]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
* gas/elf/section2.l: Adjust warning message comparison.
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4
NC
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
47926f60
KH
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
252b5132
RH
28
29#include <ctype.h>
30
31#include "as.h"
32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
252b5132
RH
34#include "opcode/i386.h"
35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
252b5132
RH
44#ifndef SCALE1_WHEN_NO_INDEX
45/* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49#define SCALE1_WHEN_NO_INDEX 1
50#endif
51
52#define true 1
53#define false 0
54
55static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
56static int fits_in_signed_byte PARAMS ((offsetT));
57static int fits_in_unsigned_byte PARAMS ((offsetT));
58static int fits_in_unsigned_word PARAMS ((offsetT));
59static int fits_in_signed_word PARAMS ((offsetT));
3e73aa7c
JH
60static int fits_in_unsigned_long PARAMS ((offsetT));
61static int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
62static int smallest_imm_type PARAMS ((offsetT));
63static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 64static int add_prefix PARAMS ((unsigned int));
3e73aa7c 65static void set_code_flag PARAMS ((int));
47926f60 66static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 67static void set_intel_syntax PARAMS ((int));
e413e4e9 68static void set_cpu_arch PARAMS ((int));
252b5132
RH
69
70#ifdef BFD_ASSEMBLER
71static bfd_reloc_code_real_type reloc
3e73aa7c 72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
f3c180ae
AM
73#define RELOC_ENUM enum bfd_reloc_code_real
74#else
75#define RELOC_ENUM int
252b5132
RH
76#endif
77
3e73aa7c
JH
78#ifndef DEFAULT_ARCH
79#define DEFAULT_ARCH "i386"
80#endif
81static char *default_arch = DEFAULT_ARCH;
82
252b5132 83/* 'md_assemble ()' gathers together information and puts it into a
47926f60 84 i386_insn. */
252b5132 85
520dc8e8
AM
86union i386_op
87 {
88 expressionS *disps;
89 expressionS *imms;
90 const reg_entry *regs;
91 };
92
252b5132
RH
93struct _i386_insn
94 {
47926f60 95 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
96 template tm;
97
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
100 char suffix;
101
47926f60 102 /* OPERANDS gives the number of given operands. */
252b5132
RH
103 unsigned int operands;
104
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
47926f60 107 operands. */
252b5132
RH
108 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
109
110 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 111 use OP[i] for the corresponding operand. */
252b5132
RH
112 unsigned int types[MAX_OPERANDS];
113
520dc8e8
AM
114 /* Displacement expression, immediate expression, or register for each
115 operand. */
116 union i386_op op[MAX_OPERANDS];
252b5132 117
3e73aa7c
JH
118 /* Flags for operands. */
119 unsigned int flags[MAX_OPERANDS];
120#define Operand_PCrel 1
121
252b5132 122 /* Relocation type for operand */
f3c180ae 123 RELOC_ENUM reloc[MAX_OPERANDS];
252b5132 124
252b5132
RH
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 132 explicit segment overrides are given. */
ce8a8b2f 133 const seg_entry *seg[2];
252b5132
RH
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
3e73aa7c 144 rex_byte rex;
252b5132
RH
145 sib_byte sib;
146 };
147
148typedef struct _i386_insn i386_insn;
149
150/* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152#ifdef LEX_AT
153const char extra_symbol_chars[] = "*%-(@";
154#else
155const char extra_symbol_chars[] = "*%-(";
156#endif
157
158/* This array holds the chars that always start a comment. If the
ce8a8b2f 159 pre-processor is disabled, these aren't very useful. */
5bae9b28 160#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
161/* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163const char comment_chars[] = "#/";
164#define PREFIX_SEPARATOR '\\'
165#else
166const char comment_chars[] = "#";
167#define PREFIX_SEPARATOR '/'
168#endif
169
170/* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 174 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
252b5132 177 '/' isn't otherwise defined. */
5bae9b28 178#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD) && !defined(TE_NetBSD))
252b5132
RH
179const char line_comment_chars[] = "";
180#else
181const char line_comment_chars[] = "/";
182#endif
183
63a0b638 184const char line_separator_chars[] = ";";
252b5132 185
ce8a8b2f
AM
186/* Chars that can be used to separate mant from exp in floating point
187 nums. */
252b5132
RH
188const char EXP_CHARS[] = "eE";
189
ce8a8b2f
AM
190/* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
252b5132
RH
193const char FLT_CHARS[] = "fFdDxX";
194
ce8a8b2f 195/* Tables for lexical analysis. */
252b5132
RH
196static char mnemonic_chars[256];
197static char register_chars[256];
198static char operand_chars[256];
199static char identifier_chars[256];
200static char digit_chars[256];
201
ce8a8b2f 202/* Lexical macros. */
252b5132
RH
203#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204#define is_operand_char(x) (operand_chars[(unsigned char) x])
205#define is_register_char(x) (register_chars[(unsigned char) x])
206#define is_space_char(x) ((x) == ' ')
207#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208#define is_digit_char(x) (digit_chars[(unsigned char) x])
209
ce8a8b2f 210/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
211static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213/* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
47926f60 216 assembler instruction). */
252b5132 217static char save_stack[32];
ce8a8b2f 218static char *save_stack_p;
252b5132
RH
219#define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221#define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
47926f60 224/* The instruction we're assembling. */
252b5132
RH
225static i386_insn i;
226
227/* Possible templates for current insn. */
228static const templates *current_templates;
229
47926f60 230/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
231static expressionS disp_expressions[2], im_expressions[2];
232
47926f60
KH
233/* Current operand we are working on. */
234static int this_operand;
252b5132 235
3e73aa7c
JH
236/* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
f3c180ae 243#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
244
245static enum flag_code flag_code;
246static int use_rela_relocations = 0;
247
248/* The names used to print error messages. */
b77a7acd 249static const char *flag_code_names[] =
3e73aa7c
JH
250 {
251 "32",
252 "16",
253 "64"
254 };
252b5132 255
47926f60
KH
256/* 1 for intel syntax,
257 0 if att syntax. */
258static int intel_syntax = 0;
252b5132 259
47926f60
KH
260/* 1 if register prefix % not required. */
261static int allow_naked_reg = 0;
252b5132 262
47926f60
KH
263/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266static char stackop_size = '\0';
eecb386c 267
47926f60
KH
268/* Non-zero to quieten some warnings. */
269static int quiet_warnings = 0;
a38cf1db 270
47926f60
KH
271/* CPU name. */
272static const char *cpu_arch_name = NULL;
a38cf1db 273
47926f60 274/* CPU feature flags. */
3e73aa7c 275static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
a38cf1db 276
fddf5b5b
AM
277/* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279static unsigned int no_cond_jump_promotion = 0;
280
252b5132 281/* Interface to relax_segment.
fddf5b5b
AM
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
252b5132 285
47926f60 286/* Types. */
93c2a809
AM
287#define UNCOND_JUMP 0
288#define COND_JUMP 1
289#define COND_JUMP86 2
fddf5b5b 290
47926f60 291/* Sizes. */
252b5132
RH
292#define CODE16 1
293#define SMALL 0
294#define SMALL16 (SMALL|CODE16)
295#define BIG 2
296#define BIG16 (BIG|CODE16)
297
298#ifndef INLINE
299#ifdef __GNUC__
300#define INLINE __inline__
301#else
302#define INLINE
303#endif
304#endif
305
fddf5b5b
AM
306#define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308#define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310#define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
312
313/* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321const relax_typeS md_relax_table[] =
322{
24eab124
AM
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
93c2a809 326 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 327 4) which index into the table to try if we can't fit into this one. */
252b5132 328
fddf5b5b 329 /* UNCOND_JUMP states. */
93c2a809
AM
330 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
331 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
332 /* dword jmp adds 4 bytes to frag:
333 0 extra opcode bytes, 4 displacement bytes. */
252b5132 334 {0, 0, 4, 0},
93c2a809
AM
335 /* word jmp adds 2 byte2 to frag:
336 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
337 {0, 0, 2, 0},
338
93c2a809
AM
339 /* COND_JUMP states. */
340 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
341 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
342 /* dword conditionals adds 5 bytes to frag:
343 1 extra opcode byte, 4 displacement bytes. */
344 {0, 0, 5, 0},
fddf5b5b 345 /* word conditionals add 3 bytes to frag:
93c2a809
AM
346 1 extra opcode byte, 2 displacement bytes. */
347 {0, 0, 3, 0},
348
349 /* COND_JUMP86 states. */
350 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
351 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
352 /* dword conditionals adds 5 bytes to frag:
353 1 extra opcode byte, 4 displacement bytes. */
354 {0, 0, 5, 0},
355 /* word conditionals add 4 bytes to frag:
356 1 displacement byte and a 3 byte long branch insn. */
357 {0, 0, 4, 0}
252b5132
RH
358};
359
e413e4e9
AM
360static const arch_entry cpu_arch[] = {
361 {"i8086", Cpu086 },
362 {"i186", Cpu086|Cpu186 },
363 {"i286", Cpu086|Cpu186|Cpu286 },
364 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
365 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
366 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
367 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
368 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
369 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 370 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
371 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
372 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 373 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
374 {NULL, 0 }
375};
376
252b5132
RH
377void
378i386_align_code (fragP, count)
379 fragS *fragP;
380 int count;
381{
ce8a8b2f
AM
382 /* Various efficient no-op patterns for aligning code labels.
383 Note: Don't try to assemble the instructions in the comments.
384 0L and 0w are not legal. */
252b5132
RH
385 static const char f32_1[] =
386 {0x90}; /* nop */
387 static const char f32_2[] =
388 {0x89,0xf6}; /* movl %esi,%esi */
389 static const char f32_3[] =
390 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
391 static const char f32_4[] =
392 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
393 static const char f32_5[] =
394 {0x90, /* nop */
395 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
396 static const char f32_6[] =
397 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
398 static const char f32_7[] =
399 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
400 static const char f32_8[] =
401 {0x90, /* nop */
402 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
403 static const char f32_9[] =
404 {0x89,0xf6, /* movl %esi,%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_10[] =
407 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
408 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
409 static const char f32_11[] =
410 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
411 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
412 static const char f32_12[] =
413 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
414 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
415 static const char f32_13[] =
416 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
417 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
418 static const char f32_14[] =
419 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
420 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
421 static const char f32_15[] =
422 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
423 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
424 static const char f16_3[] =
425 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
426 static const char f16_4[] =
427 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
428 static const char f16_5[] =
429 {0x90, /* nop */
430 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
431 static const char f16_6[] =
432 {0x89,0xf6, /* mov %si,%si */
433 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
434 static const char f16_7[] =
435 {0x8d,0x74,0x00, /* lea 0(%si),%si */
436 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
437 static const char f16_8[] =
438 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
439 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
440 static const char *const f32_patt[] = {
441 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
442 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
443 };
444 static const char *const f16_patt[] = {
c3332e24 445 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
446 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
447 };
448
3e73aa7c
JH
449 /* ??? We can't use these fillers for x86_64, since they often kills the
450 upper halves. Solve later. */
451 if (flag_code == CODE_64BIT)
452 count = 1;
453
252b5132
RH
454 if (count > 0 && count <= 15)
455 {
3e73aa7c 456 if (flag_code == CODE_16BIT)
252b5132 457 {
47926f60
KH
458 memcpy (fragP->fr_literal + fragP->fr_fix,
459 f16_patt[count - 1], count);
460 if (count > 8)
461 /* Adjust jump offset. */
252b5132
RH
462 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
463 }
464 else
47926f60
KH
465 memcpy (fragP->fr_literal + fragP->fr_fix,
466 f32_patt[count - 1], count);
252b5132
RH
467 fragP->fr_var = count;
468 }
469}
470
471static char *output_invalid PARAMS ((int c));
472static int i386_operand PARAMS ((char *operand_string));
473static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
474static const reg_entry *parse_register PARAMS ((char *reg_string,
475 char **end_op));
476
477#ifndef I386COFF
478static void s_bss PARAMS ((int));
479#endif
480
ce8a8b2f 481symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
482
483static INLINE unsigned int
484mode_from_disp_size (t)
485 unsigned int t;
486{
3e73aa7c 487 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
488}
489
490static INLINE int
491fits_in_signed_byte (num)
847f7ad4 492 offsetT num;
252b5132
RH
493{
494 return (num >= -128) && (num <= 127);
47926f60 495}
252b5132
RH
496
497static INLINE int
498fits_in_unsigned_byte (num)
847f7ad4 499 offsetT num;
252b5132
RH
500{
501 return (num & 0xff) == num;
47926f60 502}
252b5132
RH
503
504static INLINE int
505fits_in_unsigned_word (num)
847f7ad4 506 offsetT num;
252b5132
RH
507{
508 return (num & 0xffff) == num;
47926f60 509}
252b5132
RH
510
511static INLINE int
512fits_in_signed_word (num)
847f7ad4 513 offsetT num;
252b5132
RH
514{
515 return (-32768 <= num) && (num <= 32767);
47926f60 516}
3e73aa7c
JH
517static INLINE int
518fits_in_signed_long (num)
519 offsetT num ATTRIBUTE_UNUSED;
520{
521#ifndef BFD64
522 return 1;
523#else
524 return (!(((offsetT) -1 << 31) & num)
525 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
526#endif
527} /* fits_in_signed_long() */
528static INLINE int
529fits_in_unsigned_long (num)
530 offsetT num ATTRIBUTE_UNUSED;
531{
532#ifndef BFD64
533 return 1;
534#else
535 return (num & (((offsetT) 2 << 31) - 1)) == num;
536#endif
537} /* fits_in_unsigned_long() */
252b5132
RH
538
539static int
540smallest_imm_type (num)
847f7ad4 541 offsetT num;
252b5132 542{
3e73aa7c
JH
543 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
544 && !(cpu_arch_flags & (CpuUnknown)))
e413e4e9
AM
545 {
546 /* This code is disabled on the 486 because all the Imm1 forms
547 in the opcode table are slower on the i486. They're the
548 versions with the implicitly specified single-position
549 displacement, which has another syntax if you really want to
550 use that form. */
551 if (num == 1)
3e73aa7c 552 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 553 }
252b5132 554 return (fits_in_signed_byte (num)
3e73aa7c 555 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 556 : fits_in_unsigned_byte (num)
3e73aa7c 557 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 558 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
559 ? (Imm16 | Imm32 | Imm32S | Imm64)
560 : fits_in_signed_long (num)
561 ? (Imm32 | Imm32S | Imm64)
562 : fits_in_unsigned_long (num)
563 ? (Imm32 | Imm64)
564 : Imm64);
47926f60 565}
252b5132 566
847f7ad4
AM
567static offsetT
568offset_in_range (val, size)
569 offsetT val;
570 int size;
571{
508866be 572 addressT mask;
ba2adb93 573
847f7ad4
AM
574 switch (size)
575 {
508866be
L
576 case 1: mask = ((addressT) 1 << 8) - 1; break;
577 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 578 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
579#ifdef BFD64
580 case 8: mask = ((addressT) 2 << 63) - 1; break;
581#endif
47926f60 582 default: abort ();
847f7ad4
AM
583 }
584
ba2adb93 585 /* If BFD64, sign extend val. */
3e73aa7c
JH
586 if (!use_rela_relocations)
587 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
588 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 589
47926f60 590 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
591 {
592 char buf1[40], buf2[40];
593
594 sprint_value (buf1, val);
595 sprint_value (buf2, val & mask);
596 as_warn (_("%s shortened to %s"), buf1, buf2);
597 }
598 return val & mask;
599}
600
252b5132
RH
601/* Returns 0 if attempting to add a prefix where one from the same
602 class already exists, 1 if non rep/repne added, 2 if rep/repne
603 added. */
604static int
605add_prefix (prefix)
606 unsigned int prefix;
607{
608 int ret = 1;
609 int q;
610
3e73aa7c
JH
611 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
612 q = REX_PREFIX;
613 else
614 switch (prefix)
615 {
616 default:
617 abort ();
618
619 case CS_PREFIX_OPCODE:
620 case DS_PREFIX_OPCODE:
621 case ES_PREFIX_OPCODE:
622 case FS_PREFIX_OPCODE:
623 case GS_PREFIX_OPCODE:
624 case SS_PREFIX_OPCODE:
625 q = SEG_PREFIX;
626 break;
252b5132 627
3e73aa7c
JH
628 case REPNE_PREFIX_OPCODE:
629 case REPE_PREFIX_OPCODE:
630 ret = 2;
631 /* fall thru */
632 case LOCK_PREFIX_OPCODE:
633 q = LOCKREP_PREFIX;
634 break;
252b5132 635
3e73aa7c
JH
636 case FWAIT_OPCODE:
637 q = WAIT_PREFIX;
638 break;
252b5132 639
3e73aa7c
JH
640 case ADDR_PREFIX_OPCODE:
641 q = ADDR_PREFIX;
642 break;
252b5132 643
3e73aa7c
JH
644 case DATA_PREFIX_OPCODE:
645 q = DATA_PREFIX;
646 break;
647 }
252b5132
RH
648
649 if (i.prefix[q])
650 {
651 as_bad (_("same type of prefix used twice"));
652 return 0;
653 }
654
655 i.prefixes += 1;
656 i.prefix[q] = prefix;
657 return ret;
658}
659
660static void
3e73aa7c 661set_code_flag (value)
e5cb08ac 662 int value;
eecb386c 663{
3e73aa7c
JH
664 flag_code = value;
665 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
666 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
667 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
668 {
669 as_bad (_("64bit mode not supported on this CPU."));
670 }
671 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
672 {
673 as_bad (_("32bit mode not supported on this CPU."));
674 }
eecb386c
AM
675 stackop_size = '\0';
676}
677
678static void
3e73aa7c
JH
679set_16bit_gcc_code_flag (new_code_flag)
680 int new_code_flag;
252b5132 681{
3e73aa7c
JH
682 flag_code = new_code_flag;
683 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
684 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
685 stackop_size = 'l';
252b5132
RH
686}
687
688static void
689set_intel_syntax (syntax_flag)
eecb386c 690 int syntax_flag;
252b5132
RH
691{
692 /* Find out if register prefixing is specified. */
693 int ask_naked_reg = 0;
694
695 SKIP_WHITESPACE ();
696 if (! is_end_of_line[(unsigned char) *input_line_pointer])
697 {
698 char *string = input_line_pointer;
699 int e = get_symbol_end ();
700
47926f60 701 if (strcmp (string, "prefix") == 0)
252b5132 702 ask_naked_reg = 1;
47926f60 703 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
704 ask_naked_reg = -1;
705 else
d0b47220 706 as_bad (_("bad argument to syntax directive."));
252b5132
RH
707 *input_line_pointer = e;
708 }
709 demand_empty_rest_of_line ();
c3332e24 710
252b5132
RH
711 intel_syntax = syntax_flag;
712
713 if (ask_naked_reg == 0)
714 {
715#ifdef BFD_ASSEMBLER
716 allow_naked_reg = (intel_syntax
24eab124 717 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 718#else
47926f60
KH
719 /* Conservative default. */
720 allow_naked_reg = 0;
252b5132
RH
721#endif
722 }
723 else
724 allow_naked_reg = (ask_naked_reg < 0);
725}
726
e413e4e9
AM
727static void
728set_cpu_arch (dummy)
47926f60 729 int dummy ATTRIBUTE_UNUSED;
e413e4e9 730{
47926f60 731 SKIP_WHITESPACE ();
e413e4e9
AM
732
733 if (! is_end_of_line[(unsigned char) *input_line_pointer])
734 {
735 char *string = input_line_pointer;
736 int e = get_symbol_end ();
737 int i;
738
739 for (i = 0; cpu_arch[i].name; i++)
740 {
741 if (strcmp (string, cpu_arch[i].name) == 0)
742 {
743 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
744 cpu_arch_flags = (cpu_arch[i].flags
745 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
746 break;
747 }
748 }
749 if (!cpu_arch[i].name)
750 as_bad (_("no such architecture: `%s'"), string);
751
752 *input_line_pointer = e;
753 }
754 else
755 as_bad (_("missing cpu architecture"));
756
fddf5b5b
AM
757 no_cond_jump_promotion = 0;
758 if (*input_line_pointer == ','
759 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
760 {
761 char *string = ++input_line_pointer;
762 int e = get_symbol_end ();
763
764 if (strcmp (string, "nojumps") == 0)
765 no_cond_jump_promotion = 1;
766 else if (strcmp (string, "jumps") == 0)
767 ;
768 else
769 as_bad (_("no such architecture modifier: `%s'"), string);
770
771 *input_line_pointer = e;
772 }
773
e413e4e9
AM
774 demand_empty_rest_of_line ();
775}
776
252b5132
RH
777const pseudo_typeS md_pseudo_table[] =
778{
252b5132
RH
779#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
780 {"align", s_align_bytes, 0},
781#else
782 {"align", s_align_ptwo, 0},
e413e4e9
AM
783#endif
784 {"arch", set_cpu_arch, 0},
785#ifndef I386COFF
786 {"bss", s_bss, 0},
252b5132
RH
787#endif
788 {"ffloat", float_cons, 'f'},
789 {"dfloat", float_cons, 'd'},
790 {"tfloat", float_cons, 'x'},
791 {"value", cons, 2},
792 {"noopt", s_ignore, 0},
793 {"optim", s_ignore, 0},
3e73aa7c
JH
794 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
795 {"code16", set_code_flag, CODE_16BIT},
796 {"code32", set_code_flag, CODE_32BIT},
797 {"code64", set_code_flag, CODE_64BIT},
252b5132
RH
798 {"intel_syntax", set_intel_syntax, 1},
799 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
800 {"file", dwarf2_directive_file, 0},
