]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-i386.c
x86: pre-process opcodes table before parsing
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
252b5132 192
a847613f 193static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 194
43234a1e
L
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
8e6e0792 228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233};
234
235static struct Broadcast_Operation broadcast_op;
236
c0f3af97
L
237/* VEX prefix. */
238typedef struct
239{
43234a1e
L
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
c0f3af97
L
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245} vex_prefix;
246
252b5132 247/* 'md_assemble ()' gathers together information and puts it into a
47926f60 248 i386_insn. */
252b5132 249
520dc8e8
AM
250union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
a65babc9
L
257enum i386_error
258 {
86e026a4 259 operand_size_mismatch,
a65babc9
L
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
a65babc9
L
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
6c30d220
L
267 unsupported,
268 invalid_vsib_address,
7bab8ab5 269 invalid_vector_register_set,
43234a1e
L
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
a65babc9
L
280 };
281
252b5132
RH
282struct _i386_insn
283 {
47926f60 284 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 285 insn_template tm;
252b5132 286
7d5e4556
L
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
252b5132
RH
289 char suffix;
290
47926f60 291 /* OPERANDS gives the number of given operands. */
252b5132
RH
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
47926f60 296 operands. */
252b5132
RH
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 300 use OP[i] for the corresponding operand. */
40fb9820 301 i386_operand_type types[MAX_OPERANDS];
252b5132 302
520dc8e8
AM
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
252b5132 306
3e73aa7c
JH
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309#define Operand_PCrel 1
310
252b5132 311 /* Relocation type for operand */
f86103b7 312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 313
252b5132
RH
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 321 explicit segment overrides are given. */
ce8a8b2f 322 const seg_entry *seg[2];
252b5132 323
8325cc63
JB
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
252b5132
RH
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 333 addressing modes of this insn are encoded. */
252b5132 334 modrm_byte rm;
3e73aa7c 335 rex_byte rex;
43234a1e 336 rex_byte vrex;
252b5132 337 sib_byte sib;
c0f3af97 338 vex_prefix vex;
b6169b20 339
43234a1e
L
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
86fa6981
L
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
891edac4 359
a501d77e
L
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
f8a5c266 367
6b6b6807
L
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
b6f8c7c4
L
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
86fa6981
L
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
d5de92cf
L
383 /* REP prefix. */
384 const char *rep_prefix;
385
165de32a
L
386 /* HLE prefix. */
387 const char *hle_prefix;
42164a71 388
7e8b059b
L
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
04ef582a
L
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
891edac4 395 /* Error message. */
a65babc9 396 enum i386_error error;
252b5132
RH
397 };
398
399typedef struct _i386_insn i386_insn;
400
43234a1e
L
401/* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403struct RC_name
404{
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408};
409
410static const struct RC_name RC_NamesTable[] =
411{
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417};
418
252b5132
RH
419/* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 421const char extra_symbol_chars[] = "*%-([{}"
252b5132 422#ifdef LEX_AT
32137342
NC
423 "@"
424#endif
425#ifdef LEX_QM
426 "?"
252b5132 427#endif
32137342 428 ;
252b5132 429
29b0f896
AM
430#if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 432 && !defined (TE_GNU) \
29b0f896 433 && !defined (TE_LINUX) \
8d63c93e 434 && !defined (TE_NACL) \
29b0f896 435 && !defined (TE_FreeBSD) \
5b806d27 436 && !defined (TE_DragonFly) \
29b0f896 437 && !defined (TE_NetBSD)))
252b5132 438/* This array holds the chars that always start a comment. If the
b3b91714
AM
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441const char *i386_comment_chars = "#/";
442#define SVR4_COMMENT_CHARS 1
252b5132 443#define PREFIX_SEPARATOR '\\'
252b5132 444
b3b91714
AM
445#else
446const char *i386_comment_chars = "#";
447#define PREFIX_SEPARATOR '/'
448#endif
449
252b5132
RH
450/* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 454 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
252b5132 457 '/' isn't otherwise defined. */
b3b91714 458const char line_comment_chars[] = "#/";
252b5132 459
63a0b638 460const char line_separator_chars[] = ";";
252b5132 461
ce8a8b2f
AM
462/* Chars that can be used to separate mant from exp in floating point
463 nums. */
252b5132
RH
464const char EXP_CHARS[] = "eE";
465
ce8a8b2f
AM
466/* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
252b5132
RH
469const char FLT_CHARS[] = "fFdDxX";
470
ce8a8b2f 471/* Tables for lexical analysis. */
252b5132
RH
472static char mnemonic_chars[256];
473static char register_chars[256];
474static char operand_chars[256];
475static char identifier_chars[256];
476static char digit_chars[256];
477
ce8a8b2f 478/* Lexical macros. */
252b5132
RH
479#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480#define is_operand_char(x) (operand_chars[(unsigned char) x])
481#define is_register_char(x) (register_chars[(unsigned char) x])
482#define is_space_char(x) ((x) == ' ')
483#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484#define is_digit_char(x) (digit_chars[(unsigned char) x])
485
0234cb7c 486/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
487static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489/* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
47926f60 492 assembler instruction). */
252b5132 493static char save_stack[32];
ce8a8b2f 494static char *save_stack_p;
252b5132
RH
495#define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497#define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
47926f60 500/* The instruction we're assembling. */
252b5132
RH
501static i386_insn i;
502
503/* Possible templates for current insn. */
504static const templates *current_templates;
505
31b2323c
L
506/* Per instruction expressionS buffers: max displacements & immediates. */
507static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 509
47926f60 510/* Current operand we are working on. */
ee86248c 511static int this_operand = -1;
252b5132 512
3e73aa7c
JH
513/* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521static enum flag_code flag_code;
4fa24527 522static unsigned int object_64bit;
862be3fb 523static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
524static int use_rela_relocations = 0;
525
7af8ed2d
NC
526#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
351f65ca
L
530/* The ELF ABI to use. */
531enum x86_elf_abi
532{
533 I386_ABI,
7f56bc95
L
534 X86_64_ABI,
535 X86_64_X32_ABI
351f65ca
L
536};
537
538static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 539#endif
351f65ca 540
167ad85b
TG
541#if defined (TE_PE) || defined (TE_PEP)
542/* Use big object file format. */
543static int use_big_obj = 0;
544#endif
545
8dcea932
L
546#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547/* 1 if generating code for a shared library. */
548static int shared = 0;
549#endif
550
47926f60
KH
551/* 1 for intel syntax,
552 0 if att syntax. */
553static int intel_syntax = 0;
252b5132 554
e89c5eaa
L
555/* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557static int intel64;
558
1efbbeb4
L
559/* 1 for intel mnemonic,
560 0 if att mnemonic. */
561static int intel_mnemonic = !SYSV386_COMPAT;
562
a60de03c
JB
563/* 1 if pseudo registers are permitted. */
564static int allow_pseudo_reg = 0;
565
47926f60
KH
566/* 1 if register prefix % not required. */
567static int allow_naked_reg = 0;
252b5132 568
33eaf5de 569/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572static int add_bnd_prefix = 0;
573
ba104c83 574/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
575static int allow_index_reg = 0;
576
d022bddd
IT
577/* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579static int omit_lock_prefix = 0;
580
e4e00185
AS
581/* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583static int avoid_fence = 0;
584
0cb4071e
L
585/* 1 if the assembler should generate relax relocations. */
586
587static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
7bab8ab5 590static enum check_kind
daf50ae7 591 {
7bab8ab5
JB
592 check_none = 0,
593 check_warning,
594 check_error
daf50ae7 595 }
7bab8ab5 596sse_check, operand_check = check_warning;
daf50ae7 597
b6f8c7c4
L
598/* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603static int optimize = 0;
604
605/* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612static int optimize_for_space = 0;
613
2ca3ace5
L
614/* Register prefix used for error message. */
615static const char *register_prefix = "%";
616
47926f60
KH
617/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620static char stackop_size = '\0';
eecb386c 621
12b55ccc
L
622/* Non-zero to optimize code alignment. */
623int optimize_align_code = 1;
624
47926f60
KH
625/* Non-zero to quieten some warnings. */
626static int quiet_warnings = 0;
a38cf1db 627
47926f60
KH
628/* CPU name. */
629static const char *cpu_arch_name = NULL;
6305a203 630static char *cpu_sub_arch_name = NULL;
a38cf1db 631
47926f60 632/* CPU feature flags. */
40fb9820
L
633static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
ccc9c027
L
635/* If we have selected a cpu we are generating instructions for. */
636static int cpu_arch_tune_set = 0;
637
9103f4f4 638/* Cpu we are generating instructions for. */
fbf3f584 639enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
640
641/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 642static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 643
ccc9c027 644/* CPU instruction set architecture used. */
fbf3f584 645enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 646
9103f4f4 647/* CPU feature flags of instruction set architecture used. */
fbf3f584 648i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 649
fddf5b5b
AM
650/* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652static unsigned int no_cond_jump_promotion = 0;
653
c0f3af97
L
654/* Encode SSE instructions with VEX prefix. */
655static unsigned int sse2avx;
656
539f890d
L
657/* Encode scalar AVX instructions with specific vector length. */
658static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
43234a1e
L
664/* Encode scalar EVEX LIG instructions with specific vector length. */
665static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672/* Encode EVEX WIG instructions with specific evex.w. */
673static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
d3d3c6db
IT
679/* Value to encode in EVEX RC bits, for SAE-only instructions. */
680static enum rc_type evexrcig = rne;
681
29b0f896 682/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 683static symbolS *GOT_symbol;
29b0f896 684
a4447b93
RH
685/* The dwarf2 return column, adjusted for 32 or 64 bit. */
686unsigned int x86_dwarf2_return_column;
687
688/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689int x86_cie_data_alignment;
690
252b5132 691/* Interface to relax_segment.
fddf5b5b
AM
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
252b5132 695
47926f60 696/* Types. */
93c2a809
AM
697#define UNCOND_JUMP 0
698#define COND_JUMP 1
699#define COND_JUMP86 2
fddf5b5b 700
47926f60 701/* Sizes. */
252b5132
RH
702#define CODE16 1
703#define SMALL 0
29b0f896 704#define SMALL16 (SMALL | CODE16)
252b5132 705#define BIG 2
29b0f896 706#define BIG16 (BIG | CODE16)
252b5132
RH
707
708#ifndef INLINE
709#ifdef __GNUC__
710#define INLINE __inline__
711#else
712#define INLINE
713#endif
714#endif
715
fddf5b5b
AM
716#define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718#define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720#define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
722
723/* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731const relax_typeS md_relax_table[] =
732{
24eab124
AM
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
93c2a809 736 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 737 4) which index into the table to try if we can't fit into this one. */
252b5132 738
fddf5b5b 739 /* UNCOND_JUMP states. */
93c2a809
AM
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
252b5132 744 {0, 0, 4, 0},
93c2a809
AM
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
747 {0, 0, 2, 0},
748
93c2a809
AM
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
fddf5b5b 755 /* word conditionals add 3 bytes to frag:
93c2a809
AM
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
252b5132
RH
768};
769
9103f4f4
L
770static const arch_entry cpu_arch[] =
771{
89507696
JB
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
8a2c8fef 774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 775 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 777 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 779 CPU_NONE_FLAGS, 0 },
8a2c8fef 780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 781 CPU_I186_FLAGS, 0 },
8a2c8fef 782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 783 CPU_I286_FLAGS, 0 },
8a2c8fef 784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 785 CPU_I386_FLAGS, 0 },
8a2c8fef 786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 787 CPU_I486_FLAGS, 0 },
8a2c8fef 788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 789 CPU_I586_FLAGS, 0 },
8a2c8fef 790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 791 CPU_I686_FLAGS, 0 },
8a2c8fef 792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 793 CPU_I586_FLAGS, 0 },
8a2c8fef 794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 795 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 797 CPU_P2_FLAGS, 0 },
8a2c8fef 798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 799 CPU_P3_FLAGS, 0 },
8a2c8fef 800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 801 CPU_P4_FLAGS, 0 },
8a2c8fef 802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 803 CPU_CORE_FLAGS, 0 },
8a2c8fef 804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 805 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 807 CPU_CORE_FLAGS, 1 },
8a2c8fef 808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 809 CPU_CORE_FLAGS, 0 },
8a2c8fef 810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 811 CPU_CORE2_FLAGS, 1 },
8a2c8fef 812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 813 CPU_CORE2_FLAGS, 0 },
8a2c8fef 814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 815 CPU_COREI7_FLAGS, 0 },
8a2c8fef 816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 817 CPU_L1OM_FLAGS, 0 },
7a9068fe 818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 819 CPU_K1OM_FLAGS, 0 },
81486035 820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 821 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 823 CPU_K6_FLAGS, 0 },
8a2c8fef 824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 825 CPU_K6_2_FLAGS, 0 },
8a2c8fef 826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 827 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 829 CPU_K8_FLAGS, 1 },
8a2c8fef 830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 831 CPU_K8_FLAGS, 0 },
8a2c8fef 832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 833 CPU_K8_FLAGS, 0 },
8a2c8fef 834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 835 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 837 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 839 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 841 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 843 CPU_BDVER4_FLAGS, 0 },
029f3522 844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 845 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
846 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
847 CPU_ZNVER2_FLAGS, 0 },
7b458c12 848 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 849 CPU_BTVER1_FLAGS, 0 },
7b458c12 850 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 851 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 852 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 853 CPU_8087_FLAGS, 0 },
8a2c8fef 854 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 855 CPU_287_FLAGS, 0 },
8a2c8fef 856 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 857 CPU_387_FLAGS, 0 },
1848e567
L
858 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
859 CPU_687_FLAGS, 0 },
8a2c8fef 860 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 861 CPU_MMX_FLAGS, 0 },
8a2c8fef 862 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 863 CPU_SSE_FLAGS, 0 },
8a2c8fef 864 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 865 CPU_SSE2_FLAGS, 0 },
8a2c8fef 866 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 867 CPU_SSE3_FLAGS, 0 },
8a2c8fef 868 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 869 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 870 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 871 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 872 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 873 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 874 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 875 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 876 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 877 CPU_AVX_FLAGS, 0 },
6c30d220 878 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 879 CPU_AVX2_FLAGS, 0 },
43234a1e 880 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 881 CPU_AVX512F_FLAGS, 0 },
43234a1e 882 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 883 CPU_AVX512CD_FLAGS, 0 },
43234a1e 884 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 885 CPU_AVX512ER_FLAGS, 0 },
43234a1e 886 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 887 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 888 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 889 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 890 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 891 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 892 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 893 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 894 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 895 CPU_VMX_FLAGS, 0 },
8729a6f6 896 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 897 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 898 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 899 CPU_SMX_FLAGS, 0 },
8a2c8fef 900 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 901 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 902 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 903 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 904 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 905 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 906 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 907 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 908 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 909 CPU_AES_FLAGS, 0 },
8a2c8fef 910 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 911 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 912 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 913 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 914 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 915 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 916 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 917 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 918 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 919 CPU_F16C_FLAGS, 0 },
6c30d220 920 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 921 CPU_BMI2_FLAGS, 0 },
8a2c8fef 922 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 923 CPU_FMA_FLAGS, 0 },
8a2c8fef 924 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 925 CPU_FMA4_FLAGS, 0 },
8a2c8fef 926 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 927 CPU_XOP_FLAGS, 0 },
8a2c8fef 928 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 929 CPU_LWP_FLAGS, 0 },
8a2c8fef 930 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 931 CPU_MOVBE_FLAGS, 0 },
60aa667e 932 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 933 CPU_CX16_FLAGS, 0 },
8a2c8fef 934 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 935 CPU_EPT_FLAGS, 0 },
6c30d220 936 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 937 CPU_LZCNT_FLAGS, 0 },
42164a71 938 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 939 CPU_HLE_FLAGS, 0 },
42164a71 940 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_RTM_FLAGS, 0 },
6c30d220 942 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 944 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_CLFLUSH_FLAGS, 0 },
22109423 946 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 947 CPU_NOP_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 949 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 951 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 953 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 955 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 957 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 959 CPU_SVME_FLAGS, 1 },
8a2c8fef 960 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 961 CPU_SVME_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 963 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 965 CPU_ABM_FLAGS, 0 },
87973e9f 966 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 967 CPU_BMI_FLAGS, 0 },
2a2a0f38 968 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 969 CPU_TBM_FLAGS, 0 },
e2e1fcde 970 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 971 CPU_ADX_FLAGS, 0 },
e2e1fcde 972 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 973 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 974 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 975 CPU_PRFCHW_FLAGS, 0 },
5c111e37 976 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 977 CPU_SMAP_FLAGS, 0 },
7e8b059b 978 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 979 CPU_MPX_FLAGS, 0 },
a0046408 980 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 981 CPU_SHA_FLAGS, 0 },
963f3586 982 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 983 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 984 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 985 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 986 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 987 CPU_SE1_FLAGS, 0 },
c5e7287a 988 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 989 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 990 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 991 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 992 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 993 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
994 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
996 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
998 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1000 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1002 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1004 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1006 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1007 CPU_CLZERO_FLAGS, 0 },
9916071f 1008 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1009 CPU_MWAITX_FLAGS, 0 },
8eab4136 1010 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1011 CPU_OSPKE_FLAGS, 0 },
8bc52696 1012 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1013 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1014 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1015 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1016 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1017 CPU_IBT_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1019 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1020 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1021 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1022 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1023 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1024 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1025 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1026 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1027 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1028 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1029 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1030 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1031 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1032 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1033 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1034 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1035 CPU_MOVDIRI_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1037 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1038};
1039
1040static const noarch_entry cpu_noarch[] =
1041{
1042 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1043 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1044 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1045 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1046 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1047 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1048 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1049 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1053 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1054 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1055 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1056 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1065 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1066 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1067 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1068 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1069 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1070 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1071 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1072 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1073 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1074 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1075};
1076
704209c0 1077#ifdef I386COFF
a6c24e68
NC
1078/* Like s_lcomm_internal in gas/read.c but the alignment string
1079 is allowed to be optional. */
1080
1081static symbolS *
1082pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1083{
1084 addressT align = 0;
1085
1086 SKIP_WHITESPACE ();
1087
7ab9ffdd 1088 if (needs_align
a6c24e68
NC
1089 && *input_line_pointer == ',')
1090 {
1091 align = parse_align (needs_align - 1);
7ab9ffdd 1092
a6c24e68
NC
1093 if (align == (addressT) -1)
1094 return NULL;
1095 }
1096 else
1097 {
1098 if (size >= 8)
1099 align = 3;
1100 else if (size >= 4)
1101 align = 2;
1102 else if (size >= 2)
1103 align = 1;
1104 else
1105 align = 0;
1106 }
1107
1108 bss_alloc (symbolP, size, align);
1109 return symbolP;
1110}
1111
704209c0 1112static void
a6c24e68
NC
1113pe_lcomm (int needs_align)
1114{
1115 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1116}
704209c0 1117#endif
a6c24e68 1118
29b0f896
AM
1119const pseudo_typeS md_pseudo_table[] =
1120{
1121#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1122 {"align", s_align_bytes, 0},
1123#else
1124 {"align", s_align_ptwo, 0},
1125#endif
1126 {"arch", set_cpu_arch, 0},
1127#ifndef I386COFF
1128 {"bss", s_bss, 0},
a6c24e68
NC
1129#else
1130 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1131#endif
1132 {"ffloat", float_cons, 'f'},
1133 {"dfloat", float_cons, 'd'},
1134 {"tfloat", float_cons, 'x'},
1135 {"value", cons, 2},
d182319b 1136 {"slong", signed_cons, 4},
29b0f896
AM
1137 {"noopt", s_ignore, 0},
1138 {"optim", s_ignore, 0},
1139 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1140 {"code16", set_code_flag, CODE_16BIT},
1141 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1142#ifdef BFD64
29b0f896 1143 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1144#endif
29b0f896
AM
1145 {"intel_syntax", set_intel_syntax, 1},
1146 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1147 {"intel_mnemonic", set_intel_mnemonic, 1},
1148 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1149 {"allow_index_reg", set_allow_index_reg, 1},
1150 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1151 {"sse_check", set_check, 0},
1152 {"operand_check", set_check, 1},
3b22753a
L
1153#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1154 {"largecomm", handle_large_common, 0},
07a53e5c 1155#else
68d20676 1156 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1157 {"loc", dwarf2_directive_loc, 0},
1158 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1159#endif
6482c264
NC
1160#ifdef TE_PE
1161 {"secrel32", pe_directive_secrel, 0},
1162#endif
29b0f896
AM
1163 {0, 0, 0}
1164};
1165
1166/* For interface with expression (). */
1167extern char *input_line_pointer;
1168
1169/* Hash table for instruction mnemonic lookup. */
1170static struct hash_control *op_hash;
1171
1172/* Hash table for register lookup. */
1173static struct hash_control *reg_hash;
1174\f
ce8a8b2f
AM
1175 /* Various efficient no-op patterns for aligning code labels.
1176 Note: Don't try to assemble the instructions in the comments.
1177 0L and 0w are not legal. */
62a02d25
L
1178static const unsigned char f32_1[] =
1179 {0x90}; /* nop */
1180static const unsigned char f32_2[] =
1181 {0x66,0x90}; /* xchg %ax,%ax */
1182static const unsigned char f32_3[] =
1183 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1184static const unsigned char f32_4[] =
1185 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1186static const unsigned char f32_6[] =
1187 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1188static const unsigned char f32_7[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1190static const unsigned char f16_3[] =
3ae729d5 1191 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1192static const unsigned char f16_4[] =
3ae729d5
L
1193 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1194static const unsigned char jump_disp8[] =
1195 {0xeb}; /* jmp disp8 */
1196static const unsigned char jump32_disp32[] =
1197 {0xe9}; /* jmp disp32 */
1198static const unsigned char jump16_disp32[] =
1199 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1200/* 32-bit NOPs patterns. */
1201static const unsigned char *const f32_patt[] = {
3ae729d5 1202 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1203};
1204/* 16-bit NOPs patterns. */
1205static const unsigned char *const f16_patt[] = {
3ae729d5 1206 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1207};
1208/* nopl (%[re]ax) */
1209static const unsigned char alt_3[] =
1210 {0x0f,0x1f,0x00};
1211/* nopl 0(%[re]ax) */
1212static const unsigned char alt_4[] =
1213 {0x0f,0x1f,0x40,0x00};
1214/* nopl 0(%[re]ax,%[re]ax,1) */
1215static const unsigned char alt_5[] =
1216 {0x0f,0x1f,0x44,0x00,0x00};
1217/* nopw 0(%[re]ax,%[re]ax,1) */
1218static const unsigned char alt_6[] =
1219 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1220/* nopl 0L(%[re]ax) */
1221static const unsigned char alt_7[] =
1222 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1223/* nopl 0L(%[re]ax,%[re]ax,1) */
1224static const unsigned char alt_8[] =
1225 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1226/* nopw 0L(%[re]ax,%[re]ax,1) */
1227static const unsigned char alt_9[] =
1228 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1229/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1230static const unsigned char alt_10[] =
1231 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1232/* data16 nopw %cs:0L(%eax,%eax,1) */
1233static const unsigned char alt_11[] =
1234 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1235/* 32-bit and 64-bit NOPs patterns. */
1236static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1238 alt_9, alt_10, alt_11
62a02d25
L
1239};
1240
1241/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1242 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1243
1244static void
1245i386_output_nops (char *where, const unsigned char *const *patt,
1246 int count, int max_single_nop_size)
1247
1248{
3ae729d5
L
1249 /* Place the longer NOP first. */
1250 int last;
1251 int offset;
1252 const unsigned char *nops = patt[max_single_nop_size - 1];
1253
1254 /* Use the smaller one if the requsted one isn't available. */
1255 if (nops == NULL)
62a02d25 1256 {
3ae729d5
L
1257 max_single_nop_size--;
1258 nops = patt[max_single_nop_size - 1];
62a02d25
L
1259 }
1260
3ae729d5
L
1261 last = count % max_single_nop_size;
1262
1263 count -= last;
1264 for (offset = 0; offset < count; offset += max_single_nop_size)
1265 memcpy (where + offset, nops, max_single_nop_size);
1266
1267 if (last)
1268 {
1269 nops = patt[last - 1];
1270 if (nops == NULL)
1271 {
1272 /* Use the smaller one plus one-byte NOP if the needed one
1273 isn't available. */
1274 last--;
1275 nops = patt[last - 1];
1276 memcpy (where + offset, nops, last);
1277 where[offset + last] = *patt[0];
1278 }
1279 else
1280 memcpy (where + offset, nops, last);
1281 }
62a02d25
L
1282}
1283
3ae729d5
L
1284static INLINE int
1285fits_in_imm7 (offsetT num)
1286{
1287 return (num & 0x7f) == num;
1288}
1289
1290static INLINE int
1291fits_in_imm31 (offsetT num)
1292{
1293 return (num & 0x7fffffff) == num;
1294}
62a02d25
L
1295
1296/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1297 single NOP instruction LIMIT. */
1298
1299void
3ae729d5 1300i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1301{
3ae729d5 1302 const unsigned char *const *patt = NULL;
62a02d25 1303 int max_single_nop_size;
3ae729d5
L
1304 /* Maximum number of NOPs before switching to jump over NOPs. */
1305 int max_number_of_nops;
62a02d25 1306
3ae729d5 1307 switch (fragP->fr_type)
62a02d25 1308 {
3ae729d5
L
1309 case rs_fill_nop:
1310 case rs_align_code:
1311 break;
1312 default:
62a02d25
L
1313 return;
1314 }
1315
ccc9c027
L
1316 /* We need to decide which NOP sequence to use for 32bit and
1317 64bit. When -mtune= is used:
4eed87de 1318
76bc74dc
L
1319 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1320 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1321 2. For the rest, alt_patt will be used.
1322
1323 When -mtune= isn't used, alt_patt will be used if
22109423 1324 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1325 be used.
ccc9c027
L
1326
1327 When -march= or .arch is used, we can't use anything beyond
1328 cpu_arch_isa_flags. */
1329
1330 if (flag_code == CODE_16BIT)
1331 {
3ae729d5
L
1332 patt = f16_patt;
1333 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1334 /* Limit number of NOPs to 2 in 16-bit mode. */
1335 max_number_of_nops = 2;
252b5132 1336 }
33fef721 1337 else
ccc9c027 1338 {
fbf3f584 1339 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1340 {
1341 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1342 switch (cpu_arch_tune)
1343 {
1344 case PROCESSOR_UNKNOWN:
1345 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1346 optimize with nops. */
1347 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1348 patt = alt_patt;
ccc9c027
L
1349 else
1350 patt = f32_patt;
1351 break;
ccc9c027
L
1352 case PROCESSOR_PENTIUM4:
1353 case PROCESSOR_NOCONA:
ef05d495 1354 case PROCESSOR_CORE:
76bc74dc 1355 case PROCESSOR_CORE2:
bd5295b2 1356 case PROCESSOR_COREI7:
3632d14b 1357 case PROCESSOR_L1OM:
7a9068fe 1358 case PROCESSOR_K1OM:
76bc74dc 1359 case PROCESSOR_GENERIC64:
ccc9c027
L
1360 case PROCESSOR_K6:
1361 case PROCESSOR_ATHLON:
1362 case PROCESSOR_K8:
4eed87de 1363 case PROCESSOR_AMDFAM10:
8aedb9fe 1364 case PROCESSOR_BD:
029f3522 1365 case PROCESSOR_ZNVER:
7b458c12 1366 case PROCESSOR_BT:
80b8656c 1367 patt = alt_patt;
ccc9c027 1368 break;
76bc74dc 1369 case PROCESSOR_I386:
ccc9c027
L
1370 case PROCESSOR_I486:
1371 case PROCESSOR_PENTIUM:
2dde1948 1372 case PROCESSOR_PENTIUMPRO:
81486035 1373 case PROCESSOR_IAMCU:
ccc9c027
L
1374 case PROCESSOR_GENERIC32:
1375 patt = f32_patt;
1376 break;
4eed87de 1377 }
ccc9c027
L
1378 }
1379 else
1380 {
fbf3f584 1381 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1382 {
1383 case PROCESSOR_UNKNOWN:
e6a14101 1384 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1385 PROCESSOR_UNKNOWN. */
1386 abort ();
1387 break;
1388
76bc74dc 1389 case PROCESSOR_I386:
ccc9c027
L
1390 case PROCESSOR_I486:
1391 case PROCESSOR_PENTIUM:
81486035 1392 case PROCESSOR_IAMCU:
ccc9c027
L
1393 case PROCESSOR_K6:
1394 case PROCESSOR_ATHLON:
1395 case PROCESSOR_K8:
4eed87de 1396 case PROCESSOR_AMDFAM10:
8aedb9fe 1397 case PROCESSOR_BD:
029f3522 1398 case PROCESSOR_ZNVER:
7b458c12 1399 case PROCESSOR_BT:
ccc9c027
L
1400 case PROCESSOR_GENERIC32:
1401 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1402 with nops. */
1403 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1404 patt = alt_patt;
ccc9c027
L
1405 else
1406 patt = f32_patt;
1407 break;
76bc74dc
L
1408 case PROCESSOR_PENTIUMPRO:
1409 case PROCESSOR_PENTIUM4:
1410 case PROCESSOR_NOCONA:
1411 case PROCESSOR_CORE:
ef05d495 1412 case PROCESSOR_CORE2:
bd5295b2 1413 case PROCESSOR_COREI7:
3632d14b 1414 case PROCESSOR_L1OM:
7a9068fe 1415 case PROCESSOR_K1OM:
22109423 1416 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1417 patt = alt_patt;
ccc9c027
L
1418 else
1419 patt = f32_patt;
1420 break;
1421 case PROCESSOR_GENERIC64:
80b8656c 1422 patt = alt_patt;
ccc9c027 1423 break;
4eed87de 1424 }
ccc9c027
L
1425 }
1426
76bc74dc
L
1427 if (patt == f32_patt)
1428 {
3ae729d5
L
1429 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1430 /* Limit number of NOPs to 2 for older processors. */
1431 max_number_of_nops = 2;
76bc74dc
L
1432 }
1433 else
1434 {
3ae729d5
L
1435 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1436 /* Limit number of NOPs to 7 for newer processors. */
1437 max_number_of_nops = 7;
1438 }
1439 }
1440
1441 if (limit == 0)
1442 limit = max_single_nop_size;
1443
1444 if (fragP->fr_type == rs_fill_nop)
1445 {
1446 /* Output NOPs for .nop directive. */
1447 if (limit > max_single_nop_size)
1448 {
1449 as_bad_where (fragP->fr_file, fragP->fr_line,
1450 _("invalid single nop size: %d "
1451 "(expect within [0, %d])"),
1452 limit, max_single_nop_size);
1453 return;
1454 }
1455 }
1456 else
1457 fragP->fr_var = count;
1458
1459 if ((count / max_single_nop_size) > max_number_of_nops)
1460 {
1461 /* Generate jump over NOPs. */
1462 offsetT disp = count - 2;
1463 if (fits_in_imm7 (disp))
1464 {
1465 /* Use "jmp disp8" if possible. */
1466 count = disp;
1467 where[0] = jump_disp8[0];
1468 where[1] = count;
1469 where += 2;
1470 }
1471 else
1472 {
1473 unsigned int size_of_jump;
1474
1475 if (flag_code == CODE_16BIT)
1476 {
1477 where[0] = jump16_disp32[0];
1478 where[1] = jump16_disp32[1];
1479 size_of_jump = 2;
1480 }
1481 else
1482 {
1483 where[0] = jump32_disp32[0];
1484 size_of_jump = 1;
1485 }
1486
1487 count -= size_of_jump + 4;
1488 if (!fits_in_imm31 (count))
1489 {
1490 as_bad_where (fragP->fr_file, fragP->fr_line,
1491 _("jump over nop padding out of range"));
1492 return;
1493 }
1494
1495 md_number_to_chars (where + size_of_jump, count, 4);
1496 where += size_of_jump + 4;
76bc74dc 1497 }
ccc9c027 1498 }
3ae729d5
L
1499
1500 /* Generate multiple NOPs. */
1501 i386_output_nops (where, patt, count, limit);
252b5132
RH
1502}
1503
c6fb90c8 1504static INLINE int
0dfbf9d7 1505operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1506{
0dfbf9d7 1507 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1508 {
1509 case 3:
0dfbf9d7 1510 if (x->array[2])
c6fb90c8 1511 return 0;
1a0670f3 1512 /* Fall through. */
c6fb90c8 1513 case 2:
0dfbf9d7 1514 if (x->array[1])
c6fb90c8 1515 return 0;
1a0670f3 1516 /* Fall through. */
c6fb90c8 1517 case 1:
0dfbf9d7 1518 return !x->array[0];
c6fb90c8
L
1519 default:
1520 abort ();
1521 }
40fb9820
L
1522}
1523
c6fb90c8 1524static INLINE void
0dfbf9d7 1525operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1526{
0dfbf9d7 1527 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1528 {
1529 case 3:
0dfbf9d7 1530 x->array[2] = v;
1a0670f3 1531 /* Fall through. */
c6fb90c8 1532 case 2:
0dfbf9d7 1533 x->array[1] = v;
1a0670f3 1534 /* Fall through. */
c6fb90c8 1535 case 1:
0dfbf9d7 1536 x->array[0] = v;
1a0670f3 1537 /* Fall through. */
c6fb90c8
L
1538 break;
1539 default:
1540 abort ();
1541 }
1542}
40fb9820 1543
c6fb90c8 1544static INLINE int
0dfbf9d7
L
1545operand_type_equal (const union i386_operand_type *x,
1546 const union i386_operand_type *y)
c6fb90c8 1547{
0dfbf9d7 1548 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1549 {
1550 case 3:
0dfbf9d7 1551 if (x->array[2] != y->array[2])
c6fb90c8 1552 return 0;
1a0670f3 1553 /* Fall through. */
c6fb90c8 1554 case 2:
0dfbf9d7 1555 if (x->array[1] != y->array[1])
c6fb90c8 1556 return 0;
1a0670f3 1557 /* Fall through. */
c6fb90c8 1558 case 1:
0dfbf9d7 1559 return x->array[0] == y->array[0];
c6fb90c8
L
1560 break;
1561 default:
1562 abort ();
1563 }
1564}
40fb9820 1565
0dfbf9d7
L
1566static INLINE int
1567cpu_flags_all_zero (const union i386_cpu_flags *x)
1568{
1569 switch (ARRAY_SIZE(x->array))
1570 {
53467f57
IT
1571 case 4:
1572 if (x->array[3])
1573 return 0;
1574 /* Fall through. */
0dfbf9d7
L
1575 case 3:
1576 if (x->array[2])
1577 return 0;
1a0670f3 1578 /* Fall through. */
0dfbf9d7
L
1579 case 2:
1580 if (x->array[1])
1581 return 0;
1a0670f3 1582 /* Fall through. */
0dfbf9d7
L
1583 case 1:
1584 return !x->array[0];
1585 default:
1586 abort ();
1587 }
1588}
1589
0dfbf9d7
L
1590static INLINE int
1591cpu_flags_equal (const union i386_cpu_flags *x,
1592 const union i386_cpu_flags *y)
1593{
1594 switch (ARRAY_SIZE(x->array))
1595 {
53467f57
IT
1596 case 4:
1597 if (x->array[3] != y->array[3])
1598 return 0;
1599 /* Fall through. */
0dfbf9d7
L
1600 case 3:
1601 if (x->array[2] != y->array[2])
1602 return 0;
1a0670f3 1603 /* Fall through. */
0dfbf9d7
L
1604 case 2:
1605 if (x->array[1] != y->array[1])
1606 return 0;
1a0670f3 1607 /* Fall through. */
0dfbf9d7
L
1608 case 1:
1609 return x->array[0] == y->array[0];
1610 break;
1611 default:
1612 abort ();
1613 }
1614}
c6fb90c8
L
1615
1616static INLINE int
1617cpu_flags_check_cpu64 (i386_cpu_flags f)
1618{
1619 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1620 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1621}
1622
c6fb90c8
L
1623static INLINE i386_cpu_flags
1624cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1625{
c6fb90c8
L
1626 switch (ARRAY_SIZE (x.array))
1627 {
53467f57
IT
1628 case 4:
1629 x.array [3] &= y.array [3];
1630 /* Fall through. */
c6fb90c8
L
1631 case 3:
1632 x.array [2] &= y.array [2];
1a0670f3 1633 /* Fall through. */
c6fb90c8
L
1634 case 2:
1635 x.array [1] &= y.array [1];
1a0670f3 1636 /* Fall through. */
c6fb90c8
L
1637 case 1:
1638 x.array [0] &= y.array [0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643 return x;
1644}
40fb9820 1645
c6fb90c8
L
1646static INLINE i386_cpu_flags
1647cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1648{
c6fb90c8 1649 switch (ARRAY_SIZE (x.array))
40fb9820 1650 {
53467f57
IT
1651 case 4:
1652 x.array [3] |= y.array [3];
1653 /* Fall through. */
c6fb90c8
L
1654 case 3:
1655 x.array [2] |= y.array [2];
1a0670f3 1656 /* Fall through. */
c6fb90c8
L
1657 case 2:
1658 x.array [1] |= y.array [1];
1a0670f3 1659 /* Fall through. */
c6fb90c8
L
1660 case 1:
1661 x.array [0] |= y.array [0];
40fb9820
L
1662 break;
1663 default:
1664 abort ();
1665 }
40fb9820
L
1666 return x;
1667}
1668
309d3373
JB
1669static INLINE i386_cpu_flags
1670cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1671{
1672 switch (ARRAY_SIZE (x.array))
1673 {
53467f57
IT
1674 case 4:
1675 x.array [3] &= ~y.array [3];
1676 /* Fall through. */
309d3373
JB
1677 case 3:
1678 x.array [2] &= ~y.array [2];
1a0670f3 1679 /* Fall through. */
309d3373
JB
1680 case 2:
1681 x.array [1] &= ~y.array [1];
1a0670f3 1682 /* Fall through. */
309d3373
JB
1683 case 1:
1684 x.array [0] &= ~y.array [0];
1685 break;
1686 default:
1687 abort ();
1688 }
1689 return x;
1690}
1691
c0f3af97
L
1692#define CPU_FLAGS_ARCH_MATCH 0x1
1693#define CPU_FLAGS_64BIT_MATCH 0x2
1694
c0f3af97 1695#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1696 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1697
1698/* Return CPU flags match bits. */
3629bb00 1699
40fb9820 1700static int
d3ce72d0 1701cpu_flags_match (const insn_template *t)
40fb9820 1702{
c0f3af97
L
1703 i386_cpu_flags x = t->cpu_flags;
1704 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1705
1706 x.bitfield.cpu64 = 0;
1707 x.bitfield.cpuno64 = 0;
1708
0dfbf9d7 1709 if (cpu_flags_all_zero (&x))
c0f3af97
L
1710 {
1711 /* This instruction is available on all archs. */
db12e14e 1712 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1713 }
3629bb00
L
1714 else
1715 {
c0f3af97 1716 /* This instruction is available only on some archs. */
3629bb00
L
1717 i386_cpu_flags cpu = cpu_arch_flags;
1718
ab592e75
JB
1719 /* AVX512VL is no standalone feature - match it and then strip it. */
1720 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1721 return match;
1722 x.bitfield.cpuavx512vl = 0;
1723
3629bb00 1724 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1725 if (!cpu_flags_all_zero (&cpu))
1726 {
a5ff0eb2
L
1727 if (x.bitfield.cpuavx)
1728 {
929f69fa 1729 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1730 if (cpu.bitfield.cpuavx
1731 && (!t->opcode_modifier.sse2avx || sse2avx)
1732 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1734 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1735 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1736 }
929f69fa
JB
1737 else if (x.bitfield.cpuavx512f)
1738 {
1739 /* We need to check a few extra flags with AVX512F. */
1740 if (cpu.bitfield.cpuavx512f
1741 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1742 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1743 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1744 match |= CPU_FLAGS_ARCH_MATCH;
1745 }
a5ff0eb2 1746 else
db12e14e 1747 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1748 }
3629bb00 1749 }
c0f3af97 1750 return match;
40fb9820
L
1751}
1752
c6fb90c8
L
1753static INLINE i386_operand_type
1754operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1755{
c6fb90c8
L
1756 switch (ARRAY_SIZE (x.array))
1757 {
1758 case 3:
1759 x.array [2] &= y.array [2];
1a0670f3 1760 /* Fall through. */
c6fb90c8
L
1761 case 2:
1762 x.array [1] &= y.array [1];
1a0670f3 1763 /* Fall through. */
c6fb90c8
L
1764 case 1:
1765 x.array [0] &= y.array [0];
1766 break;
1767 default:
1768 abort ();
1769 }
1770 return x;
40fb9820
L
1771}
1772
73053c1f
JB
1773static INLINE i386_operand_type
1774operand_type_and_not (i386_operand_type x, i386_operand_type y)
1775{
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 3:
1779 x.array [2] &= ~y.array [2];
1780 /* Fall through. */
1781 case 2:
1782 x.array [1] &= ~y.array [1];
1783 /* Fall through. */
1784 case 1:
1785 x.array [0] &= ~y.array [0];
1786 break;
1787 default:
1788 abort ();
1789 }
1790 return x;
1791}
1792
c6fb90c8
L
1793static INLINE i386_operand_type
1794operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1795{
c6fb90c8 1796 switch (ARRAY_SIZE (x.array))
40fb9820 1797 {
c6fb90c8
L
1798 case 3:
1799 x.array [2] |= y.array [2];
1a0670f3 1800 /* Fall through. */
c6fb90c8
L
1801 case 2:
1802 x.array [1] |= y.array [1];
1a0670f3 1803 /* Fall through. */
c6fb90c8
L
1804 case 1:
1805 x.array [0] |= y.array [0];
40fb9820
L
1806 break;
1807 default:
1808 abort ();
1809 }
c6fb90c8
L
1810 return x;
1811}
40fb9820 1812
c6fb90c8
L
1813static INLINE i386_operand_type
1814operand_type_xor (i386_operand_type x, i386_operand_type y)
1815{
1816 switch (ARRAY_SIZE (x.array))
1817 {
1818 case 3:
1819 x.array [2] ^= y.array [2];
1a0670f3 1820 /* Fall through. */
c6fb90c8
L
1821 case 2:
1822 x.array [1] ^= y.array [1];
1a0670f3 1823 /* Fall through. */
c6fb90c8
L
1824 case 1:
1825 x.array [0] ^= y.array [0];
1826 break;
1827 default:
1828 abort ();
1829 }
40fb9820
L
1830 return x;
1831}
1832
1833static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1834static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1835static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1836static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1837static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1838static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1839static const i386_operand_type anydisp
1840 = OPERAND_TYPE_ANYDISP;
40fb9820 1841static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1842static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1843static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1844static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1845static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1846static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1847static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1848static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1849static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1850static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1851static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1852static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1853
1854enum operand_type
1855{
1856 reg,
40fb9820
L
1857 imm,
1858 disp,
1859 anymem
1860};
1861
c6fb90c8 1862static INLINE int
40fb9820
L
1863operand_type_check (i386_operand_type t, enum operand_type c)
1864{
1865 switch (c)
1866 {
1867 case reg:
dc821c5f 1868 return t.bitfield.reg;
40fb9820 1869
40fb9820
L
1870 case imm:
1871 return (t.bitfield.imm8
1872 || t.bitfield.imm8s
1873 || t.bitfield.imm16
1874 || t.bitfield.imm32
1875 || t.bitfield.imm32s
1876 || t.bitfield.imm64);
1877
1878 case disp:
1879 return (t.bitfield.disp8
1880 || t.bitfield.disp16
1881 || t.bitfield.disp32
1882 || t.bitfield.disp32s
1883 || t.bitfield.disp64);
1884
1885 case anymem:
1886 return (t.bitfield.disp8
1887 || t.bitfield.disp16
1888 || t.bitfield.disp32
1889 || t.bitfield.disp32s
1890 || t.bitfield.disp64
1891 || t.bitfield.baseindex);
1892
1893 default:
1894 abort ();
1895 }
2cfe26b6
AM
1896
1897 return 0;
40fb9820
L
1898}
1899
ca0d63fe 1900/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
5c07affc
L
1901 operand J for instruction template T. */
1902
1903static INLINE int
3ac21baa 1904match_reg_size (const insn_template *t, unsigned int wanted, unsigned int given)
5c07affc 1905{
3ac21baa
JB
1906 return !((i.types[given].bitfield.byte
1907 && !t->operand_types[wanted].bitfield.byte)
1908 || (i.types[given].bitfield.word
1909 && !t->operand_types[wanted].bitfield.word)
1910 || (i.types[given].bitfield.dword
1911 && !t->operand_types[wanted].bitfield.dword)
1912 || (i.types[given].bitfield.qword
1913 && !t->operand_types[wanted].bitfield.qword)
1914 || (i.types[given].bitfield.tbyte
1915 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1916}
1917
1b54b8d7
JB
1918/* Return 1 if there is no conflict in SIMD register on
1919 operand J for instruction template T. */
1920
1921static INLINE int
3ac21baa 1922match_simd_size (const insn_template *t, unsigned int wanted, unsigned int given)
1b54b8d7 1923{
3ac21baa
JB
1924 return !((i.types[given].bitfield.xmmword
1925 && !t->operand_types[wanted].bitfield.xmmword)
1926 || (i.types[given].bitfield.ymmword
1927 && !t->operand_types[wanted].bitfield.ymmword)
1928 || (i.types[given].bitfield.zmmword
1929 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1930}
1931
5c07affc
L
1932/* Return 1 if there is no conflict in any size on operand J for
1933 instruction template T. */
1934
1935static INLINE int
3ac21baa 1936match_mem_size (const insn_template *t, unsigned int wanted, unsigned int given)
5c07affc 1937{
3ac21baa
JB
1938 return (match_reg_size (t, wanted, given)
1939 && !((i.types[given].bitfield.unspecified
af508cb9 1940 && !i.broadcast
3ac21baa
JB
1941 && !t->operand_types[wanted].bitfield.unspecified)
1942 || (i.types[given].bitfield.fword
1943 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1944 /* For scalar opcode templates to allow register and memory
1945 operands at the same time, some special casing is needed
d6793fa1
JB
1946 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1947 down-conversion vpmov*. */
3ac21baa 1948 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1949 && !t->opcode_modifier.broadcast
3ac21baa
JB
1950 && (t->operand_types[wanted].bitfield.byte
1951 || t->operand_types[wanted].bitfield.word
1952 || t->operand_types[wanted].bitfield.dword
1953 || t->operand_types[wanted].bitfield.qword))
1954 ? (i.types[given].bitfield.xmmword
1955 || i.types[given].bitfield.ymmword
1956 || i.types[given].bitfield.zmmword)
1957 : !match_simd_size(t, wanted, given))));
5c07affc
L
1958}
1959
3ac21baa
JB
1960/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1961 operands for instruction template T, and it has MATCH_REVERSE set if there
1962 is no size conflict on any operands for the template with operands reversed
1963 (and the template allows for reversing in the first place). */
5c07affc 1964
3ac21baa
JB
1965#define MATCH_STRAIGHT 1
1966#define MATCH_REVERSE 2
1967
1968static INLINE unsigned int
d3ce72d0 1969operand_size_match (const insn_template *t)
5c07affc 1970{
3ac21baa 1971 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
1972
1973 /* Don't check jump instructions. */
1974 if (t->opcode_modifier.jump
1975 || t->opcode_modifier.jumpbyte
1976 || t->opcode_modifier.jumpdword
1977 || t->opcode_modifier.jumpintersegment)
1978 return match;
1979
1980 /* Check memory and accumulator operand size. */
1981 for (j = 0; j < i.operands; j++)
1982 {
1b54b8d7
JB
1983 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1984 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1985 continue;
1986
1b54b8d7 1987 if (t->operand_types[j].bitfield.reg
3ac21baa 1988 && !match_reg_size (t, j, j))
5c07affc
L
1989 {
1990 match = 0;
1991 break;
1992 }
1993
1b54b8d7 1994 if (t->operand_types[j].bitfield.regsimd
3ac21baa 1995 && !match_simd_size (t, j, j))
1b54b8d7
JB
1996 {
1997 match = 0;
1998 break;
1999 }
2000
2001 if (t->operand_types[j].bitfield.acc
3ac21baa 2002 && (!match_reg_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2003 {
2004 match = 0;
2005 break;
2006 }
2007
3ac21baa 2008 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
5c07affc
L
2009 {
2010 match = 0;
2011 break;
2012 }
2013 }
2014
3ac21baa 2015 if (!t->opcode_modifier.d)
891edac4
L
2016 {
2017mismatch:
3ac21baa
JB
2018 if (!match)
2019 i.error = operand_size_mismatch;
2020 return match;
891edac4 2021 }
5c07affc
L
2022
2023 /* Check reverse. */
9c2799c2 2024 gas_assert (i.operands == 2);
5c07affc 2025
5c07affc
L
2026 for (j = 0; j < 2; j++)
2027 {
dc821c5f
JB
2028 if ((t->operand_types[j].bitfield.reg
2029 || t->operand_types[j].bitfield.acc)
3ac21baa 2030 && !match_reg_size (t, j, !j))
891edac4 2031 goto mismatch;
5c07affc 2032
3ac21baa
JB
2033 if (i.types[!j].bitfield.mem
2034 && !match_mem_size (t, j, !j))
891edac4 2035 goto mismatch;
5c07affc
L
2036 }
2037
3ac21baa 2038 return match | MATCH_REVERSE;
5c07affc
L
2039}
2040
c6fb90c8 2041static INLINE int
40fb9820
L
2042operand_type_match (i386_operand_type overlap,
2043 i386_operand_type given)
2044{
2045 i386_operand_type temp = overlap;
2046
2047 temp.bitfield.jumpabsolute = 0;
7d5e4556 2048 temp.bitfield.unspecified = 0;
5c07affc
L
2049 temp.bitfield.byte = 0;
2050 temp.bitfield.word = 0;
2051 temp.bitfield.dword = 0;
2052 temp.bitfield.fword = 0;
2053 temp.bitfield.qword = 0;
2054 temp.bitfield.tbyte = 0;
2055 temp.bitfield.xmmword = 0;
c0f3af97 2056 temp.bitfield.ymmword = 0;
43234a1e 2057 temp.bitfield.zmmword = 0;
0dfbf9d7 2058 if (operand_type_all_zero (&temp))
891edac4 2059 goto mismatch;
40fb9820 2060
891edac4
L
2061 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2062 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2063 return 1;
2064
2065mismatch:
a65babc9 2066 i.error = operand_type_mismatch;
891edac4 2067 return 0;
40fb9820
L
2068}
2069
7d5e4556 2070/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2071 unless the expected operand type register overlap is null.
