
6761
6762 i.rm.mode = 3;
6763 /* One of the register operands will be encoded in the i.tm.reg
6764 field, the other in the combined i.tm.mode and i.tm.regmem
6765 fields. If no form of this instruction supports a memory
6766 destination operand, then we assume the source operand may
6767 sometimes be a memory operand and so we need to store the
6768 destination in the i.rm.reg field. */
40fb9820
L
6769 if (!i.tm.operand_types[dest].bitfield.regmem
6770 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6771 {
6772 i.rm.reg = i.op[dest].regs->reg_num;
6773 i.rm.regmem = i.op[source].regs->reg_num;
6774 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6775 i.rex |= REX_R;
43234a1e
L
6776 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6777 i.vrex |= REX_R;
29b0f896 6778 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6779 i.rex |= REX_B;
43234a1e
L
6780 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6781 i.vrex |= REX_B;
29b0f896
AM
6782 }
6783 else
6784 {
6785 i.rm.reg = i.op[source].regs->reg_num;
6786 i.rm.regmem = i.op[dest].regs->reg_num;
6787 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6788 i.rex |= REX_B;
43234a1e
L
6789 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6790 i.vrex |= REX_B;
29b0f896 6791 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6792 i.rex |= REX_R;
43234a1e
L
6793 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6794 i.vrex |= REX_R;
29b0f896 6795 }
161a04f6 6796 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6797 {
40fb9820
L
6798 if (!i.types[0].bitfield.control
6799 && !i.types[1].bitfield.control)
c4a530c5 6800 abort ();
161a04f6 6801 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6802 add_prefix (LOCK_PREFIX_OPCODE);
6803 }
29b0f896
AM
6804 }
6805 else
6806 { /* If it's not 2 reg operands... */
c0f3af97
L
6807 unsigned int mem;
6808
29b0f896
AM
6809 if (i.mem_operands)
6810 {
6811 unsigned int fake_zero_displacement = 0;
99018f42 6812 unsigned int op;
4eed87de 6813
7ab9ffdd
L
6814 for (op = 0; op < i.operands; op++)
6815 if (operand_type_check (i.types[op], anymem))
6816 break;
7ab9ffdd 6817 gas_assert (op < i.operands);
29b0f896 6818
6c30d220
L
6819 if (i.tm.opcode_modifier.vecsib)
6820 {
6821 if (i.index_reg->reg_num == RegEiz
6822 || i.index_reg->reg_num == RegRiz)
6823 abort ();
6824
6825 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6826 if (!i.base_reg)
6827 {
6828 i.sib.base = NO_BASE_REGISTER;
6829 i.sib.scale = i.log2_scale_factor;
6830 i.types[op].bitfield.disp8 = 0;
6831 i.types[op].bitfield.disp16 = 0;
6832 i.types[op].bitfield.disp64 = 0;
43083a50 6833 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6834 {
6835 /* Must be 32 bit */
6836 i.types[op].bitfield.disp32 = 1;
6837 i.types[op].bitfield.disp32s = 0;
6838 }
6839 else
6840 {
6841 i.types[op].bitfield.disp32 = 0;
6842 i.types[op].bitfield.disp32s = 1;
6843 }
6844 }
6845 i.sib.index = i.index_reg->reg_num;
6846 if ((i.index_reg->reg_flags & RegRex) != 0)
6847 i.rex |= REX_X;
43234a1e
L
6848 if ((i.index_reg->reg_flags & RegVRex) != 0)
6849 i.vrex |= REX_X;
6c30d220
L
6850 }
6851
29b0f896
AM
6852 default_seg = &ds;
6853
6854 if (i.base_reg == 0)
6855 {
6856 i.rm.mode = 0;
6857 if (!i.disp_operands)
9bb129e8 6858 fake_zero_displacement = 1;
29b0f896
AM
6859 if (i.index_reg == 0)
6860 {
73053c1f
JB
6861 i386_operand_type newdisp;
6862
6c30d220 6863 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6864 /* Operand is just <disp> */
20f0a1fc 6865 if (flag_code == CODE_64BIT)
29b0f896
AM
6866 {
6867 /* 64bit mode overwrites the 32bit absolute
6868 addressing by RIP relative addressing and
6869 absolute addressing is encoded by one of the
6870 redundant SIB forms. */
6871 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6872 i.sib.base = NO_BASE_REGISTER;
6873 i.sib.index = NO_INDEX_REGISTER;
73053c1f 6874 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 6875 }
fc225355
L
6876 else if ((flag_code == CODE_16BIT)
6877 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6878 {
6879 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 6880 newdisp = disp16;
20f0a1fc
NC
6881 }
6882 else
6883 {
6884 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 6885 newdisp = disp32;
29b0f896 6886 }
73053c1f
JB
6887 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6888 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 6889 }
6c30d220 6890 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6891 {
6c30d220 6892 /* !i.base_reg && i.index_reg */
db51cc60
L
6893 if (i.index_reg->reg_num == RegEiz
6894 || i.index_reg->reg_num == RegRiz)
6895 i.sib.index = NO_INDEX_REGISTER;
6896 else
6897 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6898 i.sib.base = NO_BASE_REGISTER;
6899 i.sib.scale = i.log2_scale_factor;
6900 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6901 i.types[op].bitfield.disp8 = 0;
6902 i.types[op].bitfield.disp16 = 0;
6903 i.types[op].bitfield.disp64 = 0;
43083a50 6904 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6905 {
6906 /* Must be 32 bit */
6907 i.types[op].bitfield.disp32 = 1;
6908 i.types[op].bitfield.disp32s = 0;
6909 }
29b0f896 6910 else
40fb9820
L
6911 {
6912 i.types[op].bitfield.disp32 = 0;
6913 i.types[op].bitfield.disp32s = 1;
6914 }
29b0f896 6915 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6916 i.rex |= REX_X;
29b0f896
AM
6917 }
6918 }
6919 /* RIP addressing for 64bit mode. */
9a04903e
JB
6920 else if (i.base_reg->reg_num == RegRip ||
6921 i.base_reg->reg_num == RegEip)
29b0f896 6922 {
6c30d220 6923 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6924 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6925 i.types[op].bitfield.disp8 = 0;
6926 i.types[op].bitfield.disp16 = 0;
6927 i.types[op].bitfield.disp32 = 0;
6928 i.types[op].bitfield.disp32s = 1;
6929 i.types[op].bitfield.disp64 = 0;
71903a11 6930 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6931 if (! i.disp_operands)
6932 fake_zero_displacement = 1;
29b0f896 6933 }
dc821c5f 6934 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6935 {
6c30d220 6936 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6937 switch (i.base_reg->reg_num)
6938 {
6939 case 3: /* (%bx) */
6940 if (i.index_reg == 0)
6941 i.rm.regmem = 7;
6942 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6943 i.rm.regmem = i.index_reg->reg_num - 6;
6944 break;
6945 case 5: /* (%bp) */
6946 default_seg = &ss;
6947 if (i.index_reg == 0)
6948 {
6949 i.rm.regmem = 6;
40fb9820 6950 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6951 {
6952 /* fake (%bp) into 0(%bp) */
b5014f7a 6953 i.types[op].bitfield.disp8 = 1;
252b5132 6954 fake_zero_displacement = 1;
29b0f896
AM
6955 }
6956 }
6957 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6958 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6959 break;
6960 default: /* (%si) -> 4 or (%di) -> 5 */
6961 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6962 }
6963 i.rm.mode = mode_from_disp_size (i.types[op]);
6964 }
6965 else /* i.base_reg and 32/64 bit mode */
6966 {
6967 if (flag_code == CODE_64BIT
40fb9820
L
6968 && operand_type_check (i.types[op], disp))
6969 {
73053c1f
JB
6970 i.types[op].bitfield.disp16 = 0;
6971 i.types[op].bitfield.disp64 = 0;
40fb9820 6972 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
6973 {
6974 i.types[op].bitfield.disp32 = 0;
6975 i.types[op].bitfield.disp32s = 1;
6976 }
40fb9820 6977 else
73053c1f
JB
6978 {
6979 i.types[op].bitfield.disp32 = 1;
6980 i.types[op].bitfield.disp32s = 0;
6981 }
40fb9820 6982 }
20f0a1fc 6983
6c30d220
L
6984 if (!i.tm.opcode_modifier.vecsib)
6985 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6986 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6987 i.rex |= REX_B;
29b0f896
AM
6988 i.sib.base = i.base_reg->reg_num;
6989 /* x86-64 ignores REX prefix bit here to avoid decoder
6990 complications. */
848930b2
JB
6991 if (!(i.base_reg->reg_flags & RegRex)
6992 && (i.base_reg->reg_num == EBP_REG_NUM
6993 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6994 default_seg = &ss;
848930b2 6995 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6996 {
848930b2 6997 fake_zero_displacement = 1;
b5014f7a 6998 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6999 }
7000 i.sib.scale = i.log2_scale_factor;
7001 if (i.index_reg == 0)
7002 {
6c30d220 7003 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7004 /* <disp>(%esp) becomes two byte modrm with no index
7005 register. We've already stored the code for esp
7006 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7007 Any base register besides %esp will not use the
7008 extra modrm byte. */
7009 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7010 }
6c30d220 7011 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7012 {
db51cc60
L
7013 if (i.index_reg->reg_num == RegEiz
7014 || i.index_reg->reg_num == RegRiz)
7015 i.sib.index = NO_INDEX_REGISTER;
7016 else
7017 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7018 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7019 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7020 i.rex |= REX_X;
29b0f896 7021 }
67a4f2b7
AO
7022
7023 if (i.disp_operands
7024 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7025 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7026 i.rm.mode = 0;
7027 else
a501d77e
L
7028 {
7029 if (!fake_zero_displacement
7030 && !i.disp_operands
7031 && i.disp_encoding)
7032 {
7033 fake_zero_displacement = 1;
7034 if (i.disp_encoding == disp_encoding_8bit)
7035 i.types[op].bitfield.disp8 = 1;
7036 else
7037 i.types[op].bitfield.disp32 = 1;
7038 }
7039 i.rm.mode = mode_from_disp_size (i.types[op]);
7040 }
29b0f896 7041 }
252b5132 7042
29b0f896
AM
7043 if (fake_zero_displacement)
7044 {
7045 /* Fakes a zero displacement assuming that i.types[op]
7046 holds the correct displacement size. */
7047 expressionS *exp;
7048
9c2799c2 7049 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7050 exp = &disp_expressions[i.disp_operands++];
7051 i.op[op].disps = exp;
7052 exp->X_op = O_constant;
7053 exp->X_add_number = 0;
7054 exp->X_add_symbol = (symbolS *) 0;
7055 exp->X_op_symbol = (symbolS *) 0;
7056 }
c0f3af97
L
7057
7058 mem = op;
29b0f896 7059 }
c0f3af97
L
7060 else
7061 mem = ~0;
252b5132 7062
8c43a48b 7063 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7064 {
7065 if (operand_type_check (i.types[0], imm))
7066 i.vex.register_specifier = NULL;
7067 else
7068 {
7069 /* VEX.vvvv encodes one of the sources when the first
7070 operand is not an immediate. */
1ef99a7b 7071 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7072 i.vex.register_specifier = i.op[0].regs;
7073 else
7074 i.vex.register_specifier = i.op[1].regs;
7075 }
7076
7077 /* Destination is a XMM register encoded in the ModRM.reg
7078 and VEX.R bit. */
7079 i.rm.reg = i.op[2].regs->reg_num;
7080 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7081 i.rex |= REX_R;
7082
7083 /* ModRM.rm and VEX.B encodes the other source. */
7084 if (!i.mem_operands)
7085 {
7086 i.rm.mode = 3;
7087
1ef99a7b 7088 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7089 i.rm.regmem = i.op[1].regs->reg_num;
7090 else
7091 i.rm.regmem = i.op[0].regs->reg_num;
7092
7093 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7094 i.rex |= REX_B;
7095 }
7096 }
2426c15f 7097 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7098 {
7099 i.vex.register_specifier = i.op[2].regs;
7100 if (!i.mem_operands)
7101 {
7102 i.rm.mode = 3;
7103 i.rm.regmem = i.op[1].regs->reg_num;
7104 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7105 i.rex |= REX_B;
7106 }
7107 }
29b0f896
AM
7108 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7109 (if any) based on i.tm.extension_opcode. Again, we must be
7110 careful to make sure that segment/control/debug/test/MMX
7111 registers are coded into the i.rm.reg field. */
f88c9eb0 7112 else if (i.reg_operands)
29b0f896 7113 {
99018f42 7114 unsigned int op;
7ab9ffdd
L
7115 unsigned int vex_reg = ~0;
7116
7117 for (op = 0; op < i.operands; op++)
dc821c5f 7118 if (i.types[op].bitfield.reg
7ab9ffdd 7119 || i.types[op].bitfield.regmmx
1b54b8d7 7120 || i.types[op].bitfield.regsimd
7e8b059b 7121 || i.types[op].bitfield.regbnd
43234a1e 7122 || i.types[op].bitfield.regmask
7ab9ffdd
L
7123 || i.types[op].bitfield.sreg2
7124 || i.types[op].bitfield.sreg3
7125 || i.types[op].bitfield.control
7126 || i.types[op].bitfield.debug
7127 || i.types[op].bitfield.test)
7128 break;
c0209578 7129
7ab9ffdd
L
7130 if (vex_3_sources)
7131 op = dest;
2426c15f 7132 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7133 {
7134 /* For instructions with VexNDS, the register-only
7135 source operand is encoded in VEX prefix. */
7136 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7137
7ab9ffdd 7138 if (op > mem)
c0f3af97 7139 {
7ab9ffdd
L
7140 vex_reg = op++;
7141 gas_assert (op < i.operands);
c0f3af97
L
7142 }
7143 else
c0f3af97 7144 {
f12dc422
L
7145 /* Check register-only source operand when two source
7146 operands are swapped. */
7147 if (!i.tm.operand_types[op].bitfield.baseindex
7148 && i.tm.operand_types[op + 1].bitfield.baseindex)
7149 {
7150 vex_reg = op;
7151 op += 2;
7152 gas_assert (mem == (vex_reg + 1)
7153 && op < i.operands);
7154 }
7155 else
7156 {
7157 vex_reg = op + 1;
7158 gas_assert (vex_reg < i.operands);
7159 }
c0f3af97 7160 }
7ab9ffdd 7161 }
2426c15f 7162 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7163 {
f12dc422 7164 /* For instructions with VexNDD, the register destination
7ab9ffdd 7165 is encoded in VEX prefix. */
f12dc422
L
7166 if (i.mem_operands == 0)
7167 {
7168 /* There is no memory operand. */
7169 gas_assert ((op + 2) == i.operands);
7170 vex_reg = op + 1;
7171 }
7172 else
8d63c93e 7173 {
f12dc422
L
7174 /* There are only 2 operands. */
7175 gas_assert (op < 2 && i.operands == 2);
7176 vex_reg = 1;
7177 }
7ab9ffdd
L
7178 }
7179 else
7180 gas_assert (op < i.operands);
99018f42 7181
7ab9ffdd
L
7182 if (vex_reg != (unsigned int) ~0)
7183 {
f12dc422 7184 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7185
dc821c5f
JB
7186 if ((!type->bitfield.reg
7187 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7188 && !type->bitfield.regsimd
43234a1e 7189 && !operand_type_equal (type, &regmask))
7ab9ffdd 7190 abort ();
f88c9eb0 7191
7ab9ffdd
L
7192 i.vex.register_specifier = i.op[vex_reg].regs;
7193 }
7194
1b9f0c97
L
7195 /* Don't set OP operand twice. */
7196 if (vex_reg != op)
7ab9ffdd 7197 {
1b9f0c97
L
7198 /* If there is an extension opcode to put here, the
7199 register number must be put into the regmem field. */
7200 if (i.tm.extension_opcode != None)
7201 {
7202 i.rm.regmem = i.op[op].regs->reg_num;
7203 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7204 i.rex |= REX_B;
43234a1e
L
7205 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7206 i.vrex |= REX_B;
1b9f0c97
L
7207 }
7208 else
7209 {
7210 i.rm.reg = i.op[op].regs->reg_num;
7211 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7212 i.rex |= REX_R;
43234a1e
L
7213 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7214 i.vrex |= REX_R;
1b9f0c97 7215 }
7ab9ffdd 7216 }
252b5132 7217
29b0f896
AM
7218 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7219 must set it to 3 to indicate this is a register operand
7220 in the regmem field. */
7221 if (!i.mem_operands)
7222 i.rm.mode = 3;
7223 }
252b5132 7224
29b0f896 7225 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7226 if (i.tm.extension_opcode != None)
29b0f896
AM
7227 i.rm.reg = i.tm.extension_opcode;
7228 }
7229 return default_seg;
7230}
252b5132 7231
29b0f896 7232static void
e3bb37b5 7233output_branch (void)
29b0f896
AM
7234{
7235 char *p;
f8a5c266 7236 int size;
29b0f896
AM
7237 int code16;
7238 int prefix;
7239 relax_substateT subtype;
7240 symbolS *sym;
7241 offsetT off;
7242
f8a5c266 7243 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7244 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7245
7246 prefix = 0;
7247 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7248 {
29b0f896
AM
7249 prefix = 1;
7250 i.prefixes -= 1;
7251 code16 ^= CODE16;
252b5132 7252 }
29b0f896
AM
7253 /* Pentium4 branch hints. */
7254 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7255 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7256 {
29b0f896
AM
7257 prefix++;
7258 i.prefixes--;
7259 }
7260 if (i.prefix[REX_PREFIX] != 0)
7261 {
7262 prefix++;
7263 i.prefixes--;
2f66722d
AM
7264 }
7265
7e8b059b
L
7266 /* BND prefixed jump. */
7267 if (i.prefix[BND_PREFIX] != 0)
7268 {
7269 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7270 i.prefixes -= 1;
7271 }
7272
29b0f896
AM
7273 if (i.prefixes != 0 && !intel_syntax)
7274 as_warn (_("skipping prefixes on this instruction"));
7275
7276 /* It's always a symbol; End frag & setup for relax.
7277 Make sure there is enough room in this frag for the largest
7278 instruction we may generate in md_convert_frag. This is 2
7279 bytes for the opcode and room for the prefix and largest
7280 displacement. */
7281 frag_grow (prefix + 2 + 4);
7282 /* Prefix and 1 opcode byte go in fr_fix. */
7283 p = frag_more (prefix + 1);
7284 if (i.prefix[DATA_PREFIX] != 0)
7285 *p++ = DATA_PREFIX_OPCODE;
7286 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7287 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7288 *p++ = i.prefix[SEG_PREFIX];
7289 if (i.prefix[REX_PREFIX] != 0)
7290 *p++ = i.prefix[REX_PREFIX];
7291 *p = i.tm.base_opcode;
7292
7293 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7294 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7295 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7296 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7297 else
f8a5c266 7298 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7299 subtype |= code16;
3e73aa7c 7300
29b0f896
AM
7301 sym = i.op[0].disps->X_add_symbol;
7302 off = i.op[0].disps->X_add_number;
3e73aa7c 7303
29b0f896
AM
7304 if (i.op[0].disps->X_op != O_constant
7305 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7306 {
29b0f896
AM
7307 /* Handle complex expressions. */
7308 sym = make_expr_symbol (i.op[0].disps);
7309 off = 0;
7310 }
3e73aa7c 7311
29b0f896
AM
7312 /* 1 possible extra opcode + 4 byte displacement go in var part.