801 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
802 {0, 0, 0}
803};
804
47926f60 805/* For interface with expression (). */
252b5132
RH
806extern char *input_line_pointer;
807
47926f60 808/* Hash table for instruction mnemonic lookup. */
252b5132 809static struct hash_control *op_hash;
47926f60
KH
810
811/* Hash table for register lookup. */
252b5132
RH
812static struct hash_control *reg_hash;
813\f
b9d79e03
JH
814#ifdef BFD_ASSEMBLER
815unsigned long
816i386_mach ()
817{
818 if (!strcmp (default_arch, "x86_64"))
819 return bfd_mach_x86_64;
820 else if (!strcmp (default_arch, "i386"))
821 return bfd_mach_i386_i386;
822 else
823 as_fatal (_("Unknown architecture"));
824}
825#endif
826\f
252b5132
RH
827void
828md_begin ()
829{
830 const char *hash_err;
831
47926f60 832 /* Initialize op_hash hash table. */
252b5132
RH
833 op_hash = hash_new ();
834
835 {
836 register const template *optab;
837 register templates *core_optab;
838
47926f60
KH
839 /* Setup for loop. */
840 optab = i386_optab;
252b5132
RH
841 core_optab = (templates *) xmalloc (sizeof (templates));
842 core_optab->start = optab;
843
844 while (1)
845 {
846 ++optab;
847 if (optab->name == NULL
848 || strcmp (optab->name, (optab - 1)->name) != 0)
849 {
850 /* different name --> ship out current template list;
47926f60 851 add to hash table; & begin anew. */
252b5132
RH
852 core_optab->end = optab;
853 hash_err = hash_insert (op_hash,
854 (optab - 1)->name,
855 (PTR) core_optab);
856 if (hash_err)
857 {
252b5132
RH
858 as_fatal (_("Internal Error: Can't hash %s: %s"),
859 (optab - 1)->name,
860 hash_err);
861 }
862 if (optab->name == NULL)
863 break;
864 core_optab = (templates *) xmalloc (sizeof (templates));
865 core_optab->start = optab;
866 }
867 }
868 }
869
47926f60 870 /* Initialize reg_hash hash table. */
252b5132
RH
871 reg_hash = hash_new ();
872 {
873 register const reg_entry *regtab;
874
875 for (regtab = i386_regtab;
876 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
877 regtab++)
878 {
879 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
880 if (hash_err)
3e73aa7c
JH
881 as_fatal (_("Internal Error: Can't hash %s: %s"),
882 regtab->reg_name,
883 hash_err);
252b5132
RH
884 }
885 }
886
47926f60 887 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
888 {
889 register int c;
890 register char *p;
891
892 for (c = 0; c < 256; c++)
893 {
894 if (isdigit (c))
895 {
896 digit_chars[c] = c;
897 mnemonic_chars[c] = c;
898 register_chars[c] = c;
899 operand_chars[c] = c;
900 }
901 else if (islower (c))
902 {
903 mnemonic_chars[c] = c;
904 register_chars[c] = c;
905 operand_chars[c] = c;
906 }
907 else if (isupper (c))
908 {
909 mnemonic_chars[c] = tolower (c);
910 register_chars[c] = mnemonic_chars[c];
911 operand_chars[c] = c;
912 }
913
914 if (isalpha (c) || isdigit (c))
915 identifier_chars[c] = c;
916 else if (c >= 128)
917 {
918 identifier_chars[c] = c;
919 operand_chars[c] = c;
920 }
921 }
922
923#ifdef LEX_AT
924 identifier_chars['@'] = '@';
925#endif
252b5132
RH
926 digit_chars['-'] = '-';
927 identifier_chars['_'] = '_';
928 identifier_chars['.'] = '.';
929
930 for (p = operand_special_chars; *p != '\0'; p++)
931 operand_chars[(unsigned char) *p] = *p;
932 }
933
934#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
935 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
936 {
937 record_alignment (text_section, 2);
938 record_alignment (data_section, 2);
939 record_alignment (bss_section, 2);
940 }
941#endif
942}
943
944void
945i386_print_statistics (file)
946 FILE *file;
947{
948 hash_print_statistics (file, "i386 opcode", op_hash);
949 hash_print_statistics (file, "i386 register", reg_hash);
950}
951\f
252b5132
RH
952#ifdef DEBUG386
953
ce8a8b2f 954/* Debugging routines for md_assemble. */
252b5132
RH
955static void pi PARAMS ((char *, i386_insn *));
956static void pte PARAMS ((template *));
957static void pt PARAMS ((unsigned int));
958static void pe PARAMS ((expressionS *));
959static void ps PARAMS ((symbolS *));
960
961static void
962pi (line, x)
963 char *line;
964 i386_insn *x;
965{
09f131f2 966 unsigned int i;
252b5132
RH
967
968 fprintf (stdout, "%s: template ", line);
969 pte (&x->tm);
09f131f2
JH
970 fprintf (stdout, " address: base %s index %s scale %x\n",
971 x->base_reg ? x->base_reg->reg_name : "none",
972 x->index_reg ? x->index_reg->reg_name : "none",
973 x->log2_scale_factor);
974 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 975 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
976 fprintf (stdout, " sib: base %x index %x scale %x\n",
977 x->sib.base, x->sib.index, x->sib.scale);
978 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
979 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
252b5132
RH
980 for (i = 0; i < x->operands; i++)
981 {
982 fprintf (stdout, " #%d: ", i + 1);
983 pt (x->types[i]);
984 fprintf (stdout, "\n");
985 if (x->types[i]
3f4438ab 986 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 987 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 988 if (x->types[i] & Imm)
520dc8e8 989 pe (x->op[i].imms);
252b5132 990 if (x->types[i] & Disp)
520dc8e8 991 pe (x->op[i].disps);
252b5132
RH
992 }
993}
994
995static void
996pte (t)
997 template *t;
998{
09f131f2 999 unsigned int i;
252b5132 1000 fprintf (stdout, " %d operands ", t->operands);
47926f60 1001 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1002 if (t->extension_opcode != None)
1003 fprintf (stdout, "ext %x ", t->extension_opcode);
1004 if (t->opcode_modifier & D)
1005 fprintf (stdout, "D");
1006 if (t->opcode_modifier & W)
1007 fprintf (stdout, "W");
1008 fprintf (stdout, "\n");
1009 for (i = 0; i < t->operands; i++)
1010 {
1011 fprintf (stdout, " #%d type ", i + 1);
1012 pt (t->operand_types[i]);
1013 fprintf (stdout, "\n");
1014 }
1015}
1016
1017static void
1018pe (e)
1019 expressionS *e;
1020{
24eab124 1021 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1022 fprintf (stdout, " add_number %ld (%lx)\n",
1023 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1024 if (e->X_add_symbol)
1025 {
1026 fprintf (stdout, " add_symbol ");
1027 ps (e->X_add_symbol);
1028 fprintf (stdout, "\n");
1029 }
1030 if (e->X_op_symbol)
1031 {
1032 fprintf (stdout, " op_symbol ");
1033 ps (e->X_op_symbol);
1034 fprintf (stdout, "\n");
1035 }
1036}
1037
1038static void
1039ps (s)
1040 symbolS *s;
1041{
1042 fprintf (stdout, "%s type %s%s",
1043 S_GET_NAME (s),
1044 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1045 segment_name (S_GET_SEGMENT (s)));
1046}
1047
1048struct type_name
1049 {
1050 unsigned int mask;
1051 char *tname;
1052 }
1053
1054type_names[] =
1055{
1056 { Reg8, "r8" },
1057 { Reg16, "r16" },
1058 { Reg32, "r32" },
09f131f2 1059 { Reg64, "r64" },
252b5132
RH
1060 { Imm8, "i8" },
1061 { Imm8S, "i8s" },
1062 { Imm16, "i16" },
1063 { Imm32, "i32" },
09f131f2
JH
1064 { Imm32S, "i32s" },
1065 { Imm64, "i64" },
252b5132
RH
1066 { Imm1, "i1" },
1067 { BaseIndex, "BaseIndex" },
1068 { Disp8, "d8" },
1069 { Disp16, "d16" },
1070 { Disp32, "d32" },
09f131f2
JH
1071 { Disp32S, "d32s" },
1072 { Disp64, "d64" },
252b5132
RH
1073 { InOutPortReg, "InOutPortReg" },
1074 { ShiftCount, "ShiftCount" },
1075 { Control, "control reg" },
1076 { Test, "test reg" },
1077 { Debug, "debug reg" },
1078 { FloatReg, "FReg" },
1079 { FloatAcc, "FAcc" },
1080 { SReg2, "SReg2" },
1081 { SReg3, "SReg3" },
1082 { Acc, "Acc" },
1083 { JumpAbsolute, "Jump Absolute" },
1084 { RegMMX, "rMMX" },
3f4438ab 1085 { RegXMM, "rXMM" },
252b5132
RH
1086 { EsSeg, "es" },
1087 { 0, "" }
1088};
1089
1090static void
1091pt (t)
1092 unsigned int t;
1093{
1094 register struct type_name *ty;
1095
09f131f2
JH
1096 for (ty = type_names; ty->mask; ty++)
1097 if (t & ty->mask)
1098 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1099 fflush (stdout);
1100}
1101
1102#endif /* DEBUG386 */
1103\f
1104int
1105tc_i386_force_relocation (fixp)
1106 struct fix *fixp;
1107{
1108#ifdef BFD_ASSEMBLER
1109 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1110 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1111 return 1;
1112 return 0;
1113#else
ce8a8b2f 1114 /* For COFF. */
f6af82bd 1115 return fixp->fx_r_type == 7;
252b5132
RH
1116#endif
1117}
1118
1119#ifdef BFD_ASSEMBLER
252b5132
RH
1120
1121static bfd_reloc_code_real_type
3e73aa7c 1122reloc (size, pcrel, sign, other)
252b5132
RH
1123 int size;
1124 int pcrel;
3e73aa7c 1125 int sign;
252b5132
RH
1126 bfd_reloc_code_real_type other;
1127{
47926f60
KH
1128 if (other != NO_RELOC)
1129 return other;
252b5132
RH
1130
1131 if (pcrel)
1132 {
3e73aa7c 1133 if (!sign)
e5cb08ac 1134 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1135 switch (size)
1136 {
1137 case 1: return BFD_RELOC_8_PCREL;
1138 case 2: return BFD_RELOC_16_PCREL;
1139 case 4: return BFD_RELOC_32_PCREL;
1140 }
d0b47220 1141 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1142 }
1143 else
1144 {
3e73aa7c 1145 if (sign)
e5cb08ac 1146 switch (size)
3e73aa7c
JH
1147 {
1148 case 4: return BFD_RELOC_X86_64_32S;
1149 }
1150 else
1151 switch (size)
1152 {
1153 case 1: return BFD_RELOC_8;
1154 case 2: return BFD_RELOC_16;
1155 case 4: return BFD_RELOC_32;
1156 case 8: return BFD_RELOC_64;
1157 }
1158 as_bad (_("can not do %s %d byte relocation"),
1159 sign ? "signed" : "unsigned", size);
252b5132
RH
1160 }
1161
bfb32b52 1162 abort ();
252b5132
RH
1163 return BFD_RELOC_NONE;
1164}
1165
47926f60
KH
1166/* Here we decide which fixups can be adjusted to make them relative to
1167 the beginning of the section instead of the symbol. Basically we need
1168 to make sure that the dynamic relocations are done correctly, so in
1169 some cases we force the original symbol to be used. */
1170
252b5132 1171int
c0c949c7 1172tc_i386_fix_adjustable (fixP)
47926f60 1173 fixS *fixP;
252b5132 1174{
6d249963 1175#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1176 /* Prevent all adjustments to global symbols, or else dynamic
1177 linking will not work correctly. */
b98ef147
AM
1178 if (S_IS_EXTERNAL (fixP->fx_addsy)
1179 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1180 return 0;
1181#endif
ce8a8b2f 1182 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1183 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1184 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1185 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3e73aa7c
JH
1186 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1187 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1188 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
252b5132
RH
1189 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1190 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1191 return 0;
1192 return 1;
1193}
1194#else
ec56dfb4
L
1195#define reloc(SIZE,PCREL,SIGN,OTHER) 0
1196#define BFD_RELOC_16 0
1197#define BFD_RELOC_32 0
1198#define BFD_RELOC_16_PCREL 0
1199#define BFD_RELOC_32_PCREL 0
1200#define BFD_RELOC_386_PLT32 0
1201#define BFD_RELOC_386_GOT32 0
1202#define BFD_RELOC_386_GOTOFF 0
1203#define BFD_RELOC_X86_64_PLT32 0
1204#define BFD_RELOC_X86_64_GOT32 0
1205#define BFD_RELOC_X86_64_GOTPCREL 0
252b5132
RH
1206#endif
1207
47926f60 1208static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1209
1210static int
252b5132
RH
1211intel_float_operand (mnemonic)
1212 char *mnemonic;
1213{
47926f60 1214 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1215 return 2;
252b5132
RH
1216
1217 if (mnemonic[0] == 'f')
1218 return 1;
1219
1220 return 0;
1221}
1222
1223/* This is the guts of the machine-dependent assembler. LINE points to a
1224 machine dependent instruction. This function is supposed to emit
1225 the frags/bytes it assembles to. */
1226
1227void
1228md_assemble (line)
1229 char *line;
1230{
47926f60 1231 /* Points to template once we've found it. */
252b5132
RH
1232 const template *t;
1233
252b5132
RH
1234 int j;
1235
1236 char mnemonic[MAX_MNEM_SIZE];
1237
47926f60 1238 /* Initialize globals. */
252b5132
RH
1239 memset (&i, '\0', sizeof (i));
1240 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1241 i.reloc[j] = NO_RELOC;
252b5132
RH
1242 memset (disp_expressions, '\0', sizeof (disp_expressions));
1243 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1244 save_stack_p = save_stack;
252b5132
RH
1245
1246 /* First parse an instruction mnemonic & call i386_operand for the operands.
1247 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1248 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1249 {
1250 char *l = line;
1251 char *token_start = l;
1252 char *mnem_p;
1253
47926f60 1254 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1255 const char *expecting_string_instruction = NULL;
1256
1257 while (1)
1258 {
1259 mnem_p = mnemonic;
1260 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1261 {
1262 mnem_p++;
1263 if (mnem_p >= mnemonic + sizeof (mnemonic))
1264 {
e413e4e9 1265 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1266 return;
1267 }
1268 l++;
1269 }
1270 if (!is_space_char (*l)
1271 && *l != END_OF_INSN
5dd0794d
AM
1272 && *l != PREFIX_SEPARATOR
1273 && *l != ',')
252b5132
RH
1274 {
1275 as_bad (_("invalid character %s in mnemonic"),
1276 output_invalid (*l));
1277 return;
1278 }
1279 if (token_start == l)
1280 {
1281 if (*l == PREFIX_SEPARATOR)
1282 as_bad (_("expecting prefix; got nothing"));
1283 else
1284 as_bad (_("expecting mnemonic; got nothing"));
1285 return;
1286 }
1287
1288 /* Look up instruction (or prefix) via hash table. */
1289 current_templates = hash_find (op_hash, mnemonic);
1290
1291 if (*l != END_OF_INSN
1292 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1293 && current_templates
1294 && (current_templates->start->opcode_modifier & IsPrefix))
1295 {
1296 /* If we are in 16-bit mode, do not allow addr16 or data16.
1297 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1298 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1299 && (((current_templates->start->opcode_modifier & Size32) != 0)
3e73aa7c 1300 ^ (flag_code == CODE_16BIT)))
252b5132
RH
1301 {
1302 as_bad (_("redundant %s prefix"),
1303 current_templates->start->name);
1304 return;
1305 }
1306 /* Add prefix, checking for repeated prefixes. */
1307 switch (add_prefix (current_templates->start->base_opcode))
1308 {
1309 case 0:
1310 return;
1311 case 2:
47926f60 1312 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1313 break;
1314 }
1315 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1316 token_start = ++l;
1317 }
1318 else
1319 break;
1320 }
1321
1322 if (!current_templates)
1323 {
24eab124 1324 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1325 switch (mnem_p[-1])
1326 {
252b5132
RH
1327 case WORD_MNEM_SUFFIX:
1328 case BYTE_MNEM_SUFFIX:
3e73aa7c 1329 case QWORD_MNEM_SUFFIX:
252b5132
RH
1330 i.suffix = mnem_p[-1];
1331 mnem_p[-1] = '\0';
1332 current_templates = hash_find (op_hash, mnemonic);
24eab124 1333 break;
f16b83df
JH
1334 case SHORT_MNEM_SUFFIX:
1335 case LONG_MNEM_SUFFIX:
1336 if (!intel_syntax)
1337 {
1338 i.suffix = mnem_p[-1];
1339 mnem_p[-1] = '\0';
1340 current_templates = hash_find (op_hash, mnemonic);
1341 }
1342 break;
24eab124 1343
ce8a8b2f 1344 /* Intel Syntax. */
f16b83df 1345 case 'd':
24eab124
AM
1346 if (intel_syntax)
1347 {
f16b83df
JH
1348 if (intel_float_operand (mnemonic))
1349 i.suffix = SHORT_MNEM_SUFFIX;
1350 else
1351 i.suffix = LONG_MNEM_SUFFIX;
24eab124
AM
1352 mnem_p[-1] = '\0';
1353 current_templates = hash_find (op_hash, mnemonic);
24eab124 1354 }
f16b83df 1355 break;
252b5132
RH
1356 }
1357 if (!current_templates)
1358 {
e413e4e9 1359 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1360 return;
1361 }
1362 }
1363
5dd0794d
AM
1364 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1365 {
1366 /* Check for a branch hint. We allow ",pt" and ",pn" for
1367 predict taken and predict not taken respectively.
1368 I'm not sure that branch hints actually do anything on loop
1369 and jcxz insns (JumpByte) for current Pentium4 chips. They
1370 may work in the future and it doesn't hurt to accept them
1371 now. */
1372 if (l[0] == ',' && l[1] == 'p')
1373 {
1374 if (l[2] == 't')
1375 {
1376 if (! add_prefix (DS_PREFIX_OPCODE))
1377 return;
1378 l += 3;
1379 }
1380 else if (l[2] == 'n')
1381 {
1382 if (! add_prefix (CS_PREFIX_OPCODE))
1383 return;
1384 l += 3;
1385 }
1386 }
1387 }
1388 /* Any other comma loses. */
1389 if (*l == ',')
1390 {
1391 as_bad (_("invalid character %s in mnemonic"),
1392 output_invalid (*l));
1393 return;
1394 }
1395
e413e4e9
AM
1396 /* Check if instruction is supported on specified architecture. */
1397 if (cpu_arch_flags != 0)
1398 {
3e73aa7c
JH
1399 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1400 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
e413e4e9
AM
1401 {
1402 as_warn (_("`%s' is not supported on `%s'"),
1403 current_templates->start->name, cpu_arch_name);
1404 }
3e73aa7c 1405 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
e413e4e9
AM
1406 {
1407 as_warn (_("use .code16 to ensure correct addressing mode"));
1408 }
1409 }
1410
ce8a8b2f 1411 /* Check for rep/repne without a string instruction. */
252b5132
RH
1412 if (expecting_string_instruction
1413 && !(current_templates->start->opcode_modifier & IsString))
1414 {
1415 as_bad (_("expecting string instruction after `%s'"),
1416 expecting_string_instruction);
1417 return;
1418 }
1419
47926f60 1420 /* There may be operands to parse. */
252b5132
RH
1421 if (*l != END_OF_INSN)
1422 {
47926f60 1423 /* 1 if operand is pending after ','. */
252b5132
RH
1424 unsigned int expecting_operand = 0;
1425
47926f60 1426 /* Non-zero if operand parens not balanced. */
252b5132
RH
1427 unsigned int paren_not_balanced;
1428
1429 do
1430 {
ce8a8b2f 1431 /* Skip optional white space before operand. */
252b5132
RH
1432 if (is_space_char (*l))
1433 ++l;
1434 if (!is_operand_char (*l) && *l != END_OF_INSN)
1435 {
1436 as_bad (_("invalid character %s before operand %d"),
1437 output_invalid (*l),
1438 i.operands + 1);
1439 return;
1440 }
1441 token_start = l; /* after white space */
1442 paren_not_balanced = 0;
1443 while (paren_not_balanced || *l != ',')
1444 {
1445 if (*l == END_OF_INSN)
1446 {
1447 if (paren_not_balanced)
1448 {
24eab124 1449 if (!intel_syntax)
252b5132
RH
1450 as_bad (_("unbalanced parenthesis in operand %d."),
1451 i.operands + 1);
24eab124 1452 else
252b5132
RH
1453 as_bad (_("unbalanced brackets in operand %d."),
1454 i.operands + 1);
1455 return;
1456 }
1457 else
1458 break; /* we are done */
1459 }
1460 else if (!is_operand_char (*l) && !is_space_char (*l))
1461 {
1462 as_bad (_("invalid character %s in operand %d"),
1463 output_invalid (*l),
1464 i.operands + 1);
1465 return;
1466 }
24eab124
AM
1467 if (!intel_syntax)
1468 {
252b5132
RH
1469 if (*l == '(')
1470 ++paren_not_balanced;
1471 if (*l == ')')
1472 --paren_not_balanced;
24eab124
AM
1473 }
1474 else
1475 {
252b5132
RH
1476 if (*l == '[')
1477 ++paren_not_balanced;
1478 if (*l == ']')
1479 --paren_not_balanced;
24eab124 1480 }
252b5132
RH
1481 l++;
1482 }
1483 if (l != token_start)
47926f60 1484 { /* Yes, we've read in another operand. */
252b5132
RH
1485 unsigned int operand_ok;
1486 this_operand = i.operands++;
1487 if (i.operands > MAX_OPERANDS)
1488 {
1489 as_bad (_("spurious operands; (%d operands/instruction max)"),
1490 MAX_OPERANDS);
1491 return;
1492 }
47926f60 1493 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1494 END_STRING_AND_SAVE (l);
1495
24eab124 1496 if (intel_syntax)
47926f60
KH
1497 operand_ok =
1498 i386_intel_operand (token_start,
1499 intel_float_operand (mnemonic));
24eab124
AM
1500 else
1501 operand_ok = i386_operand (token_start);
252b5132 1502
ce8a8b2f 1503 RESTORE_END_STRING (l);
252b5132
RH
1504 if (!operand_ok)
1505 return;
1506 }
1507 else
1508 {
1509 if (expecting_operand)
1510 {
1511 expecting_operand_after_comma:
1512 as_bad (_("expecting operand after ','; got nothing"));
1513 return;
1514 }
1515 if (*l == ',')
1516 {
1517 as_bad (_("expecting operand before ','; got nothing"));
1518 return;
1519 }
1520 }
1521
ce8a8b2f 1522 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1523 if (*l == ',')
1524 {
1525 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1526 {
1527 /* Just skip it, if it's \n complain. */
252b5132
RH
1528 goto expecting_operand_after_comma;
1529 }
1530 expecting_operand = 1;
1531 }
1532 }
ce8a8b2f 1533 while (*l != END_OF_INSN);
252b5132
RH
1534 }
1535 }
1536
1537 /* Now we've parsed the mnemonic into a set of templates, and have the
1538 operands at hand.
1539
1540 Next, we find a template that matches the given insn,
1541 making sure the overlap of the given operands types is consistent
47926f60 1542 with the template operand types. */
252b5132
RH
1543
1544#define MATCH(overlap, given, template) \
3138f287
AM
1545 ((overlap & ~JumpAbsolute) \
1546 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1547
1548 /* If given types r0 and r1 are registers they must be of the same type
1549 unless the expected operand type register overlap is null.
1550 Note that Acc in a template matches every size of reg. */
1551#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1552 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1553 ((g0) & Reg) == ((g1) & Reg) || \
1554 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1555
1556 {
1557 register unsigned int overlap0, overlap1;
252b5132
RH
1558 unsigned int overlap2;
1559 unsigned int found_reverse_match;
1560 int suffix_check;
1561
cc5ca5ce
AM
1562 /* All intel opcodes have reversed operands except for "bound" and
1563 "enter". We also don't reverse intersegment "jmp" and "call"
1564 instructions with 2 immediate operands so that the immediate segment
1565 precedes the offset, as it does when in AT&T mode. "enter" and the
1566 intersegment "jmp" and "call" instructions are the only ones that
1567 have two immediate operands. */
520dc8e8 1568 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1569 && (strcmp (mnemonic, "bound") != 0)
1570 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1571 {
520dc8e8 1572 union i386_op temp_op;
24eab124 1573 unsigned int temp_type;
f3c180ae 1574 RELOC_ENUM temp_reloc;
24eab124 1575 int xchg1 = 0;
ab9da554 1576 int xchg2 = 0;
252b5132 1577
24eab124
AM
1578 if (i.operands == 2)
1579 {
1580 xchg1 = 0;
1581 xchg2 = 1;
1582 }
1583 else if (i.operands == 3)
1584 {
1585 xchg1 = 0;
1586 xchg2 = 2;
1587 }
520dc8e8
AM
1588 temp_type = i.types[xchg2];
1589 i.types[xchg2] = i.types[xchg1];
1590 i.types[xchg1] = temp_type;
1591 temp_op = i.op[xchg2];
1592 i.op[xchg2] = i.op[xchg1];
1593 i.op[xchg1] = temp_op;
1ae12ab7
AM
1594 temp_reloc = i.reloc[xchg2];
1595 i.reloc[xchg2] = i.reloc[xchg1];
1596 i.reloc[xchg1] = temp_reloc;
36bf8ab9
AM
1597
1598 if (i.mem_operands == 2)
1599 {
1600 const seg_entry *temp_seg;
1601 temp_seg = i.seg[0];
1602 i.seg[0] = i.seg[1];
1603 i.seg[1] = temp_seg;
1604 }
24eab124 1605 }
773f551c
AM
1606
1607 if (i.imm_operands)
1608 {
1609 /* Try to ensure constant immediates are represented in the smallest
1610 opcode possible. */
1611 char guess_suffix = 0;
1612 int op;
1613
1614 if (i.suffix)
1615 guess_suffix = i.suffix;
1616 else if (i.reg_operands)
1617 {
1618 /* Figure out a suffix from the last register operand specified.
