]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
2005-06-20 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
aef6203b 3 2000, 2001, 2002, 2003, 2004, 2005
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
252b5132 22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
5c6af06e 317static const char *cpu_sub_arch_name = NULL;
a38cf1db 318
47926f60 319/* CPU feature flags. */
29b0f896 320static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 321
fddf5b5b
AM
322/* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324static unsigned int no_cond_jump_promotion = 0;
325
29b0f896 326/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 327static symbolS *GOT_symbol;
29b0f896 328
a4447b93
RH
329/* The dwarf2 return column, adjusted for 32 or 64 bit. */
330unsigned int x86_dwarf2_return_column;
331
332/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333int x86_cie_data_alignment;
334
252b5132 335/* Interface to relax_segment.
fddf5b5b
AM
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
252b5132 339
47926f60 340/* Types. */
93c2a809
AM
341#define UNCOND_JUMP 0
342#define COND_JUMP 1
343#define COND_JUMP86 2
fddf5b5b 344
47926f60 345/* Sizes. */
252b5132
RH
346#define CODE16 1
347#define SMALL 0
29b0f896 348#define SMALL16 (SMALL | CODE16)
252b5132 349#define BIG 2
29b0f896 350#define BIG16 (BIG | CODE16)
252b5132
RH
351
352#ifndef INLINE
353#ifdef __GNUC__
354#define INLINE __inline__
355#else
356#define INLINE
357#endif
358#endif
359
fddf5b5b
AM
360#define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362#define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364#define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
366
367/* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375const relax_typeS md_relax_table[] =
376{
24eab124
AM
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
93c2a809 380 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 381 4) which index into the table to try if we can't fit into this one. */
252b5132 382
fddf5b5b 383 /* UNCOND_JUMP states. */
93c2a809
AM
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
252b5132 388 {0, 0, 4, 0},
93c2a809
AM
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
391 {0, 0, 2, 0},
392
93c2a809
AM
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
fddf5b5b 399 /* word conditionals add 3 bytes to frag:
93c2a809
AM
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
252b5132
RH
412};
413
e413e4e9
AM
414static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
5c6af06e
JB
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
e413e4e9
AM
438 {NULL, 0 }
439};
440
29b0f896
AM
441const pseudo_typeS md_pseudo_table[] =
442{
443#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445#else
446 {"align", s_align_ptwo, 0},
447#endif
448 {"arch", set_cpu_arch, 0},
449#ifndef I386COFF
450 {"bss", s_bss, 0},
451#endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
c6682705 464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 465 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
466#ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468#endif
29b0f896
AM
469 {0, 0, 0}
470};
471
472/* For interface with expression (). */
473extern char *input_line_pointer;
474
475/* Hash table for instruction mnemonic lookup. */
476static struct hash_control *op_hash;
477
478/* Hash table for register lookup. */
479static struct hash_control *reg_hash;
480\f
252b5132
RH
481void
482i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485{
ce8a8b2f
AM
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
252b5132
RH
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
c3332e24 549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
33fef721
JH
553 if (count <= 0 || count > 15)
554 return;
3e73aa7c 555
33fef721
JH
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
252b5132 559 {
33fef721
JH
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
252b5132 567 {
33fef721
JH
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
252b5132 577 }
252b5132 578 }
33fef721
JH
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
252b5132
RH
592}
593
252b5132
RH
594static INLINE unsigned int
595mode_from_disp_size (t)
596 unsigned int t;
597{
3e73aa7c 598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
599}
600
601static INLINE int
602fits_in_signed_byte (num)
847f7ad4 603 offsetT num;
252b5132
RH
604{
605 return (num >= -128) && (num <= 127);
47926f60 606}
252b5132
RH
607
608static INLINE int
609fits_in_unsigned_byte (num)
847f7ad4 610 offsetT num;
252b5132
RH
611{
612 return (num & 0xff) == num;
47926f60 613}
252b5132
RH
614
615static INLINE int
616fits_in_unsigned_word (num)
847f7ad4 617 offsetT num;
252b5132
RH
618{
619 return (num & 0xffff) == num;
47926f60 620}
252b5132
RH
621
622static INLINE int
623fits_in_signed_word (num)
847f7ad4 624 offsetT num;
252b5132
RH
625{
626 return (-32768 <= num) && (num <= 32767);
47926f60 627}
3e73aa7c
JH
628static INLINE int
629fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637#endif
638} /* fits_in_signed_long() */
639static INLINE int
640fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642{
643#ifndef BFD64
644 return 1;
645#else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647#endif
648} /* fits_in_unsigned_long() */
252b5132
RH
649
650static int
651smallest_imm_type (num)
847f7ad4 652 offsetT num;
252b5132 653{
a847613f 654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
3e73aa7c 662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 663 }
252b5132 664 return (fits_in_signed_byte (num)
3e73aa7c 665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 666 : fits_in_unsigned_byte (num)
3e73aa7c 667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
47926f60 675}
252b5132 676
847f7ad4
AM
677static offsetT
678offset_in_range (val, size)
679 offsetT val;
680 int size;
681{
508866be 682 addressT mask;
ba2adb93 683
847f7ad4
AM
684 switch (size)
685 {
508866be
L
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 688 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
689#ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691#endif
47926f60 692 default: abort ();
847f7ad4
AM
693 }
694
ba2adb93 695 /* If BFD64, sign extend val. */
3e73aa7c
JH
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 699
47926f60 700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709}
710
252b5132
RH
711/* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714static int
715add_prefix (prefix)
716 unsigned int prefix;
717{
718 int ret = 1;
719 int q;
720
29b0f896
AM
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
3e73aa7c
JH
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
252b5132 738
3e73aa7c
JH
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
252b5132 746
3e73aa7c
JH
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
252b5132 750
3e73aa7c
JH
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
252b5132 754
3e73aa7c
JH
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
252b5132 759
29b0f896 760 if (i.prefix[q] != 0)
252b5132
RH
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769}
770
771static void
3e73aa7c 772set_code_flag (value)
e5cb08ac 773 int value;
eecb386c 774{
3e73aa7c
JH
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
eecb386c
AM
786 stackop_size = '\0';
787}
788
789static void
3e73aa7c
JH
790set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
252b5132 792{
3e73aa7c
JH
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 796 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
797}
798
799static void
800set_intel_syntax (syntax_flag)
eecb386c 801 int syntax_flag;
252b5132
RH
802{
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
29b0f896 807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
47926f60 812 if (strcmp (string, "prefix") == 0)
252b5132 813 ask_naked_reg = 1;
47926f60 814 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
815 ask_naked_reg = -1;
816 else
d0b47220 817 as_bad (_("bad argument to syntax directive."));
252b5132
RH
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
c3332e24 821
252b5132
RH
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
f86103b7
AM
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
832}
833
e413e4e9
AM
834static void
835set_cpu_arch (dummy)
47926f60 836 int dummy ATTRIBUTE_UNUSED;
e413e4e9 837{
47926f60 838 SKIP_WHITESPACE ();
e413e4e9 839
29b0f896 840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
5c6af06e
JB
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
e413e4e9
AM
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
fddf5b5b
AM
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
29b0f896 878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
e413e4e9
AM
893 demand_empty_rest_of_line ();
894}
895
b9d79e03
JH
896unsigned long
897i386_mach ()
898{
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905}
b9d79e03 906\f
252b5132
RH
907void
908md_begin ()
909{
910 const char *hash_err;
911
47926f60 912 /* Initialize op_hash hash table. */
252b5132
RH
913 op_hash = hash_new ();
914
915 {
29b0f896
AM
916 const template *optab;
917 templates *core_optab;
252b5132 918
47926f60
KH
919 /* Setup for loop. */
920 optab = i386_optab;
252b5132
RH
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
47926f60 931 add to hash table; & begin anew. */
252b5132
RH
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
252b5132
RH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
47926f60 950 /* Initialize reg_hash hash table. */
252b5132
RH
951 reg_hash = hash_new ();
952 {
29b0f896 953 const reg_entry *regtab;
252b5132
RH
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
3e73aa7c
JH
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
252b5132
RH
964 }
965 }
966
47926f60 967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 968 {
29b0f896
AM
969 int c;
970 char *p;
252b5132
RH
971
972 for (c = 0; c < 256; c++)
973 {
3882b010 974 if (ISDIGIT (c))
252b5132
RH
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
3882b010 981 else if (ISLOWER (c))
252b5132
RH
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
3882b010 987 else if (ISUPPER (c))
252b5132 988 {
3882b010 989 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
3882b010 994 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003#ifdef LEX_AT
1004 identifier_chars['@'] = '@';
32137342
NC
1005#endif
1006#ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
252b5132 1009#endif
252b5132 1010 digit_chars['-'] = '-';
791fe849 1011 mnemonic_chars['-'] = '-';
252b5132
RH
1012 identifier_chars['_'] = '_';
1013 identifier_chars['.'] = '.';
1014
1015 for (p = operand_special_chars; *p != '\0'; p++)
1016 operand_chars[(unsigned char) *p] = *p;
1017 }
1018
1019#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1020 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1021 {
1022 record_alignment (text_section, 2);
1023 record_alignment (data_section, 2);
1024 record_alignment (bss_section, 2);
1025 }
1026#endif
a4447b93
RH
1027
1028 if (flag_code == CODE_64BIT)
1029 {
1030 x86_dwarf2_return_column = 16;
1031 x86_cie_data_alignment = -8;
1032 }
1033 else
1034 {
1035 x86_dwarf2_return_column = 8;
1036 x86_cie_data_alignment = -4;
1037 }
252b5132
RH
1038}
1039
1040void
1041i386_print_statistics (file)
1042 FILE *file;
1043{
1044 hash_print_statistics (file, "i386 opcode", op_hash);
1045 hash_print_statistics (file, "i386 register", reg_hash);
1046}
1047\f
252b5132
RH
1048#ifdef DEBUG386
1049
ce8a8b2f 1050/* Debugging routines for md_assemble. */
252b5132
RH
1051static void pi PARAMS ((char *, i386_insn *));
1052static void pte PARAMS ((template *));
1053static void pt PARAMS ((unsigned int));
1054static void pe PARAMS ((expressionS *));
1055static void ps PARAMS ((symbolS *));
1056
1057static void
1058pi (line, x)
1059 char *line;
1060 i386_insn *x;
1061{
09f131f2 1062 unsigned int i;
252b5132
RH
1063
1064 fprintf (stdout, "%s: template ", line);
1065 pte (&x->tm);
09f131f2
JH
1066 fprintf (stdout, " address: base %s index %s scale %x\n",
1067 x->base_reg ? x->base_reg->reg_name : "none",
1068 x->index_reg ? x->index_reg->reg_name : "none",
1069 x->log2_scale_factor);
1070 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1071 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1072 fprintf (stdout, " sib: base %x index %x scale %x\n",
1073 x->sib.base, x->sib.index, x->sib.scale);
1074 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1075 (x->rex & REX_MODE64) != 0,
1076 (x->rex & REX_EXTX) != 0,
1077 (x->rex & REX_EXTY) != 0,
1078 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1079 for (i = 0; i < x->operands; i++)
1080 {
1081 fprintf (stdout, " #%d: ", i + 1);
1082 pt (x->types[i]);
1083 fprintf (stdout, "\n");
1084 if (x->types[i]
3f4438ab 1085 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1086 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1087 if (x->types[i] & Imm)
520dc8e8 1088 pe (x->op[i].imms);
252b5132 1089 if (x->types[i] & Disp)
520dc8e8 1090 pe (x->op[i].disps);
252b5132
RH
1091 }
1092}
1093
1094static void
1095pte (t)
1096 template *t;
1097{
09f131f2 1098 unsigned int i;
252b5132 1099 fprintf (stdout, " %d operands ", t->operands);
47926f60 1100 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1101 if (t->extension_opcode != None)
1102 fprintf (stdout, "ext %x ", t->extension_opcode);
1103 if (t->opcode_modifier & D)
1104 fprintf (stdout, "D");
1105 if (t->opcode_modifier & W)
1106 fprintf (stdout, "W");
1107 fprintf (stdout, "\n");
1108 for (i = 0; i < t->operands; i++)
1109 {
1110 fprintf (stdout, " #%d type ", i + 1);
1111 pt (t->operand_types[i]);
1112 fprintf (stdout, "\n");
1113 }
1114}
1115
1116static void
1117pe (e)
1118 expressionS *e;
1119{
24eab124 1120 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1121 fprintf (stdout, " add_number %ld (%lx)\n",
1122 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1123 if (e->X_add_symbol)
1124 {
1125 fprintf (stdout, " add_symbol ");
1126 ps (e->X_add_symbol);
1127 fprintf (stdout, "\n");
1128 }
1129 if (e->X_op_symbol)
1130 {
1131 fprintf (stdout, " op_symbol ");
1132 ps (e->X_op_symbol);
1133 fprintf (stdout, "\n");
1134 }
1135}
1136
1137static void
1138ps (s)
1139 symbolS *s;
1140{
1141 fprintf (stdout, "%s type %s%s",
1142 S_GET_NAME (s),
1143 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1144 segment_name (S_GET_SEGMENT (s)));
1145}
1146
1147struct type_name
1148 {
1149 unsigned int mask;
1150 char *tname;
1151 }
1152
29b0f896 1153static const type_names[] =
252b5132
RH
1154{
1155 { Reg8, "r8" },
1156 { Reg16, "r16" },
1157 { Reg32, "r32" },
09f131f2 1158 { Reg64, "r64" },
252b5132
RH
1159 { Imm8, "i8" },
1160 { Imm8S, "i8s" },
1161 { Imm16, "i16" },
1162 { Imm32, "i32" },
09f131f2
JH
1163 { Imm32S, "i32s" },
1164 { Imm64, "i64" },
252b5132
RH
1165 { Imm1, "i1" },
1166 { BaseIndex, "BaseIndex" },
1167 { Disp8, "d8" },
1168 { Disp16, "d16" },
1169 { Disp32, "d32" },
09f131f2
JH
1170 { Disp32S, "d32s" },
1171 { Disp64, "d64" },
252b5132
RH
1172 { InOutPortReg, "InOutPortReg" },
1173 { ShiftCount, "ShiftCount" },
1174 { Control, "control reg" },
1175 { Test, "test reg" },
1176 { Debug, "debug reg" },
1177 { FloatReg, "FReg" },
1178 { FloatAcc, "FAcc" },
1179 { SReg2, "SReg2" },
1180 { SReg3, "SReg3" },
1181 { Acc, "Acc" },
1182 { JumpAbsolute, "Jump Absolute" },
1183 { RegMMX, "rMMX" },
3f4438ab 1184 { RegXMM, "rXMM" },
252b5132
RH
1185 { EsSeg, "es" },
1186 { 0, "" }
1187};
1188
1189static void
1190pt (t)
1191 unsigned int t;
1192{
29b0f896 1193 const struct type_name *ty;
252b5132 1194
09f131f2
JH
1195 for (ty = type_names; ty->mask; ty++)
1196 if (t & ty->mask)
1197 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1198 fflush (stdout);
1199}
1200
1201#endif /* DEBUG386 */
1202\f
29b0f896
AM
1203static bfd_reloc_code_real_type reloc
1204 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1205
1206static bfd_reloc_code_real_type
3e73aa7c 1207reloc (size, pcrel, sign, other)
252b5132
RH
1208 int size;
1209 int pcrel;
3e73aa7c 1210 int sign;
252b5132
RH
1211 bfd_reloc_code_real_type other;
1212{
47926f60
KH
1213 if (other != NO_RELOC)
1214 return other;
252b5132
RH
1215
1216 if (pcrel)
1217 {
3e73aa7c 1218 if (!sign)
e5cb08ac 1219 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1220 switch (size)
1221 {
1222 case 1: return BFD_RELOC_8_PCREL;
1223 case 2: return BFD_RELOC_16_PCREL;
1224 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 1225 case 8: return BFD_RELOC_64_PCREL;
252b5132 1226 }
d0b47220 1227 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1228 }
1229 else
1230 {
3e73aa7c 1231 if (sign)
e5cb08ac 1232 switch (size)
3e73aa7c
JH
1233 {
1234 case 4: return BFD_RELOC_X86_64_32S;
1235 }
1236 else
1237 switch (size)
1238 {
1239 case 1: return BFD_RELOC_8;
1240 case 2: return BFD_RELOC_16;
1241 case 4: return BFD_RELOC_32;
1242 case 8: return BFD_RELOC_64;
1243 }
1244 as_bad (_("can not do %s %d byte relocation"),
1245 sign ? "signed" : "unsigned", size);
252b5132
RH
1246 }
1247
bfb32b52 1248 abort ();
252b5132
RH
1249 return BFD_RELOC_NONE;
1250}
1251
47926f60
KH
1252/* Here we decide which fixups can be adjusted to make them relative to
1253 the beginning of the section instead of the symbol. Basically we need
1254 to make sure that the dynamic relocations are done correctly, so in
1255 some cases we force the original symbol to be used. */
1256
252b5132 1257int
c0c949c7 1258tc_i386_fix_adjustable (fixP)
31312f95 1259 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1260{
6d249963 1261#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1262 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1263 return 1;
1264
a161fe53
AM
1265 /* Don't adjust pc-relative references to merge sections in 64-bit
1266 mode. */
1267 if (use_rela_relocations
1268 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1269 && fixP->fx_pcrel)
252b5132 1270 return 0;
31312f95 1271
8d01d9a9
AJ
1272 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1273 and changed later by validate_fix. */
1274 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1275 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1276 return 0;
1277
ce8a8b2f 1278 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1279 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1280 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1281 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1288 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1289 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1290 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1292 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 1296 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
1297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1298 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
1299 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1300 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
252b5132
RH
1301 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1302 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1303 return 0;
31312f95 1304#endif
252b5132
RH
1305 return 1;
1306}
252b5132 1307
29b0f896 1308static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1309
1310static int
252b5132 1311intel_float_operand (mnemonic)
29b0f896 1312 const char *mnemonic;
252b5132 1313{
9306ca4a
JB
1314 /* Note that the value returned is meaningful only for opcodes with (memory)
1315 operands, hence the code here is free to improperly handle opcodes that
1316 have no operands (for better performance and smaller code). */
1317
1318 if (mnemonic[0] != 'f')
1319 return 0; /* non-math */
1320
1321 switch (mnemonic[1])
1322 {
1323 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1324 the fs segment override prefix not currently handled because no
1325 call path can make opcodes without operands get here */
1326 case 'i':
1327 return 2 /* integer op */;
1328 case 'l':
1329 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1330 return 3; /* fldcw/fldenv */
1331 break;
1332 case 'n':
1333 if (mnemonic[2] != 'o' /* fnop */)
1334 return 3; /* non-waiting control op */
1335 break;
1336 case 'r':
1337 if (mnemonic[2] == 's')
1338 return 3; /* frstor/frstpm */
1339 break;
1340 case 's':
1341 if (mnemonic[2] == 'a')
1342 return 3; /* fsave */
1343 if (mnemonic[2] == 't')
1344 {
1345 switch (mnemonic[3])
1346 {
1347 case 'c': /* fstcw */
1348 case 'd': /* fstdw */
1349 case 'e': /* fstenv */
1350 case 's': /* fsts[gw] */
1351 return 3;
1352 }
1353 }
1354 break;
1355 case 'x':
1356 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1357 return 0; /* fxsave/fxrstor are not really math ops */
1358 break;
1359 }
252b5132 1360
9306ca4a 1361 return 1;
252b5132
RH
1362}
1363
1364/* This is the guts of the machine-dependent assembler. LINE points to a
1365 machine dependent instruction. This function is supposed to emit
1366 the frags/bytes it assembles to. */
1367
1368void
1369md_assemble (line)
1370 char *line;
1371{
252b5132 1372 int j;
252b5132
RH
1373 char mnemonic[MAX_MNEM_SIZE];
1374
47926f60 1375 /* Initialize globals. */
252b5132
RH
1376 memset (&i, '\0', sizeof (i));
1377 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1378 i.reloc[j] = NO_RELOC;
252b5132
RH
1379 memset (disp_expressions, '\0', sizeof (disp_expressions));
1380 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1381 save_stack_p = save_stack;
252b5132
RH
1382
1383 /* First parse an instruction mnemonic & call i386_operand for the operands.
1384 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1385 start of a (possibly prefixed) mnemonic. */
252b5132 1386
29b0f896
AM
1387 line = parse_insn (line, mnemonic);
1388 if (line == NULL)
1389 return;
252b5132 1390
29b0f896
AM
1391 line = parse_operands (line, mnemonic);
1392 if (line == NULL)
1393 return;
252b5132 1394
29b0f896
AM
1395 /* Now we've parsed the mnemonic into a set of templates, and have the
1396 operands at hand. */
1397
1398 /* All intel opcodes have reversed operands except for "bound" and
1399 "enter". We also don't reverse intersegment "jmp" and "call"
1400 instructions with 2 immediate operands so that the immediate segment
1401 precedes the offset, as it does when in AT&T mode. "enter" and the
1402 intersegment "jmp" and "call" instructions are the only ones that
1403 have two immediate operands. */
1404 if (intel_syntax && i.operands > 1
1405 && (strcmp (mnemonic, "bound") != 0)
1406 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1407 swap_operands ();
1408
1409 if (i.imm_operands)
1410 optimize_imm ();
1411
1412 if (i.disp_operands)
1413 optimize_disp ();
1414
1415 /* Next, we find a template that matches the given insn,
1416 making sure the overlap of the given operands types is consistent
1417 with the template operand types. */
252b5132 1418
29b0f896
AM
1419 if (!match_template ())
1420 return;
252b5132 1421
cd61ebfe
AM
1422 if (intel_syntax)
1423 {
1424 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1425 if (SYSV386_COMPAT
1426 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1427 i.tm.base_opcode ^= FloatR;
1428
1429 /* Zap movzx and movsx suffix. The suffix may have been set from
1430 "word ptr" or "byte ptr" on the source operand, but we'll use
1431 the suffix later to choose the destination register. */
1432 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1433 {
1434 if (i.reg_operands < 2
1435 && !i.suffix
1436 && (~i.tm.opcode_modifier
1437 & (No_bSuf
1438 | No_wSuf
1439 | No_lSuf
1440 | No_sSuf
1441 | No_xSuf
1442 | No_qSuf)))
1443 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1444
1445 i.suffix = 0;
1446 }
cd61ebfe 1447 }
24eab124 1448
29b0f896
AM
1449 if (i.tm.opcode_modifier & FWait)
1450 if (!add_prefix (FWAIT_OPCODE))
1451 return;
252b5132 1452
29b0f896
AM
1453 /* Check string instruction segment overrides. */
1454 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1455 {
1456 if (!check_string ())
5dd0794d 1457 return;
29b0f896 1458 }
5dd0794d 1459
29b0f896
AM
1460 if (!process_suffix ())
1461 return;
e413e4e9 1462
29b0f896
AM
1463 /* Make still unresolved immediate matches conform to size of immediate
1464 given in i.suffix. */
1465 if (!finalize_imm ())
1466 return;
252b5132 1467
29b0f896
AM
1468 if (i.types[0] & Imm1)
1469 i.imm_operands = 0; /* kludge for shift insns. */
1470 if (i.types[0] & ImplicitRegister)
1471 i.reg_operands--;
1472 if (i.types[1] & ImplicitRegister)
1473 i.reg_operands--;
1474 if (i.types[2] & ImplicitRegister)
1475 i.reg_operands--;
252b5132 1476
29b0f896
AM
1477 if (i.tm.opcode_modifier & ImmExt)
1478 {
02fc3089
L
1479 expressionS *exp;
1480
ca164297
L
1481 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1482 {
67c1ffbe 1483 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1484 operands with an opcode suffix which is coded in the same
1485 place as an 8-bit immediate field would be. Here we check
1486 those operands and remove them afterwards. */
1487 unsigned int x;
1488
a4622f40 1489 for (x = 0; x < i.operands; x++)
ca164297
L
1490 if (i.op[x].regs->reg_num != x)
1491 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1492 i.op[x].regs->reg_name, x + 1, i.tm.name);
1493 i.operands = 0;
1494 }
1495
29b0f896
AM
1496 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1497 opcode suffix which is coded in the same place as an 8-bit
1498 immediate field would be. Here we fake an 8-bit immediate
1499 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1500
29b0f896 1501 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1502
29b0f896
AM
1503 exp = &im_expressions[i.imm_operands++];
1504 i.op[i.operands].imms = exp;
1505 i.types[i.operands++] = Imm8;
1506 exp->X_op = O_constant;
1507 exp->X_add_number = i.tm.extension_opcode;
1508 i.tm.extension_opcode = None;
1509 }
252b5132 1510
29b0f896
AM
1511 /* For insns with operands there are more diddles to do to the opcode. */
1512 if (i.operands)
1513 {
1514 if (!process_operands ())
1515 return;
1516 }
1517 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1518 {
1519 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1520 as_warn (_("translating to `%sp'"), i.tm.name);
1521 }
252b5132 1522
29b0f896
AM
1523 /* Handle conversion of 'int $3' --> special int3 insn. */
1524 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1525 {
1526 i.tm.base_opcode = INT3_OPCODE;
1527 i.imm_operands = 0;
1528 }
252b5132 1529
29b0f896
AM
1530 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1531 && i.op[0].disps->X_op == O_constant)
1532 {
1533 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1534 the absolute address given by the constant. Since ix86 jumps and
1535 calls are pc relative, we need to generate a reloc. */
1536 i.op[0].disps->X_add_symbol = &abs_symbol;
1537 i.op[0].disps->X_op = O_symbol;
1538 }
252b5132 1539
29b0f896
AM
1540 if ((i.tm.opcode_modifier & Rex64) != 0)
1541 i.rex |= REX_MODE64;
252b5132 1542
29b0f896
AM
1543 /* For 8 bit registers we need an empty rex prefix. Also if the
1544 instruction already has a prefix, we need to convert old
1545 registers to new ones. */
773f551c 1546
29b0f896
AM
1547 if (((i.types[0] & Reg8) != 0
1548 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1549 || ((i.types[1] & Reg8) != 0
1550 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1551 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1552 && i.rex != 0))
1553 {
1554 int x;
726c5dcd 1555
29b0f896
AM
1556 i.rex |= REX_OPCODE;
1557 for (x = 0; x < 2; x++)
1558 {
1559 /* Look for 8 bit operand that uses old registers. */
1560 if ((i.types[x] & Reg8) != 0
1561 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1562 {
29b0f896
AM
1563 /* In case it is "hi" register, give up. */
1564 if (i.op[x].regs->reg_num > 3)
0477af35 1565 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1566 i.op[x].regs->reg_name);
773f551c 1567
29b0f896
AM
1568 /* Otherwise it is equivalent to the extended register.
