]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
Add a new Portuguese translation for the binutils sub-directory, and update the Russi...
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
a65babc9
L
284 };
285
252b5132
RH
286struct _i386_insn
287 {
47926f60 288 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 289 insn_template tm;
252b5132 290
7d5e4556
L
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
252b5132
RH
293 char suffix;
294
47926f60 295 /* OPERANDS gives the number of given operands. */
252b5132
RH
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
47926f60 300 operands. */
252b5132
RH
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 304 use OP[i] for the corresponding operand. */
40fb9820 305 i386_operand_type types[MAX_OPERANDS];
252b5132 306
520dc8e8
AM
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
252b5132 310
3e73aa7c
JH
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313#define Operand_PCrel 1
314
252b5132 315 /* Relocation type for operand */
f86103b7 316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 317
252b5132
RH
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 325 explicit segment overrides are given. */
ce8a8b2f 326 const seg_entry *seg[2];
252b5132 327
8325cc63
JB
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
252b5132
RH
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 337 addressing modes of this insn are encoded. */
252b5132 338 modrm_byte rm;
3e73aa7c 339 rex_byte rex;
43234a1e 340 rex_byte vrex;
252b5132 341 sib_byte sib;
c0f3af97 342 vex_prefix vex;
b6169b20 343
43234a1e
L
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
86fa6981
L
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
891edac4 363
a501d77e
L
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
f8a5c266 371
6b6b6807
L
372 /* Prefer the REX byte in encoding. */
373 bfd_boolean rex_encoding;
374
86fa6981
L
375 /* How to encode vector instructions. */
376 enum
377 {
378 vex_encoding_default = 0,
379 vex_encoding_vex2,
380 vex_encoding_vex3,
381 vex_encoding_evex
382 } vec_encoding;
383
d5de92cf
L
384 /* REP prefix. */
385 const char *rep_prefix;
386
165de32a
L
387 /* HLE prefix. */
388 const char *hle_prefix;
42164a71 389
7e8b059b
L
390 /* Have BND prefix. */
391 const char *bnd_prefix;
392
04ef582a
L
393 /* Have NOTRACK prefix. */
394 const char *notrack_prefix;
395
891edac4 396 /* Error message. */
a65babc9 397 enum i386_error error;
252b5132
RH
398 };
399
400typedef struct _i386_insn i386_insn;
401
43234a1e
L
402/* Link RC type with corresponding string, that'll be looked for in
403 asm. */
404struct RC_name
405{
406 enum rc_type type;
407 const char *name;
408 unsigned int len;
409};
410
411static const struct RC_name RC_NamesTable[] =
412{
413 { rne, STRING_COMMA_LEN ("rn-sae") },
414 { rd, STRING_COMMA_LEN ("rd-sae") },
415 { ru, STRING_COMMA_LEN ("ru-sae") },
416 { rz, STRING_COMMA_LEN ("rz-sae") },
417 { saeonly, STRING_COMMA_LEN ("sae") },
418};
419
252b5132
RH
420/* List of chars besides those in app.c:symbol_chars that can start an
421 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 422const char extra_symbol_chars[] = "*%-([{}"
252b5132 423#ifdef LEX_AT
32137342
NC
424 "@"
425#endif
426#ifdef LEX_QM
427 "?"
252b5132 428#endif
32137342 429 ;
252b5132 430
29b0f896
AM
431#if (defined (TE_I386AIX) \
432 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 433 && !defined (TE_GNU) \
29b0f896 434 && !defined (TE_LINUX) \
8d63c93e
RM
435 && !defined (TE_NACL) \
436 && !defined (TE_NETWARE) \
29b0f896 437 && !defined (TE_FreeBSD) \
5b806d27 438 && !defined (TE_DragonFly) \
29b0f896 439 && !defined (TE_NetBSD)))
252b5132 440/* This array holds the chars that always start a comment. If the
b3b91714
AM
441 pre-processor is disabled, these aren't very useful. The option
442 --divide will remove '/' from this list. */
443const char *i386_comment_chars = "#/";
444#define SVR4_COMMENT_CHARS 1
252b5132 445#define PREFIX_SEPARATOR '\\'
252b5132 446
b3b91714
AM
447#else
448const char *i386_comment_chars = "#";
449#define PREFIX_SEPARATOR '/'
450#endif
451
252b5132
RH
452/* This array holds the chars that only start a comment at the beginning of
453 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
454 .line and .file directives will appear in the pre-processed output.
455 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 456 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
457 #NO_APP at the beginning of its output.
458 Also note that comments started like this one will always work if
252b5132 459 '/' isn't otherwise defined. */
b3b91714 460const char line_comment_chars[] = "#/";
252b5132 461
63a0b638 462const char line_separator_chars[] = ";";
252b5132 463
ce8a8b2f
AM
464/* Chars that can be used to separate mant from exp in floating point
465 nums. */
252b5132
RH
466const char EXP_CHARS[] = "eE";
467
ce8a8b2f
AM
468/* Chars that mean this number is a floating point constant
469 As in 0f12.456
470 or 0d1.2345e12. */
252b5132
RH
471const char FLT_CHARS[] = "fFdDxX";
472
ce8a8b2f 473/* Tables for lexical analysis. */
252b5132
RH
474static char mnemonic_chars[256];
475static char register_chars[256];
476static char operand_chars[256];
477static char identifier_chars[256];
478static char digit_chars[256];
479
ce8a8b2f 480/* Lexical macros. */
252b5132
RH
481#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
482#define is_operand_char(x) (operand_chars[(unsigned char) x])
483#define is_register_char(x) (register_chars[(unsigned char) x])
484#define is_space_char(x) ((x) == ' ')
485#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
486#define is_digit_char(x) (digit_chars[(unsigned char) x])
487
0234cb7c 488/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
489static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
490
491/* md_assemble() always leaves the strings it's passed unaltered. To
492 effect this we maintain a stack of saved characters that we've smashed
493 with '\0's (indicating end of strings for various sub-fields of the
47926f60 494 assembler instruction). */
252b5132 495static char save_stack[32];
ce8a8b2f 496static char *save_stack_p;
252b5132
RH
497#define END_STRING_AND_SAVE(s) \
498 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
499#define RESTORE_END_STRING(s) \
500 do { *(s) = *--save_stack_p; } while (0)
501
47926f60 502/* The instruction we're assembling. */
252b5132
RH
503static i386_insn i;
504
505/* Possible templates for current insn. */
506static const templates *current_templates;
507
31b2323c
L
508/* Per instruction expressionS buffers: max displacements & immediates. */
509static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
510static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 511
47926f60 512/* Current operand we are working on. */
ee86248c 513static int this_operand = -1;
252b5132 514
3e73aa7c
JH
515/* We support four different modes. FLAG_CODE variable is used to distinguish
516 these. */
517
518enum flag_code {
519 CODE_32BIT,
520 CODE_16BIT,
521 CODE_64BIT };
522
523static enum flag_code flag_code;
4fa24527 524static unsigned int object_64bit;
862be3fb 525static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
526static int use_rela_relocations = 0;
527
7af8ed2d
NC
528#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
529 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
530 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
531
351f65ca
L
532/* The ELF ABI to use. */
533enum x86_elf_abi
534{
535 I386_ABI,
7f56bc95
L
536 X86_64_ABI,
537 X86_64_X32_ABI
351f65ca
L
538};
539
540static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 541#endif
351f65ca 542
167ad85b
TG
543#if defined (TE_PE) || defined (TE_PEP)
544/* Use big object file format. */
545static int use_big_obj = 0;
546#endif
547
8dcea932
L
548#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
549/* 1 if generating code for a shared library. */
550static int shared = 0;
551#endif
552
47926f60
KH
553/* 1 for intel syntax,
554 0 if att syntax. */
555static int intel_syntax = 0;
252b5132 556
e89c5eaa
L
557/* 1 for Intel64 ISA,
558 0 if AMD64 ISA. */
559static int intel64;
560
1efbbeb4
L
561/* 1 for intel mnemonic,
562 0 if att mnemonic. */
563static int intel_mnemonic = !SYSV386_COMPAT;
564
5209009a 565/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
566static int old_gcc = OLDGCC_COMPAT;
567
a60de03c
JB
568/* 1 if pseudo registers are permitted. */
569static int allow_pseudo_reg = 0;
570
47926f60
KH
571/* 1 if register prefix % not required. */
572static int allow_naked_reg = 0;
252b5132 573
33eaf5de 574/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
575 instructions supporting it, even if this prefix wasn't specified
576 explicitly. */
577static int add_bnd_prefix = 0;
578
ba104c83 579/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
580static int allow_index_reg = 0;
581
d022bddd
IT
582/* 1 if the assembler should ignore LOCK prefix, even if it was
583 specified explicitly. */
584static int omit_lock_prefix = 0;
585
e4e00185
AS
586/* 1 if the assembler should encode lfence, mfence, and sfence as
587 "lock addl $0, (%{re}sp)". */
588static int avoid_fence = 0;
589
0cb4071e
L
590/* 1 if the assembler should generate relax relocations. */
591
592static int generate_relax_relocations
593 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
594
7bab8ab5 595static enum check_kind
daf50ae7 596 {
7bab8ab5
JB
597 check_none = 0,
598 check_warning,
599 check_error
daf50ae7 600 }
7bab8ab5 601sse_check, operand_check = check_warning;
daf50ae7 602
2ca3ace5
L
603/* Register prefix used for error message. */
604static const char *register_prefix = "%";
605
47926f60
KH
606/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
607 leave, push, and pop instructions so that gcc has the same stack
608 frame as in 32 bit mode. */
609static char stackop_size = '\0';
eecb386c 610
12b55ccc
L
611/* Non-zero to optimize code alignment. */
612int optimize_align_code = 1;
613
47926f60
KH
614/* Non-zero to quieten some warnings. */
615static int quiet_warnings = 0;
a38cf1db 616
47926f60
KH
617/* CPU name. */
618static const char *cpu_arch_name = NULL;
6305a203 619static char *cpu_sub_arch_name = NULL;
a38cf1db 620
47926f60 621/* CPU feature flags. */
40fb9820
L
622static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
623
ccc9c027
L
624/* If we have selected a cpu we are generating instructions for. */
625static int cpu_arch_tune_set = 0;
626
9103f4f4 627/* Cpu we are generating instructions for. */
fbf3f584 628enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
629
630/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 631static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 632
ccc9c027 633/* CPU instruction set architecture used. */
fbf3f584 634enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 635
9103f4f4 636/* CPU feature flags of instruction set architecture used. */
fbf3f584 637i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 638
fddf5b5b
AM
639/* If set, conditional jumps are not automatically promoted to handle
640 larger than a byte offset. */
641static unsigned int no_cond_jump_promotion = 0;
642
c0f3af97
L
643/* Encode SSE instructions with VEX prefix. */
644static unsigned int sse2avx;
645
539f890d
L
646/* Encode scalar AVX instructions with specific vector length. */
647static enum
648 {
649 vex128 = 0,
650 vex256
651 } avxscalar;
652
43234a1e
L
653/* Encode scalar EVEX LIG instructions with specific vector length. */
654static enum
655 {
656 evexl128 = 0,
657 evexl256,
658 evexl512
659 } evexlig;
660
661/* Encode EVEX WIG instructions with specific evex.w. */
662static enum
663 {
664 evexw0 = 0,
665 evexw1
666 } evexwig;
667
d3d3c6db
IT
668/* Value to encode in EVEX RC bits, for SAE-only instructions. */
669static enum rc_type evexrcig = rne;
670
29b0f896 671/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 672static symbolS *GOT_symbol;
29b0f896 673
a4447b93
RH
674/* The dwarf2 return column, adjusted for 32 or 64 bit. */
675unsigned int x86_dwarf2_return_column;
676
677/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
678int x86_cie_data_alignment;
679
252b5132 680/* Interface to relax_segment.
fddf5b5b
AM
681 There are 3 major relax states for 386 jump insns because the
682 different types of jumps add different sizes to frags when we're
683 figuring out what sort of jump to choose to reach a given label. */
252b5132 684
47926f60 685/* Types. */
93c2a809
AM
686#define UNCOND_JUMP 0
687#define COND_JUMP 1
688#define COND_JUMP86 2
fddf5b5b 689
47926f60 690/* Sizes. */
252b5132
RH
691#define CODE16 1
692#define SMALL 0
29b0f896 693#define SMALL16 (SMALL | CODE16)
252b5132 694#define BIG 2
29b0f896 695#define BIG16 (BIG | CODE16)
252b5132
RH
696
697#ifndef INLINE
698#ifdef __GNUC__
699#define INLINE __inline__
700#else
701#define INLINE
702#endif
703#endif
704
fddf5b5b
AM
705#define ENCODE_RELAX_STATE(type, size) \
706 ((relax_substateT) (((type) << 2) | (size)))
707#define TYPE_FROM_RELAX_STATE(s) \
708 ((s) >> 2)
709#define DISP_SIZE_FROM_RELAX_STATE(s) \
710 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
711
712/* This table is used by relax_frag to promote short jumps to long
713 ones where necessary. SMALL (short) jumps may be promoted to BIG
714 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
715 don't allow a short jump in a 32 bit code segment to be promoted to
716 a 16 bit offset jump because it's slower (requires data size
717 prefix), and doesn't work, unless the destination is in the bottom
718 64k of the code segment (The top 16 bits of eip are zeroed). */
719
720const relax_typeS md_relax_table[] =
721{
24eab124
AM
722 /* The fields are:
723 1) most positive reach of this state,
724 2) most negative reach of this state,
93c2a809 725 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 726 4) which index into the table to try if we can't fit into this one. */
252b5132 727
fddf5b5b 728 /* UNCOND_JUMP states. */
93c2a809
AM
729 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
730 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
731 /* dword jmp adds 4 bytes to frag:
732 0 extra opcode bytes, 4 displacement bytes. */
252b5132 733 {0, 0, 4, 0},
93c2a809
AM
734 /* word jmp adds 2 byte2 to frag:
735 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
736 {0, 0, 2, 0},
737
93c2a809
AM
738 /* COND_JUMP states. */
739 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
741 /* dword conditionals adds 5 bytes to frag:
742 1 extra opcode byte, 4 displacement bytes. */
743 {0, 0, 5, 0},
fddf5b5b 744 /* word conditionals add 3 bytes to frag:
93c2a809
AM
745 1 extra opcode byte, 2 displacement bytes. */
746 {0, 0, 3, 0},
747
748 /* COND_JUMP86 states. */
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
751 /* dword conditionals adds 5 bytes to frag:
752 1 extra opcode byte, 4 displacement bytes. */
753 {0, 0, 5, 0},
754 /* word conditionals add 4 bytes to frag:
755 1 displacement byte and a 3 byte long branch insn. */
756 {0, 0, 4, 0}
252b5132
RH
757};
758
9103f4f4
L
759static const arch_entry cpu_arch[] =
760{
89507696
JB
761 /* Do not replace the first two entries - i386_target_format()
762 relies on them being there in this order. */
8a2c8fef 763 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 764 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 765 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 766 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 767 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 768 CPU_NONE_FLAGS, 0 },
8a2c8fef 769 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 770 CPU_I186_FLAGS, 0 },
8a2c8fef 771 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 772 CPU_I286_FLAGS, 0 },
8a2c8fef 773 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 774 CPU_I386_FLAGS, 0 },
8a2c8fef 775 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 776 CPU_I486_FLAGS, 0 },
8a2c8fef 777 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 778 CPU_I586_FLAGS, 0 },
8a2c8fef 779 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 780 CPU_I686_FLAGS, 0 },
8a2c8fef 781 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 782 CPU_I586_FLAGS, 0 },
8a2c8fef 783 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 784 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 785 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 786 CPU_P2_FLAGS, 0 },
8a2c8fef 787 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 788 CPU_P3_FLAGS, 0 },
8a2c8fef 789 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 790 CPU_P4_FLAGS, 0 },
8a2c8fef 791 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 792 CPU_CORE_FLAGS, 0 },
8a2c8fef 793 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 794 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 795 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 796 CPU_CORE_FLAGS, 1 },
8a2c8fef 797 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 798 CPU_CORE_FLAGS, 0 },
8a2c8fef 799 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 800 CPU_CORE2_FLAGS, 1 },
8a2c8fef 801 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 802 CPU_CORE2_FLAGS, 0 },
8a2c8fef 803 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 804 CPU_COREI7_FLAGS, 0 },
8a2c8fef 805 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 806 CPU_L1OM_FLAGS, 0 },
7a9068fe 807 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 808 CPU_K1OM_FLAGS, 0 },
81486035 809 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 810 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 811 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 812 CPU_K6_FLAGS, 0 },
8a2c8fef 813 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 814 CPU_K6_2_FLAGS, 0 },
8a2c8fef 815 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 816 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 818 CPU_K8_FLAGS, 1 },
8a2c8fef 819 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 820 CPU_K8_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 822 CPU_K8_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 824 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 825 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 826 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 827 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 828 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 829 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 830 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 831 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 832 CPU_BDVER4_FLAGS, 0 },
029f3522 833 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 834 CPU_ZNVER1_FLAGS, 0 },
7b458c12 835 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 836 CPU_BTVER1_FLAGS, 0 },
7b458c12 837 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 838 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 840 CPU_8087_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 842 CPU_287_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 844 CPU_387_FLAGS, 0 },
1848e567
L
845 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
846 CPU_687_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 848 CPU_MMX_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 850 CPU_SSE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 852 CPU_SSE2_FLAGS, 0 },
8a2c8fef 853 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 854 CPU_SSE3_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 856 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 858 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 859 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 860 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 861 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 862 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 864 CPU_AVX_FLAGS, 0 },
6c30d220 865 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 866 CPU_AVX2_FLAGS, 0 },
43234a1e 867 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 868 CPU_AVX512F_FLAGS, 0 },
43234a1e 869 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 870 CPU_AVX512CD_FLAGS, 0 },
43234a1e 871 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 872 CPU_AVX512ER_FLAGS, 0 },
43234a1e 873 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 874 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 875 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 876 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 877 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 878 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 879 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 880 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 881 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 882 CPU_VMX_FLAGS, 0 },
8729a6f6 883 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 884 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 885 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 886 CPU_SMX_FLAGS, 0 },
8a2c8fef 887 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 888 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 889 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 890 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 891 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 893 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_AES_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 901 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 903 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 905 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_F16C_FLAGS, 0 },
6c30d220 907 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_BMI2_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_FMA_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_FMA4_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_XOP_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_LWP_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_MOVBE_FLAGS, 0 },
60aa667e 919 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_CX16_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_EPT_FLAGS, 0 },
6c30d220 923 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_LZCNT_FLAGS, 0 },
42164a71 925 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_HLE_FLAGS, 0 },
42164a71 927 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_RTM_FLAGS, 0 },
6c30d220 929 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 931 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_CLFLUSH_FLAGS, 0 },
22109423 933 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_NOP_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_SVME_FLAGS, 1 },
8a2c8fef 947 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_SVME_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_ABM_FLAGS, 0 },
87973e9f 953 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_BMI_FLAGS, 0 },
2a2a0f38 955 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_TBM_FLAGS, 0 },
e2e1fcde 957 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_ADX_FLAGS, 0 },
e2e1fcde 959 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 961 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_PRFCHW_FLAGS, 0 },
5c111e37 963 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_SMAP_FLAGS, 0 },
7e8b059b 965 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_MPX_FLAGS, 0 },
a0046408 967 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_SHA_FLAGS, 0 },
963f3586 969 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 971 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 973 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_SE1_FLAGS, 0 },
c5e7287a 975 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 977 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 979 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
981 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
983 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
985 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
986 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
987 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
988 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
989 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
990 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
991 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
992 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 993 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_CLZERO_FLAGS, 0 },
9916071f 995 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_MWAITX_FLAGS, 0 },
8eab4136 997 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_OSPKE_FLAGS, 0 },
8bc52696 999 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1001 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1002 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1003 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1004 CPU_IBT_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1006 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1007 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1008 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1009 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1010 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1011 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1012 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1013 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1014 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1015 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1016 CPU_PCONFIG_FLAGS, 0 },
293f5f65
L
1017};
1018
1019static const noarch_entry cpu_noarch[] =
1020{
1021 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1022 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1023 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1024 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1025 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1026 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1027 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1028 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1029 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1030 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1031 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1032 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1033 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1034 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1035 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1041 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1042 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1043 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1044 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1045 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1046 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1047 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1048 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1049 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1050 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1051 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
e413e4e9
AM
1052};
1053
704209c0 1054#ifdef I386COFF
a6c24e68
NC
1055/* Like s_lcomm_internal in gas/read.c but the alignment string
1056 is allowed to be optional. */
1057
1058static symbolS *
1059pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1060{
1061 addressT align = 0;
1062
1063 SKIP_WHITESPACE ();
1064
7ab9ffdd 1065 if (needs_align
a6c24e68
NC
1066 && *input_line_pointer == ',')
1067 {
1068 align = parse_align (needs_align - 1);
7ab9ffdd 1069
a6c24e68
NC
1070 if (align == (addressT) -1)
1071 return NULL;
1072 }
1073 else
1074 {
1075 if (size >= 8)
1076 align = 3;
1077 else if (size >= 4)
1078 align = 2;
1079 else if (size >= 2)
1080 align = 1;
1081 else
1082 align = 0;
1083 }
1084
1085 bss_alloc (symbolP, size, align);
1086 return symbolP;
1087}
1088
704209c0 1089static void
a6c24e68
NC
1090pe_lcomm (int needs_align)
1091{
1092 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1093}
704209c0 1094#endif
a6c24e68 1095
29b0f896
AM
1096const pseudo_typeS md_pseudo_table[] =
1097{
1098#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1099 {"align", s_align_bytes, 0},
1100#else
1101 {"align", s_align_ptwo, 0},
1102#endif
1103 {"arch", set_cpu_arch, 0},
1104#ifndef I386COFF
1105 {"bss", s_bss, 0},
a6c24e68
NC
1106#else
1107 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1108#endif
1109 {"ffloat", float_cons, 'f'},
1110 {"dfloat", float_cons, 'd'},
1111 {"tfloat", float_cons, 'x'},
1112 {"value", cons, 2},
d182319b 1113 {"slong", signed_cons, 4},
29b0f896
AM
1114 {"noopt", s_ignore, 0},
1115 {"optim", s_ignore, 0},
1116 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1117 {"code16", set_code_flag, CODE_16BIT},
1118 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1119#ifdef BFD64
29b0f896 1120 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1121#endif
29b0f896
AM
1122 {"intel_syntax", set_intel_syntax, 1},
1123 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1124 {"intel_mnemonic", set_intel_mnemonic, 1},
1125 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1126 {"allow_index_reg", set_allow_index_reg, 1},
1127 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1128 {"sse_check", set_check, 0},
1129 {"operand_check", set_check, 1},
3b22753a
L
1130#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1131 {"largecomm", handle_large_common, 0},
07a53e5c 1132#else
68d20676 1133 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1134 {"loc", dwarf2_directive_loc, 0},
1135 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1136#endif
6482c264
NC
1137#ifdef TE_PE
1138 {"secrel32", pe_directive_secrel, 0},
1139#endif
29b0f896
AM
1140 {0, 0, 0}
1141};
1142
1143/* For interface with expression (). */
1144extern char *input_line_pointer;
1145
1146/* Hash table for instruction mnemonic lookup. */
1147static struct hash_control *op_hash;
1148
1149/* Hash table for register lookup. */
1150static struct hash_control *reg_hash;
1151\f
ce8a8b2f
AM
1152 /* Various efficient no-op patterns for aligning code labels.
1153 Note: Don't try to assemble the instructions in the comments.
1154 0L and 0w are not legal. */
62a02d25
L
1155static const unsigned char f32_1[] =
1156 {0x90}; /* nop */
1157static const unsigned char f32_2[] =
1158 {0x66,0x90}; /* xchg %ax,%ax */
1159static const unsigned char f32_3[] =
1160 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1161static const unsigned char f32_4[] =
1162 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1163static const unsigned char f32_5[] =
1164 {0x90, /* nop */
1165 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1166static const unsigned char f32_6[] =
1167 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1168static const unsigned char f32_7[] =
1169 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1170static const unsigned char f32_8[] =
1171 {0x90, /* nop */
1172 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1173static const unsigned char f32_9[] =
1174 {0x89,0xf6, /* movl %esi,%esi */
1175 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1176static const unsigned char f32_10[] =
1177 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1178 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1179static const unsigned char f32_11[] =
1180 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1181 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1182static const unsigned char f32_12[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1184 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1185static const unsigned char f32_13[] =
1186 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1187 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1188static const unsigned char f32_14[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1190 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1191static const unsigned char f16_3[] =
1192 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1193static const unsigned char f16_4[] =
1194 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1195static const unsigned char f16_5[] =
1196 {0x90, /* nop */
1197 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1198static const unsigned char f16_6[] =
1199 {0x89,0xf6, /* mov %si,%si */
1200 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1201static const unsigned char f16_7[] =
1202 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1203 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1204static const unsigned char f16_8[] =
1205 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1206 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1207static const unsigned char jump_31[] =
1208 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1209 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1210 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1211 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1212/* 32-bit NOPs patterns. */
1213static const unsigned char *const f32_patt[] = {
1214 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1215 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1216};
1217/* 16-bit NOPs patterns. */
1218static const unsigned char *const f16_patt[] = {
1219 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1220};
1221/* nopl (%[re]ax) */
1222static const unsigned char alt_3[] =
1223 {0x0f,0x1f,0x00};
1224/* nopl 0(%[re]ax) */
1225static const unsigned char alt_4[] =
1226 {0x0f,0x1f,0x40,0x00};
1227/* nopl 0(%[re]ax,%[re]ax,1) */
1228static const unsigned char alt_5[] =
1229 {0x0f,0x1f,0x44,0x00,0x00};
1230/* nopw 0(%[re]ax,%[re]ax,1) */
1231static const unsigned char alt_6[] =
1232 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1233/* nopl 0L(%[re]ax) */
1234static const unsigned char alt_7[] =
1235 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1236/* nopl 0L(%[re]ax,%[re]ax,1) */
1237static const unsigned char alt_8[] =
1238 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1239/* nopw 0L(%[re]ax,%[re]ax,1) */
1240static const unsigned char alt_9[] =
1241 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1242/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1243static const unsigned char alt_10[] =
1244 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1245/* 32-bit and 64-bit NOPs patterns. */
1246static const unsigned char *const alt_patt[] = {
1247 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1248 alt_9, alt_10
1249};
1250/* 64-bit only: nopw %cs:0L(%eax,%eax,1) */
1251static const unsigned char alt64_11[] =
1252 {0x67,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1253/* 64-bit NOPs patterns. */
1254static const unsigned char *const alt64_patt[] = {
1255 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1256 alt_9, alt_10, alt64_11
1257};
1258
1259/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1260 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1261
1262static void
1263i386_output_nops (char *where, const unsigned char *const *patt,
1264 int count, int max_single_nop_size)
1265
1266{
1267 while (count > max_single_nop_size)
1268 {
1269 count -= max_single_nop_size;
1270 memcpy (where + count, patt[max_single_nop_size - 1],
1271 max_single_nop_size);
1272 }
1273
1274 if (count)
1275 memcpy (where, patt[count - 1], count);
1276}
1277
1278
1279/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1280 single NOP instruction LIMIT. */
1281
1282void
1283i386_generate_nops (fragS *f, char *where, offsetT count, int limit)
1284{
1285 /* Output NOPs for .nop directive. */
1286 int max_single_nop_size;
1287 const unsigned char *const *patt;
1288
1289 if (flag_code == CODE_16BIT)
1290 {
1291 patt = f16_patt;
1292 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1293 }
1294 else if (flag_code == CODE_64BIT)
1295 {
1296 patt = alt64_patt;
1297 max_single_nop_size = sizeof (alt64_patt) / sizeof (alt64_patt[0]);
1298 }
1299 else
1300 {
1301 patt = alt_patt;
1302 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1303 }
1304 if (limit == 0)
1305 limit = max_single_nop_size;
1306 else if (limit > max_single_nop_size)
1307 {
1308 as_bad_where (f->fr_file, f->fr_line,
1309 _("invalide single nop size: %d (expect within [0, %d])"),
1310 limit, max_single_nop_size);
1311 return;
1312 }
1313
1314 i386_output_nops (where, patt, count, limit);
1315}
252b5132 1316
62a02d25
L
1317void
1318i386_align_code (fragS *fragP, int count)
1319{
76bc74dc
L
1320 /* Only align for at least a positive non-zero boundary. */
1321 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1322 return;
3e73aa7c 1323
ccc9c027
L
1324 /* We need to decide which NOP sequence to use for 32bit and
1325 64bit. When -mtune= is used:
4eed87de 1326
76bc74dc
L
1327 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1328 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1329 2. For the rest, alt_patt will be used.
1330
1331 When -mtune= isn't used, alt_patt will be used if
22109423 1332 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1333 be used.
ccc9c027
L
1334
1335 When -march= or .arch is used, we can't use anything beyond
1336 cpu_arch_isa_flags. */
1337
1338 if (flag_code == CODE_16BIT)
1339 {
ccc9c027 1340 if (count > 8)
33fef721 1341 {
76bc74dc
L
1342 memcpy (fragP->fr_literal + fragP->fr_fix,
1343 jump_31, count);
1344 /* Adjust jump offset. */
1345 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1346 }
76bc74dc
L
1347 else
1348 memcpy (fragP->fr_literal + fragP->fr_fix,
1349 f16_patt[count - 1], count);
252b5132 1350 }
33fef721 1351 else
ccc9c027 1352 {
bad6e36d 1353 const unsigned char *const *patt = NULL;
ccc9c027 1354
fbf3f584 1355 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1356 {
1357 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1358 switch (cpu_arch_tune)
1359 {
1360 case PROCESSOR_UNKNOWN:
1361 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1362 optimize with nops. */
1363 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1364 patt = alt_patt;
ccc9c027
L
1365 else
1366 patt = f32_patt;
1367 break;
ccc9c027
L
1368 case PROCESSOR_PENTIUM4:
1369 case PROCESSOR_NOCONA:
ef05d495 1370 case PROCESSOR_CORE:
76bc74dc 1371 case PROCESSOR_CORE2:
bd5295b2 1372 case PROCESSOR_COREI7:
3632d14b 1373 case PROCESSOR_L1OM:
7a9068fe 1374 case PROCESSOR_K1OM:
76bc74dc 1375 case PROCESSOR_GENERIC64:
ccc9c027
L
1376 case PROCESSOR_K6:
1377 case PROCESSOR_ATHLON:
1378 case PROCESSOR_K8:
4eed87de 1379 case PROCESSOR_AMDFAM10:
8aedb9fe 1380 case PROCESSOR_BD:
029f3522 1381 case PROCESSOR_ZNVER:
7b458c12 1382 case PROCESSOR_BT:
80b8656c 1383 patt = alt_patt;
ccc9c027 1384 break;
76bc74dc 1385 case PROCESSOR_I386:
ccc9c027
L
1386 case PROCESSOR_I486:
1387 case PROCESSOR_PENTIUM:
2dde1948 1388 case PROCESSOR_PENTIUMPRO:
81486035 1389 case PROCESSOR_IAMCU:
ccc9c027
L
1390 case PROCESSOR_GENERIC32:
1391 patt = f32_patt;
1392 break;
4eed87de 1393 }
ccc9c027
L
1394 }
1395 else
1396 {
fbf3f584 1397 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1398 {
1399 case PROCESSOR_UNKNOWN:
e6a14101 1400 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1401 PROCESSOR_UNKNOWN. */
1402 abort ();
1403 break;
1404
76bc74dc 1405 case PROCESSOR_I386:
ccc9c027
L
1406 case PROCESSOR_I486:
1407 case PROCESSOR_PENTIUM:
81486035 1408 case PROCESSOR_IAMCU:
ccc9c027
L
1409 case PROCESSOR_K6:
1410 case PROCESSOR_ATHLON:
1411 case PROCESSOR_K8:
4eed87de 1412 case PROCESSOR_AMDFAM10:
8aedb9fe 1413 case PROCESSOR_BD:
029f3522 1414 case PROCESSOR_ZNVER:
7b458c12 1415 case PROCESSOR_BT:
ccc9c027
L
1416 case PROCESSOR_GENERIC32:
1417 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1418 with nops. */
1419 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1420 patt = alt_patt;
ccc9c027
L
1421 else
1422 patt = f32_patt;
1423 break;
76bc74dc
L
1424 case PROCESSOR_PENTIUMPRO:
1425 case PROCESSOR_PENTIUM4:
1426 case PROCESSOR_NOCONA:
1427 case PROCESSOR_CORE:
ef05d495 1428 case PROCESSOR_CORE2:
bd5295b2 1429 case PROCESSOR_COREI7:
3632d14b 1430 case PROCESSOR_L1OM:
7a9068fe 1431 case PROCESSOR_K1OM:
22109423 1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1433 patt = alt_patt;
ccc9c027
L
1434 else
1435 patt = f32_patt;
1436 break;
1437 case PROCESSOR_GENERIC64:
80b8656c 1438 patt = alt_patt;
ccc9c027 1439 break;
4eed87de 1440 }
ccc9c027
L
1441 }
1442
76bc74dc
L
1443 if (patt == f32_patt)
1444 {
1445 /* If the padding is less than 15 bytes, we use the normal
1446 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1447 its offset. */
1448 int limit;
76ba9986 1449
711eedef
L
1450 /* For 64bit, the limit is 3 bytes. */
1451 if (flag_code == CODE_64BIT
1452 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1453 limit = 3;
1454 else
1455 limit = 15;
1456 if (count < limit)
76bc74dc
L
1457 memcpy (fragP->fr_literal + fragP->fr_fix,
1458 patt[count - 1], count);
1459 else
1460 {
1461 memcpy (fragP->fr_literal + fragP->fr_fix,
1462 jump_31, count);
1463 /* Adjust jump offset. */
1464 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1465 }
1466 }
1467 else
1468 {
80b8656c
L
1469 /* Maximum length of an instruction is 10 byte. If the
1470 padding is greater than 10 bytes and we don't use jump,
76bc74dc 1471 we have to break it into smaller pieces. */
62a02d25
L
1472 i386_output_nops (fragP->fr_literal + fragP->fr_fix,
1473 patt, count, 10);
76bc74dc 1474 }
ccc9c027 1475 }
33fef721 1476 fragP->fr_var = count;
252b5132
RH
1477}
1478
c6fb90c8 1479static INLINE int
0dfbf9d7 1480operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1481{
0dfbf9d7 1482 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1483 {
1484 case 3:
0dfbf9d7 1485 if (x->array[2])
c6fb90c8 1486 return 0;
1a0670f3 1487 /* Fall through. */
c6fb90c8 1488 case 2:
0dfbf9d7 1489 if (x->array[1])
c6fb90c8 1490 return 0;
1a0670f3 1491 /* Fall through. */
c6fb90c8 1492 case 1:
0dfbf9d7 1493 return !x->array[0];
c6fb90c8
L
1494 default:
1495 abort ();
1496 }
40fb9820
L
1497}
1498
c6fb90c8 1499static INLINE void
0dfbf9d7 1500operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1501{
0dfbf9d7 1502 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1503 {
1504 case 3:
0dfbf9d7 1505 x->array[2] = v;
1a0670f3 1506 /* Fall through. */
c6fb90c8 1507 case 2:
0dfbf9d7 1508 x->array[1] = v;
1a0670f3 1509 /* Fall through. */
c6fb90c8 1510 case 1:
0dfbf9d7 1511 x->array[0] = v;
1a0670f3 1512 /* Fall through. */
c6fb90c8
L
1513 break;
1514 default:
1515 abort ();
1516 }
1517}
40fb9820 1518
c6fb90c8 1519static INLINE int
0dfbf9d7
L
1520operand_type_equal (const union i386_operand_type *x,
1521 const union i386_operand_type *y)
c6fb90c8 1522{
0dfbf9d7 1523 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1524 {
1525 case 3:
0dfbf9d7 1526 if (x->array[2] != y->array[2])
c6fb90c8 1527 return 0;
1a0670f3 1528 /* Fall through. */
c6fb90c8 1529 case 2:
0dfbf9d7 1530 if (x->array[1] != y->array[1])
c6fb90c8 1531 return 0;
1a0670f3 1532 /* Fall through. */
c6fb90c8 1533 case 1:
0dfbf9d7 1534 return x->array[0] == y->array[0];
c6fb90c8
L
1535 break;
1536 default:
1537 abort ();
1538 }
1539}
40fb9820 1540
0dfbf9d7
L
1541static INLINE int
1542cpu_flags_all_zero (const union i386_cpu_flags *x)
1543{
1544 switch (ARRAY_SIZE(x->array))
1545 {
53467f57
IT
1546 case 4:
1547 if (x->array[3])
1548 return 0;
1549 /* Fall through. */
0dfbf9d7
L
1550 case 3:
1551 if (x->array[2])
1552 return 0;
1a0670f3 1553 /* Fall through. */
0dfbf9d7
L
1554 case 2:
1555 if (x->array[1])
1556 return 0;
1a0670f3 1557 /* Fall through. */
0dfbf9d7
L
1558 case 1:
1559 return !x->array[0];
1560 default:
1561 abort ();
1562 }
1563}
1564
0dfbf9d7
L
1565static INLINE int
1566cpu_flags_equal (const union i386_cpu_flags *x,
1567 const union i386_cpu_flags *y)
1568{
1569 switch (ARRAY_SIZE(x->array))
1570 {
53467f57
IT
1571 case 4:
1572 if (x->array[3] != y->array[3])
1573 return 0;
1574 /* Fall through. */
0dfbf9d7
L
1575 case 3:
1576 if (x->array[2] != y->array[2])
1577 return 0;
1a0670f3 1578 /* Fall through. */
0dfbf9d7
L
1579 case 2:
1580 if (x->array[1] != y->array[1])
1581 return 0;
1a0670f3 1582 /* Fall through. */
0dfbf9d7
L
1583 case 1:
1584 return x->array[0] == y->array[0];
1585 break;
1586 default:
1587 abort ();
1588 }
1589}
c6fb90c8
L
1590
1591static INLINE int
1592cpu_flags_check_cpu64 (i386_cpu_flags f)
1593{
1594 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1595 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1596}
1597
c6fb90c8
L
1598static INLINE i386_cpu_flags
1599cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1600{
c6fb90c8
L
1601 switch (ARRAY_SIZE (x.array))
1602 {
53467f57
IT
1603 case 4:
1604 x.array [3] &= y.array [3];
1605 /* Fall through. */
c6fb90c8
L
1606 case 3:
1607 x.array [2] &= y.array [2];
1a0670f3 1608 /* Fall through. */
c6fb90c8
L
1609 case 2:
1610 x.array [1] &= y.array [1];
1a0670f3 1611 /* Fall through. */
c6fb90c8
L
1612 case 1:
1613 x.array [0] &= y.array [0];
1614 break;
1615 default:
1616 abort ();
1617 }
1618 return x;
1619}
40fb9820 1620
c6fb90c8
L
1621static INLINE i386_cpu_flags
1622cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1623{
c6fb90c8 1624 switch (ARRAY_SIZE (x.array))
40fb9820 1625 {
53467f57
IT
1626 case 4:
1627 x.array [3] |= y.array [3];
1628 /* Fall through. */
c6fb90c8
L
1629 case 3:
1630 x.array [2] |= y.array [2];
1a0670f3 1631 /* Fall through. */
c6fb90c8
L
1632 case 2:
1633 x.array [1] |= y.array [1];
1a0670f3 1634 /* Fall through. */
c6fb90c8
L
1635 case 1:
1636 x.array [0] |= y.array [0];
40fb9820
L
1637 break;
1638 default:
1639 abort ();
1640 }
40fb9820
L
1641 return x;
1642}
1643
309d3373
JB
1644static INLINE i386_cpu_flags
1645cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1646{
1647 switch (ARRAY_SIZE (x.array))
1648 {
53467f57
IT
1649 case 4:
1650 x.array [3] &= ~y.array [3];
1651 /* Fall through. */
309d3373
JB
1652 case 3:
1653 x.array [2] &= ~y.array [2];
1a0670f3 1654 /* Fall through. */
309d3373
JB
1655 case 2:
1656 x.array [1] &= ~y.array [1];
1a0670f3 1657 /* Fall through. */
309d3373
JB
1658 case 1:
1659 x.array [0] &= ~y.array [0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664 return x;
1665}
1666
c0f3af97
L
1667#define CPU_FLAGS_ARCH_MATCH 0x1
1668#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1669#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1670#define CPU_FLAGS_PCLMUL_MATCH 0x8
1671#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1672
a5ff0eb2 1673#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1674 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1675 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1676#define CPU_FLAGS_PERFECT_MATCH \
1677 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1678
1679/* Return CPU flags match bits. */
3629bb00 1680
40fb9820 1681static int
d3ce72d0 1682cpu_flags_match (const insn_template *t)
40fb9820 1683{
c0f3af97
L
1684 i386_cpu_flags x = t->cpu_flags;
1685 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1686
1687 x.bitfield.cpu64 = 0;
1688 x.bitfield.cpuno64 = 0;
1689
0dfbf9d7 1690 if (cpu_flags_all_zero (&x))
c0f3af97
L
1691 {
1692 /* This instruction is available on all archs. */
1693 match |= CPU_FLAGS_32BIT_MATCH;
1694 }
3629bb00
L
1695 else
1696 {
c0f3af97 1697 /* This instruction is available only on some archs. */
3629bb00
L
1698 i386_cpu_flags cpu = cpu_arch_flags;
1699
3629bb00 1700 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1701 if (!cpu_flags_all_zero (&cpu))
1702 {
a5ff0eb2
L
1703 if (x.bitfield.cpuavx)
1704 {
ce2f5b3c 1705 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1706 if (cpu.bitfield.cpuavx)
1707 {
1708 /* Check SSE2AVX. */
1709 if (!t->opcode_modifier.sse2avx|| sse2avx)
1710 {
1711 match |= (CPU_FLAGS_ARCH_MATCH
1712 | CPU_FLAGS_AVX_MATCH);
1713 /* Check AES. */
1714 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1715 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1716 /* Check PCLMUL. */
1717 if (!x.bitfield.cpupclmul
1718 || cpu.bitfield.cpupclmul)
1719 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1720 }
1721 }
1722 else
1723 match |= CPU_FLAGS_ARCH_MATCH;
1724 }
73b090a9
L
1725 else if (x.bitfield.cpuavx512vl)
1726 {
1727 /* Match AVX512VL. */
1728 if (cpu.bitfield.cpuavx512vl)
1729 {
1730 /* Need another match. */
1731 cpu.bitfield.cpuavx512vl = 0;
1732 if (!cpu_flags_all_zero (&cpu))
1733 match |= CPU_FLAGS_32BIT_MATCH;
1734 else
1735 match |= CPU_FLAGS_ARCH_MATCH;
1736 }
1737 else
1738 match |= CPU_FLAGS_ARCH_MATCH;
1739 }
a5ff0eb2 1740 else
c0f3af97
L
1741 match |= CPU_FLAGS_32BIT_MATCH;
1742 }
3629bb00 1743 }
c0f3af97 1744 return match;
40fb9820
L
1745}
1746
c6fb90c8
L
1747static INLINE i386_operand_type
1748operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1749{
c6fb90c8
L
1750 switch (ARRAY_SIZE (x.array))
1751 {
1752 case 3:
1753 x.array [2] &= y.array [2];
1a0670f3 1754 /* Fall through. */
c6fb90c8
L
1755 case 2:
1756 x.array [1] &= y.array [1];
1a0670f3 1757 /* Fall through. */
c6fb90c8
L
1758 case 1:
1759 x.array [0] &= y.array [0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764 return x;
40fb9820
L
1765}
1766
c6fb90c8
L
1767static INLINE i386_operand_type
1768operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1769{
c6fb90c8 1770 switch (ARRAY_SIZE (x.array))
40fb9820 1771 {
c6fb90c8
L
1772 case 3:
1773 x.array [2] |= y.array [2];
1a0670f3 1774 /* Fall through. */
c6fb90c8
L
1775 case 2:
1776 x.array [1] |= y.array [1];
1a0670f3 1777 /* Fall through. */
c6fb90c8
L
1778 case 1:
1779 x.array [0] |= y.array [0];
40fb9820
L
1780 break;
1781 default:
1782 abort ();
1783 }
c6fb90c8
L
1784 return x;
1785}
40fb9820 1786
c6fb90c8
L
1787static INLINE i386_operand_type
1788operand_type_xor (i386_operand_type x, i386_operand_type y)
1789{
1790 switch (ARRAY_SIZE (x.array))
1791 {
1792 case 3:
1793 x.array [2] ^= y.array [2];
1a0670f3 1794 /* Fall through. */
c6fb90c8
L
1795 case 2:
1796 x.array [1] ^= y.array [1];
1a0670f3 1797 /* Fall through. */
c6fb90c8
L
1798 case 1:
1799 x.array [0] ^= y.array [0];
1800 break;
1801 default:
1802 abort ();
1803 }
40fb9820
L
1804 return x;
1805}
1806
1807static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1808static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1809static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1810static const i386_operand_type inoutportreg
1811 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1812static const i386_operand_type reg16_inoutportreg
1813 = OPERAND_TYPE_REG16_INOUTPORTREG;
1814static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1815static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1816static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1817static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1818static const i386_operand_type anydisp
1819 = OPERAND_TYPE_ANYDISP;
40fb9820 1820static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1821static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1822static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1823static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1824static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1825static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1826static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1827static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1828static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1829static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1830static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1831static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1832
1833enum operand_type
1834{
1835 reg,
40fb9820
L
1836 imm,
1837 disp,
1838 anymem
1839};
1840
c6fb90c8 1841static INLINE int
40fb9820
L
1842operand_type_check (i386_operand_type t, enum operand_type c)
1843{
1844 switch (c)
1845 {
1846 case reg:
dc821c5f 1847 return t.bitfield.reg;
40fb9820 1848
40fb9820
L
1849 case imm:
1850 return (t.bitfield.imm8
1851 || t.bitfield.imm8s
1852 || t.bitfield.imm16
1853 || t.bitfield.imm32
1854 || t.bitfield.imm32s
1855 || t.bitfield.imm64);
1856
1857 case disp:
1858 return (t.bitfield.disp8
1859 || t.bitfield.disp16
1860 || t.bitfield.disp32
1861 || t.bitfield.disp32s
1862 || t.bitfield.disp64);
1863
1864 case anymem:
1865 return (t.bitfield.disp8
1866 || t.bitfield.disp16
1867 || t.bitfield.disp32
1868 || t.bitfield.disp32s
1869 || t.bitfield.disp64
1870 || t.bitfield.baseindex);
1871
1872 default:
1873 abort ();
1874 }
2cfe26b6
AM
1875
1876 return 0;
40fb9820
L
1877}
1878
ca0d63fe 1879/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1880 operand J for instruction template T. */
1881
1882static INLINE int
d3ce72d0 1883match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1884{
1885 return !((i.types[j].bitfield.byte
1886 && !t->operand_types[j].bitfield.byte)
1887 || (i.types[j].bitfield.word
1888 && !t->operand_types[j].bitfield.word)
1889 || (i.types[j].bitfield.dword
1890 && !t->operand_types[j].bitfield.dword)
1891 || (i.types[j].bitfield.qword
ca0d63fe
JB
1892 && !t->operand_types[j].bitfield.qword)
1893 || (i.types[j].bitfield.tbyte
1894 && !t->operand_types[j].bitfield.tbyte));
5c07affc
L
1895}
1896
1b54b8d7
JB
1897/* Return 1 if there is no conflict in SIMD register on
1898 operand J for instruction template T. */
1899
1900static INLINE int
1901match_simd_size (const insn_template *t, unsigned int j)
1902{
1903 return !((i.types[j].bitfield.xmmword
1904 && !t->operand_types[j].bitfield.xmmword)
1905 || (i.types[j].bitfield.ymmword
1906 && !t->operand_types[j].bitfield.ymmword)
1907 || (i.types[j].bitfield.zmmword
1908 && !t->operand_types[j].bitfield.zmmword));
1909}
1910
5c07affc
L
1911/* Return 1 if there is no conflict in any size on operand J for
1912 instruction template T. */
1913
1914static INLINE int
d3ce72d0 1915match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1916{
1917 return (match_reg_size (t, j)
1918 && !((i.types[j].bitfield.unspecified
af508cb9 1919 && !i.broadcast
5c07affc
L
1920 && !t->operand_types[j].bitfield.unspecified)
1921 || (i.types[j].bitfield.fword
1922 && !t->operand_types[j].bitfield.fword)
1b54b8d7
JB
1923 /* For scalar opcode templates to allow register and memory
1924 operands at the same time, some special casing is needed
1925 here. */
1926 || ((t->operand_types[j].bitfield.regsimd
1927 && !t->opcode_modifier.broadcast
1928 && (t->operand_types[j].bitfield.dword
1929 || t->operand_types[j].bitfield.qword))
1930 ? (i.types[j].bitfield.xmmword
1931 || i.types[j].bitfield.ymmword
1932 || i.types[j].bitfield.zmmword)
1933 : !match_simd_size(t, j))));
5c07affc
L
1934}
1935
1936/* Return 1 if there is no size conflict on any operands for
1937 instruction template T. */
1938
1939static INLINE int
d3ce72d0 1940operand_size_match (const insn_template *t)
5c07affc
L
1941{
1942 unsigned int j;
1943 int match = 1;
1944
1945 /* Don't check jump instructions. */
1946 if (t->opcode_modifier.jump
1947 || t->opcode_modifier.jumpbyte
1948 || t->opcode_modifier.jumpdword
1949 || t->opcode_modifier.jumpintersegment)
1950 return match;
1951
1952 /* Check memory and accumulator operand size. */
1953 for (j = 0; j < i.operands; j++)
1954 {
1b54b8d7
JB
1955 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1956 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1957 continue;
1958
1b54b8d7 1959 if (t->operand_types[j].bitfield.reg
dc821c5f 1960 && !match_reg_size (t, j))
5c07affc
L
1961 {
1962 match = 0;
1963 break;
1964 }
1965
1b54b8d7
JB
1966 if (t->operand_types[j].bitfield.regsimd
1967 && !match_simd_size (t, j))
1968 {
1969 match = 0;
1970 break;
1971 }
1972
1973 if (t->operand_types[j].bitfield.acc
1974 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1975 {
1976 match = 0;
1977 break;
1978 }
1979
5c07affc
L
1980 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1981 {
1982 match = 0;
1983 break;
1984 }
1985 }
1986
891edac4 1987 if (match)
5c07affc 1988 return match;
891edac4
L
1989 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1990 {
1991mismatch:
86e026a4 1992 i.error = operand_size_mismatch;
891edac4
L
1993 return 0;
1994 }
5c07affc
L
1995
1996 /* Check reverse. */
9c2799c2 1997 gas_assert (i.operands == 2);
5c07affc
L
1998
1999 match = 1;
2000 for (j = 0; j < 2; j++)
2001 {
dc821c5f
JB
2002 if ((t->operand_types[j].bitfield.reg
2003 || t->operand_types[j].bitfield.acc)
5c07affc 2004 && !match_reg_size (t, j ? 0 : 1))
891edac4 2005 goto mismatch;
5c07affc
L
2006
2007 if (i.types[j].bitfield.mem
2008 && !match_mem_size (t, j ? 0 : 1))
891edac4 2009 goto mismatch;
5c07affc
L
2010 }
2011
2012 return match;
2013}
2014
c6fb90c8 2015static INLINE int
40fb9820
L
2016operand_type_match (i386_operand_type overlap,
2017 i386_operand_type given)
2018{
2019 i386_operand_type temp = overlap;
2020
2021 temp.bitfield.jumpabsolute = 0;
7d5e4556 2022 temp.bitfield.unspecified = 0;
5c07affc
L
2023 temp.bitfield.byte = 0;
2024 temp.bitfield.word = 0;
2025 temp.bitfield.dword = 0;
2026 temp.bitfield.fword = 0;
2027 temp.bitfield.qword = 0;
2028 temp.bitfield.tbyte = 0;
2029 temp.bitfield.xmmword = 0;
c0f3af97 2030 temp.bitfield.ymmword = 0;
43234a1e 2031 temp.bitfield.zmmword = 0;
0dfbf9d7 2032 if (operand_type_all_zero (&temp))
891edac4 2033 goto mismatch;
40fb9820 2034
891edac4
L
2035 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2036 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2037 return 1;
2038
2039mismatch:
a65babc9 2040 i.error = operand_type_mismatch;
891edac4 2041 return 0;
40fb9820
L
2042}
2043
7d5e4556 2044/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2045 unless the expected operand type register overlap is null.