1619 We can't do this properly yet, ie. excluding InOutPortReg,
1620 but the following works for instructions with immediates.
1621 In any case, we can't set i.suffix yet. */
47926f60 1622 for (op = i.operands; --op >= 0;)
773f551c
AM
1623 if (i.types[op] & Reg)
1624 {
1625 if (i.types[op] & Reg8)
1626 guess_suffix = BYTE_MNEM_SUFFIX;
1627 else if (i.types[op] & Reg16)
1628 guess_suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1629 else if (i.types[op] & Reg32)
1630 guess_suffix = LONG_MNEM_SUFFIX;
1631 else if (i.types[op] & Reg64)
1632 guess_suffix = QWORD_MNEM_SUFFIX;
773f551c
AM
1633 break;
1634 }
1635 }
3e73aa7c 1636 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
726c5dcd
AM
1637 guess_suffix = WORD_MNEM_SUFFIX;
1638
47926f60 1639 for (op = i.operands; --op >= 0;)
3e73aa7c 1640 if (i.types[op] & Imm)
773f551c 1641 {
3e73aa7c 1642 switch (i.op[op].imms->X_op)
e5cb08ac 1643 {
3e73aa7c
JH
1644 case O_constant:
1645 /* If a suffix is given, this operand may be shortened. */
1646 switch (guess_suffix)
1647 {
1648 case LONG_MNEM_SUFFIX:
1649 i.types[op] |= Imm32 | Imm64;
1650 break;
1651 case WORD_MNEM_SUFFIX:
1652 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1653 break;
1654 case BYTE_MNEM_SUFFIX:
1655 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1656 break;
1657 }
773f551c 1658
e5cb08ac
KH
1659 /* If this operand is at most 16 bits, convert it
1660 to a signed 16 bit number before trying to see
1661 whether it will fit in an even smaller size.
1662 This allows a 16-bit operand such as $0xffe0 to
1663 be recognised as within Imm8S range. */
3e73aa7c 1664 if ((i.types[op] & Imm16)
e5cb08ac 1665 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3e73aa7c
JH
1666 {
1667 i.op[op].imms->X_add_number =
1668 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1669 }
1670 if ((i.types[op] & Imm32)
1671 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1672 {
1673 i.op[op].imms->X_add_number =
1674 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1675 }
1676 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1677 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1678 if (guess_suffix == QWORD_MNEM_SUFFIX)
1679 i.types[op] &= ~Imm32;
1680 break;
1681 case O_absent:
1682 case O_register:
bfb32b52 1683 abort ();
3e73aa7c
JH
1684 /* Symbols and expressions. */
1685 default:
1686 /* Convert symbolic operand to proper sizes for matching. */
1687 switch (guess_suffix)
1688 {
1689 case QWORD_MNEM_SUFFIX:
1690 i.types[op] = Imm64 | Imm32S;
1691 break;
1692 case LONG_MNEM_SUFFIX:
1693 i.types[op] = Imm32 | Imm64;
1694 break;
1695 case WORD_MNEM_SUFFIX:
1696 i.types[op] = Imm16 | Imm32 | Imm64;
1697 break;
1698 break;
1699 case BYTE_MNEM_SUFFIX:
1700 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1701 break;
1702 break;
1703 }
1704 break;
773f551c 1705 }
773f551c
AM
1706 }
1707 }
1708
45288df1
AM
1709 if (i.disp_operands)
1710 {
1711 /* Try to use the smallest displacement type too. */
1712 int op;
1713
47926f60 1714 for (op = i.operands; --op >= 0;)
45288df1 1715 if ((i.types[op] & Disp)
1ae12ab7 1716 && i.op[op].disps->X_op == O_constant)
45288df1
AM
1717 {
1718 offsetT disp = i.op[op].disps->X_add_number;
1719
1720 if (i.types[op] & Disp16)
1721 {
1722 /* We know this operand is at most 16 bits, so
1723 convert to a signed 16 bit number before trying
1724 to see whether it will fit in an even smaller
1725 size. */
47926f60 1726
45288df1
AM
1727 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1728 }
3e73aa7c
JH
1729 else if (i.types[op] & Disp32)
1730 {
1731 /* We know this operand is at most 32 bits, so convert to a
1732 signed 32 bit number before trying to see whether it will
1733 fit in an even smaller size. */
1734 disp &= (((offsetT) 2 << 31) - 1);
1735 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1736 }
1737 if (flag_code == CODE_64BIT)
1738 {
1739 if (fits_in_signed_long (disp))
1740 i.types[op] |= Disp32S;
1741 if (fits_in_unsigned_long (disp))
1742 i.types[op] |= Disp32;
1743 }
1744 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1745 && fits_in_signed_byte (disp))
45288df1
AM
1746 i.types[op] |= Disp8;
1747 }
1748 }
1749
252b5132
RH
1750 overlap0 = 0;
1751 overlap1 = 0;
1752 overlap2 = 0;
1753 found_reverse_match = 0;
1754 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1755 ? No_bSuf
1756 : (i.suffix == WORD_MNEM_SUFFIX
1757 ? No_wSuf
1758 : (i.suffix == SHORT_MNEM_SUFFIX
1759 ? No_sSuf
1760 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1761 ? No_lSuf
3e73aa7c
JH
1762 : (i.suffix == QWORD_MNEM_SUFFIX
1763 ? No_qSuf
1764 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1765
1766 for (t = current_templates->start;
1767 t < current_templates->end;
1768 t++)
1769 {
47926f60 1770 /* Must have right number of operands. */
252b5132
RH
1771 if (i.operands != t->operands)
1772 continue;
1773
7f3f1ea2
AM
1774 /* Check the suffix, except for some instructions in intel mode. */
1775 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1776 && !(intel_syntax
1777 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1778 && !(intel_syntax
1779 && t->base_opcode == 0xd9
ce8a8b2f
AM
1780 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1781 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1782 continue;
252b5132 1783
e2914f48 1784 /* Do not verify operands when there are none. */
252b5132 1785 else if (!t->operands)
e2914f48
JH
1786 {
1787 if (t->cpu_flags & ~cpu_arch_flags)
1788 continue;
1789 /* We've found a match; break out of loop. */
1790 break;
e5cb08ac 1791 }
252b5132
RH
1792
1793 overlap0 = i.types[0] & t->operand_types[0];
1794 switch (t->operands)
1795 {
1796 case 1:
1797 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1798 continue;
1799 break;
1800 case 2:
1801 case 3:
1802 overlap1 = i.types[1] & t->operand_types[1];
1803 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1804 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1805 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1806 t->operand_types[0],
1807 overlap1, i.types[1],
1808 t->operand_types[1]))
1809 {
47926f60 1810 /* Check if other direction is valid ... */
252b5132
RH
1811 if ((t->opcode_modifier & (D|FloatD)) == 0)
1812 continue;
1813
47926f60 1814 /* Try reversing direction of operands. */
252b5132
RH
1815 overlap0 = i.types[0] & t->operand_types[1];
1816 overlap1 = i.types[1] & t->operand_types[0];
1817 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1818 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1819 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1820 t->operand_types[1],
1821 overlap1, i.types[1],
1822 t->operand_types[0]))
1823 {
47926f60 1824 /* Does not match either direction. */
252b5132
RH
1825 continue;
1826 }
1827 /* found_reverse_match holds which of D or FloatDR
1828 we've found. */
1829 found_reverse_match = t->opcode_modifier & (D|FloatDR);
252b5132 1830 }
47926f60 1831 /* Found a forward 2 operand match here. */
3e73aa7c 1832 else if (t->operands == 3)
252b5132
RH
1833 {
1834 /* Here we make use of the fact that there are no
1835 reverse match 3 operand instructions, and all 3
1836 operand instructions only need to be checked for
1837 register consistency between operands 2 and 3. */
1838 overlap2 = i.types[2] & t->operand_types[2];
1839 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1840 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1841 t->operand_types[1],
1842 overlap2, i.types[2],
24eab124 1843 t->operand_types[2]))
252b5132 1844
24eab124 1845 continue;
252b5132 1846 }
47926f60 1847 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1848 slip through to break. */
252b5132 1849 }
3e73aa7c
JH
1850 if (t->cpu_flags & ~cpu_arch_flags)
1851 {
1852 found_reverse_match = 0;
1853 continue;
1854 }
47926f60
KH
1855 /* We've found a match; break out of loop. */
1856 break;
ce8a8b2f 1857 }
252b5132 1858 if (t == current_templates->end)
47926f60
KH
1859 {
1860 /* We found no match. */
252b5132
RH
1861 as_bad (_("suffix or operands invalid for `%s'"),
1862 current_templates->start->name);
1863 return;
1864 }
1865
a38cf1db 1866 if (!quiet_warnings)
3138f287 1867 {
a38cf1db
AM
1868 if (!intel_syntax
1869 && ((i.types[0] & JumpAbsolute)
1870 != (t->operand_types[0] & JumpAbsolute)))
1871 {
1872 as_warn (_("indirect %s without `*'"), t->name);
1873 }
3138f287 1874
a38cf1db
AM
1875 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1876 == (IsPrefix|IgnoreSize))
1877 {
1878 /* Warn them that a data or address size prefix doesn't
1879 affect assembly of the next line of code. */
1880 as_warn (_("stand-alone `%s' prefix"), t->name);
1881 }
252b5132
RH
1882 }
1883
1884 /* Copy the template we found. */
1885 i.tm = *t;
1886 if (found_reverse_match)
1887 {
7f3f1ea2
AM
1888 /* If we found a reverse match we must alter the opcode
1889 direction bit. found_reverse_match holds bits to change
1890 (different for int & float insns). */
1891
1892 i.tm.base_opcode ^= found_reverse_match;
1893
252b5132
RH
1894 i.tm.operand_types[0] = t->operand_types[1];
1895 i.tm.operand_types[1] = t->operand_types[0];
1896 }
1897
d0b47220 1898 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
e5cb08ac
KH
1899 if (SYSV386_COMPAT
1900 && intel_syntax
1901 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1902 i.tm.base_opcode ^= FloatR;
252b5132
RH
1903
1904 if (i.tm.opcode_modifier & FWait)
1905 if (! add_prefix (FWAIT_OPCODE))
1906 return;
1907
ce8a8b2f 1908 /* Check string instruction segment overrides. */
252b5132
RH
1909 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1910 {
1911 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1912 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1913 {
1914 if (i.seg[0] != NULL && i.seg[0] != &es)
1915 {
1916 as_bad (_("`%s' operand %d must use `%%es' segment"),
1917 i.tm.name,
1918 mem_op + 1);
1919 return;
1920 }
1921 /* There's only ever one segment override allowed per instruction.
1922 This instruction possibly has a legal segment override on the
1923 second operand, so copy the segment to where non-string
1924 instructions store it, allowing common code. */
1925 i.seg[0] = i.seg[1];
1926 }
1927 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1928 {
1929 if (i.seg[1] != NULL && i.seg[1] != &es)
1930 {
1931 as_bad (_("`%s' operand %d must use `%%es' segment"),
1932 i.tm.name,
1933 mem_op + 2);
1934 return;
1935 }
1936 }
1937 }
1938
3e73aa7c
JH
1939 if (i.reg_operands && flag_code < CODE_64BIT)
1940 {
1941 int op;
e5cb08ac 1942 for (op = i.operands; --op >= 0;)
3e73aa7c
JH
1943 if ((i.types[op] & Reg)
1944 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
b96d3a20
JH
1945 {
1946 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1947 i.op[op].regs->reg_name);
1948 return;
1949 }
3e73aa7c
JH
1950 }
1951
252b5132
RH
1952 /* If matched instruction specifies an explicit instruction mnemonic
1953 suffix, use it. */
3e73aa7c 1954 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
252b5132
RH
1955 {
1956 if (i.tm.opcode_modifier & Size16)
1957 i.suffix = WORD_MNEM_SUFFIX;
3e73aa7c
JH
1958 else if (i.tm.opcode_modifier & Size64)
1959 i.suffix = QWORD_MNEM_SUFFIX;
252b5132 1960 else
add0c677 1961 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1962 }
1963 else if (i.reg_operands)
1964 {
1965 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1966 based on register operands. */
252b5132
RH
1967 if (!i.suffix)
1968 {
1969 /* We take i.suffix from the last register operand specified,
1970 Destination register type is more significant than source
1971 register type. */
1972 int op;
47926f60 1973 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1974 if ((i.types[op] & Reg)
1975 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1976 {
1977 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1978 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
3e73aa7c 1979 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
add0c677 1980 LONG_MNEM_SUFFIX);
252b5132
RH
1981 break;
1982 }
1983 }
1984 else if (i.suffix == BYTE_MNEM_SUFFIX)
1985 {
1986 int op;
47926f60 1987 for (op = i.operands; --op >= 0;)
252b5132
RH
1988 {
1989 /* If this is an eight bit register, it's OK. If it's
1990 the 16 or 32 bit version of an eight bit register,
47926f60 1991 we will just use the low portion, and that's OK too. */
252b5132
RH
1992 if (i.types[op] & Reg8)
1993 continue;
1994
47926f60 1995 /* movzx and movsx should not generate this warning. */
24eab124
AM
1996 if (intel_syntax
1997 && (i.tm.base_opcode == 0xfb7
1998 || i.tm.base_opcode == 0xfb6
3e73aa7c 1999 || i.tm.base_opcode == 0x63
24eab124
AM
2000 || i.tm.base_opcode == 0xfbe
2001 || i.tm.base_opcode == 0xfbf))
2002 continue;
252b5132 2003
520dc8e8 2004 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
2005#if 0
2006 /* Check that the template allows eight bit regs
2007 This kills insns such as `orb $1,%edx', which
2008 maybe should be allowed. */
2009 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
2010#endif
2011 )
2012 {
3e73aa7c
JH
2013 /* Prohibit these changes in the 64bit mode, since
2014 the lowering is more complicated. */
2015 if (flag_code == CODE_64BIT
2016 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2017 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2018 i.op[op].regs->reg_name,
2019 i.suffix);
252b5132 2020#if REGISTER_WARNINGS
a38cf1db
AM
2021 if (!quiet_warnings
2022 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 2023 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de
AM
2024 (i.op[op].regs
2025 + (i.types[op] & Reg16
2026 ? REGNAM_AL - REGNAM_AX
2027 : REGNAM_AL - REGNAM_EAX))->reg_name,
520dc8e8 2028 i.op[op].regs->reg_name,
252b5132
RH
2029 i.suffix);
2030#endif
2031 continue;
2032 }
ce8a8b2f 2033 /* Any other register is bad. */
3f4438ab
AM
2034 if (i.types[op] & (Reg | RegMMX | RegXMM
2035 | SReg2 | SReg3
2036 | Control | Debug | Test
2037 | FloatReg | FloatAcc))
252b5132
RH
2038 {
2039 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2040 i.op[op].regs->reg_name,
252b5132
RH
2041 i.tm.name,
2042 i.suffix);
2043 return;
2044 }
2045 }
2046 }
add0c677 2047 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2048 {
2049 int op;
47926f60
KH
2050
2051 for (op = i.operands; --op >= 0;)
252b5132
RH
2052 /* Reject eight bit registers, except where the template
2053 requires them. (eg. movzb) */
2054 if ((i.types[op] & Reg8) != 0
47926f60 2055 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
2056 {
2057 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2058 i.op[op].regs->reg_name,
252b5132
RH
2059 i.tm.name,
2060 i.suffix);
2061 return;
2062 }
252b5132 2063 /* Warn if the e prefix on a general reg is missing. */
3e73aa7c 2064 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2065 && (i.types[op] & Reg16) != 0
252b5132
RH
2066 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2067 {
3e73aa7c
JH
2068 /* Prohibit these changes in the 64bit mode, since
2069 the lowering is more complicated. */
2070 if (flag_code == CODE_64BIT)
2071 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2072 i.op[op].regs->reg_name,
2073 i.suffix);
2074#if REGISTER_WARNINGS
2075 else
2076 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2077 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3e73aa7c
JH
2078 i.op[op].regs->reg_name,
2079 i.suffix);
252b5132 2080#endif
3e73aa7c
JH
2081 }
2082 /* Warn if the r prefix on a general reg is missing. */
2083 else if ((i.types[op] & Reg64) != 0
2084 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2085 {
2086 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2087 i.op[op].regs->reg_name,
2088 i.suffix);
2089 }
2090 }
2091 else if (i.suffix == QWORD_MNEM_SUFFIX)
2092 {
2093 int op;
3e73aa7c
JH
2094
2095 for (op = i.operands; --op >= 0; )
2096 /* Reject eight bit registers, except where the template
2097 requires them. (eg. movzb) */
2098 if ((i.types[op] & Reg8) != 0
2099 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2100 {
2101 as_bad (_("`%%%s' not allowed with `%s%c'"),
2102 i.op[op].regs->reg_name,
2103 i.tm.name,
2104 i.suffix);
2105 return;
2106 }
2107 /* Warn if the e prefix on a general reg is missing. */
2108 else if (((i.types[op] & Reg16) != 0
2109 || (i.types[op] & Reg32) != 0)
2110 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2111 {
2112 /* Prohibit these changes in the 64bit mode, since
2113 the lowering is more complicated. */
2114 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2115 i.op[op].regs->reg_name,
2116 i.suffix);
2117 }
252b5132
RH
2118 }
2119 else if (i.suffix == WORD_MNEM_SUFFIX)
2120 {
2121 int op;
47926f60 2122 for (op = i.operands; --op >= 0;)
252b5132
RH
2123 /* Reject eight bit registers, except where the template
2124 requires them. (eg. movzb) */
2125 if ((i.types[op] & Reg8) != 0
2126 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2127 {
2128 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 2129 i.op[op].regs->reg_name,
252b5132
RH
2130 i.tm.name,
2131 i.suffix);
2132 return;
2133 }
252b5132 2134 /* Warn if the e prefix on a general reg is present. */
3e73aa7c 2135 else if ((!quiet_warnings || flag_code == CODE_64BIT)
a38cf1db 2136 && (i.types[op] & Reg32) != 0
252b5132
RH
2137 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2138 {
3e73aa7c
JH
2139 /* Prohibit these changes in the 64bit mode, since
2140 the lowering is more complicated. */
2141 if (flag_code == CODE_64BIT)
2142 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2143 i.op[op].regs->reg_name,
2144 i.suffix);
2145 else
2146#if REGISTER_WARNINGS
2147 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2e98d2de 2148 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3e73aa7c
JH
2149 i.op[op].regs->reg_name,
2150 i.suffix);
252b5132 2151#endif
3e73aa7c 2152 }
252b5132 2153 }
fa2255cb
DN
2154 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2155 /* Do nothing if the instruction is going to ignore the prefix. */
2156 ;
252b5132 2157 else
47926f60 2158 abort ();
252b5132 2159 }
eecb386c
AM
2160 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2161 {
2162 i.suffix = stackop_size;
2163 }
252b5132
RH
2164 /* Make still unresolved immediate matches conform to size of immediate
2165 given in i.suffix. Note: overlap2 cannot be an immediate! */
3e73aa7c 2166 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
252b5132 2167 && overlap0 != Imm8 && overlap0 != Imm8S
e5cb08ac 2168 && overlap0 != Imm16 && overlap0 != Imm32S
b77a7acd 2169 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2170 {
2171 if (i.suffix)
2172 {
24eab124 2173 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd 2174 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
3e73aa7c 2175 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2176 }
3e73aa7c
JH
2177 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2178 || overlap0 == (Imm16 | Imm32)
2179 || overlap0 == (Imm16 | Imm32S))
252b5132 2180 {
24eab124 2181 overlap0 =
3e73aa7c 2182 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2183 }
3e73aa7c
JH
2184 if (overlap0 != Imm8 && overlap0 != Imm8S
2185 && overlap0 != Imm16 && overlap0 != Imm32S
2186 && overlap0 != Imm32 && overlap0 != Imm64)
252b5132
RH
2187 {
2188 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2189 return;
2190 }
2191 }
3e73aa7c 2192 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
252b5132 2193 && overlap1 != Imm8 && overlap1 != Imm8S
e5cb08ac 2194 && overlap1 != Imm16 && overlap1 != Imm32S
b77a7acd 2195 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132
RH
2196 {
2197 if (i.suffix)
2198 {
24eab124 2199 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
b77a7acd
AJ
2200 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2201 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
252b5132 2202 }
3e73aa7c
JH
2203 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2204 || overlap1 == (Imm16 | Imm32)
2205 || overlap1 == (Imm16 | Imm32S))
252b5132 2206 {
24eab124 2207 overlap1 =
3e73aa7c 2208 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
252b5132 2209 }
3e73aa7c
JH
2210 if (overlap1 != Imm8 && overlap1 != Imm8S
2211 && overlap1 != Imm16 && overlap1 != Imm32S
2212 && overlap1 != Imm32 && overlap1 != Imm64)
252b5132 2213 {
3e73aa7c 2214 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
252b5132
RH
2215 return;
2216 }
2217 }
2218 assert ((overlap2 & Imm) == 0);
2219
2220 i.types[0] = overlap0;
2221 if (overlap0 & ImplicitRegister)
2222 i.reg_operands--;
2223 if (overlap0 & Imm1)
ce8a8b2f 2224 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
2225
2226 i.types[1] = overlap1;
2227 if (overlap1 & ImplicitRegister)
2228 i.reg_operands--;
2229
2230 i.types[2] = overlap2;
2231 if (overlap2 & ImplicitRegister)
2232 i.reg_operands--;
2233
2234 /* Finalize opcode. First, we change the opcode based on the operand
2235 size given by i.suffix: We need not change things for byte insns. */
2236
2237 if (!i.suffix && (i.tm.opcode_modifier & W))
2238 {
2239 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2240 return;
2241 }
2242
ce8a8b2f 2243 /* For movzx and movsx, need to check the register type. */
252b5132 2244 if (intel_syntax
24eab124 2245 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 2246 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
2247 {
2248 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 2249
520dc8e8 2250 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
2251 if (!add_prefix (prefix))
2252 return;
2253 }
252b5132
RH
2254
2255 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2256 {
2257 /* It's not a byte, select word/dword operation. */
2258 if (i.tm.opcode_modifier & W)
2259 {
2260 if (i.tm.opcode_modifier & ShortForm)
2261 i.tm.base_opcode |= 8;
2262 else
2263 i.tm.base_opcode |= 1;
2264 }
2265 /* Now select between word & dword operations via the operand
2266 size prefix, except for instructions that will ignore this
2267 prefix anyway. */
3e73aa7c
JH
2268 if (i.suffix != QWORD_MNEM_SUFFIX
2269 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
252b5132
RH
2270 && !(i.tm.opcode_modifier & IgnoreSize))
2271 {
2272 unsigned int prefix = DATA_PREFIX_OPCODE;
2273 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2274 prefix = ADDR_PREFIX_OPCODE;
2275
2276 if (! add_prefix (prefix))
2277 return;
2278 }
3e73aa7c
JH
2279
2280 /* Set mode64 for an operand. */
2281 if (i.suffix == QWORD_MNEM_SUFFIX
2282 && !(i.tm.opcode_modifier & NoRex64))
b96d3a20 2283 {
3e73aa7c 2284 i.rex.mode64 = 1;
b96d3a20
JH
2285 if (flag_code < CODE_64BIT)
2286 {
e5cb08ac
KH
2287 as_bad (_("64bit operations available only in 64bit modes."));
2288 return;
b96d3a20
JH
2289 }
2290 }
3e73aa7c 2291
252b5132 2292 /* Size floating point instruction. */
f16b83df 2293 if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
2294 {
2295 if (i.tm.opcode_modifier & FloatMF)
2296 i.tm.base_opcode ^= 4;
2297 }
252b5132
RH
2298 }
2299
3f4438ab 2300 if (i.tm.opcode_modifier & ImmExt)
252b5132 2301 {
3f4438ab
AM
2302 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2303 opcode suffix which is coded in the same place as an 8-bit
2304 immediate field would be. Here we fake an 8-bit immediate
2305 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
2306
2307 expressionS *exp;
2308
47926f60 2309 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
2310
2311 exp = &im_expressions[i.imm_operands++];
520dc8e8 2312 i.op[i.operands].imms = exp;
252b5132
RH
2313 i.types[i.operands++] = Imm8;
2314 exp->X_op = O_constant;
2315 exp->X_add_number = i.tm.extension_opcode;
2316 i.tm.extension_opcode = None;
2317 }
2318
47926f60 2319 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
2320 if (i.operands)
2321 {
24eab124 2322 /* Default segment register this instruction will use
252b5132
RH
2323 for memory accesses. 0 means unknown.