2072 Memory operand size of certain SIMD instructions is also being checked
2073 here. */
40fb9820 2074
c6fb90c8 2075static INLINE int
dc821c5f 2076operand_type_register_match (i386_operand_type g0,
40fb9820 2077 i386_operand_type t0,
40fb9820
L
2078 i386_operand_type g1,
2079 i386_operand_type t1)
2080{
10c17abd
JB
2081 if (!g0.bitfield.reg
2082 && !g0.bitfield.regsimd
2083 && (!operand_type_check (g0, anymem)
2084 || g0.bitfield.unspecified
2085 || !t0.bitfield.regsimd))
40fb9820
L
2086 return 1;
2087
10c17abd
JB
2088 if (!g1.bitfield.reg
2089 && !g1.bitfield.regsimd
2090 && (!operand_type_check (g1, anymem)
2091 || g1.bitfield.unspecified
2092 || !t1.bitfield.regsimd))
40fb9820
L
2093 return 1;
2094
dc821c5f
JB
2095 if (g0.bitfield.byte == g1.bitfield.byte
2096 && g0.bitfield.word == g1.bitfield.word
2097 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2098 && g0.bitfield.qword == g1.bitfield.qword
2099 && g0.bitfield.xmmword == g1.bitfield.xmmword
2100 && g0.bitfield.ymmword == g1.bitfield.ymmword
2101 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2102 return 1;
2103
dc821c5f
JB
2104 if (!(t0.bitfield.byte & t1.bitfield.byte)
2105 && !(t0.bitfield.word & t1.bitfield.word)
2106 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2107 && !(t0.bitfield.qword & t1.bitfield.qword)
2108 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2109 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2110 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2111 return 1;
2112
a65babc9 2113 i.error = register_type_mismatch;
891edac4
L
2114
2115 return 0;
40fb9820
L
2116}
2117
4c692bc7
JB
2118static INLINE unsigned int
2119register_number (const reg_entry *r)
2120{
2121 unsigned int nr = r->reg_num;
2122
2123 if (r->reg_flags & RegRex)
2124 nr += 8;
2125
200cbe0f
L
2126 if (r->reg_flags & RegVRex)
2127 nr += 16;
2128
4c692bc7
JB
2129 return nr;
2130}
2131
252b5132 2132static INLINE unsigned int
40fb9820 2133mode_from_disp_size (i386_operand_type t)
252b5132 2134{
b5014f7a 2135 if (t.bitfield.disp8)
40fb9820
L
2136 return 1;
2137 else if (t.bitfield.disp16
2138 || t.bitfield.disp32
2139 || t.bitfield.disp32s)
2140 return 2;
2141 else
2142 return 0;
252b5132
RH
2143}
2144
2145static INLINE int
65879393 2146fits_in_signed_byte (addressT num)
252b5132 2147{
65879393 2148 return num + 0x80 <= 0xff;
47926f60 2149}
252b5132
RH
2150
2151static INLINE int
65879393 2152fits_in_unsigned_byte (addressT num)
252b5132 2153{
65879393 2154 return num <= 0xff;
47926f60 2155}
252b5132
RH
2156
2157static INLINE int
65879393 2158fits_in_unsigned_word (addressT num)
252b5132 2159{
65879393 2160 return num <= 0xffff;
47926f60 2161}
252b5132
RH
2162
2163static INLINE int
65879393 2164fits_in_signed_word (addressT num)
252b5132 2165{
65879393 2166 return num + 0x8000 <= 0xffff;
47926f60 2167}
2a962e6d 2168
3e73aa7c 2169static INLINE int
65879393 2170fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2171{
2172#ifndef BFD64
2173 return 1;
2174#else
65879393 2175 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2176#endif
2177} /* fits_in_signed_long() */
2a962e6d 2178
3e73aa7c 2179static INLINE int
65879393 2180fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2181{
2182#ifndef BFD64
2183 return 1;
2184#else
65879393 2185 return num <= 0xffffffff;
3e73aa7c
JH
2186#endif
2187} /* fits_in_unsigned_long() */
252b5132 2188
43234a1e 2189static INLINE int
b5014f7a 2190fits_in_disp8 (offsetT num)
43234a1e
L
2191{
2192 int shift = i.memshift;
2193 unsigned int mask;
2194
2195 if (shift == -1)
2196 abort ();
2197
2198 mask = (1 << shift) - 1;
2199
2200 /* Return 0 if NUM isn't properly aligned. */
2201 if ((num & mask))
2202 return 0;
2203
2204 /* Check if NUM will fit in 8bit after shift. */
2205 return fits_in_signed_byte (num >> shift);
2206}
2207
a683cc34
SP
2208static INLINE int
2209fits_in_imm4 (offsetT num)
2210{
2211 return (num & 0xf) == num;
2212}
2213
40fb9820 2214static i386_operand_type
e3bb37b5 2215smallest_imm_type (offsetT num)
252b5132 2216{
40fb9820 2217 i386_operand_type t;
7ab9ffdd 2218
0dfbf9d7 2219 operand_type_set (&t, 0);
40fb9820
L
2220 t.bitfield.imm64 = 1;
2221
2222 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2223 {
2224 /* This code is disabled on the 486 because all the Imm1 forms
2225 in the opcode table are slower on the i486. They're the
2226 versions with the implicitly specified single-position
2227 displacement, which has another syntax if you really want to
2228 use that form. */
40fb9820
L
2229 t.bitfield.imm1 = 1;
2230 t.bitfield.imm8 = 1;
2231 t.bitfield.imm8s = 1;
2232 t.bitfield.imm16 = 1;
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_signed_byte (num))
2237 {
2238 t.bitfield.imm8 = 1;
2239 t.bitfield.imm8s = 1;
2240 t.bitfield.imm16 = 1;
2241 t.bitfield.imm32 = 1;
2242 t.bitfield.imm32s = 1;
2243 }
2244 else if (fits_in_unsigned_byte (num))
2245 {
2246 t.bitfield.imm8 = 1;
2247 t.bitfield.imm16 = 1;
2248 t.bitfield.imm32 = 1;
2249 t.bitfield.imm32s = 1;
2250 }
2251 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2252 {
2253 t.bitfield.imm16 = 1;
2254 t.bitfield.imm32 = 1;
2255 t.bitfield.imm32s = 1;
2256 }
2257 else if (fits_in_signed_long (num))
2258 {
2259 t.bitfield.imm32 = 1;
2260 t.bitfield.imm32s = 1;
2261 }
2262 else if (fits_in_unsigned_long (num))
2263 t.bitfield.imm32 = 1;
2264
2265 return t;
47926f60 2266}
252b5132 2267
847f7ad4 2268static offsetT
e3bb37b5 2269offset_in_range (offsetT val, int size)
847f7ad4 2270{
508866be 2271 addressT mask;
ba2adb93 2272
847f7ad4
AM
2273 switch (size)
2274 {
508866be
L
2275 case 1: mask = ((addressT) 1 << 8) - 1; break;
2276 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2277 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2278#ifdef BFD64
2279 case 8: mask = ((addressT) 2 << 63) - 1; break;
2280#endif
47926f60 2281 default: abort ();
847f7ad4
AM
2282 }
2283
9de868bf
L
2284#ifdef BFD64
2285 /* If BFD64, sign extend val for 32bit address mode. */
2286 if (flag_code != CODE_64BIT
2287 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2288 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2289 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2290#endif
ba2adb93 2291
47926f60 2292 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2293 {
2294 char buf1[40], buf2[40];
2295
2296 sprint_value (buf1, val);
2297 sprint_value (buf2, val & mask);
2298 as_warn (_("%s shortened to %s"), buf1, buf2);
2299 }
2300 return val & mask;
2301}
2302
c32fa91d
L
2303enum PREFIX_GROUP
2304{
2305 PREFIX_EXIST = 0,
2306 PREFIX_LOCK,
2307 PREFIX_REP,
04ef582a 2308 PREFIX_DS,
c32fa91d
L
2309 PREFIX_OTHER
2310};
2311
2312/* Returns
2313 a. PREFIX_EXIST if attempting to add a prefix where one from the
2314 same class already exists.
2315 b. PREFIX_LOCK if lock prefix is added.
2316 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2317 d. PREFIX_DS if ds prefix is added.
2318 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2319 */
2320
2321static enum PREFIX_GROUP
e3bb37b5 2322add_prefix (unsigned int prefix)
252b5132 2323{
c32fa91d 2324 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2325 unsigned int q;
252b5132 2326
29b0f896
AM
2327 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2328 && flag_code == CODE_64BIT)
b1905489 2329 {
161a04f6 2330 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2331 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2332 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2333 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2334 ret = PREFIX_EXIST;
b1905489
JB
2335 q = REX_PREFIX;
2336 }
3e73aa7c 2337 else
b1905489
JB
2338 {
2339 switch (prefix)
2340 {
2341 default:
2342 abort ();
2343
b1905489 2344 case DS_PREFIX_OPCODE:
04ef582a
L
2345 ret = PREFIX_DS;
2346 /* Fall through. */
2347 case CS_PREFIX_OPCODE:
b1905489
JB
2348 case ES_PREFIX_OPCODE:
2349 case FS_PREFIX_OPCODE:
2350 case GS_PREFIX_OPCODE:
2351 case SS_PREFIX_OPCODE:
2352 q = SEG_PREFIX;
2353 break;
2354
2355 case REPNE_PREFIX_OPCODE:
2356 case REPE_PREFIX_OPCODE:
c32fa91d
L
2357 q = REP_PREFIX;
2358 ret = PREFIX_REP;
2359 break;
2360
b1905489 2361 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2362 q = LOCK_PREFIX;
2363 ret = PREFIX_LOCK;
b1905489
JB
2364 break;
2365
2366 case FWAIT_OPCODE:
2367 q = WAIT_PREFIX;
2368 break;
2369
2370 case ADDR_PREFIX_OPCODE:
2371 q = ADDR_PREFIX;
2372 break;
2373
2374 case DATA_PREFIX_OPCODE:
2375 q = DATA_PREFIX;
2376 break;
2377 }
2378 if (i.prefix[q] != 0)
c32fa91d 2379 ret = PREFIX_EXIST;
b1905489 2380 }
252b5132 2381
b1905489 2382 if (ret)
252b5132 2383 {
b1905489
JB
2384 if (!i.prefix[q])
2385 ++i.prefixes;
2386 i.prefix[q] |= prefix;
252b5132 2387 }
b1905489
JB
2388 else
2389 as_bad (_("same type of prefix used twice"));
252b5132 2390
252b5132
RH
2391 return ret;
2392}
2393
2394static void
78f12dd3 2395update_code_flag (int value, int check)
eecb386c 2396{
78f12dd3
L
2397 PRINTF_LIKE ((*as_error));
2398
1e9cc1c2 2399 flag_code = (enum flag_code) value;
40fb9820
L
2400 if (flag_code == CODE_64BIT)
2401 {
2402 cpu_arch_flags.bitfield.cpu64 = 1;
2403 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2404 }
2405 else
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 0;
2408 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2409 }
2410 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2411 {
78f12dd3
L
2412 if (check)
2413 as_error = as_fatal;
2414 else
2415 as_error = as_bad;
2416 (*as_error) (_("64bit mode not supported on `%s'."),
2417 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2418 }
40fb9820 2419 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2420 {
78f12dd3
L
2421 if (check)
2422 as_error = as_fatal;
2423 else
2424 as_error = as_bad;
2425 (*as_error) (_("32bit mode not supported on `%s'."),
2426 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2427 }
eecb386c
AM
2428 stackop_size = '\0';
2429}
2430
78f12dd3
L
2431static void
2432set_code_flag (int value)
2433{
2434 update_code_flag (value, 0);
2435}
2436
eecb386c 2437static void
e3bb37b5 2438set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2439{
1e9cc1c2 2440 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2441 if (flag_code != CODE_16BIT)
2442 abort ();
2443 cpu_arch_flags.bitfield.cpu64 = 0;
2444 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2445 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2446}
2447
2448static void
e3bb37b5 2449set_intel_syntax (int syntax_flag)
252b5132
RH
2450{
2451 /* Find out if register prefixing is specified. */
2452 int ask_naked_reg = 0;
2453
2454 SKIP_WHITESPACE ();
29b0f896 2455 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2456 {
d02603dc
NC
2457 char *string;
2458 int e = get_symbol_name (&string);
252b5132 2459
47926f60 2460 if (strcmp (string, "prefix") == 0)
252b5132 2461 ask_naked_reg = 1;
47926f60 2462 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2463 ask_naked_reg = -1;
2464 else
d0b47220 2465 as_bad (_("bad argument to syntax directive."));
d02603dc 2466 (void) restore_line_pointer (e);
252b5132
RH
2467 }
2468 demand_empty_rest_of_line ();
c3332e24 2469
252b5132
RH
2470 intel_syntax = syntax_flag;
2471
2472 if (ask_naked_reg == 0)
f86103b7
AM
2473 allow_naked_reg = (intel_syntax
2474 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2475 else
2476 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2477
ee86248c 2478 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2479
e4a3b5a4 2480 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2481 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2482 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2483}
2484
1efbbeb4
L
2485static void
2486set_intel_mnemonic (int mnemonic_flag)
2487{
e1d4d893 2488 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2489}
2490
db51cc60
L
2491static void
2492set_allow_index_reg (int flag)
2493{
2494 allow_index_reg = flag;
2495}
2496
cb19c032 2497static void
7bab8ab5 2498set_check (int what)
cb19c032 2499{
7bab8ab5
JB
2500 enum check_kind *kind;
2501 const char *str;
2502
2503 if (what)
2504 {
2505 kind = &operand_check;
2506 str = "operand";
2507 }
2508 else
2509 {
2510 kind = &sse_check;
2511 str = "sse";
2512 }
2513
cb19c032
L
2514 SKIP_WHITESPACE ();
2515
2516 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2517 {
d02603dc
NC
2518 char *string;
2519 int e = get_symbol_name (&string);
cb19c032
L
2520
2521 if (strcmp (string, "none") == 0)
7bab8ab5 2522 *kind = check_none;
cb19c032 2523 else if (strcmp (string, "warning") == 0)
7bab8ab5 2524 *kind = check_warning;
cb19c032 2525 else if (strcmp (string, "error") == 0)
7bab8ab5 2526 *kind = check_error;
cb19c032 2527 else
7bab8ab5 2528 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2529 (void) restore_line_pointer (e);
cb19c032
L
2530 }
2531 else
7bab8ab5 2532 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2533
2534 demand_empty_rest_of_line ();
2535}
2536
8a9036a4
L
2537static void
2538check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2539 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2540{
2541#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2542 static const char *arch;
2543
2544 /* Intel LIOM is only supported on ELF. */
2545 if (!IS_ELF)
2546 return;
2547
2548 if (!arch)
2549 {
2550 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2551 use default_arch. */
2552 arch = cpu_arch_name;
2553 if (!arch)
2554 arch = default_arch;
2555 }
2556
81486035
L
2557 /* If we are targeting Intel MCU, we must enable it. */
2558 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2559 || new_flag.bitfield.cpuiamcu)
2560 return;
2561
3632d14b 2562 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2564 || new_flag.bitfield.cpul1om)
8a9036a4 2565 return;
76ba9986 2566
7a9068fe
L
2567 /* If we are targeting Intel K1OM, we must enable it. */
2568 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2569 || new_flag.bitfield.cpuk1om)
2570 return;
2571
8a9036a4
L
2572 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2573#endif
2574}
2575
e413e4e9 2576static void
e3bb37b5 2577set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2578{
47926f60 2579 SKIP_WHITESPACE ();
e413e4e9 2580
29b0f896 2581 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2582 {
d02603dc
NC
2583 char *string;
2584 int e = get_symbol_name (&string);
91d6fa6a 2585 unsigned int j;
40fb9820 2586 i386_cpu_flags flags;
e413e4e9 2587
91d6fa6a 2588 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2589 {
91d6fa6a 2590 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2591 {
91d6fa6a 2592 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2593
5c6af06e
JB
2594 if (*string != '.')
2595 {
91d6fa6a 2596 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2597 cpu_sub_arch_name = NULL;
91d6fa6a 2598 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2599 if (flag_code == CODE_64BIT)
2600 {
2601 cpu_arch_flags.bitfield.cpu64 = 1;
2602 cpu_arch_flags.bitfield.cpuno64 = 0;
2603 }
2604 else
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 0;
2607 cpu_arch_flags.bitfield.cpuno64 = 1;
2608 }
91d6fa6a
NC
2609 cpu_arch_isa = cpu_arch[j].type;
2610 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2611 if (!cpu_arch_tune_set)
2612 {
2613 cpu_arch_tune = cpu_arch_isa;
2614 cpu_arch_tune_flags = cpu_arch_isa_flags;
2615 }
5c6af06e
JB
2616 break;
2617 }
40fb9820 2618
293f5f65
L
2619 flags = cpu_flags_or (cpu_arch_flags,
2620 cpu_arch[j].flags);
81486035 2621
5b64d091 2622 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2623 {
6305a203
L
2624 if (cpu_sub_arch_name)
2625 {
2626 char *name = cpu_sub_arch_name;
2627 cpu_sub_arch_name = concat (name,
91d6fa6a 2628 cpu_arch[j].name,
1bf57e9f 2629 (const char *) NULL);
6305a203
L
2630 free (name);
2631 }
2632 else
91d6fa6a 2633 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2634 cpu_arch_flags = flags;
a586129e 2635 cpu_arch_isa_flags = flags;
5c6af06e 2636 }
0089dace
L
2637 else
2638 cpu_arch_isa_flags
2639 = cpu_flags_or (cpu_arch_isa_flags,
2640 cpu_arch[j].flags);
d02603dc 2641 (void) restore_line_pointer (e);
5c6af06e
JB
2642 demand_empty_rest_of_line ();
2643 return;
e413e4e9
AM
2644 }
2645 }
293f5f65
L
2646
2647 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2648 {
33eaf5de 2649 /* Disable an ISA extension. */
293f5f65
L
2650 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2651 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2652 {
2653 flags = cpu_flags_and_not (cpu_arch_flags,
2654 cpu_noarch[j].flags);
2655 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2656 {
2657 if (cpu_sub_arch_name)
2658 {
2659 char *name = cpu_sub_arch_name;
2660 cpu_sub_arch_name = concat (name, string,
2661 (const char *) NULL);
2662 free (name);
2663 }
2664 else
2665 cpu_sub_arch_name = xstrdup (string);
2666 cpu_arch_flags = flags;
2667 cpu_arch_isa_flags = flags;
2668 }
2669 (void) restore_line_pointer (e);
2670 demand_empty_rest_of_line ();
2671 return;
2672 }
2673
2674 j = ARRAY_SIZE (cpu_arch);
2675 }
2676
91d6fa6a 2677 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2678 as_bad (_("no such architecture: `%s'"), string);
2679
2680 *input_line_pointer = e;
2681 }
2682 else
2683 as_bad (_("missing cpu architecture"));
2684
fddf5b5b
AM
2685 no_cond_jump_promotion = 0;
2686 if (*input_line_pointer == ','
29b0f896 2687 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2688 {
d02603dc
NC
2689 char *string;
2690 char e;
2691
2692 ++input_line_pointer;
2693 e = get_symbol_name (&string);
fddf5b5b
AM
2694
2695 if (strcmp (string, "nojumps") == 0)
2696 no_cond_jump_promotion = 1;
2697 else if (strcmp (string, "jumps") == 0)
2698 ;
2699 else
2700 as_bad (_("no such architecture modifier: `%s'"), string);
2701
d02603dc 2702 (void) restore_line_pointer (e);
fddf5b5b
AM
2703 }
2704
e413e4e9
AM
2705 demand_empty_rest_of_line ();
2706}
2707
8a9036a4
L
2708enum bfd_architecture
2709i386_arch (void)
2710{
3632d14b 2711 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2712 {
2713 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2714 || flag_code != CODE_64BIT)
2715 as_fatal (_("Intel L1OM is 64bit ELF only"));
2716 return bfd_arch_l1om;
2717 }
7a9068fe
L
2718 else if (cpu_arch_isa == PROCESSOR_K1OM)
2719 {
2720 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2721 || flag_code != CODE_64BIT)
2722 as_fatal (_("Intel K1OM is 64bit ELF only"));
2723 return bfd_arch_k1om;
2724 }
81486035
L
2725 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2726 {
2727 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2728 || flag_code == CODE_64BIT)
2729 as_fatal (_("Intel MCU is 32bit ELF only"));
2730 return bfd_arch_iamcu;
2731 }
8a9036a4
L
2732 else
2733 return bfd_arch_i386;
2734}
2735
b9d79e03 2736unsigned long
7016a5d5 2737i386_mach (void)
b9d79e03 2738{
351f65ca 2739 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2740 {
3632d14b 2741 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2742 {
351f65ca
L
2743 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2744 || default_arch[6] != '\0')
8a9036a4
L
2745 as_fatal (_("Intel L1OM is 64bit ELF only"));
2746 return bfd_mach_l1om;
2747 }
7a9068fe
L
2748 else if (cpu_arch_isa == PROCESSOR_K1OM)
2749 {
2750 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2751 || default_arch[6] != '\0')
2752 as_fatal (_("Intel K1OM is 64bit ELF only"));
2753 return bfd_mach_k1om;
2754 }
351f65ca 2755 else if (default_arch[6] == '\0')
8a9036a4 2756 return bfd_mach_x86_64;
351f65ca
L
2757 else
2758 return bfd_mach_x64_32;
8a9036a4 2759 }
5197d474
L
2760 else if (!strcmp (default_arch, "i386")
2761 || !strcmp (default_arch, "iamcu"))
81486035
L
2762 {
2763 if (cpu_arch_isa == PROCESSOR_IAMCU)
2764 {
2765 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2766 as_fatal (_("Intel MCU is 32bit ELF only"));
2767 return bfd_mach_i386_iamcu;
2768 }
2769 else
2770 return bfd_mach_i386_i386;
2771 }
b9d79e03 2772 else
2b5d6a91 2773 as_fatal (_("unknown architecture"));
b9d79e03 2774}
b9d79e03 2775\f
252b5132 2776void
7016a5d5 2777md_begin (void)
252b5132
RH
2778{
2779 const char *hash_err;
2780
86fa6981
L
2781 /* Support pseudo prefixes like {disp32}. */
2782 lex_type ['{'] = LEX_BEGIN_NAME;
2783
47926f60 2784 /* Initialize op_hash hash table. */
252b5132
RH
2785 op_hash = hash_new ();
2786
2787 {
d3ce72d0 2788 const insn_template *optab;
29b0f896 2789 templates *core_optab;
252b5132 2790
47926f60
KH
2791 /* Setup for loop. */
2792 optab = i386_optab;
add39d23 2793 core_optab = XNEW (templates);
252b5132
RH
2794 core_optab->start = optab;
2795
2796 while (1)
2797 {
2798 ++optab;
2799 if (optab->name == NULL
2800 || strcmp (optab->name, (optab - 1)->name) != 0)
2801 {
2802 /* different name --> ship out current template list;
47926f60 2803 add to hash table; & begin anew. */
252b5132
RH
2804 core_optab->end = optab;
2805 hash_err = hash_insert (op_hash,
2806 (optab - 1)->name,
5a49b8ac 2807 (void *) core_optab);
252b5132
RH
2808 if (hash_err)
2809 {
b37df7c4 2810 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2811 (optab - 1)->name,
2812 hash_err);
2813 }
2814 if (optab->name == NULL)
2815 break;
add39d23 2816 core_optab = XNEW (templates);
252b5132
RH
2817 core_optab->start = optab;
2818 }
2819 }
2820 }
2821
47926f60 2822 /* Initialize reg_hash hash table. */
252b5132
RH
2823 reg_hash = hash_new ();
2824 {
29b0f896 2825 const reg_entry *regtab;
c3fe08fa 2826 unsigned int regtab_size = i386_regtab_size;
252b5132 2827
c3fe08fa 2828 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2829 {
5a49b8ac 2830 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2831 if (hash_err)
b37df7c4 2832 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2833 regtab->reg_name,
2834 hash_err);
252b5132
RH
2835 }
2836 }
2837
47926f60 2838 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2839 {
29b0f896
AM
2840 int c;
2841 char *p;
252b5132
RH
2842
2843 for (c = 0; c < 256; c++)
2844 {
3882b010 2845 if (ISDIGIT (c))
252b5132
RH
2846 {
2847 digit_chars[c] = c;
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
3882b010 2852 else if (ISLOWER (c))
252b5132
RH
2853 {
2854 mnemonic_chars[c] = c;
2855 register_chars[c] = c;
2856 operand_chars[c] = c;
2857 }
3882b010 2858 else if (ISUPPER (c))
252b5132 2859 {
3882b010 2860 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2861 register_chars[c] = mnemonic_chars[c];
2862 operand_chars[c] = c;
2863 }
43234a1e 2864 else if (c == '{' || c == '}')
86fa6981
L
2865 {
2866 mnemonic_chars[c] = c;
2867 operand_chars[c] = c;
2868 }
252b5132 2869
3882b010 2870 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2871 identifier_chars[c] = c;
2872 else if (c >= 128)
2873 {
2874 identifier_chars[c] = c;
2875 operand_chars[c] = c;
2876 }
2877 }
2878
2879#ifdef LEX_AT
2880 identifier_chars['@'] = '@';
32137342
NC
2881#endif
2882#ifdef LEX_QM
2883 identifier_chars['?'] = '?';
2884 operand_chars['?'] = '?';
252b5132 2885#endif
252b5132 2886 digit_chars['-'] = '-';
c0f3af97 2887 mnemonic_chars['_'] = '_';
791fe849 2888 mnemonic_chars['-'] = '-';
0003779b 2889 mnemonic_chars['.'] = '.';
252b5132
RH
2890 identifier_chars['_'] = '_';
2891 identifier_chars['.'] = '.';
2892
2893 for (p = operand_special_chars; *p != '\0'; p++)
2894 operand_chars[(unsigned char) *p] = *p;
2895 }
2896
a4447b93
RH
2897 if (flag_code == CODE_64BIT)
2898 {
ca19b261
KT
2899#if defined (OBJ_COFF) && defined (TE_PE)
2900 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2901 ? 32 : 16);
2902#else
a4447b93 2903 x86_dwarf2_return_column = 16;
ca19b261 2904#endif
61ff971f 2905 x86_cie_data_alignment = -8;
a4447b93
RH
2906 }
2907 else
2908 {
2909 x86_dwarf2_return_column = 8;
2910 x86_cie_data_alignment = -4;
2911 }
252b5132
RH
2912}
2913
2914void
e3bb37b5 2915i386_print_statistics (FILE *file)
252b5132
RH
2916{
2917 hash_print_statistics (file, "i386 opcode", op_hash);
2918 hash_print_statistics (file, "i386 register", reg_hash);
2919}
2920\f
252b5132
RH
2921#ifdef DEBUG386
2922
ce8a8b2f 2923/* Debugging routines for md_assemble. */
d3ce72d0 2924static void pte (insn_template *);
40fb9820 2925static void pt (i386_operand_type);
e3bb37b5
L
2926static void pe (expressionS *);
2927static void ps (symbolS *);
252b5132
RH
2928
2929static void
e3bb37b5 2930pi (char *line, i386_insn *x)
252b5132 2931{
09137c09 2932 unsigned int j;
252b5132
RH
2933
2934 fprintf (stdout, "%s: template ", line);
2935 pte (&x->tm);
09f131f2
JH
2936 fprintf (stdout, " address: base %s index %s scale %x\n",
2937 x->base_reg ? x->base_reg->reg_name : "none",
2938 x->index_reg ? x->index_reg->reg_name : "none",
2939 x->log2_scale_factor);
2940 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2941 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2942 fprintf (stdout, " sib: base %x index %x scale %x\n",
2943 x->sib.base, x->sib.index, x->sib.scale);
2944 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2945 (x->rex & REX_W) != 0,
2946 (x->rex & REX_R) != 0,
2947 (x->rex & REX_X) != 0,
2948 (x->rex & REX_B) != 0);
09137c09 2949 for (j = 0; j < x->operands; j++)
252b5132 2950 {
09137c09
SP
2951 fprintf (stdout, " #%d: ", j + 1);
2952 pt (x->types[j]);
252b5132 2953 fprintf (stdout, "\n");
dc821c5f 2954 if (x->types[j].bitfield.reg
09137c09 2955 || x->types[j].bitfield.regmmx
1b54b8d7 2956 || x->types[j].bitfield.regsimd
09137c09
SP
2957 || x->types[j].bitfield.sreg2
2958 || x->types[j].bitfield.sreg3
2959 || x->types[j].bitfield.control
2960 || x->types[j].bitfield.debug
2961 || x->types[j].bitfield.test)
2962 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2963 if (operand_type_check (x->types[j], imm))
2964 pe (x->op[j].imms);
2965 if (operand_type_check (x->types[j], disp))
2966 pe (x->op[j].disps);
252b5132
RH
2967 }
2968}
2969
2970static void
d3ce72d0 2971pte (insn_template *t)
252b5132 2972{
09137c09 2973 unsigned int j;
252b5132 2974 fprintf (stdout, " %d operands ", t->operands);
47926f60 2975 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2976 if (t->extension_opcode != None)
2977 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2978 if (t->opcode_modifier.d)
252b5132 2979 fprintf (stdout, "D");
40fb9820 2980 if (t->opcode_modifier.w)
252b5132
RH
2981 fprintf (stdout, "W");
2982 fprintf (stdout, "\n");
09137c09 2983 for (j = 0; j < t->operands; j++)
252b5132 2984 {
09137c09
SP
2985 fprintf (stdout, " #%d type ", j + 1);
2986 pt (t->operand_types[j]);
252b5132
RH
2987 fprintf (stdout, "\n");
2988 }
2989}
2990
2991static void
e3bb37b5 2992pe (expressionS *e)
252b5132 2993{
24eab124 2994 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2995 fprintf (stdout, " add_number %ld (%lx)\n",
2996 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2997 if (e->X_add_symbol)
2998 {
2999 fprintf (stdout, " add_symbol ");
3000 ps (e->X_add_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003 if (e->X_op_symbol)
3004 {
3005 fprintf (stdout, " op_symbol ");
3006 ps (e->X_op_symbol);
3007 fprintf (stdout, "\n");
3008 }
3009}
3010
3011static void
e3bb37b5 3012ps (symbolS *s)
252b5132
RH
3013{
3014 fprintf (stdout, "%s type %s%s",
3015 S_GET_NAME (s),
3016 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3017 segment_name (S_GET_SEGMENT (s)));
3018}
3019
7b81dfbb 3020static struct type_name
252b5132 3021 {
40fb9820
L
3022 i386_operand_type mask;
3023 const char *name;
252b5132 3024 }
7b81dfbb 3025const type_names[] =
252b5132 3026{
40fb9820
L
3027 { OPERAND_TYPE_REG8, "r8" },
3028 { OPERAND_TYPE_REG16, "r16" },
3029 { OPERAND_TYPE_REG32, "r32" },
3030 { OPERAND_TYPE_REG64, "r64" },
3031 { OPERAND_TYPE_IMM8, "i8" },
3032 { OPERAND_TYPE_IMM8, "i8s" },
3033 { OPERAND_TYPE_IMM16, "i16" },
3034 { OPERAND_TYPE_IMM32, "i32" },
3035 { OPERAND_TYPE_IMM32S, "i32s" },
3036 { OPERAND_TYPE_IMM64, "i64" },
3037 { OPERAND_TYPE_IMM1, "i1" },
3038 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3039 { OPERAND_TYPE_DISP8, "d8" },
3040 { OPERAND_TYPE_DISP16, "d16" },
3041 { OPERAND_TYPE_DISP32, "d32" },
3042 { OPERAND_TYPE_DISP32S, "d32s" },
3043 { OPERAND_TYPE_DISP64, "d64" },
3044 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3045 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3046 { OPERAND_TYPE_CONTROL, "control reg" },
3047 { OPERAND_TYPE_TEST, "test reg" },
3048 { OPERAND_TYPE_DEBUG, "debug reg" },
3049 { OPERAND_TYPE_FLOATREG, "FReg" },
3050 { OPERAND_TYPE_FLOATACC, "FAcc" },
3051 { OPERAND_TYPE_SREG2, "SReg2" },
3052 { OPERAND_TYPE_SREG3, "SReg3" },
3053 { OPERAND_TYPE_ACC, "Acc" },
3054 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3055 { OPERAND_TYPE_REGMMX, "rMMX" },
3056 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3057 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3058 { OPERAND_TYPE_REGZMM, "rZMM" },
3059 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3060 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3061};
3062
3063static void
40fb9820 3064pt (i386_operand_type t)
252b5132 3065{
40fb9820 3066 unsigned int j;
c6fb90c8 3067 i386_operand_type a;
252b5132 3068
40fb9820 3069 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3070 {
3071 a = operand_type_and (t, type_names[j].mask);
0349dc08 3072 if (!operand_type_all_zero (&a))
c6fb90c8
L
3073 fprintf (stdout, "%s, ", type_names[j].name);
3074 }
252b5132
RH
3075 fflush (stdout);
3076}
3077
3078#endif /* DEBUG386 */
3079\f
252b5132 3080static bfd_reloc_code_real_type
3956db08 3081reloc (unsigned int size,
64e74474
AM
3082 int pcrel,
3083 int sign,
3084 bfd_reloc_code_real_type other)
252b5132 3085{
47926f60 3086 if (other != NO_RELOC)
3956db08 3087 {
91d6fa6a 3088 reloc_howto_type *rel;
3956db08
JB
3089
3090 if (size == 8)
3091 switch (other)
3092 {
64e74474
AM
3093 case BFD_RELOC_X86_64_GOT32:
3094 return BFD_RELOC_X86_64_GOT64;
3095 break;
553d1284
L
3096 case BFD_RELOC_X86_64_GOTPLT64:
3097 return BFD_RELOC_X86_64_GOTPLT64;
3098 break;
64e74474
AM
3099 case BFD_RELOC_X86_64_PLTOFF64:
3100 return BFD_RELOC_X86_64_PLTOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_GOTPC32:
3103 other = BFD_RELOC_X86_64_GOTPC64;
3104 break;
3105 case BFD_RELOC_X86_64_GOTPCREL:
3106 other = BFD_RELOC_X86_64_GOTPCREL64;
3107 break;
3108 case BFD_RELOC_X86_64_TPOFF32:
3109 other = BFD_RELOC_X86_64_TPOFF64;
3110 break;
3111 case BFD_RELOC_X86_64_DTPOFF32:
3112 other = BFD_RELOC_X86_64_DTPOFF64;
3113 break;
3114 default:
3115 break;
3956db08 3116 }
e05278af 3117
8ce3d284 3118#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3119 if (other == BFD_RELOC_SIZE32)
3120 {
3121 if (size == 8)
1ab668bf 3122 other = BFD_RELOC_SIZE64;
8fd4256d 3123 if (pcrel)
1ab668bf
AM
3124 {
3125 as_bad (_("there are no pc-relative size relocations"));
3126 return NO_RELOC;
3127 }
8fd4256d 3128 }
8ce3d284 3129#endif
8fd4256d 3130
e05278af 3131 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3132 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3133 sign = -1;
3134
91d6fa6a
NC
3135 rel = bfd_reloc_type_lookup (stdoutput, other);
3136 if (!rel)
3956db08 3137 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3138 else if (size != bfd_get_reloc_size (rel))
3956db08 3139 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3140 bfd_get_reloc_size (rel),
3956db08 3141 size);
91d6fa6a 3142 else if (pcrel && !rel->pc_relative)
3956db08 3143 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3144 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3145 && !sign)
91d6fa6a 3146 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3147 && sign > 0))
3956db08
JB
3148 as_bad (_("relocated field and relocation type differ in signedness"));
3149 else
3150 return other;
3151 return NO_RELOC;
3152 }
252b5132
RH
3153
3154 if (pcrel)
3155 {
3e73aa7c 3156 if (!sign)
3956db08 3157 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3158 switch (size)
3159 {
3160 case 1: return BFD_RELOC_8_PCREL;
3161 case 2: return BFD_RELOC_16_PCREL;
d258b828 3162 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3163 case 8: return BFD_RELOC_64_PCREL;
252b5132 3164 }
3956db08 3165 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3166 }
3167 else
3168 {
3956db08 3169 if (sign > 0)
e5cb08ac 3170 switch (size)
3e73aa7c
JH
3171 {
3172 case 4: return BFD_RELOC_X86_64_32S;
3173 }
3174 else
3175 switch (size)
3176 {
3177 case 1: return BFD_RELOC_8;
3178 case 2: return BFD_RELOC_16;
3179 case 4: return BFD_RELOC_32;
3180 case 8: return BFD_RELOC_64;
3181 }
3956db08
JB
3182 as_bad (_("cannot do %s %u byte relocation"),
3183 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3184 }
3185
0cc9e1d3 3186 return NO_RELOC;
252b5132
RH
3187}
3188
47926f60
KH
3189/* Here we decide which fixups can be adjusted to make them relative to
3190 the beginning of the section instead of the symbol. Basically we need
3191 to make sure that the dynamic relocations are done correctly, so in
3192 some cases we force the original symbol to be used. */
3193
252b5132 3194int
e3bb37b5 3195tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3196{
6d249963 3197#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3198 if (!IS_ELF)
31312f95
AM
3199 return 1;
3200
a161fe53
AM
3201 /* Don't adjust pc-relative references to merge sections in 64-bit
3202 mode. */
3203 if (use_rela_relocations
3204 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3205 && fixP->fx_pcrel)
252b5132 3206 return 0;
31312f95 3207
8d01d9a9
AJ
3208 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3209 and changed later by validate_fix. */
3210 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3211 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3212 return 0;
3213
8fd4256d
L
3214 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3215 for size relocations. */
3216 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3217 || fixP->fx_r_type == BFD_RELOC_SIZE64
3218 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3219 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3220 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3221 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3234 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3240 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3247 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3248 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3249 return 0;
31312f95 3250#endif
252b5132
RH
3251 return 1;
3252}
252b5132 3253
b4cac588 3254static int
e3bb37b5 3255intel_float_operand (const char *mnemonic)
252b5132 3256{
9306ca4a
JB
3257 /* Note that the value returned is meaningful only for opcodes with (memory)
3258 operands, hence the code here is free to improperly handle opcodes that
3259 have no operands (for better performance and smaller code). */
3260
3261 if (mnemonic[0] != 'f')
3262 return 0; /* non-math */
3263
3264 switch (mnemonic[1])
3265 {
3266 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3267 the fs segment override prefix not currently handled because no
3268 call path can make opcodes without operands get here */
3269 case 'i':
3270 return 2 /* integer op */;
3271 case 'l':
3272 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3273 return 3; /* fldcw/fldenv */
3274 break;
3275 case 'n':
3276 if (mnemonic[2] != 'o' /* fnop */)
3277 return 3; /* non-waiting control op */
3278 break;
3279 case 'r':
3280 if (mnemonic[2] == 's')
3281 return 3; /* frstor/frstpm */
3282 break;
3283 case 's':
3284 if (mnemonic[2] == 'a')
3285 return 3; /* fsave */
3286 if (mnemonic[2] == 't')
3287 {
3288 switch (mnemonic[3])
3289 {
3290 case 'c': /* fstcw */
3291 case 'd': /* fstdw */
3292 case 'e': /* fstenv */
3293 case 's': /* fsts[gw] */
3294 return 3;
3295 }
3296 }
3297 break;
3298 case 'x':
3299 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3300 return 0; /* fxsave/fxrstor are not really math ops */
3301 break;
3302 }
252b5132 3303
9306ca4a 3304 return 1;
252b5132
RH
3305}
3306
c0f3af97
L
3307/* Build the VEX prefix. */
3308
3309static void
d3ce72d0 3310build_vex_prefix (const insn_template *t)
c0f3af97
L
3311{
3312 unsigned int register_specifier;
3313 unsigned int implied_prefix;
3314 unsigned int vector_length;
3315
3316 /* Check register specifier. */
3317 if (i.vex.register_specifier)
43234a1e
L
3318 {
3319 register_specifier =
3320 ~register_number (i.vex.register_specifier) & 0xf;
3321 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3322 }
c0f3af97
L
3323 else
3324 register_specifier = 0xf;
3325
33eaf5de 3326 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3327 operand. */
86fa6981
L
3328 if (i.vec_encoding != vex_encoding_vex3
3329 && i.dir_encoding == dir_encoding_default
fa99fab2 3330 && i.operands == i.reg_operands
7f399153 3331 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3332 && i.tm.opcode_modifier.load
fa99fab2
L
3333 && i.rex == REX_B)
3334 {
3335 unsigned int xchg = i.operands - 1;
3336 union i386_op temp_op;
3337 i386_operand_type temp_type;
3338
3339 temp_type = i.types[xchg];
3340 i.types[xchg] = i.types[0];
3341 i.types[0] = temp_type;
3342 temp_op = i.op[xchg];
3343 i.op[xchg] = i.op[0];
3344 i.op[0] = temp_op;
3345
9c2799c2 3346 gas_assert (i.rm.mode == 3);
fa99fab2
L
3347
3348 i.rex = REX_R;
3349 xchg = i.rm.regmem;
3350 i.rm.regmem = i.rm.reg;
3351 i.rm.reg = xchg;
3352
3353 /* Use the next insn. */
3354 i.tm = t[1];
3355 }
3356
539f890d
L
3357 if (i.tm.opcode_modifier.vex == VEXScalar)
3358 vector_length = avxscalar;
10c17abd
JB
3359 else if (i.tm.opcode_modifier.vex == VEX256)
3360 vector_length = 1;
539f890d 3361 else
10c17abd
JB
3362 {
3363 unsigned int op;
3364
3365 vector_length = 0;
3366 for (op = 0; op < t->operands; ++op)
3367 if (t->operand_types[op].bitfield.xmmword
3368 && t->operand_types[op].bitfield.ymmword
3369 && i.types[op].bitfield.ymmword)
3370 {
3371 vector_length = 1;
3372 break;
3373 }
3374 }
c0f3af97
L
3375
3376 switch ((i.tm.base_opcode >> 8) & 0xff)
3377 {
3378 case 0:
3379 implied_prefix = 0;
3380 break;
3381 case DATA_PREFIX_OPCODE:
3382 implied_prefix = 1;
3383 break;
3384 case REPE_PREFIX_OPCODE:
3385 implied_prefix = 2;
3386 break;
3387 case REPNE_PREFIX_OPCODE:
3388 implied_prefix = 3;
3389 break;
3390 default:
3391 abort ();
3392 }
3393
3394 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3395 if (i.vec_encoding != vex_encoding_vex3
3396 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3397 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3398 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3399 {
3400 /* 2-byte VEX prefix. */
3401 unsigned int r;
3402
3403 i.vex.length = 2;
3404 i.vex.bytes[0] = 0xc5;
3405
3406 /* Check the REX.R bit. */
3407 r = (i.rex & REX_R) ? 0 : 1;
3408 i.vex.bytes[1] = (r << 7
3409 | register_specifier << 3
3410 | vector_length << 2
3411 | implied_prefix);
3412 }
3413 else
3414 {
3415 /* 3-byte VEX prefix. */
3416 unsigned int m, w;
3417
f88c9eb0 3418 i.vex.length = 3;
f88c9eb0 3419
7f399153 3420 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3421 {
7f399153
L
3422 case VEX0F:
3423 m = 0x1;
80de6e00 3424 i.vex.bytes[0] = 0xc4;
7f399153
L
3425 break;
3426 case VEX0F38:
3427 m = 0x2;
80de6e00 3428 i.vex.bytes[0] = 0xc4;
7f399153
L
3429 break;
3430 case VEX0F3A:
3431 m = 0x3;
80de6e00 3432 i.vex.bytes[0] = 0xc4;
7f399153
L
3433 break;
3434 case XOP08:
5dd85c99
SP
3435 m = 0x8;
3436 i.vex.bytes[0] = 0x8f;
7f399153
L
3437 break;
3438 case XOP09:
f88c9eb0
SP
3439 m = 0x9;
3440 i.vex.bytes[0] = 0x8f;
7f399153
L
3441 break;
3442 case XOP0A:
f88c9eb0
SP
3443 m = 0xa;
3444 i.vex.bytes[0] = 0x8f;
7f399153
L
3445 break;
3446 default:
3447 abort ();
f88c9eb0 3448 }
c0f3af97 3449
c0f3af97
L
3450 /* The high 3 bits of the second VEX byte are 1's compliment
3451 of RXB bits from REX. */
3452 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3453
3454 /* Check the REX.W bit. */
3455 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3456 if (i.tm.opcode_modifier.vexw == VEXW1)
3457 w = 1;
c0f3af97
L
3458
3459 i.vex.bytes[2] = (w << 7
3460 | register_specifier << 3
3461 | vector_length << 2
3462 | implied_prefix);
3463 }
3464}
3465
e771e7c9
JB
3466static INLINE bfd_boolean
3467is_evex_encoding (const insn_template *t)
3468{
3469 return t->opcode_modifier.evex
3470 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3471 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3472}
3473
43234a1e
L
3474/* Build the EVEX prefix. */
3475
3476static void
3477build_evex_prefix (void)
3478{
3479 unsigned int register_specifier;
3480 unsigned int implied_prefix;
3481 unsigned int m, w;
3482 rex_byte vrex_used = 0;
3483
3484 /* Check register specifier. */
3485 if (i.vex.register_specifier)
3486 {
3487 gas_assert ((i.vrex & REX_X) == 0);
3488
3489 register_specifier = i.vex.register_specifier->reg_num;
3490 if ((i.vex.register_specifier->reg_flags & RegRex))
3491 register_specifier += 8;
3492 /* The upper 16 registers are encoded in the fourth byte of the
3493 EVEX prefix. */
3494 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3495 i.vex.bytes[3] = 0x8;
3496 register_specifier = ~register_specifier & 0xf;
3497 }
3498 else
3499 {
3500 register_specifier = 0xf;
3501
3502 /* Encode upper 16 vector index register in the fourth byte of
3503 the EVEX prefix. */
3504 if (!(i.vrex & REX_X))
3505 i.vex.bytes[3] = 0x8;
3506 else
3507 vrex_used |= REX_X;
3508 }
3509
3510 switch ((i.tm.base_opcode >> 8) & 0xff)
3511 {
3512 case 0:
3513 implied_prefix = 0;
3514 break;
3515 case DATA_PREFIX_OPCODE:
3516 implied_prefix = 1;
3517 break;
3518 case REPE_PREFIX_OPCODE:
3519 implied_prefix = 2;
3520 break;
3521 case REPNE_PREFIX_OPCODE:
3522 implied_prefix = 3;
3523 break;
3524 default:
3525 abort ();
3526 }
3527
3528 /* 4 byte EVEX prefix. */
3529 i.vex.length = 4;
3530 i.vex.bytes[0] = 0x62;
3531
3532 /* mmmm bits. */
3533 switch (i.tm.opcode_modifier.vexopcode)
3534 {
3535 case VEX0F:
3536 m = 1;
3537 break;
3538 case VEX0F38:
3539 m = 2;
3540 break;
3541 case VEX0F3A:
3542 m = 3;
3543 break;
3544 default:
3545 abort ();
3546 break;
3547 }
3548
3549 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3550 bits from REX. */
3551 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3552
3553 /* The fifth bit of the second EVEX byte is 1's compliment of the
3554 REX_R bit in VREX. */
3555 if (!(i.vrex & REX_R))
3556 i.vex.bytes[1] |= 0x10;
3557 else
3558 vrex_used |= REX_R;
3559
3560 if ((i.reg_operands + i.imm_operands) == i.operands)
3561 {
3562 /* When all operands are registers, the REX_X bit in REX is not
3563 used. We reuse it to encode the upper 16 registers, which is
3564 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3565 as 1's compliment. */
3566 if ((i.vrex & REX_B))
3567 {
3568 vrex_used |= REX_B;
3569 i.vex.bytes[1] &= ~0x40;
3570 }
3571 }
3572
3573 /* EVEX instructions shouldn't need the REX prefix. */
3574 i.vrex &= ~vrex_used;
3575 gas_assert (i.vrex == 0);
3576
3577 /* Check the REX.W bit. */
3578 w = (i.rex & REX_W) ? 1 : 0;
3579 if (i.tm.opcode_modifier.vexw)
3580 {
3581 if (i.tm.opcode_modifier.vexw == VEXW1)
3582 w = 1;
3583 }
3584 /* If w is not set it means we are dealing with WIG instruction. */
3585 else if (!w)
3586 {
3587 if (evexwig == evexw1)
3588 w = 1;
3589 }
3590
3591 /* Encode the U bit. */
3592 implied_prefix |= 0x4;
3593
3594 /* The third byte of the EVEX prefix. */
3595 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3596
3597 /* The fourth byte of the EVEX prefix. */
3598 /* The zeroing-masking bit. */
3599 if (i.mask && i.mask->zeroing)
3600 i.vex.bytes[3] |= 0x80;
3601
3602 /* Don't always set the broadcast bit if there is no RC. */
3603 if (!i.rounding)
3604 {
3605 /* Encode the vector length. */
3606 unsigned int vec_length;
3607
e771e7c9
JB
3608 if (!i.tm.opcode_modifier.evex
3609 || i.tm.opcode_modifier.evex == EVEXDYN)
3610 {
3611 unsigned int op;
3612
3613 vec_length = 0;
3614 for (op = 0; op < i.tm.operands; ++op)
3615 if (i.tm.operand_types[op].bitfield.xmmword
3616 + i.tm.operand_types[op].bitfield.ymmword
3617 + i.tm.operand_types[op].bitfield.zmmword > 1)
3618 {
3619 if (i.types[op].bitfield.zmmword)
3620 i.tm.opcode_modifier.evex = EVEX512;
3621 else if (i.types[op].bitfield.ymmword)
3622 i.tm.opcode_modifier.evex = EVEX256;
3623 else if (i.types[op].bitfield.xmmword)
3624 i.tm.opcode_modifier.evex = EVEX128;
3625 else
3626 continue;
3627 break;
3628 }
3629 }
3630
43234a1e
L
3631 switch (i.tm.opcode_modifier.evex)
3632 {
3633 case EVEXLIG: /* LL' is ignored */
3634 vec_length = evexlig << 5;
3635 break;
3636 case EVEX128:
3637 vec_length = 0 << 5;
3638 break;
3639 case EVEX256:
3640 vec_length = 1 << 5;
3641 break;
3642 case EVEX512:
3643 vec_length = 2 << 5;
3644 break;
3645 default:
3646 abort ();
3647 break;
3648 }
3649 i.vex.bytes[3] |= vec_length;
3650 /* Encode the broadcast bit. */
3651 if (i.broadcast)
3652 i.vex.bytes[3] |= 0x10;
3653 }
3654 else
3655 {
3656 if (i.rounding->type != saeonly)
3657 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3658 else
d3d3c6db 3659 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3660 }
3661
3662 if (i.mask && i.mask->mask)
3663 i.vex.bytes[3] |= i.mask->mask->reg_num;
3664}
3665
65da13b5
L
3666static void
3667process_immext (void)
3668{
3669 expressionS *exp;
3670
4c692bc7
JB
3671 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3672 && i.operands > 0)
65da13b5 3673 {
4c692bc7
JB
3674 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3675 with an opcode suffix which is coded in the same place as an
3676 8-bit immediate field would be.