1569 Since the encoding doesn't change this is merely
1570 cosmetic cleanup for debug output. */
1571
1572 i.op[x].regs = i.op[x].regs + 8;
773f551c 1573 }
29b0f896
AM
1574 }
1575 }
773f551c 1576
29b0f896
AM
1577 if (i.rex != 0)
1578 add_prefix (REX_OPCODE | i.rex);
1579
1580 /* We are ready to output the insn. */
1581 output_insn ();
1582}
1583
1584static char *
1585parse_insn (line, mnemonic)
1586 char *line;
1587 char *mnemonic;
1588{
1589 char *l = line;
1590 char *token_start = l;
1591 char *mnem_p;
5c6af06e
JB
1592 int supported;
1593 const template *t;
29b0f896
AM
1594
1595 /* Non-zero if we found a prefix only acceptable with string insns. */
1596 const char *expecting_string_instruction = NULL;
45288df1 1597
29b0f896
AM
1598 while (1)
1599 {
1600 mnem_p = mnemonic;
1601 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1602 {
1603 mnem_p++;
1604 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1605 {
29b0f896
AM
1606 as_bad (_("no such instruction: `%s'"), token_start);
1607 return NULL;
1608 }
1609 l++;
1610 }
1611 if (!is_space_char (*l)
1612 && *l != END_OF_INSN
e44823cf
JB
1613 && (intel_syntax
1614 || (*l != PREFIX_SEPARATOR
1615 && *l != ',')))
29b0f896
AM
1616 {
1617 as_bad (_("invalid character %s in mnemonic"),
1618 output_invalid (*l));
1619 return NULL;
1620 }
1621 if (token_start == l)
1622 {
e44823cf 1623 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
1624 as_bad (_("expecting prefix; got nothing"));
1625 else
1626 as_bad (_("expecting mnemonic; got nothing"));
1627 return NULL;
1628 }
45288df1 1629
29b0f896
AM
1630 /* Look up instruction (or prefix) via hash table. */
1631 current_templates = hash_find (op_hash, mnemonic);
47926f60 1632
29b0f896
AM
1633 if (*l != END_OF_INSN
1634 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1635 && current_templates
1636 && (current_templates->start->opcode_modifier & IsPrefix))
1637 {
1638 /* If we are in 16-bit mode, do not allow addr16 or data16.
1639 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1640 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1641 && flag_code != CODE_64BIT
1642 && (((current_templates->start->opcode_modifier & Size32) != 0)
1643 ^ (flag_code == CODE_16BIT)))
1644 {
1645 as_bad (_("redundant %s prefix"),
1646 current_templates->start->name);
1647 return NULL;
45288df1 1648 }
29b0f896
AM
1649 /* Add prefix, checking for repeated prefixes. */
1650 switch (add_prefix (current_templates->start->base_opcode))
1651 {
1652 case 0:
1653 return NULL;
1654 case 2:
1655 expecting_string_instruction = current_templates->start->name;
1656 break;
1657 }
1658 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1659 token_start = ++l;
1660 }
1661 else
1662 break;
1663 }
45288df1 1664
29b0f896
AM
1665 if (!current_templates)
1666 {
1667 /* See if we can get a match by trimming off a suffix. */
1668 switch (mnem_p[-1])
1669 {
1670 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1671 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1672 i.suffix = SHORT_MNEM_SUFFIX;
1673 else
29b0f896
AM
1674 case BYTE_MNEM_SUFFIX:
1675 case QWORD_MNEM_SUFFIX:
1676 i.suffix = mnem_p[-1];
1677 mnem_p[-1] = '\0';
1678 current_templates = hash_find (op_hash, mnemonic);
1679 break;
1680 case SHORT_MNEM_SUFFIX:
1681 case LONG_MNEM_SUFFIX:
1682 if (!intel_syntax)
1683 {
1684 i.suffix = mnem_p[-1];
1685 mnem_p[-1] = '\0';
1686 current_templates = hash_find (op_hash, mnemonic);
1687 }
1688 break;
252b5132 1689
29b0f896
AM
1690 /* Intel Syntax. */
1691 case 'd':
1692 if (intel_syntax)
1693 {
9306ca4a 1694 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1695 i.suffix = SHORT_MNEM_SUFFIX;
1696 else
1697 i.suffix = LONG_MNEM_SUFFIX;
1698 mnem_p[-1] = '\0';
1699 current_templates = hash_find (op_hash, mnemonic);
1700 }
1701 break;
1702 }
1703 if (!current_templates)
1704 {
1705 as_bad (_("no such instruction: `%s'"), token_start);
1706 return NULL;
1707 }
1708 }
252b5132 1709
29b0f896
AM
1710 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1711 {
1712 /* Check for a branch hint. We allow ",pt" and ",pn" for
1713 predict taken and predict not taken respectively.
1714 I'm not sure that branch hints actually do anything on loop
1715 and jcxz insns (JumpByte) for current Pentium4 chips. They
1716 may work in the future and it doesn't hurt to accept them
1717 now. */
1718 if (l[0] == ',' && l[1] == 'p')
1719 {
1720 if (l[2] == 't')
1721 {
1722 if (!add_prefix (DS_PREFIX_OPCODE))
1723 return NULL;
1724 l += 3;
1725 }
1726 else if (l[2] == 'n')
1727 {
1728 if (!add_prefix (CS_PREFIX_OPCODE))
1729 return NULL;
1730 l += 3;
1731 }
1732 }
1733 }
1734 /* Any other comma loses. */
1735 if (*l == ',')
1736 {
1737 as_bad (_("invalid character %s in mnemonic"),
1738 output_invalid (*l));
1739 return NULL;
1740 }
252b5132 1741
29b0f896 1742 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
1743 supported = 0;
1744 for (t = current_templates->start; t < current_templates->end; ++t)
1745 {
1746 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1747 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1748 supported |= 1;
1749 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1750 supported |= 2;
1751 }
1752 if (!(supported & 2))
1753 {
1754 as_bad (flag_code == CODE_64BIT
1755 ? _("`%s' is not supported in 64-bit mode")
1756 : _("`%s' is only supported in 64-bit mode"),
1757 current_templates->start->name);
1758 return NULL;
1759 }
1760 if (!(supported & 1))
29b0f896 1761 {
5c6af06e
JB
1762 as_warn (_("`%s' is not supported on `%s%s'"),
1763 current_templates->start->name,
1764 cpu_arch_name,
1765 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
1766 }
1767 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1768 {
1769 as_warn (_("use .code16 to ensure correct addressing mode"));
1770 }
252b5132 1771
29b0f896 1772 /* Check for rep/repne without a string instruction. */
f41bbced 1773 if (expecting_string_instruction)
29b0f896 1774 {
f41bbced
JB
1775 static templates override;
1776
1777 for (t = current_templates->start; t < current_templates->end; ++t)
1778 if (t->opcode_modifier & IsString)
1779 break;
1780 if (t >= current_templates->end)
1781 {
1782 as_bad (_("expecting string instruction after `%s'"),
1783 expecting_string_instruction);
1784 return NULL;
1785 }
1786 for (override.start = t; t < current_templates->end; ++t)
1787 if (!(t->opcode_modifier & IsString))
1788 break;
1789 override.end = t;
1790 current_templates = &override;
29b0f896 1791 }
252b5132 1792
29b0f896
AM
1793 return l;
1794}
252b5132 1795
29b0f896
AM
1796static char *
1797parse_operands (l, mnemonic)
1798 char *l;
1799 const char *mnemonic;
1800{
1801 char *token_start;
3138f287 1802
29b0f896
AM
1803 /* 1 if operand is pending after ','. */
1804 unsigned int expecting_operand = 0;
252b5132 1805
29b0f896
AM
1806 /* Non-zero if operand parens not balanced. */
1807 unsigned int paren_not_balanced;
1808
1809 while (*l != END_OF_INSN)
1810 {
1811 /* Skip optional white space before operand. */
1812 if (is_space_char (*l))
1813 ++l;
1814 if (!is_operand_char (*l) && *l != END_OF_INSN)
1815 {
1816 as_bad (_("invalid character %s before operand %d"),
1817 output_invalid (*l),
1818 i.operands + 1);
1819 return NULL;
1820 }
1821 token_start = l; /* after white space */
1822 paren_not_balanced = 0;
1823 while (paren_not_balanced || *l != ',')
1824 {
1825 if (*l == END_OF_INSN)
1826 {
1827 if (paren_not_balanced)
1828 {
1829 if (!intel_syntax)
1830 as_bad (_("unbalanced parenthesis in operand %d."),
1831 i.operands + 1);
1832 else
1833 as_bad (_("unbalanced brackets in operand %d."),
1834 i.operands + 1);
1835 return NULL;
1836 }
1837 else
1838 break; /* we are done */
1839 }
1840 else if (!is_operand_char (*l) && !is_space_char (*l))
1841 {
1842 as_bad (_("invalid character %s in operand %d"),
1843 output_invalid (*l),
1844 i.operands + 1);
1845 return NULL;
1846 }
1847 if (!intel_syntax)
1848 {
1849 if (*l == '(')
1850 ++paren_not_balanced;
1851 if (*l == ')')
1852 --paren_not_balanced;
1853 }
1854 else
1855 {
1856 if (*l == '[')
1857 ++paren_not_balanced;
1858 if (*l == ']')
1859 --paren_not_balanced;
1860 }
1861 l++;
1862 }
1863 if (l != token_start)
1864 { /* Yes, we've read in another operand. */
1865 unsigned int operand_ok;
1866 this_operand = i.operands++;
1867 if (i.operands > MAX_OPERANDS)
1868 {
1869 as_bad (_("spurious operands; (%d operands/instruction max)"),
1870 MAX_OPERANDS);
1871 return NULL;
1872 }
1873 /* Now parse operand adding info to 'i' as we go along. */
1874 END_STRING_AND_SAVE (l);
1875
1876 if (intel_syntax)
1877 operand_ok =
1878 i386_intel_operand (token_start,
1879 intel_float_operand (mnemonic));
1880 else
1881 operand_ok = i386_operand (token_start);
1882
1883 RESTORE_END_STRING (l);
1884 if (!operand_ok)
1885 return NULL;
1886 }
1887 else
1888 {
1889 if (expecting_operand)
1890 {
1891 expecting_operand_after_comma:
1892 as_bad (_("expecting operand after ','; got nothing"));
1893 return NULL;
1894 }
1895 if (*l == ',')
1896 {
1897 as_bad (_("expecting operand before ','; got nothing"));
1898 return NULL;
1899 }
1900 }
7f3f1ea2 1901
29b0f896
AM
1902 /* Now *l must be either ',' or END_OF_INSN. */
1903 if (*l == ',')
1904 {
1905 if (*++l == END_OF_INSN)
1906 {
1907 /* Just skip it, if it's \n complain. */
1908 goto expecting_operand_after_comma;
1909 }
1910 expecting_operand = 1;
1911 }
1912 }
1913 return l;
1914}
7f3f1ea2 1915
29b0f896
AM
1916static void
1917swap_operands ()
1918{
1919 union i386_op temp_op;
1920 unsigned int temp_type;
f86103b7 1921 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1922 int xchg1 = 0;
1923 int xchg2 = 0;
252b5132 1924
29b0f896
AM
1925 if (i.operands == 2)
1926 {
1927 xchg1 = 0;
1928 xchg2 = 1;
1929 }
1930 else if (i.operands == 3)
1931 {
1932 xchg1 = 0;
1933 xchg2 = 2;
1934 }
1935 temp_type = i.types[xchg2];
1936 i.types[xchg2] = i.types[xchg1];
1937 i.types[xchg1] = temp_type;
1938 temp_op = i.op[xchg2];
1939 i.op[xchg2] = i.op[xchg1];
1940 i.op[xchg1] = temp_op;
1941 temp_reloc = i.reloc[xchg2];
1942 i.reloc[xchg2] = i.reloc[xchg1];
1943 i.reloc[xchg1] = temp_reloc;
1944
1945 if (i.mem_operands == 2)
1946 {
1947 const seg_entry *temp_seg;
1948 temp_seg = i.seg[0];
1949 i.seg[0] = i.seg[1];
1950 i.seg[1] = temp_seg;
1951 }
1952}
252b5132 1953
29b0f896
AM
1954/* Try to ensure constant immediates are represented in the smallest
1955 opcode possible. */
1956static void
1957optimize_imm ()
1958{
1959 char guess_suffix = 0;
1960 int op;
252b5132 1961
29b0f896
AM
1962 if (i.suffix)
1963 guess_suffix = i.suffix;
1964 else if (i.reg_operands)
1965 {
1966 /* Figure out a suffix from the last register operand specified.
1967 We can't do this properly yet, ie. excluding InOutPortReg,
1968 but the following works for instructions with immediates.
1969 In any case, we can't set i.suffix yet. */
1970 for (op = i.operands; --op >= 0;)
1971 if (i.types[op] & Reg)
252b5132 1972 {
29b0f896
AM
1973 if (i.types[op] & Reg8)
1974 guess_suffix = BYTE_MNEM_SUFFIX;
1975 else if (i.types[op] & Reg16)
1976 guess_suffix = WORD_MNEM_SUFFIX;
1977 else if (i.types[op] & Reg32)
1978 guess_suffix = LONG_MNEM_SUFFIX;
1979 else if (i.types[op] & Reg64)
1980 guess_suffix = QWORD_MNEM_SUFFIX;
1981 break;
252b5132 1982 }
29b0f896
AM
1983 }
1984 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1985 guess_suffix = WORD_MNEM_SUFFIX;
1986
1987 for (op = i.operands; --op >= 0;)
1988 if (i.types[op] & Imm)
1989 {
1990 switch (i.op[op].imms->X_op)
252b5132 1991 {
29b0f896
AM
1992 case O_constant:
1993 /* If a suffix is given, this operand may be shortened. */
1994 switch (guess_suffix)
252b5132 1995 {
29b0f896
AM
1996 case LONG_MNEM_SUFFIX:
1997 i.types[op] |= Imm32 | Imm64;
1998 break;
1999 case WORD_MNEM_SUFFIX:
2000 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2001 break;
2002 case BYTE_MNEM_SUFFIX:
2003 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2004 break;
252b5132 2005 }
252b5132 2006
29b0f896
AM
2007 /* If this operand is at most 16 bits, convert it
2008 to a signed 16 bit number before trying to see
2009 whether it will fit in an even smaller size.
2010 This allows a 16-bit operand such as $0xffe0 to
2011 be recognised as within Imm8S range. */
2012 if ((i.types[op] & Imm16)
2013 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 2014 {
29b0f896
AM
2015 i.op[op].imms->X_add_number =
2016 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2017 }
2018 if ((i.types[op] & Imm32)
2019 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2020 == 0))
2021 {
2022 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2023 ^ ((offsetT) 1 << 31))
2024 - ((offsetT) 1 << 31));
2025 }
2026 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2027
29b0f896
AM
2028 /* We must avoid matching of Imm32 templates when 64bit
2029 only immediate is available. */
2030 if (guess_suffix == QWORD_MNEM_SUFFIX)
2031 i.types[op] &= ~Imm32;
2032 break;
252b5132 2033
29b0f896
AM
2034 case O_absent:
2035 case O_register:
2036 abort ();
2037
2038 /* Symbols and expressions. */
2039 default:
2040 /* Convert symbolic operand to proper sizes for matching. */
2041 switch (guess_suffix)
2042 {
2043 case QWORD_MNEM_SUFFIX:
2044 i.types[op] = Imm64 | Imm32S;
2045 break;
2046 case LONG_MNEM_SUFFIX:
20f0a1fc 2047 i.types[op] = Imm32;
29b0f896
AM
2048 break;
2049 case WORD_MNEM_SUFFIX:
20f0a1fc 2050 i.types[op] = Imm16;
29b0f896
AM
2051 break;
2052 case BYTE_MNEM_SUFFIX:
20f0a1fc 2053 i.types[op] = Imm8 | Imm8S;
29b0f896 2054 break;
252b5132 2055 }
29b0f896 2056 break;
252b5132 2057 }
29b0f896
AM
2058 }
2059}
47926f60 2060
29b0f896
AM
2061/* Try to use the smallest displacement type too. */
2062static void
2063optimize_disp ()
2064{
2065 int op;
3e73aa7c 2066
29b0f896
AM
2067 for (op = i.operands; --op >= 0;)
2068 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 2069 {
29b0f896
AM
2070 offsetT disp = i.op[op].disps->X_add_number;
2071
2072 if (i.types[op] & Disp16)
252b5132 2073 {
29b0f896
AM
2074 /* We know this operand is at most 16 bits, so
2075 convert to a signed 16 bit number before trying
2076 to see whether it will fit in an even smaller
2077 size. */
2078
2079 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 2080 }
29b0f896 2081 else if (i.types[op] & Disp32)
252b5132 2082 {
29b0f896
AM
2083 /* We know this operand is at most 32 bits, so convert to a
2084 signed 32 bit number before trying to see whether it will
2085 fit in an even smaller size. */
2086 disp &= (((offsetT) 2 << 31) - 1);
2087 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 2088 }
34d9ee9e
JB
2089 if (!disp && (i.types[op] & BaseIndex))
2090 {
2091 i.types[op] &= ~Disp;
2092 i.op[op].disps = 0;
2093 i.disp_operands--;
2094 }
2095 else if (flag_code == CODE_64BIT)
252b5132 2096 {
29b0f896
AM
2097 if (fits_in_signed_long (disp))
2098 i.types[op] |= Disp32S;
2099 if (fits_in_unsigned_long (disp))
2100 i.types[op] |= Disp32;
252b5132 2101 }
29b0f896
AM
2102 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2103 && fits_in_signed_byte (disp))
2104 i.types[op] |= Disp8;
252b5132 2105 }
29b0f896
AM
2106}
2107
2108static int
2109match_template ()
2110{
2111 /* Points to template once we've found it. */
2112 const template *t;
2113 unsigned int overlap0, overlap1, overlap2;
2114 unsigned int found_reverse_match;
2115 int suffix_check;
2116
2117#define MATCH(overlap, given, template) \
2118 ((overlap & ~JumpAbsolute) \
2119 && (((given) & (BaseIndex | JumpAbsolute)) \
2120 == ((overlap) & (BaseIndex | JumpAbsolute))))
2121
2122 /* If given types r0 and r1 are registers they must be of the same type
2123 unless the expected operand type register overlap is null.
2124 Note that Acc in a template matches every size of reg. */
2125#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2126 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2127 || ((g0) & Reg) == ((g1) & Reg) \
2128 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2129
2130 overlap0 = 0;
2131 overlap1 = 0;
2132 overlap2 = 0;
2133 found_reverse_match = 0;
2134 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2135 ? No_bSuf
2136 : (i.suffix == WORD_MNEM_SUFFIX
2137 ? No_wSuf
2138 : (i.suffix == SHORT_MNEM_SUFFIX
2139 ? No_sSuf
2140 : (i.suffix == LONG_MNEM_SUFFIX
2141 ? No_lSuf
2142 : (i.suffix == QWORD_MNEM_SUFFIX
2143 ? No_qSuf
2144 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2145 ? No_xSuf : 0))))));
2146
20f0a1fc
NC
2147 t = current_templates->start;
2148 if (i.suffix == QWORD_MNEM_SUFFIX
2149 && flag_code != CODE_64BIT
9306ca4a
JB
2150 && (intel_syntax
2151 ? !(t->opcode_modifier & IgnoreSize)
2152 && !intel_float_operand (t->name)
2153 : intel_float_operand (t->name) != 2)
20f0a1fc
NC
2154 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2155 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2156 && (t->base_opcode != 0x0fc7
2157 || t->extension_opcode != 1 /* cmpxchg8b */))
2158 t = current_templates->end;
2159 for (; t < current_templates->end; t++)
29b0f896
AM
2160 {
2161 /* Must have right number of operands. */
2162 if (i.operands != t->operands)
2163 continue;
2164
2165 /* Check the suffix, except for some instructions in intel mode. */
2166 if ((t->opcode_modifier & suffix_check)
2167 && !(intel_syntax
9306ca4a 2168 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2169 continue;
2170
2171 /* Do not verify operands when there are none. */
2172 else if (!t->operands)
2173 {
2174 if (t->cpu_flags & ~cpu_arch_flags)
2175 continue;
2176 /* We've found a match; break out of loop. */
2177 break;
2178 }
252b5132 2179
29b0f896
AM
2180 overlap0 = i.types[0] & t->operand_types[0];
2181 switch (t->operands)
2182 {
2183 case 1:
2184 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2185 continue;
2186 break;
2187 case 2:
2188 case 3:
2189 overlap1 = i.types[1] & t->operand_types[1];
2190 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2191 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2192 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2193 t->operand_types[0],
2194 overlap1, i.types[1],
2195 t->operand_types[1]))
2196 {
2197 /* Check if other direction is valid ... */
2198 if ((t->opcode_modifier & (D | FloatD)) == 0)
2199 continue;
2200
2201 /* Try reversing direction of operands. */
2202 overlap0 = i.types[0] & t->operand_types[1];
2203 overlap1 = i.types[1] & t->operand_types[0];
2204 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2205 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2206 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2207 t->operand_types[1],
2208 overlap1, i.types[1],
2209 t->operand_types[0]))
2210 {
2211 /* Does not match either direction. */
2212 continue;
2213 }
2214 /* found_reverse_match holds which of D or FloatDR
2215 we've found. */
2216 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2217 }
2218 /* Found a forward 2 operand match here. */
2219 else if (t->operands == 3)
2220 {
2221 /* Here we make use of the fact that there are no
2222 reverse match 3 operand instructions, and all 3
2223 operand instructions only need to be checked for
2224 register consistency between operands 2 and 3. */
2225 overlap2 = i.types[2] & t->operand_types[2];
2226 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2227 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2228 t->operand_types[1],
2229 overlap2, i.types[2],
2230 t->operand_types[2]))
2231
2232 continue;
2233 }
2234 /* Found either forward/reverse 2 or 3 operand match here:
2235 slip through to break. */
2236 }
2237 if (t->cpu_flags & ~cpu_arch_flags)
2238 {
2239 found_reverse_match = 0;
2240 continue;
2241 }
2242 /* We've found a match; break out of loop. */
2243 break;
2244 }
2245
2246 if (t == current_templates->end)
2247 {
2248 /* We found no match. */
2249 as_bad (_("suffix or operands invalid for `%s'"),
2250 current_templates->start->name);
2251 return 0;
2252 }
252b5132 2253
29b0f896
AM
2254 if (!quiet_warnings)
2255 {
2256 if (!intel_syntax
2257 && ((i.types[0] & JumpAbsolute)
2258 != (t->operand_types[0] & JumpAbsolute)))
2259 {
2260 as_warn (_("indirect %s without `*'"), t->name);
2261 }
2262
2263 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2264 == (IsPrefix | IgnoreSize))
2265 {
2266 /* Warn them that a data or address size prefix doesn't
2267 affect assembly of the next line of code. */
2268 as_warn (_("stand-alone `%s' prefix"), t->name);
2269 }
2270 }
2271
2272 /* Copy the template we found. */
2273 i.tm = *t;
2274 if (found_reverse_match)
2275 {
2276 /* If we found a reverse match we must alter the opcode
2277 direction bit. found_reverse_match holds bits to change
2278 (different for int & float insns). */
2279
2280 i.tm.base_opcode ^= found_reverse_match;
2281
2282 i.tm.operand_types[0] = t->operand_types[1];
2283 i.tm.operand_types[1] = t->operand_types[0];
2284 }
2285
2286 return 1;
2287}
2288
2289static int
2290check_string ()
2291{
2292 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2293 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2294 {
2295 if (i.seg[0] != NULL && i.seg[0] != &es)
2296 {
2297 as_bad (_("`%s' operand %d must use `%%es' segment"),
2298 i.tm.name,
2299 mem_op + 1);
2300 return 0;
2301 }
2302 /* There's only ever one segment override allowed per instruction.