2324 This is only for optimizing out unnecessary segment overrides. */
2325 const seg_entry *default_seg = 0;
2326
252b5132
RH
2327 /* The imul $imm, %reg instruction is converted into
2328 imul $imm, %reg, %reg, and the clr %reg instruction
2329 is converted into xor %reg, %reg. */
2330 if (i.tm.opcode_modifier & regKludge)
2331 {
2332 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
2333 /* Pretend we saw the extra register operand. */
2334 assert (i.op[first_reg_op + 1].regs == 0);
2335 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2336 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
2337 i.reg_operands = 2;
2338 }
2339
2340 if (i.tm.opcode_modifier & ShortForm)
2341 {
47926f60 2342 /* The register or float register operand is in operand 0 or 1. */
252b5132 2343 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 2344 /* Register goes in low 3 bits of opcode. */
520dc8e8 2345 i.tm.base_opcode |= i.op[op].regs->reg_num;
3e73aa7c 2346 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2347 i.rex.extZ = 1;
a38cf1db 2348 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
2349 {
2350 /* Warn about some common errors, but press on regardless.
2351 The first case can be generated by gcc (<= 2.8.1). */
2352 if (i.operands == 2)
2353 {
47926f60 2354 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 2355 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
2356 i.op[1].regs->reg_name,
2357 i.op[0].regs->reg_name);
252b5132
RH
2358 }
2359 else
2360 {
47926f60 2361 /* Extraneous `l' suffix on fp insn. */
252b5132 2362 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 2363 i.op[0].regs->reg_name);
252b5132
RH
2364 }
2365 }
2366 }
2367 else if (i.tm.opcode_modifier & Modrm)
2368 {
2369 /* The opcode is completed (modulo i.tm.extension_opcode which
2370 must be put into the modrm byte).
2371 Now, we make the modrm & index base bytes based on all the
47926f60 2372 info we've collected. */
252b5132
RH
2373
2374 /* i.reg_operands MUST be the number of real register operands;
47926f60 2375 implicit registers do not count. */
252b5132
RH
2376 if (i.reg_operands == 2)
2377 {
2378 unsigned int source, dest;
2379 source = ((i.types[0]
3f4438ab
AM
2380 & (Reg | RegMMX | RegXMM
2381 | SReg2 | SReg3
2382 | Control | Debug | Test))
252b5132
RH
2383 ? 0 : 1);
2384 dest = source + 1;
2385
252b5132 2386 i.rm.mode = 3;
3f4438ab
AM
2387 /* One of the register operands will be encoded in the
2388 i.tm.reg field, the other in the combined i.tm.mode
2389 and i.tm.regmem fields. If no form of this
2390 instruction supports a memory destination operand,
2391 then we assume the source operand may sometimes be
2392 a memory operand and so we need to store the
2393 destination in the i.rm.reg field. */
2394 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2395 {
520dc8e8
AM
2396 i.rm.reg = i.op[dest].regs->reg_num;
2397 i.rm.regmem = i.op[source].regs->reg_num;
3e73aa7c 2398 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2399 i.rex.extX = 1;
3e73aa7c 2400 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2401 i.rex.extZ = 1;
252b5132
RH
2402 }
2403 else
2404 {
520dc8e8
AM
2405 i.rm.reg = i.op[source].regs->reg_num;
2406 i.rm.regmem = i.op[dest].regs->reg_num;
3e73aa7c 2407 if (i.op[dest].regs->reg_flags & RegRex)
e5cb08ac 2408 i.rex.extZ = 1;
3e73aa7c 2409 if (i.op[source].regs->reg_flags & RegRex)
e5cb08ac 2410 i.rex.extX = 1;
252b5132
RH
2411 }
2412 }
2413 else
47926f60 2414 { /* If it's not 2 reg operands... */
252b5132
RH
2415 if (i.mem_operands)
2416 {
2417 unsigned int fake_zero_displacement = 0;
2418 unsigned int op = ((i.types[0] & AnyMem)
2419 ? 0
2420 : (i.types[1] & AnyMem) ? 1 : 2);
2421
2422 default_seg = &ds;
2423
2424 if (! i.base_reg)
2425 {
2426 i.rm.mode = 0;
2427 if (! i.disp_operands)
2428 fake_zero_displacement = 1;
2429 if (! i.index_reg)
2430 {
47926f60 2431 /* Operand is just <disp> */
3e73aa7c 2432 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132
RH
2433 {
2434 i.rm.regmem = NO_BASE_REGISTER_16;
2435 i.types[op] &= ~Disp;
2436 i.types[op] |= Disp16;
2437 }
3e73aa7c 2438 else if (flag_code != CODE_64BIT)
252b5132
RH
2439 {
2440 i.rm.regmem = NO_BASE_REGISTER;
2441 i.types[op] &= ~Disp;
2442 i.types[op] |= Disp32;
2443 }
3e73aa7c
JH
2444 else
2445 {
e5cb08ac
KH
2446 /* 64bit mode overwrites the 32bit
2447 absolute addressing by RIP relative
2448 addressing and absolute addressing
2449 is encoded by one of the redundant
2450 SIB forms. */
3e73aa7c
JH
2451
2452 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2453 i.sib.base = NO_BASE_REGISTER;
2454 i.sib.index = NO_INDEX_REGISTER;
2455 i.types[op] &= ~Disp;
2456 i.types[op] |= Disp32S;
2457 }
252b5132 2458 }
47926f60 2459 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2460 {
2461 i.sib.index = i.index_reg->reg_num;
2462 i.sib.base = NO_BASE_REGISTER;
2463 i.sib.scale = i.log2_scale_factor;
2464 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2465 i.types[op] &= ~Disp;
3e73aa7c
JH
2466 if (flag_code != CODE_64BIT)
2467 i.types[op] |= Disp32; /* Must be 32 bit */
2468 else
2469 i.types[op] |= Disp32S;
2470 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2471 i.rex.extY = 1;
252b5132
RH
2472 }
2473 }
3e73aa7c
JH
2474 /* RIP addressing for 64bit mode. */
2475 else if (i.base_reg->reg_type == BaseIndex)
2476 {
2477 i.rm.regmem = NO_BASE_REGISTER;
2478 i.types[op] &= ~Disp;
2479 i.types[op] |= Disp32S;
2480 i.flags[op] = Operand_PCrel;
2481 }
252b5132
RH
2482 else if (i.base_reg->reg_type & Reg16)
2483 {
2484 switch (i.base_reg->reg_num)
2485 {
47926f60 2486 case 3: /* (%bx) */
252b5132
RH
2487 if (! i.index_reg)
2488 i.rm.regmem = 7;
47926f60 2489 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2490 i.rm.regmem = i.index_reg->reg_num - 6;
2491 break;
47926f60 2492 case 5: /* (%bp) */
252b5132
RH
2493 default_seg = &ss;
2494 if (! i.index_reg)
2495 {
2496 i.rm.regmem = 6;
2497 if ((i.types[op] & Disp) == 0)
2498 {
47926f60 2499 /* fake (%bp) into 0(%bp) */
252b5132
RH
2500 i.types[op] |= Disp8;
2501 fake_zero_displacement = 1;
2502 }
2503 }
47926f60 2504 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2505 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2506 break;
47926f60 2507 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2508 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2509 }
2510 i.rm.mode = mode_from_disp_size (i.types[op]);
2511 }
3e73aa7c 2512 else /* i.base_reg and 32/64 bit mode */
252b5132 2513 {
3e73aa7c
JH
2514 if (flag_code == CODE_64BIT
2515 && (i.types[op] & Disp))
2516 {
2517 if (i.types[op] & Disp8)
2518 i.types[op] = Disp8 | Disp32S;
2519 else
2520 i.types[op] = Disp32S;
2521 }
252b5132 2522 i.rm.regmem = i.base_reg->reg_num;
3e73aa7c 2523 if (i.base_reg->reg_flags & RegRex)
e5cb08ac 2524 i.rex.extZ = 1;
252b5132 2525 i.sib.base = i.base_reg->reg_num;
3e73aa7c
JH
2526 /* x86-64 ignores REX prefix bit here to avoid
2527 decoder complications. */
2528 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
252b5132
RH
2529 {
2530 default_seg = &ss;
2531 if (i.disp_operands == 0)
2532 {
2533 fake_zero_displacement = 1;
2534 i.types[op] |= Disp8;
2535 }
2536 }
2537 else if (i.base_reg->reg_num == ESP_REG_NUM)
2538 {
2539 default_seg = &ss;
2540 }
2541 i.sib.scale = i.log2_scale_factor;
2542 if (! i.index_reg)
2543 {
2544 /* <disp>(%esp) becomes two byte modrm
2545 with no index register. We've already
2546 stored the code for esp in i.rm.regmem
2547 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2548 base register besides %esp will not use
2549 the extra modrm byte. */
2550 i.sib.index = NO_INDEX_REGISTER;
2551#if ! SCALE1_WHEN_NO_INDEX
2552 /* Another case where we force the second
2553 modrm byte. */
2554 if (i.log2_scale_factor)
2555 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2556#endif
2557 }
2558 else
2559 {
2560 i.sib.index = i.index_reg->reg_num;
2561 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3e73aa7c 2562 if (i.index_reg->reg_flags & RegRex)
e5cb08ac 2563 i.rex.extY = 1;
252b5132
RH
2564 }
2565 i.rm.mode = mode_from_disp_size (i.types[op]);
2566 }
2567
2568 if (fake_zero_displacement)
2569 {
2570 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2571 holds the correct displacement size. */
b4cac588
AM
2572 expressionS *exp;
2573
520dc8e8 2574 assert (i.op[op].disps == 0);
252b5132 2575 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2576 i.op[op].disps = exp;
252b5132
RH
2577 exp->X_op = O_constant;
2578 exp->X_add_number = 0;
2579 exp->X_add_symbol = (symbolS *) 0;
2580 exp->X_op_symbol = (symbolS *) 0;
2581 }
2582 }
2583
2584 /* Fill in i.rm.reg or i.rm.regmem field with register
2585 operand (if any) based on i.tm.extension_opcode.
2586 Again, we must be careful to make sure that
2587 segment/control/debug/test/MMX registers are coded
47926f60 2588 into the i.rm.reg field. */
252b5132
RH
2589 if (i.reg_operands)
2590 {
2591 unsigned int op =
2592 ((i.types[0]
3f4438ab
AM
2593 & (Reg | RegMMX | RegXMM
2594 | SReg2 | SReg3
2595 | Control | Debug | Test))
252b5132
RH
2596 ? 0
2597 : ((i.types[1]
3f4438ab
AM
2598 & (Reg | RegMMX | RegXMM
2599 | SReg2 | SReg3
2600 | Control | Debug | Test))
252b5132
RH
2601 ? 1
2602 : 2));
2603 /* If there is an extension opcode to put here, the
47926f60 2604 register number must be put into the regmem field. */
252b5132 2605 if (i.tm.extension_opcode != None)
3e73aa7c
JH
2606 {
2607 i.rm.regmem = i.op[op].regs->reg_num;
2608 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2609 i.rex.extZ = 1;
3e73aa7c 2610 }
252b5132 2611 else
3e73aa7c
JH
2612 {
2613 i.rm.reg = i.op[op].regs->reg_num;
2614 if (i.op[op].regs->reg_flags & RegRex)
e5cb08ac 2615 i.rex.extX = 1;
3e73aa7c 2616 }
252b5132
RH
2617
2618 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2619 we must set it to 3 to indicate this is a register
2620 operand in the regmem field. */
2621 if (!i.mem_operands)
2622 i.rm.mode = 3;
2623 }
2624
47926f60 2625 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2626 if (i.tm.extension_opcode != None)
2627 i.rm.reg = i.tm.extension_opcode;
2628 }
2629 }
2630 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2631 {
47926f60
KH
2632 if (i.tm.base_opcode == POP_SEG_SHORT
2633 && i.op[0].regs->reg_num == 1)
252b5132
RH
2634 {
2635 as_bad (_("you can't `pop %%cs'"));
2636 return;
2637 }
520dc8e8 2638 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3e73aa7c
JH
2639 if (i.op[0].regs->reg_flags & RegRex)
2640 i.rex.extZ = 1;
252b5132
RH
2641 }
2642 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2643 {
2644 default_seg = &ds;
2645 }
2646 else if ((i.tm.opcode_modifier & IsString) != 0)
2647 {
2648 /* For the string instructions that allow a segment override
2649 on one of their operands, the default segment is ds. */
2650 default_seg = &ds;
2651 }
2652
2653 /* If a segment was explicitly specified,
2654 and the specified segment is not the default,
2655 use an opcode prefix to select it.
2656 If we never figured out what the default segment is,
2657 then default_seg will be zero at this point,
2658 and the specified segment prefix will always be used. */
2659 if ((i.seg[0]) && (i.seg[0] != default_seg))
2660 {
2661 if (! add_prefix (i.seg[0]->seg_prefix))
2662 return;
2663 }
2664 }
a38cf1db 2665 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2666 {
24eab124
AM
2667 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2668 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2669 }
2670 }
2671
47926f60 2672 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2673 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2674 {
2675 i.tm.base_opcode = INT3_OPCODE;
2676 i.imm_operands = 0;
2677 }
2678
2f66722d 2679 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2680 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2681 {
2682 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2683 the absolute address given by the constant. Since ix86 jumps and
2684 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2685 i.op[0].disps->X_add_symbol = &abs_symbol;
2686 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2687 }
2688
3e73aa7c
JH
2689 if (i.tm.opcode_modifier & Rex64)
2690 i.rex.mode64 = 1;
2691
2692 /* For 8bit registers we would need an empty rex prefix.
2693 Also in the case instruction is already having prefix,
2694 we need to convert old registers to new ones. */
2695
2696 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2697 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2698 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2699 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2700 {
2701 int x;
e5cb08ac 2702 i.rex.empty = 1;
3e73aa7c
JH
2703 for (x = 0; x < 2; x++)
2704 {
2705 /* Look for 8bit operand that does use old registers. */
2706 if (i.types[x] & Reg8
2707 && !(i.op[x].regs->reg_flags & RegRex64))
2708 {
2709 /* In case it is "hi" register, give up. */
2710 if (i.op[x].regs->reg_num > 3)
2711 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2712 i.op[x].regs->reg_name);
2713
2714 /* Otherwise it is equivalent to the extended register.
2715 Since the encoding don't change this is merely cosmetical
2716 cleanup for debug output. */
2717
2718 i.op[x].regs = i.op[x].regs + 8;
2719 }
2720 }
2721 }
2722
2723 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2724 add_prefix (0x40
2725 | (i.rex.mode64 ? 8 : 0)
2726 | (i.rex.extX ? 4 : 0)
2727 | (i.rex.extY ? 2 : 0)
2728 | (i.rex.extZ ? 1 : 0));
2729
47926f60 2730 /* We are ready to output the insn. */
252b5132
RH
2731 {
2732 register char *p;
2733
9fcc94b6
AM
2734 /* Tie dwarf2 debug info to the address at the start of the insn.
2735 We can't do this after the insn has been output as the current
2736 frag may have been closed off. eg. by frag_var. */
2737 dwarf2_emit_insn (0);
2738
47926f60 2739 /* Output jumps. */
252b5132
RH
2740 if (i.tm.opcode_modifier & Jump)
2741 {
a217f122
AM
2742 int code16;
2743 int prefix;
252b5132 2744
a217f122 2745 code16 = 0;
3e73aa7c 2746 if (flag_code == CODE_16BIT)
a217f122
AM
2747 code16 = CODE16;
2748
2749 prefix = 0;
2750 if (i.prefix[DATA_PREFIX])
252b5132 2751 {
a217f122 2752 prefix = 1;
252b5132 2753 i.prefixes -= 1;
a217f122 2754 code16 ^= CODE16;
252b5132 2755 }
cb9401fc
AM
2756 /* Pentium4 branch hints. */
2757 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2758 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2759 {
2760 prefix++;
2761 i.prefixes--;
2762 }
3e73aa7c
JH
2763 if (i.prefix[REX_PREFIX])
2764 {
2765 prefix++;
e5cb08ac 2766 i.prefixes--;
3e73aa7c 2767 }
252b5132 2768
a217f122 2769 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2770 as_warn (_("skipping prefixes on this instruction"));
2771
2f66722d
AM
2772 /* It's always a symbol; End frag & setup for relax.
2773 Make sure there is enough room in this frag for the largest
2774 instruction we may generate in md_convert_frag. This is 2
2775 bytes for the opcode and room for the prefix and largest
2776 displacement. */
fddf5b5b 2777 frag_grow (prefix + 2 + 4);
2f66722d
AM
2778 /* Prefix and 1 opcode byte go in fr_fix. */
2779 p = frag_more (prefix + 1);
3e73aa7c 2780 if (i.prefix[DATA_PREFIX])
2f66722d 2781 *p++ = DATA_PREFIX_OPCODE;
cb9401fc
AM
2782 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2783 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2784 *p++ = i.prefix[SEG_PREFIX];
3e73aa7c
JH
2785 if (i.prefix[REX_PREFIX])
2786 *p++ = i.prefix[REX_PREFIX];
2f66722d 2787 *p = i.tm.base_opcode;
ee7fcc42
AM
2788 /* 1 possible extra opcode + displacement go in var part.