2046 Memory operand size of certain SIMD instructions is also being checked
2047 here. */
40fb9820 2048
c6fb90c8 2049static INLINE int
dc821c5f 2050operand_type_register_match (i386_operand_type g0,
40fb9820 2051 i386_operand_type t0,
40fb9820
L
2052 i386_operand_type g1,
2053 i386_operand_type t1)
2054{
10c17abd
JB
2055 if (!g0.bitfield.reg
2056 && !g0.bitfield.regsimd
2057 && (!operand_type_check (g0, anymem)
2058 || g0.bitfield.unspecified
2059 || !t0.bitfield.regsimd))
40fb9820
L
2060 return 1;
2061
10c17abd
JB
2062 if (!g1.bitfield.reg
2063 && !g1.bitfield.regsimd
2064 && (!operand_type_check (g1, anymem)
2065 || g1.bitfield.unspecified
2066 || !t1.bitfield.regsimd))
40fb9820
L
2067 return 1;
2068
dc821c5f
JB
2069 if (g0.bitfield.byte == g1.bitfield.byte
2070 && g0.bitfield.word == g1.bitfield.word
2071 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2072 && g0.bitfield.qword == g1.bitfield.qword
2073 && g0.bitfield.xmmword == g1.bitfield.xmmword
2074 && g0.bitfield.ymmword == g1.bitfield.ymmword
2075 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2076 return 1;
2077
dc821c5f
JB
2078 if (!(t0.bitfield.byte & t1.bitfield.byte)
2079 && !(t0.bitfield.word & t1.bitfield.word)
2080 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2081 && !(t0.bitfield.qword & t1.bitfield.qword)
2082 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2083 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2084 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2085 return 1;
2086
a65babc9 2087 i.error = register_type_mismatch;
891edac4
L
2088
2089 return 0;
40fb9820
L
2090}
2091
4c692bc7
JB
2092static INLINE unsigned int
2093register_number (const reg_entry *r)
2094{
2095 unsigned int nr = r->reg_num;
2096
2097 if (r->reg_flags & RegRex)
2098 nr += 8;
2099
200cbe0f
L
2100 if (r->reg_flags & RegVRex)
2101 nr += 16;
2102
4c692bc7
JB
2103 return nr;
2104}
2105
252b5132 2106static INLINE unsigned int
40fb9820 2107mode_from_disp_size (i386_operand_type t)
252b5132 2108{
b5014f7a 2109 if (t.bitfield.disp8)
40fb9820
L
2110 return 1;
2111 else if (t.bitfield.disp16
2112 || t.bitfield.disp32
2113 || t.bitfield.disp32s)
2114 return 2;
2115 else
2116 return 0;
252b5132
RH
2117}
2118
2119static INLINE int
65879393 2120fits_in_signed_byte (addressT num)
252b5132 2121{
65879393 2122 return num + 0x80 <= 0xff;
47926f60 2123}
252b5132
RH
2124
2125static INLINE int
65879393 2126fits_in_unsigned_byte (addressT num)
252b5132 2127{
65879393 2128 return num <= 0xff;
47926f60 2129}
252b5132
RH
2130
2131static INLINE int
65879393 2132fits_in_unsigned_word (addressT num)
252b5132 2133{
65879393 2134 return num <= 0xffff;
47926f60 2135}
252b5132
RH
2136
2137static INLINE int
65879393 2138fits_in_signed_word (addressT num)
252b5132 2139{
65879393 2140 return num + 0x8000 <= 0xffff;
47926f60 2141}
2a962e6d 2142
3e73aa7c 2143static INLINE int
65879393 2144fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2145{
2146#ifndef BFD64
2147 return 1;
2148#else
65879393 2149 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2150#endif
2151} /* fits_in_signed_long() */
2a962e6d 2152
3e73aa7c 2153static INLINE int
65879393 2154fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2155{
2156#ifndef BFD64
2157 return 1;
2158#else
65879393 2159 return num <= 0xffffffff;
3e73aa7c
JH
2160#endif
2161} /* fits_in_unsigned_long() */
252b5132 2162
43234a1e 2163static INLINE int
b5014f7a 2164fits_in_disp8 (offsetT num)
43234a1e
L
2165{
2166 int shift = i.memshift;
2167 unsigned int mask;
2168
2169 if (shift == -1)
2170 abort ();
2171
2172 mask = (1 << shift) - 1;
2173
2174 /* Return 0 if NUM isn't properly aligned. */
2175 if ((num & mask))
2176 return 0;
2177
2178 /* Check if NUM will fit in 8bit after shift. */
2179 return fits_in_signed_byte (num >> shift);
2180}
2181
a683cc34
SP
2182static INLINE int
2183fits_in_imm4 (offsetT num)
2184{
2185 return (num & 0xf) == num;
2186}
2187
40fb9820 2188static i386_operand_type
e3bb37b5 2189smallest_imm_type (offsetT num)
252b5132 2190{
40fb9820 2191 i386_operand_type t;
7ab9ffdd 2192
0dfbf9d7 2193 operand_type_set (&t, 0);
40fb9820
L
2194 t.bitfield.imm64 = 1;
2195
2196 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2197 {
2198 /* This code is disabled on the 486 because all the Imm1 forms
2199 in the opcode table are slower on the i486. They're the
2200 versions with the implicitly specified single-position
2201 displacement, which has another syntax if you really want to
2202 use that form. */
40fb9820
L
2203 t.bitfield.imm1 = 1;
2204 t.bitfield.imm8 = 1;
2205 t.bitfield.imm8s = 1;
2206 t.bitfield.imm16 = 1;
2207 t.bitfield.imm32 = 1;
2208 t.bitfield.imm32s = 1;
2209 }
2210 else if (fits_in_signed_byte (num))
2211 {
2212 t.bitfield.imm8 = 1;
2213 t.bitfield.imm8s = 1;
2214 t.bitfield.imm16 = 1;
2215 t.bitfield.imm32 = 1;
2216 t.bitfield.imm32s = 1;
2217 }
2218 else if (fits_in_unsigned_byte (num))
2219 {
2220 t.bitfield.imm8 = 1;
2221 t.bitfield.imm16 = 1;
2222 t.bitfield.imm32 = 1;
2223 t.bitfield.imm32s = 1;
2224 }
2225 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2226 {
2227 t.bitfield.imm16 = 1;
2228 t.bitfield.imm32 = 1;
2229 t.bitfield.imm32s = 1;
2230 }
2231 else if (fits_in_signed_long (num))
2232 {
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_unsigned_long (num))
2237 t.bitfield.imm32 = 1;
2238
2239 return t;
47926f60 2240}
252b5132 2241
847f7ad4 2242static offsetT
e3bb37b5 2243offset_in_range (offsetT val, int size)
847f7ad4 2244{
508866be 2245 addressT mask;
ba2adb93 2246
847f7ad4
AM
2247 switch (size)
2248 {
508866be
L
2249 case 1: mask = ((addressT) 1 << 8) - 1; break;
2250 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2251 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2252#ifdef BFD64
2253 case 8: mask = ((addressT) 2 << 63) - 1; break;
2254#endif
47926f60 2255 default: abort ();
847f7ad4
AM
2256 }
2257
9de868bf
L
2258#ifdef BFD64
2259 /* If BFD64, sign extend val for 32bit address mode. */
2260 if (flag_code != CODE_64BIT
2261 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2262 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2263 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2264#endif
ba2adb93 2265
47926f60 2266 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2267 {
2268 char buf1[40], buf2[40];
2269
2270 sprint_value (buf1, val);
2271 sprint_value (buf2, val & mask);
2272 as_warn (_("%s shortened to %s"), buf1, buf2);
2273 }
2274 return val & mask;
2275}
2276
c32fa91d
L
2277enum PREFIX_GROUP
2278{
2279 PREFIX_EXIST = 0,
2280 PREFIX_LOCK,
2281 PREFIX_REP,
04ef582a 2282 PREFIX_DS,
c32fa91d
L
2283 PREFIX_OTHER
2284};
2285
2286/* Returns
2287 a. PREFIX_EXIST if attempting to add a prefix where one from the
2288 same class already exists.
2289 b. PREFIX_LOCK if lock prefix is added.
2290 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2291 d. PREFIX_DS if ds prefix is added.
2292 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2293 */
2294
2295static enum PREFIX_GROUP
e3bb37b5 2296add_prefix (unsigned int prefix)
252b5132 2297{
c32fa91d 2298 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2299 unsigned int q;
252b5132 2300
29b0f896
AM
2301 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2302 && flag_code == CODE_64BIT)
b1905489 2303 {
161a04f6
L
2304 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2305 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2306 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2307 ret = PREFIX_EXIST;
b1905489
JB
2308 q = REX_PREFIX;
2309 }
3e73aa7c 2310 else
b1905489
JB
2311 {
2312 switch (prefix)
2313 {
2314 default:
2315 abort ();
2316
b1905489 2317 case DS_PREFIX_OPCODE:
04ef582a
L
2318 ret = PREFIX_DS;
2319 /* Fall through. */
2320 case CS_PREFIX_OPCODE:
b1905489
JB
2321 case ES_PREFIX_OPCODE:
2322 case FS_PREFIX_OPCODE:
2323 case GS_PREFIX_OPCODE:
2324 case SS_PREFIX_OPCODE:
2325 q = SEG_PREFIX;
2326 break;
2327
2328 case REPNE_PREFIX_OPCODE:
2329 case REPE_PREFIX_OPCODE:
c32fa91d
L
2330 q = REP_PREFIX;
2331 ret = PREFIX_REP;
2332 break;
2333
b1905489 2334 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2335 q = LOCK_PREFIX;
2336 ret = PREFIX_LOCK;
b1905489
JB
2337 break;
2338
2339 case FWAIT_OPCODE:
2340 q = WAIT_PREFIX;
2341 break;
2342
2343 case ADDR_PREFIX_OPCODE:
2344 q = ADDR_PREFIX;
2345 break;
2346
2347 case DATA_PREFIX_OPCODE:
2348 q = DATA_PREFIX;
2349 break;
2350 }
2351 if (i.prefix[q] != 0)
c32fa91d 2352 ret = PREFIX_EXIST;
b1905489 2353 }
252b5132 2354
b1905489 2355 if (ret)
252b5132 2356 {
b1905489
JB
2357 if (!i.prefix[q])
2358 ++i.prefixes;
2359 i.prefix[q] |= prefix;
252b5132 2360 }
b1905489
JB
2361 else
2362 as_bad (_("same type of prefix used twice"));
252b5132 2363
252b5132
RH
2364 return ret;
2365}
2366
2367static void
78f12dd3 2368update_code_flag (int value, int check)
eecb386c 2369{
78f12dd3
L
2370 PRINTF_LIKE ((*as_error));
2371
1e9cc1c2 2372 flag_code = (enum flag_code) value;
40fb9820
L
2373 if (flag_code == CODE_64BIT)
2374 {
2375 cpu_arch_flags.bitfield.cpu64 = 1;
2376 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2377 }
2378 else
2379 {
2380 cpu_arch_flags.bitfield.cpu64 = 0;
2381 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2382 }
2383 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2384 {
78f12dd3
L
2385 if (check)
2386 as_error = as_fatal;
2387 else
2388 as_error = as_bad;
2389 (*as_error) (_("64bit mode not supported on `%s'."),
2390 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2391 }
40fb9820 2392 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2393 {
78f12dd3
L
2394 if (check)
2395 as_error = as_fatal;
2396 else
2397 as_error = as_bad;
2398 (*as_error) (_("32bit mode not supported on `%s'."),
2399 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2400 }
eecb386c
AM
2401 stackop_size = '\0';
2402}
2403
78f12dd3
L
2404static void
2405set_code_flag (int value)
2406{
2407 update_code_flag (value, 0);
2408}
2409
eecb386c 2410static void
e3bb37b5 2411set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2412{
1e9cc1c2 2413 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2414 if (flag_code != CODE_16BIT)
2415 abort ();
2416 cpu_arch_flags.bitfield.cpu64 = 0;
2417 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2418 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2419}
2420
2421static void
e3bb37b5 2422set_intel_syntax (int syntax_flag)
252b5132
RH
2423{
2424 /* Find out if register prefixing is specified. */
2425 int ask_naked_reg = 0;
2426
2427 SKIP_WHITESPACE ();
29b0f896 2428 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2429 {
d02603dc
NC
2430 char *string;
2431 int e = get_symbol_name (&string);
252b5132 2432
47926f60 2433 if (strcmp (string, "prefix") == 0)
252b5132 2434 ask_naked_reg = 1;
47926f60 2435 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2436 ask_naked_reg = -1;
2437 else
d0b47220 2438 as_bad (_("bad argument to syntax directive."));
d02603dc 2439 (void) restore_line_pointer (e);
252b5132
RH
2440 }
2441 demand_empty_rest_of_line ();
c3332e24 2442
252b5132
RH
2443 intel_syntax = syntax_flag;
2444
2445 if (ask_naked_reg == 0)
f86103b7
AM
2446 allow_naked_reg = (intel_syntax
2447 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2448 else
2449 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2450
ee86248c 2451 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2452
e4a3b5a4 2453 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2454 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2455 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2456}
2457
1efbbeb4
L
2458static void
2459set_intel_mnemonic (int mnemonic_flag)
2460{
e1d4d893 2461 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2462}
2463
db51cc60
L
2464static void
2465set_allow_index_reg (int flag)
2466{
2467 allow_index_reg = flag;
2468}
2469
cb19c032 2470static void
7bab8ab5 2471set_check (int what)
cb19c032 2472{
7bab8ab5
JB
2473 enum check_kind *kind;
2474 const char *str;
2475
2476 if (what)
2477 {
2478 kind = &operand_check;
2479 str = "operand";
2480 }
2481 else
2482 {
2483 kind = &sse_check;
2484 str = "sse";
2485 }
2486
cb19c032
L
2487 SKIP_WHITESPACE ();
2488
2489 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2490 {
d02603dc
NC
2491 char *string;
2492 int e = get_symbol_name (&string);
cb19c032
L
2493
2494 if (strcmp (string, "none") == 0)
7bab8ab5 2495 *kind = check_none;
cb19c032 2496 else if (strcmp (string, "warning") == 0)
7bab8ab5 2497 *kind = check_warning;
cb19c032 2498 else if (strcmp (string, "error") == 0)
7bab8ab5 2499 *kind = check_error;
cb19c032 2500 else
7bab8ab5 2501 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2502 (void) restore_line_pointer (e);
cb19c032
L
2503 }
2504 else
7bab8ab5 2505 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2506
2507 demand_empty_rest_of_line ();
2508}
2509
8a9036a4
L
2510static void
2511check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2512 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2513{
2514#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2515 static const char *arch;
2516
2517 /* Intel LIOM is only supported on ELF. */
2518 if (!IS_ELF)
2519 return;
2520
2521 if (!arch)
2522 {
2523 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2524 use default_arch. */
2525 arch = cpu_arch_name;
2526 if (!arch)
2527 arch = default_arch;
2528 }
2529
81486035
L
2530 /* If we are targeting Intel MCU, we must enable it. */
2531 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2532 || new_flag.bitfield.cpuiamcu)
2533 return;
2534
3632d14b 2535 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2536 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2537 || new_flag.bitfield.cpul1om)
8a9036a4 2538 return;
76ba9986 2539
7a9068fe
L
2540 /* If we are targeting Intel K1OM, we must enable it. */
2541 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2542 || new_flag.bitfield.cpuk1om)
2543 return;
2544
8a9036a4
L
2545 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2546#endif
2547}
2548
e413e4e9 2549static void
e3bb37b5 2550set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2551{
47926f60 2552 SKIP_WHITESPACE ();
e413e4e9 2553
29b0f896 2554 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2555 {
d02603dc
NC
2556 char *string;
2557 int e = get_symbol_name (&string);
91d6fa6a 2558 unsigned int j;
40fb9820 2559 i386_cpu_flags flags;
e413e4e9 2560
91d6fa6a 2561 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2562 {
91d6fa6a 2563 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2564 {
91d6fa6a 2565 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2566
5c6af06e
JB
2567 if (*string != '.')
2568 {
91d6fa6a 2569 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2570 cpu_sub_arch_name = NULL;
91d6fa6a 2571 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2572 if (flag_code == CODE_64BIT)
2573 {
2574 cpu_arch_flags.bitfield.cpu64 = 1;
2575 cpu_arch_flags.bitfield.cpuno64 = 0;
2576 }
2577 else
2578 {
2579 cpu_arch_flags.bitfield.cpu64 = 0;
2580 cpu_arch_flags.bitfield.cpuno64 = 1;
2581 }
91d6fa6a
NC
2582 cpu_arch_isa = cpu_arch[j].type;
2583 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2584 if (!cpu_arch_tune_set)
2585 {
2586 cpu_arch_tune = cpu_arch_isa;
2587 cpu_arch_tune_flags = cpu_arch_isa_flags;
2588 }
5c6af06e
JB
2589 break;
2590 }
40fb9820 2591
293f5f65
L
2592 flags = cpu_flags_or (cpu_arch_flags,
2593 cpu_arch[j].flags);
81486035 2594
5b64d091 2595 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2596 {
6305a203
L
2597 if (cpu_sub_arch_name)
2598 {
2599 char *name = cpu_sub_arch_name;
2600 cpu_sub_arch_name = concat (name,
91d6fa6a 2601 cpu_arch[j].name,
1bf57e9f 2602 (const char *) NULL);
6305a203
L
2603 free (name);
2604 }
2605 else
91d6fa6a 2606 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2607 cpu_arch_flags = flags;
a586129e 2608 cpu_arch_isa_flags = flags;
5c6af06e 2609 }
d02603dc 2610 (void) restore_line_pointer (e);
5c6af06e
JB
2611 demand_empty_rest_of_line ();
2612 return;
e413e4e9
AM
2613 }
2614 }
293f5f65
L
2615
2616 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2617 {
33eaf5de 2618 /* Disable an ISA extension. */
293f5f65
L
2619 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2620 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2621 {
2622 flags = cpu_flags_and_not (cpu_arch_flags,
2623 cpu_noarch[j].flags);
2624 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2625 {
2626 if (cpu_sub_arch_name)
2627 {
2628 char *name = cpu_sub_arch_name;
2629 cpu_sub_arch_name = concat (name, string,
2630 (const char *) NULL);
2631 free (name);
2632 }
2633 else
2634 cpu_sub_arch_name = xstrdup (string);
2635 cpu_arch_flags = flags;
2636 cpu_arch_isa_flags = flags;
2637 }
2638 (void) restore_line_pointer (e);
2639 demand_empty_rest_of_line ();
2640 return;
2641 }
2642
2643 j = ARRAY_SIZE (cpu_arch);
2644 }
2645
91d6fa6a 2646 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2647 as_bad (_("no such architecture: `%s'"), string);
2648
2649 *input_line_pointer = e;
2650 }
2651 else
2652 as_bad (_("missing cpu architecture"));
2653
fddf5b5b
AM
2654 no_cond_jump_promotion = 0;
2655 if (*input_line_pointer == ','
29b0f896 2656 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2657 {
d02603dc
NC
2658 char *string;
2659 char e;
2660
2661 ++input_line_pointer;
2662 e = get_symbol_name (&string);
fddf5b5b
AM
2663
2664 if (strcmp (string, "nojumps") == 0)
2665 no_cond_jump_promotion = 1;
2666 else if (strcmp (string, "jumps") == 0)
2667 ;
2668 else
2669 as_bad (_("no such architecture modifier: `%s'"), string);
2670
d02603dc 2671 (void) restore_line_pointer (e);
fddf5b5b
AM
2672 }
2673
e413e4e9
AM
2674 demand_empty_rest_of_line ();
2675}
2676
8a9036a4
L
2677enum bfd_architecture
2678i386_arch (void)
2679{
3632d14b 2680 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2681 {
2682 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2683 || flag_code != CODE_64BIT)
2684 as_fatal (_("Intel L1OM is 64bit ELF only"));
2685 return bfd_arch_l1om;
2686 }
7a9068fe
L
2687 else if (cpu_arch_isa == PROCESSOR_K1OM)
2688 {
2689 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2690 || flag_code != CODE_64BIT)
2691 as_fatal (_("Intel K1OM is 64bit ELF only"));
2692 return bfd_arch_k1om;
2693 }
81486035
L
2694 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2695 {
2696 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2697 || flag_code == CODE_64BIT)
2698 as_fatal (_("Intel MCU is 32bit ELF only"));
2699 return bfd_arch_iamcu;
2700 }
8a9036a4
L
2701 else
2702 return bfd_arch_i386;
2703}
2704
b9d79e03 2705unsigned long
7016a5d5 2706i386_mach (void)
b9d79e03 2707{
351f65ca 2708 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2709 {
3632d14b 2710 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2711 {
351f65ca
L
2712 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2713 || default_arch[6] != '\0')
8a9036a4
L
2714 as_fatal (_("Intel L1OM is 64bit ELF only"));
2715 return bfd_mach_l1om;
2716 }
7a9068fe
L
2717 else if (cpu_arch_isa == PROCESSOR_K1OM)
2718 {
2719 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2720 || default_arch[6] != '\0')
2721 as_fatal (_("Intel K1OM is 64bit ELF only"));
2722 return bfd_mach_k1om;
2723 }
351f65ca 2724 else if (default_arch[6] == '\0')
8a9036a4 2725 return bfd_mach_x86_64;
351f65ca
L
2726 else
2727 return bfd_mach_x64_32;
8a9036a4 2728 }
5197d474
L
2729 else if (!strcmp (default_arch, "i386")
2730 || !strcmp (default_arch, "iamcu"))
81486035
L
2731 {
2732 if (cpu_arch_isa == PROCESSOR_IAMCU)
2733 {
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2735 as_fatal (_("Intel MCU is 32bit ELF only"));
2736 return bfd_mach_i386_iamcu;
2737 }
2738 else
2739 return bfd_mach_i386_i386;
2740 }
b9d79e03 2741 else
2b5d6a91 2742 as_fatal (_("unknown architecture"));
b9d79e03 2743}
b9d79e03 2744\f
252b5132 2745void
7016a5d5 2746md_begin (void)
252b5132
RH
2747{
2748 const char *hash_err;
2749
86fa6981
L
2750 /* Support pseudo prefixes like {disp32}. */
2751 lex_type ['{'] = LEX_BEGIN_NAME;
2752
47926f60 2753 /* Initialize op_hash hash table. */
252b5132
RH
2754 op_hash = hash_new ();
2755
2756 {
d3ce72d0 2757 const insn_template *optab;
29b0f896 2758 templates *core_optab;
252b5132 2759
47926f60
KH
2760 /* Setup for loop. */
2761 optab = i386_optab;
add39d23 2762 core_optab = XNEW (templates);
252b5132
RH
2763 core_optab->start = optab;
2764
2765 while (1)
2766 {
2767 ++optab;
2768 if (optab->name == NULL
2769 || strcmp (optab->name, (optab - 1)->name) != 0)
2770 {
2771 /* different name --> ship out current template list;
47926f60 2772 add to hash table; & begin anew. */
252b5132
RH
2773 core_optab->end = optab;
2774 hash_err = hash_insert (op_hash,
2775 (optab - 1)->name,
5a49b8ac 2776 (void *) core_optab);
252b5132
RH
2777 if (hash_err)
2778 {
b37df7c4 2779 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2780 (optab - 1)->name,
2781 hash_err);
2782 }
2783 if (optab->name == NULL)
2784 break;
add39d23 2785 core_optab = XNEW (templates);
252b5132
RH
2786 core_optab->start = optab;
2787 }
2788 }
2789 }
2790
47926f60 2791 /* Initialize reg_hash hash table. */
252b5132
RH
2792 reg_hash = hash_new ();
2793 {
29b0f896 2794 const reg_entry *regtab;
c3fe08fa 2795 unsigned int regtab_size = i386_regtab_size;
252b5132 2796
c3fe08fa 2797 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2798 {
5a49b8ac 2799 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2800 if (hash_err)
b37df7c4 2801 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2802 regtab->reg_name,
2803 hash_err);
252b5132
RH
2804 }
2805 }
2806
47926f60 2807 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2808 {
29b0f896
AM
2809 int c;
2810 char *p;
252b5132
RH
2811
2812 for (c = 0; c < 256; c++)
2813 {
3882b010 2814 if (ISDIGIT (c))
252b5132
RH
2815 {
2816 digit_chars[c] = c;
2817 mnemonic_chars[c] = c;
2818 register_chars[c] = c;
2819 operand_chars[c] = c;
2820 }
3882b010 2821 else if (ISLOWER (c))
252b5132
RH
2822 {
2823 mnemonic_chars[c] = c;
2824 register_chars[c] = c;
2825 operand_chars[c] = c;
2826 }
3882b010 2827 else if (ISUPPER (c))
252b5132 2828 {
3882b010 2829 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2830 register_chars[c] = mnemonic_chars[c];
2831 operand_chars[c] = c;
2832 }
43234a1e 2833 else if (c == '{' || c == '}')
86fa6981
L
2834 {
2835 mnemonic_chars[c] = c;
2836 operand_chars[c] = c;
2837 }
252b5132 2838
3882b010 2839 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2840 identifier_chars[c] = c;
2841 else if (c >= 128)
2842 {
2843 identifier_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
2846 }
2847
2848#ifdef LEX_AT
2849 identifier_chars['@'] = '@';
32137342
NC
2850#endif
2851#ifdef LEX_QM
2852 identifier_chars['?'] = '?';
2853 operand_chars['?'] = '?';
252b5132 2854#endif
252b5132 2855 digit_chars['-'] = '-';
c0f3af97 2856 mnemonic_chars['_'] = '_';
791fe849 2857 mnemonic_chars['-'] = '-';
0003779b 2858 mnemonic_chars['.'] = '.';
252b5132
RH
2859 identifier_chars['_'] = '_';
2860 identifier_chars['.'] = '.';
2861
2862 for (p = operand_special_chars; *p != '\0'; p++)
2863 operand_chars[(unsigned char) *p] = *p;
2864 }
2865
a4447b93
RH
2866 if (flag_code == CODE_64BIT)
2867 {
ca19b261
KT
2868#if defined (OBJ_COFF) && defined (TE_PE)
2869 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2870 ? 32 : 16);
2871#else
a4447b93 2872 x86_dwarf2_return_column = 16;
ca19b261 2873#endif
61ff971f 2874 x86_cie_data_alignment = -8;
a4447b93
RH
2875 }
2876 else
2877 {
2878 x86_dwarf2_return_column = 8;
2879 x86_cie_data_alignment = -4;
2880 }
252b5132
RH
2881}
2882
2883void
e3bb37b5 2884i386_print_statistics (FILE *file)
252b5132
RH
2885{
2886 hash_print_statistics (file, "i386 opcode", op_hash);
2887 hash_print_statistics (file, "i386 register", reg_hash);
2888}
2889\f
252b5132
RH
2890#ifdef DEBUG386
2891
ce8a8b2f 2892/* Debugging routines for md_assemble. */
d3ce72d0 2893static void pte (insn_template *);
40fb9820 2894static void pt (i386_operand_type);
e3bb37b5
L
2895static void pe (expressionS *);
2896static void ps (symbolS *);
252b5132
RH
2897
2898static void
e3bb37b5 2899pi (char *line, i386_insn *x)
252b5132 2900{
09137c09 2901 unsigned int j;
252b5132
RH
2902
2903 fprintf (stdout, "%s: template ", line);
2904 pte (&x->tm);
09f131f2
JH
2905 fprintf (stdout, " address: base %s index %s scale %x\n",
2906 x->base_reg ? x->base_reg->reg_name : "none",
2907 x->index_reg ? x->index_reg->reg_name : "none",
2908 x->log2_scale_factor);
2909 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2910 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2911 fprintf (stdout, " sib: base %x index %x scale %x\n",
2912 x->sib.base, x->sib.index, x->sib.scale);
2913 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2914 (x->rex & REX_W) != 0,
2915 (x->rex & REX_R) != 0,
2916 (x->rex & REX_X) != 0,
2917 (x->rex & REX_B) != 0);
09137c09 2918 for (j = 0; j < x->operands; j++)
252b5132 2919 {
09137c09
SP
2920 fprintf (stdout, " #%d: ", j + 1);
2921 pt (x->types[j]);
252b5132 2922 fprintf (stdout, "\n");
dc821c5f 2923 if (x->types[j].bitfield.reg
09137c09 2924 || x->types[j].bitfield.regmmx
1b54b8d7 2925 || x->types[j].bitfield.regsimd
09137c09
SP
2926 || x->types[j].bitfield.sreg2
2927 || x->types[j].bitfield.sreg3
2928 || x->types[j].bitfield.control
2929 || x->types[j].bitfield.debug
2930 || x->types[j].bitfield.test)
2931 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2932 if (operand_type_check (x->types[j], imm))
2933 pe (x->op[j].imms);
2934 if (operand_type_check (x->types[j], disp))
2935 pe (x->op[j].disps);
252b5132
RH
2936 }
2937}
2938
2939static void
d3ce72d0 2940pte (insn_template *t)
252b5132 2941{
09137c09 2942 unsigned int j;
252b5132 2943 fprintf (stdout, " %d operands ", t->operands);
47926f60 2944 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2945 if (t->extension_opcode != None)
2946 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2947 if (t->opcode_modifier.d)
252b5132 2948 fprintf (stdout, "D");
40fb9820 2949 if (t->opcode_modifier.w)
252b5132
RH
2950 fprintf (stdout, "W");
2951 fprintf (stdout, "\n");
09137c09 2952 for (j = 0; j < t->operands; j++)
252b5132 2953 {
09137c09
SP
2954 fprintf (stdout, " #%d type ", j + 1);
2955 pt (t->operand_types[j]);
252b5132
RH
2956 fprintf (stdout, "\n");
2957 }
2958}
2959
2960static void
e3bb37b5 2961pe (expressionS *e)
252b5132 2962{
24eab124 2963 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2964 fprintf (stdout, " add_number %ld (%lx)\n",
2965 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2966 if (e->X_add_symbol)
2967 {
2968 fprintf (stdout, " add_symbol ");
2969 ps (e->X_add_symbol);
2970 fprintf (stdout, "\n");
2971 }
2972 if (e->X_op_symbol)
2973 {
2974 fprintf (stdout, " op_symbol ");
2975 ps (e->X_op_symbol);
2976 fprintf (stdout, "\n");
2977 }
2978}
2979
2980static void
e3bb37b5 2981ps (symbolS *s)
252b5132
RH
2982{
2983 fprintf (stdout, "%s type %s%s",
2984 S_GET_NAME (s),
2985 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2986 segment_name (S_GET_SEGMENT (s)));
2987}
2988
7b81dfbb 2989static struct type_name
252b5132 2990 {
40fb9820
L
2991 i386_operand_type mask;
2992 const char *name;
252b5132 2993 }
7b81dfbb 2994const type_names[] =
252b5132 2995{
40fb9820
L
2996 { OPERAND_TYPE_REG8, "r8" },
2997 { OPERAND_TYPE_REG16, "r16" },
2998 { OPERAND_TYPE_REG32, "r32" },
2999 { OPERAND_TYPE_REG64, "r64" },
3000 { OPERAND_TYPE_IMM8, "i8" },
3001 { OPERAND_TYPE_IMM8, "i8s" },
3002 { OPERAND_TYPE_IMM16, "i16" },
3003 { OPERAND_TYPE_IMM32, "i32" },
3004 { OPERAND_TYPE_IMM32S, "i32s" },
3005 { OPERAND_TYPE_IMM64, "i64" },
3006 { OPERAND_TYPE_IMM1, "i1" },
3007 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3008 { OPERAND_TYPE_DISP8, "d8" },
3009 { OPERAND_TYPE_DISP16, "d16" },
3010 { OPERAND_TYPE_DISP32, "d32" },
3011 { OPERAND_TYPE_DISP32S, "d32s" },
3012 { OPERAND_TYPE_DISP64, "d64" },
3013 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3014 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3015 { OPERAND_TYPE_CONTROL, "control reg" },
3016 { OPERAND_TYPE_TEST, "test reg" },
3017 { OPERAND_TYPE_DEBUG, "debug reg" },
3018 { OPERAND_TYPE_FLOATREG, "FReg" },
3019 { OPERAND_TYPE_FLOATACC, "FAcc" },
3020 { OPERAND_TYPE_SREG2, "SReg2" },
3021 { OPERAND_TYPE_SREG3, "SReg3" },
3022 { OPERAND_TYPE_ACC, "Acc" },
3023 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3024 { OPERAND_TYPE_REGMMX, "rMMX" },
3025 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3026 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3027 { OPERAND_TYPE_REGZMM, "rZMM" },
3028 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3029 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3030};
3031
3032static void
40fb9820 3033pt (i386_operand_type t)
252b5132 3034{
40fb9820 3035 unsigned int j;
c6fb90c8 3036 i386_operand_type a;
252b5132 3037
40fb9820 3038 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3039 {
3040 a = operand_type_and (t, type_names[j].mask);
0349dc08 3041 if (!operand_type_all_zero (&a))
c6fb90c8
L
3042 fprintf (stdout, "%s, ", type_names[j].name);
3043 }
252b5132
RH
3044 fflush (stdout);
3045}
3046
3047#endif /* DEBUG386 */
3048\f
252b5132 3049static bfd_reloc_code_real_type
3956db08 3050reloc (unsigned int size,
64e74474
AM
3051 int pcrel,
3052 int sign,
3053 bfd_reloc_code_real_type other)
252b5132 3054{
47926f60 3055 if (other != NO_RELOC)
3956db08 3056 {
91d6fa6a 3057 reloc_howto_type *rel;
3956db08
JB
3058
3059 if (size == 8)
3060 switch (other)
3061 {
64e74474
AM
3062 case BFD_RELOC_X86_64_GOT32:
3063 return BFD_RELOC_X86_64_GOT64;
3064 break;
553d1284
L
3065 case BFD_RELOC_X86_64_GOTPLT64:
3066 return BFD_RELOC_X86_64_GOTPLT64;
3067 break;
64e74474
AM
3068 case BFD_RELOC_X86_64_PLTOFF64:
3069 return BFD_RELOC_X86_64_PLTOFF64;
3070 break;
3071 case BFD_RELOC_X86_64_GOTPC32:
3072 other = BFD_RELOC_X86_64_GOTPC64;
3073 break;
3074 case BFD_RELOC_X86_64_GOTPCREL:
3075 other = BFD_RELOC_X86_64_GOTPCREL64;
3076 break;
3077 case BFD_RELOC_X86_64_TPOFF32:
3078 other = BFD_RELOC_X86_64_TPOFF64;
3079 break;
3080 case BFD_RELOC_X86_64_DTPOFF32:
3081 other = BFD_RELOC_X86_64_DTPOFF64;
3082 break;
3083 default:
3084 break;
3956db08 3085 }
e05278af 3086
8ce3d284 3087#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3088 if (other == BFD_RELOC_SIZE32)
3089 {
3090 if (size == 8)
1ab668bf 3091 other = BFD_RELOC_SIZE64;
8fd4256d 3092 if (pcrel)
1ab668bf
AM
3093 {
3094 as_bad (_("there are no pc-relative size relocations"));
3095 return NO_RELOC;
3096 }
8fd4256d 3097 }
8ce3d284 3098#endif
8fd4256d 3099
e05278af 3100 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3101 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3102 sign = -1;
3103
91d6fa6a
NC
3104 rel = bfd_reloc_type_lookup (stdoutput, other);
3105 if (!rel)
3956db08 3106 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3107 else if (size != bfd_get_reloc_size (rel))
3956db08 3108 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3109 bfd_get_reloc_size (rel),
3956db08 3110 size);
91d6fa6a 3111 else if (pcrel && !rel->pc_relative)
3956db08 3112 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3113 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3114 && !sign)
91d6fa6a 3115 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3116 && sign > 0))
3956db08
JB
3117 as_bad (_("relocated field and relocation type differ in signedness"));
3118 else
3119 return other;
3120 return NO_RELOC;
3121 }
252b5132
RH
3122
3123 if (pcrel)
3124 {
3e73aa7c 3125 if (!sign)
3956db08 3126 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3127 switch (size)
3128 {
3129 case 1: return BFD_RELOC_8_PCREL;
3130 case 2: return BFD_RELOC_16_PCREL;
d258b828 3131 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3132 case 8: return BFD_RELOC_64_PCREL;
252b5132 3133 }
3956db08 3134 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3135 }
3136 else
3137 {
3956db08 3138 if (sign > 0)
e5cb08ac 3139 switch (size)
3e73aa7c
JH
3140 {
3141 case 4: return BFD_RELOC_X86_64_32S;
3142 }
3143 else
3144 switch (size)
3145 {
3146 case 1: return BFD_RELOC_8;
3147 case 2: return BFD_RELOC_16;
3148 case 4: return BFD_RELOC_32;
3149 case 8: return BFD_RELOC_64;
3150 }
3956db08
JB
3151 as_bad (_("cannot do %s %u byte relocation"),
3152 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3153 }
3154
0cc9e1d3 3155 return NO_RELOC;
252b5132
RH
3156}
3157
47926f60
KH
3158/* Here we decide which fixups can be adjusted to make them relative to
3159 the beginning of the section instead of the symbol. Basically we need
3160 to make sure that the dynamic relocations are done correctly, so in
3161 some cases we force the original symbol to be used. */
3162
252b5132 3163int
e3bb37b5 3164tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3165{
6d249963 3166#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3167 if (!IS_ELF)
31312f95
AM
3168 return 1;
3169
a161fe53
AM
3170 /* Don't adjust pc-relative references to merge sections in 64-bit
3171 mode. */
3172 if (use_rela_relocations
3173 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3174 && fixP->fx_pcrel)
252b5132 3175 return 0;
31312f95 3176
8d01d9a9
AJ
3177 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3178 and changed later by validate_fix. */
3179 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3180 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3181 return 0;
3182
8fd4256d
L
3183 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3184 for size relocations. */
3185 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3186 || fixP->fx_r_type == BFD_RELOC_SIZE64
3187 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3188 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3189 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3190 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3191 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3192 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3193 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3194 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3195 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3196 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3197 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3198 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3199 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3200 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3201 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3202 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3203 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3204 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3205 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3206 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3207 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3208 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3209 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3210 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3211 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3212 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3213 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3214 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3215 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3216 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3217 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3218 return 0;
31312f95 3219#endif
252b5132
RH
3220 return 1;
3221}
252b5132 3222
b4cac588 3223static int
e3bb37b5 3224intel_float_operand (const char *mnemonic)
252b5132 3225{
9306ca4a
JB
3226 /* Note that the value returned is meaningful only for opcodes with (memory)
3227 operands, hence the code here is free to improperly handle opcodes that
3228 have no operands (for better performance and smaller code). */
3229
3230 if (mnemonic[0] != 'f')
3231 return 0; /* non-math */
3232
3233 switch (mnemonic[1])
3234 {
3235 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3236 the fs segment override prefix not currently handled because no
3237 call path can make opcodes without operands get here */
3238 case 'i':
3239 return 2 /* integer op */;
3240 case 'l':
3241 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3242 return 3; /* fldcw/fldenv */
3243 break;
3244 case 'n':
3245 if (mnemonic[2] != 'o' /* fnop */)
3246 return 3; /* non-waiting control op */
3247 break;
3248 case 'r':
3249 if (mnemonic[2] == 's')
3250 return 3; /* frstor/frstpm */
3251 break;
3252 case 's':
3253 if (mnemonic[2] == 'a')
3254 return 3; /* fsave */
3255 if (mnemonic[2] == 't')
3256 {
3257 switch (mnemonic[3])
3258 {
3259 case 'c': /* fstcw */
3260 case 'd': /* fstdw */
3261 case 'e': /* fstenv */
3262 case 's': /* fsts[gw] */
3263 return 3;
3264 }
3265 }
3266 break;
3267 case 'x':
3268 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3269 return 0; /* fxsave/fxrstor are not really math ops */
3270 break;
3271 }
252b5132 3272
9306ca4a 3273 return 1;
252b5132
RH
3274}
3275
c0f3af97
L
3276/* Build the VEX prefix. */
3277
3278static void
d3ce72d0 3279build_vex_prefix (const insn_template *t)
c0f3af97
L
3280{
3281 unsigned int register_specifier;
3282 unsigned int implied_prefix;
3283 unsigned int vector_length;
3284
3285 /* Check register specifier. */
3286 if (i.vex.register_specifier)
43234a1e
L
3287 {
3288 register_specifier =
3289 ~register_number (i.vex.register_specifier) & 0xf;
3290 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3291 }
c0f3af97
L
3292 else
3293 register_specifier = 0xf;
3294
33eaf5de 3295 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3296 operand. */
86fa6981
L
3297 if (i.vec_encoding != vex_encoding_vex3
3298 && i.dir_encoding == dir_encoding_default
fa99fab2 3299 && i.operands == i.reg_operands
7f399153 3300 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3301 && i.tm.opcode_modifier.load
fa99fab2
L
3302 && i.rex == REX_B)
3303 {
3304 unsigned int xchg = i.operands - 1;
3305 union i386_op temp_op;
3306 i386_operand_type temp_type;
3307
3308 temp_type = i.types[xchg];
3309 i.types[xchg] = i.types[0];
3310 i.types[0] = temp_type;
3311 temp_op = i.op[xchg];
3312 i.op[xchg] = i.op[0];
3313 i.op[0] = temp_op;
3314
9c2799c2 3315 gas_assert (i.rm.mode == 3);
fa99fab2
L
3316
3317 i.rex = REX_R;
3318 xchg = i.rm.regmem;
3319 i.rm.regmem = i.rm.reg;
3320 i.rm.reg = xchg;
3321
3322 /* Use the next insn. */
3323 i.tm = t[1];
3324 }
3325
539f890d
L
3326 if (i.tm.opcode_modifier.vex == VEXScalar)
3327 vector_length = avxscalar;
10c17abd
JB
3328 else if (i.tm.opcode_modifier.vex == VEX256)
3329 vector_length = 1;
539f890d 3330 else
10c17abd
JB
3331 {
3332 unsigned int op;
3333
3334 vector_length = 0;
3335 for (op = 0; op < t->operands; ++op)
3336 if (t->operand_types[op].bitfield.xmmword
3337 && t->operand_types[op].bitfield.ymmword
3338 && i.types[op].bitfield.ymmword)
3339 {
3340 vector_length = 1;
3341 break;
3342 }
3343 }
c0f3af97
L
3344
3345 switch ((i.tm.base_opcode >> 8) & 0xff)
3346 {
3347 case 0:
3348 implied_prefix = 0;
3349 break;
3350 case DATA_PREFIX_OPCODE:
3351 implied_prefix = 1;
3352 break;
3353 case REPE_PREFIX_OPCODE:
3354 implied_prefix = 2;
3355 break;
3356 case REPNE_PREFIX_OPCODE:
3357 implied_prefix = 3;
3358 break;
3359 default:
3360 abort ();
3361 }
3362
3363 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3364 if (i.vec_encoding != vex_encoding_vex3
3365 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3366 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3367 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3368 {
3369 /* 2-byte VEX prefix. */
3370 unsigned int r;
3371
3372 i.vex.length = 2;
3373 i.vex.bytes[0] = 0xc5;
3374
3375 /* Check the REX.R bit. */
3376 r = (i.rex & REX_R) ? 0 : 1;
3377 i.vex.bytes[1] = (r << 7
3378 | register_specifier << 3
3379 | vector_length << 2
3380 | implied_prefix);
3381 }
3382 else
3383 {
3384 /* 3-byte VEX prefix. */
3385 unsigned int m, w;
3386
f88c9eb0 3387 i.vex.length = 3;
f88c9eb0 3388
7f399153 3389 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3390 {
7f399153
L
3391 case VEX0F:
3392 m = 0x1;
80de6e00 3393 i.vex.bytes[0] = 0xc4;
7f399153
L
3394 break;
3395 case VEX0F38:
3396 m = 0x2;
80de6e00 3397 i.vex.bytes[0] = 0xc4;
7f399153
L
3398 break;
3399 case VEX0F3A:
3400 m = 0x3;
80de6e00 3401 i.vex.bytes[0] = 0xc4;
7f399153
L
3402 break;
3403 case XOP08:
5dd85c99
SP
3404 m = 0x8;
3405 i.vex.bytes[0] = 0x8f;
7f399153
L
3406 break;
3407 case XOP09:
f88c9eb0
SP
3408 m = 0x9;
3409 i.vex.bytes[0] = 0x8f;
7f399153
L
3410 break;
3411 case XOP0A:
f88c9eb0
SP
3412 m = 0xa;
3413 i.vex.bytes[0] = 0x8f;
7f399153
L
3414 break;
3415 default:
3416 abort ();
f88c9eb0 3417 }
c0f3af97 3418
c0f3af97
L
3419 /* The high 3 bits of the second VEX byte are 1's compliment
3420 of RXB bits from REX. */
3421 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3422
3423 /* Check the REX.W bit. */
3424 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3425 if (i.tm.opcode_modifier.vexw == VEXW1)
3426 w = 1;
c0f3af97
L
3427
3428 i.vex.bytes[2] = (w << 7
3429 | register_specifier << 3
3430 | vector_length << 2
3431 | implied_prefix);
3432 }
3433}
3434
43234a1e
L
3435/* Build the EVEX prefix. */
3436
3437static void
3438build_evex_prefix (void)
3439{
3440 unsigned int register_specifier;
3441 unsigned int implied_prefix;
3442 unsigned int m, w;
3443 rex_byte vrex_used = 0;
3444
3445 /* Check register specifier. */
3446 if (i.vex.register_specifier)
3447 {
3448 gas_assert ((i.vrex & REX_X) == 0);
3449
3450 register_specifier = i.vex.register_specifier->reg_num;
3451 if ((i.vex.register_specifier->reg_flags & RegRex))
3452 register_specifier += 8;
3453 /* The upper 16 registers are encoded in the fourth byte of the
3454 EVEX prefix. */
3455 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3456 i.vex.bytes[3] = 0x8;
3457 register_specifier = ~register_specifier & 0xf;
3458 }
3459 else
3460 {
3461 register_specifier = 0xf;
3462
3463 /* Encode upper 16 vector index register in the fourth byte of
3464 the EVEX prefix. */
3465 if (!(i.vrex & REX_X))
3466 i.vex.bytes[3] = 0x8;
3467 else
3468 vrex_used |= REX_X;
3469 }
3470
3471 switch ((i.tm.base_opcode >> 8) & 0xff)
3472 {
3473 case 0:
3474 implied_prefix = 0;
3475 break;
3476 case DATA_PREFIX_OPCODE:
3477 implied_prefix = 1;
3478 break;
3479 case REPE_PREFIX_OPCODE:
3480 implied_prefix = 2;
3481 break;
3482 case REPNE_PREFIX_OPCODE:
3483 implied_prefix = 3;
3484 break;
3485 default:
3486 abort ();
3487 }
3488
3489 /* 4 byte EVEX prefix. */
3490 i.vex.length = 4;
3491 i.vex.bytes[0] = 0x62;
3492
3493 /* mmmm bits. */
3494 switch (i.tm.opcode_modifier.vexopcode)
3495 {
3496 case VEX0F:
3497 m = 1;
3498 break;
3499 case VEX0F38:
3500 m = 2;
3501 break;
3502 case VEX0F3A:
3503 m = 3;
3504 break;
3505 default:
3506 abort ();
3507 break;
3508 }
3509
3510 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3511 bits from REX. */
3512 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3513
3514 /* The fifth bit of the second EVEX byte is 1's compliment of the
3515 REX_R bit in VREX. */
3516 if (!(i.vrex & REX_R))
3517 i.vex.bytes[1] |= 0x10;
3518 else
3519 vrex_used |= REX_R;
3520
3521 if ((i.reg_operands + i.imm_operands) == i.operands)
3522 {
3523 /* When all operands are registers, the REX_X bit in REX is not
3524 used. We reuse it to encode the upper 16 registers, which is
3525 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3526 as 1's compliment. */
3527 if ((i.vrex & REX_B))
3528 {
3529 vrex_used |= REX_B;
3530 i.vex.bytes[1] &= ~0x40;
3531 }
3532 }
3533
3534 /* EVEX instructions shouldn't need the REX prefix. */
3535 i.vrex &= ~vrex_used;
3536 gas_assert (i.vrex == 0);
3537
3538 /* Check the REX.W bit. */
3539 w = (i.rex & REX_W) ? 1 : 0;
3540 if (i.tm.opcode_modifier.vexw)
3541 {
3542 if (i.tm.opcode_modifier.vexw == VEXW1)
3543 w = 1;
3544 }
3545 /* If w is not set it means we are dealing with WIG instruction. */
3546 else if (!w)
3547 {
3548 if (evexwig == evexw1)
3549 w = 1;
3550 }
3551
3552 /* Encode the U bit. */
3553 implied_prefix |= 0x4;
3554
3555 /* The third byte of the EVEX prefix. */
3556 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3557
3558 /* The fourth byte of the EVEX prefix. */
3559 /* The zeroing-masking bit. */
3560 if (i.mask && i.mask->zeroing)
3561 i.vex.bytes[3] |= 0x80;
3562
3563 /* Don't always set the broadcast bit if there is no RC. */
3564 if (!i.rounding)
3565 {
3566 /* Encode the vector length. */
3567 unsigned int vec_length;
3568
3569 switch (i.tm.opcode_modifier.evex)
3570 {
3571 case EVEXLIG: /* LL' is ignored */
3572 vec_length = evexlig << 5;
3573 break;
3574 case EVEX128:
3575 vec_length = 0 << 5;
3576 break;
3577 case EVEX256:
3578 vec_length = 1 << 5;
3579 break;
3580 case EVEX512:
3581 vec_length = 2 << 5;
3582 break;
3583 default:
3584 abort ();
3585 break;
3586 }
3587 i.vex.bytes[3] |= vec_length;
3588 /* Encode the broadcast bit. */
3589 if (i.broadcast)
3590 i.vex.bytes[3] |= 0x10;
3591 }
3592 else
3593 {
3594 if (i.rounding->type != saeonly)
3595 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3596 else
d3d3c6db 3597 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3598 }
3599
3600 if (i.mask && i.mask->mask)
3601 i.vex.bytes[3] |= i.mask->mask->reg_num;
3602}
3603
65da13b5
L
3604static void
3605process_immext (void)
3606{
3607 expressionS *exp;
3608
4c692bc7
JB
3609 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3610 && i.operands > 0)
65da13b5 3611 {
4c692bc7
JB
3612 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3613 with an opcode suffix which is coded in the same place as an
3614 8-bit immediate field would be.