7313 Pass reloc in fr_var. */
d258b828 7314 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7315}
3e73aa7c 7316
bd7ab16b
L
7317#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7318/* Return TRUE iff PLT32 relocation should be used for branching to
7319 symbol S. */
7320
7321static bfd_boolean
7322need_plt32_p (symbolS *s)
7323{
7324 /* PLT32 relocation is ELF only. */
7325 if (!IS_ELF)
7326 return FALSE;
7327
7328 /* Since there is no need to prepare for PLT branch on x86-64, we
7329 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7330 be used as a marker for 32-bit PC-relative branches. */
7331 if (!object_64bit)
7332 return FALSE;
7333
7334 /* Weak or undefined symbol need PLT32 relocation. */
7335 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7336 return TRUE;
7337
7338 /* Non-global symbol doesn't need PLT32 relocation. */
7339 if (! S_IS_EXTERNAL (s))
7340 return FALSE;
7341
7342 /* Other global symbols need PLT32 relocation. NB: Symbol with
7343 non-default visibilities are treated as normal global symbol
7344 so that PLT32 relocation can be used as a marker for 32-bit
7345 PC-relative branches. It is useful for linker relaxation. */
7346 return TRUE;
7347}
7348#endif
7349
29b0f896 7350static void
e3bb37b5 7351output_jump (void)
29b0f896
AM
7352{
7353 char *p;
7354 int size;
3e02c1cc 7355 fixS *fixP;
bd7ab16b 7356 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7357
40fb9820 7358 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7359 {
7360 /* This is a loop or jecxz type instruction. */
7361 size = 1;
7362 if (i.prefix[ADDR_PREFIX] != 0)
7363 {
7364 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7365 i.prefixes -= 1;
7366 }
7367 /* Pentium4 branch hints. */
7368 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7369 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7370 {
7371 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7372 i.prefixes--;
3e73aa7c
JH
7373 }
7374 }
29b0f896
AM
7375 else
7376 {
7377 int code16;
3e73aa7c 7378
29b0f896
AM
7379 code16 = 0;
7380 if (flag_code == CODE_16BIT)
7381 code16 = CODE16;
3e73aa7c 7382
29b0f896
AM
7383 if (i.prefix[DATA_PREFIX] != 0)
7384 {
7385 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7386 i.prefixes -= 1;
7387 code16 ^= CODE16;
7388 }
252b5132 7389
29b0f896
AM
7390 size = 4;
7391 if (code16)
7392 size = 2;
7393 }
9fcc94b6 7394
29b0f896
AM
7395 if (i.prefix[REX_PREFIX] != 0)
7396 {
7397 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7398 i.prefixes -= 1;
7399 }
252b5132 7400
7e8b059b
L
7401 /* BND prefixed jump. */
7402 if (i.prefix[BND_PREFIX] != 0)
7403 {
7404 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7405 i.prefixes -= 1;
7406 }
7407
29b0f896
AM
7408 if (i.prefixes != 0 && !intel_syntax)
7409 as_warn (_("skipping prefixes on this instruction"));
e0890092 7410
42164a71
L
7411 p = frag_more (i.tm.opcode_length + size);
7412 switch (i.tm.opcode_length)
7413 {
7414 case 2:
7415 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7416 /* Fall through. */
42164a71
L
7417 case 1:
7418 *p++ = i.tm.base_opcode;
7419 break;
7420 default:
7421 abort ();
7422 }
e0890092 7423
bd7ab16b
L
7424#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7425 if (size == 4
7426 && jump_reloc == NO_RELOC
7427 && need_plt32_p (i.op[0].disps->X_add_symbol))
7428 jump_reloc = BFD_RELOC_X86_64_PLT32;
7429#endif
7430
7431 jump_reloc = reloc (size, 1, 1, jump_reloc);
7432
3e02c1cc 7433 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7434 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7435
7436 /* All jumps handled here are signed, but don't use a signed limit
7437 check for 32 and 16 bit jumps as we want to allow wrap around at
7438 4G and 64k respectively. */
7439 if (size == 1)
7440 fixP->fx_signed = 1;
29b0f896 7441}
e0890092 7442
29b0f896 7443static void
e3bb37b5 7444output_interseg_jump (void)
29b0f896
AM
7445{
7446 char *p;
7447 int size;
7448 int prefix;
7449 int code16;
252b5132 7450
29b0f896
AM
7451 code16 = 0;
7452 if (flag_code == CODE_16BIT)
7453 code16 = CODE16;
a217f122 7454
29b0f896
AM
7455 prefix = 0;
7456 if (i.prefix[DATA_PREFIX] != 0)
7457 {
7458 prefix = 1;
7459 i.prefixes -= 1;
7460 code16 ^= CODE16;
7461 }
7462 if (i.prefix[REX_PREFIX] != 0)
7463 {
7464 prefix++;
7465 i.prefixes -= 1;
7466 }
252b5132 7467
29b0f896
AM
7468 size = 4;
7469 if (code16)
7470 size = 2;
252b5132 7471
29b0f896
AM
7472 if (i.prefixes != 0 && !intel_syntax)
7473 as_warn (_("skipping prefixes on this instruction"));
252b5132 7474
29b0f896
AM
7475 /* 1 opcode; 2 segment; offset */
7476 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7477
29b0f896
AM
7478 if (i.prefix[DATA_PREFIX] != 0)
7479 *p++ = DATA_PREFIX_OPCODE;
252b5132 7480
29b0f896
AM
7481 if (i.prefix[REX_PREFIX] != 0)
7482 *p++ = i.prefix[REX_PREFIX];
252b5132 7483
29b0f896
AM
7484 *p++ = i.tm.base_opcode;
7485 if (i.op[1].imms->X_op == O_constant)
7486 {
7487 offsetT n = i.op[1].imms->X_add_number;
252b5132 7488
29b0f896
AM
7489 if (size == 2
7490 && !fits_in_unsigned_word (n)
7491 && !fits_in_signed_word (n))
7492 {
7493 as_bad (_("16-bit jump out of range"));
7494 return;
7495 }
7496 md_number_to_chars (p, n, size);
7497 }
7498 else
7499 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7500 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7501 if (i.op[0].imms->X_op != O_constant)
7502 as_bad (_("can't handle non absolute segment in `%s'"),
7503 i.tm.name);
7504 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7505}
a217f122 7506
29b0f896 7507static void
e3bb37b5 7508output_insn (void)
29b0f896 7509{
2bbd9c25
JJ
7510 fragS *insn_start_frag;
7511 offsetT insn_start_off;
7512
29b0f896
AM
7513 /* Tie dwarf2 debug info to the address at the start of the insn.
7514 We can't do this after the insn has been output as the current
7515 frag may have been closed off. eg. by frag_var. */
7516 dwarf2_emit_insn (0);
7517
2bbd9c25
JJ
7518 insn_start_frag = frag_now;
7519 insn_start_off = frag_now_fix ();
7520
29b0f896 7521 /* Output jumps. */
40fb9820 7522 if (i.tm.opcode_modifier.jump)
29b0f896 7523 output_branch ();
40fb9820
L
7524 else if (i.tm.opcode_modifier.jumpbyte
7525 || i.tm.opcode_modifier.jumpdword)
29b0f896 7526 output_jump ();
40fb9820 7527 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7528 output_interseg_jump ();
7529 else
7530 {
7531 /* Output normal instructions here. */
7532 char *p;
7533 unsigned char *q;
47465058 7534 unsigned int j;
331d2d0d 7535 unsigned int prefix;
4dffcebc 7536
e4e00185
AS
7537 if (avoid_fence
7538 && i.tm.base_opcode == 0xfae
7539 && i.operands == 1
7540 && i.imm_operands == 1
7541 && (i.op[0].imms->X_add_number == 0xe8
7542 || i.op[0].imms->X_add_number == 0xf0
7543 || i.op[0].imms->X_add_number == 0xf8))
7544 {
7545 /* Encode lfence, mfence, and sfence as
7546 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7547 offsetT val = 0x240483f0ULL;
7548 p = frag_more (5);
7549 md_number_to_chars (p, val, 5);
7550 return;
7551 }
7552
d022bddd
IT
7553 /* Some processors fail on LOCK prefix. This options makes
7554 assembler ignore LOCK prefix and serves as a workaround. */
7555 if (omit_lock_prefix)
7556 {
7557 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7558 return;
7559 i.prefix[LOCK_PREFIX] = 0;
7560 }
7561
43234a1e
L
7562 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7563 don't need the explicit prefix. */
7564 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7565 {
c0f3af97 7566 switch (i.tm.opcode_length)
bc4bd9ab 7567 {
c0f3af97
L
7568 case 3:
7569 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7570 {
c0f3af97
L
7571 prefix = (i.tm.base_opcode >> 24) & 0xff;
7572 goto check_prefix;
7573 }
7574 break;
7575 case 2:
7576 if ((i.tm.base_opcode & 0xff0000) != 0)
7577 {
7578 prefix = (i.tm.base_opcode >> 16) & 0xff;
7579 if (i.tm.cpu_flags.bitfield.cpupadlock)
7580 {
4dffcebc 7581check_prefix:
c0f3af97 7582 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7583 || (i.prefix[REP_PREFIX]
c0f3af97
L
7584 != REPE_PREFIX_OPCODE))
7585 add_prefix (prefix);
7586 }
7587 else
4dffcebc
L
7588 add_prefix (prefix);
7589 }
c0f3af97
L
7590 break;
7591 case 1:
7592 break;
390c91cf
L
7593 case 0:
7594 /* Check for pseudo prefixes. */
7595 as_bad_where (insn_start_frag->fr_file,
7596 insn_start_frag->fr_line,
7597 _("pseudo prefix without instruction"));
7598 return;
c0f3af97
L
7599 default:
7600 abort ();
bc4bd9ab 7601 }
c0f3af97 7602
6d19a37a 7603#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7604 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7605 R_X86_64_GOTTPOFF relocation so that linker can safely
7606 perform IE->LE optimization. */
7607 if (x86_elf_abi == X86_64_X32_ABI
7608 && i.operands == 2
7609 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7610 && i.prefix[REX_PREFIX] == 0)
7611 add_prefix (REX_OPCODE);
6d19a37a 7612#endif
cf61b747 7613
c0f3af97
L
7614 /* The prefix bytes. */
7615 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7616 if (*q)
7617 FRAG_APPEND_1_CHAR (*q);
0f10071e 7618 }
ae5c1c7b 7619 else
c0f3af97
L
7620 {
7621 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7622 if (*q)
7623 switch (j)
7624 {
7625 case REX_PREFIX:
7626 /* REX byte is encoded in VEX prefix. */
7627 break;
7628 case SEG_PREFIX:
7629 case ADDR_PREFIX:
7630 FRAG_APPEND_1_CHAR (*q);
7631 break;
7632 default:
7633 /* There should be no other prefixes for instructions
7634 with VEX prefix. */
7635 abort ();
7636 }
7637
43234a1e
L
7638 /* For EVEX instructions i.vrex should become 0 after
7639 build_evex_prefix. For VEX instructions upper 16 registers
7640 aren't available, so VREX should be 0. */
7641 if (i.vrex)
7642 abort ();
c0f3af97
L
7643 /* Now the VEX prefix. */
7644 p = frag_more (i.vex.length);
7645 for (j = 0; j < i.vex.length; j++)
7646 p[j] = i.vex.bytes[j];
7647 }
252b5132 7648
29b0f896 7649 /* Now the opcode; be careful about word order here! */
4dffcebc 7650 if (i.tm.opcode_length == 1)
29b0f896
AM
7651 {
7652 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7653 }
7654 else
7655 {
4dffcebc 7656 switch (i.tm.opcode_length)
331d2d0d 7657 {
43234a1e
L
7658 case 4:
7659 p = frag_more (4);
7660 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7661 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7662 break;
4dffcebc 7663 case 3:
331d2d0d
L
7664 p = frag_more (3);
7665 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7666 break;
7667 case 2:
7668 p = frag_more (2);
7669 break;
7670 default:
7671 abort ();
7672 break;
331d2d0d 7673 }
0f10071e 7674
29b0f896
AM
7675 /* Put out high byte first: can't use md_number_to_chars! */
7676 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7677 *p = i.tm.base_opcode & 0xff;
7678 }
3e73aa7c 7679
29b0f896 7680 /* Now the modrm byte and sib byte (if present). */
40fb9820 7681 if (i.tm.opcode_modifier.modrm)
29b0f896 7682 {
4a3523fa
L
7683 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7684 | i.rm.reg << 3
7685 | i.rm.mode << 6));
29b0f896
AM
7686 /* If i.rm.regmem == ESP (4)
7687 && i.rm.mode != (Register mode)
7688 && not 16 bit
7689 ==> need second modrm byte. */
7690 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7691 && i.rm.mode != 3
dc821c5f 7692 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7693 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7694 | i.sib.index << 3
7695 | i.sib.scale << 6));
29b0f896 7696 }
3e73aa7c 7697
29b0f896 7698 if (i.disp_operands)
2bbd9c25 7699 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7700
29b0f896 7701 if (i.imm_operands)
2bbd9c25 7702 output_imm (insn_start_frag, insn_start_off);
29b0f896 7703 }
252b5132 7704
29b0f896
AM
7705#ifdef DEBUG386
7706 if (flag_debug)
7707 {
7b81dfbb 7708 pi ("" /*line*/, &i);
29b0f896
AM
7709 }
7710#endif /* DEBUG386 */
7711}
252b5132 7712
e205caa7
L
7713/* Return the size of the displacement operand N. */
7714
7715static int
7716disp_size (unsigned int n)
7717{
7718 int size = 4;
43234a1e 7719
b5014f7a 7720 if (i.types[n].bitfield.disp64)
40fb9820
L
7721 size = 8;
7722 else if (i.types[n].bitfield.disp8)
7723 size = 1;
7724 else if (i.types[n].bitfield.disp16)
7725 size = 2;
e205caa7
L
7726 return size;
7727}
7728
7729/* Return the size of the immediate operand N. */
7730
7731static int
7732imm_size (unsigned int n)
7733{
7734 int size = 4;
40fb9820
L
7735 if (i.types[n].bitfield.imm64)
7736 size = 8;
7737 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7738 size = 1;
7739 else if (i.types[n].bitfield.imm16)
7740 size = 2;
e205caa7
L
7741 return size;
7742}
7743
29b0f896 7744static void
64e74474 7745output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7746{
7747 char *p;
7748 unsigned int n;
252b5132 7749
29b0f896
AM
7750 for (n = 0; n < i.operands; n++)
7751 {
b5014f7a 7752 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7753 {
7754 if (i.op[n].disps->X_op == O_constant)
7755 {
e205caa7 7756 int size = disp_size (n);
43234a1e 7757 offsetT val = i.op[n].disps->X_add_number;
252b5132 7758
b5014f7a 7759 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7760 p = frag_more (size);
7761 md_number_to_chars (p, val, size);
7762 }
7763 else
7764 {
f86103b7 7765 enum bfd_reloc_code_real reloc_type;
e205caa7 7766 int size = disp_size (n);
40fb9820 7767 int sign = i.types[n].bitfield.disp32s;
29b0f896 7768 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7769 fixS *fixP;
29b0f896 7770
e205caa7 7771 /* We can't have 8 bit displacement here. */
9c2799c2 7772 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7773
29b0f896
AM
7774 /* The PC relative address is computed relative
7775 to the instruction boundary, so in case immediate
7776 fields follows, we need to adjust the value. */
7777 if (pcrel && i.imm_operands)
7778 {
29b0f896 7779 unsigned int n1;
e205caa7 7780 int sz = 0;
252b5132 7781
29b0f896 7782 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7783 if (operand_type_check (i.types[n1], imm))
252b5132 7784 {
e205caa7
L
7785 /* Only one immediate is allowed for PC
7786 relative address. */
9c2799c2 7787 gas_assert (sz == 0);
e205caa7
L
7788 sz = imm_size (n1);
7789 i.op[n].disps->X_add_number -= sz;
252b5132 7790 }
29b0f896 7791 /* We should find the immediate. */
9c2799c2 7792 gas_assert (sz != 0);
29b0f896 7793 }
520dc8e8 7794
29b0f896 7795 p = frag_more (size);
d258b828 7796 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7797 if (GOT_symbol
2bbd9c25 7798 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7799 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7800 || reloc_type == BFD_RELOC_X86_64_32S
7801 || (reloc_type == BFD_RELOC_64
7802 && object_64bit))
d6ab8113
JB
7803 && (i.op[n].disps->X_op == O_symbol
7804 || (i.op[n].disps->X_op == O_add
7805 && ((symbol_get_value_expression
7806 (i.op[n].disps->X_op_symbol)->X_op)
7807 == O_subtract))))
7808 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7809 {
7810 offsetT add;
7811
7812 if (insn_start_frag == frag_now)
7813 add = (p - frag_now->fr_literal) - insn_start_off;
7814 else
7815 {
7816 fragS *fr;
7817
7818 add = insn_start_frag->fr_fix - insn_start_off;
7819 for (fr = insn_start_frag->fr_next;
7820 fr && fr != frag_now; fr = fr->fr_next)
7821 add += fr->fr_fix;
7822 add += p - frag_now->fr_literal;
7823 }
7824
4fa24527 7825 if (!object_64bit)
7b81dfbb
AJ
7826 {
7827 reloc_type = BFD_RELOC_386_GOTPC;
7828 i.op[n].imms->X_add_number += add;
7829 }
7830 else if (reloc_type == BFD_RELOC_64)
7831 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7832 else
7b81dfbb
AJ
7833 /* Don't do the adjustment for x86-64, as there
7834 the pcrel addressing is relative to the _next_
7835 insn, and that is taken care of in other code. */
d6ab8113 7836 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7837 }
02a86693
L
7838 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7839 size, i.op[n].disps, pcrel,
7840 reloc_type);
7841 /* Check for "call/jmp *mem", "mov mem, %reg",
7842 "test %reg, mem" and "binop mem, %reg" where binop
7843 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7844 instructions. Always generate R_386_GOT32X for
7845 "sym*GOT" operand in 32-bit mode. */
7846 if ((generate_relax_relocations
7847 || (!object_64bit
7848 && i.rm.mode == 0
7849 && i.rm.regmem == 5))
7850 && (i.rm.mode == 2
7851 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7852 && ((i.operands == 1
7853 && i.tm.base_opcode == 0xff
7854 && (i.rm.reg == 2 || i.rm.reg == 4))
7855 || (i.operands == 2
7856 && (i.tm.base_opcode == 0x8b
7857 || i.tm.base_opcode == 0x85
7858 || (i.tm.base_opcode & 0xc7) == 0x03))))
7859 {
7860 if (object_64bit)
7861 {
7862 fixP->fx_tcbit = i.rex != 0;
7863 if (i.base_reg
7864 && (i.base_reg->reg_num == RegRip
7865 || i.base_reg->reg_num == RegEip))
7866 fixP->fx_tcbit2 = 1;
7867 }
7868 else
7869 fixP->fx_tcbit2 = 1;
7870 }
29b0f896
AM
7871 }
7872 }
7873 }
7874}
252b5132 7875
29b0f896 7876static void
64e74474 7877output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7878{
7879 char *p;
7880 unsigned int n;
252b5132 7881
29b0f896
AM
7882 for (n = 0; n < i.operands; n++)
7883 {
43234a1e
L
7884 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7885 if (i.rounding && (int) n == i.rounding->operand)
7886 continue;
7887
40fb9820 7888 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7889 {
7890 if (i.op[n].imms->X_op == O_constant)
7891 {
e205caa7 7892 int size = imm_size (n);
29b0f896 7893 offsetT val;
b4cac588 7894
29b0f896
AM
7895 val = offset_in_range (i.op[n].imms->X_add_number,
7896 size);
7897 p = frag_more (size);
7898 md_number_to_chars (p, val, size);
7899 }
7900 else
7901 {
7902 /* Not absolute_section.