2789 Pass reloc in fr_var. */
2f66722d 2790 frag_var (rs_machine_dependent,
fddf5b5b 2791 1 + 4,
1ae12ab7 2792 i.reloc[0],
2f66722d
AM
2793 ((unsigned char) *p == JUMP_PC_RELATIVE
2794 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
fddf5b5b
AM
2795 : ((cpu_arch_flags & Cpu386) != 0
2796 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2797 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
520dc8e8
AM
2798 i.op[0].disps->X_add_symbol,
2799 i.op[0].disps->X_add_number,
2f66722d 2800 p);
252b5132
RH
2801 }
2802 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2803 {
a217f122 2804 int size;
252b5132 2805
a217f122 2806 if (i.tm.opcode_modifier & JumpByte)
252b5132 2807 {
a217f122
AM
2808 /* This is a loop or jecxz type instruction. */
2809 size = 1;
252b5132
RH
2810 if (i.prefix[ADDR_PREFIX])
2811 {
252b5132
RH
2812 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2813 i.prefixes -= 1;
2814 }
cb9401fc
AM
2815 /* Pentium4 branch hints. */
2816 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2817 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2818 {
2819 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2820 i.prefixes--;
2821 }
252b5132
RH
2822 }
2823 else
2824 {
a217f122
AM
2825 int code16;
2826
2827 code16 = 0;
3e73aa7c 2828 if (flag_code == CODE_16BIT)
a217f122 2829 code16 = CODE16;
252b5132
RH
2830
2831 if (i.prefix[DATA_PREFIX])
2832 {
252b5132
RH
2833 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2834 i.prefixes -= 1;
a217f122 2835 code16 ^= CODE16;
252b5132 2836 }
252b5132 2837
a217f122 2838 size = 4;
252b5132
RH
2839 if (code16)
2840 size = 2;
2841 }
2842
3e73aa7c
JH
2843 if (i.prefix[REX_PREFIX])
2844 {
2845 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3e73aa7c
JH
2846 i.prefixes -= 1;
2847 }
2848
a217f122 2849 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2850 as_warn (_("skipping prefixes on this instruction"));
2851
cb9401fc
AM
2852 p = frag_more (1 + size);
2853 *p++ = i.tm.base_opcode;
252b5132 2854
2f66722d 2855 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2856 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
252b5132
RH
2857 }
2858 else if (i.tm.opcode_modifier & JumpInterSegment)
2859 {
2860 int size;
a217f122
AM
2861 int prefix;
2862 int code16;
252b5132 2863
a217f122 2864 code16 = 0;
3e73aa7c 2865 if (flag_code == CODE_16BIT)
a217f122
AM
2866 code16 = CODE16;
2867
2868 prefix = 0;
2869 if (i.prefix[DATA_PREFIX])
252b5132 2870 {
a217f122 2871 prefix = 1;
252b5132 2872 i.prefixes -= 1;
a217f122 2873 code16 ^= CODE16;
252b5132 2874 }
3e73aa7c
JH
2875 if (i.prefix[REX_PREFIX])
2876 {
2877 prefix++;
2878 i.prefixes -= 1;
2879 }
252b5132
RH
2880
2881 size = 4;
252b5132 2882 if (code16)
f6af82bd 2883 size = 2;
252b5132 2884
a217f122 2885 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2886 as_warn (_("skipping prefixes on this instruction"));
2887
47926f60 2888 /* 1 opcode; 2 segment; offset */
252b5132 2889 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c
JH
2890
2891 if (i.prefix[DATA_PREFIX])
252b5132 2892 *p++ = DATA_PREFIX_OPCODE;
3e73aa7c
JH
2893
2894 if (i.prefix[REX_PREFIX])
2895 *p++ = i.prefix[REX_PREFIX];
2896
252b5132 2897 *p++ = i.tm.base_opcode;
520dc8e8 2898 if (i.op[1].imms->X_op == O_constant)
252b5132 2899 {
847f7ad4 2900 offsetT n = i.op[1].imms->X_add_number;
252b5132 2901
773f551c
AM
2902 if (size == 2
2903 && !fits_in_unsigned_word (n)
2904 && !fits_in_signed_word (n))
252b5132
RH
2905 {
2906 as_bad (_("16-bit jump out of range"));
2907 return;
2908 }
847f7ad4 2909 md_number_to_chars (p, n, size);
252b5132
RH
2910 }
2911 else
2912 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
1ae12ab7 2913 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
520dc8e8 2914 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2915 as_bad (_("can't handle non absolute segment in `%s'"),
2916 i.tm.name);
520dc8e8 2917 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2918 }
2919 else
2920 {
47926f60 2921 /* Output normal instructions here. */
252b5132
RH
2922 unsigned char *q;
2923
7bc70a8e
JH
2924 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2925 byte for the SSE instructions to specify prefix they require. */
2926 if (i.tm.base_opcode & 0xff0000)
2927 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2928
47926f60 2929 /* The prefix bytes. */
252b5132
RH
2930 for (q = i.prefix;
2931 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2932 q++)
2933 {
2934 if (*q)
2935 {
252b5132
RH
2936 p = frag_more (1);
2937 md_number_to_chars (p, (valueT) *q, 1);
2938 }
2939 }
2940
47926f60 2941 /* Now the opcode; be careful about word order here! */
252b5132
RH
2942 if (fits_in_unsigned_byte (i.tm.base_opcode))
2943 {
252b5132
RH
2944 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2945 }
7bc70a8e 2946 else
252b5132 2947 {
252b5132 2948 p = frag_more (2);
47926f60 2949 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2950 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2951 *p = i.tm.base_opcode & 0xff;
2952 }
252b5132
RH
2953
2954 /* Now the modrm byte and sib byte (if present). */
2955 if (i.tm.opcode_modifier & Modrm)
2956 {
252b5132
RH
2957 p = frag_more (1);
2958 md_number_to_chars (p,
2959 (valueT) (i.rm.regmem << 0
2960 | i.rm.reg << 3
2961 | i.rm.mode << 6),
2962 1);
2963 /* If i.rm.regmem == ESP (4)
2964 && i.rm.mode != (Register mode)
2965 && not 16 bit
2966 ==> need second modrm byte. */
2967 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2968 && i.rm.mode != 3
2969 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2970 {
252b5132
RH
2971 p = frag_more (1);
2972 md_number_to_chars (p,
2973 (valueT) (i.sib.base << 0
2974 | i.sib.index << 3
2975 | i.sib.scale << 6),
2976 1);
2977 }
2978 }
2979
2980 if (i.disp_operands)
2981 {
2982 register unsigned int n;
2983
2984 for (n = 0; n < i.operands; n++)
2985 {
520dc8e8 2986 if (i.types[n] & Disp)
252b5132 2987 {
520dc8e8 2988 if (i.op[n].disps->X_op == O_constant)
252b5132 2989 {
847f7ad4
AM
2990 int size;
2991 offsetT val;
b4cac588 2992
847f7ad4 2993 size = 4;
3e73aa7c 2994 if (i.types[n] & (Disp8 | Disp16 | Disp64))
252b5132 2995 {
b4cac588 2996 size = 2;
b4cac588 2997 if (i.types[n] & Disp8)
847f7ad4 2998 size = 1;
3e73aa7c
JH
2999 if (i.types[n] & Disp64)
3000 size = 8;
252b5132 3001 }
847f7ad4
AM
3002 val = offset_in_range (i.op[n].disps->X_add_number,
3003 size);
b4cac588 3004 p = frag_more (size);
847f7ad4 3005 md_number_to_chars (p, val, size);
252b5132 3006 }
252b5132 3007 else
520dc8e8
AM
3008 {
3009 int size = 4;
3e73aa7c
JH
3010 int sign = 0;
3011 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3012
3013 /* The PC relative address is computed relative
3014 to the instruction boundary, so in case immediate
3015 fields follows, we need to adjust the value. */
3016 if (pcrel && i.imm_operands)
3017 {
3018 int imm_size = 4;
3019 register unsigned int n1;
3020
3021 for (n1 = 0; n1 < i.operands; n1++)
3022 if (i.types[n1] & Imm)
3023 {
3024 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3025 {
3026 imm_size = 2;
3027 if (i.types[n1] & (Imm8 | Imm8S))
3028 imm_size = 1;
3029 if (i.types[n1] & Imm64)
3030 imm_size = 8;
3031 }
3032 break;
3033 }
3034 /* We should find the immediate. */
3035 if (n1 == i.operands)
bfb32b52 3036 abort ();
3e73aa7c
JH
3037 i.op[n].disps->X_add_number -= imm_size;
3038 }
520dc8e8 3039
3e73aa7c
JH
3040 if (i.types[n] & Disp32S)
3041 sign = 1;
3042
e5cb08ac 3043 if (i.types[n] & (Disp16 | Disp64))
3e73aa7c
JH
3044 {
3045 size = 2;
3046 if (i.types[n] & Disp64)
3047 size = 8;
3048 }
520dc8e8 3049
520dc8e8
AM
3050 p = frag_more (size);
3051 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3e73aa7c 3052 i.op[n].disps, pcrel,
1ae12ab7 3053 reloc (size, pcrel, sign, i.reloc[n]));
252b5132
RH
3054 }
3055 }
3056 }
ce8a8b2f 3057 }
252b5132 3058
47926f60 3059 /* Output immediate. */
252b5132
RH
3060 if (i.imm_operands)
3061 {
3062 register unsigned int n;
3063
3064 for (n = 0; n < i.operands; n++)
3065 {
520dc8e8 3066 if (i.types[n] & Imm)
252b5132 3067 {
520dc8e8 3068 if (i.op[n].imms->X_op == O_constant)
252b5132 3069 {
847f7ad4
AM
3070 int size;
3071 offsetT val;
b4cac588 3072
847f7ad4 3073 size = 4;
3e73aa7c 3074 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3075 {
b4cac588 3076 size = 2;
b4cac588 3077 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 3078 size = 1;
3e73aa7c
JH
3079 else if (i.types[n] & Imm64)
3080 size = 8;
252b5132 3081 }
847f7ad4
AM
3082 val = offset_in_range (i.op[n].imms->X_add_number,
3083 size);
b4cac588 3084 p = frag_more (size);
847f7ad4 3085 md_number_to_chars (p, val, size);
252b5132
RH
3086 }
3087 else
ce8a8b2f
AM
3088 {
3089 /* Not absolute_section.
3090 Need a 32-bit fixup (don't support 8bit
520dc8e8 3091 non-absolute imms). Try to support other
47926f60 3092 sizes ... */
f3c180ae 3093 RELOC_ENUM reloc_type;
520dc8e8 3094 int size = 4;
3e73aa7c 3095 int sign = 0;
252b5132 3096
3e73aa7c
JH
3097 if ((i.types[n] & (Imm32S))
3098 && i.suffix == QWORD_MNEM_SUFFIX)
3099 sign = 1;
3100 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3101 {
3102 size = 2;
3103 if (i.types[n] & (Imm8 | Imm8S))
3104 size = 1;
3105 if (i.types[n] & Imm64)
3106 size = 8;
3107 }
520dc8e8 3108
252b5132 3109 p = frag_more (size);
1ae12ab7 3110 reloc_type = reloc (size, 0, sign, i.reloc[n]);
252b5132 3111#ifdef BFD_ASSEMBLER
f6af82bd 3112 if (reloc_type == BFD_RELOC_32
252b5132 3113 && GOT_symbol
520dc8e8
AM
3114 && GOT_symbol == i.op[n].imms->X_add_symbol
3115 && (i.op[n].imms->X_op == O_symbol
3116 || (i.op[n].imms->X_op == O_add
49309057 3117 && ((symbol_get_value_expression
520dc8e8 3118 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
3119 == O_subtract))))
3120 {
3e73aa7c
JH
3121 /* We don't support dynamic linking on x86-64 yet. */
3122 if (flag_code == CODE_64BIT)
bfb32b52 3123 abort ();
f6af82bd 3124 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 3125 i.op[n].imms->X_add_number += 3;
252b5132
RH
3126 }
3127#endif
3128 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 3129 i.op[n].imms, 0, reloc_type);
252b5132
RH
3130 }
3131 }
3132 }
ce8a8b2f 3133 }
252b5132
RH
3134 }
3135
3136#ifdef DEBUG386
3137 if (flag_debug)
3138 {
3139 pi (line, &i);
3140 }
47926f60 3141#endif /* DEBUG386 */
252b5132
RH
3142 }
3143}
3144\f
f3c180ae
AM
3145#ifndef LEX_AT
3146static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3147
3148/* Parse operands of the form
3149 <symbol>@GOTOFF+<nnn>
3150 and similar .plt or .got references.
3151
3152 If we find one, set up the correct relocation in RELOC and copy the
3153 input string, minus the `@GOTOFF' into a malloc'd buffer for
3154 parsing by the calling routine. Return this buffer, and if ADJUST
3155 is non-null set it to the length of the string we removed from the
3156 input line. Otherwise return NULL. */
3157static char *
3158lex_got (reloc, adjust)
3159 RELOC_ENUM *reloc;
3160 int *adjust;
3161{
3162 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3163 static const struct {
3164 const char *str;
3165 const RELOC_ENUM rel[NUM_FLAG_CODE];
3166 } gotrel[] = {
3167 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3168 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3169 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3170 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3171 };
3172 char *cp;
3173 unsigned int j;
3174
3175 for (cp = input_line_pointer; *cp != '@'; cp++)
3176 if (is_end_of_line[(unsigned char) *cp])
3177 return NULL;
3178
3179 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3180 {
3181 int len;
3182
3183 len = strlen (gotrel[j].str);
3184 if (strncmp (cp + 1, gotrel[j].str, len) == 0)
3185 {
3186 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3187 {
3188 int first;
3189 char *tmpbuf;
3190
3191 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3192
3193 if (GOT_symbol == NULL)
3194 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3195
3196 /* Replace the relocation token with ' ', so that
3197 errors like foo@GOTOFF1 will be detected. */
3198 first = cp - input_line_pointer;
3199 tmpbuf = xmalloc (strlen (input_line_pointer));
3200 memcpy (tmpbuf, input_line_pointer, first);
3201 tmpbuf[first] = ' ';
3202 strcpy (tmpbuf + first + 1, cp + 1 + len);
3203 if (adjust)
3204 *adjust = len;
3205 return tmpbuf;
3206 }
3207
3208 as_bad (_("@%s reloc is not supported in %s bit mode"),
3209 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3210 return NULL;
3211 }
3212 }
3213
3214 /* Might be a symbol version string. Don't as_bad here. */
3215 return NULL;
3216}
3217
3218/* x86_cons_fix_new is called via the expression parsing code when a
3219 reloc is needed. We use this hook to get the correct .got reloc. */
3220static RELOC_ENUM got_reloc = NO_RELOC;
3221
3222void
3223x86_cons_fix_new (frag, off, len, exp)
3224 fragS *frag;
3225 unsigned int off;
3226 unsigned int len;
3227 expressionS *exp;
3228{
3229 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3230 got_reloc = NO_RELOC;
3231 fix_new_exp (frag, off, len, exp, 0, r);
3232}
3233
3234void
3235x86_cons (exp, size)
3236 expressionS *exp;
3237 int size;
3238{
3239 if (size == 4)
3240 {
3241 /* Handle @GOTOFF and the like in an expression. */
3242 char *save;
3243 char *gotfree_input_line;
3244 int adjust;
3245
3246 save = input_line_pointer;
3247 gotfree_input_line = lex_got (&got_reloc, &adjust);
3248 if (gotfree_input_line)
3249 input_line_pointer = gotfree_input_line;
3250
3251 expression (exp);
3252
3253 if (gotfree_input_line)
3254 {
3255 /* expression () has merrily parsed up to the end of line,
3256 or a comma - in the wrong buffer. Transfer how far
3257 input_line_pointer has moved to the right buffer. */
3258 input_line_pointer = (save
3259 + (input_line_pointer - gotfree_input_line)
3260 + adjust);
3261 free (gotfree_input_line);
3262 }
3263 }
3264 else
3265 expression (exp);
3266}
3267#endif
3268
252b5132
RH
3269static int i386_immediate PARAMS ((char *));
3270
3271static int
3272i386_immediate (imm_start)
3273 char *imm_start;
3274{
3275 char *save_input_line_pointer;
f3c180ae
AM
3276#ifndef LEX_AT
3277 char *gotfree_input_line;
3278#endif
252b5132 3279 segT exp_seg = 0;
47926f60 3280 expressionS *exp;
252b5132
RH
3281
3282 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3283 {
d0b47220 3284 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3285 return 0;
3286 }
3287
3288 exp = &im_expressions[i.imm_operands++];
520dc8e8 3289 i.op[this_operand].imms = exp;
252b5132
RH
3290
3291 if (is_space_char (*imm_start))
3292 ++imm_start;
3293
3294 save_input_line_pointer = input_line_pointer;
3295 input_line_pointer = imm_start;
3296
3297#ifndef LEX_AT
f3c180ae
AM
3298 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3299 if (gotfree_input_line)
3300 input_line_pointer = gotfree_input_line;
252b5132
RH
3301#endif
3302
3303 exp_seg = expression (exp);
3304
83183c0c 3305 SKIP_WHITESPACE ();
252b5132 3306 if (*input_line_pointer)
f3c180ae 3307 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3308
3309 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3310#ifndef LEX_AT
3311 if (gotfree_input_line)
3312 free (gotfree_input_line);
3313#endif
252b5132 3314
2daf4fd8 3315 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3316 {
47926f60 3317 /* Missing or bad expr becomes absolute 0. */
d0b47220 3318 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3319 imm_start);
252b5132
RH
3320 exp->X_op = O_constant;
3321 exp->X_add_number = 0;
3322 exp->X_add_symbol = (symbolS *) 0;
3323 exp->X_op_symbol = (symbolS *) 0;
252b5132 3324 }
3e73aa7c 3325 else if (exp->X_op == O_constant)
252b5132 3326 {
47926f60 3327 /* Size it properly later. */
3e73aa7c
JH
3328 i.types[this_operand] |= Imm64;
3329 /* If BFD64, sign extend val. */
3330 if (!use_rela_relocations)
3331 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3332 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3333 }
4c63da97 3334#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 3335 else if (1
4c63da97 3336#ifdef BFD_ASSEMBLER
47926f60 3337 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3338#endif
47926f60 3339 && exp_seg != text_section
24eab124
AM
3340 && exp_seg != data_section
3341 && exp_seg != bss_section
3342 && exp_seg != undefined_section
252b5132 3343#ifdef BFD_ASSEMBLER
24eab124 3344 && !bfd_is_com_section (exp_seg)
252b5132 3345#endif
24eab124 3346 )
252b5132 3347 {
4c63da97 3348#ifdef BFD_ASSEMBLER
d0b47220 3349 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3350#else
d0b47220 3351 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3352#endif
252b5132
RH
3353 return 0;
3354 }
3355#endif
3356 else
3357 {
3358 /* This is an address. The size of the address will be
24eab124 3359 determined later, depending on destination register,
3e73aa7c
JH
3360 suffix, or the default for the section. */
3361 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3362 }
3363
3364 return 1;
3365}
3366
551c1ca1 3367static char *i386_scale PARAMS ((char *));
252b5132 3368
551c1ca1 3369static char *
252b5132
RH
3370i386_scale (scale)
3371 char *scale;
3372{
551c1ca1
AM
3373 offsetT val;
3374 char *save = input_line_pointer;
252b5132 3375
551c1ca1
AM
3376 input_line_pointer = scale;
3377 val = get_absolute_expression ();
3378
3379 switch (val)
252b5132 3380 {
551c1ca1
AM
3381 case 0:
3382 case 1:
252b5132
RH
3383 i.log2_scale_factor = 0;
3384 break;
551c1ca1 3385 case 2:
252b5132
RH
3386 i.log2_scale_factor = 1;
3387 break;
551c1ca1 3388 case 4:
252b5132
RH
3389 i.log2_scale_factor = 2;
3390 break;
551c1ca1 3391 case 8:
252b5132
RH
3392 i.log2_scale_factor = 3;
3393 break;
3394 default:
252b5132 3395 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3396 scale);
551c1ca1
AM
3397 input_line_pointer = save;
3398 return NULL;
252b5132
RH
3399 }
3400 if (i.log2_scale_factor != 0 && ! i.index_reg)
3401 {
3402 as_warn (_("scale factor of %d without an index register"),
24eab124 3403 1 << i.log2_scale_factor);
252b5132
RH
3404#if SCALE1_WHEN_NO_INDEX
3405 i.log2_scale_factor = 0;
3406#endif
3407 }
551c1ca1
AM
3408 scale = input_line_pointer;
3409 input_line_pointer = save;
3410 return scale;
252b5132
RH
3411}
3412
3413static int i386_displacement PARAMS ((char *, char *));
3414
3415static int
3416i386_displacement (disp_start, disp_end)
3417 char *disp_start;
3418 char *disp_end;
3419{
3420 register expressionS *exp;
3421 segT exp_seg = 0;
3422 char *save_input_line_pointer;
f3c180ae
AM
3423#ifndef LEX_AT
3424 char *gotfree_input_line;
3425#endif
252b5132
RH
3426 int bigdisp = Disp32;
3427
3e73aa7c 3428 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
252b5132 3429 bigdisp = Disp16;
3e73aa7c
JH
3430 if (flag_code == CODE_64BIT)
3431 bigdisp = Disp64;
252b5132
RH
3432 i.types[this_operand] |= bigdisp;
3433
3434 exp = &disp_expressions[i.disp_operands];
520dc8e8 3435 i.op[this_operand].disps = exp;
252b5132
RH
3436 i.disp_operands++;
3437 save_input_line_pointer = input_line_pointer;
3438 input_line_pointer = disp_start;
3439 END_STRING_AND_SAVE (disp_end);
3440
3441#ifndef GCC_ASM_O_HACK
3442#define GCC_ASM_O_HACK 0
3443#endif
3444#if GCC_ASM_O_HACK
3445 END_STRING_AND_SAVE (disp_end + 1);
3446 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3447 && displacement_string_end[-1] == '+')
252b5132
RH
3448 {
3449 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3450 constraint within gcc asm statements.
3451 For instance:
3452
3453 #define _set_tssldt_desc(n,addr,limit,type) \
3454 __asm__ __volatile__ ( \
3455 "movw %w2,%0\n\t" \
3456 "movw %w1,2+%0\n\t" \
3457 "rorl $16,%1\n\t" \
3458 "movb %b1,4+%0\n\t" \
3459 "movb %4,5+%0\n\t" \
3460 "movb $0,6+%0\n\t" \
3461 "movb %h1,7+%0\n\t" \
3462 "rorl $16,%1" \
3463 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3464
3465 This works great except that the output assembler ends
3466 up looking a bit weird if it turns out that there is
3467 no offset. You end up producing code that looks like:
3468
3469 #APP
3470 movw $235,(%eax)
3471 movw %dx,2+(%eax)
3472 rorl $16,%edx
3473 movb %dl,4+(%eax)
3474 movb $137,5+(%eax)
3475 movb $0,6+(%eax)
3476 movb %dh,7+(%eax)
3477 rorl $16,%edx
3478 #NO_APP
3479
47926f60 3480 So here we provide the missing zero. */
24eab124
AM
3481
3482 *displacement_string_end = '0';
252b5132
RH
3483 }
3484#endif
3485#ifndef LEX_AT
f3c180ae
AM
3486 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3487 if (gotfree_input_line)
3488 input_line_pointer = gotfree_input_line;
252b5132
RH
3489#endif
3490
24eab124 3491 exp_seg = expression (exp);
252b5132 3492
636c26b0
AM
3493 SKIP_WHITESPACE ();
3494 if (*input_line_pointer)
3495 as_bad (_("junk `%s' after expression"), input_line_pointer);
3496#if GCC_ASM_O_HACK
3497 RESTORE_END_STRING (disp_end + 1);
3498#endif
3499 RESTORE_END_STRING (disp_end);
3500 input_line_pointer = save_input_line_pointer;
3501#ifndef LEX_AT
3502 if (gotfree_input_line)
3503 free (gotfree_input_line);
3504#endif
3505
252b5132 3506#ifdef BFD_ASSEMBLER
24eab124
AM
3507 /* We do this to make sure that the section symbol is in
3508 the symbol table. We will ultimately change the relocation
47926f60 3509 to be relative to the beginning of the section. */
1ae12ab7
AM
3510 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3511 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 3512 {
636c26b0
AM
3513 if (exp->X_op != O_symbol)
3514 {
3515 as_bad (_("bad expression used with @%s"),
3516 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3517 ? "GOTPCREL"
3518 : "GOTOFF"));
3519 return 0;
3520 }
3521
e5cb08ac 3522 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
3523 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3524 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
3525 exp->X_op = O_subtract;
3526 exp->X_op_symbol = GOT_symbol;
1ae12ab7
AM
3527 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3528 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 3529 else
1ae12ab7 3530 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 3531 }
252b5132
RH
3532#endif
3533
2daf4fd8
AM
3534 if (exp->X_op == O_absent || exp->X_op == O_big)
3535 {
47926f60 3536 /* Missing or bad expr becomes absolute 0. */
d0b47220 3537 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
3538 disp_start);
3539 exp->X_op = O_constant;
3540 exp->X_add_number = 0;
3541 exp->X_add_symbol = (symbolS *) 0;
3542 exp->X_op_symbol = (symbolS *) 0;
3543 }
3544
4c63da97 3545#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 3546 if (exp->X_op != O_constant
4c63da97 3547#ifdef BFD_ASSEMBLER
45288df1 3548 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 3549#endif
45288df1
AM
3550 && exp_seg != text_section
3551 && exp_seg != data_section
3552 && exp_seg != bss_section
3553 && exp_seg != undefined_section)
24eab124 3554 {
4c63da97 3555#ifdef BFD_ASSEMBLER
d0b47220 3556 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 3557#else
d0b47220 3558 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 3559#endif
24eab124
AM
3560 return 0;
3561 }
252b5132 3562#endif
3e73aa7c
JH
3563 else if (flag_code == CODE_64BIT)
3564 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
3565 return 1;
3566}
3567
e5cb08ac 3568static int i386_index_check PARAMS ((const char *));
252b5132 3569
eecb386c 3570/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
3571 Return 1 on success, 0 on a failure. */
3572
252b5132 3573static int
eecb386c
AM
3574i386_index_check (operand_string)
3575 const char *operand_string;
252b5132 3576{
3e73aa7c 3577 int ok;
24eab124 3578#if INFER_ADDR_PREFIX
eecb386c
AM
3579 int fudged = 0;
3580
24eab124
AM
3581 tryprefix:
3582#endif
3e73aa7c
JH
3583 ok = 1;
3584 if (flag_code == CODE_64BIT)
3585 {
3586 /* 64bit checks. */
3587 if ((i.base_reg
3588 && ((i.base_reg->reg_type & Reg64) == 0)
3589 && (i.base_reg->reg_type != BaseIndex
3590 || i.index_reg))
3591 || (i.index_reg
3592 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3593 != (Reg64|BaseIndex))))
3594 ok = 0;
3595 }
3596 else
3597 {
3598 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3599 {
3600 /* 16bit checks. */
3601 if ((i.base_reg
3602 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3603 != (Reg16|BaseIndex)))
3604 || (i.index_reg
3605 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3606 != (Reg16|BaseIndex))
3607 || ! (i.base_reg
3608 && i.base_reg->reg_num < 6
3609 && i.index_reg->reg_num >= 6
3610 && i.log2_scale_factor == 0))))
3611 ok = 0;
3612 }
3613 else
e5cb08ac 3614 {
3e73aa7c
JH
3615 /* 32bit checks. */
3616 if ((i.base_reg
3617 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3618 || (i.index_reg
3619 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3620 != (Reg32|BaseIndex))))
e5cb08ac 3621 ok = 0;
3e73aa7c
JH
3622 }
3623 }
3624 if (!ok)
24eab124
AM
3625 {
3626#if INFER_ADDR_PREFIX
3e73aa7c
JH
3627 if (flag_code != CODE_64BIT
3628 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3629 {
3630 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3631 i.prefixes += 1;