3615 Here we check those operands and remove them afterwards. */
65da13b5
L
3616 unsigned int x;
3617
3618 for (x = 0; x < i.operands; x++)
4c692bc7 3619 if (register_number (i.op[x].regs) != x)
65da13b5 3620 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3621 register_prefix, i.op[x].regs->reg_name, x + 1,
3622 i.tm.name);
3623
3624 i.operands = 0;
65da13b5
L
3625 }
3626
9916071f
AP
3627 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3628 {
3629 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3630 suffix which is coded in the same place as an 8-bit immediate
3631 field would be.
3632 Here we check those operands and remove them afterwards. */
3633 unsigned int x;
3634
3635 if (i.operands != 3)
3636 abort();
3637
3638 for (x = 0; x < 2; x++)
3639 if (register_number (i.op[x].regs) != x)
3640 goto bad_register_operand;
3641
3642 /* Check for third operand for mwaitx/monitorx insn. */
3643 if (register_number (i.op[x].regs)
3644 != (x + (i.tm.extension_opcode == 0xfb)))
3645 {
3646bad_register_operand:
3647 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3648 register_prefix, i.op[x].regs->reg_name, x+1,
3649 i.tm.name);
3650 }
3651
3652 i.operands = 0;
3653 }
3654
c0f3af97 3655 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3656 which is coded in the same place as an 8-bit immediate field
3657 would be. Here we fake an 8-bit immediate operand from the
3658 opcode suffix stored in tm.extension_opcode.
3659
c1e679ec 3660 AVX instructions also use this encoding, for some of
c0f3af97 3661 3 argument instructions. */
65da13b5 3662
43234a1e 3663 gas_assert (i.imm_operands <= 1
7ab9ffdd 3664 && (i.operands <= 2
43234a1e
L
3665 || ((i.tm.opcode_modifier.vex
3666 || i.tm.opcode_modifier.evex)
7ab9ffdd 3667 && i.operands <= 4)));
65da13b5
L
3668
3669 exp = &im_expressions[i.imm_operands++];
3670 i.op[i.operands].imms = exp;
3671 i.types[i.operands] = imm8;
3672 i.operands++;
3673 exp->X_op = O_constant;
3674 exp->X_add_number = i.tm.extension_opcode;
3675 i.tm.extension_opcode = None;
3676}
3677
42164a71
L
3678
3679static int
3680check_hle (void)
3681{
3682 switch (i.tm.opcode_modifier.hleprefixok)
3683 {
3684 default:
3685 abort ();
82c2def5 3686 case HLEPrefixNone:
165de32a
L
3687 as_bad (_("invalid instruction `%s' after `%s'"),
3688 i.tm.name, i.hle_prefix);
42164a71 3689 return 0;
82c2def5 3690 case HLEPrefixLock:
42164a71
L
3691 if (i.prefix[LOCK_PREFIX])
3692 return 1;
165de32a 3693 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3694 return 0;
82c2def5 3695 case HLEPrefixAny:
42164a71 3696 return 1;
82c2def5 3697 case HLEPrefixRelease:
42164a71
L
3698 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3699 {
3700 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3701 i.tm.name);
3702 return 0;
3703 }
3704 if (i.mem_operands == 0
3705 || !operand_type_check (i.types[i.operands - 1], anymem))
3706 {
3707 as_bad (_("memory destination needed for instruction `%s'"
3708 " after `xrelease'"), i.tm.name);
3709 return 0;
3710 }
3711 return 1;
3712 }
3713}
3714
252b5132
RH
3715/* This is the guts of the machine-dependent assembler. LINE points to a
3716 machine dependent instruction. This function is supposed to emit
3717 the frags/bytes it assembles to. */
3718
3719void
65da13b5 3720md_assemble (char *line)
252b5132 3721{
40fb9820 3722 unsigned int j;
83b16ac6 3723 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3724 const insn_template *t;
252b5132 3725
47926f60 3726 /* Initialize globals. */
252b5132
RH
3727 memset (&i, '\0', sizeof (i));
3728 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3729 i.reloc[j] = NO_RELOC;
252b5132
RH
3730 memset (disp_expressions, '\0', sizeof (disp_expressions));
3731 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3732 save_stack_p = save_stack;
252b5132
RH
3733
3734 /* First parse an instruction mnemonic & call i386_operand for the operands.
3735 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3736 start of a (possibly prefixed) mnemonic. */
252b5132 3737
29b0f896
AM
3738 line = parse_insn (line, mnemonic);
3739 if (line == NULL)
3740 return;
83b16ac6 3741 mnem_suffix = i.suffix;
252b5132 3742
29b0f896 3743 line = parse_operands (line, mnemonic);
ee86248c 3744 this_operand = -1;
8325cc63
JB
3745 xfree (i.memop1_string);
3746 i.memop1_string = NULL;
29b0f896
AM
3747 if (line == NULL)
3748 return;
252b5132 3749
29b0f896
AM
3750 /* Now we've parsed the mnemonic into a set of templates, and have the
3751 operands at hand. */
3752
3753 /* All intel opcodes have reversed operands except for "bound" and
3754 "enter". We also don't reverse intersegment "jmp" and "call"
3755 instructions with 2 immediate operands so that the immediate segment
050dfa73 3756 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3757 if (intel_syntax
3758 && i.operands > 1
29b0f896 3759 && (strcmp (mnemonic, "bound") != 0)
30123838 3760 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3761 && !(operand_type_check (i.types[0], imm)
3762 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3763 swap_operands ();
3764
ec56d5c0
JB
3765 /* The order of the immediates should be reversed
3766 for 2 immediates extrq and insertq instructions */
3767 if (i.imm_operands == 2
3768 && (strcmp (mnemonic, "extrq") == 0
3769 || strcmp (mnemonic, "insertq") == 0))
3770 swap_2_operands (0, 1);
3771
29b0f896
AM
3772 if (i.imm_operands)
3773 optimize_imm ();
3774
b300c311
L
3775 /* Don't optimize displacement for movabs since it only takes 64bit
3776 displacement. */
3777 if (i.disp_operands
a501d77e 3778 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3779 && (flag_code != CODE_64BIT
3780 || strcmp (mnemonic, "movabs") != 0))
3781 optimize_disp ();
29b0f896
AM
3782
3783 /* Next, we find a template that matches the given insn,
3784 making sure the overlap of the given operands types is consistent
3785 with the template operand types. */
252b5132 3786
83b16ac6 3787 if (!(t = match_template (mnem_suffix)))
29b0f896 3788 return;
252b5132 3789
7bab8ab5 3790 if (sse_check != check_none
81f8a913 3791 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3792 && (i.tm.cpu_flags.bitfield.cpusse
3793 || i.tm.cpu_flags.bitfield.cpusse2
3794 || i.tm.cpu_flags.bitfield.cpusse3
3795 || i.tm.cpu_flags.bitfield.cpussse3
3796 || i.tm.cpu_flags.bitfield.cpusse4_1
3797 || i.tm.cpu_flags.bitfield.cpusse4_2))
3798 {
7bab8ab5 3799 (sse_check == check_warning
daf50ae7
L
3800 ? as_warn
3801 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3802 }
3803
321fd21e
L
3804 /* Zap movzx and movsx suffix. The suffix has been set from
3805 "word ptr" or "byte ptr" on the source operand in Intel syntax
3806 or extracted from mnemonic in AT&T syntax. But we'll use
3807 the destination register to choose the suffix for encoding. */
3808 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3809 {
321fd21e
L
3810 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3811 there is no suffix, the default will be byte extension. */
3812 if (i.reg_operands != 2
3813 && !i.suffix
7ab9ffdd 3814 && intel_syntax)
321fd21e
L
3815 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3816
3817 i.suffix = 0;
cd61ebfe 3818 }
24eab124 3819
40fb9820 3820 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3821 if (!add_prefix (FWAIT_OPCODE))
3822 return;
252b5132 3823
d5de92cf
L
3824 /* Check if REP prefix is OK. */
3825 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3826 {
3827 as_bad (_("invalid instruction `%s' after `%s'"),
3828 i.tm.name, i.rep_prefix);
3829 return;
3830 }
3831
c1ba0266
L
3832 /* Check for lock without a lockable instruction. Destination operand
3833 must be memory unless it is xchg (0x86). */
c32fa91d
L
3834 if (i.prefix[LOCK_PREFIX]
3835 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3836 || i.mem_operands == 0
3837 || (i.tm.base_opcode != 0x86
3838 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3839 {
3840 as_bad (_("expecting lockable instruction after `lock'"));
3841 return;
3842 }
3843
42164a71 3844 /* Check if HLE prefix is OK. */
165de32a 3845 if (i.hle_prefix && !check_hle ())
42164a71
L
3846 return;
3847
7e8b059b
L
3848 /* Check BND prefix. */
3849 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3850 as_bad (_("expecting valid branch instruction after `bnd'"));
3851
04ef582a 3852 /* Check NOTRACK prefix. */
9fef80d6
L
3853 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3854 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 3855
327e8c42
JB
3856 if (i.tm.cpu_flags.bitfield.cpumpx)
3857 {
3858 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3859 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3860 else if (flag_code != CODE_16BIT
3861 ? i.prefix[ADDR_PREFIX]
3862 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3863 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3864 }
7e8b059b
L
3865
3866 /* Insert BND prefix. */
3867 if (add_bnd_prefix
3868 && i.tm.opcode_modifier.bndprefixok
3869 && !i.prefix[BND_PREFIX])
3870 add_prefix (BND_PREFIX_OPCODE);
3871
29b0f896 3872 /* Check string instruction segment overrides. */
40fb9820 3873 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3874 {
3875 if (!check_string ())
5dd0794d 3876 return;
fc0763e6 3877 i.disp_operands = 0;
29b0f896 3878 }
5dd0794d 3879
29b0f896
AM
3880 if (!process_suffix ())
3881 return;
e413e4e9 3882
bc0844ae
L
3883 /* Update operand types. */
3884 for (j = 0; j < i.operands; j++)
3885 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3886
29b0f896
AM
3887 /* Make still unresolved immediate matches conform to size of immediate
3888 given in i.suffix. */
3889 if (!finalize_imm ())
3890 return;
252b5132 3891
40fb9820 3892 if (i.types[0].bitfield.imm1)
29b0f896 3893 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3894
9afe6eb8
L
3895 /* We only need to check those implicit registers for instructions
3896 with 3 operands or less. */
3897 if (i.operands <= 3)
3898 for (j = 0; j < i.operands; j++)
3899 if (i.types[j].bitfield.inoutportreg
3900 || i.types[j].bitfield.shiftcount
1b54b8d7 3901 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 3902 i.reg_operands--;
40fb9820 3903
c0f3af97
L
3904 /* ImmExt should be processed after SSE2AVX. */
3905 if (!i.tm.opcode_modifier.sse2avx
3906 && i.tm.opcode_modifier.immext)
65da13b5 3907 process_immext ();
252b5132 3908
29b0f896
AM
3909 /* For insns with operands there are more diddles to do to the opcode. */
3910 if (i.operands)
3911 {
3912 if (!process_operands ())
3913 return;
3914 }
40fb9820 3915 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3916 {
3917 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3918 as_warn (_("translating to `%sp'"), i.tm.name);
3919 }
252b5132 3920
9e5e5283
L
3921 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3922 {
3923 if (flag_code == CODE_16BIT)
3924 {
3925 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3926 i.tm.name);
3927 return;
3928 }
c0f3af97 3929
9e5e5283
L
3930 if (i.tm.opcode_modifier.vex)
3931 build_vex_prefix (t);
3932 else
3933 build_evex_prefix ();
3934 }
43234a1e 3935
5dd85c99
SP
3936 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3937 instructions may define INT_OPCODE as well, so avoid this corner
3938 case for those instructions that use MODRM. */
3939 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3940 && !i.tm.opcode_modifier.modrm
3941 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3942 {
3943 i.tm.base_opcode = INT3_OPCODE;
3944 i.imm_operands = 0;
3945 }
252b5132 3946
40fb9820
L
3947 if ((i.tm.opcode_modifier.jump
3948 || i.tm.opcode_modifier.jumpbyte
3949 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3950 && i.op[0].disps->X_op == O_constant)
3951 {
3952 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3953 the absolute address given by the constant. Since ix86 jumps and
3954 calls are pc relative, we need to generate a reloc. */
3955 i.op[0].disps->X_add_symbol = &abs_symbol;
3956 i.op[0].disps->X_op = O_symbol;
3957 }
252b5132 3958
40fb9820 3959 if (i.tm.opcode_modifier.rex64)
161a04f6 3960 i.rex |= REX_W;
252b5132 3961
29b0f896
AM
3962 /* For 8 bit registers we need an empty rex prefix. Also if the
3963 instruction already has a prefix, we need to convert old
3964 registers to new ones. */
773f551c 3965
dc821c5f 3966 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 3967 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 3968 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 3969 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
3970 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
3971 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
3972 && i.rex != 0))
3973 {
3974 int x;
726c5dcd 3975
29b0f896
AM
3976 i.rex |= REX_OPCODE;
3977 for (x = 0; x < 2; x++)
3978 {
3979 /* Look for 8 bit operand that uses old registers. */
dc821c5f 3980 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 3981 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3982 {
29b0f896
AM
3983 /* In case it is "hi" register, give up. */
3984 if (i.op[x].regs->reg_num > 3)
a540244d 3985 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3986 "instruction requiring REX prefix."),
a540244d 3987 register_prefix, i.op[x].regs->reg_name);
773f551c 3988
29b0f896
AM
3989 /* Otherwise it is equivalent to the extended register.
3990 Since the encoding doesn't change this is merely
3991 cosmetic cleanup for debug output. */
3992
3993 i.op[x].regs = i.op[x].regs + 8;
773f551c 3994 }
29b0f896
AM
3995 }
3996 }
773f551c 3997
6b6b6807
L
3998 if (i.rex == 0 && i.rex_encoding)
3999 {
4000 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4001 that uses legacy register. If it is "hi" register, don't add
4002 the REX_OPCODE byte. */
4003 int x;
4004 for (x = 0; x < 2; x++)
4005 if (i.types[x].bitfield.reg
4006 && i.types[x].bitfield.byte
4007 && (i.op[x].regs->reg_flags & RegRex64) == 0
4008 && i.op[x].regs->reg_num > 3)
4009 {
4010 i.rex_encoding = FALSE;
4011 break;
4012 }
4013
4014 if (i.rex_encoding)
4015 i.rex = REX_OPCODE;
4016 }
4017
7ab9ffdd 4018 if (i.rex != 0)
29b0f896
AM
4019 add_prefix (REX_OPCODE | i.rex);
4020
4021 /* We are ready to output the insn. */
4022 output_insn ();
4023}
4024
4025static char *
e3bb37b5 4026parse_insn (char *line, char *mnemonic)
29b0f896
AM
4027{
4028 char *l = line;
4029 char *token_start = l;
4030 char *mnem_p;
5c6af06e 4031 int supported;
d3ce72d0 4032 const insn_template *t;
b6169b20 4033 char *dot_p = NULL;
29b0f896 4034
29b0f896
AM
4035 while (1)
4036 {
4037 mnem_p = mnemonic;
4038 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4039 {
b6169b20
L
4040 if (*mnem_p == '.')
4041 dot_p = mnem_p;
29b0f896
AM
4042 mnem_p++;
4043 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4044 {
29b0f896
AM
4045 as_bad (_("no such instruction: `%s'"), token_start);
4046 return NULL;
4047 }
4048 l++;
4049 }
4050 if (!is_space_char (*l)
4051 && *l != END_OF_INSN
e44823cf
JB
4052 && (intel_syntax
4053 || (*l != PREFIX_SEPARATOR
4054 && *l != ',')))
29b0f896
AM
4055 {
4056 as_bad (_("invalid character %s in mnemonic"),
4057 output_invalid (*l));
4058 return NULL;
4059 }
4060 if (token_start == l)
4061 {
e44823cf 4062 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4063 as_bad (_("expecting prefix; got nothing"));
4064 else
4065 as_bad (_("expecting mnemonic; got nothing"));
4066 return NULL;
4067 }
45288df1 4068
29b0f896 4069 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4070 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4071
29b0f896
AM
4072 if (*l != END_OF_INSN
4073 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4074 && current_templates
40fb9820 4075 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4076 {
c6fb90c8 4077 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4078 {
4079 as_bad ((flag_code != CODE_64BIT
4080 ? _("`%s' is only supported in 64-bit mode")
4081 : _("`%s' is not supported in 64-bit mode")),
4082 current_templates->start->name);
4083 return NULL;
4084 }
29b0f896
AM
4085 /* If we are in 16-bit mode, do not allow addr16 or data16.
4086 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4087 if ((current_templates->start->opcode_modifier.size16
4088 || current_templates->start->opcode_modifier.size32)
29b0f896 4089 && flag_code != CODE_64BIT
40fb9820 4090 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4091 ^ (flag_code == CODE_16BIT)))
4092 {
4093 as_bad (_("redundant %s prefix"),
4094 current_templates->start->name);
4095 return NULL;
45288df1 4096 }
86fa6981 4097 if (current_templates->start->opcode_length == 0)
29b0f896 4098 {
86fa6981
L
4099 /* Handle pseudo prefixes. */
4100 switch (current_templates->start->base_opcode)
4101 {
4102 case 0x0:
4103 /* {disp8} */
4104 i.disp_encoding = disp_encoding_8bit;
4105 break;
4106 case 0x1:
4107 /* {disp32} */
4108 i.disp_encoding = disp_encoding_32bit;
4109 break;
4110 case 0x2:
4111 /* {load} */
4112 i.dir_encoding = dir_encoding_load;
4113 break;
4114 case 0x3:
4115 /* {store} */
4116 i.dir_encoding = dir_encoding_store;
4117 break;
4118 case 0x4:
4119 /* {vex2} */
4120 i.vec_encoding = vex_encoding_vex2;
4121 break;
4122 case 0x5:
4123 /* {vex3} */
4124 i.vec_encoding = vex_encoding_vex3;
4125 break;
4126 case 0x6:
4127 /* {evex} */
4128 i.vec_encoding = vex_encoding_evex;
4129 break;
6b6b6807
L
4130 case 0x7:
4131 /* {rex} */
4132 i.rex_encoding = TRUE;
4133 break;
86fa6981
L
4134 default:
4135 abort ();
4136 }
4137 }
4138 else
4139 {
4140 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4141 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4142 {
4e9ac44a
L
4143 case PREFIX_EXIST:
4144 return NULL;
4145 case PREFIX_DS:
d777820b 4146 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4147 i.notrack_prefix = current_templates->start->name;
4148 break;
4149 case PREFIX_REP:
4150 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4151 i.hle_prefix = current_templates->start->name;
4152 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4153 i.bnd_prefix = current_templates->start->name;
4154 else
4155 i.rep_prefix = current_templates->start->name;
4156 break;
4157 default:
4158 break;
86fa6981 4159 }
29b0f896
AM
4160 }
4161 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4162 token_start = ++l;
4163 }
4164 else
4165 break;
4166 }
45288df1 4167
30a55f88 4168 if (!current_templates)
b6169b20 4169 {
f8a5c266
L
4170 /* Check if we should swap operand or force 32bit displacement in
4171 encoding. */
30a55f88 4172 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4173 i.dir_encoding = dir_encoding_store;
8d63c93e 4174 else if (mnem_p - 3 == dot_p
a501d77e
L
4175 && dot_p[1] == 'd'
4176 && dot_p[2] == '8')
4177 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4178 else if (mnem_p - 4 == dot_p
f8a5c266
L
4179 && dot_p[1] == 'd'
4180 && dot_p[2] == '3'
4181 && dot_p[3] == '2')
a501d77e 4182 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4183 else
4184 goto check_suffix;
4185 mnem_p = dot_p;
4186 *dot_p = '\0';
d3ce72d0 4187 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4188 }
4189
29b0f896
AM
4190 if (!current_templates)
4191 {
b6169b20 4192check_suffix:
29b0f896
AM
4193 /* See if we can get a match by trimming off a suffix. */
4194 switch (mnem_p[-1])
4195 {
4196 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4197 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4198 i.suffix = SHORT_MNEM_SUFFIX;
4199 else
1a0670f3 4200 /* Fall through. */
29b0f896
AM
4201 case BYTE_MNEM_SUFFIX:
4202 case QWORD_MNEM_SUFFIX:
4203 i.suffix = mnem_p[-1];
4204 mnem_p[-1] = '\0';
d3ce72d0
NC
4205 current_templates = (const templates *) hash_find (op_hash,
4206 mnemonic);
29b0f896
AM
4207 break;
4208 case SHORT_MNEM_SUFFIX:
4209 case LONG_MNEM_SUFFIX:
4210 if (!intel_syntax)
4211 {
4212 i.suffix = mnem_p[-1];
4213 mnem_p[-1] = '\0';
d3ce72d0
NC
4214 current_templates = (const templates *) hash_find (op_hash,
4215 mnemonic);
29b0f896
AM
4216 }
4217 break;
252b5132 4218
29b0f896
AM
4219 /* Intel Syntax. */
4220 case 'd':
4221 if (intel_syntax)
4222 {
9306ca4a 4223 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4224 i.suffix = SHORT_MNEM_SUFFIX;
4225 else
4226 i.suffix = LONG_MNEM_SUFFIX;
4227 mnem_p[-1] = '\0';
d3ce72d0
NC
4228 current_templates = (const templates *) hash_find (op_hash,
4229 mnemonic);
29b0f896
AM
4230 }
4231 break;
4232 }
4233 if (!current_templates)
4234 {
4235 as_bad (_("no such instruction: `%s'"), token_start);
4236 return NULL;
4237 }
4238 }
252b5132 4239
40fb9820
L
4240 if (current_templates->start->opcode_modifier.jump
4241 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4242 {
4243 /* Check for a branch hint. We allow ",pt" and ",pn" for
4244 predict taken and predict not taken respectively.
4245 I'm not sure that branch hints actually do anything on loop
4246 and jcxz insns (JumpByte) for current Pentium4 chips. They
4247 may work in the future and it doesn't hurt to accept them
4248 now. */
4249 if (l[0] == ',' && l[1] == 'p')
4250 {
4251 if (l[2] == 't')
4252 {
4253 if (!add_prefix (DS_PREFIX_OPCODE))
4254 return NULL;
4255 l += 3;
4256 }
4257 else if (l[2] == 'n')
4258 {
4259 if (!add_prefix (CS_PREFIX_OPCODE))
4260 return NULL;
4261 l += 3;
4262 }
4263 }
4264 }
4265 /* Any other comma loses. */
4266 if (*l == ',')
4267 {
4268 as_bad (_("invalid character %s in mnemonic"),
4269 output_invalid (*l));
4270 return NULL;
4271 }
252b5132 4272
29b0f896 4273 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4274 supported = 0;
4275 for (t = current_templates->start; t < current_templates->end; ++t)
4276 {
c0f3af97
L
4277 supported |= cpu_flags_match (t);
4278 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 4279 goto skip;
5c6af06e 4280 }
3629bb00 4281
c0f3af97 4282 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
4283 {
4284 as_bad (flag_code == CODE_64BIT
4285 ? _("`%s' is not supported in 64-bit mode")
4286 : _("`%s' is only supported in 64-bit mode"),
4287 current_templates->start->name);
4288 return NULL;
4289 }
c0f3af97 4290 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 4291 {
3629bb00 4292 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 4293 current_templates->start->name,
41aacd83 4294 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
4295 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4296 return NULL;
29b0f896 4297 }
3629bb00
L
4298
4299skip:
4300 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 4301 && (flag_code != CODE_16BIT))
29b0f896
AM
4302 {
4303 as_warn (_("use .code16 to ensure correct addressing mode"));
4304 }
252b5132 4305
29b0f896
AM
4306 return l;
4307}
252b5132 4308
29b0f896 4309static char *
e3bb37b5 4310parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4311{
4312 char *token_start;
3138f287 4313
29b0f896
AM
4314 /* 1 if operand is pending after ','. */
4315 unsigned int expecting_operand = 0;
252b5132 4316
29b0f896
AM
4317 /* Non-zero if operand parens not balanced. */
4318 unsigned int paren_not_balanced;
4319
4320 while (*l != END_OF_INSN)
4321 {
4322 /* Skip optional white space before operand. */
4323 if (is_space_char (*l))
4324 ++l;
d02603dc 4325 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4326 {
4327 as_bad (_("invalid character %s before operand %d"),
4328 output_invalid (*l),
4329 i.operands + 1);
4330 return NULL;
4331 }
d02603dc 4332 token_start = l; /* After white space. */
29b0f896
AM
4333 paren_not_balanced = 0;
4334 while (paren_not_balanced || *l != ',')
4335 {
4336 if (*l == END_OF_INSN)
4337 {
4338 if (paren_not_balanced)
4339 {
4340 if (!intel_syntax)
4341 as_bad (_("unbalanced parenthesis in operand %d."),
4342 i.operands + 1);
4343 else
4344 as_bad (_("unbalanced brackets in operand %d."),
4345 i.operands + 1);
4346 return NULL;
4347 }
4348 else
4349 break; /* we are done */
4350 }
d02603dc 4351 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4352 {
4353 as_bad (_("invalid character %s in operand %d"),
4354 output_invalid (*l),
4355 i.operands + 1);
4356 return NULL;
4357 }
4358 if (!intel_syntax)
4359 {
4360 if (*l == '(')
4361 ++paren_not_balanced;
4362 if (*l == ')')
4363 --paren_not_balanced;
4364 }
4365 else
4366 {
4367 if (*l == '[')
4368 ++paren_not_balanced;
4369 if (*l == ']')
4370 --paren_not_balanced;
4371 }
4372 l++;
4373 }
4374 if (l != token_start)
4375 { /* Yes, we've read in another operand. */
4376 unsigned int operand_ok;
4377 this_operand = i.operands++;
4378 if (i.operands > MAX_OPERANDS)
4379 {
4380 as_bad (_("spurious operands; (%d operands/instruction max)"),
4381 MAX_OPERANDS);
4382 return NULL;
4383 }
9d46ce34 4384 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4385 /* Now parse operand adding info to 'i' as we go along. */
4386 END_STRING_AND_SAVE (l);
4387
4388 if (intel_syntax)
4389 operand_ok =
4390 i386_intel_operand (token_start,
4391 intel_float_operand (mnemonic));
4392 else
a7619375 4393 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4394
4395 RESTORE_END_STRING (l);
4396 if (!operand_ok)
4397 return NULL;
4398 }
4399 else
4400 {
4401 if (expecting_operand)
4402 {
4403 expecting_operand_after_comma:
4404 as_bad (_("expecting operand after ','; got nothing"));
4405 return NULL;
4406 }
4407 if (*l == ',')
4408 {
4409 as_bad (_("expecting operand before ','; got nothing"));
4410 return NULL;
4411 }
4412 }
7f3f1ea2 4413
29b0f896
AM
4414 /* Now *l must be either ',' or END_OF_INSN. */
4415 if (*l == ',')
4416 {
4417 if (*++l == END_OF_INSN)
4418 {
4419 /* Just skip it, if it's \n complain. */
4420 goto expecting_operand_after_comma;
4421 }
4422 expecting_operand = 1;
4423 }
4424 }
4425 return l;
4426}
7f3f1ea2 4427
050dfa73 4428static void
4d456e3d 4429swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4430{
4431 union i386_op temp_op;
40fb9820 4432 i386_operand_type temp_type;
050dfa73 4433 enum bfd_reloc_code_real temp_reloc;
4eed87de 4434
050dfa73
MM
4435 temp_type = i.types[xchg2];
4436 i.types[xchg2] = i.types[xchg1];
4437 i.types[xchg1] = temp_type;
4438 temp_op = i.op[xchg2];
4439 i.op[xchg2] = i.op[xchg1];
4440 i.op[xchg1] = temp_op;
4441 temp_reloc = i.reloc[xchg2];
4442 i.reloc[xchg2] = i.reloc[xchg1];
4443 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4444
4445 if (i.mask)
4446 {
4447 if (i.mask->operand == xchg1)
4448 i.mask->operand = xchg2;
4449 else if (i.mask->operand == xchg2)
4450 i.mask->operand = xchg1;
4451 }
4452 if (i.broadcast)
4453 {
4454 if (i.broadcast->operand == xchg1)
4455 i.broadcast->operand = xchg2;
4456 else if (i.broadcast->operand == xchg2)
4457 i.broadcast->operand = xchg1;
4458 }
4459 if (i.rounding)
4460 {
4461 if (i.rounding->operand == xchg1)
4462 i.rounding->operand = xchg2;
4463 else if (i.rounding->operand == xchg2)
4464 i.rounding->operand = xchg1;
4465 }
050dfa73
MM
4466}
4467
29b0f896 4468static void
e3bb37b5 4469swap_operands (void)
29b0f896 4470{
b7c61d9a 4471 switch (i.operands)
050dfa73 4472 {
c0f3af97 4473 case 5:
b7c61d9a 4474 case 4:
4d456e3d 4475 swap_2_operands (1, i.operands - 2);
1a0670f3 4476 /* Fall through. */
b7c61d9a
L
4477 case 3:
4478 case 2:
4d456e3d 4479 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4480 break;
4481 default:
4482 abort ();
29b0f896 4483 }
29b0f896
AM
4484
4485 if (i.mem_operands == 2)
4486 {
4487 const seg_entry *temp_seg;
4488 temp_seg = i.seg[0];
4489 i.seg[0] = i.seg[1];
4490 i.seg[1] = temp_seg;
4491 }
4492}
252b5132 4493
29b0f896
AM
4494/* Try to ensure constant immediates are represented in the smallest
4495 opcode possible. */
4496static void
e3bb37b5 4497optimize_imm (void)
29b0f896
AM
4498{
4499 char guess_suffix = 0;
4500 int op;
252b5132 4501
29b0f896
AM
4502 if (i.suffix)
4503 guess_suffix = i.suffix;
4504 else if (i.reg_operands)
4505 {
4506 /* Figure out a suffix from the last register operand specified.
4507 We can't do this properly yet, ie. excluding InOutPortReg,
4508 but the following works for instructions with immediates.
4509 In any case, we can't set i.suffix yet. */
4510 for (op = i.operands; --op >= 0;)
dc821c5f 4511 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4512 {
40fb9820
L
4513 guess_suffix = BYTE_MNEM_SUFFIX;
4514 break;
4515 }
dc821c5f 4516 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4517 {
40fb9820
L
4518 guess_suffix = WORD_MNEM_SUFFIX;
4519 break;
4520 }
dc821c5f 4521 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4522 {
4523 guess_suffix = LONG_MNEM_SUFFIX;
4524 break;
4525 }
dc821c5f 4526 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4527 {
4528 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4529 break;
252b5132 4530 }
29b0f896
AM
4531 }
4532 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4533 guess_suffix = WORD_MNEM_SUFFIX;
4534
4535 for (op = i.operands; --op >= 0;)
40fb9820 4536 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4537 {
4538 switch (i.op[op].imms->X_op)
252b5132 4539 {
29b0f896
AM
4540 case O_constant:
4541 /* If a suffix is given, this operand may be shortened. */
4542 switch (guess_suffix)
252b5132 4543 {
29b0f896 4544 case LONG_MNEM_SUFFIX:
40fb9820
L
4545 i.types[op].bitfield.imm32 = 1;
4546 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4547 break;
4548 case WORD_MNEM_SUFFIX:
40fb9820
L
4549 i.types[op].bitfield.imm16 = 1;
4550 i.types[op].bitfield.imm32 = 1;
4551 i.types[op].bitfield.imm32s = 1;
4552 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4553 break;
4554 case BYTE_MNEM_SUFFIX:
40fb9820
L
4555 i.types[op].bitfield.imm8 = 1;
4556 i.types[op].bitfield.imm8s = 1;
4557 i.types[op].bitfield.imm16 = 1;
4558 i.types[op].bitfield.imm32 = 1;
4559 i.types[op].bitfield.imm32s = 1;
4560 i.types[op].bitfield.imm64 = 1;
29b0f896 4561 break;
252b5132 4562 }
252b5132 4563
29b0f896
AM
4564 /* If this operand is at most 16 bits, convert it
4565 to a signed 16 bit number before trying to see
4566 whether it will fit in an even smaller size.