2303 This instruction possibly has a legal segment override on the
2304 second operand, so copy the segment to where non-string
2305 instructions store it, allowing common code. */
2306 i.seg[0] = i.seg[1];
2307 }
2308 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2309 {
2310 if (i.seg[1] != NULL && i.seg[1] != &es)
2311 {
2312 as_bad (_("`%s' operand %d must use `%%es' segment"),
2313 i.tm.name,
2314 mem_op + 2);
2315 return 0;
2316 }
2317 }
2318 return 1;
2319}
2320
2321static int
543613e9 2322process_suffix (void)
29b0f896
AM
2323{
2324 /* If matched instruction specifies an explicit instruction mnemonic
2325 suffix, use it. */
2326 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2327 {
2328 if (i.tm.opcode_modifier & Size16)
2329 i.suffix = WORD_MNEM_SUFFIX;
2330 else if (i.tm.opcode_modifier & Size64)
2331 i.suffix = QWORD_MNEM_SUFFIX;
2332 else
2333 i.suffix = LONG_MNEM_SUFFIX;
2334 }
2335 else if (i.reg_operands)
2336 {
2337 /* If there's no instruction mnemonic suffix we try to invent one
2338 based on register operands. */
2339 if (!i.suffix)
2340 {
2341 /* We take i.suffix from the last register operand specified,
2342 Destination register type is more significant than source
2343 register type. */
2344 int op;
543613e9 2345
29b0f896
AM
2346 for (op = i.operands; --op >= 0;)
2347 if ((i.types[op] & Reg)
2348 && !(i.tm.operand_types[op] & InOutPortReg))
2349 {
2350 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2351 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2352 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2353 LONG_MNEM_SUFFIX);
2354 break;
2355 }
2356 }
2357 else if (i.suffix == BYTE_MNEM_SUFFIX)
2358 {
2359 if (!check_byte_reg ())
2360 return 0;
2361 }
2362 else if (i.suffix == LONG_MNEM_SUFFIX)
2363 {
2364 if (!check_long_reg ())
2365 return 0;
2366 }
2367 else if (i.suffix == QWORD_MNEM_SUFFIX)
2368 {
2369 if (!check_qword_reg ())
2370 return 0;
2371 }
2372 else if (i.suffix == WORD_MNEM_SUFFIX)
2373 {
2374 if (!check_word_reg ())
2375 return 0;
2376 }
2377 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2378 /* Do nothing if the instruction is going to ignore the prefix. */
2379 ;
2380 else
2381 abort ();
2382 }
9306ca4a
JB
2383 else if ((i.tm.opcode_modifier & DefaultSize)
2384 && !i.suffix
2385 /* exclude fldenv/frstor/fsave/fstenv */
2386 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2387 {
2388 i.suffix = stackop_size;
2389 }
9306ca4a
JB
2390 else if (intel_syntax
2391 && !i.suffix
2392 && ((i.tm.operand_types[0] & JumpAbsolute)
2393 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2394 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2395 && i.tm.extension_opcode <= 3)))
2396 {
2397 switch (flag_code)
2398 {
2399 case CODE_64BIT:
2400 if (!(i.tm.opcode_modifier & No_qSuf))
2401 {
2402 i.suffix = QWORD_MNEM_SUFFIX;
2403 break;
2404 }
2405 case CODE_32BIT:
2406 if (!(i.tm.opcode_modifier & No_lSuf))
2407 i.suffix = LONG_MNEM_SUFFIX;
2408 break;
2409 case CODE_16BIT:
2410 if (!(i.tm.opcode_modifier & No_wSuf))
2411 i.suffix = WORD_MNEM_SUFFIX;
2412 break;
2413 }
2414 }
252b5132 2415
9306ca4a 2416 if (!i.suffix)
29b0f896 2417 {
9306ca4a
JB
2418 if (!intel_syntax)
2419 {
2420 if (i.tm.opcode_modifier & W)
2421 {
2422 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2423 return 0;
2424 }
2425 }
2426 else
2427 {
2428 unsigned int suffixes = ~i.tm.opcode_modifier
2429 & (No_bSuf
2430 | No_wSuf
2431 | No_lSuf
2432 | No_sSuf
2433 | No_xSuf
2434 | No_qSuf);
2435
2436 if ((i.tm.opcode_modifier & W)
2437 || ((suffixes & (suffixes - 1))
2438 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2439 {
2440 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2441 return 0;
2442 }
2443 }
29b0f896 2444 }
252b5132 2445
9306ca4a
JB
2446 /* Change the opcode based on the operand size given by i.suffix;
2447 We don't need to change things for byte insns. */
2448
29b0f896
AM
2449 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2450 {
2451 /* It's not a byte, select word/dword operation. */
2452 if (i.tm.opcode_modifier & W)
2453 {
2454 if (i.tm.opcode_modifier & ShortForm)
2455 i.tm.base_opcode |= 8;
2456 else
2457 i.tm.base_opcode |= 1;
2458 }
0f3f3d8b 2459
29b0f896
AM
2460 /* Now select between word & dword operations via the operand
2461 size prefix, except for instructions that will ignore this
2462 prefix anyway. */
2463 if (i.suffix != QWORD_MNEM_SUFFIX
9306ca4a
JB
2464 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2465 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
9146926a
AM
2466 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2467 || (flag_code == CODE_64BIT
2468 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2469 {
2470 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2471
29b0f896
AM
2472 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2473 prefix = ADDR_PREFIX_OPCODE;
252b5132 2474
29b0f896
AM
2475 if (!add_prefix (prefix))
2476 return 0;
24eab124 2477 }
252b5132 2478
29b0f896
AM
2479 /* Set mode64 for an operand. */
2480 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2481 && flag_code == CODE_64BIT
29b0f896 2482 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2483 i.rex |= REX_MODE64;
3e73aa7c 2484
29b0f896
AM
2485 /* Size floating point instruction. */
2486 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2487 if (i.tm.opcode_modifier & FloatMF)
2488 i.tm.base_opcode ^= 4;
29b0f896 2489 }
7ecd2f8b 2490
29b0f896
AM
2491 return 1;
2492}
3e73aa7c 2493
29b0f896 2494static int
543613e9 2495check_byte_reg (void)
29b0f896
AM
2496{
2497 int op;
543613e9 2498
29b0f896
AM
2499 for (op = i.operands; --op >= 0;)
2500 {
2501 /* If this is an eight bit register, it's OK. If it's the 16 or
2502 32 bit version of an eight bit register, we will just use the
2503 low portion, and that's OK too. */
2504 if (i.types[op] & Reg8)
2505 continue;
2506
2507 /* movzx and movsx should not generate this warning. */
2508 if (intel_syntax
2509 && (i.tm.base_opcode == 0xfb7
2510 || i.tm.base_opcode == 0xfb6
2511 || i.tm.base_opcode == 0x63
2512 || i.tm.base_opcode == 0xfbe
2513 || i.tm.base_opcode == 0xfbf))
2514 continue;
2515
65ec77d2 2516 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
29b0f896
AM
2517 {
2518 /* Prohibit these changes in the 64bit mode, since the
2519 lowering is more complicated. */
2520 if (flag_code == CODE_64BIT
2521 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2522 {
0f3f3d8b 2523 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2524 i.op[op].regs->reg_name,
2525 i.suffix);
2526 return 0;
2527 }
2528#if REGISTER_WARNINGS
2529 if (!quiet_warnings
2530 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2531 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2532 (i.op[op].regs + (i.types[op] & Reg16
2533 ? REGNAM_AL - REGNAM_AX
2534 : REGNAM_AL - REGNAM_EAX))->reg_name,
2535 i.op[op].regs->reg_name,
2536 i.suffix);
2537#endif
2538 continue;
2539 }
2540 /* Any other register is bad. */
2541 if (i.types[op] & (Reg | RegMMX | RegXMM
2542 | SReg2 | SReg3
2543 | Control | Debug | Test
2544 | FloatReg | FloatAcc))
2545 {
2546 as_bad (_("`%%%s' not allowed with `%s%c'"),
2547 i.op[op].regs->reg_name,
2548 i.tm.name,
2549 i.suffix);
2550 return 0;
2551 }
2552 }
2553 return 1;
2554}
2555
2556static int
2557check_long_reg ()
2558{
2559 int op;
2560
2561 for (op = i.operands; --op >= 0;)
2562 /* Reject eight bit registers, except where the template requires
2563 them. (eg. movzb) */
2564 if ((i.types[op] & Reg8) != 0
2565 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2566 {
2567 as_bad (_("`%%%s' not allowed with `%s%c'"),
2568 i.op[op].regs->reg_name,
2569 i.tm.name,
2570 i.suffix);
2571 return 0;
2572 }
2573 /* Warn if the e prefix on a general reg is missing. */
2574 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2575 && (i.types[op] & Reg16) != 0
2576 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2577 {
2578 /* Prohibit these changes in the 64bit mode, since the
2579 lowering is more complicated. */
2580 if (flag_code == CODE_64BIT)
252b5132 2581 {
0f3f3d8b 2582 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2583 i.op[op].regs->reg_name,
2584 i.suffix);
2585 return 0;
252b5132 2586 }
29b0f896
AM
2587#if REGISTER_WARNINGS
2588 else
2589 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2590 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2591 i.op[op].regs->reg_name,
2592 i.suffix);
2593#endif
252b5132 2594 }
29b0f896
AM
2595 /* Warn if the r prefix on a general reg is missing. */
2596 else if ((i.types[op] & Reg64) != 0
2597 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2598 {
0f3f3d8b 2599 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2600 i.op[op].regs->reg_name,
2601 i.suffix);
2602 return 0;
2603 }
2604 return 1;
2605}
252b5132 2606
29b0f896
AM
2607static int
2608check_qword_reg ()
2609{
2610 int op;
252b5132 2611
29b0f896
AM
2612 for (op = i.operands; --op >= 0; )
2613 /* Reject eight bit registers, except where the template requires
2614 them. (eg. movzb) */
2615 if ((i.types[op] & Reg8) != 0
2616 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2617 {
2618 as_bad (_("`%%%s' not allowed with `%s%c'"),
2619 i.op[op].regs->reg_name,
2620 i.tm.name,
2621 i.suffix);
2622 return 0;
2623 }
2624 /* Warn if the e prefix on a general reg is missing. */
2625 else if (((i.types[op] & Reg16) != 0
2626 || (i.types[op] & Reg32) != 0)
2627 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2628 {
2629 /* Prohibit these changes in the 64bit mode, since the
2630 lowering is more complicated. */
0f3f3d8b 2631 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2632 i.op[op].regs->reg_name,
2633 i.suffix);
2634 return 0;
252b5132 2635 }
29b0f896
AM
2636 return 1;
2637}
252b5132 2638
29b0f896
AM
2639static int
2640check_word_reg ()
2641{
2642 int op;
2643 for (op = i.operands; --op >= 0;)
2644 /* Reject eight bit registers, except where the template requires
2645 them. (eg. movzb) */
2646 if ((i.types[op] & Reg8) != 0
2647 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2648 {
2649 as_bad (_("`%%%s' not allowed with `%s%c'"),
2650 i.op[op].regs->reg_name,
2651 i.tm.name,
2652 i.suffix);
2653 return 0;
2654 }
2655 /* Warn if the e prefix on a general reg is present. */
2656 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2657 && (i.types[op] & Reg32) != 0
2658 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2659 {
29b0f896
AM
2660 /* Prohibit these changes in the 64bit mode, since the
2661 lowering is more complicated. */
2662 if (flag_code == CODE_64BIT)
252b5132 2663 {
0f3f3d8b 2664 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2665 i.op[op].regs->reg_name,
2666 i.suffix);
2667 return 0;
252b5132 2668 }
29b0f896
AM
2669 else
2670#if REGISTER_WARNINGS
2671 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2672 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2673 i.op[op].regs->reg_name,
2674 i.suffix);
2675#endif
2676 }
2677 return 1;
2678}
252b5132 2679
29b0f896
AM
2680static int
2681finalize_imm ()
2682{
2683 unsigned int overlap0, overlap1, overlap2;
2684
2685 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2686 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2687 && overlap0 != Imm8 && overlap0 != Imm8S
2688 && overlap0 != Imm16 && overlap0 != Imm32S
2689 && overlap0 != Imm32 && overlap0 != Imm64)
2690 {
2691 if (i.suffix)
2692 {
2693 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2694 ? Imm8 | Imm8S
2695 : (i.suffix == WORD_MNEM_SUFFIX
2696 ? Imm16
2697 : (i.suffix == QWORD_MNEM_SUFFIX
2698 ? Imm64 | Imm32S
2699 : Imm32)));
2700 }
2701 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2702 || overlap0 == (Imm16 | Imm32)
2703 || overlap0 == (Imm16 | Imm32S))
2704 {
2705 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2706 ? Imm16 : Imm32S);
2707 }
2708 if (overlap0 != Imm8 && overlap0 != Imm8S
2709 && overlap0 != Imm16 && overlap0 != Imm32S
2710 && overlap0 != Imm32 && overlap0 != Imm64)
2711 {
2712 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2713 return 0;
2714 }
2715 }
2716 i.types[0] = overlap0;
2717
2718 overlap1 = i.types[1] & i.tm.operand_types[1];
37edbb65 2719 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
29b0f896
AM
2720 && overlap1 != Imm8 && overlap1 != Imm8S
2721 && overlap1 != Imm16 && overlap1 != Imm32S
2722 && overlap1 != Imm32 && overlap1 != Imm64)
2723 {
2724 if (i.suffix)
2725 {
2726 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2727 ? Imm8 | Imm8S
2728 : (i.suffix == WORD_MNEM_SUFFIX
2729 ? Imm16
2730 : (i.suffix == QWORD_MNEM_SUFFIX
2731 ? Imm64 | Imm32S
2732 : Imm32)));
2733 }
2734 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2735 || overlap1 == (Imm16 | Imm32)
2736 || overlap1 == (Imm16 | Imm32S))
2737 {
2738 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2739 ? Imm16 : Imm32S);
2740 }
2741 if (overlap1 != Imm8 && overlap1 != Imm8S
2742 && overlap1 != Imm16 && overlap1 != Imm32S
2743 && overlap1 != Imm32 && overlap1 != Imm64)
2744 {
2745 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2746 return 0;
2747 }
2748 }
2749 i.types[1] = overlap1;
2750
2751 overlap2 = i.types[2] & i.tm.operand_types[2];
2752 assert ((overlap2 & Imm) == 0);
2753 i.types[2] = overlap2;
2754
2755 return 1;
2756}
2757
2758static int
2759process_operands ()
2760{
2761 /* Default segment register this instruction will use for memory
2762 accesses. 0 means unknown. This is only for optimizing out
2763 unnecessary segment overrides. */
2764 const seg_entry *default_seg = 0;
2765
2766 /* The imul $imm, %reg instruction is converted into
2767 imul $imm, %reg, %reg, and the clr %reg instruction
2768 is converted into xor %reg, %reg. */
2769 if (i.tm.opcode_modifier & regKludge)
2770 {
2771 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2772 /* Pretend we saw the extra register operand. */
2773 assert (i.op[first_reg_op + 1].regs == 0);
2774 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2775 i.types[first_reg_op + 1] = i.types[first_reg_op];
2776 i.reg_operands = 2;
2777 }
2778
2779 if (i.tm.opcode_modifier & ShortForm)
2780 {
2781 /* The register or float register operand is in operand 0 or 1. */
2782 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2783 /* Register goes in low 3 bits of opcode. */
2784 i.tm.base_opcode |= i.op[op].regs->reg_num;
2785 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2786 i.rex |= REX_EXTZ;
2787 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2788 {
2789 /* Warn about some common errors, but press on regardless.
2790 The first case can be generated by gcc (<= 2.8.1). */
2791 if (i.operands == 2)
2792 {
2793 /* Reversed arguments on faddp, fsubp, etc. */
2794 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2795 i.op[1].regs->reg_name,
2796 i.op[0].regs->reg_name);
2797 }
2798 else
2799 {
2800 /* Extraneous `l' suffix on fp insn. */
2801 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2802 i.op[0].regs->reg_name);
2803 }
2804 }
2805 }
2806 else if (i.tm.opcode_modifier & Modrm)
2807 {
2808 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2809 must be put into the modrm byte). Now, we make the modrm and
2810 index base bytes based on all the info we've collected. */
29b0f896
AM
2811
2812 default_seg = build_modrm_byte ();
2813 }
2814 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2815 {
2816 if (i.tm.base_opcode == POP_SEG_SHORT
2817 && i.op[0].regs->reg_num == 1)
2818 {
2819 as_bad (_("you can't `pop %%cs'"));
2820 return 0;
2821 }
2822 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2823 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2824 i.rex |= REX_EXTZ;
2825 }
2826 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2827 {
2828 default_seg = &ds;
2829 }
2830 else if ((i.tm.opcode_modifier & IsString) != 0)
2831 {
2832 /* For the string instructions that allow a segment override
2833 on one of their operands, the default segment is ds. */
2834 default_seg = &ds;
2835 }
2836
52271982
AM
2837 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2838 as_warn (_("segment override on `lea' is ineffectual"));
2839
2840 /* If a segment was explicitly specified, and the specified segment
2841 is not the default, use an opcode prefix to select it. If we
2842 never figured out what the default segment is, then default_seg
2843 will be zero at this point, and the specified segment prefix will
2844 always be used. */
29b0f896
AM
2845 if ((i.seg[0]) && (i.seg[0] != default_seg))
2846 {
2847 if (!add_prefix (i.seg[0]->seg_prefix))
2848 return 0;
2849 }
2850 return 1;
2851}
2852
2853static const seg_entry *
2854build_modrm_byte ()
2855{
2856 const seg_entry *default_seg = 0;
2857
2858 /* i.reg_operands MUST be the number of real register operands;
2859 implicit registers do not count. */
2860 if (i.reg_operands == 2)
2861 {
2862 unsigned int source, dest;
2863 source = ((i.types[0]
2864 & (Reg | RegMMX | RegXMM
2865 | SReg2 | SReg3
2866 | Control | Debug | Test))
2867 ? 0 : 1);
2868 dest = source + 1;
2869
2870 i.rm.mode = 3;
2871 /* One of the register operands will be encoded in the i.tm.reg
2872 field, the other in the combined i.tm.mode and i.tm.regmem
2873 fields. If no form of this instruction supports a memory
2874 destination operand, then we assume the source operand may
2875 sometimes be a memory operand and so we need to store the
2876 destination in the i.rm.reg field. */
2877 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2878 {
2879 i.rm.reg = i.op[dest].regs->reg_num;
2880 i.rm.regmem = i.op[source].regs->reg_num;
2881 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2882 i.rex |= REX_EXTX;
2883 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2884 i.rex |= REX_EXTZ;
2885 }
2886 else
2887 {
2888 i.rm.reg = i.op[source].regs->reg_num;
2889 i.rm.regmem = i.op[dest].regs->reg_num;
2890 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2891 i.rex |= REX_EXTZ;
2892 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2893 i.rex |= REX_EXTX;
2894 }
c4a530c5
JB
2895 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
2896 {
2897 if (!((i.types[0] | i.types[1]) & Control))
2898 abort ();
2899 i.rex &= ~(REX_EXTX | REX_EXTZ);
2900 add_prefix (LOCK_PREFIX_OPCODE);
2901 }
29b0f896
AM
2902 }
2903 else
2904 { /* If it's not 2 reg operands... */
2905 if (i.mem_operands)
2906 {
2907 unsigned int fake_zero_displacement = 0;
2908 unsigned int op = ((i.types[0] & AnyMem)
2909 ? 0
2910 : (i.types[1] & AnyMem) ? 1 : 2);
2911
2912 default_seg = &ds;
2913
2914 if (i.base_reg == 0)
2915 {
2916 i.rm.mode = 0;
2917 if (!i.disp_operands)
2918 fake_zero_displacement = 1;
2919 if (i.index_reg == 0)
2920 {
2921 /* Operand is just <disp> */
20f0a1fc 2922 if (flag_code == CODE_64BIT)
29b0f896
AM
2923 {
2924 /* 64bit mode overwrites the 32bit absolute
2925 addressing by RIP relative addressing and
2926 absolute addressing is encoded by one of the
2927 redundant SIB forms. */
2928 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2929 i.sib.base = NO_BASE_REGISTER;
2930 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2931 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2932 }
2933 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2934 {
2935 i.rm.regmem = NO_BASE_REGISTER_16;
2936 i.types[op] = Disp16;
2937 }
2938 else
2939 {
2940 i.rm.regmem = NO_BASE_REGISTER;
2941 i.types[op] = Disp32;
29b0f896
AM
2942 }
2943 }
2944 else /* !i.base_reg && i.index_reg */
2945 {
2946 i.sib.index = i.index_reg->reg_num;
2947 i.sib.base = NO_BASE_REGISTER;
2948 i.sib.scale = i.log2_scale_factor;
2949 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2950 i.types[op] &= ~Disp;
2951 if (flag_code != CODE_64BIT)
2952 i.types[op] |= Disp32; /* Must be 32 bit */
2953 else
2954 i.types[op] |= Disp32S;
2955 if ((i.index_reg->reg_flags & RegRex) != 0)
2956 i.rex |= REX_EXTY;
2957 }
2958 }
2959 /* RIP addressing for 64bit mode. */
2960 else if (i.base_reg->reg_type == BaseIndex)
2961 {
2962 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2963 i.types[op] &= ~ Disp;
29b0f896
AM
2964 i.types[op] |= Disp32S;
2965 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2966 if (! i.disp_operands)
2967 fake_zero_displacement = 1;
29b0f896
AM
2968 }
2969 else if (i.base_reg->reg_type & Reg16)
2970 {
2971 switch (i.base_reg->reg_num)
2972 {
2973 case 3: /* (%bx) */
2974 if (i.index_reg == 0)
2975 i.rm.regmem = 7;
2976 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2977 i.rm.regmem = i.index_reg->reg_num - 6;
2978 break;
2979 case 5: /* (%bp) */
2980 default_seg = &ss;
2981 if (i.index_reg == 0)
2982 {
2983 i.rm.regmem = 6;
2984 if ((i.types[op] & Disp) == 0)
2985 {
2986 /* fake (%bp) into 0(%bp) */
2987 i.types[op] |= Disp8;
252b5132 2988 fake_zero_displacement = 1;
29b0f896
AM
2989 }
2990 }
2991 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2992 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2993 break;
2994 default: /* (%si) -> 4 or (%di) -> 5 */
2995 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2996 }
2997 i.rm.mode = mode_from_disp_size (i.types[op]);
2998 }
2999 else /* i.base_reg and 32/64 bit mode */
3000 {
3001 if (flag_code == CODE_64BIT
3002 && (i.types[op] & Disp))
20f0a1fc
NC
3003 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
3004
29b0f896
AM
3005 i.rm.regmem = i.base_reg->reg_num;
3006 if ((i.base_reg->reg_flags & RegRex) != 0)
3007 i.rex |= REX_EXTZ;
3008 i.sib.base = i.base_reg->reg_num;
3009 /* x86-64 ignores REX prefix bit here to avoid decoder
3010 complications. */
3011 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3012 {
3013 default_seg = &ss;
3014 if (i.disp_operands == 0)
3015 {
3016 fake_zero_displacement = 1;
3017 i.types[op] |= Disp8;
3018 }
3019 }
3020 else if (i.base_reg->reg_num == ESP_REG_NUM)
3021 {
3022 default_seg = &ss;
3023 }
3024 i.sib.scale = i.log2_scale_factor;
3025 if (i.index_reg == 0)
3026 {
3027 /* <disp>(%esp) becomes two byte modrm with no index
3028 register. We've already stored the code for esp
3029 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3030 Any base register besides %esp will not use the
3031 extra modrm byte. */
3032 i.sib.index = NO_INDEX_REGISTER;
3033#if !SCALE1_WHEN_NO_INDEX
3034 /* Another case where we force the second modrm byte. */
3035 if (i.log2_scale_factor)
3036 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3037#endif
29b0f896
AM
3038 }
3039 else
3040 {
3041 i.sib.index = i.index_reg->reg_num;
3042 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3043 if ((i.index_reg->reg_flags & RegRex) != 0)
3044 i.rex |= REX_EXTY;
3045 }
3046 i.rm.mode = mode_from_disp_size (i.types[op]);
3047 }
252b5132 3048
29b0f896
AM
3049 if (fake_zero_displacement)
3050 {
3051 /* Fakes a zero displacement assuming that i.types[op]
3052 holds the correct displacement size. */
3053 expressionS *exp;
3054
3055 assert (i.op[op].disps == 0);
3056 exp = &disp_expressions[i.disp_operands++];
3057 i.op[op].disps = exp;
3058 exp->X_op = O_constant;
3059 exp->X_add_number = 0;
3060 exp->X_add_symbol = (symbolS *) 0;
3061 exp->X_op_symbol = (symbolS *) 0;
3062 }
3063 }
252b5132 3064
29b0f896
AM
3065 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3066 (if any) based on i.tm.extension_opcode. Again, we must be
3067 careful to make sure that segment/control/debug/test/MMX
3068 registers are coded into the i.rm.reg field. */
3069 if (i.reg_operands)
3070 {
3071 unsigned int op =
3072 ((i.types[0]
3073 & (Reg | RegMMX | RegXMM
3074 | SReg2 | SReg3
3075 | Control | Debug | Test))
3076 ? 0
3077 : ((i.types[1]
3078 & (Reg | RegMMX | RegXMM
3079 | SReg2 | SReg3
3080 | Control | Debug | Test))
3081 ? 1
3082 : 2));
3083 /* If there is an extension opcode to put here, the register
3084 number must be put into the regmem field. */
3085 if (i.tm.extension_opcode != None)
3086 {
3087 i.rm.regmem = i.op[op].regs->reg_num;
3088 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3089 i.rex |= REX_EXTZ;
3090 }
3091 else
3092 {
3093 i.rm.reg = i.op[op].regs->reg_num;
3094 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3095 i.rex |= REX_EXTX;
3096 }
252b5132 3097
29b0f896
AM
3098 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3099 must set it to 3 to indicate this is a register operand
3100 in the regmem field. */
3101 if (!i.mem_operands)
3102 i.rm.mode = 3;
3103 }
252b5132 3104
29b0f896
AM
3105 /* Fill in i.rm.reg field with extension opcode (if any). */
3106 if (i.tm.extension_opcode != None)
3107 i.rm.reg = i.tm.extension_opcode;
3108 }
3109 return default_seg;
3110}
252b5132 3111
29b0f896
AM
3112static void
3113output_branch ()
3114{
3115 char *p;
3116 int code16;
3117 int prefix;
3118 relax_substateT subtype;
3119 symbolS *sym;
3120 offsetT off;
3121
3122 code16 = 0;
3123 if (flag_code == CODE_16BIT)
3124 code16 = CODE16;
3125
3126 prefix = 0;
3127 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3128 {
29b0f896
AM
3129 prefix = 1;
3130 i.prefixes -= 1;
3131 code16 ^= CODE16;
252b5132 3132 }
29b0f896
AM
3133 /* Pentium4 branch hints. */
3134 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3135 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3136 {
29b0f896
AM
3137 prefix++;
3138 i.prefixes--;
3139 }
3140 if (i.prefix[REX_PREFIX] != 0)
3141 {
3142 prefix++;
3143 i.prefixes--;
2f66722d
AM
3144 }
3145
29b0f896
AM
3146 if (i.prefixes != 0 && !intel_syntax)
3147 as_warn (_("skipping prefixes on this instruction"));
3148
3149 /* It's always a symbol; End frag & setup for relax.