b23bac36
AM
3632 /* Change the size of any displacement too. At most one of
3633 Disp16 or Disp32 is set.
3634 FIXME. There doesn't seem to be any real need for separate
3635 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3636 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3637 if (i.types[this_operand] & (Disp16|Disp32))
3638 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3639 fudged = 1;
24eab124
AM
3640 goto tryprefix;
3641 }
eecb386c
AM
3642 if (fudged)
3643 as_bad (_("`%s' is not a valid base/index expression"),
3644 operand_string);
3645 else
c388dee8 3646#endif
eecb386c
AM
3647 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3648 operand_string,
3e73aa7c 3649 flag_code_names[flag_code]);
eecb386c 3650 return 0;
24eab124
AM
3651 }
3652 return 1;
3653}
252b5132 3654
252b5132 3655/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3656 on error. */
252b5132 3657
252b5132
RH
3658static int
3659i386_operand (operand_string)
3660 char *operand_string;
3661{
af6bdddf
AM
3662 const reg_entry *r;
3663 char *end_op;
24eab124 3664 char *op_string = operand_string;
252b5132 3665
24eab124 3666 if (is_space_char (*op_string))
252b5132
RH
3667 ++op_string;
3668
24eab124 3669 /* We check for an absolute prefix (differentiating,
47926f60 3670 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3671 if (*op_string == ABSOLUTE_PREFIX)
3672 {
3673 ++op_string;
3674 if (is_space_char (*op_string))
3675 ++op_string;
3676 i.types[this_operand] |= JumpAbsolute;
3677 }
252b5132 3678
47926f60 3679 /* Check if operand is a register. */
af6bdddf
AM
3680 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3681 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3682 {
24eab124
AM
3683 /* Check for a segment override by searching for ':' after a
3684 segment register. */
3685 op_string = end_op;
3686 if (is_space_char (*op_string))
3687 ++op_string;
3688 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3689 {
3690 switch (r->reg_num)
3691 {
3692 case 0:
3693 i.seg[i.mem_operands] = &es;
3694 break;
3695 case 1:
3696 i.seg[i.mem_operands] = &cs;
3697 break;
3698 case 2:
3699 i.seg[i.mem_operands] = &ss;
3700 break;
3701 case 3:
3702 i.seg[i.mem_operands] = &ds;
3703 break;
3704 case 4:
3705 i.seg[i.mem_operands] = &fs;
3706 break;
3707 case 5:
3708 i.seg[i.mem_operands] = &gs;
3709 break;
3710 }
252b5132 3711
24eab124 3712 /* Skip the ':' and whitespace. */
252b5132
RH
3713 ++op_string;
3714 if (is_space_char (*op_string))
24eab124 3715 ++op_string;
252b5132 3716
24eab124
AM
3717 if (!is_digit_char (*op_string)
3718 && !is_identifier_char (*op_string)
3719 && *op_string != '('
3720 && *op_string != ABSOLUTE_PREFIX)
3721 {
3722 as_bad (_("bad memory operand `%s'"), op_string);
3723 return 0;
3724 }
47926f60 3725 /* Handle case of %es:*foo. */
24eab124
AM
3726 if (*op_string == ABSOLUTE_PREFIX)
3727 {
3728 ++op_string;
3729 if (is_space_char (*op_string))
3730 ++op_string;
3731 i.types[this_operand] |= JumpAbsolute;
3732 }
3733 goto do_memory_reference;
3734 }
3735 if (*op_string)
3736 {
d0b47220 3737 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3738 return 0;
3739 }
3740 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3741 i.op[this_operand].regs = r;
24eab124
AM
3742 i.reg_operands++;
3743 }
af6bdddf
AM
3744 else if (*op_string == REGISTER_PREFIX)
3745 {
3746 as_bad (_("bad register name `%s'"), op_string);
3747 return 0;
3748 }
24eab124 3749 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3750 {
24eab124
AM
3751 ++op_string;
3752 if (i.types[this_operand] & JumpAbsolute)
3753 {
d0b47220 3754 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3755 return 0;
3756 }
3757 if (!i386_immediate (op_string))
3758 return 0;
3759 }
3760 else if (is_digit_char (*op_string)
3761 || is_identifier_char (*op_string)
e5cb08ac 3762 || *op_string == '(')
24eab124 3763 {
47926f60 3764 /* This is a memory reference of some sort. */
af6bdddf 3765 char *base_string;
252b5132 3766
47926f60 3767 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3768 char *displacement_string_start;
3769 char *displacement_string_end;
252b5132 3770
24eab124 3771 do_memory_reference:
24eab124
AM
3772 if ((i.mem_operands == 1
3773 && (current_templates->start->opcode_modifier & IsString) == 0)
3774 || i.mem_operands == 2)
3775 {
3776 as_bad (_("too many memory references for `%s'"),
3777 current_templates->start->name);
3778 return 0;
3779 }
252b5132 3780
24eab124
AM
3781 /* Check for base index form. We detect the base index form by
3782 looking for an ')' at the end of the operand, searching
3783 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3784 after the '('. */
af6bdddf 3785 base_string = op_string + strlen (op_string);
c3332e24 3786
af6bdddf
AM
3787 --base_string;
3788 if (is_space_char (*base_string))
3789 --base_string;
252b5132 3790
47926f60 3791 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3792 displacement_string_start = op_string;
3793 displacement_string_end = base_string + 1;
252b5132 3794
24eab124
AM
3795 if (*base_string == ')')
3796 {
af6bdddf 3797 char *temp_string;
24eab124
AM
3798 unsigned int parens_balanced = 1;
3799 /* We've already checked that the number of left & right ()'s are
47926f60 3800 equal, so this loop will not be infinite. */
24eab124
AM
3801 do
3802 {
3803 base_string--;
3804 if (*base_string == ')')
3805 parens_balanced++;
3806 if (*base_string == '(')
3807 parens_balanced--;
3808 }
3809 while (parens_balanced);
c3332e24 3810
af6bdddf 3811 temp_string = base_string;
c3332e24 3812
24eab124 3813 /* Skip past '(' and whitespace. */
252b5132
RH
3814 ++base_string;
3815 if (is_space_char (*base_string))
24eab124 3816 ++base_string;
252b5132 3817
af6bdddf
AM
3818 if (*base_string == ','
3819 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3820 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3821 {
af6bdddf 3822 displacement_string_end = temp_string;
252b5132 3823
af6bdddf 3824 i.types[this_operand] |= BaseIndex;
252b5132 3825
af6bdddf 3826 if (i.base_reg)
24eab124 3827 {
24eab124
AM
3828 base_string = end_op;
3829 if (is_space_char (*base_string))
3830 ++base_string;
af6bdddf
AM
3831 }
3832
3833 /* There may be an index reg or scale factor here. */
3834 if (*base_string == ',')
3835 {
3836 ++base_string;
3837 if (is_space_char (*base_string))
3838 ++base_string;
3839
3840 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3841 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3842 {
af6bdddf 3843 base_string = end_op;
24eab124
AM
3844 if (is_space_char (*base_string))
3845 ++base_string;
af6bdddf
AM
3846 if (*base_string == ',')
3847 {
3848 ++base_string;
3849 if (is_space_char (*base_string))
3850 ++base_string;
3851 }
e5cb08ac 3852 else if (*base_string != ')')
af6bdddf
AM
3853 {
3854 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3855 operand_string);
3856 return 0;
3857 }
24eab124 3858 }
af6bdddf 3859 else if (*base_string == REGISTER_PREFIX)
24eab124 3860 {
af6bdddf 3861 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3862 return 0;
3863 }
252b5132 3864
47926f60 3865 /* Check for scale factor. */
551c1ca1 3866 if (*base_string != ')')
af6bdddf 3867 {
551c1ca1
AM
3868 char *end_scale = i386_scale (base_string);
3869
3870 if (!end_scale)
af6bdddf 3871 return 0;
24eab124 3872
551c1ca1 3873 base_string = end_scale;
af6bdddf
AM
3874 if (is_space_char (*base_string))
3875 ++base_string;
3876 if (*base_string != ')')
3877 {
3878 as_bad (_("expecting `)' after scale factor in `%s'"),
3879 operand_string);
3880 return 0;
3881 }
3882 }
3883 else if (!i.index_reg)
24eab124 3884 {
af6bdddf
AM
3885 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3886 *base_string);
24eab124
AM
3887 return 0;
3888 }
3889 }
af6bdddf 3890 else if (*base_string != ')')
24eab124 3891 {
af6bdddf
AM
3892 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3893 operand_string);
24eab124
AM
3894 return 0;
3895 }
c3332e24 3896 }
af6bdddf 3897 else if (*base_string == REGISTER_PREFIX)
c3332e24 3898 {
af6bdddf 3899 as_bad (_("bad register name `%s'"), base_string);
24eab124 3900 return 0;
c3332e24 3901 }
24eab124
AM
3902 }
3903
3904 /* If there's an expression beginning the operand, parse it,
3905 assuming displacement_string_start and
3906 displacement_string_end are meaningful. */
3907 if (displacement_string_start != displacement_string_end)
3908 {
3909 if (!i386_displacement (displacement_string_start,
3910 displacement_string_end))
3911 return 0;
3912 }
3913
3914 /* Special case for (%dx) while doing input/output op. */
3915 if (i.base_reg
3916 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3917 && i.index_reg == 0
3918 && i.log2_scale_factor == 0
3919 && i.seg[i.mem_operands] == 0
3920 && (i.types[this_operand] & Disp) == 0)
3921 {
3922 i.types[this_operand] = InOutPortReg;
3923 return 1;
3924 }
3925
eecb386c
AM
3926 if (i386_index_check (operand_string) == 0)
3927 return 0;
24eab124
AM
3928 i.mem_operands++;
3929 }
3930 else
ce8a8b2f
AM
3931 {
3932 /* It's not a memory operand; argh! */
24eab124
AM
3933 as_bad (_("invalid char %s beginning operand %d `%s'"),
3934 output_invalid (*op_string),
3935 this_operand + 1,
3936 op_string);
3937 return 0;
3938 }
47926f60 3939 return 1; /* Normal return. */
252b5132
RH
3940}
3941\f
ee7fcc42
AM
3942/* md_estimate_size_before_relax()
3943
3944 Called just before relax() for rs_machine_dependent frags. The x86
3945 assembler uses these frags to handle variable size jump
3946 instructions.
3947
3948 Any symbol that is now undefined will not become defined.
3949 Return the correct fr_subtype in the frag.
3950 Return the initial "guess for variable size of frag" to caller.
3951 The guess is actually the growth beyond the fixed part. Whatever
3952 we do to grow the fixed or variable part contributes to our
3953 returned value. */
3954
252b5132
RH
3955int
3956md_estimate_size_before_relax (fragP, segment)
3957 register fragS *fragP;
3958 register segT segment;
3959{
252b5132 3960 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3961 check for un-relaxable symbols. On an ELF system, we can't relax
3962 an externally visible symbol, because it may be overridden by a
3963 shared library. */
3964 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3965#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3966 || S_IS_EXTERNAL (fragP->fr_symbol)
3967 || S_IS_WEAK (fragP->fr_symbol)
3968#endif
3969 )
252b5132 3970 {
b98ef147
AM
3971 /* Symbol is undefined in this segment, or we need to keep a
3972 reloc so that weak symbols can be overridden. */
3973 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f3c180ae 3974 RELOC_ENUM reloc_type;
ee7fcc42
AM
3975 unsigned char *opcode;
3976 int old_fr_fix;
f6af82bd 3977
ee7fcc42
AM
3978 if (fragP->fr_var != NO_RELOC)
3979 reloc_type = fragP->fr_var;
b98ef147 3980 else if (size == 2)
f6af82bd
AM
3981 reloc_type = BFD_RELOC_16_PCREL;
3982 else
3983 reloc_type = BFD_RELOC_32_PCREL;
252b5132 3984
ee7fcc42
AM
3985 old_fr_fix = fragP->fr_fix;
3986 opcode = (unsigned char *) fragP->fr_opcode;
3987
fddf5b5b 3988 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 3989 {
fddf5b5b
AM
3990 case UNCOND_JUMP:
3991 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 3992 opcode[0] = 0xe9;
252b5132
RH
3993 fragP->fr_fix += size;
3994 fix_new (fragP, old_fr_fix, size,
3995 fragP->fr_symbol,
3996 fragP->fr_offset, 1,
f6af82bd 3997 reloc_type);
252b5132
RH
3998 break;
3999
fddf5b5b
AM
4000 case COND_JUMP86:
4001 if (no_cond_jump_promotion)
93c2a809
AM
4002 goto relax_guess;
4003
fddf5b5b
AM
4004 if (size == 2)
4005 {
4006 /* Negate the condition, and branch past an
4007 unconditional jump. */
4008 opcode[0] ^= 1;
4009 opcode[1] = 3;
4010 /* Insert an unconditional jump. */
4011 opcode[2] = 0xe9;
4012 /* We added two extra opcode bytes, and have a two byte
4013 offset. */
4014 fragP->fr_fix += 2 + 2;
4015 fix_new (fragP, old_fr_fix + 2, 2,
4016 fragP->fr_symbol,
4017 fragP->fr_offset, 1,
4018 reloc_type);
4019 break;
4020 }
4021 /* Fall through. */
4022
4023 case COND_JUMP:
4024 if (no_cond_jump_promotion)
93c2a809
AM
4025 goto relax_guess;
4026
24eab124 4027 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4028 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4029 opcode[1] = opcode[0] + 0x10;
f6af82bd 4030 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4031 /* We've added an opcode byte. */
4032 fragP->fr_fix += 1 + size;
252b5132
RH
4033 fix_new (fragP, old_fr_fix + 1, size,
4034 fragP->fr_symbol,
4035 fragP->fr_offset, 1,
f6af82bd 4036 reloc_type);
252b5132 4037 break;
fddf5b5b
AM
4038
4039 default:
4040 BAD_CASE (fragP->fr_subtype);
4041 break;
252b5132
RH
4042 }
4043 frag_wane (fragP);
ee7fcc42 4044 return fragP->fr_fix - old_fr_fix;
252b5132 4045 }
93c2a809
AM
4046
4047 relax_guess:
4048 /* Guess size depending on current relax state. Initially the relax
4049 state will correspond to a short jump and we return 1, because
4050 the variable part of the frag (the branch offset) is one byte
4051 long. However, we can relax a section more than once and in that
4052 case we must either set fr_subtype back to the unrelaxed state,
4053 or return the value for the appropriate branch. */
4054 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4055}
4056
47926f60
KH
4057/* Called after relax() is finished.
4058
4059 In: Address of frag.
4060 fr_type == rs_machine_dependent.
4061 fr_subtype is what the address relaxed to.
4062
4063 Out: Any fixSs and constants are set up.
4064 Caller will turn frag into a ".space 0". */
4065
252b5132
RH
4066#ifndef BFD_ASSEMBLER
4067void
4068md_convert_frag (headers, sec, fragP)
a04b544b
ILT
4069 object_headers *headers ATTRIBUTE_UNUSED;
4070 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4071 register fragS *fragP;
4072#else
4073void
4074md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4075 bfd *abfd ATTRIBUTE_UNUSED;
4076 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
4077 register fragS *fragP;
4078#endif
4079{
4080 register unsigned char *opcode;
4081 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4082 offsetT target_address;
4083 offsetT opcode_address;
252b5132 4084 unsigned int extension = 0;
847f7ad4 4085 offsetT displacement_from_opcode_start;
252b5132
RH
4086
4087 opcode = (unsigned char *) fragP->fr_opcode;
4088
47926f60 4089 /* Address we want to reach in file space. */
252b5132 4090 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4091
47926f60 4092 /* Address opcode resides at in file space. */
252b5132
RH
4093 opcode_address = fragP->fr_address + fragP->fr_fix;
4094
47926f60 4095 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4096 displacement_from_opcode_start = target_address - opcode_address;
4097
fddf5b5b 4098 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4099 {
47926f60
KH
4100 /* Don't have to change opcode. */
4101 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4102 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4103 }
4104 else
4105 {
4106 if (no_cond_jump_promotion
4107 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4108 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4109
fddf5b5b
AM
4110 switch (fragP->fr_subtype)
4111 {
4112 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4113 extension = 4; /* 1 opcode + 4 displacement */
4114 opcode[0] = 0xe9;
4115 where_to_put_displacement = &opcode[1];
4116 break;
252b5132 4117
fddf5b5b
AM
4118 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4119 extension = 2; /* 1 opcode + 2 displacement */
4120 opcode[0] = 0xe9;
4121 where_to_put_displacement = &opcode[1];
4122 break;
252b5132 4123
fddf5b5b
AM
4124 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4125 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4126 extension = 5; /* 2 opcode + 4 displacement */
4127 opcode[1] = opcode[0] + 0x10;
4128 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4129 where_to_put_displacement = &opcode[2];
4130 break;
252b5132 4131
fddf5b5b
AM
4132 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4133 extension = 3; /* 2 opcode + 2 displacement */
4134 opcode[1] = opcode[0] + 0x10;
4135 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4136 where_to_put_displacement = &opcode[2];
4137 break;
252b5132 4138
fddf5b5b
AM
4139 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4140 extension = 4;
4141 opcode[0] ^= 1;
4142 opcode[1] = 3;
4143 opcode[2] = 0xe9;
4144 where_to_put_displacement = &opcode[3];
4145 break;
4146
4147 default:
4148 BAD_CASE (fragP->fr_subtype);
4149 break;
4150 }
252b5132 4151 }
fddf5b5b 4152
47926f60 4153 /* Now put displacement after opcode. */
252b5132
RH
4154 md_number_to_chars ((char *) where_to_put_displacement,
4155 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4156 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4157 fragP->fr_fix += extension;
4158}
4159\f
47926f60
KH
4160/* Size of byte displacement jmp. */
4161int md_short_jump_size = 2;
4162
4163/* Size of dword displacement jmp. */
4164int md_long_jump_size = 5;
252b5132 4165
47926f60
KH
4166/* Size of relocation record. */
4167const int md_reloc_size = 8;
252b5132
RH
4168
4169void
4170md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4171 char *ptr;
4172 addressT from_addr, to_addr;
ab9da554
ILT
4173 fragS *frag ATTRIBUTE_UNUSED;
4174 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4175{
847f7ad4 4176 offsetT offset;
252b5132
RH
4177
4178 offset = to_addr - (from_addr + 2);
47926f60
KH
4179 /* Opcode for byte-disp jump. */
4180 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4181 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4182}
4183
4184void
4185md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4186 char *ptr;
4187 addressT from_addr, to_addr;
a38cf1db
AM
4188 fragS *frag ATTRIBUTE_UNUSED;
4189 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4190{
847f7ad4 4191 offsetT offset;
252b5132 4192
a38cf1db
AM
4193 offset = to_addr - (from_addr + 5);
4194 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4195 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4196}
4197\f
4198/* Apply a fixup (fixS) to segment data, once it has been determined
4199 by our caller that we have all the info we need to fix it up.
4200
4201 On the 386, immediates, displacements, and data pointers are all in
4202 the same (little-endian) format, so we don't need to care about which
4203 we are handling. */
4204
4205int
4206md_apply_fix3 (fixP, valp, seg)
47926f60
KH
4207 /* The fix we're to put in. */
4208 fixS *fixP;
4209
4210 /* Pointer to the value of the bits. */
4211 valueT *valp;
4212
4213 /* Segment fix is from. */
4214 segT seg ATTRIBUTE_UNUSED;
252b5132
RH
4215{
4216 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4217 valueT value = *valp;
4218
e1b283bb 4219#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
4220 if (fixP->fx_pcrel)
4221 {
4222 switch (fixP->fx_r_type)
4223 {
5865bb77
ILT
4224 default:
4225 break;
4226
93382f6d
AM
4227 case BFD_RELOC_32:
4228 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4229 break;
4230 case BFD_RELOC_16:
4231 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4232 break;
4233 case BFD_RELOC_8:
4234 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4235 break;
4236 }
4237 }
252b5132 4238
0723899b
ILT
4239 /* This is a hack. There should be a better way to handle this.
4240 This covers for the fact that bfd_install_relocation will
4241 subtract the current location (for partial_inplace, PC relative
4242 relocations); see more below. */
93382f6d
AM
4243 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4244 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4245 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7c44d1d3 4246 && fixP->fx_addsy && !use_rela_relocations)
252b5132
RH
4247 {
4248#ifndef OBJ_AOUT
4249 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4250#ifdef TE_PE
4251 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4252#endif
4253 )
4254 value += fixP->fx_where + fixP->fx_frag->fr_address;
4255#endif
4256#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4257 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4258 {
2f66722d
AM
4259 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4260
4261 if ((fseg == seg
4262 || (symbol_section_p (fixP->fx_addsy)
4263 && fseg != absolute_section))
4264 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4265 && ! S_IS_WEAK (fixP->fx_addsy)
4266 && S_IS_DEFINED (fixP->fx_addsy)
4267 && ! S_IS_COMMON (fixP->fx_addsy))
4268 {
4269 /* Yes, we add the values in twice. This is because
4270 bfd_perform_relocation subtracts them out again. I think
4271 bfd_perform_relocation is broken, but I don't dare change
4272 it. FIXME. */
4273 value += fixP->fx_where + fixP->fx_frag->fr_address;
4274 }
252b5132
RH
4275 }
4276#endif
4277#if defined (OBJ_COFF) && defined (TE_PE)
4278 /* For some reason, the PE format does not store a section
24eab124 4279 address offset for a PC relative symbol. */
252b5132
RH
4280 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4281 value += md_pcrel_from (fixP);
4282#endif
4283 }
4284
4285 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 4286 and we must not dissappoint it. */
252b5132
RH
4287#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4288 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4289 && fixP->fx_addsy)
47926f60
KH
4290 switch (fixP->fx_r_type)
4291 {
4292 case BFD_RELOC_386_PLT32:
3e73aa7c 4293 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4294 /* Make the jump instruction point to the address of the operand. At
4295 runtime we merely add the offset to the actual PLT entry. */
4296 value = -4;
4297 break;
4298 case BFD_RELOC_386_GOTPC:
4299
4300/* This is tough to explain. We end up with this one if we have
252b5132
RH
4301 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4302 * here is to obtain the absolute address of the GOT, and it is strongly
4303 * preferable from a performance point of view to avoid using a runtime
c3332e24 4304 * relocation for this. The actual sequence of instructions often look
252b5132 4305 * something like:
c3332e24 4306 *
24eab124 4307 * call .L66
252b5132 4308 * .L66:
24eab124
AM
4309 * popl %ebx
4310 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 4311 *
24eab124 4312 * The call and pop essentially return the absolute address of
252b5132
RH
4313 * the label .L66 and store it in %ebx. The linker itself will
4314 * ultimately change the first operand of the addl so that %ebx points to
4315 * the GOT, but to keep things simple, the .o file must have this operand
4316 * set so that it generates not the absolute address of .L66, but the
4317 * absolute address of itself. This allows the linker itself simply
4318 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4319 * added in, and the addend of the relocation is stored in the operand
4320 * field for the instruction itself.
c3332e24 4321 *
24eab124 4322 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
4323 * offset so that %ebx would point to itself. The thing that is tricky is
4324 * that .-.L66 will point to the beginning of the instruction, so we need
4325 * to further modify the operand so that it will point to itself.