7903 Need a 32-bit fixup (don't support 8bit
7904 non-absolute imms). Try to support other
7905 sizes ... */
f86103b7 7906 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7907 int size = imm_size (n);
7908 int sign;
29b0f896 7909
40fb9820 7910 if (i.types[n].bitfield.imm32s
a7d61044 7911 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7912 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7913 sign = 1;
e205caa7
L
7914 else
7915 sign = 0;
520dc8e8 7916
29b0f896 7917 p = frag_more (size);
d258b828 7918 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7919
2bbd9c25
JJ
7920 /* This is tough to explain. We end up with this one if we
7921 * have operands that look like
7922 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7923 * obtain the absolute address of the GOT, and it is strongly
7924 * preferable from a performance point of view to avoid using
7925 * a runtime relocation for this. The actual sequence of
7926 * instructions often look something like:
7927 *
7928 * call .L66
7929 * .L66:
7930 * popl %ebx
7931 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7932 *
7933 * The call and pop essentially return the absolute address
7934 * of the label .L66 and store it in %ebx. The linker itself
7935 * will ultimately change the first operand of the addl so
7936 * that %ebx points to the GOT, but to keep things simple, the
7937 * .o file must have this operand set so that it generates not
7938 * the absolute address of .L66, but the absolute address of
7939 * itself. This allows the linker itself simply treat a GOTPC
7940 * relocation as asking for a pcrel offset to the GOT to be
7941 * added in, and the addend of the relocation is stored in the
7942 * operand field for the instruction itself.
7943 *
7944 * Our job here is to fix the operand so that it would add
7945 * the correct offset so that %ebx would point to itself. The
7946 * thing that is tricky is that .-.L66 will point to the
7947 * beginning of the instruction, so we need to further modify
7948 * the operand so that it will point to itself. There are
7949 * other cases where you have something like:
7950 *
7951 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7952 *
7953 * and here no correction would be required. Internally in
7954 * the assembler we treat operands of this form as not being
7955 * pcrel since the '.' is explicitly mentioned, and I wonder
7956 * whether it would simplify matters to do it this way. Who
7957 * knows. In earlier versions of the PIC patches, the
7958 * pcrel_adjust field was used to store the correction, but
7959 * since the expression is not pcrel, I felt it would be
7960 * confusing to do it this way. */
7961
d6ab8113 7962 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7963 || reloc_type == BFD_RELOC_X86_64_32S
7964 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7965 && GOT_symbol
7966 && GOT_symbol == i.op[n].imms->X_add_symbol
7967 && (i.op[n].imms->X_op == O_symbol
7968 || (i.op[n].imms->X_op == O_add
7969 && ((symbol_get_value_expression
7970 (i.op[n].imms->X_op_symbol)->X_op)
7971 == O_subtract))))
7972 {
2bbd9c25
JJ
7973 offsetT add;
7974
7975 if (insn_start_frag == frag_now)
7976 add = (p - frag_now->fr_literal) - insn_start_off;
7977 else
7978 {
7979 fragS *fr;
7980
7981 add = insn_start_frag->fr_fix - insn_start_off;
7982 for (fr = insn_start_frag->fr_next;
7983 fr && fr != frag_now; fr = fr->fr_next)
7984 add += fr->fr_fix;
7985 add += p - frag_now->fr_literal;
7986 }
7987
4fa24527 7988 if (!object_64bit)
d6ab8113 7989 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7990 else if (size == 4)
d6ab8113 7991 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7992 else if (size == 8)
7993 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7994 i.op[n].imms->X_add_number += add;
29b0f896 7995 }
29b0f896
AM
7996 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7997 i.op[n].imms, 0, reloc_type);
7998 }
7999 }
8000 }
252b5132
RH
8001}
8002\f
d182319b
JB
8003/* x86_cons_fix_new is called via the expression parsing code when a
8004 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8005static int cons_sign = -1;
8006
8007void
e3bb37b5 8008x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8009 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8010{
d258b828 8011 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8012
8013#ifdef TE_PE
8014 if (exp->X_op == O_secrel)
8015 {
8016 exp->X_op = O_symbol;
8017 r = BFD_RELOC_32_SECREL;
8018 }
8019#endif
8020
8021 fix_new_exp (frag, off, len, exp, 0, r);
8022}
8023
357d1bd8
L
8024/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8025 purpose of the `.dc.a' internal pseudo-op. */
8026
8027int
8028x86_address_bytes (void)
8029{
8030 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8031 return 4;
8032 return stdoutput->arch_info->bits_per_address / 8;
8033}
8034
d382c579
TG
8035#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8036 || defined (LEX_AT)
d258b828 8037# define lex_got(reloc, adjust, types) NULL
718ddfc0 8038#else
f3c180ae
AM
8039/* Parse operands of the form
8040 <symbol>@GOTOFF+<nnn>
8041 and similar .plt or .got references.
8042
8043 If we find one, set up the correct relocation in RELOC and copy the
8044 input string, minus the `@GOTOFF' into a malloc'd buffer for
8045 parsing by the calling routine. Return this buffer, and if ADJUST
8046 is non-null set it to the length of the string we removed from the
8047 input line. Otherwise return NULL. */
8048static char *
91d6fa6a 8049lex_got (enum bfd_reloc_code_real *rel,
64e74474 8050 int *adjust,
d258b828 8051 i386_operand_type *types)
f3c180ae 8052{
7b81dfbb
AJ
8053 /* Some of the relocations depend on the size of what field is to
8054 be relocated. But in our callers i386_immediate and i386_displacement
8055 we don't yet know the operand size (this will be set by insn
8056 matching). Hence we record the word32 relocation here,
8057 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8058 static const struct {
8059 const char *str;
cff8d58a 8060 int len;
4fa24527 8061 const enum bfd_reloc_code_real rel[2];
40fb9820 8062 const i386_operand_type types64;
f3c180ae 8063 } gotrel[] = {
8ce3d284 8064#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8065 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8066 BFD_RELOC_SIZE32 },
8067 OPERAND_TYPE_IMM32_64 },
8ce3d284 8068#endif
cff8d58a
L
8069 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8070 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8071 OPERAND_TYPE_IMM64 },
cff8d58a
L
8072 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8073 BFD_RELOC_X86_64_PLT32 },
40fb9820 8074 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8075 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8076 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8077 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8078 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8079 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8080 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8081 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8082 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8083 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8084 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8085 BFD_RELOC_X86_64_TLSGD },
40fb9820 8086 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8087 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8088 _dummy_first_bfd_reloc_code_real },
40fb9820 8089 OPERAND_TYPE_NONE },
cff8d58a
L
8090 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8091 BFD_RELOC_X86_64_TLSLD },
40fb9820 8092 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8093 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8094 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8095 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8096 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8097 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8098 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8099 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8100 _dummy_first_bfd_reloc_code_real },
40fb9820 8101 OPERAND_TYPE_NONE },
cff8d58a
L
8102 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8103 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8104 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8105 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8106 _dummy_first_bfd_reloc_code_real },
40fb9820 8107 OPERAND_TYPE_NONE },
cff8d58a
L
8108 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8109 _dummy_first_bfd_reloc_code_real },
40fb9820 8110 OPERAND_TYPE_NONE },
cff8d58a
L
8111 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8112 BFD_RELOC_X86_64_GOT32 },
40fb9820 8113 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8114 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8115 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8116 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8117 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8118 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8119 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8120 };
8121 char *cp;
8122 unsigned int j;
8123
d382c579 8124#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8125 if (!IS_ELF)
8126 return NULL;
d382c579 8127#endif
718ddfc0 8128
f3c180ae 8129 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8130 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8131 return NULL;
8132
47465058 8133 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8134 {
cff8d58a 8135 int len = gotrel[j].len;
28f81592 8136 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8137 {
4fa24527 8138 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8139 {
28f81592
AM
8140 int first, second;
8141 char *tmpbuf, *past_reloc;
f3c180ae 8142
91d6fa6a 8143 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8144
3956db08
JB
8145 if (types)
8146 {
8147 if (flag_code != CODE_64BIT)
40fb9820
L
8148 {
8149 types->bitfield.imm32 = 1;
8150 types->bitfield.disp32 = 1;
8151 }
3956db08
JB
8152 else
8153 *types = gotrel[j].types64;
8154 }
8155
8fd4256d 8156 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8157 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8158
28f81592 8159 /* The length of the first part of our input line. */
f3c180ae 8160 first = cp - input_line_pointer;
28f81592
AM
8161
8162 /* The second part goes from after the reloc token until
67c11a9b 8163 (and including) an end_of_line char or comma. */
28f81592 8164 past_reloc = cp + 1 + len;
67c11a9b
AM
8165 cp = past_reloc;
8166 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8167 ++cp;
8168 second = cp + 1 - past_reloc;
28f81592
AM
8169
8170 /* Allocate and copy string. The trailing NUL shouldn't
8171 be necessary, but be safe. */
add39d23 8172 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8173 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8174 if (second != 0 && *past_reloc != ' ')
8175 /* Replace the relocation token with ' ', so that
8176 errors like foo@GOTOFF1 will be detected. */
8177 tmpbuf[first++] = ' ';
af89796a
L
8178 else
8179 /* Increment length by 1 if the relocation token is
8180 removed. */
8181 len++;
8182 if (adjust)
8183 *adjust = len;
0787a12d
AM
8184 memcpy (tmpbuf + first, past_reloc, second);
8185 tmpbuf[first + second] = '\0';
f3c180ae
AM
8186 return tmpbuf;
8187 }
8188
4fa24527
JB
8189 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8190 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8191 return NULL;
8192 }
8193 }
8194
8195 /* Might be a symbol version string. Don't as_bad here. */
8196 return NULL;
8197}
4e4f7c87 8198#endif
f3c180ae 8199
a988325c
NC
8200#ifdef TE_PE
8201#ifdef lex_got
8202#undef lex_got
8203#endif
8204/* Parse operands of the form
8205 <symbol>@SECREL32+<nnn>
8206
8207 If we find one, set up the correct relocation in RELOC and copy the
8208 input string, minus the `@SECREL32' into a malloc'd buffer for
8209 parsing by the calling routine. Return this buffer, and if ADJUST
8210 is non-null set it to the length of the string we removed from the
34bca508
L
8211 input line. Otherwise return NULL.
8212
a988325c
NC
8213 This function is copied from the ELF version above adjusted for PE targets. */
8214
8215static char *
8216lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8217 int *adjust ATTRIBUTE_UNUSED,
d258b828 8218 i386_operand_type *types)
a988325c
NC
8219{
8220 static const struct
8221 {
8222 const char *str;
8223 int len;
8224 const enum bfd_reloc_code_real rel[2];
8225 const i386_operand_type types64;
8226 }
8227 gotrel[] =
8228 {
8229 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8230 BFD_RELOC_32_SECREL },
8231 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8232 };
8233
8234 char *cp;
8235 unsigned j;
8236
8237 for (cp = input_line_pointer; *cp != '@'; cp++)
8238 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8239 return NULL;
8240
8241 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8242 {
8243 int len = gotrel[j].len;
8244
8245 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8246 {
8247 if (gotrel[j].rel[object_64bit] != 0)
8248 {
8249 int first, second;
8250 char *tmpbuf, *past_reloc;
8251
8252 *rel = gotrel[j].rel[object_64bit];
8253 if (adjust)
8254 *adjust = len;
8255
8256 if (types)
8257 {
8258 if (flag_code != CODE_64BIT)
8259 {
8260 types->bitfield.imm32 = 1;
8261 types->bitfield.disp32 = 1;
8262 }
8263 else
8264 *types = gotrel[j].types64;
8265 }
8266
8267 /* The length of the first part of our input line. */
8268 first = cp - input_line_pointer;
8269
8270 /* The second part goes from after the reloc token until
8271 (and including) an end_of_line char or comma. */
8272 past_reloc = cp + 1 + len;
8273 cp = past_reloc;
8274 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8275 ++cp;
8276 second = cp + 1 - past_reloc;
8277
8278 /* Allocate and copy string. The trailing NUL shouldn't
8279 be necessary, but be safe. */
add39d23 8280 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8281 memcpy (tmpbuf, input_line_pointer, first);
8282 if (second != 0 && *past_reloc != ' ')
8283 /* Replace the relocation token with ' ', so that
8284 errors like foo@SECLREL321 will be detected. */
8285 tmpbuf[first++] = ' ';
8286 memcpy (tmpbuf + first, past_reloc, second);
8287 tmpbuf[first + second] = '\0';
8288 return tmpbuf;
8289 }
8290
8291 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8292 gotrel[j].str, 1 << (5 + object_64bit));
8293 return NULL;
8294 }
8295 }
8296
8297 /* Might be a symbol version string. Don't as_bad here. */
8298 return NULL;
8299}
8300
8301#endif /* TE_PE */
8302
62ebcb5c 8303bfd_reloc_code_real_type
e3bb37b5 8304x86_cons (expressionS *exp, int size)
f3c180ae 8305{
62ebcb5c
AM
8306 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8307
ee86248c
JB
8308 intel_syntax = -intel_syntax;
8309
3c7b9c2c 8310 exp->X_md = 0;
4fa24527 8311 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8312 {
8313 /* Handle @GOTOFF and the like in an expression. */
8314 char *save;
8315 char *gotfree_input_line;
4a57f2cf 8316 int adjust = 0;
f3c180ae
AM
8317
8318 save = input_line_pointer;
d258b828 8319 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8320 if (gotfree_input_line)
8321 input_line_pointer = gotfree_input_line;
8322
8323 expression (exp);
8324
8325 if (gotfree_input_line)
8326 {
8327 /* expression () has merrily parsed up to the end of line,
8328 or a comma - in the wrong buffer. Transfer how far
8329 input_line_pointer has moved to the right buffer. */
8330 input_line_pointer = (save
8331 + (input_line_pointer - gotfree_input_line)
8332 + adjust);
8333 free (gotfree_input_line);
3992d3b7
AM
8334 if (exp->X_op == O_constant
8335 || exp->X_op == O_absent
8336 || exp->X_op == O_illegal
0398aac5 8337 || exp->X_op == O_register
3992d3b7
AM
8338 || exp->X_op == O_big)
8339 {
8340 char c = *input_line_pointer;
8341 *input_line_pointer = 0;
8342 as_bad (_("missing or invalid expression `%s'"), save);
8343 *input_line_pointer = c;
8344 }
f3c180ae
AM
8345 }
8346 }
8347 else
8348 expression (exp);
ee86248c
JB
8349
8350 intel_syntax = -intel_syntax;
8351
8352 if (intel_syntax)
8353 i386_intel_simplify (exp);
62ebcb5c
AM
8354
8355 return got_reloc;
f3c180ae 8356}
f3c180ae 8357
9f32dd5b
L
8358static void
8359signed_cons (int size)
6482c264 8360{
d182319b
JB
8361 if (flag_code == CODE_64BIT)
8362 cons_sign = 1;
8363 cons (size);
8364 cons_sign = -1;
6482c264
NC
8365}
8366
d182319b 8367#ifdef TE_PE
6482c264 8368static void
7016a5d5 8369pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8370{
8371 expressionS exp;
8372
8373 do
8374 {
8375 expression (&exp);
8376 if (exp.X_op == O_symbol)
8377 exp.X_op = O_secrel;
8378
8379 emit_expr (&exp, 4);
8380 }
8381 while (*input_line_pointer++ == ',');
8382
8383 input_line_pointer--;
8384 demand_empty_rest_of_line ();
8385}
6482c264
NC
8386#endif
8387
43234a1e
L
8388/* Handle Vector operations. */
8389
8390static char *
8391check_VecOperations (char *op_string, char *op_end)
8392{
8393 const reg_entry *mask;
8394 const char *saved;
8395 char *end_op;
8396
8397 while (*op_string
8398 && (op_end == NULL || op_string < op_end))
8399 {
8400 saved = op_string;
8401 if (*op_string == '{')
8402 {
8403 op_string++;
8404
8405 /* Check broadcasts. */
8406 if (strncmp (op_string, "1to", 3) == 0)
8407 {