3677 Here we check those operands and remove them afterwards. */
65da13b5
L
3678 unsigned int x;
3679
3680 for (x = 0; x < i.operands; x++)
4c692bc7 3681 if (register_number (i.op[x].regs) != x)
65da13b5 3682 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3683 register_prefix, i.op[x].regs->reg_name, x + 1,
3684 i.tm.name);
3685
3686 i.operands = 0;
65da13b5
L
3687 }
3688
9916071f
AP
3689 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3690 {
3691 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3692 suffix which is coded in the same place as an 8-bit immediate
3693 field would be.
3694 Here we check those operands and remove them afterwards. */
3695 unsigned int x;
3696
3697 if (i.operands != 3)
3698 abort();
3699
3700 for (x = 0; x < 2; x++)
3701 if (register_number (i.op[x].regs) != x)
3702 goto bad_register_operand;
3703
3704 /* Check for third operand for mwaitx/monitorx insn. */
3705 if (register_number (i.op[x].regs)
3706 != (x + (i.tm.extension_opcode == 0xfb)))
3707 {
3708bad_register_operand:
3709 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3710 register_prefix, i.op[x].regs->reg_name, x+1,
3711 i.tm.name);
3712 }
3713
3714 i.operands = 0;
3715 }
3716
c0f3af97 3717 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3718 which is coded in the same place as an 8-bit immediate field
3719 would be. Here we fake an 8-bit immediate operand from the
3720 opcode suffix stored in tm.extension_opcode.
3721
c1e679ec 3722 AVX instructions also use this encoding, for some of
c0f3af97 3723 3 argument instructions. */
65da13b5 3724
43234a1e 3725 gas_assert (i.imm_operands <= 1
7ab9ffdd 3726 && (i.operands <= 2
43234a1e 3727 || ((i.tm.opcode_modifier.vex
e771e7c9
JB
3728 || i.tm.opcode_modifier.vexopcode
3729 || is_evex_encoding (&i.tm))
7ab9ffdd 3730 && i.operands <= 4)));
65da13b5
L
3731
3732 exp = &im_expressions[i.imm_operands++];
3733 i.op[i.operands].imms = exp;
3734 i.types[i.operands] = imm8;
3735 i.operands++;
3736 exp->X_op = O_constant;
3737 exp->X_add_number = i.tm.extension_opcode;
3738 i.tm.extension_opcode = None;
3739}
3740
42164a71
L
3741
3742static int
3743check_hle (void)
3744{
3745 switch (i.tm.opcode_modifier.hleprefixok)
3746 {
3747 default:
3748 abort ();
82c2def5 3749 case HLEPrefixNone:
165de32a
L
3750 as_bad (_("invalid instruction `%s' after `%s'"),
3751 i.tm.name, i.hle_prefix);
42164a71 3752 return 0;
82c2def5 3753 case HLEPrefixLock:
42164a71
L
3754 if (i.prefix[LOCK_PREFIX])
3755 return 1;
165de32a 3756 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3757 return 0;
82c2def5 3758 case HLEPrefixAny:
42164a71 3759 return 1;
82c2def5 3760 case HLEPrefixRelease:
42164a71
L
3761 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3762 {
3763 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3764 i.tm.name);
3765 return 0;
3766 }
3767 if (i.mem_operands == 0
3768 || !operand_type_check (i.types[i.operands - 1], anymem))
3769 {
3770 as_bad (_("memory destination needed for instruction `%s'"
3771 " after `xrelease'"), i.tm.name);
3772 return 0;
3773 }
3774 return 1;
3775 }
3776}
3777
b6f8c7c4
L
3778/* Try the shortest encoding by shortening operand size. */
3779
3780static void
3781optimize_encoding (void)
3782{
3783 int j;
3784
3785 if (optimize_for_space
3786 && i.reg_operands == 1
3787 && i.imm_operands == 1
3788 && !i.types[1].bitfield.byte
3789 && i.op[0].imms->X_op == O_constant
3790 && fits_in_imm7 (i.op[0].imms->X_add_number)
3791 && ((i.tm.base_opcode == 0xa8
3792 && i.tm.extension_opcode == None)
3793 || (i.tm.base_opcode == 0xf6
3794 && i.tm.extension_opcode == 0x0)))
3795 {
3796 /* Optimize: -Os:
3797 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3798 */
3799 unsigned int base_regnum = i.op[1].regs->reg_num;
3800 if (flag_code == CODE_64BIT || base_regnum < 4)
3801 {
3802 i.types[1].bitfield.byte = 1;
3803 /* Ignore the suffix. */
3804 i.suffix = 0;
3805 if (base_regnum >= 4
3806 && !(i.op[1].regs->reg_flags & RegRex))
3807 {
3808 /* Handle SP, BP, SI and DI registers. */
3809 if (i.types[1].bitfield.word)
3810 j = 16;
3811 else if (i.types[1].bitfield.dword)
3812 j = 32;
3813 else
3814 j = 48;
3815 i.op[1].regs -= j;
3816 }
3817 }
3818 }
3819 else if (flag_code == CODE_64BIT
d3d50934
L
3820 && ((i.types[1].bitfield.qword
3821 && i.reg_operands == 1
b6f8c7c4
L
3822 && i.imm_operands == 1
3823 && i.op[0].imms->X_op == O_constant
3824 && ((i.tm.base_opcode == 0xb0
3825 && i.tm.extension_opcode == None
3826 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3827 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3828 && (((i.tm.base_opcode == 0x24
3829 || i.tm.base_opcode == 0xa8)
3830 && i.tm.extension_opcode == None)
3831 || (i.tm.base_opcode == 0x80
3832 && i.tm.extension_opcode == 0x4)
3833 || ((i.tm.base_opcode == 0xf6
3834 || i.tm.base_opcode == 0xc6)
3835 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3836 || (i.types[0].bitfield.qword
3837 && ((i.reg_operands == 2
3838 && i.op[0].regs == i.op[1].regs
3839 && ((i.tm.base_opcode == 0x30
3840 || i.tm.base_opcode == 0x28)
3841 && i.tm.extension_opcode == None))
3842 || (i.reg_operands == 1
3843 && i.operands == 1
3844 && i.tm.base_opcode == 0x30
3845 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3846 {
3847 /* Optimize: -O:
3848 andq $imm31, %r64 -> andl $imm31, %r32
3849 testq $imm31, %r64 -> testl $imm31, %r32
3850 xorq %r64, %r64 -> xorl %r32, %r32
3851 subq %r64, %r64 -> subl %r32, %r32
3852 movq $imm31, %r64 -> movl $imm31, %r32
3853 movq $imm32, %r64 -> movl $imm32, %r32
3854 */
3855 i.tm.opcode_modifier.norex64 = 1;
3856 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3857 {
3858 /* Handle
3859 movq $imm31, %r64 -> movl $imm31, %r32
3860 movq $imm32, %r64 -> movl $imm32, %r32
3861 */
3862 i.tm.operand_types[0].bitfield.imm32 = 1;
3863 i.tm.operand_types[0].bitfield.imm32s = 0;
3864 i.tm.operand_types[0].bitfield.imm64 = 0;
3865 i.types[0].bitfield.imm32 = 1;
3866 i.types[0].bitfield.imm32s = 0;
3867 i.types[0].bitfield.imm64 = 0;
3868 i.types[1].bitfield.dword = 1;
3869 i.types[1].bitfield.qword = 0;
3870 if (i.tm.base_opcode == 0xc6)
3871 {
3872 /* Handle
3873 movq $imm31, %r64 -> movl $imm31, %r32
3874 */
3875 i.tm.base_opcode = 0xb0;
3876 i.tm.extension_opcode = None;
3877 i.tm.opcode_modifier.shortform = 1;
3878 i.tm.opcode_modifier.modrm = 0;
3879 }
3880 }
3881 }
3882 else if (optimize > 1
3883 && i.reg_operands == 3
3884 && i.op[0].regs == i.op[1].regs
3885 && !i.types[2].bitfield.xmmword
3886 && (i.tm.opcode_modifier.vex
7a69eac3 3887 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3888 && !i.rounding
e771e7c9 3889 && is_evex_encoding (&i.tm)
80c34c38
L
3890 && (i.vec_encoding != vex_encoding_evex
3891 || i.tm.cpu_flags.bitfield.cpuavx512vl
0089dace 3892 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3893 && ((i.tm.base_opcode == 0x55
3894 || i.tm.base_opcode == 0x6655
3895 || i.tm.base_opcode == 0x66df
3896 || i.tm.base_opcode == 0x57
3897 || i.tm.base_opcode == 0x6657
8305403a
L
3898 || i.tm.base_opcode == 0x66ef
3899 || i.tm.base_opcode == 0x66f8
3900 || i.tm.base_opcode == 0x66f9
3901 || i.tm.base_opcode == 0x66fa
3902 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3903 && i.tm.extension_opcode == None))
3904 {
3905 /* Optimize: -O2:
8305403a
L
3906 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3907 vpsubq and vpsubw:
b6f8c7c4
L
3908 EVEX VOP %zmmM, %zmmM, %zmmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3910 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3911 EVEX VOP %ymmM, %ymmM, %ymmN
3912 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3913 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3914 VEX VOP %ymmM, %ymmM, %ymmN
3915 -> VEX VOP %xmmM, %xmmM, %xmmN
3916 VOP, one of vpandn and vpxor:
3917 VEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX VOP %xmmM, %xmmM, %xmmN
3919 VOP, one of vpandnd and vpandnq:
3920 EVEX VOP %zmmM, %zmmM, %zmmN
3921 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3922 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3923 EVEX VOP %ymmM, %ymmM, %ymmN
3924 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3925 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3926 VOP, one of vpxord and vpxorq:
3927 EVEX VOP %zmmM, %zmmM, %zmmN
3928 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3929 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3930 EVEX VOP %ymmM, %ymmM, %ymmN
3931 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3932 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3933 */
e771e7c9 3934 if (is_evex_encoding (&i.tm))
b6f8c7c4 3935 {
0089dace 3936 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
3937 i.tm.opcode_modifier.evex = EVEX128;
3938 else
3939 {
3940 i.tm.opcode_modifier.vex = VEX128;
3941 i.tm.opcode_modifier.vexw = VEXW0;
3942 i.tm.opcode_modifier.evex = 0;
3943 }
3944 }
3945 else
3946 i.tm.opcode_modifier.vex = VEX128;
3947
3948 if (i.tm.opcode_modifier.vex)
3949 for (j = 0; j < 3; j++)
3950 {
3951 i.types[j].bitfield.xmmword = 1;
3952 i.types[j].bitfield.ymmword = 0;
3953 }
3954 }
3955}
3956
252b5132
RH
3957/* This is the guts of the machine-dependent assembler. LINE points to a
3958 machine dependent instruction. This function is supposed to emit
3959 the frags/bytes it assembles to. */
3960
3961void
65da13b5 3962md_assemble (char *line)
252b5132 3963{
40fb9820 3964 unsigned int j;
83b16ac6 3965 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3966 const insn_template *t;
252b5132 3967
47926f60 3968 /* Initialize globals. */
252b5132
RH
3969 memset (&i, '\0', sizeof (i));
3970 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3971 i.reloc[j] = NO_RELOC;
252b5132
RH
3972 memset (disp_expressions, '\0', sizeof (disp_expressions));
3973 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3974 save_stack_p = save_stack;
252b5132
RH
3975
3976 /* First parse an instruction mnemonic & call i386_operand for the operands.
3977 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3978 start of a (possibly prefixed) mnemonic. */
252b5132 3979
29b0f896
AM
3980 line = parse_insn (line, mnemonic);
3981 if (line == NULL)
3982 return;
83b16ac6 3983 mnem_suffix = i.suffix;
252b5132 3984
29b0f896 3985 line = parse_operands (line, mnemonic);
ee86248c 3986 this_operand = -1;
8325cc63
JB
3987 xfree (i.memop1_string);
3988 i.memop1_string = NULL;
29b0f896
AM
3989 if (line == NULL)
3990 return;
252b5132 3991
29b0f896
AM
3992 /* Now we've parsed the mnemonic into a set of templates, and have the
3993 operands at hand. */
3994
3995 /* All intel opcodes have reversed operands except for "bound" and
3996 "enter". We also don't reverse intersegment "jmp" and "call"
3997 instructions with 2 immediate operands so that the immediate segment
050dfa73 3998 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3999 if (intel_syntax
4000 && i.operands > 1
29b0f896 4001 && (strcmp (mnemonic, "bound") != 0)
30123838 4002 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4003 && !(operand_type_check (i.types[0], imm)
4004 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4005 swap_operands ();
4006
ec56d5c0
JB
4007 /* The order of the immediates should be reversed
4008 for 2 immediates extrq and insertq instructions */
4009 if (i.imm_operands == 2
4010 && (strcmp (mnemonic, "extrq") == 0
4011 || strcmp (mnemonic, "insertq") == 0))
4012 swap_2_operands (0, 1);
4013
29b0f896
AM
4014 if (i.imm_operands)
4015 optimize_imm ();
4016
b300c311
L
4017 /* Don't optimize displacement for movabs since it only takes 64bit
4018 displacement. */
4019 if (i.disp_operands
a501d77e 4020 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4021 && (flag_code != CODE_64BIT
4022 || strcmp (mnemonic, "movabs") != 0))
4023 optimize_disp ();
29b0f896
AM
4024
4025 /* Next, we find a template that matches the given insn,
4026 making sure the overlap of the given operands types is consistent
4027 with the template operand types. */
252b5132 4028
83b16ac6 4029 if (!(t = match_template (mnem_suffix)))
29b0f896 4030 return;
252b5132 4031
7bab8ab5 4032 if (sse_check != check_none
81f8a913 4033 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4034 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4035 && (i.tm.cpu_flags.bitfield.cpusse
4036 || i.tm.cpu_flags.bitfield.cpusse2
4037 || i.tm.cpu_flags.bitfield.cpusse3
4038 || i.tm.cpu_flags.bitfield.cpussse3
4039 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4040 || i.tm.cpu_flags.bitfield.cpusse4_2
4041 || i.tm.cpu_flags.bitfield.cpupclmul
4042 || i.tm.cpu_flags.bitfield.cpuaes
4043 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4044 {
7bab8ab5 4045 (sse_check == check_warning
daf50ae7
L
4046 ? as_warn
4047 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4048 }
4049
321fd21e
L
4050 /* Zap movzx and movsx suffix. The suffix has been set from
4051 "word ptr" or "byte ptr" on the source operand in Intel syntax
4052 or extracted from mnemonic in AT&T syntax. But we'll use
4053 the destination register to choose the suffix for encoding. */
4054 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4055 {
321fd21e
L
4056 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4057 there is no suffix, the default will be byte extension. */
4058 if (i.reg_operands != 2
4059 && !i.suffix
7ab9ffdd 4060 && intel_syntax)
321fd21e
L
4061 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4062
4063 i.suffix = 0;
cd61ebfe 4064 }
24eab124 4065
40fb9820 4066 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4067 if (!add_prefix (FWAIT_OPCODE))
4068 return;
252b5132 4069
d5de92cf
L
4070 /* Check if REP prefix is OK. */
4071 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4072 {
4073 as_bad (_("invalid instruction `%s' after `%s'"),
4074 i.tm.name, i.rep_prefix);
4075 return;
4076 }
4077
c1ba0266
L
4078 /* Check for lock without a lockable instruction. Destination operand
4079 must be memory unless it is xchg (0x86). */
c32fa91d
L
4080 if (i.prefix[LOCK_PREFIX]
4081 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4082 || i.mem_operands == 0
4083 || (i.tm.base_opcode != 0x86
4084 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4085 {
4086 as_bad (_("expecting lockable instruction after `lock'"));
4087 return;
4088 }
4089
42164a71 4090 /* Check if HLE prefix is OK. */
165de32a 4091 if (i.hle_prefix && !check_hle ())
42164a71
L
4092 return;
4093
7e8b059b
L
4094 /* Check BND prefix. */
4095 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4096 as_bad (_("expecting valid branch instruction after `bnd'"));
4097
04ef582a 4098 /* Check NOTRACK prefix. */
9fef80d6
L
4099 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4100 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4101
327e8c42
JB
4102 if (i.tm.cpu_flags.bitfield.cpumpx)
4103 {
4104 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4105 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4106 else if (flag_code != CODE_16BIT
4107 ? i.prefix[ADDR_PREFIX]
4108 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4109 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4110 }
7e8b059b
L
4111
4112 /* Insert BND prefix. */
76d3a78a
JB
4113 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4114 {
4115 if (!i.prefix[BND_PREFIX])
4116 add_prefix (BND_PREFIX_OPCODE);
4117 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4118 {
4119 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4120 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4121 }
4122 }
7e8b059b 4123
29b0f896 4124 /* Check string instruction segment overrides. */
40fb9820 4125 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4126 {
4127 if (!check_string ())
5dd0794d 4128 return;
fc0763e6 4129 i.disp_operands = 0;
29b0f896 4130 }
5dd0794d 4131
b6f8c7c4
L
4132 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4133 optimize_encoding ();
4134
29b0f896
AM
4135 if (!process_suffix ())
4136 return;
e413e4e9 4137
bc0844ae
L
4138 /* Update operand types. */
4139 for (j = 0; j < i.operands; j++)
4140 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4141
29b0f896
AM
4142 /* Make still unresolved immediate matches conform to size of immediate
4143 given in i.suffix. */
4144 if (!finalize_imm ())
4145 return;
252b5132 4146
40fb9820 4147 if (i.types[0].bitfield.imm1)
29b0f896 4148 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4149
9afe6eb8
L
4150 /* We only need to check those implicit registers for instructions
4151 with 3 operands or less. */
4152 if (i.operands <= 3)
4153 for (j = 0; j < i.operands; j++)
4154 if (i.types[j].bitfield.inoutportreg
4155 || i.types[j].bitfield.shiftcount
1b54b8d7 4156 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4157 i.reg_operands--;
40fb9820 4158
c0f3af97
L
4159 /* ImmExt should be processed after SSE2AVX. */
4160 if (!i.tm.opcode_modifier.sse2avx
4161 && i.tm.opcode_modifier.immext)
65da13b5 4162 process_immext ();
252b5132 4163
29b0f896
AM
4164 /* For insns with operands there are more diddles to do to the opcode. */
4165 if (i.operands)
4166 {
4167 if (!process_operands ())
4168 return;
4169 }
40fb9820 4170 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4171 {
4172 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4173 as_warn (_("translating to `%sp'"), i.tm.name);
4174 }
252b5132 4175
e771e7c9
JB
4176 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4177 || is_evex_encoding (&i.tm))
9e5e5283
L
4178 {
4179 if (flag_code == CODE_16BIT)
4180 {
4181 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4182 i.tm.name);
4183 return;
4184 }
c0f3af97 4185
9e5e5283
L
4186 if (i.tm.opcode_modifier.vex)
4187 build_vex_prefix (t);
4188 else
4189 build_evex_prefix ();
4190 }
43234a1e 4191
5dd85c99
SP
4192 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4193 instructions may define INT_OPCODE as well, so avoid this corner
4194 case for those instructions that use MODRM. */
4195 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4196 && !i.tm.opcode_modifier.modrm
4197 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4198 {
4199 i.tm.base_opcode = INT3_OPCODE;
4200 i.imm_operands = 0;
4201 }
252b5132 4202
40fb9820
L
4203 if ((i.tm.opcode_modifier.jump
4204 || i.tm.opcode_modifier.jumpbyte
4205 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4206 && i.op[0].disps->X_op == O_constant)
4207 {
4208 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4209 the absolute address given by the constant. Since ix86 jumps and
4210 calls are pc relative, we need to generate a reloc. */
4211 i.op[0].disps->X_add_symbol = &abs_symbol;
4212 i.op[0].disps->X_op = O_symbol;
4213 }
252b5132 4214
40fb9820 4215 if (i.tm.opcode_modifier.rex64)
161a04f6 4216 i.rex |= REX_W;
252b5132 4217
29b0f896
AM
4218 /* For 8 bit registers we need an empty rex prefix. Also if the
4219 instruction already has a prefix, we need to convert old
4220 registers to new ones. */
773f551c 4221
dc821c5f 4222 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4223 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4224 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4225 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4226 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4227 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4228 && i.rex != 0))
4229 {
4230 int x;
726c5dcd 4231
29b0f896
AM
4232 i.rex |= REX_OPCODE;
4233 for (x = 0; x < 2; x++)
4234 {
4235 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4236 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4237 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4238 {
29b0f896
AM
4239 /* In case it is "hi" register, give up. */
4240 if (i.op[x].regs->reg_num > 3)
a540244d 4241 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4242 "instruction requiring REX prefix."),
a540244d 4243 register_prefix, i.op[x].regs->reg_name);
773f551c 4244
29b0f896
AM
4245 /* Otherwise it is equivalent to the extended register.
4246 Since the encoding doesn't change this is merely
4247 cosmetic cleanup for debug output. */
4248
4249 i.op[x].regs = i.op[x].regs + 8;
773f551c 4250 }
29b0f896
AM
4251 }
4252 }
773f551c 4253
6b6b6807
L
4254 if (i.rex == 0 && i.rex_encoding)
4255 {
4256 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4257 that uses legacy register. If it is "hi" register, don't add
4258 the REX_OPCODE byte. */
4259 int x;
4260 for (x = 0; x < 2; x++)
4261 if (i.types[x].bitfield.reg
4262 && i.types[x].bitfield.byte
4263 && (i.op[x].regs->reg_flags & RegRex64) == 0
4264 && i.op[x].regs->reg_num > 3)
4265 {
4266 i.rex_encoding = FALSE;
4267 break;
4268 }
4269
4270 if (i.rex_encoding)
4271 i.rex = REX_OPCODE;
4272 }
4273
7ab9ffdd 4274 if (i.rex != 0)
29b0f896
AM
4275 add_prefix (REX_OPCODE | i.rex);
4276
4277 /* We are ready to output the insn. */
4278 output_insn ();
4279}
4280
4281static char *
e3bb37b5 4282parse_insn (char *line, char *mnemonic)
29b0f896
AM
4283{
4284 char *l = line;
4285 char *token_start = l;
4286 char *mnem_p;
5c6af06e 4287 int supported;
d3ce72d0 4288 const insn_template *t;
b6169b20 4289 char *dot_p = NULL;
29b0f896 4290
29b0f896
AM
4291 while (1)
4292 {
4293 mnem_p = mnemonic;
4294 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4295 {
b6169b20
L
4296 if (*mnem_p == '.')
4297 dot_p = mnem_p;
29b0f896
AM
4298 mnem_p++;
4299 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4300 {
29b0f896
AM
4301 as_bad (_("no such instruction: `%s'"), token_start);
4302 return NULL;
4303 }
4304 l++;
4305 }
4306 if (!is_space_char (*l)
4307 && *l != END_OF_INSN
e44823cf
JB
4308 && (intel_syntax
4309 || (*l != PREFIX_SEPARATOR
4310 && *l != ',')))
29b0f896
AM
4311 {
4312 as_bad (_("invalid character %s in mnemonic"),
4313 output_invalid (*l));
4314 return NULL;
4315 }
4316 if (token_start == l)
4317 {
e44823cf 4318 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4319 as_bad (_("expecting prefix; got nothing"));
4320 else
4321 as_bad (_("expecting mnemonic; got nothing"));
4322 return NULL;
4323 }
45288df1 4324
29b0f896 4325 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4326 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4327
29b0f896
AM
4328 if (*l != END_OF_INSN
4329 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4330 && current_templates
40fb9820 4331 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4332 {
c6fb90c8 4333 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4334 {
4335 as_bad ((flag_code != CODE_64BIT
4336 ? _("`%s' is only supported in 64-bit mode")
4337 : _("`%s' is not supported in 64-bit mode")),
4338 current_templates->start->name);
4339 return NULL;
4340 }
29b0f896
AM
4341 /* If we are in 16-bit mode, do not allow addr16 or data16.
4342 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4343 if ((current_templates->start->opcode_modifier.size16
4344 || current_templates->start->opcode_modifier.size32)
29b0f896 4345 && flag_code != CODE_64BIT
40fb9820 4346 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4347 ^ (flag_code == CODE_16BIT)))
4348 {
4349 as_bad (_("redundant %s prefix"),
4350 current_templates->start->name);
4351 return NULL;
45288df1 4352 }
86fa6981 4353 if (current_templates->start->opcode_length == 0)
29b0f896 4354 {
86fa6981
L
4355 /* Handle pseudo prefixes. */
4356 switch (current_templates->start->base_opcode)
4357 {
4358 case 0x0:
4359 /* {disp8} */
4360 i.disp_encoding = disp_encoding_8bit;
4361 break;
4362 case 0x1:
4363 /* {disp32} */
4364 i.disp_encoding = disp_encoding_32bit;
4365 break;
4366 case 0x2:
4367 /* {load} */
4368 i.dir_encoding = dir_encoding_load;
4369 break;
4370 case 0x3:
4371 /* {store} */
4372 i.dir_encoding = dir_encoding_store;
4373 break;
4374 case 0x4:
4375 /* {vex2} */
4376 i.vec_encoding = vex_encoding_vex2;
4377 break;
4378 case 0x5:
4379 /* {vex3} */
4380 i.vec_encoding = vex_encoding_vex3;
4381 break;
4382 case 0x6:
4383 /* {evex} */
4384 i.vec_encoding = vex_encoding_evex;
4385 break;
6b6b6807
L
4386 case 0x7:
4387 /* {rex} */
4388 i.rex_encoding = TRUE;
4389 break;
b6f8c7c4
L
4390 case 0x8:
4391 /* {nooptimize} */
4392 i.no_optimize = TRUE;
4393 break;
86fa6981
L
4394 default:
4395 abort ();
4396 }
4397 }
4398 else
4399 {
4400 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4401 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4402 {
4e9ac44a
L
4403 case PREFIX_EXIST:
4404 return NULL;
4405 case PREFIX_DS:
d777820b 4406 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4407 i.notrack_prefix = current_templates->start->name;
4408 break;
4409 case PREFIX_REP:
4410 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4411 i.hle_prefix = current_templates->start->name;
4412 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4413 i.bnd_prefix = current_templates->start->name;
4414 else
4415 i.rep_prefix = current_templates->start->name;
4416 break;
4417 default:
4418 break;
86fa6981 4419 }
29b0f896
AM
4420 }
4421 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4422 token_start = ++l;
4423 }
4424 else
4425 break;
4426 }
45288df1 4427
30a55f88 4428 if (!current_templates)
b6169b20 4429 {
f8a5c266
L
4430 /* Check if we should swap operand or force 32bit displacement in
4431 encoding. */
30a55f88 4432 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4433 i.dir_encoding = dir_encoding_store;
8d63c93e 4434 else if (mnem_p - 3 == dot_p
a501d77e
L
4435 && dot_p[1] == 'd'
4436 && dot_p[2] == '8')
4437 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4438 else if (mnem_p - 4 == dot_p
f8a5c266
L
4439 && dot_p[1] == 'd'
4440 && dot_p[2] == '3'
4441 && dot_p[3] == '2')
a501d77e 4442 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4443 else
4444 goto check_suffix;
4445 mnem_p = dot_p;
4446 *dot_p = '\0';
d3ce72d0 4447 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4448 }
4449
29b0f896
AM
4450 if (!current_templates)
4451 {
b6169b20 4452check_suffix:
29b0f896
AM
4453 /* See if we can get a match by trimming off a suffix. */
4454 switch (mnem_p[-1])
4455 {
4456 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4457 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4458 i.suffix = SHORT_MNEM_SUFFIX;
4459 else
1a0670f3 4460 /* Fall through. */
29b0f896
AM
4461 case BYTE_MNEM_SUFFIX:
4462 case QWORD_MNEM_SUFFIX:
4463 i.suffix = mnem_p[-1];
4464 mnem_p[-1] = '\0';
d3ce72d0
NC
4465 current_templates = (const templates *) hash_find (op_hash,
4466 mnemonic);
29b0f896
AM
4467 break;
4468 case SHORT_MNEM_SUFFIX:
4469 case LONG_MNEM_SUFFIX:
4470 if (!intel_syntax)
4471 {
4472 i.suffix = mnem_p[-1];
4473 mnem_p[-1] = '\0';
d3ce72d0
NC
4474 current_templates = (const templates *) hash_find (op_hash,
4475 mnemonic);
29b0f896
AM
4476 }
4477 break;
252b5132 4478
29b0f896
AM
4479 /* Intel Syntax. */
4480 case 'd':
4481 if (intel_syntax)
4482 {
9306ca4a 4483 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4484 i.suffix = SHORT_MNEM_SUFFIX;
4485 else
4486 i.suffix = LONG_MNEM_SUFFIX;
4487 mnem_p[-1] = '\0';
d3ce72d0
NC
4488 current_templates = (const templates *) hash_find (op_hash,
4489 mnemonic);
29b0f896
AM
4490 }
4491 break;
4492 }
4493 if (!current_templates)
4494 {
4495 as_bad (_("no such instruction: `%s'"), token_start);
4496 return NULL;
4497 }
4498 }
252b5132 4499
40fb9820
L
4500 if (current_templates->start->opcode_modifier.jump
4501 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4502 {
4503 /* Check for a branch hint. We allow ",pt" and ",pn" for
4504 predict taken and predict not taken respectively.
4505 I'm not sure that branch hints actually do anything on loop
4506 and jcxz insns (JumpByte) for current Pentium4 chips. They
4507 may work in the future and it doesn't hurt to accept them
4508 now. */
4509 if (l[0] == ',' && l[1] == 'p')
4510 {
4511 if (l[2] == 't')
4512 {
4513 if (!add_prefix (DS_PREFIX_OPCODE))
4514 return NULL;
4515 l += 3;
4516 }
4517 else if (l[2] == 'n')
4518 {
4519 if (!add_prefix (CS_PREFIX_OPCODE))
4520 return NULL;
4521 l += 3;
4522 }
4523 }
4524 }
4525 /* Any other comma loses. */
4526 if (*l == ',')
4527 {
4528 as_bad (_("invalid character %s in mnemonic"),
4529 output_invalid (*l));
4530 return NULL;
4531 }
252b5132 4532
29b0f896 4533 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4534 supported = 0;
4535 for (t = current_templates->start; t < current_templates->end; ++t)
4536 {
c0f3af97
L
4537 supported |= cpu_flags_match (t);
4538 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4539 {
4540 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4541 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4542
548d0ee6
JB
4543 return l;
4544 }
29b0f896 4545 }
3629bb00 4546
548d0ee6
JB
4547 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4548 as_bad (flag_code == CODE_64BIT
4549 ? _("`%s' is not supported in 64-bit mode")
4550 : _("`%s' is only supported in 64-bit mode"),
4551 current_templates->start->name);
4552 else
4553 as_bad (_("`%s' is not supported on `%s%s'"),
4554 current_templates->start->name,
4555 cpu_arch_name ? cpu_arch_name : default_arch,
4556 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4557
548d0ee6 4558 return NULL;
29b0f896 4559}
252b5132 4560
29b0f896 4561static char *
e3bb37b5 4562parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4563{
4564 char *token_start;
3138f287 4565
29b0f896
AM
4566 /* 1 if operand is pending after ','. */
4567 unsigned int expecting_operand = 0;
252b5132 4568
29b0f896
AM
4569 /* Non-zero if operand parens not balanced. */
4570 unsigned int paren_not_balanced;
4571
4572 while (*l != END_OF_INSN)
4573 {
4574 /* Skip optional white space before operand. */
4575 if (is_space_char (*l))
4576 ++l;
d02603dc 4577 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4578 {
4579 as_bad (_("invalid character %s before operand %d"),
4580 output_invalid (*l),
4581 i.operands + 1);
4582 return NULL;
4583 }
d02603dc 4584 token_start = l; /* After white space. */
29b0f896
AM
4585 paren_not_balanced = 0;
4586 while (paren_not_balanced || *l != ',')
4587 {
4588 if (*l == END_OF_INSN)
4589 {
4590 if (paren_not_balanced)
4591 {
4592 if (!intel_syntax)
4593 as_bad (_("unbalanced parenthesis in operand %d."),
4594 i.operands + 1);
4595 else
4596 as_bad (_("unbalanced brackets in operand %d."),
4597 i.operands + 1);
4598 return NULL;
4599 }
4600 else
4601 break; /* we are done */
4602 }
d02603dc 4603 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4604 {
4605 as_bad (_("invalid character %s in operand %d"),
4606 output_invalid (*l),
4607 i.operands + 1);
4608 return NULL;
4609 }
4610 if (!intel_syntax)
4611 {
4612 if (*l == '(')
4613 ++paren_not_balanced;
4614 if (*l == ')')
4615 --paren_not_balanced;
4616 }
4617 else
4618 {
4619 if (*l == '[')
4620 ++paren_not_balanced;
4621 if (*l == ']')
4622 --paren_not_balanced;
4623 }
4624 l++;
4625 }
4626 if (l != token_start)
4627 { /* Yes, we've read in another operand. */
4628 unsigned int operand_ok;
4629 this_operand = i.operands++;
4630 if (i.operands > MAX_OPERANDS)
4631 {
4632 as_bad (_("spurious operands; (%d operands/instruction max)"),
4633 MAX_OPERANDS);
4634 return NULL;
4635 }
9d46ce34 4636 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4637 /* Now parse operand adding info to 'i' as we go along. */
4638 END_STRING_AND_SAVE (l);
4639
4640 if (intel_syntax)
4641 operand_ok =
4642 i386_intel_operand (token_start,
4643 intel_float_operand (mnemonic));
4644 else
a7619375 4645 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4646
4647 RESTORE_END_STRING (l);
4648 if (!operand_ok)
4649 return NULL;
4650 }
4651 else
4652 {
4653 if (expecting_operand)
4654 {
4655 expecting_operand_after_comma:
4656 as_bad (_("expecting operand after ','; got nothing"));
4657 return NULL;
4658 }
4659 if (*l == ',')
4660 {
4661 as_bad (_("expecting operand before ','; got nothing"));
4662 return NULL;
4663 }
4664 }
7f3f1ea2 4665
29b0f896
AM
4666 /* Now *l must be either ',' or END_OF_INSN. */
4667 if (*l == ',')
4668 {
4669 if (*++l == END_OF_INSN)
4670 {
4671 /* Just skip it, if it's \n complain. */
4672 goto expecting_operand_after_comma;
4673 }
4674 expecting_operand = 1;
4675 }
4676 }
4677 return l;
4678}
7f3f1ea2 4679
050dfa73 4680static void
4d456e3d 4681swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4682{
4683 union i386_op temp_op;
40fb9820 4684 i386_operand_type temp_type;
050dfa73 4685 enum bfd_reloc_code_real temp_reloc;
4eed87de 4686
050dfa73
MM
4687 temp_type = i.types[xchg2];
4688 i.types[xchg2] = i.types[xchg1];
4689 i.types[xchg1] = temp_type;
4690 temp_op = i.op[xchg2];
4691 i.op[xchg2] = i.op[xchg1];
4692 i.op[xchg1] = temp_op;
4693 temp_reloc = i.reloc[xchg2];
4694 i.reloc[xchg2] = i.reloc[xchg1];
4695 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4696
4697 if (i.mask)
4698 {
4699 if (i.mask->operand == xchg1)
4700 i.mask->operand = xchg2;
4701 else if (i.mask->operand == xchg2)
4702 i.mask->operand = xchg1;
4703 }
4704 if (i.broadcast)
4705 {
4706 if (i.broadcast->operand == xchg1)
4707 i.broadcast->operand = xchg2;
4708 else if (i.broadcast->operand == xchg2)
4709 i.broadcast->operand = xchg1;
4710 }
4711 if (i.rounding)
4712 {
4713 if (i.rounding->operand == xchg1)
4714 i.rounding->operand = xchg2;
4715 else if (i.rounding->operand == xchg2)
4716 i.rounding->operand = xchg1;
4717 }
050dfa73
MM
4718}
4719
29b0f896 4720static void
e3bb37b5 4721swap_operands (void)
29b0f896 4722{
b7c61d9a 4723 switch (i.operands)
050dfa73 4724 {
c0f3af97 4725 case 5:
b7c61d9a 4726 case 4:
4d456e3d 4727 swap_2_operands (1, i.operands - 2);
1a0670f3 4728 /* Fall through. */
b7c61d9a
L
4729 case 3:
4730 case 2:
4d456e3d 4731 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4732 break;
4733 default:
4734 abort ();
29b0f896 4735 }
29b0f896
AM
4736
4737 if (i.mem_operands == 2)
4738 {
4739 const seg_entry *temp_seg;
4740 temp_seg = i.seg[0];
4741 i.seg[0] = i.seg[1];
4742 i.seg[1] = temp_seg;
4743 }
4744}
252b5132 4745
29b0f896
AM
4746/* Try to ensure constant immediates are represented in the smallest
4747 opcode possible. */
4748static void
e3bb37b5 4749optimize_imm (void)
29b0f896
AM
4750{
4751 char guess_suffix = 0;
4752 int op;
252b5132 4753
29b0f896
AM
4754 if (i.suffix)
4755 guess_suffix = i.suffix;
4756 else if (i.reg_operands)
4757 {
4758 /* Figure out a suffix from the last register operand specified.