4567 This allows a 16-bit operand such as $0xffe0 to
4568 be recognised as within Imm8S range. */
40fb9820 4569 if ((i.types[op].bitfield.imm16)
29b0f896 4570 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4571 {
29b0f896
AM
4572 i.op[op].imms->X_add_number =
4573 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4574 }
a28def75
L
4575#ifdef BFD64
4576 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4577 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4578 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4579 == 0))
4580 {
4581 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4582 ^ ((offsetT) 1 << 31))
4583 - ((offsetT) 1 << 31));
4584 }
a28def75 4585#endif
40fb9820 4586 i.types[op]
c6fb90c8
L
4587 = operand_type_or (i.types[op],
4588 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4589
29b0f896
AM
4590 /* We must avoid matching of Imm32 templates when 64bit
4591 only immediate is available. */
4592 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4593 i.types[op].bitfield.imm32 = 0;
29b0f896 4594 break;
252b5132 4595
29b0f896
AM
4596 case O_absent:
4597 case O_register:
4598 abort ();
4599
4600 /* Symbols and expressions. */
4601 default:
9cd96992
JB
4602 /* Convert symbolic operand to proper sizes for matching, but don't
4603 prevent matching a set of insns that only supports sizes other
4604 than those matching the insn suffix. */
4605 {
40fb9820 4606 i386_operand_type mask, allowed;
d3ce72d0 4607 const insn_template *t;
9cd96992 4608
0dfbf9d7
L
4609 operand_type_set (&mask, 0);
4610 operand_type_set (&allowed, 0);
40fb9820 4611
4eed87de
AM
4612 for (t = current_templates->start;
4613 t < current_templates->end;
4614 ++t)
c6fb90c8
L
4615 allowed = operand_type_or (allowed,
4616 t->operand_types[op]);
9cd96992
JB
4617 switch (guess_suffix)
4618 {
4619 case QWORD_MNEM_SUFFIX:
40fb9820
L
4620 mask.bitfield.imm64 = 1;
4621 mask.bitfield.imm32s = 1;
9cd96992
JB
4622 break;
4623 case LONG_MNEM_SUFFIX:
40fb9820 4624 mask.bitfield.imm32 = 1;
9cd96992
JB
4625 break;
4626 case WORD_MNEM_SUFFIX:
40fb9820 4627 mask.bitfield.imm16 = 1;
9cd96992
JB
4628 break;
4629 case BYTE_MNEM_SUFFIX:
40fb9820 4630 mask.bitfield.imm8 = 1;
9cd96992
JB
4631 break;
4632 default:
9cd96992
JB
4633 break;
4634 }
c6fb90c8 4635 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4636 if (!operand_type_all_zero (&allowed))
c6fb90c8 4637 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4638 }
29b0f896 4639 break;
252b5132 4640 }
29b0f896
AM
4641 }
4642}
47926f60 4643
29b0f896
AM
4644/* Try to use the smallest displacement type too. */
4645static void
e3bb37b5 4646optimize_disp (void)
29b0f896
AM
4647{
4648 int op;
3e73aa7c 4649
29b0f896 4650 for (op = i.operands; --op >= 0;)
40fb9820 4651 if (operand_type_check (i.types[op], disp))
252b5132 4652 {
b300c311 4653 if (i.op[op].disps->X_op == O_constant)
252b5132 4654 {
91d6fa6a 4655 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4656
40fb9820 4657 if (i.types[op].bitfield.disp16
91d6fa6a 4658 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4659 {
4660 /* If this operand is at most 16 bits, convert
4661 to a signed 16 bit number and don't use 64bit
4662 displacement. */
91d6fa6a 4663 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4664 i.types[op].bitfield.disp64 = 0;
b300c311 4665 }
a28def75
L
4666#ifdef BFD64
4667 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4668 if (i.types[op].bitfield.disp32
91d6fa6a 4669 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4670 {
4671 /* If this operand is at most 32 bits, convert
4672 to a signed 32 bit number and don't use 64bit
4673 displacement. */
91d6fa6a
NC
4674 op_disp &= (((offsetT) 2 << 31) - 1);
4675 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4676 i.types[op].bitfield.disp64 = 0;
b300c311 4677 }
a28def75 4678#endif
91d6fa6a 4679 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4680 {
40fb9820
L
4681 i.types[op].bitfield.disp8 = 0;
4682 i.types[op].bitfield.disp16 = 0;
4683 i.types[op].bitfield.disp32 = 0;
4684 i.types[op].bitfield.disp32s = 0;
4685 i.types[op].bitfield.disp64 = 0;
b300c311
L
4686 i.op[op].disps = 0;
4687 i.disp_operands--;
4688 }
4689 else if (flag_code == CODE_64BIT)
4690 {
91d6fa6a 4691 if (fits_in_signed_long (op_disp))
28a9d8f5 4692 {
40fb9820
L
4693 i.types[op].bitfield.disp64 = 0;
4694 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4695 }
0e1147d9 4696 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4697 && fits_in_unsigned_long (op_disp))
40fb9820 4698 i.types[op].bitfield.disp32 = 1;
b300c311 4699 }
40fb9820
L
4700 if ((i.types[op].bitfield.disp32
4701 || i.types[op].bitfield.disp32s
4702 || i.types[op].bitfield.disp16)
b5014f7a 4703 && fits_in_disp8 (op_disp))
40fb9820 4704 i.types[op].bitfield.disp8 = 1;
252b5132 4705 }
67a4f2b7
AO
4706 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4707 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4708 {
4709 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4710 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4711 i.types[op].bitfield.disp8 = 0;
4712 i.types[op].bitfield.disp16 = 0;
4713 i.types[op].bitfield.disp32 = 0;
4714 i.types[op].bitfield.disp32s = 0;
4715 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4716 }
4717 else
b300c311 4718 /* We only support 64bit displacement on constants. */
40fb9820 4719 i.types[op].bitfield.disp64 = 0;
252b5132 4720 }
29b0f896
AM
4721}
4722
6c30d220
L
4723/* Check if operands are valid for the instruction. */
4724
4725static int
4726check_VecOperands (const insn_template *t)
4727{
43234a1e
L
4728 unsigned int op;
4729
6c30d220
L
4730 /* Without VSIB byte, we can't have a vector register for index. */
4731 if (!t->opcode_modifier.vecsib
4732 && i.index_reg
1b54b8d7
JB
4733 && (i.index_reg->reg_type.bitfield.xmmword
4734 || i.index_reg->reg_type.bitfield.ymmword
4735 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
4736 {
4737 i.error = unsupported_vector_index_register;
4738 return 1;
4739 }
4740
ad8ecc81
MZ
4741 /* Check if default mask is allowed. */
4742 if (t->opcode_modifier.nodefmask
4743 && (!i.mask || i.mask->mask->reg_num == 0))
4744 {
4745 i.error = no_default_mask;
4746 return 1;
4747 }
4748
7bab8ab5
JB
4749 /* For VSIB byte, we need a vector register for index, and all vector
4750 registers must be distinct. */
4751 if (t->opcode_modifier.vecsib)
4752 {
4753 if (!i.index_reg
6c30d220 4754 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 4755 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 4756 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 4757 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 4758 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 4759 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
4760 {
4761 i.error = invalid_vsib_address;
4762 return 1;
4763 }
4764
43234a1e
L
4765 gas_assert (i.reg_operands == 2 || i.mask);
4766 if (i.reg_operands == 2 && !i.mask)
4767 {
1b54b8d7
JB
4768 gas_assert (i.types[0].bitfield.regsimd);
4769 gas_assert (i.types[0].bitfield.xmmword
4770 || i.types[0].bitfield.ymmword);
4771 gas_assert (i.types[2].bitfield.regsimd);
4772 gas_assert (i.types[2].bitfield.xmmword
4773 || i.types[2].bitfield.ymmword);
43234a1e
L
4774 if (operand_check == check_none)
4775 return 0;
4776 if (register_number (i.op[0].regs)
4777 != register_number (i.index_reg)
4778 && register_number (i.op[2].regs)
4779 != register_number (i.index_reg)
4780 && register_number (i.op[0].regs)
4781 != register_number (i.op[2].regs))
4782 return 0;
4783 if (operand_check == check_error)
4784 {
4785 i.error = invalid_vector_register_set;
4786 return 1;
4787 }
4788 as_warn (_("mask, index, and destination registers should be distinct"));
4789 }
8444f82a
MZ
4790 else if (i.reg_operands == 1 && i.mask)
4791 {
1b54b8d7
JB
4792 if (i.types[1].bitfield.regsimd
4793 && (i.types[1].bitfield.xmmword
4794 || i.types[1].bitfield.ymmword
4795 || i.types[1].bitfield.zmmword)
8444f82a
MZ
4796 && (register_number (i.op[1].regs)
4797 == register_number (i.index_reg)))
4798 {
4799 if (operand_check == check_error)
4800 {
4801 i.error = invalid_vector_register_set;
4802 return 1;
4803 }
4804 if (operand_check != check_none)
4805 as_warn (_("index and destination registers should be distinct"));
4806 }
4807 }
43234a1e 4808 }
7bab8ab5 4809
43234a1e
L
4810 /* Check if broadcast is supported by the instruction and is applied
4811 to the memory operand. */
4812 if (i.broadcast)
4813 {
4814 int broadcasted_opnd_size;
4815
4816 /* Check if specified broadcast is supported in this instruction,
4817 and it's applied to memory operand of DWORD or QWORD type,
4818 depending on VecESize. */
4819 if (i.broadcast->type != t->opcode_modifier.broadcast
4820 || !i.types[i.broadcast->operand].bitfield.mem
4821 || (t->opcode_modifier.vecesize == 0
4822 && !i.types[i.broadcast->operand].bitfield.dword
4823 && !i.types[i.broadcast->operand].bitfield.unspecified)
4824 || (t->opcode_modifier.vecesize == 1
4825 && !i.types[i.broadcast->operand].bitfield.qword
4826 && !i.types[i.broadcast->operand].bitfield.unspecified))
4827 goto bad_broadcast;
4828
4829 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4830 if (i.broadcast->type == BROADCAST_1TO16)
4831 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4832 else if (i.broadcast->type == BROADCAST_1TO8)
4833 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
4834 else if (i.broadcast->type == BROADCAST_1TO4)
4835 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4836 else if (i.broadcast->type == BROADCAST_1TO2)
4837 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
4838 else
4839 goto bad_broadcast;
4840
4841 if ((broadcasted_opnd_size == 256
4842 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4843 || (broadcasted_opnd_size == 512
4844 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4845 {
4846 bad_broadcast:
4847 i.error = unsupported_broadcast;
4848 return 1;
4849 }
4850 }
4851 /* If broadcast is supported in this instruction, we need to check if
4852 operand of one-element size isn't specified without broadcast. */
4853 else if (t->opcode_modifier.broadcast && i.mem_operands)
4854 {
4855 /* Find memory operand. */
4856 for (op = 0; op < i.operands; op++)
4857 if (operand_type_check (i.types[op], anymem))
4858 break;
4859 gas_assert (op < i.operands);
4860 /* Check size of the memory operand. */
4861 if ((t->opcode_modifier.vecesize == 0
4862 && i.types[op].bitfield.dword)
4863 || (t->opcode_modifier.vecesize == 1
4864 && i.types[op].bitfield.qword))
4865 {
4866 i.error = broadcast_needed;
4867 return 1;
4868 }
4869 }
4870
4871 /* Check if requested masking is supported. */
4872 if (i.mask
4873 && (!t->opcode_modifier.masking
4874 || (i.mask->zeroing
4875 && t->opcode_modifier.masking == MERGING_MASKING)))
4876 {
4877 i.error = unsupported_masking;
4878 return 1;
4879 }
4880
4881 /* Check if masking is applied to dest operand. */
4882 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4883 {
4884 i.error = mask_not_on_destination;
4885 return 1;
4886 }
4887
43234a1e
L
4888 /* Check RC/SAE. */
4889 if (i.rounding)
4890 {
4891 if ((i.rounding->type != saeonly
4892 && !t->opcode_modifier.staticrounding)
4893 || (i.rounding->type == saeonly
4894 && (t->opcode_modifier.staticrounding
4895 || !t->opcode_modifier.sae)))
4896 {
4897 i.error = unsupported_rc_sae;
4898 return 1;
4899 }
4900 /* If the instruction has several immediate operands and one of
4901 them is rounding, the rounding operand should be the last
4902 immediate operand. */
4903 if (i.imm_operands > 1
4904 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4905 {
43234a1e 4906 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4907 return 1;
4908 }
6c30d220
L
4909 }
4910
43234a1e 4911 /* Check vector Disp8 operand. */
b5014f7a
JB
4912 if (t->opcode_modifier.disp8memshift
4913 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
4914 {
4915 if (i.broadcast)
4916 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4917 else
4918 i.memshift = t->opcode_modifier.disp8memshift;
4919
4920 for (op = 0; op < i.operands; op++)
4921 if (operand_type_check (i.types[op], disp)
4922 && i.op[op].disps->X_op == O_constant)
4923 {
b5014f7a 4924 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 4925 {
b5014f7a
JB
4926 i.types[op].bitfield.disp8 = 1;
4927 return 0;
43234a1e 4928 }
b5014f7a 4929 i.types[op].bitfield.disp8 = 0;
43234a1e
L
4930 }
4931 }
b5014f7a
JB
4932
4933 i.memshift = 0;
43234a1e 4934
6c30d220
L
4935 return 0;
4936}
4937
43f3e2ee 4938/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4939 operand types. */
4940
4941static int
4942VEX_check_operands (const insn_template *t)
4943{
86fa6981 4944 if (i.vec_encoding == vex_encoding_evex)
43234a1e 4945 {
86fa6981
L
4946 /* This instruction must be encoded with EVEX prefix. */
4947 if (!t->opcode_modifier.evex)
4948 {
4949 i.error = unsupported;
4950 return 1;
4951 }
4952 return 0;
43234a1e
L
4953 }
4954
a683cc34 4955 if (!t->opcode_modifier.vex)
86fa6981
L
4956 {
4957 /* This instruction template doesn't have VEX prefix. */
4958 if (i.vec_encoding != vex_encoding_default)
4959 {
4960 i.error = unsupported;
4961 return 1;
4962 }
4963 return 0;
4964 }
a683cc34
SP
4965
4966 /* Only check VEX_Imm4, which must be the first operand. */
4967 if (t->operand_types[0].bitfield.vec_imm4)
4968 {
4969 if (i.op[0].imms->X_op != O_constant
4970 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4971 {
a65babc9 4972 i.error = bad_imm4;
891edac4
L
4973 return 1;
4974 }
a683cc34
SP
4975
4976 /* Turn off Imm8 so that update_imm won't complain. */
4977 i.types[0] = vec_imm4;
4978 }
4979
4980 return 0;
4981}
4982
d3ce72d0 4983static const insn_template *
83b16ac6 4984match_template (char mnem_suffix)
29b0f896
AM
4985{
4986 /* Points to template once we've found it. */
d3ce72d0 4987 const insn_template *t;
40fb9820 4988 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4989 i386_operand_type overlap4;
29b0f896 4990 unsigned int found_reverse_match;
83b16ac6 4991 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 4992 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4993 int addr_prefix_disp;
a5c311ca 4994 unsigned int j;
3629bb00 4995 unsigned int found_cpu_match;
45664ddb 4996 unsigned int check_register;
5614d22c 4997 enum i386_error specific_error = 0;
29b0f896 4998
c0f3af97
L
4999#if MAX_OPERANDS != 5
5000# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5001#endif
5002
29b0f896 5003 found_reverse_match = 0;
539e75ad 5004 addr_prefix_disp = -1;
40fb9820
L
5005
5006 memset (&suffix_check, 0, sizeof (suffix_check));
5007 if (i.suffix == BYTE_MNEM_SUFFIX)
5008 suffix_check.no_bsuf = 1;
5009 else if (i.suffix == WORD_MNEM_SUFFIX)
5010 suffix_check.no_wsuf = 1;
5011 else if (i.suffix == SHORT_MNEM_SUFFIX)
5012 suffix_check.no_ssuf = 1;
5013 else if (i.suffix == LONG_MNEM_SUFFIX)
5014 suffix_check.no_lsuf = 1;
5015 else if (i.suffix == QWORD_MNEM_SUFFIX)
5016 suffix_check.no_qsuf = 1;
5017 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5018 suffix_check.no_ldsuf = 1;
29b0f896 5019
83b16ac6
JB
5020 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5021 if (intel_syntax)
5022 {
5023 switch (mnem_suffix)
5024 {
5025 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5026 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5027 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5028 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5029 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5030 }
5031 }
5032
01559ecc
L
5033 /* Must have right number of operands. */
5034 i.error = number_of_operands_mismatch;
5035
45aa61fe 5036 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5037 {
539e75ad
L
5038 addr_prefix_disp = -1;
5039
29b0f896
AM
5040 if (i.operands != t->operands)
5041 continue;
5042
50aecf8c 5043 /* Check processor support. */
a65babc9 5044 i.error = unsupported;
c0f3af97
L
5045 found_cpu_match = (cpu_flags_match (t)
5046 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5047 if (!found_cpu_match)
5048 continue;
5049
e1d4d893 5050 /* Check old gcc support. */
a65babc9 5051 i.error = old_gcc_only;
e1d4d893
L
5052 if (!old_gcc && t->opcode_modifier.oldgcc)
5053 continue;
5054
5055 /* Check AT&T mnemonic. */
a65babc9 5056 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5057 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5058 continue;
5059
e92bae62 5060 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5061 i.error = unsupported_syntax;
5c07affc 5062 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5063 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5064 || (intel64 && t->opcode_modifier.amd64)
5065 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5066 continue;
5067
20592a94 5068 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5069 i.error = invalid_instruction_suffix;
567e4e96
L
5070 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5071 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5072 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5073 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5074 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5075 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5076 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5077 continue;
83b16ac6
JB
5078 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5079 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5080 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5081 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5082 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5083 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5084 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5085 continue;
29b0f896 5086
5c07affc 5087 if (!operand_size_match (t))
7d5e4556 5088 continue;
539e75ad 5089
5c07affc
L
5090 for (j = 0; j < MAX_OPERANDS; j++)
5091 operand_types[j] = t->operand_types[j];
5092
45aa61fe
AM
5093 /* In general, don't allow 64-bit operands in 32-bit mode. */
5094 if (i.suffix == QWORD_MNEM_SUFFIX
5095 && flag_code != CODE_64BIT
5096 && (intel_syntax
40fb9820 5097 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5098 && !intel_float_operand (t->name))
5099 : intel_float_operand (t->name) != 2)
40fb9820 5100 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5101 && !operand_types[0].bitfield.regsimd)
40fb9820 5102 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5103 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5104 && (t->base_opcode != 0x0fc7
5105 || t->extension_opcode != 1 /* cmpxchg8b */))
5106 continue;
5107
192dc9c6
JB
5108 /* In general, don't allow 32-bit operands on pre-386. */
5109 else if (i.suffix == LONG_MNEM_SUFFIX
5110 && !cpu_arch_flags.bitfield.cpui386
5111 && (intel_syntax
5112 ? (!t->opcode_modifier.ignoresize
5113 && !intel_float_operand (t->name))
5114 : intel_float_operand (t->name) != 2)
5115 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5116 && !operand_types[0].bitfield.regsimd)
192dc9c6 5117 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5118 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5119 continue;
5120
29b0f896 5121 /* Do not verify operands when there are none. */
50aecf8c 5122 else
29b0f896 5123 {
c6fb90c8 5124 if (!t->operands)
2dbab7d5
L
5125 /* We've found a match; break out of loop. */
5126 break;
29b0f896 5127 }
252b5132 5128
539e75ad
L
5129 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5130 into Disp32/Disp16/Disp32 operand. */
5131 if (i.prefix[ADDR_PREFIX] != 0)
5132 {
40fb9820 5133 /* There should be only one Disp operand. */
539e75ad
L
5134 switch (flag_code)
5135 {
5136 case CODE_16BIT:
40fb9820
L
5137 for (j = 0; j < MAX_OPERANDS; j++)
5138 {
5139 if (operand_types[j].bitfield.disp16)
5140 {
5141 addr_prefix_disp = j;
5142 operand_types[j].bitfield.disp32 = 1;
5143 operand_types[j].bitfield.disp16 = 0;
5144 break;
5145 }
5146 }
539e75ad
L
5147 break;
5148 case CODE_32BIT:
40fb9820
L
5149 for (j = 0; j < MAX_OPERANDS; j++)
5150 {
5151 if (operand_types[j].bitfield.disp32)
5152 {
5153 addr_prefix_disp = j;
5154 operand_types[j].bitfield.disp32 = 0;
5155 operand_types[j].bitfield.disp16 = 1;
5156 break;
5157 }
5158 }
539e75ad
L
5159 break;
5160 case CODE_64BIT:
40fb9820
L
5161 for (j = 0; j < MAX_OPERANDS; j++)
5162 {
5163 if (operand_types[j].bitfield.disp64)
5164 {
5165 addr_prefix_disp = j;
5166 operand_types[j].bitfield.disp64 = 0;
5167 operand_types[j].bitfield.disp32 = 1;
5168 break;
5169 }
5170 }
539e75ad
L
5171 break;
5172 }
539e75ad
L
5173 }
5174
02a86693
L
5175 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5176 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5177 continue;
5178
56ffb741
L
5179 /* We check register size if needed. */
5180 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 5181 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5182 switch (t->operands)
5183 {
5184 case 1:
40fb9820 5185 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5186 continue;
5187 break;
5188 case 2:
33eaf5de 5189 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5190 only in 32bit mode and we can use opcode 0x90. In 64bit
5191 mode, we can't use 0x90 for xchg %eax, %eax since it should
5192 zero-extend %eax to %rax. */
5193 if (flag_code == CODE_64BIT
5194 && t->base_opcode == 0x90
0dfbf9d7
L
5195 && operand_type_equal (&i.types [0], &acc32)
5196 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5197 continue;
86fa6981
L
5198 /* If we want store form, we reverse direction of operands. */
5199 if (i.dir_encoding == dir_encoding_store
5200 && t->opcode_modifier.d)
5201 goto check_reverse;
1a0670f3 5202 /* Fall through. */
b6169b20 5203
29b0f896 5204 case 3:
86fa6981
L
5205 /* If we want store form, we skip the current load. */
5206 if (i.dir_encoding == dir_encoding_store
5207 && i.mem_operands == 0
5208 && t->opcode_modifier.load)
fa99fab2 5209 continue;
1a0670f3 5210 /* Fall through. */
f48ff2ae 5211 case 4:
c0f3af97 5212 case 5:
c6fb90c8 5213 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5214 if (!operand_type_match (overlap0, i.types[0])
5215 || !operand_type_match (overlap1, i.types[1])
45664ddb 5216 || (check_register
dc821c5f 5217 && !operand_type_register_match (i.types[0],
40fb9820 5218 operand_types[0],
dc821c5f 5219 i.types[1],
40fb9820 5220 operand_types[1])))
29b0f896
AM
5221 {
5222 /* Check if other direction is valid ... */
40fb9820 5223 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
5224 continue;
5225
b6169b20 5226check_reverse:
29b0f896 5227 /* Try reversing direction of operands. */
c6fb90c8
L
5228 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5229 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5230 if (!operand_type_match (overlap0, i.types[0])
5231 || !operand_type_match (overlap1, i.types[1])
45664ddb 5232 || (check_register
dc821c5f 5233 && !operand_type_register_match (i.types[0],
45664ddb 5234 operand_types[1],
45664ddb
L
5235 i.types[1],
5236 operand_types[0])))
29b0f896
AM
5237 {
5238 /* Does not match either direction. */
5239 continue;
5240 }
5241 /* found_reverse_match holds which of D or FloatDR
5242 we've found. */
40fb9820 5243 if (t->opcode_modifier.d)
8a2ed489 5244 found_reverse_match = Opcode_D;
40fb9820 5245 else if (t->opcode_modifier.floatd)
8a2ed489
L
5246 found_reverse_match = Opcode_FloatD;
5247 else
5248 found_reverse_match = 0;
40fb9820 5249 if (t->opcode_modifier.floatr)
8a2ed489 5250 found_reverse_match |= Opcode_FloatR;
29b0f896 5251 }
f48ff2ae 5252 else
29b0f896 5253 {
f48ff2ae 5254 /* Found a forward 2 operand match here. */
d1cbb4db
L
5255 switch (t->operands)
5256 {
c0f3af97
L
5257 case 5:
5258 overlap4 = operand_type_and (i.types[4],
5259 operand_types[4]);
1a0670f3 5260 /* Fall through. */
d1cbb4db 5261 case 4:
c6fb90c8
L
5262 overlap3 = operand_type_and (i.types[3],
5263 operand_types[3]);
1a0670f3 5264 /* Fall through. */
d1cbb4db 5265 case 3:
c6fb90c8
L
5266 overlap2 = operand_type_and (i.types[2],
5267 operand_types[2]);
d1cbb4db
L
5268 break;
5269 }
29b0f896 5270
f48ff2ae
L
5271 switch (t->operands)
5272 {
c0f3af97
L
5273 case 5:
5274 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5275 || !operand_type_register_match (i.types[3],
c0f3af97 5276 operand_types[3],
c0f3af97
L
5277 i.types[4],
5278 operand_types[4]))
5279 continue;
1a0670f3 5280 /* Fall through. */
f48ff2ae 5281 case 4:
40fb9820 5282 if (!operand_type_match (overlap3, i.types[3])
45664ddb 5283 || (check_register
dc821c5f 5284 && !operand_type_register_match (i.types[2],
45664ddb 5285 operand_types[2],
45664ddb
L
5286 i.types[3],
5287 operand_types[3])))
f48ff2ae 5288 continue;
1a0670f3 5289 /* Fall through. */
f48ff2ae
L
5290 case 3:
5291 /* Here we make use of the fact that there are no
5292 reverse match 3 operand instructions, and all 3
5293 operand instructions only need to be checked for
5294 register consistency between operands 2 and 3. */
40fb9820 5295 if (!operand_type_match (overlap2, i.types[2])
45664ddb 5296 || (check_register
dc821c5f 5297 && !operand_type_register_match (i.types[1],
45664ddb 5298 operand_types[1],
45664ddb
L
5299 i.types[2],
5300 operand_types[2])))
f48ff2ae
L
5301 continue;
5302 break;
5303 }
29b0f896 5304 }
f48ff2ae 5305 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5306 slip through to break. */
5307 }
3629bb00 5308 if (!found_cpu_match)
29b0f896
AM
5309 {
5310 found_reverse_match = 0;
5311 continue;
5312 }
c0f3af97 5313
5614d22c
JB
5314 /* Check if vector and VEX operands are valid. */
5315 if (check_VecOperands (t) || VEX_check_operands (t))
5316 {
5317 specific_error = i.error;
5318 continue;
5319 }
a683cc34 5320
29b0f896
AM
5321 /* We've found a match; break out of loop. */
5322 break;
5323 }
5324
5325 if (t == current_templates->end)
5326 {
5327 /* We found no match. */
a65babc9 5328 const char *err_msg;
5614d22c 5329 switch (specific_error ? specific_error : i.error)
a65babc9
L
5330 {
5331 default:
5332 abort ();
86e026a4 5333 case operand_size_mismatch:
a65babc9
L
5334 err_msg = _("operand size mismatch");
5335 break;
5336 case operand_type_mismatch:
5337 err_msg = _("operand type mismatch");
5338 break;
5339 case register_type_mismatch:
5340 err_msg = _("register type mismatch");
5341 break;
5342 case number_of_operands_mismatch:
5343 err_msg = _("number of operands mismatch");
5344 break;
5345 case invalid_instruction_suffix:
5346 err_msg = _("invalid instruction suffix");
5347 break;
5348 case bad_imm4:
4a2608e3 5349 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5350 break;
5351 case old_gcc_only:
5352 err_msg = _("only supported with old gcc");
5353 break;
5354 case unsupported_with_intel_mnemonic:
5355 err_msg = _("unsupported with Intel mnemonic");
5356 break;
5357 case unsupported_syntax:
5358 err_msg = _("unsupported syntax");
5359 break;
5360 case unsupported:
35262a23 5361 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5362 current_templates->start->name);
5363 return NULL;
6c30d220
L
5364 case invalid_vsib_address:
5365 err_msg = _("invalid VSIB address");
5366 break;
7bab8ab5
JB
5367 case invalid_vector_register_set:
5368 err_msg = _("mask, index, and destination registers must be distinct");
5369 break;
6c30d220
L
5370 case unsupported_vector_index_register:
5371 err_msg = _("unsupported vector index register");
5372 break;
43234a1e
L
5373 case unsupported_broadcast:
5374 err_msg = _("unsupported broadcast");
5375 break;
5376 case broadcast_not_on_src_operand:
5377 err_msg = _("broadcast not on source memory operand");
5378 break;
5379 case broadcast_needed:
5380 err_msg = _("broadcast is needed for operand of such type");
5381 break;
5382 case unsupported_masking:
5383 err_msg = _("unsupported masking");
5384 break;
5385 case mask_not_on_destination:
5386 err_msg = _("mask not on destination operand");
5387 break;
5388 case no_default_mask:
5389 err_msg = _("default mask isn't allowed");
5390 break;
5391 case unsupported_rc_sae:
5392 err_msg = _("unsupported static rounding/sae");
5393 break;
5394 case rc_sae_operand_not_last_imm:
5395 if (intel_syntax)
5396 err_msg = _("RC/SAE operand must precede immediate operands");
5397 else
5398 err_msg = _("RC/SAE operand must follow immediate operands");
5399 break;
5400 case invalid_register_operand:
5401 err_msg = _("invalid register operand");
5402 break;
a65babc9
L
5403 }
5404 as_bad (_("%s for `%s'"), err_msg,
891edac4 5405 current_templates->start->name);
fa99fab2 5406 return NULL;
29b0f896 5407 }
252b5132 5408
29b0f896
AM
5409 if (!quiet_warnings)
5410 {
5411 if (!intel_syntax
40fb9820
L
5412 && (i.types[0].bitfield.jumpabsolute
5413 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5414 {
5415 as_warn (_("indirect %s without `*'"), t->name);
5416 }
5417
40fb9820
L
5418 if (t->opcode_modifier.isprefix
5419 && t->opcode_modifier.ignoresize)
29b0f896
AM
5420 {
5421 /* Warn them that a data or address size prefix doesn't
5422 affect assembly of the next line of code. */
5423 as_warn (_("stand-alone `%s' prefix"), t->name);
5424 }
5425 }
5426
5427 /* Copy the template we found. */
5428 i.tm = *t;
539e75ad
L
5429
5430 if (addr_prefix_disp != -1)
5431 i.tm.operand_types[addr_prefix_disp]
5432 = operand_types[addr_prefix_disp];
5433
29b0f896
AM
5434 if (found_reverse_match)
5435 {
5436 /* If we found a reverse match we must alter the opcode
5437 direction bit. found_reverse_match holds bits to change
5438 (different for int & float insns). */
5439
5440 i.tm.base_opcode ^= found_reverse_match;
5441
539e75ad
L
5442 i.tm.operand_types[0] = operand_types[1];
5443 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5444 }
5445
fa99fab2 5446 return t;
29b0f896
AM
5447}
5448
5449static int
e3bb37b5 5450check_string (void)
29b0f896 5451{
40fb9820
L
5452 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5453 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5454 {
5455 if (i.seg[0] != NULL && i.seg[0] != &es)
5456 {
a87af027 5457 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5458 i.tm.name,
a87af027
JB
5459 mem_op + 1,
5460 register_prefix);
29b0f896
AM
5461 return 0;
5462 }
5463 /* There's only ever one segment override allowed per instruction.
5464 This instruction possibly has a legal segment override on the
5465 second operand, so copy the segment to where non-string
5466 instructions store it, allowing common code. */
5467 i.seg[0] = i.seg[1];
5468 }
40fb9820 5469 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5470 {
5471 if (i.seg[1] != NULL && i.seg[1] != &es)
5472 {
a87af027 5473 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5474 i.tm.name,
a87af027
JB
5475 mem_op + 2,
5476 register_prefix);
29b0f896
AM
5477 return 0;
5478 }
5479 }
5480 return 1;
5481}
5482
5483static int
543613e9 5484process_suffix (void)
29b0f896
AM
5485{
5486 /* If matched instruction specifies an explicit instruction mnemonic
5487 suffix, use it. */
40fb9820
L
5488 if (i.tm.opcode_modifier.size16)
5489 i.suffix = WORD_MNEM_SUFFIX;
5490 else if (i.tm.opcode_modifier.size32)
5491 i.suffix = LONG_MNEM_SUFFIX;
5492 else if (i.tm.opcode_modifier.size64)
5493 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5494 else if (i.reg_operands)
5495 {
5496 /* If there's no instruction mnemonic suffix we try to invent one
5497 based on register operands. */
5498 if (!i.suffix)
5499 {
5500 /* We take i.suffix from the last register operand specified,
5501 Destination register type is more significant than source
381d071f
L
5502 register type. crc32 in SSE4.2 prefers source register
5503 type. */
5504 if (i.tm.base_opcode == 0xf20f38f1)
5505 {
dc821c5f 5506 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5507 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5508 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5509 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5510 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5511 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5512 }
9344ff29 5513 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5514 {
dc821c5f 5515 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5516 i.suffix = BYTE_MNEM_SUFFIX;
5517 }
381d071f
L
5518
5519 if (!i.suffix)
5520 {
5521 int op;
5522
20592a94
L
5523 if (i.tm.base_opcode == 0xf20f38f1
5524 || i.tm.base_opcode == 0xf20f38f0)
5525 {
5526 /* We have to know the operand size for crc32. */
5527 as_bad (_("ambiguous memory operand size for `%s`"),
5528 i.tm.name);
5529 return 0;
5530 }
5531
381d071f 5532 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5533 if (!i.tm.operand_types[op].bitfield.inoutportreg
5534 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5535 {
dc821c5f 5536 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
40fb9820
L
5537 {
5538 i.suffix = BYTE_MNEM_SUFFIX;
5539 break;
5540 }
dc821c5f 5541 if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
40fb9820
L
5542 {
5543 i.suffix = WORD_MNEM_SUFFIX;
5544 break;
5545 }
dc821c5f 5546 if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5547 {
5548 i.suffix = LONG_MNEM_SUFFIX;
5549 break;
5550 }
dc821c5f 5551 if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5552 {
5553 i.suffix = QWORD_MNEM_SUFFIX;
5554 break;
5555 }
381d071f
L
5556 }
5557 }
29b0f896
AM
5558 }
5559 else if (i.suffix == BYTE_MNEM_SUFFIX)
5560 {
2eb952a4
L
5561 if (intel_syntax
5562 && i.tm.opcode_modifier.ignoresize
5563 && i.tm.opcode_modifier.no_bsuf)
5564 i.suffix = 0;
5565 else if (!check_byte_reg ())
29b0f896
AM
5566 return 0;
5567 }
5568 else if (i.suffix == LONG_MNEM_SUFFIX)
5569 {
2eb952a4
L
5570 if (intel_syntax
5571 && i.tm.opcode_modifier.ignoresize
5572 && i.tm.opcode_modifier.no_lsuf)
5573 i.suffix = 0;
5574 else if (!check_long_reg ())
29b0f896
AM
5575 return 0;
5576 }
5577 else if (i.suffix == QWORD_MNEM_SUFFIX)
5578 {
955e1e6a
L
5579 if (intel_syntax
5580 && i.tm.opcode_modifier.ignoresize
5581 && i.tm.opcode_modifier.no_qsuf)
5582 i.suffix = 0;
5583 else if (!check_qword_reg ())
29b0f896
AM
5584 return 0;
5585 }
5586 else if (i.suffix == WORD_MNEM_SUFFIX)
5587 {
2eb952a4
L
5588 if (intel_syntax
5589 && i.tm.opcode_modifier.ignoresize
5590 && i.tm.opcode_modifier.no_wsuf)
5591 i.suffix = 0;
5592 else if (!check_word_reg ())
29b0f896
AM
5593 return 0;
5594 }
c0f3af97 5595 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5596 || i.suffix == YMMWORD_MNEM_SUFFIX
5597 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5598 {
43234a1e 5599 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5600 should check if it is a valid suffix. */
5601 }
40fb9820 5602 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5603 /* Do nothing if the instruction is going to ignore the prefix. */
5604 ;
5605 else
5606 abort ();
5607 }
40fb9820 5608 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5609 && !i.suffix
5610 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5611 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5612 {
5613 i.suffix = stackop_size;
5614 }
9306ca4a
JB
5615 else if (intel_syntax
5616 && !i.suffix
40fb9820
L
5617 && (i.tm.operand_types[0].bitfield.jumpabsolute
5618 || i.tm.opcode_modifier.jumpbyte
5619 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5620 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5621 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5622 {
5623 switch (flag_code)
5624 {
5625 case CODE_64BIT:
40fb9820 5626 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5627 {
5628 i.suffix = QWORD_MNEM_SUFFIX;
5629 break;
5630 }
1a0670f3 5631 /* Fall through. */
9306ca4a 5632 case CODE_32BIT:
40fb9820 5633 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5634 i.suffix = LONG_MNEM_SUFFIX;
5635 break;
5636 case CODE_16BIT:
40fb9820 5637 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5638 i.suffix = WORD_MNEM_SUFFIX;
5639 break;
5640 }
5641 }
252b5132 5642
9306ca4a 5643 if (!i.suffix)
29b0f896 5644 {
9306ca4a
JB
5645 if (!intel_syntax)
5646 {
40fb9820 5647 if (i.tm.opcode_modifier.w)
9306ca4a 5648 {
4eed87de
AM
5649 as_bad (_("no instruction mnemonic suffix given and "
5650 "no register operands; can't size instruction"));
9306ca4a
JB
5651 return 0;
5652 }
5653 }
5654 else
5655 {
40fb9820 5656 unsigned int suffixes;
7ab9ffdd 5657
40fb9820
L
5658 suffixes = !i.tm.opcode_modifier.no_bsuf;
5659 if (!i.tm.opcode_modifier.no_wsuf)
5660 suffixes |= 1 << 1;
5661 if (!i.tm.opcode_modifier.no_lsuf)
5662 suffixes |= 1 << 2;
fc4adea1 5663 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5664 suffixes |= 1 << 3;
5665 if (!i.tm.opcode_modifier.no_ssuf)
5666 suffixes |= 1 << 4;
c2b9da16 5667 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5668 suffixes |= 1 << 5;
5669
5670 /* There are more than suffix matches. */
5671 if (i.tm.opcode_modifier.w
9306ca4a 5672 || ((suffixes & (suffixes - 1))
40fb9820
L
5673 && !i.tm.opcode_modifier.defaultsize
5674 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5675 {
5676 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5677 return 0;
5678 }
5679 }
29b0f896 5680 }
252b5132 5681
9306ca4a
JB
5682 /* Change the opcode based on the operand size given by i.suffix;
5683 We don't need to change things for byte insns. */
5684
582d5edd
L
5685 if (i.suffix
5686 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5687 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5688 && i.suffix != YMMWORD_MNEM_SUFFIX
5689 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5690 {
5691 /* It's not a byte, select word/dword operation. */
40fb9820 5692 if (i.tm.opcode_modifier.w)
29b0f896 5693 {
40fb9820 5694 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5695 i.tm.base_opcode |= 8;
5696 else
5697 i.tm.base_opcode |= 1;
5698 }
0f3f3d8b 5699
29b0f896
AM
5700 /* Now select between word & dword operations via the operand
5701 size prefix, except for instructions that will ignore this
5702 prefix anyway. */
ca61edf2 5703 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5704 {
ca61edf2
L
5705 /* The address size override prefix changes the size of the
5706 first operand. */
40fb9820 5707 if ((flag_code == CODE_32BIT
dc821c5f 5708 && i.op->regs[0].reg_type.bitfield.word)
40fb9820 5709 || (flag_code != CODE_32BIT
dc821c5f 5710 && i.op->regs[0].reg_type.bitfield.dword))
cb712a9e
L
5711 if (!add_prefix (ADDR_PREFIX_OPCODE))
5712 return 0;
5713 }
5714 else if (i.suffix != QWORD_MNEM_SUFFIX
5715 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5716 && !i.tm.opcode_modifier.ignoresize
5717 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5718 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5719 || (flag_code == CODE_64BIT
40fb9820 5720 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5721 {
5722 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5723
40fb9820 5724 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5725 prefix = ADDR_PREFIX_OPCODE;
252b5132 5726
29b0f896
AM
5727 if (!add_prefix (prefix))
5728 return 0;
24eab124 5729 }
252b5132 5730
29b0f896
AM
5731 /* Set mode64 for an operand. */
5732 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5733 && flag_code == CODE_64BIT
40fb9820 5734 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5735 {
5736 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5737 need rex64. cmpxchg8b is also a special case. */
5738 if (! (i.operands == 2
5739 && i.tm.base_opcode == 0x90
5740 && i.tm.extension_opcode == None
0dfbf9d7
L
5741 && operand_type_equal (&i.types [0], &acc64)
5742 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5743 && ! (i.operands == 1
5744 && i.tm.base_opcode == 0xfc7
5745 && i.tm.extension_opcode == 1
40fb9820
L
5746 && !operand_type_check (i.types [0], reg)
5747 && operand_type_check (i.types [0], anymem)))
f6bee062 5748 i.rex |= REX_W;
46e883c5 5749 }
3e73aa7c 5750
29b0f896
AM
5751 /* Size floating point instruction. */
5752 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5753 if (i.tm.opcode_modifier.floatmf)
543613e9 5754 i.tm.base_opcode ^= 4;
29b0f896 5755 }
7ecd2f8b 5756
29b0f896
AM
5757 return 1;
5758}
3e73aa7c 5759
29b0f896 5760static int
543613e9 5761check_byte_reg (void)
29b0f896
AM
5762{
5763 int op;
543613e9 5764
29b0f896
AM
5765 for (op = i.operands; --op >= 0;)
5766 {
dc821c5f
JB
5767 /* Skip non-register operands. */
5768 if (!i.types[op].bitfield.reg)
5769 continue;
5770
29b0f896
AM
5771 /* If this is an eight bit register, it's OK. If it's the 16 or
5772 32 bit version of an eight bit register, we will just use the
5773 low portion, and that's OK too. */
dc821c5f 5774 if (i.types[op].bitfield.byte)
29b0f896
AM
5775 continue;
5776
5a819eb9
JB
5777 /* I/O port address operands are OK too. */
5778 if (i.tm.operand_types[op].bitfield.inoutportreg)
5779 continue;
5780
9344ff29
L
5781 /* crc32 doesn't generate this warning. */
5782 if (i.tm.base_opcode == 0xf20f38f0)
5783 continue;
5784
dc821c5f
JB
5785 if ((i.types[op].bitfield.word
5786 || i.types[op].bitfield.dword
5787 || i.types[op].bitfield.qword)
5a819eb9
JB
5788 && i.op[op].regs->reg_num < 4
5789 /* Prohibit these changes in 64bit mode, since the lowering
5790 would be more complicated. */
5791 && flag_code != CODE_64BIT)
29b0f896 5792 {
29b0f896 5793#if REGISTER_WARNINGS
5a819eb9 5794 if (!quiet_warnings)
a540244d
L
5795 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5796 register_prefix,
dc821c5f 5797 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
5798 ? REGNAM_AL - REGNAM_AX
5799 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5800 register_prefix,
29b0f896
AM
5801 i.op[op].regs->reg_name,
5802 i.suffix);
5803#endif
5804 continue;
5805 }
5806 /* Any other register is bad. */
dc821c5f 5807 if (i.types[op].bitfield.reg
40fb9820 5808 || i.types[op].bitfield.regmmx
1b54b8d7 5809 || i.types[op].bitfield.regsimd
40fb9820
L
5810 || i.types[op].bitfield.sreg2
5811 || i.types[op].bitfield.sreg3
5812 || i.types[op].bitfield.control
5813 || i.types[op].bitfield.debug
ca0d63fe 5814 || i.types[op].bitfield.test)
29b0f896 5815 {
a540244d
L
5816 as_bad (_("`%s%s' not allowed with `%s%c'"),
5817 register_prefix,
29b0f896
AM
5818 i.op[op].regs->reg_name,
5819 i.tm.name,
5820 i.suffix);
5821 return 0;
5822 }
5823 }
5824 return 1;
5825}
5826
5827static int
e3bb37b5 5828check_long_reg (void)
29b0f896
AM
5829{
5830 int op;
5831
5832 for (op = i.operands; --op >= 0;)
dc821c5f
JB
5833 /* Skip non-register operands. */