8408 int bcst_type;
8409
8410 if (i.broadcast)
8411 goto duplicated_vec_op;
8412
8413 op_string += 3;
8414 if (*op_string == '8')
8415 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8416 else if (*op_string == '4')
8417 bcst_type = BROADCAST_1TO4;
8418 else if (*op_string == '2')
8419 bcst_type = BROADCAST_1TO2;
43234a1e
L
8420 else if (*op_string == '1'
8421 && *(op_string+1) == '6')
8422 {
8423 bcst_type = BROADCAST_1TO16;
8424 op_string++;
8425 }
8426 else
8427 {
8428 as_bad (_("Unsupported broadcast: `%s'"), saved);
8429 return NULL;
8430 }
8431 op_string++;
8432
8433 broadcast_op.type = bcst_type;
8434 broadcast_op.operand = this_operand;
8435 i.broadcast = &broadcast_op;
8436 }
8437 /* Check masking operation. */
8438 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8439 {
8440 /* k0 can't be used for write mask. */
6d2cd6b2 8441 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8442 {
6d2cd6b2
JB
8443 as_bad (_("`%s%s' can't be used for write mask"),
8444 register_prefix, mask->reg_name);
43234a1e
L
8445 return NULL;
8446 }
8447
8448 if (!i.mask)
8449 {
8450 mask_op.mask = mask;
8451 mask_op.zeroing = 0;
8452 mask_op.operand = this_operand;
8453 i.mask = &mask_op;
8454 }
8455 else
8456 {
8457 if (i.mask->mask)
8458 goto duplicated_vec_op;
8459
8460 i.mask->mask = mask;
8461
8462 /* Only "{z}" is allowed here. No need to check
8463 zeroing mask explicitly. */
8464 if (i.mask->operand != this_operand)
8465 {
8466 as_bad (_("invalid write mask `%s'"), saved);
8467 return NULL;
8468 }
8469 }
8470
8471 op_string = end_op;
8472 }
8473 /* Check zeroing-flag for masking operation. */
8474 else if (*op_string == 'z')
8475 {
8476 if (!i.mask)
8477 {
8478 mask_op.mask = NULL;
8479 mask_op.zeroing = 1;
8480 mask_op.operand = this_operand;
8481 i.mask = &mask_op;
8482 }
8483 else
8484 {
8485 if (i.mask->zeroing)
8486 {
8487 duplicated_vec_op:
8488 as_bad (_("duplicated `%s'"), saved);
8489 return NULL;
8490 }
8491
8492 i.mask->zeroing = 1;
8493
8494 /* Only "{%k}" is allowed here. No need to check mask
8495 register explicitly. */
8496 if (i.mask->operand != this_operand)
8497 {
8498 as_bad (_("invalid zeroing-masking `%s'"),
8499 saved);
8500 return NULL;
8501 }
8502 }
8503
8504 op_string++;
8505 }
8506 else
8507 goto unknown_vec_op;
8508
8509 if (*op_string != '}')
8510 {
8511 as_bad (_("missing `}' in `%s'"), saved);
8512 return NULL;
8513 }
8514 op_string++;
8515 continue;
8516 }
8517 unknown_vec_op:
8518 /* We don't know this one. */
8519 as_bad (_("unknown vector operation: `%s'"), saved);
8520 return NULL;
8521 }
8522
6d2cd6b2
JB
8523 if (i.mask && i.mask->zeroing && !i.mask->mask)
8524 {
8525 as_bad (_("zeroing-masking only allowed with write mask"));
8526 return NULL;
8527 }
8528
43234a1e
L
8529 return op_string;
8530}
8531
252b5132 8532static int
70e41ade 8533i386_immediate (char *imm_start)
252b5132
RH
8534{
8535 char *save_input_line_pointer;
f3c180ae 8536 char *gotfree_input_line;
252b5132 8537 segT exp_seg = 0;
47926f60 8538 expressionS *exp;
40fb9820
L
8539 i386_operand_type types;
8540
0dfbf9d7 8541 operand_type_set (&types, ~0);
252b5132
RH
8542
8543 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8544 {
31b2323c
L
8545 as_bad (_("at most %d immediate operands are allowed"),
8546 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8547 return 0;
8548 }
8549
8550 exp = &im_expressions[i.imm_operands++];
520dc8e8 8551 i.op[this_operand].imms = exp;
252b5132
RH
8552
8553 if (is_space_char (*imm_start))
8554 ++imm_start;
8555
8556 save_input_line_pointer = input_line_pointer;
8557 input_line_pointer = imm_start;
8558
d258b828 8559 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8560 if (gotfree_input_line)
8561 input_line_pointer = gotfree_input_line;
252b5132
RH
8562
8563 exp_seg = expression (exp);
8564
83183c0c 8565 SKIP_WHITESPACE ();
43234a1e
L
8566
8567 /* Handle vector operations. */
8568 if (*input_line_pointer == '{')
8569 {
8570 input_line_pointer = check_VecOperations (input_line_pointer,
8571 NULL);
8572 if (input_line_pointer == NULL)
8573 return 0;
8574 }
8575
252b5132 8576 if (*input_line_pointer)
f3c180ae 8577 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8578
8579 input_line_pointer = save_input_line_pointer;
f3c180ae 8580 if (gotfree_input_line)
ee86248c
JB
8581 {
8582 free (gotfree_input_line);
8583
8584 if (exp->X_op == O_constant || exp->X_op == O_register)
8585 exp->X_op = O_illegal;
8586 }
8587
8588 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8589}
252b5132 8590
ee86248c
JB
8591static int
8592i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8593 i386_operand_type types, const char *imm_start)
8594{
8595 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8596 {
313c53d1
L
8597 if (imm_start)
8598 as_bad (_("missing or invalid immediate expression `%s'"),
8599 imm_start);
3992d3b7 8600 return 0;
252b5132 8601 }
3e73aa7c 8602 else if (exp->X_op == O_constant)
252b5132 8603 {
47926f60 8604 /* Size it properly later. */
40fb9820 8605 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8606 /* If not 64bit, sign extend val. */
8607 if (flag_code != CODE_64BIT
4eed87de
AM
8608 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8609 exp->X_add_number
8610 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8611 }
4c63da97 8612#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8613 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8614 && exp_seg != absolute_section
47926f60 8615 && exp_seg != text_section
24eab124
AM
8616 && exp_seg != data_section
8617 && exp_seg != bss_section
8618 && exp_seg != undefined_section
f86103b7 8619 && !bfd_is_com_section (exp_seg))
252b5132 8620 {
d0b47220 8621 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8622 return 0;
8623 }
8624#endif
a841bdf5 8625 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8626 {
313c53d1
L
8627 if (imm_start)
8628 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8629 return 0;
8630 }
252b5132
RH
8631 else
8632 {
8633 /* This is an address. The size of the address will be
24eab124 8634 determined later, depending on destination register,
3e73aa7c 8635 suffix, or the default for the section. */
40fb9820
L
8636 i.types[this_operand].bitfield.imm8 = 1;
8637 i.types[this_operand].bitfield.imm16 = 1;
8638 i.types[this_operand].bitfield.imm32 = 1;
8639 i.types[this_operand].bitfield.imm32s = 1;
8640 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8641 i.types[this_operand] = operand_type_and (i.types[this_operand],
8642 types);
252b5132
RH
8643 }
8644
8645 return 1;
8646}
8647
551c1ca1 8648static char *
e3bb37b5 8649i386_scale (char *scale)
252b5132 8650{
551c1ca1
AM
8651 offsetT val;
8652 char *save = input_line_pointer;
252b5132 8653
551c1ca1
AM
8654 input_line_pointer = scale;
8655 val = get_absolute_expression ();
8656
8657 switch (val)
252b5132 8658 {
551c1ca1 8659 case 1:
252b5132
RH
8660 i.log2_scale_factor = 0;
8661 break;
551c1ca1 8662 case 2:
252b5132
RH
8663 i.log2_scale_factor = 1;
8664 break;
551c1ca1 8665 case 4:
252b5132
RH
8666 i.log2_scale_factor = 2;
8667 break;
551c1ca1 8668 case 8:
252b5132
RH
8669 i.log2_scale_factor = 3;
8670 break;
8671 default:
a724f0f4
JB
8672 {
8673 char sep = *input_line_pointer;
8674
8675 *input_line_pointer = '\0';
8676 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8677 scale);
8678 *input_line_pointer = sep;
8679 input_line_pointer = save;
8680 return NULL;
8681 }
252b5132 8682 }
29b0f896 8683 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8684 {
8685 as_warn (_("scale factor of %d without an index register"),
24eab124 8686 1 << i.log2_scale_factor);
252b5132 8687 i.log2_scale_factor = 0;
252b5132 8688 }
551c1ca1
AM
8689 scale = input_line_pointer;
8690 input_line_pointer = save;
8691 return scale;
252b5132
RH
8692}
8693
252b5132 8694static int
e3bb37b5 8695i386_displacement (char *disp_start, char *disp_end)
252b5132 8696{
29b0f896 8697 expressionS *exp;
252b5132
RH
8698 segT exp_seg = 0;
8699 char *save_input_line_pointer;
f3c180ae 8700 char *gotfree_input_line;
40fb9820
L
8701 int override;
8702 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8703 int ret;
252b5132 8704
31b2323c
L
8705 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8706 {
8707 as_bad (_("at most %d displacement operands are allowed"),
8708 MAX_MEMORY_OPERANDS);
8709 return 0;
8710 }
8711
0dfbf9d7 8712 operand_type_set (&bigdisp, 0);
40fb9820
L
8713 if ((i.types[this_operand].bitfield.jumpabsolute)
8714 || (!current_templates->start->opcode_modifier.jump
8715 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8716 {
40fb9820 8717 bigdisp.bitfield.disp32 = 1;
e05278af 8718 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8719 if (flag_code == CODE_64BIT)
8720 {
8721 if (!override)
8722 {
8723 bigdisp.bitfield.disp32s = 1;
8724 bigdisp.bitfield.disp64 = 1;
8725 }
8726 }
8727 else if ((flag_code == CODE_16BIT) ^ override)
8728 {
8729 bigdisp.bitfield.disp32 = 0;
8730 bigdisp.bitfield.disp16 = 1;
8731 }
e05278af
JB
8732 }
8733 else
8734 {
8735 /* For PC-relative branches, the width of the displacement
8736 is dependent upon data size, not address size. */
e05278af 8737 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8738 if (flag_code == CODE_64BIT)
8739 {
8740 if (override || i.suffix == WORD_MNEM_SUFFIX)
8741 bigdisp.bitfield.disp16 = 1;
8742 else
8743 {
8744 bigdisp.bitfield.disp32 = 1;
8745 bigdisp.bitfield.disp32s = 1;
8746 }
8747 }
8748 else
e05278af
JB
8749 {
8750 if (!override)
8751 override = (i.suffix == (flag_code != CODE_16BIT
8752 ? WORD_MNEM_SUFFIX
8753 : LONG_MNEM_SUFFIX));
40fb9820
L
8754 bigdisp.bitfield.disp32 = 1;
8755 if ((flag_code == CODE_16BIT) ^ override)
8756 {
8757 bigdisp.bitfield.disp32 = 0;
8758 bigdisp.bitfield.disp16 = 1;
8759 }
e05278af 8760 }
e05278af 8761 }
c6fb90c8
L
8762 i.types[this_operand] = operand_type_or (i.types[this_operand],
8763 bigdisp);
252b5132
RH
8764
8765 exp = &disp_expressions[i.disp_operands];
520dc8e8 8766 i.op[this_operand].disps = exp;
252b5132
RH
8767 i.disp_operands++;
8768 save_input_line_pointer = input_line_pointer;
8769 input_line_pointer = disp_start;
8770 END_STRING_AND_SAVE (disp_end);
8771
8772#ifndef GCC_ASM_O_HACK
8773#define GCC_ASM_O_HACK 0
8774#endif
8775#if GCC_ASM_O_HACK
8776 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8777 if (i.types[this_operand].bitfield.baseIndex
24eab124 8778 && displacement_string_end[-1] == '+')
252b5132
RH
8779 {
8780 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8781 constraint within gcc asm statements.
8782 For instance:
8783
8784 #define _set_tssldt_desc(n,addr,limit,type) \
8785 __asm__ __volatile__ ( \
8786 "movw %w2,%0\n\t" \
8787 "movw %w1,2+%0\n\t" \
8788 "rorl $16,%1\n\t" \
8789 "movb %b1,4+%0\n\t" \
8790 "movb %4,5+%0\n\t" \
8791 "movb $0,6+%0\n\t" \
8792 "movb %h1,7+%0\n\t" \
8793 "rorl $16,%1" \
8794 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8795
8796 This works great except that the output assembler ends
8797 up looking a bit weird if it turns out that there is
8798 no offset. You end up producing code that looks like:
8799
8800 #APP
8801 movw $235,(%eax)
8802 movw %dx,2+(%eax)
8803 rorl $16,%edx
8804 movb %dl,4+(%eax)
8805 movb $137,5+(%eax)
8806 movb $0,6+(%eax)
8807 movb %dh,7+(%eax)
8808 rorl $16,%edx
8809 #NO_APP
8810
47926f60 8811 So here we provide the missing zero. */
24eab124
AM
8812
8813 *displacement_string_end = '0';
252b5132
RH
8814 }
8815#endif
d258b828 8816 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8817 if (gotfree_input_line)
8818 input_line_pointer = gotfree_input_line;
252b5132 8819
24eab124 8820 exp_seg = expression (exp);
252b5132 8821
636c26b0
AM
8822 SKIP_WHITESPACE ();
8823 if (*input_line_pointer)
8824 as_bad (_("junk `%s' after expression"), input_line_pointer);
8825#if GCC_ASM_O_HACK
8826 RESTORE_END_STRING (disp_end + 1);
8827#endif
636c26b0 8828 input_line_pointer = save_input_line_pointer;
636c26b0 8829 if (gotfree_input_line)
ee86248c
JB
8830 {
8831 free (gotfree_input_line);
8832
8833 if (exp->X_op == O_constant || exp->X_op == O_register)
8834 exp->X_op = O_illegal;
8835 }
8836
8837 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8838
8839 RESTORE_END_STRING (disp_end);
8840
8841 return ret;
8842}
8843
8844static int
8845i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8846 i386_operand_type types, const char *disp_start)
8847{
8848 i386_operand_type bigdisp;
8849 int ret = 1;
636c26b0 8850
24eab124
AM
8851 /* We do this to make sure that the section symbol is in
8852 the symbol table. We will ultimately change the relocation
47926f60 8853 to be relative to the beginning of the section. */
1ae12ab7 8854 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8855 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8856 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8857 {
636c26b0 8858 if (exp->X_op != O_symbol)
3992d3b7 8859 goto inv_disp;
636c26b0 8860
e5cb08ac 8861 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8862 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8863 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8864 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8865 exp->X_op = O_subtract;
8866 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8867 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8868 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8869 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8870 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8871 else
29b0f896 8872 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8873 }
252b5132 8874
3992d3b7
AM
8875 else if (exp->X_op == O_absent
8876 || exp->X_op == O_illegal
ee86248c 8877 || exp->X_op == O_big)
2daf4fd8 8878 {
3992d3b7
AM
8879 inv_disp:
8880 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8881 disp_start);
3992d3b7 8882 ret = 0;
2daf4fd8
AM
8883 }
8884
0e1147d9
L
8885 else if (flag_code == CODE_64BIT
8886 && !i.prefix[ADDR_PREFIX]
8887 && exp->X_op == O_constant)
8888 {
8889 /* Since displacement is signed extended to 64bit, don't allow
8890 disp32 and turn off disp32s if they are out of range. */
8891 i.types[this_operand].bitfield.disp32 = 0;
8892 if (!fits_in_signed_long (exp->X_add_number))
8893 {
8894 i.types[this_operand].bitfield.disp32s = 0;
8895 if (i.types[this_operand].bitfield.baseindex)
8896 {
8897 as_bad (_("0x%lx out range of signed 32bit displacement"),
8898 (long) exp->X_add_number);
8899 ret = 0;
8900 }
8901 }
8902 }
8903
4c63da97 8904#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8905 else if (exp->X_op != O_constant
8906 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8907 && exp_seg != absolute_section
8908 && exp_seg != text_section
8909 && exp_seg != data_section
8910 && exp_seg != bss_section
8911 && exp_seg != undefined_section
8912 && !bfd_is_com_section (exp_seg))
24eab124 8913 {
d0b47220 8914 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8915 ret = 0;
24eab124 8916 }
252b5132 8917#endif
3956db08 8918
40fb9820
L
8919 /* Check if this is a displacement only operand. */
8920 bigdisp = i.types[this_operand];
8921 bigdisp.bitfield.disp8 = 0;
8922 bigdisp.bitfield.disp16 = 0;
8923 bigdisp.bitfield.disp32 = 0;
8924 bigdisp.bitfield.disp32s = 0;
8925 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8926 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8927 i.types[this_operand] = operand_type_and (i.types[this_operand],
8928 types);
3956db08 8929
3992d3b7 8930 return ret;
252b5132
RH
8931}
8932
2abc2bec
JB
8933/* Return the active addressing mode, taking address override and
8934 registers forming the address into consideration. Update the
8935 address override prefix if necessary. */
47926f60 8936
2abc2bec
JB
8937static enum flag_code
8938i386_addressing_mode (void)
252b5132 8939{
be05d201
L
8940 enum flag_code addr_mode;
8941
8942 if (i.prefix[ADDR_PREFIX])
8943 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8944 else
8945 {
8946 addr_mode = flag_code;
8947
24eab124 8948#if INFER_ADDR_PREFIX
be05d201
L
8949 if (i.mem_operands == 0)
8950 {
8951 /* Infer address prefix from the first memory operand. */
8952 const reg_entry *addr_reg = i.base_reg;
8953
8954 if (addr_reg == NULL)
8955 addr_reg = i.index_reg;
eecb386c 8956
be05d201
L
8957 if (addr_reg)
8958 {
8959 if (addr_reg->reg_num == RegEip
8960 || addr_reg->reg_num == RegEiz
dc821c5f 8961 || addr_reg->reg_type.bitfield.dword)
be05d201
L
8962 addr_mode = CODE_32BIT;
8963 else if (flag_code != CODE_64BIT
dc821c5f 8964 && addr_reg->reg_type.bitfield.word)
be05d201
L
8965 addr_mode = CODE_16BIT;
8966
8967 if (addr_mode != flag_code)
8968 {
8969 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8970 i.prefixes += 1;
8971 /* Change the size of any displacement too. At most one
8972 of Disp16 or Disp32 is set.
8973 FIXME. There doesn't seem to be any real need for
8974 separate Disp16 and Disp32 flags. The same goes for
8975 Imm16 and Imm32. Removing them would probably clean
8976 up the code quite a lot. */
8977 if (flag_code != CODE_64BIT
8978 && (i.types[this_operand].bitfield.disp16
8979 || i.types[this_operand].bitfield.disp32))
8980 i.types[this_operand]
8981 = operand_type_xor (i.types[this_operand], disp16_32);
8982 }
8983 }
8984 }
24eab124 8985#endif
be05d201
L
8986 }
8987
2abc2bec
JB
8988 return addr_mode;
8989}
8990
8991/* Make sure the memory operand we've been dealt is valid.