4759 We can't do this properly yet, ie. excluding InOutPortReg,
4760 but the following works for instructions with immediates.
4761 In any case, we can't set i.suffix yet. */
4762 for (op = i.operands; --op >= 0;)
dc821c5f 4763 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4764 {
40fb9820
L
4765 guess_suffix = BYTE_MNEM_SUFFIX;
4766 break;
4767 }
dc821c5f 4768 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4769 {
40fb9820
L
4770 guess_suffix = WORD_MNEM_SUFFIX;
4771 break;
4772 }
dc821c5f 4773 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4774 {
4775 guess_suffix = LONG_MNEM_SUFFIX;
4776 break;
4777 }
dc821c5f 4778 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4779 {
4780 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4781 break;
252b5132 4782 }
29b0f896
AM
4783 }
4784 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4785 guess_suffix = WORD_MNEM_SUFFIX;
4786
4787 for (op = i.operands; --op >= 0;)
40fb9820 4788 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4789 {
4790 switch (i.op[op].imms->X_op)
252b5132 4791 {
29b0f896
AM
4792 case O_constant:
4793 /* If a suffix is given, this operand may be shortened. */
4794 switch (guess_suffix)
252b5132 4795 {
29b0f896 4796 case LONG_MNEM_SUFFIX:
40fb9820
L
4797 i.types[op].bitfield.imm32 = 1;
4798 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4799 break;
4800 case WORD_MNEM_SUFFIX:
40fb9820
L
4801 i.types[op].bitfield.imm16 = 1;
4802 i.types[op].bitfield.imm32 = 1;
4803 i.types[op].bitfield.imm32s = 1;
4804 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4805 break;
4806 case BYTE_MNEM_SUFFIX:
40fb9820
L
4807 i.types[op].bitfield.imm8 = 1;
4808 i.types[op].bitfield.imm8s = 1;
4809 i.types[op].bitfield.imm16 = 1;
4810 i.types[op].bitfield.imm32 = 1;
4811 i.types[op].bitfield.imm32s = 1;
4812 i.types[op].bitfield.imm64 = 1;
29b0f896 4813 break;
252b5132 4814 }
252b5132 4815
29b0f896
AM
4816 /* If this operand is at most 16 bits, convert it
4817 to a signed 16 bit number before trying to see
4818 whether it will fit in an even smaller size.
4819 This allows a 16-bit operand such as $0xffe0 to
4820 be recognised as within Imm8S range. */
40fb9820 4821 if ((i.types[op].bitfield.imm16)
29b0f896 4822 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4823 {
29b0f896
AM
4824 i.op[op].imms->X_add_number =
4825 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4826 }
a28def75
L
4827#ifdef BFD64
4828 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4829 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4830 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4831 == 0))
4832 {
4833 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4834 ^ ((offsetT) 1 << 31))
4835 - ((offsetT) 1 << 31));
4836 }
a28def75 4837#endif
40fb9820 4838 i.types[op]
c6fb90c8
L
4839 = operand_type_or (i.types[op],
4840 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4841
29b0f896
AM
4842 /* We must avoid matching of Imm32 templates when 64bit
4843 only immediate is available. */
4844 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4845 i.types[op].bitfield.imm32 = 0;
29b0f896 4846 break;
252b5132 4847
29b0f896
AM
4848 case O_absent:
4849 case O_register:
4850 abort ();
4851
4852 /* Symbols and expressions. */
4853 default:
9cd96992
JB
4854 /* Convert symbolic operand to proper sizes for matching, but don't
4855 prevent matching a set of insns that only supports sizes other
4856 than those matching the insn suffix. */
4857 {
40fb9820 4858 i386_operand_type mask, allowed;
d3ce72d0 4859 const insn_template *t;
9cd96992 4860
0dfbf9d7
L
4861 operand_type_set (&mask, 0);
4862 operand_type_set (&allowed, 0);
40fb9820 4863
4eed87de
AM
4864 for (t = current_templates->start;
4865 t < current_templates->end;
4866 ++t)
c6fb90c8
L
4867 allowed = operand_type_or (allowed,
4868 t->operand_types[op]);
9cd96992
JB
4869 switch (guess_suffix)
4870 {
4871 case QWORD_MNEM_SUFFIX:
40fb9820
L
4872 mask.bitfield.imm64 = 1;
4873 mask.bitfield.imm32s = 1;
9cd96992
JB
4874 break;
4875 case LONG_MNEM_SUFFIX:
40fb9820 4876 mask.bitfield.imm32 = 1;
9cd96992
JB
4877 break;
4878 case WORD_MNEM_SUFFIX:
40fb9820 4879 mask.bitfield.imm16 = 1;
9cd96992
JB
4880 break;
4881 case BYTE_MNEM_SUFFIX:
40fb9820 4882 mask.bitfield.imm8 = 1;
9cd96992
JB
4883 break;
4884 default:
9cd96992
JB
4885 break;
4886 }
c6fb90c8 4887 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4888 if (!operand_type_all_zero (&allowed))
c6fb90c8 4889 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4890 }
29b0f896 4891 break;
252b5132 4892 }
29b0f896
AM
4893 }
4894}
47926f60 4895
29b0f896
AM
4896/* Try to use the smallest displacement type too. */
4897static void
e3bb37b5 4898optimize_disp (void)
29b0f896
AM
4899{
4900 int op;
3e73aa7c 4901
29b0f896 4902 for (op = i.operands; --op >= 0;)
40fb9820 4903 if (operand_type_check (i.types[op], disp))
252b5132 4904 {
b300c311 4905 if (i.op[op].disps->X_op == O_constant)
252b5132 4906 {
91d6fa6a 4907 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4908
40fb9820 4909 if (i.types[op].bitfield.disp16
91d6fa6a 4910 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4911 {
4912 /* If this operand is at most 16 bits, convert
4913 to a signed 16 bit number and don't use 64bit
4914 displacement. */
91d6fa6a 4915 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4916 i.types[op].bitfield.disp64 = 0;
b300c311 4917 }
a28def75
L
4918#ifdef BFD64
4919 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4920 if (i.types[op].bitfield.disp32
91d6fa6a 4921 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4922 {
4923 /* If this operand is at most 32 bits, convert
4924 to a signed 32 bit number and don't use 64bit
4925 displacement. */
91d6fa6a
NC
4926 op_disp &= (((offsetT) 2 << 31) - 1);
4927 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4928 i.types[op].bitfield.disp64 = 0;
b300c311 4929 }
a28def75 4930#endif
91d6fa6a 4931 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4932 {
40fb9820
L
4933 i.types[op].bitfield.disp8 = 0;
4934 i.types[op].bitfield.disp16 = 0;
4935 i.types[op].bitfield.disp32 = 0;
4936 i.types[op].bitfield.disp32s = 0;
4937 i.types[op].bitfield.disp64 = 0;
b300c311
L
4938 i.op[op].disps = 0;
4939 i.disp_operands--;
4940 }
4941 else if (flag_code == CODE_64BIT)
4942 {
91d6fa6a 4943 if (fits_in_signed_long (op_disp))
28a9d8f5 4944 {
40fb9820
L
4945 i.types[op].bitfield.disp64 = 0;
4946 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4947 }
0e1147d9 4948 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4949 && fits_in_unsigned_long (op_disp))
40fb9820 4950 i.types[op].bitfield.disp32 = 1;
b300c311 4951 }
40fb9820
L
4952 if ((i.types[op].bitfield.disp32
4953 || i.types[op].bitfield.disp32s
4954 || i.types[op].bitfield.disp16)
b5014f7a 4955 && fits_in_disp8 (op_disp))
40fb9820 4956 i.types[op].bitfield.disp8 = 1;
252b5132 4957 }
67a4f2b7
AO
4958 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4959 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4960 {
4961 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4962 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4963 i.types[op].bitfield.disp8 = 0;
4964 i.types[op].bitfield.disp16 = 0;
4965 i.types[op].bitfield.disp32 = 0;
4966 i.types[op].bitfield.disp32s = 0;
4967 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4968 }
4969 else
b300c311 4970 /* We only support 64bit displacement on constants. */
40fb9820 4971 i.types[op].bitfield.disp64 = 0;
252b5132 4972 }
29b0f896
AM
4973}
4974
6c30d220
L
4975/* Check if operands are valid for the instruction. */
4976
4977static int
4978check_VecOperands (const insn_template *t)
4979{
43234a1e 4980 unsigned int op;
e2195274
JB
4981 i386_cpu_flags cpu;
4982 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
4983
4984 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
4985 any one operand are implicity requiring AVX512VL support if the actual
4986 operand size is YMMword or XMMword. Since this function runs after
4987 template matching, there's no need to check for YMMword/XMMword in
4988 the template. */
4989 cpu = cpu_flags_and (t->cpu_flags, avx512);
4990 if (!cpu_flags_all_zero (&cpu)
4991 && !t->cpu_flags.bitfield.cpuavx512vl
4992 && !cpu_arch_flags.bitfield.cpuavx512vl)
4993 {
4994 for (op = 0; op < t->operands; ++op)
4995 {
4996 if (t->operand_types[op].bitfield.zmmword
4997 && (i.types[op].bitfield.ymmword
4998 || i.types[op].bitfield.xmmword))
4999 {
5000 i.error = unsupported;
5001 return 1;
5002 }
5003 }
5004 }
43234a1e 5005
6c30d220
L
5006 /* Without VSIB byte, we can't have a vector register for index. */
5007 if (!t->opcode_modifier.vecsib
5008 && i.index_reg
1b54b8d7
JB
5009 && (i.index_reg->reg_type.bitfield.xmmword
5010 || i.index_reg->reg_type.bitfield.ymmword
5011 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5012 {
5013 i.error = unsupported_vector_index_register;
5014 return 1;
5015 }
5016
ad8ecc81
MZ
5017 /* Check if default mask is allowed. */
5018 if (t->opcode_modifier.nodefmask
5019 && (!i.mask || i.mask->mask->reg_num == 0))
5020 {
5021 i.error = no_default_mask;
5022 return 1;
5023 }
5024
7bab8ab5
JB
5025 /* For VSIB byte, we need a vector register for index, and all vector
5026 registers must be distinct. */
5027 if (t->opcode_modifier.vecsib)
5028 {
5029 if (!i.index_reg
6c30d220 5030 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5031 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5032 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5033 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5034 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5035 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5036 {
5037 i.error = invalid_vsib_address;
5038 return 1;
5039 }
5040
43234a1e
L
5041 gas_assert (i.reg_operands == 2 || i.mask);
5042 if (i.reg_operands == 2 && !i.mask)
5043 {
1b54b8d7
JB
5044 gas_assert (i.types[0].bitfield.regsimd);
5045 gas_assert (i.types[0].bitfield.xmmword
5046 || i.types[0].bitfield.ymmword);
5047 gas_assert (i.types[2].bitfield.regsimd);
5048 gas_assert (i.types[2].bitfield.xmmword
5049 || i.types[2].bitfield.ymmword);
43234a1e
L
5050 if (operand_check == check_none)
5051 return 0;
5052 if (register_number (i.op[0].regs)
5053 != register_number (i.index_reg)
5054 && register_number (i.op[2].regs)
5055 != register_number (i.index_reg)
5056 && register_number (i.op[0].regs)
5057 != register_number (i.op[2].regs))
5058 return 0;
5059 if (operand_check == check_error)
5060 {
5061 i.error = invalid_vector_register_set;
5062 return 1;
5063 }
5064 as_warn (_("mask, index, and destination registers should be distinct"));
5065 }
8444f82a
MZ
5066 else if (i.reg_operands == 1 && i.mask)
5067 {
1b54b8d7
JB
5068 if (i.types[1].bitfield.regsimd
5069 && (i.types[1].bitfield.xmmword
5070 || i.types[1].bitfield.ymmword
5071 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5072 && (register_number (i.op[1].regs)
5073 == register_number (i.index_reg)))
5074 {
5075 if (operand_check == check_error)
5076 {
5077 i.error = invalid_vector_register_set;
5078 return 1;
5079 }
5080 if (operand_check != check_none)
5081 as_warn (_("index and destination registers should be distinct"));
5082 }
5083 }
43234a1e 5084 }
7bab8ab5 5085
43234a1e
L
5086 /* Check if broadcast is supported by the instruction and is applied
5087 to the memory operand. */
5088 if (i.broadcast)
5089 {
8e6e0792 5090 i386_operand_type type, overlap;
43234a1e
L
5091
5092 /* Check if specified broadcast is supported in this instruction,
c39e5b26 5093 and it's applied to memory operand of DWORD or QWORD type. */
32546502 5094 op = i.broadcast->operand;
8e6e0792 5095 if (!t->opcode_modifier.broadcast
32546502 5096 || !i.types[op].bitfield.mem
c39e5b26
JB
5097 || (!i.types[op].bitfield.unspecified
5098 && (t->operand_types[op].bitfield.dword
5099 ? !i.types[op].bitfield.dword
5100 : !i.types[op].bitfield.qword)))
43234a1e
L
5101 {
5102 bad_broadcast:
5103 i.error = unsupported_broadcast;
5104 return 1;
5105 }
8e6e0792
JB
5106
5107 operand_type_set (&type, 0);
c39e5b26 5108 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
8e6e0792
JB
5109 {
5110 case 8:
5111 type.bitfield.qword = 1;
5112 break;
5113 case 16:
5114 type.bitfield.xmmword = 1;
5115 break;
5116 case 32:
5117 type.bitfield.ymmword = 1;
5118 break;
5119 case 64:
5120 type.bitfield.zmmword = 1;
5121 break;
5122 default:
5123 goto bad_broadcast;
5124 }
5125
5126 overlap = operand_type_and (type, t->operand_types[op]);
5127 if (operand_type_all_zero (&overlap))
5128 goto bad_broadcast;
5129
5130 if (t->opcode_modifier.checkregsize)
5131 {
5132 unsigned int j;
5133
e2195274 5134 type.bitfield.baseindex = 1;
8e6e0792
JB
5135 for (j = 0; j < i.operands; ++j)
5136 {
5137 if (j != op
5138 && !operand_type_register_match(i.types[j],
5139 t->operand_types[j],
5140 type,
5141 t->operand_types[op]))
5142 goto bad_broadcast;
5143 }
5144 }
43234a1e
L
5145 }
5146 /* If broadcast is supported in this instruction, we need to check if
5147 operand of one-element size isn't specified without broadcast. */
5148 else if (t->opcode_modifier.broadcast && i.mem_operands)
5149 {
5150 /* Find memory operand. */
5151 for (op = 0; op < i.operands; op++)
5152 if (operand_type_check (i.types[op], anymem))
5153 break;
5154 gas_assert (op < i.operands);
5155 /* Check size of the memory operand. */
c39e5b26
JB
5156 if (t->operand_types[op].bitfield.dword
5157 ? i.types[op].bitfield.dword
5158 : i.types[op].bitfield.qword)
43234a1e
L
5159 {
5160 i.error = broadcast_needed;
5161 return 1;
5162 }
5163 }
c39e5b26
JB
5164 else
5165 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5166
5167 /* Check if requested masking is supported. */
5168 if (i.mask
5169 && (!t->opcode_modifier.masking
5170 || (i.mask->zeroing
5171 && t->opcode_modifier.masking == MERGING_MASKING)))
5172 {
5173 i.error = unsupported_masking;
5174 return 1;
5175 }
5176
5177 /* Check if masking is applied to dest operand. */
5178 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5179 {
5180 i.error = mask_not_on_destination;
5181 return 1;
5182 }
5183
43234a1e
L
5184 /* Check RC/SAE. */
5185 if (i.rounding)
5186 {
5187 if ((i.rounding->type != saeonly
5188 && !t->opcode_modifier.staticrounding)
5189 || (i.rounding->type == saeonly
5190 && (t->opcode_modifier.staticrounding
5191 || !t->opcode_modifier.sae)))
5192 {
5193 i.error = unsupported_rc_sae;
5194 return 1;
5195 }
5196 /* If the instruction has several immediate operands and one of
5197 them is rounding, the rounding operand should be the last
5198 immediate operand. */
5199 if (i.imm_operands > 1
5200 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5201 {
43234a1e 5202 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5203 return 1;
5204 }
6c30d220
L
5205 }
5206
43234a1e 5207 /* Check vector Disp8 operand. */
b5014f7a
JB
5208 if (t->opcode_modifier.disp8memshift
5209 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5210 {
5211 if (i.broadcast)
c39e5b26 5212 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
43234a1e
L
5213 else
5214 i.memshift = t->opcode_modifier.disp8memshift;
5215
5216 for (op = 0; op < i.operands; op++)
5217 if (operand_type_check (i.types[op], disp)
5218 && i.op[op].disps->X_op == O_constant)
5219 {
b5014f7a 5220 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5221 {
b5014f7a
JB
5222 i.types[op].bitfield.disp8 = 1;
5223 return 0;
43234a1e 5224 }
b5014f7a 5225 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5226 }
5227 }
b5014f7a
JB
5228
5229 i.memshift = 0;
43234a1e 5230
6c30d220
L
5231 return 0;
5232}
5233
43f3e2ee 5234/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5235 operand types. */
5236
5237static int
5238VEX_check_operands (const insn_template *t)
5239{
86fa6981 5240 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5241 {
86fa6981 5242 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5243 if (!is_evex_encoding (t))
86fa6981
L
5244 {
5245 i.error = unsupported;
5246 return 1;
5247 }
5248 return 0;
43234a1e
L
5249 }
5250
a683cc34 5251 if (!t->opcode_modifier.vex)
86fa6981
L
5252 {
5253 /* This instruction template doesn't have VEX prefix. */
5254 if (i.vec_encoding != vex_encoding_default)
5255 {
5256 i.error = unsupported;
5257 return 1;
5258 }
5259 return 0;
5260 }
a683cc34
SP
5261
5262 /* Only check VEX_Imm4, which must be the first operand. */
5263 if (t->operand_types[0].bitfield.vec_imm4)
5264 {
5265 if (i.op[0].imms->X_op != O_constant
5266 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5267 {
a65babc9 5268 i.error = bad_imm4;
891edac4
L
5269 return 1;
5270 }
a683cc34
SP
5271
5272 /* Turn off Imm8 so that update_imm won't complain. */
5273 i.types[0] = vec_imm4;
5274 }
5275
5276 return 0;
5277}
5278
d3ce72d0 5279static const insn_template *
83b16ac6 5280match_template (char mnem_suffix)
29b0f896
AM
5281{
5282 /* Points to template once we've found it. */
d3ce72d0 5283 const insn_template *t;
40fb9820 5284 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5285 i386_operand_type overlap4;
29b0f896 5286 unsigned int found_reverse_match;
83b16ac6 5287 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5288 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5289 int addr_prefix_disp;
a5c311ca 5290 unsigned int j;
3ac21baa 5291 unsigned int found_cpu_match, size_match;
45664ddb 5292 unsigned int check_register;
5614d22c 5293 enum i386_error specific_error = 0;
29b0f896 5294
c0f3af97
L
5295#if MAX_OPERANDS != 5
5296# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5297#endif
5298
29b0f896 5299 found_reverse_match = 0;
539e75ad 5300 addr_prefix_disp = -1;
40fb9820
L
5301
5302 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5303 if (intel_syntax && i.broadcast)
5304 /* nothing */;
5305 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5306 suffix_check.no_bsuf = 1;
5307 else if (i.suffix == WORD_MNEM_SUFFIX)
5308 suffix_check.no_wsuf = 1;
5309 else if (i.suffix == SHORT_MNEM_SUFFIX)
5310 suffix_check.no_ssuf = 1;
5311 else if (i.suffix == LONG_MNEM_SUFFIX)
5312 suffix_check.no_lsuf = 1;
5313 else if (i.suffix == QWORD_MNEM_SUFFIX)
5314 suffix_check.no_qsuf = 1;
5315 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5316 suffix_check.no_ldsuf = 1;
29b0f896 5317
83b16ac6
JB
5318 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5319 if (intel_syntax)
5320 {
5321 switch (mnem_suffix)
5322 {
5323 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5324 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5325 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5326 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5327 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5328 }
5329 }
5330
01559ecc
L
5331 /* Must have right number of operands. */
5332 i.error = number_of_operands_mismatch;
5333
45aa61fe 5334 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5335 {
539e75ad
L
5336 addr_prefix_disp = -1;
5337
29b0f896
AM
5338 if (i.operands != t->operands)
5339 continue;
5340
50aecf8c 5341 /* Check processor support. */
a65babc9 5342 i.error = unsupported;
c0f3af97
L
5343 found_cpu_match = (cpu_flags_match (t)
5344 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5345 if (!found_cpu_match)
5346 continue;
5347
e1d4d893 5348 /* Check AT&T mnemonic. */
a65babc9 5349 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5350 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5351 continue;
5352
e92bae62 5353 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5354 i.error = unsupported_syntax;
5c07affc 5355 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5356 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5357 || (intel64 && t->opcode_modifier.amd64)
5358 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5359 continue;
5360
20592a94 5361 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5362 i.error = invalid_instruction_suffix;
567e4e96
L
5363 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5364 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5365 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5366 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5367 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5368 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5369 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5370 continue;
83b16ac6
JB
5371 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5372 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5373 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5374 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5375 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5376 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5377 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5378 continue;
29b0f896 5379
3ac21baa
JB
5380 size_match = operand_size_match (t);
5381 if (!size_match)
7d5e4556 5382 continue;
539e75ad 5383
5c07affc
L
5384 for (j = 0; j < MAX_OPERANDS; j++)
5385 operand_types[j] = t->operand_types[j];
5386
45aa61fe
AM
5387 /* In general, don't allow 64-bit operands in 32-bit mode. */
5388 if (i.suffix == QWORD_MNEM_SUFFIX
5389 && flag_code != CODE_64BIT
5390 && (intel_syntax
40fb9820 5391 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
5392 && !intel_float_operand (t->name))
5393 : intel_float_operand (t->name) != 2)
40fb9820 5394 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5395 && !operand_types[0].bitfield.regsimd)
40fb9820 5396 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5397 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5398 && (t->base_opcode != 0x0fc7
5399 || t->extension_opcode != 1 /* cmpxchg8b */))
5400 continue;
5401
192dc9c6
JB
5402 /* In general, don't allow 32-bit operands on pre-386. */
5403 else if (i.suffix == LONG_MNEM_SUFFIX
5404 && !cpu_arch_flags.bitfield.cpui386
5405 && (intel_syntax
5406 ? (!t->opcode_modifier.ignoresize
5407 && !intel_float_operand (t->name))
5408 : intel_float_operand (t->name) != 2)
5409 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5410 && !operand_types[0].bitfield.regsimd)
192dc9c6 5411 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5412 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5413 continue;
5414
29b0f896 5415 /* Do not verify operands when there are none. */
50aecf8c 5416 else
29b0f896 5417 {
c6fb90c8 5418 if (!t->operands)
2dbab7d5
L
5419 /* We've found a match; break out of loop. */
5420 break;
29b0f896 5421 }
252b5132 5422
539e75ad
L
5423 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5424 into Disp32/Disp16/Disp32 operand. */
5425 if (i.prefix[ADDR_PREFIX] != 0)
5426 {
40fb9820 5427 /* There should be only one Disp operand. */
539e75ad
L
5428 switch (flag_code)
5429 {
5430 case CODE_16BIT:
40fb9820
L
5431 for (j = 0; j < MAX_OPERANDS; j++)
5432 {
5433 if (operand_types[j].bitfield.disp16)
5434 {
5435 addr_prefix_disp = j;
5436 operand_types[j].bitfield.disp32 = 1;
5437 operand_types[j].bitfield.disp16 = 0;
5438 break;
5439 }
5440 }
539e75ad
L
5441 break;
5442 case CODE_32BIT:
40fb9820
L
5443 for (j = 0; j < MAX_OPERANDS; j++)
5444 {
5445 if (operand_types[j].bitfield.disp32)
5446 {
5447 addr_prefix_disp = j;
5448 operand_types[j].bitfield.disp32 = 0;
5449 operand_types[j].bitfield.disp16 = 1;
5450 break;
5451 }
5452 }
539e75ad
L
5453 break;
5454 case CODE_64BIT:
40fb9820
L
5455 for (j = 0; j < MAX_OPERANDS; j++)
5456 {
5457 if (operand_types[j].bitfield.disp64)
5458 {
5459 addr_prefix_disp = j;
5460 operand_types[j].bitfield.disp64 = 0;
5461 operand_types[j].bitfield.disp32 = 1;
5462 break;
5463 }
5464 }
539e75ad
L
5465 break;
5466 }
539e75ad
L
5467 }
5468
02a86693
L
5469 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5470 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5471 continue;
5472
56ffb741 5473 /* We check register size if needed. */
e2195274
JB
5474 if (t->opcode_modifier.checkregsize)
5475 {
5476 check_register = (1 << t->operands) - 1;
5477 if (i.broadcast)
5478 check_register &= ~(1 << i.broadcast->operand);
5479 }
5480 else
5481 check_register = 0;
5482
c6fb90c8 5483 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5484 switch (t->operands)
5485 {
5486 case 1:
40fb9820 5487 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5488 continue;
5489 break;
5490 case 2:
33eaf5de 5491 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5492 only in 32bit mode and we can use opcode 0x90. In 64bit
5493 mode, we can't use 0x90 for xchg %eax, %eax since it should
5494 zero-extend %eax to %rax. */
5495 if (flag_code == CODE_64BIT
5496 && t->base_opcode == 0x90
0dfbf9d7
L
5497 && operand_type_equal (&i.types [0], &acc32)
5498 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5499 continue;
1212781b
JB
5500 /* xrelease mov %eax, <disp> is another special case. It must not
5501 match the accumulator-only encoding of mov. */
5502 if (flag_code != CODE_64BIT
5503 && i.hle_prefix
5504 && t->base_opcode == 0xa0
5505 && i.types[0].bitfield.acc
5506 && operand_type_check (i.types[1], anymem))
5507 continue;
3ac21baa
JB
5508 if (!(size_match & MATCH_STRAIGHT))
5509 goto check_reverse;
86fa6981
L
5510 /* If we want store form, we reverse direction of operands. */
5511 if (i.dir_encoding == dir_encoding_store
5512 && t->opcode_modifier.d)
5513 goto check_reverse;
1a0670f3 5514 /* Fall through. */
b6169b20 5515
29b0f896 5516 case 3:
86fa6981
L
5517 /* If we want store form, we skip the current load. */
5518 if (i.dir_encoding == dir_encoding_store
5519 && i.mem_operands == 0
5520 && t->opcode_modifier.load)
fa99fab2 5521 continue;
1a0670f3 5522 /* Fall through. */
f48ff2ae 5523 case 4:
c0f3af97 5524 case 5:
c6fb90c8 5525 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5526 if (!operand_type_match (overlap0, i.types[0])
5527 || !operand_type_match (overlap1, i.types[1])
e2195274 5528 || ((check_register & 3) == 3
dc821c5f 5529 && !operand_type_register_match (i.types[0],
40fb9820 5530 operand_types[0],
dc821c5f 5531 i.types[1],
40fb9820 5532 operand_types[1])))
29b0f896
AM
5533 {
5534 /* Check if other direction is valid ... */
38e314eb 5535 if (!t->opcode_modifier.d)
29b0f896
AM
5536 continue;
5537
b6169b20 5538check_reverse:
3ac21baa
JB
5539 if (!(size_match & MATCH_REVERSE))
5540 continue;
29b0f896 5541 /* Try reversing direction of operands. */
c6fb90c8
L
5542 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5543 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5544 if (!operand_type_match (overlap0, i.types[0])
5545 || !operand_type_match (overlap1, i.types[1])
45664ddb 5546 || (check_register
dc821c5f 5547 && !operand_type_register_match (i.types[0],
45664ddb 5548 operand_types[1],
45664ddb
L
5549 i.types[1],
5550 operand_types[0])))
29b0f896
AM
5551 {
5552 /* Does not match either direction. */
5553 continue;
5554 }
38e314eb 5555 /* found_reverse_match holds which of D or FloatR
29b0f896 5556 we've found. */
38e314eb
JB
5557 if (!t->opcode_modifier.d)
5558 found_reverse_match = 0;
5559 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5560 found_reverse_match = Opcode_FloatD;
5561 else
38e314eb 5562 found_reverse_match = Opcode_D;
40fb9820 5563 if (t->opcode_modifier.floatr)
8a2ed489 5564 found_reverse_match |= Opcode_FloatR;
29b0f896 5565 }
f48ff2ae 5566 else
29b0f896 5567 {
f48ff2ae 5568 /* Found a forward 2 operand match here. */
d1cbb4db
L
5569 switch (t->operands)
5570 {
c0f3af97
L
5571 case 5:
5572 overlap4 = operand_type_and (i.types[4],
5573 operand_types[4]);
1a0670f3 5574 /* Fall through. */
d1cbb4db 5575 case 4:
c6fb90c8
L
5576 overlap3 = operand_type_and (i.types[3],
5577 operand_types[3]);
1a0670f3 5578 /* Fall through. */
d1cbb4db 5579 case 3:
c6fb90c8
L
5580 overlap2 = operand_type_and (i.types[2],
5581 operand_types[2]);
d1cbb4db
L
5582 break;
5583 }
29b0f896 5584
f48ff2ae
L
5585 switch (t->operands)
5586 {
c0f3af97
L
5587 case 5:
5588 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5589 || !operand_type_register_match (i.types[3],
c0f3af97 5590 operand_types[3],
c0f3af97
L
5591 i.types[4],
5592 operand_types[4]))
5593 continue;
1a0670f3 5594 /* Fall through. */
f48ff2ae 5595 case 4:
40fb9820 5596 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5597 || ((check_register & 0xa) == 0xa
5598 && !operand_type_register_match (i.types[1],
f7768225
JB
5599 operand_types[1],
5600 i.types[3],
e2195274
JB
5601 operand_types[3]))
5602 || ((check_register & 0xc) == 0xc
5603 && !operand_type_register_match (i.types[2],
5604 operand_types[2],
5605 i.types[3],
5606 operand_types[3])))
f48ff2ae 5607 continue;
1a0670f3 5608 /* Fall through. */
f48ff2ae
L
5609 case 3:
5610 /* Here we make use of the fact that there are no
23e42951 5611 reverse match 3 operand instructions. */
40fb9820 5612 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5613 || ((check_register & 5) == 5
5614 && !operand_type_register_match (i.types[0],
23e42951
JB
5615 operand_types[0],
5616 i.types[2],
e2195274
JB
5617 operand_types[2]))
5618 || ((check_register & 6) == 6
5619 && !operand_type_register_match (i.types[1],
5620 operand_types[1],
5621 i.types[2],
5622 operand_types[2])))
f48ff2ae
L
5623 continue;
5624 break;
5625 }
29b0f896 5626 }
f48ff2ae 5627 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5628 slip through to break. */
5629 }
3629bb00 5630 if (!found_cpu_match)
29b0f896
AM
5631 {
5632 found_reverse_match = 0;
5633 continue;
5634 }
c0f3af97 5635
5614d22c
JB
5636 /* Check if vector and VEX operands are valid. */
5637 if (check_VecOperands (t) || VEX_check_operands (t))
5638 {
5639 specific_error = i.error;
5640 continue;
5641 }
a683cc34 5642
29b0f896
AM
5643 /* We've found a match; break out of loop. */
5644 break;
5645 }
5646
5647 if (t == current_templates->end)
5648 {
5649 /* We found no match. */
a65babc9 5650 const char *err_msg;
5614d22c 5651 switch (specific_error ? specific_error : i.error)
a65babc9
L
5652 {
5653 default:
5654 abort ();
86e026a4 5655 case operand_size_mismatch:
a65babc9
L
5656 err_msg = _("operand size mismatch");
5657 break;
5658 case operand_type_mismatch:
5659 err_msg = _("operand type mismatch");
5660 break;
5661 case register_type_mismatch:
5662 err_msg = _("register type mismatch");
5663 break;
5664 case number_of_operands_mismatch:
5665 err_msg = _("number of operands mismatch");
5666 break;
5667 case invalid_instruction_suffix:
5668 err_msg = _("invalid instruction suffix");
5669 break;
5670 case bad_imm4:
4a2608e3 5671 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5672 break;
a65babc9
L
5673 case unsupported_with_intel_mnemonic:
5674 err_msg = _("unsupported with Intel mnemonic");
5675 break;
5676 case unsupported_syntax:
5677 err_msg = _("unsupported syntax");
5678 break;
5679 case unsupported:
35262a23 5680 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5681 current_templates->start->name);
5682 return NULL;
6c30d220
L
5683 case invalid_vsib_address:
5684 err_msg = _("invalid VSIB address");
5685 break;
7bab8ab5
JB
5686 case invalid_vector_register_set:
5687 err_msg = _("mask, index, and destination registers must be distinct");
5688 break;
6c30d220
L
5689 case unsupported_vector_index_register:
5690 err_msg = _("unsupported vector index register");
5691 break;
43234a1e
L
5692 case unsupported_broadcast:
5693 err_msg = _("unsupported broadcast");
5694 break;
5695 case broadcast_not_on_src_operand:
5696 err_msg = _("broadcast not on source memory operand");
5697 break;
5698 case broadcast_needed:
5699 err_msg = _("broadcast is needed for operand of such type");
5700 break;
5701 case unsupported_masking:
5702 err_msg = _("unsupported masking");
5703 break;
5704 case mask_not_on_destination:
5705 err_msg = _("mask not on destination operand");
5706 break;
5707 case no_default_mask:
5708 err_msg = _("default mask isn't allowed");
5709 break;
5710 case unsupported_rc_sae:
5711 err_msg = _("unsupported static rounding/sae");
5712 break;
5713 case rc_sae_operand_not_last_imm:
5714 if (intel_syntax)
5715 err_msg = _("RC/SAE operand must precede immediate operands");
5716 else
5717 err_msg = _("RC/SAE operand must follow immediate operands");
5718 break;
5719 case invalid_register_operand:
5720 err_msg = _("invalid register operand");
5721 break;
a65babc9
L
5722 }
5723 as_bad (_("%s for `%s'"), err_msg,
891edac4 5724 current_templates->start->name);
fa99fab2 5725 return NULL;
29b0f896 5726 }
252b5132 5727
29b0f896
AM
5728 if (!quiet_warnings)
5729 {
5730 if (!intel_syntax
40fb9820
L
5731 && (i.types[0].bitfield.jumpabsolute
5732 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5733 {
5734 as_warn (_("indirect %s without `*'"), t->name);
5735 }
5736
40fb9820
L
5737 if (t->opcode_modifier.isprefix
5738 && t->opcode_modifier.ignoresize)
29b0f896
AM
5739 {
5740 /* Warn them that a data or address size prefix doesn't
5741 affect assembly of the next line of code. */
5742 as_warn (_("stand-alone `%s' prefix"), t->name);
5743 }
5744 }
5745
5746 /* Copy the template we found. */
5747 i.tm = *t;
539e75ad
L
5748
5749 if (addr_prefix_disp != -1)
5750 i.tm.operand_types[addr_prefix_disp]
5751 = operand_types[addr_prefix_disp];
5752
29b0f896
AM
5753 if (found_reverse_match)
5754 {
5755 /* If we found a reverse match we must alter the opcode
5756 direction bit. found_reverse_match holds bits to change
5757 (different for int & float insns). */
5758
5759 i.tm.base_opcode ^= found_reverse_match;
5760
539e75ad
L
5761 i.tm.operand_types[0] = operand_types[1];
5762 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5763 }
5764
fa99fab2 5765 return t;
29b0f896
AM
5766}
5767
5768static int
e3bb37b5 5769check_string (void)
29b0f896 5770{
40fb9820
L
5771 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5772 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5773 {
5774 if (i.seg[0] != NULL && i.seg[0] != &es)
5775 {
a87af027 5776 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5777 i.tm.name,
a87af027
JB
5778 mem_op + 1,
5779 register_prefix);
29b0f896
AM
5780 return 0;
5781 }
5782 /* There's only ever one segment override allowed per instruction.