5834 if (!i.types[op].bitfield.reg)
5835 continue;
29b0f896
AM
5836 /* Reject eight bit registers, except where the template requires
5837 them. (eg. movzb) */
dc821c5f
JB
5838 else if (i.types[op].bitfield.byte
5839 && (i.tm.operand_types[op].bitfield.reg
5840 || i.tm.operand_types[op].bitfield.acc)
5841 && (i.tm.operand_types[op].bitfield.word
5842 || i.tm.operand_types[op].bitfield.dword))
29b0f896 5843 {
a540244d
L
5844 as_bad (_("`%s%s' not allowed with `%s%c'"),
5845 register_prefix,
29b0f896
AM
5846 i.op[op].regs->reg_name,
5847 i.tm.name,
5848 i.suffix);
5849 return 0;
5850 }
e4630f71 5851 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5852 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
5853 && i.types[op].bitfield.word
5854 && (i.tm.operand_types[op].bitfield.reg
5855 || i.tm.operand_types[op].bitfield.acc)
5856 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
5857 {
5858 /* Prohibit these changes in the 64bit mode, since the
5859 lowering is more complicated. */
5860 if (flag_code == CODE_64BIT)
252b5132 5861 {
2b5d6a91 5862 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5863 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5864 i.suffix);
5865 return 0;
252b5132 5866 }
29b0f896 5867#if REGISTER_WARNINGS
cecf1424
JB
5868 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5869 register_prefix,
5870 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5871 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5872#endif
252b5132 5873 }
e4630f71 5874 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
5875 else if (i.types[op].bitfield.qword
5876 && (i.tm.operand_types[op].bitfield.reg
5877 || i.tm.operand_types[op].bitfield.acc)
5878 && i.tm.operand_types[op].bitfield.dword)
252b5132 5879 {
34828aad 5880 if (intel_syntax
ca61edf2 5881 && i.tm.opcode_modifier.toqword
1b54b8d7 5882 && !i.types[0].bitfield.regsimd)
34828aad 5883 {
ca61edf2 5884 /* Convert to QWORD. We want REX byte. */
34828aad
L
5885 i.suffix = QWORD_MNEM_SUFFIX;
5886 }
5887 else
5888 {
2b5d6a91 5889 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5890 register_prefix, i.op[op].regs->reg_name,
5891 i.suffix);
5892 return 0;
5893 }
29b0f896
AM
5894 }
5895 return 1;
5896}
252b5132 5897
29b0f896 5898static int
e3bb37b5 5899check_qword_reg (void)
29b0f896
AM
5900{
5901 int op;
252b5132 5902
29b0f896 5903 for (op = i.operands; --op >= 0; )
dc821c5f
JB
5904 /* Skip non-register operands. */
5905 if (!i.types[op].bitfield.reg)
5906 continue;
29b0f896
AM
5907 /* Reject eight bit registers, except where the template requires
5908 them. (eg. movzb) */
dc821c5f
JB
5909 else if (i.types[op].bitfield.byte
5910 && (i.tm.operand_types[op].bitfield.reg
5911 || i.tm.operand_types[op].bitfield.acc)
5912 && (i.tm.operand_types[op].bitfield.word
5913 || i.tm.operand_types[op].bitfield.dword))
29b0f896 5914 {
a540244d
L
5915 as_bad (_("`%s%s' not allowed with `%s%c'"),
5916 register_prefix,
29b0f896
AM
5917 i.op[op].regs->reg_name,
5918 i.tm.name,
5919 i.suffix);
5920 return 0;
5921 }
e4630f71 5922 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
5923 else if ((i.types[op].bitfield.word
5924 || i.types[op].bitfield.dword)
5925 && (i.tm.operand_types[op].bitfield.reg
5926 || i.tm.operand_types[op].bitfield.acc)
5927 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
5928 {
5929 /* Prohibit these changes in the 64bit mode, since the
5930 lowering is more complicated. */
34828aad 5931 if (intel_syntax
ca61edf2 5932 && i.tm.opcode_modifier.todword
1b54b8d7 5933 && !i.types[0].bitfield.regsimd)
34828aad 5934 {
ca61edf2 5935 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5936 i.suffix = LONG_MNEM_SUFFIX;
5937 }
5938 else
5939 {
2b5d6a91 5940 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5941 register_prefix, i.op[op].regs->reg_name,
5942 i.suffix);
5943 return 0;
5944 }
252b5132 5945 }
29b0f896
AM
5946 return 1;
5947}
252b5132 5948
29b0f896 5949static int
e3bb37b5 5950check_word_reg (void)
29b0f896
AM
5951{
5952 int op;
5953 for (op = i.operands; --op >= 0;)
dc821c5f
JB
5954 /* Skip non-register operands. */
5955 if (!i.types[op].bitfield.reg)
5956 continue;
29b0f896
AM
5957 /* Reject eight bit registers, except where the template requires
5958 them. (eg. movzb) */
dc821c5f
JB
5959 else if (i.types[op].bitfield.byte
5960 && (i.tm.operand_types[op].bitfield.reg
5961 || i.tm.operand_types[op].bitfield.acc)
5962 && (i.tm.operand_types[op].bitfield.word
5963 || i.tm.operand_types[op].bitfield.dword))
29b0f896 5964 {
a540244d
L
5965 as_bad (_("`%s%s' not allowed with `%s%c'"),
5966 register_prefix,
29b0f896
AM
5967 i.op[op].regs->reg_name,
5968 i.tm.name,
5969 i.suffix);
5970 return 0;
5971 }
e4630f71 5972 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5973 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
5974 && (i.types[op].bitfield.dword
5975 || i.types[op].bitfield.qword)
5976 && (i.tm.operand_types[op].bitfield.reg
5977 || i.tm.operand_types[op].bitfield.acc)
5978 && i.tm.operand_types[op].bitfield.word)
252b5132 5979 {
29b0f896
AM
5980 /* Prohibit these changes in the 64bit mode, since the
5981 lowering is more complicated. */
5982 if (flag_code == CODE_64BIT)
252b5132 5983 {
2b5d6a91 5984 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5985 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5986 i.suffix);
5987 return 0;
252b5132 5988 }
29b0f896 5989#if REGISTER_WARNINGS
cecf1424
JB
5990 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5991 register_prefix,
5992 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5993 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5994#endif
5995 }
5996 return 1;
5997}
252b5132 5998
29b0f896 5999static int
40fb9820 6000update_imm (unsigned int j)
29b0f896 6001{
bc0844ae 6002 i386_operand_type overlap = i.types[j];
40fb9820
L
6003 if ((overlap.bitfield.imm8
6004 || overlap.bitfield.imm8s
6005 || overlap.bitfield.imm16
6006 || overlap.bitfield.imm32
6007 || overlap.bitfield.imm32s
6008 || overlap.bitfield.imm64)
0dfbf9d7
L
6009 && !operand_type_equal (&overlap, &imm8)
6010 && !operand_type_equal (&overlap, &imm8s)
6011 && !operand_type_equal (&overlap, &imm16)
6012 && !operand_type_equal (&overlap, &imm32)
6013 && !operand_type_equal (&overlap, &imm32s)
6014 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6015 {
6016 if (i.suffix)
6017 {
40fb9820
L
6018 i386_operand_type temp;
6019
0dfbf9d7 6020 operand_type_set (&temp, 0);
7ab9ffdd 6021 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6022 {
6023 temp.bitfield.imm8 = overlap.bitfield.imm8;
6024 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6025 }
6026 else if (i.suffix == WORD_MNEM_SUFFIX)
6027 temp.bitfield.imm16 = overlap.bitfield.imm16;
6028 else if (i.suffix == QWORD_MNEM_SUFFIX)
6029 {
6030 temp.bitfield.imm64 = overlap.bitfield.imm64;
6031 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6032 }
6033 else
6034 temp.bitfield.imm32 = overlap.bitfield.imm32;
6035 overlap = temp;
29b0f896 6036 }
0dfbf9d7
L
6037 else if (operand_type_equal (&overlap, &imm16_32_32s)
6038 || operand_type_equal (&overlap, &imm16_32)
6039 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6040 {
40fb9820 6041 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6042 overlap = imm16;
40fb9820 6043 else
65da13b5 6044 overlap = imm32s;
29b0f896 6045 }
0dfbf9d7
L
6046 if (!operand_type_equal (&overlap, &imm8)
6047 && !operand_type_equal (&overlap, &imm8s)
6048 && !operand_type_equal (&overlap, &imm16)
6049 && !operand_type_equal (&overlap, &imm32)
6050 && !operand_type_equal (&overlap, &imm32s)
6051 && !operand_type_equal (&overlap, &imm64))
29b0f896 6052 {
4eed87de
AM
6053 as_bad (_("no instruction mnemonic suffix given; "
6054 "can't determine immediate size"));
29b0f896
AM
6055 return 0;
6056 }
6057 }
40fb9820 6058 i.types[j] = overlap;
29b0f896 6059
40fb9820
L
6060 return 1;
6061}
6062
6063static int
6064finalize_imm (void)
6065{
bc0844ae 6066 unsigned int j, n;
29b0f896 6067
bc0844ae
L
6068 /* Update the first 2 immediate operands. */
6069 n = i.operands > 2 ? 2 : i.operands;
6070 if (n)
6071 {
6072 for (j = 0; j < n; j++)
6073 if (update_imm (j) == 0)
6074 return 0;
40fb9820 6075
bc0844ae
L
6076 /* The 3rd operand can't be immediate operand. */
6077 gas_assert (operand_type_check (i.types[2], imm) == 0);
6078 }
29b0f896
AM
6079
6080 return 1;
6081}
6082
6083static int
e3bb37b5 6084process_operands (void)
29b0f896
AM
6085{
6086 /* Default segment register this instruction will use for memory
6087 accesses. 0 means unknown. This is only for optimizing out
6088 unnecessary segment overrides. */
6089 const seg_entry *default_seg = 0;
6090
2426c15f 6091 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6092 {
91d6fa6a
NC
6093 unsigned int dupl = i.operands;
6094 unsigned int dest = dupl - 1;
9fcfb3d7
L
6095 unsigned int j;
6096
c0f3af97 6097 /* The destination must be an xmm register. */
9c2799c2 6098 gas_assert (i.reg_operands
91d6fa6a 6099 && MAX_OPERANDS > dupl
7ab9ffdd 6100 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6101
1b54b8d7
JB
6102 if (i.tm.operand_types[0].bitfield.acc
6103 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6104 {
8cd7925b 6105 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6106 {
6107 /* Keep xmm0 for instructions with VEX prefix and 3
6108 sources. */
1b54b8d7
JB
6109 i.tm.operand_types[0].bitfield.acc = 0;
6110 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6111 goto duplicate;
6112 }
e2ec9d29 6113 else
c0f3af97
L
6114 {
6115 /* We remove the first xmm0 and keep the number of
6116 operands unchanged, which in fact duplicates the
6117 destination. */
6118 for (j = 1; j < i.operands; j++)
6119 {
6120 i.op[j - 1] = i.op[j];
6121 i.types[j - 1] = i.types[j];
6122 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6123 }
6124 }
6125 }
6126 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6127 {
91d6fa6a 6128 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6129 && (i.tm.opcode_modifier.vexsources
6130 == VEX3SOURCES));
c0f3af97
L
6131
6132 /* Add the implicit xmm0 for instructions with VEX prefix
6133 and 3 sources. */
6134 for (j = i.operands; j > 0; j--)
6135 {
6136 i.op[j] = i.op[j - 1];
6137 i.types[j] = i.types[j - 1];
6138 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6139 }
6140 i.op[0].regs
6141 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6142 i.types[0] = regxmm;
c0f3af97
L
6143 i.tm.operand_types[0] = regxmm;
6144
6145 i.operands += 2;
6146 i.reg_operands += 2;
6147 i.tm.operands += 2;
6148
91d6fa6a 6149 dupl++;
c0f3af97 6150 dest++;
91d6fa6a
NC
6151 i.op[dupl] = i.op[dest];
6152 i.types[dupl] = i.types[dest];
6153 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6154 }
c0f3af97
L
6155 else
6156 {
6157duplicate:
6158 i.operands++;
6159 i.reg_operands++;
6160 i.tm.operands++;
6161
91d6fa6a
NC
6162 i.op[dupl] = i.op[dest];
6163 i.types[dupl] = i.types[dest];
6164 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6165 }
6166
6167 if (i.tm.opcode_modifier.immext)
6168 process_immext ();
6169 }
1b54b8d7
JB
6170 else if (i.tm.operand_types[0].bitfield.acc
6171 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6172 {
6173 unsigned int j;
6174
9fcfb3d7
L
6175 for (j = 1; j < i.operands; j++)
6176 {
6177 i.op[j - 1] = i.op[j];
6178 i.types[j - 1] = i.types[j];
6179
6180 /* We need to adjust fields in i.tm since they are used by
6181 build_modrm_byte. */
6182 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6183 }
6184
e2ec9d29
L
6185 i.operands--;
6186 i.reg_operands--;
e2ec9d29
L
6187 i.tm.operands--;
6188 }
920d2ddc
IT
6189 else if (i.tm.opcode_modifier.implicitquadgroup)
6190 {
6191 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6192 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
920d2ddc
IT
6193 unsigned int regnum = register_number (i.op[1].regs);
6194 unsigned int first_reg_in_group = regnum & ~3;
6195 unsigned int last_reg_in_group = first_reg_in_group + 3;
6196 if (regnum != first_reg_in_group) {
6197 as_warn (_("the second source register `%s%s' implicitly denotes"
6198 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6199 register_prefix, i.op[1].regs->reg_name,
6200 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6201 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6202 i.tm.name);
6203 }
6204 }
e2ec9d29
L
6205 else if (i.tm.opcode_modifier.regkludge)
6206 {
6207 /* The imul $imm, %reg instruction is converted into
6208 imul $imm, %reg, %reg, and the clr %reg instruction
6209 is converted into xor %reg, %reg. */
6210
6211 unsigned int first_reg_op;
6212
6213 if (operand_type_check (i.types[0], reg))
6214 first_reg_op = 0;
6215 else
6216 first_reg_op = 1;
6217 /* Pretend we saw the extra register operand. */
9c2799c2 6218 gas_assert (i.reg_operands == 1
7ab9ffdd 6219 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6220 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6221 i.types[first_reg_op + 1] = i.types[first_reg_op];
6222 i.operands++;
6223 i.reg_operands++;
29b0f896
AM
6224 }
6225
40fb9820 6226 if (i.tm.opcode_modifier.shortform)
29b0f896 6227 {
40fb9820
L
6228 if (i.types[0].bitfield.sreg2
6229 || i.types[0].bitfield.sreg3)
29b0f896 6230 {
4eed87de
AM
6231 if (i.tm.base_opcode == POP_SEG_SHORT
6232 && i.op[0].regs->reg_num == 1)
29b0f896 6233 {
a87af027 6234 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6235 return 0;
29b0f896 6236 }
4eed87de
AM
6237 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6238 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6239 i.rex |= REX_B;
4eed87de
AM
6240 }
6241 else
6242 {
7ab9ffdd 6243 /* The register or float register operand is in operand
85f10a01 6244 0 or 1. */
40fb9820 6245 unsigned int op;
7ab9ffdd 6246
ca0d63fe 6247 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6248 || operand_type_check (i.types[0], reg))
6249 op = 0;
6250 else
6251 op = 1;
4eed87de
AM
6252 /* Register goes in low 3 bits of opcode. */
6253 i.tm.base_opcode |= i.op[op].regs->reg_num;
6254 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6255 i.rex |= REX_B;
40fb9820 6256 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6257 {
4eed87de
AM
6258 /* Warn about some common errors, but press on regardless.
6259 The first case can be generated by gcc (<= 2.8.1). */
6260 if (i.operands == 2)
6261 {
6262 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6263 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6264 register_prefix, i.op[!intel_syntax].regs->reg_name,
6265 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6266 }
6267 else
6268 {
6269 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6270 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6271 register_prefix, i.op[0].regs->reg_name);
4eed87de 6272 }
29b0f896
AM
6273 }
6274 }
6275 }
40fb9820 6276 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6277 {
6278 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6279 must be put into the modrm byte). Now, we make the modrm and
6280 index base bytes based on all the info we've collected. */
29b0f896
AM
6281
6282 default_seg = build_modrm_byte ();
6283 }
8a2ed489 6284 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6285 {
6286 default_seg = &ds;
6287 }
40fb9820 6288 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6289 {
6290 /* For the string instructions that allow a segment override
6291 on one of their operands, the default segment is ds. */
6292 default_seg = &ds;
6293 }
6294
75178d9d
L
6295 if (i.tm.base_opcode == 0x8d /* lea */
6296 && i.seg[0]
6297 && !quiet_warnings)
30123838 6298 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6299
6300 /* If a segment was explicitly specified, and the specified segment
6301 is not the default, use an opcode prefix to select it. If we
6302 never figured out what the default segment is, then default_seg
6303 will be zero at this point, and the specified segment prefix will
6304 always be used. */
29b0f896
AM
6305 if ((i.seg[0]) && (i.seg[0] != default_seg))
6306 {
6307 if (!add_prefix (i.seg[0]->seg_prefix))
6308 return 0;
6309 }
6310 return 1;
6311}
6312
6313static const seg_entry *
e3bb37b5 6314build_modrm_byte (void)
29b0f896
AM
6315{
6316 const seg_entry *default_seg = 0;
c0f3af97 6317 unsigned int source, dest;
8cd7925b 6318 int vex_3_sources;
c0f3af97
L
6319
6320 /* The first operand of instructions with VEX prefix and 3 sources
6321 must be VEX_Imm4. */
8cd7925b 6322 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6323 if (vex_3_sources)
6324 {
91d6fa6a 6325 unsigned int nds, reg_slot;
4c2c6516 6326 expressionS *exp;
c0f3af97 6327
922d8de8 6328 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6329 && i.tm.opcode_modifier.immext)
6330 {
6331 dest = i.operands - 2;
6332 gas_assert (dest == 3);
6333 }
922d8de8 6334 else
a683cc34 6335 dest = i.operands - 1;
c0f3af97 6336 nds = dest - 1;
922d8de8 6337
a683cc34
SP
6338 /* There are 2 kinds of instructions:
6339 1. 5 operands: 4 register operands or 3 register operands
6340 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6341 VexW0 or VexW1. The destination must be either XMM, YMM or
6342 ZMM register.
a683cc34
SP
6343 2. 4 operands: 4 register operands or 3 register operands
6344 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6345 gas_assert ((i.reg_operands == 4
a683cc34
SP
6346 || (i.reg_operands == 3 && i.mem_operands == 1))
6347 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6348 && (i.tm.opcode_modifier.veximmext
6349 || (i.imm_operands == 1
6350 && i.types[0].bitfield.vec_imm4
6351 && (i.tm.opcode_modifier.vexw == VEXW0
6352 || i.tm.opcode_modifier.vexw == VEXW1)
10c17abd 6353 && i.tm.operand_types[dest].bitfield.regsimd)));
a683cc34
SP
6354
6355 if (i.imm_operands == 0)
6356 {
6357 /* When there is no immediate operand, generate an 8bit
6358 immediate operand to encode the first operand. */
6359 exp = &im_expressions[i.imm_operands++];
6360 i.op[i.operands].imms = exp;
6361 i.types[i.operands] = imm8;
6362 i.operands++;
6363 /* If VexW1 is set, the first operand is the source and
6364 the second operand is encoded in the immediate operand. */
6365 if (i.tm.opcode_modifier.vexw == VEXW1)
6366 {
6367 source = 0;
6368 reg_slot = 1;
6369 }
6370 else
6371 {
6372 source = 1;
6373 reg_slot = 0;
6374 }
6375
6376 /* FMA swaps REG and NDS. */
6377 if (i.tm.cpu_flags.bitfield.cpufma)
6378 {
6379 unsigned int tmp;
6380 tmp = reg_slot;
6381 reg_slot = nds;
6382 nds = tmp;
6383 }
6384
10c17abd 6385 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6386 exp->X_op = O_constant;
4c692bc7 6387 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6388 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6389 }
922d8de8 6390 else
a683cc34
SP
6391 {
6392 unsigned int imm_slot;
6393
6394 if (i.tm.opcode_modifier.vexw == VEXW0)
6395 {
6396 /* If VexW0 is set, the third operand is the source and
6397 the second operand is encoded in the immediate
6398 operand. */
6399 source = 2;
6400 reg_slot = 1;
6401 }
6402 else
6403 {
6404 /* VexW1 is set, the second operand is the source and
6405 the third operand is encoded in the immediate
6406 operand. */
6407 source = 1;
6408 reg_slot = 2;
6409 }
6410
6411 if (i.tm.opcode_modifier.immext)
6412 {
33eaf5de 6413 /* When ImmExt is set, the immediate byte is the last
a683cc34
SP
6414 operand. */
6415 imm_slot = i.operands - 1;
6416 source--;
6417 reg_slot--;
6418 }
6419 else
6420 {
6421 imm_slot = 0;
6422
6423 /* Turn on Imm8 so that output_imm will generate it. */
6424 i.types[imm_slot].bitfield.imm8 = 1;
6425 }
6426
10c17abd 6427 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
a683cc34 6428 i.op[imm_slot].imms->X_add_number
4c692bc7 6429 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6430 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6431 }
6432
10c17abd 6433 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6434 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6435 }
6436 else
6437 source = dest = 0;
29b0f896
AM
6438
6439 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6440 implicit registers do not count. If there are 3 register
6441 operands, it must be a instruction with VexNDS. For a
6442 instruction with VexNDD, the destination register is encoded
6443 in VEX prefix. If there are 4 register operands, it must be
6444 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6445 if (i.mem_operands == 0
6446 && ((i.reg_operands == 2
2426c15f 6447 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6448 || (i.reg_operands == 3
2426c15f 6449 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6450 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6451 {
cab737b9
L
6452 switch (i.operands)
6453 {
6454 case 2:
6455 source = 0;
6456 break;
6457 case 3:
c81128dc
L
6458 /* When there are 3 operands, one of them may be immediate,
6459 which may be the first or the last operand. Otherwise,
c0f3af97
L
6460 the first operand must be shift count register (cl) or it
6461 is an instruction with VexNDS. */
9c2799c2 6462 gas_assert (i.imm_operands == 1
7ab9ffdd 6463 || (i.imm_operands == 0
2426c15f 6464 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6465 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6466 if (operand_type_check (i.types[0], imm)
6467 || i.types[0].bitfield.shiftcount)
6468 source = 1;
6469 else
6470 source = 0;
cab737b9
L
6471 break;
6472 case 4:
368d64cc
L
6473 /* When there are 4 operands, the first two must be 8bit
6474 immediate operands. The source operand will be the 3rd
c0f3af97
L
6475 one.
6476
6477 For instructions with VexNDS, if the first operand
6478 an imm8, the source operand is the 2nd one. If the last
6479 operand is imm8, the source operand is the first one. */
9c2799c2 6480 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6481 && i.types[0].bitfield.imm8
6482 && i.types[1].bitfield.imm8)
2426c15f 6483 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6484 && i.imm_operands == 1
6485 && (i.types[0].bitfield.imm8
43234a1e
L
6486 || i.types[i.operands - 1].bitfield.imm8
6487 || i.rounding)));
9f2670f2
L
6488 if (i.imm_operands == 2)
6489 source = 2;
6490 else
c0f3af97
L
6491 {
6492 if (i.types[0].bitfield.imm8)
6493 source = 1;
6494 else
6495 source = 0;
6496 }
c0f3af97
L
6497 break;
6498 case 5:
43234a1e
L
6499 if (i.tm.opcode_modifier.evex)
6500 {
6501 /* For EVEX instructions, when there are 5 operands, the
6502 first one must be immediate operand. If the second one
6503 is immediate operand, the source operand is the 3th
6504 one. If the last one is immediate operand, the source
6505 operand is the 2nd one. */
6506 gas_assert (i.imm_operands == 2
6507 && i.tm.opcode_modifier.sae
6508 && operand_type_check (i.types[0], imm));
6509 if (operand_type_check (i.types[1], imm))
6510 source = 2;
6511 else if (operand_type_check (i.types[4], imm))
6512 source = 1;
6513 else
6514 abort ();
6515 }
cab737b9
L
6516 break;
6517 default:
6518 abort ();
6519 }
6520
c0f3af97
L
6521 if (!vex_3_sources)
6522 {
6523 dest = source + 1;
6524
43234a1e
L
6525 /* RC/SAE operand could be between DEST and SRC. That happens
6526 when one operand is GPR and the other one is XMM/YMM/ZMM
6527 register. */
6528 if (i.rounding && i.rounding->operand == (int) dest)
6529 dest++;
6530
2426c15f 6531 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6532 {
43234a1e 6533 /* For instructions with VexNDS, the register-only source
c5d0745b 6534 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6535 register. It is encoded in VEX prefix. We need to
6536 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6537
6538 i386_operand_type op;
6539 unsigned int vvvv;
6540
6541 /* Check register-only source operand when two source
6542 operands are swapped. */
6543 if (!i.tm.operand_types[source].bitfield.baseindex
6544 && i.tm.operand_types[dest].bitfield.baseindex)
6545 {
6546 vvvv = source;
6547 source = dest;
6548 }
6549 else
6550 vvvv = dest;
6551
6552 op = i.tm.operand_types[vvvv];
fa99fab2 6553 op.bitfield.regmem = 0;
c0f3af97 6554 if ((dest + 1) >= i.operands
dc821c5f
JB
6555 || ((!op.bitfield.reg
6556 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6557 && !op.bitfield.regsimd
43234a1e 6558 && !operand_type_equal (&op, &regmask)))
c0f3af97 6559 abort ();
f12dc422 6560 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6561 dest++;
6562 }
6563 }
29b0f896
AM
6564
6565 i.rm.mode = 3;
6566 /* One of the register operands will be encoded in the i.tm.reg
6567 field, the other in the combined i.tm.mode and i.tm.regmem
6568 fields. If no form of this instruction supports a memory
6569 destination operand, then we assume the source operand may
6570 sometimes be a memory operand and so we need to store the
6571 destination in the i.rm.reg field. */
40fb9820
L
6572 if (!i.tm.operand_types[dest].bitfield.regmem
6573 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6574 {
6575 i.rm.reg = i.op[dest].regs->reg_num;
6576 i.rm.regmem = i.op[source].regs->reg_num;
6577 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6578 i.rex |= REX_R;
43234a1e
L
6579 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6580 i.vrex |= REX_R;
29b0f896 6581 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6582 i.rex |= REX_B;
43234a1e
L
6583 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6584 i.vrex |= REX_B;
29b0f896
AM
6585 }
6586 else
6587 {
6588 i.rm.reg = i.op[source].regs->reg_num;
6589 i.rm.regmem = i.op[dest].regs->reg_num;
6590 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6591 i.rex |= REX_B;
43234a1e
L
6592 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6593 i.vrex |= REX_B;
29b0f896 6594 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6595 i.rex |= REX_R;
43234a1e
L
6596 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6597 i.vrex |= REX_R;
29b0f896 6598 }
161a04f6 6599 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6600 {
40fb9820
L
6601 if (!i.types[0].bitfield.control
6602 && !i.types[1].bitfield.control)
c4a530c5 6603 abort ();
161a04f6 6604 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6605 add_prefix (LOCK_PREFIX_OPCODE);
6606 }
29b0f896
AM
6607 }
6608 else
6609 { /* If it's not 2 reg operands... */
c0f3af97
L
6610 unsigned int mem;
6611
29b0f896
AM
6612 if (i.mem_operands)
6613 {
6614 unsigned int fake_zero_displacement = 0;
99018f42 6615 unsigned int op;
4eed87de 6616
7ab9ffdd
L
6617 for (op = 0; op < i.operands; op++)
6618 if (operand_type_check (i.types[op], anymem))
6619 break;
7ab9ffdd 6620 gas_assert (op < i.operands);
29b0f896 6621
6c30d220
L
6622 if (i.tm.opcode_modifier.vecsib)
6623 {
6624 if (i.index_reg->reg_num == RegEiz
6625 || i.index_reg->reg_num == RegRiz)
6626 abort ();
6627
6628 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6629 if (!i.base_reg)
6630 {
6631 i.sib.base = NO_BASE_REGISTER;
6632 i.sib.scale = i.log2_scale_factor;
6633 i.types[op].bitfield.disp8 = 0;
6634 i.types[op].bitfield.disp16 = 0;
6635 i.types[op].bitfield.disp64 = 0;
43083a50 6636 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6637 {
6638 /* Must be 32 bit */
6639 i.types[op].bitfield.disp32 = 1;
6640 i.types[op].bitfield.disp32s = 0;
6641 }
6642 else
6643 {
6644 i.types[op].bitfield.disp32 = 0;
6645 i.types[op].bitfield.disp32s = 1;
6646 }
6647 }
6648 i.sib.index = i.index_reg->reg_num;
6649 if ((i.index_reg->reg_flags & RegRex) != 0)
6650 i.rex |= REX_X;
43234a1e
L
6651 if ((i.index_reg->reg_flags & RegVRex) != 0)
6652 i.vrex |= REX_X;
6c30d220
L
6653 }
6654
29b0f896
AM
6655 default_seg = &ds;
6656
6657 if (i.base_reg == 0)
6658 {
6659 i.rm.mode = 0;
6660 if (!i.disp_operands)
9bb129e8 6661 fake_zero_displacement = 1;
29b0f896
AM
6662 if (i.index_reg == 0)
6663 {
6c30d220 6664 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6665 /* Operand is just <disp> */
20f0a1fc 6666 if (flag_code == CODE_64BIT)
29b0f896
AM
6667 {
6668 /* 64bit mode overwrites the 32bit absolute
6669 addressing by RIP relative addressing and
6670 absolute addressing is encoded by one of the
6671 redundant SIB forms. */
6672 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6673 i.sib.base = NO_BASE_REGISTER;
6674 i.sib.index = NO_INDEX_REGISTER;
fc225355 6675 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6676 ? disp32s : disp32);
20f0a1fc 6677 }
fc225355
L
6678 else if ((flag_code == CODE_16BIT)
6679 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6680 {
6681 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6682 i.types[op] = disp16;
20f0a1fc
NC
6683 }
6684 else
6685 {
6686 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6687 i.types[op] = disp32;
29b0f896
AM
6688 }
6689 }
6c30d220 6690 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6691 {
6c30d220 6692 /* !i.base_reg && i.index_reg */
db51cc60
L
6693 if (i.index_reg->reg_num == RegEiz
6694 || i.index_reg->reg_num == RegRiz)
6695 i.sib.index = NO_INDEX_REGISTER;
6696 else
6697 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6698 i.sib.base = NO_BASE_REGISTER;
6699 i.sib.scale = i.log2_scale_factor;
6700 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
6701 i.types[op].bitfield.disp8 = 0;
6702 i.types[op].bitfield.disp16 = 0;
6703 i.types[op].bitfield.disp64 = 0;
43083a50 6704 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
6705 {
6706 /* Must be 32 bit */
6707 i.types[op].bitfield.disp32 = 1;
6708 i.types[op].bitfield.disp32s = 0;
6709 }
29b0f896 6710 else
40fb9820
L
6711 {
6712 i.types[op].bitfield.disp32 = 0;
6713 i.types[op].bitfield.disp32s = 1;
6714 }
29b0f896 6715 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6716 i.rex |= REX_X;
29b0f896
AM
6717 }
6718 }
6719 /* RIP addressing for 64bit mode. */
9a04903e
JB
6720 else if (i.base_reg->reg_num == RegRip ||
6721 i.base_reg->reg_num == RegEip)
29b0f896 6722 {
6c30d220 6723 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6724 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6725 i.types[op].bitfield.disp8 = 0;
6726 i.types[op].bitfield.disp16 = 0;
6727 i.types[op].bitfield.disp32 = 0;
6728 i.types[op].bitfield.disp32s = 1;
6729 i.types[op].bitfield.disp64 = 0;
71903a11 6730 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6731 if (! i.disp_operands)
6732 fake_zero_displacement = 1;
29b0f896 6733 }
dc821c5f 6734 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 6735 {
6c30d220 6736 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6737 switch (i.base_reg->reg_num)
6738 {
6739 case 3: /* (%bx) */
6740 if (i.index_reg == 0)
6741 i.rm.regmem = 7;
6742 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6743 i.rm.regmem = i.index_reg->reg_num - 6;
6744 break;
6745 case 5: /* (%bp) */
6746 default_seg = &ss;
6747 if (i.index_reg == 0)
6748 {
6749 i.rm.regmem = 6;
40fb9820 6750 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6751 {
6752 /* fake (%bp) into 0(%bp) */
b5014f7a 6753 i.types[op].bitfield.disp8 = 1;
252b5132 6754 fake_zero_displacement = 1;
29b0f896
AM
6755 }
6756 }
6757 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6758 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6759 break;
6760 default: /* (%si) -> 4 or (%di) -> 5 */
6761 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6762 }
6763 i.rm.mode = mode_from_disp_size (i.types[op]);
6764 }
6765 else /* i.base_reg and 32/64 bit mode */
6766 {
6767 if (flag_code == CODE_64BIT
40fb9820
L
6768 && operand_type_check (i.types[op], disp))
6769 {
6770 i386_operand_type temp;
0dfbf9d7 6771 operand_type_set (&temp, 0);
40fb9820
L
6772 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6773 i.types[op] = temp;
6774 if (i.prefix[ADDR_PREFIX] == 0)
6775 i.types[op].bitfield.disp32s = 1;
6776 else
6777 i.types[op].bitfield.disp32 = 1;
6778 }
20f0a1fc 6779
6c30d220
L
6780 if (!i.tm.opcode_modifier.vecsib)
6781 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6782 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6783 i.rex |= REX_B;
29b0f896
AM
6784 i.sib.base = i.base_reg->reg_num;
6785 /* x86-64 ignores REX prefix bit here to avoid decoder
6786 complications. */
848930b2
JB
6787 if (!(i.base_reg->reg_flags & RegRex)
6788 && (i.base_reg->reg_num == EBP_REG_NUM
6789 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6790 default_seg = &ss;
848930b2 6791 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6792 {
848930b2 6793 fake_zero_displacement = 1;
b5014f7a 6794 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6795 }
6796 i.sib.scale = i.log2_scale_factor;
6797 if (i.index_reg == 0)
6798 {
6c30d220 6799 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6800 /* <disp>(%esp) becomes two byte modrm with no index
6801 register. We've already stored the code for esp
6802 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6803 Any base register besides %esp will not use the
6804 extra modrm byte. */
6805 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6806 }
6c30d220 6807 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6808 {
db51cc60
L
6809 if (i.index_reg->reg_num == RegEiz
6810 || i.index_reg->reg_num == RegRiz)
6811 i.sib.index = NO_INDEX_REGISTER;
6812 else
6813 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6814 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6815 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6816 i.rex |= REX_X;
29b0f896 6817 }
67a4f2b7
AO
6818
6819 if (i.disp_operands
6820 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6821 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6822 i.rm.mode = 0;
6823 else
a501d77e
L
6824 {
6825 if (!fake_zero_displacement
6826 && !i.disp_operands
6827 && i.disp_encoding)
6828 {
6829 fake_zero_displacement = 1;
6830 if (i.disp_encoding == disp_encoding_8bit)
6831 i.types[op].bitfield.disp8 = 1;
6832 else
6833 i.types[op].bitfield.disp32 = 1;
6834 }
6835 i.rm.mode = mode_from_disp_size (i.types[op]);
6836 }
29b0f896 6837 }
252b5132 6838
29b0f896
AM
6839 if (fake_zero_displacement)
6840 {
6841 /* Fakes a zero displacement assuming that i.types[op]
6842 holds the correct displacement size. */
6843 expressionS *exp;
6844
9c2799c2 6845 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6846 exp = &disp_expressions[i.disp_operands++];
6847 i.op[op].disps = exp;
6848 exp->X_op = O_constant;
6849 exp->X_add_number = 0;
6850 exp->X_add_symbol = (symbolS *) 0;
6851 exp->X_op_symbol = (symbolS *) 0;
6852 }
c0f3af97
L
6853
6854 mem = op;
29b0f896 6855 }
c0f3af97
L
6856 else
6857 mem = ~0;
252b5132 6858
8c43a48b 6859 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6860 {
6861 if (operand_type_check (i.types[0], imm))
6862 i.vex.register_specifier = NULL;
6863 else
6864 {
6865 /* VEX.vvvv encodes one of the sources when the first
6866 operand is not an immediate. */
1ef99a7b 6867 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6868 i.vex.register_specifier = i.op[0].regs;
6869 else
6870 i.vex.register_specifier = i.op[1].regs;
6871 }
6872
6873 /* Destination is a XMM register encoded in the ModRM.reg
6874 and VEX.R bit. */
6875 i.rm.reg = i.op[2].regs->reg_num;
6876 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6877 i.rex |= REX_R;
6878
6879 /* ModRM.rm and VEX.B encodes the other source. */
6880 if (!i.mem_operands)
6881 {
6882 i.rm.mode = 3;
6883
1ef99a7b 6884 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6885 i.rm.regmem = i.op[1].regs->reg_num;
6886 else
6887 i.rm.regmem = i.op[0].regs->reg_num;
6888
6889 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6890 i.rex |= REX_B;
6891 }
6892 }
2426c15f 6893 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6894 {
6895 i.vex.register_specifier = i.op[2].regs;
6896 if (!i.mem_operands)
6897 {
6898 i.rm.mode = 3;
6899 i.rm.regmem = i.op[1].regs->reg_num;
6900 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6901 i.rex |= REX_B;
6902 }
6903 }
29b0f896
AM
6904 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6905 (if any) based on i.tm.extension_opcode. Again, we must be
6906 careful to make sure that segment/control/debug/test/MMX
6907 registers are coded into the i.rm.reg field. */
f88c9eb0 6908 else if (i.reg_operands)
29b0f896 6909 {
99018f42 6910 unsigned int op;
7ab9ffdd
L
6911 unsigned int vex_reg = ~0;
6912
6913 for (op = 0; op < i.operands; op++)
dc821c5f 6914 if (i.types[op].bitfield.reg
7ab9ffdd 6915 || i.types[op].bitfield.regmmx
1b54b8d7 6916 || i.types[op].bitfield.regsimd
7e8b059b 6917 || i.types[op].bitfield.regbnd
43234a1e 6918 || i.types[op].bitfield.regmask
7ab9ffdd
L
6919 || i.types[op].bitfield.sreg2
6920 || i.types[op].bitfield.sreg3
6921 || i.types[op].bitfield.control
6922 || i.types[op].bitfield.debug
6923 || i.types[op].bitfield.test)
6924 break;
c0209578 6925
7ab9ffdd
L
6926 if (vex_3_sources)
6927 op = dest;
2426c15f 6928 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6929 {
6930 /* For instructions with VexNDS, the register-only
6931 source operand is encoded in VEX prefix. */
6932 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6933
7ab9ffdd 6934 if (op > mem)
c0f3af97 6935 {
7ab9ffdd
L
6936 vex_reg = op++;
6937 gas_assert (op < i.operands);
c0f3af97
L
6938 }
6939 else
c0f3af97 6940 {
f12dc422
L
6941 /* Check register-only source operand when two source
6942 operands are swapped. */
6943 if (!i.tm.operand_types[op].bitfield.baseindex
6944 && i.tm.operand_types[op + 1].bitfield.baseindex)
6945 {
6946 vex_reg = op;
6947 op += 2;
6948 gas_assert (mem == (vex_reg + 1)
6949 && op < i.operands);
6950 }
6951 else
6952 {
6953 vex_reg = op + 1;
6954 gas_assert (vex_reg < i.operands);
6955 }
c0f3af97 6956 }
7ab9ffdd 6957 }
2426c15f 6958 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6959 {
f12dc422 6960 /* For instructions with VexNDD, the register destination
7ab9ffdd 6961 is encoded in VEX prefix. */
f12dc422
L
6962 if (i.mem_operands == 0)
6963 {
6964 /* There is no memory operand. */
6965 gas_assert ((op + 2) == i.operands);
6966 vex_reg = op + 1;
6967 }
6968 else
8d63c93e 6969 {
f12dc422
L
6970 /* There are only 2 operands. */
6971 gas_assert (op < 2 && i.operands == 2);
6972 vex_reg = 1;
6973 }
7ab9ffdd
L
6974 }
6975 else
6976 gas_assert (op < i.operands);
99018f42 6977
7ab9ffdd
L
6978 if (vex_reg != (unsigned int) ~0)
6979 {
f12dc422 6980 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6981
dc821c5f
JB
6982 if ((!type->bitfield.reg
6983 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 6984 && !type->bitfield.regsimd
43234a1e 6985 && !operand_type_equal (type, &regmask))
7ab9ffdd 6986 abort ();
f88c9eb0 6987
7ab9ffdd
L
6988 i.vex.register_specifier = i.op[vex_reg].regs;
6989 }
6990
1b9f0c97
L
6991 /* Don't set OP operand twice. */
6992 if (vex_reg != op)
7ab9ffdd 6993 {
1b9f0c97
L
6994 /* If there is an extension opcode to put here, the
6995 register number must be put into the regmem field. */
6996 if (i.tm.extension_opcode != None)
6997 {
6998 i.rm.regmem = i.op[op].regs->reg_num;
6999 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7000 i.rex |= REX_B;
43234a1e
L
7001 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7002 i.vrex |= REX_B;
1b9f0c97
L
7003 }
7004 else
7005 {
7006 i.rm.reg = i.op[op].regs->reg_num;
7007 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7008 i.rex |= REX_R;
43234a1e
L
7009 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7010 i.vrex |= REX_R;
1b9f0c97 7011 }
7ab9ffdd 7012 }
252b5132 7013
29b0f896
AM
7014 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7015 must set it to 3 to indicate this is a register operand
7016 in the regmem field. */
7017 if (!i.mem_operands)
7018 i.rm.mode = 3;
7019 }
252b5132 7020
29b0f896 7021 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7022 if (i.tm.extension_opcode != None)
29b0f896
AM
7023 i.rm.reg = i.tm.extension_opcode;
7024 }
7025 return default_seg;
7026}
252b5132 7027
29b0f896 7028static void
e3bb37b5 7029output_branch (void)
29b0f896
AM
7030{
7031 char *p;
f8a5c266 7032 int size;
29b0f896
AM
7033 int code16;
7034 int prefix;
7035 relax_substateT subtype;
7036 symbolS *sym;
7037 offsetT off;
7038
f8a5c266 7039 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7040 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7041
7042 prefix = 0;
7043 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7044 {
29b0f896
AM
7045 prefix = 1;
7046 i.prefixes -= 1;
7047 code16 ^= CODE16;
252b5132 7048 }
29b0f896
AM
7049 /* Pentium4 branch hints. */
7050 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7051 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7052 {
29b0f896
AM
7053 prefix++;
7054 i.prefixes--;
7055 }
7056 if (i.prefix[REX_PREFIX] != 0)
7057 {
7058 prefix++;
7059 i.prefixes--;
2f66722d
AM
7060 }
7061
7e8b059b
L
7062 /* BND prefixed jump. */
7063 if (i.prefix[BND_PREFIX] != 0)
7064 {
7065 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7066 i.prefixes -= 1;
7067 }
7068
29b0f896
AM
7069 if (i.prefixes != 0 && !intel_syntax)
7070 as_warn (_("skipping prefixes on this instruction"));
7071
7072 /* It's always a symbol; End frag & setup for relax.
7073 Make sure there is enough room in this frag for the largest
7074 instruction we may generate in md_convert_frag. This is 2
7075 bytes for the opcode and room for the prefix and largest
7076 displacement. */
7077 frag_grow (prefix + 2 + 4);
7078 /* Prefix and 1 opcode byte go in fr_fix. */
7079 p = frag_more (prefix + 1);
7080 if (i.prefix[DATA_PREFIX] != 0)
7081 *p++ = DATA_PREFIX_OPCODE;
7082 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7083 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7084 *p++ = i.prefix[SEG_PREFIX];
7085 if (i.prefix[REX_PREFIX] != 0)
7086 *p++ = i.prefix[REX_PREFIX];
7087 *p = i.tm.base_opcode;
7088
7089 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7090 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7091 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7092 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7093 else
f8a5c266 7094 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7095 subtype |= code16;
3e73aa7c 7096
29b0f896
AM
7097 sym = i.op[0].disps->X_add_symbol;
7098 off = i.op[0].disps->X_add_number;
3e73aa7c 7099
29b0f896
AM
7100 if (i.op[0].disps->X_op != O_constant
7101 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7102 {
29b0f896
AM
7103 /* Handle complex expressions. */
7104 sym = make_expr_symbol (i.op[0].disps);
7105 off = 0;
7106 }
3e73aa7c 7107
29b0f896
AM
7108 /* 1 possible extra opcode + 4 byte displacement go in var part.