8992 Return 1 on success, 0 on a failure. */
8993
8994static int
8995i386_index_check (const char *operand_string)
8996{
8997 const char *kind = "base/index";
8998 enum flag_code addr_mode = i386_addressing_mode ();
8999
fc0763e6
JB
9000 if (current_templates->start->opcode_modifier.isstring
9001 && !current_templates->start->opcode_modifier.immext
9002 && (current_templates->end[-1].opcode_modifier.isstring
9003 || i.mem_operands))
9004 {
9005 /* Memory operands of string insns are special in that they only allow
9006 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9007 const reg_entry *expected_reg;
9008 static const char *di_si[][2] =
9009 {
9010 { "esi", "edi" },
9011 { "si", "di" },
9012 { "rsi", "rdi" }
9013 };
9014 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9015
9016 kind = "string address";
9017
8325cc63 9018 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9019 {
9020 i386_operand_type type = current_templates->end[-1].operand_types[0];
9021
9022 if (!type.bitfield.baseindex
9023 || ((!i.mem_operands != !intel_syntax)
9024 && current_templates->end[-1].operand_types[1]
9025 .bitfield.baseindex))
9026 type = current_templates->end[-1].operand_types[1];
be05d201
L
9027 expected_reg = hash_find (reg_hash,
9028 di_si[addr_mode][type.bitfield.esseg]);
9029
fc0763e6
JB
9030 }
9031 else
be05d201 9032 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9033
be05d201
L
9034 if (i.base_reg != expected_reg
9035 || i.index_reg
fc0763e6 9036 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9037 {
be05d201
L
9038 /* The second memory operand must have the same size as
9039 the first one. */
9040 if (i.mem_operands
9041 && i.base_reg
9042 && !((addr_mode == CODE_64BIT
dc821c5f 9043 && i.base_reg->reg_type.bitfield.qword)
be05d201 9044 || (addr_mode == CODE_32BIT
dc821c5f
JB
9045 ? i.base_reg->reg_type.bitfield.dword
9046 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9047 goto bad_address;
9048
fc0763e6
JB
9049 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9050 operand_string,
9051 intel_syntax ? '[' : '(',
9052 register_prefix,
be05d201 9053 expected_reg->reg_name,
fc0763e6 9054 intel_syntax ? ']' : ')');
be05d201 9055 return 1;
fc0763e6 9056 }
be05d201
L
9057 else
9058 return 1;
9059
9060bad_address:
9061 as_bad (_("`%s' is not a valid %s expression"),
9062 operand_string, kind);
9063 return 0;
3e73aa7c
JH
9064 }
9065 else
9066 {
be05d201
L
9067 if (addr_mode != CODE_16BIT)
9068 {
9069 /* 32-bit/64-bit checks. */
9070 if ((i.base_reg
9071 && (addr_mode == CODE_64BIT
dc821c5f
JB
9072 ? !i.base_reg->reg_type.bitfield.qword
9073 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9074 && (i.index_reg
9075 || (i.base_reg->reg_num
9076 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9077 || (i.index_reg
1b54b8d7
JB
9078 && !i.index_reg->reg_type.bitfield.xmmword
9079 && !i.index_reg->reg_type.bitfield.ymmword
9080 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9081 && ((addr_mode == CODE_64BIT
dc821c5f 9082 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9083 || i.index_reg->reg_num == RegRiz)
dc821c5f 9084 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9085 || i.index_reg->reg_num == RegEiz))
9086 || !i.index_reg->reg_type.bitfield.baseindex)))
9087 goto bad_address;
8178be5b
JB
9088
9089 /* bndmk, bndldx, and bndstx have special restrictions. */
9090 if (current_templates->start->base_opcode == 0xf30f1b
9091 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9092 {
9093 /* They cannot use RIP-relative addressing. */
9094 if (i.base_reg && i.base_reg->reg_num == RegRip)
9095 {
9096 as_bad (_("`%s' cannot be used here"), operand_string);
9097 return 0;
9098 }
9099
9100 /* bndldx and bndstx ignore their scale factor. */
9101 if (current_templates->start->base_opcode != 0xf30f1b
9102 && i.log2_scale_factor)
9103 as_warn (_("register scaling is being ignored here"));
9104 }
be05d201
L
9105 }
9106 else
3e73aa7c 9107 {
be05d201 9108 /* 16-bit checks. */
3e73aa7c 9109 if ((i.base_reg
dc821c5f 9110 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9111 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9112 || (i.index_reg
dc821c5f 9113 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9114 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9115 || !(i.base_reg
9116 && i.base_reg->reg_num < 6
9117 && i.index_reg->reg_num >= 6
9118 && i.log2_scale_factor == 0))))
be05d201 9119 goto bad_address;
3e73aa7c
JH
9120 }
9121 }
be05d201 9122 return 1;
24eab124 9123}
252b5132 9124
43234a1e
L
9125/* Handle vector immediates. */
9126
9127static int
9128RC_SAE_immediate (const char *imm_start)
9129{
9130 unsigned int match_found, j;
9131 const char *pstr = imm_start;
9132 expressionS *exp;
9133
9134 if (*pstr != '{')
9135 return 0;
9136
9137 pstr++;
9138 match_found = 0;
9139 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9140 {
9141 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9142 {
9143 if (!i.rounding)
9144 {
9145 rc_op.type = RC_NamesTable[j].type;
9146 rc_op.operand = this_operand;
9147 i.rounding = &rc_op;
9148 }
9149 else
9150 {
9151 as_bad (_("duplicated `%s'"), imm_start);
9152 return 0;
9153 }
9154 pstr += RC_NamesTable[j].len;
9155 match_found = 1;
9156 break;
9157 }
9158 }
9159 if (!match_found)
9160 return 0;
9161
9162 if (*pstr++ != '}')
9163 {
9164 as_bad (_("Missing '}': '%s'"), imm_start);
9165 return 0;
9166 }
9167 /* RC/SAE immediate string should contain nothing more. */;
9168 if (*pstr != 0)
9169 {
9170 as_bad (_("Junk after '}': '%s'"), imm_start);
9171 return 0;
9172 }
9173
9174 exp = &im_expressions[i.imm_operands++];
9175 i.op[this_operand].imms = exp;
9176
9177 exp->X_op = O_constant;
9178 exp->X_add_number = 0;
9179 exp->X_add_symbol = (symbolS *) 0;
9180 exp->X_op_symbol = (symbolS *) 0;
9181
9182 i.types[this_operand].bitfield.imm8 = 1;
9183 return 1;
9184}
9185
8325cc63
JB
9186/* Only string instructions can have a second memory operand, so
9187 reduce current_templates to just those if it contains any. */
9188static int
9189maybe_adjust_templates (void)
9190{
9191 const insn_template *t;
9192
9193 gas_assert (i.mem_operands == 1);
9194
9195 for (t = current_templates->start; t < current_templates->end; ++t)
9196 if (t->opcode_modifier.isstring)
9197 break;
9198
9199 if (t < current_templates->end)
9200 {
9201 static templates aux_templates;
9202 bfd_boolean recheck;
9203
9204 aux_templates.start = t;
9205 for (; t < current_templates->end; ++t)
9206 if (!t->opcode_modifier.isstring)
9207 break;
9208 aux_templates.end = t;
9209
9210 /* Determine whether to re-check the first memory operand. */
9211 recheck = (aux_templates.start != current_templates->start
9212 || t != current_templates->end);
9213
9214 current_templates = &aux_templates;
9215
9216 if (recheck)
9217 {
9218 i.mem_operands = 0;
9219 if (i.memop1_string != NULL
9220 && i386_index_check (i.memop1_string) == 0)
9221 return 0;
9222 i.mem_operands = 1;
9223 }
9224 }
9225
9226 return 1;
9227}
9228
fc0763e6 9229/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9230 on error. */
252b5132 9231
252b5132 9232static int
a7619375 9233i386_att_operand (char *operand_string)
252b5132 9234{
af6bdddf
AM
9235 const reg_entry *r;
9236 char *end_op;
24eab124 9237 char *op_string = operand_string;
252b5132 9238
24eab124 9239 if (is_space_char (*op_string))
252b5132
RH
9240 ++op_string;
9241
24eab124 9242 /* We check for an absolute prefix (differentiating,
47926f60 9243 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9244 if (*op_string == ABSOLUTE_PREFIX)
9245 {
9246 ++op_string;
9247 if (is_space_char (*op_string))
9248 ++op_string;
40fb9820 9249 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9250 }
252b5132 9251
47926f60 9252 /* Check if operand is a register. */
4d1bb795 9253 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9254 {
40fb9820
L
9255 i386_operand_type temp;
9256
24eab124
AM
9257 /* Check for a segment override by searching for ':' after a
9258 segment register. */
9259 op_string = end_op;
9260 if (is_space_char (*op_string))
9261 ++op_string;
40fb9820
L
9262 if (*op_string == ':'
9263 && (r->reg_type.bitfield.sreg2
9264 || r->reg_type.bitfield.sreg3))
24eab124
AM
9265 {
9266 switch (r->reg_num)
9267 {
9268 case 0:
9269 i.seg[i.mem_operands] = &es;
9270 break;
9271 case 1:
9272 i.seg[i.mem_operands] = &cs;
9273 break;
9274 case 2:
9275 i.seg[i.mem_operands] = &ss;
9276 break;
9277 case 3:
9278 i.seg[i.mem_operands] = &ds;
9279 break;
9280 case 4:
9281 i.seg[i.mem_operands] = &fs;
9282 break;
9283 case 5:
9284 i.seg[i.mem_operands] = &gs;
9285 break;
9286 }
252b5132 9287
24eab124 9288 /* Skip the ':' and whitespace. */
252b5132
RH
9289 ++op_string;
9290 if (is_space_char (*op_string))
24eab124 9291 ++op_string;
252b5132 9292
24eab124
AM
9293 if (!is_digit_char (*op_string)
9294 && !is_identifier_char (*op_string)
9295 && *op_string != '('
9296 && *op_string != ABSOLUTE_PREFIX)
9297 {
9298 as_bad (_("bad memory operand `%s'"), op_string);
9299 return 0;
9300 }
47926f60 9301 /* Handle case of %es:*foo. */
24eab124
AM
9302 if (*op_string == ABSOLUTE_PREFIX)
9303 {
9304 ++op_string;
9305 if (is_space_char (*op_string))
9306 ++op_string;
40fb9820 9307 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9308 }
9309 goto do_memory_reference;
9310 }
43234a1e
L
9311
9312 /* Handle vector operations. */
9313 if (*op_string == '{')
9314 {
9315 op_string = check_VecOperations (op_string, NULL);
9316 if (op_string == NULL)
9317 return 0;
9318 }
9319
24eab124
AM
9320 if (*op_string)
9321 {
d0b47220 9322 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9323 return 0;
9324 }
40fb9820
L
9325 temp = r->reg_type;
9326 temp.bitfield.baseindex = 0;
c6fb90c8
L
9327 i.types[this_operand] = operand_type_or (i.types[this_operand],
9328 temp);
7d5e4556 9329 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9330 i.op[this_operand].regs = r;
24eab124
AM
9331 i.reg_operands++;
9332 }
af6bdddf
AM
9333 else if (*op_string == REGISTER_PREFIX)
9334 {
9335 as_bad (_("bad register name `%s'"), op_string);
9336 return 0;
9337 }
24eab124 9338 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9339 {
24eab124 9340 ++op_string;
40fb9820 9341 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9342 {
d0b47220 9343 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9344 return 0;
9345 }
9346 if (!i386_immediate (op_string))
9347 return 0;
9348 }
43234a1e
L
9349 else if (RC_SAE_immediate (operand_string))
9350 {
9351 /* If it is a RC or SAE immediate, do nothing. */
9352 ;
9353 }
24eab124
AM
9354 else if (is_digit_char (*op_string)
9355 || is_identifier_char (*op_string)
d02603dc 9356 || *op_string == '"'
e5cb08ac 9357 || *op_string == '(')
24eab124 9358 {
47926f60 9359 /* This is a memory reference of some sort. */
af6bdddf 9360 char *base_string;
252b5132 9361
47926f60 9362 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9363 char *displacement_string_start;
9364 char *displacement_string_end;
43234a1e 9365 char *vop_start;
252b5132 9366
24eab124 9367 do_memory_reference:
8325cc63
JB
9368 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9369 return 0;
24eab124 9370 if ((i.mem_operands == 1
40fb9820 9371 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9372 || i.mem_operands == 2)
9373 {
9374 as_bad (_("too many memory references for `%s'"),
9375 current_templates->start->name);
9376 return 0;
9377 }
252b5132 9378
24eab124
AM
9379 /* Check for base index form. We detect the base index form by
9380 looking for an ')' at the end of the operand, searching
9381 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9382 after the '('. */
af6bdddf 9383 base_string = op_string + strlen (op_string);
c3332e24 9384
43234a1e
L
9385 /* Handle vector operations. */
9386 vop_start = strchr (op_string, '{');
9387 if (vop_start && vop_start < base_string)
9388 {
9389 if (check_VecOperations (vop_start, base_string) == NULL)
9390 return 0;
9391 base_string = vop_start;
9392 }
9393
af6bdddf
AM
9394 --base_string;
9395 if (is_space_char (*base_string))
9396 --base_string;
252b5132 9397
47926f60 9398 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9399 displacement_string_start = op_string;
9400 displacement_string_end = base_string + 1;
252b5132 9401
24eab124
AM
9402 if (*base_string == ')')
9403 {
af6bdddf 9404 char *temp_string;
24eab124
AM
9405 unsigned int parens_balanced = 1;
9406 /* We've already checked that the number of left & right ()'s are
47926f60 9407 equal, so this loop will not be infinite. */
24eab124
AM
9408 do
9409 {
9410 base_string--;
9411 if (*base_string == ')')
9412 parens_balanced++;
9413 if (*base_string == '(')
9414 parens_balanced--;
9415 }
9416 while (parens_balanced);
c3332e24 9417
af6bdddf 9418 temp_string = base_string;
c3332e24 9419
24eab124 9420 /* Skip past '(' and whitespace. */
252b5132
RH
9421 ++base_string;
9422 if (is_space_char (*base_string))
24eab124 9423 ++base_string;
252b5132 9424
af6bdddf 9425 if (*base_string == ','
4eed87de
AM
9426 || ((i.base_reg = parse_register (base_string, &end_op))
9427 != NULL))
252b5132 9428 {
af6bdddf 9429 displacement_string_end = temp_string;
252b5132 9430
40fb9820 9431 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9432
af6bdddf 9433 if (i.base_reg)
24eab124 9434 {
24eab124
AM
9435 base_string = end_op;
9436 if (is_space_char (*base_string))
9437 ++base_string;
af6bdddf
AM
9438 }
9439
9440 /* There may be an index reg or scale factor here. */
9441 if (*base_string == ',')
9442 {
9443 ++base_string;
9444 if (is_space_char (*base_string))
9445 ++base_string;
9446
4eed87de
AM
9447 if ((i.index_reg = parse_register (base_string, &end_op))
9448 != NULL)
24eab124 9449 {
af6bdddf 9450 base_string = end_op;
24eab124
AM
9451 if (is_space_char (*base_string))
9452 ++base_string;
af6bdddf
AM
9453 if (*base_string == ',')
9454 {
9455 ++base_string;
9456 if (is_space_char (*base_string))
9457 ++base_string;
9458 }
e5cb08ac 9459 else if (*base_string != ')')
af6bdddf 9460 {
4eed87de
AM
9461 as_bad (_("expecting `,' or `)' "
9462 "after index register in `%s'"),
af6bdddf
AM
9463 operand_string);
9464 return 0;
9465 }
24eab124 9466 }
af6bdddf 9467 else if (*base_string == REGISTER_PREFIX)
24eab124 9468 {
f76bf5e0
L
9469 end_op = strchr (base_string, ',');
9470 if (end_op)
9471 *end_op = '\0';
af6bdddf 9472 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9473 return 0;
9474 }
252b5132 9475
47926f60 9476 /* Check for scale factor. */
551c1ca1 9477 if (*base_string != ')')
af6bdddf 9478 {
551c1ca1
AM
9479 char *end_scale = i386_scale (base_string);
9480
9481 if (!end_scale)
af6bdddf 9482 return 0;
24eab124 9483
551c1ca1 9484 base_string = end_scale;
af6bdddf
AM
9485 if (is_space_char (*base_string))
9486 ++base_string;
9487 if (*base_string != ')')
9488 {
4eed87de
AM
9489 as_bad (_("expecting `)' "
9490 "after scale factor in `%s'"),
af6bdddf
AM
9491 operand_string);
9492 return 0;
9493 }
9494 }
9495 else if (!i.index_reg)
24eab124 9496 {
4eed87de
AM
9497 as_bad (_("expecting index register or scale factor "
9498 "after `,'; got '%c'"),
af6bdddf 9499 *base_string);
24eab124
AM
9500 return 0;
9501 }
9502 }
af6bdddf 9503 else if (*base_string != ')')
24eab124 9504 {
4eed87de
AM
9505 as_bad (_("expecting `,' or `)' "
9506 "after base register in `%s'"),
af6bdddf 9507 operand_string);
24eab124
AM
9508 return 0;
9509 }
c3332e24 9510 }
af6bdddf 9511 else if (*base_string == REGISTER_PREFIX)
c3332e24 9512 {
f76bf5e0
L
9513 end_op = strchr (base_string, ',');
9514 if (end_op)
9515 *end_op = '\0';
af6bdddf 9516 as_bad (_("bad register name `%s'"), base_string);
24eab124 9517 return 0;
c3332e24 9518 }
24eab124
AM
9519 }
9520
9521 /* If there's an expression beginning the operand, parse it,
9522 assuming displacement_string_start and
9523 displacement_string_end are meaningful. */
9524 if (displacement_string_start != displacement_string_end)
9525 {
9526 if (!i386_displacement (displacement_string_start,
9527 displacement_string_end))
9528 return 0;
9529 }
9530
9531 /* Special case for (%dx) while doing input/output op. */
9532 if (i.base_reg
0dfbf9d7
L
9533 && operand_type_equal (&i.base_reg->reg_type,
9534 &reg16_inoutportreg)
24eab124
AM
9535 && i.index_reg == 0
9536 && i.log2_scale_factor == 0
9537 && i.seg[i.mem_operands] == 0
40fb9820 9538 && !operand_type_check (i.types[this_operand], disp))
24eab124 9539 {
65da13b5 9540 i.types[this_operand] = inoutportreg;
24eab124
AM
9541 return 1;
9542 }
9543
eecb386c
AM
9544 if (i386_index_check (operand_string) == 0)
9545 return 0;
5c07affc 9546 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9547 if (i.mem_operands == 0)
9548 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9549 i.mem_operands++;
9550 }
9551 else
ce8a8b2f
AM
9552 {
9553 /* It's not a memory operand; argh! */
24eab124
AM
9554 as_bad (_("invalid char %s beginning operand %d `%s'"),
9555 output_invalid (*op_string),
9556 this_operand + 1,
9557 op_string);
9558 return 0;
9559 }
47926f60 9560 return 1; /* Normal return. */
252b5132
RH
9561}
9562\f
fa94de6b
RM
9563/* Calculate the maximum variable size (i.e., excluding fr_fix)
9564 that an rs_machine_dependent frag may reach. */
9565
9566unsigned int
9567i386_frag_max_var (fragS *frag)
9568{
9569 /* The only relaxable frags are for jumps.
9570 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9571 gas_assert (frag->fr_type == rs_machine_dependent);
9572 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9573}
9574
b084df0b
L
9575#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9576static int
8dcea932 9577elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9578{
9579 /* STT_GNU_IFUNC symbol must go through PLT. */
9580 if ((symbol_get_bfdsym (fr_symbol)->flags
9581 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9582 return 0;
9583
9584 if (!S_IS_EXTERNAL (fr_symbol))
9585 /* Symbol may be weak or local. */
9586 return !S_IS_WEAK (fr_symbol);
9587
8dcea932
L
9588 /* Global symbols with non-default visibility can't be preempted. */
9589 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9590 return 1;
9591
9592 if (fr_var != NO_RELOC)
9593 switch ((enum bfd_reloc_code_real) fr_var)
9594 {
9595 case BFD_RELOC_386_PLT32:
9596 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9597 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9598 return 0;
9599 default:
9600 abort ();
9601 }
9602
b084df0b
L
9603 /* Global symbols with default visibility in a shared library may be
9604 preempted by another definition. */
8dcea932 9605 return !shared;
b084df0b
L
9606}
9607#endif
9608
ee7fcc42
AM
9609/* md_estimate_size_before_relax()
9610
9611 Called just before relax() for rs_machine_dependent frags. The x86
9612 assembler uses these frags to handle variable size jump
9613 instructions.
9614
9615 Any symbol that is now undefined will not become defined.
9616 Return the correct fr_subtype in the frag.
9617 Return the initial "guess for variable size of frag" to caller.
9618 The guess is actually the growth beyond the fixed part. Whatever
9619 we do to grow the fixed or variable part contributes to our
9620 returned value. */
9621
252b5132 9622int
7016a5d5 9623md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9624{
252b5132 9625 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9626 check for un-relaxable symbols. On an ELF system, we can't relax
9627 an externally visible symbol, because it may be overridden by a
9628 shared library. */
9629 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9630#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9631 || (IS_ELF
8dcea932
L
9632 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9633 fragP->fr_var))
fbeb56a4
DK
9634#endif
9635#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9636 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9637 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9638#endif
9639 )
252b5132 9640 {
b98ef147
AM
9641 /* Symbol is undefined in this segment, or we need to keep a
9642 reloc so that weak symbols can be overridden. */
9643 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9644 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9645 unsigned char *opcode;
9646 int old_fr_fix;
f6af82bd 9647
ee7fcc42 9648 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9649 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9650 else if (size == 2)
f6af82bd 9651 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9652#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9653 else if (need_plt32_p (fragP->fr_symbol))
9654 reloc_type = BFD_RELOC_X86_64_PLT32;
9655#endif
f6af82bd
AM
9656 else
9657 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9658
ee7fcc42
AM
9659 old_fr_fix = fragP->fr_fix;
9660 opcode = (unsigned char *) fragP->fr_opcode;
9661
fddf5b5b 9662 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9663 {
fddf5b5b
AM
9664 case UNCOND_JUMP:
9665 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9666 opcode[0] = 0xe9;
252b5132 9667 fragP->fr_fix += size;
062cd5e7
AS
9668 fix_new (fragP, old_fr_fix, size,
9669 fragP->fr_symbol,
9670 fragP->fr_offset, 1,
9671 reloc_type);
252b5132
RH
9672 break;
9673
fddf5b5b 9674 case COND_JUMP86:
412167cb
AM
9675 if (size == 2
9676 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9677 {
9678 /* Negate the condition, and branch past an
9679 unconditional jump. */
9680 opcode[0] ^= 1;
9681 opcode[1] = 3;
9682 /* Insert an unconditional jump. */
9683 opcode[2] = 0xe9;
9684 /* We added two extra opcode bytes, and have a two byte
9685 offset. */
9686 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9687 fix_new (fragP, old_fr_fix + 2, 2,
9688 fragP->fr_symbol,
9689 fragP->fr_offset, 1,
9690 reloc_type);
fddf5b5b
AM
9691 break;
9692 }
9693 /* Fall through. */
9694
9695 case COND_JUMP:
412167cb
AM
9696 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9697 {
3e02c1cc
AM
9698 fixS *fixP;
9699
412167cb 9700 fragP->fr_fix += 1;
3e02c1cc
AM
9701 fixP = fix_new (fragP, old_fr_fix, 1,
9702 fragP->fr_symbol,
9703 fragP->fr_offset, 1,
9704 BFD_RELOC_8_PCREL);
9705 fixP->fx_signed = 1;
412167cb
AM
9706 break;
9707 }
93c2a809 9708
24eab124 9709 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9710 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9711 opcode[1] = opcode[0] + 0x10;
f6af82bd 9712 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9713 /* We've added an opcode byte. */
9714 fragP->fr_fix += 1 + size;
062cd5e7
AS
9715 fix_new (fragP, old_fr_fix + 1, size,
9716 fragP->fr_symbol,
9717 fragP->fr_offset, 1,
9718 reloc_type);
252b5132 9719 break;
fddf5b5b
AM
9720
9721 default:
9722 BAD_CASE (fragP->fr_subtype);
9723 break;
252b5132
RH
9724 }
9725 frag_wane (fragP);
ee7fcc42 9726 return fragP->fr_fix - old_fr_fix;
252b5132 9727 }
93c2a809 9728
93c2a809
AM
9729 /* Guess size depending on current relax state. Initially the relax
9730 state will correspond to a short jump and we return 1, because
9731 the variable part of the frag (the branch offset) is one byte
9732 long. However, we can relax a section more than once and in that
9733 case we must either set fr_subtype back to the unrelaxed state,
9734 or return the value for the appropriate branch. */
9735 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9736}
9737
47926f60
KH
9738/* Called after relax() is finished.