3150 Make sure there is enough room in this frag for the largest
3151 instruction we may generate in md_convert_frag. This is 2
3152 bytes for the opcode and room for the prefix and largest
3153 displacement. */
3154 frag_grow (prefix + 2 + 4);
3155 /* Prefix and 1 opcode byte go in fr_fix. */
3156 p = frag_more (prefix + 1);
3157 if (i.prefix[DATA_PREFIX] != 0)
3158 *p++ = DATA_PREFIX_OPCODE;
3159 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3160 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3161 *p++ = i.prefix[SEG_PREFIX];
3162 if (i.prefix[REX_PREFIX] != 0)
3163 *p++ = i.prefix[REX_PREFIX];
3164 *p = i.tm.base_opcode;
3165
3166 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3167 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3168 else if ((cpu_arch_flags & Cpu386) != 0)
3169 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3170 else
3171 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3172 subtype |= code16;
3e73aa7c 3173
29b0f896
AM
3174 sym = i.op[0].disps->X_add_symbol;
3175 off = i.op[0].disps->X_add_number;
3e73aa7c 3176
29b0f896
AM
3177 if (i.op[0].disps->X_op != O_constant
3178 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3179 {
29b0f896
AM
3180 /* Handle complex expressions. */
3181 sym = make_expr_symbol (i.op[0].disps);
3182 off = 0;
3183 }
3e73aa7c 3184
29b0f896
AM
3185 /* 1 possible extra opcode + 4 byte displacement go in var part.
3186 Pass reloc in fr_var. */
3187 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3188}
3e73aa7c 3189
29b0f896
AM
3190static void
3191output_jump ()
3192{
3193 char *p;
3194 int size;
3e02c1cc 3195 fixS *fixP;
29b0f896
AM
3196
3197 if (i.tm.opcode_modifier & JumpByte)
3198 {
3199 /* This is a loop or jecxz type instruction. */
3200 size = 1;
3201 if (i.prefix[ADDR_PREFIX] != 0)
3202 {
3203 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3204 i.prefixes -= 1;
3205 }
3206 /* Pentium4 branch hints. */
3207 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3208 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3209 {
3210 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3211 i.prefixes--;
3e73aa7c
JH
3212 }
3213 }
29b0f896
AM
3214 else
3215 {
3216 int code16;
3e73aa7c 3217
29b0f896
AM
3218 code16 = 0;
3219 if (flag_code == CODE_16BIT)
3220 code16 = CODE16;
3e73aa7c 3221
29b0f896
AM
3222 if (i.prefix[DATA_PREFIX] != 0)
3223 {
3224 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3225 i.prefixes -= 1;
3226 code16 ^= CODE16;
3227 }
252b5132 3228
29b0f896
AM
3229 size = 4;
3230 if (code16)
3231 size = 2;
3232 }
9fcc94b6 3233
29b0f896
AM
3234 if (i.prefix[REX_PREFIX] != 0)
3235 {
3236 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3237 i.prefixes -= 1;
3238 }
252b5132 3239
29b0f896
AM
3240 if (i.prefixes != 0 && !intel_syntax)
3241 as_warn (_("skipping prefixes on this instruction"));
e0890092 3242
29b0f896
AM
3243 p = frag_more (1 + size);
3244 *p++ = i.tm.base_opcode;
e0890092 3245
3e02c1cc
AM
3246 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3247 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3248
3249 /* All jumps handled here are signed, but don't use a signed limit
3250 check for 32 and 16 bit jumps as we want to allow wrap around at
3251 4G and 64k respectively. */
3252 if (size == 1)
3253 fixP->fx_signed = 1;
29b0f896 3254}
e0890092 3255
29b0f896
AM
3256static void
3257output_interseg_jump ()
3258{
3259 char *p;
3260 int size;
3261 int prefix;
3262 int code16;
252b5132 3263
29b0f896
AM
3264 code16 = 0;
3265 if (flag_code == CODE_16BIT)
3266 code16 = CODE16;
a217f122 3267
29b0f896
AM
3268 prefix = 0;
3269 if (i.prefix[DATA_PREFIX] != 0)
3270 {
3271 prefix = 1;
3272 i.prefixes -= 1;
3273 code16 ^= CODE16;
3274 }
3275 if (i.prefix[REX_PREFIX] != 0)
3276 {
3277 prefix++;
3278 i.prefixes -= 1;
3279 }
252b5132 3280
29b0f896
AM
3281 size = 4;
3282 if (code16)
3283 size = 2;
252b5132 3284
29b0f896
AM
3285 if (i.prefixes != 0 && !intel_syntax)
3286 as_warn (_("skipping prefixes on this instruction"));
252b5132 3287
29b0f896
AM
3288 /* 1 opcode; 2 segment; offset */
3289 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3290
29b0f896
AM
3291 if (i.prefix[DATA_PREFIX] != 0)
3292 *p++ = DATA_PREFIX_OPCODE;
252b5132 3293
29b0f896
AM
3294 if (i.prefix[REX_PREFIX] != 0)
3295 *p++ = i.prefix[REX_PREFIX];
252b5132 3296
29b0f896
AM
3297 *p++ = i.tm.base_opcode;
3298 if (i.op[1].imms->X_op == O_constant)
3299 {
3300 offsetT n = i.op[1].imms->X_add_number;
252b5132 3301
29b0f896
AM
3302 if (size == 2
3303 && !fits_in_unsigned_word (n)
3304 && !fits_in_signed_word (n))
3305 {
3306 as_bad (_("16-bit jump out of range"));
3307 return;
3308 }
3309 md_number_to_chars (p, n, size);
3310 }
3311 else
3312 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3313 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3314 if (i.op[0].imms->X_op != O_constant)
3315 as_bad (_("can't handle non absolute segment in `%s'"),
3316 i.tm.name);
3317 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3318}
a217f122 3319
29b0f896
AM
3320static void
3321output_insn ()
3322{
2bbd9c25
JJ
3323 fragS *insn_start_frag;
3324 offsetT insn_start_off;
3325
29b0f896
AM
3326 /* Tie dwarf2 debug info to the address at the start of the insn.
3327 We can't do this after the insn has been output as the current
3328 frag may have been closed off. eg. by frag_var. */
3329 dwarf2_emit_insn (0);
3330
2bbd9c25
JJ
3331 insn_start_frag = frag_now;
3332 insn_start_off = frag_now_fix ();
3333
29b0f896
AM
3334 /* Output jumps. */
3335 if (i.tm.opcode_modifier & Jump)
3336 output_branch ();
3337 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3338 output_jump ();
3339 else if (i.tm.opcode_modifier & JumpInterSegment)
3340 output_interseg_jump ();
3341 else
3342 {
3343 /* Output normal instructions here. */
3344 char *p;
3345 unsigned char *q;
252b5132 3346
bc4bd9ab
MK
3347 /* All opcodes on i386 have either 1 or 2 bytes. We may use one
3348 more higher byte to specify a prefix the instruction
3349 requires. */
3350 if ((i.tm.base_opcode & 0xff0000) != 0)
3351 {
3352 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3353 {
3354 unsigned int prefix;
3355 prefix = (i.tm.base_opcode >> 16) & 0xff;
3356
3357 if (prefix != REPE_PREFIX_OPCODE
3358 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3359 add_prefix (prefix);
3360 }
3361 else
3362 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
0f10071e 3363 }
252b5132 3364
29b0f896
AM
3365 /* The prefix bytes. */
3366 for (q = i.prefix;
3367 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3368 q++)
3369 {
3370 if (*q)
3371 {
3372 p = frag_more (1);
3373 md_number_to_chars (p, (valueT) *q, 1);
3374 }
3375 }
252b5132 3376
29b0f896
AM
3377 /* Now the opcode; be careful about word order here! */
3378 if (fits_in_unsigned_byte (i.tm.base_opcode))
3379 {
3380 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3381 }
3382 else
3383 {
bc4bd9ab 3384 p = frag_more (2);
0f10071e 3385
29b0f896
AM
3386 /* Put out high byte first: can't use md_number_to_chars! */
3387 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3388 *p = i.tm.base_opcode & 0xff;
3389 }
3e73aa7c 3390
29b0f896
AM
3391 /* Now the modrm byte and sib byte (if present). */
3392 if (i.tm.opcode_modifier & Modrm)
3393 {
3394 p = frag_more (1);
3395 md_number_to_chars (p,
3396 (valueT) (i.rm.regmem << 0
3397 | i.rm.reg << 3
3398 | i.rm.mode << 6),
3399 1);
3400 /* If i.rm.regmem == ESP (4)
3401 && i.rm.mode != (Register mode)
3402 && not 16 bit
3403 ==> need second modrm byte. */
3404 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3405 && i.rm.mode != 3
3406 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3407 {
3408 p = frag_more (1);
3409 md_number_to_chars (p,
3410 (valueT) (i.sib.base << 0
3411 | i.sib.index << 3
3412 | i.sib.scale << 6),
3413 1);
3414 }
3415 }
3e73aa7c 3416
29b0f896 3417 if (i.disp_operands)
2bbd9c25 3418 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3419
29b0f896 3420 if (i.imm_operands)
2bbd9c25 3421 output_imm (insn_start_frag, insn_start_off);
29b0f896 3422 }
252b5132 3423
29b0f896
AM
3424#ifdef DEBUG386
3425 if (flag_debug)
3426 {
3427 pi (line, &i);
3428 }
3429#endif /* DEBUG386 */
3430}
252b5132 3431
29b0f896 3432static void
2bbd9c25
JJ
3433output_disp (insn_start_frag, insn_start_off)
3434 fragS *insn_start_frag;
3435 offsetT insn_start_off;
29b0f896
AM
3436{
3437 char *p;
3438 unsigned int n;
252b5132 3439
29b0f896
AM
3440 for (n = 0; n < i.operands; n++)
3441 {
3442 if (i.types[n] & Disp)
3443 {
3444 if (i.op[n].disps->X_op == O_constant)
3445 {
3446 int size;
3447 offsetT val;
252b5132 3448
29b0f896
AM
3449 size = 4;
3450 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3451 {
3452 size = 2;
3453 if (i.types[n] & Disp8)
3454 size = 1;
3455 if (i.types[n] & Disp64)
3456 size = 8;
3457 }
3458 val = offset_in_range (i.op[n].disps->X_add_number,
3459 size);
3460 p = frag_more (size);
3461 md_number_to_chars (p, val, size);
3462 }
3463 else
3464 {
f86103b7 3465 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3466 int size = 4;
3467 int sign = 0;
3468 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3469
3470 /* The PC relative address is computed relative
3471 to the instruction boundary, so in case immediate
3472 fields follows, we need to adjust the value. */
3473 if (pcrel && i.imm_operands)
3474 {
3475 int imm_size = 4;
3476 unsigned int n1;
252b5132 3477
29b0f896
AM
3478 for (n1 = 0; n1 < i.operands; n1++)
3479 if (i.types[n1] & Imm)
252b5132 3480 {
29b0f896 3481 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3482 {
29b0f896
AM
3483 imm_size = 2;
3484 if (i.types[n1] & (Imm8 | Imm8S))
3485 imm_size = 1;
3486 if (i.types[n1] & Imm64)
3487 imm_size = 8;
252b5132 3488 }
29b0f896 3489 break;
252b5132 3490 }
29b0f896
AM
3491 /* We should find the immediate. */
3492 if (n1 == i.operands)
3493 abort ();
3494 i.op[n].disps->X_add_number -= imm_size;
3495 }
520dc8e8 3496
29b0f896
AM
3497 if (i.types[n] & Disp32S)
3498 sign = 1;
3e73aa7c 3499
29b0f896
AM
3500 if (i.types[n] & (Disp16 | Disp64))
3501 {
3502 size = 2;
3503 if (i.types[n] & Disp64)
3504 size = 8;
3505 }
520dc8e8 3506
29b0f896 3507 p = frag_more (size);
2bbd9c25 3508 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 3509 if (GOT_symbol
2bbd9c25 3510 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113
JB
3511 && (((reloc_type == BFD_RELOC_32
3512 || reloc_type == BFD_RELOC_X86_64_32S)
3513 && (i.op[n].disps->X_op == O_symbol
3514 || (i.op[n].disps->X_op == O_add
3515 && ((symbol_get_value_expression
3516 (i.op[n].disps->X_op_symbol)->X_op)
3517 == O_subtract))))
3518 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
3519 {
3520 offsetT add;
3521
3522 if (insn_start_frag == frag_now)
3523 add = (p - frag_now->fr_literal) - insn_start_off;
3524 else
3525 {
3526 fragS *fr;
3527
3528 add = insn_start_frag->fr_fix - insn_start_off;
3529 for (fr = insn_start_frag->fr_next;
3530 fr && fr != frag_now; fr = fr->fr_next)
3531 add += fr->fr_fix;
3532 add += p - frag_now->fr_literal;
3533 }
3534
d6ab8113
JB
3535 if (flag_code != CODE_64BIT)
3536 reloc_type = BFD_RELOC_386_GOTPC;
3537 else
3538 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25
JJ
3539 i.op[n].disps->X_add_number += add;
3540 }
062cd5e7 3541 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3542 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3543 }
3544 }
3545 }
3546}
252b5132 3547
29b0f896 3548static void
2bbd9c25
JJ
3549output_imm (insn_start_frag, insn_start_off)
3550 fragS *insn_start_frag;
3551 offsetT insn_start_off;
29b0f896
AM
3552{
3553 char *p;
3554 unsigned int n;
252b5132 3555
29b0f896
AM
3556 for (n = 0; n < i.operands; n++)
3557 {
3558 if (i.types[n] & Imm)
3559 {
3560 if (i.op[n].imms->X_op == O_constant)
3561 {
3562 int size;
3563 offsetT val;
b4cac588 3564
29b0f896
AM
3565 size = 4;
3566 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3567 {
3568 size = 2;
3569 if (i.types[n] & (Imm8 | Imm8S))
3570 size = 1;
3571 else if (i.types[n] & Imm64)
3572 size = 8;
3573 }
3574 val = offset_in_range (i.op[n].imms->X_add_number,
3575 size);
3576 p = frag_more (size);
3577 md_number_to_chars (p, val, size);
3578 }
3579 else
3580 {
3581 /* Not absolute_section.
3582 Need a 32-bit fixup (don't support 8bit
3583 non-absolute imms). Try to support other
3584 sizes ... */
f86103b7 3585 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3586 int size = 4;
3587 int sign = 0;
3588
3589 if ((i.types[n] & (Imm32S))
a7d61044
JB
3590 && (i.suffix == QWORD_MNEM_SUFFIX
3591 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
29b0f896
AM
3592 sign = 1;
3593 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3594 {
3595 size = 2;
3596 if (i.types[n] & (Imm8 | Imm8S))
3597 size = 1;
3598 if (i.types[n] & Imm64)
3599 size = 8;
3600 }
520dc8e8 3601
29b0f896
AM
3602 p = frag_more (size);
3603 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3604
2bbd9c25
JJ
3605 /* This is tough to explain. We end up with this one if we
3606 * have operands that look like
3607 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3608 * obtain the absolute address of the GOT, and it is strongly
3609 * preferable from a performance point of view to avoid using
3610 * a runtime relocation for this. The actual sequence of
3611 * instructions often look something like:
3612 *
3613 * call .L66
3614 * .L66:
3615 * popl %ebx
3616 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3617 *
3618 * The call and pop essentially return the absolute address
3619 * of the label .L66 and store it in %ebx. The linker itself
3620 * will ultimately change the first operand of the addl so
3621 * that %ebx points to the GOT, but to keep things simple, the
3622 * .o file must have this operand set so that it generates not
3623 * the absolute address of .L66, but the absolute address of
3624 * itself. This allows the linker itself simply treat a GOTPC
3625 * relocation as asking for a pcrel offset to the GOT to be
3626 * added in, and the addend of the relocation is stored in the
3627 * operand field for the instruction itself.
3628 *
3629 * Our job here is to fix the operand so that it would add
3630 * the correct offset so that %ebx would point to itself. The
3631 * thing that is tricky is that .-.L66 will point to the
3632 * beginning of the instruction, so we need to further modify
3633 * the operand so that it will point to itself. There are
3634 * other cases where you have something like:
3635 *
3636 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3637 *
3638 * and here no correction would be required. Internally in
3639 * the assembler we treat operands of this form as not being
3640 * pcrel since the '.' is explicitly mentioned, and I wonder
3641 * whether it would simplify matters to do it this way. Who
3642 * knows. In earlier versions of the PIC patches, the
3643 * pcrel_adjust field was used to store the correction, but
3644 * since the expression is not pcrel, I felt it would be
3645 * confusing to do it this way. */
3646
d6ab8113
JB
3647 if ((reloc_type == BFD_RELOC_32
3648 || reloc_type == BFD_RELOC_X86_64_32S)
29b0f896
AM
3649 && GOT_symbol
3650 && GOT_symbol == i.op[n].imms->X_add_symbol
3651 && (i.op[n].imms->X_op == O_symbol
3652 || (i.op[n].imms->X_op == O_add
3653 && ((symbol_get_value_expression
3654 (i.op[n].imms->X_op_symbol)->X_op)
3655 == O_subtract))))
3656 {
2bbd9c25
JJ
3657 offsetT add;
3658
3659 if (insn_start_frag == frag_now)
3660 add = (p - frag_now->fr_literal) - insn_start_off;
3661 else
3662 {
3663 fragS *fr;
3664
3665 add = insn_start_frag->fr_fix - insn_start_off;
3666 for (fr = insn_start_frag->fr_next;
3667 fr && fr != frag_now; fr = fr->fr_next)
3668 add += fr->fr_fix;
3669 add += p - frag_now->fr_literal;
3670 }
3671
d6ab8113
JB
3672 if (flag_code != CODE_64BIT)
3673 reloc_type = BFD_RELOC_386_GOTPC;
3674 else
3675 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 3676 i.op[n].imms->X_add_number += add;
29b0f896 3677 }
29b0f896
AM
3678 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3679 i.op[n].imms, 0, reloc_type);
3680 }
3681 }
3682 }
252b5132
RH
3683}
3684\f
f3c180ae 3685#ifndef LEX_AT
f86103b7 3686static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3687
3688/* Parse operands of the form
3689 <symbol>@GOTOFF+<nnn>
3690 and similar .plt or .got references.