7109 Pass reloc in fr_var. */
d258b828 7110 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7111}
3e73aa7c 7112
bd7ab16b
L
7113#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7114/* Return TRUE iff PLT32 relocation should be used for branching to
7115 symbol S. */
7116
7117static bfd_boolean
7118need_plt32_p (symbolS *s)
7119{
7120 /* PLT32 relocation is ELF only. */
7121 if (!IS_ELF)
7122 return FALSE;
7123
7124 /* Since there is no need to prepare for PLT branch on x86-64, we
7125 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7126 be used as a marker for 32-bit PC-relative branches. */
7127 if (!object_64bit)
7128 return FALSE;
7129
7130 /* Weak or undefined symbol need PLT32 relocation. */
7131 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7132 return TRUE;
7133
7134 /* Non-global symbol doesn't need PLT32 relocation. */
7135 if (! S_IS_EXTERNAL (s))
7136 return FALSE;
7137
7138 /* Other global symbols need PLT32 relocation. NB: Symbol with
7139 non-default visibilities are treated as normal global symbol
7140 so that PLT32 relocation can be used as a marker for 32-bit
7141 PC-relative branches. It is useful for linker relaxation. */
7142 return TRUE;
7143}
7144#endif
7145
29b0f896 7146static void
e3bb37b5 7147output_jump (void)
29b0f896
AM
7148{
7149 char *p;
7150 int size;
3e02c1cc 7151 fixS *fixP;
bd7ab16b 7152 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7153
40fb9820 7154 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7155 {
7156 /* This is a loop or jecxz type instruction. */
7157 size = 1;
7158 if (i.prefix[ADDR_PREFIX] != 0)
7159 {
7160 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7161 i.prefixes -= 1;
7162 }
7163 /* Pentium4 branch hints. */
7164 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7165 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7166 {
7167 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7168 i.prefixes--;
3e73aa7c
JH
7169 }
7170 }
29b0f896
AM
7171 else
7172 {
7173 int code16;
3e73aa7c 7174
29b0f896
AM
7175 code16 = 0;
7176 if (flag_code == CODE_16BIT)
7177 code16 = CODE16;
3e73aa7c 7178
29b0f896
AM
7179 if (i.prefix[DATA_PREFIX] != 0)
7180 {
7181 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7182 i.prefixes -= 1;
7183 code16 ^= CODE16;
7184 }
252b5132 7185
29b0f896
AM
7186 size = 4;
7187 if (code16)
7188 size = 2;
7189 }
9fcc94b6 7190
29b0f896
AM
7191 if (i.prefix[REX_PREFIX] != 0)
7192 {
7193 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7194 i.prefixes -= 1;
7195 }
252b5132 7196
7e8b059b
L
7197 /* BND prefixed jump. */
7198 if (i.prefix[BND_PREFIX] != 0)
7199 {
7200 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7201 i.prefixes -= 1;
7202 }
7203
29b0f896
AM
7204 if (i.prefixes != 0 && !intel_syntax)
7205 as_warn (_("skipping prefixes on this instruction"));
e0890092 7206
42164a71
L
7207 p = frag_more (i.tm.opcode_length + size);
7208 switch (i.tm.opcode_length)
7209 {
7210 case 2:
7211 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7212 /* Fall through. */
42164a71
L
7213 case 1:
7214 *p++ = i.tm.base_opcode;
7215 break;
7216 default:
7217 abort ();
7218 }
e0890092 7219
bd7ab16b
L
7220#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7221 if (size == 4
7222 && jump_reloc == NO_RELOC
7223 && need_plt32_p (i.op[0].disps->X_add_symbol))
7224 jump_reloc = BFD_RELOC_X86_64_PLT32;
7225#endif
7226
7227 jump_reloc = reloc (size, 1, 1, jump_reloc);
7228
3e02c1cc 7229 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7230 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7231
7232 /* All jumps handled here are signed, but don't use a signed limit
7233 check for 32 and 16 bit jumps as we want to allow wrap around at
7234 4G and 64k respectively. */
7235 if (size == 1)
7236 fixP->fx_signed = 1;
29b0f896 7237}
e0890092 7238
29b0f896 7239static void
e3bb37b5 7240output_interseg_jump (void)
29b0f896
AM
7241{
7242 char *p;
7243 int size;
7244 int prefix;
7245 int code16;
252b5132 7246
29b0f896
AM
7247 code16 = 0;
7248 if (flag_code == CODE_16BIT)
7249 code16 = CODE16;
a217f122 7250
29b0f896
AM
7251 prefix = 0;
7252 if (i.prefix[DATA_PREFIX] != 0)
7253 {
7254 prefix = 1;
7255 i.prefixes -= 1;
7256 code16 ^= CODE16;
7257 }
7258 if (i.prefix[REX_PREFIX] != 0)
7259 {
7260 prefix++;
7261 i.prefixes -= 1;
7262 }
252b5132 7263
29b0f896
AM
7264 size = 4;
7265 if (code16)
7266 size = 2;
252b5132 7267
29b0f896
AM
7268 if (i.prefixes != 0 && !intel_syntax)
7269 as_warn (_("skipping prefixes on this instruction"));
252b5132 7270
29b0f896
AM
7271 /* 1 opcode; 2 segment; offset */
7272 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7273
29b0f896
AM
7274 if (i.prefix[DATA_PREFIX] != 0)
7275 *p++ = DATA_PREFIX_OPCODE;
252b5132 7276
29b0f896
AM
7277 if (i.prefix[REX_PREFIX] != 0)
7278 *p++ = i.prefix[REX_PREFIX];
252b5132 7279
29b0f896
AM
7280 *p++ = i.tm.base_opcode;
7281 if (i.op[1].imms->X_op == O_constant)
7282 {
7283 offsetT n = i.op[1].imms->X_add_number;
252b5132 7284
29b0f896
AM
7285 if (size == 2
7286 && !fits_in_unsigned_word (n)
7287 && !fits_in_signed_word (n))
7288 {
7289 as_bad (_("16-bit jump out of range"));
7290 return;
7291 }
7292 md_number_to_chars (p, n, size);
7293 }
7294 else
7295 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7296 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7297 if (i.op[0].imms->X_op != O_constant)
7298 as_bad (_("can't handle non absolute segment in `%s'"),
7299 i.tm.name);
7300 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7301}
a217f122 7302
29b0f896 7303static void
e3bb37b5 7304output_insn (void)
29b0f896 7305{
2bbd9c25
JJ
7306 fragS *insn_start_frag;
7307 offsetT insn_start_off;
7308
29b0f896
AM
7309 /* Tie dwarf2 debug info to the address at the start of the insn.
7310 We can't do this after the insn has been output as the current
7311 frag may have been closed off. eg. by frag_var. */
7312 dwarf2_emit_insn (0);
7313
2bbd9c25
JJ
7314 insn_start_frag = frag_now;
7315 insn_start_off = frag_now_fix ();
7316
29b0f896 7317 /* Output jumps. */
40fb9820 7318 if (i.tm.opcode_modifier.jump)
29b0f896 7319 output_branch ();
40fb9820
L
7320 else if (i.tm.opcode_modifier.jumpbyte
7321 || i.tm.opcode_modifier.jumpdword)
29b0f896 7322 output_jump ();
40fb9820 7323 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7324 output_interseg_jump ();
7325 else
7326 {
7327 /* Output normal instructions here. */
7328 char *p;
7329 unsigned char *q;
47465058 7330 unsigned int j;
331d2d0d 7331 unsigned int prefix;
4dffcebc 7332
e4e00185
AS
7333 if (avoid_fence
7334 && i.tm.base_opcode == 0xfae
7335 && i.operands == 1
7336 && i.imm_operands == 1
7337 && (i.op[0].imms->X_add_number == 0xe8
7338 || i.op[0].imms->X_add_number == 0xf0
7339 || i.op[0].imms->X_add_number == 0xf8))
7340 {
7341 /* Encode lfence, mfence, and sfence as
7342 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7343 offsetT val = 0x240483f0ULL;
7344 p = frag_more (5);
7345 md_number_to_chars (p, val, 5);
7346 return;
7347 }
7348
d022bddd
IT
7349 /* Some processors fail on LOCK prefix. This options makes
7350 assembler ignore LOCK prefix and serves as a workaround. */
7351 if (omit_lock_prefix)
7352 {
7353 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7354 return;
7355 i.prefix[LOCK_PREFIX] = 0;
7356 }
7357
43234a1e
L
7358 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7359 don't need the explicit prefix. */
7360 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7361 {
c0f3af97 7362 switch (i.tm.opcode_length)
bc4bd9ab 7363 {
c0f3af97
L
7364 case 3:
7365 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7366 {
c0f3af97
L
7367 prefix = (i.tm.base_opcode >> 24) & 0xff;
7368 goto check_prefix;
7369 }
7370 break;
7371 case 2:
7372 if ((i.tm.base_opcode & 0xff0000) != 0)
7373 {
7374 prefix = (i.tm.base_opcode >> 16) & 0xff;
7375 if (i.tm.cpu_flags.bitfield.cpupadlock)
7376 {
4dffcebc 7377check_prefix:
c0f3af97 7378 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7379 || (i.prefix[REP_PREFIX]
c0f3af97
L
7380 != REPE_PREFIX_OPCODE))
7381 add_prefix (prefix);
7382 }
7383 else
4dffcebc
L
7384 add_prefix (prefix);
7385 }
c0f3af97
L
7386 break;
7387 case 1:
7388 break;
390c91cf
L
7389 case 0:
7390 /* Check for pseudo prefixes. */
7391 as_bad_where (insn_start_frag->fr_file,
7392 insn_start_frag->fr_line,
7393 _("pseudo prefix without instruction"));
7394 return;
c0f3af97
L
7395 default:
7396 abort ();
bc4bd9ab 7397 }
c0f3af97 7398
6d19a37a 7399#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7400 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7401 R_X86_64_GOTTPOFF relocation so that linker can safely
7402 perform IE->LE optimization. */
7403 if (x86_elf_abi == X86_64_X32_ABI
7404 && i.operands == 2
7405 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7406 && i.prefix[REX_PREFIX] == 0)
7407 add_prefix (REX_OPCODE);
6d19a37a 7408#endif
cf61b747 7409
c0f3af97
L
7410 /* The prefix bytes. */
7411 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7412 if (*q)
7413 FRAG_APPEND_1_CHAR (*q);
0f10071e 7414 }
ae5c1c7b 7415 else
c0f3af97
L
7416 {
7417 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7418 if (*q)
7419 switch (j)
7420 {
7421 case REX_PREFIX:
7422 /* REX byte is encoded in VEX prefix. */
7423 break;
7424 case SEG_PREFIX:
7425 case ADDR_PREFIX:
7426 FRAG_APPEND_1_CHAR (*q);
7427 break;
7428 default:
7429 /* There should be no other prefixes for instructions
7430 with VEX prefix. */
7431 abort ();
7432 }
7433
43234a1e
L
7434 /* For EVEX instructions i.vrex should become 0 after
7435 build_evex_prefix. For VEX instructions upper 16 registers
7436 aren't available, so VREX should be 0. */
7437 if (i.vrex)
7438 abort ();
c0f3af97
L
7439 /* Now the VEX prefix. */
7440 p = frag_more (i.vex.length);
7441 for (j = 0; j < i.vex.length; j++)
7442 p[j] = i.vex.bytes[j];
7443 }
252b5132 7444
29b0f896 7445 /* Now the opcode; be careful about word order here! */
4dffcebc 7446 if (i.tm.opcode_length == 1)
29b0f896
AM
7447 {
7448 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7449 }
7450 else
7451 {
4dffcebc 7452 switch (i.tm.opcode_length)
331d2d0d 7453 {
43234a1e
L
7454 case 4:
7455 p = frag_more (4);
7456 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7457 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7458 break;
4dffcebc 7459 case 3:
331d2d0d
L
7460 p = frag_more (3);
7461 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7462 break;
7463 case 2:
7464 p = frag_more (2);
7465 break;
7466 default:
7467 abort ();
7468 break;
331d2d0d 7469 }
0f10071e 7470
29b0f896
AM
7471 /* Put out high byte first: can't use md_number_to_chars! */
7472 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7473 *p = i.tm.base_opcode & 0xff;
7474 }
3e73aa7c 7475
29b0f896 7476 /* Now the modrm byte and sib byte (if present). */
40fb9820 7477 if (i.tm.opcode_modifier.modrm)
29b0f896 7478 {
4a3523fa
L
7479 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7480 | i.rm.reg << 3
7481 | i.rm.mode << 6));
29b0f896
AM
7482 /* If i.rm.regmem == ESP (4)
7483 && i.rm.mode != (Register mode)
7484 && not 16 bit
7485 ==> need second modrm byte. */
7486 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7487 && i.rm.mode != 3
dc821c5f 7488 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7489 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7490 | i.sib.index << 3
7491 | i.sib.scale << 6));
29b0f896 7492 }
3e73aa7c 7493
29b0f896 7494 if (i.disp_operands)
2bbd9c25 7495 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7496
29b0f896 7497 if (i.imm_operands)
2bbd9c25 7498 output_imm (insn_start_frag, insn_start_off);
29b0f896 7499 }
252b5132 7500
29b0f896
AM
7501#ifdef DEBUG386
7502 if (flag_debug)
7503 {
7b81dfbb 7504 pi ("" /*line*/, &i);
29b0f896
AM
7505 }
7506#endif /* DEBUG386 */
7507}
252b5132 7508
e205caa7
L
7509/* Return the size of the displacement operand N. */
7510
7511static int
7512disp_size (unsigned int n)
7513{
7514 int size = 4;
43234a1e 7515
b5014f7a 7516 if (i.types[n].bitfield.disp64)
40fb9820
L
7517 size = 8;
7518 else if (i.types[n].bitfield.disp8)
7519 size = 1;
7520 else if (i.types[n].bitfield.disp16)
7521 size = 2;
e205caa7
L
7522 return size;
7523}
7524
7525/* Return the size of the immediate operand N. */
7526
7527static int
7528imm_size (unsigned int n)
7529{
7530 int size = 4;
40fb9820
L
7531 if (i.types[n].bitfield.imm64)
7532 size = 8;
7533 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7534 size = 1;
7535 else if (i.types[n].bitfield.imm16)
7536 size = 2;
e205caa7
L
7537 return size;
7538}
7539
29b0f896 7540static void
64e74474 7541output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7542{
7543 char *p;
7544 unsigned int n;
252b5132 7545
29b0f896
AM
7546 for (n = 0; n < i.operands; n++)
7547 {
b5014f7a 7548 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7549 {
7550 if (i.op[n].disps->X_op == O_constant)
7551 {
e205caa7 7552 int size = disp_size (n);
43234a1e 7553 offsetT val = i.op[n].disps->X_add_number;
252b5132 7554
b5014f7a 7555 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7556 p = frag_more (size);
7557 md_number_to_chars (p, val, size);
7558 }
7559 else
7560 {
f86103b7 7561 enum bfd_reloc_code_real reloc_type;
e205caa7 7562 int size = disp_size (n);
40fb9820 7563 int sign = i.types[n].bitfield.disp32s;
29b0f896 7564 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7565 fixS *fixP;
29b0f896 7566
e205caa7 7567 /* We can't have 8 bit displacement here. */
9c2799c2 7568 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7569
29b0f896
AM
7570 /* The PC relative address is computed relative
7571 to the instruction boundary, so in case immediate
7572 fields follows, we need to adjust the value. */
7573 if (pcrel && i.imm_operands)
7574 {
29b0f896 7575 unsigned int n1;
e205caa7 7576 int sz = 0;
252b5132 7577
29b0f896 7578 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7579 if (operand_type_check (i.types[n1], imm))
252b5132 7580 {
e205caa7
L
7581 /* Only one immediate is allowed for PC
7582 relative address. */
9c2799c2 7583 gas_assert (sz == 0);
e205caa7
L
7584 sz = imm_size (n1);
7585 i.op[n].disps->X_add_number -= sz;
252b5132 7586 }
29b0f896 7587 /* We should find the immediate. */
9c2799c2 7588 gas_assert (sz != 0);
29b0f896 7589 }
520dc8e8 7590
29b0f896 7591 p = frag_more (size);
d258b828 7592 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7593 if (GOT_symbol
2bbd9c25 7594 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7595 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7596 || reloc_type == BFD_RELOC_X86_64_32S
7597 || (reloc_type == BFD_RELOC_64
7598 && object_64bit))
d6ab8113
JB
7599 && (i.op[n].disps->X_op == O_symbol
7600 || (i.op[n].disps->X_op == O_add
7601 && ((symbol_get_value_expression
7602 (i.op[n].disps->X_op_symbol)->X_op)
7603 == O_subtract))))
7604 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7605 {
7606 offsetT add;
7607
7608 if (insn_start_frag == frag_now)
7609 add = (p - frag_now->fr_literal) - insn_start_off;
7610 else
7611 {
7612 fragS *fr;
7613
7614 add = insn_start_frag->fr_fix - insn_start_off;
7615 for (fr = insn_start_frag->fr_next;
7616 fr && fr != frag_now; fr = fr->fr_next)
7617 add += fr->fr_fix;
7618 add += p - frag_now->fr_literal;
7619 }
7620
4fa24527 7621 if (!object_64bit)
7b81dfbb
AJ
7622 {
7623 reloc_type = BFD_RELOC_386_GOTPC;
7624 i.op[n].imms->X_add_number += add;
7625 }
7626 else if (reloc_type == BFD_RELOC_64)
7627 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7628 else
7b81dfbb
AJ
7629 /* Don't do the adjustment for x86-64, as there
7630 the pcrel addressing is relative to the _next_
7631 insn, and that is taken care of in other code. */
d6ab8113 7632 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7633 }
02a86693
L
7634 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7635 size, i.op[n].disps, pcrel,
7636 reloc_type);
7637 /* Check for "call/jmp *mem", "mov mem, %reg",
7638 "test %reg, mem" and "binop mem, %reg" where binop
7639 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7640 instructions. Always generate R_386_GOT32X for
7641 "sym*GOT" operand in 32-bit mode. */
7642 if ((generate_relax_relocations
7643 || (!object_64bit
7644 && i.rm.mode == 0
7645 && i.rm.regmem == 5))
7646 && (i.rm.mode == 2
7647 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7648 && ((i.operands == 1
7649 && i.tm.base_opcode == 0xff
7650 && (i.rm.reg == 2 || i.rm.reg == 4))
7651 || (i.operands == 2
7652 && (i.tm.base_opcode == 0x8b
7653 || i.tm.base_opcode == 0x85
7654 || (i.tm.base_opcode & 0xc7) == 0x03))))
7655 {
7656 if (object_64bit)
7657 {
7658 fixP->fx_tcbit = i.rex != 0;
7659 if (i.base_reg
7660 && (i.base_reg->reg_num == RegRip
7661 || i.base_reg->reg_num == RegEip))
7662 fixP->fx_tcbit2 = 1;
7663 }
7664 else
7665 fixP->fx_tcbit2 = 1;
7666 }
29b0f896
AM
7667 }
7668 }
7669 }
7670}
252b5132 7671
29b0f896 7672static void
64e74474 7673output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7674{
7675 char *p;
7676 unsigned int n;
252b5132 7677
29b0f896
AM
7678 for (n = 0; n < i.operands; n++)
7679 {
43234a1e
L
7680 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7681 if (i.rounding && (int) n == i.rounding->operand)
7682 continue;
7683
40fb9820 7684 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7685 {
7686 if (i.op[n].imms->X_op == O_constant)
7687 {
e205caa7 7688 int size = imm_size (n);
29b0f896 7689 offsetT val;
b4cac588 7690
29b0f896
AM
7691 val = offset_in_range (i.op[n].imms->X_add_number,
7692 size);
7693 p = frag_more (size);
7694 md_number_to_chars (p, val, size);
7695 }
7696 else
7697 {
7698 /* Not absolute_section.
7699 Need a 32-bit fixup (don't support 8bit
7700 non-absolute imms). Try to support other
7701 sizes ... */
f86103b7 7702 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7703 int size = imm_size (n);
7704 int sign;
29b0f896 7705
40fb9820 7706 if (i.types[n].bitfield.imm32s
a7d61044 7707 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7708 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7709 sign = 1;
e205caa7
L
7710 else
7711 sign = 0;
520dc8e8 7712
29b0f896 7713 p = frag_more (size);
d258b828 7714 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7715
2bbd9c25
JJ
7716 /* This is tough to explain. We end up with this one if we
7717 * have operands that look like
7718 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7719 * obtain the absolute address of the GOT, and it is strongly
7720 * preferable from a performance point of view to avoid using
7721 * a runtime relocation for this. The actual sequence of
7722 * instructions often look something like:
7723 *
7724 * call .L66
7725 * .L66:
7726 * popl %ebx
7727 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7728 *
7729 * The call and pop essentially return the absolute address
7730 * of the label .L66 and store it in %ebx. The linker itself
7731 * will ultimately change the first operand of the addl so
7732 * that %ebx points to the GOT, but to keep things simple, the
7733 * .o file must have this operand set so that it generates not
7734 * the absolute address of .L66, but the absolute address of
7735 * itself. This allows the linker itself simply treat a GOTPC
7736 * relocation as asking for a pcrel offset to the GOT to be
7737 * added in, and the addend of the relocation is stored in the
7738 * operand field for the instruction itself.
7739 *
7740 * Our job here is to fix the operand so that it would add
7741 * the correct offset so that %ebx would point to itself. The
7742 * thing that is tricky is that .-.L66 will point to the
7743 * beginning of the instruction, so we need to further modify
7744 * the operand so that it will point to itself. There are
7745 * other cases where you have something like:
7746 *
7747 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7748 *
7749 * and here no correction would be required. Internally in
7750 * the assembler we treat operands of this form as not being
7751 * pcrel since the '.' is explicitly mentioned, and I wonder
7752 * whether it would simplify matters to do it this way. Who
7753 * knows. In earlier versions of the PIC patches, the
7754 * pcrel_adjust field was used to store the correction, but
7755 * since the expression is not pcrel, I felt it would be
7756 * confusing to do it this way. */
7757
d6ab8113 7758 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7759 || reloc_type == BFD_RELOC_X86_64_32S
7760 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7761 && GOT_symbol
7762 && GOT_symbol == i.op[n].imms->X_add_symbol
7763 && (i.op[n].imms->X_op == O_symbol
7764 || (i.op[n].imms->X_op == O_add
7765 && ((symbol_get_value_expression
7766 (i.op[n].imms->X_op_symbol)->X_op)
7767 == O_subtract))))
7768 {
2bbd9c25
JJ
7769 offsetT add;
7770
7771 if (insn_start_frag == frag_now)
7772 add = (p - frag_now->fr_literal) - insn_start_off;
7773 else
7774 {
7775 fragS *fr;
7776
7777 add = insn_start_frag->fr_fix - insn_start_off;
7778 for (fr = insn_start_frag->fr_next;
7779 fr && fr != frag_now; fr = fr->fr_next)
7780 add += fr->fr_fix;
7781 add += p - frag_now->fr_literal;
7782 }
7783
4fa24527 7784 if (!object_64bit)
d6ab8113 7785 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7786 else if (size == 4)
d6ab8113 7787 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7788 else if (size == 8)
7789 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7790 i.op[n].imms->X_add_number += add;
29b0f896 7791 }
29b0f896
AM
7792 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7793 i.op[n].imms, 0, reloc_type);
7794 }
7795 }
7796 }
252b5132
RH
7797}
7798\f
d182319b
JB
7799/* x86_cons_fix_new is called via the expression parsing code when a
7800 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
7801static int cons_sign = -1;
7802
7803void
e3bb37b5 7804x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 7805 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 7806{
d258b828 7807 r = reloc (len, 0, cons_sign, r);
d182319b
JB
7808
7809#ifdef TE_PE
7810 if (exp->X_op == O_secrel)
7811 {
7812 exp->X_op = O_symbol;
7813 r = BFD_RELOC_32_SECREL;
7814 }
7815#endif
7816
7817 fix_new_exp (frag, off, len, exp, 0, r);
7818}
7819
357d1bd8
L
7820/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7821 purpose of the `.dc.a' internal pseudo-op. */
7822
7823int
7824x86_address_bytes (void)
7825{
7826 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7827 return 4;
7828 return stdoutput->arch_info->bits_per_address / 8;
7829}
7830
d382c579
TG
7831#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7832 || defined (LEX_AT)
d258b828 7833# define lex_got(reloc, adjust, types) NULL
718ddfc0 7834#else
f3c180ae
AM
7835/* Parse operands of the form
7836 <symbol>@GOTOFF+<nnn>
7837 and similar .plt or .got references.
7838
7839 If we find one, set up the correct relocation in RELOC and copy the
7840 input string, minus the `@GOTOFF' into a malloc'd buffer for
7841 parsing by the calling routine. Return this buffer, and if ADJUST
7842 is non-null set it to the length of the string we removed from the
7843 input line. Otherwise return NULL. */
7844static char *
91d6fa6a 7845lex_got (enum bfd_reloc_code_real *rel,
64e74474 7846 int *adjust,
d258b828 7847 i386_operand_type *types)
f3c180ae 7848{
7b81dfbb
AJ
7849 /* Some of the relocations depend on the size of what field is to
7850 be relocated. But in our callers i386_immediate and i386_displacement
7851 we don't yet know the operand size (this will be set by insn
7852 matching). Hence we record the word32 relocation here,
7853 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7854 static const struct {
7855 const char *str;
cff8d58a 7856 int len;
4fa24527 7857 const enum bfd_reloc_code_real rel[2];
40fb9820 7858 const i386_operand_type types64;
f3c180ae 7859 } gotrel[] = {
8ce3d284 7860#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7861 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7862 BFD_RELOC_SIZE32 },
7863 OPERAND_TYPE_IMM32_64 },
8ce3d284 7864#endif
cff8d58a
L
7865 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7866 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7867 OPERAND_TYPE_IMM64 },
cff8d58a
L
7868 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7869 BFD_RELOC_X86_64_PLT32 },
40fb9820 7870 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7871 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7872 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7873 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7874 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7875 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7876 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7877 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7878 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7879 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7880 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7881 BFD_RELOC_X86_64_TLSGD },
40fb9820 7882 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7883 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7884 _dummy_first_bfd_reloc_code_real },
40fb9820 7885 OPERAND_TYPE_NONE },
cff8d58a
L
7886 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7887 BFD_RELOC_X86_64_TLSLD },
40fb9820 7888 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7889 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7890 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7891 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7892 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7893 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7894 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7895 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7896 _dummy_first_bfd_reloc_code_real },
40fb9820 7897 OPERAND_TYPE_NONE },
cff8d58a
L
7898 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7899 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7900 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7901 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7902 _dummy_first_bfd_reloc_code_real },
40fb9820 7903 OPERAND_TYPE_NONE },
cff8d58a
L
7904 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7905 _dummy_first_bfd_reloc_code_real },
40fb9820 7906 OPERAND_TYPE_NONE },
cff8d58a
L
7907 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7908 BFD_RELOC_X86_64_GOT32 },
40fb9820 7909 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7910 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7911 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7912 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7913 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7914 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7915 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7916 };
7917 char *cp;
7918 unsigned int j;
7919
d382c579 7920#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7921 if (!IS_ELF)
7922 return NULL;
d382c579 7923#endif
718ddfc0 7924
f3c180ae 7925 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7926 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7927 return NULL;
7928
47465058 7929 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7930 {
cff8d58a 7931 int len = gotrel[j].len;
28f81592 7932 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7933 {
4fa24527 7934 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7935 {
28f81592
AM
7936 int first, second;
7937 char *tmpbuf, *past_reloc;
f3c180ae 7938
91d6fa6a 7939 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7940
3956db08
JB
7941 if (types)
7942 {
7943 if (flag_code != CODE_64BIT)
40fb9820
L
7944 {
7945 types->bitfield.imm32 = 1;
7946 types->bitfield.disp32 = 1;
7947 }
3956db08
JB
7948 else
7949 *types = gotrel[j].types64;
7950 }
7951
8fd4256d 7952 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7953 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7954
28f81592 7955 /* The length of the first part of our input line. */
f3c180ae 7956 first = cp - input_line_pointer;
28f81592
AM
7957
7958 /* The second part goes from after the reloc token until
67c11a9b 7959 (and including) an end_of_line char or comma. */
28f81592 7960 past_reloc = cp + 1 + len;
67c11a9b
AM
7961 cp = past_reloc;
7962 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7963 ++cp;
7964 second = cp + 1 - past_reloc;
28f81592
AM
7965
7966 /* Allocate and copy string. The trailing NUL shouldn't
7967 be necessary, but be safe. */
add39d23 7968 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 7969 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7970 if (second != 0 && *past_reloc != ' ')
7971 /* Replace the relocation token with ' ', so that
7972 errors like foo@GOTOFF1 will be detected. */
7973 tmpbuf[first++] = ' ';
af89796a
L
7974 else
7975 /* Increment length by 1 if the relocation token is
7976 removed. */
7977 len++;
7978 if (adjust)
7979 *adjust = len;
0787a12d
AM
7980 memcpy (tmpbuf + first, past_reloc, second);
7981 tmpbuf[first + second] = '\0';
f3c180ae
AM
7982 return tmpbuf;
7983 }
7984
4fa24527
JB
7985 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7986 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7987 return NULL;
7988 }
7989 }
7990
7991 /* Might be a symbol version string. Don't as_bad here. */
7992 return NULL;
7993}
4e4f7c87 7994#endif
f3c180ae 7995
a988325c
NC
7996#ifdef TE_PE
7997#ifdef lex_got
7998#undef lex_got
7999#endif
8000/* Parse operands of the form
8001 <symbol>@SECREL32+<nnn>
8002
8003 If we find one, set up the correct relocation in RELOC and copy the
8004 input string, minus the `@SECREL32' into a malloc'd buffer for
8005 parsing by the calling routine. Return this buffer, and if ADJUST
8006 is non-null set it to the length of the string we removed from the
34bca508
L
8007 input line. Otherwise return NULL.
8008
a988325c
NC
8009 This function is copied from the ELF version above adjusted for PE targets. */
8010
8011static char *
8012lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8013 int *adjust ATTRIBUTE_UNUSED,
d258b828 8014 i386_operand_type *types)
a988325c
NC
8015{
8016 static const struct
8017 {
8018 const char *str;
8019 int len;
8020 const enum bfd_reloc_code_real rel[2];
8021 const i386_operand_type types64;
8022 }
8023 gotrel[] =
8024 {
8025 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8026 BFD_RELOC_32_SECREL },
8027 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8028 };
8029
8030 char *cp;
8031 unsigned j;
8032
8033 for (cp = input_line_pointer; *cp != '@'; cp++)
8034 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8035 return NULL;
8036
8037 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8038 {
8039 int len = gotrel[j].len;
8040
8041 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8042 {
8043 if (gotrel[j].rel[object_64bit] != 0)
8044 {
8045 int first, second;
8046 char *tmpbuf, *past_reloc;
8047
8048 *rel = gotrel[j].rel[object_64bit];
8049 if (adjust)
8050 *adjust = len;
8051
8052 if (types)
8053 {
8054 if (flag_code != CODE_64BIT)
8055 {
8056 types->bitfield.imm32 = 1;
8057 types->bitfield.disp32 = 1;
8058 }
8059 else
8060 *types = gotrel[j].types64;
8061 }
8062
8063 /* The length of the first part of our input line. */
8064 first = cp - input_line_pointer;
8065
8066 /* The second part goes from after the reloc token until
8067 (and including) an end_of_line char or comma. */
8068 past_reloc = cp + 1 + len;
8069 cp = past_reloc;
8070 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8071 ++cp;
8072 second = cp + 1 - past_reloc;
8073
8074 /* Allocate and copy string. The trailing NUL shouldn't
8075 be necessary, but be safe. */
add39d23 8076 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8077 memcpy (tmpbuf, input_line_pointer, first);
8078 if (second != 0 && *past_reloc != ' ')
8079 /* Replace the relocation token with ' ', so that
8080 errors like foo@SECLREL321 will be detected. */
8081 tmpbuf[first++] = ' ';
8082 memcpy (tmpbuf + first, past_reloc, second);
8083 tmpbuf[first + second] = '\0';
8084 return tmpbuf;
8085 }
8086
8087 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8088 gotrel[j].str, 1 << (5 + object_64bit));
8089 return NULL;
8090 }
8091 }
8092
8093 /* Might be a symbol version string. Don't as_bad here. */
8094 return NULL;
8095}
8096
8097#endif /* TE_PE */
8098
62ebcb5c 8099bfd_reloc_code_real_type
e3bb37b5 8100x86_cons (expressionS *exp, int size)
f3c180ae 8101{
62ebcb5c
AM
8102 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8103
ee86248c
JB
8104 intel_syntax = -intel_syntax;
8105
3c7b9c2c 8106 exp->X_md = 0;
4fa24527 8107 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8108 {
8109 /* Handle @GOTOFF and the like in an expression. */
8110 char *save;
8111 char *gotfree_input_line;
4a57f2cf 8112 int adjust = 0;
f3c180ae
AM
8113
8114 save = input_line_pointer;
d258b828 8115 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8116 if (gotfree_input_line)
8117 input_line_pointer = gotfree_input_line;
8118
8119 expression (exp);
8120
8121 if (gotfree_input_line)
8122 {
8123 /* expression () has merrily parsed up to the end of line,
8124 or a comma - in the wrong buffer. Transfer how far
8125 input_line_pointer has moved to the right buffer. */
8126 input_line_pointer = (save
8127 + (input_line_pointer - gotfree_input_line)
8128 + adjust);
8129 free (gotfree_input_line);
3992d3b7
AM
8130 if (exp->X_op == O_constant
8131 || exp->X_op == O_absent
8132 || exp->X_op == O_illegal
0398aac5 8133 || exp->X_op == O_register
3992d3b7
AM
8134 || exp->X_op == O_big)
8135 {
8136 char c = *input_line_pointer;
8137 *input_line_pointer = 0;
8138 as_bad (_("missing or invalid expression `%s'"), save);
8139 *input_line_pointer = c;
8140 }
f3c180ae
AM
8141 }
8142 }
8143 else
8144 expression (exp);
ee86248c
JB
8145
8146 intel_syntax = -intel_syntax;
8147
8148 if (intel_syntax)
8149 i386_intel_simplify (exp);
62ebcb5c
AM
8150
8151 return got_reloc;
f3c180ae 8152}
f3c180ae 8153
9f32dd5b
L
8154static void
8155signed_cons (int size)
6482c264 8156{
d182319b
JB
8157 if (flag_code == CODE_64BIT)
8158 cons_sign = 1;
8159 cons (size);
8160 cons_sign = -1;
6482c264
NC
8161}
8162
d182319b 8163#ifdef TE_PE
6482c264 8164static void
7016a5d5 8165pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8166{
8167 expressionS exp;
8168
8169 do
8170 {
8171 expression (&exp);
8172 if (exp.X_op == O_symbol)
8173 exp.X_op = O_secrel;
8174
8175 emit_expr (&exp, 4);
8176 }
8177 while (*input_line_pointer++ == ',');
8178
8179 input_line_pointer--;
8180 demand_empty_rest_of_line ();
8181}
6482c264
NC
8182#endif
8183
43234a1e
L
8184/* Handle Vector operations. */
8185
8186static char *
8187check_VecOperations (char *op_string, char *op_end)
8188{
8189 const reg_entry *mask;
8190 const char *saved;
8191 char *end_op;
8192
8193 while (*op_string
8194 && (op_end == NULL || op_string < op_end))
8195 {
8196 saved = op_string;
8197 if (*op_string == '{')
8198 {
8199 op_string++;
8200
8201 /* Check broadcasts. */
8202 if (strncmp (op_string, "1to", 3) == 0)
8203 {
8204 int bcst_type;
8205
8206 if (i.broadcast)
8207 goto duplicated_vec_op;
8208
8209 op_string += 3;
8210 if (*op_string == '8')
8211 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
8212 else if (*op_string == '4')
8213 bcst_type = BROADCAST_1TO4;
8214 else if (*op_string == '2')
8215 bcst_type = BROADCAST_1TO2;
43234a1e
L
8216 else if (*op_string == '1'
8217 && *(op_string+1) == '6')
8218 {
8219 bcst_type = BROADCAST_1TO16;
8220 op_string++;
8221 }
8222 else
8223 {
8224 as_bad (_("Unsupported broadcast: `%s'"), saved);
8225 return NULL;
8226 }
8227 op_string++;
8228
8229 broadcast_op.type = bcst_type;
8230 broadcast_op.operand = this_operand;
8231 i.broadcast = &broadcast_op;
8232 }
8233 /* Check masking operation. */
8234 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8235 {
8236 /* k0 can't be used for write mask. */
6d2cd6b2 8237 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8238 {
6d2cd6b2
JB
8239 as_bad (_("`%s%s' can't be used for write mask"),
8240 register_prefix, mask->reg_name);
43234a1e
L
8241 return NULL;
8242 }
8243
8244 if (!i.mask)
8245 {
8246 mask_op.mask = mask;
8247 mask_op.zeroing = 0;
8248 mask_op.operand = this_operand;
8249 i.mask = &mask_op;
8250 }
8251 else
8252 {
8253 if (i.mask->mask)
8254 goto duplicated_vec_op;
8255
8256 i.mask->mask = mask;
8257
8258 /* Only "{z}" is allowed here. No need to check
8259 zeroing mask explicitly. */
8260 if (i.mask->operand != this_operand)
8261 {
8262 as_bad (_("invalid write mask `%s'"), saved);
8263 return NULL;
8264 }
8265 }
8266
8267 op_string = end_op;
8268 }
8269 /* Check zeroing-flag for masking operation. */
8270 else if (*op_string == 'z')
8271 {
8272 if (!i.mask)
8273 {
8274 mask_op.mask = NULL;
8275 mask_op.zeroing = 1;
8276 mask_op.operand = this_operand;
8277 i.mask = &mask_op;
8278 }
8279 else
8280 {
8281 if (i.mask->zeroing)
8282 {
8283 duplicated_vec_op:
8284 as_bad (_("duplicated `%s'"), saved);
8285 return NULL;
8286 }
8287
8288 i.mask->zeroing = 1;
8289
8290 /* Only "{%k}" is allowed here. No need to check mask
8291 register explicitly. */
8292 if (i.mask->operand != this_operand)
8293 {
8294 as_bad (_("invalid zeroing-masking `%s'"),
8295 saved);
8296 return NULL;
8297 }
8298 }
8299
8300 op_string++;
8301 }
8302 else
8303 goto unknown_vec_op;
8304
8305 if (*op_string != '}')
8306 {
8307 as_bad (_("missing `}' in `%s'"), saved);
8308 return NULL;
8309 }
8310 op_string++;
8311 continue;
8312 }
8313 unknown_vec_op:
8314 /* We don't know this one. */
8315 as_bad (_("unknown vector operation: `%s'"), saved);
8316 return NULL;
8317 }
8318
6d2cd6b2
JB
8319 if (i.mask && i.mask->zeroing && !i.mask->mask)
8320 {
8321 as_bad (_("zeroing-masking only allowed with write mask"));
8322 return NULL;
8323 }
8324
43234a1e
L
8325 return op_string;
8326}
8327
252b5132 8328static int
70e41ade 8329i386_immediate (char *imm_start)
252b5132
RH
8330{
8331 char *save_input_line_pointer;
f3c180ae 8332 char *gotfree_input_line;
252b5132 8333 segT exp_seg = 0;
47926f60 8334 expressionS *exp;
40fb9820
L
8335 i386_operand_type types;
8336
0dfbf9d7 8337 operand_type_set (&types, ~0);
252b5132
RH
8338
8339 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8340 {
31b2323c
L
8341 as_bad (_("at most %d immediate operands are allowed"),
8342 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8343 return 0;
8344 }
8345
8346 exp = &im_expressions[i.imm_operands++];
520dc8e8 8347 i.op[this_operand].imms = exp;
252b5132
RH
8348
8349 if (is_space_char (*imm_start))
8350 ++imm_start;
8351
8352 save_input_line_pointer = input_line_pointer;
8353 input_line_pointer = imm_start;
8354
d258b828 8355 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8356 if (gotfree_input_line)
8357 input_line_pointer = gotfree_input_line;
252b5132
RH
8358
8359 exp_seg = expression (exp);
8360
83183c0c 8361 SKIP_WHITESPACE ();
43234a1e
L
8362
8363 /* Handle vector operations. */
8364 if (*input_line_pointer == '{')
8365 {
8366 input_line_pointer = check_VecOperations (input_line_pointer,
8367 NULL);
8368 if (input_line_pointer == NULL)
8369 return 0;
8370 }
8371
252b5132 8372 if (*input_line_pointer)
f3c180ae 8373 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8374
8375 input_line_pointer = save_input_line_pointer;
f3c180ae 8376 if (gotfree_input_line)
ee86248c
JB
8377 {
8378 free (gotfree_input_line);
8379
8380 if (exp->X_op == O_constant || exp->X_op == O_register)
8381 exp->X_op = O_illegal;
8382 }
8383
8384 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8385}
252b5132 8386
ee86248c
JB
8387static int
8388i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8389 i386_operand_type types, const char *imm_start)
8390{
8391 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8392 {
313c53d1
L
8393 if (imm_start)
8394 as_bad (_("missing or invalid immediate expression `%s'"),
8395 imm_start);
3992d3b7 8396 return 0;
252b5132 8397 }
3e73aa7c 8398 else if (exp->X_op == O_constant)
252b5132 8399 {
47926f60 8400 /* Size it properly later. */
40fb9820 8401 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8402 /* If not 64bit, sign extend val. */
8403 if (flag_code != CODE_64BIT
4eed87de
AM
8404 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8405 exp->X_add_number
8406 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8407 }
4c63da97 8408#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8409 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8410 && exp_seg != absolute_section
47926f60 8411 && exp_seg != text_section
24eab124
AM
8412 && exp_seg != data_section
8413 && exp_seg != bss_section
8414 && exp_seg != undefined_section
f86103b7 8415 && !bfd_is_com_section (exp_seg))
252b5132 8416 {
d0b47220 8417 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8418 return 0;
8419 }
8420#endif
a841bdf5 8421 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8422 {
313c53d1
L
8423 if (imm_start)
8424 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8425 return 0;
8426 }
252b5132
RH
8427 else
8428 {
8429 /* This is an address. The size of the address will be
24eab124 8430 determined later, depending on destination register,
3e73aa7c 8431 suffix, or the default for the section. */
40fb9820
L
8432 i.types[this_operand].bitfield.imm8 = 1;
8433 i.types[this_operand].bitfield.imm16 = 1;
8434 i.types[this_operand].bitfield.imm32 = 1;
8435 i.types[this_operand].bitfield.imm32s = 1;
8436 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8437 i.types[this_operand] = operand_type_and (i.types[this_operand],
8438 types);
252b5132
RH
8439 }
8440
8441 return 1;
8442}
8443
551c1ca1 8444static char *
e3bb37b5 8445i386_scale (char *scale)
252b5132 8446{
551c1ca1
AM
8447 offsetT val;
8448 char *save = input_line_pointer;
252b5132 8449
551c1ca1
AM
8450 input_line_pointer = scale;
8451 val = get_absolute_expression ();
8452
8453 switch (val)
252b5132 8454 {
551c1ca1 8455 case 1:
252b5132
RH
8456 i.log2_scale_factor = 0;
8457 break;
551c1ca1 8458 case 2:
252b5132
RH
8459 i.log2_scale_factor = 1;
8460 break;
551c1ca1 8461 case 4:
252b5132
RH
8462 i.log2_scale_factor = 2;
8463 break;
551c1ca1 8464 case 8:
252b5132
RH
8465 i.log2_scale_factor = 3;
8466 break;
8467 default:
a724f0f4
JB
8468 {
8469 char sep = *input_line_pointer;
8470
8471 *input_line_pointer = '\0';
8472 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8473 scale);
8474 *input_line_pointer = sep;
8475 input_line_pointer = save;
8476 return NULL;
8477 }
252b5132 8478 }
29b0f896 8479 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8480 {
8481 as_warn (_("scale factor of %d without an index register"),
24eab124 8482 1 << i.log2_scale_factor);
252b5132 8483 i.log2_scale_factor = 0;
252b5132 8484 }
551c1ca1
AM
8485 scale = input_line_pointer;
8486 input_line_pointer = save;
8487 return scale;
252b5132
RH
8488}
8489
252b5132 8490static int
e3bb37b5 8491i386_displacement (char *disp_start, char *disp_end)
252b5132 8492{
29b0f896 8493 expressionS *exp;
252b5132
RH
8494 segT exp_seg = 0;
8495 char *save_input_line_pointer;
f3c180ae 8496 char *gotfree_input_line;
40fb9820
L
8497 int override;
8498 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8499 int ret;
252b5132 8500
31b2323c
L
8501 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8502 {
8503 as_bad (_("at most %d displacement operands are allowed"),
8504 MAX_MEMORY_OPERANDS);
8505 return 0;
8506 }
8507
0dfbf9d7 8508 operand_type_set (&bigdisp, 0);
40fb9820
L
8509 if ((i.types[this_operand].bitfield.jumpabsolute)
8510 || (!current_templates->start->opcode_modifier.jump
8511 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8512 {
40fb9820 8513 bigdisp.bitfield.disp32 = 1;
e05278af 8514 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8515 if (flag_code == CODE_64BIT)
8516 {
8517 if (!override)
8518 {
8519 bigdisp.bitfield.disp32s = 1;
8520 bigdisp.bitfield.disp64 = 1;
8521 }
8522 }
8523 else if ((flag_code == CODE_16BIT) ^ override)
8524 {
8525 bigdisp.bitfield.disp32 = 0;
8526 bigdisp.bitfield.disp16 = 1;
8527 }
e05278af
JB
8528 }
8529 else
8530 {
8531 /* For PC-relative branches, the width of the displacement
8532 is dependent upon data size, not address size. */
e05278af 8533 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8534 if (flag_code == CODE_64BIT)
8535 {
8536 if (override || i.suffix == WORD_MNEM_SUFFIX)
8537 bigdisp.bitfield.disp16 = 1;
8538 else
8539 {
8540 bigdisp.bitfield.disp32 = 1;
8541 bigdisp.bitfield.disp32s = 1;
8542 }
8543 }
8544 else
e05278af
JB
8545 {
8546 if (!override)
8547 override = (i.suffix == (flag_code != CODE_16BIT
8548 ? WORD_MNEM_SUFFIX
8549 : LONG_MNEM_SUFFIX));
40fb9820
L
8550 bigdisp.bitfield.disp32 = 1;
8551 if ((flag_code == CODE_16BIT) ^ override)
8552 {
8553 bigdisp.bitfield.disp32 = 0;
8554 bigdisp.bitfield.disp16 = 1;
8555 }
e05278af 8556 }
e05278af 8557 }
c6fb90c8
L
8558 i.types[this_operand] = operand_type_or (i.types[this_operand],
8559 bigdisp);
252b5132
RH
8560
8561 exp = &disp_expressions[i.disp_operands];
520dc8e8 8562 i.op[this_operand].disps = exp;
252b5132
RH
8563 i.disp_operands++;
8564 save_input_line_pointer = input_line_pointer;
8565 input_line_pointer = disp_start;
8566 END_STRING_AND_SAVE (disp_end);
8567
8568#ifndef GCC_ASM_O_HACK
8569#define GCC_ASM_O_HACK 0
8570#endif
8571#if GCC_ASM_O_HACK
8572 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8573 if (i.types[this_operand].bitfield.baseIndex
24eab124 8574 && displacement_string_end[-1] == '+')
252b5132
RH
8575 {
8576 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8577 constraint within gcc asm statements.