9739
9740 In: Address of frag.
9741 fr_type == rs_machine_dependent.
9742 fr_subtype is what the address relaxed to.
9743
9744 Out: Any fixSs and constants are set up.
9745 Caller will turn frag into a ".space 0". */
9746
252b5132 9747void
7016a5d5
TG
9748md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9749 fragS *fragP)
252b5132 9750{
29b0f896 9751 unsigned char *opcode;
252b5132 9752 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9753 offsetT target_address;
9754 offsetT opcode_address;
252b5132 9755 unsigned int extension = 0;
847f7ad4 9756 offsetT displacement_from_opcode_start;
252b5132
RH
9757
9758 opcode = (unsigned char *) fragP->fr_opcode;
9759
47926f60 9760 /* Address we want to reach in file space. */
252b5132 9761 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9762
47926f60 9763 /* Address opcode resides at in file space. */
252b5132
RH
9764 opcode_address = fragP->fr_address + fragP->fr_fix;
9765
47926f60 9766 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9767 displacement_from_opcode_start = target_address - opcode_address;
9768
fddf5b5b 9769 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9770 {
47926f60
KH
9771 /* Don't have to change opcode. */
9772 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9773 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9774 }
9775 else
9776 {
9777 if (no_cond_jump_promotion
9778 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9779 as_warn_where (fragP->fr_file, fragP->fr_line,
9780 _("long jump required"));
252b5132 9781
fddf5b5b
AM
9782 switch (fragP->fr_subtype)
9783 {
9784 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9785 extension = 4; /* 1 opcode + 4 displacement */
9786 opcode[0] = 0xe9;
9787 where_to_put_displacement = &opcode[1];
9788 break;
252b5132 9789
fddf5b5b
AM
9790 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9791 extension = 2; /* 1 opcode + 2 displacement */
9792 opcode[0] = 0xe9;
9793 where_to_put_displacement = &opcode[1];
9794 break;
252b5132 9795
fddf5b5b
AM
9796 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9797 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9798 extension = 5; /* 2 opcode + 4 displacement */
9799 opcode[1] = opcode[0] + 0x10;
9800 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9801 where_to_put_displacement = &opcode[2];
9802 break;
252b5132 9803
fddf5b5b
AM
9804 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9805 extension = 3; /* 2 opcode + 2 displacement */
9806 opcode[1] = opcode[0] + 0x10;
9807 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9808 where_to_put_displacement = &opcode[2];
9809 break;
252b5132 9810
fddf5b5b
AM
9811 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9812 extension = 4;
9813 opcode[0] ^= 1;
9814 opcode[1] = 3;
9815 opcode[2] = 0xe9;
9816 where_to_put_displacement = &opcode[3];
9817 break;
9818
9819 default:
9820 BAD_CASE (fragP->fr_subtype);
9821 break;
9822 }
252b5132 9823 }
fddf5b5b 9824
7b81dfbb
AJ
9825 /* If size if less then four we are sure that the operand fits,
9826 but if it's 4, then it could be that the displacement is larger
9827 then -/+ 2GB. */
9828 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9829 && object_64bit
9830 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9831 + ((addressT) 1 << 31))
9832 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9833 {
9834 as_bad_where (fragP->fr_file, fragP->fr_line,
9835 _("jump target out of range"));
9836 /* Make us emit 0. */
9837 displacement_from_opcode_start = extension;
9838 }
47926f60 9839 /* Now put displacement after opcode. */
252b5132
RH
9840 md_number_to_chars ((char *) where_to_put_displacement,
9841 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9842 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9843 fragP->fr_fix += extension;
9844}
9845\f
7016a5d5 9846/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9847 by our caller that we have all the info we need to fix it up.
9848
7016a5d5
TG
9849 Parameter valP is the pointer to the value of the bits.
9850
252b5132
RH
9851 On the 386, immediates, displacements, and data pointers are all in
9852 the same (little-endian) format, so we don't need to care about which
9853 we are handling. */
9854
94f592af 9855void
7016a5d5 9856md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9857{
94f592af 9858 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9859 valueT value = *valP;
252b5132 9860
f86103b7 9861#if !defined (TE_Mach)
93382f6d
AM
9862 if (fixP->fx_pcrel)
9863 {
9864 switch (fixP->fx_r_type)
9865 {
5865bb77
ILT
9866 default:
9867 break;
9868
d6ab8113
JB
9869 case BFD_RELOC_64:
9870 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9871 break;
93382f6d 9872 case BFD_RELOC_32:
ae8887b5 9873 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9874 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9875 break;
9876 case BFD_RELOC_16:
9877 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9878 break;
9879 case BFD_RELOC_8:
9880 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9881 break;
9882 }
9883 }
252b5132 9884
a161fe53 9885 if (fixP->fx_addsy != NULL
31312f95 9886 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9887 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9888 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9889 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9890 && !use_rela_relocations)
252b5132 9891 {
31312f95
AM
9892 /* This is a hack. There should be a better way to handle this.
9893 This covers for the fact that bfd_install_relocation will
9894 subtract the current location (for partial_inplace, PC relative
9895 relocations); see more below. */
252b5132 9896#ifndef OBJ_AOUT
718ddfc0 9897 if (IS_ELF
252b5132
RH
9898#ifdef TE_PE
9899 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9900#endif
9901 )
9902 value += fixP->fx_where + fixP->fx_frag->fr_address;
9903#endif
9904#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9905 if (IS_ELF)
252b5132 9906 {
6539b54b 9907 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9908
6539b54b 9909 if ((sym_seg == seg
2f66722d 9910 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9911 && sym_seg != absolute_section))
af65af87 9912 && !generic_force_reloc (fixP))
2f66722d
AM
9913 {
9914 /* Yes, we add the values in twice. This is because
6539b54b
AM
9915 bfd_install_relocation subtracts them out again. I think
9916 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9917 it. FIXME. */
9918 value += fixP->fx_where + fixP->fx_frag->fr_address;
9919 }
252b5132
RH
9920 }
9921#endif
9922#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9923 /* For some reason, the PE format does not store a
9924 section address offset for a PC relative symbol. */
9925 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9926 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9927 value += md_pcrel_from (fixP);
9928#endif
9929 }
fbeb56a4 9930#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9931 if (fixP->fx_addsy != NULL
9932 && S_IS_WEAK (fixP->fx_addsy)
9933 /* PR 16858: Do not modify weak function references. */
9934 && ! fixP->fx_pcrel)
fbeb56a4 9935 {
296a8689
NC
9936#if !defined (TE_PEP)
9937 /* For x86 PE weak function symbols are neither PC-relative
9938 nor do they set S_IS_FUNCTION. So the only reliable way
9939 to detect them is to check the flags of their containing
9940 section. */
9941 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9942 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9943 ;
9944 else
9945#endif
fbeb56a4
DK
9946 value -= S_GET_VALUE (fixP->fx_addsy);
9947 }
9948#endif
252b5132
RH
9949
9950 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9951 and we must not disappoint it. */
252b5132 9952#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9953 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9954 switch (fixP->fx_r_type)
9955 {
9956 case BFD_RELOC_386_PLT32:
3e73aa7c 9957 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9958 /* Make the jump instruction point to the address of the operand. At
9959 runtime we merely add the offset to the actual PLT entry. */
9960 value = -4;
9961 break;
31312f95 9962
13ae64f3
JJ
9963 case BFD_RELOC_386_TLS_GD:
9964 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9965 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9966 case BFD_RELOC_386_TLS_IE:
9967 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9968 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9969 case BFD_RELOC_X86_64_TLSGD:
9970 case BFD_RELOC_X86_64_TLSLD:
9971 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9972 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9973 value = 0; /* Fully resolved at runtime. No addend. */
9974 /* Fallthrough */
9975 case BFD_RELOC_386_TLS_LE:
9976 case BFD_RELOC_386_TLS_LDO_32:
9977 case BFD_RELOC_386_TLS_LE_32:
9978 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9979 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9980 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9981 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9982 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9983 break;
9984
67a4f2b7
AO
9985 case BFD_RELOC_386_TLS_DESC_CALL:
9986 case BFD_RELOC_X86_64_TLSDESC_CALL:
9987 value = 0; /* Fully resolved at runtime. No addend. */
9988 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9989 fixP->fx_done = 0;
9990 return;
9991
47926f60
KH
9992 case BFD_RELOC_VTABLE_INHERIT:
9993 case BFD_RELOC_VTABLE_ENTRY:
9994 fixP->fx_done = 0;
94f592af 9995 return;
47926f60
KH
9996
9997 default:
9998 break;
9999 }
10000#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10001 *valP = value;
f86103b7 10002#endif /* !defined (TE_Mach) */
3e73aa7c 10003
3e73aa7c 10004 /* Are we finished with this relocation now? */
c6682705 10005 if (fixP->fx_addsy == NULL)
3e73aa7c 10006 fixP->fx_done = 1;
fbeb56a4
DK
10007#if defined (OBJ_COFF) && defined (TE_PE)
10008 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10009 {
10010 fixP->fx_done = 0;
10011 /* Remember value for tc_gen_reloc. */
10012 fixP->fx_addnumber = value;
10013 /* Clear out the frag for now. */
10014 value = 0;
10015 }
10016#endif
3e73aa7c
JH
10017 else if (use_rela_relocations)
10018 {
10019 fixP->fx_no_overflow = 1;
062cd5e7
AS
10020 /* Remember value for tc_gen_reloc. */
10021 fixP->fx_addnumber = value;
3e73aa7c
JH
10022 value = 0;
10023 }
f86103b7 10024
94f592af 10025 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10026}
252b5132 10027\f
6d4af3c2 10028const char *
499ac353 10029md_atof (int type, char *litP, int *sizeP)
252b5132 10030{
499ac353
NC
10031 /* This outputs the LITTLENUMs in REVERSE order;
10032 in accord with the bigendian 386. */
10033 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10034}
10035\f
2d545b82 10036static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10037
252b5132 10038static char *
e3bb37b5 10039output_invalid (int c)
252b5132 10040{
3882b010 10041 if (ISPRINT (c))
f9f21a03
L
10042 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10043 "'%c'", c);
252b5132 10044 else
f9f21a03 10045 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10046 "(0x%x)", (unsigned char) c);
252b5132
RH
10047 return output_invalid_buf;
10048}
10049
af6bdddf 10050/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10051
10052static const reg_entry *
4d1bb795 10053parse_real_register (char *reg_string, char **end_op)
252b5132 10054{
af6bdddf
AM
10055 char *s = reg_string;
10056 char *p;
252b5132
RH
10057 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10058 const reg_entry *r;
10059
10060 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10061 if (*s == REGISTER_PREFIX)
10062 ++s;
10063
10064 if (is_space_char (*s))
10065 ++s;
10066
10067 p = reg_name_given;
af6bdddf 10068 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10069 {
10070 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10071 return (const reg_entry *) NULL;
10072 s++;
252b5132
RH
10073 }
10074
6588847e
DN
10075 /* For naked regs, make sure that we are not dealing with an identifier.
10076 This prevents confusing an identifier like `eax_var' with register
10077 `eax'. */
10078 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10079 return (const reg_entry *) NULL;
10080
af6bdddf 10081 *end_op = s;
252b5132
RH
10082
10083 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10084
5f47d35b 10085 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10086 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10087 {
5f47d35b
AM
10088 if (is_space_char (*s))
10089 ++s;
10090 if (*s == '(')
10091 {
af6bdddf 10092 ++s;
5f47d35b
AM
10093 if (is_space_char (*s))
10094 ++s;
10095 if (*s >= '0' && *s <= '7')
10096 {
db557034 10097 int fpr = *s - '0';
af6bdddf 10098 ++s;
5f47d35b
AM
10099 if (is_space_char (*s))
10100 ++s;
10101 if (*s == ')')
10102 {
10103 *end_op = s + 1;
1e9cc1c2 10104 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10105 know (r);
10106 return r + fpr;
5f47d35b 10107 }
5f47d35b 10108 }
47926f60 10109 /* We have "%st(" then garbage. */
5f47d35b
AM
10110 return (const reg_entry *) NULL;
10111 }
10112 }
10113
a60de03c
JB
10114 if (r == NULL || allow_pseudo_reg)
10115 return r;
10116
0dfbf9d7 10117 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10118 return (const reg_entry *) NULL;
10119
dc821c5f 10120 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10121 || r->reg_type.bitfield.sreg3
10122 || r->reg_type.bitfield.control
10123 || r->reg_type.bitfield.debug
10124 || r->reg_type.bitfield.test)
10125 && !cpu_arch_flags.bitfield.cpui386)
10126 return (const reg_entry *) NULL;
10127
ca0d63fe 10128 if (r->reg_type.bitfield.tbyte
309d3373
JB
10129 && !cpu_arch_flags.bitfield.cpu8087
10130 && !cpu_arch_flags.bitfield.cpu287
10131 && !cpu_arch_flags.bitfield.cpu387)
10132 return (const reg_entry *) NULL;
10133
1848e567 10134 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
10135 return (const reg_entry *) NULL;
10136
1b54b8d7 10137 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
10138 return (const reg_entry *) NULL;
10139
1b54b8d7 10140 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
10141 return (const reg_entry *) NULL;
10142
1b54b8d7 10143 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
1848e567
L
10144 return (const reg_entry *) NULL;
10145
10146 if (r->reg_type.bitfield.regmask
10147 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
10148 return (const reg_entry *) NULL;
10149
db51cc60 10150 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10151 if (!allow_index_reg
db51cc60
L
10152 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10153 return (const reg_entry *) NULL;
10154
43234a1e
L
10155 /* Upper 16 vector register is only available with VREX in 64bit
10156 mode. */
10157 if ((r->reg_flags & RegVRex))
10158 {
86fa6981
L
10159 if (i.vec_encoding == vex_encoding_default)
10160 i.vec_encoding = vex_encoding_evex;
10161
43234a1e 10162 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 10163 || i.vec_encoding != vex_encoding_evex
43234a1e
L
10164 || flag_code != CODE_64BIT)
10165 return (const reg_entry *) NULL;
43234a1e
L
10166 }
10167
a60de03c 10168 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 10169 || r->reg_type.bitfield.qword)
40fb9820 10170 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 10171 || !operand_type_equal (&r->reg_type, &control))
1ae00879 10172 && flag_code != CODE_64BIT)
20f0a1fc 10173 return (const reg_entry *) NULL;
1ae00879 10174
b7240065
JB
10175 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10176 return (const reg_entry *) NULL;
10177
252b5132
RH
10178 return r;
10179}
4d1bb795
JB
10180
10181/* REG_STRING starts *before* REGISTER_PREFIX. */
10182
10183static const reg_entry *
10184parse_register (char *reg_string, char **end_op)
10185{
10186 const reg_entry *r;
10187
10188 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10189 r = parse_real_register (reg_string, end_op);
10190 else
10191 r = NULL;
10192 if (!r)
10193 {
10194 char *save = input_line_pointer;
10195 char c;
10196 symbolS *symbolP;
10197
10198 input_line_pointer = reg_string;
d02603dc 10199 c = get_symbol_name (&reg_string);
4d1bb795
JB
10200 symbolP = symbol_find (reg_string);
10201 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10202 {
10203 const expressionS *e = symbol_get_value_expression (symbolP);
10204
0398aac5 10205 know (e->X_op == O_register);
4eed87de 10206 know (e->X_add_number >= 0
c3fe08fa 10207 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10208 r = i386_regtab + e->X_add_number;
d3bb6b49 10209 if ((r->reg_flags & RegVRex))
86fa6981 10210 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10211 *end_op = input_line_pointer;
10212 }
10213 *input_line_pointer = c;
10214 input_line_pointer = save;
10215 }
10216 return r;
10217}
10218
10219int
10220i386_parse_name (char *name, expressionS *e, char *nextcharP)
10221{
10222 const reg_entry *r;
10223 char *end = input_line_pointer;
10224
10225 *end = *nextcharP;
10226 r = parse_register (name, &input_line_pointer);
10227 if (r && end <= input_line_pointer)
10228 {
10229 *nextcharP = *input_line_pointer;
10230 *input_line_pointer = 0;
10231 e->X_op = O_register;
10232 e->X_add_number = r - i386_regtab;
10233 return 1;
10234 }
10235 input_line_pointer = end;
10236 *end = 0;
ee86248c 10237 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10238}
10239
10240void
10241md_operand (expressionS *e)
10242{
ee86248c
JB
10243 char *end;
10244 const reg_entry *r;
4d1bb795 10245
ee86248c
JB
10246 switch (*input_line_pointer)
10247 {
10248 case REGISTER_PREFIX:
10249 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10250 if (r)
10251 {
10252 e->X_op = O_register;
10253 e->X_add_number = r - i386_regtab;
10254 input_line_pointer = end;
10255 }
ee86248c
JB
10256 break;
10257
10258 case '[':
9c2799c2 10259 gas_assert (intel_syntax);
ee86248c
JB
10260 end = input_line_pointer++;
10261 expression (e);
10262 if (*input_line_pointer == ']')
10263 {
10264 ++input_line_pointer;
10265 e->X_op_symbol = make_expr_symbol (e);
10266 e->X_add_symbol = NULL;
10267 e->X_add_number = 0;
10268 e->X_op = O_index;
10269 }
10270 else
10271 {
10272 e->X_op = O_absent;
10273 input_line_pointer = end;
10274 }
10275 break;
4d1bb795
JB
10276 }
10277}
10278
252b5132 10279\f
4cc782b5 10280#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10281const char *md_shortopts = "kVQ:sqnO::";
252b5132 10282#else
b6f8c7c4 10283const char *md_shortopts = "qnO::";
252b5132 10284#endif
6e0b89ee 10285
3e73aa7c 10286#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10287#define OPTION_64 (OPTION_MD_BASE + 1)
10288#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10289#define OPTION_MARCH (OPTION_MD_BASE + 3)
10290#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10291#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10292#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10293#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10294#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10295#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 10296#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10297#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10298#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10299#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10300#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10301#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10302#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10303#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10304#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10305#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10306#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10307#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10308#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10309#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10310#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 10311#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 10312
99ad8390
NC
10313struct option md_longopts[] =
10314{
3e73aa7c 10315 {"32", no_argument, NULL, OPTION_32},
321098a5 10316#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10317 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10318 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10319#endif
10320#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10321 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10322 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10323#endif
b3b91714 10324 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10325 {"march", required_argument, NULL, OPTION_MARCH},
10326 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10327 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10328 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10329 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10330 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10331 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10332 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10333 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10334 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10335 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10336 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10337 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10338 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10339# if defined (TE_PE) || defined (TE_PEP)
10340 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10341#endif
d1982f93 10342 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10343 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10344 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10345 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10346 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10347 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10348 {NULL, no_argument, NULL, 0}
10349};
10350size_t md_longopts_size = sizeof (md_longopts);
10351
10352int
17b9d67d 10353md_parse_option (int c, const char *arg)
252b5132 10354{
91d6fa6a 10355 unsigned int j;
293f5f65 10356 char *arch, *next, *saved;
9103f4f4 10357
252b5132
RH
10358 switch (c)
10359 {
12b55ccc
L
10360 case 'n':
10361 optimize_align_code = 0;
10362 break;
10363
a38cf1db
AM
10364 case 'q':
10365 quiet_warnings = 1;
252b5132
RH
10366 break;
10367
10368#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10369 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10370 should be emitted or not. FIXME: Not implemented. */
10371 case 'Q':
252b5132
RH
10372 break;
10373
10374 /* -V: SVR4 argument to print version ID. */
10375 case 'V':
10376 print_version_id ();
10377 break;
10378
a38cf1db
AM
10379 /* -k: Ignore for FreeBSD compatibility. */
10380 case 'k':
252b5132 10381 break;
4cc782b5
ILT
10382
10383 case 's':
10384 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10385 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10386 break;
8dcea932
L
10387
10388 case OPTION_MSHARED:
10389 shared = 1;
10390 break;
99ad8390 10391#endif
321098a5 10392#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10393 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10394 case OPTION_64:
10395 {
10396 const char **list, **l;
10397
3e73aa7c
JH
10398 list = bfd_target_list ();
10399 for (l = list; *l != NULL; l++)
8620418b 10400 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10401 || strcmp (*l, "coff-x86-64") == 0
10402 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10403 || strcmp (*l, "pei-x86-64") == 0
10404 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10405 {
10406 default_arch = "x86_64";
10407 break;
10408 }
3e73aa7c 10409 if (*l == NULL)
2b5d6a91 10410 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10411 free (list);
10412 }
10413 break;
10414#endif
252b5132 10415
351f65ca 10416#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10417 case OPTION_X32:
351f65ca
L
10418 if (IS_ELF)
10419 {
10420 const char **list, **l;
10421
10422 list = bfd_target_list ();
10423 for (l = list; *l != NULL; l++)
10424 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10425 {
10426 default_arch = "x86_64:32";
10427 break;
10428 }
10429 if (*l == NULL)
2b5d6a91 10430 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10431 free (list);
10432 }
10433 else
10434 as_fatal (_("32bit x86_64 is only supported for ELF"));
10435 break;
10436#endif
10437
6e0b89ee
AM
10438 case OPTION_32:
10439 default_arch = "i386";
10440 break;
10441
b3b91714
AM
10442 case OPTION_DIVIDE:
10443#ifdef SVR4_COMMENT_CHARS
10444 {
10445 char *n, *t;
10446 const char *s;
10447
add39d23 10448 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10449 t = n;
10450 for (s = i386_comment_chars; *s != '\0'; s++)
10451 if (*s != '/')
10452 *t++ = *s;
10453 *t = '\0';
10454 i386_comment_chars = n;
10455 }
10456#endif
10457 break;
10458
9103f4f4 10459 case OPTION_MARCH:
293f5f65
L
10460 saved = xstrdup (arg);
10461 arch = saved;
10462 /* Allow -march=+nosse. */
10463 if (*arch == '+')
10464 arch++;
6305a203 10465 do
9103f4f4 10466 {
6305a203 10467 if (*arch == '.')