4326 * There are other cases where you have something like:
c3332e24 4327 *
24eab124 4328 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 4329 *
252b5132 4330 * and here no correction would be required. Internally in the assembler
c3332e24 4331 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
4332 * explicitly mentioned, and I wonder whether it would simplify matters
4333 * to do it this way. Who knows. In earlier versions of the PIC patches,
4334 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
4335 * expression is not pcrel, I felt it would be confusing to do it this
4336 * way. */
4337
4338 value -= 1;
4339 break;
4340 case BFD_RELOC_386_GOT32:
3e73aa7c 4341 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4342 value = 0; /* Fully resolved at runtime. No addend. */
4343 break;
4344 case BFD_RELOC_386_GOTOFF:
3e73aa7c 4345 case BFD_RELOC_X86_64_GOTPCREL:
47926f60
KH
4346 break;
4347
4348 case BFD_RELOC_VTABLE_INHERIT:
4349 case BFD_RELOC_VTABLE_ENTRY:
4350 fixP->fx_done = 0;
4351 return 1;
4352
4353 default:
4354 break;
4355 }
4356#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
93382f6d 4357 *valp = value;
47926f60 4358#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
3e73aa7c
JH
4359
4360#ifndef BFD_ASSEMBLER
252b5132 4361 md_number_to_chars (p, value, fixP->fx_size);
3e73aa7c
JH
4362#else
4363 /* Are we finished with this relocation now? */
4364 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4365 fixP->fx_done = 1;
4366 else if (use_rela_relocations)
4367 {
4368 fixP->fx_no_overflow = 1;
4369 value = 0;
4370 }
4371 md_number_to_chars (p, value, fixP->fx_size);
4372#endif
252b5132
RH
4373
4374 return 1;
4375}
252b5132 4376\f
252b5132
RH
4377#define MAX_LITTLENUMS 6
4378
47926f60
KH
4379/* Turn the string pointed to by litP into a floating point constant
4380 of type TYPE, and emit the appropriate bytes. The number of
4381 LITTLENUMS emitted is stored in *SIZEP. An error message is
4382 returned, or NULL on OK. */
4383
252b5132
RH
4384char *
4385md_atof (type, litP, sizeP)
2ab9b79e 4386 int type;
252b5132
RH
4387 char *litP;
4388 int *sizeP;
4389{
4390 int prec;
4391 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4392 LITTLENUM_TYPE *wordP;
4393 char *t;
4394
4395 switch (type)
4396 {
4397 case 'f':
4398 case 'F':
4399 prec = 2;
4400 break;
4401
4402 case 'd':
4403 case 'D':
4404 prec = 4;
4405 break;
4406
4407 case 'x':
4408 case 'X':
4409 prec = 5;
4410 break;
4411
4412 default:
4413 *sizeP = 0;
4414 return _("Bad call to md_atof ()");
4415 }
4416 t = atof_ieee (input_line_pointer, type, words);
4417 if (t)
4418 input_line_pointer = t;
4419
4420 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4421 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4422 the bigendian 386. */
4423 for (wordP = words + prec - 1; prec--;)
4424 {
4425 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4426 litP += sizeof (LITTLENUM_TYPE);
4427 }
4428 return 0;
4429}
4430\f
4431char output_invalid_buf[8];
4432
252b5132
RH
4433static char *
4434output_invalid (c)
4435 int c;
4436{
4437 if (isprint (c))
4438 sprintf (output_invalid_buf, "'%c'", c);
4439 else
4440 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4441 return output_invalid_buf;
4442}
4443
af6bdddf 4444/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4445
4446static const reg_entry *
4447parse_register (reg_string, end_op)
4448 char *reg_string;
4449 char **end_op;
4450{
af6bdddf
AM
4451 char *s = reg_string;
4452 char *p;
252b5132
RH
4453 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4454 const reg_entry *r;
4455
4456 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4457 if (*s == REGISTER_PREFIX)
4458 ++s;
4459
4460 if (is_space_char (*s))
4461 ++s;
4462
4463 p = reg_name_given;
af6bdddf 4464 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4465 {
4466 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4467 return (const reg_entry *) NULL;
4468 s++;
252b5132
RH
4469 }
4470
6588847e
DN
4471 /* For naked regs, make sure that we are not dealing with an identifier.
4472 This prevents confusing an identifier like `eax_var' with register
4473 `eax'. */
4474 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4475 return (const reg_entry *) NULL;
4476
af6bdddf 4477 *end_op = s;
252b5132
RH
4478
4479 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4480
5f47d35b 4481 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4482 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4483 {
5f47d35b
AM
4484 if (is_space_char (*s))
4485 ++s;
4486 if (*s == '(')
4487 {
af6bdddf 4488 ++s;
5f47d35b
AM
4489 if (is_space_char (*s))
4490 ++s;
4491 if (*s >= '0' && *s <= '7')
4492 {
4493 r = &i386_float_regtab[*s - '0'];
af6bdddf 4494 ++s;
5f47d35b
AM
4495 if (is_space_char (*s))
4496 ++s;
4497 if (*s == ')')
4498 {
4499 *end_op = s + 1;
4500 return r;
4501 }
5f47d35b 4502 }
47926f60 4503 /* We have "%st(" then garbage. */
5f47d35b
AM
4504 return (const reg_entry *) NULL;
4505 }
4506 }
4507
252b5132
RH
4508 return r;
4509}
4510\f
4cc782b5 4511#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 4512const char *md_shortopts = "kVQ:sq";
252b5132 4513#else
65172ab8 4514const char *md_shortopts = "q";
252b5132 4515#endif
6e0b89ee 4516
252b5132 4517struct option md_longopts[] = {
3e73aa7c
JH
4518#define OPTION_32 (OPTION_MD_BASE + 0)
4519 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 4520#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
4521#define OPTION_64 (OPTION_MD_BASE + 1)
4522 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 4523#endif
252b5132
RH
4524 {NULL, no_argument, NULL, 0}
4525};
4526size_t md_longopts_size = sizeof (md_longopts);
4527
4528int
4529md_parse_option (c, arg)
4530 int c;
ab9da554 4531 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
4532{
4533 switch (c)
4534 {
a38cf1db
AM
4535 case 'q':
4536 quiet_warnings = 1;
252b5132
RH
4537 break;
4538
4539#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
4540 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4541 should be emitted or not. FIXME: Not implemented. */
4542 case 'Q':
252b5132
RH
4543 break;
4544
4545 /* -V: SVR4 argument to print version ID. */
4546 case 'V':
4547 print_version_id ();
4548 break;
4549
a38cf1db
AM
4550 /* -k: Ignore for FreeBSD compatibility. */
4551 case 'k':
252b5132 4552 break;
4cc782b5
ILT
4553
4554 case 's':
4555 /* -s: On i386 Solaris, this tells the native assembler to use
4556 .stab instead of .stab.excl. We always use .stab anyhow. */
4557 break;
6e0b89ee 4558
3e73aa7c
JH
4559 case OPTION_64:
4560 {
4561 const char **list, **l;
4562
3e73aa7c
JH
4563 list = bfd_target_list ();
4564 for (l = list; *l != NULL; l++)
6e0b89ee
AM
4565 if (strcmp (*l, "elf64-x86-64") == 0)
4566 {
4567 default_arch = "x86_64";
4568 break;
4569 }
3e73aa7c 4570 if (*l == NULL)
6e0b89ee 4571 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
4572 free (list);
4573 }
4574 break;
4575#endif
252b5132 4576
6e0b89ee
AM
4577 case OPTION_32:
4578 default_arch = "i386";
4579 break;
4580
252b5132
RH
4581 default:
4582 return 0;
4583 }
4584 return 1;
4585}
4586
4587void
4588md_show_usage (stream)
4589 FILE *stream;
4590{
4cc782b5
ILT
4591#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4592 fprintf (stream, _("\
a38cf1db
AM
4593 -Q ignored\n\
4594 -V print assembler version number\n\
4595 -k ignored\n\
4596 -q quieten some warnings\n\
4597 -s ignored\n"));
4598#else
4599 fprintf (stream, _("\
4600 -q quieten some warnings\n"));
4cc782b5 4601#endif
252b5132
RH
4602}
4603
4604#ifdef BFD_ASSEMBLER
3e73aa7c
JH
4605#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4606 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
4607
4608/* Pick the target format to use. */
4609
47926f60 4610const char *
252b5132
RH
4611i386_target_format ()
4612{
3e73aa7c
JH
4613 if (!strcmp (default_arch, "x86_64"))
4614 set_code_flag (CODE_64BIT);
4615 else if (!strcmp (default_arch, "i386"))
4616 set_code_flag (CODE_32BIT);
4617 else
4618 as_fatal (_("Unknown architecture"));
252b5132
RH
4619 switch (OUTPUT_FLAVOR)
4620 {
4c63da97
AM
4621#ifdef OBJ_MAYBE_AOUT
4622 case bfd_target_aout_flavour:
47926f60 4623 return AOUT_TARGET_FORMAT;
4c63da97
AM
4624#endif
4625#ifdef OBJ_MAYBE_COFF
252b5132
RH
4626 case bfd_target_coff_flavour:
4627 return "coff-i386";
4c63da97 4628#endif
3e73aa7c 4629#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 4630 case bfd_target_elf_flavour:
3e73aa7c 4631 {
e5cb08ac
KH
4632 if (flag_code == CODE_64BIT)
4633 use_rela_relocations = 1;
4634 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
3e73aa7c 4635 }
4c63da97 4636#endif
252b5132
RH
4637 default:
4638 abort ();
4639 return NULL;
4640 }
4641}
4642
47926f60
KH
4643#endif /* OBJ_MAYBE_ more than one */
4644#endif /* BFD_ASSEMBLER */
252b5132 4645\f
252b5132
RH
4646symbolS *
4647md_undefined_symbol (name)
4648 char *name;
4649{
18dc2407
ILT
4650 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4651 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4652 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4653 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
4654 {
4655 if (!GOT_symbol)
4656 {
4657 if (symbol_find (name))
4658 as_bad (_("GOT already in symbol table"));
4659 GOT_symbol = symbol_new (name, undefined_section,
4660 (valueT) 0, &zero_address_frag);
4661 };
4662 return GOT_symbol;
4663 }
252b5132
RH
4664 return 0;
4665}
4666
4667/* Round up a section size to the appropriate boundary. */
47926f60 4668
252b5132
RH
4669valueT
4670md_section_align (segment, size)
ab9da554 4671 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
4672 valueT size;
4673{
252b5132 4674#ifdef BFD_ASSEMBLER
4c63da97
AM
4675#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4676 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4677 {
4678 /* For a.out, force the section size to be aligned. If we don't do
4679 this, BFD will align it for us, but it will not write out the
4680 final bytes of the section. This may be a bug in BFD, but it is
4681 easier to fix it here since that is how the other a.out targets
4682 work. */
4683 int align;
4684
4685 align = bfd_get_section_alignment (stdoutput, segment);
4686 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4687 }
252b5132
RH
4688#endif
4689#endif
4690
4691 return size;
4692}
4693
4694/* On the i386, PC-relative offsets are relative to the start of the
4695 next instruction. That is, the address of the offset, plus its
4696 size, since the offset is always the last part of the insn. */
4697
4698long
4699md_pcrel_from (fixP)
4700 fixS *fixP;
4701{
4702 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4703}
4704
4705#ifndef I386COFF
4706
4707static void
4708s_bss (ignore)
ab9da554 4709 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4710{
4711 register int temp;
4712
4713 temp = get_absolute_expression ();
4714 subseg_set (bss_section, (subsegT) temp);
4715 demand_empty_rest_of_line ();
4716}
4717
4718#endif
4719
252b5132
RH
4720#ifdef BFD_ASSEMBLER
4721
4722void
4723i386_validate_fix (fixp)
4724 fixS *fixp;
4725{
4726 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4727 {
3e73aa7c 4728 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
4729 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4730 {
4731 if (flag_code != CODE_64BIT)
4732 abort ();
4733 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4734 }
4735 else
4736 {
4737 if (flag_code == CODE_64BIT)
4738 abort ();
4739 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4740 }
252b5132
RH
4741 fixp->fx_subsy = 0;
4742 }
4743}
4744
252b5132
RH
4745arelent *
4746tc_gen_reloc (section, fixp)
ab9da554 4747 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4748 fixS *fixp;
4749{
4750 arelent *rel;
4751 bfd_reloc_code_real_type code;
4752
4753 switch (fixp->fx_r_type)
4754 {
3e73aa7c
JH
4755 case BFD_RELOC_X86_64_PLT32:
4756 case BFD_RELOC_X86_64_GOT32:
4757 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
4758 case BFD_RELOC_386_PLT32:
4759 case BFD_RELOC_386_GOT32:
4760 case BFD_RELOC_386_GOTOFF:
4761 case BFD_RELOC_386_GOTPC:
3e73aa7c 4762 case BFD_RELOC_X86_64_32S:
252b5132
RH
4763 case BFD_RELOC_RVA:
4764 case BFD_RELOC_VTABLE_ENTRY:
4765 case BFD_RELOC_VTABLE_INHERIT:
4766 code = fixp->fx_r_type;
4767 break;
4768 default:
93382f6d 4769 if (fixp->fx_pcrel)
252b5132 4770 {
93382f6d
AM
4771 switch (fixp->fx_size)
4772 {
4773 default:
b091f402
AM
4774 as_bad_where (fixp->fx_file, fixp->fx_line,
4775 _("can not do %d byte pc-relative relocation"),
4776 fixp->fx_size);
93382f6d
AM
4777 code = BFD_RELOC_32_PCREL;
4778 break;
4779 case 1: code = BFD_RELOC_8_PCREL; break;
4780 case 2: code = BFD_RELOC_16_PCREL; break;
4781 case 4: code = BFD_RELOC_32_PCREL; break;
4782 }
4783 }
4784 else
4785 {
4786 switch (fixp->fx_size)
4787 {
4788 default:
b091f402
AM
4789 as_bad_where (fixp->fx_file, fixp->fx_line,
4790 _("can not do %d byte relocation"),
4791 fixp->fx_size);
93382f6d
AM
4792 code = BFD_RELOC_32;
4793 break;
4794 case 1: code = BFD_RELOC_8; break;
4795 case 2: code = BFD_RELOC_16; break;
4796 case 4: code = BFD_RELOC_32; break;
3e73aa7c 4797 case 8: code = BFD_RELOC_64; break;
93382f6d 4798 }
252b5132
RH
4799 }
4800 break;
4801 }
252b5132
RH
4802
4803 if (code == BFD_RELOC_32
4804 && GOT_symbol
4805 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
4806 {
4807 /* We don't support GOTPC on 64bit targets. */
4808 if (flag_code == CODE_64BIT)
bfb32b52 4809 abort ();
3e73aa7c
JH
4810 code = BFD_RELOC_386_GOTPC;
4811 }
252b5132
RH
4812
4813 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4814 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4815 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4816
4817 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
3e73aa7c
JH
4818 if (!use_rela_relocations)
4819 {
4820 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4821 vtable entry to be used in the relocation's section offset. */
4822 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4823 rel->address = fixp->fx_offset;
252b5132 4824
3e73aa7c
JH
4825 if (fixp->fx_pcrel)
4826 rel->addend = fixp->fx_addnumber;
4827 else
4828 rel->addend = 0;
4829 }
4830 /* Use the rela in 64bit mode. */
252b5132 4831 else
3e73aa7c
JH
4832 {
4833 rel->addend = fixp->fx_offset;
3e73aa7c
JH
4834 if (fixp->fx_pcrel)
4835 rel->addend -= fixp->fx_size;
4836 }
4837
252b5132
RH
4838 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4839 if (rel->howto == NULL)
4840 {
4841 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4842 _("cannot represent relocation type %s"),
252b5132
RH
4843 bfd_get_reloc_code_name (code));
4844 /* Set howto to a garbage value so that we can keep going. */
4845 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4846 assert (rel->howto != NULL);
4847 }
4848
4849 return rel;
4850}
4851
47926f60 4852#else /* ! BFD_ASSEMBLER */
252b5132
RH
4853
4854#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4855void
4856tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4857 char *where;
4858 fixS *fixP;
4859 relax_addressT segment_address_in_file;
4860{
47926f60
KH
4861 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4862 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4863
47926f60 4864 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4865 long r_symbolnum;
4866
4867 know (fixP->fx_addsy != NULL);
4868
4869 md_number_to_chars (where,
4870 (valueT) (fixP->fx_frag->fr_address
4871 + fixP->fx_where - segment_address_in_file),
4872 4);
4873
4874 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4875 ? S_GET_TYPE (fixP->fx_addsy)
4876 : fixP->fx_addsy->sy_number);
4877
4878 where[6] = (r_symbolnum >> 16) & 0x0ff;
4879 where[5] = (r_symbolnum >> 8) & 0x0ff;
4880 where[4] = r_symbolnum & 0x0ff;
4881 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4882 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4883 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4884}
4885
47926f60 4886#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4887
4888#if defined (I386COFF)
4889
4890short
4891tc_coff_fix2rtype (fixP)
4892 fixS *fixP;
4893{
4894 if (fixP->fx_r_type == R_IMAGEBASE)
4895 return R_IMAGEBASE;
4896
4897 return (fixP->fx_pcrel ?
4898 (fixP->fx_size == 1 ? R_PCRBYTE :
4899 fixP->fx_size == 2 ? R_PCRWORD :
4900 R_PCRLONG) :
4901 (fixP->fx_size == 1 ? R_RELBYTE :
4902 fixP->fx_size == 2 ? R_RELWORD :
4903 R_DIR32));
4904}
4905
4906int
4907tc_coff_sizemachdep (frag)
4908 fragS *frag;
4909{
4910 if (frag->fr_next)
4911 return (frag->fr_next->fr_address - frag->fr_address);
4912 else
4913 return 0;
4914}
4915
47926f60 4916#endif /* I386COFF */
252b5132 4917
47926f60 4918#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4919\f
4920/* Parse operands using Intel syntax. This implements a recursive descent
4921 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4922 Programmer's Guide.
4923
4924 FIXME: We do not recognize the full operand grammar defined in the MASM
4925 documentation. In particular, all the structure/union and
4926 high-level macro operands are missing.
4927
4928 Uppercase words are terminals, lower case words are non-terminals.
4929 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4930 bars '|' denote choices. Most grammar productions are implemented in
4931 functions called 'intel_<production>'.
4932
4933 Initial production is 'expr'.
4934
64a0c779
DN
4935 addOp + | -
4936
4937 alpha [a-zA-Z]
4938
4939 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4940
4941 constant digits [[ radixOverride ]]
4942
4943 dataType BYTE | WORD | DWORD | QWORD | XWORD
4944
4945 digits decdigit
b77a7acd
AJ
4946 | digits decdigit
4947 | digits hexdigit
64a0c779
DN
4948
4949 decdigit [0-9]
4950
4951 e05 e05 addOp e06
b77a7acd 4952 | e06
64a0c779
DN
4953
4954 e06 e06 mulOp e09
b77a7acd 4955 | e09
64a0c779
DN
4956
4957 e09 OFFSET e10
4958 | e09 PTR e10
4959 | e09 : e10
4960 | e10
4961
4962 e10 e10 [ expr ]
b77a7acd 4963 | e11
64a0c779
DN
4964
4965 e11 ( expr )
b77a7acd 4966 | [ expr ]
64a0c779
DN
4967 | constant
4968 | dataType
4969 | id
4970 | $
4971 | register
4972
4973 => expr SHORT e05
b77a7acd 4974 | e05
64a0c779
DN
4975
4976 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 4977 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
4978
4979 hexdigit a | b | c | d | e | f
b77a7acd 4980 | A | B | C | D | E | F
64a0c779
DN
4981
4982 id alpha
b77a7acd 4983 | id alpha
64a0c779
DN
4984 | id decdigit
4985
4986 mulOp * | / | MOD
4987
4988 quote " | '
4989
4990 register specialRegister
b77a7acd 4991 | gpRegister
64a0c779
DN
4992 | byteRegister
4993
4994 segmentRegister CS | DS | ES | FS | GS | SS
4995
4996 specialRegister CR0 | CR2 | CR3
b77a7acd 4997 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
4998 | TR3 | TR4 | TR5 | TR6 | TR7
4999
64a0c779
DN
5000 We simplify the grammar in obvious places (e.g., register parsing is
5001 done by calling parse_register) and eliminate immediate left recursion
5002 to implement a recursive-descent parser.
5003
5004 expr SHORT e05
b77a7acd 5005 | e05
64a0c779
DN
5006
5007 e05 e06 e05'
5008
5009 e05' addOp e06 e05'
b77a7acd 5010 | Empty
64a0c779
DN
5011
5012 e06 e09 e06'
5013
5014 e06' mulOp e09 e06'
b77a7acd 5015 | Empty
64a0c779
DN
5016
5017 e09 OFFSET e10 e09'
b77a7acd 5018 | e10 e09'
64a0c779
DN
5019
5020 e09' PTR e10 e09'
b77a7acd 5021 | : e10 e09'
64a0c779
DN
5022 | Empty
5023
5024 e10 e11 e10'
5025
5026 e10' [ expr ] e10'
b77a7acd 5027 | Empty
64a0c779
DN
5028
5029 e11 ( expr )
b77a7acd 5030 | [ expr ]
64a0c779
DN
5031 | BYTE
5032 | WORD
5033 | DWORD
5034 | QWORD
5035 | XWORD
5036 | .