8578 For instance:
8579
8580 #define _set_tssldt_desc(n,addr,limit,type) \
8581 __asm__ __volatile__ ( \
8582 "movw %w2,%0\n\t" \
8583 "movw %w1,2+%0\n\t" \
8584 "rorl $16,%1\n\t" \
8585 "movb %b1,4+%0\n\t" \
8586 "movb %4,5+%0\n\t" \
8587 "movb $0,6+%0\n\t" \
8588 "movb %h1,7+%0\n\t" \
8589 "rorl $16,%1" \
8590 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8591
8592 This works great except that the output assembler ends
8593 up looking a bit weird if it turns out that there is
8594 no offset. You end up producing code that looks like:
8595
8596 #APP
8597 movw $235,(%eax)
8598 movw %dx,2+(%eax)
8599 rorl $16,%edx
8600 movb %dl,4+(%eax)
8601 movb $137,5+(%eax)
8602 movb $0,6+(%eax)
8603 movb %dh,7+(%eax)
8604 rorl $16,%edx
8605 #NO_APP
8606
47926f60 8607 So here we provide the missing zero. */
24eab124
AM
8608
8609 *displacement_string_end = '0';
252b5132
RH
8610 }
8611#endif
d258b828 8612 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8613 if (gotfree_input_line)
8614 input_line_pointer = gotfree_input_line;
252b5132 8615
24eab124 8616 exp_seg = expression (exp);
252b5132 8617
636c26b0
AM
8618 SKIP_WHITESPACE ();
8619 if (*input_line_pointer)
8620 as_bad (_("junk `%s' after expression"), input_line_pointer);
8621#if GCC_ASM_O_HACK
8622 RESTORE_END_STRING (disp_end + 1);
8623#endif
636c26b0 8624 input_line_pointer = save_input_line_pointer;
636c26b0 8625 if (gotfree_input_line)
ee86248c
JB
8626 {
8627 free (gotfree_input_line);
8628
8629 if (exp->X_op == O_constant || exp->X_op == O_register)
8630 exp->X_op = O_illegal;
8631 }
8632
8633 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8634
8635 RESTORE_END_STRING (disp_end);
8636
8637 return ret;
8638}
8639
8640static int
8641i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8642 i386_operand_type types, const char *disp_start)
8643{
8644 i386_operand_type bigdisp;
8645 int ret = 1;
636c26b0 8646
24eab124
AM
8647 /* We do this to make sure that the section symbol is in
8648 the symbol table. We will ultimately change the relocation
47926f60 8649 to be relative to the beginning of the section. */
1ae12ab7 8650 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8651 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8652 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8653 {
636c26b0 8654 if (exp->X_op != O_symbol)
3992d3b7 8655 goto inv_disp;
636c26b0 8656
e5cb08ac 8657 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8658 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8659 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8660 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8661 exp->X_op = O_subtract;
8662 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8663 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8664 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8665 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8666 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8667 else
29b0f896 8668 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8669 }
252b5132 8670
3992d3b7
AM
8671 else if (exp->X_op == O_absent
8672 || exp->X_op == O_illegal
ee86248c 8673 || exp->X_op == O_big)
2daf4fd8 8674 {
3992d3b7
AM
8675 inv_disp:
8676 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8677 disp_start);
3992d3b7 8678 ret = 0;
2daf4fd8
AM
8679 }
8680
0e1147d9
L
8681 else if (flag_code == CODE_64BIT
8682 && !i.prefix[ADDR_PREFIX]
8683 && exp->X_op == O_constant)
8684 {
8685 /* Since displacement is signed extended to 64bit, don't allow
8686 disp32 and turn off disp32s if they are out of range. */
8687 i.types[this_operand].bitfield.disp32 = 0;
8688 if (!fits_in_signed_long (exp->X_add_number))
8689 {
8690 i.types[this_operand].bitfield.disp32s = 0;
8691 if (i.types[this_operand].bitfield.baseindex)
8692 {
8693 as_bad (_("0x%lx out range of signed 32bit displacement"),
8694 (long) exp->X_add_number);
8695 ret = 0;
8696 }
8697 }
8698 }
8699
4c63da97 8700#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8701 else if (exp->X_op != O_constant
8702 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8703 && exp_seg != absolute_section
8704 && exp_seg != text_section
8705 && exp_seg != data_section
8706 && exp_seg != bss_section
8707 && exp_seg != undefined_section
8708 && !bfd_is_com_section (exp_seg))
24eab124 8709 {
d0b47220 8710 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8711 ret = 0;
24eab124 8712 }
252b5132 8713#endif
3956db08 8714
40fb9820
L
8715 /* Check if this is a displacement only operand. */
8716 bigdisp = i.types[this_operand];
8717 bigdisp.bitfield.disp8 = 0;
8718 bigdisp.bitfield.disp16 = 0;
8719 bigdisp.bitfield.disp32 = 0;
8720 bigdisp.bitfield.disp32s = 0;
8721 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8722 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8723 i.types[this_operand] = operand_type_and (i.types[this_operand],
8724 types);
3956db08 8725
3992d3b7 8726 return ret;
252b5132
RH
8727}
8728
2abc2bec
JB
8729/* Return the active addressing mode, taking address override and
8730 registers forming the address into consideration. Update the
8731 address override prefix if necessary. */
47926f60 8732
2abc2bec
JB
8733static enum flag_code
8734i386_addressing_mode (void)
252b5132 8735{
be05d201
L
8736 enum flag_code addr_mode;
8737
8738 if (i.prefix[ADDR_PREFIX])
8739 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8740 else
8741 {
8742 addr_mode = flag_code;
8743
24eab124 8744#if INFER_ADDR_PREFIX
be05d201
L
8745 if (i.mem_operands == 0)
8746 {
8747 /* Infer address prefix from the first memory operand. */
8748 const reg_entry *addr_reg = i.base_reg;
8749
8750 if (addr_reg == NULL)
8751 addr_reg = i.index_reg;
eecb386c 8752
be05d201
L
8753 if (addr_reg)
8754 {
8755 if (addr_reg->reg_num == RegEip
8756 || addr_reg->reg_num == RegEiz
dc821c5f 8757 || addr_reg->reg_type.bitfield.dword)
be05d201
L
8758 addr_mode = CODE_32BIT;
8759 else if (flag_code != CODE_64BIT
dc821c5f 8760 && addr_reg->reg_type.bitfield.word)
be05d201
L
8761 addr_mode = CODE_16BIT;
8762
8763 if (addr_mode != flag_code)
8764 {
8765 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8766 i.prefixes += 1;
8767 /* Change the size of any displacement too. At most one
8768 of Disp16 or Disp32 is set.
8769 FIXME. There doesn't seem to be any real need for
8770 separate Disp16 and Disp32 flags. The same goes for
8771 Imm16 and Imm32. Removing them would probably clean
8772 up the code quite a lot. */
8773 if (flag_code != CODE_64BIT
8774 && (i.types[this_operand].bitfield.disp16
8775 || i.types[this_operand].bitfield.disp32))
8776 i.types[this_operand]
8777 = operand_type_xor (i.types[this_operand], disp16_32);
8778 }
8779 }
8780 }
24eab124 8781#endif
be05d201
L
8782 }
8783
2abc2bec
JB
8784 return addr_mode;
8785}
8786
8787/* Make sure the memory operand we've been dealt is valid.
8788 Return 1 on success, 0 on a failure. */
8789
8790static int
8791i386_index_check (const char *operand_string)
8792{
8793 const char *kind = "base/index";
8794 enum flag_code addr_mode = i386_addressing_mode ();
8795
fc0763e6
JB
8796 if (current_templates->start->opcode_modifier.isstring
8797 && !current_templates->start->opcode_modifier.immext
8798 && (current_templates->end[-1].opcode_modifier.isstring
8799 || i.mem_operands))
8800 {
8801 /* Memory operands of string insns are special in that they only allow
8802 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8803 const reg_entry *expected_reg;
8804 static const char *di_si[][2] =
8805 {
8806 { "esi", "edi" },
8807 { "si", "di" },
8808 { "rsi", "rdi" }
8809 };
8810 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8811
8812 kind = "string address";
8813
8325cc63 8814 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
8815 {
8816 i386_operand_type type = current_templates->end[-1].operand_types[0];
8817
8818 if (!type.bitfield.baseindex
8819 || ((!i.mem_operands != !intel_syntax)
8820 && current_templates->end[-1].operand_types[1]
8821 .bitfield.baseindex))
8822 type = current_templates->end[-1].operand_types[1];
be05d201
L
8823 expected_reg = hash_find (reg_hash,
8824 di_si[addr_mode][type.bitfield.esseg]);
8825
fc0763e6
JB
8826 }
8827 else
be05d201 8828 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8829
be05d201
L
8830 if (i.base_reg != expected_reg
8831 || i.index_reg
fc0763e6 8832 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8833 {
be05d201
L
8834 /* The second memory operand must have the same size as
8835 the first one. */
8836 if (i.mem_operands
8837 && i.base_reg
8838 && !((addr_mode == CODE_64BIT
dc821c5f 8839 && i.base_reg->reg_type.bitfield.qword)
be05d201 8840 || (addr_mode == CODE_32BIT
dc821c5f
JB
8841 ? i.base_reg->reg_type.bitfield.dword
8842 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
8843 goto bad_address;
8844
fc0763e6
JB
8845 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8846 operand_string,
8847 intel_syntax ? '[' : '(',
8848 register_prefix,
be05d201 8849 expected_reg->reg_name,
fc0763e6 8850 intel_syntax ? ']' : ')');
be05d201 8851 return 1;
fc0763e6 8852 }
be05d201
L
8853 else
8854 return 1;
8855
8856bad_address:
8857 as_bad (_("`%s' is not a valid %s expression"),
8858 operand_string, kind);
8859 return 0;
3e73aa7c
JH
8860 }
8861 else
8862 {
be05d201
L
8863 if (addr_mode != CODE_16BIT)
8864 {
8865 /* 32-bit/64-bit checks. */
8866 if ((i.base_reg
8867 && (addr_mode == CODE_64BIT
dc821c5f
JB
8868 ? !i.base_reg->reg_type.bitfield.qword
8869 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
8870 && (i.index_reg
8871 || (i.base_reg->reg_num
8872 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8873 || (i.index_reg
1b54b8d7
JB
8874 && !i.index_reg->reg_type.bitfield.xmmword
8875 && !i.index_reg->reg_type.bitfield.ymmword
8876 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 8877 && ((addr_mode == CODE_64BIT
dc821c5f 8878 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 8879 || i.index_reg->reg_num == RegRiz)
dc821c5f 8880 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
8881 || i.index_reg->reg_num == RegEiz))
8882 || !i.index_reg->reg_type.bitfield.baseindex)))
8883 goto bad_address;
8178be5b
JB
8884
8885 /* bndmk, bndldx, and bndstx have special restrictions. */
8886 if (current_templates->start->base_opcode == 0xf30f1b
8887 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8888 {
8889 /* They cannot use RIP-relative addressing. */
8890 if (i.base_reg && i.base_reg->reg_num == RegRip)
8891 {
8892 as_bad (_("`%s' cannot be used here"), operand_string);
8893 return 0;
8894 }
8895
8896 /* bndldx and bndstx ignore their scale factor. */
8897 if (current_templates->start->base_opcode != 0xf30f1b
8898 && i.log2_scale_factor)
8899 as_warn (_("register scaling is being ignored here"));
8900 }
be05d201
L
8901 }
8902 else
3e73aa7c 8903 {
be05d201 8904 /* 16-bit checks. */
3e73aa7c 8905 if ((i.base_reg
dc821c5f 8906 && (!i.base_reg->reg_type.bitfield.word
40fb9820 8907 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8908 || (i.index_reg
dc821c5f 8909 && (!i.index_reg->reg_type.bitfield.word
40fb9820 8910 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8911 || !(i.base_reg
8912 && i.base_reg->reg_num < 6
8913 && i.index_reg->reg_num >= 6
8914 && i.log2_scale_factor == 0))))
be05d201 8915 goto bad_address;
3e73aa7c
JH
8916 }
8917 }
be05d201 8918 return 1;
24eab124 8919}
252b5132 8920
43234a1e
L
8921/* Handle vector immediates. */
8922
8923static int
8924RC_SAE_immediate (const char *imm_start)
8925{
8926 unsigned int match_found, j;
8927 const char *pstr = imm_start;
8928 expressionS *exp;
8929
8930 if (*pstr != '{')
8931 return 0;
8932
8933 pstr++;
8934 match_found = 0;
8935 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8936 {
8937 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8938 {
8939 if (!i.rounding)
8940 {
8941 rc_op.type = RC_NamesTable[j].type;
8942 rc_op.operand = this_operand;
8943 i.rounding = &rc_op;
8944 }
8945 else
8946 {
8947 as_bad (_("duplicated `%s'"), imm_start);
8948 return 0;
8949 }
8950 pstr += RC_NamesTable[j].len;
8951 match_found = 1;
8952 break;
8953 }
8954 }
8955 if (!match_found)
8956 return 0;
8957
8958 if (*pstr++ != '}')
8959 {
8960 as_bad (_("Missing '}': '%s'"), imm_start);
8961 return 0;
8962 }
8963 /* RC/SAE immediate string should contain nothing more. */;
8964 if (*pstr != 0)
8965 {
8966 as_bad (_("Junk after '}': '%s'"), imm_start);
8967 return 0;
8968 }
8969
8970 exp = &im_expressions[i.imm_operands++];
8971 i.op[this_operand].imms = exp;
8972
8973 exp->X_op = O_constant;
8974 exp->X_add_number = 0;
8975 exp->X_add_symbol = (symbolS *) 0;
8976 exp->X_op_symbol = (symbolS *) 0;
8977
8978 i.types[this_operand].bitfield.imm8 = 1;
8979 return 1;
8980}
8981
8325cc63
JB
8982/* Only string instructions can have a second memory operand, so
8983 reduce current_templates to just those if it contains any. */
8984static int
8985maybe_adjust_templates (void)
8986{
8987 const insn_template *t;
8988
8989 gas_assert (i.mem_operands == 1);
8990
8991 for (t = current_templates->start; t < current_templates->end; ++t)
8992 if (t->opcode_modifier.isstring)
8993 break;
8994
8995 if (t < current_templates->end)
8996 {
8997 static templates aux_templates;
8998 bfd_boolean recheck;
8999
9000 aux_templates.start = t;
9001 for (; t < current_templates->end; ++t)
9002 if (!t->opcode_modifier.isstring)
9003 break;
9004 aux_templates.end = t;
9005
9006 /* Determine whether to re-check the first memory operand. */
9007 recheck = (aux_templates.start != current_templates->start
9008 || t != current_templates->end);
9009
9010 current_templates = &aux_templates;
9011
9012 if (recheck)
9013 {
9014 i.mem_operands = 0;
9015 if (i.memop1_string != NULL
9016 && i386_index_check (i.memop1_string) == 0)
9017 return 0;
9018 i.mem_operands = 1;
9019 }
9020 }
9021
9022 return 1;
9023}
9024
fc0763e6 9025/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9026 on error. */
252b5132 9027
252b5132 9028static int
a7619375 9029i386_att_operand (char *operand_string)
252b5132 9030{
af6bdddf
AM
9031 const reg_entry *r;
9032 char *end_op;
24eab124 9033 char *op_string = operand_string;
252b5132 9034
24eab124 9035 if (is_space_char (*op_string))
252b5132
RH
9036 ++op_string;
9037
24eab124 9038 /* We check for an absolute prefix (differentiating,
47926f60 9039 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9040 if (*op_string == ABSOLUTE_PREFIX)
9041 {
9042 ++op_string;
9043 if (is_space_char (*op_string))
9044 ++op_string;
40fb9820 9045 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9046 }
252b5132 9047
47926f60 9048 /* Check if operand is a register. */
4d1bb795 9049 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9050 {
40fb9820
L
9051 i386_operand_type temp;
9052
24eab124
AM
9053 /* Check for a segment override by searching for ':' after a
9054 segment register. */
9055 op_string = end_op;
9056 if (is_space_char (*op_string))
9057 ++op_string;
40fb9820
L
9058 if (*op_string == ':'
9059 && (r->reg_type.bitfield.sreg2
9060 || r->reg_type.bitfield.sreg3))
24eab124
AM
9061 {
9062 switch (r->reg_num)
9063 {
9064 case 0:
9065 i.seg[i.mem_operands] = &es;
9066 break;
9067 case 1:
9068 i.seg[i.mem_operands] = &cs;
9069 break;
9070 case 2:
9071 i.seg[i.mem_operands] = &ss;
9072 break;
9073 case 3:
9074 i.seg[i.mem_operands] = &ds;
9075 break;
9076 case 4:
9077 i.seg[i.mem_operands] = &fs;
9078 break;
9079 case 5:
9080 i.seg[i.mem_operands] = &gs;
9081 break;
9082 }
252b5132 9083
24eab124 9084 /* Skip the ':' and whitespace. */
252b5132
RH
9085 ++op_string;
9086 if (is_space_char (*op_string))
24eab124 9087 ++op_string;
252b5132 9088
24eab124
AM
9089 if (!is_digit_char (*op_string)
9090 && !is_identifier_char (*op_string)
9091 && *op_string != '('
9092 && *op_string != ABSOLUTE_PREFIX)
9093 {
9094 as_bad (_("bad memory operand `%s'"), op_string);
9095 return 0;
9096 }
47926f60 9097 /* Handle case of %es:*foo. */
24eab124
AM
9098 if (*op_string == ABSOLUTE_PREFIX)
9099 {
9100 ++op_string;
9101 if (is_space_char (*op_string))
9102 ++op_string;
40fb9820 9103 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9104 }
9105 goto do_memory_reference;
9106 }
43234a1e
L
9107
9108 /* Handle vector operations. */
9109 if (*op_string == '{')
9110 {
9111 op_string = check_VecOperations (op_string, NULL);
9112 if (op_string == NULL)
9113 return 0;
9114 }
9115
24eab124
AM
9116 if (*op_string)
9117 {
d0b47220 9118 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9119 return 0;
9120 }
40fb9820
L
9121 temp = r->reg_type;
9122 temp.bitfield.baseindex = 0;
c6fb90c8
L
9123 i.types[this_operand] = operand_type_or (i.types[this_operand],
9124 temp);
7d5e4556 9125 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9126 i.op[this_operand].regs = r;
24eab124
AM
9127 i.reg_operands++;
9128 }
af6bdddf
AM
9129 else if (*op_string == REGISTER_PREFIX)
9130 {
9131 as_bad (_("bad register name `%s'"), op_string);
9132 return 0;
9133 }
24eab124 9134 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9135 {
24eab124 9136 ++op_string;
40fb9820 9137 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9138 {
d0b47220 9139 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9140 return 0;
9141 }
9142 if (!i386_immediate (op_string))
9143 return 0;
9144 }
43234a1e
L
9145 else if (RC_SAE_immediate (operand_string))
9146 {
9147 /* If it is a RC or SAE immediate, do nothing. */
9148 ;
9149 }
24eab124
AM
9150 else if (is_digit_char (*op_string)
9151 || is_identifier_char (*op_string)
d02603dc 9152 || *op_string == '"'
e5cb08ac 9153 || *op_string == '(')
24eab124 9154 {
47926f60 9155 /* This is a memory reference of some sort. */
af6bdddf 9156 char *base_string;
252b5132 9157
47926f60 9158 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9159 char *displacement_string_start;
9160 char *displacement_string_end;
43234a1e 9161 char *vop_start;
252b5132 9162
24eab124 9163 do_memory_reference:
8325cc63
JB
9164 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9165 return 0;
24eab124 9166 if ((i.mem_operands == 1
40fb9820 9167 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9168 || i.mem_operands == 2)
9169 {
9170 as_bad (_("too many memory references for `%s'"),
9171 current_templates->start->name);
9172 return 0;
9173 }
252b5132 9174
24eab124
AM
9175 /* Check for base index form. We detect the base index form by
9176 looking for an ')' at the end of the operand, searching
9177 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9178 after the '('. */
af6bdddf 9179 base_string = op_string + strlen (op_string);
c3332e24 9180
43234a1e
L
9181 /* Handle vector operations. */
9182 vop_start = strchr (op_string, '{');
9183 if (vop_start && vop_start < base_string)
9184 {
9185 if (check_VecOperations (vop_start, base_string) == NULL)
9186 return 0;
9187 base_string = vop_start;
9188 }
9189
af6bdddf
AM
9190 --base_string;
9191 if (is_space_char (*base_string))
9192 --base_string;
252b5132 9193
47926f60 9194 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9195 displacement_string_start = op_string;
9196 displacement_string_end = base_string + 1;
252b5132 9197
24eab124
AM
9198 if (*base_string == ')')
9199 {
af6bdddf 9200 char *temp_string;
24eab124
AM
9201 unsigned int parens_balanced = 1;
9202 /* We've already checked that the number of left & right ()'s are
47926f60 9203 equal, so this loop will not be infinite. */
24eab124
AM
9204 do
9205 {
9206 base_string--;
9207 if (*base_string == ')')
9208 parens_balanced++;
9209 if (*base_string == '(')
9210 parens_balanced--;
9211 }
9212 while (parens_balanced);
c3332e24 9213
af6bdddf 9214 temp_string = base_string;
c3332e24 9215
24eab124 9216 /* Skip past '(' and whitespace. */
252b5132
RH
9217 ++base_string;
9218 if (is_space_char (*base_string))
24eab124 9219 ++base_string;
252b5132 9220
af6bdddf 9221 if (*base_string == ','
4eed87de
AM
9222 || ((i.base_reg = parse_register (base_string, &end_op))
9223 != NULL))
252b5132 9224 {
af6bdddf 9225 displacement_string_end = temp_string;
252b5132 9226
40fb9820 9227 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9228
af6bdddf 9229 if (i.base_reg)
24eab124 9230 {
24eab124
AM
9231 base_string = end_op;
9232 if (is_space_char (*base_string))
9233 ++base_string;
af6bdddf
AM
9234 }
9235
9236 /* There may be an index reg or scale factor here. */
9237 if (*base_string == ',')
9238 {
9239 ++base_string;
9240 if (is_space_char (*base_string))
9241 ++base_string;
9242
4eed87de
AM
9243 if ((i.index_reg = parse_register (base_string, &end_op))
9244 != NULL)
24eab124 9245 {
af6bdddf 9246 base_string = end_op;
24eab124
AM
9247 if (is_space_char (*base_string))
9248 ++base_string;
af6bdddf
AM
9249 if (*base_string == ',')
9250 {
9251 ++base_string;
9252 if (is_space_char (*base_string))
9253 ++base_string;
9254 }
e5cb08ac 9255 else if (*base_string != ')')
af6bdddf 9256 {
4eed87de
AM
9257 as_bad (_("expecting `,' or `)' "
9258 "after index register in `%s'"),
af6bdddf
AM
9259 operand_string);
9260 return 0;
9261 }
24eab124 9262 }
af6bdddf 9263 else if (*base_string == REGISTER_PREFIX)
24eab124 9264 {
f76bf5e0
L
9265 end_op = strchr (base_string, ',');
9266 if (end_op)
9267 *end_op = '\0';
af6bdddf 9268 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9269 return 0;
9270 }
252b5132 9271
47926f60 9272 /* Check for scale factor. */
551c1ca1 9273 if (*base_string != ')')
af6bdddf 9274 {
551c1ca1
AM
9275 char *end_scale = i386_scale (base_string);
9276
9277 if (!end_scale)
af6bdddf 9278 return 0;
24eab124 9279
551c1ca1 9280 base_string = end_scale;
af6bdddf
AM
9281 if (is_space_char (*base_string))
9282 ++base_string;
9283 if (*base_string != ')')
9284 {
4eed87de
AM
9285 as_bad (_("expecting `)' "
9286 "after scale factor in `%s'"),
af6bdddf
AM
9287 operand_string);
9288 return 0;
9289 }
9290 }
9291 else if (!i.index_reg)
24eab124 9292 {
4eed87de
AM
9293 as_bad (_("expecting index register or scale factor "
9294 "after `,'; got '%c'"),
af6bdddf 9295 *base_string);
24eab124
AM
9296 return 0;
9297 }
9298 }
af6bdddf 9299 else if (*base_string != ')')
24eab124 9300 {
4eed87de
AM
9301 as_bad (_("expecting `,' or `)' "
9302 "after base register in `%s'"),
af6bdddf 9303 operand_string);
24eab124
AM
9304 return 0;
9305 }
c3332e24 9306 }
af6bdddf 9307 else if (*base_string == REGISTER_PREFIX)
c3332e24 9308 {
f76bf5e0
L
9309 end_op = strchr (base_string, ',');
9310 if (end_op)
9311 *end_op = '\0';
af6bdddf 9312 as_bad (_("bad register name `%s'"), base_string);
24eab124 9313 return 0;
c3332e24 9314 }
24eab124
AM
9315 }
9316
9317 /* If there's an expression beginning the operand, parse it,
9318 assuming displacement_string_start and
9319 displacement_string_end are meaningful. */
9320 if (displacement_string_start != displacement_string_end)
9321 {
9322 if (!i386_displacement (displacement_string_start,
9323 displacement_string_end))
9324 return 0;
9325 }
9326
9327 /* Special case for (%dx) while doing input/output op. */
9328 if (i.base_reg
0dfbf9d7
L
9329 && operand_type_equal (&i.base_reg->reg_type,
9330 &reg16_inoutportreg)
24eab124
AM
9331 && i.index_reg == 0
9332 && i.log2_scale_factor == 0
9333 && i.seg[i.mem_operands] == 0
40fb9820 9334 && !operand_type_check (i.types[this_operand], disp))
24eab124 9335 {
65da13b5 9336 i.types[this_operand] = inoutportreg;
24eab124
AM
9337 return 1;
9338 }
9339
eecb386c
AM
9340 if (i386_index_check (operand_string) == 0)
9341 return 0;
5c07affc 9342 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9343 if (i.mem_operands == 0)
9344 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9345 i.mem_operands++;
9346 }
9347 else
ce8a8b2f
AM
9348 {
9349 /* It's not a memory operand; argh! */
24eab124
AM
9350 as_bad (_("invalid char %s beginning operand %d `%s'"),
9351 output_invalid (*op_string),
9352 this_operand + 1,
9353 op_string);
9354 return 0;
9355 }
47926f60 9356 return 1; /* Normal return. */
252b5132
RH
9357}
9358\f
fa94de6b
RM
9359/* Calculate the maximum variable size (i.e., excluding fr_fix)
9360 that an rs_machine_dependent frag may reach. */
9361
9362unsigned int
9363i386_frag_max_var (fragS *frag)
9364{
9365 /* The only relaxable frags are for jumps.
9366 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9367 gas_assert (frag->fr_type == rs_machine_dependent);
9368 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9369}
9370
b084df0b
L
9371#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9372static int
8dcea932 9373elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9374{
9375 /* STT_GNU_IFUNC symbol must go through PLT. */
9376 if ((symbol_get_bfdsym (fr_symbol)->flags
9377 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9378 return 0;
9379
9380 if (!S_IS_EXTERNAL (fr_symbol))
9381 /* Symbol may be weak or local. */
9382 return !S_IS_WEAK (fr_symbol);
9383
8dcea932
L
9384 /* Global symbols with non-default visibility can't be preempted. */
9385 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9386 return 1;
9387
9388 if (fr_var != NO_RELOC)
9389 switch ((enum bfd_reloc_code_real) fr_var)
9390 {
9391 case BFD_RELOC_386_PLT32:
9392 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9393 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9394 return 0;
9395 default:
9396 abort ();
9397 }
9398
b084df0b
L
9399 /* Global symbols with default visibility in a shared library may be
9400 preempted by another definition. */
8dcea932 9401 return !shared;
b084df0b
L
9402}
9403#endif
9404
ee7fcc42
AM
9405/* md_estimate_size_before_relax()
9406
9407 Called just before relax() for rs_machine_dependent frags. The x86
9408 assembler uses these frags to handle variable size jump
9409 instructions.
9410
9411 Any symbol that is now undefined will not become defined.
9412 Return the correct fr_subtype in the frag.
9413 Return the initial "guess for variable size of frag" to caller.
9414 The guess is actually the growth beyond the fixed part. Whatever
9415 we do to grow the fixed or variable part contributes to our
9416 returned value. */
9417
252b5132 9418int
7016a5d5 9419md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9420{
252b5132 9421 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9422 check for un-relaxable symbols. On an ELF system, we can't relax
9423 an externally visible symbol, because it may be overridden by a
9424 shared library. */
9425 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9426#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9427 || (IS_ELF
8dcea932
L
9428 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9429 fragP->fr_var))
fbeb56a4
DK
9430#endif
9431#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9432 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9433 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9434#endif
9435 )
252b5132 9436 {
b98ef147
AM
9437 /* Symbol is undefined in this segment, or we need to keep a
9438 reloc so that weak symbols can be overridden. */
9439 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9440 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9441 unsigned char *opcode;
9442 int old_fr_fix;
f6af82bd 9443
ee7fcc42 9444 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9445 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9446 else if (size == 2)
f6af82bd 9447 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9448#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9449 else if (need_plt32_p (fragP->fr_symbol))
9450 reloc_type = BFD_RELOC_X86_64_PLT32;
9451#endif
f6af82bd
AM
9452 else
9453 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9454
ee7fcc42
AM
9455 old_fr_fix = fragP->fr_fix;
9456 opcode = (unsigned char *) fragP->fr_opcode;
9457
fddf5b5b 9458 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9459 {
fddf5b5b
AM
9460 case UNCOND_JUMP:
9461 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9462 opcode[0] = 0xe9;
252b5132 9463 fragP->fr_fix += size;
062cd5e7
AS
9464 fix_new (fragP, old_fr_fix, size,
9465 fragP->fr_symbol,
9466 fragP->fr_offset, 1,
9467 reloc_type);
252b5132
RH
9468 break;
9469
fddf5b5b 9470 case COND_JUMP86:
412167cb
AM
9471 if (size == 2
9472 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9473 {
9474 /* Negate the condition, and branch past an
9475 unconditional jump. */
9476 opcode[0] ^= 1;
9477 opcode[1] = 3;
9478 /* Insert an unconditional jump. */
9479 opcode[2] = 0xe9;
9480 /* We added two extra opcode bytes, and have a two byte
9481 offset. */
9482 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9483 fix_new (fragP, old_fr_fix + 2, 2,
9484 fragP->fr_symbol,
9485 fragP->fr_offset, 1,
9486 reloc_type);
fddf5b5b
AM
9487 break;
9488 }
9489 /* Fall through. */
9490
9491 case COND_JUMP:
412167cb
AM
9492 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9493 {
3e02c1cc
AM
9494 fixS *fixP;
9495
412167cb 9496 fragP->fr_fix += 1;
3e02c1cc
AM
9497 fixP = fix_new (fragP, old_fr_fix, 1,
9498 fragP->fr_symbol,
9499 fragP->fr_offset, 1,
9500 BFD_RELOC_8_PCREL);
9501 fixP->fx_signed = 1;
412167cb
AM
9502 break;
9503 }
93c2a809 9504
24eab124 9505 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9506 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9507 opcode[1] = opcode[0] + 0x10;
f6af82bd 9508 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9509 /* We've added an opcode byte. */
9510 fragP->fr_fix += 1 + size;
062cd5e7
AS
9511 fix_new (fragP, old_fr_fix + 1, size,
9512 fragP->fr_symbol,
9513 fragP->fr_offset, 1,
9514 reloc_type);
252b5132 9515 break;
fddf5b5b
AM
9516
9517 default:
9518 BAD_CASE (fragP->fr_subtype);
9519 break;
252b5132
RH
9520 }
9521 frag_wane (fragP);
ee7fcc42 9522 return fragP->fr_fix - old_fr_fix;
252b5132 9523 }
93c2a809 9524
93c2a809
AM
9525 /* Guess size depending on current relax state. Initially the relax
9526 state will correspond to a short jump and we return 1, because
9527 the variable part of the frag (the branch offset) is one byte
9528 long. However, we can relax a section more than once and in that
9529 case we must either set fr_subtype back to the unrelaxed state,
9530 or return the value for the appropriate branch. */
9531 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9532}
9533
47926f60
KH
9534/* Called after relax() is finished.
9535
9536 In: Address of frag.
9537 fr_type == rs_machine_dependent.
9538 fr_subtype is what the address relaxed to.
9539
9540 Out: Any fixSs and constants are set up.
9541 Caller will turn frag into a ".space 0". */
9542
252b5132 9543void
7016a5d5
TG
9544md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9545 fragS *fragP)
252b5132 9546{
29b0f896 9547 unsigned char *opcode;
252b5132 9548 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9549 offsetT target_address;
9550 offsetT opcode_address;
252b5132 9551 unsigned int extension = 0;
847f7ad4 9552 offsetT displacement_from_opcode_start;
252b5132
RH
9553
9554 opcode = (unsigned char *) fragP->fr_opcode;
9555
47926f60 9556 /* Address we want to reach in file space. */
252b5132 9557 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9558
47926f60 9559 /* Address opcode resides at in file space. */
252b5132
RH
9560 opcode_address = fragP->fr_address + fragP->fr_fix;
9561
47926f60 9562 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9563 displacement_from_opcode_start = target_address - opcode_address;
9564
fddf5b5b 9565 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9566 {
47926f60
KH
9567 /* Don't have to change opcode. */
9568 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9569 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9570 }
9571 else
9572 {
9573 if (no_cond_jump_promotion
9574 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9575 as_warn_where (fragP->fr_file, fragP->fr_line,
9576 _("long jump required"));
252b5132 9577
fddf5b5b
AM
9578 switch (fragP->fr_subtype)
9579 {
9580 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9581 extension = 4; /* 1 opcode + 4 displacement */
9582 opcode[0] = 0xe9;
9583 where_to_put_displacement = &opcode[1];
9584 break;
252b5132 9585
fddf5b5b
AM
9586 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9587 extension = 2; /* 1 opcode + 2 displacement */
9588 opcode[0] = 0xe9;
9589 where_to_put_displacement = &opcode[1];
9590 break;
252b5132 9591
fddf5b5b
AM
9592 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9593 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9594 extension = 5; /* 2 opcode + 4 displacement */
9595 opcode[1] = opcode[0] + 0x10;
9596 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9597 where_to_put_displacement = &opcode[2];
9598 break;
252b5132 9599
fddf5b5b
AM
9600 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9601 extension = 3; /* 2 opcode + 2 displacement */
9602 opcode[1] = opcode[0] + 0x10;
9603 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9604 where_to_put_displacement = &opcode[2];
9605 break;
252b5132 9606
fddf5b5b
AM
9607 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9608 extension = 4;
9609 opcode[0] ^= 1;
9610 opcode[1] = 3;
9611 opcode[2] = 0xe9;
9612 where_to_put_displacement = &opcode[3];
9613 break;
9614
9615 default:
9616 BAD_CASE (fragP->fr_subtype);
9617 break;
9618 }
252b5132 9619 }
fddf5b5b 9620
7b81dfbb
AJ
9621 /* If size if less then four we are sure that the operand fits,
9622 but if it's 4, then it could be that the displacement is larger
9623 then -/+ 2GB. */
9624 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9625 && object_64bit
9626 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9627 + ((addressT) 1 << 31))
9628 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9629 {
9630 as_bad_where (fragP->fr_file, fragP->fr_line,
9631 _("jump target out of range"));
9632 /* Make us emit 0. */
9633 displacement_from_opcode_start = extension;
9634 }
47926f60 9635 /* Now put displacement after opcode. */
252b5132
RH
9636 md_number_to_chars ((char *) where_to_put_displacement,
9637 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9638 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9639 fragP->fr_fix += extension;
9640}
9641\f
7016a5d5 9642/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9643 by our caller that we have all the info we need to fix it up.
9644
7016a5d5
TG
9645 Parameter valP is the pointer to the value of the bits.
9646
252b5132
RH
9647 On the 386, immediates, displacements, and data pointers are all in
9648 the same (little-endian) format, so we don't need to care about which
9649 we are handling. */
9650
94f592af 9651void
7016a5d5 9652md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9653{
94f592af 9654 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9655 valueT value = *valP;
252b5132 9656
f86103b7 9657#if !defined (TE_Mach)
93382f6d
AM
9658 if (fixP->fx_pcrel)
9659 {
9660 switch (fixP->fx_r_type)
9661 {
5865bb77
ILT
9662 default:
9663 break;
9664
d6ab8113
JB
9665 case BFD_RELOC_64:
9666 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9667 break;
93382f6d 9668 case BFD_RELOC_32:
ae8887b5 9669 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9670 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9671 break;
9672 case BFD_RELOC_16:
9673 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9674 break;
9675 case BFD_RELOC_8:
9676 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9677 break;
9678 }
9679 }
252b5132 9680
a161fe53 9681 if (fixP->fx_addsy != NULL
31312f95 9682 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9683 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9684 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9685 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9686 && !use_rela_relocations)
252b5132 9687 {
31312f95
AM
9688 /* This is a hack. There should be a better way to handle this.
9689 This covers for the fact that bfd_install_relocation will
9690 subtract the current location (for partial_inplace, PC relative
9691 relocations); see more below. */
252b5132 9692#ifndef OBJ_AOUT
718ddfc0 9693 if (IS_ELF
252b5132
RH
9694#ifdef TE_PE
9695 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9696#endif
9697 )
9698 value += fixP->fx_where + fixP->fx_frag->fr_address;
9699#endif
9700#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9701 if (IS_ELF)
252b5132 9702 {
6539b54b 9703 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9704
6539b54b 9705 if ((sym_seg == seg
2f66722d 9706 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9707 && sym_seg != absolute_section))
af65af87 9708 && !generic_force_reloc (fixP))
2f66722d
AM
9709 {
9710 /* Yes, we add the values in twice. This is because
6539b54b
AM
9711 bfd_install_relocation subtracts them out again. I think
9712 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9713 it. FIXME. */
9714 value += fixP->fx_where + fixP->fx_frag->fr_address;
9715 }
252b5132
RH
9716 }
9717#endif
9718#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9719 /* For some reason, the PE format does not store a
9720 section address offset for a PC relative symbol. */
9721 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9722 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9723 value += md_pcrel_from (fixP);
9724#endif
9725 }
fbeb56a4 9726#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9727 if (fixP->fx_addsy != NULL
9728 && S_IS_WEAK (fixP->fx_addsy)
9729 /* PR 16858: Do not modify weak function references. */
9730 && ! fixP->fx_pcrel)
fbeb56a4 9731 {
296a8689
NC
9732#if !defined (TE_PEP)
9733 /* For x86 PE weak function symbols are neither PC-relative
9734 nor do they set S_IS_FUNCTION. So the only reliable way
9735 to detect them is to check the flags of their containing
9736 section. */
9737 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9738 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9739 ;
9740 else
9741#endif
fbeb56a4
DK
9742 value -= S_GET_VALUE (fixP->fx_addsy);
9743 }
9744#endif
252b5132
RH
9745
9746 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9747 and we must not disappoint it. */
252b5132 9748#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9749 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9750 switch (fixP->fx_r_type)
9751 {
9752 case BFD_RELOC_386_PLT32:
3e73aa7c 9753 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9754 /* Make the jump instruction point to the address of the operand. At
9755 runtime we merely add the offset to the actual PLT entry. */
9756 value = -4;
9757 break;
31312f95 9758
13ae64f3
JJ
9759 case BFD_RELOC_386_TLS_GD:
9760 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9761 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9762 case BFD_RELOC_386_TLS_IE:
9763 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9764 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9765 case BFD_RELOC_X86_64_TLSGD:
9766 case BFD_RELOC_X86_64_TLSLD:
9767 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9768 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9769 value = 0; /* Fully resolved at runtime. No addend. */
9770 /* Fallthrough */
9771 case BFD_RELOC_386_TLS_LE:
9772 case BFD_RELOC_386_TLS_LDO_32:
9773 case BFD_RELOC_386_TLS_LE_32:
9774 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9775 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9776 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9777 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9778 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9779 break;
9780
67a4f2b7
AO
9781 case BFD_RELOC_386_TLS_DESC_CALL:
9782 case BFD_RELOC_X86_64_TLSDESC_CALL:
9783 value = 0; /* Fully resolved at runtime. No addend. */
9784 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9785 fixP->fx_done = 0;
9786 return;
9787
47926f60
KH
9788 case BFD_RELOC_VTABLE_INHERIT:
9789 case BFD_RELOC_VTABLE_ENTRY:
9790 fixP->fx_done = 0;
94f592af 9791 return;
47926f60
KH
9792
9793 default:
9794 break;
9795 }
9796#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9797 *valP = value;
f86103b7 9798#endif /* !defined (TE_Mach) */
3e73aa7c 9799
3e73aa7c 9800 /* Are we finished with this relocation now? */
c6682705 9801 if (fixP->fx_addsy == NULL)
3e73aa7c 9802 fixP->fx_done = 1;
fbeb56a4
DK
9803#if defined (OBJ_COFF) && defined (TE_PE)
9804 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9805 {
9806 fixP->fx_done = 0;
9807 /* Remember value for tc_gen_reloc. */
9808 fixP->fx_addnumber = value;
9809 /* Clear out the frag for now. */
9810 value = 0;
9811 }
9812#endif
3e73aa7c
JH
9813 else if (use_rela_relocations)
9814 {
9815 fixP->fx_no_overflow = 1;
062cd5e7
AS
9816 /* Remember value for tc_gen_reloc. */
9817 fixP->fx_addnumber = value;
3e73aa7c
JH
9818 value = 0;
9819 }
f86103b7 9820
94f592af 9821 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9822}
252b5132 9823\f
6d4af3c2 9824const char *
499ac353 9825md_atof (int type, char *litP, int *sizeP)
252b5132 9826{
499ac353
NC
9827 /* This outputs the LITTLENUMs in REVERSE order;
9828 in accord with the bigendian 386. */
9829 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9830}
9831\f
2d545b82 9832static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9833
252b5132 9834static char *
e3bb37b5 9835output_invalid (int c)
252b5132 9836{
3882b010 9837 if (ISPRINT (c))
f9f21a03
L
9838 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9839 "'%c'", c);
252b5132 9840 else
f9f21a03 9841 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9842 "(0x%x)", (unsigned char) c);
252b5132
RH
9843 return output_invalid_buf;
9844}
9845
af6bdddf 9846/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9847
9848static const reg_entry *
4d1bb795 9849parse_real_register (char *reg_string, char **end_op)
252b5132 9850{
af6bdddf
AM
9851 char *s = reg_string;
9852 char *p;
252b5132
RH
9853 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9854 const reg_entry *r;
9855
9856 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9857 if (*s == REGISTER_PREFIX)
9858 ++s;
9859
9860 if (is_space_char (*s))
9861 ++s;
9862
9863 p = reg_name_given;
af6bdddf 9864 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9865 {
9866 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9867 return (const reg_entry *) NULL;
9868 s++;
252b5132
RH
9869 }
9870
6588847e
DN
9871 /* For naked regs, make sure that we are not dealing with an identifier.