2b5d6a91 10468 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10469 next = strchr (arch, '+');
10470 if (next)
10471 *next++ = '\0';
91d6fa6a 10472 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10473 {
91d6fa6a 10474 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10475 {
6305a203 10476 /* Processor. */
1ded5609
JB
10477 if (! cpu_arch[j].flags.bitfield.cpui386)
10478 continue;
10479
91d6fa6a 10480 cpu_arch_name = cpu_arch[j].name;
6305a203 10481 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10482 cpu_arch_flags = cpu_arch[j].flags;
10483 cpu_arch_isa = cpu_arch[j].type;
10484 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10485 if (!cpu_arch_tune_set)
10486 {
10487 cpu_arch_tune = cpu_arch_isa;
10488 cpu_arch_tune_flags = cpu_arch_isa_flags;
10489 }
10490 break;
10491 }
91d6fa6a
NC
10492 else if (*cpu_arch [j].name == '.'
10493 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10494 {
33eaf5de 10495 /* ISA extension. */
6305a203 10496 i386_cpu_flags flags;
309d3373 10497
293f5f65
L
10498 flags = cpu_flags_or (cpu_arch_flags,
10499 cpu_arch[j].flags);
81486035 10500
5b64d091 10501 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10502 {
10503 if (cpu_sub_arch_name)
10504 {
10505 char *name = cpu_sub_arch_name;
10506 cpu_sub_arch_name = concat (name,
91d6fa6a 10507 cpu_arch[j].name,
1bf57e9f 10508 (const char *) NULL);
6305a203
L
10509 free (name);
10510 }
10511 else
91d6fa6a 10512 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10513 cpu_arch_flags = flags;
a586129e 10514 cpu_arch_isa_flags = flags;
6305a203
L
10515 }
10516 break;
ccc9c027 10517 }
9103f4f4 10518 }
6305a203 10519
293f5f65
L
10520 if (j >= ARRAY_SIZE (cpu_arch))
10521 {
33eaf5de 10522 /* Disable an ISA extension. */
293f5f65
L
10523 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10524 if (strcmp (arch, cpu_noarch [j].name) == 0)
10525 {
10526 i386_cpu_flags flags;
10527
10528 flags = cpu_flags_and_not (cpu_arch_flags,
10529 cpu_noarch[j].flags);
10530 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10531 {
10532 if (cpu_sub_arch_name)
10533 {
10534 char *name = cpu_sub_arch_name;
10535 cpu_sub_arch_name = concat (arch,
10536 (const char *) NULL);
10537 free (name);
10538 }
10539 else
10540 cpu_sub_arch_name = xstrdup (arch);
10541 cpu_arch_flags = flags;
10542 cpu_arch_isa_flags = flags;
10543 }
10544 break;
10545 }
10546
10547 if (j >= ARRAY_SIZE (cpu_noarch))
10548 j = ARRAY_SIZE (cpu_arch);
10549 }
10550
91d6fa6a 10551 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10552 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10553
10554 arch = next;
9103f4f4 10555 }
293f5f65
L
10556 while (next != NULL);
10557 free (saved);
9103f4f4
L
10558 break;
10559
10560 case OPTION_MTUNE:
10561 if (*arg == '.')
2b5d6a91 10562 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10563 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10564 {
91d6fa6a 10565 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10566 {
ccc9c027 10567 cpu_arch_tune_set = 1;
91d6fa6a
NC
10568 cpu_arch_tune = cpu_arch [j].type;
10569 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10570 break;
10571 }
10572 }
91d6fa6a 10573 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10574 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10575 break;
10576
1efbbeb4
L
10577 case OPTION_MMNEMONIC:
10578 if (strcasecmp (arg, "att") == 0)
10579 intel_mnemonic = 0;
10580 else if (strcasecmp (arg, "intel") == 0)
10581 intel_mnemonic = 1;
10582 else
2b5d6a91 10583 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10584 break;
10585
10586 case OPTION_MSYNTAX:
10587 if (strcasecmp (arg, "att") == 0)
10588 intel_syntax = 0;
10589 else if (strcasecmp (arg, "intel") == 0)
10590 intel_syntax = 1;
10591 else
2b5d6a91 10592 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10593 break;
10594
10595 case OPTION_MINDEX_REG:
10596 allow_index_reg = 1;
10597 break;
10598
10599 case OPTION_MNAKED_REG:
10600 allow_naked_reg = 1;
10601 break;
10602
10603 case OPTION_MOLD_GCC:
10604 old_gcc = 1;
1efbbeb4
L
10605 break;
10606
c0f3af97
L
10607 case OPTION_MSSE2AVX:
10608 sse2avx = 1;
10609 break;
10610
daf50ae7
L
10611 case OPTION_MSSE_CHECK:
10612 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10613 sse_check = check_error;
daf50ae7 10614 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10615 sse_check = check_warning;
daf50ae7 10616 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10617 sse_check = check_none;
daf50ae7 10618 else
2b5d6a91 10619 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10620 break;
10621
7bab8ab5
JB
10622 case OPTION_MOPERAND_CHECK:
10623 if (strcasecmp (arg, "error") == 0)
10624 operand_check = check_error;
10625 else if (strcasecmp (arg, "warning") == 0)
10626 operand_check = check_warning;
10627 else if (strcasecmp (arg, "none") == 0)
10628 operand_check = check_none;
10629 else
10630 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10631 break;
10632
539f890d
L
10633 case OPTION_MAVXSCALAR:
10634 if (strcasecmp (arg, "128") == 0)
10635 avxscalar = vex128;
10636 else if (strcasecmp (arg, "256") == 0)
10637 avxscalar = vex256;
10638 else
2b5d6a91 10639 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10640 break;
10641
7e8b059b
L
10642 case OPTION_MADD_BND_PREFIX:
10643 add_bnd_prefix = 1;
10644 break;
10645
43234a1e
L
10646 case OPTION_MEVEXLIG:
10647 if (strcmp (arg, "128") == 0)
10648 evexlig = evexl128;
10649 else if (strcmp (arg, "256") == 0)
10650 evexlig = evexl256;
10651 else if (strcmp (arg, "512") == 0)
10652 evexlig = evexl512;
10653 else
10654 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10655 break;
10656
d3d3c6db
IT
10657 case OPTION_MEVEXRCIG:
10658 if (strcmp (arg, "rne") == 0)
10659 evexrcig = rne;
10660 else if (strcmp (arg, "rd") == 0)
10661 evexrcig = rd;
10662 else if (strcmp (arg, "ru") == 0)
10663 evexrcig = ru;
10664 else if (strcmp (arg, "rz") == 0)
10665 evexrcig = rz;
10666 else
10667 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10668 break;
10669
43234a1e
L
10670 case OPTION_MEVEXWIG:
10671 if (strcmp (arg, "0") == 0)
10672 evexwig = evexw0;
10673 else if (strcmp (arg, "1") == 0)
10674 evexwig = evexw1;
10675 else
10676 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10677 break;
10678
167ad85b
TG
10679# if defined (TE_PE) || defined (TE_PEP)
10680 case OPTION_MBIG_OBJ:
10681 use_big_obj = 1;
10682 break;
10683#endif
10684
d1982f93 10685 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10686 if (strcasecmp (arg, "yes") == 0)
10687 omit_lock_prefix = 1;
10688 else if (strcasecmp (arg, "no") == 0)
10689 omit_lock_prefix = 0;
10690 else
10691 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10692 break;
10693
e4e00185
AS
10694 case OPTION_MFENCE_AS_LOCK_ADD:
10695 if (strcasecmp (arg, "yes") == 0)
10696 avoid_fence = 1;
10697 else if (strcasecmp (arg, "no") == 0)
10698 avoid_fence = 0;
10699 else
10700 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10701 break;
10702
0cb4071e
L
10703 case OPTION_MRELAX_RELOCATIONS:
10704 if (strcasecmp (arg, "yes") == 0)
10705 generate_relax_relocations = 1;
10706 else if (strcasecmp (arg, "no") == 0)
10707 generate_relax_relocations = 0;
10708 else
10709 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10710 break;
10711
5db04b09 10712 case OPTION_MAMD64:
e89c5eaa 10713 intel64 = 0;
5db04b09
L
10714 break;
10715
10716 case OPTION_MINTEL64:
e89c5eaa 10717 intel64 = 1;
5db04b09
L
10718 break;
10719
b6f8c7c4
L
10720 case 'O':
10721 if (arg == NULL)
10722 {
10723 optimize = 1;
10724 /* Turn off -Os. */
10725 optimize_for_space = 0;
10726 }
10727 else if (*arg == 's')
10728 {
10729 optimize_for_space = 1;
10730 /* Turn on all encoding optimizations. */
10731 optimize = -1;
10732 }
10733 else
10734 {
10735 optimize = atoi (arg);
10736 /* Turn off -Os. */
10737 optimize_for_space = 0;
10738 }
10739 break;
10740
252b5132
RH
10741 default:
10742 return 0;
10743 }
10744 return 1;
10745}
10746
8a2c8fef
L
10747#define MESSAGE_TEMPLATE \
10748" "
10749
293f5f65
L
10750static char *
10751output_message (FILE *stream, char *p, char *message, char *start,
10752 int *left_p, const char *name, int len)
10753{
10754 int size = sizeof (MESSAGE_TEMPLATE);
10755 int left = *left_p;
10756
10757 /* Reserve 2 spaces for ", " or ",\0" */
10758 left -= len + 2;
10759
10760 /* Check if there is any room. */
10761 if (left >= 0)
10762 {
10763 if (p != start)
10764 {
10765 *p++ = ',';
10766 *p++ = ' ';
10767 }
10768 p = mempcpy (p, name, len);
10769 }
10770 else
10771 {
10772 /* Output the current message now and start a new one. */
10773 *p++ = ',';
10774 *p = '\0';
10775 fprintf (stream, "%s\n", message);
10776 p = start;
10777 left = size - (start - message) - len - 2;
10778
10779 gas_assert (left >= 0);
10780
10781 p = mempcpy (p, name, len);
10782 }
10783
10784 *left_p = left;
10785 return p;
10786}
10787
8a2c8fef 10788static void
1ded5609 10789show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10790{
10791 static char message[] = MESSAGE_TEMPLATE;
10792 char *start = message + 27;
10793 char *p;
10794 int size = sizeof (MESSAGE_TEMPLATE);
10795 int left;
10796 const char *name;
10797 int len;
10798 unsigned int j;
10799
10800 p = start;
10801 left = size - (start - message);
10802 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10803 {
10804 /* Should it be skipped? */
10805 if (cpu_arch [j].skip)
10806 continue;
10807
10808 name = cpu_arch [j].name;
10809 len = cpu_arch [j].len;
10810 if (*name == '.')