3691
3692 If we find one, set up the correct relocation in RELOC and copy the
3693 input string, minus the `@GOTOFF' into a malloc'd buffer for
3694 parsing by the calling routine. Return this buffer, and if ADJUST
3695 is non-null set it to the length of the string we removed from the
3696 input line. Otherwise return NULL. */
3697static char *
3698lex_got (reloc, adjust)
f86103b7 3699 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3700 int *adjust;
3701{
3702 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3703 static const struct {
3704 const char *str;
f86103b7 3705 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3706 } gotrel[] = {
13ae64f3 3707 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
d6ab8113 3708 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, BFD_RELOC_X86_64_GOTOFF64 } },
13ae64f3 3709 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3710 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3711 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3712 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3713 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3714 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3715 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3716 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3717 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3718 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3719 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3720 };
3721 char *cp;
3722 unsigned int j;
3723
3724 for (cp = input_line_pointer; *cp != '@'; cp++)
3725 if (is_end_of_line[(unsigned char) *cp])
3726 return NULL;
3727
3728 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3729 {
3730 int len;
3731
3732 len = strlen (gotrel[j].str);
28f81592 3733 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3734 {
3735 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3736 {
28f81592
AM
3737 int first, second;
3738 char *tmpbuf, *past_reloc;
f3c180ae
AM
3739
3740 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3741 if (adjust)
3742 *adjust = len;
f3c180ae
AM
3743
3744 if (GOT_symbol == NULL)
3745 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3746
3747 /* Replace the relocation token with ' ', so that
3748 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3749
3750 /* The length of the first part of our input line. */
f3c180ae 3751 first = cp - input_line_pointer;
28f81592
AM
3752
3753 /* The second part goes from after the reloc token until
3754 (and including) an end_of_line char. Don't use strlen
3755 here as the end_of_line char may not be a NUL. */
3756 past_reloc = cp + 1 + len;
3757 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3758 ;
3759 second = cp - past_reloc;
3760
3761 /* Allocate and copy string. The trailing NUL shouldn't
3762 be necessary, but be safe. */
3763 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3764 memcpy (tmpbuf, input_line_pointer, first);
3765 tmpbuf[first] = ' ';
28f81592
AM
3766 memcpy (tmpbuf + first + 1, past_reloc, second);
3767 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3768 return tmpbuf;
3769 }
3770
3771 as_bad (_("@%s reloc is not supported in %s bit mode"),
3772 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3773 return NULL;
3774 }
3775 }
3776
3777 /* Might be a symbol version string. Don't as_bad here. */
3778 return NULL;
3779}
3780
3781/* x86_cons_fix_new is called via the expression parsing code when a
3782 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3783static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3784
3785void
3786x86_cons_fix_new (frag, off, len, exp)
3787 fragS *frag;
3788 unsigned int off;
3789 unsigned int len;
3790 expressionS *exp;
3791{
f86103b7 3792 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3793 got_reloc = NO_RELOC;
3794 fix_new_exp (frag, off, len, exp, 0, r);
3795}
3796
3797void
3798x86_cons (exp, size)
3799 expressionS *exp;
3800 int size;
3801{
d6ab8113 3802 if (size == 4 || (flag_code == CODE_64BIT && size == 8))
f3c180ae
AM
3803 {
3804 /* Handle @GOTOFF and the like in an expression. */
3805 char *save;
3806 char *gotfree_input_line;
3807 int adjust;
3808
3809 save = input_line_pointer;
3810 gotfree_input_line = lex_got (&got_reloc, &adjust);
3811 if (gotfree_input_line)
3812 input_line_pointer = gotfree_input_line;
3813
3814 expression (exp);
3815
3816 if (gotfree_input_line)
3817 {
3818 /* expression () has merrily parsed up to the end of line,
3819 or a comma - in the wrong buffer. Transfer how far
3820 input_line_pointer has moved to the right buffer. */
3821 input_line_pointer = (save
3822 + (input_line_pointer - gotfree_input_line)
3823 + adjust);
3824 free (gotfree_input_line);
3825 }
3826 }
3827 else
3828 expression (exp);
3829}
3830#endif
3831
6482c264
NC
3832#ifdef TE_PE
3833
6482c264
NC
3834void
3835x86_pe_cons_fix_new (frag, off, len, exp)
3836 fragS *frag;
3837 unsigned int off;
3838 unsigned int len;
3839 expressionS *exp;
3840{
3841 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3842
3843 if (exp->X_op == O_secrel)
3844 {
3845 exp->X_op = O_symbol;
3846 r = BFD_RELOC_32_SECREL;
3847 }
3848
3849 fix_new_exp (frag, off, len, exp, 0, r);
3850}
3851
3852static void
3853pe_directive_secrel (dummy)
3854 int dummy ATTRIBUTE_UNUSED;
3855{
3856 expressionS exp;
3857
3858 do
3859 {
3860 expression (&exp);
3861 if (exp.X_op == O_symbol)
3862 exp.X_op = O_secrel;
3863
3864 emit_expr (&exp, 4);
3865 }
3866 while (*input_line_pointer++ == ',');
3867
3868 input_line_pointer--;
3869 demand_empty_rest_of_line ();
3870}
3871
3872#endif
3873
252b5132
RH
3874static int i386_immediate PARAMS ((char *));
3875
3876static int
3877i386_immediate (imm_start)
3878 char *imm_start;
3879{
3880 char *save_input_line_pointer;
f3c180ae
AM
3881#ifndef LEX_AT
3882 char *gotfree_input_line;
3883#endif
252b5132 3884 segT exp_seg = 0;
47926f60 3885 expressionS *exp;
252b5132
RH
3886
3887 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3888 {
d0b47220 3889 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3890 return 0;
3891 }
3892
3893 exp = &im_expressions[i.imm_operands++];
520dc8e8 3894 i.op[this_operand].imms = exp;
252b5132
RH
3895
3896 if (is_space_char (*imm_start))
3897 ++imm_start;
3898
3899 save_input_line_pointer = input_line_pointer;
3900 input_line_pointer = imm_start;
3901
3902#ifndef LEX_AT
f3c180ae
AM
3903 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3904 if (gotfree_input_line)
3905 input_line_pointer = gotfree_input_line;
252b5132
RH
3906#endif
3907
3908 exp_seg = expression (exp);
3909
83183c0c 3910 SKIP_WHITESPACE ();
252b5132 3911 if (*input_line_pointer)
f3c180ae 3912 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3913
3914 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3915#ifndef LEX_AT
3916 if (gotfree_input_line)
3917 free (gotfree_input_line);
3918#endif
252b5132 3919
2daf4fd8 3920 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3921 {
47926f60 3922 /* Missing or bad expr becomes absolute 0. */
d0b47220 3923 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3924 imm_start);
252b5132
RH
3925 exp->X_op = O_constant;
3926 exp->X_add_number = 0;
3927 exp->X_add_symbol = (symbolS *) 0;
3928 exp->X_op_symbol = (symbolS *) 0;
252b5132 3929 }
3e73aa7c 3930 else if (exp->X_op == O_constant)
252b5132 3931 {
47926f60 3932 /* Size it properly later. */
3e73aa7c
JH
3933 i.types[this_operand] |= Imm64;
3934 /* If BFD64, sign extend val. */
3935 if (!use_rela_relocations)
3936 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3937 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3938 }
4c63da97 3939#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3940 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3941 && exp_seg != absolute_section
47926f60 3942 && exp_seg != text_section
24eab124
AM
3943 && exp_seg != data_section
3944 && exp_seg != bss_section
3945 && exp_seg != undefined_section
f86103b7 3946 && !bfd_is_com_section (exp_seg))
252b5132 3947 {
d0b47220 3948 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3949 return 0;
3950 }
3951#endif
3952 else
3953 {
3954 /* This is an address. The size of the address will be
24eab124 3955 determined later, depending on destination register,
3e73aa7c
JH
3956 suffix, or the default for the section. */
3957 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3958 }
3959
3960 return 1;
3961}
3962
551c1ca1 3963static char *i386_scale PARAMS ((char *));
252b5132 3964
551c1ca1 3965static char *
252b5132
RH
3966i386_scale (scale)
3967 char *scale;
3968{
551c1ca1
AM
3969 offsetT val;
3970 char *save = input_line_pointer;
252b5132 3971
551c1ca1
AM
3972 input_line_pointer = scale;
3973 val = get_absolute_expression ();
3974
3975 switch (val)
252b5132 3976 {
551c1ca1 3977 case 1:
252b5132
RH
3978 i.log2_scale_factor = 0;
3979 break;
551c1ca1 3980 case 2:
252b5132
RH
3981 i.log2_scale_factor = 1;
3982 break;
551c1ca1 3983 case 4:
252b5132
RH
3984 i.log2_scale_factor = 2;
3985 break;
551c1ca1 3986 case 8:
252b5132
RH
3987 i.log2_scale_factor = 3;
3988 break;
3989 default:
a724f0f4
JB
3990 {
3991 char sep = *input_line_pointer;
3992
3993 *input_line_pointer = '\0';
3994 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3995 scale);
3996 *input_line_pointer = sep;
3997 input_line_pointer = save;
3998 return NULL;
3999 }
252b5132 4000 }
29b0f896 4001 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
4002 {
4003 as_warn (_("scale factor of %d without an index register"),
24eab124 4004 1 << i.log2_scale_factor);
252b5132
RH
4005#if SCALE1_WHEN_NO_INDEX
4006 i.log2_scale_factor = 0;
4007#endif
4008 }
551c1ca1
AM
4009 scale = input_line_pointer;
4010 input_line_pointer = save;
4011 return scale;
252b5132
RH
4012}
4013
4014static int i386_displacement PARAMS ((char *, char *));
4015
4016static int
4017i386_displacement (disp_start, disp_end)
4018 char *disp_start;
4019 char *disp_end;
4020{
29b0f896 4021 expressionS *exp;
252b5132
RH
4022 segT exp_seg = 0;
4023 char *save_input_line_pointer;
f3c180ae
AM
4024#ifndef LEX_AT
4025 char *gotfree_input_line;
4026#endif
252b5132
RH
4027 int bigdisp = Disp32;
4028
3e73aa7c 4029 if (flag_code == CODE_64BIT)
7ecd2f8b 4030 {
29b0f896
AM
4031 if (i.prefix[ADDR_PREFIX] == 0)
4032 bigdisp = Disp64;
7ecd2f8b
JH
4033 }
4034 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4035 bigdisp = Disp16;
252b5132
RH
4036 i.types[this_operand] |= bigdisp;
4037
4038 exp = &disp_expressions[i.disp_operands];
520dc8e8 4039 i.op[this_operand].disps = exp;
252b5132
RH
4040 i.disp_operands++;
4041 save_input_line_pointer = input_line_pointer;
4042 input_line_pointer = disp_start;
4043 END_STRING_AND_SAVE (disp_end);
4044
4045#ifndef GCC_ASM_O_HACK
4046#define GCC_ASM_O_HACK 0
4047#endif
4048#if GCC_ASM_O_HACK
4049 END_STRING_AND_SAVE (disp_end + 1);
4050 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4051 && displacement_string_end[-1] == '+')
252b5132
RH
4052 {
4053 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4054 constraint within gcc asm statements.
4055 For instance:
4056
4057 #define _set_tssldt_desc(n,addr,limit,type) \
4058 __asm__ __volatile__ ( \
4059 "movw %w2,%0\n\t" \
4060 "movw %w1,2+%0\n\t" \
4061 "rorl $16,%1\n\t" \
4062 "movb %b1,4+%0\n\t" \
4063 "movb %4,5+%0\n\t" \
4064 "movb $0,6+%0\n\t" \
4065 "movb %h1,7+%0\n\t" \
4066 "rorl $16,%1" \
4067 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4068
4069 This works great except that the output assembler ends
4070 up looking a bit weird if it turns out that there is
4071 no offset. You end up producing code that looks like:
4072
4073 #APP
4074 movw $235,(%eax)
4075 movw %dx,2+(%eax)
4076 rorl $16,%edx
4077 movb %dl,4+(%eax)
4078 movb $137,5+(%eax)
4079 movb $0,6+(%eax)
4080 movb %dh,7+(%eax)
4081 rorl $16,%edx
4082 #NO_APP
4083
47926f60 4084 So here we provide the missing zero. */
24eab124
AM
4085
4086 *displacement_string_end = '0';
252b5132
RH
4087 }
4088#endif
4089#ifndef LEX_AT
f3c180ae
AM
4090 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4091 if (gotfree_input_line)
4092 input_line_pointer = gotfree_input_line;
252b5132
RH
4093#endif
4094
24eab124 4095 exp_seg = expression (exp);
252b5132 4096
636c26b0
AM
4097 SKIP_WHITESPACE ();
4098 if (*input_line_pointer)
4099 as_bad (_("junk `%s' after expression"), input_line_pointer);
4100#if GCC_ASM_O_HACK
4101 RESTORE_END_STRING (disp_end + 1);
4102#endif
4103 RESTORE_END_STRING (disp_end);
4104 input_line_pointer = save_input_line_pointer;
4105#ifndef LEX_AT
4106 if (gotfree_input_line)
4107 free (gotfree_input_line);
4108#endif
4109
24eab124
AM
4110 /* We do this to make sure that the section symbol is in
4111 the symbol table. We will ultimately change the relocation
47926f60 4112 to be relative to the beginning of the section. */
1ae12ab7 4113 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
4114 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4115 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 4116 {
636c26b0
AM
4117 if (exp->X_op != O_symbol)
4118 {
4119 as_bad (_("bad expression used with @%s"),
4120 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4121 ? "GOTPCREL"
4122 : "GOTOFF"));
4123 return 0;
4124 }
4125
e5cb08ac 4126 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4127 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4128 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4129 exp->X_op = O_subtract;
4130 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4131 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4132 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
4133 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4134 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 4135 else
29b0f896 4136 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4137 }
252b5132 4138
2daf4fd8
AM
4139 if (exp->X_op == O_absent || exp->X_op == O_big)
4140 {
47926f60 4141 /* Missing or bad expr becomes absolute 0. */
d0b47220 4142 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4143 disp_start);
4144 exp->X_op = O_constant;
4145 exp->X_add_number = 0;
4146 exp->X_add_symbol = (symbolS *) 0;
4147 exp->X_op_symbol = (symbolS *) 0;
4148 }
4149
4c63da97 4150#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4151 if (exp->X_op != O_constant
45288df1 4152 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4153 && exp_seg != absolute_section
45288df1
AM
4154 && exp_seg != text_section
4155 && exp_seg != data_section
4156 && exp_seg != bss_section
31312f95 4157 && exp_seg != undefined_section
f86103b7 4158 && !bfd_is_com_section (exp_seg))
24eab124 4159 {
d0b47220 4160 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4161 return 0;
4162 }
252b5132 4163#endif
3e73aa7c
JH
4164 else if (flag_code == CODE_64BIT)
4165 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
4166 return 1;
4167}
4168
e5cb08ac 4169static int i386_index_check PARAMS ((const char *));
252b5132 4170
eecb386c 4171/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4172 Return 1 on success, 0 on a failure. */
4173
252b5132 4174static int
eecb386c
AM
4175i386_index_check (operand_string)
4176 const char *operand_string;
252b5132 4177{
3e73aa7c 4178 int ok;
24eab124 4179#if INFER_ADDR_PREFIX
eecb386c
AM
4180 int fudged = 0;
4181
24eab124
AM
4182 tryprefix:
4183#endif
3e73aa7c 4184 ok = 1;
20f0a1fc
NC
4185 if (flag_code == CODE_64BIT)
4186 {
4187 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4188
4189 if ((i.base_reg
4190 && ((i.base_reg->reg_type & RegXX) == 0)
4191 && (i.base_reg->reg_type != BaseIndex
4192 || i.index_reg))
4193 || (i.index_reg
4194 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4195 != (RegXX | BaseIndex))))
4196 ok = 0;
3e73aa7c
JH
4197 }
4198 else
4199 {
4200 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4201 {
4202 /* 16bit checks. */
4203 if ((i.base_reg
29b0f896
AM
4204 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4205 != (Reg16 | BaseIndex)))
3e73aa7c 4206 || (i.index_reg
29b0f896
AM
4207 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4208 != (Reg16 | BaseIndex))
4209 || !(i.base_reg
4210 && i.base_reg->reg_num < 6
4211 && i.index_reg->reg_num >= 6
4212 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4213 ok = 0;
4214 }
4215 else
e5cb08ac 4216 {
3e73aa7c
JH
4217 /* 32bit checks. */
4218 if ((i.base_reg
4219 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4220 || (i.index_reg
29b0f896
AM
4221 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4222 != (Reg32 | BaseIndex))))
e5cb08ac 4223 ok = 0;
3e73aa7c
JH
4224 }
4225 }
4226 if (!ok)
24eab124
AM
4227 {
4228#if INFER_ADDR_PREFIX
20f0a1fc 4229 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4230 {
4231 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4232 i.prefixes += 1;
b23bac36
AM
4233 /* Change the size of any displacement too. At most one of
4234 Disp16 or Disp32 is set.
4235 FIXME. There doesn't seem to be any real need for separate
4236 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4237 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4238 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4239 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4240 fudged = 1;
24eab124
AM
4241 goto tryprefix;
4242 }
eecb386c
AM
4243 if (fudged)
4244 as_bad (_("`%s' is not a valid base/index expression"),
4245 operand_string);
4246 else
c388dee8 4247#endif
eecb386c
AM
4248 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4249 operand_string,
3e73aa7c 4250 flag_code_names[flag_code]);
24eab124 4251 }
20f0a1fc 4252 return ok;
24eab124 4253}
252b5132 4254
252b5132 4255/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4256 on error. */
252b5132 4257
252b5132
RH
4258static int
4259i386_operand (operand_string)
4260 char *operand_string;
4261{
af6bdddf
AM
4262 const reg_entry *r;
4263 char *end_op;
24eab124 4264 char *op_string = operand_string;
252b5132 4265
24eab124 4266 if (is_space_char (*op_string))
252b5132
RH
4267 ++op_string;
4268
24eab124 4269 /* We check for an absolute prefix (differentiating,
47926f60 4270 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4271 if (*op_string == ABSOLUTE_PREFIX)
4272 {
4273 ++op_string;
4274 if (is_space_char (*op_string))
4275 ++op_string;
4276 i.types[this_operand] |= JumpAbsolute;
4277 }
252b5132 4278
47926f60 4279 /* Check if operand is a register. */
af6bdddf
AM
4280 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4281 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4282 {
24eab124
AM
4283 /* Check for a segment override by searching for ':' after a
4284 segment register. */
4285 op_string = end_op;
4286 if (is_space_char (*op_string))
4287 ++op_string;
4288 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4289 {
4290 switch (r->reg_num)
4291 {
4292 case 0:
4293 i.seg[i.mem_operands] = &es;
4294 break;
4295 case 1:
4296 i.seg[i.mem_operands] = &cs;
4297 break;
4298 case 2:
4299 i.seg[i.mem_operands] = &ss;
4300 break;
4301 case 3:
4302 i.seg[i.mem_operands] = &ds;
4303 break;
4304 case 4:
4305 i.seg[i.mem_operands] = &fs;
4306 break;
4307 case 5:
4308 i.seg[i.mem_operands] = &gs;
4309 break;
4310 }
252b5132 4311
24eab124 4312 /* Skip the ':' and whitespace. */
252b5132
RH
4313 ++op_string;
4314 if (is_space_char (*op_string))
24eab124 4315 ++op_string;
252b5132 4316
24eab124
AM
4317 if (!is_digit_char (*op_string)
4318 && !is_identifier_char (*op_string)
4319 && *op_string != '('
4320 && *op_string != ABSOLUTE_PREFIX)
4321 {
4322 as_bad (_("bad memory operand `%s'"), op_string);
4323 return 0;
4324 }
47926f60 4325 /* Handle case of %es:*foo. */
24eab124
AM
4326 if (*op_string == ABSOLUTE_PREFIX)
4327 {
4328 ++op_string;
4329 if (is_space_char (*op_string))
4330 ++op_string;
4331 i.types[this_operand] |= JumpAbsolute;
4332 }
4333 goto do_memory_reference;
4334 }
4335 if (*op_string)
4336 {
d0b47220 4337 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4338 return 0;
4339 }
4340 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4341 i.op[this_operand].regs = r;
24eab124
AM
4342 i.reg_operands++;
4343 }
af6bdddf
AM
4344 else if (*op_string == REGISTER_PREFIX)
4345 {
4346 as_bad (_("bad register name `%s'"), op_string);
4347 return 0;
4348 }
24eab124 4349 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4350 {
24eab124
AM
4351 ++op_string;
4352 if (i.types[this_operand] & JumpAbsolute)
4353 {
d0b47220 4354 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4355 return 0;
4356 }
4357 if (!i386_immediate (op_string))
4358 return 0;
4359 }
4360 else if (is_digit_char (*op_string)
4361 || is_identifier_char (*op_string)
e5cb08ac 4362 || *op_string == '(')
24eab124 4363 {
47926f60 4364 /* This is a memory reference of some sort. */
af6bdddf 4365 char *base_string;
252b5132 4366
47926f60 4367 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4368 char *displacement_string_start;
4369 char *displacement_string_end;
252b5132 4370
24eab124 4371 do_memory_reference:
24eab124
AM
4372 if ((i.mem_operands == 1
4373 && (current_templates->start->opcode_modifier & IsString) == 0)
4374 || i.mem_operands == 2)
4375 {
4376 as_bad (_("too many memory references for `%s'"),
4377 current_templates->start->name);
4378 return 0;
4379 }
252b5132 4380
24eab124
AM
4381 /* Check for base index form. We detect the base index form by
4382 looking for an ')' at the end of the operand, searching
4383 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4384 after the '('. */
af6bdddf 4385 base_string = op_string + strlen (op_string);
c3332e24 4386
af6bdddf
AM
4387 --base_string;
4388 if (is_space_char (*base_string))
4389 --base_string;
252b5132 4390
47926f60 4391 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4392 displacement_string_start = op_string;
4393 displacement_string_end = base_string + 1;
252b5132 4394
24eab124
AM
4395 if (*base_string == ')')
4396 {
af6bdddf 4397 char *temp_string;
24eab124
AM
4398 unsigned int parens_balanced = 1;
4399 /* We've already checked that the number of left & right ()'s are
47926f60 4400 equal, so this loop will not be infinite. */
24eab124
AM
4401 do
4402 {
4403 base_string--;
4404 if (*base_string == ')')
4405 parens_balanced++;
4406 if (*base_string == '(')
4407 parens_balanced--;
4408 }
4409 while (parens_balanced);
c3332e24 4410
af6bdddf 4411 temp_string = base_string;
c3332e24 4412
24eab124 4413 /* Skip past '(' and whitespace. */
252b5132
RH
4414 ++base_string;
4415 if (is_space_char (*base_string))
24eab124 4416 ++base_string;
252b5132 4417
af6bdddf
AM
4418 if (*base_string == ','
4419 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4420 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4421 {
af6bdddf 4422 displacement_string_end = temp_string;
252b5132 4423
af6bdddf 4424 i.types[this_operand] |= BaseIndex;
252b5132 4425
af6bdddf 4426 if (i.base_reg)
24eab124 4427 {
24eab124
AM
4428 base_string = end_op;
4429 if (is_space_char (*base_string))
4430 ++base_string;
af6bdddf
AM
4431 }
4432
4433 /* There may be an index reg or scale factor here. */
4434 if (*base_string == ',')
4435 {
4436 ++base_string;
4437 if (is_space_char (*base_string))
4438 ++base_string;
4439
4440 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4441 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4442 {
af6bdddf 4443 base_string = end_op;
24eab124
AM
4444 if (is_space_char (*base_string))
4445 ++base_string;
af6bdddf
AM
4446 if (*base_string == ',')
4447 {
4448 ++base_string;
4449 if (is_space_char (*base_string))
4450 ++base_string;
4451 }
e5cb08ac 4452 else if (*base_string != ')')
af6bdddf
AM
4453 {
4454 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4455 operand_string);
4456 return 0;
4457 }
24eab124 4458 }
af6bdddf 4459 else if (*base_string == REGISTER_PREFIX)
24eab124 4460 {
af6bdddf 4461 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4462 return 0;
4463 }
252b5132 4464
47926f60 4465 /* Check for scale factor. */
551c1ca1 4466 if (*base_string != ')')
af6bdddf 4467 {
551c1ca1
AM
4468 char *end_scale = i386_scale (base_string);
4469
4470 if (!end_scale)
af6bdddf 4471 return 0;
24eab124 4472
551c1ca1 4473 base_string = end_scale;
af6bdddf
AM
4474 if (is_space_char (*base_string))
4475 ++base_string;
4476 if (*base_string != ')')
4477 {
4478 as_bad (_("expecting `)' after scale factor in `%s'"),
4479 operand_string);
4480 return 0;
4481 }
4482 }
4483 else if (!i.index_reg)
24eab124 4484 {
af6bdddf
AM
4485 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4486 *base_string);
24eab124
AM
4487 return 0;
4488 }
4489 }
af6bdddf 4490 else if (*base_string != ')')
24eab124 4491 {
af6bdddf
AM
4492 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4493 operand_string);
24eab124
AM
4494 return 0;
4495 }
c3332e24 4496 }
af6bdddf 4497 else if (*base_string == REGISTER_PREFIX)
c3332e24 4498 {
af6bdddf 4499 as_bad (_("bad register name `%s'"), base_string);
24eab124 4500 return 0;
c3332e24 4501 }
24eab124
AM
4502 }
4503
4504 /* If there's an expression beginning the operand, parse it,
4505 assuming displacement_string_start and
4506 displacement_string_end are meaningful. */
4507 if (displacement_string_start != displacement_string_end)
4508 {
4509 if (!i386_displacement (displacement_string_start,
4510 displacement_string_end))
4511 return 0;
4512 }
4513
4514 /* Special case for (%dx) while doing input/output op. */
4515 if (i.base_reg
4516 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4517 && i.index_reg == 0
4518 && i.log2_scale_factor == 0
4519 && i.seg[i.mem_operands] == 0
4520 && (i.types[this_operand] & Disp) == 0)
4521 {
4522 i.types[this_operand] = InOutPortReg;
4523 return 1;
4524 }
4525
eecb386c
AM
4526 if (i386_index_check (operand_string) == 0)
4527 return 0;
24eab124
AM
4528 i.mem_operands++;
4529 }
4530 else
ce8a8b2f
AM
4531 {
4532 /* It's not a memory operand; argh! */
24eab124
AM
4533 as_bad (_("invalid char %s beginning operand %d `%s'"),
4534 output_invalid (*op_string),
4535 this_operand + 1,
4536 op_string);
4537 return 0;
4538 }
47926f60 4539 return 1; /* Normal return. */
252b5132
RH
4540}
4541\f
ee7fcc42
AM
4542/* md_estimate_size_before_relax()
4543
4544 Called just before relax() for rs_machine_dependent frags. The x86
4545 assembler uses these frags to handle variable size jump
4546 instructions.