5783 This instruction possibly has a legal segment override on the
5784 second operand, so copy the segment to where non-string
5785 instructions store it, allowing common code. */
5786 i.seg[0] = i.seg[1];
5787 }
40fb9820 5788 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5789 {
5790 if (i.seg[1] != NULL && i.seg[1] != &es)
5791 {
a87af027 5792 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5793 i.tm.name,
a87af027
JB
5794 mem_op + 2,
5795 register_prefix);
29b0f896
AM
5796 return 0;
5797 }
5798 }
5799 return 1;
5800}
5801
5802static int
543613e9 5803process_suffix (void)
29b0f896
AM
5804{
5805 /* If matched instruction specifies an explicit instruction mnemonic
5806 suffix, use it. */
40fb9820
L
5807 if (i.tm.opcode_modifier.size16)
5808 i.suffix = WORD_MNEM_SUFFIX;
5809 else if (i.tm.opcode_modifier.size32)
5810 i.suffix = LONG_MNEM_SUFFIX;
5811 else if (i.tm.opcode_modifier.size64)
5812 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5813 else if (i.reg_operands)
5814 {
5815 /* If there's no instruction mnemonic suffix we try to invent one
5816 based on register operands. */
5817 if (!i.suffix)
5818 {
5819 /* We take i.suffix from the last register operand specified,
5820 Destination register type is more significant than source
381d071f
L
5821 register type. crc32 in SSE4.2 prefers source register
5822 type. */
5823 if (i.tm.base_opcode == 0xf20f38f1)
5824 {
dc821c5f 5825 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5826 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5827 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5828 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5829 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5830 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5831 }
9344ff29 5832 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5833 {
dc821c5f 5834 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5835 i.suffix = BYTE_MNEM_SUFFIX;
5836 }
381d071f
L
5837
5838 if (!i.suffix)
5839 {
5840 int op;
5841
20592a94
L
5842 if (i.tm.base_opcode == 0xf20f38f1
5843 || i.tm.base_opcode == 0xf20f38f0)
5844 {
5845 /* We have to know the operand size for crc32. */
5846 as_bad (_("ambiguous memory operand size for `%s`"),
5847 i.tm.name);
5848 return 0;
5849 }
5850
381d071f 5851 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5852 if (!i.tm.operand_types[op].bitfield.inoutportreg
5853 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5854 {
8819ada6
JB
5855 if (!i.types[op].bitfield.reg)
5856 continue;
5857 if (i.types[op].bitfield.byte)
5858 i.suffix = BYTE_MNEM_SUFFIX;
5859 else if (i.types[op].bitfield.word)
5860 i.suffix = WORD_MNEM_SUFFIX;
5861 else if (i.types[op].bitfield.dword)
5862 i.suffix = LONG_MNEM_SUFFIX;
5863 else if (i.types[op].bitfield.qword)
5864 i.suffix = QWORD_MNEM_SUFFIX;
5865 else
5866 continue;
5867 break;
381d071f
L
5868 }
5869 }
29b0f896
AM
5870 }
5871 else if (i.suffix == BYTE_MNEM_SUFFIX)
5872 {
2eb952a4
L
5873 if (intel_syntax
5874 && i.tm.opcode_modifier.ignoresize
5875 && i.tm.opcode_modifier.no_bsuf)
5876 i.suffix = 0;
5877 else if (!check_byte_reg ())
29b0f896
AM
5878 return 0;
5879 }
5880 else if (i.suffix == LONG_MNEM_SUFFIX)
5881 {
2eb952a4
L
5882 if (intel_syntax
5883 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5884 && i.tm.opcode_modifier.no_lsuf
5885 && !i.tm.opcode_modifier.todword
5886 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
5887 i.suffix = 0;
5888 else if (!check_long_reg ())
29b0f896
AM
5889 return 0;
5890 }
5891 else if (i.suffix == QWORD_MNEM_SUFFIX)
5892 {
955e1e6a
L
5893 if (intel_syntax
5894 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5895 && i.tm.opcode_modifier.no_qsuf
5896 && !i.tm.opcode_modifier.todword
5897 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
5898 i.suffix = 0;
5899 else if (!check_qword_reg ())
29b0f896
AM
5900 return 0;
5901 }
5902 else if (i.suffix == WORD_MNEM_SUFFIX)
5903 {
2eb952a4
L
5904 if (intel_syntax
5905 && i.tm.opcode_modifier.ignoresize
5906 && i.tm.opcode_modifier.no_wsuf)
5907 i.suffix = 0;
5908 else if (!check_word_reg ())
29b0f896
AM
5909 return 0;
5910 }
40fb9820 5911 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5912 /* Do nothing if the instruction is going to ignore the prefix. */
5913 ;
5914 else
5915 abort ();
5916 }
40fb9820 5917 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5918 && !i.suffix
5919 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5920 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5921 {
5922 i.suffix = stackop_size;
5923 }
9306ca4a
JB
5924 else if (intel_syntax
5925 && !i.suffix
40fb9820
L
5926 && (i.tm.operand_types[0].bitfield.jumpabsolute
5927 || i.tm.opcode_modifier.jumpbyte
5928 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5929 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5930 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5931 {
5932 switch (flag_code)
5933 {
5934 case CODE_64BIT:
40fb9820 5935 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5936 {
5937 i.suffix = QWORD_MNEM_SUFFIX;
5938 break;
5939 }
1a0670f3 5940 /* Fall through. */
9306ca4a 5941 case CODE_32BIT:
40fb9820 5942 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5943 i.suffix = LONG_MNEM_SUFFIX;
5944 break;
5945 case CODE_16BIT:
40fb9820 5946 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5947 i.suffix = WORD_MNEM_SUFFIX;
5948 break;
5949 }
5950 }
252b5132 5951
9306ca4a 5952 if (!i.suffix)
29b0f896 5953 {
9306ca4a
JB
5954 if (!intel_syntax)
5955 {
40fb9820 5956 if (i.tm.opcode_modifier.w)
9306ca4a 5957 {
4eed87de
AM
5958 as_bad (_("no instruction mnemonic suffix given and "
5959 "no register operands; can't size instruction"));
9306ca4a
JB
5960 return 0;
5961 }
5962 }
5963 else
5964 {
40fb9820 5965 unsigned int suffixes;
7ab9ffdd 5966
40fb9820
L
5967 suffixes = !i.tm.opcode_modifier.no_bsuf;
5968 if (!i.tm.opcode_modifier.no_wsuf)
5969 suffixes |= 1 << 1;
5970 if (!i.tm.opcode_modifier.no_lsuf)
5971 suffixes |= 1 << 2;
fc4adea1 5972 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5973 suffixes |= 1 << 3;
5974 if (!i.tm.opcode_modifier.no_ssuf)
5975 suffixes |= 1 << 4;
c2b9da16 5976 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
5977 suffixes |= 1 << 5;
5978
5979 /* There are more than suffix matches. */
5980 if (i.tm.opcode_modifier.w
9306ca4a 5981 || ((suffixes & (suffixes - 1))
40fb9820
L
5982 && !i.tm.opcode_modifier.defaultsize
5983 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5984 {
5985 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5986 return 0;
5987 }
5988 }
29b0f896 5989 }
252b5132 5990
d2224064
JB
5991 /* Change the opcode based on the operand size given by i.suffix. */
5992 switch (i.suffix)
29b0f896 5993 {
d2224064
JB
5994 /* Size floating point instruction. */
5995 case LONG_MNEM_SUFFIX:
5996 if (i.tm.opcode_modifier.floatmf)
5997 {
5998 i.tm.base_opcode ^= 4;
5999 break;
6000 }
6001 /* fall through */
6002 case WORD_MNEM_SUFFIX:
6003 case QWORD_MNEM_SUFFIX:
29b0f896 6004 /* It's not a byte, select word/dword operation. */
40fb9820 6005 if (i.tm.opcode_modifier.w)
29b0f896 6006 {
40fb9820 6007 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6008 i.tm.base_opcode |= 8;
6009 else
6010 i.tm.base_opcode |= 1;
6011 }
d2224064
JB
6012 /* fall through */
6013 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6014 /* Now select between word & dword operations via the operand
6015 size prefix, except for instructions that will ignore this
6016 prefix anyway. */
75c0a438
L
6017 if (i.reg_operands > 0
6018 && i.types[0].bitfield.reg
6019 && i.tm.opcode_modifier.addrprefixopreg
6020 && (i.tm.opcode_modifier.immext
6021 || i.operands == 1))
cb712a9e 6022 {
ca61edf2
L
6023 /* The address size override prefix changes the size of the
6024 first operand. */
40fb9820 6025 if ((flag_code == CODE_32BIT
75c0a438 6026 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6027 || (flag_code != CODE_32BIT
75c0a438 6028 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6029 if (!add_prefix (ADDR_PREFIX_OPCODE))
6030 return 0;
6031 }
6032 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6033 && !i.tm.opcode_modifier.ignoresize
6034 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
6035 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6036 || (flag_code == CODE_64BIT
40fb9820 6037 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6038 {
6039 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6040
40fb9820 6041 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6042 prefix = ADDR_PREFIX_OPCODE;
252b5132 6043
29b0f896
AM
6044 if (!add_prefix (prefix))
6045 return 0;
24eab124 6046 }
252b5132 6047
29b0f896
AM
6048 /* Set mode64 for an operand. */
6049 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6050 && flag_code == CODE_64BIT
d2224064 6051 && !i.tm.opcode_modifier.norex64
46e883c5 6052 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6053 need rex64. */
6054 && ! (i.operands == 2
6055 && i.tm.base_opcode == 0x90
6056 && i.tm.extension_opcode == None
6057 && operand_type_equal (&i.types [0], &acc64)
6058 && operand_type_equal (&i.types [1], &acc64)))
6059 i.rex |= REX_W;
3e73aa7c 6060
d2224064 6061 break;
29b0f896 6062 }
7ecd2f8b 6063
c0a30a9f
L
6064 if (i.reg_operands != 0
6065 && i.operands > 1
6066 && i.tm.opcode_modifier.addrprefixopreg
6067 && !i.tm.opcode_modifier.immext)
6068 {
6069 /* Check invalid register operand when the address size override
6070 prefix changes the size of register operands. */
6071 unsigned int op;
6072 enum { need_word, need_dword, need_qword } need;
6073
6074 if (flag_code == CODE_32BIT)
6075 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6076 else
6077 {
6078 if (i.prefix[ADDR_PREFIX])
6079 need = need_dword;
6080 else
6081 need = flag_code == CODE_64BIT ? need_qword : need_word;
6082 }
6083
6084 for (op = 0; op < i.operands; op++)
6085 if (i.types[op].bitfield.reg
6086 && ((need == need_word
6087 && !i.op[op].regs->reg_type.bitfield.word)
6088 || (need == need_dword
6089 && !i.op[op].regs->reg_type.bitfield.dword)
6090 || (need == need_qword
6091 && !i.op[op].regs->reg_type.bitfield.qword)))
6092 {
6093 as_bad (_("invalid register operand size for `%s'"),
6094 i.tm.name);
6095 return 0;
6096 }
6097 }
6098
29b0f896
AM
6099 return 1;
6100}
3e73aa7c 6101
29b0f896 6102static int
543613e9 6103check_byte_reg (void)
29b0f896
AM
6104{
6105 int op;
543613e9 6106
29b0f896
AM
6107 for (op = i.operands; --op >= 0;)
6108 {
dc821c5f
JB
6109 /* Skip non-register operands. */
6110 if (!i.types[op].bitfield.reg)
6111 continue;
6112
29b0f896
AM
6113 /* If this is an eight bit register, it's OK. If it's the 16 or
6114 32 bit version of an eight bit register, we will just use the
6115 low portion, and that's OK too. */
dc821c5f 6116 if (i.types[op].bitfield.byte)
29b0f896
AM
6117 continue;
6118
5a819eb9
JB
6119 /* I/O port address operands are OK too. */
6120 if (i.tm.operand_types[op].bitfield.inoutportreg)
6121 continue;
6122
9344ff29
L
6123 /* crc32 doesn't generate this warning. */
6124 if (i.tm.base_opcode == 0xf20f38f0)
6125 continue;
6126
dc821c5f
JB
6127 if ((i.types[op].bitfield.word
6128 || i.types[op].bitfield.dword
6129 || i.types[op].bitfield.qword)
5a819eb9
JB
6130 && i.op[op].regs->reg_num < 4
6131 /* Prohibit these changes in 64bit mode, since the lowering
6132 would be more complicated. */
6133 && flag_code != CODE_64BIT)
29b0f896 6134 {
29b0f896 6135#if REGISTER_WARNINGS
5a819eb9 6136 if (!quiet_warnings)
a540244d
L
6137 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6138 register_prefix,
dc821c5f 6139 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6140 ? REGNAM_AL - REGNAM_AX
6141 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6142 register_prefix,
29b0f896
AM
6143 i.op[op].regs->reg_name,
6144 i.suffix);
6145#endif
6146 continue;
6147 }
6148 /* Any other register is bad. */
dc821c5f 6149 if (i.types[op].bitfield.reg
40fb9820 6150 || i.types[op].bitfield.regmmx
1b54b8d7 6151 || i.types[op].bitfield.regsimd
40fb9820
L
6152 || i.types[op].bitfield.sreg2
6153 || i.types[op].bitfield.sreg3
6154 || i.types[op].bitfield.control
6155 || i.types[op].bitfield.debug
ca0d63fe 6156 || i.types[op].bitfield.test)
29b0f896 6157 {
a540244d
L
6158 as_bad (_("`%s%s' not allowed with `%s%c'"),
6159 register_prefix,
29b0f896
AM
6160 i.op[op].regs->reg_name,
6161 i.tm.name,
6162 i.suffix);
6163 return 0;
6164 }
6165 }
6166 return 1;
6167}
6168
6169static int
e3bb37b5 6170check_long_reg (void)
29b0f896
AM
6171{
6172 int op;
6173
6174 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6175 /* Skip non-register operands. */
6176 if (!i.types[op].bitfield.reg)
6177 continue;
29b0f896
AM
6178 /* Reject eight bit registers, except where the template requires
6179 them. (eg. movzb) */
dc821c5f
JB
6180 else if (i.types[op].bitfield.byte
6181 && (i.tm.operand_types[op].bitfield.reg
6182 || i.tm.operand_types[op].bitfield.acc)
6183 && (i.tm.operand_types[op].bitfield.word
6184 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6185 {
a540244d
L
6186 as_bad (_("`%s%s' not allowed with `%s%c'"),
6187 register_prefix,
29b0f896
AM
6188 i.op[op].regs->reg_name,
6189 i.tm.name,
6190 i.suffix);
6191 return 0;
6192 }
e4630f71 6193 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6194 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6195 && i.types[op].bitfield.word
6196 && (i.tm.operand_types[op].bitfield.reg
6197 || i.tm.operand_types[op].bitfield.acc)
6198 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6199 {
6200 /* Prohibit these changes in the 64bit mode, since the
6201 lowering is more complicated. */
6202 if (flag_code == CODE_64BIT)
252b5132 6203 {
2b5d6a91 6204 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6205 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6206 i.suffix);
6207 return 0;
252b5132 6208 }
29b0f896 6209#if REGISTER_WARNINGS
cecf1424
JB
6210 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6211 register_prefix,
6212 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6213 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6214#endif
252b5132 6215 }
e4630f71 6216 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6217 else if (i.types[op].bitfield.qword
6218 && (i.tm.operand_types[op].bitfield.reg
6219 || i.tm.operand_types[op].bitfield.acc)
6220 && i.tm.operand_types[op].bitfield.dword)
252b5132 6221 {
34828aad 6222 if (intel_syntax
ca61edf2 6223 && i.tm.opcode_modifier.toqword
1b54b8d7 6224 && !i.types[0].bitfield.regsimd)
34828aad 6225 {
ca61edf2 6226 /* Convert to QWORD. We want REX byte. */
34828aad
L
6227 i.suffix = QWORD_MNEM_SUFFIX;
6228 }
6229 else
6230 {
2b5d6a91 6231 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6232 register_prefix, i.op[op].regs->reg_name,
6233 i.suffix);
6234 return 0;
6235 }
29b0f896
AM
6236 }
6237 return 1;
6238}
252b5132 6239
29b0f896 6240static int
e3bb37b5 6241check_qword_reg (void)
29b0f896
AM
6242{
6243 int op;
252b5132 6244
29b0f896 6245 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6246 /* Skip non-register operands. */
6247 if (!i.types[op].bitfield.reg)
6248 continue;
29b0f896
AM
6249 /* Reject eight bit registers, except where the template requires
6250 them. (eg. movzb) */
dc821c5f
JB
6251 else if (i.types[op].bitfield.byte
6252 && (i.tm.operand_types[op].bitfield.reg
6253 || i.tm.operand_types[op].bitfield.acc)
6254 && (i.tm.operand_types[op].bitfield.word
6255 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6256 {
a540244d
L
6257 as_bad (_("`%s%s' not allowed with `%s%c'"),
6258 register_prefix,
29b0f896
AM
6259 i.op[op].regs->reg_name,
6260 i.tm.name,
6261 i.suffix);
6262 return 0;
6263 }
e4630f71 6264 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6265 else if ((i.types[op].bitfield.word
6266 || i.types[op].bitfield.dword)
6267 && (i.tm.operand_types[op].bitfield.reg
6268 || i.tm.operand_types[op].bitfield.acc)
6269 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6270 {
6271 /* Prohibit these changes in the 64bit mode, since the
6272 lowering is more complicated. */
34828aad 6273 if (intel_syntax
ca61edf2 6274 && i.tm.opcode_modifier.todword
1b54b8d7 6275 && !i.types[0].bitfield.regsimd)
34828aad 6276 {
ca61edf2 6277 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6278 i.suffix = LONG_MNEM_SUFFIX;
6279 }
6280 else
6281 {
2b5d6a91 6282 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6283 register_prefix, i.op[op].regs->reg_name,
6284 i.suffix);
6285 return 0;
6286 }
252b5132 6287 }
29b0f896
AM
6288 return 1;
6289}
252b5132 6290
29b0f896 6291static int
e3bb37b5 6292check_word_reg (void)
29b0f896
AM
6293{
6294 int op;
6295 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6296 /* Skip non-register operands. */
6297 if (!i.types[op].bitfield.reg)
6298 continue;
29b0f896
AM
6299 /* Reject eight bit registers, except where the template requires
6300 them. (eg. movzb) */
dc821c5f
JB
6301 else if (i.types[op].bitfield.byte
6302 && (i.tm.operand_types[op].bitfield.reg
6303 || i.tm.operand_types[op].bitfield.acc)
6304 && (i.tm.operand_types[op].bitfield.word
6305 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6306 {
a540244d
L
6307 as_bad (_("`%s%s' not allowed with `%s%c'"),
6308 register_prefix,
29b0f896
AM
6309 i.op[op].regs->reg_name,
6310 i.tm.name,
6311 i.suffix);
6312 return 0;
6313 }
e4630f71 6314 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6315 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6316 && (i.types[op].bitfield.dword
6317 || i.types[op].bitfield.qword)
6318 && (i.tm.operand_types[op].bitfield.reg
6319 || i.tm.operand_types[op].bitfield.acc)
6320 && i.tm.operand_types[op].bitfield.word)
252b5132 6321 {
29b0f896
AM
6322 /* Prohibit these changes in the 64bit mode, since the
6323 lowering is more complicated. */
6324 if (flag_code == CODE_64BIT)
252b5132 6325 {
2b5d6a91 6326 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6327 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6328 i.suffix);
6329 return 0;
252b5132 6330 }
29b0f896 6331#if REGISTER_WARNINGS
cecf1424
JB
6332 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6333 register_prefix,
6334 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6335 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6336#endif
6337 }
6338 return 1;
6339}
252b5132 6340
29b0f896 6341static int
40fb9820 6342update_imm (unsigned int j)
29b0f896 6343{
bc0844ae 6344 i386_operand_type overlap = i.types[j];
40fb9820
L
6345 if ((overlap.bitfield.imm8
6346 || overlap.bitfield.imm8s
6347 || overlap.bitfield.imm16
6348 || overlap.bitfield.imm32
6349 || overlap.bitfield.imm32s
6350 || overlap.bitfield.imm64)
0dfbf9d7
L
6351 && !operand_type_equal (&overlap, &imm8)
6352 && !operand_type_equal (&overlap, &imm8s)
6353 && !operand_type_equal (&overlap, &imm16)
6354 && !operand_type_equal (&overlap, &imm32)
6355 && !operand_type_equal (&overlap, &imm32s)
6356 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6357 {
6358 if (i.suffix)
6359 {
40fb9820
L
6360 i386_operand_type temp;
6361
0dfbf9d7 6362 operand_type_set (&temp, 0);
7ab9ffdd 6363 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6364 {
6365 temp.bitfield.imm8 = overlap.bitfield.imm8;
6366 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6367 }
6368 else if (i.suffix == WORD_MNEM_SUFFIX)
6369 temp.bitfield.imm16 = overlap.bitfield.imm16;
6370 else if (i.suffix == QWORD_MNEM_SUFFIX)
6371 {
6372 temp.bitfield.imm64 = overlap.bitfield.imm64;
6373 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6374 }
6375 else
6376 temp.bitfield.imm32 = overlap.bitfield.imm32;
6377 overlap = temp;
29b0f896 6378 }
0dfbf9d7
L
6379 else if (operand_type_equal (&overlap, &imm16_32_32s)
6380 || operand_type_equal (&overlap, &imm16_32)
6381 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6382 {
40fb9820 6383 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6384 overlap = imm16;
40fb9820 6385 else
65da13b5 6386 overlap = imm32s;
29b0f896 6387 }
0dfbf9d7
L
6388 if (!operand_type_equal (&overlap, &imm8)
6389 && !operand_type_equal (&overlap, &imm8s)
6390 && !operand_type_equal (&overlap, &imm16)
6391 && !operand_type_equal (&overlap, &imm32)
6392 && !operand_type_equal (&overlap, &imm32s)
6393 && !operand_type_equal (&overlap, &imm64))
29b0f896 6394 {
4eed87de
AM
6395 as_bad (_("no instruction mnemonic suffix given; "
6396 "can't determine immediate size"));
29b0f896
AM
6397 return 0;
6398 }
6399 }
40fb9820 6400 i.types[j] = overlap;
29b0f896 6401
40fb9820
L
6402 return 1;
6403}
6404
6405static int
6406finalize_imm (void)
6407{
bc0844ae 6408 unsigned int j, n;
29b0f896 6409
bc0844ae
L
6410 /* Update the first 2 immediate operands. */
6411 n = i.operands > 2 ? 2 : i.operands;
6412 if (n)
6413 {
6414 for (j = 0; j < n; j++)
6415 if (update_imm (j) == 0)
6416 return 0;
40fb9820 6417
bc0844ae
L
6418 /* The 3rd operand can't be immediate operand. */
6419 gas_assert (operand_type_check (i.types[2], imm) == 0);
6420 }
29b0f896
AM
6421
6422 return 1;
6423}
6424
6425static int
e3bb37b5 6426process_operands (void)
29b0f896
AM
6427{
6428 /* Default segment register this instruction will use for memory
6429 accesses. 0 means unknown. This is only for optimizing out
6430 unnecessary segment overrides. */
6431 const seg_entry *default_seg = 0;
6432
2426c15f 6433 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6434 {
91d6fa6a
NC
6435 unsigned int dupl = i.operands;
6436 unsigned int dest = dupl - 1;
9fcfb3d7
L
6437 unsigned int j;
6438
c0f3af97 6439 /* The destination must be an xmm register. */
9c2799c2 6440 gas_assert (i.reg_operands
91d6fa6a 6441 && MAX_OPERANDS > dupl
7ab9ffdd 6442 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6443
1b54b8d7
JB
6444 if (i.tm.operand_types[0].bitfield.acc
6445 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6446 {
8cd7925b 6447 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6448 {
6449 /* Keep xmm0 for instructions with VEX prefix and 3
6450 sources. */
1b54b8d7
JB
6451 i.tm.operand_types[0].bitfield.acc = 0;
6452 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6453 goto duplicate;
6454 }
e2ec9d29 6455 else
c0f3af97
L
6456 {
6457 /* We remove the first xmm0 and keep the number of
6458 operands unchanged, which in fact duplicates the
6459 destination. */
6460 for (j = 1; j < i.operands; j++)
6461 {
6462 i.op[j - 1] = i.op[j];
6463 i.types[j - 1] = i.types[j];
6464 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6465 }
6466 }
6467 }
6468 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6469 {
91d6fa6a 6470 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6471 && (i.tm.opcode_modifier.vexsources
6472 == VEX3SOURCES));
c0f3af97
L
6473
6474 /* Add the implicit xmm0 for instructions with VEX prefix
6475 and 3 sources. */
6476 for (j = i.operands; j > 0; j--)
6477 {
6478 i.op[j] = i.op[j - 1];
6479 i.types[j] = i.types[j - 1];
6480 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6481 }
6482 i.op[0].regs
6483 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6484 i.types[0] = regxmm;
c0f3af97
L
6485 i.tm.operand_types[0] = regxmm;
6486
6487 i.operands += 2;
6488 i.reg_operands += 2;
6489 i.tm.operands += 2;
6490
91d6fa6a 6491 dupl++;
c0f3af97 6492 dest++;
91d6fa6a
NC
6493 i.op[dupl] = i.op[dest];
6494 i.types[dupl] = i.types[dest];
6495 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6496 }
c0f3af97
L
6497 else
6498 {
6499duplicate:
6500 i.operands++;
6501 i.reg_operands++;
6502 i.tm.operands++;
6503
91d6fa6a
NC
6504 i.op[dupl] = i.op[dest];
6505 i.types[dupl] = i.types[dest];
6506 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6507 }
6508
6509 if (i.tm.opcode_modifier.immext)
6510 process_immext ();
6511 }
1b54b8d7
JB
6512 else if (i.tm.operand_types[0].bitfield.acc
6513 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6514 {
6515 unsigned int j;
6516
9fcfb3d7
L
6517 for (j = 1; j < i.operands; j++)
6518 {
6519 i.op[j - 1] = i.op[j];
6520 i.types[j - 1] = i.types[j];
6521
6522 /* We need to adjust fields in i.tm since they are used by
6523 build_modrm_byte. */
6524 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6525 }
6526
e2ec9d29
L
6527 i.operands--;
6528 i.reg_operands--;
e2ec9d29
L
6529 i.tm.operands--;
6530 }
920d2ddc
IT
6531 else if (i.tm.opcode_modifier.implicitquadgroup)
6532 {
a477a8c4
JB
6533 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6534
920d2ddc 6535 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6536 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6537 regnum = register_number (i.op[1].regs);
6538 first_reg_in_group = regnum & ~3;
6539 last_reg_in_group = first_reg_in_group + 3;
6540 if (regnum != first_reg_in_group)
6541 as_warn (_("source register `%s%s' implicitly denotes"
6542 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6543 register_prefix, i.op[1].regs->reg_name,
6544 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6545 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6546 i.tm.name);
6547 }
e2ec9d29
L
6548 else if (i.tm.opcode_modifier.regkludge)
6549 {
6550 /* The imul $imm, %reg instruction is converted into
6551 imul $imm, %reg, %reg, and the clr %reg instruction
6552 is converted into xor %reg, %reg. */
6553
6554 unsigned int first_reg_op;
6555
6556 if (operand_type_check (i.types[0], reg))
6557 first_reg_op = 0;
6558 else
6559 first_reg_op = 1;
6560 /* Pretend we saw the extra register operand. */
9c2799c2 6561 gas_assert (i.reg_operands == 1
7ab9ffdd 6562 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6563 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6564 i.types[first_reg_op + 1] = i.types[first_reg_op];
6565 i.operands++;
6566 i.reg_operands++;
29b0f896
AM
6567 }
6568
40fb9820 6569 if (i.tm.opcode_modifier.shortform)
29b0f896 6570 {
40fb9820
L
6571 if (i.types[0].bitfield.sreg2
6572 || i.types[0].bitfield.sreg3)
29b0f896 6573 {
4eed87de
AM
6574 if (i.tm.base_opcode == POP_SEG_SHORT
6575 && i.op[0].regs->reg_num == 1)
29b0f896 6576 {
a87af027 6577 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6578 return 0;
29b0f896 6579 }
4eed87de
AM
6580 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6581 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6582 i.rex |= REX_B;
4eed87de
AM
6583 }
6584 else
6585 {
7ab9ffdd 6586 /* The register or float register operand is in operand
85f10a01 6587 0 or 1. */
40fb9820 6588 unsigned int op;
7ab9ffdd 6589
ca0d63fe 6590 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6591 || operand_type_check (i.types[0], reg))
6592 op = 0;
6593 else
6594 op = 1;
4eed87de
AM
6595 /* Register goes in low 3 bits of opcode. */
6596 i.tm.base_opcode |= i.op[op].regs->reg_num;
6597 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6598 i.rex |= REX_B;
40fb9820 6599 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6600 {
4eed87de
AM
6601 /* Warn about some common errors, but press on regardless.
6602 The first case can be generated by gcc (<= 2.8.1). */
6603 if (i.operands == 2)
6604 {
6605 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6606 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6607 register_prefix, i.op[!intel_syntax].regs->reg_name,
6608 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6609 }
6610 else
6611 {
6612 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6613 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6614 register_prefix, i.op[0].regs->reg_name);
4eed87de 6615 }
29b0f896
AM
6616 }
6617 }
6618 }
40fb9820 6619 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6620 {
6621 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6622 must be put into the modrm byte). Now, we make the modrm and
6623 index base bytes based on all the info we've collected. */
29b0f896
AM
6624
6625 default_seg = build_modrm_byte ();
6626 }
8a2ed489 6627 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6628 {
6629 default_seg = &ds;
6630 }
40fb9820 6631 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6632 {
6633 /* For the string instructions that allow a segment override
6634 on one of their operands, the default segment is ds. */
6635 default_seg = &ds;
6636 }
6637
75178d9d
L
6638 if (i.tm.base_opcode == 0x8d /* lea */
6639 && i.seg[0]
6640 && !quiet_warnings)
30123838 6641 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6642
6643 /* If a segment was explicitly specified, and the specified segment
6644 is not the default, use an opcode prefix to select it. If we
6645 never figured out what the default segment is, then default_seg
6646 will be zero at this point, and the specified segment prefix will
6647 always be used. */
29b0f896
AM
6648 if ((i.seg[0]) && (i.seg[0] != default_seg))
6649 {
6650 if (!add_prefix (i.seg[0]->seg_prefix))
6651 return 0;
6652 }
6653 return 1;
6654}
6655
6656static const seg_entry *
e3bb37b5 6657build_modrm_byte (void)
29b0f896
AM
6658{
6659 const seg_entry *default_seg = 0;
c0f3af97 6660 unsigned int source, dest;
8cd7925b 6661 int vex_3_sources;
c0f3af97 6662
8cd7925b 6663 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6664 if (vex_3_sources)
6665 {
91d6fa6a 6666 unsigned int nds, reg_slot;
4c2c6516 6667 expressionS *exp;
c0f3af97 6668
6b8d3588 6669 dest = i.operands - 1;
c0f3af97 6670 nds = dest - 1;
922d8de8 6671
a683cc34 6672 /* There are 2 kinds of instructions:
bed3d976
JB
6673 1. 5 operands: 4 register operands or 3 register operands
6674 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6675 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6676 ZMM register.
bed3d976 6677 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6678 plus 1 memory operand, with VexXDS. */
922d8de8 6679 gas_assert ((i.reg_operands == 4
bed3d976
JB
6680 || (i.reg_operands == 3 && i.mem_operands == 1))
6681 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6682 && i.tm.opcode_modifier.vexw
6683 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6684
48db9223
JB
6685 /* If VexW1 is set, the first non-immediate operand is the source and
6686 the second non-immediate one is encoded in the immediate operand. */
6687 if (i.tm.opcode_modifier.vexw == VEXW1)
6688 {
6689 source = i.imm_operands;
6690 reg_slot = i.imm_operands + 1;
6691 }
6692 else
6693 {
6694 source = i.imm_operands + 1;
6695 reg_slot = i.imm_operands;
6696 }
6697
a683cc34 6698 if (i.imm_operands == 0)
bed3d976
JB
6699 {
6700 /* When there is no immediate operand, generate an 8bit
6701 immediate operand to encode the first operand. */
6702 exp = &im_expressions[i.imm_operands++];
6703 i.op[i.operands].imms = exp;
6704 i.types[i.operands] = imm8;
6705 i.operands++;
6706
6707 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6708 exp->X_op = O_constant;
6709 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6710 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6711 }
922d8de8 6712 else
bed3d976
JB
6713 {
6714 unsigned int imm_slot;
a683cc34 6715
2f1bada2
JB
6716 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6717
bed3d976
JB
6718 if (i.tm.opcode_modifier.immext)
6719 {
6720 /* When ImmExt is set, the immediate byte is the last
6721 operand. */
6722 imm_slot = i.operands - 1;
6723 source--;
6724 reg_slot--;
6725 }
6726 else
6727 {
6728 imm_slot = 0;
6729
6730 /* Turn on Imm8 so that output_imm will generate it. */
6731 i.types[imm_slot].bitfield.imm8 = 1;
6732 }
6733
6734 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6735 i.op[imm_slot].imms->X_add_number
6736 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6737 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6738 }
a683cc34 6739
10c17abd 6740 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6741 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6742 }
6743 else
6744 source = dest = 0;
29b0f896
AM
6745
6746 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6747 implicit registers do not count. If there are 3 register
6748 operands, it must be a instruction with VexNDS. For a
6749 instruction with VexNDD, the destination register is encoded
6750 in VEX prefix. If there are 4 register operands, it must be
6751 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6752 if (i.mem_operands == 0
6753 && ((i.reg_operands == 2
2426c15f 6754 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6755 || (i.reg_operands == 3
2426c15f 6756 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6757 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6758 {
cab737b9
L
6759 switch (i.operands)
6760 {
6761 case 2:
6762 source = 0;
6763 break;
6764 case 3:
c81128dc
L
6765 /* When there are 3 operands, one of them may be immediate,
6766 which may be the first or the last operand. Otherwise,
c0f3af97
L
6767 the first operand must be shift count register (cl) or it
6768 is an instruction with VexNDS. */
9c2799c2 6769 gas_assert (i.imm_operands == 1
7ab9ffdd 6770 || (i.imm_operands == 0
2426c15f 6771 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6772 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6773 if (operand_type_check (i.types[0], imm)
6774 || i.types[0].bitfield.shiftcount)
6775 source = 1;
6776 else
6777 source = 0;
cab737b9
L
6778 break;
6779 case 4:
368d64cc
L
6780 /* When there are 4 operands, the first two must be 8bit
6781 immediate operands. The source operand will be the 3rd
c0f3af97
L
6782 one.
6783
6784 For instructions with VexNDS, if the first operand
6785 an imm8, the source operand is the 2nd one. If the last
6786 operand is imm8, the source operand is the first one. */
9c2799c2 6787 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6788 && i.types[0].bitfield.imm8
6789 && i.types[1].bitfield.imm8)
2426c15f 6790 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6791 && i.imm_operands == 1
6792 && (i.types[0].bitfield.imm8
43234a1e
L
6793 || i.types[i.operands - 1].bitfield.imm8
6794 || i.rounding)));
9f2670f2
L
6795 if (i.imm_operands == 2)
6796 source = 2;
6797 else
c0f3af97
L
6798 {
6799 if (i.types[0].bitfield.imm8)
6800 source = 1;
6801 else
6802 source = 0;
6803 }
c0f3af97
L
6804 break;
6805 case 5:
e771e7c9 6806 if (is_evex_encoding (&i.tm))
43234a1e
L
6807 {
6808 /* For EVEX instructions, when there are 5 operands, the
6809 first one must be immediate operand. If the second one
6810 is immediate operand, the source operand is the 3th
6811 one. If the last one is immediate operand, the source
6812 operand is the 2nd one. */
6813 gas_assert (i.imm_operands == 2
6814 && i.tm.opcode_modifier.sae
6815 && operand_type_check (i.types[0], imm));
6816 if (operand_type_check (i.types[1], imm))
6817 source = 2;
6818 else if (operand_type_check (i.types[4], imm))
6819 source = 1;
6820 else
6821 abort ();
6822 }
cab737b9
L
6823 break;
6824 default:
6825 abort ();
6826 }
6827
c0f3af97
L
6828 if (!vex_3_sources)
6829 {
6830 dest = source + 1;
6831
43234a1e
L
6832 /* RC/SAE operand could be between DEST and SRC. That happens
6833 when one operand is GPR and the other one is XMM/YMM/ZMM
6834 register. */
6835 if (i.rounding && i.rounding->operand == (int) dest)
6836 dest++;
6837
2426c15f 6838 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6839 {
43234a1e 6840 /* For instructions with VexNDS, the register-only source
c5d0745b 6841 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6842 register. It is encoded in VEX prefix. We need to
6843 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6844
6845 i386_operand_type op;
6846 unsigned int vvvv;
6847
6848 /* Check register-only source operand when two source
6849 operands are swapped. */
6850 if (!i.tm.operand_types[source].bitfield.baseindex
6851 && i.tm.operand_types[dest].bitfield.baseindex)
6852 {
6853 vvvv = source;
6854 source = dest;
6855 }
6856 else
6857 vvvv = dest;
6858
6859 op = i.tm.operand_types[vvvv];
fa99fab2 6860 op.bitfield.regmem = 0;
c0f3af97 6861 if ((dest + 1) >= i.operands
dc821c5f
JB
6862 || ((!op.bitfield.reg
6863 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6864 && !op.bitfield.regsimd
43234a1e 6865 && !operand_type_equal (&op, &regmask)))
c0f3af97 6866 abort ();
f12dc422 6867 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6868 dest++;
6869 }
6870 }
29b0f896
AM
6871
6872 i.rm.mode = 3;
6873 /* One of the register operands will be encoded in the i.tm.reg
6874 field, the other in the combined i.tm.mode and i.tm.regmem
6875 fields. If no form of this instruction supports a memory
6876 destination operand, then we assume the source operand may
6877 sometimes be a memory operand and so we need to store the
6878 destination in the i.rm.reg field. */
40fb9820
L
6879 if (!i.tm.operand_types[dest].bitfield.regmem
6880 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6881 {
6882 i.rm.reg = i.op[dest].regs->reg_num;
6883 i.rm.regmem = i.op[source].regs->reg_num;
6884 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6885 i.rex |= REX_R;
43234a1e
L
6886 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6887 i.vrex |= REX_R;
29b0f896 6888 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6889 i.rex |= REX_B;
43234a1e
L
6890 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6891 i.vrex |= REX_B;
29b0f896
AM
6892 }
6893 else
6894 {
6895 i.rm.reg = i.op[source].regs->reg_num;
6896 i.rm.regmem = i.op[dest].regs->reg_num;
6897 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6898 i.rex |= REX_B;
43234a1e
L
6899 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6900 i.vrex |= REX_B;
29b0f896 6901 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6902 i.rex |= REX_R;
43234a1e
L
6903 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6904 i.vrex |= REX_R;
29b0f896 6905 }
e0c7f900 6906 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 6907 {
e0c7f900 6908 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 6909 abort ();
e0c7f900 6910 i.rex &= ~REX_R;
c4a530c5
JB
6911 add_prefix (LOCK_PREFIX_OPCODE);
6912 }
29b0f896
AM
6913 }
6914 else
6915 { /* If it's not 2 reg operands... */
c0f3af97
L
6916 unsigned int mem;
6917
29b0f896
AM
6918 if (i.mem_operands)
6919 {
6920 unsigned int fake_zero_displacement = 0;
99018f42 6921 unsigned int op;
4eed87de 6922
7ab9ffdd
L
6923 for (op = 0; op < i.operands; op++)
6924 if (operand_type_check (i.types[op], anymem))
6925 break;
7ab9ffdd 6926 gas_assert (op < i.operands);
29b0f896 6927
6c30d220
L
6928 if (i.tm.opcode_modifier.vecsib)
6929 {
6930 if (i.index_reg->reg_num == RegEiz
6931 || i.index_reg->reg_num == RegRiz)
6932 abort ();
6933
6934 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6935 if (!i.base_reg)
6936 {
6937 i.sib.base = NO_BASE_REGISTER;
6938 i.sib.scale = i.log2_scale_factor;
6939 i.types[op].bitfield.disp8 = 0;
6940 i.types[op].bitfield.disp16 = 0;
6941 i.types[op].bitfield.disp64 = 0;
43083a50 6942 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
6943 {
6944 /* Must be 32 bit */
6945 i.types[op].bitfield.disp32 = 1;
6946 i.types[op].bitfield.disp32s = 0;
6947 }
6948 else
6949 {
6950 i.types[op].bitfield.disp32 = 0;
6951 i.types[op].bitfield.disp32s = 1;
6952 }
6953 }
6954 i.sib.index = i.index_reg->reg_num;
6955 if ((i.index_reg->reg_flags & RegRex) != 0)
6956 i.rex |= REX_X;
43234a1e
L
6957 if ((i.index_reg->reg_flags & RegVRex) != 0)
6958 i.vrex |= REX_X;
6c30d220
L
6959 }
6960
29b0f896
AM
6961 default_seg = &ds;
6962
6963 if (i.base_reg == 0)
6964 {
6965 i.rm.mode = 0;
6966 if (!i.disp_operands)
9bb129e8 6967 fake_zero_displacement = 1;
29b0f896
AM
6968 if (i.index_reg == 0)
6969 {
73053c1f
JB
6970 i386_operand_type newdisp;
6971
6c30d220 6972 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6973 /* Operand is just <disp> */
20f0a1fc 6974 if (flag_code == CODE_64BIT)
29b0f896
AM
6975 {
6976 /* 64bit mode overwrites the 32bit absolute
6977 addressing by RIP relative addressing and
6978 absolute addressing is encoded by one of the
6979 redundant SIB forms. */
6980 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6981 i.sib.base = NO_BASE_REGISTER;
6982 i.sib.index = NO_INDEX_REGISTER;
73053c1f 6983 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 6984 }
fc225355
L
6985 else if ((flag_code == CODE_16BIT)
6986 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6987 {
6988 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 6989 newdisp = disp16;
20f0a1fc
NC
6990 }
6991 else
6992 {
6993 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 6994 newdisp = disp32;
29b0f896 6995 }
73053c1f
JB
6996 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6997 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 6998 }
6c30d220 6999 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7000 {
6c30d220 7001 /* !i.base_reg && i.index_reg */
db51cc60
L
7002 if (i.index_reg->reg_num == RegEiz
7003 || i.index_reg->reg_num == RegRiz)
7004 i.sib.index = NO_INDEX_REGISTER;
7005 else
7006 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7007 i.sib.base = NO_BASE_REGISTER;
7008 i.sib.scale = i.log2_scale_factor;
7009 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7010 i.types[op].bitfield.disp8 = 0;
7011 i.types[op].bitfield.disp16 = 0;
7012 i.types[op].bitfield.disp64 = 0;
43083a50 7013 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7014 {
7015 /* Must be 32 bit */
7016 i.types[op].bitfield.disp32 = 1;
7017 i.types[op].bitfield.disp32s = 0;
7018 }
29b0f896 7019 else
40fb9820
L
7020 {
7021 i.types[op].bitfield.disp32 = 0;
7022 i.types[op].bitfield.disp32s = 1;
7023 }
29b0f896 7024 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7025 i.rex |= REX_X;
29b0f896
AM
7026 }
7027 }
7028 /* RIP addressing for 64bit mode. */
9a04903e
JB
7029 else if (i.base_reg->reg_num == RegRip ||
7030 i.base_reg->reg_num == RegEip)
29b0f896 7031 {
6c30d220 7032 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7033 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7034 i.types[op].bitfield.disp8 = 0;
7035 i.types[op].bitfield.disp16 = 0;
7036 i.types[op].bitfield.disp32 = 0;
7037 i.types[op].bitfield.disp32s = 1;
7038 i.types[op].bitfield.disp64 = 0;
71903a11 7039 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7040 if (! i.disp_operands)
7041 fake_zero_displacement = 1;
29b0f896 7042 }
dc821c5f 7043 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7044 {
6c30d220 7045 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7046 switch (i.base_reg->reg_num)
7047 {
7048 case 3: /* (%bx) */
7049 if (i.index_reg == 0)
7050 i.rm.regmem = 7;
7051 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7052 i.rm.regmem = i.index_reg->reg_num - 6;
7053 break;
7054 case 5: /* (%bp) */
7055 default_seg = &ss;
7056 if (i.index_reg == 0)
7057 {
7058 i.rm.regmem = 6;
40fb9820 7059 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7060 {
7061 /* fake (%bp) into 0(%bp) */
b5014f7a 7062 i.types[op].bitfield.disp8 = 1;
252b5132 7063 fake_zero_displacement = 1;
29b0f896
AM
7064 }
7065 }
7066 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7067 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7068 break;
7069 default: /* (%si) -> 4 or (%di) -> 5 */
7070 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7071 }
7072 i.rm.mode = mode_from_disp_size (i.types[op]);
7073 }
7074 else /* i.base_reg and 32/64 bit mode */
7075 {
7076 if (flag_code == CODE_64BIT
40fb9820
L
7077 && operand_type_check (i.types[op], disp))
7078 {
73053c1f
JB
7079 i.types[op].bitfield.disp16 = 0;
7080 i.types[op].bitfield.disp64 = 0;
40fb9820 7081 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7082 {
7083 i.types[op].bitfield.disp32 = 0;
7084 i.types[op].bitfield.disp32s = 1;
7085 }
40fb9820 7086 else
73053c1f
JB
7087 {
7088 i.types[op].bitfield.disp32 = 1;
7089 i.types[op].bitfield.disp32s = 0;
7090 }
40fb9820 7091 }
20f0a1fc 7092
6c30d220
L
7093 if (!i.tm.opcode_modifier.vecsib)
7094 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7095 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7096 i.rex |= REX_B;
29b0f896
AM
7097 i.sib.base = i.base_reg->reg_num;
7098 /* x86-64 ignores REX prefix bit here to avoid decoder
7099 complications. */
848930b2
JB
7100 if (!(i.base_reg->reg_flags & RegRex)
7101 && (i.base_reg->reg_num == EBP_REG_NUM
7102 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7103 default_seg = &ss;
848930b2 7104 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7105 {
848930b2 7106 fake_zero_displacement = 1;
b5014f7a 7107 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7108 }
7109 i.sib.scale = i.log2_scale_factor;
7110 if (i.index_reg == 0)
7111 {
6c30d220 7112 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7113 /* <disp>(%esp) becomes two byte modrm with no index
7114 register. We've already stored the code for esp
7115 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7116 Any base register besides %esp will not use the
7117 extra modrm byte. */
7118 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7119 }
6c30d220 7120 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7121 {
db51cc60
L
7122 if (i.index_reg->reg_num == RegEiz
7123 || i.index_reg->reg_num == RegRiz)
7124 i.sib.index = NO_INDEX_REGISTER;
7125 else
7126 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7127 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7128 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7129 i.rex |= REX_X;
29b0f896 7130 }
67a4f2b7
AO
7131
7132 if (i.disp_operands
7133 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7134 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7135 i.rm.mode = 0;
7136 else
a501d77e
L
7137 {
7138 if (!fake_zero_displacement
7139 && !i.disp_operands
7140 && i.disp_encoding)
7141 {
7142 fake_zero_displacement = 1;
7143 if (i.disp_encoding == disp_encoding_8bit)
7144 i.types[op].bitfield.disp8 = 1;
7145 else
7146 i.types[op].bitfield.disp32 = 1;
7147 }
7148 i.rm.mode = mode_from_disp_size (i.types[op]);
7149 }
29b0f896 7150 }
252b5132 7151
29b0f896
AM
7152 if (fake_zero_displacement)
7153 {
7154 /* Fakes a zero displacement assuming that i.types[op]
7155 holds the correct displacement size. */
7156 expressionS *exp;
7157
9c2799c2 7158 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7159 exp = &disp_expressions[i.disp_operands++];
7160 i.op[op].disps = exp;
7161 exp->X_op = O_constant;
7162 exp->X_add_number = 0;
7163 exp->X_add_symbol = (symbolS *) 0;
7164 exp->X_op_symbol = (symbolS *) 0;
7165 }
c0f3af97
L
7166
7167 mem = op;
29b0f896 7168 }
c0f3af97
L
7169 else
7170 mem = ~0;
252b5132 7171
8c43a48b 7172 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7173 {
7174 if (operand_type_check (i.types[0], imm))
7175 i.vex.register_specifier = NULL;
7176 else
7177 {
7178 /* VEX.vvvv encodes one of the sources when the first
7179 operand is not an immediate. */
1ef99a7b 7180 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7181 i.vex.register_specifier = i.op[0].regs;
7182 else
7183 i.vex.register_specifier = i.op[1].regs;
7184 }
7185
7186 /* Destination is a XMM register encoded in the ModRM.reg
7187 and VEX.R bit. */
7188 i.rm.reg = i.op[2].regs->reg_num;
7189 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7190 i.rex |= REX_R;
7191
7192 /* ModRM.rm and VEX.B encodes the other source. */
7193 if (!i.mem_operands)
7194 {
7195 i.rm.mode = 3;
7196
1ef99a7b 7197 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7198 i.rm.regmem = i.op[1].regs->reg_num;
7199 else
7200 i.rm.regmem = i.op[0].regs->reg_num;
7201
7202 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7203 i.rex |= REX_B;
7204 }
7205 }
2426c15f 7206 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7207 {
7208 i.vex.register_specifier = i.op[2].regs;
7209 if (!i.mem_operands)
7210 {
7211 i.rm.mode = 3;
7212 i.rm.regmem = i.op[1].regs->reg_num;
7213 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7214 i.rex |= REX_B;
7215 }
7216 }
29b0f896
AM
7217 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7218 (if any) based on i.tm.extension_opcode. Again, we must be
7219 careful to make sure that segment/control/debug/test/MMX
7220 registers are coded into the i.rm.reg field. */
f88c9eb0 7221 else if (i.reg_operands)
29b0f896 7222 {
99018f42 7223 unsigned int op;
7ab9ffdd
L
7224 unsigned int vex_reg = ~0;
7225
7226 for (op = 0; op < i.operands; op++)
dc821c5f 7227 if (i.types[op].bitfield.reg
7ab9ffdd 7228 || i.types[op].bitfield.regmmx
1b54b8d7 7229 || i.types[op].bitfield.regsimd
7e8b059b 7230 || i.types[op].bitfield.regbnd
43234a1e 7231 || i.types[op].bitfield.regmask
7ab9ffdd
L
7232 || i.types[op].bitfield.sreg2
7233 || i.types[op].bitfield.sreg3
7234 || i.types[op].bitfield.control
7235 || i.types[op].bitfield.debug
7236 || i.types[op].bitfield.test)
7237 break;
c0209578 7238
7ab9ffdd
L
7239 if (vex_3_sources)
7240 op = dest;
2426c15f 7241 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7242 {
7243 /* For instructions with VexNDS, the register-only
7244 source operand is encoded in VEX prefix. */
7245 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7246
7ab9ffdd 7247 if (op > mem)
c0f3af97 7248 {
7ab9ffdd
L
7249 vex_reg = op++;
7250 gas_assert (op < i.operands);
c0f3af97
L
7251 }
7252 else
c0f3af97 7253 {
f12dc422
L
7254 /* Check register-only source operand when two source
7255 operands are swapped. */
7256 if (!i.tm.operand_types[op].bitfield.baseindex
7257 && i.tm.operand_types[op + 1].bitfield.baseindex)
7258 {
7259 vex_reg = op;
7260 op += 2;
7261 gas_assert (mem == (vex_reg + 1)
7262 && op < i.operands);
7263 }
7264 else
7265 {
7266 vex_reg = op + 1;
7267 gas_assert (vex_reg < i.operands);
7268 }
c0f3af97 7269 }
7ab9ffdd 7270 }
2426c15f 7271 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7272 {
f12dc422 7273 /* For instructions with VexNDD, the register destination
7ab9ffdd 7274 is encoded in VEX prefix. */
f12dc422
L
7275 if (i.mem_operands == 0)
7276 {
7277 /* There is no memory operand. */
7278 gas_assert ((op + 2) == i.operands);
7279 vex_reg = op + 1;
7280 }
7281 else
8d63c93e 7282 {
ed438a93
JB
7283 /* There are only 2 non-immediate operands. */
7284 gas_assert (op < i.imm_operands + 2
7285 && i.operands == i.imm_operands + 2);
7286 vex_reg = i.imm_operands + 1;
f12dc422 7287 }
7ab9ffdd
L
7288 }
7289 else
7290 gas_assert (op < i.operands);
99018f42 7291
7ab9ffdd
L
7292 if (vex_reg != (unsigned int) ~0)
7293 {
f12dc422 7294 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7295
dc821c5f
JB
7296 if ((!type->bitfield.reg
7297 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7298 && !type->bitfield.regsimd
43234a1e 7299 && !operand_type_equal (type, &regmask))
7ab9ffdd 7300 abort ();
f88c9eb0 7301
7ab9ffdd
L
7302 i.vex.register_specifier = i.op[vex_reg].regs;
7303 }
7304
1b9f0c97
L
7305 /* Don't set OP operand twice. */
7306 if (vex_reg != op)
7ab9ffdd 7307 {
1b9f0c97
L
7308 /* If there is an extension opcode to put here, the
7309 register number must be put into the regmem field. */
7310 if (i.tm.extension_opcode != None)
7311 {
7312 i.rm.regmem = i.op[op].regs->reg_num;
7313 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7314 i.rex |= REX_B;
43234a1e
L
7315 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7316 i.vrex |= REX_B;
1b9f0c97
L
7317 }
7318 else
7319 {
7320 i.rm.reg = i.op[op].regs->reg_num;
7321 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7322 i.rex |= REX_R;
43234a1e
L
7323 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7324 i.vrex |= REX_R;
1b9f0c97 7325 }
7ab9ffdd 7326 }
252b5132 7327
29b0f896
AM
7328 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7329 must set it to 3 to indicate this is a register operand
7330 in the regmem field. */
7331 if (!i.mem_operands)
7332 i.rm.mode = 3;
7333 }
252b5132 7334
29b0f896 7335 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7336 if (i.tm.extension_opcode != None)
29b0f896
AM
7337 i.rm.reg = i.tm.extension_opcode;
7338 }
7339 return default_seg;
7340}
252b5132 7341
29b0f896 7342static void
e3bb37b5 7343output_branch (void)
29b0f896
AM
7344{
7345 char *p;
f8a5c266 7346 int size;
29b0f896
AM
7347 int code16;
7348 int prefix;
7349 relax_substateT subtype;
7350 symbolS *sym;
7351 offsetT off;
7352
f8a5c266 7353 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7354 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7355
7356 prefix = 0;
7357 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7358 {
29b0f896
AM
7359 prefix = 1;
7360 i.prefixes -= 1;
7361 code16 ^= CODE16;
252b5132 7362 }
29b0f896
AM
7363 /* Pentium4 branch hints. */
7364 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7365 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7366 {
29b0f896
AM
7367 prefix++;
7368 i.prefixes--;
7369 }
7370 if (i.prefix[REX_PREFIX] != 0)
7371 {
7372 prefix++;
7373 i.prefixes--;
2f66722d
AM
7374 }
7375
7e8b059b
L
7376 /* BND prefixed jump. */
7377 if (i.prefix[BND_PREFIX] != 0)
7378 {
7379 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7380 i.prefixes -= 1;
7381 }
7382
29b0f896
AM
7383 if (i.prefixes != 0 && !intel_syntax)
7384 as_warn (_("skipping prefixes on this instruction"));
7385
7386 /* It's always a symbol; End frag & setup for relax.