10811 {
10812 /* It is an extension. Skip if we aren't asked to show it. */
10813 if (ext)
10814 {
10815 name++;
10816 len--;
10817 }
10818 else
10819 continue;
10820 }
10821 else if (ext)
10822 {
10823 /* It is an processor. Skip if we show only extension. */
10824 continue;
10825 }
1ded5609
JB
10826 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10827 {
10828 /* It is an impossible processor - skip. */
10829 continue;
10830 }
8a2c8fef 10831
293f5f65 10832 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10833 }
10834
293f5f65
L
10835 /* Display disabled extensions. */
10836 if (ext)
10837 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10838 {
10839 name = cpu_noarch [j].name;
10840 len = cpu_noarch [j].len;
10841 p = output_message (stream, p, message, start, &left, name,
10842 len);
10843 }
10844
8a2c8fef
L
10845 *p = '\0';
10846 fprintf (stream, "%s\n", message);
10847}
10848
252b5132 10849void
8a2c8fef 10850md_show_usage (FILE *stream)
252b5132 10851{
4cc782b5
ILT
10852#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10853 fprintf (stream, _("\
a38cf1db
AM
10854 -Q ignored\n\
10855 -V print assembler version number\n\
b3b91714
AM
10856 -k ignored\n"));
10857#endif
10858 fprintf (stream, _("\
12b55ccc 10859 -n Do not optimize code alignment\n\
b3b91714
AM
10860 -q quieten some warnings\n"));
10861#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10862 fprintf (stream, _("\
a38cf1db 10863 -s ignored\n"));
b3b91714 10864#endif
321098a5
L
10865#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10866 || defined (TE_PE) || defined (TE_PEP))
751d281c 10867 fprintf (stream, _("\
570561f7 10868 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10869#endif
b3b91714
AM
10870#ifdef SVR4_COMMENT_CHARS
10871 fprintf (stream, _("\
10872 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10873#else
10874 fprintf (stream, _("\
b3b91714 10875 --divide ignored\n"));
4cc782b5 10876#endif
9103f4f4 10877 fprintf (stream, _("\
6305a203 10878 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10879 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10880 show_arch (stream, 0, 1);
8a2c8fef
L
10881 fprintf (stream, _("\
10882 EXTENSION is combination of:\n"));
1ded5609 10883 show_arch (stream, 1, 0);
6305a203 10884 fprintf (stream, _("\
8a2c8fef 10885 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10886 show_arch (stream, 0, 0);
ba104c83 10887 fprintf (stream, _("\
c0f3af97
L
10888 -msse2avx encode SSE instructions with VEX prefix\n"));
10889 fprintf (stream, _("\
daf50ae7
L
10890 -msse-check=[none|error|warning]\n\
10891 check SSE instructions\n"));
10892 fprintf (stream, _("\
7bab8ab5
JB
10893 -moperand-check=[none|error|warning]\n\
10894 check operand combinations for validity\n"));
10895 fprintf (stream, _("\
539f890d
L
10896 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10897 length\n"));
10898 fprintf (stream, _("\
43234a1e
L
10899 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10900 length\n"));
10901 fprintf (stream, _("\
10902 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10903 for EVEX.W bit ignored instructions\n"));
10904 fprintf (stream, _("\
d3d3c6db
IT
10905 -mevexrcig=[rne|rd|ru|rz]\n\
10906 encode EVEX instructions with specific EVEX.RC value\n\
10907 for SAE-only ignored instructions\n"));
10908 fprintf (stream, _("\
ba104c83
L
10909 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10910 fprintf (stream, _("\
10911 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10912 fprintf (stream, _("\
10913 -mindex-reg support pseudo index registers\n"));
10914 fprintf (stream, _("\
10915 -mnaked-reg don't require `%%' prefix for registers\n"));
10916 fprintf (stream, _("\
10917 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10918 fprintf (stream, _("\
10919 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10920 fprintf (stream, _("\
10921 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10922# if defined (TE_PE) || defined (TE_PEP)
10923 fprintf (stream, _("\
10924 -mbig-obj generate big object files\n"));
10925#endif
d022bddd
IT
10926 fprintf (stream, _("\
10927 -momit-lock-prefix=[no|yes]\n\
10928 strip all lock prefixes\n"));
5db04b09 10929 fprintf (stream, _("\
e4e00185
AS
10930 -mfence-as-lock-add=[no|yes]\n\
10931 encode lfence, mfence and sfence as\n\
10932 lock addl $0x0, (%%{re}sp)\n"));
10933 fprintf (stream, _("\
0cb4071e
L
10934 -mrelax-relocations=[no|yes]\n\
10935 generate relax relocations\n"));
10936 fprintf (stream, _("\
5db04b09
L
10937 -mamd64 accept only AMD64 ISA\n"));
10938 fprintf (stream, _("\
10939 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10940}
10941
3e73aa7c 10942#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10943 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10944 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10945
10946/* Pick the target format to use. */
10947
47926f60 10948const char *
e3bb37b5 10949i386_target_format (void)
252b5132 10950{
351f65ca
L
10951 if (!strncmp (default_arch, "x86_64", 6))
10952 {
10953 update_code_flag (CODE_64BIT, 1);
10954 if (default_arch[6] == '\0')
7f56bc95 10955 x86_elf_abi = X86_64_ABI;
351f65ca 10956 else
7f56bc95 10957 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10958 }
3e73aa7c 10959 else if (!strcmp (default_arch, "i386"))
78f12dd3 10960 update_code_flag (CODE_32BIT, 1);
5197d474
L
10961 else if (!strcmp (default_arch, "iamcu"))
10962 {
10963 update_code_flag (CODE_32BIT, 1);
10964 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10965 {
10966 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10967 cpu_arch_name = "iamcu";
10968 cpu_sub_arch_name = NULL;
10969 cpu_arch_flags = iamcu_flags;
10970 cpu_arch_isa = PROCESSOR_IAMCU;
10971 cpu_arch_isa_flags = iamcu_flags;
10972 if (!cpu_arch_tune_set)
10973 {
10974 cpu_arch_tune = cpu_arch_isa;
10975 cpu_arch_tune_flags = cpu_arch_isa_flags;
10976 }
10977 }
8d471ec1 10978 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10979 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10980 cpu_arch_name);
10981 }
3e73aa7c 10982 else
2b5d6a91 10983 as_fatal (_("unknown architecture"));
89507696
JB
10984
10985 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10986 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10987 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10988 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10989
252b5132
RH
10990 switch (OUTPUT_FLAVOR)
10991 {
9384f2ff 10992#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10993 case bfd_target_aout_flavour:
47926f60 10994 return AOUT_TARGET_FORMAT;
4c63da97 10995#endif
9384f2ff
AM
10996#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10997# if defined (TE_PE) || defined (TE_PEP)
10998 case bfd_target_coff_flavour:
167ad85b
TG
10999 if (flag_code == CODE_64BIT)
11000 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11001 else
11002 return "pe-i386";
9384f2ff 11003# elif defined (TE_GO32)
0561d57c
JK
11004 case bfd_target_coff_flavour:
11005 return "coff-go32";
9384f2ff 11006# else
252b5132
RH
11007 case bfd_target_coff_flavour:
11008 return "coff-i386";
9384f2ff 11009# endif
4c63da97 11010#endif
3e73aa7c 11011#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11012 case bfd_target_elf_flavour:
3e73aa7c 11013 {
351f65ca
L
11014 const char *format;
11015
11016 switch (x86_elf_abi)
4fa24527 11017 {
351f65ca
L
11018 default:
11019 format = ELF_TARGET_FORMAT;
11020 break;
7f56bc95 11021 case X86_64_ABI:
351f65ca 11022 use_rela_relocations = 1;
4fa24527 11023 object_64bit = 1;
351f65ca
L
11024 format = ELF_TARGET_FORMAT64;
11025 break;
7f56bc95 11026 case X86_64_X32_ABI:
4fa24527 11027 use_rela_relocations = 1;
351f65ca 11028 object_64bit = 1;
862be3fb 11029 disallow_64bit_reloc = 1;
351f65ca
L
11030 format = ELF_TARGET_FORMAT32;
11031 break;
4fa24527 11032 }
3632d14b 11033 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11034 {
7f56bc95 11035 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11036 as_fatal (_("Intel L1OM is 64bit only"));
11037 return ELF_TARGET_L1OM_FORMAT;
11038 }
b49f93f6 11039 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11040 {
11041 if (x86_elf_abi != X86_64_ABI)
11042 as_fatal (_("Intel K1OM is 64bit only"));
11043 return ELF_TARGET_K1OM_FORMAT;
11044 }
81486035
L
11045 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11046 {
11047 if (x86_elf_abi != I386_ABI)
11048 as_fatal (_("Intel MCU is 32bit only"));
11049 return ELF_TARGET_IAMCU_FORMAT;
11050 }
8a9036a4 11051 else
351f65ca 11052 return format;
3e73aa7c 11053 }
e57f8c65
TG
11054#endif
11055#if defined (OBJ_MACH_O)
11056 case bfd_target_mach_o_flavour:
d382c579
TG
11057 if (flag_code == CODE_64BIT)
11058 {
11059 use_rela_relocations = 1;
11060 object_64bit = 1;
11061 return "mach-o-x86-64";
11062 }
11063 else
11064 return "mach-o-i386";
4c63da97 11065#endif
252b5132
RH
11066 default:
11067 abort ();
11068 return NULL;
11069 }
11070}
11071
47926f60 11072#endif /* OBJ_MAYBE_ more than one */
252b5132 11073\f
252b5132 11074symbolS *
7016a5d5 11075md_undefined_symbol (char *name)
252b5132 11076{
18dc2407
ILT
11077 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11078 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11079 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11080 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11081 {
11082 if (!GOT_symbol)
11083 {
11084 if (symbol_find (name))
11085 as_bad (_("GOT already in symbol table"));
11086 GOT_symbol = symbol_new (name, undefined_section,
11087 (valueT) 0, &zero_address_frag);
11088 };
11089 return GOT_symbol;
11090 }
252b5132
RH
11091 return 0;
11092}
11093
11094/* Round up a section size to the appropriate boundary. */
47926f60 11095
252b5132 11096valueT
7016a5d5 11097md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11098{
4c63da97
AM
11099#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11100 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11101 {
11102 /* For a.out, force the section size to be aligned. If we don't do
11103 this, BFD will align it for us, but it will not write out the
11104 final bytes of the section. This may be a bug in BFD, but it is
11105 easier to fix it here since that is how the other a.out targets
11106 work. */
11107 int align;
11108
11109 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11110 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11111 }
252b5132
RH
11112#endif
11113
11114 return size;
11115}
11116
11117/* On the i386, PC-relative offsets are relative to the start of the
11118 next instruction. That is, the address of the offset, plus its
11119 size, since the offset is always the last part of the insn. */
11120
11121long
e3bb37b5 11122md_pcrel_from (fixS *fixP)
252b5132
RH
11123{
11124 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11125}
11126
11127#ifndef I386COFF
11128
11129static void
e3bb37b5 11130s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11131{
29b0f896 11132 int temp;
252b5132 11133
8a75718c
JB
11134#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11135 if (IS_ELF)
11136 obj_elf_section_change_hook ();
11137#endif
252b5132
RH
11138 temp = get_absolute_expression ();
11139 subseg_set (bss_section, (subsegT) temp);
11140 demand_empty_rest_of_line ();
11141}
11142
11143#endif
11144
252b5132 11145void
e3bb37b5 11146i386_validate_fix (fixS *fixp)
252b5132 11147{
02a86693 11148 if (fixp->fx_subsy)
252b5132 11149 {
02a86693 11150 if (fixp->fx_subsy == GOT_symbol)
23df1078 11151 {
02a86693
L
11152 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11153 {
11154 if (!object_64bit)
11155 abort ();
11156#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11157 if (fixp->fx_tcbit2)
56ceb5b5
L
11158 fixp->fx_r_type = (fixp->fx_tcbit
11159 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11160 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11161 else
11162#endif
11163 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11164 }
d6ab8113 11165 else
02a86693
L
11166 {
11167 if (!object_64bit)
11168 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11169 else
11170 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11171 }
11172 fixp->fx_subsy = 0;
23df1078 11173 }
252b5132 11174 }
02a86693
L
11175#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11176 else if (!object_64bit)
11177 {
11178 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11179 && fixp->fx_tcbit2)
11180 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11181 }
11182#endif
252b5132
RH
11183}
11184
252b5132 11185arelent *
7016a5d5 11186tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11187{
11188 arelent *rel;
11189 bfd_reloc_code_real_type code;
11190
11191 switch (fixp->fx_r_type)
11192 {
8ce3d284 11193#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11194 case BFD_RELOC_SIZE32:
11195 case BFD_RELOC_SIZE64:
11196 if (S_IS_DEFINED (fixp->fx_addsy)
11197 && !S_IS_EXTERNAL (fixp->fx_addsy))
11198 {
11199 /* Resolve size relocation against local symbol to size of
11200 the symbol plus addend. */
11201 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11202 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11203 && !fits_in_unsigned_long (value))
11204 as_bad_where (fixp->fx_file, fixp->fx_line,
11205 _("symbol size computation overflow"));
11206 fixp->fx_addsy = NULL;
11207 fixp->fx_subsy = NULL;
11208 md_apply_fix (fixp, (valueT *) &value, NULL);
11209 return NULL;
11210 }
8ce3d284 11211#endif
1a0670f3 11212 /* Fall through. */
8fd4256d 11213
3e73aa7c
JH
11214 case BFD_RELOC_X86_64_PLT32:
11215 case BFD_RELOC_X86_64_GOT32:
11216 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11217 case BFD_RELOC_X86_64_GOTPCRELX:
11218 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11219 case BFD_RELOC_386_PLT32:
11220 case BFD_RELOC_386_GOT32:
02a86693 11221 case BFD_RELOC_386_GOT32X:
252b5132
RH
11222 case BFD_RELOC_386_GOTOFF:
11223 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11224 case BFD_RELOC_386_TLS_GD:
11225 case BFD_RELOC_386_TLS_LDM:
11226 case BFD_RELOC_386_TLS_LDO_32:
11227 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11228 case BFD_RELOC_386_TLS_IE:
11229 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11230 case BFD_RELOC_386_TLS_LE_32:
11231 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11232 case BFD_RELOC_386_TLS_GOTDESC:
11233 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11234 case BFD_RELOC_X86_64_TLSGD:
11235 case BFD_RELOC_X86_64_TLSLD:
11236 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11237 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11238 case BFD_RELOC_X86_64_GOTTPOFF:
11239 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11240 case BFD_RELOC_X86_64_TPOFF64:
11241 case BFD_RELOC_X86_64_GOTOFF64:
11242 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11243 case BFD_RELOC_X86_64_GOT64:
11244 case BFD_RELOC_X86_64_GOTPCREL64:
11245 case BFD_RELOC_X86_64_GOTPC64:
11246 case BFD_RELOC_X86_64_GOTPLT64:
11247 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11248 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11249 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11250 case BFD_RELOC_RVA:
11251 case BFD_RELOC_VTABLE_ENTRY:
11252 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11253#ifdef TE_PE
11254 case BFD_RELOC_32_SECREL:
11255#endif
252b5132
RH
11256 code = fixp->fx_r_type;
11257 break;
dbbaec26
L
11258 case BFD_RELOC_X86_64_32S:
11259 if (!fixp->fx_pcrel)
11260 {
11261 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11262 code = fixp->fx_r_type;
11263 break;
11264 }
1a0670f3 11265 /* Fall through. */
252b5132 11266 default:
93382f6d 11267 if (fixp->fx_pcrel)
252b5132 11268 {
93382f6d
AM
11269 switch (fixp->fx_size)
11270 {
11271 default:
b091f402
AM
11272 as_bad_where (fixp->fx_file, fixp->fx_line,
11273 _("can not do %d byte pc-relative relocation"),
11274 fixp->fx_size);
93382f6d
AM
11275 code = BFD_RELOC_32_PCREL;
11276 break;
11277 case 1: code = BFD_RELOC_8_PCREL; break;
11278 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11279 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11280#ifdef BFD64
11281 case 8: code = BFD_RELOC_64_PCREL; break;
11282#endif
93382f6d
AM
11283 }
11284 }
11285 else
11286 {
11287 switch (fixp->fx_size)
11288 {
11289 default:
b091f402
AM
11290 as_bad_where (fixp->fx_file, fixp->fx_line,
11291 _("can not do %d byte relocation"),
11292 fixp->fx_size);
93382f6d
AM
11293 code = BFD_RELOC_32;
11294 break;
11295 case 1: code = BFD_RELOC_8; break;
11296 case 2: code = BFD_RELOC_16; break;
11297 case 4: code = BFD_RELOC_32; break;
937149dd 11298#ifdef BFD64
3e73aa7c 11299 case 8: code = BFD_RELOC_64; break;
937149dd 11300#endif
93382f6d 11301 }
252b5132
RH
11302 }
11303 break;
11304 }
252b5132 11305
d182319b
JB
11306 if ((code == BFD_RELOC_32
11307 || code == BFD_RELOC_32_PCREL
11308 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11309 && GOT_symbol
11310 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11311 {
4fa24527 11312 if (!object_64bit)
d6ab8113
JB
11313 code = BFD_RELOC_386_GOTPC;
11314 else
11315 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11316 }
7b81dfbb
AJ
11317 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11318 && GOT_symbol
11319 && fixp->fx_addsy == GOT_symbol)
11320 {
11321 code = BFD_RELOC_X86_64_GOTPC64;
11322 }
252b5132 11323
add39d23
TS
11324 rel = XNEW (arelent);
11325 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11326 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11327
11328 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11329
3e73aa7c
JH
11330 if (!use_rela_relocations)
11331 {
11332 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11333 vtable entry to be used in the relocation's section offset. */
11334 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11335 rel->address = fixp->fx_offset;
fbeb56a4
DK
11336#if defined (OBJ_COFF) && defined (TE_PE)
11337 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11338 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11339 else
11340#endif
c6682705 11341 rel->addend = 0;
3e73aa7c
JH
11342 }
11343 /* Use the rela in 64bit mode. */
252b5132 11344 else
3e73aa7c 11345 {
862be3fb
L
11346 if (disallow_64bit_reloc)
11347 switch (code)
11348 {
862be3fb
L
11349 case BFD_RELOC_X86_64_DTPOFF64:
11350 case BFD_RELOC_X86_64_TPOFF64:
11351 case BFD_RELOC_64_PCREL:
11352 case BFD_RELOC_X86_64_GOTOFF64:
11353 case BFD_RELOC_X86_64_GOT64:
11354 case BFD_RELOC_X86_64_GOTPCREL64:
11355 case BFD_RELOC_X86_64_GOTPC64:
11356 case BFD_RELOC_X86_64_GOTPLT64:
11357 case BFD_RELOC_X86_64_PLTOFF64:
11358 as_bad_where (fixp->fx_file, fixp->fx_line,
11359 _("cannot represent relocation type %s in x32 mode"),
11360 bfd_get_reloc_code_name (code));
11361 break;
11362 default:
11363 break;
11364 }
11365
062cd5e7
AS
11366 if (!fixp->fx_pcrel)
11367 rel->addend = fixp->fx_offset;
11368 else
11369 switch (code)
11370 {
11371 case BFD_RELOC_X86_64_PLT32:
11372 case BFD_RELOC_X86_64_GOT32:
11373 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11374 case BFD_RELOC_X86_64_GOTPCRELX:
11375 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11376 case BFD_RELOC_X86_64_TLSGD:
11377 case BFD_RELOC_X86_64_TLSLD:
11378 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11379 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11380 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11381 rel->addend = fixp->fx_offset - fixp->fx_size;
11382 break;
11383 default:
11384 rel->addend = (section->vma
11385 - fixp->fx_size
11386 + fixp->fx_addnumber
11387 + md_pcrel_from (fixp));
11388 break;
11389 }
3e73aa7c
JH
11390 }
11391
252b5132
RH
11392 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11393 if (rel->howto == NULL)
11394 {
11395 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11396 _("cannot represent relocation type %s"),
252b5132
RH
11397 bfd_get_reloc_code_name (code));
11398 /* Set howto to a garbage value so that we can keep going. */
11399 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11400 gas_assert (rel->howto != NULL);
252b5132
RH
11401 }
11402
11403 return rel;
11404}
11405
ee86248c 11406#include "tc-i386-intel.c"
54cfded0 11407
a60de03c
JB
11408void
11409tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11410{
a60de03c
JB
11411 int saved_naked_reg;
11412 char saved_register_dot;
54cfded0 11413
a60de03c
JB
11414 saved_naked_reg = allow_naked_reg;
11415 allow_naked_reg = 1;
11416 saved_register_dot = register_chars['.'];
11417 register_chars['.'] = '.';
11418 allow_pseudo_reg = 1;
11419 expression_and_evaluate (exp);
11420 allow_pseudo_reg = 0;
11421 register_chars['.'] = saved_register_dot;
11422 allow_naked_reg = saved_naked_reg;
11423
e96d56a1 11424 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11425 {
a60de03c
JB
11426 if ((addressT) exp->X_add_number < i386_regtab_size)
11427 {
11428 exp->X_op = O_constant;
11429 exp->X_add_number = i386_regtab[exp->X_add_number]
11430 .dw2_regnum[flag_code >> 1];
11431 }
11432 else
11433 exp->X_op = O_illegal;
54cfded0 11434 }
54cfded0
AM
11435}
11436
11437void
11438tc_x86_frame_initial_instructions (void)
11439{
a60de03c
JB
11440 static unsigned int sp_regno[2];
11441
11442 if (!sp_regno[flag_code >> 1])
11443 {
11444 char *saved_input = input_line_pointer;
11445 char sp[][4] = {"esp", "rsp"};
11446 expressionS exp;
a4447b93 11447
a60de03c
JB
11448 input_line_pointer = sp[flag_code >> 1];
11449 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11450 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11451 sp_regno[flag_code >> 1] = exp.X_add_number;
11452 input_line_pointer = saved_input;
11453 }
a4447b93 11454
61ff971f
L
11455 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11456 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11457}
d2b2c203 11458
d7921315
L
11459int
11460x86_dwarf2_addr_size (void)
11461{
11462#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11463 if (x86_elf_abi == X86_64_X32_ABI)
11464 return 4;
11465#endif
11466 return bfd_arch_bits_per_address (stdoutput) / 8;
11467}
11468
d2b2c203
DJ
11469int
11470i386_elf_section_type (const char *str, size_t len)
11471{
11472 if (flag_code == CODE_64BIT
11473 && len == sizeof ("unwind") - 1
11474 && strncmp (str, "unwind", 6) == 0)
11475 return SHT_X86_64_UNWIND;
11476
11477 return -1;
11478}
bb41ade5 11479
ad5fec3b
EB
11480#ifdef TE_SOLARIS
11481void
11482i386_solaris_fix_up_eh_frame (segT sec)
11483{
11484 if (flag_code == CODE_64BIT)
11485 elf_section_type (sec) = SHT_X86_64_UNWIND;
11486}
11487#endif
11488
bb41ade5
AM
11489#ifdef TE_PE
11490void
11491tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11492{
91d6fa6a 11493 expressionS exp;
bb41ade5 11494
91d6fa6a
NC
11495 exp.X_op = O_secrel;
11496 exp.X_add_symbol = symbol;
11497 exp.X_add_number = 0;
11498 emit_expr (&exp, size);
bb41ade5
AM
11499}
11500#endif
3b22753a
L
11501
11502#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11503/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11504
01e1a5bc 11505bfd_vma
6d4af3c2 11506x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11507{
11508 if (flag_code == CODE_64BIT)
11509 {
11510 if (letter == 'l')
11511 return SHF_X86_64_LARGE;
11512
8f3bae45 11513 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11514 }
3b22753a 11515 else
8f3bae45 11516 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11517 return -1;
11518}
11519
01e1a5bc 11520bfd_vma
3b22753a
L
11521x86_64_section_word (char *str, size_t len)
11522{
8620418b 11523 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11524 return SHF_X86_64_LARGE;
11525
11526 return -1;
11527}
11528
11529static void
11530handle_large_common (int small ATTRIBUTE_UNUSED)
11531{
11532 if (flag_code != CODE_64BIT)
11533 {
11534 s_comm_internal (0, elf_common_parse);
11535 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11536 }
11537 else
11538 {
11539 static segT lbss_section;
11540 asection *saved_com_section_ptr = elf_com_section_ptr;
11541 asection *saved_bss_section = bss_section;
11542
11543 if (lbss_section == NULL)
11544 {
11545 flagword applicable;
11546 segT seg = now_seg;
11547 subsegT subseg = now_subseg;
11548
11549 /* The .lbss section is for local .largecomm symbols. */
11550 lbss_section = subseg_new (".lbss", 0);
11551 applicable = bfd_applicable_section_flags (stdoutput);
11552 bfd_set_section_flags (stdoutput, lbss_section,
11553 applicable & SEC_ALLOC);
11554 seg_info (lbss_section)->bss = 1;
11555
11556 subseg_set (seg, subseg);
11557 }
11558
11559 elf_com_section_ptr = &_bfd_elf_large_com_section;
11560 bss_section = lbss_section;
11561
11562 s_comm_internal (0, elf_common_parse);
11563
11564 elf_com_section_ptr = saved_com_section_ptr;
11565 bss_section = saved_bss_section;
11566 }
11567}
11568#endif /* OBJ_ELF || OBJ_MAYBE_ELF */