4547
4548 Any symbol that is now undefined will not become defined.
4549 Return the correct fr_subtype in the frag.
4550 Return the initial "guess for variable size of frag" to caller.
4551 The guess is actually the growth beyond the fixed part. Whatever
4552 we do to grow the fixed or variable part contributes to our
4553 returned value. */
4554
252b5132
RH
4555int
4556md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4557 fragS *fragP;
4558 segT segment;
252b5132 4559{
252b5132 4560 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4561 check for un-relaxable symbols. On an ELF system, we can't relax
4562 an externally visible symbol, because it may be overridden by a
4563 shared library. */
4564 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4565#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4566 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4567 && (S_IS_EXTERNAL (fragP->fr_symbol)
4568 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4569#endif
4570 )
252b5132 4571 {
b98ef147
AM
4572 /* Symbol is undefined in this segment, or we need to keep a
4573 reloc so that weak symbols can be overridden. */
4574 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4575 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4576 unsigned char *opcode;
4577 int old_fr_fix;
f6af82bd 4578
ee7fcc42
AM
4579 if (fragP->fr_var != NO_RELOC)
4580 reloc_type = fragP->fr_var;
b98ef147 4581 else if (size == 2)
f6af82bd
AM
4582 reloc_type = BFD_RELOC_16_PCREL;
4583 else
4584 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4585
ee7fcc42
AM
4586 old_fr_fix = fragP->fr_fix;
4587 opcode = (unsigned char *) fragP->fr_opcode;
4588
fddf5b5b 4589 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4590 {
fddf5b5b
AM
4591 case UNCOND_JUMP:
4592 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4593 opcode[0] = 0xe9;
252b5132 4594 fragP->fr_fix += size;
062cd5e7
AS
4595 fix_new (fragP, old_fr_fix, size,
4596 fragP->fr_symbol,
4597 fragP->fr_offset, 1,
4598 reloc_type);
252b5132
RH
4599 break;
4600
fddf5b5b 4601 case COND_JUMP86:
412167cb
AM
4602 if (size == 2
4603 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4604 {
4605 /* Negate the condition, and branch past an
4606 unconditional jump. */
4607 opcode[0] ^= 1;
4608 opcode[1] = 3;
4609 /* Insert an unconditional jump. */
4610 opcode[2] = 0xe9;
4611 /* We added two extra opcode bytes, and have a two byte
4612 offset. */
4613 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4614 fix_new (fragP, old_fr_fix + 2, 2,
4615 fragP->fr_symbol,
4616 fragP->fr_offset, 1,
4617 reloc_type);
fddf5b5b
AM
4618 break;
4619 }
4620 /* Fall through. */
4621
4622 case COND_JUMP:
412167cb
AM
4623 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4624 {
3e02c1cc
AM
4625 fixS *fixP;
4626
412167cb 4627 fragP->fr_fix += 1;
3e02c1cc
AM
4628 fixP = fix_new (fragP, old_fr_fix, 1,
4629 fragP->fr_symbol,
4630 fragP->fr_offset, 1,
4631 BFD_RELOC_8_PCREL);
4632 fixP->fx_signed = 1;
412167cb
AM
4633 break;
4634 }
93c2a809 4635
24eab124 4636 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4637 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4638 opcode[1] = opcode[0] + 0x10;
f6af82bd 4639 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4640 /* We've added an opcode byte. */
4641 fragP->fr_fix += 1 + size;
062cd5e7
AS
4642 fix_new (fragP, old_fr_fix + 1, size,
4643 fragP->fr_symbol,
4644 fragP->fr_offset, 1,
4645 reloc_type);
252b5132 4646 break;
fddf5b5b
AM
4647
4648 default:
4649 BAD_CASE (fragP->fr_subtype);
4650 break;
252b5132
RH
4651 }
4652 frag_wane (fragP);
ee7fcc42 4653 return fragP->fr_fix - old_fr_fix;
252b5132 4654 }
93c2a809 4655
93c2a809
AM
4656 /* Guess size depending on current relax state. Initially the relax
4657 state will correspond to a short jump and we return 1, because
4658 the variable part of the frag (the branch offset) is one byte
4659 long. However, we can relax a section more than once and in that
4660 case we must either set fr_subtype back to the unrelaxed state,
4661 or return the value for the appropriate branch. */
4662 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4663}
4664
47926f60
KH
4665/* Called after relax() is finished.
4666
4667 In: Address of frag.
4668 fr_type == rs_machine_dependent.
4669 fr_subtype is what the address relaxed to.
4670
4671 Out: Any fixSs and constants are set up.
4672 Caller will turn frag into a ".space 0". */
4673
252b5132
RH
4674void
4675md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4676 bfd *abfd ATTRIBUTE_UNUSED;
4677 segT sec ATTRIBUTE_UNUSED;
29b0f896 4678 fragS *fragP;
252b5132 4679{
29b0f896 4680 unsigned char *opcode;
252b5132 4681 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4682 offsetT target_address;
4683 offsetT opcode_address;
252b5132 4684 unsigned int extension = 0;
847f7ad4 4685 offsetT displacement_from_opcode_start;
252b5132
RH
4686
4687 opcode = (unsigned char *) fragP->fr_opcode;
4688
47926f60 4689 /* Address we want to reach in file space. */
252b5132 4690 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4691
47926f60 4692 /* Address opcode resides at in file space. */
252b5132
RH
4693 opcode_address = fragP->fr_address + fragP->fr_fix;
4694
47926f60 4695 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4696 displacement_from_opcode_start = target_address - opcode_address;
4697
fddf5b5b 4698 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4699 {
47926f60
KH
4700 /* Don't have to change opcode. */
4701 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4702 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4703 }
4704 else
4705 {
4706 if (no_cond_jump_promotion
4707 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4708 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4709
fddf5b5b
AM
4710 switch (fragP->fr_subtype)
4711 {
4712 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4713 extension = 4; /* 1 opcode + 4 displacement */
4714 opcode[0] = 0xe9;
4715 where_to_put_displacement = &opcode[1];
4716 break;
252b5132 4717
fddf5b5b
AM
4718 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4719 extension = 2; /* 1 opcode + 2 displacement */
4720 opcode[0] = 0xe9;
4721 where_to_put_displacement = &opcode[1];
4722 break;
252b5132 4723
fddf5b5b
AM
4724 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4725 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4726 extension = 5; /* 2 opcode + 4 displacement */
4727 opcode[1] = opcode[0] + 0x10;
4728 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4729 where_to_put_displacement = &opcode[2];
4730 break;
252b5132 4731
fddf5b5b
AM
4732 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4733 extension = 3; /* 2 opcode + 2 displacement */
4734 opcode[1] = opcode[0] + 0x10;
4735 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4736 where_to_put_displacement = &opcode[2];
4737 break;
252b5132 4738
fddf5b5b
AM
4739 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4740 extension = 4;
4741 opcode[0] ^= 1;
4742 opcode[1] = 3;
4743 opcode[2] = 0xe9;
4744 where_to_put_displacement = &opcode[3];
4745 break;
4746
4747 default:
4748 BAD_CASE (fragP->fr_subtype);
4749 break;
4750 }
252b5132 4751 }
fddf5b5b 4752
47926f60 4753 /* Now put displacement after opcode. */
252b5132
RH
4754 md_number_to_chars ((char *) where_to_put_displacement,
4755 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4756 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4757 fragP->fr_fix += extension;
4758}
4759\f
47926f60
KH
4760/* Size of byte displacement jmp. */
4761int md_short_jump_size = 2;
4762
4763/* Size of dword displacement jmp. */
4764int md_long_jump_size = 5;
252b5132 4765
47926f60
KH
4766/* Size of relocation record. */
4767const int md_reloc_size = 8;
252b5132
RH
4768
4769void
4770md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4771 char *ptr;
4772 addressT from_addr, to_addr;
ab9da554
ILT
4773 fragS *frag ATTRIBUTE_UNUSED;
4774 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4775{
847f7ad4 4776 offsetT offset;
252b5132
RH
4777
4778 offset = to_addr - (from_addr + 2);
47926f60
KH
4779 /* Opcode for byte-disp jump. */
4780 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4781 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4782}
4783
4784void
4785md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4786 char *ptr;
4787 addressT from_addr, to_addr;
a38cf1db
AM
4788 fragS *frag ATTRIBUTE_UNUSED;
4789 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4790{
847f7ad4 4791 offsetT offset;
252b5132 4792
a38cf1db
AM
4793 offset = to_addr - (from_addr + 5);
4794 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4795 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4796}
4797\f
4798/* Apply a fixup (fixS) to segment data, once it has been determined
4799 by our caller that we have all the info we need to fix it up.
4800
4801 On the 386, immediates, displacements, and data pointers are all in
4802 the same (little-endian) format, so we don't need to care about which
4803 we are handling. */
4804
94f592af 4805void
55cf6793 4806md_apply_fix (fixP, valP, seg)
47926f60
KH
4807 /* The fix we're to put in. */
4808 fixS *fixP;
47926f60 4809 /* Pointer to the value of the bits. */
c6682705 4810 valueT *valP;
47926f60
KH
4811 /* Segment fix is from. */
4812 segT seg ATTRIBUTE_UNUSED;
252b5132 4813{
94f592af 4814 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4815 valueT value = *valP;
252b5132 4816
f86103b7 4817#if !defined (TE_Mach)
93382f6d
AM
4818 if (fixP->fx_pcrel)
4819 {
4820 switch (fixP->fx_r_type)
4821 {
5865bb77
ILT
4822 default:
4823 break;
4824
d6ab8113
JB
4825 case BFD_RELOC_64:
4826 fixP->fx_r_type = BFD_RELOC_64_PCREL;
4827 break;
93382f6d 4828 case BFD_RELOC_32:
ae8887b5 4829 case BFD_RELOC_X86_64_32S:
93382f6d
AM
4830 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4831 break;
4832 case BFD_RELOC_16:
4833 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4834 break;
4835 case BFD_RELOC_8:
4836 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4837 break;
4838 }
4839 }
252b5132 4840
a161fe53 4841 if (fixP->fx_addsy != NULL
31312f95 4842 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 4843 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
4844 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4845 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4846 && !use_rela_relocations)
252b5132 4847 {
31312f95
AM
4848 /* This is a hack. There should be a better way to handle this.
4849 This covers for the fact that bfd_install_relocation will
4850 subtract the current location (for partial_inplace, PC relative
4851 relocations); see more below. */
252b5132
RH
4852#ifndef OBJ_AOUT
4853 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4854#ifdef TE_PE
4855 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4856#endif
4857 )
4858 value += fixP->fx_where + fixP->fx_frag->fr_address;
4859#endif
4860#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4861 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4862 {
6539b54b 4863 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4864
6539b54b 4865 if ((sym_seg == seg
2f66722d 4866 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4867 && sym_seg != absolute_section))
ae6063d4 4868 && !generic_force_reloc (fixP))
2f66722d
AM
4869 {
4870 /* Yes, we add the values in twice. This is because
6539b54b
AM
4871 bfd_install_relocation subtracts them out again. I think
4872 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4873 it. FIXME. */
4874 value += fixP->fx_where + fixP->fx_frag->fr_address;
4875 }
252b5132
RH
4876 }
4877#endif
4878#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
4879 /* For some reason, the PE format does not store a
4880 section address offset for a PC relative symbol. */
4881 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4882#if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4883 || S_IS_WEAK (fixP->fx_addsy)
4884#endif
4885 )
252b5132
RH
4886 value += md_pcrel_from (fixP);
4887#endif
4888 }
4889
4890 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4891 and we must not disappoint it. */
252b5132
RH
4892#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4893 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4894 && fixP->fx_addsy)
47926f60
KH
4895 switch (fixP->fx_r_type)
4896 {
4897 case BFD_RELOC_386_PLT32:
3e73aa7c 4898 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4899 /* Make the jump instruction point to the address of the operand. At
4900 runtime we merely add the offset to the actual PLT entry. */
4901 value = -4;
4902 break;
31312f95 4903
13ae64f3
JJ
4904 case BFD_RELOC_386_TLS_GD:
4905 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4906 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4907 case BFD_RELOC_386_TLS_IE:
4908 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4909 case BFD_RELOC_X86_64_TLSGD:
4910 case BFD_RELOC_X86_64_TLSLD:
4911 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4912 value = 0; /* Fully resolved at runtime. No addend. */
4913 /* Fallthrough */
4914 case BFD_RELOC_386_TLS_LE:
4915 case BFD_RELOC_386_TLS_LDO_32:
4916 case BFD_RELOC_386_TLS_LE_32:
4917 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 4918 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 4919 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 4920 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
4921 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4922 break;
4923
4924 case BFD_RELOC_386_GOT32:
4925 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4926 value = 0; /* Fully resolved at runtime. No addend. */
4927 break;
47926f60
KH
4928
4929 case BFD_RELOC_VTABLE_INHERIT:
4930 case BFD_RELOC_VTABLE_ENTRY:
4931 fixP->fx_done = 0;
94f592af 4932 return;
47926f60
KH
4933
4934 default:
4935 break;
4936 }
4937#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4938 *valP = value;
f86103b7 4939#endif /* !defined (TE_Mach) */
3e73aa7c 4940
3e73aa7c 4941 /* Are we finished with this relocation now? */
c6682705 4942 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4943 fixP->fx_done = 1;
4944 else if (use_rela_relocations)
4945 {
4946 fixP->fx_no_overflow = 1;
062cd5e7
AS
4947 /* Remember value for tc_gen_reloc. */
4948 fixP->fx_addnumber = value;
3e73aa7c
JH
4949 value = 0;
4950 }
f86103b7 4951
94f592af 4952 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4953}
252b5132 4954\f
252b5132
RH
4955#define MAX_LITTLENUMS 6
4956
47926f60
KH
4957/* Turn the string pointed to by litP into a floating point constant
4958 of type TYPE, and emit the appropriate bytes. The number of
4959 LITTLENUMS emitted is stored in *SIZEP. An error message is
4960 returned, or NULL on OK. */
4961
252b5132
RH
4962char *
4963md_atof (type, litP, sizeP)
2ab9b79e 4964 int type;
252b5132
RH
4965 char *litP;
4966 int *sizeP;
4967{
4968 int prec;
4969 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4970 LITTLENUM_TYPE *wordP;
4971 char *t;
4972
4973 switch (type)
4974 {
4975 case 'f':
4976 case 'F':
4977 prec = 2;
4978 break;
4979
4980 case 'd':
4981 case 'D':
4982 prec = 4;
4983 break;
4984
4985 case 'x':
4986 case 'X':
4987 prec = 5;
4988 break;
4989
4990 default:
4991 *sizeP = 0;
4992 return _("Bad call to md_atof ()");
4993 }
4994 t = atof_ieee (input_line_pointer, type, words);
4995 if (t)
4996 input_line_pointer = t;
4997
4998 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4999 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5000 the bigendian 386. */
5001 for (wordP = words + prec - 1; prec--;)
5002 {
5003 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5004 litP += sizeof (LITTLENUM_TYPE);
5005 }
5006 return 0;
5007}
5008\f
87c245cc 5009static char output_invalid_buf[8];
252b5132 5010
252b5132
RH
5011static char *
5012output_invalid (c)
5013 int c;
5014{
3882b010 5015 if (ISPRINT (c))
252b5132
RH
5016 sprintf (output_invalid_buf, "'%c'", c);
5017 else
5018 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
5019 return output_invalid_buf;
5020}
5021
af6bdddf 5022/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
5023
5024static const reg_entry *
5025parse_register (reg_string, end_op)
5026 char *reg_string;
5027 char **end_op;
5028{
af6bdddf
AM
5029 char *s = reg_string;
5030 char *p;
252b5132
RH
5031 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5032 const reg_entry *r;
5033
5034 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5035 if (*s == REGISTER_PREFIX)
5036 ++s;
5037
5038 if (is_space_char (*s))
5039 ++s;
5040
5041 p = reg_name_given;
af6bdddf 5042 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5043 {
5044 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5045 return (const reg_entry *) NULL;
5046 s++;
252b5132
RH
5047 }
5048
6588847e
DN
5049 /* For naked regs, make sure that we are not dealing with an identifier.
5050 This prevents confusing an identifier like `eax_var' with register
5051 `eax'. */
5052 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5053 return (const reg_entry *) NULL;
5054
af6bdddf 5055 *end_op = s;
252b5132
RH
5056
5057 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5058
5f47d35b 5059 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5060 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5061 {
5f47d35b
AM
5062 if (is_space_char (*s))
5063 ++s;
5064 if (*s == '(')
5065 {
af6bdddf 5066 ++s;
5f47d35b
AM
5067 if (is_space_char (*s))
5068 ++s;
5069 if (*s >= '0' && *s <= '7')
5070 {
5071 r = &i386_float_regtab[*s - '0'];
af6bdddf 5072 ++s;
5f47d35b
AM
5073 if (is_space_char (*s))
5074 ++s;
5075 if (*s == ')')
5076 {
5077 *end_op = s + 1;
5078 return r;
5079 }
5f47d35b 5080 }
47926f60 5081 /* We have "%st(" then garbage. */
5f47d35b
AM
5082 return (const reg_entry *) NULL;
5083 }
5084 }
5085
1ae00879 5086 if (r != NULL
20f0a1fc 5087 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
c4a530c5 5088 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
1ae00879 5089 && flag_code != CODE_64BIT)
20f0a1fc 5090 return (const reg_entry *) NULL;
1ae00879 5091
252b5132
RH
5092 return r;
5093}
5094\f
4cc782b5 5095#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5096const char *md_shortopts = "kVQ:sqn";
252b5132 5097#else
12b55ccc 5098const char *md_shortopts = "qn";
252b5132 5099#endif
6e0b89ee 5100
252b5132 5101struct option md_longopts[] = {
3e73aa7c
JH
5102#define OPTION_32 (OPTION_MD_BASE + 0)
5103 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5104#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
5105#define OPTION_64 (OPTION_MD_BASE + 1)
5106 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5107#endif
252b5132
RH
5108 {NULL, no_argument, NULL, 0}
5109};
5110size_t md_longopts_size = sizeof (md_longopts);
5111
5112int
5113md_parse_option (c, arg)
5114 int c;
ab9da554 5115 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5116{
5117 switch (c)
5118 {
12b55ccc
L
5119 case 'n':
5120 optimize_align_code = 0;
5121 break;
5122
a38cf1db
AM
5123 case 'q':
5124 quiet_warnings = 1;
252b5132
RH
5125 break;
5126
5127#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5128 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5129 should be emitted or not. FIXME: Not implemented. */
5130 case 'Q':
252b5132
RH
5131 break;
5132
5133 /* -V: SVR4 argument to print version ID. */
5134 case 'V':
5135 print_version_id ();
5136 break;
5137
a38cf1db
AM
5138 /* -k: Ignore for FreeBSD compatibility. */
5139 case 'k':
252b5132 5140 break;
4cc782b5
ILT
5141
5142 case 's':
5143 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5144 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5145 break;
6e0b89ee 5146
3e73aa7c
JH
5147 case OPTION_64:
5148 {
5149 const char **list, **l;
5150
3e73aa7c
JH
5151 list = bfd_target_list ();
5152 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5153 if (strcmp (*l, "elf64-x86-64") == 0)
5154 {
5155 default_arch = "x86_64";
5156 break;
5157 }
3e73aa7c 5158 if (*l == NULL)
6e0b89ee 5159 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5160 free (list);
5161 }
5162 break;
5163#endif
252b5132 5164
6e0b89ee
AM
5165 case OPTION_32:
5166 default_arch = "i386";
5167 break;
5168
252b5132
RH
5169 default:
5170 return 0;
5171 }
5172 return 1;
5173}
5174
5175void
5176md_show_usage (stream)
5177 FILE *stream;
5178{
4cc782b5
ILT
5179#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5180 fprintf (stream, _("\
a38cf1db
AM
5181 -Q ignored\n\
5182 -V print assembler version number\n\
5183 -k ignored\n\
12b55ccc 5184 -n Do not optimize code alignment\n\
a38cf1db
AM
5185 -q quieten some warnings\n\
5186 -s ignored\n"));
5187#else
5188 fprintf (stream, _("\
12b55ccc 5189 -n Do not optimize code alignment\n\
a38cf1db 5190 -q quieten some warnings\n"));
4cc782b5 5191#endif
252b5132
RH
5192}
5193
3e73aa7c
JH
5194#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5195 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5196
5197/* Pick the target format to use. */
5198
47926f60 5199const char *
252b5132
RH
5200i386_target_format ()
5201{
3e73aa7c
JH
5202 if (!strcmp (default_arch, "x86_64"))
5203 set_code_flag (CODE_64BIT);
5204 else if (!strcmp (default_arch, "i386"))
5205 set_code_flag (CODE_32BIT);
5206 else
5207 as_fatal (_("Unknown architecture"));
252b5132
RH
5208 switch (OUTPUT_FLAVOR)
5209 {
4c63da97
AM
5210#ifdef OBJ_MAYBE_AOUT
5211 case bfd_target_aout_flavour:
47926f60 5212 return AOUT_TARGET_FORMAT;
4c63da97
AM
5213#endif
5214#ifdef OBJ_MAYBE_COFF
252b5132
RH
5215 case bfd_target_coff_flavour:
5216 return "coff-i386";
4c63da97 5217#endif
3e73aa7c 5218#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5219 case bfd_target_elf_flavour:
3e73aa7c 5220 {
e5cb08ac
KH
5221 if (flag_code == CODE_64BIT)
5222 use_rela_relocations = 1;
4ada7262 5223 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5224 }
4c63da97 5225#endif
252b5132
RH
5226 default:
5227 abort ();
5228 return NULL;
5229 }
5230}
5231
47926f60 5232#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5233
5234#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5235void i386_elf_emit_arch_note ()
5236{
5237 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5238 && cpu_arch_name != NULL)
5239 {
5240 char *p;
5241 asection *seg = now_seg;
5242 subsegT subseg = now_subseg;
5243 Elf_Internal_Note i_note;
5244 Elf_External_Note e_note;
5245 asection *note_secp;
5246 int len;
5247
5248 /* Create the .note section. */
5249 note_secp = subseg_new (".note", 0);
5250 bfd_set_section_flags (stdoutput,
5251 note_secp,
5252 SEC_HAS_CONTENTS | SEC_READONLY);
5253
5254 /* Process the arch string. */
5255 len = strlen (cpu_arch_name);
5256
5257 i_note.namesz = len + 1;
5258 i_note.descsz = 0;
5259 i_note.type = NT_ARCH;
5260 p = frag_more (sizeof (e_note.namesz));
5261 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5262 p = frag_more (sizeof (e_note.descsz));
5263 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5264 p = frag_more (sizeof (e_note.type));
5265 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5266 p = frag_more (len + 1);
5267 strcpy (p, cpu_arch_name);
5268
5269 frag_align (2, 0, 0);
5270
5271 subseg_set (seg, subseg);
5272 }
5273}
5274#endif
252b5132 5275\f
252b5132
RH
5276symbolS *
5277md_undefined_symbol (name)
5278 char *name;
5279{
18dc2407
ILT
5280 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5281 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5282 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5283 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5284 {
5285 if (!GOT_symbol)
5286 {
5287 if (symbol_find (name))
5288 as_bad (_("GOT already in symbol table"));
5289 GOT_symbol = symbol_new (name, undefined_section,
5290 (valueT) 0, &zero_address_frag);
5291 };
5292 return GOT_symbol;
5293 }
252b5132
RH
5294 return 0;
5295}
5296
5297/* Round up a section size to the appropriate boundary. */
47926f60 5298
252b5132
RH
5299valueT
5300md_section_align (segment, size)
ab9da554 5301 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5302 valueT size;
5303{
4c63da97
AM
5304#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5305 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5306 {
5307 /* For a.out, force the section size to be aligned. If we don't do
5308 this, BFD will align it for us, but it will not write out the
5309 final bytes of the section. This may be a bug in BFD, but it is
5310 easier to fix it here since that is how the other a.out targets
5311 work. */
5312 int align;
5313
5314 align = bfd_get_section_alignment (stdoutput, segment);
5315 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5316 }
252b5132
RH
5317#endif
5318
5319 return size;
5320}
5321
5322/* On the i386, PC-relative offsets are relative to the start of the
5323 next instruction. That is, the address of the offset, plus its
5324 size, since the offset is always the last part of the insn. */
5325
5326long
5327md_pcrel_from (fixP)
5328 fixS *fixP;
5329{
5330 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5331}
5332
5333#ifndef I386COFF
5334
5335static void
5336s_bss (ignore)
ab9da554 5337 int ignore ATTRIBUTE_UNUSED;
252b5132 5338{
29b0f896 5339 int temp;
252b5132 5340
8a75718c
JB
5341#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5342 if (IS_ELF)
5343 obj_elf_section_change_hook ();
5344#endif
252b5132
RH
5345 temp = get_absolute_expression ();
5346 subseg_set (bss_section, (subsegT) temp);
5347 demand_empty_rest_of_line ();
5348}
5349
5350#endif
5351
252b5132
RH
5352void
5353i386_validate_fix (fixp)
5354 fixS *fixp;
5355{
5356 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5357 {
23df1078
JH
5358 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5359 {
5360 if (flag_code != CODE_64BIT)
5361 abort ();
5362 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5363 }
5364 else
5365 {
d6ab8113
JB
5366 if (flag_code != CODE_64BIT)
5367 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5368 else
5369 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 5370 }
252b5132
RH
5371 fixp->fx_subsy = 0;
5372 }
5373}
5374
252b5132
RH
5375arelent *
5376tc_gen_reloc (section, fixp)
ab9da554 5377 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5378 fixS *fixp;
5379{
5380 arelent *rel;
5381 bfd_reloc_code_real_type code;
5382
5383 switch (fixp->fx_r_type)
5384 {
3e73aa7c
JH
5385 case BFD_RELOC_X86_64_PLT32:
5386 case BFD_RELOC_X86_64_GOT32:
5387 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5388 case BFD_RELOC_386_PLT32:
5389 case BFD_RELOC_386_GOT32:
5390 case BFD_RELOC_386_GOTOFF:
5391 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5392 case BFD_RELOC_386_TLS_GD:
5393 case BFD_RELOC_386_TLS_LDM:
5394 case BFD_RELOC_386_TLS_LDO_32:
5395 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5396 case BFD_RELOC_386_TLS_IE:
5397 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5398 case BFD_RELOC_386_TLS_LE_32:
5399 case BFD_RELOC_386_TLS_LE:
bffbf940
JJ
5400 case BFD_RELOC_X86_64_TLSGD:
5401 case BFD_RELOC_X86_64_TLSLD:
5402 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 5403 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
5404 case BFD_RELOC_X86_64_GOTTPOFF:
5405 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
5406 case BFD_RELOC_X86_64_TPOFF64:
5407 case BFD_RELOC_X86_64_GOTOFF64:
5408 case BFD_RELOC_X86_64_GOTPC32:
252b5132
RH
5409 case BFD_RELOC_RVA:
5410 case BFD_RELOC_VTABLE_ENTRY:
5411 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5412#ifdef TE_PE
5413 case BFD_RELOC_32_SECREL:
5414#endif
252b5132
RH
5415 code = fixp->fx_r_type;
5416 break;
dbbaec26
L
5417 case BFD_RELOC_X86_64_32S:
5418 if (!fixp->fx_pcrel)
5419 {
5420 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5421 code = fixp->fx_r_type;
5422 break;
5423 }
252b5132 5424 default:
93382f6d 5425 if (fixp->fx_pcrel)
252b5132 5426 {
93382f6d
AM
5427 switch (fixp->fx_size)
5428 {
5429 default:
b091f402
AM
5430 as_bad_where (fixp->fx_file, fixp->fx_line,
5431 _("can not do %d byte pc-relative relocation"),
5432 fixp->fx_size);
93382f6d
AM
5433 code = BFD_RELOC_32_PCREL;
5434 break;
5435 case 1: code = BFD_RELOC_8_PCREL; break;
5436 case 2: code = BFD_RELOC_16_PCREL; break;
5437 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
5438#ifdef BFD64
5439 case 8: code = BFD_RELOC_64_PCREL; break;
5440#endif
93382f6d
AM
5441 }
5442 }
5443 else
5444 {
5445 switch (fixp->fx_size)
5446 {
5447 default:
b091f402
AM
5448 as_bad_where (fixp->fx_file, fixp->fx_line,
5449 _("can not do %d byte relocation"),
5450 fixp->fx_size);
93382f6d
AM
5451 code = BFD_RELOC_32;
5452 break;
5453 case 1: code = BFD_RELOC_8; break;
5454 case 2: code = BFD_RELOC_16; break;
5455 case 4: code = BFD_RELOC_32; break;
937149dd 5456#ifdef BFD64
3e73aa7c 5457 case 8: code = BFD_RELOC_64; break;
937149dd 5458#endif
93382f6d 5459 }
252b5132
RH
5460 }
5461 break;
5462 }
252b5132 5463
d6ab8113 5464 if ((code == BFD_RELOC_32 || code == BFD_RELOC_32_PCREL)
252b5132
RH
5465 && GOT_symbol
5466 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 5467 {
d6ab8113
JB
5468 if (flag_code != CODE_64BIT)
5469 code = BFD_RELOC_386_GOTPC;
5470 else
5471 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 5472 }
252b5132
RH
5473
5474 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5475 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5476 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5477
5478 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 5479
3e73aa7c
JH
5480 if (!use_rela_relocations)
5481 {
5482 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5483 vtable entry to be used in the relocation's section offset. */
5484 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5485 rel->address = fixp->fx_offset;
252b5132 5486
c6682705 5487 rel->addend = 0;
3e73aa7c
JH
5488 }
5489 /* Use the rela in 64bit mode. */
252b5132 5490 else
3e73aa7c 5491 {
062cd5e7
AS
5492 if (!fixp->fx_pcrel)
5493 rel->addend = fixp->fx_offset;
5494 else
5495 switch (code)
5496 {
5497 case BFD_RELOC_X86_64_PLT32:
5498 case BFD_RELOC_X86_64_GOT32:
5499 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5500 case BFD_RELOC_X86_64_TLSGD:
5501 case BFD_RELOC_X86_64_TLSLD:
5502 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5503 rel->addend = fixp->fx_offset - fixp->fx_size;
5504 break;
5505 default:
5506 rel->addend = (section->vma
5507 - fixp->fx_size
5508 + fixp->fx_addnumber
5509 + md_pcrel_from (fixp));
5510 break;
5511 }
3e73aa7c
JH
5512 }
5513
252b5132
RH
5514 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5515 if (rel->howto == NULL)
5516 {
5517 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5518 _("cannot represent relocation type %s"),
252b5132
RH
5519 bfd_get_reloc_code_name (code));
5520 /* Set howto to a garbage value so that we can keep going. */
5521 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5522 assert (rel->howto != NULL);
5523 }
5524
5525 return rel;
5526}
5527
64a0c779
DN
5528\f
5529/* Parse operands using Intel syntax. This implements a recursive descent
5530 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5531 Programmer's Guide.