5037 | $
5038 | register
5039 | id
5040 | constant */
5041
5042/* Parsing structure for the intel syntax parser. Used to implement the
5043 semantic actions for the operand grammar. */
5044struct intel_parser_s
5045 {
5046 char *op_string; /* The string being parsed. */
5047 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5048 int op_modifier; /* Operand modifier. */
64a0c779
DN
5049 int is_mem; /* 1 if operand is memory reference. */
5050 const reg_entry *reg; /* Last register reference found. */
5051 char *disp; /* Displacement string being built. */
5052 };
5053
5054static struct intel_parser_s intel_parser;
5055
5056/* Token structure for parsing intel syntax. */
5057struct intel_token
5058 {
5059 int code; /* Token code. */
5060 const reg_entry *reg; /* Register entry for register tokens. */
5061 char *str; /* String representation. */
5062 };
5063
5064static struct intel_token cur_token, prev_token;
5065
50705ef4
AM
5066/* Token codes for the intel parser. Since T_SHORT is already used
5067 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5068#define T_NIL -1
5069#define T_CONST 1
5070#define T_REG 2
5071#define T_BYTE 3
5072#define T_WORD 4
5073#define T_DWORD 5
5074#define T_QWORD 6
5075#define T_XWORD 7
50705ef4 5076#undef T_SHORT
64a0c779
DN
5077#define T_SHORT 8
5078#define T_OFFSET 9
5079#define T_PTR 10
5080#define T_ID 11
5081
5082/* Prototypes for intel parser functions. */
5083static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5084static void intel_get_token PARAMS ((void));
5085static void intel_putback_token PARAMS ((void));
5086static int intel_expr PARAMS ((void));
5087static int intel_e05 PARAMS ((void));
5088static int intel_e05_1 PARAMS ((void));
5089static int intel_e06 PARAMS ((void));
5090static int intel_e06_1 PARAMS ((void));
5091static int intel_e09 PARAMS ((void));
5092static int intel_e09_1 PARAMS ((void));
5093static int intel_e10 PARAMS ((void));
5094static int intel_e10_1 PARAMS ((void));
5095static int intel_e11 PARAMS ((void));
64a0c779 5096
64a0c779
DN
5097static int
5098i386_intel_operand (operand_string, got_a_float)
5099 char *operand_string;
5100 int got_a_float;
5101{
5102 int ret;
5103 char *p;
5104
5105 /* Initialize token holders. */
5106 cur_token.code = prev_token.code = T_NIL;
5107 cur_token.reg = prev_token.reg = NULL;
5108 cur_token.str = prev_token.str = NULL;
5109
5110 /* Initialize parser structure. */
e5cb08ac 5111 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5112 if (p == NULL)
5113 abort ();
5114 strcpy (intel_parser.op_string, operand_string);
5115 intel_parser.got_a_float = got_a_float;
5116 intel_parser.op_modifier = -1;
5117 intel_parser.is_mem = 0;
5118 intel_parser.reg = NULL;
e5cb08ac 5119 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5120 if (intel_parser.disp == NULL)
5121 abort ();
5122 intel_parser.disp[0] = '\0';
5123
5124 /* Read the first token and start the parser. */
5125 intel_get_token ();
5126 ret = intel_expr ();
5127
5128 if (ret)
5129 {
5130 /* If we found a memory reference, hand it over to i386_displacement
5131 to fill in the rest of the operand fields. */
5132 if (intel_parser.is_mem)
5133 {
5134 if ((i.mem_operands == 1
5135 && (current_templates->start->opcode_modifier & IsString) == 0)
5136 || i.mem_operands == 2)
5137 {
5138 as_bad (_("too many memory references for '%s'"),
5139 current_templates->start->name);
5140 ret = 0;
5141 }
5142 else
5143 {
5144 char *s = intel_parser.disp;
5145 i.mem_operands++;
5146
5147 /* Add the displacement expression. */
5148 if (*s != '\0')
5149 ret = i386_displacement (s, s + strlen (s))
5150 && i386_index_check (s);
5151 }
5152 }
5153
5154 /* Constant and OFFSET expressions are handled by i386_immediate. */
5155 else if (intel_parser.op_modifier == OFFSET_FLAT
5156 || intel_parser.reg == NULL)
5157 ret = i386_immediate (intel_parser.disp);
5158 }
5159
5160 free (p);
5161 free (intel_parser.disp);
5162
5163 return ret;
5164}
5165
64a0c779 5166/* expr SHORT e05
b77a7acd 5167 | e05 */
64a0c779
DN
5168static int
5169intel_expr ()
5170{
5171 /* expr SHORT e05 */
5172 if (cur_token.code == T_SHORT)
5173 {
5174 intel_parser.op_modifier = SHORT;
5175 intel_match_token (T_SHORT);
5176
5177 return (intel_e05 ());
5178 }
5179
5180 /* expr e05 */
5181 else
5182 return intel_e05 ();
5183}
5184
64a0c779
DN
5185/* e05 e06 e05'
5186
4a1805b1 5187 e05' addOp e06 e05'
64a0c779
DN
5188 | Empty */
5189static int
5190intel_e05 ()
5191{
5192 return (intel_e06 () && intel_e05_1 ());
5193}
5194
5195static int
5196intel_e05_1 ()
5197{
5198 /* e05' addOp e06 e05' */
5199 if (cur_token.code == '+' || cur_token.code == '-')
5200 {
5201 strcat (intel_parser.disp, cur_token.str);
5202 intel_match_token (cur_token.code);
5203
5204 return (intel_e06 () && intel_e05_1 ());
5205 }
5206
5207 /* e05' Empty */
5208 else
5209 return 1;
4a1805b1 5210}
64a0c779
DN
5211
5212/* e06 e09 e06'
5213
5214 e06' mulOp e09 e06'
b77a7acd 5215 | Empty */
64a0c779
DN
5216static int
5217intel_e06 ()
5218{
5219 return (intel_e09 () && intel_e06_1 ());
5220}
5221
5222static int
5223intel_e06_1 ()
5224{
5225 /* e06' mulOp e09 e06' */
5226 if (cur_token.code == '*' || cur_token.code == '/')
5227 {
5228 strcat (intel_parser.disp, cur_token.str);
5229 intel_match_token (cur_token.code);
5230
5231 return (intel_e09 () && intel_e06_1 ());
5232 }
4a1805b1 5233
64a0c779 5234 /* e06' Empty */
4a1805b1 5235 else
64a0c779
DN
5236 return 1;
5237}
5238
64a0c779 5239/* e09 OFFSET e10 e09'
b77a7acd 5240 | e10 e09'
64a0c779
DN
5241
5242 e09' PTR e10 e09'
b77a7acd 5243 | : e10 e09'
64a0c779
DN
5244 | Empty */
5245static int
5246intel_e09 ()
5247{
5248 /* e09 OFFSET e10 e09' */
5249 if (cur_token.code == T_OFFSET)
5250 {
5251 intel_parser.is_mem = 0;
5252 intel_parser.op_modifier = OFFSET_FLAT;
5253 intel_match_token (T_OFFSET);
5254
5255 return (intel_e10 () && intel_e09_1 ());
5256 }
5257
5258 /* e09 e10 e09' */
5259 else
5260 return (intel_e10 () && intel_e09_1 ());
5261}
5262
5263static int
5264intel_e09_1 ()
5265{
5266 /* e09' PTR e10 e09' */
5267 if (cur_token.code == T_PTR)
5268 {
5269 if (prev_token.code == T_BYTE)
5270 i.suffix = BYTE_MNEM_SUFFIX;
5271
5272 else if (prev_token.code == T_WORD)
5273 {
5274 if (intel_parser.got_a_float == 2) /* "fi..." */
5275 i.suffix = SHORT_MNEM_SUFFIX;
5276 else
5277 i.suffix = WORD_MNEM_SUFFIX;
5278 }
5279
5280 else if (prev_token.code == T_DWORD)
5281 {
5282 if (intel_parser.got_a_float == 1) /* "f..." */
5283 i.suffix = SHORT_MNEM_SUFFIX;
5284 else
5285 i.suffix = LONG_MNEM_SUFFIX;
5286 }
5287
5288 else if (prev_token.code == T_QWORD)
f16b83df
JH
5289 {
5290 if (intel_parser.got_a_float == 1) /* "f..." */
5291 i.suffix = LONG_MNEM_SUFFIX;
5292 else
3e73aa7c 5293 i.suffix = QWORD_MNEM_SUFFIX;
f16b83df 5294 }
64a0c779
DN
5295
5296 else if (prev_token.code == T_XWORD)
5297 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5298
5299 else
5300 {
5301 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5302 return 0;
5303 }
5304
5305 intel_match_token (T_PTR);
5306
5307 return (intel_e10 () && intel_e09_1 ());
5308 }
5309
5310 /* e09 : e10 e09' */
5311 else if (cur_token.code == ':')
5312 {
21d6c4af
DN
5313 /* Mark as a memory operand only if it's not already known to be an
5314 offset expression. */
5315 if (intel_parser.op_modifier != OFFSET_FLAT)
5316 intel_parser.is_mem = 1;
64a0c779
DN
5317
5318 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5319 }
5320
5321 /* e09' Empty */
5322 else
5323 return 1;
5324}
5325
5326/* e10 e11 e10'
5327
5328 e10' [ expr ] e10'
b77a7acd 5329 | Empty */
64a0c779
DN
5330static int
5331intel_e10 ()
5332{
5333 return (intel_e11 () && intel_e10_1 ());
5334}
5335
5336static int
5337intel_e10_1 ()
5338{
5339 /* e10' [ expr ] e10' */
5340 if (cur_token.code == '[')
5341 {
5342 intel_match_token ('[');
21d6c4af
DN
5343
5344 /* Mark as a memory operand only if it's not already known to be an
5345 offset expression. If it's an offset expression, we need to keep
5346 the brace in. */
5347 if (intel_parser.op_modifier != OFFSET_FLAT)
5348 intel_parser.is_mem = 1;
5349 else
5350 strcat (intel_parser.disp, "[");
4a1805b1 5351
64a0c779 5352 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5353 if (*intel_parser.disp != '\0'
5354 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5355 strcat (intel_parser.disp, "+");
5356
21d6c4af
DN
5357 if (intel_expr () && intel_match_token (']'))
5358 {
5359 /* Preserve brackets when the operand is an offset expression. */
5360 if (intel_parser.op_modifier == OFFSET_FLAT)
5361 strcat (intel_parser.disp, "]");
5362
5363 return intel_e10_1 ();
5364 }
5365 else
5366 return 0;
64a0c779
DN
5367 }
5368
5369 /* e10' Empty */
5370 else
5371 return 1;
5372}
5373
64a0c779 5374/* e11 ( expr )
b77a7acd 5375 | [ expr ]
64a0c779
DN
5376 | BYTE
5377 | WORD
5378 | DWORD
5379 | QWORD
5380 | XWORD
4a1805b1 5381 | $
64a0c779
DN
5382 | .
5383 | register
5384 | id
5385 | constant */
5386static int
5387intel_e11 ()
5388{
5389 /* e11 ( expr ) */
5390 if (cur_token.code == '(')
5391 {
5392 intel_match_token ('(');
5393 strcat (intel_parser.disp, "(");
5394
5395 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
5396 {
5397 strcat (intel_parser.disp, ")");
5398 return 1;
5399 }
64a0c779
DN
5400 else
5401 return 0;
5402 }
5403
5404 /* e11 [ expr ] */
5405 else if (cur_token.code == '[')
5406 {
5407 intel_match_token ('[');
21d6c4af
DN
5408
5409 /* Mark as a memory operand only if it's not already known to be an
5410 offset expression. If it's an offset expression, we need to keep
5411 the brace in. */
5412 if (intel_parser.op_modifier != OFFSET_FLAT)
5413 intel_parser.is_mem = 1;
5414 else
5415 strcat (intel_parser.disp, "[");
4a1805b1 5416
64a0c779
DN
5417 /* Operands for jump/call inside brackets denote absolute addresses. */
5418 if (current_templates->start->opcode_modifier & Jump
5419 || current_templates->start->opcode_modifier & JumpDword
5420 || current_templates->start->opcode_modifier & JumpByte
5421 || current_templates->start->opcode_modifier & JumpInterSegment)
5422 i.types[this_operand] |= JumpAbsolute;
5423
5424 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
5425 if (*intel_parser.disp != '\0'
5426 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
5427 strcat (intel_parser.disp, "+");
5428
21d6c4af
DN
5429 if (intel_expr () && intel_match_token (']'))
5430 {
5431 /* Preserve brackets when the operand is an offset expression. */
5432 if (intel_parser.op_modifier == OFFSET_FLAT)
5433 strcat (intel_parser.disp, "]");
5434
5435 return 1;
5436 }
5437 else
5438 return 0;
64a0c779
DN
5439 }
5440
4a1805b1 5441 /* e11 BYTE
64a0c779
DN
5442 | WORD
5443 | DWORD
5444 | QWORD
5445 | XWORD */
5446 else if (cur_token.code == T_BYTE
5447 || cur_token.code == T_WORD
5448 || cur_token.code == T_DWORD
5449 || cur_token.code == T_QWORD
5450 || cur_token.code == T_XWORD)
5451 {
5452 intel_match_token (cur_token.code);
5453
5454 return 1;
5455 }
5456
5457 /* e11 $
5458 | . */
5459 else if (cur_token.code == '$' || cur_token.code == '.')
5460 {
5461 strcat (intel_parser.disp, cur_token.str);
5462 intel_match_token (cur_token.code);
21d6c4af
DN
5463
5464 /* Mark as a memory operand only if it's not already known to be an
5465 offset expression. */
5466 if (intel_parser.op_modifier != OFFSET_FLAT)
5467 intel_parser.is_mem = 1;
64a0c779
DN
5468
5469 return 1;
5470 }
5471
5472 /* e11 register */
5473 else if (cur_token.code == T_REG)
5474 {
5475 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5476
5477 intel_match_token (T_REG);
5478
5479 /* Check for segment change. */
5480 if (cur_token.code == ':')
5481 {
5482 if (reg->reg_type & (SReg2 | SReg3))
5483 {
5484 switch (reg->reg_num)
5485 {
5486 case 0:
5487 i.seg[i.mem_operands] = &es;
5488 break;
5489 case 1:
5490 i.seg[i.mem_operands] = &cs;
5491 break;
5492 case 2:
5493 i.seg[i.mem_operands] = &ss;
5494 break;
5495 case 3:
5496 i.seg[i.mem_operands] = &ds;
5497 break;
5498 case 4:
5499 i.seg[i.mem_operands] = &fs;
5500 break;
5501 case 5:
5502 i.seg[i.mem_operands] = &gs;
5503 break;
5504 }
5505 }
5506 else
5507 {
5508 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5509 return 0;
5510 }
5511 }
5512
5513 /* Not a segment register. Check for register scaling. */
5514 else if (cur_token.code == '*')
5515 {
5516 if (!intel_parser.is_mem)
5517 {
5518 as_bad (_("Register scaling only allowed in memory operands."));
5519 return 0;
5520 }
5521
4a1805b1 5522 /* What follows must be a valid scale. */
64a0c779
DN
5523 if (intel_match_token ('*')
5524 && strchr ("01248", *cur_token.str))
5525 {
5526 i.index_reg = reg;
5527 i.types[this_operand] |= BaseIndex;
5528
5529 /* Set the scale after setting the register (otherwise,
5530 i386_scale will complain) */
5531 i386_scale (cur_token.str);
5532 intel_match_token (T_CONST);
5533 }
5534 else
5535 {
5536 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5537 cur_token.str);
5538 return 0;
5539 }
5540 }
5541
5542 /* No scaling. If this is a memory operand, the register is either a
5543 base register (first occurrence) or an index register (second
5544 occurrence). */
5545 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5546 {
5547 if (i.base_reg && i.index_reg)
5548 {
5549 as_bad (_("Too many register references in memory operand.\n"));
5550 return 0;
5551 }
5552
5553 if (i.base_reg == NULL)
5554 i.base_reg = reg;
5555 else
5556 i.index_reg = reg;
5557
5558 i.types[this_operand] |= BaseIndex;
5559 }
5560
5561 /* Offset modifier. Add the register to the displacement string to be
5562 parsed as an immediate expression after we're done. */
5563 else if (intel_parser.op_modifier == OFFSET_FLAT)
5564 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 5565
64a0c779
DN
5566 /* It's neither base nor index nor offset. */
5567 else
5568 {
5569 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5570 i.op[this_operand].regs = reg;
5571 i.reg_operands++;
5572 }
5573
5574 /* Since registers are not part of the displacement string (except
5575 when we're parsing offset operands), we may need to remove any
5576 preceding '+' from the displacement string. */
5577 if (*intel_parser.disp != '\0'
5578 && intel_parser.op_modifier != OFFSET_FLAT)
5579 {
5580 char *s = intel_parser.disp;
5581 s += strlen (s) - 1;
5582 if (*s == '+')
5583 *s = '\0';
5584 }
5585
5586 return 1;
5587 }
4a1805b1 5588
64a0c779
DN
5589 /* e11 id */
5590 else if (cur_token.code == T_ID)
5591 {
5592 /* Add the identifier to the displacement string. */
5593 strcat (intel_parser.disp, cur_token.str);
5594 intel_match_token (T_ID);
5595
5596 /* The identifier represents a memory reference only if it's not
5597 preceded by an offset modifier. */
21d6c4af 5598 if (intel_parser.op_modifier != OFFSET_FLAT)
64a0c779
DN
5599 intel_parser.is_mem = 1;
5600
5601 return 1;
5602 }
5603
5604 /* e11 constant */
5605 else if (cur_token.code == T_CONST
e5cb08ac 5606 || cur_token.code == '-'
64a0c779
DN
5607 || cur_token.code == '+')
5608 {
5609 char *save_str;
5610
5611 /* Allow constants that start with `+' or `-'. */
5612 if (cur_token.code == '-' || cur_token.code == '+')
5613 {
5614 strcat (intel_parser.disp, cur_token.str);
5615 intel_match_token (cur_token.code);
5616 if (cur_token.code != T_CONST)
5617 {
5618 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5619 cur_token.str);
5620 return 0;
5621 }
5622 }
5623
e5cb08ac 5624 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 5625 if (save_str == NULL)
bc805888 5626 abort ();
64a0c779
DN
5627 strcpy (save_str, cur_token.str);
5628
5629 /* Get the next token to check for register scaling. */
5630 intel_match_token (cur_token.code);
5631
5632 /* Check if this constant is a scaling factor for an index register. */
5633 if (cur_token.code == '*')
5634 {
5635 if (intel_match_token ('*') && cur_token.code == T_REG)
5636 {
5637 if (!intel_parser.is_mem)
5638 {
5639 as_bad (_("Register scaling only allowed in memory operands."));
5640 return 0;
5641 }
5642
4a1805b1 5643 /* The constant is followed by `* reg', so it must be
64a0c779
DN
5644 a valid scale. */
5645 if (strchr ("01248", *save_str))
5646 {
5647 i.index_reg = cur_token.reg;
5648 i.types[this_operand] |= BaseIndex;
5649
5650 /* Set the scale after setting the register (otherwise,
5651 i386_scale will complain) */
5652 i386_scale (save_str);
5653 intel_match_token (T_REG);
5654
5655 /* Since registers are not part of the displacement
5656 string, we may need to remove any preceding '+' from
5657 the displacement string. */
5658 if (*intel_parser.disp != '\0')
5659 {
5660 char *s = intel_parser.disp;
5661 s += strlen (s) - 1;
5662 if (*s == '+')
5663 *s = '\0';
5664 }
5665
5666 free (save_str);
5667
5668 return 1;
5669 }
5670 else
5671 return 0;
5672 }
5673
5674 /* The constant was not used for register scaling. Since we have
5675 already consumed the token following `*' we now need to put it
5676 back in the stream. */
5677 else
5678 intel_putback_token ();
5679 }
5680
5681 /* Add the constant to the displacement string. */
5682 strcat (intel_parser.disp, save_str);
5683 free (save_str);
5684
5685 return 1;
5686 }
5687
64a0c779
DN
5688 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5689 return 0;
5690}
5691
64a0c779
DN
5692/* Match the given token against cur_token. If they match, read the next
5693 token from the operand string. */
5694static int
5695intel_match_token (code)
e5cb08ac 5696 int code;
64a0c779
DN
5697{
5698 if (cur_token.code == code)
5699 {
5700 intel_get_token ();
5701 return 1;
5702 }
5703 else
5704 {
5705 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5706 return 0;
5707 }
5708}
5709
64a0c779
DN
5710/* Read a new token from intel_parser.op_string and store it in cur_token. */
5711static void
5712intel_get_token ()
5713{
5714 char *end_op;
5715 const reg_entry *reg;
5716 struct intel_token new_token;
5717
5718 new_token.code = T_NIL;
5719 new_token.reg = NULL;
5720 new_token.str = NULL;
5721
4a1805b1 5722 /* Free the memory allocated to the previous token and move
64a0c779
DN
5723 cur_token to prev_token. */
5724 if (prev_token.str)
5725 free (prev_token.str);
5726
5727 prev_token = cur_token;
5728
5729 /* Skip whitespace. */
5730 while (is_space_char (*intel_parser.op_string))
5731 intel_parser.op_string++;
5732
5733 /* Return an empty token if we find nothing else on the line. */
5734 if (*intel_parser.op_string == '\0')
5735 {
5736 cur_token = new_token;
5737 return;
5738 }
5739
5740 /* The new token cannot be larger than the remainder of the operand
5741 string. */
e5cb08ac 5742 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 5743 if (new_token.str == NULL)
bc805888 5744 abort ();
64a0c779
DN
5745 new_token.str[0] = '\0';
5746
5747 if (strchr ("0123456789", *intel_parser.op_string))
5748 {
5749 char *p = new_token.str;
5750 char *q = intel_parser.op_string;
5751 new_token.code = T_CONST;
5752
5753 /* Allow any kind of identifier char to encompass floating point and
5754 hexadecimal numbers. */
5755 while (is_identifier_char (*q))
5756 *p++ = *q++;
5757 *p = '\0';
5758
5759 /* Recognize special symbol names [0-9][bf]. */
5760 if (strlen (intel_parser.op_string) == 2
4a1805b1 5761 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
5762 || intel_parser.op_string[1] == 'f'))
5763 new_token.code = T_ID;
5764 }
5765
5766 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5767 {
5768 new_token.code = *intel_parser.op_string;
5769 new_token.str[0] = *intel_parser.op_string;
5770 new_token.str[1] = '\0';
5771 }
5772
5773 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5774 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5775 {
5776 new_token.code = T_REG;
5777 new_token.reg = reg;
5778
5779 if (*intel_parser.op_string == REGISTER_PREFIX)
5780 {
5781 new_token.str[0] = REGISTER_PREFIX;
5782 new_token.str[1] = '\0';
5783 }
5784
5785 strcat (new_token.str, reg->reg_name);
5786 }
5787
5788 else if (is_identifier_char (*intel_parser.op_string))
5789 {
5790 char *p = new_token.str;
5791 char *q = intel_parser.op_string;
5792
5793 /* A '.' or '$' followed by an identifier char is an identifier.
5794 Otherwise, it's operator '.' followed by an expression. */
5795 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5796 {
5797 new_token.code = *q;
5798 new_token.str[0] = *q;
5799 new_token.str[1] = '\0';
5800 }
5801 else
5802 {
5803 while (is_identifier_char (*q) || *q == '@')
5804 *p++ = *q++;
5805 *p = '\0';
5806
5807 if (strcasecmp (new_token.str, "BYTE") == 0)
5808 new_token.code = T_BYTE;
5809
5810 else if (strcasecmp (new_token.str, "WORD") == 0)
5811 new_token.code = T_WORD;
5812
5813 else if (strcasecmp (new_token.str, "DWORD") == 0)
5814 new_token.code = T_DWORD;
5815
5816 else if (strcasecmp (new_token.str, "QWORD") == 0)
5817 new_token.code = T_QWORD;
5818
5819 else if (strcasecmp (new_token.str, "XWORD") == 0)
5820 new_token.code = T_XWORD;
5821
5822 else if (strcasecmp (new_token.str, "PTR") == 0)
5823 new_token.code = T_PTR;
5824
5825 else if (strcasecmp (new_token.str, "SHORT") == 0)
5826 new_token.code = T_SHORT;
5827
5828 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5829 {
5830 new_token.code = T_OFFSET;
5831
5832 /* ??? This is not mentioned in the MASM grammar but gcc
5833 makes use of it with -mintel-syntax. OFFSET may be
5834 followed by FLAT: */
5835 if (strncasecmp (q, " FLAT:", 6) == 0)
5836 strcat (new_token.str, " FLAT:");
5837 }
5838
5839 /* ??? This is not mentioned in the MASM grammar. */
5840 else if (strcasecmp (new_token.str, "FLAT") == 0)
5841 new_token.code = T_OFFSET;
5842
5843 else
5844 new_token.code = T_ID;
5845 }
5846 }
5847
5848 else
5849 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5850
5851 intel_parser.op_string += strlen (new_token.str);
5852 cur_token = new_token;
5853}
5854
64a0c779
DN
5855/* Put cur_token back into the token stream and make cur_token point to
5856 prev_token. */
5857static void
5858intel_putback_token ()
5859{
5860 intel_parser.op_string -= strlen (cur_token.str);
5861 free (cur_token.str);
5862 cur_token = prev_token;
4a1805b1 5863
64a0c779
DN
5864 /* Forget prev_token. */
5865 prev_token.code = T_NIL;
5866 prev_token.reg = NULL;
5867 prev_token.str = NULL;
5868}