7387 Make sure there is enough room in this frag for the largest
7388 instruction we may generate in md_convert_frag. This is 2
7389 bytes for the opcode and room for the prefix and largest
7390 displacement. */
7391 frag_grow (prefix + 2 + 4);
7392 /* Prefix and 1 opcode byte go in fr_fix. */
7393 p = frag_more (prefix + 1);
7394 if (i.prefix[DATA_PREFIX] != 0)
7395 *p++ = DATA_PREFIX_OPCODE;
7396 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7397 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7398 *p++ = i.prefix[SEG_PREFIX];
7399 if (i.prefix[REX_PREFIX] != 0)
7400 *p++ = i.prefix[REX_PREFIX];
7401 *p = i.tm.base_opcode;
7402
7403 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7404 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7405 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7406 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7407 else
f8a5c266 7408 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7409 subtype |= code16;
3e73aa7c 7410
29b0f896
AM
7411 sym = i.op[0].disps->X_add_symbol;
7412 off = i.op[0].disps->X_add_number;
3e73aa7c 7413
29b0f896
AM
7414 if (i.op[0].disps->X_op != O_constant
7415 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7416 {
29b0f896
AM
7417 /* Handle complex expressions. */
7418 sym = make_expr_symbol (i.op[0].disps);
7419 off = 0;
7420 }
3e73aa7c 7421
29b0f896
AM
7422 /* 1 possible extra opcode + 4 byte displacement go in var part.
7423 Pass reloc in fr_var. */
d258b828 7424 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7425}
3e73aa7c 7426
bd7ab16b
L
7427#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7428/* Return TRUE iff PLT32 relocation should be used for branching to
7429 symbol S. */
7430
7431static bfd_boolean
7432need_plt32_p (symbolS *s)
7433{
7434 /* PLT32 relocation is ELF only. */
7435 if (!IS_ELF)
7436 return FALSE;
7437
7438 /* Since there is no need to prepare for PLT branch on x86-64, we
7439 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7440 be used as a marker for 32-bit PC-relative branches. */
7441 if (!object_64bit)
7442 return FALSE;
7443
7444 /* Weak or undefined symbol need PLT32 relocation. */
7445 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7446 return TRUE;
7447
7448 /* Non-global symbol doesn't need PLT32 relocation. */
7449 if (! S_IS_EXTERNAL (s))
7450 return FALSE;
7451
7452 /* Other global symbols need PLT32 relocation. NB: Symbol with
7453 non-default visibilities are treated as normal global symbol
7454 so that PLT32 relocation can be used as a marker for 32-bit
7455 PC-relative branches. It is useful for linker relaxation. */
7456 return TRUE;
7457}
7458#endif
7459
29b0f896 7460static void
e3bb37b5 7461output_jump (void)
29b0f896
AM
7462{
7463 char *p;
7464 int size;
3e02c1cc 7465 fixS *fixP;
bd7ab16b 7466 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7467
40fb9820 7468 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7469 {
7470 /* This is a loop or jecxz type instruction. */
7471 size = 1;
7472 if (i.prefix[ADDR_PREFIX] != 0)
7473 {
7474 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7475 i.prefixes -= 1;
7476 }
7477 /* Pentium4 branch hints. */
7478 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7479 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7480 {
7481 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7482 i.prefixes--;
3e73aa7c
JH
7483 }
7484 }
29b0f896
AM
7485 else
7486 {
7487 int code16;
3e73aa7c 7488
29b0f896
AM
7489 code16 = 0;
7490 if (flag_code == CODE_16BIT)
7491 code16 = CODE16;
3e73aa7c 7492
29b0f896
AM
7493 if (i.prefix[DATA_PREFIX] != 0)
7494 {
7495 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7496 i.prefixes -= 1;
7497 code16 ^= CODE16;
7498 }
252b5132 7499
29b0f896
AM
7500 size = 4;
7501 if (code16)
7502 size = 2;
7503 }
9fcc94b6 7504
29b0f896
AM
7505 if (i.prefix[REX_PREFIX] != 0)
7506 {
7507 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7508 i.prefixes -= 1;
7509 }
252b5132 7510
7e8b059b
L
7511 /* BND prefixed jump. */
7512 if (i.prefix[BND_PREFIX] != 0)
7513 {
7514 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7515 i.prefixes -= 1;
7516 }
7517
29b0f896
AM
7518 if (i.prefixes != 0 && !intel_syntax)
7519 as_warn (_("skipping prefixes on this instruction"));
e0890092 7520
42164a71
L
7521 p = frag_more (i.tm.opcode_length + size);
7522 switch (i.tm.opcode_length)
7523 {
7524 case 2:
7525 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7526 /* Fall through. */
42164a71
L
7527 case 1:
7528 *p++ = i.tm.base_opcode;
7529 break;
7530 default:
7531 abort ();
7532 }
e0890092 7533
bd7ab16b
L
7534#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7535 if (size == 4
7536 && jump_reloc == NO_RELOC
7537 && need_plt32_p (i.op[0].disps->X_add_symbol))
7538 jump_reloc = BFD_RELOC_X86_64_PLT32;
7539#endif
7540
7541 jump_reloc = reloc (size, 1, 1, jump_reloc);
7542
3e02c1cc 7543 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7544 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7545
7546 /* All jumps handled here are signed, but don't use a signed limit
7547 check for 32 and 16 bit jumps as we want to allow wrap around at
7548 4G and 64k respectively. */
7549 if (size == 1)
7550 fixP->fx_signed = 1;
29b0f896 7551}
e0890092 7552
29b0f896 7553static void
e3bb37b5 7554output_interseg_jump (void)
29b0f896
AM
7555{
7556 char *p;
7557 int size;
7558 int prefix;
7559 int code16;
252b5132 7560
29b0f896
AM
7561 code16 = 0;
7562 if (flag_code == CODE_16BIT)
7563 code16 = CODE16;
a217f122 7564
29b0f896
AM
7565 prefix = 0;
7566 if (i.prefix[DATA_PREFIX] != 0)
7567 {
7568 prefix = 1;
7569 i.prefixes -= 1;
7570 code16 ^= CODE16;
7571 }
7572 if (i.prefix[REX_PREFIX] != 0)
7573 {
7574 prefix++;
7575 i.prefixes -= 1;
7576 }
252b5132 7577
29b0f896
AM
7578 size = 4;
7579 if (code16)
7580 size = 2;
252b5132 7581
29b0f896
AM
7582 if (i.prefixes != 0 && !intel_syntax)
7583 as_warn (_("skipping prefixes on this instruction"));
252b5132 7584
29b0f896
AM
7585 /* 1 opcode; 2 segment; offset */
7586 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7587
29b0f896
AM
7588 if (i.prefix[DATA_PREFIX] != 0)
7589 *p++ = DATA_PREFIX_OPCODE;
252b5132 7590
29b0f896
AM
7591 if (i.prefix[REX_PREFIX] != 0)
7592 *p++ = i.prefix[REX_PREFIX];
252b5132 7593
29b0f896
AM
7594 *p++ = i.tm.base_opcode;
7595 if (i.op[1].imms->X_op == O_constant)
7596 {
7597 offsetT n = i.op[1].imms->X_add_number;
252b5132 7598
29b0f896
AM
7599 if (size == 2
7600 && !fits_in_unsigned_word (n)
7601 && !fits_in_signed_word (n))
7602 {
7603 as_bad (_("16-bit jump out of range"));
7604 return;
7605 }
7606 md_number_to_chars (p, n, size);
7607 }
7608 else
7609 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7610 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7611 if (i.op[0].imms->X_op != O_constant)
7612 as_bad (_("can't handle non absolute segment in `%s'"),
7613 i.tm.name);
7614 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7615}
a217f122 7616
29b0f896 7617static void
e3bb37b5 7618output_insn (void)
29b0f896 7619{
2bbd9c25
JJ
7620 fragS *insn_start_frag;
7621 offsetT insn_start_off;
7622
29b0f896
AM
7623 /* Tie dwarf2 debug info to the address at the start of the insn.
7624 We can't do this after the insn has been output as the current
7625 frag may have been closed off. eg. by frag_var. */
7626 dwarf2_emit_insn (0);
7627
2bbd9c25
JJ
7628 insn_start_frag = frag_now;
7629 insn_start_off = frag_now_fix ();
7630
29b0f896 7631 /* Output jumps. */
40fb9820 7632 if (i.tm.opcode_modifier.jump)
29b0f896 7633 output_branch ();
40fb9820
L
7634 else if (i.tm.opcode_modifier.jumpbyte
7635 || i.tm.opcode_modifier.jumpdword)
29b0f896 7636 output_jump ();
40fb9820 7637 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7638 output_interseg_jump ();
7639 else
7640 {
7641 /* Output normal instructions here. */
7642 char *p;
7643 unsigned char *q;
47465058 7644 unsigned int j;
331d2d0d 7645 unsigned int prefix;
4dffcebc 7646
e4e00185
AS
7647 if (avoid_fence
7648 && i.tm.base_opcode == 0xfae
7649 && i.operands == 1
7650 && i.imm_operands == 1
7651 && (i.op[0].imms->X_add_number == 0xe8
7652 || i.op[0].imms->X_add_number == 0xf0
7653 || i.op[0].imms->X_add_number == 0xf8))
7654 {
7655 /* Encode lfence, mfence, and sfence as
7656 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7657 offsetT val = 0x240483f0ULL;
7658 p = frag_more (5);
7659 md_number_to_chars (p, val, 5);
7660 return;
7661 }
7662
d022bddd
IT
7663 /* Some processors fail on LOCK prefix. This options makes
7664 assembler ignore LOCK prefix and serves as a workaround. */
7665 if (omit_lock_prefix)
7666 {
7667 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7668 return;
7669 i.prefix[LOCK_PREFIX] = 0;
7670 }
7671
43234a1e
L
7672 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7673 don't need the explicit prefix. */
7674 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7675 {
c0f3af97 7676 switch (i.tm.opcode_length)
bc4bd9ab 7677 {
c0f3af97
L
7678 case 3:
7679 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7680 {
c0f3af97 7681 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 7682 add_prefix (prefix);
c0f3af97
L
7683 }
7684 break;
7685 case 2:
7686 if ((i.tm.base_opcode & 0xff0000) != 0)
7687 {
7688 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
7689 if (!i.tm.cpu_flags.bitfield.cpupadlock
7690 || prefix != REPE_PREFIX_OPCODE
7691 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
7692 add_prefix (prefix);
7693 }
c0f3af97
L
7694 break;
7695 case 1:
7696 break;
390c91cf
L
7697 case 0:
7698 /* Check for pseudo prefixes. */
7699 as_bad_where (insn_start_frag->fr_file,
7700 insn_start_frag->fr_line,
7701 _("pseudo prefix without instruction"));
7702 return;
c0f3af97
L
7703 default:
7704 abort ();
bc4bd9ab 7705 }
c0f3af97 7706
6d19a37a 7707#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7708 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7709 R_X86_64_GOTTPOFF relocation so that linker can safely
7710 perform IE->LE optimization. */
7711 if (x86_elf_abi == X86_64_X32_ABI
7712 && i.operands == 2
7713 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7714 && i.prefix[REX_PREFIX] == 0)
7715 add_prefix (REX_OPCODE);
6d19a37a 7716#endif
cf61b747 7717
c0f3af97
L
7718 /* The prefix bytes. */
7719 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7720 if (*q)
7721 FRAG_APPEND_1_CHAR (*q);
0f10071e 7722 }
ae5c1c7b 7723 else
c0f3af97
L
7724 {
7725 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7726 if (*q)
7727 switch (j)
7728 {
7729 case REX_PREFIX:
7730 /* REX byte is encoded in VEX prefix. */
7731 break;
7732 case SEG_PREFIX:
7733 case ADDR_PREFIX:
7734 FRAG_APPEND_1_CHAR (*q);
7735 break;
7736 default:
7737 /* There should be no other prefixes for instructions
7738 with VEX prefix. */
7739 abort ();
7740 }
7741
43234a1e
L
7742 /* For EVEX instructions i.vrex should become 0 after
7743 build_evex_prefix. For VEX instructions upper 16 registers
7744 aren't available, so VREX should be 0. */
7745 if (i.vrex)
7746 abort ();
c0f3af97
L
7747 /* Now the VEX prefix. */
7748 p = frag_more (i.vex.length);
7749 for (j = 0; j < i.vex.length; j++)
7750 p[j] = i.vex.bytes[j];
7751 }
252b5132 7752
29b0f896 7753 /* Now the opcode; be careful about word order here! */
4dffcebc 7754 if (i.tm.opcode_length == 1)
29b0f896
AM
7755 {
7756 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7757 }
7758 else
7759 {
4dffcebc 7760 switch (i.tm.opcode_length)
331d2d0d 7761 {
43234a1e
L
7762 case 4:
7763 p = frag_more (4);
7764 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7765 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7766 break;
4dffcebc 7767 case 3:
331d2d0d
L
7768 p = frag_more (3);
7769 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7770 break;
7771 case 2:
7772 p = frag_more (2);
7773 break;
7774 default:
7775 abort ();
7776 break;
331d2d0d 7777 }
0f10071e 7778
29b0f896
AM
7779 /* Put out high byte first: can't use md_number_to_chars! */
7780 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7781 *p = i.tm.base_opcode & 0xff;
7782 }
3e73aa7c 7783
29b0f896 7784 /* Now the modrm byte and sib byte (if present). */
40fb9820 7785 if (i.tm.opcode_modifier.modrm)
29b0f896 7786 {
4a3523fa
L
7787 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7788 | i.rm.reg << 3
7789 | i.rm.mode << 6));
29b0f896
AM
7790 /* If i.rm.regmem == ESP (4)
7791 && i.rm.mode != (Register mode)
7792 && not 16 bit
7793 ==> need second modrm byte. */
7794 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7795 && i.rm.mode != 3
dc821c5f 7796 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7797 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7798 | i.sib.index << 3
7799 | i.sib.scale << 6));
29b0f896 7800 }
3e73aa7c 7801
29b0f896 7802 if (i.disp_operands)
2bbd9c25 7803 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7804
29b0f896 7805 if (i.imm_operands)
2bbd9c25 7806 output_imm (insn_start_frag, insn_start_off);
29b0f896 7807 }
252b5132 7808
29b0f896
AM
7809#ifdef DEBUG386
7810 if (flag_debug)
7811 {
7b81dfbb 7812 pi ("" /*line*/, &i);
29b0f896
AM
7813 }
7814#endif /* DEBUG386 */
7815}
252b5132 7816
e205caa7
L
7817/* Return the size of the displacement operand N. */
7818
7819static int
7820disp_size (unsigned int n)
7821{
7822 int size = 4;
43234a1e 7823
b5014f7a 7824 if (i.types[n].bitfield.disp64)
40fb9820
L
7825 size = 8;
7826 else if (i.types[n].bitfield.disp8)
7827 size = 1;
7828 else if (i.types[n].bitfield.disp16)
7829 size = 2;
e205caa7
L
7830 return size;
7831}
7832
7833/* Return the size of the immediate operand N. */
7834
7835static int
7836imm_size (unsigned int n)
7837{
7838 int size = 4;
40fb9820
L
7839 if (i.types[n].bitfield.imm64)
7840 size = 8;
7841 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7842 size = 1;
7843 else if (i.types[n].bitfield.imm16)
7844 size = 2;
e205caa7
L
7845 return size;
7846}
7847
29b0f896 7848static void
64e74474 7849output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7850{
7851 char *p;
7852 unsigned int n;
252b5132 7853
29b0f896
AM
7854 for (n = 0; n < i.operands; n++)
7855 {
b5014f7a 7856 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7857 {
7858 if (i.op[n].disps->X_op == O_constant)
7859 {
e205caa7 7860 int size = disp_size (n);
43234a1e 7861 offsetT val = i.op[n].disps->X_add_number;
252b5132 7862
b5014f7a 7863 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7864 p = frag_more (size);
7865 md_number_to_chars (p, val, size);
7866 }
7867 else
7868 {
f86103b7 7869 enum bfd_reloc_code_real reloc_type;
e205caa7 7870 int size = disp_size (n);
40fb9820 7871 int sign = i.types[n].bitfield.disp32s;
29b0f896 7872 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7873 fixS *fixP;
29b0f896 7874
e205caa7 7875 /* We can't have 8 bit displacement here. */
9c2799c2 7876 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7877
29b0f896
AM
7878 /* The PC relative address is computed relative
7879 to the instruction boundary, so in case immediate
7880 fields follows, we need to adjust the value. */
7881 if (pcrel && i.imm_operands)
7882 {
29b0f896 7883 unsigned int n1;
e205caa7 7884 int sz = 0;
252b5132 7885
29b0f896 7886 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7887 if (operand_type_check (i.types[n1], imm))
252b5132 7888 {
e205caa7
L
7889 /* Only one immediate is allowed for PC
7890 relative address. */
9c2799c2 7891 gas_assert (sz == 0);
e205caa7
L
7892 sz = imm_size (n1);
7893 i.op[n].disps->X_add_number -= sz;
252b5132 7894 }
29b0f896 7895 /* We should find the immediate. */
9c2799c2 7896 gas_assert (sz != 0);
29b0f896 7897 }
520dc8e8 7898
29b0f896 7899 p = frag_more (size);
d258b828 7900 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7901 if (GOT_symbol
2bbd9c25 7902 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7903 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7904 || reloc_type == BFD_RELOC_X86_64_32S
7905 || (reloc_type == BFD_RELOC_64
7906 && object_64bit))
d6ab8113
JB
7907 && (i.op[n].disps->X_op == O_symbol
7908 || (i.op[n].disps->X_op == O_add
7909 && ((symbol_get_value_expression
7910 (i.op[n].disps->X_op_symbol)->X_op)
7911 == O_subtract))))
7912 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7913 {
7914 offsetT add;
7915
7916 if (insn_start_frag == frag_now)
7917 add = (p - frag_now->fr_literal) - insn_start_off;
7918 else
7919 {
7920 fragS *fr;
7921
7922 add = insn_start_frag->fr_fix - insn_start_off;
7923 for (fr = insn_start_frag->fr_next;
7924 fr && fr != frag_now; fr = fr->fr_next)
7925 add += fr->fr_fix;
7926 add += p - frag_now->fr_literal;
7927 }
7928
4fa24527 7929 if (!object_64bit)
7b81dfbb
AJ
7930 {
7931 reloc_type = BFD_RELOC_386_GOTPC;
7932 i.op[n].imms->X_add_number += add;
7933 }
7934 else if (reloc_type == BFD_RELOC_64)
7935 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7936 else
7b81dfbb
AJ
7937 /* Don't do the adjustment for x86-64, as there
7938 the pcrel addressing is relative to the _next_
7939 insn, and that is taken care of in other code. */
d6ab8113 7940 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7941 }
02a86693
L
7942 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7943 size, i.op[n].disps, pcrel,
7944 reloc_type);
7945 /* Check for "call/jmp *mem", "mov mem, %reg",
7946 "test %reg, mem" and "binop mem, %reg" where binop
7947 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7948 instructions. Always generate R_386_GOT32X for
7949 "sym*GOT" operand in 32-bit mode. */
7950 if ((generate_relax_relocations
7951 || (!object_64bit
7952 && i.rm.mode == 0
7953 && i.rm.regmem == 5))
7954 && (i.rm.mode == 2
7955 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7956 && ((i.operands == 1
7957 && i.tm.base_opcode == 0xff
7958 && (i.rm.reg == 2 || i.rm.reg == 4))
7959 || (i.operands == 2
7960 && (i.tm.base_opcode == 0x8b
7961 || i.tm.base_opcode == 0x85
7962 || (i.tm.base_opcode & 0xc7) == 0x03))))
7963 {
7964 if (object_64bit)
7965 {
7966 fixP->fx_tcbit = i.rex != 0;
7967 if (i.base_reg
7968 && (i.base_reg->reg_num == RegRip
7969 || i.base_reg->reg_num == RegEip))
7970 fixP->fx_tcbit2 = 1;
7971 }
7972 else
7973 fixP->fx_tcbit2 = 1;
7974 }
29b0f896
AM
7975 }
7976 }
7977 }
7978}
252b5132 7979
29b0f896 7980static void
64e74474 7981output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7982{
7983 char *p;
7984 unsigned int n;
252b5132 7985
29b0f896
AM
7986 for (n = 0; n < i.operands; n++)
7987 {
43234a1e
L
7988 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7989 if (i.rounding && (int) n == i.rounding->operand)
7990 continue;
7991
40fb9820 7992 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7993 {
7994 if (i.op[n].imms->X_op == O_constant)
7995 {
e205caa7 7996 int size = imm_size (n);
29b0f896 7997 offsetT val;
b4cac588 7998
29b0f896
AM
7999 val = offset_in_range (i.op[n].imms->X_add_number,
8000 size);
8001 p = frag_more (size);
8002 md_number_to_chars (p, val, size);
8003 }
8004 else
8005 {
8006 /* Not absolute_section.
8007 Need a 32-bit fixup (don't support 8bit
8008 non-absolute imms). Try to support other
8009 sizes ... */
f86103b7 8010 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8011 int size = imm_size (n);
8012 int sign;
29b0f896 8013
40fb9820 8014 if (i.types[n].bitfield.imm32s
a7d61044 8015 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8016 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8017 sign = 1;
e205caa7
L
8018 else
8019 sign = 0;
520dc8e8 8020
29b0f896 8021 p = frag_more (size);
d258b828 8022 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8023
2bbd9c25
JJ
8024 /* This is tough to explain. We end up with this one if we
8025 * have operands that look like
8026 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8027 * obtain the absolute address of the GOT, and it is strongly
8028 * preferable from a performance point of view to avoid using
8029 * a runtime relocation for this. The actual sequence of
8030 * instructions often look something like:
8031 *
8032 * call .L66
8033 * .L66:
8034 * popl %ebx
8035 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8036 *
8037 * The call and pop essentially return the absolute address
8038 * of the label .L66 and store it in %ebx. The linker itself
8039 * will ultimately change the first operand of the addl so
8040 * that %ebx points to the GOT, but to keep things simple, the
8041 * .o file must have this operand set so that it generates not
8042 * the absolute address of .L66, but the absolute address of
8043 * itself. This allows the linker itself simply treat a GOTPC
8044 * relocation as asking for a pcrel offset to the GOT to be
8045 * added in, and the addend of the relocation is stored in the
8046 * operand field for the instruction itself.
8047 *
8048 * Our job here is to fix the operand so that it would add
8049 * the correct offset so that %ebx would point to itself. The
8050 * thing that is tricky is that .-.L66 will point to the
8051 * beginning of the instruction, so we need to further modify
8052 * the operand so that it will point to itself. There are
8053 * other cases where you have something like:
8054 *
8055 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8056 *
8057 * and here no correction would be required. Internally in
8058 * the assembler we treat operands of this form as not being
8059 * pcrel since the '.' is explicitly mentioned, and I wonder
8060 * whether it would simplify matters to do it this way. Who
8061 * knows. In earlier versions of the PIC patches, the
8062 * pcrel_adjust field was used to store the correction, but
8063 * since the expression is not pcrel, I felt it would be
8064 * confusing to do it this way. */
8065
d6ab8113 8066 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8067 || reloc_type == BFD_RELOC_X86_64_32S
8068 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8069 && GOT_symbol
8070 && GOT_symbol == i.op[n].imms->X_add_symbol
8071 && (i.op[n].imms->X_op == O_symbol
8072 || (i.op[n].imms->X_op == O_add
8073 && ((symbol_get_value_expression
8074 (i.op[n].imms->X_op_symbol)->X_op)
8075 == O_subtract))))
8076 {
2bbd9c25
JJ
8077 offsetT add;
8078
8079 if (insn_start_frag == frag_now)
8080 add = (p - frag_now->fr_literal) - insn_start_off;
8081 else
8082 {
8083 fragS *fr;
8084
8085 add = insn_start_frag->fr_fix - insn_start_off;
8086 for (fr = insn_start_frag->fr_next;
8087 fr && fr != frag_now; fr = fr->fr_next)
8088 add += fr->fr_fix;
8089 add += p - frag_now->fr_literal;
8090 }
8091
4fa24527 8092 if (!object_64bit)
d6ab8113 8093 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8094 else if (size == 4)
d6ab8113 8095 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8096 else if (size == 8)
8097 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8098 i.op[n].imms->X_add_number += add;
29b0f896 8099 }
29b0f896
AM
8100 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8101 i.op[n].imms, 0, reloc_type);
8102 }
8103 }
8104 }
252b5132
RH
8105}
8106\f
d182319b
JB
8107/* x86_cons_fix_new is called via the expression parsing code when a
8108 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8109static int cons_sign = -1;
8110
8111void
e3bb37b5 8112x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8113 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8114{
d258b828 8115 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8116
8117#ifdef TE_PE
8118 if (exp->X_op == O_secrel)
8119 {
8120 exp->X_op = O_symbol;
8121 r = BFD_RELOC_32_SECREL;
8122 }
8123#endif
8124
8125 fix_new_exp (frag, off, len, exp, 0, r);
8126}
8127
357d1bd8
L
8128/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8129 purpose of the `.dc.a' internal pseudo-op. */
8130
8131int
8132x86_address_bytes (void)
8133{
8134 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8135 return 4;
8136 return stdoutput->arch_info->bits_per_address / 8;
8137}
8138
d382c579
TG
8139#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8140 || defined (LEX_AT)
d258b828 8141# define lex_got(reloc, adjust, types) NULL
718ddfc0 8142#else
f3c180ae
AM
8143/* Parse operands of the form
8144 <symbol>@GOTOFF+<nnn>
8145 and similar .plt or .got references.
8146
8147 If we find one, set up the correct relocation in RELOC and copy the
8148 input string, minus the `@GOTOFF' into a malloc'd buffer for
8149 parsing by the calling routine. Return this buffer, and if ADJUST
8150 is non-null set it to the length of the string we removed from the
8151 input line. Otherwise return NULL. */
8152static char *
91d6fa6a 8153lex_got (enum bfd_reloc_code_real *rel,
64e74474 8154 int *adjust,
d258b828 8155 i386_operand_type *types)
f3c180ae 8156{
7b81dfbb
AJ
8157 /* Some of the relocations depend on the size of what field is to
8158 be relocated. But in our callers i386_immediate and i386_displacement
8159 we don't yet know the operand size (this will be set by insn
8160 matching). Hence we record the word32 relocation here,
8161 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8162 static const struct {
8163 const char *str;
cff8d58a 8164 int len;
4fa24527 8165 const enum bfd_reloc_code_real rel[2];
40fb9820 8166 const i386_operand_type types64;
f3c180ae 8167 } gotrel[] = {
8ce3d284 8168#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8169 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8170 BFD_RELOC_SIZE32 },
8171 OPERAND_TYPE_IMM32_64 },
8ce3d284 8172#endif
cff8d58a
L
8173 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8174 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8175 OPERAND_TYPE_IMM64 },
cff8d58a
L
8176 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8177 BFD_RELOC_X86_64_PLT32 },
40fb9820 8178 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8179 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8180 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8181 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8182 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8183 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8184 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8185 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8186 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8187 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8188 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8189 BFD_RELOC_X86_64_TLSGD },
40fb9820 8190 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8191 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8192 _dummy_first_bfd_reloc_code_real },
40fb9820 8193 OPERAND_TYPE_NONE },
cff8d58a
L
8194 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8195 BFD_RELOC_X86_64_TLSLD },
40fb9820 8196 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8197 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8198 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8199 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8200 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8201 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8202 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8203 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8204 _dummy_first_bfd_reloc_code_real },
40fb9820 8205 OPERAND_TYPE_NONE },
cff8d58a
L
8206 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8207 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8208 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8209 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8210 _dummy_first_bfd_reloc_code_real },
40fb9820 8211 OPERAND_TYPE_NONE },
cff8d58a
L
8212 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8213 _dummy_first_bfd_reloc_code_real },
40fb9820 8214 OPERAND_TYPE_NONE },
cff8d58a
L
8215 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8216 BFD_RELOC_X86_64_GOT32 },
40fb9820 8217 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8218 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8219 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8220 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8221 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8222 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8223 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8224 };
8225 char *cp;
8226 unsigned int j;
8227
d382c579 8228#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8229 if (!IS_ELF)
8230 return NULL;
d382c579 8231#endif
718ddfc0 8232
f3c180ae 8233 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8234 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8235 return NULL;
8236
47465058 8237 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8238 {
cff8d58a 8239 int len = gotrel[j].len;
28f81592 8240 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8241 {
4fa24527 8242 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8243 {
28f81592
AM
8244 int first, second;
8245 char *tmpbuf, *past_reloc;
f3c180ae 8246
91d6fa6a 8247 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8248
3956db08
JB
8249 if (types)
8250 {
8251 if (flag_code != CODE_64BIT)
40fb9820
L
8252 {
8253 types->bitfield.imm32 = 1;
8254 types->bitfield.disp32 = 1;
8255 }
3956db08
JB
8256 else
8257 *types = gotrel[j].types64;
8258 }
8259
8fd4256d 8260 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8261 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8262
28f81592 8263 /* The length of the first part of our input line. */
f3c180ae 8264 first = cp - input_line_pointer;
28f81592
AM
8265
8266 /* The second part goes from after the reloc token until
67c11a9b 8267 (and including) an end_of_line char or comma. */
28f81592 8268 past_reloc = cp + 1 + len;
67c11a9b
AM
8269 cp = past_reloc;
8270 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8271 ++cp;
8272 second = cp + 1 - past_reloc;
28f81592
AM
8273
8274 /* Allocate and copy string. The trailing NUL shouldn't
8275 be necessary, but be safe. */
add39d23 8276 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8277 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8278 if (second != 0 && *past_reloc != ' ')
8279 /* Replace the relocation token with ' ', so that
8280 errors like foo@GOTOFF1 will be detected. */
8281 tmpbuf[first++] = ' ';
af89796a
L
8282 else
8283 /* Increment length by 1 if the relocation token is
8284 removed. */
8285 len++;
8286 if (adjust)
8287 *adjust = len;
0787a12d
AM
8288 memcpy (tmpbuf + first, past_reloc, second);
8289 tmpbuf[first + second] = '\0';
f3c180ae
AM
8290 return tmpbuf;
8291 }
8292
4fa24527
JB
8293 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8294 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8295 return NULL;
8296 }
8297 }
8298
8299 /* Might be a symbol version string. Don't as_bad here. */
8300 return NULL;
8301}
4e4f7c87 8302#endif
f3c180ae 8303
a988325c
NC
8304#ifdef TE_PE
8305#ifdef lex_got
8306#undef lex_got
8307#endif
8308/* Parse operands of the form
8309 <symbol>@SECREL32+<nnn>
8310
8311 If we find one, set up the correct relocation in RELOC and copy the
8312 input string, minus the `@SECREL32' into a malloc'd buffer for
8313 parsing by the calling routine. Return this buffer, and if ADJUST
8314 is non-null set it to the length of the string we removed from the
34bca508
L
8315 input line. Otherwise return NULL.
8316
a988325c
NC
8317 This function is copied from the ELF version above adjusted for PE targets. */
8318
8319static char *
8320lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8321 int *adjust ATTRIBUTE_UNUSED,
d258b828 8322 i386_operand_type *types)
a988325c
NC
8323{
8324 static const struct
8325 {
8326 const char *str;
8327 int len;
8328 const enum bfd_reloc_code_real rel[2];
8329 const i386_operand_type types64;
8330 }
8331 gotrel[] =
8332 {
8333 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8334 BFD_RELOC_32_SECREL },
8335 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8336 };
8337
8338 char *cp;
8339 unsigned j;
8340
8341 for (cp = input_line_pointer; *cp != '@'; cp++)
8342 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8343 return NULL;
8344
8345 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8346 {
8347 int len = gotrel[j].len;
8348
8349 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8350 {
8351 if (gotrel[j].rel[object_64bit] != 0)
8352 {
8353 int first, second;
8354 char *tmpbuf, *past_reloc;
8355
8356 *rel = gotrel[j].rel[object_64bit];
8357 if (adjust)
8358 *adjust = len;
8359
8360 if (types)
8361 {
8362 if (flag_code != CODE_64BIT)
8363 {
8364 types->bitfield.imm32 = 1;
8365 types->bitfield.disp32 = 1;
8366 }
8367 else
8368 *types = gotrel[j].types64;
8369 }
8370
8371 /* The length of the first part of our input line. */
8372 first = cp - input_line_pointer;
8373
8374 /* The second part goes from after the reloc token until
8375 (and including) an end_of_line char or comma. */
8376 past_reloc = cp + 1 + len;
8377 cp = past_reloc;
8378 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8379 ++cp;
8380 second = cp + 1 - past_reloc;
8381
8382 /* Allocate and copy string. The trailing NUL shouldn't
8383 be necessary, but be safe. */
add39d23 8384 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8385 memcpy (tmpbuf, input_line_pointer, first);
8386 if (second != 0 && *past_reloc != ' ')
8387 /* Replace the relocation token with ' ', so that
8388 errors like foo@SECLREL321 will be detected. */
8389 tmpbuf[first++] = ' ';
8390 memcpy (tmpbuf + first, past_reloc, second);
8391 tmpbuf[first + second] = '\0';
8392 return tmpbuf;
8393 }
8394
8395 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8396 gotrel[j].str, 1 << (5 + object_64bit));
8397 return NULL;
8398 }
8399 }
8400
8401 /* Might be a symbol version string. Don't as_bad here. */
8402 return NULL;
8403}
8404
8405#endif /* TE_PE */
8406
62ebcb5c 8407bfd_reloc_code_real_type
e3bb37b5 8408x86_cons (expressionS *exp, int size)
f3c180ae 8409{
62ebcb5c
AM
8410 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8411
ee86248c
JB
8412 intel_syntax = -intel_syntax;
8413
3c7b9c2c 8414 exp->X_md = 0;
4fa24527 8415 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8416 {
8417 /* Handle @GOTOFF and the like in an expression. */
8418 char *save;
8419 char *gotfree_input_line;
4a57f2cf 8420 int adjust = 0;
f3c180ae
AM
8421
8422 save = input_line_pointer;
d258b828 8423 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8424 if (gotfree_input_line)
8425 input_line_pointer = gotfree_input_line;
8426
8427 expression (exp);
8428
8429 if (gotfree_input_line)
8430 {
8431 /* expression () has merrily parsed up to the end of line,
8432 or a comma - in the wrong buffer. Transfer how far
8433 input_line_pointer has moved to the right buffer. */
8434 input_line_pointer = (save
8435 + (input_line_pointer - gotfree_input_line)
8436 + adjust);
8437 free (gotfree_input_line);
3992d3b7
AM
8438 if (exp->X_op == O_constant
8439 || exp->X_op == O_absent
8440 || exp->X_op == O_illegal
0398aac5 8441 || exp->X_op == O_register
3992d3b7
AM
8442 || exp->X_op == O_big)
8443 {
8444 char c = *input_line_pointer;
8445 *input_line_pointer = 0;
8446 as_bad (_("missing or invalid expression `%s'"), save);
8447 *input_line_pointer = c;
8448 }
f3c180ae
AM
8449 }
8450 }
8451 else
8452 expression (exp);
ee86248c
JB
8453
8454 intel_syntax = -intel_syntax;
8455
8456 if (intel_syntax)
8457 i386_intel_simplify (exp);
62ebcb5c
AM
8458
8459 return got_reloc;
f3c180ae 8460}
f3c180ae 8461
9f32dd5b
L
8462static void
8463signed_cons (int size)
6482c264 8464{
d182319b
JB
8465 if (flag_code == CODE_64BIT)
8466 cons_sign = 1;
8467 cons (size);
8468 cons_sign = -1;
6482c264
NC
8469}
8470
d182319b 8471#ifdef TE_PE
6482c264 8472static void
7016a5d5 8473pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8474{
8475 expressionS exp;
8476
8477 do
8478 {
8479 expression (&exp);
8480 if (exp.X_op == O_symbol)
8481 exp.X_op = O_secrel;
8482
8483 emit_expr (&exp, 4);
8484 }
8485 while (*input_line_pointer++ == ',');
8486
8487 input_line_pointer--;
8488 demand_empty_rest_of_line ();
8489}
6482c264
NC
8490#endif
8491
43234a1e
L
8492/* Handle Vector operations. */
8493
8494static char *
8495check_VecOperations (char *op_string, char *op_end)
8496{
8497 const reg_entry *mask;
8498 const char *saved;
8499 char *end_op;
8500
8501 while (*op_string
8502 && (op_end == NULL || op_string < op_end))
8503 {
8504 saved = op_string;
8505 if (*op_string == '{')
8506 {
8507 op_string++;
8508
8509 /* Check broadcasts. */
8510 if (strncmp (op_string, "1to", 3) == 0)
8511 {
8512 int bcst_type;
8513
8514 if (i.broadcast)
8515 goto duplicated_vec_op;
8516
8517 op_string += 3;
8518 if (*op_string == '8')
8e6e0792 8519 bcst_type = 8;
b28d1bda 8520 else if (*op_string == '4')
8e6e0792 8521 bcst_type = 4;
b28d1bda 8522 else if (*op_string == '2')
8e6e0792 8523 bcst_type = 2;
43234a1e
L
8524 else if (*op_string == '1'
8525 && *(op_string+1) == '6')
8526 {
8e6e0792 8527 bcst_type = 16;
43234a1e
L
8528 op_string++;
8529 }
8530 else
8531 {
8532 as_bad (_("Unsupported broadcast: `%s'"), saved);
8533 return NULL;
8534 }
8535 op_string++;
8536
8537 broadcast_op.type = bcst_type;
8538 broadcast_op.operand = this_operand;
8539 i.broadcast = &broadcast_op;
8540 }
8541 /* Check masking operation. */
8542 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8543 {
8544 /* k0 can't be used for write mask. */
6d2cd6b2 8545 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8546 {
6d2cd6b2
JB
8547 as_bad (_("`%s%s' can't be used for write mask"),
8548 register_prefix, mask->reg_name);
43234a1e
L
8549 return NULL;
8550 }
8551
8552 if (!i.mask)
8553 {
8554 mask_op.mask = mask;
8555 mask_op.zeroing = 0;
8556 mask_op.operand = this_operand;
8557 i.mask = &mask_op;
8558 }
8559 else
8560 {
8561 if (i.mask->mask)
8562 goto duplicated_vec_op;
8563
8564 i.mask->mask = mask;
8565
8566 /* Only "{z}" is allowed here. No need to check
8567 zeroing mask explicitly. */
8568 if (i.mask->operand != this_operand)
8569 {
8570 as_bad (_("invalid write mask `%s'"), saved);
8571 return NULL;
8572 }
8573 }
8574
8575 op_string = end_op;
8576 }
8577 /* Check zeroing-flag for masking operation. */
8578 else if (*op_string == 'z')
8579 {
8580 if (!i.mask)
8581 {
8582 mask_op.mask = NULL;
8583 mask_op.zeroing = 1;
8584 mask_op.operand = this_operand;
8585 i.mask = &mask_op;
8586 }
8587 else
8588 {
8589 if (i.mask->zeroing)
8590 {
8591 duplicated_vec_op:
8592 as_bad (_("duplicated `%s'"), saved);
8593 return NULL;
8594 }
8595
8596 i.mask->zeroing = 1;
8597
8598 /* Only "{%k}" is allowed here. No need to check mask
8599 register explicitly. */
8600 if (i.mask->operand != this_operand)
8601 {
8602 as_bad (_("invalid zeroing-masking `%s'"),
8603 saved);
8604 return NULL;
8605 }
8606 }
8607
8608 op_string++;
8609 }
8610 else
8611 goto unknown_vec_op;
8612
8613 if (*op_string != '}')
8614 {
8615 as_bad (_("missing `}' in `%s'"), saved);
8616 return NULL;
8617 }
8618 op_string++;
0ba3a731
L
8619
8620 /* Strip whitespace since the addition of pseudo prefixes
8621 changed how the scrubber treats '{'. */
8622 if (is_space_char (*op_string))
8623 ++op_string;
8624
43234a1e
L
8625 continue;
8626 }
8627 unknown_vec_op:
8628 /* We don't know this one. */
8629 as_bad (_("unknown vector operation: `%s'"), saved);
8630 return NULL;
8631 }
8632
6d2cd6b2
JB
8633 if (i.mask && i.mask->zeroing && !i.mask->mask)
8634 {
8635 as_bad (_("zeroing-masking only allowed with write mask"));
8636 return NULL;
8637 }
8638
43234a1e
L
8639 return op_string;
8640}
8641
252b5132 8642static int
70e41ade 8643i386_immediate (char *imm_start)
252b5132
RH
8644{
8645 char *save_input_line_pointer;
f3c180ae 8646 char *gotfree_input_line;
252b5132 8647 segT exp_seg = 0;
47926f60 8648 expressionS *exp;
40fb9820
L
8649 i386_operand_type types;
8650
0dfbf9d7 8651 operand_type_set (&types, ~0);
252b5132
RH
8652
8653 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8654 {
31b2323c
L
8655 as_bad (_("at most %d immediate operands are allowed"),
8656 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8657 return 0;
8658 }
8659
8660 exp = &im_expressions[i.imm_operands++];
520dc8e8 8661 i.op[this_operand].imms = exp;
252b5132
RH
8662
8663 if (is_space_char (*imm_start))
8664 ++imm_start;
8665
8666 save_input_line_pointer = input_line_pointer;
8667 input_line_pointer = imm_start;
8668
d258b828 8669 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8670 if (gotfree_input_line)
8671 input_line_pointer = gotfree_input_line;
252b5132
RH
8672
8673 exp_seg = expression (exp);
8674
83183c0c 8675 SKIP_WHITESPACE ();
43234a1e
L
8676
8677 /* Handle vector operations. */
8678 if (*input_line_pointer == '{')
8679 {
8680 input_line_pointer = check_VecOperations (input_line_pointer,
8681 NULL);
8682 if (input_line_pointer == NULL)
8683 return 0;
8684 }
8685
252b5132 8686 if (*input_line_pointer)
f3c180ae 8687 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8688
8689 input_line_pointer = save_input_line_pointer;
f3c180ae 8690 if (gotfree_input_line)
ee86248c
JB
8691 {
8692 free (gotfree_input_line);
8693
8694 if (exp->X_op == O_constant || exp->X_op == O_register)
8695 exp->X_op = O_illegal;
8696 }
8697
8698 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8699}
252b5132 8700
ee86248c
JB
8701static int
8702i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8703 i386_operand_type types, const char *imm_start)
8704{
8705 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8706 {
313c53d1
L
8707 if (imm_start)
8708 as_bad (_("missing or invalid immediate expression `%s'"),
8709 imm_start);
3992d3b7 8710 return 0;
252b5132 8711 }
3e73aa7c 8712 else if (exp->X_op == O_constant)
252b5132 8713 {
47926f60 8714 /* Size it properly later. */
40fb9820 8715 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8716 /* If not 64bit, sign extend val. */
8717 if (flag_code != CODE_64BIT
4eed87de
AM
8718 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8719 exp->X_add_number
8720 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8721 }
4c63da97 8722#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8723 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8724 && exp_seg != absolute_section
47926f60 8725 && exp_seg != text_section
24eab124
AM
8726 && exp_seg != data_section
8727 && exp_seg != bss_section
8728 && exp_seg != undefined_section
f86103b7 8729 && !bfd_is_com_section (exp_seg))
252b5132 8730 {
d0b47220 8731 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8732 return 0;
8733 }
8734#endif
a841bdf5 8735 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8736 {
313c53d1
L
8737 if (imm_start)
8738 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8739 return 0;
8740 }
252b5132
RH
8741 else
8742 {
8743 /* This is an address. The size of the address will be
24eab124 8744 determined later, depending on destination register,
3e73aa7c 8745 suffix, or the default for the section. */
40fb9820
L
8746 i.types[this_operand].bitfield.imm8 = 1;
8747 i.types[this_operand].bitfield.imm16 = 1;
8748 i.types[this_operand].bitfield.imm32 = 1;
8749 i.types[this_operand].bitfield.imm32s = 1;
8750 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8751 i.types[this_operand] = operand_type_and (i.types[this_operand],
8752 types);
252b5132
RH
8753 }
8754
8755 return 1;
8756}
8757
551c1ca1 8758static char *
e3bb37b5 8759i386_scale (char *scale)
252b5132 8760{
551c1ca1
AM
8761 offsetT val;
8762 char *save = input_line_pointer;
252b5132 8763
551c1ca1
AM
8764 input_line_pointer = scale;
8765 val = get_absolute_expression ();
8766
8767 switch (val)
252b5132 8768 {
551c1ca1 8769 case 1:
252b5132
RH
8770 i.log2_scale_factor = 0;
8771 break;
551c1ca1 8772 case 2:
252b5132
RH
8773 i.log2_scale_factor = 1;
8774 break;
551c1ca1 8775 case 4:
252b5132
RH
8776 i.log2_scale_factor = 2;
8777 break;
551c1ca1 8778 case 8:
252b5132
RH
8779 i.log2_scale_factor = 3;
8780 break;
8781 default:
a724f0f4
JB
8782 {
8783 char sep = *input_line_pointer;
8784
8785 *input_line_pointer = '\0';
8786 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8787 scale);
8788 *input_line_pointer = sep;
8789 input_line_pointer = save;
8790 return NULL;
8791 }
252b5132 8792 }
29b0f896 8793 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8794 {
8795 as_warn (_("scale factor of %d without an index register"),
24eab124 8796 1 << i.log2_scale_factor);
252b5132 8797 i.log2_scale_factor = 0;
252b5132 8798 }
551c1ca1
AM
8799 scale = input_line_pointer;
8800 input_line_pointer = save;
8801 return scale;
252b5132
RH
8802}
8803
252b5132 8804static int
e3bb37b5 8805i386_displacement (char *disp_start, char *disp_end)
252b5132 8806{
29b0f896 8807 expressionS *exp;
252b5132
RH
8808 segT exp_seg = 0;
8809 char *save_input_line_pointer;
f3c180ae 8810 char *gotfree_input_line;
40fb9820
L
8811 int override;
8812 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8813 int ret;
252b5132 8814
31b2323c
L
8815 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8816 {
8817 as_bad (_("at most %d displacement operands are allowed"),
8818 MAX_MEMORY_OPERANDS);
8819 return 0;
8820 }
8821
0dfbf9d7 8822 operand_type_set (&bigdisp, 0);
40fb9820
L
8823 if ((i.types[this_operand].bitfield.jumpabsolute)
8824 || (!current_templates->start->opcode_modifier.jump
8825 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8826 {
40fb9820 8827 bigdisp.bitfield.disp32 = 1;
e05278af 8828 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8829 if (flag_code == CODE_64BIT)
8830 {
8831 if (!override)
8832 {
8833 bigdisp.bitfield.disp32s = 1;
8834 bigdisp.bitfield.disp64 = 1;
8835 }
8836 }
8837 else if ((flag_code == CODE_16BIT) ^ override)
8838 {
8839 bigdisp.bitfield.disp32 = 0;
8840 bigdisp.bitfield.disp16 = 1;
8841 }
e05278af
JB
8842 }
8843 else
8844 {
8845 /* For PC-relative branches, the width of the displacement
8846 is dependent upon data size, not address size. */
e05278af 8847 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8848 if (flag_code == CODE_64BIT)
8849 {
8850 if (override || i.suffix == WORD_MNEM_SUFFIX)
8851 bigdisp.bitfield.disp16 = 1;
8852 else
8853 {
8854 bigdisp.bitfield.disp32 = 1;
8855 bigdisp.bitfield.disp32s = 1;
8856 }
8857 }
8858 else
e05278af
JB
8859 {
8860 if (!override)
8861 override = (i.suffix == (flag_code != CODE_16BIT
8862 ? WORD_MNEM_SUFFIX
8863 : LONG_MNEM_SUFFIX));
40fb9820
L
8864 bigdisp.bitfield.disp32 = 1;
8865 if ((flag_code == CODE_16BIT) ^ override)
8866 {
8867 bigdisp.bitfield.disp32 = 0;
8868 bigdisp.bitfield.disp16 = 1;
8869 }
e05278af 8870 }
e05278af 8871 }
c6fb90c8
L
8872 i.types[this_operand] = operand_type_or (i.types[this_operand],
8873 bigdisp);
252b5132
RH
8874
8875 exp = &disp_expressions[i.disp_operands];
520dc8e8 8876 i.op[this_operand].disps = exp;
252b5132
RH
8877 i.disp_operands++;
8878 save_input_line_pointer = input_line_pointer;
8879 input_line_pointer = disp_start;
8880 END_STRING_AND_SAVE (disp_end);
8881
8882#ifndef GCC_ASM_O_HACK
8883#define GCC_ASM_O_HACK 0
8884#endif
8885#if GCC_ASM_O_HACK
8886 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8887 if (i.types[this_operand].bitfield.baseIndex
24eab124 8888 && displacement_string_end[-1] == '+')
252b5132
RH
8889 {
8890 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8891 constraint within gcc asm statements.