5532
5533 FIXME: We do not recognize the full operand grammar defined in the MASM
5534 documentation. In particular, all the structure/union and
5535 high-level macro operands are missing.
5536
5537 Uppercase words are terminals, lower case words are non-terminals.
5538 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5539 bars '|' denote choices. Most grammar productions are implemented in
5540 functions called 'intel_<production>'.
5541
5542 Initial production is 'expr'.
5543
9306ca4a 5544 addOp + | -
64a0c779
DN
5545
5546 alpha [a-zA-Z]
5547
9306ca4a
JB
5548 binOp & | AND | \| | OR | ^ | XOR
5549
64a0c779
DN
5550 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5551
5552 constant digits [[ radixOverride ]]
5553
9306ca4a 5554 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5555
5556 digits decdigit
b77a7acd
AJ
5557 | digits decdigit
5558 | digits hexdigit
64a0c779
DN
5559
5560 decdigit [0-9]
5561
9306ca4a
JB
5562 e04 e04 addOp e05
5563 | e05
5564
5565 e05 e05 binOp e06
b77a7acd 5566 | e06
64a0c779
DN
5567
5568 e06 e06 mulOp e09
b77a7acd 5569 | e09
64a0c779
DN
5570
5571 e09 OFFSET e10
a724f0f4
JB
5572 | SHORT e10
5573 | + e10
5574 | - e10
9306ca4a
JB
5575 | ~ e10
5576 | NOT e10
64a0c779
DN
5577 | e09 PTR e10
5578 | e09 : e10
5579 | e10
5580
5581 e10 e10 [ expr ]
b77a7acd 5582 | e11
64a0c779
DN
5583
5584 e11 ( expr )
b77a7acd 5585 | [ expr ]
64a0c779
DN
5586 | constant
5587 | dataType
5588 | id
5589 | $
5590 | register
5591
a724f0f4 5592 => expr expr cmpOp e04
9306ca4a 5593 | e04
64a0c779
DN
5594
5595 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5596 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5597
5598 hexdigit a | b | c | d | e | f
b77a7acd 5599 | A | B | C | D | E | F
64a0c779
DN
5600
5601 id alpha
b77a7acd 5602 | id alpha
64a0c779
DN
5603 | id decdigit
5604
9306ca4a 5605 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5606
5607 quote " | '
5608
5609 register specialRegister
b77a7acd 5610 | gpRegister
64a0c779
DN
5611 | byteRegister
5612
5613 segmentRegister CS | DS | ES | FS | GS | SS
5614
9306ca4a 5615 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5616 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5617 | TR3 | TR4 | TR5 | TR6 | TR7
5618
64a0c779
DN
5619 We simplify the grammar in obvious places (e.g., register parsing is
5620 done by calling parse_register) and eliminate immediate left recursion
5621 to implement a recursive-descent parser.
5622
a724f0f4
JB
5623 expr e04 expr'
5624
5625 expr' cmpOp e04 expr'
5626 | Empty
9306ca4a
JB
5627
5628 e04 e05 e04'
5629
5630 e04' addOp e05 e04'
5631 | Empty
64a0c779
DN
5632
5633 e05 e06 e05'
5634
9306ca4a 5635 e05' binOp e06 e05'
b77a7acd 5636 | Empty
64a0c779
DN
5637
5638 e06 e09 e06'
5639
5640 e06' mulOp e09 e06'
b77a7acd 5641 | Empty
64a0c779
DN
5642
5643 e09 OFFSET e10 e09'
a724f0f4
JB
5644 | SHORT e10'
5645 | + e10'
5646 | - e10'
5647 | ~ e10'
5648 | NOT e10'
b77a7acd 5649 | e10 e09'
64a0c779
DN
5650
5651 e09' PTR e10 e09'
b77a7acd 5652 | : e10 e09'
64a0c779
DN
5653 | Empty
5654
5655 e10 e11 e10'
5656
5657 e10' [ expr ] e10'
b77a7acd 5658 | Empty
64a0c779
DN
5659
5660 e11 ( expr )
b77a7acd 5661 | [ expr ]
64a0c779
DN
5662 | BYTE
5663 | WORD
5664 | DWORD
9306ca4a 5665 | FWORD
64a0c779 5666 | QWORD
9306ca4a
JB
5667 | TBYTE
5668 | OWORD
5669 | XMMWORD
64a0c779
DN
5670 | .
5671 | $
5672 | register
5673 | id
5674 | constant */
5675
5676/* Parsing structure for the intel syntax parser. Used to implement the
5677 semantic actions for the operand grammar. */
5678struct intel_parser_s
5679 {
5680 char *op_string; /* The string being parsed. */
5681 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5682 int op_modifier; /* Operand modifier. */
64a0c779 5683 int is_mem; /* 1 if operand is memory reference. */
a724f0f4
JB
5684 int in_offset; /* >=1 if parsing operand of offset. */
5685 int in_bracket; /* >=1 if parsing operand in brackets. */
64a0c779
DN
5686 const reg_entry *reg; /* Last register reference found. */
5687 char *disp; /* Displacement string being built. */
a724f0f4 5688 char *next_operand; /* Resume point when splitting operands. */
64a0c779
DN
5689 };
5690
5691static struct intel_parser_s intel_parser;
5692
5693/* Token structure for parsing intel syntax. */
5694struct intel_token
5695 {
5696 int code; /* Token code. */
5697 const reg_entry *reg; /* Register entry for register tokens. */
5698 char *str; /* String representation. */
5699 };
5700
5701static struct intel_token cur_token, prev_token;
5702
50705ef4
AM
5703/* Token codes for the intel parser. Since T_SHORT is already used
5704 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5705#define T_NIL -1
5706#define T_CONST 1
5707#define T_REG 2
5708#define T_BYTE 3
5709#define T_WORD 4
9306ca4a
JB
5710#define T_DWORD 5
5711#define T_FWORD 6
5712#define T_QWORD 7
5713#define T_TBYTE 8
5714#define T_XMMWORD 9
50705ef4 5715#undef T_SHORT
9306ca4a
JB
5716#define T_SHORT 10
5717#define T_OFFSET 11
5718#define T_PTR 12
5719#define T_ID 13
5720#define T_SHL 14
5721#define T_SHR 15
64a0c779
DN
5722
5723/* Prototypes for intel parser functions. */
5724static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5725static void intel_get_token PARAMS ((void));
5726static void intel_putback_token PARAMS ((void));
5727static int intel_expr PARAMS ((void));
9306ca4a 5728static int intel_e04 PARAMS ((void));
cce0cbdc 5729static int intel_e05 PARAMS ((void));
cce0cbdc 5730static int intel_e06 PARAMS ((void));
cce0cbdc 5731static int intel_e09 PARAMS ((void));
a724f0f4 5732static int intel_bracket_expr PARAMS ((void));
cce0cbdc 5733static int intel_e10 PARAMS ((void));
cce0cbdc 5734static int intel_e11 PARAMS ((void));
64a0c779 5735
64a0c779
DN
5736static int
5737i386_intel_operand (operand_string, got_a_float)
5738 char *operand_string;
5739 int got_a_float;
5740{
5741 int ret;
5742 char *p;
5743
a724f0f4
JB
5744 p = intel_parser.op_string = xstrdup (operand_string);
5745 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
5746
5747 for (;;)
64a0c779 5748 {
a724f0f4
JB
5749 /* Initialize token holders. */
5750 cur_token.code = prev_token.code = T_NIL;
5751 cur_token.reg = prev_token.reg = NULL;
5752 cur_token.str = prev_token.str = NULL;
5753
5754 /* Initialize parser structure. */
5755 intel_parser.got_a_float = got_a_float;
5756 intel_parser.op_modifier = 0;
5757 intel_parser.is_mem = 0;
5758 intel_parser.in_offset = 0;
5759 intel_parser.in_bracket = 0;
5760 intel_parser.reg = NULL;
5761 intel_parser.disp[0] = '\0';
5762 intel_parser.next_operand = NULL;
5763
5764 /* Read the first token and start the parser. */
5765 intel_get_token ();
5766 ret = intel_expr ();
5767
5768 if (!ret)
5769 break;
5770
9306ca4a
JB
5771 if (cur_token.code != T_NIL)
5772 {
5773 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5774 current_templates->start->name, cur_token.str);
5775 ret = 0;
5776 }
64a0c779
DN
5777 /* If we found a memory reference, hand it over to i386_displacement
5778 to fill in the rest of the operand fields. */
9306ca4a 5779 else if (intel_parser.is_mem)
64a0c779
DN
5780 {
5781 if ((i.mem_operands == 1
5782 && (current_templates->start->opcode_modifier & IsString) == 0)
5783 || i.mem_operands == 2)
5784 {
5785 as_bad (_("too many memory references for '%s'"),
5786 current_templates->start->name);
5787 ret = 0;
5788 }
5789 else
5790 {
5791 char *s = intel_parser.disp;
5792 i.mem_operands++;
5793
a724f0f4
JB
5794 if (!quiet_warnings && intel_parser.is_mem < 0)
5795 /* See the comments in intel_bracket_expr. */
5796 as_warn (_("Treating `%s' as memory reference"), operand_string);
5797
64a0c779
DN
5798 /* Add the displacement expression. */
5799 if (*s != '\0')
a4622f40
AM
5800 ret = i386_displacement (s, s + strlen (s));
5801 if (ret)
a724f0f4
JB
5802 {
5803 /* Swap base and index in 16-bit memory operands like
5804 [si+bx]. Since i386_index_check is also used in AT&T
5805 mode we have to do that here. */
5806 if (i.base_reg
5807 && i.index_reg
5808 && (i.base_reg->reg_type & Reg16)
5809 && (i.index_reg->reg_type & Reg16)
5810 && i.base_reg->reg_num >= 6
5811 && i.index_reg->reg_num < 6)
5812 {
5813 const reg_entry *base = i.index_reg;
5814
5815 i.index_reg = i.base_reg;
5816 i.base_reg = base;
5817 }
5818 ret = i386_index_check (operand_string);
5819 }
64a0c779
DN
5820 }
5821 }
5822
5823 /* Constant and OFFSET expressions are handled by i386_immediate. */
a724f0f4 5824 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
64a0c779
DN
5825 || intel_parser.reg == NULL)
5826 ret = i386_immediate (intel_parser.disp);
a724f0f4
JB
5827
5828 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
5829 ret = 0;
5830 if (!ret || !intel_parser.next_operand)
5831 break;
5832 intel_parser.op_string = intel_parser.next_operand;
5833 this_operand = i.operands++;
64a0c779
DN
5834 }
5835
5836 free (p);
5837 free (intel_parser.disp);
5838
5839 return ret;
5840}
5841
a724f0f4
JB
5842#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
5843
5844/* expr e04 expr'
5845
5846 expr' cmpOp e04 expr'
5847 | Empty */
64a0c779
DN
5848static int
5849intel_expr ()
5850{
a724f0f4
JB
5851 /* XXX Implement the comparison operators. */
5852 return intel_e04 ();
9306ca4a
JB
5853}
5854
a724f0f4 5855/* e04 e05 e04'
9306ca4a 5856
a724f0f4 5857 e04' addOp e05 e04'
9306ca4a
JB
5858 | Empty */
5859static int
5860intel_e04 ()
5861{
a724f0f4 5862 int nregs = -1;
9306ca4a 5863
a724f0f4 5864 for (;;)
9306ca4a 5865 {
a724f0f4
JB
5866 if (!intel_e05())
5867 return 0;
9306ca4a 5868
a724f0f4
JB
5869 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5870 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
9306ca4a 5871
a724f0f4
JB
5872 if (cur_token.code == '+')
5873 nregs = -1;
5874 else if (cur_token.code == '-')
5875 nregs = NUM_ADDRESS_REGS;
5876 else
5877 return 1;
64a0c779 5878
a724f0f4
JB
5879 strcat (intel_parser.disp, cur_token.str);
5880 intel_match_token (cur_token.code);
5881 }
64a0c779
DN
5882}
5883
64a0c779
DN
5884/* e05 e06 e05'
5885
9306ca4a 5886 e05' binOp e06 e05'
64a0c779
DN
5887 | Empty */
5888static int
5889intel_e05 ()
5890{
a724f0f4 5891 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5892
a724f0f4 5893 for (;;)
64a0c779 5894 {
a724f0f4
JB
5895 if (!intel_e06())
5896 return 0;
5897
5898 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5899 {
5900 char str[2];
5901
5902 str[0] = cur_token.code;
5903 str[1] = 0;
5904 strcat (intel_parser.disp, str);
5905 }
5906 else
5907 break;
9306ca4a 5908
64a0c779
DN
5909 intel_match_token (cur_token.code);
5910
a724f0f4
JB
5911 if (nregs < 0)
5912 nregs = ~nregs;
64a0c779 5913 }
a724f0f4
JB
5914 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5915 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
5916 return 1;
4a1805b1 5917}
64a0c779
DN
5918
5919/* e06 e09 e06'
5920
5921 e06' mulOp e09 e06'
b77a7acd 5922 | Empty */
64a0c779
DN
5923static int
5924intel_e06 ()
5925{
a724f0f4 5926 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 5927
a724f0f4 5928 for (;;)
64a0c779 5929 {
a724f0f4
JB
5930 if (!intel_e09())
5931 return 0;
9306ca4a 5932
a724f0f4
JB
5933 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5934 {
5935 char str[2];
9306ca4a 5936
a724f0f4
JB
5937 str[0] = cur_token.code;
5938 str[1] = 0;
5939 strcat (intel_parser.disp, str);
5940 }
5941 else if (cur_token.code == T_SHL)
5942 strcat (intel_parser.disp, "<<");
5943 else if (cur_token.code == T_SHR)
5944 strcat (intel_parser.disp, ">>");
5945 else
5946 break;
9306ca4a 5947
a724f0f4 5948 intel_match_token (cur_token.code);
64a0c779 5949
a724f0f4
JB
5950 if (nregs < 0)
5951 nregs = ~nregs;
64a0c779 5952 }
a724f0f4
JB
5953 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5954 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
5955 return 1;
64a0c779
DN
5956}
5957
a724f0f4
JB
5958/* e09 OFFSET e09
5959 | SHORT e09
5960 | + e09
5961 | - e09
5962 | ~ e09
5963 | NOT e09
9306ca4a
JB
5964 | e10 e09'
5965
64a0c779 5966 e09' PTR e10 e09'
b77a7acd 5967 | : e10 e09'
64a0c779
DN
5968 | Empty */
5969static int
5970intel_e09 ()
5971{
a724f0f4
JB
5972 int nregs = ~NUM_ADDRESS_REGS;
5973 int in_offset = 0;
5974
5975 for (;;)
64a0c779 5976 {
a724f0f4
JB
5977 /* Don't consume constants here. */
5978 if (cur_token.code == '+' || cur_token.code == '-')
5979 {
5980 /* Need to look one token ahead - if the next token
5981 is a constant, the current token is its sign. */
5982 int next_code;
5983
5984 intel_match_token (cur_token.code);
5985 next_code = cur_token.code;
5986 intel_putback_token ();
5987 if (next_code == T_CONST)
5988 break;
5989 }
5990
5991 /* e09 OFFSET e09 */
5992 if (cur_token.code == T_OFFSET)
5993 {
5994 if (!in_offset++)
5995 ++intel_parser.in_offset;
5996 }
5997
5998 /* e09 SHORT e09 */
5999 else if (cur_token.code == T_SHORT)
6000 intel_parser.op_modifier |= 1 << T_SHORT;
6001
6002 /* e09 + e09 */
6003 else if (cur_token.code == '+')
6004 strcat (intel_parser.disp, "+");
6005
6006 /* e09 - e09
6007 | ~ e09
6008 | NOT e09 */
6009 else if (cur_token.code == '-' || cur_token.code == '~')
6010 {
6011 char str[2];
64a0c779 6012
a724f0f4
JB
6013 if (nregs < 0)
6014 nregs = ~nregs;
6015 str[0] = cur_token.code;
6016 str[1] = 0;
6017 strcat (intel_parser.disp, str);
6018 }
6019
6020 /* e09 e10 e09' */
6021 else
6022 break;
6023
6024 intel_match_token (cur_token.code);
64a0c779
DN
6025 }
6026
a724f0f4 6027 for (;;)
9306ca4a 6028 {
a724f0f4
JB
6029 if (!intel_e10 ())
6030 return 0;
9306ca4a 6031
a724f0f4
JB
6032 /* e09' PTR e10 e09' */
6033 if (cur_token.code == T_PTR)
6034 {
6035 char suffix;
9306ca4a 6036
a724f0f4
JB
6037 if (prev_token.code == T_BYTE)
6038 suffix = BYTE_MNEM_SUFFIX;
9306ca4a 6039
a724f0f4
JB
6040 else if (prev_token.code == T_WORD)
6041 {
6042 if (current_templates->start->name[0] == 'l'
6043 && current_templates->start->name[2] == 's'
6044 && current_templates->start->name[3] == 0)
6045 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6046 else if (intel_parser.got_a_float == 2) /* "fi..." */
6047 suffix = SHORT_MNEM_SUFFIX;
6048 else
6049 suffix = WORD_MNEM_SUFFIX;
6050 }
64a0c779 6051
a724f0f4
JB
6052 else if (prev_token.code == T_DWORD)
6053 {
6054 if (current_templates->start->name[0] == 'l'
6055 && current_templates->start->name[2] == 's'
6056 && current_templates->start->name[3] == 0)
6057 suffix = WORD_MNEM_SUFFIX;
6058 else if (flag_code == CODE_16BIT
6059 && (current_templates->start->opcode_modifier
6060 & (Jump|JumpDword|JumpInterSegment)))
6061 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6062 else if (intel_parser.got_a_float == 1) /* "f..." */
6063 suffix = SHORT_MNEM_SUFFIX;
6064 else
6065 suffix = LONG_MNEM_SUFFIX;
6066 }
9306ca4a 6067
a724f0f4
JB
6068 else if (prev_token.code == T_FWORD)
6069 {
6070 if (current_templates->start->name[0] == 'l'
6071 && current_templates->start->name[2] == 's'
6072 && current_templates->start->name[3] == 0)
6073 suffix = LONG_MNEM_SUFFIX;
6074 else if (!intel_parser.got_a_float)
6075 {
6076 if (flag_code == CODE_16BIT)
6077 add_prefix (DATA_PREFIX_OPCODE);
6078 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6079 }
6080 else
6081 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6082 }
64a0c779 6083
a724f0f4
JB
6084 else if (prev_token.code == T_QWORD)
6085 {
6086 if (intel_parser.got_a_float == 1) /* "f..." */
6087 suffix = LONG_MNEM_SUFFIX;
6088 else
6089 suffix = QWORD_MNEM_SUFFIX;
6090 }
64a0c779 6091
a724f0f4
JB
6092 else if (prev_token.code == T_TBYTE)
6093 {
6094 if (intel_parser.got_a_float == 1)
6095 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6096 else
6097 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6098 }
9306ca4a 6099
a724f0f4 6100 else if (prev_token.code == T_XMMWORD)
9306ca4a 6101 {
a724f0f4
JB
6102 /* XXX ignored for now, but accepted since gcc uses it */
6103 suffix = 0;
9306ca4a 6104 }
64a0c779 6105
f16b83df 6106 else
a724f0f4
JB
6107 {
6108 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6109 return 0;
6110 }
6111
6112 if (current_templates->start->base_opcode == 0x8d /* lea */)
6113 ;
6114 else if (!i.suffix)
6115 i.suffix = suffix;
6116 else if (i.suffix != suffix)
6117 {
6118 as_bad (_("Conflicting operand modifiers"));
6119 return 0;
6120 }
64a0c779 6121
9306ca4a
JB
6122 }
6123
a724f0f4
JB
6124 /* e09' : e10 e09' */
6125 else if (cur_token.code == ':')
9306ca4a 6126 {
a724f0f4
JB
6127 if (prev_token.code != T_REG)
6128 {
6129 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6130 segment/group identifier (which we don't have), using comma
6131 as the operand separator there is even less consistent, since
6132 there all branches only have a single operand. */
6133 if (this_operand != 0
6134 || intel_parser.in_offset
6135 || intel_parser.in_bracket
6136 || (!(current_templates->start->opcode_modifier
6137 & (Jump|JumpDword|JumpInterSegment))
6138 && !(current_templates->start->operand_types[0]
6139 & JumpAbsolute)))
6140 return intel_match_token (T_NIL);
6141 /* Remember the start of the 2nd operand and terminate 1st
6142 operand here.