9872 This prevents confusing an identifier like `eax_var' with register
9873 `eax'. */
9874 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9875 return (const reg_entry *) NULL;
9876
af6bdddf 9877 *end_op = s;
252b5132
RH
9878
9879 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9880
5f47d35b 9881 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9882 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9883 {
5f47d35b
AM
9884 if (is_space_char (*s))
9885 ++s;
9886 if (*s == '(')
9887 {
af6bdddf 9888 ++s;
5f47d35b
AM
9889 if (is_space_char (*s))
9890 ++s;
9891 if (*s >= '0' && *s <= '7')
9892 {
db557034 9893 int fpr = *s - '0';
af6bdddf 9894 ++s;
5f47d35b
AM
9895 if (is_space_char (*s))
9896 ++s;
9897 if (*s == ')')
9898 {
9899 *end_op = s + 1;
1e9cc1c2 9900 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9901 know (r);
9902 return r + fpr;
5f47d35b 9903 }
5f47d35b 9904 }
47926f60 9905 /* We have "%st(" then garbage. */
5f47d35b
AM
9906 return (const reg_entry *) NULL;
9907 }
9908 }
9909
a60de03c
JB
9910 if (r == NULL || allow_pseudo_reg)
9911 return r;
9912
0dfbf9d7 9913 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9914 return (const reg_entry *) NULL;
9915
dc821c5f 9916 if ((r->reg_type.bitfield.dword
192dc9c6
JB
9917 || r->reg_type.bitfield.sreg3
9918 || r->reg_type.bitfield.control
9919 || r->reg_type.bitfield.debug
9920 || r->reg_type.bitfield.test)
9921 && !cpu_arch_flags.bitfield.cpui386)
9922 return (const reg_entry *) NULL;
9923
ca0d63fe 9924 if (r->reg_type.bitfield.tbyte
309d3373
JB
9925 && !cpu_arch_flags.bitfield.cpu8087
9926 && !cpu_arch_flags.bitfield.cpu287
9927 && !cpu_arch_flags.bitfield.cpu387)
9928 return (const reg_entry *) NULL;
9929
1848e567 9930 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
9931 return (const reg_entry *) NULL;
9932
1b54b8d7 9933 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
9934 return (const reg_entry *) NULL;
9935
1b54b8d7 9936 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
9937 return (const reg_entry *) NULL;
9938
1b54b8d7 9939 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
1848e567
L
9940 return (const reg_entry *) NULL;
9941
9942 if (r->reg_type.bitfield.regmask
9943 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
9944 return (const reg_entry *) NULL;
9945
db51cc60 9946 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9947 if (!allow_index_reg
db51cc60
L
9948 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9949 return (const reg_entry *) NULL;
9950
43234a1e
L
9951 /* Upper 16 vector register is only available with VREX in 64bit
9952 mode. */
9953 if ((r->reg_flags & RegVRex))
9954 {
86fa6981
L
9955 if (i.vec_encoding == vex_encoding_default)
9956 i.vec_encoding = vex_encoding_evex;
9957
43234a1e 9958 if (!cpu_arch_flags.bitfield.cpuvrex
86fa6981 9959 || i.vec_encoding != vex_encoding_evex
43234a1e
L
9960 || flag_code != CODE_64BIT)
9961 return (const reg_entry *) NULL;
43234a1e
L
9962 }
9963
a60de03c 9964 if (((r->reg_flags & (RegRex64 | RegRex))
dc821c5f 9965 || r->reg_type.bitfield.qword)
40fb9820 9966 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9967 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9968 && flag_code != CODE_64BIT)
20f0a1fc 9969 return (const reg_entry *) NULL;
1ae00879 9970
b7240065
JB
9971 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9972 return (const reg_entry *) NULL;
9973
252b5132
RH
9974 return r;
9975}
4d1bb795
JB
9976
9977/* REG_STRING starts *before* REGISTER_PREFIX. */
9978
9979static const reg_entry *
9980parse_register (char *reg_string, char **end_op)
9981{
9982 const reg_entry *r;
9983
9984 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9985 r = parse_real_register (reg_string, end_op);
9986 else
9987 r = NULL;
9988 if (!r)
9989 {
9990 char *save = input_line_pointer;
9991 char c;
9992 symbolS *symbolP;
9993
9994 input_line_pointer = reg_string;
d02603dc 9995 c = get_symbol_name (&reg_string);
4d1bb795
JB
9996 symbolP = symbol_find (reg_string);
9997 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9998 {
9999 const expressionS *e = symbol_get_value_expression (symbolP);
10000
0398aac5 10001 know (e->X_op == O_register);
4eed87de 10002 know (e->X_add_number >= 0
c3fe08fa 10003 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10004 r = i386_regtab + e->X_add_number;
d3bb6b49 10005 if ((r->reg_flags & RegVRex))
86fa6981 10006 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10007 *end_op = input_line_pointer;
10008 }
10009 *input_line_pointer = c;
10010 input_line_pointer = save;
10011 }
10012 return r;
10013}
10014
10015int
10016i386_parse_name (char *name, expressionS *e, char *nextcharP)
10017{
10018 const reg_entry *r;
10019 char *end = input_line_pointer;
10020
10021 *end = *nextcharP;
10022 r = parse_register (name, &input_line_pointer);
10023 if (r && end <= input_line_pointer)
10024 {
10025 *nextcharP = *input_line_pointer;
10026 *input_line_pointer = 0;
10027 e->X_op = O_register;
10028 e->X_add_number = r - i386_regtab;
10029 return 1;
10030 }
10031 input_line_pointer = end;
10032 *end = 0;
ee86248c 10033 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10034}
10035
10036void
10037md_operand (expressionS *e)
10038{
ee86248c
JB
10039 char *end;
10040 const reg_entry *r;
4d1bb795 10041
ee86248c
JB
10042 switch (*input_line_pointer)
10043 {
10044 case REGISTER_PREFIX:
10045 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10046 if (r)
10047 {
10048 e->X_op = O_register;
10049 e->X_add_number = r - i386_regtab;
10050 input_line_pointer = end;
10051 }
ee86248c
JB
10052 break;
10053
10054 case '[':
9c2799c2 10055 gas_assert (intel_syntax);
ee86248c
JB
10056 end = input_line_pointer++;
10057 expression (e);
10058 if (*input_line_pointer == ']')
10059 {
10060 ++input_line_pointer;
10061 e->X_op_symbol = make_expr_symbol (e);
10062 e->X_add_symbol = NULL;
10063 e->X_add_number = 0;
10064 e->X_op = O_index;
10065 }
10066 else
10067 {
10068 e->X_op = O_absent;
10069 input_line_pointer = end;
10070 }
10071 break;
4d1bb795
JB
10072 }
10073}
10074
252b5132 10075\f
4cc782b5 10076#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 10077const char *md_shortopts = "kVQ:sqn";
252b5132 10078#else
12b55ccc 10079const char *md_shortopts = "qn";
252b5132 10080#endif
6e0b89ee 10081
3e73aa7c 10082#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10083#define OPTION_64 (OPTION_MD_BASE + 1)
10084#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10085#define OPTION_MARCH (OPTION_MD_BASE + 3)
10086#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10087#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10088#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10089#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10090#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10091#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 10092#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10093#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10094#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10095#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10096#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10097#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10098#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10099#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10100#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10101#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10102#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10103#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10104#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10105#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10106#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 10107#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 10108
99ad8390
NC
10109struct option md_longopts[] =
10110{
3e73aa7c 10111 {"32", no_argument, NULL, OPTION_32},
321098a5 10112#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10113 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10114 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10115#endif
10116#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10117 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10118 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10119#endif
b3b91714 10120 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10121 {"march", required_argument, NULL, OPTION_MARCH},
10122 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10123 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10124 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10125 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10126 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10127 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 10128 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10129 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10130 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10131 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10132 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10133 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10134 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10135# if defined (TE_PE) || defined (TE_PEP)
10136 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10137#endif
d1982f93 10138 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10139 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10140 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10141 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10142 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10143 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10144 {NULL, no_argument, NULL, 0}
10145};
10146size_t md_longopts_size = sizeof (md_longopts);
10147
10148int
17b9d67d 10149md_parse_option (int c, const char *arg)
252b5132 10150{
91d6fa6a 10151 unsigned int j;
293f5f65 10152 char *arch, *next, *saved;
9103f4f4 10153
252b5132
RH
10154 switch (c)
10155 {
12b55ccc
L
10156 case 'n':
10157 optimize_align_code = 0;
10158 break;
10159
a38cf1db
AM
10160 case 'q':
10161 quiet_warnings = 1;
252b5132
RH
10162 break;
10163
10164#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10165 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10166 should be emitted or not. FIXME: Not implemented. */
10167 case 'Q':
252b5132
RH
10168 break;
10169
10170 /* -V: SVR4 argument to print version ID. */
10171 case 'V':
10172 print_version_id ();
10173 break;
10174
a38cf1db
AM
10175 /* -k: Ignore for FreeBSD compatibility. */
10176 case 'k':
252b5132 10177 break;
4cc782b5
ILT
10178
10179 case 's':
10180 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10181 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10182 break;
8dcea932
L
10183
10184 case OPTION_MSHARED:
10185 shared = 1;
10186 break;
99ad8390 10187#endif
321098a5 10188#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10189 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10190 case OPTION_64:
10191 {
10192 const char **list, **l;
10193
3e73aa7c
JH
10194 list = bfd_target_list ();
10195 for (l = list; *l != NULL; l++)
8620418b 10196 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10197 || strcmp (*l, "coff-x86-64") == 0
10198 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10199 || strcmp (*l, "pei-x86-64") == 0
10200 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10201 {
10202 default_arch = "x86_64";
10203 break;
10204 }
3e73aa7c 10205 if (*l == NULL)
2b5d6a91 10206 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10207 free (list);
10208 }
10209 break;
10210#endif
252b5132 10211
351f65ca 10212#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10213 case OPTION_X32:
351f65ca
L
10214 if (IS_ELF)
10215 {
10216 const char **list, **l;
10217
10218 list = bfd_target_list ();
10219 for (l = list; *l != NULL; l++)
10220 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10221 {
10222 default_arch = "x86_64:32";
10223 break;
10224 }
10225 if (*l == NULL)
2b5d6a91 10226 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10227 free (list);
10228 }
10229 else
10230 as_fatal (_("32bit x86_64 is only supported for ELF"));
10231 break;
10232#endif
10233
6e0b89ee
AM
10234 case OPTION_32:
10235 default_arch = "i386";
10236 break;
10237
b3b91714
AM
10238 case OPTION_DIVIDE:
10239#ifdef SVR4_COMMENT_CHARS
10240 {
10241 char *n, *t;
10242 const char *s;
10243
add39d23 10244 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10245 t = n;
10246 for (s = i386_comment_chars; *s != '\0'; s++)
10247 if (*s != '/')
10248 *t++ = *s;
10249 *t = '\0';
10250 i386_comment_chars = n;
10251 }
10252#endif
10253 break;
10254
9103f4f4 10255 case OPTION_MARCH:
293f5f65
L
10256 saved = xstrdup (arg);
10257 arch = saved;
10258 /* Allow -march=+nosse. */
10259 if (*arch == '+')
10260 arch++;
6305a203 10261 do
9103f4f4 10262 {
6305a203 10263 if (*arch == '.')
2b5d6a91 10264 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10265 next = strchr (arch, '+');
10266 if (next)
10267 *next++ = '\0';
91d6fa6a 10268 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10269 {
91d6fa6a 10270 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10271 {
6305a203 10272 /* Processor. */
1ded5609
JB
10273 if (! cpu_arch[j].flags.bitfield.cpui386)
10274 continue;
10275
91d6fa6a 10276 cpu_arch_name = cpu_arch[j].name;
6305a203 10277 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10278 cpu_arch_flags = cpu_arch[j].flags;
10279 cpu_arch_isa = cpu_arch[j].type;
10280 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10281 if (!cpu_arch_tune_set)
10282 {
10283 cpu_arch_tune = cpu_arch_isa;
10284 cpu_arch_tune_flags = cpu_arch_isa_flags;
10285 }
10286 break;
10287 }
91d6fa6a
NC
10288 else if (*cpu_arch [j].name == '.'
10289 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10290 {
33eaf5de 10291 /* ISA extension. */
6305a203 10292 i386_cpu_flags flags;
309d3373 10293
293f5f65
L
10294 flags = cpu_flags_or (cpu_arch_flags,
10295 cpu_arch[j].flags);
81486035 10296
5b64d091 10297 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10298 {
10299 if (cpu_sub_arch_name)
10300 {
10301 char *name = cpu_sub_arch_name;
10302 cpu_sub_arch_name = concat (name,
91d6fa6a 10303 cpu_arch[j].name,
1bf57e9f 10304 (const char *) NULL);
6305a203
L
10305 free (name);
10306 }
10307 else
91d6fa6a 10308 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10309 cpu_arch_flags = flags;
a586129e 10310 cpu_arch_isa_flags = flags;
6305a203
L
10311 }
10312 break;
ccc9c027 10313 }
9103f4f4 10314 }
6305a203 10315
293f5f65
L
10316 if (j >= ARRAY_SIZE (cpu_arch))
10317 {
33eaf5de 10318 /* Disable an ISA extension. */
293f5f65
L
10319 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10320 if (strcmp (arch, cpu_noarch [j].name) == 0)
10321 {
10322 i386_cpu_flags flags;
10323
10324 flags = cpu_flags_and_not (cpu_arch_flags,
10325 cpu_noarch[j].flags);
10326 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10327 {
10328 if (cpu_sub_arch_name)
10329 {
10330 char *name = cpu_sub_arch_name;
10331 cpu_sub_arch_name = concat (arch,
10332 (const char *) NULL);
10333 free (name);
10334 }
10335 else
10336 cpu_sub_arch_name = xstrdup (arch);
10337 cpu_arch_flags = flags;
10338 cpu_arch_isa_flags = flags;
10339 }
10340 break;
10341 }
10342
10343 if (j >= ARRAY_SIZE (cpu_noarch))
10344 j = ARRAY_SIZE (cpu_arch);
10345 }
10346
91d6fa6a 10347 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10348 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10349
10350 arch = next;
9103f4f4 10351 }
293f5f65
L
10352 while (next != NULL);
10353 free (saved);
9103f4f4
L
10354 break;
10355
10356 case OPTION_MTUNE:
10357 if (*arg == '.')
2b5d6a91 10358 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10359 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10360 {
91d6fa6a 10361 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10362 {
ccc9c027 10363 cpu_arch_tune_set = 1;
91d6fa6a
NC
10364 cpu_arch_tune = cpu_arch [j].type;
10365 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10366 break;
10367 }
10368 }
91d6fa6a 10369 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10370 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10371 break;
10372
1efbbeb4
L
10373 case OPTION_MMNEMONIC:
10374 if (strcasecmp (arg, "att") == 0)
10375 intel_mnemonic = 0;
10376 else if (strcasecmp (arg, "intel") == 0)
10377 intel_mnemonic = 1;
10378 else
2b5d6a91 10379 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10380 break;
10381
10382 case OPTION_MSYNTAX:
10383 if (strcasecmp (arg, "att") == 0)
10384 intel_syntax = 0;
10385 else if (strcasecmp (arg, "intel") == 0)
10386 intel_syntax = 1;
10387 else
2b5d6a91 10388 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10389 break;
10390
10391 case OPTION_MINDEX_REG:
10392 allow_index_reg = 1;
10393 break;
10394
10395 case OPTION_MNAKED_REG:
10396 allow_naked_reg = 1;
10397 break;
10398
10399 case OPTION_MOLD_GCC:
10400 old_gcc = 1;
1efbbeb4
L
10401 break;
10402
c0f3af97
L
10403 case OPTION_MSSE2AVX:
10404 sse2avx = 1;
10405 break;
10406
daf50ae7
L
10407 case OPTION_MSSE_CHECK:
10408 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10409 sse_check = check_error;
daf50ae7 10410 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10411 sse_check = check_warning;
daf50ae7 10412 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10413 sse_check = check_none;
daf50ae7 10414 else
2b5d6a91 10415 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10416 break;
10417
7bab8ab5
JB
10418 case OPTION_MOPERAND_CHECK:
10419 if (strcasecmp (arg, "error") == 0)
10420 operand_check = check_error;
10421 else if (strcasecmp (arg, "warning") == 0)
10422 operand_check = check_warning;
10423 else if (strcasecmp (arg, "none") == 0)
10424 operand_check = check_none;
10425 else
10426 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10427 break;
10428
539f890d
L
10429 case OPTION_MAVXSCALAR:
10430 if (strcasecmp (arg, "128") == 0)
10431 avxscalar = vex128;
10432 else if (strcasecmp (arg, "256") == 0)
10433 avxscalar = vex256;
10434 else
2b5d6a91 10435 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10436 break;
10437
7e8b059b
L
10438 case OPTION_MADD_BND_PREFIX:
10439 add_bnd_prefix = 1;
10440 break;
10441
43234a1e
L
10442 case OPTION_MEVEXLIG:
10443 if (strcmp (arg, "128") == 0)
10444 evexlig = evexl128;
10445 else if (strcmp (arg, "256") == 0)
10446 evexlig = evexl256;
10447 else if (strcmp (arg, "512") == 0)
10448 evexlig = evexl512;
10449 else
10450 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10451 break;
10452
d3d3c6db
IT
10453 case OPTION_MEVEXRCIG:
10454 if (strcmp (arg, "rne") == 0)
10455 evexrcig = rne;
10456 else if (strcmp (arg, "rd") == 0)
10457 evexrcig = rd;
10458 else if (strcmp (arg, "ru") == 0)
10459 evexrcig = ru;
10460 else if (strcmp (arg, "rz") == 0)
10461 evexrcig = rz;
10462 else
10463 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10464 break;
10465
43234a1e
L
10466 case OPTION_MEVEXWIG:
10467 if (strcmp (arg, "0") == 0)
10468 evexwig = evexw0;
10469 else if (strcmp (arg, "1") == 0)
10470 evexwig = evexw1;
10471 else
10472 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10473 break;
10474
167ad85b
TG
10475# if defined (TE_PE) || defined (TE_PEP)
10476 case OPTION_MBIG_OBJ:
10477 use_big_obj = 1;
10478 break;
10479#endif
10480
d1982f93 10481 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10482 if (strcasecmp (arg, "yes") == 0)
10483 omit_lock_prefix = 1;
10484 else if (strcasecmp (arg, "no") == 0)
10485 omit_lock_prefix = 0;
10486 else
10487 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10488 break;
10489
e4e00185
AS
10490 case OPTION_MFENCE_AS_LOCK_ADD:
10491 if (strcasecmp (arg, "yes") == 0)
10492 avoid_fence = 1;
10493 else if (strcasecmp (arg, "no") == 0)
10494 avoid_fence = 0;
10495 else
10496 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10497 break;
10498
0cb4071e
L
10499 case OPTION_MRELAX_RELOCATIONS:
10500 if (strcasecmp (arg, "yes") == 0)
10501 generate_relax_relocations = 1;
10502 else if (strcasecmp (arg, "no") == 0)
10503 generate_relax_relocations = 0;
10504 else
10505 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10506 break;
10507
5db04b09 10508 case OPTION_MAMD64:
e89c5eaa 10509 intel64 = 0;
5db04b09
L
10510 break;
10511
10512 case OPTION_MINTEL64:
e89c5eaa 10513 intel64 = 1;
5db04b09
L
10514 break;
10515
252b5132
RH
10516 default:
10517 return 0;
10518 }
10519 return 1;
10520}
10521
8a2c8fef
L
10522#define MESSAGE_TEMPLATE \
10523" "
10524
293f5f65
L
10525static char *
10526output_message (FILE *stream, char *p, char *message, char *start,
10527 int *left_p, const char *name, int len)
10528{
10529 int size = sizeof (MESSAGE_TEMPLATE);
10530 int left = *left_p;
10531
10532 /* Reserve 2 spaces for ", " or ",\0" */
10533 left -= len + 2;
10534
10535 /* Check if there is any room. */
10536 if (left >= 0)
10537 {
10538 if (p != start)
10539 {
10540 *p++ = ',';
10541 *p++ = ' ';
10542 }
10543 p = mempcpy (p, name, len);
10544 }
10545 else
10546 {
10547 /* Output the current message now and start a new one. */
10548 *p++ = ',';
10549 *p = '\0';
10550 fprintf (stream, "%s\n", message);
10551 p = start;
10552 left = size - (start - message) - len - 2;
10553
10554 gas_assert (left >= 0);
10555
10556 p = mempcpy (p, name, len);
10557 }
10558
10559 *left_p = left;
10560 return p;
10561}
10562
8a2c8fef 10563static void
1ded5609 10564show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10565{
10566 static char message[] = MESSAGE_TEMPLATE;
10567 char *start = message + 27;
10568 char *p;
10569 int size = sizeof (MESSAGE_TEMPLATE);
10570 int left;
10571 const char *name;
10572 int len;
10573 unsigned int j;
10574
10575 p = start;
10576 left = size - (start - message);
10577 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10578 {
10579 /* Should it be skipped? */
10580 if (cpu_arch [j].skip)
10581 continue;
10582
10583 name = cpu_arch [j].name;
10584 len = cpu_arch [j].len;
10585 if (*name == '.')
10586 {
10587 /* It is an extension. Skip if we aren't asked to show it. */
10588 if (ext)
10589 {
10590 name++;
10591 len--;
10592 }
10593 else
10594 continue;
10595 }
10596 else if (ext)
10597 {
10598 /* It is an processor. Skip if we show only extension. */
10599 continue;
10600 }
1ded5609
JB
10601 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10602 {
10603 /* It is an impossible processor - skip. */
10604 continue;
10605 }
8a2c8fef 10606
293f5f65 10607 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10608 }
10609
293f5f65
L
10610 /* Display disabled extensions. */
10611 if (ext)
10612 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10613 {
10614 name = cpu_noarch [j].name;
10615 len = cpu_noarch [j].len;
10616 p = output_message (stream, p, message, start, &left, name,
10617 len);
10618 }
10619
8a2c8fef
L
10620 *p = '\0';
10621 fprintf (stream, "%s\n", message);
10622}
10623
252b5132 10624void
8a2c8fef 10625md_show_usage (FILE *stream)
252b5132 10626{
4cc782b5
ILT
10627#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10628 fprintf (stream, _("\
a38cf1db
AM
10629 -Q ignored\n\
10630 -V print assembler version number\n\
b3b91714
AM
10631 -k ignored\n"));
10632#endif
10633 fprintf (stream, _("\
12b55ccc 10634 -n Do not optimize code alignment\n\
b3b91714
AM
10635 -q quieten some warnings\n"));
10636#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10637 fprintf (stream, _("\
a38cf1db 10638 -s ignored\n"));
b3b91714 10639#endif
321098a5
L
10640#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10641 || defined (TE_PE) || defined (TE_PEP))
751d281c 10642 fprintf (stream, _("\
570561f7 10643 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10644#endif
b3b91714
AM
10645#ifdef SVR4_COMMENT_CHARS
10646 fprintf (stream, _("\
10647 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10648#else
10649 fprintf (stream, _("\
b3b91714 10650 --divide ignored\n"));
4cc782b5 10651#endif
9103f4f4 10652 fprintf (stream, _("\
6305a203 10653 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10654 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10655 show_arch (stream, 0, 1);
8a2c8fef
L
10656 fprintf (stream, _("\
10657 EXTENSION is combination of:\n"));
1ded5609 10658 show_arch (stream, 1, 0);
6305a203 10659 fprintf (stream, _("\
8a2c8fef 10660 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10661 show_arch (stream, 0, 0);
ba104c83 10662 fprintf (stream, _("\
c0f3af97
L
10663 -msse2avx encode SSE instructions with VEX prefix\n"));
10664 fprintf (stream, _("\
daf50ae7
L
10665 -msse-check=[none|error|warning]\n\
10666 check SSE instructions\n"));
10667 fprintf (stream, _("\
7bab8ab5
JB
10668 -moperand-check=[none|error|warning]\n\
10669 check operand combinations for validity\n"));
10670 fprintf (stream, _("\
539f890d
L
10671 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10672 length\n"));
10673 fprintf (stream, _("\
43234a1e
L
10674 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10675 length\n"));
10676 fprintf (stream, _("\
10677 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10678 for EVEX.W bit ignored instructions\n"));
10679 fprintf (stream, _("\
d3d3c6db
IT
10680 -mevexrcig=[rne|rd|ru|rz]\n\
10681 encode EVEX instructions with specific EVEX.RC value\n\
10682 for SAE-only ignored instructions\n"));
10683 fprintf (stream, _("\
ba104c83
L
10684 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10685 fprintf (stream, _("\
10686 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10687 fprintf (stream, _("\
10688 -mindex-reg support pseudo index registers\n"));
10689 fprintf (stream, _("\
10690 -mnaked-reg don't require `%%' prefix for registers\n"));
10691 fprintf (stream, _("\
10692 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10693 fprintf (stream, _("\
10694 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10695 fprintf (stream, _("\
10696 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10697# if defined (TE_PE) || defined (TE_PEP)
10698 fprintf (stream, _("\
10699 -mbig-obj generate big object files\n"));
10700#endif
d022bddd
IT
10701 fprintf (stream, _("\
10702 -momit-lock-prefix=[no|yes]\n\
10703 strip all lock prefixes\n"));
5db04b09 10704 fprintf (stream, _("\
e4e00185
AS
10705 -mfence-as-lock-add=[no|yes]\n\
10706 encode lfence, mfence and sfence as\n\
10707 lock addl $0x0, (%%{re}sp)\n"));
10708 fprintf (stream, _("\
0cb4071e
L
10709 -mrelax-relocations=[no|yes]\n\
10710 generate relax relocations\n"));
10711 fprintf (stream, _("\
5db04b09
L
10712 -mamd64 accept only AMD64 ISA\n"));
10713 fprintf (stream, _("\
10714 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10715}
10716
3e73aa7c 10717#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10718 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10719 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10720
10721/* Pick the target format to use. */
10722
47926f60 10723const char *
e3bb37b5 10724i386_target_format (void)
252b5132 10725{
351f65ca
L
10726 if (!strncmp (default_arch, "x86_64", 6))
10727 {
10728 update_code_flag (CODE_64BIT, 1);
10729 if (default_arch[6] == '\0')
7f56bc95 10730 x86_elf_abi = X86_64_ABI;
351f65ca 10731 else
7f56bc95 10732 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10733 }
3e73aa7c 10734 else if (!strcmp (default_arch, "i386"))
78f12dd3 10735 update_code_flag (CODE_32BIT, 1);
5197d474
L
10736 else if (!strcmp (default_arch, "iamcu"))
10737 {
10738 update_code_flag (CODE_32BIT, 1);
10739 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10740 {
10741 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10742 cpu_arch_name = "iamcu";
10743 cpu_sub_arch_name = NULL;
10744 cpu_arch_flags = iamcu_flags;
10745 cpu_arch_isa = PROCESSOR_IAMCU;
10746 cpu_arch_isa_flags = iamcu_flags;
10747 if (!cpu_arch_tune_set)
10748 {
10749 cpu_arch_tune = cpu_arch_isa;
10750 cpu_arch_tune_flags = cpu_arch_isa_flags;
10751 }
10752 }
8d471ec1 10753 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
10754 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10755 cpu_arch_name);
10756 }
3e73aa7c 10757 else
2b5d6a91 10758 as_fatal (_("unknown architecture"));
89507696
JB
10759
10760 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10761 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10762 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10763 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10764
252b5132
RH
10765 switch (OUTPUT_FLAVOR)
10766 {
9384f2ff 10767#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10768 case bfd_target_aout_flavour:
47926f60 10769 return AOUT_TARGET_FORMAT;
4c63da97 10770#endif
9384f2ff
AM
10771#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10772# if defined (TE_PE) || defined (TE_PEP)
10773 case bfd_target_coff_flavour:
167ad85b
TG
10774 if (flag_code == CODE_64BIT)
10775 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10776 else
10777 return "pe-i386";
9384f2ff 10778# elif defined (TE_GO32)
0561d57c
JK
10779 case bfd_target_coff_flavour:
10780 return "coff-go32";
9384f2ff 10781# else
252b5132
RH
10782 case bfd_target_coff_flavour:
10783 return "coff-i386";
9384f2ff 10784# endif
4c63da97 10785#endif
3e73aa7c 10786#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 10787 case bfd_target_elf_flavour:
3e73aa7c 10788 {
351f65ca
L
10789 const char *format;
10790
10791 switch (x86_elf_abi)
4fa24527 10792 {
351f65ca
L
10793 default:
10794 format = ELF_TARGET_FORMAT;
10795 break;
7f56bc95 10796 case X86_64_ABI:
351f65ca 10797 use_rela_relocations = 1;
4fa24527 10798 object_64bit = 1;
351f65ca
L
10799 format = ELF_TARGET_FORMAT64;
10800 break;
7f56bc95 10801 case X86_64_X32_ABI:
4fa24527 10802 use_rela_relocations = 1;
351f65ca 10803 object_64bit = 1;
862be3fb 10804 disallow_64bit_reloc = 1;
351f65ca
L
10805 format = ELF_TARGET_FORMAT32;
10806 break;
4fa24527 10807 }
3632d14b 10808 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 10809 {
7f56bc95 10810 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
10811 as_fatal (_("Intel L1OM is 64bit only"));
10812 return ELF_TARGET_L1OM_FORMAT;
10813 }
b49f93f6 10814 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
10815 {
10816 if (x86_elf_abi != X86_64_ABI)
10817 as_fatal (_("Intel K1OM is 64bit only"));
10818 return ELF_TARGET_K1OM_FORMAT;
10819 }
81486035
L
10820 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10821 {
10822 if (x86_elf_abi != I386_ABI)
10823 as_fatal (_("Intel MCU is 32bit only"));
10824 return ELF_TARGET_IAMCU_FORMAT;
10825 }
8a9036a4 10826 else
351f65ca 10827 return format;
3e73aa7c 10828 }
e57f8c65
TG
10829#endif
10830#if defined (OBJ_MACH_O)
10831 case bfd_target_mach_o_flavour:
d382c579
TG
10832 if (flag_code == CODE_64BIT)
10833 {
10834 use_rela_relocations = 1;
10835 object_64bit = 1;
10836 return "mach-o-x86-64";
10837 }
10838 else
10839 return "mach-o-i386";
4c63da97 10840#endif
252b5132
RH
10841 default:
10842 abort ();
10843 return NULL;
10844 }
10845}
10846
47926f60 10847#endif /* OBJ_MAYBE_ more than one */
252b5132 10848\f
252b5132 10849symbolS *
7016a5d5 10850md_undefined_symbol (char *name)
252b5132 10851{
18dc2407
ILT
10852 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10853 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10854 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10855 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10856 {
10857 if (!GOT_symbol)
10858 {
10859 if (symbol_find (name))
10860 as_bad (_("GOT already in symbol table"));
10861 GOT_symbol = symbol_new (name, undefined_section,
10862 (valueT) 0, &zero_address_frag);
10863 };
10864 return GOT_symbol;
10865 }
252b5132
RH
10866 return 0;
10867}
10868
10869/* Round up a section size to the appropriate boundary. */
47926f60 10870
252b5132 10871valueT
7016a5d5 10872md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10873{
4c63da97
AM
10874#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10875 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10876 {
10877 /* For a.out, force the section size to be aligned. If we don't do
10878 this, BFD will align it for us, but it will not write out the
10879 final bytes of the section. This may be a bug in BFD, but it is
10880 easier to fix it here since that is how the other a.out targets
10881 work. */
10882 int align;
10883
10884 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 10885 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 10886 }
252b5132
RH
10887#endif
10888
10889 return size;
10890}
10891
10892/* On the i386, PC-relative offsets are relative to the start of the
10893 next instruction. That is, the address of the offset, plus its
10894 size, since the offset is always the last part of the insn. */
10895
10896long
e3bb37b5 10897md_pcrel_from (fixS *fixP)
252b5132
RH
10898{
10899 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10900}
10901
10902#ifndef I386COFF
10903
10904static void
e3bb37b5 10905s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10906{
29b0f896 10907 int temp;
252b5132 10908
8a75718c
JB
10909#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10910 if (IS_ELF)
10911 obj_elf_section_change_hook ();
10912#endif
252b5132
RH
10913 temp = get_absolute_expression ();
10914 subseg_set (bss_section, (subsegT) temp);
10915 demand_empty_rest_of_line ();
10916}
10917
10918#endif
10919
252b5132 10920void
e3bb37b5 10921i386_validate_fix (fixS *fixp)
252b5132 10922{
02a86693 10923 if (fixp->fx_subsy)
252b5132 10924 {
02a86693 10925 if (fixp->fx_subsy == GOT_symbol)
23df1078 10926 {
02a86693
L
10927 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10928 {
10929 if (!object_64bit)
10930 abort ();
10931#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10932 if (fixp->fx_tcbit2)
56ceb5b5
L
10933 fixp->fx_r_type = (fixp->fx_tcbit
10934 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10935 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
10936 else
10937#endif
10938 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10939 }
d6ab8113 10940 else
02a86693
L
10941 {
10942 if (!object_64bit)
10943 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10944 else
10945 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10946 }
10947 fixp->fx_subsy = 0;
23df1078 10948 }
252b5132 10949 }
02a86693
L
10950#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10951 else if (!object_64bit)
10952 {
10953 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10954 && fixp->fx_tcbit2)
10955 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10956 }
10957#endif
252b5132
RH
10958}
10959
252b5132 10960arelent *
7016a5d5 10961tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10962{
10963 arelent *rel;
10964 bfd_reloc_code_real_type code;
10965
10966 switch (fixp->fx_r_type)
10967 {
8ce3d284 10968#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10969 case BFD_RELOC_SIZE32:
10970 case BFD_RELOC_SIZE64:
10971 if (S_IS_DEFINED (fixp->fx_addsy)
10972 && !S_IS_EXTERNAL (fixp->fx_addsy))
10973 {
10974 /* Resolve size relocation against local symbol to size of
10975 the symbol plus addend. */
10976 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10977 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10978 && !fits_in_unsigned_long (value))
10979 as_bad_where (fixp->fx_file, fixp->fx_line,
10980 _("symbol size computation overflow"));
10981 fixp->fx_addsy = NULL;
10982 fixp->fx_subsy = NULL;
10983 md_apply_fix (fixp, (valueT *) &value, NULL);
10984 return NULL;
10985 }
8ce3d284 10986#endif
1a0670f3 10987 /* Fall through. */
8fd4256d 10988
3e73aa7c
JH
10989 case BFD_RELOC_X86_64_PLT32:
10990 case BFD_RELOC_X86_64_GOT32:
10991 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10992 case BFD_RELOC_X86_64_GOTPCRELX:
10993 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
10994 case BFD_RELOC_386_PLT32:
10995 case BFD_RELOC_386_GOT32:
02a86693 10996 case BFD_RELOC_386_GOT32X:
252b5132
RH
10997 case BFD_RELOC_386_GOTOFF:
10998 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10999 case BFD_RELOC_386_TLS_GD:
11000 case BFD_RELOC_386_TLS_LDM:
11001 case BFD_RELOC_386_TLS_LDO_32:
11002 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11003 case BFD_RELOC_386_TLS_IE:
11004 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11005 case BFD_RELOC_386_TLS_LE_32:
11006 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11007 case BFD_RELOC_386_TLS_GOTDESC:
11008 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11009 case BFD_RELOC_X86_64_TLSGD:
11010 case BFD_RELOC_X86_64_TLSLD:
11011 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11012 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11013 case BFD_RELOC_X86_64_GOTTPOFF:
11014 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11015 case BFD_RELOC_X86_64_TPOFF64:
11016 case BFD_RELOC_X86_64_GOTOFF64:
11017 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11018 case BFD_RELOC_X86_64_GOT64:
11019 case BFD_RELOC_X86_64_GOTPCREL64:
11020 case BFD_RELOC_X86_64_GOTPC64:
11021 case BFD_RELOC_X86_64_GOTPLT64:
11022 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11023 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11024 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11025 case BFD_RELOC_RVA:
11026 case BFD_RELOC_VTABLE_ENTRY:
11027 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11028#ifdef TE_PE
11029 case BFD_RELOC_32_SECREL:
11030#endif
252b5132
RH
11031 code = fixp->fx_r_type;
11032 break;
dbbaec26
L
11033 case BFD_RELOC_X86_64_32S:
11034 if (!fixp->fx_pcrel)
11035 {
11036 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11037 code = fixp->fx_r_type;
11038 break;
11039 }
1a0670f3 11040 /* Fall through. */
252b5132 11041 default:
93382f6d 11042 if (fixp->fx_pcrel)
252b5132 11043 {
93382f6d
AM
11044 switch (fixp->fx_size)
11045 {
11046 default:
b091f402
AM
11047 as_bad_where (fixp->fx_file, fixp->fx_line,
11048 _("can not do %d byte pc-relative relocation"),
11049 fixp->fx_size);
93382f6d
AM
11050 code = BFD_RELOC_32_PCREL;
11051 break;
11052 case 1: code = BFD_RELOC_8_PCREL; break;
11053 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11054 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11055#ifdef BFD64
11056 case 8: code = BFD_RELOC_64_PCREL; break;
11057#endif
93382f6d
AM
11058 }
11059 }
11060 else
11061 {
11062 switch (fixp->fx_size)
11063 {
11064 default:
b091f402
AM
11065 as_bad_where (fixp->fx_file, fixp->fx_line,
11066 _("can not do %d byte relocation"),
11067 fixp->fx_size);
93382f6d
AM
11068 code = BFD_RELOC_32;
11069 break;
11070 case 1: code = BFD_RELOC_8; break;
11071 case 2: code = BFD_RELOC_16; break;
11072 case 4: code = BFD_RELOC_32; break;
937149dd 11073#ifdef BFD64
3e73aa7c 11074 case 8: code = BFD_RELOC_64; break;
937149dd 11075#endif
93382f6d 11076 }
252b5132
RH
11077 }
11078 break;
11079 }
252b5132 11080
d182319b
JB
11081 if ((code == BFD_RELOC_32
11082 || code == BFD_RELOC_32_PCREL
11083 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11084 && GOT_symbol
11085 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11086 {
4fa24527 11087 if (!object_64bit)
d6ab8113
JB
11088 code = BFD_RELOC_386_GOTPC;
11089 else
11090 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11091 }
7b81dfbb
AJ
11092 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11093 && GOT_symbol
11094 && fixp->fx_addsy == GOT_symbol)
11095 {
11096 code = BFD_RELOC_X86_64_GOTPC64;
11097 }
252b5132 11098
add39d23
TS
11099 rel = XNEW (arelent);
11100 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11101 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11102
11103 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11104
3e73aa7c
JH
11105 if (!use_rela_relocations)
11106 {
11107 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11108 vtable entry to be used in the relocation's section offset. */
11109 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11110 rel->address = fixp->fx_offset;
fbeb56a4
DK
11111#if defined (OBJ_COFF) && defined (TE_PE)
11112 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11113 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11114 else
11115#endif
c6682705 11116 rel->addend = 0;
3e73aa7c
JH
11117 }
11118 /* Use the rela in 64bit mode. */
252b5132 11119 else
3e73aa7c 11120 {
862be3fb
L
11121 if (disallow_64bit_reloc)
11122 switch (code)
11123 {
862be3fb
L
11124 case BFD_RELOC_X86_64_DTPOFF64:
11125 case BFD_RELOC_X86_64_TPOFF64:
11126 case BFD_RELOC_64_PCREL:
11127 case BFD_RELOC_X86_64_GOTOFF64:
11128 case BFD_RELOC_X86_64_GOT64:
11129 case BFD_RELOC_X86_64_GOTPCREL64:
11130 case BFD_RELOC_X86_64_GOTPC64:
11131 case BFD_RELOC_X86_64_GOTPLT64:
11132 case BFD_RELOC_X86_64_PLTOFF64:
11133 as_bad_where (fixp->fx_file, fixp->fx_line,
11134 _("cannot represent relocation type %s in x32 mode"),
11135 bfd_get_reloc_code_name (code));
11136 break;
11137 default:
11138 break;
11139 }
11140
062cd5e7
AS
11141 if (!fixp->fx_pcrel)
11142 rel->addend = fixp->fx_offset;
11143 else
11144 switch (code)
11145 {
11146 case BFD_RELOC_X86_64_PLT32:
11147 case BFD_RELOC_X86_64_GOT32:
11148 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11149 case BFD_RELOC_X86_64_GOTPCRELX:
11150 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11151 case BFD_RELOC_X86_64_TLSGD:
11152 case BFD_RELOC_X86_64_TLSLD:
11153 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11154 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11155 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11156 rel->addend = fixp->fx_offset - fixp->fx_size;
11157 break;
11158 default:
11159 rel->addend = (section->vma
11160 - fixp->fx_size
11161 + fixp->fx_addnumber
11162 + md_pcrel_from (fixp));
11163 break;
11164 }
3e73aa7c
JH
11165 }
11166
252b5132
RH
11167 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11168 if (rel->howto == NULL)
11169 {
11170 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11171 _("cannot represent relocation type %s"),
252b5132
RH
11172 bfd_get_reloc_code_name (code));
11173 /* Set howto to a garbage value so that we can keep going. */
11174 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11175 gas_assert (rel->howto != NULL);
252b5132
RH
11176 }
11177
11178 return rel;
11179}
11180
ee86248c 11181#include "tc-i386-intel.c"
54cfded0 11182
a60de03c
JB
11183void
11184tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11185{
a60de03c
JB
11186 int saved_naked_reg;
11187 char saved_register_dot;
54cfded0 11188
a60de03c
JB
11189 saved_naked_reg = allow_naked_reg;
11190 allow_naked_reg = 1;
11191 saved_register_dot = register_chars['.'];
11192 register_chars['.'] = '.';
11193 allow_pseudo_reg = 1;
11194 expression_and_evaluate (exp);
11195 allow_pseudo_reg = 0;
11196 register_chars['.'] = saved_register_dot;
11197 allow_naked_reg = saved_naked_reg;
11198
e96d56a1 11199 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11200 {
a60de03c
JB
11201 if ((addressT) exp->X_add_number < i386_regtab_size)
11202 {
11203 exp->X_op = O_constant;
11204 exp->X_add_number = i386_regtab[exp->X_add_number]
11205 .dw2_regnum[flag_code >> 1];
11206 }
11207 else
11208 exp->X_op = O_illegal;
54cfded0 11209 }
54cfded0
AM
11210}
11211
11212void
11213tc_x86_frame_initial_instructions (void)
11214{
a60de03c
JB
11215 static unsigned int sp_regno[2];
11216
11217 if (!sp_regno[flag_code >> 1])
11218 {
11219 char *saved_input = input_line_pointer;
11220 char sp[][4] = {"esp", "rsp"};
11221 expressionS exp;
a4447b93 11222
a60de03c
JB
11223 input_line_pointer = sp[flag_code >> 1];
11224 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11225 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11226 sp_regno[flag_code >> 1] = exp.X_add_number;
11227 input_line_pointer = saved_input;
11228 }
a4447b93 11229
61ff971f
L
11230 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11231 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11232}
d2b2c203 11233
d7921315
L
11234int
11235x86_dwarf2_addr_size (void)
11236{
11237#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11238 if (x86_elf_abi == X86_64_X32_ABI)
11239 return 4;
11240#endif
11241 return bfd_arch_bits_per_address (stdoutput) / 8;
11242}
11243
d2b2c203
DJ
11244int
11245i386_elf_section_type (const char *str, size_t len)
11246{
11247 if (flag_code == CODE_64BIT
11248 && len == sizeof ("unwind") - 1
11249 && strncmp (str, "unwind", 6) == 0)
11250 return SHT_X86_64_UNWIND;
11251
11252 return -1;
11253}
bb41ade5 11254
ad5fec3b
EB
11255#ifdef TE_SOLARIS
11256void
11257i386_solaris_fix_up_eh_frame (segT sec)
11258{
11259 if (flag_code == CODE_64BIT)
11260 elf_section_type (sec) = SHT_X86_64_UNWIND;
11261}
11262#endif
11263
bb41ade5
AM
11264#ifdef TE_PE
11265void
11266tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11267{
91d6fa6a 11268 expressionS exp;
bb41ade5 11269
91d6fa6a
NC
11270 exp.X_op = O_secrel;
11271 exp.X_add_symbol = symbol;
11272 exp.X_add_number = 0;
11273 emit_expr (&exp, size);
bb41ade5
AM
11274}
11275#endif
3b22753a
L
11276
11277#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11278/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11279
01e1a5bc 11280bfd_vma
6d4af3c2 11281x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11282{
11283 if (flag_code == CODE_64BIT)
11284 {
11285 if (letter == 'l')
11286 return SHF_X86_64_LARGE;
11287
8f3bae45 11288 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11289 }
3b22753a 11290 else
8f3bae45 11291 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11292 return -1;
11293}
11294
01e1a5bc 11295bfd_vma
3b22753a
L
11296x86_64_section_word (char *str, size_t len)
11297{
8620418b 11298 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11299 return SHF_X86_64_LARGE;
11300
11301 return -1;
11302}
11303
11304static void
11305handle_large_common (int small ATTRIBUTE_UNUSED)
11306{
11307 if (flag_code != CODE_64BIT)
11308 {
11309 s_comm_internal (0, elf_common_parse);
11310 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11311 }
11312 else
11313 {
11314 static segT lbss_section;
11315 asection *saved_com_section_ptr = elf_com_section_ptr;
11316 asection *saved_bss_section = bss_section;
11317
11318 if (lbss_section == NULL)
11319 {
11320 flagword applicable;
11321 segT seg = now_seg;
11322 subsegT subseg = now_subseg;
11323
11324 /* The .lbss section is for local .largecomm symbols. */
11325 lbss_section = subseg_new (".lbss", 0);
11326 applicable = bfd_applicable_section_flags (stdoutput);
11327 bfd_set_section_flags (stdoutput, lbss_section,
11328 applicable & SEC_ALLOC);
11329 seg_info (lbss_section)->bss = 1;
11330
11331 subseg_set (seg, subseg);
11332 }
11333
11334 elf_com_section_ptr = &_bfd_elf_large_com_section;
11335 bss_section = lbss_section;
11336
11337 s_comm_internal (0, elf_common_parse);
11338
11339 elf_com_section_ptr = saved_com_section_ptr;
11340 bss_section = saved_bss_section;
11341 }
11342}
11343#endif /* OBJ_ELF || OBJ_MAYBE_ELF */