8892 For instance:
8893
8894 #define _set_tssldt_desc(n,addr,limit,type) \
8895 __asm__ __volatile__ ( \
8896 "movw %w2,%0\n\t" \
8897 "movw %w1,2+%0\n\t" \
8898 "rorl $16,%1\n\t" \
8899 "movb %b1,4+%0\n\t" \
8900 "movb %4,5+%0\n\t" \
8901 "movb $0,6+%0\n\t" \
8902 "movb %h1,7+%0\n\t" \
8903 "rorl $16,%1" \
8904 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8905
8906 This works great except that the output assembler ends
8907 up looking a bit weird if it turns out that there is
8908 no offset. You end up producing code that looks like:
8909
8910 #APP
8911 movw $235,(%eax)
8912 movw %dx,2+(%eax)
8913 rorl $16,%edx
8914 movb %dl,4+(%eax)
8915 movb $137,5+(%eax)
8916 movb $0,6+(%eax)
8917 movb %dh,7+(%eax)
8918 rorl $16,%edx
8919 #NO_APP
8920
47926f60 8921 So here we provide the missing zero. */
24eab124
AM
8922
8923 *displacement_string_end = '0';
252b5132
RH
8924 }
8925#endif
d258b828 8926 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8927 if (gotfree_input_line)
8928 input_line_pointer = gotfree_input_line;
252b5132 8929
24eab124 8930 exp_seg = expression (exp);
252b5132 8931
636c26b0
AM
8932 SKIP_WHITESPACE ();
8933 if (*input_line_pointer)
8934 as_bad (_("junk `%s' after expression"), input_line_pointer);
8935#if GCC_ASM_O_HACK
8936 RESTORE_END_STRING (disp_end + 1);
8937#endif
636c26b0 8938 input_line_pointer = save_input_line_pointer;
636c26b0 8939 if (gotfree_input_line)
ee86248c
JB
8940 {
8941 free (gotfree_input_line);
8942
8943 if (exp->X_op == O_constant || exp->X_op == O_register)
8944 exp->X_op = O_illegal;
8945 }
8946
8947 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8948
8949 RESTORE_END_STRING (disp_end);
8950
8951 return ret;
8952}
8953
8954static int
8955i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8956 i386_operand_type types, const char *disp_start)
8957{
8958 i386_operand_type bigdisp;
8959 int ret = 1;
636c26b0 8960
24eab124
AM
8961 /* We do this to make sure that the section symbol is in
8962 the symbol table. We will ultimately change the relocation
47926f60 8963 to be relative to the beginning of the section. */
1ae12ab7 8964 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8965 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8966 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8967 {
636c26b0 8968 if (exp->X_op != O_symbol)
3992d3b7 8969 goto inv_disp;
636c26b0 8970
e5cb08ac 8971 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8972 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8973 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8974 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8975 exp->X_op = O_subtract;
8976 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8977 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8978 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8979 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8980 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8981 else
29b0f896 8982 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8983 }
252b5132 8984
3992d3b7
AM
8985 else if (exp->X_op == O_absent
8986 || exp->X_op == O_illegal
ee86248c 8987 || exp->X_op == O_big)
2daf4fd8 8988 {
3992d3b7
AM
8989 inv_disp:
8990 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8991 disp_start);
3992d3b7 8992 ret = 0;
2daf4fd8
AM
8993 }
8994
0e1147d9
L
8995 else if (flag_code == CODE_64BIT
8996 && !i.prefix[ADDR_PREFIX]
8997 && exp->X_op == O_constant)
8998 {
8999 /* Since displacement is signed extended to 64bit, don't allow
9000 disp32 and turn off disp32s if they are out of range. */
9001 i.types[this_operand].bitfield.disp32 = 0;
9002 if (!fits_in_signed_long (exp->X_add_number))
9003 {
9004 i.types[this_operand].bitfield.disp32s = 0;
9005 if (i.types[this_operand].bitfield.baseindex)
9006 {
9007 as_bad (_("0x%lx out range of signed 32bit displacement"),
9008 (long) exp->X_add_number);
9009 ret = 0;
9010 }
9011 }
9012 }
9013
4c63da97 9014#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9015 else if (exp->X_op != O_constant
9016 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9017 && exp_seg != absolute_section
9018 && exp_seg != text_section
9019 && exp_seg != data_section
9020 && exp_seg != bss_section
9021 && exp_seg != undefined_section
9022 && !bfd_is_com_section (exp_seg))
24eab124 9023 {
d0b47220 9024 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9025 ret = 0;
24eab124 9026 }
252b5132 9027#endif
3956db08 9028
40fb9820
L
9029 /* Check if this is a displacement only operand. */
9030 bigdisp = i.types[this_operand];
9031 bigdisp.bitfield.disp8 = 0;
9032 bigdisp.bitfield.disp16 = 0;
9033 bigdisp.bitfield.disp32 = 0;
9034 bigdisp.bitfield.disp32s = 0;
9035 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9036 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9037 i.types[this_operand] = operand_type_and (i.types[this_operand],
9038 types);
3956db08 9039
3992d3b7 9040 return ret;
252b5132
RH
9041}
9042
2abc2bec
JB
9043/* Return the active addressing mode, taking address override and
9044 registers forming the address into consideration. Update the
9045 address override prefix if necessary. */
47926f60 9046
2abc2bec
JB
9047static enum flag_code
9048i386_addressing_mode (void)
252b5132 9049{
be05d201
L
9050 enum flag_code addr_mode;
9051
9052 if (i.prefix[ADDR_PREFIX])
9053 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9054 else
9055 {
9056 addr_mode = flag_code;
9057
24eab124 9058#if INFER_ADDR_PREFIX
be05d201
L
9059 if (i.mem_operands == 0)
9060 {
9061 /* Infer address prefix from the first memory operand. */
9062 const reg_entry *addr_reg = i.base_reg;
9063
9064 if (addr_reg == NULL)
9065 addr_reg = i.index_reg;
eecb386c 9066
be05d201
L
9067 if (addr_reg)
9068 {
9069 if (addr_reg->reg_num == RegEip
9070 || addr_reg->reg_num == RegEiz
dc821c5f 9071 || addr_reg->reg_type.bitfield.dword)
be05d201
L
9072 addr_mode = CODE_32BIT;
9073 else if (flag_code != CODE_64BIT
dc821c5f 9074 && addr_reg->reg_type.bitfield.word)
be05d201
L
9075 addr_mode = CODE_16BIT;
9076
9077 if (addr_mode != flag_code)
9078 {
9079 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9080 i.prefixes += 1;
9081 /* Change the size of any displacement too. At most one
9082 of Disp16 or Disp32 is set.
9083 FIXME. There doesn't seem to be any real need for
9084 separate Disp16 and Disp32 flags. The same goes for
9085 Imm16 and Imm32. Removing them would probably clean
9086 up the code quite a lot. */
9087 if (flag_code != CODE_64BIT
9088 && (i.types[this_operand].bitfield.disp16
9089 || i.types[this_operand].bitfield.disp32))
9090 i.types[this_operand]
9091 = operand_type_xor (i.types[this_operand], disp16_32);
9092 }
9093 }
9094 }
24eab124 9095#endif
be05d201
L
9096 }
9097
2abc2bec
JB
9098 return addr_mode;
9099}
9100
9101/* Make sure the memory operand we've been dealt is valid.
9102 Return 1 on success, 0 on a failure. */
9103
9104static int
9105i386_index_check (const char *operand_string)
9106{
9107 const char *kind = "base/index";
9108 enum flag_code addr_mode = i386_addressing_mode ();
9109
fc0763e6
JB
9110 if (current_templates->start->opcode_modifier.isstring
9111 && !current_templates->start->opcode_modifier.immext
9112 && (current_templates->end[-1].opcode_modifier.isstring
9113 || i.mem_operands))
9114 {
9115 /* Memory operands of string insns are special in that they only allow
9116 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9117 const reg_entry *expected_reg;
9118 static const char *di_si[][2] =
9119 {
9120 { "esi", "edi" },
9121 { "si", "di" },
9122 { "rsi", "rdi" }
9123 };
9124 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9125
9126 kind = "string address";
9127
8325cc63 9128 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9129 {
9130 i386_operand_type type = current_templates->end[-1].operand_types[0];
9131
9132 if (!type.bitfield.baseindex
9133 || ((!i.mem_operands != !intel_syntax)
9134 && current_templates->end[-1].operand_types[1]
9135 .bitfield.baseindex))
9136 type = current_templates->end[-1].operand_types[1];
be05d201
L
9137 expected_reg = hash_find (reg_hash,
9138 di_si[addr_mode][type.bitfield.esseg]);
9139
fc0763e6
JB
9140 }
9141 else
be05d201 9142 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9143
be05d201
L
9144 if (i.base_reg != expected_reg
9145 || i.index_reg
fc0763e6 9146 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9147 {
be05d201
L
9148 /* The second memory operand must have the same size as
9149 the first one. */
9150 if (i.mem_operands
9151 && i.base_reg
9152 && !((addr_mode == CODE_64BIT
dc821c5f 9153 && i.base_reg->reg_type.bitfield.qword)
be05d201 9154 || (addr_mode == CODE_32BIT
dc821c5f
JB
9155 ? i.base_reg->reg_type.bitfield.dword
9156 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9157 goto bad_address;
9158
fc0763e6
JB
9159 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9160 operand_string,
9161 intel_syntax ? '[' : '(',
9162 register_prefix,
be05d201 9163 expected_reg->reg_name,
fc0763e6 9164 intel_syntax ? ']' : ')');
be05d201 9165 return 1;
fc0763e6 9166 }
be05d201
L
9167 else
9168 return 1;
9169
9170bad_address:
9171 as_bad (_("`%s' is not a valid %s expression"),
9172 operand_string, kind);
9173 return 0;
3e73aa7c
JH
9174 }
9175 else
9176 {
be05d201
L
9177 if (addr_mode != CODE_16BIT)
9178 {
9179 /* 32-bit/64-bit checks. */
9180 if ((i.base_reg
9181 && (addr_mode == CODE_64BIT
dc821c5f
JB
9182 ? !i.base_reg->reg_type.bitfield.qword
9183 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9184 && (i.index_reg
9185 || (i.base_reg->reg_num
9186 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9187 || (i.index_reg
1b54b8d7
JB
9188 && !i.index_reg->reg_type.bitfield.xmmword
9189 && !i.index_reg->reg_type.bitfield.ymmword
9190 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9191 && ((addr_mode == CODE_64BIT
dc821c5f 9192 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9193 || i.index_reg->reg_num == RegRiz)
dc821c5f 9194 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9195 || i.index_reg->reg_num == RegEiz))
9196 || !i.index_reg->reg_type.bitfield.baseindex)))
9197 goto bad_address;
8178be5b
JB
9198
9199 /* bndmk, bndldx, and bndstx have special restrictions. */
9200 if (current_templates->start->base_opcode == 0xf30f1b
9201 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9202 {
9203 /* They cannot use RIP-relative addressing. */
9204 if (i.base_reg && i.base_reg->reg_num == RegRip)
9205 {
9206 as_bad (_("`%s' cannot be used here"), operand_string);
9207 return 0;
9208 }
9209
9210 /* bndldx and bndstx ignore their scale factor. */
9211 if (current_templates->start->base_opcode != 0xf30f1b
9212 && i.log2_scale_factor)
9213 as_warn (_("register scaling is being ignored here"));
9214 }
be05d201
L
9215 }
9216 else
3e73aa7c 9217 {
be05d201 9218 /* 16-bit checks. */
3e73aa7c 9219 if ((i.base_reg
dc821c5f 9220 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9221 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9222 || (i.index_reg
dc821c5f 9223 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9224 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9225 || !(i.base_reg
9226 && i.base_reg->reg_num < 6
9227 && i.index_reg->reg_num >= 6
9228 && i.log2_scale_factor == 0))))
be05d201 9229 goto bad_address;
3e73aa7c
JH
9230 }
9231 }
be05d201 9232 return 1;
24eab124 9233}
252b5132 9234
43234a1e
L
9235/* Handle vector immediates. */
9236
9237static int
9238RC_SAE_immediate (const char *imm_start)
9239{
9240 unsigned int match_found, j;
9241 const char *pstr = imm_start;
9242 expressionS *exp;
9243
9244 if (*pstr != '{')
9245 return 0;
9246
9247 pstr++;
9248 match_found = 0;
9249 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9250 {
9251 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9252 {
9253 if (!i.rounding)
9254 {
9255 rc_op.type = RC_NamesTable[j].type;
9256 rc_op.operand = this_operand;
9257 i.rounding = &rc_op;
9258 }
9259 else
9260 {
9261 as_bad (_("duplicated `%s'"), imm_start);
9262 return 0;
9263 }
9264 pstr += RC_NamesTable[j].len;
9265 match_found = 1;
9266 break;
9267 }
9268 }
9269 if (!match_found)
9270 return 0;
9271
9272 if (*pstr++ != '}')
9273 {
9274 as_bad (_("Missing '}': '%s'"), imm_start);
9275 return 0;
9276 }
9277 /* RC/SAE immediate string should contain nothing more. */;
9278 if (*pstr != 0)
9279 {
9280 as_bad (_("Junk after '}': '%s'"), imm_start);
9281 return 0;
9282 }
9283
9284 exp = &im_expressions[i.imm_operands++];
9285 i.op[this_operand].imms = exp;
9286
9287 exp->X_op = O_constant;
9288 exp->X_add_number = 0;
9289 exp->X_add_symbol = (symbolS *) 0;
9290 exp->X_op_symbol = (symbolS *) 0;
9291
9292 i.types[this_operand].bitfield.imm8 = 1;
9293 return 1;
9294}
9295
8325cc63
JB
9296/* Only string instructions can have a second memory operand, so
9297 reduce current_templates to just those if it contains any. */
9298static int
9299maybe_adjust_templates (void)
9300{
9301 const insn_template *t;
9302
9303 gas_assert (i.mem_operands == 1);
9304
9305 for (t = current_templates->start; t < current_templates->end; ++t)
9306 if (t->opcode_modifier.isstring)
9307 break;
9308
9309 if (t < current_templates->end)
9310 {
9311 static templates aux_templates;
9312 bfd_boolean recheck;
9313
9314 aux_templates.start = t;
9315 for (; t < current_templates->end; ++t)
9316 if (!t->opcode_modifier.isstring)
9317 break;
9318 aux_templates.end = t;
9319
9320 /* Determine whether to re-check the first memory operand. */
9321 recheck = (aux_templates.start != current_templates->start
9322 || t != current_templates->end);
9323
9324 current_templates = &aux_templates;
9325
9326 if (recheck)
9327 {
9328 i.mem_operands = 0;
9329 if (i.memop1_string != NULL
9330 && i386_index_check (i.memop1_string) == 0)
9331 return 0;
9332 i.mem_operands = 1;
9333 }
9334 }
9335
9336 return 1;
9337}
9338
fc0763e6 9339/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9340 on error. */
252b5132 9341
252b5132 9342static int
a7619375 9343i386_att_operand (char *operand_string)
252b5132 9344{
af6bdddf
AM
9345 const reg_entry *r;
9346 char *end_op;
24eab124 9347 char *op_string = operand_string;
252b5132 9348
24eab124 9349 if (is_space_char (*op_string))
252b5132
RH
9350 ++op_string;
9351
24eab124 9352 /* We check for an absolute prefix (differentiating,
47926f60 9353 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9354 if (*op_string == ABSOLUTE_PREFIX)
9355 {
9356 ++op_string;
9357 if (is_space_char (*op_string))
9358 ++op_string;
40fb9820 9359 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9360 }
252b5132 9361
47926f60 9362 /* Check if operand is a register. */
4d1bb795 9363 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9364 {
40fb9820
L
9365 i386_operand_type temp;
9366
24eab124
AM
9367 /* Check for a segment override by searching for ':' after a
9368 segment register. */
9369 op_string = end_op;
9370 if (is_space_char (*op_string))
9371 ++op_string;
40fb9820
L
9372 if (*op_string == ':'
9373 && (r->reg_type.bitfield.sreg2
9374 || r->reg_type.bitfield.sreg3))
24eab124
AM
9375 {
9376 switch (r->reg_num)
9377 {
9378 case 0:
9379 i.seg[i.mem_operands] = &es;
9380 break;
9381 case 1:
9382 i.seg[i.mem_operands] = &cs;
9383 break;
9384 case 2:
9385 i.seg[i.mem_operands] = &ss;
9386 break;
9387 case 3:
9388 i.seg[i.mem_operands] = &ds;
9389 break;
9390 case 4:
9391 i.seg[i.mem_operands] = &fs;
9392 break;
9393 case 5:
9394 i.seg[i.mem_operands] = &gs;
9395 break;
9396 }
252b5132 9397
24eab124 9398 /* Skip the ':' and whitespace. */
252b5132
RH
9399 ++op_string;
9400 if (is_space_char (*op_string))
24eab124 9401 ++op_string;
252b5132 9402
24eab124
AM
9403 if (!is_digit_char (*op_string)
9404 && !is_identifier_char (*op_string)
9405 && *op_string != '('
9406 && *op_string != ABSOLUTE_PREFIX)
9407 {
9408 as_bad (_("bad memory operand `%s'"), op_string);
9409 return 0;
9410 }
47926f60 9411 /* Handle case of %es:*foo. */
24eab124
AM
9412 if (*op_string == ABSOLUTE_PREFIX)
9413 {
9414 ++op_string;
9415 if (is_space_char (*op_string))
9416 ++op_string;
40fb9820 9417 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9418 }
9419 goto do_memory_reference;
9420 }
43234a1e
L
9421
9422 /* Handle vector operations. */
9423 if (*op_string == '{')
9424 {
9425 op_string = check_VecOperations (op_string, NULL);
9426 if (op_string == NULL)
9427 return 0;
9428 }
9429
24eab124
AM
9430 if (*op_string)
9431 {
d0b47220 9432 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9433 return 0;
9434 }
40fb9820
L
9435 temp = r->reg_type;
9436 temp.bitfield.baseindex = 0;
c6fb90c8
L
9437 i.types[this_operand] = operand_type_or (i.types[this_operand],
9438 temp);
7d5e4556 9439 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9440 i.op[this_operand].regs = r;
24eab124
AM
9441 i.reg_operands++;
9442 }
af6bdddf
AM
9443 else if (*op_string == REGISTER_PREFIX)
9444 {
9445 as_bad (_("bad register name `%s'"), op_string);
9446 return 0;
9447 }
24eab124 9448 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9449 {
24eab124 9450 ++op_string;
40fb9820 9451 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9452 {
d0b47220 9453 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9454 return 0;
9455 }
9456 if (!i386_immediate (op_string))
9457 return 0;
9458 }
43234a1e
L
9459 else if (RC_SAE_immediate (operand_string))
9460 {
9461 /* If it is a RC or SAE immediate, do nothing. */
9462 ;
9463 }
24eab124
AM
9464 else if (is_digit_char (*op_string)
9465 || is_identifier_char (*op_string)
d02603dc 9466 || *op_string == '"'
e5cb08ac 9467 || *op_string == '(')
24eab124 9468 {
47926f60 9469 /* This is a memory reference of some sort. */
af6bdddf 9470 char *base_string;
252b5132 9471
47926f60 9472 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9473 char *displacement_string_start;
9474 char *displacement_string_end;
43234a1e 9475 char *vop_start;
252b5132 9476
24eab124 9477 do_memory_reference:
8325cc63
JB
9478 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9479 return 0;
24eab124 9480 if ((i.mem_operands == 1
40fb9820 9481 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9482 || i.mem_operands == 2)
9483 {
9484 as_bad (_("too many memory references for `%s'"),
9485 current_templates->start->name);
9486 return 0;
9487 }
252b5132 9488
24eab124
AM
9489 /* Check for base index form. We detect the base index form by
9490 looking for an ')' at the end of the operand, searching
9491 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9492 after the '('. */
af6bdddf 9493 base_string = op_string + strlen (op_string);
c3332e24 9494
43234a1e
L
9495 /* Handle vector operations. */
9496 vop_start = strchr (op_string, '{');
9497 if (vop_start && vop_start < base_string)
9498 {
9499 if (check_VecOperations (vop_start, base_string) == NULL)
9500 return 0;
9501 base_string = vop_start;
9502 }
9503
af6bdddf
AM
9504 --base_string;
9505 if (is_space_char (*base_string))
9506 --base_string;
252b5132 9507
47926f60 9508 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9509 displacement_string_start = op_string;
9510 displacement_string_end = base_string + 1;
252b5132 9511
24eab124
AM
9512 if (*base_string == ')')
9513 {
af6bdddf 9514 char *temp_string;
24eab124
AM
9515 unsigned int parens_balanced = 1;
9516 /* We've already checked that the number of left & right ()'s are
47926f60 9517 equal, so this loop will not be infinite. */
24eab124
AM
9518 do
9519 {
9520 base_string--;
9521 if (*base_string == ')')
9522 parens_balanced++;
9523 if (*base_string == '(')
9524 parens_balanced--;
9525 }
9526 while (parens_balanced);
c3332e24 9527
af6bdddf 9528 temp_string = base_string;
c3332e24 9529
24eab124 9530 /* Skip past '(' and whitespace. */
252b5132
RH
9531 ++base_string;
9532 if (is_space_char (*base_string))
24eab124 9533 ++base_string;
252b5132 9534
af6bdddf 9535 if (*base_string == ','
4eed87de
AM
9536 || ((i.base_reg = parse_register (base_string, &end_op))
9537 != NULL))
252b5132 9538 {
af6bdddf 9539 displacement_string_end = temp_string;
252b5132 9540
40fb9820 9541 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9542
af6bdddf 9543 if (i.base_reg)
24eab124 9544 {
24eab124
AM
9545 base_string = end_op;
9546 if (is_space_char (*base_string))
9547 ++base_string;
af6bdddf
AM
9548 }
9549
9550 /* There may be an index reg or scale factor here. */
9551 if (*base_string == ',')
9552 {
9553 ++base_string;
9554 if (is_space_char (*base_string))
9555 ++base_string;
9556
4eed87de
AM
9557 if ((i.index_reg = parse_register (base_string, &end_op))
9558 != NULL)
24eab124 9559 {
af6bdddf 9560 base_string = end_op;
24eab124
AM
9561 if (is_space_char (*base_string))
9562 ++base_string;
af6bdddf
AM
9563 if (*base_string == ',')
9564 {
9565 ++base_string;
9566 if (is_space_char (*base_string))
9567 ++base_string;
9568 }
e5cb08ac 9569 else if (*base_string != ')')
af6bdddf 9570 {
4eed87de
AM
9571 as_bad (_("expecting `,' or `)' "
9572 "after index register in `%s'"),
af6bdddf
AM
9573 operand_string);
9574 return 0;
9575 }
24eab124 9576 }
af6bdddf 9577 else if (*base_string == REGISTER_PREFIX)
24eab124 9578 {
f76bf5e0
L
9579 end_op = strchr (base_string, ',');
9580 if (end_op)
9581 *end_op = '\0';
af6bdddf 9582 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9583 return 0;
9584 }
252b5132 9585
47926f60 9586 /* Check for scale factor. */
551c1ca1 9587 if (*base_string != ')')
af6bdddf 9588 {
551c1ca1
AM
9589 char *end_scale = i386_scale (base_string);
9590
9591 if (!end_scale)
af6bdddf 9592 return 0;
24eab124 9593
551c1ca1 9594 base_string = end_scale;
af6bdddf
AM
9595 if (is_space_char (*base_string))
9596 ++base_string;
9597 if (*base_string != ')')
9598 {
4eed87de
AM
9599 as_bad (_("expecting `)' "
9600 "after scale factor in `%s'"),
af6bdddf
AM
9601 operand_string);
9602 return 0;
9603 }
9604 }
9605 else if (!i.index_reg)
24eab124 9606 {
4eed87de
AM
9607 as_bad (_("expecting index register or scale factor "
9608 "after `,'; got '%c'"),
af6bdddf 9609 *base_string);
24eab124
AM
9610 return 0;
9611 }
9612 }
af6bdddf 9613 else if (*base_string != ')')
24eab124 9614 {
4eed87de
AM
9615 as_bad (_("expecting `,' or `)' "
9616 "after base register in `%s'"),
af6bdddf 9617 operand_string);
24eab124
AM
9618 return 0;
9619 }
c3332e24 9620 }
af6bdddf 9621 else if (*base_string == REGISTER_PREFIX)
c3332e24 9622 {
f76bf5e0
L
9623 end_op = strchr (base_string, ',');
9624 if (end_op)
9625 *end_op = '\0';
af6bdddf 9626 as_bad (_("bad register name `%s'"), base_string);
24eab124 9627 return 0;
c3332e24 9628 }
24eab124
AM
9629 }
9630
9631 /* If there's an expression beginning the operand, parse it,
9632 assuming displacement_string_start and
9633 displacement_string_end are meaningful. */
9634 if (displacement_string_start != displacement_string_end)
9635 {
9636 if (!i386_displacement (displacement_string_start,
9637 displacement_string_end))
9638 return 0;
9639 }
9640
9641 /* Special case for (%dx) while doing input/output op. */
9642 if (i.base_reg
2fb5be8d 9643 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
9644 && i.index_reg == 0
9645 && i.log2_scale_factor == 0
9646 && i.seg[i.mem_operands] == 0
40fb9820 9647 && !operand_type_check (i.types[this_operand], disp))
24eab124 9648 {
2fb5be8d 9649 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
9650 return 1;
9651 }
9652
eecb386c
AM
9653 if (i386_index_check (operand_string) == 0)
9654 return 0;
5c07affc 9655 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9656 if (i.mem_operands == 0)
9657 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9658 i.mem_operands++;
9659 }
9660 else
ce8a8b2f
AM
9661 {
9662 /* It's not a memory operand; argh! */
24eab124
AM
9663 as_bad (_("invalid char %s beginning operand %d `%s'"),
9664 output_invalid (*op_string),
9665 this_operand + 1,
9666 op_string);
9667 return 0;
9668 }
47926f60 9669 return 1; /* Normal return. */
252b5132
RH
9670}
9671\f
fa94de6b
RM
9672/* Calculate the maximum variable size (i.e., excluding fr_fix)
9673 that an rs_machine_dependent frag may reach. */
9674
9675unsigned int
9676i386_frag_max_var (fragS *frag)
9677{
9678 /* The only relaxable frags are for jumps.
9679 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9680 gas_assert (frag->fr_type == rs_machine_dependent);
9681 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9682}
9683
b084df0b
L
9684#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9685static int
8dcea932 9686elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9687{
9688 /* STT_GNU_IFUNC symbol must go through PLT. */
9689 if ((symbol_get_bfdsym (fr_symbol)->flags
9690 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9691 return 0;
9692
9693 if (!S_IS_EXTERNAL (fr_symbol))
9694 /* Symbol may be weak or local. */
9695 return !S_IS_WEAK (fr_symbol);
9696
8dcea932
L
9697 /* Global symbols with non-default visibility can't be preempted. */
9698 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9699 return 1;
9700
9701 if (fr_var != NO_RELOC)
9702 switch ((enum bfd_reloc_code_real) fr_var)
9703 {
9704 case BFD_RELOC_386_PLT32:
9705 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9706 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9707 return 0;
9708 default:
9709 abort ();
9710 }
9711
b084df0b
L
9712 /* Global symbols with default visibility in a shared library may be
9713 preempted by another definition. */
8dcea932 9714 return !shared;
b084df0b
L
9715}
9716#endif
9717
ee7fcc42
AM
9718/* md_estimate_size_before_relax()
9719
9720 Called just before relax() for rs_machine_dependent frags. The x86
9721 assembler uses these frags to handle variable size jump
9722 instructions.
9723
9724 Any symbol that is now undefined will not become defined.
9725 Return the correct fr_subtype in the frag.
9726 Return the initial "guess for variable size of frag" to caller.
9727 The guess is actually the growth beyond the fixed part. Whatever
9728 we do to grow the fixed or variable part contributes to our
9729 returned value. */
9730
252b5132 9731int
7016a5d5 9732md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9733{
252b5132 9734 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9735 check for un-relaxable symbols. On an ELF system, we can't relax
9736 an externally visible symbol, because it may be overridden by a
9737 shared library. */
9738 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9739#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9740 || (IS_ELF
8dcea932
L
9741 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9742 fragP->fr_var))
fbeb56a4
DK
9743#endif
9744#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9745 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9746 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9747#endif
9748 )
252b5132 9749 {
b98ef147
AM
9750 /* Symbol is undefined in this segment, or we need to keep a
9751 reloc so that weak symbols can be overridden. */
9752 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9753 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9754 unsigned char *opcode;
9755 int old_fr_fix;
f6af82bd 9756
ee7fcc42 9757 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9758 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9759 else if (size == 2)
f6af82bd 9760 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9761#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9762 else if (need_plt32_p (fragP->fr_symbol))
9763 reloc_type = BFD_RELOC_X86_64_PLT32;
9764#endif
f6af82bd
AM
9765 else
9766 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9767
ee7fcc42
AM
9768 old_fr_fix = fragP->fr_fix;
9769 opcode = (unsigned char *) fragP->fr_opcode;
9770
fddf5b5b 9771 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9772 {
fddf5b5b
AM
9773 case UNCOND_JUMP:
9774 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9775 opcode[0] = 0xe9;
252b5132 9776 fragP->fr_fix += size;
062cd5e7
AS
9777 fix_new (fragP, old_fr_fix, size,
9778 fragP->fr_symbol,
9779 fragP->fr_offset, 1,
9780 reloc_type);
252b5132
RH
9781 break;
9782
fddf5b5b 9783 case COND_JUMP86:
412167cb
AM
9784 if (size == 2
9785 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9786 {
9787 /* Negate the condition, and branch past an
9788 unconditional jump. */
9789 opcode[0] ^= 1;
9790 opcode[1] = 3;
9791 /* Insert an unconditional jump. */
9792 opcode[2] = 0xe9;
9793 /* We added two extra opcode bytes, and have a two byte
9794 offset. */
9795 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9796 fix_new (fragP, old_fr_fix + 2, 2,
9797 fragP->fr_symbol,
9798 fragP->fr_offset, 1,
9799 reloc_type);
fddf5b5b
AM
9800 break;
9801 }
9802 /* Fall through. */
9803
9804 case COND_JUMP:
412167cb
AM
9805 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9806 {
3e02c1cc
AM
9807 fixS *fixP;
9808
412167cb 9809 fragP->fr_fix += 1;
3e02c1cc
AM
9810 fixP = fix_new (fragP, old_fr_fix, 1,
9811 fragP->fr_symbol,
9812 fragP->fr_offset, 1,
9813 BFD_RELOC_8_PCREL);
9814 fixP->fx_signed = 1;
412167cb
AM
9815 break;
9816 }
93c2a809 9817
24eab124 9818 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9819 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9820 opcode[1] = opcode[0] + 0x10;
f6af82bd 9821 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9822 /* We've added an opcode byte. */
9823 fragP->fr_fix += 1 + size;
062cd5e7
AS
9824 fix_new (fragP, old_fr_fix + 1, size,
9825 fragP->fr_symbol,
9826 fragP->fr_offset, 1,
9827 reloc_type);
252b5132 9828 break;
fddf5b5b
AM
9829
9830 default:
9831 BAD_CASE (fragP->fr_subtype);
9832 break;
252b5132
RH
9833 }
9834 frag_wane (fragP);
ee7fcc42 9835 return fragP->fr_fix - old_fr_fix;
252b5132 9836 }
93c2a809 9837
93c2a809
AM
9838 /* Guess size depending on current relax state. Initially the relax
9839 state will correspond to a short jump and we return 1, because
9840 the variable part of the frag (the branch offset) is one byte
9841 long. However, we can relax a section more than once and in that
9842 case we must either set fr_subtype back to the unrelaxed state,
9843 or return the value for the appropriate branch. */
9844 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9845}
9846
47926f60
KH
9847/* Called after relax() is finished.
9848
9849 In: Address of frag.
9850 fr_type == rs_machine_dependent.
9851 fr_subtype is what the address relaxed to.
9852
9853 Out: Any fixSs and constants are set up.
9854 Caller will turn frag into a ".space 0". */
9855
252b5132 9856void
7016a5d5
TG
9857md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9858 fragS *fragP)
252b5132 9859{
29b0f896 9860 unsigned char *opcode;
252b5132 9861 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9862 offsetT target_address;
9863 offsetT opcode_address;
252b5132 9864 unsigned int extension = 0;
847f7ad4 9865 offsetT displacement_from_opcode_start;
252b5132
RH
9866
9867 opcode = (unsigned char *) fragP->fr_opcode;
9868
47926f60 9869 /* Address we want to reach in file space. */
252b5132 9870 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9871
47926f60 9872 /* Address opcode resides at in file space. */
252b5132
RH
9873 opcode_address = fragP->fr_address + fragP->fr_fix;
9874
47926f60 9875 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9876 displacement_from_opcode_start = target_address - opcode_address;
9877
fddf5b5b 9878 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9879 {
47926f60
KH
9880 /* Don't have to change opcode. */
9881 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9882 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9883 }
9884 else
9885 {
9886 if (no_cond_jump_promotion
9887 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9888 as_warn_where (fragP->fr_file, fragP->fr_line,
9889 _("long jump required"));
252b5132 9890
fddf5b5b
AM
9891 switch (fragP->fr_subtype)
9892 {
9893 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9894 extension = 4; /* 1 opcode + 4 displacement */
9895 opcode[0] = 0xe9;
9896 where_to_put_displacement = &opcode[1];
9897 break;
252b5132 9898
fddf5b5b
AM
9899 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9900 extension = 2; /* 1 opcode + 2 displacement */
9901 opcode[0] = 0xe9;
9902 where_to_put_displacement = &opcode[1];
9903 break;
252b5132 9904
fddf5b5b
AM
9905 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9906 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9907 extension = 5; /* 2 opcode + 4 displacement */
9908 opcode[1] = opcode[0] + 0x10;
9909 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9910 where_to_put_displacement = &opcode[2];
9911 break;
252b5132 9912
fddf5b5b
AM
9913 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9914 extension = 3; /* 2 opcode + 2 displacement */
9915 opcode[1] = opcode[0] + 0x10;
9916 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9917 where_to_put_displacement = &opcode[2];
9918 break;
252b5132 9919
fddf5b5b
AM
9920 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9921 extension = 4;
9922 opcode[0] ^= 1;
9923 opcode[1] = 3;
9924 opcode[2] = 0xe9;
9925 where_to_put_displacement = &opcode[3];
9926 break;
9927
9928 default:
9929 BAD_CASE (fragP->fr_subtype);
9930 break;
9931 }
252b5132 9932 }
fddf5b5b 9933
7b81dfbb
AJ
9934 /* If size if less then four we are sure that the operand fits,
9935 but if it's 4, then it could be that the displacement is larger
9936 then -/+ 2GB. */
9937 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9938 && object_64bit
9939 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9940 + ((addressT) 1 << 31))
9941 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9942 {
9943 as_bad_where (fragP->fr_file, fragP->fr_line,
9944 _("jump target out of range"));
9945 /* Make us emit 0. */
9946 displacement_from_opcode_start = extension;
9947 }
47926f60 9948 /* Now put displacement after opcode. */
252b5132
RH
9949 md_number_to_chars ((char *) where_to_put_displacement,
9950 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9951 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9952 fragP->fr_fix += extension;
9953}
9954\f
7016a5d5 9955/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9956 by our caller that we have all the info we need to fix it up.
9957
7016a5d5
TG
9958 Parameter valP is the pointer to the value of the bits.
9959
252b5132
RH
9960 On the 386, immediates, displacements, and data pointers are all in
9961 the same (little-endian) format, so we don't need to care about which
9962 we are handling. */
9963
94f592af 9964void
7016a5d5 9965md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9966{
94f592af 9967 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9968 valueT value = *valP;
252b5132 9969
f86103b7 9970#if !defined (TE_Mach)
93382f6d
AM
9971 if (fixP->fx_pcrel)
9972 {
9973 switch (fixP->fx_r_type)
9974 {
5865bb77
ILT
9975 default:
9976 break;
9977
d6ab8113
JB
9978 case BFD_RELOC_64:
9979 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9980 break;
93382f6d 9981 case BFD_RELOC_32:
ae8887b5 9982 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9983 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9984 break;
9985 case BFD_RELOC_16:
9986 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9987 break;
9988 case BFD_RELOC_8:
9989 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9990 break;
9991 }
9992 }
252b5132 9993
a161fe53 9994 if (fixP->fx_addsy != NULL
31312f95 9995 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9996 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9997 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9998 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9999 && !use_rela_relocations)
252b5132 10000 {
31312f95
AM
10001 /* This is a hack. There should be a better way to handle this.
10002 This covers for the fact that bfd_install_relocation will
10003 subtract the current location (for partial_inplace, PC relative
10004 relocations); see more below. */
252b5132 10005#ifndef OBJ_AOUT
718ddfc0 10006 if (IS_ELF
252b5132
RH
10007#ifdef TE_PE
10008 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10009#endif
10010 )
10011 value += fixP->fx_where + fixP->fx_frag->fr_address;
10012#endif
10013#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10014 if (IS_ELF)
252b5132 10015 {
6539b54b 10016 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10017
6539b54b 10018 if ((sym_seg == seg
2f66722d 10019 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10020 && sym_seg != absolute_section))
af65af87 10021 && !generic_force_reloc (fixP))
2f66722d
AM
10022 {
10023 /* Yes, we add the values in twice. This is because
6539b54b
AM
10024 bfd_install_relocation subtracts them out again. I think
10025 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10026 it. FIXME. */
10027 value += fixP->fx_where + fixP->fx_frag->fr_address;
10028 }
252b5132
RH
10029 }
10030#endif
10031#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10032 /* For some reason, the PE format does not store a
10033 section address offset for a PC relative symbol. */
10034 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10035 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10036 value += md_pcrel_from (fixP);
10037#endif
10038 }
fbeb56a4 10039#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10040 if (fixP->fx_addsy != NULL
10041 && S_IS_WEAK (fixP->fx_addsy)
10042 /* PR 16858: Do not modify weak function references. */
10043 && ! fixP->fx_pcrel)
fbeb56a4 10044 {
296a8689
NC
10045#if !defined (TE_PEP)
10046 /* For x86 PE weak function symbols are neither PC-relative
10047 nor do they set S_IS_FUNCTION. So the only reliable way
10048 to detect them is to check the flags of their containing
10049 section. */
10050 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10051 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10052 ;
10053 else
10054#endif
fbeb56a4
DK
10055 value -= S_GET_VALUE (fixP->fx_addsy);
10056 }
10057#endif
252b5132
RH
10058
10059 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10060 and we must not disappoint it. */
252b5132 10061#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10062 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10063 switch (fixP->fx_r_type)
10064 {
10065 case BFD_RELOC_386_PLT32:
3e73aa7c 10066 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10067 /* Make the jump instruction point to the address of the operand. At
10068 runtime we merely add the offset to the actual PLT entry. */
10069 value = -4;
10070 break;
31312f95 10071
13ae64f3
JJ
10072 case BFD_RELOC_386_TLS_GD:
10073 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10074 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10075 case BFD_RELOC_386_TLS_IE:
10076 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10077 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10078 case BFD_RELOC_X86_64_TLSGD:
10079 case BFD_RELOC_X86_64_TLSLD:
10080 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10081 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10082 value = 0; /* Fully resolved at runtime. No addend. */
10083 /* Fallthrough */
10084 case BFD_RELOC_386_TLS_LE:
10085 case BFD_RELOC_386_TLS_LDO_32:
10086 case BFD_RELOC_386_TLS_LE_32:
10087 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10088 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10089 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10090 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10091 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10092 break;
10093
67a4f2b7
AO
10094 case BFD_RELOC_386_TLS_DESC_CALL:
10095 case BFD_RELOC_X86_64_TLSDESC_CALL:
10096 value = 0; /* Fully resolved at runtime. No addend. */
10097 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10098 fixP->fx_done = 0;
10099 return;
10100
47926f60
KH
10101 case BFD_RELOC_VTABLE_INHERIT:
10102 case BFD_RELOC_VTABLE_ENTRY:
10103 fixP->fx_done = 0;
94f592af 10104 return;
47926f60
KH
10105
10106 default:
10107 break;
10108 }
10109#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10110 *valP = value;
f86103b7 10111#endif /* !defined (TE_Mach) */
3e73aa7c 10112
3e73aa7c 10113 /* Are we finished with this relocation now? */
c6682705 10114 if (fixP->fx_addsy == NULL)
3e73aa7c 10115 fixP->fx_done = 1;
fbeb56a4
DK
10116#if defined (OBJ_COFF) && defined (TE_PE)
10117 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10118 {
10119 fixP->fx_done = 0;
10120 /* Remember value for tc_gen_reloc. */
10121 fixP->fx_addnumber = value;
10122 /* Clear out the frag for now. */
10123 value = 0;
10124 }
10125#endif
3e73aa7c
JH
10126 else if (use_rela_relocations)
10127 {
10128 fixP->fx_no_overflow = 1;
062cd5e7
AS
10129 /* Remember value for tc_gen_reloc. */
10130 fixP->fx_addnumber = value;
3e73aa7c
JH
10131 value = 0;
10132 }
f86103b7 10133
94f592af 10134 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10135}
252b5132 10136\f
6d4af3c2 10137const char *
499ac353 10138md_atof (int type, char *litP, int *sizeP)
252b5132 10139{
499ac353
NC
10140 /* This outputs the LITTLENUMs in REVERSE order;
10141 in accord with the bigendian 386. */
10142 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10143}
10144\f
2d545b82 10145static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10146
252b5132 10147static char *
e3bb37b5 10148output_invalid (int c)
252b5132 10149{
3882b010 10150 if (ISPRINT (c))
f9f21a03
L
10151 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10152 "'%c'", c);
252b5132 10153 else
f9f21a03 10154 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10155 "(0x%x)", (unsigned char) c);
252b5132
RH
10156 return output_invalid_buf;
10157}
10158
af6bdddf 10159/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10160
10161static const reg_entry *
4d1bb795 10162parse_real_register (char *reg_string, char **end_op)
252b5132 10163{
af6bdddf
AM
10164 char *s = reg_string;
10165 char *p;
252b5132
RH
10166 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10167 const reg_entry *r;
10168
10169 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10170 if (*s == REGISTER_PREFIX)
10171 ++s;
10172
10173 if (is_space_char (*s))
10174 ++s;
10175
10176 p = reg_name_given;
af6bdddf 10177 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10178 {
10179 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10180 return (const reg_entry *) NULL;
10181 s++;
252b5132
RH
10182 }
10183
6588847e
DN
10184 /* For naked regs, make sure that we are not dealing with an identifier.