6143 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6144 another expression), but it gets at least the simplest case
6145 (a plain number or symbol on the left side) right. */
6146 intel_parser.next_operand = intel_parser.op_string;
6147 *--intel_parser.op_string = '\0';
6148 return intel_match_token (':');
6149 }
9306ca4a 6150 }
64a0c779 6151
a724f0f4 6152 /* e09' Empty */
64a0c779 6153 else
a724f0f4 6154 break;
64a0c779 6155
a724f0f4
JB
6156 intel_match_token (cur_token.code);
6157
6158 }
6159
6160 if (in_offset)
6161 {
6162 --intel_parser.in_offset;
6163 if (nregs < 0)
6164 nregs = ~nregs;
6165 if (NUM_ADDRESS_REGS > nregs)
9306ca4a 6166 {
a724f0f4 6167 as_bad (_("Invalid operand to `OFFSET'"));
9306ca4a
JB
6168 return 0;
6169 }
a724f0f4
JB
6170 intel_parser.op_modifier |= 1 << T_OFFSET;
6171 }
9306ca4a 6172
a724f0f4
JB
6173 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6174 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6175 return 1;
6176}
64a0c779 6177
a724f0f4
JB
6178static int
6179intel_bracket_expr ()
6180{
6181 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6182 const char *start = intel_parser.op_string;
6183 int len;
6184
6185 if (i.op[this_operand].regs)
6186 return intel_match_token (T_NIL);
6187
6188 intel_match_token ('[');
6189
6190 /* Mark as a memory operand only if it's not already known to be an
6191 offset expression. If it's an offset expression, we need to keep
6192 the brace in. */
6193 if (!intel_parser.in_offset)
6194 {
6195 ++intel_parser.in_bracket;
6196 /* Unfortunately gas always diverged from MASM in a respect that can't
6197 be easily fixed without risking to break code sequences likely to be
6198 encountered (the testsuite even check for this): MASM doesn't consider
6199 an expression inside brackets unconditionally as a memory reference.
6200 When that is e.g. a constant, an offset expression, or the sum of the
6201 two, this is still taken as a constant load. gas, however, always
6202 treated these as memory references. As a compromise, we'll try to make
6203 offset expressions inside brackets work the MASM way (since that's
6204 less likely to be found in real world code), but make constants alone
6205 continue to work the traditional gas way. In either case, issue a
6206 warning. */
6207 intel_parser.op_modifier &= ~was_offset;
64a0c779 6208 }
a724f0f4
JB
6209 else
6210 strcat (intel_parser.disp, "[");
6211
6212 /* Add a '+' to the displacement string if necessary. */
6213 if (*intel_parser.disp != '\0'
6214 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6215 strcat (intel_parser.disp, "+");
64a0c779 6216
a724f0f4
JB
6217 if (intel_expr ()
6218 && (len = intel_parser.op_string - start - 1,
6219 intel_match_token (']')))
64a0c779 6220 {
a724f0f4
JB
6221 /* Preserve brackets when the operand is an offset expression. */
6222 if (intel_parser.in_offset)
6223 strcat (intel_parser.disp, "]");
6224 else
6225 {
6226 --intel_parser.in_bracket;
6227 if (i.base_reg || i.index_reg)
6228 intel_parser.is_mem = 1;
6229 if (!intel_parser.is_mem)
6230 {
6231 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6232 /* Defer the warning until all of the operand was parsed. */
6233 intel_parser.is_mem = -1;
6234 else if (!quiet_warnings)
6235 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6236 }
6237 }
6238 intel_parser.op_modifier |= was_offset;
64a0c779 6239
a724f0f4 6240 return 1;
64a0c779 6241 }
a724f0f4 6242 return 0;
64a0c779
DN
6243}
6244
6245/* e10 e11 e10'
6246
6247 e10' [ expr ] e10'
b77a7acd 6248 | Empty */
64a0c779
DN
6249static int
6250intel_e10 ()
6251{
a724f0f4
JB
6252 if (!intel_e11 ())
6253 return 0;
64a0c779 6254
a724f0f4 6255 while (cur_token.code == '[')
64a0c779 6256 {
a724f0f4 6257 if (!intel_bracket_expr ())
21d6c4af 6258 return 0;
64a0c779
DN
6259 }
6260
a724f0f4 6261 return 1;
64a0c779
DN
6262}
6263
64a0c779 6264/* e11 ( expr )
b77a7acd 6265 | [ expr ]
64a0c779
DN
6266 | BYTE
6267 | WORD
6268 | DWORD
9306ca4a 6269 | FWORD
64a0c779 6270 | QWORD
9306ca4a
JB
6271 | TBYTE
6272 | OWORD
6273 | XMMWORD
4a1805b1 6274 | $
64a0c779
DN
6275 | .
6276 | register
6277 | id
6278 | constant */
6279static int
6280intel_e11 ()
6281{
a724f0f4 6282 switch (cur_token.code)
64a0c779 6283 {
a724f0f4
JB
6284 /* e11 ( expr ) */
6285 case '(':
64a0c779
DN
6286 intel_match_token ('(');
6287 strcat (intel_parser.disp, "(");
6288
6289 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6290 {
6291 strcat (intel_parser.disp, ")");
6292 return 1;
6293 }
a724f0f4 6294 return 0;
4a1805b1 6295
a724f0f4
JB
6296 /* e11 [ expr ] */
6297 case '[':
6298 /* Operands for jump/call inside brackets denote absolute addresses.
6299 XXX This shouldn't be needed anymore (or if it should rather live
6300 in intel_bracket_expr). */
9306ca4a
JB
6301 if (current_templates->start->opcode_modifier
6302 & (Jump|JumpDword|JumpByte|JumpInterSegment))
64a0c779
DN
6303 i.types[this_operand] |= JumpAbsolute;
6304
a724f0f4 6305 return intel_bracket_expr ();
64a0c779 6306
a724f0f4
JB
6307 /* e11 $
6308 | . */
6309 case '.':
64a0c779
DN
6310 strcat (intel_parser.disp, cur_token.str);
6311 intel_match_token (cur_token.code);
21d6c4af
DN
6312
6313 /* Mark as a memory operand only if it's not already known to be an
6314 offset expression. */
a724f0f4 6315 if (!intel_parser.in_offset)
21d6c4af 6316 intel_parser.is_mem = 1;
64a0c779
DN
6317
6318 return 1;
64a0c779 6319
a724f0f4
JB
6320 /* e11 register */
6321 case T_REG:
6322 {
6323 const reg_entry *reg = intel_parser.reg = cur_token.reg;
64a0c779 6324
a724f0f4 6325 intel_match_token (T_REG);
64a0c779 6326
a724f0f4
JB
6327 /* Check for segment change. */
6328 if (cur_token.code == ':')
6329 {
6330 if (!(reg->reg_type & (SReg2 | SReg3)))
6331 {
6332 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6333 return 0;
6334 }
6335 else if (i.seg[i.mem_operands])
6336 as_warn (_("Extra segment override ignored"));
6337 else
6338 {
6339 if (!intel_parser.in_offset)
6340 intel_parser.is_mem = 1;
6341 switch (reg->reg_num)
6342 {
6343 case 0:
6344 i.seg[i.mem_operands] = &es;
6345 break;
6346 case 1:
6347 i.seg[i.mem_operands] = &cs;
6348 break;
6349 case 2:
6350 i.seg[i.mem_operands] = &ss;
6351 break;
6352 case 3:
6353 i.seg[i.mem_operands] = &ds;
6354 break;
6355 case 4:
6356 i.seg[i.mem_operands] = &fs;
6357 break;
6358 case 5:
6359 i.seg[i.mem_operands] = &gs;
6360 break;
6361 }
6362 }
6363 }
64a0c779 6364
a724f0f4
JB
6365 /* Not a segment register. Check for register scaling. */
6366 else if (cur_token.code == '*')
6367 {
6368 if (!intel_parser.in_bracket)
6369 {
6370 as_bad (_("Register scaling only allowed in memory operands"));
6371 return 0;
6372 }
64a0c779 6373
a724f0f4
JB
6374 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6375 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6376 else if (i.index_reg)
6377 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
64a0c779 6378
a724f0f4
JB
6379 /* What follows must be a valid scale. */
6380 intel_match_token ('*');
6381 i.index_reg = reg;
6382 i.types[this_operand] |= BaseIndex;
64a0c779 6383
a724f0f4
JB
6384 /* Set the scale after setting the register (otherwise,
6385 i386_scale will complain) */
6386 if (cur_token.code == '+' || cur_token.code == '-')
6387 {
6388 char *str, sign = cur_token.code;
6389 intel_match_token (cur_token.code);
6390 if (cur_token.code != T_CONST)
6391 {
6392 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6393 cur_token.str);
6394 return 0;
6395 }
6396 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6397 strcpy (str + 1, cur_token.str);
6398 *str = sign;
6399 if (!i386_scale (str))
6400 return 0;
6401 free (str);
6402 }
6403 else if (!i386_scale (cur_token.str))
64a0c779 6404 return 0;
a724f0f4
JB
6405 intel_match_token (cur_token.code);
6406 }
64a0c779 6407
a724f0f4
JB
6408 /* No scaling. If this is a memory operand, the register is either a
6409 base register (first occurrence) or an index register (second
6410 occurrence). */
6411 else if (intel_parser.in_bracket && !(reg->reg_type & (SReg2 | SReg3)))
6412 {
64a0c779 6413
a724f0f4
JB
6414 if (!i.base_reg)
6415 i.base_reg = reg;
6416 else if (!i.index_reg)
6417 i.index_reg = reg;
6418 else
6419 {
6420 as_bad (_("Too many register references in memory operand"));
6421 return 0;
6422 }
64a0c779 6423
a724f0f4
JB
6424 i.types[this_operand] |= BaseIndex;
6425 }
4a1805b1 6426
a724f0f4
JB
6427 /* Offset modifier. Add the register to the displacement string to be
6428 parsed as an immediate expression after we're done. */
6429 else if (intel_parser.in_offset)
6430 {
6431 as_warn (_("Using register names in OFFSET expressions is deprecated"));
6432 strcat (intel_parser.disp, reg->reg_name);
6433 }
64a0c779 6434
a724f0f4
JB
6435 /* It's neither base nor index nor offset. */
6436 else if (!intel_parser.is_mem)
6437 {
6438 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6439 i.op[this_operand].regs = reg;
6440 i.reg_operands++;
6441 }
6442 else
6443 {
6444 as_bad (_("Invalid use of register"));
6445 return 0;
6446 }
64a0c779 6447
a724f0f4
JB
6448 /* Since registers are not part of the displacement string (except
6449 when we're parsing offset operands), we may need to remove any
6450 preceding '+' from the displacement string. */
6451 if (*intel_parser.disp != '\0'
6452 && !intel_parser.in_offset)
6453 {
6454 char *s = intel_parser.disp;
6455 s += strlen (s) - 1;
6456 if (*s == '+')
6457 *s = '\0';
6458 }
4a1805b1 6459
a724f0f4
JB
6460 return 1;
6461 }
6462
6463 /* e11 BYTE
6464 | WORD
6465 | DWORD
6466 | FWORD
6467 | QWORD
6468 | TBYTE
6469 | OWORD
6470 | XMMWORD */
6471 case T_BYTE:
6472 case T_WORD:
6473 case T_DWORD:
6474 case T_FWORD:
6475 case T_QWORD:
6476 case T_TBYTE:
6477 case T_XMMWORD:
6478 intel_match_token (cur_token.code);
64a0c779 6479
a724f0f4
JB
6480 if (cur_token.code == T_PTR)
6481 return 1;
6482
6483 /* It must have been an identifier. */
6484 intel_putback_token ();
6485 cur_token.code = T_ID;
6486 /* FALLTHRU */
6487
6488 /* e11 id
6489 | constant */
6490 case T_ID:
6491 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
9306ca4a
JB
6492 {
6493 symbolS *symbolP;
6494
a724f0f4
JB
6495 /* The identifier represents a memory reference only if it's not
6496 preceded by an offset modifier and if it's not an equate. */
9306ca4a
JB
6497 symbolP = symbol_find(cur_token.str);
6498 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6499 intel_parser.is_mem = 1;
6500 }
a724f0f4 6501 /* FALLTHRU */
64a0c779 6502
a724f0f4
JB
6503 case T_CONST:
6504 case '-':
6505 case '+':
6506 {
6507 char *save_str, sign = 0;
64a0c779 6508
a724f0f4
JB
6509 /* Allow constants that start with `+' or `-'. */
6510 if (cur_token.code == '-' || cur_token.code == '+')
6511 {
6512 sign = cur_token.code;
6513 intel_match_token (cur_token.code);
6514 if (cur_token.code != T_CONST)
6515 {
6516 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6517 cur_token.str);
6518 return 0;
6519 }
6520 }
64a0c779 6521
a724f0f4
JB
6522 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6523 strcpy (save_str + !!sign, cur_token.str);
6524 if (sign)
6525 *save_str = sign;
64a0c779 6526
a724f0f4
JB
6527 /* Get the next token to check for register scaling. */
6528 intel_match_token (cur_token.code);
64a0c779 6529
a724f0f4
JB
6530 /* Check if this constant is a scaling factor for an index register. */
6531 if (cur_token.code == '*')
6532 {
6533 if (intel_match_token ('*') && cur_token.code == T_REG)
6534 {
6535 const reg_entry *reg = cur_token.reg;
6536
6537 if (!intel_parser.in_bracket)
6538 {
6539 as_bad (_("Register scaling only allowed in memory operands"));
6540 return 0;
6541 }
6542
6543 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6544 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6545 else if (i.index_reg)
6546 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6547
6548 /* The constant is followed by `* reg', so it must be
6549 a valid scale. */
6550 i.index_reg = reg;
6551 i.types[this_operand] |= BaseIndex;
6552
6553 /* Set the scale after setting the register (otherwise,
6554 i386_scale will complain) */
6555 if (!i386_scale (save_str))
64a0c779 6556 return 0;
a724f0f4
JB
6557 intel_match_token (T_REG);
6558
6559 /* Since registers are not part of the displacement
6560 string, we may need to remove any preceding '+' from
6561 the displacement string. */
6562 if (*intel_parser.disp != '\0')
6563 {
6564 char *s = intel_parser.disp;
6565 s += strlen (s) - 1;
6566 if (*s == '+')
6567 *s = '\0';
6568 }
6569
6570 free (save_str);
6571
6572 return 1;
6573 }
64a0c779 6574
a724f0f4
JB
6575 /* The constant was not used for register scaling. Since we have
6576 already consumed the token following `*' we now need to put it
6577 back in the stream. */
64a0c779 6578 intel_putback_token ();
a724f0f4 6579 }
64a0c779 6580
a724f0f4
JB
6581 /* Add the constant to the displacement string. */
6582 strcat (intel_parser.disp, save_str);
6583 free (save_str);
64a0c779 6584
a724f0f4
JB
6585 return 1;
6586 }
64a0c779
DN
6587 }
6588
64a0c779
DN
6589 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6590 return 0;
6591}
6592
64a0c779
DN
6593/* Match the given token against cur_token. If they match, read the next
6594 token from the operand string. */
6595static int
6596intel_match_token (code)
e5cb08ac 6597 int code;
64a0c779
DN
6598{
6599 if (cur_token.code == code)
6600 {
6601 intel_get_token ();
6602 return 1;
6603 }
6604 else
6605 {
0477af35 6606 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6607 return 0;
6608 }
6609}
6610
64a0c779
DN
6611/* Read a new token from intel_parser.op_string and store it in cur_token. */
6612static void
6613intel_get_token ()
6614{
6615 char *end_op;
6616 const reg_entry *reg;
6617 struct intel_token new_token;
6618
6619 new_token.code = T_NIL;
6620 new_token.reg = NULL;
6621 new_token.str = NULL;
6622
4a1805b1 6623 /* Free the memory allocated to the previous token and move
64a0c779
DN
6624 cur_token to prev_token. */
6625 if (prev_token.str)
6626 free (prev_token.str);
6627
6628 prev_token = cur_token;
6629
6630 /* Skip whitespace. */
6631 while (is_space_char (*intel_parser.op_string))
6632 intel_parser.op_string++;
6633
6634 /* Return an empty token if we find nothing else on the line. */
6635 if (*intel_parser.op_string == '\0')
6636 {
6637 cur_token = new_token;
6638 return;
6639 }
6640
6641 /* The new token cannot be larger than the remainder of the operand
6642 string. */
a724f0f4 6643 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
64a0c779
DN
6644 new_token.str[0] = '\0';
6645
6646 if (strchr ("0123456789", *intel_parser.op_string))
6647 {
6648 char *p = new_token.str;
6649 char *q = intel_parser.op_string;
6650 new_token.code = T_CONST;
6651
6652 /* Allow any kind of identifier char to encompass floating point and
6653 hexadecimal numbers. */
6654 while (is_identifier_char (*q))
6655 *p++ = *q++;
6656 *p = '\0';
6657
6658 /* Recognize special symbol names [0-9][bf]. */
6659 if (strlen (intel_parser.op_string) == 2
4a1805b1 6660 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6661 || intel_parser.op_string[1] == 'f'))
6662 new_token.code = T_ID;
6663 }
6664
64a0c779
DN
6665 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6666 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6667 {
6668 new_token.code = T_REG;
6669 new_token.reg = reg;
6670
6671 if (*intel_parser.op_string == REGISTER_PREFIX)
6672 {
6673 new_token.str[0] = REGISTER_PREFIX;
6674 new_token.str[1] = '\0';
6675 }
6676
6677 strcat (new_token.str, reg->reg_name);
6678 }
6679
6680 else if (is_identifier_char (*intel_parser.op_string))
6681 {
6682 char *p = new_token.str;
6683 char *q = intel_parser.op_string;
6684
6685 /* A '.' or '$' followed by an identifier char is an identifier.
6686 Otherwise, it's operator '.' followed by an expression. */
6687 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6688 {
9306ca4a
JB
6689 new_token.code = '.';
6690 new_token.str[0] = '.';
64a0c779
DN
6691 new_token.str[1] = '\0';
6692 }
6693 else
6694 {
6695 while (is_identifier_char (*q) || *q == '@')
6696 *p++ = *q++;
6697 *p = '\0';
6698
9306ca4a
JB
6699 if (strcasecmp (new_token.str, "NOT") == 0)
6700 new_token.code = '~';
6701
6702 else if (strcasecmp (new_token.str, "MOD") == 0)
6703 new_token.code = '%';
6704
6705 else if (strcasecmp (new_token.str, "AND") == 0)
6706 new_token.code = '&';
6707
6708 else if (strcasecmp (new_token.str, "OR") == 0)
6709 new_token.code = '|';
6710
6711 else if (strcasecmp (new_token.str, "XOR") == 0)
6712 new_token.code = '^';
6713
6714 else if (strcasecmp (new_token.str, "SHL") == 0)
6715 new_token.code = T_SHL;
6716
6717 else if (strcasecmp (new_token.str, "SHR") == 0)
6718 new_token.code = T_SHR;
6719
6720 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
6721 new_token.code = T_BYTE;
6722
6723 else if (strcasecmp (new_token.str, "WORD") == 0)
6724 new_token.code = T_WORD;
6725
6726 else if (strcasecmp (new_token.str, "DWORD") == 0)
6727 new_token.code = T_DWORD;
6728
9306ca4a
JB
6729 else if (strcasecmp (new_token.str, "FWORD") == 0)
6730 new_token.code = T_FWORD;
6731
64a0c779
DN
6732 else if (strcasecmp (new_token.str, "QWORD") == 0)
6733 new_token.code = T_QWORD;
6734
9306ca4a
JB
6735 else if (strcasecmp (new_token.str, "TBYTE") == 0
6736 /* XXX remove (gcc still uses it) */
6737 || strcasecmp (new_token.str, "XWORD") == 0)
6738 new_token.code = T_TBYTE;
6739
6740 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6741 || strcasecmp (new_token.str, "OWORD") == 0)
6742 new_token.code = T_XMMWORD;
64a0c779
DN
6743
6744 else if (strcasecmp (new_token.str, "PTR") == 0)
6745 new_token.code = T_PTR;
6746
6747 else if (strcasecmp (new_token.str, "SHORT") == 0)
6748 new_token.code = T_SHORT;
6749
6750 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6751 {
6752 new_token.code = T_OFFSET;
6753
6754 /* ??? This is not mentioned in the MASM grammar but gcc
6755 makes use of it with -mintel-syntax. OFFSET may be
6756 followed by FLAT: */
6757 if (strncasecmp (q, " FLAT:", 6) == 0)
6758 strcat (new_token.str, " FLAT:");
6759 }
6760
6761 /* ??? This is not mentioned in the MASM grammar. */
6762 else if (strcasecmp (new_token.str, "FLAT") == 0)
a724f0f4
JB
6763 {
6764 new_token.code = T_OFFSET;
6765 if (*q == ':')
6766 strcat (new_token.str, ":");
6767 else
6768 as_bad (_("`:' expected"));
6769 }
64a0c779
DN
6770
6771 else
6772 new_token.code = T_ID;
6773 }
6774 }
6775
9306ca4a
JB
6776 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6777 {
6778 new_token.code = *intel_parser.op_string;
6779 new_token.str[0] = *intel_parser.op_string;
6780 new_token.str[1] = '\0';
6781 }
6782
6783 else if (strchr ("<>", *intel_parser.op_string)
6784 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6785 {
6786 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6787 new_token.str[0] = *intel_parser.op_string;
6788 new_token.str[1] = *intel_parser.op_string;
6789 new_token.str[2] = '\0';
6790 }
6791
64a0c779 6792 else
0477af35 6793 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6794
6795 intel_parser.op_string += strlen (new_token.str);
6796 cur_token = new_token;
6797}
6798
64a0c779
DN
6799/* Put cur_token back into the token stream and make cur_token point to
6800 prev_token. */
6801static void
6802intel_putback_token ()
6803{
a724f0f4
JB
6804 if (cur_token.code != T_NIL)
6805 {
6806 intel_parser.op_string -= strlen (cur_token.str);
6807 free (cur_token.str);
6808 }
64a0c779 6809 cur_token = prev_token;
4a1805b1 6810
64a0c779
DN
6811 /* Forget prev_token. */
6812 prev_token.code = T_NIL;
6813 prev_token.reg = NULL;
6814 prev_token.str = NULL;
6815}
54cfded0 6816
a4447b93 6817int
54cfded0
AM
6818tc_x86_regname_to_dw2regnum (const char *regname)
6819{
6820 unsigned int regnum;
6821 unsigned int regnames_count;
089dfecd 6822 static const char *const regnames_32[] =
54cfded0 6823 {
a4447b93
RH
6824 "eax", "ecx", "edx", "ebx",
6825 "esp", "ebp", "esi", "edi",
089dfecd
JB
6826 "eip", "eflags", NULL,
6827 "st0", "st1", "st2", "st3",
6828 "st4", "st5", "st6", "st7",
6829 NULL, NULL,
6830 "xmm0", "xmm1", "xmm2", "xmm3",
6831 "xmm4", "xmm5", "xmm6", "xmm7",
6832 "mm0", "mm1", "mm2", "mm3",
6833 "mm4", "mm5", "mm6", "mm7"
54cfded0 6834 };
089dfecd 6835 static const char *const regnames_64[] =
54cfded0 6836 {
089dfecd
JB
6837 "rax", "rdx", "rcx", "rbx",
6838 "rsi", "rdi", "rbp", "rsp",
6839 "r8", "r9", "r10", "r11",
54cfded0 6840 "r12", "r13", "r14", "r15",
089dfecd
JB
6841 "rip",
6842 "xmm0", "xmm1", "xmm2", "xmm3",
6843 "xmm4", "xmm5", "xmm6", "xmm7",
6844 "xmm8", "xmm9", "xmm10", "xmm11",
6845 "xmm12", "xmm13", "xmm14", "xmm15",
6846 "st0", "st1", "st2", "st3",
6847 "st4", "st5", "st6", "st7",
6848 "mm0", "mm1", "mm2", "mm3",
6849 "mm4", "mm5", "mm6", "mm7"
54cfded0 6850 };
089dfecd 6851 const char *const *regnames;
54cfded0
AM
6852
6853 if (flag_code == CODE_64BIT)
6854 {
6855 regnames = regnames_64;
0cea6190 6856 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6857 }
6858 else
6859 {
6860 regnames = regnames_32;
0cea6190 6861 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6862 }
6863
6864 for (regnum = 0; regnum < regnames_count; regnum++)
089dfecd
JB
6865 if (regnames[regnum] != NULL
6866 && strcmp (regname, regnames[regnum]) == 0)
54cfded0
AM
6867 return regnum;
6868
54cfded0
AM
6869 return -1;
6870}
6871
6872void
6873tc_x86_frame_initial_instructions (void)
6874{
a4447b93
RH
6875 static unsigned int sp_regno;
6876
6877 if (!sp_regno)
6878 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6879 ? "rsp" : "esp");
6880
6881 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6882 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6883}
d2b2c203
DJ
6884
6885int
6886i386_elf_section_type (const char *str, size_t len)
6887{
6888 if (flag_code == CODE_64BIT
6889 && len == sizeof ("unwind") - 1
6890 && strncmp (str, "unwind", 6) == 0)
6891 return SHT_X86_64_UNWIND;
6892
6893 return -1;
6894}
bb41ade5
AM
6895
6896#ifdef TE_PE
6897void
6898tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6899{
6900 expressionS expr;
6901
6902 expr.X_op = O_secrel;
6903 expr.X_add_symbol = symbol;
6904 expr.X_add_number = 0;
6905 emit_expr (&expr, size);
6906}
6907#endif