10185 This prevents confusing an identifier like `eax_var' with register
10186 `eax'. */
10187 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10188 return (const reg_entry *) NULL;
10189
af6bdddf 10190 *end_op = s;
252b5132
RH
10191
10192 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10193
5f47d35b 10194 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10195 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10196 {
0e0eea78
JB
10197 if (!cpu_arch_flags.bitfield.cpu8087
10198 && !cpu_arch_flags.bitfield.cpu287
10199 && !cpu_arch_flags.bitfield.cpu387)
10200 return (const reg_entry *) NULL;
10201
5f47d35b
AM
10202 if (is_space_char (*s))
10203 ++s;
10204 if (*s == '(')
10205 {
af6bdddf 10206 ++s;
5f47d35b
AM
10207 if (is_space_char (*s))
10208 ++s;
10209 if (*s >= '0' && *s <= '7')
10210 {
db557034 10211 int fpr = *s - '0';
af6bdddf 10212 ++s;
5f47d35b
AM
10213 if (is_space_char (*s))
10214 ++s;
10215 if (*s == ')')
10216 {
10217 *end_op = s + 1;
1e9cc1c2 10218 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10219 know (r);
10220 return r + fpr;
5f47d35b 10221 }
5f47d35b 10222 }
47926f60 10223 /* We have "%st(" then garbage. */
5f47d35b
AM
10224 return (const reg_entry *) NULL;
10225 }
10226 }
10227
a60de03c
JB
10228 if (r == NULL || allow_pseudo_reg)
10229 return r;
10230
0dfbf9d7 10231 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10232 return (const reg_entry *) NULL;
10233
dc821c5f 10234 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10235 || r->reg_type.bitfield.sreg3
10236 || r->reg_type.bitfield.control
10237 || r->reg_type.bitfield.debug
10238 || r->reg_type.bitfield.test)
10239 && !cpu_arch_flags.bitfield.cpui386)
10240 return (const reg_entry *) NULL;
10241
6e041cf4 10242 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10243 return (const reg_entry *) NULL;
10244
6e041cf4
JB
10245 if (!cpu_arch_flags.bitfield.cpuavx512f)
10246 {
10247 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10248 return (const reg_entry *) NULL;
40f12533 10249
6e041cf4
JB
10250 if (!cpu_arch_flags.bitfield.cpuavx)
10251 {
10252 if (r->reg_type.bitfield.ymmword)
10253 return (const reg_entry *) NULL;
1848e567 10254
6e041cf4
JB
10255 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10256 return (const reg_entry *) NULL;
10257 }
10258 }
43234a1e 10259
1adf7f56
JB
10260 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10261 return (const reg_entry *) NULL;
10262
db51cc60 10263 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10264 if (!allow_index_reg
db51cc60
L
10265 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10266 return (const reg_entry *) NULL;
10267
1d3f8286
JB
10268 /* Upper 16 vector registers are only available with VREX in 64bit
10269 mode, and require EVEX encoding. */
10270 if (r->reg_flags & RegVRex)
43234a1e
L
10271 {
10272 if (!cpu_arch_flags.bitfield.cpuvrex
10273 || flag_code != CODE_64BIT)
10274 return (const reg_entry *) NULL;
1d3f8286
JB
10275
10276 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10277 }
10278
4787f4a5
JB
10279 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10280 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10281 && flag_code != CODE_64BIT)
20f0a1fc 10282 return (const reg_entry *) NULL;
1ae00879 10283
b7240065
JB
10284 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10285 return (const reg_entry *) NULL;
10286
252b5132
RH
10287 return r;
10288}
4d1bb795
JB
10289
10290/* REG_STRING starts *before* REGISTER_PREFIX. */
10291
10292static const reg_entry *
10293parse_register (char *reg_string, char **end_op)
10294{
10295 const reg_entry *r;
10296
10297 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10298 r = parse_real_register (reg_string, end_op);
10299 else
10300 r = NULL;
10301 if (!r)
10302 {
10303 char *save = input_line_pointer;
10304 char c;
10305 symbolS *symbolP;
10306
10307 input_line_pointer = reg_string;
d02603dc 10308 c = get_symbol_name (&reg_string);
4d1bb795
JB
10309 symbolP = symbol_find (reg_string);
10310 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10311 {
10312 const expressionS *e = symbol_get_value_expression (symbolP);
10313
0398aac5 10314 know (e->X_op == O_register);
4eed87de 10315 know (e->X_add_number >= 0
c3fe08fa 10316 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10317 r = i386_regtab + e->X_add_number;
d3bb6b49 10318 if ((r->reg_flags & RegVRex))
86fa6981 10319 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10320 *end_op = input_line_pointer;
10321 }
10322 *input_line_pointer = c;
10323 input_line_pointer = save;
10324 }
10325 return r;
10326}
10327
10328int
10329i386_parse_name (char *name, expressionS *e, char *nextcharP)
10330{
10331 const reg_entry *r;
10332 char *end = input_line_pointer;
10333
10334 *end = *nextcharP;
10335 r = parse_register (name, &input_line_pointer);
10336 if (r && end <= input_line_pointer)
10337 {
10338 *nextcharP = *input_line_pointer;
10339 *input_line_pointer = 0;
10340 e->X_op = O_register;
10341 e->X_add_number = r - i386_regtab;
10342 return 1;
10343 }
10344 input_line_pointer = end;
10345 *end = 0;
ee86248c 10346 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10347}
10348
10349void
10350md_operand (expressionS *e)
10351{
ee86248c
JB
10352 char *end;
10353 const reg_entry *r;
4d1bb795 10354
ee86248c
JB
10355 switch (*input_line_pointer)
10356 {
10357 case REGISTER_PREFIX:
10358 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10359 if (r)
10360 {
10361 e->X_op = O_register;
10362 e->X_add_number = r - i386_regtab;
10363 input_line_pointer = end;
10364 }
ee86248c
JB
10365 break;
10366
10367 case '[':
9c2799c2 10368 gas_assert (intel_syntax);
ee86248c
JB
10369 end = input_line_pointer++;
10370 expression (e);
10371 if (*input_line_pointer == ']')
10372 {
10373 ++input_line_pointer;
10374 e->X_op_symbol = make_expr_symbol (e);
10375 e->X_add_symbol = NULL;
10376 e->X_add_number = 0;
10377 e->X_op = O_index;
10378 }
10379 else
10380 {
10381 e->X_op = O_absent;
10382 input_line_pointer = end;
10383 }
10384 break;
4d1bb795
JB
10385 }
10386}
10387
252b5132 10388\f
4cc782b5 10389#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10390const char *md_shortopts = "kVQ:sqnO::";
252b5132 10391#else
b6f8c7c4 10392const char *md_shortopts = "qnO::";
252b5132 10393#endif
6e0b89ee 10394
3e73aa7c 10395#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10396#define OPTION_64 (OPTION_MD_BASE + 1)
10397#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10398#define OPTION_MARCH (OPTION_MD_BASE + 3)
10399#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10400#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10401#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10402#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10403#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10404#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10405#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10406#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10407#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10408#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10409#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10410#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10411#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10412#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10413#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10414#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10415#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10416#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10417#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10418#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10419#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b3b91714 10420
99ad8390
NC
10421struct option md_longopts[] =
10422{
3e73aa7c 10423 {"32", no_argument, NULL, OPTION_32},
321098a5 10424#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10425 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10426 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10427#endif
10428#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10429 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10430 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10431#endif
b3b91714 10432 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10433 {"march", required_argument, NULL, OPTION_MARCH},
10434 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10435 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10436 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10437 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10438 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10439 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10440 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10441 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10442 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10443 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10444 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10445 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10446# if defined (TE_PE) || defined (TE_PEP)
10447 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10448#endif
d1982f93 10449 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10450 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10451 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10452 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10453 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10454 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10455 {NULL, no_argument, NULL, 0}
10456};
10457size_t md_longopts_size = sizeof (md_longopts);
10458
10459int
17b9d67d 10460md_parse_option (int c, const char *arg)
252b5132 10461{
91d6fa6a 10462 unsigned int j;
293f5f65 10463 char *arch, *next, *saved;
9103f4f4 10464
252b5132
RH
10465 switch (c)
10466 {
12b55ccc
L
10467 case 'n':
10468 optimize_align_code = 0;
10469 break;
10470
a38cf1db
AM
10471 case 'q':
10472 quiet_warnings = 1;
252b5132
RH
10473 break;
10474
10475#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10476 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10477 should be emitted or not. FIXME: Not implemented. */
10478 case 'Q':
252b5132
RH
10479 break;
10480
10481 /* -V: SVR4 argument to print version ID. */
10482 case 'V':
10483 print_version_id ();
10484 break;
10485
a38cf1db
AM
10486 /* -k: Ignore for FreeBSD compatibility. */
10487 case 'k':
252b5132 10488 break;
4cc782b5
ILT
10489
10490 case 's':
10491 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10492 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10493 break;
8dcea932
L
10494
10495 case OPTION_MSHARED:
10496 shared = 1;
10497 break;
99ad8390 10498#endif
321098a5 10499#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10500 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10501 case OPTION_64:
10502 {
10503 const char **list, **l;
10504
3e73aa7c
JH
10505 list = bfd_target_list ();
10506 for (l = list; *l != NULL; l++)
8620418b 10507 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10508 || strcmp (*l, "coff-x86-64") == 0
10509 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10510 || strcmp (*l, "pei-x86-64") == 0
10511 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10512 {
10513 default_arch = "x86_64";
10514 break;
10515 }
3e73aa7c 10516 if (*l == NULL)
2b5d6a91 10517 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10518 free (list);
10519 }
10520 break;
10521#endif
252b5132 10522
351f65ca 10523#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10524 case OPTION_X32:
351f65ca
L
10525 if (IS_ELF)
10526 {
10527 const char **list, **l;
10528
10529 list = bfd_target_list ();
10530 for (l = list; *l != NULL; l++)
10531 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10532 {
10533 default_arch = "x86_64:32";
10534 break;
10535 }
10536 if (*l == NULL)
2b5d6a91 10537 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10538 free (list);
10539 }
10540 else
10541 as_fatal (_("32bit x86_64 is only supported for ELF"));
10542 break;
10543#endif
10544
6e0b89ee
AM
10545 case OPTION_32:
10546 default_arch = "i386";
10547 break;
10548
b3b91714
AM
10549 case OPTION_DIVIDE:
10550#ifdef SVR4_COMMENT_CHARS
10551 {
10552 char *n, *t;
10553 const char *s;
10554
add39d23 10555 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10556 t = n;
10557 for (s = i386_comment_chars; *s != '\0'; s++)
10558 if (*s != '/')
10559 *t++ = *s;
10560 *t = '\0';
10561 i386_comment_chars = n;
10562 }
10563#endif
10564 break;
10565
9103f4f4 10566 case OPTION_MARCH:
293f5f65
L
10567 saved = xstrdup (arg);
10568 arch = saved;
10569 /* Allow -march=+nosse. */
10570 if (*arch == '+')
10571 arch++;
6305a203 10572 do
9103f4f4 10573 {
6305a203 10574 if (*arch == '.')
2b5d6a91 10575 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10576 next = strchr (arch, '+');
10577 if (next)
10578 *next++ = '\0';
91d6fa6a 10579 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10580 {
91d6fa6a 10581 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10582 {
6305a203 10583 /* Processor. */
1ded5609
JB
10584 if (! cpu_arch[j].flags.bitfield.cpui386)
10585 continue;
10586
91d6fa6a 10587 cpu_arch_name = cpu_arch[j].name;
6305a203 10588 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10589 cpu_arch_flags = cpu_arch[j].flags;
10590 cpu_arch_isa = cpu_arch[j].type;
10591 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10592 if (!cpu_arch_tune_set)
10593 {
10594 cpu_arch_tune = cpu_arch_isa;
10595 cpu_arch_tune_flags = cpu_arch_isa_flags;
10596 }
10597 break;
10598 }
91d6fa6a
NC
10599 else if (*cpu_arch [j].name == '.'
10600 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10601 {
33eaf5de 10602 /* ISA extension. */
6305a203 10603 i386_cpu_flags flags;
309d3373 10604
293f5f65
L
10605 flags = cpu_flags_or (cpu_arch_flags,
10606 cpu_arch[j].flags);
81486035 10607
5b64d091 10608 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10609 {
10610 if (cpu_sub_arch_name)
10611 {
10612 char *name = cpu_sub_arch_name;
10613 cpu_sub_arch_name = concat (name,
91d6fa6a 10614 cpu_arch[j].name,
1bf57e9f 10615 (const char *) NULL);
6305a203
L
10616 free (name);
10617 }
10618 else
91d6fa6a 10619 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10620 cpu_arch_flags = flags;
a586129e 10621 cpu_arch_isa_flags = flags;
6305a203 10622 }
0089dace
L
10623 else
10624 cpu_arch_isa_flags
10625 = cpu_flags_or (cpu_arch_isa_flags,
10626 cpu_arch[j].flags);
6305a203 10627 break;
ccc9c027 10628 }
9103f4f4 10629 }
6305a203 10630
293f5f65
L
10631 if (j >= ARRAY_SIZE (cpu_arch))
10632 {
33eaf5de 10633 /* Disable an ISA extension. */
293f5f65
L
10634 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10635 if (strcmp (arch, cpu_noarch [j].name) == 0)
10636 {
10637 i386_cpu_flags flags;
10638
10639 flags = cpu_flags_and_not (cpu_arch_flags,
10640 cpu_noarch[j].flags);
10641 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10642 {
10643 if (cpu_sub_arch_name)
10644 {
10645 char *name = cpu_sub_arch_name;
10646 cpu_sub_arch_name = concat (arch,
10647 (const char *) NULL);
10648 free (name);
10649 }
10650 else
10651 cpu_sub_arch_name = xstrdup (arch);
10652 cpu_arch_flags = flags;
10653 cpu_arch_isa_flags = flags;
10654 }
10655 break;
10656 }
10657
10658 if (j >= ARRAY_SIZE (cpu_noarch))
10659 j = ARRAY_SIZE (cpu_arch);
10660 }
10661
91d6fa6a 10662 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10663 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10664
10665 arch = next;
9103f4f4 10666 }
293f5f65
L
10667 while (next != NULL);
10668 free (saved);
9103f4f4
L
10669 break;
10670
10671 case OPTION_MTUNE:
10672 if (*arg == '.')
2b5d6a91 10673 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10674 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10675 {
91d6fa6a 10676 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10677 {
ccc9c027 10678 cpu_arch_tune_set = 1;
91d6fa6a
NC
10679 cpu_arch_tune = cpu_arch [j].type;
10680 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10681 break;
10682 }
10683 }
91d6fa6a 10684 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10685 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10686 break;
10687
1efbbeb4
L
10688 case OPTION_MMNEMONIC:
10689 if (strcasecmp (arg, "att") == 0)
10690 intel_mnemonic = 0;
10691 else if (strcasecmp (arg, "intel") == 0)
10692 intel_mnemonic = 1;
10693 else
2b5d6a91 10694 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10695 break;
10696
10697 case OPTION_MSYNTAX:
10698 if (strcasecmp (arg, "att") == 0)
10699 intel_syntax = 0;
10700 else if (strcasecmp (arg, "intel") == 0)
10701 intel_syntax = 1;
10702 else
2b5d6a91 10703 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10704 break;
10705
10706 case OPTION_MINDEX_REG:
10707 allow_index_reg = 1;
10708 break;
10709
10710 case OPTION_MNAKED_REG:
10711 allow_naked_reg = 1;
10712 break;
10713
c0f3af97
L
10714 case OPTION_MSSE2AVX:
10715 sse2avx = 1;
10716 break;
10717
daf50ae7
L
10718 case OPTION_MSSE_CHECK:
10719 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10720 sse_check = check_error;
daf50ae7 10721 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10722 sse_check = check_warning;
daf50ae7 10723 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10724 sse_check = check_none;
daf50ae7 10725 else
2b5d6a91 10726 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10727 break;
10728
7bab8ab5
JB
10729 case OPTION_MOPERAND_CHECK:
10730 if (strcasecmp (arg, "error") == 0)
10731 operand_check = check_error;
10732 else if (strcasecmp (arg, "warning") == 0)
10733 operand_check = check_warning;
10734 else if (strcasecmp (arg, "none") == 0)
10735 operand_check = check_none;
10736 else
10737 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10738 break;
10739
539f890d
L
10740 case OPTION_MAVXSCALAR:
10741 if (strcasecmp (arg, "128") == 0)
10742 avxscalar = vex128;
10743 else if (strcasecmp (arg, "256") == 0)
10744 avxscalar = vex256;
10745 else
2b5d6a91 10746 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10747 break;
10748
7e8b059b
L
10749 case OPTION_MADD_BND_PREFIX:
10750 add_bnd_prefix = 1;
10751 break;
10752
43234a1e
L
10753 case OPTION_MEVEXLIG:
10754 if (strcmp (arg, "128") == 0)
10755 evexlig = evexl128;
10756 else if (strcmp (arg, "256") == 0)
10757 evexlig = evexl256;
10758 else if (strcmp (arg, "512") == 0)
10759 evexlig = evexl512;
10760 else
10761 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10762 break;
10763
d3d3c6db
IT
10764 case OPTION_MEVEXRCIG:
10765 if (strcmp (arg, "rne") == 0)
10766 evexrcig = rne;
10767 else if (strcmp (arg, "rd") == 0)
10768 evexrcig = rd;
10769 else if (strcmp (arg, "ru") == 0)
10770 evexrcig = ru;
10771 else if (strcmp (arg, "rz") == 0)
10772 evexrcig = rz;
10773 else
10774 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10775 break;
10776
43234a1e
L
10777 case OPTION_MEVEXWIG:
10778 if (strcmp (arg, "0") == 0)
10779 evexwig = evexw0;
10780 else if (strcmp (arg, "1") == 0)
10781 evexwig = evexw1;
10782 else
10783 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10784 break;
10785
167ad85b
TG
10786# if defined (TE_PE) || defined (TE_PEP)
10787 case OPTION_MBIG_OBJ:
10788 use_big_obj = 1;
10789 break;
10790#endif
10791
d1982f93 10792 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10793 if (strcasecmp (arg, "yes") == 0)
10794 omit_lock_prefix = 1;
10795 else if (strcasecmp (arg, "no") == 0)
10796 omit_lock_prefix = 0;
10797 else
10798 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10799 break;
10800
e4e00185
AS
10801 case OPTION_MFENCE_AS_LOCK_ADD:
10802 if (strcasecmp (arg, "yes") == 0)
10803 avoid_fence = 1;
10804 else if (strcasecmp (arg, "no") == 0)
10805 avoid_fence = 0;
10806 else
10807 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10808 break;
10809
0cb4071e
L
10810 case OPTION_MRELAX_RELOCATIONS:
10811 if (strcasecmp (arg, "yes") == 0)
10812 generate_relax_relocations = 1;
10813 else if (strcasecmp (arg, "no") == 0)
10814 generate_relax_relocations = 0;
10815 else
10816 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10817 break;
10818
5db04b09 10819 case OPTION_MAMD64:
e89c5eaa 10820 intel64 = 0;
5db04b09
L
10821 break;
10822
10823 case OPTION_MINTEL64:
e89c5eaa 10824 intel64 = 1;
5db04b09
L
10825 break;
10826
b6f8c7c4
L
10827 case 'O':
10828 if (arg == NULL)
10829 {
10830 optimize = 1;
10831 /* Turn off -Os. */
10832 optimize_for_space = 0;
10833 }
10834 else if (*arg == 's')
10835 {
10836 optimize_for_space = 1;
10837 /* Turn on all encoding optimizations. */
10838 optimize = -1;
10839 }
10840 else
10841 {
10842 optimize = atoi (arg);
10843 /* Turn off -Os. */
10844 optimize_for_space = 0;
10845 }
10846 break;
10847
252b5132
RH
10848 default:
10849 return 0;
10850 }
10851 return 1;
10852}
10853
8a2c8fef
L
10854#define MESSAGE_TEMPLATE \
10855" "
10856
293f5f65
L
10857static char *
10858output_message (FILE *stream, char *p, char *message, char *start,
10859 int *left_p, const char *name, int len)
10860{
10861 int size = sizeof (MESSAGE_TEMPLATE);
10862 int left = *left_p;
10863
10864 /* Reserve 2 spaces for ", " or ",\0" */
10865 left -= len + 2;
10866
10867 /* Check if there is any room. */
10868 if (left >= 0)
10869 {
10870 if (p != start)
10871 {
10872 *p++ = ',';
10873 *p++ = ' ';
10874 }
10875 p = mempcpy (p, name, len);
10876 }
10877 else
10878 {
10879 /* Output the current message now and start a new one. */
10880 *p++ = ',';
10881 *p = '\0';
10882 fprintf (stream, "%s\n", message);
10883 p = start;
10884 left = size - (start - message) - len - 2;
10885
10886 gas_assert (left >= 0);
10887
10888 p = mempcpy (p, name, len);
10889 }
10890
10891 *left_p = left;
10892 return p;
10893}
10894
8a2c8fef 10895static void
1ded5609 10896show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10897{
10898 static char message[] = MESSAGE_TEMPLATE;
10899 char *start = message + 27;
10900 char *p;
10901 int size = sizeof (MESSAGE_TEMPLATE);
10902 int left;
10903 const char *name;
10904 int len;
10905 unsigned int j;
10906
10907 p = start;
10908 left = size - (start - message);
10909 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10910 {
10911 /* Should it be skipped? */
10912 if (cpu_arch [j].skip)
10913 continue;
10914
10915 name = cpu_arch [j].name;
10916 len = cpu_arch [j].len;
10917 if (*name == '.')
10918 {
10919 /* It is an extension. Skip if we aren't asked to show it. */
10920 if (ext)
10921 {
10922 name++;
10923 len--;
10924 }
10925 else
10926 continue;
10927 }
10928 else if (ext)
10929 {
10930 /* It is an processor. Skip if we show only extension. */
10931 continue;
10932 }
1ded5609
JB
10933 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10934 {
10935 /* It is an impossible processor - skip. */
10936 continue;
10937 }
8a2c8fef 10938
293f5f65 10939 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10940 }
10941
293f5f65
L
10942 /* Display disabled extensions. */
10943 if (ext)
10944 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10945 {
10946 name = cpu_noarch [j].name;
10947 len = cpu_noarch [j].len;
10948 p = output_message (stream, p, message, start, &left, name,
10949 len);
10950 }
10951
8a2c8fef
L
10952 *p = '\0';
10953 fprintf (stream, "%s\n", message);
10954}
10955
252b5132 10956void
8a2c8fef 10957md_show_usage (FILE *stream)
252b5132 10958{
4cc782b5
ILT
10959#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10960 fprintf (stream, _("\
a38cf1db
AM
10961 -Q ignored\n\
10962 -V print assembler version number\n\
b3b91714
AM
10963 -k ignored\n"));
10964#endif
10965 fprintf (stream, _("\
12b55ccc 10966 -n Do not optimize code alignment\n\
b3b91714
AM
10967 -q quieten some warnings\n"));
10968#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10969 fprintf (stream, _("\
a38cf1db 10970 -s ignored\n"));
b3b91714 10971#endif
321098a5
L
10972#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10973 || defined (TE_PE) || defined (TE_PEP))
751d281c 10974 fprintf (stream, _("\
570561f7 10975 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10976#endif
b3b91714
AM
10977#ifdef SVR4_COMMENT_CHARS
10978 fprintf (stream, _("\
10979 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10980#else
10981 fprintf (stream, _("\
b3b91714 10982 --divide ignored\n"));
4cc782b5 10983#endif
9103f4f4 10984 fprintf (stream, _("\
6305a203 10985 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10986 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10987 show_arch (stream, 0, 1);
8a2c8fef
L
10988 fprintf (stream, _("\
10989 EXTENSION is combination of:\n"));
1ded5609 10990 show_arch (stream, 1, 0);
6305a203 10991 fprintf (stream, _("\
8a2c8fef 10992 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10993 show_arch (stream, 0, 0);
ba104c83 10994 fprintf (stream, _("\
c0f3af97
L
10995 -msse2avx encode SSE instructions with VEX prefix\n"));
10996 fprintf (stream, _("\
daf50ae7
L
10997 -msse-check=[none|error|warning]\n\
10998 check SSE instructions\n"));
10999 fprintf (stream, _("\
7bab8ab5
JB
11000 -moperand-check=[none|error|warning]\n\
11001 check operand combinations for validity\n"));
11002 fprintf (stream, _("\
539f890d
L
11003 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11004 length\n"));
11005 fprintf (stream, _("\
43234a1e
L
11006 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11007 length\n"));
11008 fprintf (stream, _("\
11009 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11010 for EVEX.W bit ignored instructions\n"));
11011 fprintf (stream, _("\
d3d3c6db
IT
11012 -mevexrcig=[rne|rd|ru|rz]\n\
11013 encode EVEX instructions with specific EVEX.RC value\n\
11014 for SAE-only ignored instructions\n"));
11015 fprintf (stream, _("\
ba104c83
L
11016 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11017 fprintf (stream, _("\
11018 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11019 fprintf (stream, _("\
11020 -mindex-reg support pseudo index registers\n"));
11021 fprintf (stream, _("\
11022 -mnaked-reg don't require `%%' prefix for registers\n"));
11023 fprintf (stream, _("\
7e8b059b 11024 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
11025 fprintf (stream, _("\
11026 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
11027# if defined (TE_PE) || defined (TE_PEP)
11028 fprintf (stream, _("\
11029 -mbig-obj generate big object files\n"));
11030#endif
d022bddd
IT
11031 fprintf (stream, _("\
11032 -momit-lock-prefix=[no|yes]\n\
11033 strip all lock prefixes\n"));
5db04b09 11034 fprintf (stream, _("\
e4e00185
AS
11035 -mfence-as-lock-add=[no|yes]\n\
11036 encode lfence, mfence and sfence as\n\
11037 lock addl $0x0, (%%{re}sp)\n"));
11038 fprintf (stream, _("\
0cb4071e
L
11039 -mrelax-relocations=[no|yes]\n\
11040 generate relax relocations\n"));
11041 fprintf (stream, _("\
5db04b09
L
11042 -mamd64 accept only AMD64 ISA\n"));
11043 fprintf (stream, _("\
11044 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11045}
11046
3e73aa7c 11047#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11048 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11049 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11050
11051/* Pick the target format to use. */
11052
47926f60 11053const char *
e3bb37b5 11054i386_target_format (void)
252b5132 11055{
351f65ca
L
11056 if (!strncmp (default_arch, "x86_64", 6))
11057 {
11058 update_code_flag (CODE_64BIT, 1);
11059 if (default_arch[6] == '\0')
7f56bc95 11060 x86_elf_abi = X86_64_ABI;
351f65ca 11061 else
7f56bc95 11062 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11063 }
3e73aa7c 11064 else if (!strcmp (default_arch, "i386"))
78f12dd3 11065 update_code_flag (CODE_32BIT, 1);
5197d474
L
11066 else if (!strcmp (default_arch, "iamcu"))
11067 {
11068 update_code_flag (CODE_32BIT, 1);
11069 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11070 {
11071 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11072 cpu_arch_name = "iamcu";
11073 cpu_sub_arch_name = NULL;
11074 cpu_arch_flags = iamcu_flags;
11075 cpu_arch_isa = PROCESSOR_IAMCU;
11076 cpu_arch_isa_flags = iamcu_flags;
11077 if (!cpu_arch_tune_set)
11078 {
11079 cpu_arch_tune = cpu_arch_isa;
11080 cpu_arch_tune_flags = cpu_arch_isa_flags;
11081 }
11082 }
8d471ec1 11083 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11084 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11085 cpu_arch_name);
11086 }
3e73aa7c 11087 else
2b5d6a91 11088 as_fatal (_("unknown architecture"));
89507696
JB
11089
11090 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11091 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11092 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11093 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11094
252b5132
RH
11095 switch (OUTPUT_FLAVOR)
11096 {
9384f2ff 11097#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11098 case bfd_target_aout_flavour:
47926f60 11099 return AOUT_TARGET_FORMAT;
4c63da97 11100#endif
9384f2ff
AM
11101#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11102# if defined (TE_PE) || defined (TE_PEP)
11103 case bfd_target_coff_flavour:
167ad85b
TG
11104 if (flag_code == CODE_64BIT)
11105 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11106 else
11107 return "pe-i386";
9384f2ff 11108# elif defined (TE_GO32)
0561d57c
JK
11109 case bfd_target_coff_flavour:
11110 return "coff-go32";
9384f2ff 11111# else
252b5132
RH
11112 case bfd_target_coff_flavour:
11113 return "coff-i386";
9384f2ff 11114# endif
4c63da97 11115#endif
3e73aa7c 11116#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11117 case bfd_target_elf_flavour:
3e73aa7c 11118 {
351f65ca
L
11119 const char *format;
11120
11121 switch (x86_elf_abi)
4fa24527 11122 {
351f65ca
L
11123 default:
11124 format = ELF_TARGET_FORMAT;
11125 break;
7f56bc95 11126 case X86_64_ABI:
351f65ca 11127 use_rela_relocations = 1;
4fa24527 11128 object_64bit = 1;
351f65ca
L
11129 format = ELF_TARGET_FORMAT64;
11130 break;
7f56bc95 11131 case X86_64_X32_ABI:
4fa24527 11132 use_rela_relocations = 1;
351f65ca 11133 object_64bit = 1;
862be3fb 11134 disallow_64bit_reloc = 1;
351f65ca
L
11135 format = ELF_TARGET_FORMAT32;
11136 break;
4fa24527 11137 }
3632d14b 11138 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11139 {
7f56bc95 11140 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11141 as_fatal (_("Intel L1OM is 64bit only"));
11142 return ELF_TARGET_L1OM_FORMAT;
11143 }
b49f93f6 11144 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11145 {
11146 if (x86_elf_abi != X86_64_ABI)
11147 as_fatal (_("Intel K1OM is 64bit only"));
11148 return ELF_TARGET_K1OM_FORMAT;
11149 }
81486035
L
11150 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11151 {
11152 if (x86_elf_abi != I386_ABI)
11153 as_fatal (_("Intel MCU is 32bit only"));
11154 return ELF_TARGET_IAMCU_FORMAT;
11155 }
8a9036a4 11156 else
351f65ca 11157 return format;
3e73aa7c 11158 }
e57f8c65
TG
11159#endif
11160#if defined (OBJ_MACH_O)
11161 case bfd_target_mach_o_flavour:
d382c579
TG
11162 if (flag_code == CODE_64BIT)
11163 {
11164 use_rela_relocations = 1;
11165 object_64bit = 1;
11166 return "mach-o-x86-64";
11167 }
11168 else
11169 return "mach-o-i386";
4c63da97 11170#endif
252b5132
RH
11171 default:
11172 abort ();
11173 return NULL;
11174 }
11175}
11176
47926f60 11177#endif /* OBJ_MAYBE_ more than one */
252b5132 11178\f
252b5132 11179symbolS *
7016a5d5 11180md_undefined_symbol (char *name)
252b5132 11181{
18dc2407
ILT
11182 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11183 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11184 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11185 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11186 {
11187 if (!GOT_symbol)
11188 {
11189 if (symbol_find (name))
11190 as_bad (_("GOT already in symbol table"));
11191 GOT_symbol = symbol_new (name, undefined_section,
11192 (valueT) 0, &zero_address_frag);
11193 };
11194 return GOT_symbol;
11195 }
252b5132
RH
11196 return 0;
11197}
11198
11199/* Round up a section size to the appropriate boundary. */
47926f60 11200
252b5132 11201valueT
7016a5d5 11202md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11203{
4c63da97
AM
11204#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11205 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11206 {
11207 /* For a.out, force the section size to be aligned. If we don't do
11208 this, BFD will align it for us, but it will not write out the
11209 final bytes of the section. This may be a bug in BFD, but it is
11210 easier to fix it here since that is how the other a.out targets
11211 work. */
11212 int align;
11213
11214 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11215 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11216 }
252b5132
RH
11217#endif
11218
11219 return size;
11220}
11221
11222/* On the i386, PC-relative offsets are relative to the start of the
11223 next instruction. That is, the address of the offset, plus its
11224 size, since the offset is always the last part of the insn. */
11225
11226long
e3bb37b5 11227md_pcrel_from (fixS *fixP)
252b5132
RH
11228{
11229 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11230}
11231
11232#ifndef I386COFF
11233
11234static void
e3bb37b5 11235s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11236{
29b0f896 11237 int temp;
252b5132 11238
8a75718c
JB
11239#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11240 if (IS_ELF)
11241 obj_elf_section_change_hook ();
11242#endif
252b5132
RH
11243 temp = get_absolute_expression ();
11244 subseg_set (bss_section, (subsegT) temp);
11245 demand_empty_rest_of_line ();
11246}
11247
11248#endif
11249
252b5132 11250void
e3bb37b5 11251i386_validate_fix (fixS *fixp)
252b5132 11252{
02a86693 11253 if (fixp->fx_subsy)
252b5132 11254 {
02a86693 11255 if (fixp->fx_subsy == GOT_symbol)
23df1078 11256 {
02a86693
L
11257 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11258 {
11259 if (!object_64bit)
11260 abort ();
11261#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11262 if (fixp->fx_tcbit2)
56ceb5b5
L
11263 fixp->fx_r_type = (fixp->fx_tcbit
11264 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11265 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11266 else
11267#endif
11268 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11269 }
d6ab8113 11270 else
02a86693
L
11271 {
11272 if (!object_64bit)
11273 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11274 else
11275 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11276 }
11277 fixp->fx_subsy = 0;
23df1078 11278 }
252b5132 11279 }
02a86693
L
11280#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11281 else if (!object_64bit)
11282 {
11283 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11284 && fixp->fx_tcbit2)
11285 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11286 }
11287#endif
252b5132
RH
11288}
11289
252b5132 11290arelent *
7016a5d5 11291tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11292{
11293 arelent *rel;
11294 bfd_reloc_code_real_type code;
11295
11296 switch (fixp->fx_r_type)
11297 {
8ce3d284 11298#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11299 case BFD_RELOC_SIZE32:
11300 case BFD_RELOC_SIZE64:
11301 if (S_IS_DEFINED (fixp->fx_addsy)
11302 && !S_IS_EXTERNAL (fixp->fx_addsy))
11303 {
11304 /* Resolve size relocation against local symbol to size of
11305 the symbol plus addend. */
11306 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11307 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11308 && !fits_in_unsigned_long (value))
11309 as_bad_where (fixp->fx_file, fixp->fx_line,
11310 _("symbol size computation overflow"));
11311 fixp->fx_addsy = NULL;
11312 fixp->fx_subsy = NULL;
11313 md_apply_fix (fixp, (valueT *) &value, NULL);
11314 return NULL;
11315 }
8ce3d284 11316#endif
1a0670f3 11317 /* Fall through. */
8fd4256d 11318
3e73aa7c
JH
11319 case BFD_RELOC_X86_64_PLT32:
11320 case BFD_RELOC_X86_64_GOT32:
11321 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11322 case BFD_RELOC_X86_64_GOTPCRELX:
11323 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11324 case BFD_RELOC_386_PLT32:
11325 case BFD_RELOC_386_GOT32:
02a86693 11326 case BFD_RELOC_386_GOT32X:
252b5132
RH
11327 case BFD_RELOC_386_GOTOFF:
11328 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11329 case BFD_RELOC_386_TLS_GD:
11330 case BFD_RELOC_386_TLS_LDM:
11331 case BFD_RELOC_386_TLS_LDO_32:
11332 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11333 case BFD_RELOC_386_TLS_IE:
11334 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11335 case BFD_RELOC_386_TLS_LE_32:
11336 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11337 case BFD_RELOC_386_TLS_GOTDESC:
11338 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11339 case BFD_RELOC_X86_64_TLSGD:
11340 case BFD_RELOC_X86_64_TLSLD:
11341 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11342 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11343 case BFD_RELOC_X86_64_GOTTPOFF:
11344 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11345 case BFD_RELOC_X86_64_TPOFF64:
11346 case BFD_RELOC_X86_64_GOTOFF64:
11347 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11348 case BFD_RELOC_X86_64_GOT64:
11349 case BFD_RELOC_X86_64_GOTPCREL64:
11350 case BFD_RELOC_X86_64_GOTPC64:
11351 case BFD_RELOC_X86_64_GOTPLT64:
11352 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11353 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11354 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11355 case BFD_RELOC_RVA:
11356 case BFD_RELOC_VTABLE_ENTRY:
11357 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11358#ifdef TE_PE
11359 case BFD_RELOC_32_SECREL:
11360#endif
252b5132
RH
11361 code = fixp->fx_r_type;
11362 break;
dbbaec26
L
11363 case BFD_RELOC_X86_64_32S:
11364 if (!fixp->fx_pcrel)
11365 {
11366 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11367 code = fixp->fx_r_type;
11368 break;
11369 }
1a0670f3 11370 /* Fall through. */
252b5132 11371 default:
93382f6d 11372 if (fixp->fx_pcrel)
252b5132 11373 {
93382f6d
AM
11374 switch (fixp->fx_size)
11375 {
11376 default:
b091f402
AM
11377 as_bad_where (fixp->fx_file, fixp->fx_line,
11378 _("can not do %d byte pc-relative relocation"),
11379 fixp->fx_size);
93382f6d
AM
11380 code = BFD_RELOC_32_PCREL;
11381 break;
11382 case 1: code = BFD_RELOC_8_PCREL; break;
11383 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11384 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11385#ifdef BFD64
11386 case 8: code = BFD_RELOC_64_PCREL; break;
11387#endif
93382f6d
AM
11388 }
11389 }
11390 else
11391 {
11392 switch (fixp->fx_size)
11393 {
11394 default:
b091f402
AM
11395 as_bad_where (fixp->fx_file, fixp->fx_line,
11396 _("can not do %d byte relocation"),
11397 fixp->fx_size);
93382f6d
AM
11398 code = BFD_RELOC_32;
11399 break;
11400 case 1: code = BFD_RELOC_8; break;
11401 case 2: code = BFD_RELOC_16; break;
11402 case 4: code = BFD_RELOC_32; break;
937149dd 11403#ifdef BFD64
3e73aa7c 11404 case 8: code = BFD_RELOC_64; break;
937149dd 11405#endif
93382f6d 11406 }
252b5132
RH
11407 }
11408 break;
11409 }
252b5132 11410
d182319b
JB
11411 if ((code == BFD_RELOC_32
11412 || code == BFD_RELOC_32_PCREL
11413 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11414 && GOT_symbol
11415 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11416 {
4fa24527 11417 if (!object_64bit)
d6ab8113
JB
11418 code = BFD_RELOC_386_GOTPC;
11419 else
11420 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11421 }
7b81dfbb
AJ
11422 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11423 && GOT_symbol
11424 && fixp->fx_addsy == GOT_symbol)
11425 {
11426 code = BFD_RELOC_X86_64_GOTPC64;
11427 }
252b5132 11428
add39d23
TS
11429 rel = XNEW (arelent);
11430 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11431 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11432
11433 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11434
3e73aa7c
JH
11435 if (!use_rela_relocations)
11436 {
11437 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11438 vtable entry to be used in the relocation's section offset. */
11439 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11440 rel->address = fixp->fx_offset;
fbeb56a4
DK
11441#if defined (OBJ_COFF) && defined (TE_PE)
11442 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11443 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11444 else
11445#endif
c6682705 11446 rel->addend = 0;
3e73aa7c
JH
11447 }
11448 /* Use the rela in 64bit mode. */
252b5132 11449 else
3e73aa7c 11450 {
862be3fb
L
11451 if (disallow_64bit_reloc)
11452 switch (code)
11453 {
862be3fb
L
11454 case BFD_RELOC_X86_64_DTPOFF64:
11455 case BFD_RELOC_X86_64_TPOFF64:
11456 case BFD_RELOC_64_PCREL:
11457 case BFD_RELOC_X86_64_GOTOFF64:
11458 case BFD_RELOC_X86_64_GOT64:
11459 case BFD_RELOC_X86_64_GOTPCREL64:
11460 case BFD_RELOC_X86_64_GOTPC64:
11461 case BFD_RELOC_X86_64_GOTPLT64:
11462 case BFD_RELOC_X86_64_PLTOFF64:
11463 as_bad_where (fixp->fx_file, fixp->fx_line,
11464 _("cannot represent relocation type %s in x32 mode"),
11465 bfd_get_reloc_code_name (code));
11466 break;
11467 default:
11468 break;
11469 }
11470
062cd5e7
AS
11471 if (!fixp->fx_pcrel)
11472 rel->addend = fixp->fx_offset;
11473 else
11474 switch (code)
11475 {
11476 case BFD_RELOC_X86_64_PLT32:
11477 case BFD_RELOC_X86_64_GOT32:
11478 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11479 case BFD_RELOC_X86_64_GOTPCRELX:
11480 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11481 case BFD_RELOC_X86_64_TLSGD:
11482 case BFD_RELOC_X86_64_TLSLD:
11483 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11484 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11485 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11486 rel->addend = fixp->fx_offset - fixp->fx_size;
11487 break;
11488 default:
11489 rel->addend = (section->vma
11490 - fixp->fx_size
11491 + fixp->fx_addnumber
11492 + md_pcrel_from (fixp));
11493 break;
11494 }
3e73aa7c
JH
11495 }
11496
252b5132
RH
11497 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11498 if (rel->howto == NULL)
11499 {
11500 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11501 _("cannot represent relocation type %s"),
252b5132
RH
11502 bfd_get_reloc_code_name (code));
11503 /* Set howto to a garbage value so that we can keep going. */
11504 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11505 gas_assert (rel->howto != NULL);
252b5132
RH
11506 }
11507
11508 return rel;
11509}
11510
ee86248c 11511#include "tc-i386-intel.c"
54cfded0 11512
a60de03c
JB
11513void
11514tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11515{
a60de03c
JB
11516 int saved_naked_reg;
11517 char saved_register_dot;
54cfded0 11518
a60de03c
JB
11519 saved_naked_reg = allow_naked_reg;
11520 allow_naked_reg = 1;
11521 saved_register_dot = register_chars['.'];
11522 register_chars['.'] = '.';
11523 allow_pseudo_reg = 1;
11524 expression_and_evaluate (exp);
11525 allow_pseudo_reg = 0;
11526 register_chars['.'] = saved_register_dot;
11527 allow_naked_reg = saved_naked_reg;
11528
e96d56a1 11529 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11530 {
a60de03c
JB
11531 if ((addressT) exp->X_add_number < i386_regtab_size)
11532 {
11533 exp->X_op = O_constant;
11534 exp->X_add_number = i386_regtab[exp->X_add_number]
11535 .dw2_regnum[flag_code >> 1];
11536 }
11537 else
11538 exp->X_op = O_illegal;
54cfded0 11539 }
54cfded0
AM
11540}
11541
11542void
11543tc_x86_frame_initial_instructions (void)
11544{
a60de03c
JB
11545 static unsigned int sp_regno[2];
11546
11547 if (!sp_regno[flag_code >> 1])
11548 {
11549 char *saved_input = input_line_pointer;
11550 char sp[][4] = {"esp", "rsp"};
11551 expressionS exp;
a4447b93 11552
a60de03c
JB
11553 input_line_pointer = sp[flag_code >> 1];
11554 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11555 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11556 sp_regno[flag_code >> 1] = exp.X_add_number;
11557 input_line_pointer = saved_input;
11558 }
a4447b93 11559
61ff971f
L
11560 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11561 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11562}
d2b2c203 11563
d7921315
L
11564int
11565x86_dwarf2_addr_size (void)
11566{
11567#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11568 if (x86_elf_abi == X86_64_X32_ABI)
11569 return 4;
11570#endif
11571 return bfd_arch_bits_per_address (stdoutput) / 8;
11572}
11573
d2b2c203
DJ
11574int
11575i386_elf_section_type (const char *str, size_t len)
11576{
11577 if (flag_code == CODE_64BIT
11578 && len == sizeof ("unwind") - 1
11579 && strncmp (str, "unwind", 6) == 0)
11580 return SHT_X86_64_UNWIND;
11581
11582 return -1;
11583}
bb41ade5 11584
ad5fec3b
EB
11585#ifdef TE_SOLARIS
11586void
11587i386_solaris_fix_up_eh_frame (segT sec)
11588{
11589 if (flag_code == CODE_64BIT)
11590 elf_section_type (sec) = SHT_X86_64_UNWIND;
11591}
11592#endif
11593
bb41ade5
AM
11594#ifdef TE_PE
11595void
11596tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11597{
91d6fa6a 11598 expressionS exp;
bb41ade5 11599
91d6fa6a
NC
11600 exp.X_op = O_secrel;
11601 exp.X_add_symbol = symbol;
11602 exp.X_add_number = 0;
11603 emit_expr (&exp, size);
bb41ade5
AM
11604}
11605#endif
3b22753a
L
11606
11607#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11608/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11609
01e1a5bc 11610bfd_vma
6d4af3c2 11611x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11612{
11613 if (flag_code == CODE_64BIT)
11614 {
11615 if (letter == 'l')
11616 return SHF_X86_64_LARGE;
11617
8f3bae45 11618 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11619 }
3b22753a 11620 else
8f3bae45 11621 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11622 return -1;
11623}
11624
01e1a5bc 11625bfd_vma
3b22753a
L
11626x86_64_section_word (char *str, size_t len)
11627{
8620418b 11628 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11629 return SHF_X86_64_LARGE;
11630
11631 return -1;
11632}
11633
11634static void
11635handle_large_common (int small ATTRIBUTE_UNUSED)
11636{
11637 if (flag_code != CODE_64BIT)
11638 {
11639 s_comm_internal (0, elf_common_parse);
11640 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11641 }
11642 else
11643 {
11644 static segT lbss_section;
11645 asection *saved_com_section_ptr = elf_com_section_ptr;
11646 asection *saved_bss_section = bss_section;
11647
11648 if (lbss_section == NULL)
11649 {
11650 flagword applicable;
11651 segT seg = now_seg;
11652 subsegT subseg = now_subseg;
11653
11654 /* The .lbss section is for local .largecomm symbols. */
11655 lbss_section = subseg_new (".lbss", 0);
11656 applicable = bfd_applicable_section_flags (stdoutput);
11657 bfd_set_section_flags (stdoutput, lbss_section,
11658 applicable & SEC_ALLOC);
11659 seg_info (lbss_section)->bss = 1;
11660
11661 subseg_set (seg, subseg);
11662 }
11663
11664 elf_com_section_ptr = &_bfd_elf_large_com_section;
11665 bss_section = lbss_section;
11666
11667 s_comm_internal (0, elf_common_parse);
11668
11669 elf_com_section_ptr = saved_com_section_ptr;
11670 bss_section = saved_bss_section;
11671 }
11672}
11673#endif /* OBJ_ELF || OBJ_MAYBE_ELF */